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Abstract – Software-defined radios (SDRs), have become very important in both 

commercial as well as military applications that demand high Quality of Service (QoS) in 

hostile physical and spectral conditions. Simultaneously, interoperability with legacy 

communications equipment is also a critical requirement for widespread adoption. An 

ideal SDR supports multi-standard, multimode and multiband wireless communications. 

Such a system is reconfigurable in the sense that transmitted signals at different carrier 

frequencies and/or different modulation schemes can be reliably identified and 

appropriately demodulated in real-time. In this dissertation, such a radio system is 

developed using a wavelet transform-based transceiver platform, composed of four main 

wavelet-domain processors: Channel Estimator, Channel Equalizer, Automatic 

Modulation Recognition (AMR) and Demodulator.  

The AMR method is blind identification of the modulation scheme used to format 

digital data embedded in a signal. It is investigated using the Discrete Wavelet Transform 

(DWT) in conjunction with techniques typically used in signal processing field of pattern 

recognition. In particular, the concept of wavelet-domain template matching is used to 

achieve modulation identification prior to signal demodulation. The digital modulation 
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schemes considered in this work include families of ASK, FSK, PSK and QAM. The test 

signals used in this study have been subjected to Additive White Gaussian Noise (AWGN) 

resulting in Signal-to-Noise Ratios (SNRs) in the range of -5 dB to 10 dB. Monte Carlo 

simulations using the wavelet-based AMR algorithms show correct classification rates 

that are better than most of existing methods that use other techniques 

For wavelet-based demodulation original signal information can be directly 

obtained in the wavelet-domain without an inverse transform of a signal to its original 

time-domain form, and that has been proven analytically herein. Extensive Monte Carlo 

simulations have shown that the Bit Error Rates (BERs) obtained from wavelet-based 

demodulation are very comparable with the optimal case of matched filter-based 

demodulation. 

The results of this work show the ability of wavelet transforms to enable the 

automatic recognition and subsequent demodulation of communications signals in a 

single processing sequence by solely using the computationally-friendly mathematics of 

the Discrete Wavelet Transform. 
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Chapter 1 Introduction 

1.1 Background and Motivation 

1.1.1 Background 

In typical contemporary communications systems, the transmitter and receiver can each 

be viewed as two-port systems that are linked via a transmission channel. One port is the 

antenna used to transmit/receive RF signals and the other port is the baseband data 

interface between the system and the user. However, the use of two-port devices place 

restrictions on the overall data throughput that can be achieved by the system. To 

overcome this drawback new lines of thinking involve the use of multi-port 

communication systems for consumer use. One example of such a multi-port system is 

provided by the use of Multi-input Multi-output (MIMO) architectures. MIMO-based 

systems transmit and receive multiple digitally-modulated signals on multiple antennas. 

The underlying principle behind such a scheme is spatial multiplexing [3, 4]. Analogous 

to the technique of Time-Division Multiplexing (TDM), wherein multiple data streams 

are separately transmitted in successive temporal windows, using spatial multiplexing 

multiple data streams are transmitted via different antennas thereby sharing physical 

space. Such a scheme allows for communications systems with higher spectral efficiency 

and wireless link reliability without compromising either the transmission bandwidth or 

power [5]. Another popular system methodology is based on the concept of Orthogonal 

Frequency Division Multiplexing (OFDM) [6-8]. In this technique a high-speed data 

stream is demultiplexed into a number of slower-speed data streams and each stream is 

used to modulate a carrier signal. Multiple orthogonal sub-carrier signals can be used for 

the various data streams, and thus the orthogonal modulated signals can be then 
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combined for transmission via a single antenna.  The major advantage of using an 

OFDM-based scheme is the ability to handle severe channel fading conditions [9-11]. 

Naturally, the MIMO and OFDM techniques have been combined into a hybridized 

MIMO-OFDM scheme [12-15].  Such systems that are capable of high spectral 

efficiency and high channel fading and interference immunity certainly hold promise to 

solve problems that have existed in the area of wireless, as well as wire line 

communications. 

Moreover, more typical contemporary communications systems are developed based on 

a wide range of wireless protocols and standards. For example, there are two common 

cellular phone systems options may be employed are Code Division Multiple Access 

(CDMA) and Global System for Mobile communications (GSM). With regard to 

personal wireless networks, the IEEE 802.11 family of standards or the newly developed 

technology of Worldwide Interoperability for Microwave Access (WiMAX) may be 

employed. Even the fundamental modulation schemes are still used for some important 

applications. For example, the PSK is mainly implemented by the Bluetooth, IEEE 

802.11a&b and other wireless communications systems. The QAM plays important roles 

in cable modems for high speed internet access, digital video transmission standard for 

cable television and digital terrestrial television applications. Transmissions through the 

optical fibers utilizes ASK as one of the fundamental technologies. The FSK is 

predominantly used in applications such as caller ID, fax services, and transmission of 

telemetry data.  
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1.1.2 Motivation 

Through observing variety of standards currently in use, there exist entire families of 

communications systems that are tailored specifically to each standard. However, there 

are some inherent limitations of them:  

1. Lack of interoperability between standards; 

2. Circuit complexity increased comparing to traditional two-port systems, which are 

also known as Single-Input Single-Output (SISO); 

3. To recover the signal at the receiver for demodulation, the receiver end has to 

know a lot a prior signal information from the transmitter end; 

4. In the last step of the contemporary demodulation processor, signals always have 

to be transferred back into the time-domain;  

5. Each modulation scheme has to be demodulated by its unique carrier signal and 

corresponding specific circuit.  

To overcome the drawbacks mentioned above, one reconfigurable communication system 

expected to be developed in this work, should be embedded with following desired 

capabilities: 

1. Support multi-standard, multimode, and multiband wireless communications.  

2. The receivers are able to recognize multiple modulation schemes of the acquired 

signal, and to demodulate the identified signal.  

3. The identification and detection accuracy should be promising over a huge range 

of SNR. 

4. The system should be able to learn the channel impact at the receiver end even 

know little a priori knowledge.   

5. The radio receiver should be comprised largely of digital circuitry. 
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In summary, given the wide variety of communications standards and protocols currently 

in use, and with newer technologies being continually added, especially those most new 

systems scarify their design simplicity as the tradeoff for higher data throughout. Hence, 

a new platform for communications systems that are capable of interoperability between 

standards is required and designed in this work, which should be able to better balance 

the design cost and the performance. This new platform for efficient future 

communications receivers has been identified as that of reconfigurable radios and its 

development of communications systems is necessary for both military and commercial 

applications. The term of reconfigurable is in the sense that transmitted signals at 

different carrier frequencies, and which use different modulation schemes, when 

acquired by the radio, can be reliably identified and appropriately demodulated in real-

time. The proposed research should advance this new design paradigm by enabling the 

digital baseband processing stage that is required to identify and demodulate received 

information-bearing signals. The availability of flexible and versatile baseband 

processing sub-systems is critical to the implementation of reconfigurable radios. 

 

1.2 Objective 

This work aims at building a reconfigurable radio receiver that has maximal flexibility 

of its functions while simultaneously minimizing the use of prescribed analog signal 

processing sub-systems. There are four main functional processors to enable such an 

agile radio system, which are AMR, channel estimation, equalization, and demodulation. 

Among them, the main keys to enabling such a technology are firstly the identification 

of modulated signal types (AMR), and secondly the demodulation of the received 
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communications signals. Such a radio transceiver can be realized by using the Wavelet-

based platform Processors which is capable to identify modulated communications 

signals without a priori knowledge of the modulation scheme, and to demodulate signals 

by merely utilizing their wavelet transformed information. Specifically, such an 

identifier and demodulator are carried out by using the discrete wavelet transform.  

The Wavelet transform technology has been chosen for this reconfigurable radio 

receiver’s development since discontinuous signals can be readily analyzed after being 

transformed. By decomposing communications signals with different wavelet basis 

functions, instantaneous wavelet-domain features of each signal can be identified. 

Furthermore, there are many strings existing between the signal information contained in 

the time domain and in the wavelet domain, which can be utilized to demodulate signal 

efficiently and accurately while staying with the wavelet domain. Thus no extra 

computing effort is needed to transfer a signal back to the time domain. Briefly saying, 

WT is mainly useful here because it is good at characterization (analysis) of signals. Also, 

using the discrete wavelet transform (DWT) is more efficient than using the continuous 

wavelet transform (CWT). Because of that although both technologies extract around 

same amount information from signals, but the DWT cost much lower computational 

complexity than the CWT. Besides, the other two core functions mentioned earlier 

Channel estimation and Channel Equalization were previously-developed [80] in the 

discrete wavelet domain as well. By embedding these four processors into one system, a 

discreet wavelet-based agile transceiver is presented completely. 
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1.2.1 System Level View 

The following paragraphs illustrate the system shown in the block diagram in Fig. 1.1 and 

compare the classic and wavelet-based communication platform structures. The structure 

of the proposed new transceiver is developed based on the typical contemporary 

communication receiver architecture, which is implemented with three major systems: 

RF front-end, digital front-end, i.e., mixed-signal system including Analog-to-Digital 

Converters (ADCs), and baseband demodulation and processing system, as shown in Fig. 

1.1. The research effort proposed herein is focused on the development of the baseband 

system.  

 

RF Front-End ADC
Demodulation 
and Baseband 

Processing

Recovered 
Data

 
Fig. 1.1. Overall system-level description of a reconfigurable radio receiver [81]. 

 
 
1. Radio Frequency (RF) front-end: The RF front-end processor is performed here 

for the ease of subsequent processing. Its function is to down-conversion of the 

passband signal to an intermediate frequency. The components of RF inculde 

analog electronic sub-systems, such as mixer, local oscillators, band-pass filters, 

variable gain amplifiers and antennas.  

2. Mixed-signal stage: The intermediate frequency signal output by the RF front-end 

is converted to a digitized form in this stage. The Analog-to-Digital Converter 

(ADC), in Fig. 1.1, converts the analog received signal into digitized form.   

3. Demodulation and baseband processing units: A signal-specific demodulator can 
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recover modulated signal to desired baseband data, and a baseband processor can 

handle any following decoding of the recovered data. 

1.2.2 Block Diagram View 

A more detailed depiction of a modern radio transceiver system is provided in Fig. 1.2. It 

shows that radio transmitters also use similar signal processing strategies as those in the 

receiver. First, baseband data are encoded, if needed, and the data are then used to 

modulate a carrier signal at an intermediate frequency. The modulated signal is then up-

converted to the RF passband and transmitted. 

Baseband 
Processor

Original 
Baseband Data

Modulator

LO

Baseband 
Processor

Recovered 
Baseband Data

Demodulator

Transmitter

Receiver

DAC

ADC

RF Front-EndMixed-SignalBaseband Processing  
Fig. 1.2 Typical contemporary radio transceiver system [81]. 

 

As the system shown in Fig. 1.2, the lack of interoperability between radios that 

implement different communications standards, is the major limitation of 

communications systems. One specific difficulty to interoperate between standards is that 

various standards must utilize their unique corresponding modulation schemes. 

In order to rectify the problem, an agile radio system is designed automatically 
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classifying the modulation scheme, which can be utilized in a received signal, and with 

the capacity of  automatically demodulating the signal. To specify this agile radio 

transceiver system, a detailed block diagram will demonstrate core features of the that is 

composed of its core features as shown in the Fig. 1.3, which is a wavelet-based platform 

composed of four major components: 

1. Channel Estimation: This process enables Electrical characterization of the 

medium through which a signal is transmitting. Besides, in order to improve the 

performance, channel estimation also performs to restore signal features prior to 

the WT-based AMR and demodulation processes. 

2. Channel Equalization: This step is to eliminate unwanted channel effects carried 

by received signals. The reduction of unwanted channel effects present in 

received signals is a desirable signal conditioning step before invoking the AMR 

process. 

3. AMR: This is a key component of this Wavelet-based transceiver Platform, which 

automatically identifies the modulation scheme of the received signal. 

4. Demodulation: Second to AMR in importance is the automation demodulation of 

this Wavelet Platform. 

After the modulation scheme of the unknown received signal is recognized, the signal is 

then jointly and automatically demodulated to recover the transmitted information. 
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Fig. 1.3. System-level block diagram of an agile radio transceiver based on the Wavelet 

Platform. 

 
Fig. 1.3 shows that a wavelet-based transceiver is consisted of a transmitter and a receiver 

as majority parts of the receiver which is implemented in the context of the Wavelet 

Domain. In this transceiver, the transmitter operation is partially controlled by the 

Wavelet Platform. The dashed lines indicate that sub-systems in the transmitter take 

feedback provided by the Wavelet Receiver, which could carry information to alter 

transmission characteristics such as the modulation scheme, carrier frequency, etc., as 

needed. This function also enables the feature of agility of the wavelet-based transceiver. 

The WT-based AMR and Demodulation processes both use the Discrete Wavelet 

Transform (DWT).  
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1.3 Deliverables 

In brief, the intention of developing the wavelet-based AMR and wavelet-based 

Modulation techniques is to advance the state of the art of communication systems by 

providing a fundamental step towards interoperability between communication standards 

through the use of wavelet transforms. Summarizing from above sections, the primary 

objectives of this research work are: 

1. Invention of a technique for choosing wavelet-domain signature templates that are 

needed for the AMR processes. 

2. Invention of wavelet-based AMR algorithms using the templates matching 

methodology. 

3. Invention of a technique for the wavelet-based Demodulation processes. 

4. Evaluation of performances of the proposed AMR and Demodulation 

technologies.  

5. Comparison the performance of the WT-based AMR and Demodulation 

methodologies with results obtained using other methodologies that have been 

reported in the literature.  

 

1.4 Organizations 

The dissertation is composed of six chapters. The focus of Chapter 2 is on the literature 

review. In this chapter, existing AMR methodologies are categorized into two main 

research trends, which are the likelihood function-based (LB) method and the feature-

based (FB) function. The LB method is also called the theoretical method because its 

performance usually could be derived analytically (asymptotically) and is considered 
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optimal by the byes sense. The FB function provides the suboptimal results with lower 

computational complexity. Each trends is further grouped into varies subclass by utilizing 

different characters, which are very helpful for designing the proposed AMR algorithm.  

Chapter 3 covers the mathematical foundation and theoretical background needed for this 

work. Besides of the modulation schemes introductions, the discrete wavelet transform is 

also illustrated from the space geometric instruction view and in the form of filter banks 

analyze. 

Two wavelet-based AMR algorithms are developed in Chapter 4 and Chapter 5 based on 

two wavelet-based features as follows: 

1. WD-Instantaneous features templates: 

As the symbol transition that occur in the modulated waveform structure, 

templates that contain instantaneous features of specific type of digitally 

modulated signals will emerge. 

2. WD-Statistics features templates: 

As variations of the sinusoidal feature are contained within a symbol period of 

different modulation schemes, after statistical operations, some features are 

collected for analyzing and then being used for a modulation classification. 

For each algorithm, the detailed design procedures for the AMR algorithm, results of 

computer simulation experiments, comparisons of the results with the existing literature 

and computational complexity estimation are provided in each chapter. 

In Chapter 6, the techniques used for automatic signal demodulation in the wavelet 

domain are presented. The BER performances of the WT-based demodulation of the 

various modulation schemes are compared with the relevant matched filter-based BER 
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performances. 

Finally, in Chapter 7, the important features of the AMR and Demodulation processes 

invented in this dissertation are summarized; extensions of the work are identified for 

possible future investigation. Finally, conclusions of this research work are provided. 
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Chapter 2 Literature Review 

2.1 Survey of Automatic Modulation Recognition Methods 

Before introducing this research, it is necessary and meaningful to firstly review existing 

technologies regarding the AMR and Demodulation technologies. The design of a 

modulation classifier (AMR) essentially involves two steps: signal preprocessing and 

proper selection of the classification algorithm. Preprocessing tasks may include, but not 

limited to perform some or all of, noise reduction, estimation of carrier frequency, 

symbol period, and signal power, equalization etc. Depending on the classification 

algorithm chosen in the second step, preprocessing tasks with different levels of accuracy 

are required; some classification methods require precise estimates, whereas others are 

less sensitive to the unknown parameters. Over the years, to simplify the design process 

of a multimode communication system, many studies have been conducted regarding 

these subjects. The evolution of signal processors and analog-to-digital converters allow 

the development and improvement of algorithms in order to support real-time recognition 

with less and less of a priori signal information. 

Regarding the second step, the existing classification algorithms could be generally 

categorized into two main trends: likelihood-based (LB) and feature-based (FB) methods, 

respectively. The former is based on the likelihood function of the received signal and the 

decision is made comparing the likelihood ratio against a threshold. A solution offered by 

the LB algorithms is optimal in the Bayesian sense, by minimizing the probability of 

false classification. The optimal solution suffers from computational complexity, which 

in many cases of interest naturally gives rise to suboptimal classifiers. On the other hand, 

the FB algorithm’s core idea is composed by the statistical pattern recognition approach 
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which is based on extracting some basic characteristics of the signal features. These 

features are normally chosen in an ad hoc way. Although an FB-based method may not 

be optimal, it is usually simple to implement, and can have near-optimal performance 

when designed properly. Once the modulation format is correctly identified, other 

operations, such as signal demodulation and information extraction, can be subsequently 

performed. In general, AMR is a challenging task, especially in a non-cooperative 

environment, where in addition to multipath propagation, frequency-selectivity and time-

varying nature of the channel, no prior knowledge of the incoming signal is available. In 

the following, some AMR papers are reviewed with these two main methodologies. 

 

2.1.1 The Likelihood-Base (LB) Algorithm 

The LB algorithm [16] is a utilization of the decision-theoretic approach, which indicates 

to a probabilistic solution based on a priori knowledge of probability functions and 

certain hypotheses. In this methodology, the modulation schemes classification could be 

viewed as a composite hypothesis-testing problem. Composite hypothesis contains more 

than one unknown quantity which characterizes the hypothesis ranges over a set of values. 

Depending on the model chosen for the unknown quantities, there are usually three LB-

AMR methodologies being used as the solution of this multiple-hypothesis testing 

problem: (a) the Average Likelihood Ratio Test (ALRT), where the unknown signal and 

channel parameters are treated as random variables with known probability density 

functions (PDFs), and the likelihood functional is averaged over this PDF. It results in an 

optimal classifier in the Bayesian sense; (b) the Generalized Likelihood Ratio Test 

(GLRT), where the unknown parameters are treated as deterministic but unknown 
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variables and the likelihood functional is maximized with respect to them; (c) a hybrid of 

the two tests is named as the Hybrid Likelihood Ratio Test (HLRT), where some of the 

parameters are treated as in (a) and the rest as in (b).  

