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ABSTRACT OF THE DISSERTATION 

Reliability Estimation of Systems with Spatially Distributed Units 

By DINGGUO HUA 

 

Dissertation Director: 

Elsayed A. Elsayed 

 

 

Systems with spatially distributed units, e.g. Unmanned Aerial Vehicle (UAV), are 

emerging in aerospace and military industries. In this dissertation, we present approaches 

for the reliability estimation of such systems. In particular, we consider k-out-of-n pairs:G 

Balanced systems and weighted-c-out-of-n pairs:G Balanced systems with spatially 

distributed units which must meet balance requirements. 

 

We first estimate the reliability metrics for k-out-of-n pairs:G Balanced systems by 

considering systems as failed when unbalanced system states occur. We further investigate 

such systems by balancing unbalanced states: When unbalanced states occur, the system is 

balanced by forcing down one or more operating pairs into standby. The reliability 

estimation is computationally expensive for such systems with a large number of units. 

Therefore, we develop an efficient approach for reliability approximation with high 

accuracy based on Monte Carlo simulation. 

 

Also, we investigate the system reliability further by assuming that the units are subject to 

degradation. In many situations, units exhibit degradation that can be monitored. We model 
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the degradation path of any unit based on collected observations of the degradation 

indicator and its physics-based or statistics-based degradation rate. We consider the effect 

of units’ operating conditions on their degradation paths. 

 

Moreover, available system capacity is an important indicator of a system’s condition. A 

system fails when its capacity drops below a minimum value. We estimate the reliability 

metrics of weighted-c-out-of-n pairs:G Balanced systems, which considers the capacities 

of individual units. We investigate the problem in two scenarios: First, we assume that the 

capacity of any unit has multiple levels. Second, we assume that the capacity of any unit 

has two levels (either working or failed) whereas different units may have different 

capacities. In the second scenario, we consider load-sharing effect. 

 

Furthermore, optimal design for systems with spatially distributed units is the key to 

maximizing the reliability of the systems given the constraints such as the upper bound for 

the total number of units and load-sharing effect. We study the optimal configuration that 

maximizes the system reliability metrics. 
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1. CHAPTER 1 

 

INTRODUCTION 

 

 Motivation of the Research 

In practice, many systems have units arranged in a certain spatial configuration to perform 

their functions which we call systems with spatially distributed units. For example, a flash 

drive is composed of a number of memory cells in a cubic arrangement with connections 

in between; a three-dimensional CT image consists of thousands of pixels which form 

patterns that indicate the health condition of an individual; a supervision system has 

multiple cameras distributed spatially to monitor an area of concern [1]; an LED display 

has a number of LEDs arranged in arrays to display letters or digits; and an alternator has 

multiple field coils arranged evenly on a circle to provide symmetric magnetic flux. A 

system with spatially distributed units requires that units at certain locations must operate 

for the system to function properly. The spatial locations of units hence play an important 

role in the system’s reliability estimation. 

 

Such systems are most often redundant systems in the sense that not all units in the systems 

are required to operate for the systems’ operation. For example, a disease will be diagnosed 

only when the pixels at particular coordinates of an CT image form some pattern; a 

supervision system will only fail when the cameras in certain spatial configurations fail so 

that the remaining operating cameras do not cover the monitored area; and an LED display 
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can still display recognizable letters with a few scattered failed LEDs though it cannot 

display letters correctly if more than a certain number of LEDs fail in a cluster. Generally, 

such systems can be modeled by multi-dimensional k -out-of- n :G/F systems. 

 

The reliability estimation of multi-dimensional k -out-of- n  pairs:G/F systems has been 

studied by many researchers. A multi-dimensional k -out-of- n :G/F system is composed 

of units configured according to the vector n , e.g. a cubic system composed of 
in  units in 

the thi  dimension where 1i  , 2 and 3. The system operates/fails if and only if a group of 

units configured as the vector k  operates/fails. For example, a (2, 2, 2)-out-of-(2, 2, 10):F 

system fails if and only if there is at least 8 units fail in a cube of size 2 units by 2 units by 

2 units. 

 

The reliability estimation of such systems is challenging due to the spatial configurations 

of units. For instance, compared with a k -out-of- n :F system, which fails when at least k  

units fail out of n  units in total, it is more difficult to estimate the reliability of a 

consecutive- k -out-of- n :F system, which fails when at least k  consecutively arranged 

units fail out of n  units in total [2], due to the consideration of relative locations of units 

in the failure events. In other words, the cut set for reliability estimation cannot be 

determined without considering the spatial relationship of units. The problem becomes 

more complicated when the n  units are in a circular arrangement [3]. 

 

A category of two-dimensional k -out-of- n :G system with units distributed evenly on a 

circle is fast emerging in aerospace and military industries. We name the systems as k -
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out-of- n  Pairs:G Balanced systems. One practical example of such systems is rotary 

Unmanned Aerial Vehicle (UAV) such as octocopters, which presents many potential uses 

in various areas such as military, commercial and scientific research. The failure of such 

systems may result in major consequences especially in areas with high population density. 

However, an extensive review of the literature reveals that research on reliability estimation 

of such systems is quite limited. Therefore, in this dissertation, we investigate the reliability 

estimation of a variety of k -out-of- n  pairs:G Balanced systems. 

 

 Problem Definition and Assumptions 

The reliability estimation of systems with spatially distributed units has been studied in the 

past two decades by many researchers due to its importance and wide applications. A 

special case of systems with spatially distributed units is the k -out-of- n  pairs:G Balanced 

systems. 

 

1.2.1 System Description 

1.2.1.1 k-out-of-n Pairs:G Balanced System 

A k -out-of- n  pairs:G Balanced system has n  pairs of units distributed evenly on a circle, 

as shown in Figure 1.1. Each pair of units is located along the same diameter of the circle. 

At least k  out of n  pairs should operate for the system to provide its desired function. 

Moreover, the system must maintain balance at all times. In the systems considered in this 

dissertation, all the remaining operating units in the system should be symmetric w.r.t. at 

least one pair of perpendicular axes of symmetry. This requirement also implies that when 
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a unit fails, the other unit of the same pair is forced down immediately. Other balance 

requirements can be imposed on the system as well. For instance, in some systems, the 

units may be required to be rotationally symmetric w.r.t. a specified angle. The individual 

units in the system can perform the same function, as in the planetary descending engine 

systems [4], or different functions, as in UAV where any two adjacent rotors rotate in 

opposite directions to provide the necessary lift for the UAV. Figure 1.1b shows a possible 

system configuration for an UAV with eight pairs of rotors where the arrows show the 

rotational directions, i.e. either clockwise or anticlockwise, of each rotor. 

 

                           

(a)                    (b) 

Figure 1.1 Two examples of k -out-of- n  pairs:G Balanced systems with n = 6 and 8 

 

1.2.1.2 Weighted-c-out-of-n Pairs:G Balanced System 

Weighted- c -out-of- n  pairs:G Balanced system is a variant of k -out-of- n  pairs:G 

Balanced system. In a weighted- c -out-of- n  pairs:G Balanced system, we have n  pairs of 

units distributed evenly on a circle as in k -out-of- n  pairs:G Balanced systems. Any unit 
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has some capacity. The system requires at least a minimum capacity c  to function while 

maintaining balance. 

 

The capacities of individual units can be the same or different. In addition, the capacity of 

a unit has either multiple levels, e.g. full capacity, half capacity and zero capacity (failure), 

or two levels, i.e. full capacity and zero capacity. In this dissertation, we will investigate 

two scenarios of the reliability estimation of weighted- c -out-of- n  pairs:G Balanced 

systems in Chapters 6 and 7, respectively. 

 

1.2.2 Definitions and Notations 

 Pair. A pair is composed of two units that are located on the same diameter of 

the circular system arrangement. 

 Unit identity number and pair identity number. We identify units and pairs by 

using numbering system shown in Figure 1.1 throughout this dissertation unless 

stated otherwise. As shown, we start numbering the units from the unit on the 

extreme right hand side when we position one of the pairs horizontally. The 

numbering increases anticlockwise. In addition, each pair is identified by the 

smaller number in this pair but with an asterisk superscript, e.g. units 1 and 7 

constitute pair *1 . In this dissertation, we use letters such as i  and j  to index 

individual units and letters with an asterisk as superscript such as 
*i  and *j  to 

index individual pairs. A pair identity number also has an asterisk as superscript. 
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In addition, it is immediate that pair *i  is composed of units i  and  i n . For 

example, units 1 and 7 compose pair *1  as shown in Figure 1.1(a). 

 State of a Unit. An individual unit has three possible states: operating, failed 

and forced-down. A unit is operating if it is performing its function. A unit is 

failed if either it fails or it is forced down permanently due to the failure of the 

other unit in the same pair. A unit is forced-down when it is forced down 

together with the other unit in the same pair for system balance while they are 

operating. In this dissertation, we consider two scenarios: (i) unbalanced 

systems are considered as failed, and (ii) unbalanced systems are rebalanced. 

Forced-down units do not resume operation in the first scenario, whereas they 

are in standby and can resume operation when necessary in the second scenario. 

The state of a unit is denoted as 1 if it is operating, 0 if it is failed, and –1 if it 

is forced-down. 

 State of a Pair. Similarly, a pair of units has three possible states: operating, 

failed, and forced-down. A pair of units is operating when both units are 

operating properly. A pair is considered failed when one unit of the pair fails. 

A pair is forced-down when the pair is properly operating but is forced down to 

balance the system. Again, consider the two scenarios mentioned above. 

Forced-down pairs do not resume operation in the first scenario. However, in 

the second scenario, operating pairs are forced down into standby and can 

resume operation afterwards when necessary. Forced-down pairs in the second 

scenario are equivalent to standby pairs. The state of a pair is denoted as 1 if it 

is operating, 0 if it is considered as failed, and –1 if it is forced-down. 
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 State of a System. The state of a system is the combination of the states of the 

units in the system. The state of a system is denoted as a row vector of the states 

of individual units in ascending order of units’ identity numbers. 

 Weight of a Unit. The weight of a unit is used for calculating the Moment 

Difference (MD) as introduced in Chapter 3. Specifically, a unit has weight 1 if 

it is operating and has weight 0 if it is failed (either it fails or it is forced down 

permanently due to the failure of the other unit in the same pair). A forced-down 

unit has weight 0 in the first scenario where a forced-down unit does not resume 

operation, but has weight 1 in the second scenario where a forced-down unit is 

in standby and can resume operation. 

 

1.2.3 Assumptions 

Throughout this dissertation, we assume the following unless stated otherwise: 

 The units in a system, regardless of their functions, have i.i.d. lifetimes. 

 The probability of two or more simultaneous failures is negligible. 

 For a pair of units, whenever one unit fails, the other one of the same pair is forced 

down immediately and permanently; and the two units in the pair are always forced 

down simultaneously when they are operating but forced down for system balance. 

 The cumulative failure rate of a standby pair does not change during the force down 

period. In other words, its cumulative failure rate immediately after resumption is 

the same as when it is forced down. 

 A standby pair does not fail during the forced down period. 
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 Reliability Estimation of k-out-of-n Pairs:G Balanced Systems 

We first estimate reliability metrics of several types of k -out-of- n  pairs:G Balanced 

systems with different configurations and balance requirements. We assume that units of 

the same type have i.i.d. lifetimes. Two scenarios are considered. In the first scenario, we 

consider a system as failed when the system reaches an unbalanced state. In the second 

scenario, as a system reaches an unbalanced state, it is balanced by forcing down operating 

pairs into standby. A standby pair can resume operation afterwards when needed for either 

balancing the system and/or providing an additional operating pair. Reliability estimation 

for k -out-of- n  pairs:G Balanced systems presents three major challenges. 

 

First, when n  increases, the system’s balance after the failure of a unit is not readily 

obvious. By forcing down the opposite unit of the failed unit is not necessarily sufficient 

to regain system’s balance. In this case, some operating pairs must be forced down to 

balance the system. As one pair fails, we examine the states of the other pairs and determine 

which operating pairs to force down in order to maintain system’s balance. It is important 

to keep the number of forced-down pairs as small as possible. 

 

Second, locations and sequences of failures should be considered to obtain the set of 

successful events for reliability estimation. The failure of a system is determined by not 

only the number of failed units, but also their locations and sequences. For instance, 

consider the system shown in Figure 1.1(a) and assume 3k  . When pairs *1 , *2  and 
*3  

fail in any order, the system is balanced since the remaining operating pairs are symmetric 

w.r.t. a pair of perpendicular axes, i.e. the axes along pair *2  and pair 
*5 . When pairs *1 , 
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*3  and *4  fail in any order, the system is unbalanced since the remaining operating pairs 

are not symmetric w.r.t. any axes, as shown in Figure 1.2(a) where white pairs are 

considered operating and black pairs are considered failed. The system should be balanced 

by forcing down operating pair *6  into standby, as in Figure 1.2(b) where gray pairs are 

considered in standby, which results in less than 3 operating pairs, hence a failed system. 

In some cases, the order of failures matters. For instance, consider the system shown in 

Figure 1.1(a) and assume 2k  . When pairs *1 , *2 , *3  and *4  fail sequentially, no 

standby is needed to balance the system since the system is always balanced with 

consecutively arranged failed pairs. When pairs *1 , *3  and *4  fail sequentially, an 

unbalanced system is resulted, as shown in Figure 1.2(a), and standby is needed to bring 

the system back to balance, as shown in Figure 1.2(b). When pair *2  fails afterwards, pair 

*6  resumes operation since its resumption can bring an additional operating pair, as shown 

in Figure 1.2(c). The two events are successful since they both result in two operating pairs 

in the end, though they are two different events. 

 

 

Figure 1.2 Example of standby pair in an unbalanced system and the resumption of 

standby pair 

 

(b) (c) (a) 
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Third, it is difficult to estimate the probability of some successful events. As mentioned 

above, a successful event involves a sequence of failures and the order of failures matters. 

The estimation of the probability of an event with h  failures requires an h th order integral. 

If some operating pairs are forced down as standby to balance the system, it is quite difficult 

to obtain a closed form expression for such integral. 

 

 Reliability Approximation of k-out-of-n Pairs:G Balanced Systems 

The reliability estimation of k -out-of- n  pairs:G Balanced system is challenging in both 

successful event enumeration and event probability calculation as introduced in the 

previous section. The reliability estimation becomes extremely difficult when the system 

has a large number of units. It is very time-consuming, if indeed possible, to enumerate all 

system states and determine the complete set of successful events by enumeration. For a k

-out-of- n  pairs:G Balanced system, the number of unique successful events is 

approximately 
!

!

n

i k

n

i

  by considering that we have   1n h   options for the 
thh  failure 

to occur. When 30n   and 15k  , the number of unique successful events is 

202.1631 10 . In addition, the determination of the probability of successful events, which 

involves multi-dimensional integration, requires expensive computational time. 

