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ABSTRACT OF THE DISSERTATION 

Reliability Estimation of Systems with Spatially Distributed Units 

By DINGGUO HUA 

 

Dissertation Director: 

Elsayed A. Elsayed 

 

 

Systems with spatially distributed units, e.g. Unmanned Aerial Vehicle (UAV), are 

emerging in aerospace and military industries. In this dissertation, we present approaches 

for the reliability estimation of such systems. In particular, we consider k-out-of-n pairs:G 

Balanced systems and weighted-c-out-of-n pairs:G Balanced systems with spatially 

distributed units which must meet balance requirements. 

 

We first estimate the reliability metrics for k-out-of-n pairs:G Balanced systems by 

considering systems as failed when unbalanced system states occur. We further investigate 

such systems by balancing unbalanced states: When unbalanced states occur, the system is 

balanced by forcing down one or more operating pairs into standby. The reliability 

estimation is computationally expensive for such systems with a large number of units. 

Therefore, we develop an efficient approach for reliability approximation with high 

accuracy based on Monte Carlo simulation. 

 

Also, we investigate the system reliability further by assuming that the units are subject to 

degradation. In many situations, units exhibit degradation that can be monitored. We model 
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the degradation path of any unit based on collected observations of the degradation 

indicator and its physics-based or statistics-based degradation rate. We consider the effect 

of unitsô operating conditions on their degradation paths. 

 

Moreover, available system capacity is an important indicator of a systemôs condition. A 

system fails when its capacity drops below a minimum value. We estimate the reliability 

metrics of weighted-c-out-of-n pairs:G Balanced systems, which considers the capacities 

of individual units. We investigate the problem in two scenarios: First, we assume that the 

capacity of any unit has multiple levels. Second, we assume that the capacity of any unit 

has two levels (either working or failed) whereas different units may have different 

capacities. In the second scenario, we consider load-sharing effect. 

 

Furthermore, optimal design for systems with spatially distributed units is the key to 

maximizing the reliability of the systems given the constraints such as the upper bound for 

the total number of units and load-sharing effect. We study the optimal configuration that 

maximizes the system reliability metrics. 
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1. CHAPTER 1 

 

INTRODUCTION  

 

 Motivation of the Research 

In practice, many systems have units arranged in a certain spatial configuration to perform 

their functions which we call systems with spatially distributed units. For example, a flash 

drive is composed of a number of memory cells in a cubic arrangement with connections 

in between; a three-dimensional CT image consists of thousands of pixels which form 

patterns that indicate the health condition of an individual; a supervision system has 

multiple cameras distributed spatially to monitor an area of concern [1]; an LED display 

has a number of LEDs arranged in arrays to display letters or digits; and an alternator has 

multiple field coils arranged evenly on a circle to provide symmetric magnetic flux. A 

system with spatially distributed units requires that units at certain locations must operate 

for the system to function properly. The spatial locations of units hence play an important 

role in the systemôs reliability estimation. 

 

Such systems are most often redundant systems in the sense that not all units in the systems 

are required to operate for the systemsô operation. For example, a disease will be diagnosed 

only when the pixels at particular coordinates of an CT image form some pattern; a 

supervision system will only fail when the cameras in certain spatial configurations fail so 

that the remaining operating cameras do not cover the monitored area; and an LED display 
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can still display recognizable letters with a few scattered failed LEDs though it cannot 

display letters correctly if more than a certain number of LEDs fail in a cluster. Generally, 

such systems can be modeled by multi-dimensional k -out-of-n :G/F systems. 

 

The reliability estimation of multi-dimensional k -out-of-n  pairs:G/F systems has been 

studied by many researchers. A multi-dimensional k -out-of-n :G/F system is composed 

of units configured according to the vector n , e.g. a cubic system composed of 
in  units in 

the thi  dimension where 1i= , 2 and 3. The system operates/fails if and only if a group of 

units configured as the vector k  operates/fails. For example, a (2, 2, 2)-out-of-(2, 2, 10):F 

system fails if and only if there is at least 8 units fail in a cube of size 2 units by 2 units by 

2 units. 

 

The reliability estimation of such systems is challenging due to the spatial configurations 

of units. For instance, compared with a k -out-of- n :F system, which fails when at least k  

units fail out of n  units in total, it is more difficult to estimate the reliability of a 

consecutive- k -out-of- n :F system, which fails when at least k  consecutively arranged 

units fail out of n  units in total [2], due to the consideration of relative locations of units 

in the failure events. In other words, the cut set for reliability estimation cannot be 

determined without considering the spatial relationship of units. The problem becomes 

more complicated when the n  units are in a circular arrangement [3]. 

 

A category of two-dimensional k -out-of-n :G system with units distributed evenly on a 

circle is fast emerging in aerospace and military industries. We name the systems as k -
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out-of- n  Pairs:G Balanced systems. One practical example of such systems is rotary 

Unmanned Aerial Vehicle (UAV) such as octocopters, which presents many potential uses 

in various areas such as military, commercial and scientific research. The failure of such 

systems may result in major consequences especially in areas with high population density. 

However, an extensive review of the literature reveals that research on reliability estimation 

of such systems is quite limited. Therefore, in this dissertation, we investigate the reliability 

estimation of a variety of k -out-of- n  pairs:G Balanced systems. 

 

 Problem Definition and Assumptions 

The reliability estimation of systems with spatially distributed units has been studied in the 

past two decades by many researchers due to its importance and wide applications. A 

special case of systems with spatially distributed units is the k -out-of- n  pairs:G Balanced 

systems. 

 

1.2.1 System Description 

1.2.1.1 k-out-of-n Pairs:G Balanced System 

A k -out-of- n  pairs:G Balanced system has n  pairs of units distributed evenly on a circle, 

as shown in Figure 1.1. Each pair of units is located along the same diameter of the circle. 

At least k  out of n  pairs should operate for the system to provide its desired function. 

Moreover, the system must maintain balance at all times. In the systems considered in this 

dissertation, all the remaining operating units in the system should be symmetric w.r.t. at 

least one pair of perpendicular axes of symmetry. This requirement also implies that when 
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a unit fails, the other unit of the same pair is forced down immediately. Other balance 

requirements can be imposed on the system as well. For instance, in some systems, the 

units may be required to be rotationally symmetric w.r.t. a specified angle. The individual 

units in the system can perform the same function, as in the planetary descending engine 

systems [4], or different functions, as in UAV where any two adjacent rotors rotate in 

opposite directions to provide the necessary lift for the UAV. Figure 1.1b shows a possible 

system configuration for an UAV with eight pairs of rotors where the arrows show the 

rotational directions, i.e. either clockwise or anticlockwise, of each rotor. 

 

                           

(a)                    (b) 

Figure 1.1 Two examples of k -out-of- n  pairs:G Balanced systems with n= 6 and 8 

 

1.2.1.2 Weighted-c-out-of-n Pairs:G Balanced System 

Weighted- c -out-of- n  pairs:G Balanced system is a variant of k -out-of- n  pairs:G 

Balanced system. In a weighted- c-out-of- n  pairs:G Balanced system, we have n  pairs of 

units distributed evenly on a circle as in k -out-of- n  pairs:G Balanced systems. Any unit 
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has some capacity. The system requires at least a minimum capacity c  to function while 

maintaining balance. 

 

The capacities of individual units can be the same or different. In addition, the capacity of 

a unit has either multiple levels, e.g. full capacity, half capacity and zero capacity (failure), 

or two levels, i.e. full capacity and zero capacity. In this dissertation, we will investigate 

two scenarios of the reliability estimation of weighted- c -out-of- n  pairs:G Balanced 

systems in Chapters 6 and 7, respectively. 

 

1.2.2 Definitions and Notations 

¶ Pair. A pair is composed of two units that are located on the same diameter of 

the circular system arrangement. 

¶ Unit identity number and pair identity number. We identify units and pairs by 

using numbering system shown in Figure 1.1 throughout this dissertation unless 

stated otherwise. As shown, we start numbering the units from the unit on the 

extreme right hand side when we position one of the pairs horizontally. The 

numbering increases anticlockwise. In addition, each pair is identified by the 

smaller number in this pair but with an asterisk superscript, e.g. units 1 and 7 

constitute pair *1 . In this dissertation, we use letters such as i  and j  to index 

individual units and letters with an asterisk as superscript such as 
*i  and *j  to 

index individual pairs. A pair identity number also has an asterisk as superscript. 
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In addition, it is immediate that pair *i  is composed of units i  and ( )i n+ . For 

example, units 1 and 7 compose pair *1  as shown in Figure 1.1(a). 