 

ALRT: The first work reviewed on this topic [17] addresses AMR for PSK (BPSK, 

QPSK) and QAM (16-QAM, 32-QAM and 64-QAM) signals under coherent and non-

coherent conditions. For coherent case, it firstly assumes all parameters are known. The 

signal could be classified by forming likelihood ratios from the demodulated matched-

filter output. Because the conditional PDF of output is obtainable given a certain 

modulation type, the coherent maximum likelihood (ML) classifier is simply a rule for 

choosing among the candidate modulation types by selecting which one provides the 

maximum conditional output PDF. Non-coherent ML classification is evaluated by 

assuming all signal parameters are known except the carrier phase. However, the 

conditional joint PDF of amplitude and phase difference of received signal given certain 

modulation schemes is available. Thus, by selecting the modulation type that corresponds 

to the largest of this conditional PDF value, Non-coherent ML classifier is implemented 

successfully. 

In [18] the research developed in an ideal situation where all signal parameters as well as 

the noise power are known, the data symbols are independent and the pulse shape is 

rectangular. A theoretical performance analysis of the generic ML classifier that is 

applicable to any digital amplitude-phase (PSK, PAM and QAM) modulation by 

assuming all modulation types are equal likely. In details, the conditional joint PDF of the 

in-phase and quadrature portion of the received signal given a modulation hypothesis is 

available, thus the likelihood function could be obtained by multiplying all symbols 
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together since they are assumed independent. The ML classifier will claim the decision 

which one leads likelihood function to the maximum value.  

Study in [19] utilizes the ML classifier to recognize M-ary PSK signals. Setting the 

ALRT threshold value as 1turns it into the ML classifier. In details of the classifier 

construction, the conditional joint PDF of the in-phase and quadrature component of the 

signal was firstly derived upon the independence of these two parameters. Then the 

classification performance is analytically derived with the help of an extension of the nth 

moment.  

In [20] and [21], a promising approach for BPSK and QPSK modulation type 

identification is developed. The resulting classifier is optimum in the sense that it 

minimizes the average cost function of misclassification probability. In this approach, 

modulation classification is considered as a composite binary hypothesis testing problem, 

and ALRT is applied with the signal level as the random parameter for which PDS is 

known. This method works well at low SNR in [20], by assuming the signal level is 

constant and known to a receiver. However, in practice, wireless communication 

environment suffers from noise interference, fading, and multipath. Thus [21] extended 

this work by considering the signal level as a Rayleigh-distributed random variable. The 

maximum a posteriori classifier is derived by averaging over the signal level with the 

prior knowledge of the probability distribution of the signal level. This work is not 

appropriate to extend to higher-order modulation scheme since its computation 

complexity increases exponentially as modulation order increases.  

 

From ALRT transit to GLRT and HLRT: To summarize, the ALRT is basically a 

Bayesian based approach, and it provides the optimal performance in the Bayesian sense 
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by assuming that unknown parameters are random variables with certain known PDF and 

averages the conditional LFs over these quantities. However, the need for the PDF of all 

unknown parameters that are usually unavailable, and multidimensional integrals 

involved in the derivation of this average likelihood ratio test make the computational 

cost impractical. Hence, developing alternative algorithms are necessary. 

In another classical theory of statistical decisions, unknown parameters are usually 

treated as unknown deterministic values. The uniformly most powerful (UMP) test is 

optimal in the sense that it finds the most powerful test independent of the unknown 

parameters; however, because of the complicated unknown parameter space, usually met 

in practice, the UMP test rarely exists. Instead, we may substitute the maximum 

likelihood (ML) estimates of the unknown parameters in the LFs and then develop the 

generalized likelihood ratio tests (GLRT) using the estimated values.  

Despite the fact that the GLRT is widely used in the signal activity detection problems, it 

is not applicable for the modulation classification, as the different constellation sets are 

mostly nested. We can average the conditional Likelihood functions (LFs) over the 

symbols and substitute the ML estimates of other unknown parameters in the LFs. The 

last approach, namely hybrid likelihood ratio test (HLRT) removes the nested 

constellation difficulty of GLRT and is of more interest in recent research on AMR.  

 

GLRT and HLRT: The work of [21] is first re-studied in research of [22] by utilizing 

the GLRT approach. The signal level is treated as an unknown parameter and is estimated 

using the maximum likelihood method. The estimated value is used in the average 

likelihood ratio test for classification. The paper proposed and studied a HLRT based 

classifier to distinguish BPSK signal and QPSK signal without a priori knowledge of the 
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received signal level. The unknown signal level is first estimated using the maximum 

likelihood method and is then used in the average likelihood ratio test over the signal 

phase for classification. Simulation shows that the proposed classifier has high 

classification accuracy and is superior to the classifier assuming a known and constant 

signal level. The classification accuracy increases when the number of observed symbols 

or the variance of the signal level increases. Similarly, [23] is another research regarding 

BPSK and QPSK recognition using the HLRT method. It treats the carrier phase as the 

random variable with known PDF, and estimates unknown signal power that is used in 

the average likelihood ratio test over the carrier phase to form the test statistics for 

classification. 

Paper [24] presents both the GLRT and HLRT based decision theoretic approaches to the 

solution of the ARM problem, It compared their performances with two ALRT-based 

algorithms that have appeared in the literatures [17, 20]. The simulation results indicate 

that these two algorithms can achieve significant performance gains over the ALRT-

based ones for the classification of non-constant envelope modulations. In details, the 

GLRT algorithm treats the carrier phase and data symbols as unknown, which are 

estimated through the ML estimation. However, for constellation nested signals, the 

GLRT is easier to detect falsely. To alleviate the problems associated with nested 

constellations, HLRT is utilized by modeling the data symbols as discrete random 

variables uniformly distributed over the alphabet set and the carrier phase as a 

deterministic variable. By averaging over the data symbols and maximizing the resulting 

function with respect to the carrier phase, it led to the desired likelihood function. 

Research in [25] and [26] investigated a classifier using two to multiple element antenna 
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array receivers to distinguish BPSK signal and QPSK signal embedded in AWGN. The 

classifiers applied the HLRT to determine the modulation type of an intercepted signal. 

The unknown phase shift of a signal received at the spatially separated antenna elements 

is first estimated. It is then used in the average likelihood ratio over the carrier phase to 

form the test statistic for classification. Two estimation techniques for the phase shift are 

examined. One utilizes the maximum likelihood technique by assuming the signal is 

deterministic, but unknown. The other one applies linear least squares technique by 

minimizing the squared difference between the received data and the assumed signal. 

Simulation shows that the proposed classifier has high classification accuracy. Estimating 

phase shift by MLE and constellation projection gives a higher classification accuracy 

than using a linear least squares estimation. Furthermore, the proposed method is much 

superior to the classifier that has only one received antenna. 

 

Summary of LB leads to FB: In total, all the (A/G/H) LRT solutions resolve the AMR 

problem with a promising performance. However, they suffer from the computational 

complexity. Hence, in many other cases it gives rise to another main research trend to 

provide a suboptimal AMR performance, but carries an appropriate computational 

workload, which is the so called Feature-based method.  

 

2.1.2. The Feature-Based (FB) Method 

FB Methods: The FB approach is generally divided into two subsystems: (a) a features 

extraction subsystem, which is used to extract several key features from the received 

signal in order to reduce the dimension of the pattern representation, and (b) a pattern 
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recognition subsystem, which decides about the modulation format of the signal. The 

latter is usually trained beforehand by a pre-processor aside, so that a decision can take 

place when the actual observed data arrives. This preprocessor usually runs operations 

like normalization; centralization; noise reduction and so on to make features tend to be 

more significant or easier to be extracted later. A side processor studies the original 

signals’ information or features and stores them as the templates in its buffer, which will 

be used to compare with received signals’ information obtained from the features 

extraction subsystem, and then claims detections based on the pattern match results.  

Specifically, FB approaches could be further categorized according to different methods 

for subsystem (a) features extraction, such as: instantaneous amplitude; phase and 

frequency based algorithms; statistical feature based; Fourier/wavelet transform based 

and so on. The corresponding literature reviews are presented below. Most FB classifiers 

are designed with a hierarchical structure. The hierarchical approach attempts to first 

identify the signal modulation class by utilizing the Macro characteristics. It then refines 

the exact orders of certain modulation scheme through the use of the Micro features. 

 

Instantaneous amplitude, phase and frequency based algorithms: The most intuitive 

way to identify the modulation class of the incoming signal is to use the information 

contained in its instantaneous amplitude, phase and frequency. To extract such 

information, different methods were applied in the literature [27–35].  

The following differences between signal classes (ASK/PSK/FSK) were employed for 

classification in [27–31]:  FSK signals are characterized by constant instantaneous 

amplitude, whereas ASK signals have amplitude fluctuations, and PSK signals have 
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information of the phase. The maximum of the discrete Fourier transform (DFT) of 

centred (the term ‘centred’ specifies that the average is removed from the data set) 

normalized instantaneous amplitude was used as a feature to distinguish between FSK 

and ASK/ PSK classes.  

ASK and BPSK signals have no information in the absolute phase, whereas M-PSK (M > 

2) has. The variance of the absolute centred normalized phase was used to distinguish 

between M-PSK and real-valued constellation, BPSK and ASK. 

ASK signals have no phase information by their nature, whereas BPSK has. The variance 

of the direct (not absolute) centred normalized phase was used to distinguish between 

BPSK and ASK classes. A binary decision tree structure was employed to discriminate 

between classes, and furthermore, within each class, as we will briefly mention later. At 

each node of the tree, the decision was made by comparing against a threshold. 

 

The specific orders are also estimated based on the instantaneous amplitude and phase-

based algorithms. After categorizing the modulation class, the next step is to classify 

modulation type accurately to different orders. Information extracted from the 

instantaneous amplitude and phase of the received signal was again exploited for 

modulation orders recognition, as follows. The variance of the absolute value of the 

normalized centred instantaneous amplitude was used to distinguish between 2-ASK and 

4-ASK, as for the former the amplitude changes between two levels, equal in magnitude 

and opposite in sign, so, it has no information in the absolute amplitude, whereas it has 

for the latter [27–31]. The statistics was compared against a threshold for decision 

making at a tree node, as a part of the binary decision tree classifier. Similarly to using 



22 
 

 

the information contained in the instantaneous phase to identify the order of the PSK 

modulation, the information extracted from the instantaneous frequency is exploited to 

recognize the order of the FSK modulation. In [27–31], the variance of the absolute value 

of the normalized centred instantaneous frequency was used to distinguish between 2-

FSK and 4-FSK. The feature was compared against a threshold for decision. 

 

FSK, PSK and UW class separation: In [32] and [33], the variance of the zero-crossing 

interval was used as a feature to distinguish FSK from PSK and the unmodulated 

waveform (UW). The zero-crossing interval is a measure of the instantaneous frequency, 

and it is a staircase function for FSK signals, whereas a constant for UW and PSK signals. 

Thus, the AMR is treated as a two hypothesis testing problem: H1 for FSK, H2 for UW 

and PSK. The variance of the instantaneous frequency was also employed in [34, 35] to 

discriminate FSK from UW and PSK. In fact, the autoregressive spectrum modeling was 

used to extract the instantaneous frequency. The decision was made by comparing the 

feature against a threshold.  

 

FSK, PSK order recognition: The histogram of the phase difference between two 

adjacent symbols was used in [32, 33] for PSK order identification, with the decision 

based on the comparison of the histogram against particular patterns. As for FSK order 

identification, the number of modes in the instantaneous frequency histogram was 

employed to determine the order of the FSK modulation in [32, 33]. In [34], the 

instantaneous frequency derivative was used to distinguish between 2-FSK and 4-FSK, 

under the assumption of the same bandwidths of the signals. The height of the peaks 

which occur in the differentiated instantaneous frequency is proportional to the frequency 
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deviation, and thus, for 4-FSK this is expected to be two times lower than for 2-FSK. If 

the peak average falls below a certain threshold, 4-FSK is chosen, otherwise 2-FSK.  

 

Signal statistical-based (Moment and Cumulants) algorithm 

Moment based Approach for PSK/QAM class separation: The moment-based feature 

used in [36], which is the nth-order/q-conjugate moment of the matched filter output. The 

joint power estimation and classification method was performed, where the key point to 

develop the relationships between the second- and higher moments of received signal and 

signal and noise power, which means moments could be represented in terms of signal 

and noise power. The goal was to recognize the PSK and QAM.  

 

Moment based Approach for PSK/QAM orders recognition: this is also considered in 

[36]. The signal-moment feature was employed to identify the order of QAM signal, with 

the decision made based on the minimum absolute value of the difference between the 

sample estimate and the prescribed values of the feature. 

Signal moments were applied to distinguish between QPSK and 16-QAM in [37]. 

Specifically, a linear combination of the fourth-order/two-conjugate moment and the 

squared second-order/one-conjugate moment were employed, with the coefficients and 

the delay vector optimized to maximize the probability of correct classification. A set of 

features was chosen and classification was made based on the correlation between the 

sample estimate and theoretical feature vectors. 

 

Cyclic Cumulant (CC) based approach: In [38, 39] the focus is on single-signal 

problems involving digital QAM signals. A feature based on fourth-order/two-conjugate 
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and second-order/one-conjugate CCs at the CF (cycle frequency) equals to the symbol 

rate, to identify the order of QAM modulations. The similar decision criterion as the one 

used in [37] was employed here. To be specific, a (normalized [39]) linear combination 

of the symbol-rate CCs is selected as the features vector. Parameters/coefficients of the 

combination are estimated by numerical optimization. The final identification is claimed 

based on correlation between estimated features and theoretical feature vectors, which 

actually follows with the classical match filters identically. 

 

Cumulants Based Approach: In the work of Swami, Sadler, et al [40, 41], the 

classification feature consists of the magnitude of a single fourth-order cumulant. The 

idea is to use the lowest-order cumulant that provides discrimination for digital 

QAM/PSK signals. The focus is on two, four and eight classes. These statistics are 

natural as they characterize the shape of the distribution of the noisy baseband samples. It 

is shown that cumulant-based classification is particularly effective when used in a 

hierarchical scheme, enabling separation into subclasses at low signal-to-noise ratio with 

a small sample size. The research of [42] could be viewed as the extension of work in [40] 

as it implements a hierarchical classifier by combining several normalized moments and 

cumulants as extracted features for training a neural network to identify MPSK, MFSK 

and MQAM. It considers also multipath propagation channel and noise distortion 

environments.  

 

The PDF [43-45] and its statistical moments [46-48] features extraction based 

method: The phase PDF is multimodal, and the number of modes provides information 

for the PSK order identification. In the high-SNR region, M-PSK exhibits M distinct 
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modes, while the SNR decreases or M increases, the peaks smear off and finally the PDF 

converges to a uniform PDF [47]. Specifically, an approximation using the Tikhonov 

PDF and a Fourier series expansion of the phase PDF were employed in [43–45] for PSK 

signal classification, combining with a log-likelihood ratio test for decision. [45] provides 

a suboptimal performance by the means of using the Tikhonov function as the 

approximated expression of the signal phase PDF, instead of the exact expressions 

derived in [43, 44]. 

By defining the moment of phase as the feature, signals could also be recognized using 

similar methodology as mentioned above. The moment could either be expressed using 

the exact phase PDF [46, 48], or can be derived from the approximation to the PDF [47]. 

 

2.1.3 Fourier Transform-Based (FD) Algorithms 

In [49], the empirical characteristic function of the phase was exploited for classification. 

Specifically, the periodic components of the phase PDF were analyzed for PSK order 

identification in [49], using the DFT of the phase histogram. Furthermore, in [50] the 

algorithm was extended to QAM signal classification, by exploiting the additional 

information provided by the magnitude of the received signal. 

 

2.1.4 Wavelet Transform-Based (WD) Algorithms 

WD class categorization: The utility of the wavelet transform to localize the changes in 

the instantaneous frequency, amplitude and phase of the received signal was also studied 

for AMC. The distinct behavior of the Haar WT (HWT) magnitude for PSK, QAM and 

FSK signals was employed for class identification in [51–53]. For a PSK signal this is a 
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constant, with peaks occurring at phase changes. On the other hand, because of the 

frequency and amplitude variations in FSK and QAM, respectively, the HWT magnitude 

is a staircase function with peaks at phase changes. These peaks do not provide useful 

information for non-continuous phase FSK signals. If only the phase is retained for a 

QAM signal, it behaves like a PSK signal and thus, the HWT magnitude is constant. On 

the other hand, as PSK and FSK signals are of constant amplitude, amplitude 

normalization has no effect on their HWT magnitude. After peak removal, the variance of 

the HWT magnitude with amplitude normalization was used to discriminate FSK from 

PSK and QAM. Furthermore, the variance of the HWT magnitude without amplitude 

normalization was employed to distinguish between QAM and PSK. The decisions were 

made by comparing the features against some thresholds, chosen based on the statistical 

analysis of the features, to minimize the probability of error for PSK signals [51–53]. 

 

WD modulation orders recognition: Different PSK signals give rise to different sets of 

peak values in the magnitude of the Haar wavelet transform. The histogram of the peak 

magnitudes was employed to identify the order of a PSK signal in [52], with the decision 

made by comparing the histogram with the theoretical PDFs corresponding to different 

orders. The number of modes in the histogram of the Haar wavelet transform magnitude 

was investigated for the FSK order identification in [51, 52]. If M/2+1 to M modes 

appear in the histogram, the input is identified as M-FSK. 

Some previous WD-based AMR studies that have been reported in the literature have 

used both the Continuous Wavelet Transform (CWT) and the Discrete Wavelet 

Transform (DWT) [54]-[56]. Most of these studies have involved computing histograms 

of the CWT and/or DWT wavelet coefficients of the received signals. Based on the 
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characteristic number of peaks contained in the histograms, different types of digitally 

modulated signals can be identified [54], [57], [58]. The communications signals 

considered in those studies are M-ary PSK and M-ary FSK [54]; Quadrature Phase Shift 

Keying (QPSK) and Gaussian Minimum Shift Keying (GMSK) signals [59]; as well as 

M-ary QAM and M-ary ASK signals [60]. The wavelets used in these studies have been 

largely focused on the Haar, although the Daubechies wavelet family has also been used 

in some cases. 

After reviewing varies successful AMR algorithm utilizing different methodologies and 

providing promising performances, it is inspired to develop a new AMR approach in this 

work by combining those approved advance methods together. In Chapter 3 and Chapter 

4, a wavelet-based instantaneous AMR method and a wavelet-based statistics method will 

be designed and illustrated in detail.   
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Chapter 3 Theoretical Preliminaries 

3.1 Digital Communication Signals Model 

Several different families of digital modulation schemes are studied in this dissertation. 