 

Therefore, in this dissertation, we develop computationally efficient reliability 

approximation for k -out-of- n  pairs:G Balanced systems. First, we investigate the 

reliability approximation of k -out-of- n  pairs:G Balanced systems under the assumptions 

that unbalanced systems are considered as failed systems and that individual units have 
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i.i.d. lifetimes. Second, we investigate the reliability approximation of such systems under 

the assumptions that unbalanced systems are balanced by considering standby and that 

individual units have exponential i.i.d. lifetimes. 

 

Monte Carlo simulation is effective in estimating the reliability of complex systems [5], 

[6]. In this dissertation, we use Monte Carlo simulation to approximate the reliability of k

-out-of- n  pairs:G Balanced systems. Utilizing simulation we can reduce the enumerations 

of successful events significantly by sampling a subset of events randomly as elaborated 

later in Chapter 4. In addition, we develop approximation for the multi-dimensional 

integral involved in the probability calculation of successful events. Numerical examples 

show that the reliability approximation approach proposed in this dissertation is effective 

and efficient. 

 

 Degradation Analysis of Systems with Spatially Distributed Units 

In many situations, sensors monitor the degradation processes of critical units. The 

degradation measurements of individual units, which may be significantly affected by their 

operating conditions, can be used to enhance the accuracy of system reliability estimation. 

It is hence of great significance to develop a degradation model for spatially distributed 

units which considers the physics-based or statistics-based underlying degradation rate, 

captures the effect of operating conditions on the degradation rate, and the variabilities in 

the manufacturing of individual units. These factors bring more challenges in reliability 

estimation of systems with spatially distributed units. 
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In this dissertation, we model the degradation of individual units in k -out-of- n  pairs:G 

Balanced systems. A unit fails when its degradation reaches a critical threshold. We assume 

that individual units of the same type have an identical baseline degradation rate, which is 

modeled as a function of time, e.g. power law. The effect of operating conditions on the 

degradation processes of individual units is modeled by stress-acceleration functions which 

govern the relationship between operating conditions (stresses) and acceleration factor for 

baseline degradation rate. 

 

Assume that unbalanced systems are balanced by forcing down operating pairs into standby 

or resuming standby pairs back to operation, and assume that the units are not subject to 

degradation or failure during standby, this problem introduces two challenges: 

 

First, successful events cannot be aggregated into groups to simplify computation. Under 

the assumption of i.i.d. lifetimes of individual units, successful events that have the same 

relative locations and sequences of failures occur with the same probability and hence can 

be aggregated into the same group to simplify computation. For instance, consider the 

system in Figure 1.1(a), the event that pairs *1 , *2  and 
*3  fail sequentially and the event 

that pairs *2 , 
*3  and *4  fail sequentially can be aggregated into one group. When 

individual units have different degradation paths due to different operating conditions, the 

lifetimes of individual units are no longer identically distributed. The probabilities of 

successful events should be obtained separately even if the relative locations and sequences 

of the failures in these events are the same. 
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Second, randomness in the degradation rates of units due to the operating conditions and 

manufacturing variations among the units. 

 

 Reliability Estimation of Weighted-c-out-of-n Pairs:G Balanced Systems 

In many cases, the function of systems depends on the capacities of individual units, e.g., 

engines with certain horsepower, or generators with a certain output voltage. In previously 

mentioned topics, the capacities of units are considered as equal and ignored in reliability 

modeling. For example, in an UAV that consists of identical rotors, the rotors should be 

able to provide the same lift power. But the capacities of units can decrease and vary from 

unit to unit in some cases, and thus should be considered in reliability modeling. 

 

In this dissertation, we investigate the reliability estimation of weighted- c -out-of- n  

pairs:G Balanced systems in two scenarios presented in Chapters 6 and 7 respectively. 

 

 Load-Sharing Effect on System Reliability 

We investigate the effect of load-sharing on system reliability metrics by assuming that the 

load each unit shares, which depends on the number of remaining operating pairs in the 

system, affects its hazard rate. In a weighted- c -out-of- n  pairs:G Balanced system with 

load-sharing effect, the load carried by failed units is re-distributed to the remaining 

operating units. When the operating units share more load, their hazard rates are affected 

in an adverse way, which decreases system reliability. In addition, the way load is 
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distributed to operating units should be considered in system reliability estimation 

especially when units have different capacities. 

 

 Optimal Design for Systems with Spatially Distributed Units 

The k-out-of-n pairs:G Balanced systems exist in many applications such as the descent 

system of planetary vehicles [4] and UAV. The reliability of such systems has a major 

impact on the accomplishment of important missions, the cost that may occur when a 

failure happens, and public safety as in the case of UAV failure. The reliability 

optimization for such systems hence is significant in practice. Chapter 3 shows that there 

exists an optimal reliability design for k-out-of-n pairs:G Balanced system. Therefore, we 

investigate the optimal reliability design of a k-out-of-n pairs:G Balanced system in this 

dissertation. 

 

 Organization of the Dissertation 

This dissertation is organized as follows. In Chapter 2 we present a comprehensive 

literature review of the related research. In Chapter 3 we present the procedures of 

estimating system reliability metrics for k -out-of- n  pairs:G Balanced systems in two 

scenarios: (i) unbalanced systems considered as a failed systems and (ii) unbalanced 

systems are rebalanced by considering standby pairs. In this chapter, we also propose an 

approach for determining balance (symmetry) of a system and heuristics to determine 

standby pairs for unbalanced systems. In Chapter 4, we present a reliability approximation 

approach for the systems introduced in Chapter 3. In Chapter 5 we propose a degradation 
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model for spatially distributed units, based on which reliability metrics of k -out-of- n  

pairs:G Balanced systems are obtained. In Chapter 6 we investigate the reliability 

estimation of weighted-c-out-of-n pairs:G Balanced systems by assuming that the 

individual units are subject to multi-state capacity degradation. In Chapter 7, we investigate 

the load-sharing effect on the reliability of weighted-c-out-of-n pairs:G Balanced systems. 

In Chapter 8 we study the optimal design for k -out-of- n  pairs:G Balanced systems. In 

Chapter 9 we present the conclusions and future research. 

 

Equation Chapter 2 Section 1  
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2. CHAPTER 2 

 

LITERATURE REVIEW 

 

 Literature Review on Systems with Spatially Distributed Units 

2.1.1 Multi-Dimensional Consecutive-k-out-of-n:F Systems 

A type of well-known systems with spatially distributed units is the multi-dimensional 

consecutive- k -out-of- n :F systems. The applications of such systems range from 

electronic devices composed of cell units in squares or cubes [7], [8], TV supervision 

systems [9] and disease diagnosis based on X-ray [8]. 

 

A survey of the multi-dimensional systems derived from the one-dimensional consecutive-

k -out-of- n :F system is found in [10]. Salvia and Lasher propose a two-dimensional 

consecutive- k -out-of- n :F system [7] by considering a square grid of units by side n , the 

system fails if there exists a failed square grid of units by side k . This is the first known 

multi-dimensional consecutive- k -out-of- n :F system considered in the literature. Koutras 

et al. [11], [12] provide estimates of the reliability of this system. Boehme et al. [9] propose 

a more generalized model, i.e. connected- X -out-of-  ,m n :F lattice system, where the 

lattice of units can be rectangular, circular, and cylindrical. Boehme et al. also provide the 

reliability estimation of such a system. A special case of the connected- X -out-of-  ,m n :F 

lattice system is the consecutive-  ,r s -out-of-  ,m n :F system. Its reliability estimation is 

investigated further by Yamamoto and Miyakawa [13], Makri and Psillakis [14], Godbole 
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et al. [15], Hsieh and Chen [16], and Zhao et al. [17]. Godbole et al. [15] extend the result 

for d -dimensional system where 3d  . Other systems such as k -within-consecutive-

 ,r s -out-of-  ,m n :F systems [14], [18], [19] and consecutive-  ,r s -out-of-  ,m n :F 

systems with constraints on the total number of operating units [20] are investigated. 

 

Boushaba and Ghora [21] introduce the three-dimensional consecutive- k -out-of- n :F 

system and investigate its upper and lower reliability bounds. They state that “It is very 

difficult, probably impossible, to derive simple explicit formula for the reliability of a 

general three-dimensional consecutive- k -out-of- n :F system.” Boushaba and Azouz [22] 

propose another method for estimating the lower reliability bound. Others [8], [23] attempt 

to address this research area but the contributions are limited due to the difficulty of the 

problem. 

 

A thorough review of related work reveals that the reliability estimation of multi-

dimensional consecutive- k -out-of- n :F systems is important yet challenging. The research 

is important since its applications can be found in many areas such as disease diagnosis by 

reading an X-ray [8] and other medical imagery [22], the failure model of three-

dimensional flash memory cells [23], the failure model of thin film transistor liquid crystal 

display [19], scatter water area of a water sprinkler system [24], supervision system [9] and 

pattern recognition [7]. However, due to the difficulty of the problem, a large portion of 

the papers [7]-[12], [14]-[16], [21], [22], [25] only address the upper and lower bounds of 

system reliability without providing the exact values. In addition, very few papers [23] 

consider units with reliability functions. 
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2.1.2 k-out-of-n Pairs:G Balanced Systems 

Another emerging system with spatially distributed units is the rotary winged Unmanned 

Air Vehicles (UAV) with multiple pairs of rotors [26]. UAV is set to play a major role in 

the future of the aerospace industry [27] and its use in many applications. For example, an 

UAV can collect more detailed geographic data than satellite [28]. Although UAVs have 

numerous potential applications, its flight is highly restricted now because its reliability is 

lower than manned aircraft [29]. No research is found related to the quantitative modeling 

and estimation of the multiple rotary UAV’s reliability. 

 

Multiple rotary UAV falls into the category of k -out-of- n  pairs:G Balanced systems with 

units distributed spatially in a circular configuration. The reliability of such a system is 

difficult to estimate as it has the same nature of aforementioned multi-dimensional 

consecutive- k -out-of- n :F system. In addition, the consideration for system balance in k -

out-of- n pairs:G Balanced systems adds to the difficulty in reliability estimation. 

 

Attempts have been made for estimating the reliability of k -out-of- n  pairs:G Balanced 

systems. Sarper and Sauer [4], [30] consider two balanced engine systems in planetary 

descent vehicles and estimate their reliability. The balanced engine system has four (or six) 

engines located evenly on a circular configuration to keep the descent vehicle in balance. 

Two (or three) engine pairs are formed along diameters of the circle. In each pair, when 

one engine fails, the second engine of the same pair is forced down to maintain balance. 

The system operates if and only if at least one (or two) engine pairs operate properly. 
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However, the two balanced engine systems with only two or three pairs of units are quite 

simple. The methods developed for estimating the reliability of these two systems hence 

cannot be used for more general systems. 

 

 Applications of k-out-of-n Pairs:G Balanced Systems 

In practice, k -out-of- n  pairs:G Balanced systems are already used in many applications. 

We provide some examples as follows: 

 

2.2.1 Engine Systems in Planetary Descent Vehicles 

Sarper and Sauer [4] present two balanced engine systems in planetary descent vehicles 

and estimate their reliability. The balanced engine system has four (or six) engines located 

evenly on a circle to keep the descent vehicle in balance. Two (or three) engine pairs are 

formed along diameters of the circle. When one engine fails, the second engine of the same 

pair is forced down to regain balance. The system operates if and only if at least one (or 

two) engine pairs operate properly depending on the requirements of the system. 

 

2.2.2 Unmanned Aerial Vehicles 

Unmanned Aerial Vehicles (UAVs), a.k.a. drones, are widely used in military and 

commercial applications. UAVs with multiple rotors, e.g. quadcopter, hexacopter, and 

octocopter, are used in border protection and are being prototyped for package delivery 

and other applications. UAVs with multiple rotors can be modeled as k -out-of- n  pairs:G 

Balanced systems. The individual rotors rotate in two opposite directions to provide thrust 
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for UAVs, and at the same time, provide UAVs the ability to pitch, roll or yaw. Not all the 

rotors have to be rotating for an UAV to fly safely when more than 6 rotors are mounted 

in the system, though the number of working rotors should be above a critical number. An 

UAV also requires balance in the sense that the operating rotors should be symmetric, and 

the number of rotors rotating in the opposite directions should be equal. 

 

2.2.3 Generators and/or Alternators  

The stators and rotors of wind turbine generators are composed of multiple sets of three-

phase windings. In each set of windings, the windings of different phases should be 

mounted evenly on a circle with 2 / 3  degrees between them. The multiple sets of 

windings are then mounted evenly with the other windings on the circle in a symmetric 

manner. The symmetry of windings is critical for the “health” condition of the generators 

[31], [32]. The symmetry among windings is necessary to avoid failure of the generator. 

The winding sets can be modeled as a k -out-of- n  pairs:G Balanced system by considering 

each winding as a pair because each winding occupies the two ends of a diameter of a circle. 

 

For an alternator, its salient pole rotor has multiple field coils arranged evenly on a circle 

to provide magnetic flux. The coils should be arranged in such a way that any two adjacent 

coils should provide opposite magnetic poles. The sets of coils can also be modeled as a k

-out-of- n  pairs:G Balanced system by considering each coil as a unit. 
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 Literature Review on Symmetry Measure 

The existing research on axes of symmetry, which exists in various areas such as chemistry 

and phytology, can be categorized into two major areas: seeking axes of symmetry for 

symmetric or approximately symmetric shapes or images [33]; and measuring asymmetry 

or symmetry of a shape or image and determining the minimum change needed to get the 

shape or image into a symmetric one [34]. The balance of the proposed k -out-of- n  pairs:G 

Balanced system highly depends on its symmetry. The measure of symmetry and 

rebalancing an unbalanced system is a variant of the second research area. However, the 

minimum change involved in the second area is not to omit or add elements such as points 

or pixels, but to adjust the locations of currently existing elements. So the methods cannot 

be applied to the problem under study which involves forcing down operating pairs into 

standby and resuming standby pairs back to operation (omitting and adding elements 

temporarily from the system). 

 

In this dissertation, we develop a measure of symmetry to determine the balance of k -out-

of- n  pairs:G Balanced systems. In the scenario where standby is considered, we develop 

heuristics to determine which operating pairs to force down into standby and which standby 

pairs to resume operation to rebalance unbalanced systems. 

 

 Literature Review on Monte Carlo Simulation-Based Reliability 

Approximation 

In this section, we provide a literature review on Monte Carlo simulation-based reliability 

approximation. Monte Carlo simulation-based methods are widely used in reliability 
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approximation. Crude Monte Carlo simulation performs well in simple problems, though 

becomes time-consuming when problems become more complex. Therefore, many 

methods are developed for variance reductions to improve the efficiency of the Monte 

Carlo simulation, e.g. subset simulation and importance sampling. 