¶ State of a Unit. An individual unit has three possible states: operating, failed 

and forced-down. A unit is operating if it is performing its function. A unit is 

failed if either it fails or it is forced down permanently due to the failure of the 

other unit in the same pair. A unit is forced-down when it is forced down 

together with the other unit in the same pair for system balance while they are 

operating. In this dissertation, we consider two scenarios: (i) unbalanced 

systems are considered as failed, and (ii)  unbalanced systems are rebalanced. 

Forced-down units do not resume operation in the first scenario, whereas they 

are in standby and can resume operation when necessary in the second scenario. 

The state of a unit is denoted as 1 if it is operating, 0 if it is failed, and ï1 if it 

is forced-down. 

¶ State of a Pair. Similarly, a pair of units has three possible states: operating, 

failed, and forced-down. A pair of units is operating when both units are 

operating properly. A pair is considered failed when one unit of the pair fails. 

A pair is forced-down when the pair is properly operating but is forced down to 

balance the system. Again, consider the two scenarios mentioned above. 

Forced-down pairs do not resume operation in the first scenario. However, in 

the second scenario, operating pairs are forced down into standby and can 

resume operation afterwards when necessary. Forced-down pairs in the second 

scenario are equivalent to standby pairs. The state of a pair is denoted as 1 if it 

is operating, 0 if it is considered as failed, and ï1 if it is forced-down. 
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¶ State of a System. The state of a system is the combination of the states of the 

units in the system. The state of a system is denoted as a row vector of the states 

of individual units in ascending order of unitsô identity numbers. 

¶ Weight of a Unit. The weight of a unit is used for calculating the Moment 

Difference (MD) as introduced in Chapter 3. Specifically, a unit has weight 1 if 

it is operating and has weight 0 if it is failed (either it fails or it is forced down 

permanently due to the failure of the other unit in the same pair). A forced-down 

unit has weight 0 in the first scenario where a forced-down unit does not resume 

operation, but has weight 1 in the second scenario where a forced-down unit is 

in standby and can resume operation. 

 

1.2.3 Assumptions 

Throughout this dissertation, we assume the following unless stated otherwise: 

¶ The units in a system, regardless of their functions, have i.i.d. lifetimes. 

¶ The probability of two or more simultaneous failures is negligible. 

¶ For a pair of units, whenever one unit fails, the other one of the same pair is forced 

down immediately and permanently; and the two units in the pair are always forced 

down simultaneously when they are operating but forced down for system balance. 

¶ The cumulative failure rate of a standby pair does not change during the force down 

period. In other words, its cumulative failure rate immediately after resumption is 

the same as when it is forced down. 

¶ A standby pair does not fail during the forced down period. 
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 Reliability Estimation of k-out-of-n Pairs:G Balanced Systems 

We first estimate reliability metrics of several types of k -out-of- n  pairs:G Balanced 

systems with different configurations and balance requirements. We assume that units of 

the same type have i.i.d. lifetimes. Two scenarios are considered. In the first scenario, we 

consider a system as failed when the system reaches an unbalanced state. In the second 

scenario, as a system reaches an unbalanced state, it is balanced by forcing down operating 

pairs into standby. A standby pair can resume operation afterwards when needed for either 

balancing the system and/or providing an additional operating pair. Reliability estimation 

for k -out-of- n  pairs:G Balanced systems presents three major challenges. 

 

First, when n  increases, the systemôs balance after the failure of a unit is not readily 

obvious. By forcing down the opposite unit of the failed unit is not necessarily sufficient 

to regain systemôs balance. In this case, some operating pairs must be forced down to 

balance the system. As one pair fails, we examine the states of the other pairs and determine 

which operating pairs to force down in order to maintain systemôs balance. It is important 

to keep the number of forced-down pairs as small as possible. 

 

Second, locations and sequences of failures should be considered to obtain the set of 

successful events for reliability estimation. The failure of a system is determined by not 

only the number of failed units, but also their locations and sequences. For instance, 

consider the system shown in Figure 1.1(a) and assume 3k= . When pairs *1 , *2  and 
*3  

fail in any order, the system is balanced since the remaining operating pairs are symmetric 

w.r.t. a pair of perpendicular axes, i.e. the axes along pair *2  and pair 
*5 . When pairs *1 , 
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*3  and *4  fail in any order, the system is unbalanced since the remaining operating pairs 

are not symmetric w.r.t. any axes, as shown in Figure 1.2(a) where white pairs are 

considered operating and black pairs are considered failed. The system should be balanced 

by forcing down operating pair *6  into standby, as in Figure 1.2(b) where gray pairs are 

considered in standby, which results in less than 3 operating pairs, hence a failed system. 

In some cases, the order of failures matters. For instance, consider the system shown in 

Figure 1.1(a) and assume 2k= . When pairs *1 , *2 , *3  and *4  fail sequentially, no 

standby is needed to balance the system since the system is always balanced with 

consecutively arranged failed pairs. When pairs *1 , *3  and *4  fail sequentially, an 

unbalanced system is resulted, as shown in Figure 1.2(a), and standby is needed to bring 

the system back to balance, as shown in Figure 1.2(b). When pair *2  fails afterwards, pair 

*6  resumes operation since its resumption can bring an additional operating pair, as shown 

in Figure 1.2(c). The two events are successful since they both result in two operating pairs 

in the end, though they are two different events. 

 

 

Figure 1.2 Example of standby pair in an unbalanced system and the resumption of 

standby pair 

 

(b) (c) (a) 
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Third, it is difficult to estimate the probability of some successful events. As mentioned 

above, a successful event involves a sequence of failures and the order of failures matters. 

The estimation of the probability of an event with h  failures requires an h th order integral. 

If some operating pairs are forced down as standby to balance the system, it is quite difficult 

to obtain a closed form expression for such integral. 

 

 Reliability Approximation  of k-out-of-n Pairs:G Balanced Systems 

The reliability estimation of k -out-of- n  pairs:G Balanced system is challenging in both 

successful event enumeration and event probability calculation as introduced in the 

previous section. The reliability estimation becomes extremely difficult when the system 

has a large number of units. It is very time-consuming, if indeed possible, to enumerate all 

system states and determine the complete set of successful events by enumeration. For a k

-out-of- n  pairs:G Balanced system, the number of unique successful events is 

approximately 
!

!

n

i k

n

i=

ä  by considering that we have ( )( )1n h- -  options for the 
thh  failure 

to occur. When 30n=  and 15k= , the number of unique successful events is 

202.1631 10³ . In addition, the determination of the probability of successful events, which 

involves multi-dimensional integration, requires expensive computational time. 

 

Therefore, in this dissertation, we develop computationally efficient reliability 

approximation for k -out-of- n  pairs:G Balanced systems. First, we investigate the 

reliability approximation of k -out-of- n  pairs:G Balanced systems under the assumptions 

that unbalanced systems are considered as failed systems and that individual units have 
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i.i.d. lifetimes. Second, we investigate the reliability approximation of such systems under 

the assumptions that unbalanced systems are balanced by considering standby and that 

individual units have exponential i.i.d. lifetimes. 

 

Monte Carlo simulation is effective in estimating the reliability of complex systems [5], 

[6]. In this dissertation, we use Monte Carlo simulation to approximate the reliability of k

-out-of- n  pairs:G Balanced systems. Utilizing simulation we can reduce the enumerations 

of successful events significantly by sampling a subset of events randomly as elaborated 

later in Chapter 4. In addition, we develop approximation for the multi-dimensional 

integral involved in the probability calculation of successful events. Numerical examples 

show that the reliability approximation approach proposed in this dissertation is effective 

and efficient. 

 

 Degradation Analysis of Systems with Spatially Distributed Units 

In many situations, sensors monitor the degradation processes of critical units. The 

degradation measurements of individual units, which may be significantly affected by their 

operating conditions, can be used to enhance the accuracy of system reliability estimation. 

It is hence of great significance to develop a degradation model for spatially distributed 

units which considers the physics-based or statistics-based underlying degradation rate, 

captures the effect of operating conditions on the degradation rate, and the variabilities in 

the manufacturing of individual units. These factors bring more challenges in reliability 

estimation of systems with spatially distributed units. 
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In this dissertation, we model the degradation of individual units in k -out-of- n  pairs:G 

Balanced systems. A unit fails when its degradation reaches a critical threshold. We assume 

that individual units of the same type have an identical baseline degradation rate, which is 

modeled as a function of time, e.g. power law. The effect of operating conditions on the 

degradation processes of individual units is modeled by stress-acceleration functions which 

govern the relationship between operating conditions (stresses) and acceleration factor for 

baseline degradation rate. 