Specifically, binary and quaternary ASK and FSK signals, M-ary PSK signals for M = 2, 

4, and 8, and multiple-level QAM signals for M = 4, 16 and 64 are investigated in 

conjunction with developing wavelet based recognition and demodulation strategies. 

1. M-ary Phase Shift Keying (M-ary PSK) 

(a) BPSK           IEEE 802.11a and ZigBEE standards. 

(b) QPSK           IEEE 802.11b systems and Bluetooth  

(c) 8-PSK           Wireless communications systems applications. 

2. M-ary Quadrature Amplitude Modulation (M-ary QAM) 

The QAM plays important roles in cable modems for high speed internet access, digital 

video transmission standard for cable television, and digital terrestrial television 

applications. 

3. M-ary Amplitude Shift Keying (ASK) 

(a) BASK      LED Transmitters  

(b) 4ASK       Transmission of digital data over an optical fiber. 

4. Frequency Shift Keying (FSK) 

(a) BFSK       North America Caller ID, two-tone Morse code transmitting, Fax services,  

(b) 4FSK       Most early telephone-line modems, Transmission of telemetry data, 

(amateur, shortwave) radio. 

The time-domain ASK signals are defined as [74] 

http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Amateur_radio
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where 1, 2,3, 4,...i = . The variable iA  represents the different levels of amplitude in ASK 

signals. In the case of BASK, two amplitudes, 1A  and 2A , denote data symbols ‘0’ and 

‘1’, respectively. In the case of 4-ASK signals, the four amplitudes, 1A , 2A , 3A , and 4A , 

correspond to the data symbols ‘00’, ‘01’, ‘10’, and ’11.’ The parameter bE  denotes the 

energy per symbol, bT denotes the temporal duration of the symbol, and the carrier 

frequency is denoted by cf . 

The time-domain FSK signals used are defined as [74] 
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Where 1,2,3,4,...i = . The parameter if  denotes the different carrier frequencies that are 

required for different orders of FSK signals. For example, 1f  and 2f  denote the carrier 

frequencies used to represent the data symbols ‘0’ and ‘1’ in a BFSK signal, respectively, 

etc. 

Time-domain M-ary PSK signals are defined as [74] 
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Where i = 1,…, M . The parameter M  represents the order of the PSK signals, e.g., 
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2M =  for BPSK signals, 4M =  for QPSK signals, etc. In the case for 1 and 2i = , the 

corresponding data symbols are ‘0’ and ‘1’ in a BPSK signal. In the case when 

1,  2, 3, and 4i = , the data symbols are denoted as ’00,’ ’01,’ ‘10’ and ‘11’ in a QPSK 

signal, respectively.  

The M-QAM signals are defined as [74] 

( ) ( )2 2cos 2 sin 2 , 0b b
k k c k c b

b b

E Es a f t b f t t T
T T

π π= − ≤ ≤
                                

where 0, 1, 2,...k = ± ± , and the quantities ka  and kb  represent the discrete amplitudes 

for the in-phase and quadrature carriers, respectively. 

 

3.2 An Overview of the Wavelet Transform 

This section introduces the mathematical theorem of the WT [61], [62]-[65] is presented 

in this section. WTs can be further categorized as the CWT or the DWT [66]-[70], which 

are excel at characterizing (analysis) digital communication signals, and processing 

signal or image for reconstruction and synthesis [69].  

Wavelets can be generally viewed as basis functions representing signals utilizing rapidly 

decaying oscillatory functions. They are especially useful in representing all types of 

signals that are aperiodic and/or have jump discontinuities which appear in practice and 

realistic a lot. Following paragraph will show how the wavelet transforms differ or being 

complement to the Fourier transform. 

In the Fourier transform theory, a time-domain signal is expressed in terms of sinusoidal 

functions (a continuous-time basis set) in the spectral domain. By definition, the Fourier 

transform use the entire time signal to produce the frequency-domain description of the 
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signal. However, in another word, only frequency information is preserved but all the 

temporal detail of the signal is lost in this process.   

For the preservation of the temporal information of the signal, the Short-Time Fourier 

Transform (STFT) [71] is designed base on the regular Fourier Transformation by adding 

windowing functions on it. In the STFT, signals firstly multiply with a user-defined 

window function before go into the Fourier transform. By translating the window along 

the signal function in time, the Fourier transform of each “windowed signal” is computed. 

In this way, both the spectral content and the temporal content of the signal could be the 

captured in the STFT domain. 

Unfortunately, even the STFT has its drawback caused by the fact that the window can 

only be in a fixed size. leads to an inherent problem of resolution: a function with  narrow, 

highly-localized, time-domain window waveform of fixed size, provides poorly localized 

spectral-domain resolution. Conversely, a broad, or non-localized, temporal window 

function provides highly localized spectral resolution. This drawback, associated with 

fixed window sizes, is especially problematic in the analysis of digitally modulated 

communications signals. An improvement solution would be when the size of the 

window function can be altered to accommodate variations of phase and frequency that 

are characteristic of a digitally modulated communications signal.  

WTs may be used instead in order to overcome this problem. In the WT, a window 

function, i.e., a wavelet can be translated and dilated in time. The dilation of wavelets 

allows for the variation in the size of window function so as to achieve a specific 

temporal resolution. The translated and dilated wavelets at different level of resolution 

are correlated with the signal, resulting in the desired wavelet coefficients. These wavelet 
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coefficients implicitly contain the frequency information of the original signal, and also 

explicitly preserve the temporal information of the signal. Figure 3.1 [73] shows how 

signal is differently reconstructed in the time-frequency by these three transforms:  

 

Fig. 3.1. Different time-frequency tile allocation of the three transforms: (a) Fourier 
Transform, (b) STFT and (c) wavelet transform 

 

3.3 Review of the Continuous Wavelet Transform 

The window function of the wavelet transforms had properties that the function ( )tψ  

averages to zero over all time and has finite energy [67], i.e., ( ) 0t dtψ
∞

−∞

=∫  and 

( ) 2
t dtψ

∞

−∞

< ∞∫ , respectively. It follows that the window function so described, allow for 

not only temporal translation but also for time dilation. In other words, the width of the 
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windows can be varied to achieve a required resolution in either the temporal or spectral 

domains. Such window functions are called wavelets. Transforming, that is comparing 

translated and scaled (dilated) wavelets with the original signal yields correlation 

coefficients. In this way, at different scales, correlation coefficients contain the frequency 

content of the original signal while automatically preserving the temporal information of 

the signal. The CWT, for a given wavelet ( )tψ , is formally defined as  

( ) ( ) ( )*
,, a bW a b f t t dtψ

∞

−∞

= ∫
                                                                                             (3.1) 

where ( ),
1

a b
t bt

aa
ψ ψ − ≡  

 
 , ( )f t  is the function to be transformed, a is the scale, or 

dilation, variable and b is the translation variable. 

Fig. 3.2. (Top) A time-domain noisy sinusoidal signal,(bottom) The corresponding WD 

scalogram using Haar through CWT. 
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An example of a sinusoidal signal in both the time-domain and the wavelet-domain is 

shown in Fig. 3.2. The abscissa represents the time axis of the signal for both time- and 

wavelet-domains. The amplitude of the signal is represented by the ordinate of the time-

domain plot. And in the waevelet-domain, the correlation outputs between the wavelets 

and the time-domain signal at different scales, or dilations of the wavelet function is 

represented at the ordinate of the wavelet-domain scalogram. The different scales are 

defined as the levels of resolution.  

Through observing the fractal patterns of the segments appearing in the scalograms, it is 

clear to see that, when one-dimensional time-domain modulated signals are transformed 

into the WD, structural details are present in two-dimensions (translation and scale). 

Signals are represented richly at some levels of resolution in the WD. On the other hand, 

at other resolution levels, the representation of the signal energy content is very weak. In 

the WD scalogram shown in Fig. 3.2 (bottom), the darker areas represent smaller 

correlation values obtained when the windowed time-domain signal is compared with a 

wavelet of choice. The lighter areas in the scalogram represent larger magnitude wavelet 

coefficients obtained with the windowed signal and the choice of wavelet. This particular 

characteristic of the scalogram data is utilized advantageously in the WD AMR process. 

Wavelets that are used for the CWT are typically required to satisfy the following 

properties [71]: 

i. Admissibility: Wavelets are required to be square integral functions and must 

not have a non-zero component at zero frequency. It is important that this 



35 
 

 

property be satisfied in order for the inverse CWT. 

Mathematically, this condition is described as 

( ) 2

c dψ

ω
ω

ω
∞

−∞

Ψ
= < +∞∫

                                                                              
(3.2) 

Where ( )ωΨ  is the Fourier transform of the wavelet ( )tψ , and cψ  is the 

admissibility constant.   

ii. Regularity: This condition ensures that the wavelet transform coefficients, 

obtained using (3.1), decrease quickly in magnitude as the dilation changes.  By 

doing this, the wavelets can be very highly localized in time without causing an 

unbounded time-bandwidth product.   

Therefore, if a wavelet satisfies the condition that 

( ) 0p
pM t t dtψ

∞

−∞
= =∫   for  0,1, 2, ,p n=                                                   (3.3) 

where pM  is the pth moment of the wavelet, then the wavelet is said to be of 

order n. 

iii. Linear Transformations: The wavelet transform, ( ),fW a b , must satisfy the 

following conditions: 

 a) Superposition: ( ) ( ) ( )
1 2 1 2

, , ,f f f fW a b W a b W a b+ = +  

b) Translation:   ( ) ( ) ( ) ( )
0 0, ,f tf t tW a b W a b t− = −   

c) Rescaling:    ( ) ( ) ( ) ( )1 2 , ,f tm f mt
W a b W ma mb= . 

(3.4a) 

(3.4b) 

(3.4c) 
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Variety of communications signals could be expressed in terms of wavelets by using the 

CWT technology. The resulted wavelet coefficients are specifically corresponding to 

combinations of signals and different being used. Furthermore precisely, the wavelet 

coefficients could be obtained for different scales and translations of the wavelet. 

Identification of the changes and the statistical attributions from their wavelet coefficients 

of communication signals can reveal the amplitude, phase and frequency fluctuations 

inherent in a communications signal, which are keys for modulation type identification. 

However, on studying the CWT further, it is found that information it provides is highly 

redundant as far as the reconstruction of the signal is concerned, which is beneficial for 

processing communications signals. But this redundancy requires a significant amount of 

computational effort. The discrete wavelet transform (DWT), on the other hand, provides 

sufficient information both for analysis and synthesis of the original signal, with a 

significant reduction in the computation time.  

3.4. Discrete Wavelet Transform 

It should be emphasized that, the discrete wavelet transform is not simply the discretized 

continuous wavelet transform. It is inspired by multi-resolution analysis. The introduction 

could be either starting from the space geometrical point of view or the filter bank format. 

 

Geometrical Interpretation of the DWT:  

Defining the direct sum, 2 (R) j jL V V ⊥= ⊕ . Hence, for an arbitrary function ( )f t , it 

results in the decomposition of ( )f t  into two orthogonal parts:    

( ) ( ) ( )j jf t f t w t= + ,   ( ) , ( ) , ( ) ( )j j j j j jf t V w t V f t w t⊥∈ ∈ ⊥ (3.5) 
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Besides, a featured structure called wavelet multi-resolution analysis expands a time 

signal into components representing different scales (from a coarser to a finer resolution). 

The sets of scale are defined in terms of a sequence of nested subspaces jV  of the space 

2 (R)L , i.e.,  2
2 1 0 1 2 (R)V V V V V L− −⋅ ⋅ ⋅ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⋅⋅ ⋅ ⊂ . 

The spaces jV  have a special structure, being defined as linear spans of the scaled and 

translated replicas of a single function, called the scaling function, or the father wavelet. 

Its scaled/translated replicas are defined for any integer of j, n by: /2( ) 2 (2 )j j
jn t t nφ φ= − .  

The functions ( )jn tφ  are orthonormal for each fixed j, and form a basis of space 

jV . ( , )jn jm nmφ φ δ=  

Now the projection of an arbitrary signal 2( ) (R)f t L∈  onto the subspace jV  is defined by 

the following expansion in the jnφ  basis: 

/2( ) ( ) 2 (2 )j j
j jn jn jn

n n
f t c t c t nφ φ= = −∑ ∑

                                                                        (3.6) 

The projection ( )jf t  can be thought of as an approximation of ( )f t  at scale j with time 

resolution of 2 j− . Because i jV V⊂  for i j≤ , so ( )jf t  incorporates information about 

( )f t  from all coarser resolution.  

Another wavelet function ( )tψ  and its scaled and translated replicas are actually 

spanning the orthogonal complement jV ⊥

 of jV  with respect to 2 (R)L . Note that 

/2( ) 2 (2 )i i
in t t nψ ψ= − , i j≥ , which are orthogonal to ( )jn tφ , and are also mutually 

orthonormal, ' ' ' '( , )in i n ii nnψ ψ δ δ= , ( , ) 0,jn imφ ψ = i j≥ . 

The component ( )jw t  from equation (3.5) is referred to as the “detail” and incorporates 
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the details of ( )f t  at all the higher resolution levels i j≥ , or finer time scales 2 2i j− −≤ . 

It is spanned by the ψ -basis expansion: 

1/2( ) ( ) 2 (2 )i
j in in in

i j n i j n
w t d t d t nψ ψ

≥ ≥

= = −∑∑ ∑∑
                                                              (3.7)

 

Hence, taking (3.6) and (3.7) into (3.5) to complete form of the multiresolution 

decomposition analysis of f(t),   

( ) ( ) ( ) ( ) ( )j j jn jn in in
n i j n

f t f t w t c t d tφ ψ
≥

= + = +∑ ∑∑
                                                           (3.8)

 

Now if we set J  and 0J  to the highest and lowest resolutions of interest, we have 

0 0
0

1

( ) ( ) ( ) ( )
J

Jn Jn J k J k jk jk
n k j J k

f t c t c t d tφ φ ψ
−

=

= = +∑ ∑ ∑∑ ,                                                       (3.9) 

Until now, the discrete wavelet transform (DWT) is essentially implemented by mapping 

of the expansion coefficients from level J to the levels j through J-1,  

,{ ; 1}Jn jn inc c d j i J→ ≤ ≤ − .  

 

The DWT of the sinusoidal signal from Fig. 3.2 is plotted in Fig. 3.3. The DWT-based 

scalogram presents similar patterns structure with CWT-base scalogram at different time 

and frequency location. 
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Fig. 3.3 (Top) A time-domain noisy sinusoidal signal,(bottom) The corresponding WD 

scalogram using Haar through DWT. 

 

Multiresolution and Filter Bank Analysis of DWT: 

An alternative classical way to study DWT is called filter bank analysis, and this form 

could be derived from the wavelet geometric structure analysis. 

The whole real space was defined as: 2 (R) j jL V V ⊥= ⊕ . Now for the subspace 1V , there is 

another direct sum states: 1 0 0V V W= ⊕ , where the 0W  is the orthogonal complement of 0V  

relative to 1V . Since 0 1V V⊂ , then the scaling function 0( )t Vφ ∈  can be expanded in the 

basis 1 ( )n tφ  that spans 1V . Thus, there must exist coefficients nh  such that 
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1/2
1( ) ( ) 2 (2 )n n n

n n
t h t h t nφ φ φ= = −∑ ∑

                                                                            (3.10)
 

Besides, because 0 1( )t W Vψ ∈ ⊂ , it can be also expanded in the 1 ( )n tφ  basis, as in the 

following equation: 

1/2
1( ) ( ) 2 (2 )n n n

n n
t g t g t nψ φ φ= = −∑ ∑

                                                                          (3.11)
 

We can have more general equations of ( )jn tφ  and ( )jk tψ  through simply iterations of 

(3.10) and (3.11), 

/2 /2 1/2

( 1)/2 1
1, 2 2 1,

( ) 2 (2 ) 2 2 [2(2 ) ]

2 (2 2 ) ( ) ( )

j j j j
jk m

m
j j

m m j m k n k j n
m m n

t t k h t k m

h t k m h t h t

φ φ φ

φ φ φ+ +
+ + − +

= − = − −

= − − = =

∑

∑ ∑ ∑
 

Similarly, 2 1,( ) ( )jk n k j n
n

t g tψ φ− +=∑  

Using the orthogonality property 1, 1,( , )j n j m nmφ φ δ+ + = , coefficients h and g could be 

obtained: 2 1,( , )n k jk j nh φ φ− += , 2 1,( , )n k jk j ng ψ φ− += . 

Also, according to space direct sum equation: 1j j jV V W+ = ⊕ , an arbitrary function 

1, 1,( ) ( ) ( ) ( )j n j n jk jk jk jk
n k k

f t c t c t d tφ φ ψ+ += = +∑ ∑ ∑
                                                        (3.12)

 

The right-hand coefficients in (3.12) are: 

1, 1, 1, 1,( , ) ( , ) ( , )jk jk j n j n jk j n j n jk
n n

c f c cφ φ φ φ φ+ + + += = =∑ ∑ = 2 1,n k j n
n

h c− +∑
                          (3.13)

 

1, 1, 1, 1, 2 1,( , ) ( , ) ( , )jk jk j n j n jk j n j n jk n k j n
n n n

d f c c g cψ φ ψ φ ψ+ + + + − += = = =∑ ∑ ∑
                      (3.14)

 

Equations (3.13) and (3.14) are the analysis equations since the higher scale level 

coefficients are decomposed into two parts in the next lower scale level. 

Conversely, the coefficients 1,j nc +  can be reconstructed from jkc , jkd  to format the 
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synthesis:  

1, 1, 1,

1, 1,

2 2

( , ) ( , )

( , ) ( , )

j n j n jk jk jk jk j n
k k

jk jk j n jk jk j n
k k

n k jk n k jk
k k

c f c d

c d

h c g d

φ φ ψ φ

φ φ ψ φ

+ + +

+ +

− −

= = +

= +

= +

∑ ∑

∑ ∑

∑ ∑
                                                             (3.15)

 

The analysis and synthesis procedure could be design as the filter bank format by 

defining n nh h−=  and n ng g−= . Now we can turn equations (3.13)-(3.15) into systems 

composed by convolution with filters and down/up samplers. 