 

A thorough review of the literature shows that the existing methods either lack the ability 

to approximate the reliability of k -out-of- n  pairs:G Balanced systems or require 

significant effort to be applied to the systems. In this dissertation, we develop an efficient 

and effective reliability approximation method for k -out-of- n  pairs:G Balanced systems 

based on Monte Carlo simulation. In addition, this method can be easily generalized to 

approximate the reliability of other systems with spatially distributed units.  

 

2.4.1 Crude Monte Carlo Simulation 

The Crude Monte Carlo simulation method repeatedly generates the realizations of system 

states by randomly drawing samples from the distributions of components’ failure times. 

A system state is considered successful if the remaining operating components, the failure 

times of which are greater than the mission time, form a path. Approximate value of system 

reliability is obtained as the ratio of the number of successful system states over the total 

number of states generated through a large number of simulation runs. The approximate 

value converges to the true value as more simulation runs are implemented. Research in 

this area is found in [35], [36], [37], [38], and [39]. 
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This method, though straightforward, tends to require a great amount of time to converge. 

Especially when the target system states occur with small probabilities, it requires a 

significant number of simulation runs to draw enough samples from the target region [40]. 

Thus many papers propose variance reduction methods to improve the simulation 

efficiency. 

 

2.4.2 Subset Simulation 

Subset simulation treats each system state as a result of a sequence of intermediate system 

states. The underlying idea is to express the probability of a target system state, which can 

be very small in many cases, as a product of probabilities conditional on some intermediate 

system states [40]. Thus a rare system state can be generated by a sequence of simulations 

of more frequent intermediate system states. This method can be used when it is possible 

to model system states as a vector of parameters so that target system state and its 

intermediate system states can be modeled as subsets of the universal set of the parameter 

vectors. Research in this area is found in [40], [41], [42], [43], and [44]. 

 

In this dissertation, we consider the k -out-of- n  pairs:G Balanced systems. The function 

of such systems depends on the sequence and location of the failures; and it is very difficult, 

if not impossible, to model intermediate system states into subsets especially when there 

are system states with forcing-down and resumption of standby pairs. 
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2.4.3 Importance Sampling 

Importance sampling is a widely used variance reduction method to improve simulation 

efficiency. The basic idea is to draw samples from an importance distribution that 

overweighs the target region instead of the original distribution, and then adjust the 

estimation with a likelihood ratio, namely the ratio of pdf of the original distribution over 

the pdf of the importance distribution. Due to the oversampling in the region of concern, 

the importance sampling method converges in significantly less simulation runs [45]. This 

method is especially used in the case of highly reliable systems and hence a small failure 

region. Research and survey in this area are found in [46], [47], [48], and [49]. 

 

The success of the method relies on a prudent choice of the importance distribution, which 

requires knowledge of the system in the failure region [40]. However, it is difficult, if not 

impossible, to determine the importance distribution for the failure region of k -out-of- n  

pairs:G Balanced systems. 

 

2.4.4 Other Variance Reduction Methods 

Other variance reduction methods are found in the literature. However, these methods 

require prior knowledge of the system, e.g. complete minimum cut set [50] or fault tree 

[51], lack the ability to model the effect of failure sequence [52], [53] or locations [54], 

[55], or are developed for specific systems, e.g. series and parallel systems [52], network 

systems [53], [56], linear sensor systems [57], or construction structures [58], [59], [60], 

[61]. It requires much extra effort to apply these methods to the reliability approximation 

of k -out-of- n  pairs:G Balanced systems, if indeed possible. 
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 Literature Review on Degradation Modeling of Individual Units 

2.5.1 Physics-Based Degradation Model 

Modeling the degradation process of products based on physics of failure is common for 

products with known failure mechanisms. Using physics-based degradation models results 

in a more accurate prediction for the reliability metrics of a batch of products. 

 

A recent thesis by Kulkarni [62] investigates the physics degradation model for electrolytic 

capacitors. Tyaginov et al. [63] analyze and classify the existing hot-carrier degradation 

models and present a novel degradation model that includes all essential aspects of hot-

carrier degradation. McPherson [64] presents three generally used physics-based 

degradation models: power law, exponential, and logarithmic. “These three forms were 

selected because they tend to occur rather frequently in nature.” [64]  

 

Power law model is more frequently observed according to McPherson [64]. Hot carrier 

induced degradation of an SOI (Silicon on Insulator) MOSFET (Metal–Oxide–

Semiconductor Field-Effect Transistor) is best described by power law nt  where the 

exponent n is centered at around 0.25 or 0.5 depending on the stress conditions [65]. The 

threshold voltage of an PMOS (P-type Metal-Oxide-Semiconductor) transistors also has a 

degradation process in the form of nt [66], [67]. 
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Exponential and logarithmic models are used when power law model does not fit the data. 

Drag-reduction-effect of polymer additive decreases following an exponential path [68]. 

Meeker and LuValle [69] describe an example of exponential degradation process on a 

circuit board. The remaining salts in printed circuit boards after manufacturing react with 

copper to generate copper chlorine compounds that may cause failure of circuit boards. 

The amount of copper chlorine compounds increases in an exponential form. Doyle [70] 

finds that the weight loss of a silicon resin in time follows a logarithmic model. He also 

states that the logarithmic process is encountered quite often not only in weight loss studies 

but also in some studies of moisture sorption and desorption, as well as loss of dielectric 

strength by solid polymers during heat-aging. 

 

Physics-based degradation models utilize the information of the physics of the failure 

mechanisms of products and provide perspective on its degradation processes. However, 

the limitations of physics-based degradation models are also obvious. First, these models 

are much more difficult to construct. Extensive experiments must be carried out based on 

in-depth knowledge of physics, chemistry and metallurgical properties of the components. 

Second, the models are usually for simple electronic devices or mechanical components. 

The application of these models is limited for complex systems with multiple components. 

Third, physics-based degradation models tend to result in less accurate prediction for 

individual products due to the diversity of products and the stochastic nature of failures 

[71]. 
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Statistics-based degradation models are used when physics-based degradation models are 

not adequate due to its limitations. 

 

2.5.2 Stochastic Process/Statistics-Based Model 

A general degradation path is proposed by Meeker and Escobar [72]. The degradation of 

unit i  at time jt  is modeled as ij ij ijy Y   where ijY  is the actual path and ij , which 

follows a normal distribution with zero mean, is the residual deviation. In addition, 

stochastic processes are commonly used to describe the degradation processes. “Stochastic 

models, as an alternative, are preferred whenever there is lack of experimental data or prior 

knowledge about the products.” [73] Brownian motion and Gamma processes are two 

widely used stochastic processes for modeling the degradation paths. 

 

Gebraeel et al. [74] model the degradation process of product using an exponential model 

where the randomness from unit to unit is modeled with a centered Brownian motion. 

According to Gebraeel et al. [74], [75], the randomness from unit to unit can also be 

modeled with a standard normal distribution. Wang et al. [76] propose a degradation-based 

remaining useful life prediction method where the degradation is modeled using a 

Brownian motion with drift. The drift parameter is adaptive to the history of condition 

monitoring information. Wu et al. [77] propose a degradation-based reliability estimation 

method with random failure threshold.  

 

Marseguerra et al. [78] model the degradation of a maintainable system with a discrete 

time Markov chain that describes the condition of the system before or after maintenance. 
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Grall et al. [79] present condition based maintenance (CBM) approach where the condition 

(degradation) of single-unit-system is modeled with a Markovian stochastic process. Since 

the inspections are carried out at discrete instants of time when degradation increments 

occur, the model can also be considered as a cumulative damage model. The increments 

are considered to follow exponential distribution or Gamma distribution. Deloux et al. [80] 

study the maintenance optimization of a system subject to environmental stresses. The 

degradation of the system is modeled as a Gamma process. Liao et al. [81] use Gamma 

process to model the degradation of systems in numerical simulation due to the 

monotonous increments property of Gamma process. 

 

2.5.3 Degradation Modeling Considering Operating Conditions 

Many degradation models that consider operating conditions are found in the area of 

Accelerated Degradation Testing (ADT). Meeker et al. [82] provide an extensive 

introduction of ADT. Brownian motion or geometric Brownian motion with stress 

(operating condition) dependent drift coefficient and gamma process with stress-dependent 

shape parameter are widely used to model degradation processes considering operating 

conditions [83], [84], [85]. 

 

Liu et al. [86] present a degradation model for individual units considering the effect of 

operating conditions using a Brownian motion with time variant drift and diffusion 

coefficients. The model is composed of two parts: the deterministic part which deals with 

either physics-based or statistics-based degradation rate, and the stochastic part which 

considers the randomness in the degradation processes. The effect of operating conditions 
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on degradation rate is modeled by applying a stress-acceleration factor. Closed form 

expressions for pdf of lifetimes and reliability function of individual units are obtained. 

 

2.5.4 Stress-Acceleration Functions 

Stress-acceleration functions are widely used to model the effect of stresses (operating 

conditions) on degradation processes. Stress-acceleration functions can be categorized into 

experimental-based functions and empirical functions [87] as explained below. 

 

2.5.4.1 Experimental-Based Functions 

The Arrhenius equation is one of the most widely used stress-acceleration functions. It 

relates the rate of a simple (first order) chemical reaction rate (degradation rate) and 

temperature [88] as given in Eq. (2.1) 

 exp aE
C

K T

 
   

 
   (2.1) 

where   is the reaction rate; C  is a constant; aE  is the activation energy of the reaction, 

usually in electron-volts; T  is the absolute Kelvin temperature; and K  is Boltzmann 

constant. 

 

Another widely used stress-acceleration function is the Eyring equation that describes the 

effect of temperature on the reaction rate of a process: 

   exp aE
C f T

K T

 
     

   (2.2) 
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where  f T  is a function of temperature determined by the specifics of the reaction 

dynamics. Applications in the literature typically assume   mf T T  with a fixed value of 

m  [87]. 

 

2.5.4.2 Empirical Functions 

It is possible to obtain stress-acceleration functions via experimental observations or based 

on knowledge of physics or chemistry, yet it is time-consuming and sometimes infeasible 

to do so. Simple empirical functions have been used to describe the stress-degradation 

relationship. 

 

In some Brownian motion based degradation models, the degradation rate (drift coefficient 

of the Brownian motion)   is expressed as an exponential function of the stress vector S : 

    exp a b   S S    (2.3) 

where  S  is a function of stress vector S , and a  and b  are constants. Wang et al. [89] 

and Liao and Elsayed [83] use this model in ADT. Other empirical functions such as power 

law model are described in [73], [90], [91]. 

 

 Literature Review on the Degradation Analysis of Systems with Multiple Units 

2.6.1 Systems with a Simple Configuration of Units 

Most of the research focuses on the degradation of simple systems such as series systems, 

parallel systems, the combinations of series and parallel systems, and k -out-of- n :G/F 
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systems where at least k  out of n  units must operate or fail. In such systems, only certain 

configurations of the units are required for the systems to operate. In other words, the 

spatial relationships of individual units have no effect on reliability analysis. 

 

Pham et al. [92] investigate the reliability metrics of a k -out-of- n :G system with units 

that are subject to both discrete degradation stages and catastrophic failure. An individual 

unit either fails as it reaches the last stage of degradation or fails catastrophically. Song et 

al. [93] propose a degradation model for individual units considering the impact of shocks, 

which is shared by all units, on their degradation. The estimation of system reliability for 

series systems, parallel systems, and series-parallel systems is given. Gupta and Lawsirirat 

[94] present a general model for systems with multiple degrading units using Failure Modes 

and Effects Analysis (FMEA) to obtain interaction intensities ij  between individual units 

i  and j , the system degradation at time t ,  sysD t  is obtained as 

   , , ,

1 1

N N

sys ij i t j t sys t

i j

D t D D J
 

    (2.4) 

where ,i tD  is the degradation of unit i  ( 1,2, ,i N  ) at time t ; and ,sys tJ  is the damage 

caused to the system due to the failure of individual units. This model depends on the 

accuracy of ij  obtained through FMEA, which is difficult to obtain for complex systems. 

Bian and Gebraeel [95] propose a degradation model for multiple units considering the 

dependence between the degradation rates of the units, which results in a more accurate 

prediction of the remaining useful life of individual units. 
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2.6.2 Systems with Spatially Distributed Units 

Degradation analysis for systems with spatially distributed units is much more complicated 

due to the consideration of locations and sequences of failures. Work related to this area is 

sparse. Enright and Frangopol [96] investigate the reliability of a highway bridge with 

multiple spatially distributed girders. Series systems and series-parallel systems are used 

to model the bridge. The degradation of resistance of the girders is modeled with a 

deterministic polynomial function of time with a time variant random threshold as 

explained later. The overall load on the bridge, which follows a known distribution, occurs 

according to a Poisson process. This problem involves load redistribution whenever some 

girders fail, which is complicated due to the spatial distribution of the girders. The load 

shared by remaining girders, which can be considered as the critical thresholds for their 

resistance, depends on their spatial locations and the locations of failed girders. A failure 

tree describing the events with girders in different locations failing in different sequences 

is built to facilitate reliability estimation. 

 

Marsh and Frangopol [97] investigate the reliability of reinforced concrete bridge decks by 

considering the corrosion of the reinforcing steels. Spatial correlation between corrosion 

of the reinforcing steels at different locations of the deck is considered in the model to 

enhance the accuracy of reliability estimation. The locations of reinforcing steels have a 

significant effect on the overall resistance capacity of the bridge deck to the applied load. 

No explicit expression for system reliability is obtained due to the modeling and 

computation challenges of the problem. Instead, Monte Carlo simulation is used to obtain 

system reliability. 
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 Literature Review on Multi-State k-out-of-n:G/F Systems 

El-Neweihi et al. [98] propose the first definition for a multi-state k -out-of- n  system 

model, where the system state is defined as the state of the thk  best unit [99]. Boedigheimer 

and Kapur [100] define the multi-state k -out-of- n  system in terms of lower and upper 

boundary points, which is considered as consistent [99] with the one proposed by El-

Neweihi et al. [98]. Huang et al. [101] propose a generalized multi-state k -out-of- n :G 

system where the state space of each unit and the system is  1,2, ,M  and a lower state 

level represents a worse or equal performance of the unit or the system. The definition of 

the system is as follows: 

 

An n -component system is called a generalized multi-state k -out-of- n :G system if 

   1,2, ,j j M  x  whenever there exists an integer value  l j l M   such that at 

least lk  components are in states at least as good as l . Where  1 2, , , nx x x x  is an n -

dimensional vector representing the states of all components,  x  is the state of the 

system, which is also called the structure function of the system. 