 

Assume that unbalanced systems are balanced by forcing down operating pairs into standby 

or resuming standby pairs back to operation, and assume that the units are not subject to 

degradation or failure during standby, this problem introduces two challenges: 

 

First, successful events cannot be aggregated into groups to simplify computation. Under 

the assumption of i.i.d. lifetimes of individual units, successful events that have the same 

relative locations and sequences of failures occur with the same probability and hence can 

be aggregated into the same group to simplify computation. For instance, consider the 

system in Figure 1.1(a), the event that pairs *1 , *2  and 
*3  fail sequentially and the event 

that pairs *2 , 
*3  and *4  fail sequentially can be aggregated into one group. When 

individual units have different degradation paths due to different operating conditions, the 

lifetimes of individual units are no longer identically distributed. The probabilities of 

successful events should be obtained separately even if the relative locations and sequences 

of the failures in these events are the same. 
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Second, randomness in the degradation rates of units due to the operating conditions and 

manufacturing variations among the units. 

 

 Reliability Estimation of Weighted-c-out-of-n Pairs:G Balanced Systems 

In many cases, the function of systems depends on the capacities of individual units, e.g., 

engines with certain horsepower, or generators with a certain output voltage. In previously 

mentioned topics, the capacities of units are considered as equal and ignored in reliability 

modeling. For example, in an UAV that consists of identical rotors, the rotors should be 

able to provide the same lift power. But the capacities of units can decrease and vary from 

unit to unit in some cases, and thus should be considered in reliability modeling. 

 

In this dissertation, we investigate the reliability estimation of weighted- c -out-of- n  

pairs:G Balanced systems in two scenarios presented in Chapters 6 and 7 respectively. 

 

 Load-Sharing Effect on System Reliability 

We investigate the effect of load-sharing on system reliability metrics by assuming that the 

load each unit shares, which depends on the number of remaining operating pairs in the 

system, affects its hazard rate. In a weighted- c-out-of- n  pairs:G Balanced system with 

load-sharing effect, the load carried by failed units is re-distributed to the remaining 

operating units. When the operating units share more load, their hazard rates are affected 

in an adverse way, which decreases system reliability. In addition, the way load is 
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distributed to operating units should be considered in system reliability estimation 

especially when units have different capacities. 

 

 Optimal Design for  Systems with Spatially Distributed Units 

The k-out-of-n pairs:G Balanced systems exist in many applications such as the descent 

system of planetary vehicles [4] and UAV. The reliability of such systems has a major 

impact on the accomplishment of important missions, the cost that may occur when a 

failure happens, and public safety as in the case of UAV failure. The reliability 

optimization for such systems hence is significant in practice. Chapter 3 shows that there 

exists an optimal reliability design for k-out-of-n pairs:G Balanced system. Therefore, we 

investigate the optimal reliability design of a k-out-of-n pairs:G Balanced system in this 

dissertation. 

 

 Organization of the Dissertation 

This dissertation is organized as follows. In Chapter 2 we present a comprehensive 

literature review of the related research. In Chapter 3 we present the procedures of 

estimating system reliability metrics for k -out-of- n  pairs:G Balanced systems in two 

scenarios: (i) unbalanced systems considered as a failed systems and (ii) unbalanced 

systems are rebalanced by considering standby pairs. In this chapter, we also propose an 

approach for determining balance (symmetry) of a system and heuristics to determine 

standby pairs for unbalanced systems. In Chapter 4, we present a reliability approximation 

approach for the systems introduced in Chapter 3. In Chapter 5 we propose a degradation 
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model for spatially distributed units, based on which reliability metrics of k -out-of- n  

pairs:G Balanced systems are obtained. In Chapter 6 we investigate the reliability 

estimation of weighted-c-out-of-n pairs:G Balanced systems by assuming that the 

individual units are subject to multi-state capacity degradation. In Chapter 7, we investigate 

the load-sharing effect on the reliability of weighted-c-out-of-n pairs:G Balanced systems. 

In Chapter 8 we study the optimal design for k -out-of- n  pairs:G Balanced systems. In 

Chapter 9 we present the conclusions and future research. 

 

Equation Chapter 2 Section 1  
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2. CHAPTER 2 

 

LITERATURE REVIEW  

 

 Literature Review on Systems with Spatially Distributed Units 

2.1.1 Multi -Dimensional Consecutive-k-out-of-n:F Systems 

A type of well-known systems with spatially distributed units is the multi-dimensional 

consecutive- k -out-of- n :F systems. The applications of such systems range from 

electronic devices composed of cell units in squares or cubes [7], [8], TV supervision 

systems [9] and disease diagnosis based on X-ray [8]. 

 

A survey of the multi-dimensional systems derived from the one-dimensional consecutive-

k -out-of- n :F system is found in [10]. Salvia and Lasher propose a two-dimensional 

consecutive- k -out-of- n :F system [7] by considering a square grid of units by side n , the 

system fails if there exists a failed square grid of units by side k . This is the first known 

multi-dimensional consecutive- k -out-of- n :F system considered in the literature. Koutras 

et al. [11], [12] provide estimates of the reliability of this system. Boehme et al. [9] propose 

a more generalized model, i.e. connected- X -out-of-( ),m n :F lattice system, where the 

lattice of units can be rectangular, circular, and cylindrical. Boehme et al. also provide the 

reliability estimation of such a system. A special case of the connected- X -out-of-( ),m n :F 

lattice system is the consecutive-( ),r s -out-of-( ),m n :F system. Its reliability estimation is 

investigated further by Yamamoto and Miyakawa [13], Makri and Psillakis [14], Godbole 
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et al. [15], Hsieh and Chen [16], and Zhao et al. [17]. Godbole et al. [15] extend the result 

for d -dimensional system where 3d² . Other systems such as k -within-consecutive-

( ),r s -out-of-( ),m n :F systems [14], [18], [19] and consecutive-( ),r s -out-of-( ),m n :F 

systems with constraints on the total number of operating units [20] are investigated. 

 

Boushaba and Ghora [21] introduce the three-dimensional consecutive- k -out-of- n :F 

system and investigate its upper and lower reliability bounds. They state that ñIt is very 

difficult, probably impossible, to derive simple explicit formula for the reliability of a 

general three-dimensional consecutive- k -out-of- n:F system.ò Boushaba and Azouz [22] 

propose another method for estimating the lower reliability bound. Others [8], [23] attempt 

to address this research area but the contributions are limited due to the difficulty of the 

problem. 

 

A thorough review of related work reveals that the reliability estimation of multi-

dimensional consecutive- k -out-of- n :F systems is important yet challenging. The research 

is important since its applications can be found in many areas such as disease diagnosis by 

reading an X-ray [8] and other medical imagery [22], the failure model of three-

dimensional flash memory cells [23], the failure model of thin film transistor liquid crystal 

display [19], scatter water area of a water sprinkler system [24], supervision system [9] and 

pattern recognition [7]. However, due to the difficulty of the problem, a large portion of 

the papers [7]-[12], [14]-[16], [21], [22], [25] only address the upper and lower bounds of 

system reliability without providing the exact values. In addition, very few papers [23] 

consider units with reliability functions. 
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2.1.2 k-out-of-n Pairs:G Balanced Systems 

Another emerging system with spatially distributed units is the rotary winged Unmanned 

Air Vehicles (UAV) with multiple pairs of rotors [26]. UAV is set to play a major role in 

the future of the aerospace industry [27] and its use in many applications. For example, an 

UAV can collect more detailed geographic data than satellite [28]. Although UAVs have 

numerous potential applications, its flight is highly restricted now because its reliability is 

lower than manned aircraft [29]. No research is found related to the quantitative modeling 

and estimation of the multiple rotary UAVôs reliability. 

 

Multiple rotary UAV falls into the category of k -out-of- n  pairs:G Balanced systems with 

units distributed spatially in a circular configuration. The reliability of such a system is 

difficult to estimate as it has the same nature of aforementioned multi-dimensional 

consecutive- k -out-of- n :F system. In addition, the consideration for system balance in k -

out-of- npairs:G Balanced systems adds to the difficulty in reliability estimation. 