2 1, 2 1, 1 1

2 1, 2 1, 1 1

( )(2 ) ( )

( )(2 ) ( )

jk n k j n k n j n j j down
n n

jk n k j n k n j n j j down
n n

c h c h c h c k h c

d g c g c g c k g c

− + − + + +

− + − + + +

= = = ∗ = ∗

= = = ∗ = ∗

∑ ∑

∑ ∑
                                 (3.16) 

1, 2 2
up up up up

j n n k jk n k jk n m jm n m jm j j
k k m m

c h c g d h c g d h c g d+ − − − −= + = + = ∗ + ∗∑ ∑ ∑ ∑                 (3.17) 

Corresponding filter banks to equation (3.16) and (3.17) is drawn as below: 

 

 
Fig 3.4 Analysis and synthesis filter bank [83] 
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Besides, the subspace direct sum 1j j jV V W+ = ⊕  leads to the complete spaces direct-sum 

decomposition: 
0 0 0 1 1( ... )J J J J JV V W W W+ −= ⊕ ⊕ ⊕ ⊕  

Hence, deriving from equation (3.12), the corresponding multi-resolution expansion 

equation is, (if J and 0J are the highest and lowest resolutions of interest) identical with 

the geometrical interpretation equation (3.9):   

0 0
0

1

( ) ( ) ( ) ( )
J

Jn Jn J k J k jk jk
n k j J k

f t c t c t d tφ φ ψ
−

=

= = +∑ ∑ ∑∑
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Chapter 4 DWT-AMR Based On Instantaneous Features 

DWT-AMR means that the received signal is transformed into the wavelet-domain using 

the DWT. Then DWT-based signatures, or feature templates extracted from DWT 

modulated signal, which contain characteristic features of a particular modulation scheme 

expressed in the wavelet-domain. The correlations between the transformed received 

signal and the WD signatures are computed as the decision variables to show the 

similarity. The decision variables are used in decision-making operations comprising the 

AMR algorithm. Decision-making operation heralds the last step of completing the AMR 

algorithm. The efficacy of the AMR algorithm is validated using computer simulations. 

The simulations are Monte Carlo experiments conducted in a manner so as to provide 

statistically significant results.  

 

4.1 DWT-based AMR Preparation 

The proposed DWT-based AMR algorithms introduced are classified as the feature-based 

pattern recognition approach follow categories from literatures’ methodologies, two 

approaches will be introduced in Chapters 4 and 5. The first algorithm mainly relies on 

signals’ instantaneous changes in the wavelet domain to extract features for pattern 

comparisons. And the second method utilizes the statistical features extracted from 

wavelet transformed signals to implement the AMR function. This chapter mainly 

focuses on the AMR development utilizing the former algorithm of pattern recognition. 

Specifically, extracting instantaneous changes which are able to represent digital 

communication signal features well. It is natural to look at symbol transitions where 

changes in the amplitude, frequency, and/or phase of a digitally modulated signal take 



44 
 

 

place. It will be shown that after the discrete wavelet transform those inherent signatures 

do not disappear, but become more distinctive when analyzed at different resolution 

levels. Such wavelet based outputs are shown suitable to be set as templates for the blind 

identification of digitally modulated communications signals acquired by a 

communications receiver. This work is inspired by some previous instantaneous feature 

based AMR work [27-35, 84]. 

Let us first start with the binary modulations cases, which are BASK, BPSK and BFSK. 

The AMR process consists of two steps. First, a received signal that has been corrupted 

with AWGN is transformed into the wavelet-domain via the DWT. The resulting wavelet-

domain signal is then correlated with the pre-defined templates corresponding to all three 

types of binary modulation schemes. The modulation type that is declared to be operative 

at the receiver input is determined on the basis of decision logic that employs a majority 

vote strategy. Following diagrams show this idea from both the system view and the 

logical flow view. In details, it needs to be introduced completely from four parts: 1. 

Wavelet type selection; 2. WD template setup; 3. Simulation algorithms illustration; 4. 

Simulation results and analysis. 

Wavelet type selection：The family of sixty-five commonly used wavelets has been 

summarized from existing literatures for the BASK, BFSK and BPSK modulation 

families. The different wavelets, and wavelet families, that were used in this study 

include the following: 

i. Haar wavelet[51-54,60] 

ii. Mexican Hat wavelet[85] 

iii. Morlet wavelet[86, 87]  
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iv. Meyer wavelet [87] 

v. Daubechies wavelet family (ten distinct wavelets) [87] 

vi. Family of symlets (seven distinct wavelets) [87] 

vii. Family of Coiflets (five distinct wavelets) [87] 

viii. Rseverse biorthogonal spline wavelets (fifteen distinct wavelets) [55] 

ix. Biorthogonal spline wavelets (fifteen distinct wavelets) [84] 

Among above different wavelets, the Haar is the one which has been most utilized. 

 
WD Templates Setup:  

The aim of these computer simulation experiments is to decompose three modulated 

signals in the wavelet-domain using the Haar wavelets and then identify the wavelet that 

provides the most distinct decomposition for each of the modulation schemes. The 

graphical results shown in Figs.4.1-4.3 are meant to serve as visual and intuitive guides to 

demonstrate the signal identification capabilities of the wavelet transform, particularly 

employing the DWT. 

In Figs.4.1-4.3 the DWT decompositions of test signals are shown. The computer 

simulation results were obtained using MATLAB. In all cases the input signal was 

decomposed to ten levels of resolution. Each level corresponds to dilating the wavelet 

by a power of two. It has been observed that by increasing the scaling factor in powers 

of two dramatically reduces the computational time involved in the signal 

decomposition process, and simultaneously provides a level of accuracy very well-

suited to the methodology proposed in this study. In the wavelet-domain decomposition 

plots of Figs.4.1-4.3 the DWT detailed coefficients are plotted to produce the fractal 

patterns. Note that the ordinate corresponds to the dilation parameter a, and the abscissa 
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corresponds to the translation parameter b. 

It should be noted that the fractal patterns shown in Figs.4.1-4.3 are effectively visual 

representations of the magnitudes of the wavelet coefficient matrix elements, graded from 

black to white in sixty-four grayscale levels, with black being the lowest magnitude and 

white the highest. It was found that of the data symbol transition portions of the signals, 

the similarity between the noise-free scalograms and the noisy scalograms is obvious, 

especially at the higher levels of resolution. This similarity is the most important feature 

that is exploited in the AMR algorithm developed in this work. Later, simulations will be 

conducted to test the similarity using the correlation function. It will be shown that the 

information contained in the DWT detailed coefficients at the lower levels of resolution 

is actually sufficient to achieve reliable AMR results. 

 

 
Fig.4.1 (a): (top) BASK signal without noise, 10-level WD decomposition using the Haar 
wavelet; (b): (bottom) BASK signal at 10 dB SNR, 10-level WD decomposition using the 
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Haar wavelet. 
 
 
 

 

 
 
Fig.4.2 (a): (top) BFSK signal without noise, 10-level WD decomposition using the Haar 
wavelet; (b): (bottom) BFSK signal at 10 dB SNR, 10-level WD decomposition using the 
Haar wavelet
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Fig.4.3 (a): (top) BPSK signal without noise, 10-level WD decomposition using the Haar 
wavelet; (b): (bottom) BPSK signal at 10 dB SNR, 10-level WD decomposition using the 

Haar wavelet. 
 
The DWT-based Instantaneous templates represent the unique features of the modulated 

signals in the wavelet-domain, which reflect amplitude variations, frequency alternations, 

or phase changes of the signals in the time domain. Hence for binary modulated noise 

free signal, the WD Instantaneous templates are extracted from the symbols transition 

period (binary symbol 0 to binary symbol 1, and 1 to 0). The templates are constructed in 

the WD using the DWT detailed coefficients of test signals that correspond to each of the 

three digital modulation schemes considered herein; the Daubechies 1 (Haar) wavelet is 

used. Therefore, for each of the binary modulation schemes, two templates are required in 

order to completely characterize the two possible data state transitions. The templates are 

stored for later use in the AMR process. As seen in Fig.4.4, a communications signal 
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having a frame length of 3 symbols is shown with each of the two possible symbol 

transitions present, i.e., “0” to “1” and “1” to “0.” The two instantaneous features 

templates, 1T and 2T , can be described based on the mathematical models presented in 

(4.1)-(4.3). 

 

 
Fig.4.4 Illustration of time-domain instantaneous features templates. 

 
 
The WD templates are described based on symbol transitions that occur within a digitally 

modulated communications signal. Two instantaneous features templates can be extracted 

from each of the 3 binary digitally modulated signals. The models in time domain of 

these templates are defined according to the following: 

( ) ( )
( )

1 1 2
,1

2 3 4

cos 2 ,      
cos 2 ,      

c
BASK

c

A f t t t t
p t

A f t t t t
π
π

< ≤=  < ≤                                                                         (4.1a) 

( ) ( )
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A f t t t t
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( ) ( )
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2 3 4
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f t t t t
π
π

< ≤=  < ≤                                                                       (4.2b) 
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( ) ( )
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f t t t t
p t

f t t t t
π π
π
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In (4.1)-(4.3), iA  represents the amplitudes, if  represents the symbol frequencies and cf  

denotes the carrier frequency of the modulated signals. The time instant it  represents the 

locations of the template boundaries within the communications signal under 

consideration. 

 

4.2 WD-based AMR Algorithms Step by Step Illustration 

Once the pre-defined templates are generated, the AMR process is implemented 

according to the following algorithm: 

Step 1.) Compute the DWT of the received signal and extract the detailed WD 

coefficients, up to 10 levels of resolution using the Haar wavelet.  

Step 2.) Correlate the extracted detailed WD signal information obtained in Step 1 with 

all six of the pre-defined WD templates. This step is illustrated more clearly in Fig.4.5, 

wherein the process of the sliding correlation operation between a template and a 

communications signal is illustrated. A signal segment is shown in Fig.4.5 representing a 

data symbol period within the received signal. The template is then slid so as to be 

aligned with the next signal segment, and the two are correlated. The process is continued 

until the template has been correlated with all segments of the signal. All simulations 

have been performed using MATLAB. The carrier in each signal segment, representing a 

baseband data symbol, is composed of 1024 samples per symbol. Hence the maximum 
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template length is also 1024 samples, and other possible lengths of templates are 512, 256, 

128, 64, 32, 16, 8, 4, and 2 samples. The length of the templates representing the WD 

templates, however, cannot be too short due to the loss of resolution in the WD scalogram 

which would directly affects the performance of the WD AMR process. For the sake of 

illustration, only templates of size 128, 64 and 32 samples are presented here.  

 

128

64

32
Templates with 

different 
lengths

Communications 
signal

 
Fig.4.5 Graphical representation of the correlation operation using different template 

lengths. 
 

Step 3.) Compare the resulting correlation values of the two BASK templates with the 

signal specifically at multiples of each baseband symbol period. Select the larger one of 

two values in each comparison, and in this manner generate a set of “transition period” 

correlation results for the two BASK templates. This operation is depicted in Fig. 4.6. 

 

1 1101 100

L

L L L H

LLHLLH

L L H

BASK Test Signal 
bit sequence

Correlation values  with 
BASK Template 1

Correlation values with 
BASK Template 2

HL LHLH H
BASK “time-and-
merged” correlation 
results

 
Fig.4.6 Example of a “transition period” correlation operation in the WD AMR process. 
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Step 4.) Repeat Step 3 using the BPSK templates, and then repeat it again for the BPSK 

templates. 

Step 5.) Compare each data element in the three sets of "transition period" correlation 

values. Select the largest value and record the template type to which the value belongs, 

i.e., whether it corresponds to BASK, BFSK or BPSK. 

Step 6.) Declare the specific modulation type of the received signal to be that of the same 

type as the template that was selected most often in Step 5, i.e., by a majority vote. 

In Fig. 4.7, it illustrates Steps 1 through 6 of the algorithm for the BASK signal AMR 

process in details. The top row blocks represent of symbol of noisy BASK signal is 

transformed into the discrete wavelet-domain using the Haar wavelet, which is the output 

of the AWGN channel with unknown modulation type. Then this WD received signal is 

correlated with 6 pre-defined featured templates (2 templates for each of the 3 binary 

modulation schemes). Consequently, the correlations generate 3 sets of "transition 

period" correlation results. In Fig. 4.7, the following notations are used: 

H      The overall Highest correlation output 

L       The overall Lowest correlation output 

HA     The highest correlation with BASK templates 

LA     The lowest correlation with BASK templates 

HF     The highest correlation with BFSK templates 

LF      The lowest correlation with BFSK templates 

HP     The highest correlation with BPSK templates 

LP      The lowest correlation with BPSK templates  
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The "transition period" correlation results for this example are highlighted in the bottom 

box of Fig.4.7. They are then input to the decision processor. For each symbol transition 

period, three corresponding correlation results are compared and the largest "transition 

period" correlation value is selected. The template generating the largest correlations 

means it is the best candidate modulation type  as it has the best match to it. After 

deciding modulation type of each "transition period", a majority vote is then ran for all 

"transition period" template identifications. The final recognition of the unknown 

modulation scheme to a signal sequence is the most voted candidate modulation type. 

Until now, the final AMR is accomplished. In the example of Fig.4.7, BASK templates 

are identified as the most voted candidate modulation recognition. Therefore, the BASK 

is claimed as the final modulation scheme employed by the received test signal. 
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Fig.4.7 Example of WD AMR process using the instantaneous features templates. 

 

In summary, the algorithm process could be expressed as the following diagram block 

system and its processing flow in Fig.4.8 & 4.9. 
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Fig.4.8 Overall system-level block diagram of a radio receiver employing an AMR 
function.[82] 

 
 
 

 
 

Fig.4.9 System-level processing flow of the wavelet-based AMR processor [82] 
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4.3 Simulation Experiments and Results 

In this simulation, all binary digitally modulated test signals are transmitted through the 

zero-mean AWGN channel with SNR values range over -5 dB to 10 dB. The correct 

classification rates of this WD instantaneous features templates AMR algorithm were 

produced by using 20,000 Monte Carlo trials, where each simulation experiment contains 

50 bits per frame. Each test signal used in the 20,000 trials were randomly assigned with 

their modulation schemes among the BASK, BFSK or BPSK. The signals are 

oversampled by a factor of sixteen over the Nyquist rate corresponding to the carrier 

frequency. Oversampling is used because more signals content can be represented in the 

WD scalogram, which in turn enhances the WD AMR process. Perfect symbol timing, 

with no timing offset,  are also prior assumed for this work. 

In the simulations conducted in this study, the length of the templates is firstly tried from 

the maximum 1024 samples, and later is dropped down to be 64 samples so as to achieve 

a balance, or tradeoff, between complexity and resolution. It still provides promising 

simulations results as listed in Tables 4.1-4.4, which contain the rates of correct 

classification for signals with unknown modulation schemes corrupted by AWGN 

resulting in SNR values of 10 dB, 5 dB, 0 dB, and -5 dB. 

 

TABLE 4.1 Rates of correct classification for snr = 10dB 
     
  Signal classified as (%) 
  BASK BFSK BPSK 

TX 
Signal 

BASK 100 0 0 
BFSK 1.53 98.37 0 
BPSK 0 0 100 
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TABLE 4.2 Rates of correct classification for snr = 5 dB 
     
  Signal classified as (%) 
  BASK BFSK BPSK 

TX 
Signal 

BASK 100 0 0 
BFSK 2.57 96.15 1.28 
BPSK 2.06 1.10 96.84 

 
 

TABLE 4.3 Rates of correct classification for snr = 0 dB 
     
  Signal classified as (%) 
  BASK BFSK BPSK 

TX 
Sign

al 

BASK 100 0 0 
BFSK 2.96 95 2.04 
BPSK 2.93 1.46 95.61 

 
 

TABLE 4.4 Rates of correct classification for snr = -5 dB 
     
  Signal classified as (%) 
  BASK BFSK BPSK 

TX 
Signal 

BASK 100 0 0 
BFSK 2.36 97.06 0.70 
BPSK 3.42 1.71 94.87 

 

 
4.4 Results Comparison 

In this section, some prior AMR studies available from the literature are surveyed and 

compared with the results obtained in this study. Both WD-based and non-WD based 

AMR methods comparisons are presented in Tables 4.5-4.10. Specifically, Tables 4.5-4.7 

present the comparison between this work and existing non-DWT (CWT and other non-

WD) based AMR methods. Tables 4.8-4.10 only focus on comparing DWT-based AMR 

method between this work and previous works.  

The values in Tables 4.5-4.7 were obtained from existing CWT-based and non-WD based 
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AMR techniques. More specifically, works [51], [57], [75] employ CWT-based 

techniques, while works [76], [27], [77], [78] use non-WD based methods. The  

comparison with previous work showed that, the performance of this DWT-based AMR 

algorithm is generally better than those results generated from other existing non-DWT 

based AMR techniques. The main enhancement is that of the performance improvement 

at the SNR of -5 dB for BFSK and BPSK signals. The CWT-based AMR can only 

achieve a rate of correct classification of 54% [75], while the DWT-based AMR can 

identify the correct modulation with a 97% success rate.  

Also, through the comparison of results obtained with existing DWT-based AMR 

methods [59, 79] in Tables 4.8-4.10, it is once again found that the DWT-based AMR 

algorithm invented in this work is favorably competitive with previous similar work. But 

the range of the SNR considered in this dissertation is wider and centered in a more 

practical range of interest for radio receivers. 