 

A corresponding multi-state k -out-of- n :F system is defined as follows [102]: 

 

An n -component system is called a generalized multi-state k -out-of- n :F system if 

   1j j M  x  whenever the states of at least lk  components are below l  for all l  

such that j l M  . 
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An example of k -out-of- n :G system is given by Zuo et al. [102] as follows: 

      

“Consider a power station with three generators. Each generator is treated as a 

component, and there are three components in the system. Each generator may be in 

three possible states: 0, 1, and 2. When a generator is in state 2, it is capable of 

generating 10 megawatts of power output; in state 1, 2 megawatts, and in state 0, 0 

megawatt. The total power output of the system is equal to the sum of the power output 

from all three generators. We can describe this model as follows: The system is in state 

2 whenever at least 1 component is in state 2; in state 1 or above whenever either at 

least 1 component is in state 2 or at least 2 components are in state 1 or above; and in 

state 0 otherwise.” 

 

The reliability metric estimation of the systems is discussed by [101], [103], [104], [105], 

[106] and [107]. A comparison of the method is given by Mo et al. [108]. Overall, the 

objective is to increase the efficiency of reliability estimation algorithm and to reduce 

computation time, or to provide bounds [104] and approximation [107] for system 

reliability metrics. Tian et al. [99] propose a new multi-state k -out-of- n :G system with 

the following definition: 

 

An n -component system is called a multi-state k -out-of- n :G system if 

   1,2, ,j j M  x  whenever at least lk  components are in state l  or above for all l  

such that 1 l j  . 

 

Similarly, there is a corresponding definition for multi-state k -out-of- n :F system. The 

reliability of such systems are discussed in [99], [107], and [108]. 
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Another variant of the multi-state k -out-of- n :G/F systems is multi-state consecutive- k -

out-of- n  systems [109], [110], [111]. Explicit recursive formulas are provided for special 

systems and algorithms are developed for the generalized systems. 

 

 Literature Review on Weighted-c-out-of-n:G/F Systems 

In the research related to the reliability estimation of redundant systems, it is assumed that 

each individual unit in the systems has its own integer weight, which can be considered as 

its capacity. The systems are called systems with weighted units. 

 

Wu and Chen first propose weighted- c -out-of- n :G system [112] and consecutive-

weighted- c -out-of- n :F system [113]. The systems consist of n  units, each of which has 

its own integer weight. The former system operates if and only if the total weight of 

operating units is at least c , whereas the latter system fails if and only if the total weight 

of the consecutively failed units is at least c . Recursive algorithms are developed to 

estimate the reliability of these systems. Chang et al. [114] investigate circular consecutive-

weighted- c -out-of- n :F system and develop an algorithm for estimating its reliability. 

 

Eryilmaz [115] investigates the reliability of a k -out-of- n :G system with units of random 

integer weights. The system operates if and only if there are at least k  operating units, and 

the total weight of all operating units is above a critical value c . Kamalja and Amrutkar 

[116] and Eryilmaz [117] provide reviews of systems with weighted units. 

 



 

 

36 

 Literature Review on Load-Sharing Models 

2.9.1 Load-Sharing Rules 

Most of the research that address the load-sharing effect on system reliability utilize the 

monotone load-sharing rule where the load increment due to failures of some units is 

shared among the remaining operating units [118]. Two special cases of the monotone 

load-sharing rule are the equal load-sharing rule and local load-sharing rule [119]. Under 

the equal load-sharing rule, all operating units share overall system load equally [120]. 

Under the local load-sharing rule, the load carried by failed units is distributed only to their 

adjacent units. 

 

2.9.2 Load-Sharing Effect Models 

The most widely used models for load-sharing effect are Accelerated Failure Time Model 

(AFTM) [121], Tampered Failure Rate (TFR) model [120], Cumulative Effect (CE) model 

and Proportional Hazards Model (PHM). 

 

2.9.3 Baseline Hazard Rate Models 

Constant Baseline Hazard Rate Model. Constant baseline hazard rate model simplifies 

load-sharing problems and hence is widely used in literature. Scheuer [122] investigates 

the reliability of k -out-of- n :G system under two assumptions: (i) individual units have 

i.i.d. exponential lifetimes, which implies identical constant hazard rate, and (ii) the 

identical hazard rate of operating units increases when a failure occurs. Shao and 

Lamberson [123] study the problem by assuming repairable units and imperfect switching, 
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i.e. failure to detect and disconnect failed units. Lin et al. [124] investigate the problem in 

[122] further by assuming non-identical units. 

 

Time-Variant Baseline Hazard Rate Model. Time-variant baseline hazard rate model is 

more general and realistic but complicates load-sharing problems. Hassett et al. [125] 

provide analytical results for the reliability and availability of systems with one or two 

units that have non-identical power law time-variant hazard rate and repair rate. Amari et 

al. [120] provide analytical results for k -out-of- n :G systems considering TFR load-

sharing effect and generalize the results to a wide range of time-variant baseline hazard 

rate models. 

 

2.9.4 Other Research 

Yamamoto et al. [126] investigate the optimal load allocation (load-sharing rule) for k -

out-of- n :F systems, and find that system lifetime is maximized by allocating the load to 

units according to their residual lifetimes. Huang and Xu [127] estimate the reliability of a 

k -out-of- n :G system with maximally m  ( k m n  ) active units at all times. Load (tasks) 

is assigned to units by a controller, and active units can be either busy or idle. Qi et al. [128] 

investigate the optimal maintenance policy for load-sharing computer systems with k -out-

of- n :G redundant configuration. 
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 Literature Review on Optimal Design for Systems’ Reliability with Spatially 

Distributed Units 

The system reliability optimization without considering maintenance can generally be 

categorized into redundancy allocation problem, reliability allocation problem and the 

combination of the two [129]. Redundancy allocation problem is to add redundant units to 

the system and/or to allocate redundant units to sub-systems in the form of cold, warm or 

hot standby. The sub-systems can take a variety of forms such as parallel systems or k-out-

of-n systems. On the other hand, reliability allocation problem treats the reliability of the 

units allocated to any sub-system as a decision variable. Coit et al. [130] study the 

redundancy allocation problem for systems with multiple k-out-of-n sub-systems in series. 

Elegbede et al. [131] and Tian and Zuo [132] investigate the redundancy-reliability 

allocation problem considering parallel sub-systems in series. Reviews on the reliability 

optimization research are given in Kuo [129], [133]. 

 

The redundancy allocation and reliability allocation problems are proven to be NP-hard 

[134], [135]. As the complexity of the problems grows, heuristics become a common 

technique for solving the optimization problems [133], [136], [137]. The most popular 

heuristics include Ant Colony, Genetic Algorithm, Tabu Search, and Simulated Annealing 

[133]. 

 

The reliability optimization for k-out-of-n:F/G systems has been a subject of investigation. 

Yosi [138] studies the reliability optimization of k-out-of-n systems when the units have 

two failure modes. Zuo [139] investigates the reliability allocation for consecutive-k-out-
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of-n:F/G systems. The objective functions include exact values of system reliability metrics, 

upper or lower bounds of system reliability metrics, and overall cost considering system 

reliability and cost of failure. A comprehensive review of reliability optimization for k-out-

of-n:F/G systems is given in [140].  

 

However, reliability optimization for multi-dimensional k-out-of-n:F/G systems is 

sparsely studied [140]. Zuo [141] investigates the reliability optimization for 2-D 

consecutive k -out-of- n :F systems. This dissertation is the first to investigate the reliability 

optimization for k -out-of- n  pairs:G Balanced systems. We investigate both redundancy 

allocation and reliability allocation problems for k-out-of-n pairs:G Balanced systems. First, 

we determine the optimal number of pairs and optimal standby policy, which is a 

redundancy allocation problem. Second, we allocate pairs with different lifetime 

distributions to different locations in the system to optimize the overall system reliability 

metrics, which is a reliability allocation problem. 

Equation Chapter (Next) Section 1 
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3. CHAPTER 3 

 

RELIABILITY ESTIMATION OF k-OUT-OF-n PAIRS:G BALANCED 

SYSTEMS 

 

 Problem Definition and Assumptions 

In this chapter, we present methods for reliability estimation of different types of k-out-of-

n pairs:G Balanced systems in two scenarios: (i) unbalanced systems are considered as 

failed systems and (ii) unbalanced systems are rebalanced. We develop a systematic 

approach for enumerating the complete set of successful events, which are ordered 

sequences of failures described by system state transition paths, and obtain closed form 

expressions for calculating the probabilities of successful events. The developed methods 

can be generalized to other systems with spatially distributed units. 

 

The assumptions stated in the Chapter 1 hold throughout this chapter. We also assume that 

the hazard rates of individual units are not affected by the total number of operating units. 

 

 Reliability Estimation of Systems Considering Unbalanced States as Failure of 

the System 

3.2.1 System Description 

In this section, we consider two types of k -out-of- n  pairs:G Balanced systems with the 

constraint that a system fails once it becomes unbalanced even if there are still k  or more 
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operating pairs remaining in the system. In the first type of systems, all units perform the 

same function; whereas in the second type, the units perform complementary functions 

with any two adjacent units performing different functions as explained later. 

 

For clarity and simplicity, when we mention state pattern, typical state, and follow-up state, 

we mean the system state rather than the unit state or the pair state. 

 

3.2.2 Symmetry Determination 

If a system is balanced, it is symmetric in the sense that all the operating units in the system 

should be symmetric w.r.t. at least one pair of perpendicular axes. We introduce the concept 

of Moment Difference (MD) to determine the degree of symmetry of a system w.r.t. any 

candidate axes. The MD of a system w.r.t. candidate axis a  is calculated as 

 
,sin

a

a i i a

i U

M w


    (3.1) 

where aM  is the MD of the system w.r.t. candidate axis a ; aU  is the complete set of all 

the units within / 2  of candidate axis a ; iw  is the weight of unit i ; and ,i a  is the angle 

from the axis on which unit i  is located to candidate axis a . The weight of each unit is as 

defined in the Introduction. The angle ,i a  has a positive value if it is clockwise and 

negative value otherwise. 

 

For k -out-of- n  pairs:G Balanced systems considered in this chapter, a candidate axis of 

symmetry is either along a pair of units, or in the middle of two adjacent pairs. In a system 

with n  pairs of units, there are 2n  candidate axes which compose n  pairs of the 
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perpendicular candidate axes. We examine the symmetry of the system w.r.t. all n  pairs of 

the perpendicular candidate axes by corresponding MD values. 

 

Consider the system shown in Figure 3.1(a) which has 8n   pairs of units. The state of the 

system is (0101011101010111), i.e. the units in white have state 1 and the units in black 

have state 0 as mentioned in the Introduction. This system has 8n   pairs of perpendicular 

candidate axes. We index the candidate axes as shown in Figure 3.1(b). We simply index 

the 8 pairs of perpendicular candidate axes by numbers 1̂  to 8̂ . In addition, to differentiate 

between the two perpendicular candidate axes in each axis pair, we index them with (I) and 

(II). For example, the vertical axis is indexed as  1̂ I  and its perpendicular axis is indexed 

as  1̂ II . Consider the candidate axis  4̂ I  shown by the dashed line in Figure 3.1(a). The 

complete set of units within / 2  of the axis is 
 

 
I4̂

3,4, ,10U   , the corresponding 

weights iw  for the units in 
 I4̂

U  are [0,1,0,1,1,1,0,1] , and corresponding angles 
 4 I, ˆi

  are 

{  / 8 3.5,  2.5,  1.5,  0.5,  0.5,  1.5,  2.5,  3.5     }. For instance, in Figure 3.1(a) the 

angle from the axis on which unit 3 is located to the candidate axis  4̂ I  is 

 ˆ3,4 I
/5 83.   . The MD value of the system w.r.t. this candidate axis is 0.7049. 

Similarly, the MD w.r.t. the perpendicular candidate axis, axis  4̂ II  shown by dotted-

dashed line, is –0.4710. 

 

Starting from the vertical and horizontal candidate axes, i.e. axes  1̂ I  and  1̂ II  in Figure 

3.1(b), we consider the 8n   pairs of perpendicular candidate axes anticlockwise. The MD 
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values are shown in Figure 3.2 where the Moment Difference I and II represent the MD 

values of the system w.r.t. the 8 candidate axes indexed with  I  and  II , respectively. 

 

We then examine if there are any pairs of perpendicular candidate axes that have zero MD 

values w.r.t. both candidate axes. If so, the system is symmetric; otherwise, the system is 

asymmetric. For instance, in Figure 3.1(a) we can easily conclude that the system is 

symmetric since all the operating pairs are symmetric w.r.t. candidate axes  5̂ I  and  5̂ II . 

The MD values for the two candidate axes are both zero as shown in Figure 3.2. We can 

numerically validate that MD is effective in determining system symmetry when n is less 

than 30. When n is large, we add another condition for system symmetry as introduced in 

Section 4.2.1. 

 

 

(a)                                                         (b) 

Figure 3.1 Illustration of a system for Moment Difference calculation 
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Figure 3.2 Illustration of Moment Difference for all candidate axes in a system 

 

3.2.3 Fundamental Method of Successful Event Enumeration 

In order to estimate the reliability of k -out-of- n  pairs:G Balanced system, we first obtain 

all the successful events, i.e. system state transition paths that lead to operating system 

states, and estimate the probability of each event. The system state transition paths can be 

aggregated into several types, which reduces the computational time significantly. 

Moreover, the number of realizations of each type of system state transition paths is also 

determined. 

 

First, we enumerate all the state patterns with a certain number, say h , of failed pairs. All 

the system states can be categorized into some state patterns. Consider the system in Figure 

1.1(a), the two system states when pairs *1 , *2 , 
*3  fail and when pairs *1 , 

*5 , 
*6  fail can 

be categorized into the same state pattern with three consecutive failed pairs. We represent 

each state pattern with one typical state. A typical state of a state pattern is an arbitrary 

state of the system with failures arranged in the corresponding state pattern. Consider the 

system in Figure 1.1(a), the typical state of state pattern with three consecutive failed pairs 
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can be anyone of these states (000111000111), (100011100011), (110001110001), 

(111000111000), (011100011100) or (001110001110). 

 

Then, we enumerate all the transitions from state patterns with h  failed pairs to state 

patterns with  1h  failed pairs, where h  increases from zero to a maximum allowed 

value by increment 1. We determine the transitions between state patterns as follows. An 

unbalanced state pattern has no output transitions although it may have input transitions. 

When we determine the transitions from a balanced state pattern with h  failed pairs to state 

patterns with  1h  failed pairs, we enumerate the follow-up states derived from the 

typical state of the balanced state pattern with h  failed pairs. A follow-up state of a typical 

state can be obtained by turning one operating pair of the typical state into failure. Each 

follow-up state is matched with one of the state patterns with  1h  failed pairs. If we find 

such a match, an allowable transition is made. Note there can be more than one realization 

of the transition between two state patterns. To match a state to a state pattern, we determine 

if the state is a repetition of the typical state of the state pattern. If so, then we find a match. 

In this dissertation, to determine if a row vector b , e.g. a system state, is a repetition of 

another row vector a , we compare them by searching a  in the vector of  ,b b . If a  can 

be found in  ,b b , then a  is a repetition of b . 