 

Attempts have been made for estimating the reliability of k -out-of- n  pairs:G Balanced 

systems. Sarper and Sauer [4], [30] consider two balanced engine systems in planetary 

descent vehicles and estimate their reliability. The balanced engine system has four (or six) 

engines located evenly on a circular configuration to keep the descent vehicle in balance. 

Two (or three) engine pairs are formed along diameters of the circle. In each pair, when 

one engine fails, the second engine of the same pair is forced down to maintain balance. 

The system operates if and only if at least one (or two) engine pairs operate properly. 
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However, the two balanced engine systems with only two or three pairs of units are quite 

simple. The methods developed for estimating the reliability of these two systems hence 

cannot be used for more general systems. 

 

 Applications of k-out-of-n Pairs:G Balanced Systems 

In practice, k -out-of- n  pairs:G Balanced systems are already used in many applications. 

We provide some examples as follows: 

 

2.2.1 Engine Systems in Planetary Descent Vehicles 

Sarper and Sauer [4] present two balanced engine systems in planetary descent vehicles 

and estimate their reliability. The balanced engine system has four (or six) engines located 

evenly on a circle to keep the descent vehicle in balance. Two (or three) engine pairs are 

formed along diameters of the circle. When one engine fails, the second engine of the same 

pair is forced down to regain balance. The system operates if and only if at least one (or 

two) engine pairs operate properly depending on the requirements of the system. 

 

2.2.2 Unmanned Aerial Vehicles 

Unmanned Aerial Vehicles (UAVs), a.k.a. drones, are widely used in military and 

commercial applications. UAVs with multiple rotors, e.g. quadcopter, hexacopter, and 

octocopter, are used in border protection and are being prototyped for package delivery 

and other applications. UAVs with multiple rotors can be modeled as k -out-of- n  pairs:G 

Balanced systems. The individual rotors rotate in two opposite directions to provide thrust 
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for UAVs, and at the same time, provide UAVs the ability to pitch, roll or yaw. Not all the 

rotors have to be rotating for an UAV to fly safely when more than 6 rotors are mounted 

in the system, though the number of working rotors should be above a critical number. An 

UAV also requires balance in the sense that the operating rotors should be symmetric, and 

the number of rotors rotating in the opposite directions should be equal. 

 

2.2.3 Generators and/or Alternators  

The stators and rotors of wind turbine generators are composed of multiple sets of three-

phase windings. In each set of windings, the windings of different phases should be 

mounted evenly on a circle with 2/ 3p degrees between them. The multiple sets of 

windings are then mounted evenly with the other windings on the circle in a symmetric 

manner. The symmetry of windings is critical for the ñhealthò condition of the generators 

[31], [32]. The symmetry among windings is necessary to avoid failure of the generator. 

The winding sets can be modeled as a k -out-of- n  pairs:G Balanced system by considering 

each winding as a pair because each winding occupies the two ends of a diameter of a circle. 

 

For an alternator, its salient pole rotor has multiple field coils arranged evenly on a circle 

to provide magnetic flux. The coils should be arranged in such a way that any two adjacent 

coils should provide opposite magnetic poles. The sets of coils can also be modeled as a k

-out-of- n  pairs:G Balanced system by considering each coil as a unit. 

 



 

 

21 

 Literature Review on Symmetry Measure 

The existing research on axes of symmetry, which exists in various areas such as chemistry 

and phytology, can be categorized into two major areas: seeking axes of symmetry for 

symmetric or approximately symmetric shapes or images [33]; and measuring asymmetry 

or symmetry of a shape or image and determining the minimum change needed to get the 

shape or image into a symmetric one [34]. The balance of the proposed k -out-of- n  pairs:G 

Balanced system highly depends on its symmetry. The measure of symmetry and 

rebalancing an unbalanced system is a variant of the second research area. However, the 

minimum change involved in the second area is not to omit or add elements such as points 

or pixels, but to adjust the locations of currently existing elements. So the methods cannot 

be applied to the problem under study which involves forcing down operating pairs into 

standby and resuming standby pairs back to operation (omitting and adding elements 

temporarily from the system). 

 

In this dissertation, we develop a measure of symmetry to determine the balance of k -out-

of- n  pairs:G Balanced systems. In the scenario where standby is considered, we develop 

heuristics to determine which operating pairs to force down into standby and which standby 

pairs to resume operation to rebalance unbalanced systems. 

 

 Literature Review on Monte Carlo Simulation-Based Reliability 

Approximation  

In this section, we provide a literature review on Monte Carlo simulation-based reliability 

approximation. Monte Carlo simulation-based methods are widely used in reliability 
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approximation. Crude Monte Carlo simulation performs well in simple problems, though 

becomes time-consuming when problems become more complex. Therefore, many 

methods are developed for variance reductions to improve the efficiency of the Monte 

Carlo simulation, e.g. subset simulation and importance sampling. 

 

A thorough review of the literature shows that the existing methods either lack the ability 

to approximate the reliability of k -out-of- n  pairs:G Balanced systems or require 

significant effort to be applied to the systems. In this dissertation, we develop an efficient 

and effective reliability approximation method for k -out-of- n  pairs:G Balanced systems 

based on Monte Carlo simulation. In addition, this method can be easily generalized to 

approximate the reliability of other systems with spatially distributed units.  

 

2.4.1 Crude Monte Carlo Simulation 

The Crude Monte Carlo simulation method repeatedly generates the realizations of system 

states by randomly drawing samples from the distributions of componentsô failure times. 

A system state is considered successful if the remaining operating components, the failure 

times of which are greater than the mission time, form a path. Approximate value of system 

reliability is obtained as the ratio of the number of successful system states over the total 

number of states generated through a large number of simulation runs. The approximate 

value converges to the true value as more simulation runs are implemented. Research in 

this area is found in [35], [36], [37], [38], and [39]. 
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This method, though straightforward, tends to require a great amount of time to converge. 

Especially when the target system states occur with small probabilities, it requires a 

significant number of simulation runs to draw enough samples from the target region [40]. 

Thus many papers propose variance reduction methods to improve the simulation 

efficiency. 

 

2.4.2 Subset Simulation 

Subset simulation treats each system state as a result of a sequence of intermediate system 

states. The underlying idea is to express the probability of a target system state, which can 

be very small in many cases, as a product of probabilities conditional on some intermediate 

system states [40]. Thus a rare system state can be generated by a sequence of simulations 

of more frequent intermediate system states. This method can be used when it is possible 

to model system states as a vector of parameters so that target system state and its 

intermediate system states can be modeled as subsets of the universal set of the parameter 

vectors. Research in this area is found in [40], [41], [42], [43], and [44]. 

 

In this dissertation, we consider the k -out-of- n  pairs:G Balanced systems. The function 

of such systems depends on the sequence and location of the failures; and it is very difficult, 

if not impossible, to model intermediate system states into subsets especially when there 

are system states with forcing-down and resumption of standby pairs. 
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2.4.3 Importance Sampling 

Importance sampling is a widely used variance reduction method to improve simulation 

efficiency. The basic idea is to draw samples from an importance distribution that 

overweighs the target region instead of the original distribution, and then adjust the 

estimation with a likelihood ratio, namely the ratio of pdf of the original distribution over 

the pdf of the importance distribution. Due to the oversampling in the region of concern, 

the importance sampling method converges in significantly less simulation runs [45]. This 

method is especially used in the case of highly reliable systems and hence a small failure 

region. Research and survey in this area are found in [46], [47], [48], and [49]. 

 

The success of the method relies on a prudent choice of the importance distribution, which 

requires knowledge of the system in the failure region [40]. However, it is difficult, if not 

impossible, to determine the importance distribution for the failure region of k -out-of- n  

pairs:G Balanced systems. 

 

2.4.4 Other Variance Reduction Methods 

Other variance reduction methods are found in the literature. However, these methods 

require prior knowledge of the system, e.g. complete minimum cut set [50] or fault tree 

[51], lack the ability to model the effect of failure sequence [52], [53] or locations [54], 

[55], or are developed for specific systems, e.g. series and parallel systems [52], network 

systems [53], [56], linear sensor systems [57], or construction structures [58], [59], [60], 

[61]. It requires much extra effort to apply these methods to the reliability approximation 

of k -out-of- n  pairs:G Balanced systems, if indeed possible. 
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 Literature Review on Degradation Modeling of Individual Units 

2.5.1 Physics-Based Degradation Model 

Modeling the degradation process of products based on physics of failure is common for 

products with known failure mechanisms. Using physics-based degradation models results 

in a more accurate prediction for the reliability metrics of a batch of products. 