It should be understood that a direct comparison of different AMR methodologies is not 

the only criteria of judgment because that  prior works may being implemented under 

different test environmental, such as SNR values, symbol numbers per transmission, 

channel types, synchronization or time offset and so on.  
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TABLE 4.5 

Survey of BASK classification in the non-DWT based literature 
AMR method 
devised by 

Correct 
classification 

at highest 
SNR (%) 

Correct 
classification at 

lowest SNR (%) 

Hossen, et al. [76] 97.5 at 3 dB 82.5 at -5 dB 
Azzouz, et al. [27] 100 at 20 dB 98.25 at 10 dB 
Lopatka, et al. [77] 100 at 30 dB ~92 at 0 dB 
Yang, et al. [78] - 97.5 at 10 dB 
This work 100 at 10 dB 100 at -5 dB 

 
 

TABLE 4.6  
Survey of BPSK classification in the non-DWT based literature 

AMR method 
devised by 

Correct 
classification 

at highest SNR 
(%) 

Correct 
classification at 

lowest SNR (%) 

Hossen, et al. [76] 100 at 5 dB 87.5 at 3 dB 
Azzouz, et al. [27] 90.75 at 20dB 96.25 at 10 dB 
Ho, et al. [51] - 98 at 13 dB 
Jin, et al. [57] 100 at 13 dB 99.5 at 8 dB 
Ou, et al. [75] 100 at 20 dB ~54 at -5 dB 
This work 100 at 10 dB 95 at -5 dB 

 
 

TABLE 4.7 
Survey of BFSK classification in the non-DWT based literature 

AMR method  
devised by 

Correct 
classification at 

highest SNR 
(%) 

Correct 
classification at 

lowest SNR (%) 

Hossen, et al. [76] 100 at 5 dB 75 at 3 dB 
Azzouz, et al. [27] 100 at 20 dB 91 at 10 dB 
Jin, et al. [57] 100 at 13 dB 95.3 at 8 dB 
Ou, et al. [75] 100 at 20 dB ~54 at -5 dB 
This work 98 at 10 dB 97 at -5 dB 
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TABLE 4.8  

Survey of BASK classification in the dwt-based literature 
AMR method  
devised by 

 Correct 
classification at 

highest SNR 
(%) 

Correct 
classification 

at lowest SNR 
(%) 

Effrina, et al. [79] - - 
P.Prakasam,et al. 
[59] 

- - 

This work 100 at 10 dB 100 at -5 dB 
 
 

TABLE 4.9  
Survey of BPSK classification in the dwt-based literature 
AMR method 
devised by 

Correct 
classification at 

highest SNR 
(%) 

Correct 
classification at 

lowest SNR 
(%) 

Effrina, et al. [79] 100 at 25 dB 93at 10 dB 
P.Prakasam, et al. 
[59] 

98.6 at 3 dB - 

This work 100 at 10 dB 95 at -5 dB 
 

 
TABLE 4.10  

Survey of BFSK classification in the dwt-based literature 
AMR method 
devised by 

Correct 
classification 

at highest SNR 
(%) 

Correct 
classification at 

lowest SNR (%) 

Effrina, et al. [79] 99 at 25 dB 98at 10 dB 
P.Prakasam, et 
al.[59] 

100 at 3 dB - 

This work 98 at 10 dB 97 at -5 dB 
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Chapter 5 DWT-AMR Based On Statistical Features 

 
Although the recognition accuracy is promising from the work proposed in Chapter 4, it 

is impractical to extend this instantaneous featured templates approach to higher order 

modulation schemes AMR work. This is due to the higher-order modulation schemes 

contain more possible symbol transitions parts, which means more instantaneous 

templates needs to be required and involved into this algorithm. Hence, the large number 

of templates will increase inefficiency of the process.  

 

Table 5.1 
Number of unique feature templates needed for different modulation schemes 

Modulation Scheme 
Number of Instantaneous 

Features 
Templates Needed 

BASK 2 
4-ASK 16 
BFSK 2 
4-FSK 16 
BPSK 2 
QPSK 16 
8-PSK 64 
4-QAM 16 
16-QAM 256 
64-QAM 4096 

 

Table 5.1 illustrates that the number of templates must be extracted from different 

modulation schemes for the use in the DWT-based AMR process, if the instantaneous 

featured templates AMR methodology is still used. It is easily seen that as the order of the 

digital modulation scheme increases, the number of templates required for the WD AMR 
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process also increases rapidly, which causes the computational effort for classifying 

modulation schemes significantly growing. Besides, it will also enhance the system 

design complexity and cost. Therefore, a new DWT-based AMR algorithm only utilizing 

certain number of templates is demanded to classify higher order modulation schemes. 

Meanwhile, this new methodology should maintain reliable correct classification rate as 

well. 

This new AMR algorithm developed in this chapter is designed upon signal statistical 

featured templates extracted from their wavelet domain expressions. By analyzing these 

features, the algorithm could be implemented with only few fixed number of templates 

involved in. In details, extracted wavelet templates will be used in the correlation 

operation with wavelet expressions of different modulation signals. Then attributes of 

their correlation outputs are extracted, observed, and utilized as decision variables for the 

modulation type recognition process. The digital modulation signals will be considered in 

this chapter include M-ary ASK, M-ary FSK for M=2 and 4; M-ary PSK for M= 2, 4 and 

8; and M-ary QAM for M= 4 and 16. The communication signals are corrupted with 

AWGN channel in the range of SNR from -5 dB to 10 dB. 

The content of Chapter 5 is composed with four sections. In Section 5.1, preliminary 

knowledge and preparations required for the WD AMR process using the statistical 

features templates are described. This WD AMR algorithm is developed in Section 5.2. 

Then, the WD AMR process is simulated and verified. Simulation results are represented 

and analyzed in Section 5.3. Besides, comparisons of the rates of correct modulation 

classification obtained in this study are also made with performances obtained from 

previous literatures.  
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5.1 Preparations of the Automatic Modulation Recognition Process 
Using Statistical Features Templates 

As described in Chapter 3, the candidate modulation signals being researched in this 

work are expressed in terms of the cosine and sine signal basis functions mathematically. 

Thus, the first statistical features template is intuitively constructed based on the 

sinusoidal feature inherent in all of the digitally modulated communications signals 

considered in this study. In general, the sinusoidal feature is defined as ( ) ( )cos 2 cs t f tπ= , 

where fc is used to denoted the carrier frequency of the signal. In the vector space, these 

signals are represented in term of the I and Q basis signal functions, just as depicted as 

Fig. 3.1-3.2 in the work of Proakis [74], sinusoidal signals are most common component 

carried by all modulation signals. Thus, two common statistical features templates called 

as the Template 1 and Template 2, are defined as the cosine function, 

( ) ( ) 1 2cos 2 ,  =0,  and  =90,  cp t f t T t Tπ θ θ θ= + < < ,where θ  represents the different 

phase shifts of the sinusoidal carrier, while 1T  and 2T  represent the beginning time and 

ending time of the template. 

Take the first template as the example, statistical features are investigated through 

observations of the correlation values between signals and the Template 1 in the wavelet 

domain: 

1. When the signal is within ± 90 degree phase difference from the template signal, their 

correlation value is always positive. Oppositely, if two signals' phase difference is more 

than ± 90 degrees, then their correlation is always negative. According to the algebraic 

sign information of correlation outputs, the quadrant of the signal location can be 
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determined.  

2. When two signals' phase difference is equal to ± 90 degree, then their correlation value 

is always zero because they are mutual orthogonal to each other. According to this 

orthogonality feature, the components of signals can be detected through correlation with 

different template signals. 

3. The self-correlation of a signal always generates the maximum positive correlation 

value. The correlation of a signal and its "mirror" signal, which carries 180 degree phase 

difference from it, generates the minimum negative correlation value. The positive and 

negative peak contain the same absolute values.  

4. Two signal's correlation value is decreasing from the maximum positive to the 

minimum negative while their phase difference increase from 0 degree to 180 degree.  

5. Oppositely, if two signals' phase difference range from 180 to 360 degree, then their 

correlation is increasing from the minimum negative value up to the maximum positive, 

as the phase difference increment from 180 degree to 360 degree. 

6. The last but not the least attribute is the feature of symmetry. The correlation values are 

identical if signals are symmetric about the I axis. If signals are symmetric of the Q axis, 

then their correlation carries the same absolute value, but opposite positive/negative sign.  

Above features of signals correlation could be extracted and concluded as important 

modulation classifier parameters, among which include dynamic range of correlation 

results, the number of distinct levels contained by correlation outputs, as well as the 

orthogonality detection and components estimation. It is also noticed that, as showed in 

the term 4 and 5, signals' different quadrant space location could be detected upon 

algebraic signs of their correlation with template signals. This attribute is also 
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summarized in the Table 5.2. 

 
Table 5.2 Identification of signal space quadrant using the correlation results with 

templates 
 

Quadrant Correlation with T1 Correlation with T2 

I + + 
II - + 
III - - 
IV + - 

 

To recognize modulation schemes included in this work, two templates are not sufficient 

and more templates are required. Their statistical attributes will be collected and jointly 

analyzed to develop the WD AMR process and algorithm. As mentioned earlier in this 

chapter, the sinusoidal features can be extracted at different temporal locations within a 

data symbol period of a communications signal. Also, a statistical featured template can 

be subjected to a time-shift, which would correspond to a phase shift of the carrier signal. 

Therefore, in general, a common features template, ( )p t , can be defined as 

( ) ( ) 1 2cos 2 ,  cp t f t T t Tπ θ= + < < , whereθ  represents the different phase shifts of the 

sinusoidal carrier, while 1T  and 2T  represent the beginning time and ending time of the 

template. The various statistical features templates used in the development of the WD 

AMR process are described for the cases of 0,  2,  and 5 4θ π π= , denoted as Template 

1, Template 2, and Template 3, respectively in Fig. 5.1. These three featured templates are 

selected because they are presenting the I (cosine) signal basis functions, the Q (sine) 

signal basis functions and the combination of both signal basis functions, just as depicted 

in Fig. 6.1. Template 1 is based on a cosine carrier with no phase shift. Template 2 is 
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based on the sine carrier that is phase offset by 2π  radians. Template 3 is based on the 

cosine carrier basis function having a phase shift of 5 4π  radians. 

I

Q

Template 1

Template 2

Template 3

III

III IV

 

Fig. 5.1 Signal space representation of the three common features templates. 
 

In short, templates selection procedure is mainly based on mathematical models of the 

communications signals components described in Chapter 3. Template 1 and Template 2 

are chosen as the cosine signal and the sine signal, because most communications signals 

considered in this work can be described mathematically and expressed by either the I or 

the Q basis functions. For classification of more complex modulation schemes, a third 

template must be used, which is the combination of the first two templates. By extracting 

all these common parts of different signal sets, it is very helpful to limit the number of 

templates required by this algorithm. Besides, the use of wavelet transfer enabling 

analyze signals from various levels of resolution. Meanwhile, statistical features of 

signals in the time domain could be reserved in the wavelet domain because the linearity 

of the wavelet transform operation.  

In following section, all test signals will correlate with these templates in the wavelet 

domain and their correlation's statistical features will be studied. After comparison and 

observation, the quadrant of the signal location, the components of modulation signals 
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and the orthogonality existence could be detected accordingly. These attributions are then 

analyzed jointly to finalize the modulation reorganization decision. 

 

5.2 Development of the Statistical Feature AMR Algorithm: 
 
After all templates were defined in Section 5.1, the following content will focus on the 

illustration of the WD-AMR algorithm development. The first part of this new AMR 

algorithm is the same as the description in Chapter 4. Communications signals are firstly 

discrete wavelets transformed using the Haar. The resulting DWT expression of signals is 

correlated with different discrete wavelet transformed Templates 1, 2 and 3, which 

represent WD statistical signatures of candidate modulated signals. Further details of this 

algorithm will be illustrated in Section 5.2.1. 

The correlation results between all test signals and Template 1 must first be plotted and 

analyzed. Upon comparing the dynamic range and multi/single level features, all test 

signals are categorized into several subgroups. Each subgroup, which contains multiple 

members, will eventually need to be all recognized individually. So both Templates 2 and 

3 are introduced to further analyze each subgroup, until each single modulation type is 

detected and identified. The steps of this WD AMR algorithm and its working flow chart 

are represented in Section 5.2.2. 
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5.2.1 Algorithm Development 

The system-level block diagram for this statistical feature WD AMR is plotted below 

Figure 5.2. It is systematically different from the algorithm proposed in Chapter 4. 

Specifically, as showed in the bottom block, the AMR system could be viewed as a two-

layer decision procedure. In the first half of the AMR, signals are expressed in the wavelet 

domain. Their correlating statistical features are then generated, collected, processed, and 

analyzed through the first layer decision procedure, which is composed by one correlator, 

one pre-processor, and one decision-maker.  The output of the first decision processor will 

be used in the second part of the AMR, which runs the similar methodology and process 

with the first part. The main difference for the second correlator lies in the fact that more 

templates are inputted into it compared to the first correlator. 

 

 
 

Figure 5.2 WD-AMR using statistical feature template system level view 
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Wavelet correlation outputs are placed through a pre-processor because the original 

correlation of signals and templates generates different value ranges. Hence, to better 

investigate their statistical attributes, all correlation outputs are normalized by this pre-

processor to the dynamic range of -3 to 3 before the decision procedure. So the normalized 

correlation outputs will be categorized as three groups with value ranges: a. no negative (0 

to 3), b. no positive (-3 to 0), and c. mixed (3 to -3).This range detection acts as a part of 

the decision procedure to distinguish and label these three groups as "a", "b", or "c".  

1. In Table 5.3, all nine tested modulation schemes are separated into two subgroups by the 

range detector and each subgroup contains multiple candidates. BASK, BFSK, 4FSK and 

4ASK are members of group "a". BPSK, 4PSK, 8PSK, 4QAM and 16QAMare modulation 

signals that correlate with T1 and their correlation is identified as mixed values belonging 

to group "c". There are no possible options among all candidates for group "b". Next, these 

groups could be further divided into smaller subgroups by introducing another statistical 

character of T1 correlation outputs; this attribute is called the multiple/single (M/S) level 

value. 

2. The correlation results from the figure above yields that the most important statistical 

attributes are range detection and multiple/single (M/S) level distinctions. In the following 

details, the M/S level feature detection procedure will be applied and analyzed to each 

subgroup defined in the previous step.  
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Table 5.3 WD-Correlation with Template 1 

BASK*T1 
 

 

a&S 

BPSK*T1 

 

c&S 

BFSK*T1 

 

a&S 

4ASK*T1 

 

a&M 

4PSK*T1 

 

c&M 

4FSK*T1 

 

a&S 
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8PSK*T1 

 

c&M 

QAM*T1 

 

c&S 

16QAM*T1 

 

c&M 

 

a. Among all possible members of group "a", it is clear to observe that only the 

4ASK generates a multiple (4) levels correlation output, which divided the 

whole range from 0 to 3 into three equal subspaces, and each value's occurrence 

follows the uniform distribution. Hence, if the amount of data that falls into each 

subspaceis detected to be equal, then it will be labeled as multiple levels 

andlabeled group “M”. If a majority of values are significantly concentrated in 

one certain (top or bottom)subspace only, then it is recognized as the single level 

data, and labeled as group “S”. After combining both the range detection results 

and M/S level features, testing signals from subgroup "a" are further divided into 

“a&S” and “a&M” classes. The “a&S” class contains candidates of BASK, 

BFSK and 4FSK. The 4ASK is identified as the only member for class “a&M” 

after this step.  
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b. For subgroup "c" correlation outputs that carry mixed values, their M/S 

feature can also be detected based on the "central zone" values existence. The 

main idea behind this method is that if data is in single level format, then all 

values must concentrate at the top (positive peak) and the bottom (negative peak) 

parts. Conversely, for multiple level mixed values, the data will be equally 

distributed on each level of the whole data range. Hence, if a sufficient amount 

of data is detected to exist in the median levels, i.e. "central zone", then it could 

be recognized as multiple levels. Otherwise, it would be considered single level 

data. Applying this methodology to our study, to determine M/S feature of 4/16 

QAM and 2/4/8PSK signals, the existence of "central values" needs to be 

proofed as the key evidence. First of all, half 4PSK signals are orthogonal to T1, 

thus value 0’s occurrence in their correlation data should be around 50%. 

Similarly, the probability of 0’s existence should be equal to 25% for 8PSK 

correlation with T1. Thus, if a certain number of 0’s are detected in the central 

zone, it indicates that their correlation value would be multiple level data. This is 

different for 16QAM signals. Here, the correlation with T1 does not generate a 

"0" value because it lacks orthogonality. However, it does generate other values 

equally distributed among the whole range. The values detected in the central 

zone are not equal to but very close to "0", and 16QAM is also labeled as "M". 

The other two modulation schemes, firstly, 4QAM and BPSK have no signal 

orthogonal with T1 so their correlation has no "0" values. Secondly, since their 

signals have equal distance to T1, as shown in the constellation Fig. 3.2 [74], 

their correlation only generates constant positive and constant negative 
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envelopes, which is claimed as single level. In conclusion, a multiple levels 

output is recognized as long as “0” or "close to 0" values are found in the central 

zone, but a single level output has no value available at the central zone. This is 

the criterion to determine the M/S level. 

c. The study of subgroup "b" is considered null since there isn’t any matched 

correlation data that allows for any possible candidate modulation schemes to 

correspond. 

Now the group "c" is classified as group “c&S” which contains 4QAM and BPSK signals, 

and group “c&M” includes 4PSK, 8PSK and 16QAM modulation schemes. After 

applying range detection and M/S identification to all test signals' correlation with T1, all 

data set can be sorted into four combinations: a&S, a&M, c&S, c&M. They are also the 

output of the first decision block in the Fig. 5.2. Respectively, group “a&S” indicates 

single level with no negative data, and its candidate modulation schemes are BASK, 

BFSK and 4FSK. Group “a&M” means multiple levels with no negative data which 

points to the sole model 4ASK. Group “c&S” stands for single level data with mixed 

values and its matched possible modulation options are 4QAM and BPSK. 16QAM, 

4PSK and 8PSK produce the mixed and multiple level correlation value with Template 1, 

which is labeled as "c&M". To further recognize each modulation scheme one by one, 

Template 2 and Template 3 are introduced into the next analysis process. This is 

illustrated in the second part of the AMR system shown in Fig. 5.2. 

3. By correlating with the Template 2, signal members in the “c&S” class can be 

identified successfully. From previous steps, the “c&S” class is known as holding the 

BPSK and the 4QAM two possible modulation schemes. As both BPSK symbols are 
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completely orthogonal to the T2, their correlation produces “0” values only. 

 
Table 5.4 WD-correlation with Template 2 

BPSK*T2 

 

All “0” 

4QAM*T2 

 

Range 
+3~-3 

 

Conversely, none of the 4QAM signals is orthogonal to Template 2. Hence, “0” does 

not exist in the correlation of 4QAM and Template 2. This proves the following 

detection criteria: if the signal and Template 2 correlation's range is detected around 

"0" axis and is labeled as single value, then the modulation scheme is claimed as the 

BPSK; otherwise, it will be identified as a 4QAM signal as its correlation values 

range from +3 to -3 and most data only gathers at both end of the range. For reference, 

the correlation results of BPSK and 4QAM with Template 2 are plotted in Table 5.4. 

4. There are three signal members, QPSK, 8PSK and 16QAM contained in the class 

“c&M”. Because each template can only distinguish two signals at most, at least two 

templates are required to identify the modulation members in the "c&M" class. Firstly, 

all possible signal members are correlated with Template 3 and the M/S level 

recognizer is applied on the respective correlation outputs sets of each signal member. 

The only single level correlation and modulated signal value that is filtered out and 
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detected is QPSK. To detect the two remaining modulation types, the residue signals 

8PSK and 16QAM are then correlated with Template 1. Due to the partial 8PSK 

symbols being orthogonal to Template 1, their correlation results will partly include 

"0" values. At the same time, due to the lack of orthogonality, 16QAM and Template 

1 can only generate non-zero correlation outputs. Since both signals' correlation with 

Template 1 is distributed in the same value range, 16QAM and Template 1's 

correlation produces a larger absolute summation than 8PSK. This process can be 

repeated by correlating with Template 2 and the decision strategy remains the same. 