 

We record the number of realizable transitions from balanced state patterns with h  failed 

pairs to those with  1h  failed pairs in a transition matrix , 1h hQ  which has hm  rows and 

1hm   columns where hm  is the number of balanced state patterns that has h  failed pairs. 
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 , 1 ,h h i jQ  is the number of realizable transitions from the thi  state pattern with h  failed 

pairs to the thj  state pattern with  1h  failed pairs. The matrix does not include the 

transitions from balanced state patterns to unbalanced ones. 

 

3.2.4 Reliability Estimation of Systems with Units Performing Single Function 

In this section we discuss the reliability estimation of k -out-of- n  pairs:G Balanced 

systems with all units performing the same function. Such a system is considered balanced 

if the operating units in the system are symmetric w.r.t. at least one pair of perpendicular 

axes. We use the Moment Difference to determine the symmetry of such systems. 

 

3.2.4.1 Successful Event Enumeration 

Each state pattern can be represented by a sequence of numbers of angles between failed 

units starting from a failed unit in a failed pair to the other failed unit in the same failed 

pair in an anticlockwise direction, which we call feature segment. 

 

A feature segment of a state pattern is determined based on its typical state by listing the 

number of angles between failed units starting from a failed unit. Each angle equals / n . 

Consider the system in Figure 1.1(a), when pairs *1 , *2 , and 
*3  fail, starting from unit 1, 

the numbers of angles between failed units in the anticlockwise direction are (114114). We 

can choose any one of (114), (141), and (411) as the feature segment. If the system has a 

different state in the same state pattern, we can still find the feature segment in the sequence 

of numbers of angles between failed units. Again, consider the system in Figure 1.1(a), 
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when pairs *1 , *5 , and *6  fail, the system is in the same state pattern as when pairs *1 , *2 , 

and *3  fail, i.e. the state pattern with three consecutive failed pairs. Starting from unit 1, 

the number of angles between failed units in the anticlockwise direction are (411411) 

where we can find all three possible feature segments (114), (141), and (411). 

 

All possible state patterns with a certain number, say h , of failed pairs, are obtained using 

their feature segments by enumerating all the permutations of h  positive integers that sum 

up to n . Since different feature segments can represent the same state pattern, we eliminate 

the repetitions by the method introduced above to find the set of unique feature segments 

from which we obtain the corresponding state patterns and typical states. 

 

 

Figure 3.3 State transition diagram for 2-out-of-6 pairs:G Balanced system with units 

performing single function 

 

An illustrative example of state transition diagram is shown in Figure 3.3 where we list all 

possible state patterns with zero to four failed pairs, balanced or unbalanced. Each state 
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pattern is represented by its typical state. Note that the white colored pairs are operating 

pairs and the black colored pairs are failed pairs. The number series in brackets are the 

corresponding feature segments. The solid links are transitions between balanced state 

patterns, and the dashed links are transitions from a balanced state pattern to an unbalanced 

state pattern. The number of realizations of a transition, which is recorded in transition 

matrix, is one unless a greater number is associated with the corresponding transition link. 

For instance, the transition matrix from balanced state patterns with 3 failed pairs to those 

with 4 failed pairs is 34

2 1 0

0 3 0

 
  
 

Q  where, for instance,  34 1,2 1Q  means there is 

only one possible transition from the 1st state pattern with three failed pairs and feature 

segment (114) to the 2nd state pattern with four failed pairs and feature segment (1122), as 

shown in Figure 3.3. 

 

3.2.4.2 System Reliability Estimation 

Let the probability density function (pdf) and the cumulative distribution function (CDF) 

of the life of any pair of units be f  and F  respectively, and let 1F F  . When the pdf 

of an individual unit is g  and CDF is G , then we have      2 1f t g t G t     and 

   
2

1F t G t    . The reliability of a k -out-of- n  pairs:G Balanced system can be 

obtained as 

    
0

n

sys h

n k

h
R t P t




   (3.2) 

where    : Pr  pairs fail in balanced state pattern by n

hP t h t  which can be obtained by 
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  (3.3) 

where n

h  is the number of realizable system state transition paths that lead to balanced 

state patterns with h  failed pairs. Let 0 1n  , and n

h  when 1 h n k    is obtained as 

 
, 1

1

0

h

i

n

h i i




 Q   (3.4) 

 

For instance, 6

3  for transition diagram in Figure 3.3 is  

  6

3 1 2301 2

2 0

6 2 2 1 1 1 48

0 0

 
 

   
 
 

 Q Q Q   (3.5) 

 

3.2.5 Reliability Estimation of Systems with Units Performing Complementary 

Functions 

In this section, we assume that any two adjacent units perform complementary functions. 

For example, any two adjacent rotors in an UVA have opposite rotational directions. We 

refer to any two adjacent rotors as units performing complementary functions as shown in 

Figure 3.4(a). We assume the units, regardless of their functions, have identical lifetime 

distributions. The balance requirements for such a system are: (i) the system should be 

symmetric in a sense that operating units should be symmetric w.r.t. at least a pair of 

perpendicular axes; (ii) any two adjacent operating pairs should perform complementary 

functions. Given the second balance requirement is satisfied, we determine the balance of 

such systems by examining the symmetry of the system using Moment Difference. 
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When n  is odd (even), we should always have an odd (even) number of operating pairs to 

satisfy the second requirement, and hence corresponding k  should be odd (even). An 

example of such system with all units operating is shown in Figure 3.4(a). 

 

To meet the second balance requirement, we force down the operating pair closest to, not 

necessarily adjacent to, the failed pair on either side with probability 0.5. Consider the 

system in Figure 3.4(a), when only unit 1 fails, unit 9 is forced down permanently and 

either pair *2  or pair *8  is forced down with probability 0.5. Suppose that pair *2  is forced 

down. When another unit actually fails, say unit 11, then unit 3 is forced down permanently, 

and either pair *4  or pair *8  is forced down. 

 

    

(a)                                                                 (b) 

Figure 3.4 Examples of k-out-of-n pairs:G Balanced system with any two adjacent units 

performing complementary functions: n = 8 in this figure 

 

Due to the balance requirements and the procedure for forcing down operating pairs, we 

conclude that (i) the system always has an even number of pairs that are either failed or 
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forced down; (ii) the failed pairs and forced-down pairs always form clusters which have 

even numbers of pairs, as shown in Figure 3.4(b) where pairs *1 , *2 , *4 , and *5  are either 

failed or forced down. 

 

3.2.5.1 Successful Event Enumeration 

Similarly, we obtain balanced state patterns with different numbers of failed pairs, the state 

transitions from balanced state patterns with h  failed pairs to those with  1h  failed 

pairs, and then all realizable system state transition paths that lead to operating system 

states. In order to obtain all the balanced state patterns with h  failed units, the following 

procedure is followed. 

 

Step 1. Enumerate all the possible permutations of u  positive integers that sum to  n h , 

where u  is even and 2 u n h   . Eliminate the repetitions as discussed earlier. Denote 

each unique permutation as a row vector uv . 

 

Step 2. For each uv , sum the elements in odd indices. If the sum equals h , then multiply 

these elements by 2 to obtain vector uw . The elements in odd indices in uw  are the 

numbers of failed pairs and forced-down pairs, separated by the elements in even indices 

which are the numbers of operating pairs. We obtain a system state based on each uw  with 

the state of each unit denoted as [0/–1] if it is either failed or forced-down and denoted as 

1 if it is operating. Note that a failed unit has state 0 and a forced-down unit has state –1, 

hence we denote the state of a unit that is either failed or forced down as [0/–1]. Denote 
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the system state as us . For instance, let 8n  , 2h  , and 4u  . One vector  4 1,1,1,3v  

and hence  4 2,1,2,3w , based on which we can obtain the state us  = ([0/–1]  [0/–1]  1  

[0/–1]  [0/–1]  1  1  1,  [0/–1]  [0/–1]  1  [0/–1]  [0/–1]  1  1  1) as shown in Figure 3.4(b) 

where the blue colored units are in state [0/–1] and white colored units are in state 1. 

 

Step 3. We only consider the system states 
us ’s that are symmetric and hence balanced. 

We denote the state of each pair with the state of the units in the pair. For each balanced 

system state us , half of the pairs in state [0/–1] are failed pairs and the other half are forced-

down pairs. The pairs with state [0/–1] are in one or more clusters. For the pairs in each 

cluster, we let half of them be in state 0 and the other half in state –1. We enumerate all the 

combinations to obtain all the possible typical states. Continuing with the example in 

Figure 3.4(b), the pairs *1 , *2 , *4 , *5  are in state [0/–1]. There are two ways to assign the 

two different states, i.e. 0 and –1, to pairs *1  and *2 . It is the same with pairs *4  and 
*5 . 

So there are four typical states and four corresponding state patterns derived from the 

system state in Figure 3.4(b). The four typical states obtained are (–1 0 1 –1 0 1 1 1 –1 0 1 

–1 0 1 1 1), (0 –1 1 –1 0 1 1 1 0 –1 1 –1 0 1 1 1), (–1 0 1 0 –1 1 1 1 –1 0 1 0 –1 1 1 1) and 

(0 –1 1 0 –1 1 1 1 0 –1 1 0 –1 1 1 1), shown as the typical states 7, 8, 9 and 10 in Figure 

3.5. 

 

Step 4. For the same vector uv  as in step 2, repeat the same procedure in steps 2 and 3 

considering the elements in even indices instead of odd indices unless we obtain a state us  

that is a repetition of the one we found in step 2. 
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Figure 3.5 Illustration of state transitions from states with one failed pair to those with 

two failed pairs for a k-out-of-8 pairs:G Balanced system with units performing two 

complementary functions 

 

Now we obtain all the possible balanced state patterns with a certain number of failed units. 

For each state pattern, we have a typical state. Then we obtain the diagram of system state 

transition paths as follows. Starting from 0h  , for each state pattern with h  failed units, 

we enumerate all the follow-up states of its typical state. Here a follow-up state of a state 

is obtained by turning one of the operating pairs into failure and then forcing down a closest 

operating pair. For each of the follow-up states, if it is balanced, find the first matching 

state pattern with  1h  failed units by enumerating all the state patterns with  1h  

failed units in a fixed order. If a match is found we stop enumeration and add 1 to the 

corresponding elements in , 1h hQ . Note that steps 2 to 4 introduced above can bring 

repetitions to the set of the state patterns, so it is necessary to stop enumeration as we find 
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a match so that the repeated state patterns receive no input transitions. Figure 3.5 shows 

the transitions from balanced states patterns with one failed pair to those with two failed 

pairs. The transition matrix is 
12

0 1 1 1 2 1 0 1 1 2 0 1 1

1 2 1 1 1 0 2 1 1 0 1 1 0

 
  
 

Q . 

 

The first and second rows represent the state patterns I and II in Figure 3.5 with one pair 

failed and one pair forced down. The columns 1 to 13 represent the state patterns 1 to 13 

with two pairs failed and two pairs forced down. The number of transitions between two 

state patterns is one unless a greater number is associated with the corresponding transition 

link. For instance,  12 1,5 2Q  means there are two possible transitions from state pattern 

I with one failed pair to state pattern 5 with two failed pairs as shown in Figure 3.5. 

 

3.2.5.2 System Reliability Estimation 

System reliability can be estimated as 

    
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where 

 

 

   

   
 

   

2

1

21 1

1

22

0 0
0.5

1
4 !

h

t

h

n

h

n hn h

h

h h

n
h n h

h

h

F
F

F d

F F

P

f
t

h
t

t

f d

t

 





  
      

  

       

 


 

 


   



  (3.7) 
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where n

h  is the number of realizable system state transition paths that lead to a balanced 

state with h  failed pairs and h  forced-down pairs, which is obtained as in the previous 

section. 

 

 Reliability Estimation of Systems Considering Standby 

3.3.1 System Description and Fundamental Method 

In Section 3.2, we investigate two types of k -out-of- n  pairs:G Balanced systems under 

the assumption that an unbalanced system is considered as failed. In this section, we 

investigate the two systems further by rebalancing unbalanced system: when unbalanced 

system states occur, one or more operating pairs are forced down to balance the system 

according to some balance requirements. 

 

The operating pairs that are forced down for balancing the system are called standby pairs. 

A standby pair can be resumed into operation when an operating pair fails and resuming 

the standby pair can bring the system to a balanced state with an additional operating pair. 

For example, in Figure 1.2(a), the system is unbalanced considering the operating pairs (in 

white) are not symmetric w.r.t. any axes. Then an operating pair is forced down into 

standby (in gray) as shown in Figure 1.2(b). The system is now balanced by noting that the 

operating pairs are symmetric w.r.t. a pair of perpendicular axes. When an additional pair 

fails, the standby pair is resumed into operation to keep the system in balance and bring 

one more operating pair, see Figure 1.2(c). 
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Similarly, to estimate the system reliability, we first enumerate all the successful events; 

then estimate the probability of each event; and the system reliability is the sum of the 

probabilities of all successful events. 

 

In this section, we assume that the lifetimes of the individual units follow an exponential 

distribution with parameter  . 

 

3.3.2 Probability Estimation for Successful Events 

A successful event of a k -out-of- n  pairs:G Balanced system with standby is an event with 

g  operating pairs, s  standby pairs and h  failed pairs where g s h n    and g k . 

Such an event occurs after a sequence of failures. The forcing-down and resumption of 

standby pairs, if necessary, always happen at the times of failures. Each pair may 

experience a sequence of forcing-down and resumption which results in a time period 

during which the corresponding pair is in standby. Consider the system shown in Figure 

3.4(a). A possible system state transition path of the system is shown in Figure 3.6(a) where 

the unbalanced system is rebalanced by forcing down operating pairs into standby and 

resuming standby pairs into operation. In Figure 3.6(a), an operating pair is shown in white, 

a failed pair is in black, and a standby pair is in gray. The perpendicular cross lines are the 

axes of symmetry for each system state. The algorithm for looking for the standby pairs 

and axes of symmetry is discussed later. The sequence of failures and standby of each pair 

of units is shown in Figure 3.6(b) where the failure times are denoted as i  where 1i   to 

5, and all the eight pairs are listed vertically. For instance, according to Figure 3.6(b) pair 
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*2  is forced down into standby at 1  when pair *1  fails; is resumed into operation at 2  

since its resumption can bring the system back to balance without forcing down additional 

pairs; and fails at 
5 . 