 

A recent thesis by Kulkarni [62] investigates the physics degradation model for electrolytic 

capacitors. Tyaginov et al. [63] analyze and classify the existing hot-carrier degradation 

models and present a novel degradation model that includes all essential aspects of hot-

carrier degradation. McPherson [64] presents three generally used physics-based 

degradation models: power law, exponential, and logarithmic. ñThese three forms were 

selected because they tend to occur rather frequently in nature.ò [64]  

 

Power law model is more frequently observed according to McPherson [64]. Hot carrier 

induced degradation of an SOI (Silicon on Insulator) MOSFET (MetalïOxideï

Semiconductor Field-Effect Transistor) is best described by power law ntb  where the 

exponent n is centered at around 0.25 or 0.5 depending on the stress conditions [65]. The 

threshold voltage of an PMOS (P-type Metal-Oxide-Semiconductor) transistors also has a 

degradation process in the form of ntb [66], [67]. 
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Exponential and logarithmic models are used when power law model does not fit the data. 

Drag-reduction-effect of polymer additive decreases following an exponential path [68]. 

Meeker and LuValle [69] describe an example of exponential degradation process on a 

circuit board. The remaining salts in printed circuit boards after manufacturing react with 

copper to generate copper chlorine compounds that may cause failure of circuit boards. 

The amount of copper chlorine compounds increases in an exponential form. Doyle [70] 

finds that the weight loss of a silicon resin in time follows a logarithmic model. He also 

states that the logarithmic process is encountered quite often not only in weight loss studies 

but also in some studies of moisture sorption and desorption, as well as loss of dielectric 

strength by solid polymers during heat-aging. 

 

Physics-based degradation models utilize the information of the physics of the failure 

mechanisms of products and provide perspective on its degradation processes. However, 

the limitations of physics-based degradation models are also obvious. First, these models 

are much more difficult to construct. Extensive experiments must be carried out based on 

in-depth knowledge of physics, chemistry and metallurgical properties of the components. 

Second, the models are usually for simple electronic devices or mechanical components. 

The application of these models is limited for complex systems with multiple components. 

Third, physics-based degradation models tend to result in less accurate prediction for 

individual products due to the diversity of products and the stochastic nature of failures 

[71]. 
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Statistics-based degradation models are used when physics-based degradation models are 

not adequate due to its limitations. 

 

2.5.2 Stochastic Process/Statistics-Based Model 

A general degradation path is proposed by Meeker and Escobar [72]. The degradation of 

unit i  at time jt  is modeled as ij ij ijy Y= +e  where ijY  is the actual path and ije , which 

follows a normal distribution with zero mean, is the residual deviation. In addition, 

stochastic processes are commonly used to describe the degradation processes. ñStochastic 

models, as an alternative, are preferred whenever there is lack of experimental data or prior 

knowledge about the products.ò [73] Brownian motion and Gamma processes are two 

widely used stochastic processes for modeling the degradation paths. 

 

Gebraeel et al. [74] model the degradation process of product using an exponential model 

where the randomness from unit to unit is modeled with a centered Brownian motion. 

According to Gebraeel et al. [74], [75], the randomness from unit to unit can also be 

modeled with a standard normal distribution. Wang et al. [76] propose a degradation-based 

remaining useful life prediction method where the degradation is modeled using a 

Brownian motion with drift. The drift parameter is adaptive to the history of condition 

monitoring information. Wu et al. [77] propose a degradation-based reliability estimation 

method with random failure threshold.  

 

Marseguerra et al. [78] model the degradation of a maintainable system with a discrete 

time Markov chain that describes the condition of the system before or after maintenance. 
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Grall et al. [79] present condition based maintenance (CBM) approach where the condition 

(degradation) of single-unit-system is modeled with a Markovian stochastic process. Since 

the inspections are carried out at discrete instants of time when degradation increments 

occur, the model can also be considered as a cumulative damage model. The increments 

are considered to follow exponential distribution or Gamma distribution. Deloux et al. [80] 

study the maintenance optimization of a system subject to environmental stresses. The 

degradation of the system is modeled as a Gamma process. Liao et al. [81] use Gamma 

process to model the degradation of systems in numerical simulation due to the 

monotonous increments property of Gamma process. 

 

2.5.3 Degradation Modeling Considering Operating Conditions 

Many degradation models that consider operating conditions are found in the area of 

Accelerated Degradation Testing (ADT). Meeker et al. [82] provide an extensive 

introduction of ADT. Brownian motion or geometric Brownian motion with stress 

(operating condition) dependent drift coefficient and gamma process with stress-dependent 

shape parameter are widely used to model degradation processes considering operating 

conditions [83], [84], [85]. 

 

Liu et al. [86] present a degradation model for individual units considering the effect of 

operating conditions using a Brownian motion with time variant drift and diffusion 

coefficients. The model is composed of two parts: the deterministic part which deals with 

either physics-based or statistics-based degradation rate, and the stochastic part which 

considers the randomness in the degradation processes. The effect of operating conditions 
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on degradation rate is modeled by applying a stress-acceleration factor. Closed form 

expressions for pdf of lifetimes and reliability function of individual units are obtained. 

 

2.5.4 Stress-Acceleration Functions 

Stress-acceleration functions are widely used to model the effect of stresses (operating 

conditions) on degradation processes. Stress-acceleration functions can be categorized into 

experimental-based functions and empirical functions [87] as explained below. 

 

2.5.4.1 Experimental-Based Functions 

The Arrhenius equation is one of the most widely used stress-acceleration functions. It 

relates the rate of a simple (first order) chemical reaction rate (degradation rate) and 

temperature [88] as given in Eq. (2.1) 

 exp aE
C

K T

å õ
= Ö -æ ö

Öç ÷
m   (2.1) 

where m is the reaction rate; C  is a constant; aE  is the activation energy of the reaction, 

usually in electron-volts; T  is the absolute Kelvin temperature; and K  is Boltzmann 

constant. 

 

Another widely used stress-acceleration function is the Eyring equation that describes the 

effect of temperature on the reaction rate of a process: 

 ()exp aE
C f T

K T

è ø
= Ö Ö -é ùÖê ú
m   (2.2) 
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where ()f T  is a function of temperature determined by the specifics of the reaction 

dynamics. Applications in the literature typically assume() mf T T=  with a fixed value of 

m [87]. 

 

2.5.4.2 Empirical Functions 

It is possible to obtain stress-acceleration functions via experimental observations or based 

on knowledge of physics or chemistry, yet it is time-consuming and sometimes infeasible 

to do so. Simple empirical functions have been used to describe the stress-degradation 

relationship. 

 

In some Brownian motion based degradation models, the degradation rate (drift coefficient 

of the Brownian motion) m is expressed as an exponential function of the stress vector S: 

 () ()exp a b= +è øê úS Sm j   (2.3) 

where ()Sj  is a function of stress vector S, and a  and b  are constants. Wang et al. [89] 

and Liao and Elsayed [83] use this model in ADT. Other empirical functions such as power 

law model are described in [73], [90], [91]. 

 

 Literature Review on the Degradation Analysis of Systems with Multiple Units 

2.6.1 Systems with a Simple Configuration of Units 

Most of the research focuses on the degradation of simple systems such as series systems, 

parallel systems, the combinations of series and parallel systems, and k -out-of- n :G/F 
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systems where at least k  out of n  units must operate or fail. In such systems, only certain 

configurations of the units are required for the systems to operate. In other words, the 

spatial relationships of individual units have no effect on reliability analysis. 

 

Pham et al. [92] investigate the reliability metrics of a k -out-of- n :G system with units 

that are subject to both discrete degradation stages and catastrophic failure. An individual 

unit either fails as it reaches the last stage of degradation or fails catastrophically. Song et 

al. [93] propose a degradation model for individual units considering the impact of shocks, 

which is shared by all units, on their degradation. The estimation of system reliability for 

series systems, parallel systems, and series-parallel systems is given. Gupta and Lawsirirat 

[94] present a general model for systems with multiple degrading units using Failure Modes 

and Effects Analysis (FMEA) to obtain interaction intensities ijr  between individual units 

i  and j , the system degradation at time t , ()sysD t  is obtained as 

 () , , ,

1 1

N N

sys ij i t j t sys t

i j

D t D D J
= =

= +äär   (2.4) 

where ,i tD  is the degradation of unit i  ( 1,2, ,i N= » ) at time t ; and ,sys tJ  is the damage 

caused to the system due to the failure of individual units. This model depends on the 

accuracy of ijr  obtained through FMEA, which is difficult to obtain for complex systems. 