 

Table 5.5 WD-correlation with Template 3 

QPSK*T3 

 

Containing 
no “0” 

8PSK*T3 

 

Containing 
“0” 

16QAM*T3 

 

Containing 
"0" 
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Table 5.6 WD-correlation with Template 2 and Template 3 

BASK*T2 

 

All “0”s 

BFSK*T2 

 

Positive single 
level output 
with around 

1/2 “0” values 

4FSK*T2 

 

Positive single 
level output 
with around 

3/4 “0” values 

BFSK*T3 

 

All -3 

4FSK*T3 

 

Half -3 half 0 

 

5. The last signal class “a&S” includes BASK, BFSK, and 4FSK as its possible members 

and they are detected by two templates in two steps:  

a. Firstly, an ASK/FSK classifier must be designed to separate the BASK from FSK 

signals. Template 2 is ideal achieve this goal because it is completely orthogonal with 

BASK, thus their correlation will only produce "0" values every time. BFSK and 
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4FSK signals are partially orthogonal with Template 2, thus their correlation value 

dynamic range covers from 0 to 3.  

b. After ASK/FSK classifier is designed, the next step is to focus on distinguishing 

the remaining two FSK signals, BFSK, and 4FSK. By correlating both signals with 

Template 3, despite both correlation data containing negative values, there is a 

significant difference in results. BFSK correlating with Template 3 generates a 

constant envelope at the negative value of -3; the 4FSK signal correlation values with 

Template 3 contain both 0 and -3 equally.  

6. Since 4ASK is the sole candidate of the “a&M” class, this modulation type was 

directly filtered out in the step 2a.  

In short, the WD statistical features of correlations between signals and templates enabled 

the reorganization of different modulation schemes. The key concepts for developing this 

WD-AMR algorithm using the category of statistical features templates include: 

a. Algebraic sign information of correlation results obtained with templates leads to 

the identification of symbol constellation quadrant locations within the signal 

constellation of a modulation type. 

b. By combining other statistical characteristic combinations of all three template 

correlation results such as dynamic range detection, single/multi-level, and zero-

valued outputs, those combinations could jointly identify the signals' component and 

the modulation schemes. Among these, the dynamic range and S/M level attributes 

are the two most useful. They are summarized in Tables 5.7- 5.9. 
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Table 5.7 Attributes of WD correlation values from test cases with Template 1 

Communications 
Signal 

Dynamic Range  Multi-Level Label 

BASK 0 to 3 No a&S 
4-ASK 0 to 3 Yes a&M 
BFSK 0 to 3 No a&S 
4-FSK 0 to 3 No a&S 
BPSK -3 to 3 No c&S 
QPSK -3 to 3 Yes c&M 
8-PSK -3 to 3 Yes c&M 
4-QAM -3 to 3 No c&S 
16-QAM -3 to 3 Yes c&M 

 

 
Table 5.8 Attributes of WD correlation values from test cases with Template 2 

Communications 
Signal 

Dynamic Range Multi-Level Label 

BASK 0  No - 
4-ASK 0  No - 
BFSK 0 to 3 No a&S 
4-FSK 0 to 3 No a&S 
BPSK 0 No - 
QPSK -3 to 3 Yes c&M 
8-PSK -3 to 3 Yes c&M 
4-QAM -3 to 3 No c&S 
16-QAM -3 to 3 Yes c&M 
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Table 5.9 Attributes of WD correlation values from test cases with Template 3 

Communications 
Signal 

Dynamic Range Multi-Level Label 

BASK 0 to -3 No a&S 
4-ASK 0 to -3 Yes a&M 
BFSK -3 No c&S 
4-FSK 0 to -3 No a&S 
BPSK -3 to 3 No c&S 
QPSK -3 to 3 Yes c&M 
8-PSK -3 to 3 Yes c&M 
4-QAM -3 to 3 Yes c&M 
16-QAM -3 to 3 Yes c&M 

 
 
5.3 Algorithm for the Automatic Modulation Recognition Process 
 
The general WD AMR algorithm using the statistical features templates is described as 

following steps: 

Step 1: Conduct the DWT with the Haar wavelet to the received signal with an 

unknown modulation scheme. 

Step 2: The wavelet coefficients of signals are then correlated with the statistical 

featured templates, which were pre-defined in the wavelet-domain representing 

WD signatures of signals. 

Step 3: To have a fixed dynamic correlation range for convenient following analyzing, 

the correlation values are extracted and normalized in the pre-processing 

blocks. 

Step 4: After normalization, correlation values are analyzed by decision blocks to 

produce recognition results of the unknown modulation schemes. 
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Corresponding to the overall system block diagram as shown in the Fig. 5.2, a more 

detailed WD-AMR system-level processor using statistical features templates is 

illustrated in Fig. 5.3. 

The functionality of the pre-processing block operation described in Step 3 of the 

algorithm is to ensure that the correlation data are normalized to have an identical 

dynamic range from -3 to 3, which benefits to later analysis. After the data are processed, 

AMR decision metrics are developed for each decision block, which is illustrated in Fig. 

5.3. This is to discriminate between different modulation schemes. The decision blocks 

are developed based on the statistical characteristic combinations of correlation results, 

i.e. algebraic sign, dynamic range, zero-values or multi/single-level numerical values. 

These statistical features combinations extracted from the correlation results with 

multiple templates are compared to classify various modulation schemes. The 

development of these decision procedures is illustrated in detail in the remainder of this 

section including working flow charts of each decision procedure. 



81 
 

 

MASK
MFSK
MPSK

M-QAM

DWT

QPSK, 8-PSK, 16-QAM

Correlator #1

Template #1

Decision Block #1

4-ASK

BASK, 2-FSK, 4-FSK
BPSK, 4-QAM

Template #2 and 
Template #3

Correlator #4

Correlator #2

Template #2

Pre-Processing 
Block

Decision Block #2
BPSK

4-QAM

Cross-correlator #5

Template #5Template #3 and 
Template #1

Correlator #3 Pre-Processing 
Block

Decision Block #3

QPSK

8-PSK

16-QAM
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Fig. 5.3 Block diagram of the WD AMR process using statistical features templates. 

5.3.1 Procedure for Decision Block 1 

Based on the dynamic range and the multi/single level attributes of the correlation results 

listed in Table 5.7, the modulated signals can be categorized into four groups. The 

correlation values using Template 1 are processed in Decision Block 1, which are 

consisted of two processors: the dynamic range detector and the M/S level detector. 

Looking at the dynamic range attribute, one subgroup signals has a dynamic range that is 

strictly positive from 0 to 3. The other subgroup contains correlation values ranging from 

-3 to 3. Modulation schemes of these two subgroups are specified in Table 5.10. 
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Table 5.10 Two subgroups correlation from Template 1 with different dynamic ranges 

Dynamic Range Modulation Schemes 

0 to 3 BASK,4-ASK, BFSK, 4-FSK 

-3 to 3 BPSK, QPSK, 8-PSK, 4-QAM, 16-QAM 

 

Based on checking the correlation values are either single-level, or multi-level, the 

correlation data set with Template 1 could be re-divided. The grouping results of 

modulation schemes upon this attribute are shown in Table 5.11. 

Table 5.11 Two subgroups of correlation from Template 1 using multi-level test 

Multi/Single Level Modulation Schemes 

No BASK, BFSK, 4-FSK, BPSK,4-QAM 

Yes 4-ASK, QPSK, 8-PSK,16-QAM 

 

By jointly grouping modulation schemes in Tables 5.10 and 5.11, four possible 

modulation schemes subgroups for Decision Block 1 can be determined based on two 

criteria listed in Table 5.12. 

Table 5.12 Grouping outputs of Decision Block 1 

Criterion 1: 
Dynamic Range 

Criterion 2: 
Multi-Level 

Modulation Schemes 

0 to 3 No BASK, BFSK, 4-FSK 
0 to 3 Yes 4-ASK  
-3 to 3 No BPSK, 4-QAM 
-3 to 3 Yes QPSK, 8-PSK, 16-QAM 



83 
 

 

Based on above content, the working procedure for Decision Block 1 is summarized as 

the following: 

Step 1: Apply a dynamic range test and assign corresponding index to the normalized 

correlation outputs. If the data values are distributed among the range from 0 to 

3, then assign the index ‘a’ to it. Otherwise, assign an index ‘c’ if the data 

values range from -3 to 3. 

Step 2: Then a multi-level test is conducted on the normalized correlation dataset in 

decision block and assign an index to the dataset. Assign a ‘s’ if the data values 

are single-level distributed. Otherwise, assign a ‘m’ if the data contains multi-

level values. 

Step 3: Assign subgroup index. If the dynamic range test result is index ‘a’ and ‘s’ is 

produced by the multi-level test, then assign an output indicator of ‘1,’ which 

means that the modulation scheme employed by the signal is potentially in the 

subgroup {BASK, BFSK, 4-FSK}. 

Step 4: Repeat Step 3 on the case of dynamic range test index is ‘a’ and the multi-level 

test index is ‘m,’ then the candidate modulation scheme is 4-ASK. 

Step 5: Repeat Step 3 as the case of dynamic range test result is ‘c’ and the multi-level 

test result is ‘s’. Now the modulation scheme used by the signal is one among 

the subgroup of {BPSK, 4-QAM}, designate an output index ‘2’ to it. 

Step 6: Repeat Step 3 to the last remaining subgroup {QPSK, 8-PSK, 16-QAM}, which 

has attributes of the dynamic range test ‘c’ and the multi-level test ‘m’, then 

assign an output index ‘3’ to it.  
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Step 7: If the subgroup index outputted by Decision Block 1, in Steps 3-6, is: 

a. ‘1,’ go to the ASK and FSK Classifier Procedure 

b. ‘2,’ go to Decision Block 2 

c. ‘3,’ go to Decision Block 3 

A procedure flowchart for Decision Block 1 is plotted in Fig. 5.4. The Decision Block 2, 

Decision Block 3 and the ASK & FSK classifier procedure at the bottom output level will 

be presented in following Section 5.2.4. 

 

 

Fig. 5.4 Flowchart of the procedure for Decision Block 1 
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5.3.2 Procedure for Decision Block 2 

If Decision Block 2 is activated by Decision Block 1, as described in Section 5.2.1. It 

means that the potential modulation scheme employed by the signal could be either 

BPSK or 4-QAM. To further identify, Decision Block 2 uses the values of the WD 

correlation between the signal and Template 2, and conduct a dynamic range test to the 

complete set of correlation values. Based on the results of the test as indicated in Table 

5.11, the modulation scheme is recognized. 

 

Table 5.13 Dynamic range test of the correlation using Template 2 

Dynamic Range Modulation Scheme 

~0 BPSK 

-3 to 3 4-QAM 
 

The Decision Block 2 working flow is introduced as follows. 

Step 1: The correlation between wavelet transformed received signal and Template 2 is 

calculated, and then correlation values are normalized appropriately. 

Step 2: Conduct a dynamic range test on the resulting set of normalized correlation 

values from the step 1 and output indicators are assigned. If the data values 

range from -3 to 3, then assign the output an indicator of ‘0’. If the values are 

approximately around with zero, then the output indicator ‘1’ is assigned. 

Step 3: If the output indicator assigned is:  

a. ‘0,’ the modulation scheme is 4-QAM 

b. ‘1,’ the modulation scheme is BPSK. 
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The flowchart of the procedure is illustrated in Fig. 5.5. 

 

Fig.5.5 Flowchart of the procedure for Decision Block 2. 

 

5.3.3 Procedure for Decision Block 3 

Decision Block 3 is activated when the unknown received signal is identified by Decision 

Block 1 as  among the set of {QPSK, 8-PSK, 16-QAM}. The procedure for Decision 

Block 3 is described below: 

Step 1: The correlation between wavelet transformed received signal and Template 3 is 

calculated, and then correlation values are normalized appropriately. 

Step 2: Conduct a multi-level test to the normalized correlation values from step 1 and 

output indicators are assigned. If the correlation output data is composed of 
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single-level values, then the output is labeled as ‘0’ by the indicator. If the 

correlation values are multi-level, then the output indicator ‘1’ is assigned. 

Step 3: If the output indicator assigned is: 

a. ‘0,’ the modulation scheme is QPSK 

b. ‘1,’ go to the 8-PSK and 16-QAM Classifier Procedure. 

The flowchart for the above procedure is provided in Fig. 5.6. The PSK and QAM 

classifier procedure at the bottom output level is presented in Section 5.2.4. 

 

 

Fig. 5.6 Flowchart of the procedure for Decision Block 3. 
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5.3.4 Procedures for Other Decision Blocks 

As mentioned in the procedures of Decision Blocks 1 and 3, there were two groups of 

modulation schemes that remained at the output end of these two Decision Blocks: 

 Group 1: {BASK, BFSK, 4-FSK} is one output of Decision Block 1 

 Group 2: {8-PSK, 16-QAM} is one output of Decision Block 3 

Hence, these two groups signals need to be identified by two corresponding WD-based 

classification algorithms. In section 5.3.4.1, the ASF/FSK Classifier is invented to 

classify the modulation schemes in Group 1. A PSK/QAM Classifier is designed in 

Section 5.3.4.2 to distinguish the modulation schemes in Group 2. 

 

5.3.4.1 ASK and FSK Classifier Procedure 

The fact of multiple carrier frequencies are employed to represent different data 

symbols of FSK signals is revealed as the definition of ASK and FSK mentioned in 

Chapter 3. The FSK signal is a special case of orthogonal signal waveforms as its 

different data symbols carrying different frequencies which are orthogonal to each other. 

According to this interesting attribute, the ASK and FSK could be classified by utilizing 

Template 2 and 3 to distinguish these two modulation schemes from Group 1. Template 2 

is completely orthogonal to the BASK. It could be viewed as one symbol of the BFSK 

and one symbol of the 4FSK, hence it is also orthogonal to other FSK symbols. Template 

3 is introduced here because the orthogonality only exists between the Template 3 and the 

4FSK, but not at all with the BFSK. To summarize, the ASK/FSK Classifier Procedure 

and working flows are described in following steps and diagram: 
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Step 1: Calculating correlations in the WD between received signals with Template 2, 

and then normalize correlations appropriately. 

Step 2: 

 
 
 
 
 
 

Conduct the dynamic range test on the normalized correlation data and an 

output indicator is assigned to the dataset. In details, indicate the output as ‘0’ if 

the values are zero, which indicates that the signal is BASK. If not, then label 

the indicator as ‘1’, which means  that the dataset numerical range from 0 to 3. 

Step 3: If the output indicator assigned is:  

a. ‘0,’ the modulation scheme is BASK 

b. ‘1,’ go to Step 4. 

Step 4: Calculating correlations between the received signal with Template 3 in the 

WD, then normalize correlation outputs appropriately.  

Step 5: Conduct the dynamic range test on the normalized correlation data and an 

output indicator is assigned to this dataset. In particularly, labeling a ‘0’ to 

correlation values signifies that whose data is concentrated around negative 

value ‘-3’. Otherwise, if the correlation values are ranging from 0 to -3, then an 

indicator ‘1’ is assigned. In this case, the ratio of numbers with value "0" and 

value "-3" is equal to 1.  

Step 6: If the output indicator assigned is:  

a. ‘0,’ the modulation scheme is BFSK 

b. ‘1,’ the modulation scheme is 4-FSK. 
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Fig. 5.7 System block diagram implementing the ASK and FSK Classifier Procedure for 

Group 1 signals 

 
 

5.3.4.2 PSK and QAM Classifier Procedure 
 

If Decision Block 3's output aligns with 8-PSK and 16-QAM mentioned in Section5.2.3, 

then the PSK/QAM classifier is activated. This classifier uses the values of the WD 

correlation between the signal being processed and Template 1. Specifically, the 

complete set of correlation values is subjected to a dynamic range test and a zero detector. 

The 16-QAM signal can be claimed if its correlation with Template 1 or Template 2 

carries no zero values; the 8-PSK signal can be identified if its correlation value includes 

a ‘0’ value and the ratio of zero values is ¼ compared to all data. The reason for this 

decision rule is that, although both correlations are detected in the +3 to -3 range, a ¼ of 

8-PSK symbols are orthogonal to Template 1 and 2, and orthogonality does not exist 

between 16-QAM and Template 1 or 2. The QAM and PSK Classifier Procedure 

includes: 
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Step1:  Correlate the received signal with Template 1 or 2 in the WD, then 

correlation values are normalized appropriately.  

Step2: Apply the zero detection to the normalized correlation data. 

Although both outputs show +3 to -3 range, their correlation values 

components are different. Assign the output carrying around 1/4 

zeros with label ‘1’ and the other dataset with no zeros is labeled as 

‘0’. 

Step 3: If the output indicator assigned is:  

a. ‘0,’ the modulation scheme is 16-QAM 

b. ‘1,’ the modulation scheme is 8-PSK. 

 

 
Fig. 5.8 System Block Diagram for the PSK/QAM Classifier 
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5.4 Simulation Experiment and Results Comparison 

Similar as the test environment set up in Chapter 4. This WD AMR algorithm based on 

the statistical features templates developed in Section 5.2 has been implemented in 

MATLAB. All of the communication test signals used in the simulations have been 

corrupted by zero-mean AWGN having SNR values in the range from -5 dB to 10 dB. 

The rates of correct modulation classification have been obtained using 100,000 Monte 

Carlo trials. The transmitted signal used in each trial consists of 192 symbols per frame 

transmitted. The signal is oversampled by a factor of sixteen when compared to the 

Nyquist rate corresponding to the frequency of the sinusoidal carrier. The system 

parameters assumed to be known for the AMR process include the carrier frequency and 

perfect symbol timing with no timing offset. 

The results of the experiments for all of the modulation schemes are given in Tables 5.11, 

which contain the rates of correct classification for the five different SNR values, i.e., 10 

dB, 5 dB, 0 dB and -5 dB. 

Several prior works on AMR that are available in the literature, which use both WT-

based and non-WT based methodologies, have been surveyed in Chapter 2. In this section, 

the results of simulation experiments reported in these previous works are compared with 

the results obtained in Section 5.3. The relevant comparisons are presented in Tables 

5.12-5.13.  