 

 

(a) 

 

(b) 

Figure 3.6 Illustration example for calculating the probabilities of successful events 

 

The probability of a successful event, assuming that all units have identical constant failure 

rate / 2 , is calculated as 
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  (3.8) 

where  ; ww

h hP t δ  denotes the probability of an event that has h  failed pairs where 

superscript w  is used to distinguish different events that all have the same value for h  at 

time t ; * * *,1 ,2 ,
, , ,w w w w

h h h h n
  
 

δ     is a vector that contains the standby periods for 

individual pairs;   is the hazard rate of individual pairs and is twice the hazard rate of 

individual units; i  ( 1, ,i h  ) is the time of the i th failure, *

ix  is the identity number of 

the i th failed pair; w

hY  is the set of identity numbers of standby pairs at time t ; *y  is the 

identity number of standby pair; *,

w

h y
T  is the time when pair *y  is forced down the last time 

(and not resumed by time t ) the value of which is one of the i ’s; w

hG  is the set of identity 

numbers of operating pairs at time t ; *z  is the identity number of operating pair. Note that 

when the last time a pair *y  is forced down at *,

w

h y
T  and is still in standby state at time t , 

its standby period, *,

w

h y
 , should exclude  *,

w

h y
t T  since the last forcing-down and 

resumption cycle is not completed. 

 

The event shown in Figure 3.6 is a successful event if we consider a 2-out-of-8 pairs:G 

Balanced system with any two adjacent units performing two complementary functions. 
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By time t , there are five failed pairs, one standby pair and two operating pairs, so 5h  , 

1s  , and 2g  . The identity numbers for the five failed pairs in order are * *

1 1x  , * *

2 8x  , 

* *

3 4x  , * *

4 3x  , * *

5 2x  . The only standby pair has identity number *5 , i.e.  *5w

hY   and 

* 5,5

w

h
T  . The set of operating pairs is  * *6 ,7w

hG  . In addition, * 2 1,2

w

h
     since pair 

*2  is forced down at 1  and resumed at 
2 ; and * 4 3,5

w

h
     since pair *5  is forced down 

at 
3  and resumed at 

4  before it is forced down for the last time at 
5 . Note that *,5

w

h
  does 

not include  *,5

w

h
t T  since even though pair *5  is in standby during the period 5[ , )t  it is 

not resumed by t . 

 

Since *,

w

h y
T ’s are i ’s and *, i

w

h x
 ’s are the sum of i ’s and i ’s, the exponent part of Eq. 

(3.8) is overall the sum of i ’s and i ’s. Denote the overall coefficient of i  as 
,

w

h i  which 

can be obtained based on Eq. (3.8). Consider the event in Figure 3.6, the 
,

w

h i ’s for i ’s are 

2 ,  0,  2 ,  0,  2      respectively for 1i   to 5. 

 

The general expression for ( ; )w

h

w

hP t δ  can be simplified as 
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where 
w

hg  is the number of operating pairs when there are h failed pairs. 

 

We denote the integral in Eq. (3.9) as 



 

 

60 

  3 2

2 1
1 210 0 0

,( , ) : exp
h

w w

h h i

t h

i hi
I h t d d d

  
    

 

  
       (3.10) 

 

The iterations to obtain the closed form expression of a general integral  ,w

hI h t  are as 

follows. 

 

When 1h   

    ,1

,11, 1
w
h t

h

w w

hI t e  


   (3.11) 

 

When 1h  , we obtain  2,h

wI t  based on  1,h

wI t , then obtain  3,w

hI t  based on  2,w

hI t , 

until we obtain  ,w

hI h t  based on  1,w

hI h t .  ,w

hI x t  has x  terms where 1x   to h . 

The first term of  ,w

hI x t  is 
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The other  1x  terms in ascending order are  

  
 

 

0

0

,

,

1 exp
1

1,

w

h x

i

j

w w

h h x

i

i

j

jx

j

t

x i












  








  (3.13) 

where 1i   to  1x  and  1,w

h x i   is the denominator of the i th term in  1,w

hI x t . 

For example, based on Eq. (3.12) when 2h   the first term in  2,h

wI t  is 
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Then we obtain the second term for  2,w

hI t  based on Eq. (3.13) with 1i   and 2x   as  
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where   ,11,1w w

h h   is the denominator of the 1st term, which is also the only term, in 

 1,w

hI t  as shown in Eq. (3.11). 

 

Note that when we have zero-valued terms, i.e. sum of 
,

w

h i ’s, in any denominators of 

 ,w

hI h t , we take the limit of the expression  ,w

hI h t  as the 
,

w

h i ’s that compose the zero-

valued terms reach their extreme values. Then we substitute the other 
,

w

h i ’s that are not in 

the zero-valued terms using their numerical values. For example, when 3h   based on 

 2,w

hI t  we have 
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  (3.16) 

 

If 
,1

w

h , 
,2

w

h , 
,3

w

h , and  ,3 ,2

w w

h h   are nonzero but  ,2 ,1 0w w

h h   , then  3,w

hI t  in Eq. 

(3.16) cannot be obtained directly by substituting the 
,

w

h i ’s with their values. We first take 
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the limit of  3,w

hI t  as 
,1

w

h  and 
,2

w

h  reach their values together or, in other words, when 

 ,2 ,1

w w

h h   reaches zero, which results in an equation with only 
,3

w

h ; then we substitute 

,3

w

h  to obtain the value of  3,w

hI t . 

 

3.3.3 Fundamental Method of Successful Event Enumeration 

Starting from a system state with one failure, we enumerate its follow-up states, the further 

follow-up states of the follow-up states and so on until we exhaust all the possible system 

states with at least k  operating pairs and all the possible transitions between these states. 

A follow-up state of a state can be obtained by turning one of the operating pairs in the 

current system into failure and rebalancing it if the additional failure results in an 

unbalanced system. A successful event is a transition path that leads to a successful system 

state, i.e. a state with at least k  operating pairs. For instance, Figure 3.7 shows the state 

transition diagram for 2-out-of-6 pairs:G Balanced system with units performing single 

function considering standby, where units in white are operating, units in black are failed, 

and units in gray are in standby. As shown in Figure 3.7, the successful events of a 2-out-

of-6 pairs:G Balanced system are all the transition paths that lead to states 1 to 11 and the 

states that have the same state patterns with states 1 to 11. 

 

The procedure of enumerating the successful events will be discussed later for specific 

systems. For each system we first introduce a heuristic to find the axis of symmetry for an 

unbalanced system; then discuss the enumeration of successful events. 
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Figure 3.7 State transition diagram for 2-out-of-6 pairs:G Balanced system with units 

performing single function 

 

3.3.4 Successful Event Enumeration for Systems with Units Performing Single 

Function 

3.3.4.1 Axis of Symmetry Algorithm 

We use Moment Difference as introduced in Section 3.2 to quantify the symmetry of the 

system; or determine an initial candidate axis, from which we begin to enumerate a series 

of candidate axes until an axis of symmetry is found. 

 

A system is already symmetric: (i) if there is only one failed pair, then the axes of symmetry 

are along or perpendicular to the failed pair; (ii) if there are two failed pairs, then an axis 

of symmetry is the middle axis of the two pairs; (iii) if the failed pairs are consecutively 
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arranged, then an axis of symmetry is the middle axis of the failed pairs. If the state of the 

system does not fall into these special cases, then the following procedure is implemented. 

 

A candidate axis of symmetry is either along a pair of units, or in the middle of two adjacent 

pairs. Due to the orthogonal relationship of the candidate axes, only n  unique pairs of 

perpendicular candidate axes need to be considered. Beginning from any arbitrary 

candidate axis pair and ending with the thn  afterwards in an anticlockwise direction, we 

calculate MDs w.r.t. each candidate axis pair. 

 

We then calculate the difference between the two MDs w.r.t. the two axes in each candidate 

axis pair, which we call MD difference. When a candidate axis pair results in the minimum 

absolute value of MD difference, it is set as the initial candidate axis pair. In the two MDs 

for the initial candidate axis pair, if the MD that has the smaller absolute value is not zero, 

then we choose the corresponding candidate axis as the initial candidate axis; otherwise, 

we choose the axis that has the greater absolute value of MD. As we find the initial 

candidate axis, we set its corresponding MD as the minimum MD. 

 

When there are ties in the absolute values of MD differences for multiple axis pairs, it is 

observed that the minimum value of MD difference is always zero. In this case, we choose 

the pair of axes that result in the smallest MD in terms of absolute value as initial candidate 

axis pair and either one of them as the initial axis. Further ties are broken arbitrarily. 
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When the minimum MD is zero and n is no more than 30, the system is already symmetric 

w.r.t. the initial candidate axis. When the minimum MD is zero but n is greater than 30, we 

use an additional condition to determine its symmetry as discussed in Section 4.2.1. 

 

When the system is not symmetric, we enumerate the / 2n    candidate axes on each side 

of the initial candidate axis as well as the initial candidate axis itself in order to find the 

pairs of operating units to force down to regain system balance. We start from the initial 

candidate axis and then those closest to the initial candidate axis. In addition, we start from 

the left of the initial candidate axis if minimum MD is greater than zero and from right 

otherwise. We stop when we reach an axis that needs only one pair of operating unit to be 

forced down, or when we have enumerated n  axes. Note that when we enumerate the 

candidate axes, we consider the standby pairs forced down in previous stages as operating 

pairs. If it is no longer necessary for them to be in standby, they can resume operation. 

 

Among all the candidate axes enumerated, we choose the one that results in the least 

number of standby pairs and hence the most operating pairs. If there are more than one 

such axes, we use other criteria to choose the optimal one. For example, we choose the 

axes resulting in the smallest standard deviation of the numbers of angles between any two 

consecutive operating units. Other criteria can be applied according to specific system 

requirements in practice. 

 

3.3.4.2 Successful Event Enumeration 
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The procedure of enumerating the successful events (except the event that system has no 

failure at all) is as follows. 

 

Step 1. If 1n k  , choose one of the n  pairs and assume it fails to obtain a successful 

system state 
1S . Denote this event as 

1E . The realization of this event is n . The number of 

failed pairs is 1, the number of operating pairs is  1n , and no standby pairs are involved. 

 

Step 2. If 2n k  , every transition path that leads to the follow-up states of 1S  is a 

successful event with realization n . Denote the successful system states obtained in this 

step as  2

wS  and the successful events that lead to corresponding successful system states 

as  2

wE . 

 

Step 3. If 3n k  , enumerate all the follow-up states of  2

wS . Each follow-up state with 

at least k  operating pairs is a successful system state and the transition path that leads to 

this state is a successful event. Each successful event has n  realizations. Denote the 

successful system states and events obtained in this step as  3

wS  and  3

wE  respectively. 

Standby starts to appear in some successful events in this step. For each 
w

hE  we record the 

times at which each pair is forced down into standby and resumed into operation in a matrix, 

w

hB , with n  rows and h  columns, where h  is the number of failures and in this step 3h  . 

Each row of 
w

hB  is a vector composed of 0, –1, and 1. ( , ) 1w

h l i  B  means the l th pair (pair 
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*l  in the system) is forced down into standby at i ; ( , ) 1w

h l i B  means the l th pair is 

resumed into operation at i ; and ( , ) 0w

h l i B  means otherwise. 

 

Step 4. If n k h   where 4h  , enumerate all the follow-up states of the set of successful 

system states with  1h  failed pairs in  1w

hS  . Record all the successful system states and 

successful events obtained in this step in the sets  w

hS  and  w

hE . Each successful event 

has n  realizations. The first  1h  columns of w

hB  equal to 1

v

hB  when w

hE  is derived 

from 1h

vE  . The h th column of w

hB  is obtained based on the forcing-down or resumption of 

the pairs when we reach successful system state w

hS  from 1h

vS  . 

 

In each step, we record the number of failed pairs, h , and the set of identity numbers of 

operating pairs, 
w

hG , for each successful event 
w

hE . 

 

To reduce computational effort, the successful events can be aggregated into groups 

according to the three features: the numbers of failed pairs h  and operating pairs w

hg , and 

the values of 
,

w

h i ’s, which can be obtained from w

hB  using Eq. (3.17) 

  hcolu

w w

h hmn
 α B e   (3.17) 

where 
w

hα  is the vector of 
,

w

h i  from 1i   to h  for successful event 
w

hE ; 
col

w

humn B  is a 

sum of each column of 
w

hB ; and he  is a row vector of 1’s with h  columns. The grouping 
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can be carried out in each enumerating step after the complete sets of  w

hS  and  w

hE  are 

obtained. Successful events in each group have the same probability. 

 

3.3.5 Successful Event Enumeration for Systems with Units Performing 

Complementary Functions  

3.3.5.1 Axis of Symmetry Algorithm 

Again, to meet the balance requirement for the system that any two adjacent operating pairs 

should perform complementary functions, we force down the operating pair closest to, not 

necessarily adjacent to, the failed pair on either side with probability 0.5 immediately after 

a failure occurs. 

 

In addition, note that the forced-down pairs mentioned in the algorithm of this section are 

equivalent to standby pairs. 

 

First, we introduce some simple rules for special cases in which the system is already 

balanced and the axes of symmetry are easily found.  

 

Rule 1. When there are only one failed pair and one forced-down pair, the system is 

balanced. An axis of symmetry is along the diameter in the middle of the two pairs.  
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Rule 2. When there are two failed pairs and two corresponding pairs that are forced down, 

and the four pairs are not consecutively arranged, the system is balanced. An axis of 

symmetry is along the diameter in the middle of the four pairs.  

 

Rule 3. When the failed and forced-down pairs are consecutively arranged, the axis of 

symmetry can be found by the following rules. 

 

(i) If all the pairs are either failed or forced-down and n  is odd, resume one of the 

forced-down pairs if any. Then an axis of symmetry is along this resumed pair. 

If there is more than one forced-down pair, they have equal probability to be 

resumed. If all the pairs are failed, then no resumption occurs and the system is 

symmetric. 

 

(ii) If all the pairs are either failed or forced-down and n  is even: (a) If there are at 

least two forced-down pairs with complementary functions, then resume two of 

the forced-down pairs with complementary functions. An axis of symmetry is 

in the middle of the two pairs. When two pairs are to be resumed, if there are 

more than two forced-down pairs with complementary functions, then a 

criterion such as the standard deviation of the angles between operating units 

can be used to select the appropriate pairs. (b) Otherwise, no resumption occurs 

and the system is symmetric with all pairs failed or forced down. 
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(iii) If there are still operating pairs in the system, we find all the forced-down pairs 

and all possible combinations of the forced-down pairs. For each combination, 

we resume the forced-down pairs in it and examine if the state after resumption 

is balanced. A balanced state requires that the clusters of failed and forced-down 

pairs always have an even number of pairs arranged consecutively and the 

remaining operating units are symmetric w.r.t. at least a pair of perpendicular 

axes. We examine the symmetry by calculating MD considering the weight of 

a forced-down unit as 0. Note that all the failed and forced-down pairs are 

consecutively arranged before resumption, which form a cluster. After 

resumption, the cluster is divided into several clusters. Consider Figure 3.8(a), 

the failed and forced-down pairs form a cluster. Three smaller clusters are 

formed after four forced-down pairs are resumed into operation, as shown in 

Figure 3.8(b). In order to obtain a system state with the most operating pairs, 

when enumerating the combinations of forced-down pairs we start with the 

combinations with the greatest number of forced-down pairs. Consider Figure 

3.8(a), we start with the combinations with all the five forced-down pairs, then 

move to combinations with four forced-down pairs, and so on. When there are 

no combinations that result in a balanced state, then no resumption occurs. The 

system is symmetric with an axis of symmetry in the middle of the failed and 

forced-down pairs. 
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(a)                                               (b) 

Figure 3.8 Example of consecutively arranged failed pairs and forced-down pairs in a 

system 

 

When the system state does not fall into the special cases discussed above (see Figure 3.9 

for example), we enumerate all the unique candidate axes of symmetry. A candidate axis 

of symmetry is either along an operating pair or in the middle of two pairs. Due to the 

orthogonal relationship of the candidate axes, only n  unique pairs of perpendicular 

candidate axes need to be considered. In this system, a candidate axis of symmetry does 

not exist along or perpendicular to a failed pair. Starting from the axis along an arbitrary 

pair and rotating anticlockwise by step of / 2n , we consider n  pairs of perpendicular 

candidate axes except those along or perpendicular to failed pairs. 