Bian and Gebraeel [95] propose a degradation model for multiple units considering the 

dependence between the degradation rates of the units, which results in a more accurate 

prediction of the remaining useful life of individual units. 
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2.6.2 Systems with Spatially Distributed Units 

Degradation analysis for systems with spatially distributed units is much more complicated 

due to the consideration of locations and sequences of failures. Work related to this area is 

sparse. Enright and Frangopol [96] investigate the reliability of a highway bridge with 

multiple spatially distributed girders. Series systems and series-parallel systems are used 

to model the bridge. The degradation of resistance of the girders is modeled with a 

deterministic polynomial function of time with a time variant random threshold as 

explained later. The overall load on the bridge, which follows a known distribution, occurs 

according to a Poisson process. This problem involves load redistribution whenever some 

girders fail, which is complicated due to the spatial distribution of the girders. The load 

shared by remaining girders, which can be considered as the critical thresholds for their 

resistance, depends on their spatial locations and the locations of failed girders. A failure 

tree describing the events with girders in different locations failing in different sequences 

is built to facilitate reliability estimation. 

 

Marsh and Frangopol [97] investigate the reliability of reinforced concrete bridge decks by 

considering the corrosion of the reinforcing steels. Spatial correlation between corrosion 

of the reinforcing steels at different locations of the deck is considered in the model to 

enhance the accuracy of reliability estimation. The locations of reinforcing steels have a 

significant effect on the overall resistance capacity of the bridge deck to the applied load. 

No explicit expression for system reliability is obtained due to the modeling and 

computation challenges of the problem. Instead, Monte Carlo simulation is used to obtain 

system reliability. 
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 Literature Review on Multi -State k-out-of-n:G/F Systems 

El-Neweihi et al. [98] propose the first definition for a multi-state k -out-of- n  system 

model, where the system state is defined as the state of the thk  best unit [99]. Boedigheimer 

and Kapur [100] define the multi-state k -out-of- n  system in terms of lower and upper 

boundary points, which is considered as consistent [99] with the one proposed by El-

Neweihi et al. [98]. Huang et al. [101] propose a generalized multi-state k -out-of- n :G 

system where the state space of each unit and the system is { }1,2, ,MÖÖÖ and a lower state 

level represents a worse or equal performance of the unit or the system. The definition of 

the system is as follows: 

 

An n -component system is called a generalized multi-state k -out-of- n :G system if 

() ( )1,2, ,j j M² = ÖÖÖxf  whenever there exists an integer value ( )l j l M¢ ¢  such that at 

least lk  components are in states at least as good as l . Where ( )1 2, , , nx x x= ÖÖÖx  is an n-

dimensional vector representing the states of all components, ()xf  is the state of the 

system, which is also called the structure function of the system. 

 

A corresponding multi-state k -out-of- n :F system is defined as follows [102]: 

 

An n -component system is called a generalized multi-state k -out-of- n :F system if 

() ( )1j j M< ¢ ¢xf  whenever the states of at least lk  components are below l  for all l  

such that j l M¢ ¢ . 
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An example of k -out-of- n :G system is given by Zuo et al. [102] as follows: 

      

ñConsider a power station with three generators. Each generator is treated as a 

component, and there are three components in the system. Each generator may be in 

three possible states: 0, 1, and 2. When a generator is in state 2, it is capable of 

generating 10 megawatts of power output; in state 1, 2 megawatts, and in state 0, 0 

megawatt. The total power output of the system is equal to the sum of the power output 

from all three generators. We can describe this model as follows: The system is in state 

2 whenever at least 1 component is in state 2; in state 1 or above whenever either at 

least 1 component is in state 2 or at least 2 components are in state 1 or above; and in 

state 0 otherwise.ò 

 

The reliabil ity metric estimation of the systems is discussed by [101], [103], [104], [105], 

[106] and [107]. A comparison of the method is given by Mo et al. [108]. Overall, the 

objective is to increase the efficiency of reliability estimation algorithm and to reduce 

computation time, or to provide bounds [104] and approximation [107] for system 

reliability metrics. Tian et al. [99] propose a new multi-state k -out-of- n :G system with 

the following definition: 

 

An n -component system is called a multi-state k -out-of- n :G system if 

() ( )1,2, ,j j M² = ÖÖÖxf  whenever at least lk  components are in state l  or above for all l  

such that 1 l j¢ ¢. 

 

Similarly, there is a corresponding definition for multi-state k -out-of- n :F system. The 

reliability of such systems are discussed in [99], [107], and [108]. 
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Another variant of the multi-state k -out-of- n :G/F systems is multi-state consecutive- k -

out-of- n  systems [109], [110], [111]. Explicit recursive formulas are provided for special 

systems and algorithms are developed for the generalized systems. 

 

 Literature Review on Weighted-c-out-of-n:G/F Systems 

In the research related to the reliability estimation of redundant systems, it is assumed that 

each individual unit in the systems has its own integer weight, which can be considered as 

its capacity. The systems are called systems with weighted units. 

 

Wu and Chen first propose weighted- c -out-of- n :G system [112] and consecutive-

weighted- c-out-of- n :F system [113]. The systems consist of n  units, each of which has 

its own integer weight. The former system operates if and only if the total weight of 

operating units is at least c , whereas the latter system fails if and only if the total weight 

of the consecutively failed units is at least c . Recursive algorithms are developed to 

estimate the reliability of these systems. Chang et al. [114] investigate circular consecutive-

weighted- c-out-of- n :F system and develop an algorithm for estimating its reliability. 

 

Eryilmaz [115] investigates the reliability of a k -out-of- n :G system with units of random 

integer weights. The system operates if and only if there are at least k  operating units, and 

the total weight of all operating units is above a critical value c . Kamalja and Amrutkar 

[116] and Eryilmaz [117] provide reviews of systems with weighted units. 
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 Literature Review on Load-Sharing Models 

2.9.1 Load-Sharing Rules 

Most of the research that address the load-sharing effect on system reliability utilize the 

monotone load-sharing rule where the load increment due to failures of some units is 

shared among the remaining operating units [118]. Two special cases of the monotone 

load-sharing rule are the equal load-sharing rule and local load-sharing rule [119]. Under 

the equal load-sharing rule, all operating units share overall system load equally [120]. 

Under the local load-sharing rule, the load carried by failed units is distributed only to their 

adjacent units. 

 

2.9.2 Load-Sharing Effect Models 

The most widely used models for load-sharing effect are Accelerated Failure Time Model 

(AFTM) [121], Tampered Failure Rate (TFR) model [120], Cumulative Effect (CE) model 

and Proportional Hazards Model (PHM). 

 

2.9.3 Baseline Hazard Rate Models 

Constant Baseline Hazard Rate Model. Constant baseline hazard rate model simplifies 

load-sharing problems and hence is widely used in literature. Scheuer [122] investigates 

the reliability of k -out-of- n :G system under two assumptions: (i) individual units have 

i.i.d. exponential lifetimes, which implies identical constant hazard rate, and (ii) the 

identical hazard rate of operating units increases when a failure occurs. Shao and 

Lamberson [123] study the problem by assuming repairable units and imperfect switching, 
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i.e. failure to detect and disconnect failed units. Lin et al. [124] investigate the problem in 

[122] further by assuming non-identical units. 

 

Time-Variant Baseline Hazard Rate Model. Time-variant baseline hazard rate model is 

more general and realistic but complicates load-sharing problems. Hassett et al. [125] 

provide analytical results for the reliability and availability of systems with one or two 

units that have non-identical power law time-variant hazard rate and repair rate. Amari et 

al. [120] provide analytical results for k -out-of- n :G systems considering TFR load-

sharing effect and generalize the results to a wide range of time-variant baseline hazard 

rate models. 