It must be reiterated that a direct comparison of the different AMR methodologies is
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Table 5.14 AMR classification rates obtained in this research work 

Modulation 
Scheme 

SNR = 10 dB SNR = 5 dB SNR = 0 dB SNR = -5 
dB 

BPSK 100% 100% 99.1% 97.2% 

QPSK 100% 99.8% 96.3% 94.6% 

8-PSK 100% 97.8% 89.2% 81% 

BASK 100% 100% 100% 95.8% 

4-ASK 100% 99.8% 99.3% 95.9% 

BFSK 100% 100% 98.2% 96.8% 

4-FSK 100% 98.8% 95.3% 93.2% 

4-QAM 100% 98.9% 96.8% 96.4% 

16-QAM 100% 98.2% 90.6% 79.8% 

impossible due to the fact that the prior works reported in the literature do not necessarily 

use the same general a priori assumptions, such as SNR values, numbers of symbols per 

transmission, etc. 

From Table 5.14, the rates of correct classification at SNR = 10 dB and 5 dB, are almost 

100% for all the communication signals considered in this work. In the case of SNR = 0 

dB, majority of the rates of correct classification achieved are above or at around 97%, 

except in the cases of  8-PSK and16-QAM signals for which rates of 89.2% and 90.6% 

were achieved, respectively. For noisy channels operating at an SNR = -5 dB, the rates of 

correct classification achieved are near, or above, 94% for most of the modulation 

schemes. The exceptions at SNR = -5 dB are 8-PSK and 16-QAM signals. The rates of 

correct classification at SNR = -5 dB for 8-PSK and 16-QAM are 81% and 79.8%, 

respectively. Upon comparison between results of this work and previous literature, the
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Table 5.15 Non-wavelet transform-based AMR methods 

 
 
 
 
 

 

 

 

 

 

AMR Method 
Devised by 

SNR Modulation Scheme Correct 
Classification Rate 

Azzouz, et al. 
[32] 

15 dB 

BASK 
4-ASK 
BPSK 
QPSK 
BFSK 
4-FSK 

95.3% 
76.3% 
100% 
96% 
92% 
100% 

20 dB 

BASK 
4-ASK 
BPSK 
QPSK 
BFSK 
4-FSK 

96% 
80.2% 
100% 
100% 
92% 
88% 

Hsue and 
Soliman [33] 

15 dB 
(CNR) 

BPSK 
QPSK 
8-PSK 
BFSK 
4-FSK 

99% 
98% 
100% 
100% 
100% 

Dobre, et al. 
[9] 

10 dB 

BPSK 
QPSK 
8-PSK 

16-QAM 

100% 

5 dB 

BPSK 
QPSK 
8-PSK 

16-QAM 

100% 

0 dB 

BPSK 78% 

QPSK 
8-PSK 

16-QAM 
100% 
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Table5.16 Wavelet transform-based AMR methods 

AMR Method 
Devised by 

SNR Modulation Scheme Correct 
Classification Rate 

Ho, et al.  [58] 
 

13 dB 
(CNR) 

BPSK 
QPSK 
8-PSK 
2-FSK 
4-FSK 

97% 
97% 
97% 
100% 
100% 

Hong and Ho 
[60] 

20 dB  
(CNR) 

QPSK 
4-FSK 

16-QAM 

100% 
100% 
99.7% 

15 dB 
(CNR) 

QPSK 
4-FSK 

16-QAM 

99.5% 
100% 
98.7% 

10 dB 
(CNR) 

QPSK 
4-FSK 

16-QAM 

98.8% 
100% 
98.7% 

5 dB 
(CNR) 

QPSK 
4-FSK 

16-QAM 

96.6% 
100% 
100% 

Jin, et al. [54] 

13 dB 

BPSK 
QPSK 
8-PSK 
BFSK 
4-FSK 

100% 
100% 
100% 
100% 
100% 

10 dB 

BPSK 
QPSK 
8-PSK 
BFSK 
4-FSK 

100% 
99.9% 
100% 
98.1% 
100% 

8 dB 

BPSK 
QPSK 
8-PSK 
BFSK 
4-FSK 

100% 
96.5% 
100% 
95.3% 
100% 
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correct classification rates achieved in this work are either equal to, or better than those 

previous results for same SNR conditions. Even though severe noisy communicaiton 

channel were not conisdered into simulations from most literature, it is still clear to see 

that majority part of the performance curve stays stable when noise increase. But the 

PSK/QAM classifier gets relatively more affection as noise increases. 

5.5 Conclusions 

In this Chapter, an effective WD AMR process and its efficacy are investigated and 

demonstrated through the utilization of the pattern recognition technique of correlation 

along with templates defined in the wavelet-domain. In this AMR process, assumed 

known system parameters include the carrier frequency, perfect symbol timing and no 

timing offset. It has been proved that, even at low values of SNR, this WD-AMR 

algorithm can correctly classify signals with high reliability. Rates of correct 

classification obtained in this work are shown in Tables 5.14, as equal to or better than 

those reported in the literature.  

Given the reliability of the AMR process developed in this chapter, it has the potential to 

benefit the communications receiver design to enhance more interoperability between 

various communication standards. In other words, the AMR process could possibly 

enable the development of agile radio receivers and transceivers. Such an agile radios 

could be applied in many military related fields, such as threat signal analysis, spectrum 

management, electronic warfare, and electronics surveillance systems. In the future, more 

similar AMR processes could be further studied and extended to classification of more 

modulation schemes by using more multiple wavelet families. 
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Chapter 6  Development of the Wavelet Domain-Based (WD) 
Demodulation Technology 
Two DWT-based AMR algorithms were described and validated in Chapters 4 and 5, and 

it is now necessary to develop the techniques for demodulation in order to complete the 

baseband processing system on the WD Receiver Platform. After properly classifying the 

unknown modulation scheme employed by a received communication signal, an 

appropriate demodulation process must be activated in order to recover the information-

bearing signal to the baseband data. 

The motivation of designing the WD-Demodulator is to achieve this WD system 

architecture’s optimization. As shown in the system-level block diagram of Fig. 6.1, 

although employing a contemporary demodulation system followed by the WD-AMR 

could fulfill the baseband processing such as the information recovery function,  this 

system is inefficient in its redundant algorithm and a high cost in circuit complexity. 

 

 

Fig. 6.1 Baseband processor using wavelet transform-based signal identification and 
classical demodulation 
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For the implementation shown in Fig. 6.1, the input signal, sampled by the ADC, is a 

digitally modulated signal at zero IF. The data sequence output by the ADC is 

accumulated in a memory location (the input signal storage). After sufficient signal 

samples are stored, the processing engine decomposes the digital-domain IF signal using 

different wavelets and the output data are stored in a second memory location (the 

processing signal storage). Next, the processor compares the decomposed signal with 

pre-existing wavelet signatures that are available in a Look-Up Table (LUT) and makes 

the modulation recognition decision. This decision is then released to the digital 

switches through the control unit. The control unit, which operates switches connected to 

the correct external contemporary demodulator, can be used to recover the baseband data. 

However, the system shown in Fig.6.1 is not reconfigurable because each modulation 

scheme still requires its own unique carrier signal and, correspondingly, its own specific 

demodulation circuit. Also, there are computational redundancies that can be refined. 

First, the received signal is transformed to the wavelet domain for the WD-AMR 

algorithm. It is then transformed in reverse back to the time domain to match with the 

corresponding classical demodulator. Hence, the system could be improved in two 

aspects: reduce the computational complexity and lower the circuit design cost. An 

improved system is introduced as shown in the Fig. 6.2. 
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Fig. 6.2 Baseband processor using wavelet transform-based signal identification and 

demodulation. 
 

The completed baseband processor for the combined processes of signal identification 

and demodulation is illustrated in Fig. 6.2. The main difference between the two 

processors is a processor implemented as a universal demodulator in the wavelet domain 

to detect and recover a signal. This wavelet-based demodulator can directly receive, 

analyze and make decisions upon the signals' wavelet domain expression without 

transferring back to the time domain. Besides, by employing the wavelet-based AMR and 

wavelet-based demodulation jointly, a reconfigurable baseband processor platform is 

completed and implemented. 

The rest of this chapter consists of three parts. Firstly, it focuses on illustrating how this 

new modulator is derived from the contemporary demodulation technology. Secondly, 

the architecture of this WD-baseband processor and its general algorithm will be 

developed in Section 6.2. Lastly, the performance of the demodulation techniques is 

evaluated and BER curves are plotted for cases of signals corrupted with AWGN. The 

communications signals considered in this case are BASK, 4-ASK, BFSK, 4-FSK, 



100 
 

 

BPSK, QPSK, 8-PSK, 4-QAM (also denoted as 4π -QPSK), 16-QAM. The corruption 

results in SNR values range from -5 dB to 10 dB. 

 

6.1 Development of the WD-based Demodulation 

The contemporary demodulation techniques for digitally modulated communications 

signals are developed based on the MAP/ML being the best decision strategy. In the 

classical receiver, the correlation between received signals and noise-free symbols with a 

known modulation type is a key part of the decision. These correlation outputs are 

compared and the largest value is selected. Based on the comparison result, the data bit 

sequence can then be demodulated. Fig. 6.3 illustrates the system block diagram for this 

classical correlation-based demodulation procedure. In this case, the variable mη  is 

usually treated as a known constant parameter. 

 

 

Fig. 6.3 The Contemporary Correlator based Demodulation. 

 
In short, the best decision rule of the optimal classical demodulation is known as the 

maximum a posteriori (MAP/ML) probability rule [74] 
1

ˆ arg max( ( , ))m m
m M

m r sη
≤ ≤

= + . The 

variable mη  consists of the signal power, the variance of the Gaussian white noise, and 

the signal prior probability, all of which are usually either constant values or known 
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variables. Hence, the correlation is the key part of the decision. 

In the time domain receiver system, two inputs of the correlator are the received signal 

and the noise-free symbols employ the same modulation scheme as the received signals. 

In a wavelet-based receiver platform, the output of the WD-based AMR is the wavelet 

expression of received signals with a known modulation scheme and the templates 

signals are also wavelet transformed. It is significant to note that the inputs in the time 

domain and wavelet-based receiver systems are similar, which warrant further 

investigation into how the WD correlation is related to the regular correlation.  

To research the WD correlation, it must start from the definition of the DWT. As 

introduced in Chapter 3, for an arbitrary function ( )f t , the correlation results in the 

decomposition of ( )f t  into two orthogonal parts:    

( ) ( ) ( )j jf t f t w t= +  ( ) ,  ( ) ,  ( ) ( )j j j j j jf t V w t V f t w t⊥∈ ∈ ⊥          (6.1) 

The spaces jV  have a special structure; it is defined as a linear space of the scaled and 

translated replicas of a single function, called the scaling function, or the father wavelet. 

Its scaled/translated replicas are defined for any integer of j, n by: /2( ) 2 (2 )j j
jn t t nφ φ= − . 

The functions ( )jn tφ  are orthonormal for each fixed j, and form a basis of space 

jV . ( , )jn jm nmφ φ δ=  . 

Now the projection of an arbitrary signal 2( ) (R)f t L∈ onto the subspace jV  is defined by 

the following expansion in the jnφ  basis: 

/2( ) ( ) 2 (2 )j j
j jn jn jn

n n
f t c t c t nφ φ= = −∑ ∑

                                 (6.2) 

Another wavelet function ( )tψ and its scaled and translated replicas actually span the 
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orthogonal complement jV ⊥

 of jV  with respect to 2 (R)L . Note that 

/2( ) 2 (2 )i i
in t t nψ ψ= − , i j≥ , which are orthogonal to ( )jn tφ , and are also mutually 

orthonormal, ' ' ' '( , )in i n ii nnψ ψ δ δ= ,  ( , ) 0,jn imφ ψ = i j≥ . 

The component ( )jw t  from equation (6.1) is referred to as the “detail” and incorporates 

the details of ( )f t  at all the higher resolution levels i j≥ , or finer time scales 2 2i j− −≤ . 

It is spanned by the ψ -basis expansion: 

1/2( ) ( ) 2 (2 )i
j in in in

i j n i j n
w t d t d t nψ ψ

≥ ≥

= = −∑∑ ∑∑
          (6.3)

 

Hence, taking (6.2) and (6.3) into (6.1) to complete forming the multi-resolution 

decomposition analysis of  f(t),   

DWT

( ) ( ) ( ) ( ) ( )

( )

j j jn jn in in
n i j n

jn in
n i j n

f t f t w t c t d t

f t c d

φ ψ
≥

≥

= + = +

→= +

∑ ∑∑

∑ ∑∑
          

(6.4) 

The right-hand coefficients in (6.4) are: 

1, 1, 1, 1,( , ) ( , ) ( , )jk jk j n j n jk j n j n jk
n n

c f c cφ φ φ φ φ+ + + += = =∑ ∑
         

(6.5)
 

1, 1, 1, 1,( , ) ( , ) ( , )jk jk j n j n jk j n j n jk
n n

d f c cψ φ ψ φ ψ+ + + += = =∑ ∑
           

(6.6) 

According to the equation (6.1), in the time domain the correlation of two signals f(t) and 

f'(t) could be re-defined as:   

' ' '

' ' ' ' ' '

( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
j j j j

j j j j j j j j j j j j

f f f w f w

f f f w w f w w f f w w

= + +

= + + + = +
           

(6.7) 
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Because the f and w are two orthogonal parts of a signal, their correlation is 0.  

Based on the discrete wavelet transform definition (6.2) and (6.3), the two components in 

the output of (6.7) could be reformatted in the wavelet domain in the following way. The 

first part of function (6.7) is re-written: 

'

' ' '

( , )

( ( ), ( )) ( , ) ( , )
j j

jn jn jn jn jn jn jn jn jk jk
n n n

f f

c t c t c c c cφ φ φ φ= = =∑ ∑ ∑

           

(6.8) 

The scalar property of correlation and the orthonormal basis function feature are applied 

to the above expression equation.  

Following the similar strategy, the second component of (6.7) could be expressed by 

wavelet coefficients. 

' '

' ' '

( , ) ( ( ), ( ))

( , ) ( , ) ( , )

j j in in in in
i j n i j n

in in ik ik ik ik in in
i j n i j i j i j

w w d t d t

d d d d d d

ψ ψ

ψ ψ
≥ ≥

≥ ≥ ≥ ≥

=

= = =

∑∑ ∑∑

∑∑ ∑ ∑ ∑          (6.9) 

Now combine (6.8) and (6.9) together, then apply the scalar property of correlation and 

the orthogonality property of basis function, the WD correlation equation can be 

reformatted as: 

' ' ' '

' ' ' '

' ' ' ' ' '

( , ) ( , ) ( , ) 0 0 ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

jk jk in in jk jk in in
i j i j i j i j

jk jk jk in jk in in in
i j i j i j i j

jk jk in in jk in jk in jk in
i j i j i j i j i j

c c d d c c d d

c c c d c d d d

c c d d c d c d c d

≥ ≥ ≥ ≥

≥ ≥ ≥ ≥

≥ ≥ ≥ ≥ ≥

+ = + + +

= + + +

= + + + = + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

       

(6.10) 

Another direction to develop the WD correlation (6.10) is to link the wavelet coefficients 

to its function in the time domain with the help of (6.7), 
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' ' ' '

' '

( , ) ( , ) ( , ) ( , )

( , ) ( , ')

jk jk in in j j j j
i j i j

j j j j

c c d d f f w w

f w f w f f
≥ ≥

+ = +

= + + =

∑ ∑

          

(6.11) 

Through comparing the two expressions (6.10) and (6.11), a new equality is presented in 

the (6.12): The correlation of two signals in the time domain is the same as the correlation 

of their discrete wavelet transformed coefficients, 

' ' '( , ') ( , ) ( ( ), ( ))jk in jk in
i j i j

f f c d c d DWT f DWT f
≥ ≥

= + + =∑ ∑         (6.12) 

 

6.2 The Architecture Design of the WD-Receiver System 
 

Upon the conclusion of the last section, the correlator component can be preserved in the 

WD demodulation system from the contemporary receiver system. Its system block 

diagram is plotted in the Figure. 6.4. 

 

 

Fig. 6.4 Wavelet based-Demodulation System 

 

As shown in Fig. 6.4, the basic construction of the WD Demodulation has not changed 

much from the classical demodulator system, except for two input signals that are 

wavelet transformed. The reason is that the correlation in the time domain generates the 

same correlation as it does in the wavelet domain, so the underlying decision rules for 
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both systems are the same as well.  

Since both inputs of the correlator are wavelet-transformed signals, they are the same as 

the outputs of the WD-AMR. Hence, this WD-Demodulation system could be further 

updated to the WD-Receiver platform by combining the WD-AMR processor into the 

system as stated in the Fig. 6.5. 

This WD-Receiver system can enable both modulation recognition and demodulation. 

Also, it achieves two improvements compared to the contemporary receiver: 

1. Avoid transferring signals back and forth between the wavelet domain and the time 

domain. This WD demodulator is designed to follow after the WD-based AMR 

processor to complete the receiver system within the wavelet platform. The wavelet-

based demodulation has proved that it is capable of directly processing the output of 

the WD-AMR; it can employ wavelet expressions of the received signal at its input 

withouthaving to transfer the WD signals back to the time domain. Hence, the 

computation of this algorithm is low in redundancy.   

2. This wavelet-based Receiver is a reconfigurable radio system. Signal “r” was 

received with unknown modulation type first, then the WD-AMR detects the 

modulation scheme and feeds this decision back the templates signal storage “s”. The 

template signal “s” will employ the same modulation technology, go through the 

discrete wavelet transformation, and join the following WD-Demodulation procedure. 

Instead of utilizing a distinct demodulation system for different modulated signals, 

this universal system design could fulfill the baseband process for multiple types 

digital transmitted signals. This feature of the WD-Receiver system highly reduces 

the circuit design complexity.   
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Fig. 6.5 Wavelet-based Receiver Platform 

 

The general algorithm of this wavelet-based reconfigurable receiver system is illustrated 

by below: 

1. After going through the channel, the received signals "r" are wavelet transformed 

with an unknown modulation type. 

2. The template signals are wavelet transformed and stored at the "s" end. 

3. As shown in Chapters 4 and 5, the wavelet expressions of "r" and "s" are analyzed. 

4. After the ARM process, its outputs contain two useful pieces of information for the 

following WD-demodulation system:  

a. The detected modulation scheme decision employed by the received 

signal. This information is transmitted to the template signal "s" end to 

control the modulation type for input of the correlator. 

b. The other result of the AMR is the wavelet expression of the received 

signal "r" with detected modulation scheme, which will be sent to the 

correlator as well. 

5. Two wavelet components from 4a and 4b are correlated in the WD demodulator.  

6. The comparator selects thelargest WD correlation and the corresponding symbol 

that generates the largest correlation value becomes the demodulation result. 
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Even if the digital communication receiver is designed in the wavelet domain, the 

correlator-based optimal demodulation system still preserves its main circuit structure. 