 

First, for each pair of perpendicular candidate axes, we make the system symmetric w.r.t. 

the axes by forcing down additional operating pairs without considering the 

complementary functions of the pairs. If any forced-down pairs are along the candidate 

axes, then they are resumed into operation. Now the system state may not be balanced, e.g. 

some clusters of failed and forced-down pairs may have an odd number of pairs. Consider 
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the system shown in Figure 3.9, we obtain six pairs of perpendicular candidate axes and 

the corresponding system states after forcing down additional operating pairs as shown in 

Figure 3.10(a) to Figure 3.10(f). The states shown in Figure 3.10(d) and Figure 3.10(f) are 

not balanced because they have clusters with odd numbers of failed and forced-down pairs. 

 

Second, for each symmetric system corresponding to each candidate axis pair, we resume 

redundant forced-down pairs in order to obtain a balanced system state. If any two forced-

down pairs are symmetric w.r.t. the candidate axes, then both the forced-down pairs are 

considered redundant. We find all the redundant forced-down pairs and all the 

combinations of these pairs. Note that any two forced-down pairs that are symmetric w.r.t. 

the candidate axis pair should be included in the same combination together. For each of 

these combinations, we examine the balance of the system state obtained by resuming the 

forced-down pairs in the combinations. If the obtained system state is balanced, we call the 

combination a balancing combination. This might result in several balancing combinations 

exhausting all the combinations in a symmetric system. Among all the balancing 

combinations, we choose the combination that results in the optimal system state based on 

some criteria and resume the forced-down pairs accordingly. The criteria may include the 

number of operating pairs (the larger the better); the standard deviation of the angles 

between operating pairs (the smaller the standard deviation, the more uniform the spatial 

distribution of the operating pairs); and the number of times that all the pairs are forced 

down or resumed (the smaller the better since each forcing down or resumption is likely to 

increase the risk of the system’s failure). 
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The system states after the second step are as shown in Figure 3.10(g) to Figure 3.10(l). It 

is possible that no balancing combinations are obtained. For system states shown in Figure 

3.10(b) and Figure 3.10(f), no balancing combinations of redundant forced-down pairs are 

found. In this case, the system will not change after the second step as shown in Figure 

3.10(h) and Figure 3.10(l). 

 

Finally, among all the pairs of perpendicular candidate axes, we eliminate the axis pairs 

that result in unbalanced system states. For example, the candidate axis pair corresponding 

to system states in Figure 3.10(l) should be eliminated since the corresponding system state 

has clusters with odd numbers of failed and forced-down pairs and hence is not balanced. 

Among the remaining candidate axes, we choose the one that results in the optimal system 

state based on the aforementioned criteria. Consider the system in Figure 3.9, the state in 

Figure 3.10(i) is the optimal state since on one hand it has the most operating pairs as the 

state in Figure 3.10(j); on the other hand, to obtain the state in Figure 3.10(i) from the state 

in Figure 3.9, only two pairs have to be forced down or resumed; but four pairs have to be 

forced down or resumed to obtain the state in Figure 3.10(j). Note that both the states in 

Figure 3.10(i) and Figure 3.10(j) have the same standard deviation of the angles between 

operating units. So the axis pair corresponds to Figure 3.10(i) is chosen as the final axes of 

symmetry. 
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Figure 3.9 Example of system state that does not fall into special cases 

 

 

Figure 3.10 System state after being balanced w.r.t. candidate axes 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (l) (k) 
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3.3.5.2 Successful Event Enumeration 

Since we assume identical lifetime distributions, the computation can be simplified by 

noting that the two groups of system state transition paths, which start from respectively 

the two possible options of standby pairs for the first failed pair, have the same probability. 

Consider the state transition diagram in Figure 3.11, the group of paths with states 2, 4, 5, 

8, and 9 has the same probability as the group of paths with states 3, 6, 7, 10, and 11. We 

only need to enumerate the system state transition paths in one group and estimate the 

corresponding probabilities. 

 

 

Figure 3.11 State transition diagram for k-out-of-4 pairs:G Balanced system with units 

performing complementary functions 

 

The procedure of enumerating the successful events (except the event that system has no 

failure at all) is as follows. 
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Step 1. If k n , choose one of the n  pairs, turn it into failure, and turn a consecutive pair 

into standby to obtain a successful system state 
1S . Denote this event as 

1E . The realization 

of this event is 0.5 n  since the standby pair is chosen with probability 0.5. The number of 

failed pair is 1, the number of operating pairs is  2n , and 1 pair is forced down into 

standby. 

 

Step 2. If 2n k  , enumerate all the follow-up states of 1S . Here a follow-up state of a 

state is obtained by turning one of the operating pairs into failure, turning a closest 

operating pair into standby, and balancing the system by resuming or forcing down standby 

pairs if necessary. A follow-up state with at least k  operating pairs is a successful system 

state and the transition path that leads to it is a successful event. Denote the successful 

system states obtained in this step in  2

wS  and the successful events that lead to 

corresponding successful system states in  2

wE . For each 2

wE  we record the corresponding 

matrix 2

w
B , which is as defined before. Record the numbers of failed and operating pairs 

for each successful event. The realization of a successful event equals to the realization of 

the event that leads to the successful event multiplied by z . 0.5z   if there are at least two 

operating pairs left in the system after the latest failure occurs; 1z   otherwise. 

 

Step 3. If 2 2n k h    where 2h  , enumerate all the follow-up states of the set of 

successful system states with  1h  failed pairs in  1w

hS  . Record the set of successful 

events obtained in this step,  w

hE , and its corresponding  w

hS  and 
w

hB . 
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In each step, we record the number of failed pairs, h , and the set of identity numbers of 

operating pairs, w

hG , for each successful event w

hE . 

 

Similarly, to simplify the computation of the probability of the successful events, the 

successful events can be aggregated into groups according to the three features: the 

numbers of failed pairs h  and operating pairs w

hg , and the values of 
,

w

h i ’s. 

 

 Numerical Examples 

3.4.1 Numerical Example 1 

Consider a 6-out-of- n  pairs:G Balanced system with units performing a single function 

where the unbalanced system is considered as a failure. The lifetimes of individual units 

follow Weibull distribution with scale parameter 40 and shape parameter 2, i.e. Weibull 

(40, 2). The system reliabilities with n  ranging from 6 to 12 and 16n   are shown in 

Figure 3.12. When the number of redundant pairs increases from 0 to 10, the system 

reliability increases and then decreases. The system reliability value reaches a maximum 

when the system has 9 pairs. 

 

We also obtain the MTTF and its confidence interval as shown in Figure 3.13(a). The 

MTTF increases as n  increases and decreases after MTTF reaches its maximum value. 
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Figure 3.12 System reliability of 6-out-of-n pairs:G Balanced systems with units 

performing single function considering unbalance as failure 

 

 

Figure 3.13 Mean times to failure with confidence interval 

 

We also estimate the MTTF of 6-out-of- n  pairs:G Balanced system with units performing 

two complementary functions where the unbalanced system is considered as a failure. The 
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lifetimes of individual units follow Weibull (40, 2). We plot the MTTF and its confidence 

interval in Figure 3.13(b) which shows that MTTF first increases and then decreases when 

n  increases. In addition, the MTTF reaches its maximum value when 10n  . 

 

3.4.2 Numerical Example 2 

In order to investigate the effect of standby pairs, we compare the reliability of the systems 

in the two scenarios: (i) unbalanced system considered as a failure; and (ii) unbalanced 

system rebalanced by forcing down operating pairs into standby and/or resuming standby 

pairs into operation. Let the individual units have exponentially i.i.d. lifetimes with failure 

rate 0.025. 

 

We estimate the reliability of the k -out-of-6 pairs:G Balanced system with all units 

performing the same function in the two scenarios, as shown in Figure 3.14 where dashed 

curves are the reliabilities in the first scenario and solid curves are the reliabilities in the 

second scenario. As shown in Figure 3.14, the system has higher reliability in the second 

scenario when 2k  ; and the same reliability otherwise. The reason is that when an 

unbalanced system state occurs, e.g. system state shown in Figure 1.2(a), rebalancing 

system by forcing down operating pairs into standby will result in a balanced system, as 

shown in Figure 1.2(b). When 2k  , the system is considered as failed in the first scenario 

since no standby is considered; but it is considered as operating in the second scenario. 

 

We then estimate the reliability of the k -out-of-8 pairs:G Balanced system with units 

performing two complementary functions in the two scenarios, as shown in Figure 3.15 
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where dashed curves are the reliabilities in the first scenario and solid curves are the 

reliabilities in the second scenario. As shown in Figure 3.15, the system has the same 

reliability in both scenarios only when 8k   and has greater reliability in the second 

scenario otherwise. The reason is also that when 6k   some system states will only be 

considered as operating after it is rebalanced by forcing down some operating pairs into 

standby and resuming standby pairs back to operation in the second scenario, which brings 

more successful events and hence higher system reliability. 

 

 

Figure 3.14 Reliability plots for k-out-of-6 pairs:G Balanced systems with units 

performing single function in two scenarios 
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Figure 3.15 Reliability plots for k-out-of-8 pairs:G Balanced systems with units 

performing two complementary functions in two scenarios 

 

 Conclusions 

This is the first research that investigates and generalizes the reliability estimation of k -

out-of- n  pairs:G Balanced systems. We introduce two types of k -out-of- n  pairs:G 

Balanced systems with spatially distributed units: systems with all units performing the 

same function and systems with any two adjacent units performing two complementary 

functions. The reliability estimation is complicated due to (i) the enumeration of successful 

events must be carried out considering dynamic system state transitions and (ii) the 

probability of successful events must be calculated by considering the sequence of failures. 

We estimate the reliability of these systems under two scenarios. In the first scenario, 

unbalanced systems are considered as failed. In the second scenario, unbalanced systems 

are rebalanced by forcing down operating pairs into standby and/or resuming standby pairs 

to operation. 
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We propose a measure of symmetry, Moment Difference, to determine the balance of a k

-out-of- n  pairs:G Balanced system. We also propose algorithms for rebalancing 

unbalanced systems. Specifically, the algorithms determine the operating pairs to force 

down into standby or standby pairs to resume operation to rebalance unbalanced systems. 

The algorithms also determine the axes of symmetry for the rebalanced systems. The 

algorithms can be generalized to other systems with spatially distributed units. 

 

The numerical examples show that the reliability of a k -out-of- n  pairs:G Balanced system 

first increases and then decreases as more redundancy is added to the system in the scenario 

where unbalanced systems are considered as failed. In other words, there exists an optimal 

n  for a given k  in this scenario. The reason is as follows. On one hand, unbalanced system 

states are more likely to occur and hence the ratio of the number of successful events to the 

number of all possible events decreases as n  increases, which tends to decrease system 

reliability. On the other hand, a system with more redundancy is able to survive a larger 

number of failed pairs, which tends to increase system reliability. 

 

In addition, the examples show that a k -out-of- n  pairs:G Balanced system tends to have 

higher reliability when the unbalanced system is rebalanced by forcing down operating 

pairs into standby and resuming standby pairs back to operation. By rebalancing the 

unbalanced system, we expect more successful events and fewer failure events to occur 

and hence higher system reliability. 
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The reliability estimation algorithms introduced in this chapter require extensive 

computational effort when systems are large. In Chapter 4, we investigate reliability 

approximation approaches for k -out-of- n  pairs:G Balanced systems with large n  which 

reduces the computation time and provides adequate accuracy. The current research is a 

benchmark for potential approximation approaches.  

 

In addition, real-time reliability update based on degradation monitoring of individual units 

is also an interesting and challenging problem since system reliability in practice can be 

affected by uncertainty from manufacturing and operational environment of the individual 

units. We investigate the degradation analysis of such systems in Chapter 5. 

 

Equation Chapter (Next) Section 1 
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4. CHAPTER 4 

 

RELIABILITY APPROXIMATION OF k-OUT-OF-n PAIRS:G BALANCED 

SYSTEMS 

 

 Problem Definition and Assumptions 

In Chapter 3, we estimate the reliability of a variety of k -out-of- n  pairs:G Balanced 

systems. The reliability estimation for such systems is difficult to obtain due to the 

complexity of the problem: the operation of the systems depends on not only the number 

of operating pairs but also their spatial configuration. It is difficult, if not impossible, to 

estimate the reliability metrics accurately for systems with a large number of units since: it 

is time-consuming to determine the complete set of system states and successful events by 

enumeration and it is computationally intensive to obtain the probabilities of the successful 

events. Therefore, in this chapter we develop Monte Carlo simulation-based reliability 

approximation approach for the k -out-of- n  pairs:G Balanced systems. 

 

In addition, we investigate the reliability approximation in two scenarios: In the first 

scenario, we consider unbalanced systems as failed systems. In the second scenario, we 

rebalance any unbalanced system by considering standby. 

 

The assumptions stated in the Introduction hold throughout this chapter. We also assume 

that all units in a system perform the same function. We assume the exponentially 

distributed lifetimes for individual units in order to make the problem more tractable. The 
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approximation approach we developed in this chapter increases computation efficiency by 

reducing the number of successful events to be enumerated. The probability calculation for 

any successful event with many failure occurrences is still complex in the second scenario 

when the lifetimes of individual units are not exponentially distributed. 

 

 Challenges in Reliability Estimation of Large Systems 

4.2.1 System Balance Determination 

Determination of system balance is essential for enumerating the successful events of any 

k-out-of-n pairs:G Balanced system. In Chapter 3, system balance is determined by using 

the concept of Moment Difference (MD). We can numerically validate that MD is effective 

when n is less than 30. However, it is not theoretically proved, and the numerical validation 

is time-consuming, if not impossible, when n is large. Therefore, we add another condition 

for balance determination in this chapter. 