 

2.9.4 Other Research 

Yamamoto et al. [126] investigate the optimal load allocation (load-sharing rule) for k -

out-of- n :F systems, and find that system lifetime is maximized by allocating the load to 

units according to their residual lifetimes. Huang and Xu [127] estimate the reliability of a 

k -out-of- n :G system with maximally m ( k m n¢ ¢) active units at all times. Load (tasks) 

is assigned to units by a controller, and active units can be either busy or idle. Qi et al. [128] 

investigate the optimal maintenance policy for load-sharing computer systems with k -out-

of- n :G redundant configuration. 
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 Literature Review on Optimal Design for Systemsô Reliability with Spatially 

Distributed Units 

The system reliability optimization without considering maintenance can generally be 

categorized into redundancy allocation problem, reliability allocation problem and the 

combination of the two [129]. Redundancy allocation problem is to add redundant units to 

the system and/or to allocate redundant units to sub-systems in the form of cold, warm or 

hot standby. The sub-systems can take a variety of forms such as parallel systems or k-out-

of-n systems. On the other hand, reliability allocation problem treats the reliability of the 

units allocated to any sub-system as a decision variable. Coit et al. [130] study the 

redundancy allocation problem for systems with multiple k-out-of-n sub-systems in series. 

Elegbede et al. [131] and Tian and Zuo [132] investigate the redundancy-reliability 

allocation problem considering parallel sub-systems in series. Reviews on the reliability 

optimization research are given in Kuo [129], [133]. 

 

The redundancy allocation and reliability allocation problems are proven to be NP-hard 

[134], [135]. As the complexity of the problems grows, heuristics become a common 

technique for solving the optimization problems [133], [136], [137]. The most popular 

heuristics include Ant Colony, Genetic Algorithm, Tabu Search, and Simulated Annealing 

[133]. 

 

The reliability optimization for k-out-of-n:F/G systems has been a subject of investigation. 

Yosi [138] studies the reliability optimization of k-out-of-n systems when the units have 

two failure modes. Zuo [139] investigates the reliability allocation for consecutive-k-out-
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of-n:F/G systems. The objective functions include exact values of system reliability metrics, 

upper or lower bounds of system reliability metrics, and overall cost considering system 

reliability and cost of failure. A comprehensive review of reliability optimization for k-out-

of-n:F/G systems is given in [140].  

 

However, reliability optimization for multi-dimensional k-out-of-n:F/G systems is 

sparsely studied [140]. Zuo [141] investigates the reliability optimization for 2-D 

consecutive k -out-of- n :F systems. This dissertation is the first to investigate the reliability 

optimization for k -out-of- n  pairs:G Balanced systems. We investigate both redundancy 

allocation and reliability allocation problems for k-out-of-n pairs:G Balanced systems. First, 

we determine the optimal number of pairs and optimal standby policy, which is a 

redundancy allocation problem. Second, we allocate pairs with different lifetime 

distributions to different locations in the system to optimize the overall system reliability 

metrics, which is a reliability allocation problem. 

Equation Chapter (Next) Section 1 
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3. CHAPTER 3 

 

RELIABILITY ESTIMATION OF k-OUT-OF-n PAIRS:G BALANCED 

SYSTEMS 

 

 Problem Definition and Assumptions 

In this chapter, we present methods for reliability estimation of different types of k-out-of-

n pairs:G Balanced systems in two scenarios: (i) unbalanced systems are considered as 

failed systems and (ii) unbalanced systems are rebalanced. We develop a systematic 

approach for enumerating the complete set of successful events, which are ordered 

sequences of failures described by system state transition paths, and obtain closed form 

expressions for calculating the probabilities of successful events. The developed methods 

can be generalized to other systems with spatially distributed units. 

 

The assumptions stated in the Chapter 1 hold throughout this chapter. We also assume that 

the hazard rates of individual units are not affected by the total number of operating units. 

 

 Reliability Estimation of Systems Considering Unbalanced States as Failure of 

the System 

3.2.1 System Description 

In this section, we consider two types of k -out-of- n  pairs:G Balanced systems with the 

constraint that a system fails once it becomes unbalanced even if there are still k  or more 
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operating pairs remaining in the system. In the first type of systems, all units perform the 

same function; whereas in the second type, the units perform complementary functions 

with any two adjacent units performing different functions as explained later. 

 

For clarity and simplicity, when we mention state pattern, typical state, and follow-up state, 

we mean the system state rather than the unit state or the pair state. 

 

3.2.2 Symmetry Determination 

If a system is balanced, it is symmetric in the sense that all the operating units in the system 

should be symmetric w.r.t. at least one pair of perpendicular axes. We introduce the concept 

of Moment Difference (MD) to determine the degree of symmetry of a system w.r.t. any 

candidate axes. The MD of a system w.r.t. candidate axis a  is calculated as 

 
,sin

a

a i i a

i U

M w
Í

=ä q   (3.1) 

where aM  is the MD of the system w.r.t. candidate axis a ; aU  is the complete set of all 

the units within / 2°p  of candidate axis a ; iw  is the weight of unit i ; and ,i aq  is the angle 

from the axis on which unit i  is located to candidate axis a . The weight of each unit is as 

defined in the Introduction. The angle ,i aq  has a positive value if it is clockwise and 

negative value otherwise. 

 

For k -out-of- n  pairs:G Balanced systems considered in this chapter, a candidate axis of 

symmetry is either along a pair of units, or in the middle of two adjacent pairs. In a system 

with n  pairs of units, there are 2n  candidate axes which compose n  pairs of the 
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perpendicular candidate axes. We examine the symmetry of the system w.r.t. all n  pairs of 

the perpendicular candidate axes by corresponding MD values. 

 

Consider the system shown in Figure 3.1(a) which has 8n=  pairs of units. The state of the 

system is (0101011101010111), i.e. the units in white have state 1 and the units in black 

have state 0 as mentioned in the Introduction. This system has 8n=  pairs of perpendicular 

candidate axes. We index the candidate axes as shown in Figure 3.1(b). We simply index 

the 8 pairs of perpendicular candidate axes by numbers Ĕ1  to Ĕ8 . In addition, to differentiate 

between the two perpendicular candidate axes in each axis pair, we index them with (I) and 

(II). For example, the vertical axis is indexed as ()Ĕ1 I  and its perpendicular axis is indexed 

as ()Ĕ1 II . Consider the candidate axis ()Ĕ4 I  shown by the dashed line in Figure 3.1(a). The 

complete set of units within / 2°p  of the axis is 
()
{ }

IĔ4
3,4, ,10U = ÖÖÖ, the corresponding 

weights iw  for the units in 
()IĔ4

U  are [0,1,0,1,1,1,0,1], and corresponding angles 
()4 I,Ĕi

q  are 

{ ( )/ 8 3.5,  2.5,  1.5,  0.5,  0.5,  1.5,  2.5,  3.5Ö - - - -p }. For instance, in Figure 3.1(a) the 

angle from the axis on which unit 3 is located to the candidate axis ()Ĕ4 I  is 

()Ĕ3,4 I
/5 83.=-q p . The MD value of the system w.r.t. this candidate axis is 0.7049. 

Similarly, the MD w.r.t. the perpendicular candidate axis, axis ()Ĕ4 II  shown by dotted-

dashed line, is ï0.4710. 

 

Starting from the vertical and horizontal candidate axes, i.e. axes ()Ĕ1 I  and ()Ĕ1 II  in Figure 

3.1(b), we consider the 8n=  pairs of perpendicular candidate axes anticlockwise. The MD 
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values are shown in Figure 3.2 where the Moment Difference I and II represent the MD 

values of the system w.r.t. the 8 candidate axes indexed with ()I  and ()II , respectively. 

 

We then examine if there are any pairs of perpendicular candidate axes that have zero MD 

values w.r.t. both candidate axes. If so, the system is symmetric; otherwise, the system is 

asymmetric. For instance, in Figure 3.1(a) we can easily conclude that the system is 

symmetric since all the operating pairs are symmetric w.r.t. candidate axes ()Ĕ5 I  and ()Ĕ5 II . 

The MD values for the two candidate axes are both zero as shown in Figure 3.2. We can 

numerically validate that MD is effective in determining system symmetry when n is less 

than 30. When n is large, we add another condition for system symmetry as introduced in 

Section 4.2.1. 

 

 

(a)                                                         (b) 

Figure 3.1 Illustration of a system for Moment Difference calculation 
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Figure 3.2 Illustration of Moment Difference for all candidate axes in a system 

 

3.2.3 Fundamental Method of Successful Event Enumeration 

In order to estimate the reliability of k -out-of- n  pairs:G Balanced system, we first obtain 

all the successful events, i.e. system state transition paths that lead to operating system 

states, and estimate the probability of each event. The system state transition paths can be 

aggregated into several types, which reduces the computational time significantly. 