This is because the important features proved in (6.12) shows that the correlation of two 

signals in the time domain is equal to their correlation in the wavelet domain.  

 

6.3 Simulation Experiments and Results 
 

In this section, there are two experiments tested to verify the WD correlation and TD 

correlation equality. In the first experiment, the two vectors for the two signals are 

discrete wavelet transformed. Their wavelet coefficients correlation and also their time 

domain correlationare both calculated as follows: 

1. We have two vectors in time domain: 

X=[1 2 3 4 5 6 7 8],   Y=[6 7 8 1 2 3 4 5] 

2. After applying discrete wavelet transformations on X and Y through MATLAB, their 

WD expressions are calculated as below: 

Wx=[12.7279-1.4794 -4.4090 2.2467 0 0 -3.7938 0.9654] 

WY=[12.7292 -2.9484 4.8818 -1.5166 -0.1147 0.2818 0 2.6614] 

3. Now the correlation in the wavelet domain shows: 

(Wx,WY)=143.991, (Wx,WX)=203.997 

And the correlation in the time domain and  

(X,Y)=144, (X,X)=204 

Hence, (X,Y)=(DWT(X),DWT(Y)) 

The first experiment numerically proved that the correlation values could be 

preserved even after being discrete wavelet transformed. This theorem can be explained 
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from the matrix calculation’s point of view. Since the DWT is an orthogonal 

transformation, that is, the DWT can be written: 

a. Linear transformationWX=W*X,  

b. The DWT matrix W is orthogonal,  

c. W'*W=I 

This guarantees the preservation of the correlation value. 

Previously in Chapters 4 and 5, the AMR performance was simulated and compared with 

existing systems from other literature. This second experiment will solely focus on the 

simulation of the WD-demodulation part. Also, it would be more meaningful to compare 

the performance of the WD demodulator with the regular demodulation system but 

exclude the AMR processor from the comparison. This is because when two receiver 

systems operate under the assumption of the same test environment, such as the same 

known modulation type, the same noise channel, and so on, the test results are more 

comparable. 

In following content, the algorithm developed in this chapter shows itself using the 

MATLAB simulation. All of the signals involved in this study have been corrupted by 

zero-mean AGWN resulting in SNR values in the range of -5 dB to 10 dB. The WD 

Demodulator performance has been evaluated based on 105 Monte-Carlos trials wherein 

each simulation experiment consists of 192 bits per frame for ASK, FSK and PSK signals, 

and 1024 bits per frame for M-ary QAM signals. In order to maintain a high degree of 

resolution in the WD scalograms, the signal, which corresponds to the carrier frequency, 

is oversampled by a factor of 16 over the Nyquist rate.Here, the key parameter assumed 

for the demodulation process is that of perfect symbol timing with no timing offset.  
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Fig. 6.6 BPSK BER Curve Comparison 

 

 

Fig. 6.7 QPSK BER Curve Comparison 
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Fig. 6.8 8-PSK BER Curve Comparison 

 

 

Fig. 6.9 4-QAM SER Curve Comparison 



111 
 

 

 

Fig. 6.10 4-PAM SER Curve Comparison 

 

Fig. 6.11 16-QAM BER Curve Comparison 
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Fig. 6.12 BFSK BER Curve Comparison 

 

Fig. 6.13 64-QAM SER Curve Comparison 
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Each received, noisy signal has been demodulated using the WD demodulator. Each set 

of demodulator performance results presented in Figs. 6.6-6.13 contains two types 

performance curves. One curve corresponds to the theoretical performance of the 

traditional correlation receiver demodulation. The other curve is the simulation results for 

the WD Demodulators developed in this dissertation. It has been observed that the 

probability of error is almost the same between these two systems. This result actually 

meets the expectation. This is because the classical correlation based demodulator is 

designed upon the theoretical best decision rule MAP/ML that was proven to produce the 

optimal detection accuracy with the AWGN channel digital signal communication system. 

In the WD demodulation system, although signals are wavelet transformed and processed 

in the wavelet domain, the communication channel and the whole environment did not 

change. Hence, its performance will not proceed beyond the best performance boundary 

given by the classical system. 

Besides, the performances obtained through simulating both the WD Demodulation 

techniques and the TD(correlation-based) Demodulation mentioned in this chapter are 

also compared and showed in details in Appendix B.  

In conclusion, for the test modulation signals considered in this dissertation going 

through the same AWGN channel system, the wavelet-based demodulation performance 

is, at most, as good as the contemporary optimal correlation-based demodulator.    
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In this chapter, the WD Demodulation methodology has been explained and described in 

detail. Its BER performance is also simulated and compared with the contemporary 

receiver. For every modulation scheme considered in this dissertation, the WD 

Demodulation methodology performed comparably with the traditional correlator-based 

demodulation system. This observation is based on comparing the BER performances 

obtained using both types of demodulators.  

Moreover, the WD Receiver system has been devised in a manner such that automatic 

demodulation of a communications signal from the wavelet domain is possible after the 

WD AMR processor has recognized the modulation scheme. This feature, which ensures 

that a signal-specific demodulator can adapt and work automatically, is advantageous for 

the development of agile radio receivers. It allows the WD-based demodulation system to 

adhere to the wavelet-transformed signal perfectly from the WD-AMR. This is another 

advantage, which improves the computational efficiency and saves timeby eliminating 

the transfer of signals between the time and wavelet domains.Although the final detection 

result is in the time domain, a complete analysis is finished in the wavelet domain. There 

is no domain transfer computation at all during the whole process. This improvement 

keeps the computational complexity as low as possible. 

6.4 Discussion of Results 
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Chapter 7 Summary and Conclusions 

7.1 Summary 

In this dissertation, both WD-AMR and WD-Demodulation processes are devised based 

on correlation between signal and template expressions in the wavelet domain, and then 

jointly analyzed by the blind recognition technique.  

The correlation of received, noisy digitally modulated communication signals with WD 

templates corresponding to a known set of modulation schemes is the basis operation of 

the WD-AMR algorithms design in this work. Specifically, noise-free WD templates 

containing distinguishing features of each modulation type are firstly constructed. Then 

the DWT is used to extract the WD coefficients of received signals that have been 

corrupted with AWGN. Based on the similarity through matching these two sets WD 

fractal patterns, decision metrics are developed in order to recognize the digital 

modulation scheme implicit in the signal. 

The WD templates are represented as signature signals obtained from noise-free digitally 

modulated signals. Two categories of WD signatures are defined, namely the 

instantaneous featured templates and the statistical featured templates. The instantaneous 

features, introduced in the Chapter 4, contain the symbol transition characteristics of a 

communications signal. Each feature is unique to a particular digital modulation scheme, 

so that the modulation type detection could be implemented upon matching up this 

feature. However, for the same reason it is inappropriate for higher-order modulation 

schemes as more unique features templates are needed. Due to this fact, the 

computational effort increased. Besides, although the rates of correct classification 
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reported in Chapter 4 show that its results are better than those reported in the literature, 

this AMR algorithm has another inherent drawback. Because the instantaneous featured 

templates are extracted so as to capture the symbol transition characteristics, the WD 

AMR process might not able to recognize the particular modulation scheme when the 

communications signal data sequences contain either all data “1” or data “0” symbols. 

The statistical feature templates are then introduced in for higher order AMR process. 

These new templates represent different sinusoidal carrier characteristics present within a 

symbol period of a communications signal using corresponding various modulation 

schemes. Therefore, the new WD-AMR algorithm requires fewer numbers of templates 

than the one introduced in Chapter 4. For example, 256 instantaneous featured templates 

are needed to recognize 16-QAM signals as compared to the need for a total of 3 

statistical featured templates otherwise. Statistical features of the WD-correlation 

between WD received signal and WD templates are extracted and jointly analyzed as 

parameters for the modulation scheme decision. This algorithm not only overcomes the 

drawback of the previous AMR methodology, but also maintain the computational 

complexity and circuit design cost rather low. 

The WD-correlation also played an important role in the development of the WD-

Demodulation system. It was shown in Chapter 7 that the DWT guaranteeing the 

preservation of the correlation value because it is an orthogonal transform. Hence, the 

BER performance of the WD Demodulation process is competitivewith the traditional 

correlate baseddemodulation method. The WD Demodulation process is the first such 

methodology devised in the context of WTs. Besides, it could be directly connected after 

the WD-AMR to form a reconfigurable WD-Receiver. This system is reconfigurable in 
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the sense that transmitted signals at different carrier frequencies, and with different 

modulation schemes, can be reliable identified and appropriately demodulated by this 

universal receiver system. This advantage saves system design cost and complexity. The 

computational effort of this system is also low because the whole computational process 

is operated in the wavelet domain only. There is no cost for signals transformation 

between the time and wavelet domains. 

7.2 Contributions of the Dissertation 

This work contributes following key points: 

1. A solution of WD signatures selection suitable for modulation recognition 

schemes studied in this work is invented. Two types WD signatures, named as the 

instantaneous featured templates and the statistical featured templates are 

developed and constructed.  

2. Two types of DWT-based AMR algorithms, one is designed for lower order 

modulation recognition and the other one is more practical for higher order 

modulation schemes, are developed in this work by using DWT-based signatures 

of digitally modulated communications signals. 

3. The TD-correlation of two functions is proved equal to their WD-correlation. It is 

the basis of development of the WD Demodulation algorithm  

4. Development of the first WD Demodulation algorithms using WD-correlation of 

digitally modulated communications signals in the context of WTs. 

5. WD-AMR and WD-Demodulation performance obtained from this work is 

evaluated and compared with results obtained from other literatures. 
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6. As DWT-based Channel Estimation and DWT-based Equalization functions were 

developed in previous works, they could work jointly with DWT-based AMR and 

DWT-based Demodulation system invented in this dissertation. Together to 

format an automatic, reconfigurable and reliable new WD-based transceiver. 

7. This new WD-based Receiver benefit the communication system in multiple 

aspects. It increases the interoperability between different modulation scheme, 

lower the circuit design cost, and enhances the process efficiency.  

7.3 Future Work 

This research studied the design of DWT-based AMR and DWT-based Demodulation 

algorithms, which are two key processors as the basis to build a WD Receiver system. In 

this work, both of them have been proved for their reliable performance for the zero mean 

AWGN channel. In the future, more factors could be considered and included into this 

research to develop a more and more comprehensive WD-based communication system. 

Firstly, there are more realistic parameters in the complicated real world, i.e. different 

channel models, non-synchronized symbol and so on, could be the introduced into the 

design to develop the WD-Receiver system in a more real communication environment. 

An assumption of synchronization is made in this work. Time offset estimation could be 

an essential function in the WD-receiver system just as the synchronization time 

estimation in the contemporary system. 

Secondly, signals families studied in this work could be expanded to more 

communications signals using different modulation schemes, such as Gaussian Minimum 

Shift Keying (GMSK), (non) square M-ary QAM and other higher order signal 
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constellations, to improvement the WD AMR and WD Demodulation algorithms. 

Furthermore, WD-based system performance assessment could be extended to other noise 

scenarios such as impulsive noise (of different bandwidth), band-limited noise, etc., 

which often existing in the real communication world. For the sake of simplicity, this 

research only has its majority attention focused on the zero-mean AWGN channel. 

To achieve above functions, the current WD-Receiver system is demanded to add more 

essential processors. Two of them are investigated in the work [80], which are the WD-

Equalizer and WD-Channel Estimator. One of the future works is to combine these four 

WD-processors as an improved WD-Receiver. The received signals are firstly discrete 

wavelet transformed. Then the channel impulse response function is analyzed by the WD-

ChannelEstimation and the ISI is eliminated by the WD-Equalization. Following the 

modulation scheme and data recovery will be done by the WD-AMR and WD-

Demodulation. The whole procedure is implemented in the discrete wavelet domain. 

Lastly, having demonstrated the efficacy of the invented WD AMR and WD 

Demodulation process, another next step could be hardware implementation. For example, 

the Field Programmable Gate Array (FPGA) technology could be utilized for the 

demonstrating a WD-based radio receiver.  

7.4 Conclusions 

In summary, this work has shown that by using of the pattern recognition methodology of 

template matching, along with appropriately defined WD templates, new WD algorithms 

could be designed workable for both automatic modulation recognition and signal 

demodulation. The results in this research provide desired functionalities to implement 
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the new communication system that has a comparable performance with other existing 

approaches. It is approved that the Wavelet Platform could be a new approach for 

baseband signal processing, and it is particularly well-suited for reconfigurable radios. 

The WD AMR process can correctly classify modulation schemes with rather high 

reliability even for low values of SNR. At SNR = 10dB and 5dB, the correct 

classification rates are almost 100% for all communications signals in this work. In the 

case of SNR = 0dB, most correct detection rates are above or at around 96%, except for 

8-PSK and 16-QAM signals as whose rates of 89.2% and 90.6% were obtained, 

respectively. Following, for noisy channels with SNR = -5 dB, the simulated rates of 

correct classification are around, or above, 94% for most modulation schemes. However, 

at SNR = -5 dB, 8-PSK and 16-QAM signals again could only achieve correct 

classification rate at 81% and 79.8%, respectively.  

By comparing with earlier works,  performances achieved in this work are either meet, or 

exceed those previous results reported in the literature for other AMR schemes. 

Furthermore, it has also been demonstrated that the WD Demodulator provides equal 

BER performance with the traditional correlation-based methods.  

Given the reliability of both the WD AMR and WD Demodulation processes devised in 

this work, they can be used to advance the state-of-the-art of communications receiver 

design. More specifically, the development of a Wavelet Platform provides the 

permission of interoperability between different communications standards to subsequent 

automatic demodulation continually working in the wavelet domain. 
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Appendix A: 

Algorithm Computational Complexity Comparison： 

Comparing with the CWT, another improvement of using the DWT is reduction of the 

computational complexity as the different fundamental of the CWT and the DWT 

technologies. The overall WD-AMR method's computational complexity consists of: 

Generation of WD templates; Transformation of received signals into the WD; 

Correlation of WD-templates and WD-received signals; and Decision procedure.  

If the CWT was used in the instantaneous featured template AMR process, a test signal 

has a length of L bits, and there are N samples for each bit. The template size is set at M 

samples, M≤N. So the size of the CWT domain based template would be a M*M matrix 

and the computation cost of a CWT-template generation is O(M2). The next computation 

is to continuously wavelet transform received signals, whose complexity could up to 

O(N2). The third step is correlation of the WD template matrix with the WD received 

signal matrix. In the instantaneous featured template method, the size of template is 

usually shorter than or equal to the signal bit size. So the WD signal matrix N*N will be 

fragmented to M*M. Hence the complexity of their correlation is O(M2) . Thus, the 

summation this three term lead the overall complexity to O(N2). 

For the CWT statistical featured template AMR process, a test signal has a length of L 

symbols, and there are N samples for each symbol. The template size is N samples per 

symbol as well. Hence, followed by similar analysis as above, the overall complexity is 

O(N2). 

For the DWT Instantaneous featured template AMR process, by defining the same signal 

size as in the CWT case, a test signal has a length of L bits, and there are N samples for 
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each bit. The template size is set at M samples. So the size of one WD template would be 

a M*(log2M) matrix and the computation cost of a DWT-template generation is 

O(Mlog2M). The next computation is to discretely wavelet transform received signals, 

which complexity could up to O(Nlog2N). The third step is correlation of the WD 

template matrix with the WD received signal matrix. In the instantaneous featured 

template method, the size of template is usually shorter than the signal bit size. So the 

WD signal matrix N*log2N will be fragmented to M*log2M. Hence the complexity of 

their correlation is O(Mlog2M) .  

For the DWT Statistical featured template AMR process, a test signal has a length of L 

bits, and there are N samples for each bit. The template size is set at N samples as well. 

Similarly, the overall complexity is O(Nlog2N). 

In CWT-based Demodulation algorithm, because it basically adheres from two CWT-

AMR methodology. Hence it also contains the same complexity as the AMR. 

In DWT-based Demodulation system developed in this dissertation, it has proved that the 

DWT-based correlation and the regular correlation deliver the same output. Hence, in the 

DWT-based demodulation system, the DWT-based correlator replaced the regular 

correlation was used in the contemporary correlation based receiver. So the overall 

complexity is the same as the DWT-based correlation complexity, which is O(Nlog2N). 

In summary, there are two points could be pointed through the comparisons: 

1. The DWT-based AMR algorithm cost less computation effort than the AMR CWT-

based algorithm; 

2. Although the statistical featured templates AMR algorithm costs higher computational 

complexity than the instantaneous featured templates AMR algorithm, the statistical 
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feature-based algorithm is able to process more multiple modulation signal types than the 

instantaneous feature based algorithm.  

3. Although the instantaneous feature-based AMR algorithm remains higher efficiency, 

but it can only work with binary modulation signals. 

 

Table A1. CWT-based and DWT-based Algorithm Complexity Comparison  

Algorithm Complexity 

CWT Instantaneous Featured Templates AMR O(M2) 

CWT Statistical Featured Templates AMR O(N2) 

DWT Instantaneous Featured Templates AMR O(Mlog2M) 

DWT Statistical Featured Templates AMR O(Nlog2N) 

CWT-based Demodulation O(M2) or O(N2) 

DWT-based Demodulation O(Nlog2N) 
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Appendix B: 

(Supplementary to Chapter 6) WD-Demodulator and TD-

Demodulator Performances Comparison 

Under the same experimental environment as setup in the chapter 6, another set of 

comparison tests were implemented in MATALAB.  

Each received, noisy signal has been demodulated using the WD demodulator, and the 

same each received, noisy signal has been also demodulated using the TD (correlation-

based) demodulator. Correspondingly, their two performance curves of two demodulators 

performance results were presented in Figs. B1-B8.  

One curve corresponds to the simulated performances of the TD (correlation-based) 

Demodulation introduced in Chapter 6. The other curve is the simulation results for the 

WD Demodulators developed in this dissertation.  

It has been observed that the WD-Demodulation probability of error curve was always 

overlapped by the TD-Demodulation performance curve. This result actually meets the 

expectation and again, numerically proves the equality between WD-correlation and TD-

correlation.  
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Fig. B1 BPSK BER Curve Comparison 

 

 

Fig. B2 QPSK BER Curve Comparison 
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Fig. B3 8-PSK BER Curve Comparison 

 

Fig. B4 4-QAM SER Curve Comparison 
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Fig. B5 4-PAM SER Curve Comparison 

 

Fig. B6 16-QAM BER Curve Comparison 
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Fig. B7 BFSK BER Curve Comparison 

 

Fig. B8 64-QAM SER Curve Comparison 
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