Moreover, the number of realizations of each type of system state transition paths is also 

determined. 

 

First, we enumerate all the state patterns with a certain number, say h , of failed pairs. All 

the system states can be categorized into some state patterns. Consider the system in Figure 

1.1(a), the two system states when pairs *1 , *2 , 
*3  fail and when pairs *1 , 

*5 , 
*6  fail can 

be categorized into the same state pattern with three consecutive failed pairs. We represent 

each state pattern with one typical state. A typical state of a state pattern is an arbitrary 

state of the system with failures arranged in the corresponding state pattern. Consider the 

system in Figure 1.1(a), the typical state of state pattern with three consecutive failed pairs 
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can be anyone of these states (000111000111), (100011100011), (110001110001), 

(111000111000), (011100011100) or (001110001110). 

 

Then, we enumerate all the transitions from state patterns with h  failed pairs to state 

patterns with ( )1h+  failed pairs, where h  increases from zero to a maximum allowed 

value by increment 1. We determine the transitions between state patterns as follows. An 

unbalanced state pattern has no output transitions although it may have input transitions. 

When we determine the transitions from a balanced state pattern with h  failed pairs to state 

patterns with ( )1h+  failed pairs, we enumerate the follow-up states derived from the 

typical state of the balanced state pattern with h  failed pairs. A follow-up state of a typical 

state can be obtained by turning one operating pair of the typical state into failure. Each 

follow-up state is matched with one of the state patterns with ( )1h+  failed pairs. If we find 

such a match, an allowable transition is made. Note there can be more than one realization 

of the transition between two state patterns. To match a state to a state pattern, we determine 

if the state is a repetition of the typical state of the state pattern. If so, then we find a match. 

In this dissertation, to determine if a row vector b , e.g. a system state, is a repetition of 

another row vector a , we compare them by searching a  in the vector of ( ),b b . If a  can 

be found in ( ),b b , then a  is a repetition of b . 

 

We record the number of realizable transitions from balanced state patterns with h  failed 

pairs to those with ( )1h+  failed pairs in a transition matrix , 1h h+Q  which has hm  rows and 

1hm +  columns where hm  is the number of balanced state patterns that has h  failed pairs. 
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( ), 1 ,h h i j+Q  is the number of realizable transitions from the thi  state pattern with h  failed 

pairs to the thj  state pattern with ( )1h+  failed pairs. The matrix does not include the 

transitions from balanced state patterns to unbalanced ones. 

 

3.2.4 Reliability Estimation of Systems with Units Performing Single Function 

In this section we discuss the reliability estimation of k -out-of- n  pairs:G Balanced 

systems with all units performing the same function. Such a system is considered balanced 

if the operating units in the system are symmetric w.r.t. at least one pair of perpendicular 

axes. We use the Moment Difference to determine the symmetry of such systems. 

 

3.2.4.1 Successful Event Enumeration 

Each state pattern can be represented by a sequence of numbers of angles between failed 

units starting from a failed unit in a failed pair to the other failed unit in the same failed 

pair in an anticlockwise direction, which we call feature segment. 

 

A feature segment of a state pattern is determined based on its typical state by listing the 

number of angles between failed units starting from a failed unit. Each angle equals / np . 

Consider the system in Figure 1.1(a), when pairs *1 , *2 , and 
*3  fail, starting from unit 1, 

the numbers of angles between failed units in the anticlockwise direction are (114114). We 

can choose any one of (114), (141), and (411) as the feature segment. If the system has a 

different state in the same state pattern, we can still find the feature segment in the sequence 

of numbers of angles between failed units. Again, consider the system in Figure 1.1(a), 
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when pairs *1 , *5 , and *6  fail, the system is in the same state pattern as when pairs *1 , *2 , 

and *3  fail, i.e. the state pattern with three consecutive failed pairs. Starting from unit 1, 

the number of angles between failed units in the anticlockwise direction are (411411) 

where we can find all three possible feature segments (114), (141), and (411). 

 

All possible state patterns with a certain number, say h , of failed pairs, are obtained using 

their feature segments by enumerating all the permutations of h  positive integers that sum 

up to n . Since different feature segments can represent the same state pattern, we eliminate 

the repetitions by the method introduced above to find the set of unique feature segments 

from which we obtain the corresponding state patterns and typical states. 

 

 

Figure 3.3 State transition diagram for 2-out-of-6 pairs:G Balanced system with units 

performing single function 

 

An illustrative example of state transition diagram is shown in Figure 3.3 where we list all 

possible state patterns with zero to four failed pairs, balanced or unbalanced. Each state 
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pattern is represented by its typical state. Note that the white colored pairs are operating 

pairs and the black colored pairs are failed pairs. The number series in brackets are the 

corresponding feature segments. The solid links are transitions between balanced state 

patterns, and the dashed links are transitions from a balanced state pattern to an unbalanced 

state pattern. The number of realizations of a transition, which is recorded in transition 

matrix, is one unless a greater number is associated with the corresponding transition link. 

For instance, the transition matrix from balanced state patterns with 3 failed pairs to those 

with 4 failed pairs is 34

2 1 0

0 3 0

å õ
=æ ö
ç ÷

Q  where, for instance, ( )34 1,2 1=Q  means there is 

only one possible transition from the 1st state pattern with three failed pairs and feature 

segment (114) to the 2nd state pattern with four failed pairs and feature segment (1122), as 

shown in Figure 3.3. 

 

3.2.4.2 System Reliability Estimation 

Let the probability density function (pdf) and the cumulative distribution function (CDF) 

of the life of any pair of units be f  and F  respectively, and let 1F F= - . When the pdf 

of an individual unit is g  and CDF is G , then we have () () ()2 1f t g t G t= -è øê ú and 

() ()
2

1F t G t= -è øê ú. The reliability of a k -out-of- n  pairs:G Balanced system can be 

obtained as 

 () ()
0

n

sys h

n k

h
R t P t

-

=
=ä   (3.2) 

where () { }: Pr  pairs fail in balanced state pattern by n

hP t h t=  which can be obtained by 
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where n

hh  is the number of realizable system state transition paths that lead to balanced 

state patterns with h  failed pairs. Let 0 1n =h , and n

hh  when 1 h n k¢ ¢ - is obtained as 

 
, 1

1

0

h

i

n

h i i

-

+=
=äÔ Qh   (3.4) 

 

For instance, 6

3h  for transition diagram in Figure 3.3 is  

 ( )6

3 1 2301 2

2 0

6 2 2 1 1 1 48

0 0

å õ
æ ö

= = =æ ö
æ ö
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ä äQ Q Qh   (3.5) 

 

3.2.5 Reliability Estimation of Systems with Units Performing Complementary 

Functions 

In this section, we assume that any two adjacent units perform complementary functions. 

For example, any two adjacent rotors in an UVA have opposite rotational directions. We 

refer to any two adjacent rotors as units performing complementary functions as shown in 

Figure 3.4(a). We assume the units, regardless of their functions, have identical lifetime 

distributions. The balance requirements for such a system are: (i) the system should be 

symmetric in a sense that operating units should be symmetric w.r.t. at least a pair of 

perpendicular axes; (ii) any two adjacent operating pairs should perform complementary 

functions. Given the second balance requirement is satisfied, we determine the balance of 

such systems by examining the symmetry of the system using Moment Difference. 
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When n  is odd (even), we should always have an odd (even) number of operating pairs to 

satisfy the second requirement, and hence corresponding k  should be odd (even). An 

example of such system with all units operating is shown in Figure 3.4(a). 

 

To meet the second balance requirement, we force down the operating pair closest to, not 

necessarily adjacent to, the failed pair on either side with probability 0.5. Consider the 

system in Figure 3.4(a), when only unit 1 fails, unit 9 is forced down permanently and 

either pair *2  or pair *8  is forced down with probability 0.5. Suppose that pair *2  is forced 

down. When another unit actually fails, say unit 11, then unit 3 is forced down permanently, 

and either pair *4  or pair *8  is forced down. 

 

    

(a)                                                                 (b) 

Figure 3.4 Examples of k-out-of-n pairs:G Balanced system with any two adjacent units 

performing complementary functions: n = 8 in this figure 

 

Due to the balance requirements and the procedure for forcing down operating pairs, we 

conclude that (i) the system always has an even number of pairs that are either failed or 








































































































































































































































































































































