 

A unit is forced down whenever the opposite one in the same pair fails, and a pair of units 

are always forced down to standby or resume operation simultaneously. Therefore, the 

balance of the system is equivalent to the symmetry of operating pairs w.r.t. at least one 

pair of perpendicular axes. There are n pairs of perpendicular candidate axes of symmetry, 

which are either along a pair of units or in the middle of two pairs. The basic idea is to 

enumerate all unique pairs of perpendicular candidate axes and calculate the MD of the 

system w.r.t. to the axes. 
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For any candidate axis, denoted as a , we consider the units in the range of / 2  on the 

two sides of the axis. We assign weights to the units. A unit has a weight value of one if it 

is operating and a weight value of zero otherwise. The angle from a unit to the axis is 

positive if it is clockwise and negative if it is anticlockwise. The weights of the units with 

positive (negative) angles compose a vector a


w  ( a


w ); and the corresponding angle vector 

is a


θ  ( a


θ ). The elements in the weight vectors and angle vectors are ordered according to 

the absolute values of the angles. The MD is calculated as 

 sin sina a a a aM      w θ w θ   (4.1) 

 

According to Section 3.2.2, the condition for a system to be balanced (symmetric) is that 

the system has at least one pair of perpendicular candidate axes that are both associated 

with zero MD. When the condition is not met, the system is unbalanced. The necessity of 

the condition is obvious whereas its sufficiency is not proved. In this chapter, we add 

another condition as follows. When we find a pair of perpendicular axes that are both 

associated with zero MD, we compare the vectors a


w  and a


w  for either axis in the 

perpendicular axis pair: When 

,

,

, , 0

a i a

a i a

a

w

w

i a iw w

 

 







 
w

w

, then the system is symmetric and 

balanced, otherwise the system is not balanced. 

 

4.2.2 k-out-of-n Pairs:G Balanced Systems Considering Unbalanced State as Failure 

In the first scenario where unbalanced systems are considered as failures, the probability 

calculation is straightforward based on Eq. (3.2) and Eq. (3.3) once the number of 
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successful events, n

h , is obtained by enumerating all possible successful events. However, 

enumerating all possible states for large systems is difficult and perhaps impossible. 

Therefore, in this chapter, we approximate the number of successful states n

h  by Monte 

Carlo simulation. 

 

4.2.3 k-out-of-n Pairs:G Balanced Systems Considering Standby 

In the second scenario, unbalanced systems are rebalanced by forcing down operating pairs 

into standby and/or resuming standby pairs into operation. The iterative procedure to obtain 

the closed form expression of the general integral ( , )w

hI h t  is as described in Section 3.3.2. 

The procedure requires symbolic computation to obtain the limit of the equation, which 

becomes time-consuming when the number of failed pairs, h , becomes large. 

 

In this scenario, the difficulty lies in both the enumeration of successful events and the 

probability calculation. It requires much more computation time to obtain the complete set 

of successful events than in the previous scenario since we have to rebalance the 

unbalanced system states by a heuristic, which takes additional computation time. The 

symbolic computation involved in calculating the probability of successful events also 

requires a considerable amount of additional computation time. 
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 Reliability Approximation of Systems Considering Unbalanced State as Failure 

In this section, we present a Monte Carlo simulation-based approximation for the reliability 

of k -out-of- n  pairs:G Balanced system by assuming that unbalanced systems are 

considered as failures. 

 

4.3.1 Fundamental Method 

Suppose we do not impose balance requirements on the system except that we force down 

a unit permanently when the unit in the same pair fails, the number of successful events 

where h  out of n  pairs fail have      1 1 1n n n i n h            realizations since 

the first failure has n  options, the second failure has  1n  options, the thi  failure has 

 1n i   options and so forth. However, imposing balance requirements on the system 

results in a much smaller number of successful events since unbalanced systems are 

considered as failures. 

 

Consider the state transition diagram for a 2-out-of-6 pairs:G Balanced system shown in 

Figure 3.3. We observe that the first failure has 6 options and the second failure has 5 

options. Hence there are 6

2 30  successful events with 2 out of 6 failed pairs. Note here 

we use 
n

h  to denote the number of realizable state transition paths that lead to a balanced 

system with n  pairs of units in total and h  failed pairs. As shown in Figure 3.3 the third 

failure may result in an unbalanced system. Based on Eq. (3.5), 
6

3 48  instead of 
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5 4 126 0   . So overall only 48/120 40%  of the options for the third failure 

contribute to the set of successful events. 

 

We denote the proportion of options for the thh  failures that result in a balanced system as 

n

h  where n  represents that there are n  pairs of units in total in the system. It is immediate 

that 1n

h   when 1h  , 2,  2n ,  1n  and n  because the thh  failure does not result in 

an unbalanced system when h  has one of the five values. In addition, we obtain n

h  as 

  
1

1
hn n

h ii
n i


      (4.2) 

 

The exact value of n

h  cannot be obtained without enumerating all the possible successful 

events, though once n

h  is obtained, n

h  is immediate, and system reliability can be 

obtained easily based on Eq. (3.2) and Eq. (3.3). 

 

4.3.2 Monte Carlo Simulation-Based Algorithm 

4.3.2.1 Algorithm Description 

We present a Monte Carlo simulation to obtain 
n

h . We enumerate state transition paths 

randomly instead of enumerating the complete set of state transition paths. By observing 

the enumerated state transition paths, which is a small portion of the complete set, we can 

obtain approximate values for 
n

h . By executing the simulation multiple times, we 

approximate the value of each 
n

h  using the average of its approximate values obtained 

through all the simulation runs. 
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In each simulation run, we enumerate a portion of the system states after the thh  failures 

for h  from 1 to min  , 3n k n   in an iterative way. The reason why we only consider 

3h n   is that when 3h n  , 1n

h  . Specifically, at the beginning of the thj  

simulation, we let one of the pairs, say pair *1 , to fail. We then randomly select a portion, 

2,

p

j , of the  1n  remaining operating pairs, i.e.  2, 1p

j n    remaining operating pairs, 

to fail, so that  2, 1p

j n    system states with 2 failed pairs are generated. Note that     

is the round-up operator. Then we randomly select a portion, 
3,

s

j , of the generated system 

states with 2 failed pairs. For each of the selected system state, we randomly select a portion, 

3,

p

j , of the  2n  remaining operating pairs to fail in order to generate some system 

states with 3 failed pairs. Generally, we randomly select a portion, 
,

s

h j , of the generated 

system states with  1h  failed pairs. For each of the system state, if it is balanced, we 

randomly select a portion, 
,

p

h j , of the  1n h   remaining operating pairs to fail in order 

to generate some system states with h  failed pairs. We continue this process for all 

 min , 3h n k n   . In each simulation run, we obtain an approximate value for n

h , 

particularly 

 
,

,

,

B

h jn

h j

h j

N

N
   (4.3) 

where 
,

B

h jN  and ,h jN  are the number of balanced states and the total number of the 

generated states with h  failed pairs in the thj  simulation run. 
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The approximate value for n

h  is obtained by taking the average of the ,

n

h j  obtained 

through all the simulation runs. The flow chart of this approach is as shown in Figure 4.1 

where  ,

w

h jS  is a set of generated states with h  failures in the thj  simulation run, and we 

use the superscript w  to index different states in the same set. The values of the parameters 

can be selected by the method introduced in Section 4.5. 

 

 

Figure 4.1 Flowchart of the Monte Carlo simulation for approximating n

h  

 

Note that the simulation algorithm can fail when the sample size is too small: When not 

enough operating system states (balanced states in this case) are generated in the set  ,

w

h jS , 

its follow-up state set,  , 1

w

h jS  , may not contain any operating system states. Consequently, 

the simulation cannot continue. We use a loop indicated in blue in Figure 4.1 to generating 
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 ,

w

h jS  from  , 1

w

h jS   for multiple times to prevent the lack of operating system in  ,

w

h jS . 

But the index of the loop, m , has a maximum value. Once m  reaches the maximum value 

and there are still not enough operating system states in  ,

w

h jS . We will abandon the result 

obtained from the current simulation run and start a new simulation run. Once we exhaust 

the maximum number of simulation runs and all simulation runs are abandoned due to the 

small sample size and lack of operating system states, the simulation fails. Therefore, it is 

critical to choose the right sample size by choosing right values for 
,

s

h j  and 
,

p

h j , as 

explained in Section 4.5. 

 

4.3.2.2 Algorithm Complexity 

We compare the complexity of the proposed algorithm and the exact algorithm in Section 

3.2.4.1. We only discuss the complexity of event enumeration by assuming k  to be less 

than / 2n . Note that smaller k  results in more system states and state transitions. The 

number of fundamental instructions in the exact algorithm is maximally 

 

1

1

11

1

2

2

2

2

0

1

0

1
1

1

1

1
arg max

1

n k

h

hn k

h j

h

h
j

n n

h h

n n

n h n j

n h h j

n h n j

n h h j

 



 

 





   
   

   

  
  

  

   
   

    



 



  (4.4) 
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If we denote the maximum value in Eq. (4.4) as A , we find that  log log logA n  by 

numerical computation. Thus the computational complexity of the exact algorithm is 

approximately  nO e . The number of fundamental instructions in the proposed algorithm 

is maximally 

 

  

 

1

1

1
n k

med

max max

h

n k

max max

h

C

m N n h

m n n

K sn

K sn









     

    




  (4.5) 

where K  is a constant less than 1 and C  is a constant that is much less than  n k , e.g. 

C  2 when 1 1medN  ,  2 1medN n   and   1 2h

medN n n    for 3h  . Since maxsn  is 

related to n  while maxm  is not, the algorithm complexity is  3CO n  . 

 

 Reliability Approximation of Systems Considering Standby 

In this section, we present a Monte Carlo simulation-based approximation for the reliability 

of k -out-of- n  pairs:G Balanced system by assuming that unbalanced systems to be 

balanced by forcing down operating pairs into standby and/or resuming standby pairs into 

operation. Also, we assume that the lifetimes of the individual units follow an exponential 

distribution with parameter  . 

 

4.4.1 Fundamental Method 

4.4.1.1 Successful Event Enumeration 
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We first investigate the enumeration of successful events. Unlike the system in the first 

scenario where an unbalanced system is considered as a failure, here any two successful 

events may have different probabilities even if they have the same number of failed pairs 

due to the effect of standby. Therefore, we must obtain not only the number of successful 

events, as in the first scenario, but also necessary information on the successful events 

themselves in order to obtain the probability of a successful event. Specifically, for each 

successful event in the thj  simulation run, 
,

w

h jE , we must obtain the values of the 

corresponding coefficient vector for i ’s, 
,

w

h jα , the number of operating pairs, 
,

w

h jg , and the 

number of failed pairs, h , to obtain the value of Eq. (3.9). In order to simplify the 

calculation further, we categorize the events by h , 
,

w

h jg , and 
,

w

h jα . Thus the probabilities 

of the events in each category are the same. 

 

Using Monte Carlo simulation, we generate state transition paths by randomly selecting 

operating pairs to fail one by one. By observing and synthesizing the results of multiple 

runs of simulation, we obtain the total number of events with h  failed pairs, 
n

h , categorize 

the events based on corresponding 
,

w

h jg  and 
,

w

h jα , and obtain the proportion of events in 

each category out of all the events with h  failed pairs, 
,

n

h c , where 1h   to  n k . The 

number of events with h  failed pairs in category c  is  ,

n n

h h c  . 

 

4.4.1.2 Probability Calculation 
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The probability calculation for successful events is presented in Section 3.3.2, where the 

major challenge is to obtain the value for the integral in Eq. (3.10) We develop an iteration 

rule to obtain its closed form expression. Numerical values can then be obtained by 

applying the values of  ,1 ,2 ,, , ,w w w w

h h h h h  α    , h , and w

hg . However, we must carry out 

symbolic computation to obtain the limit of the closed form expression when the 

denominators in the closed form expression have zero values, which is caused by zero-

valued combinations of 
,

w

h i  ( 1, ,i h  ). Thus, the method of calculating the probabilities 

of successful events presented in Section 3.3.2 can be computationally expensive. 

 

In order to obtain an approximation of Eq. (3.10), we perform the following: First, we 

replace the zero-valued 
,

w

h i  with a small number  . The value of   can be set around 

3/10  based on experience. When there is zero-valued sum of 
,

w

h i  or 
,

w

h i  in the 

dominators, we replace 
,

w

h i  with  , ,1w w

h i h i      where 
,

w

h i  follows a uniform 

distribution,  0,1U . 

 

4.4.2 Monte Carlo Simulation-Based Algorithm 

4.4.2.1 Algorithm Description 

The simulation procedure is similar to the procedure introduced in Section 4.3. Figure 4.2 

shows the flowchart of the simulation procedure. The values of the parameters can be 

selected by the method introduced in Section 4.5. 
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The basic idea is as follows. Starting from a state with one failed pair, we randomly 

generate its follow-up states and the further follow-up states until we exhaust all the 

possible numbers of failed pairs. A follow-up state of a system state can be obtained by 

turning one of the operating pairs in the current system into failure and balancing the 

system if the additional failure results in an unbalanced system. 

 

Specifically, in the thj  simulation run, starting with a system state with one failed pair, 

denoted as 1, jS , we randomly select a portion of its operating pairs to generate an 

incomplete set of follow-up states,  2,

w

jS , and the corresponding set of events with 2 failed 

pairs,  2,

w

jE . Then we randomly select a portion of the generated states,  2,

w

jS , for each 

of which we randomly select a portion of operating pairs to fail to obtain its follow-up 

states and corresponding events. Thus we obtain  3,

w

jS  and  3,

w

jE . We continue this 

iterative procedure until we exhaust all the possible values for the number of failed pairs, 

h , and obtain corresponding sets  ,

w

h jS  and  ,

w

h jE  where 1 h n k   . 

 

The events can be categorized into different categories according to the values of h , 
,

w

h jg  

and 
,

w

h jα . For example, in Figure 3.7 the transition paths from state 1 to states 6, 7, 8, and 

9 are all successful events with three failed pairs, namely 3h   for all these events. 

According to the number of operating pairs 3

wg , and the coefficient vector, 3

w
α , before 

failure times, the state transition paths reaching states 6 and 9 are considered in one 

category, whereas the paths reaching states 7 and 8 are considered in a different category. 
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Specifically, states 6 and 9 have three operating pairs, and no standby is required to 

rebalance the states. States 7 and 8 have two operating pairs, and one operating pair is 

forced down into standby when the third failure occurs. 

 

We denote the proportion of events with h  failed pairs in category c  as 
,

n

h c . Consider the 

state transition diagram in Figure 3.7 again and suppose that the successful events reaching 

states 6 and 9 are in category 1 and those reaching states 7 and 8 are in category 2. There 

are 120 possible transition paths from state 1 to states 6 to 9. Among these paths, 48 of 

them reach states 6 or 9 while the other 72 reach states 7 and 8. Therefore, 

6

3,1 48/120 0.4   and 6

3,2 72 /120 0.6  . 

 

In addition, we determine the category of event 
,

w

h jE  according to the category of event 

1,

v

h jE 
 when event 

,

w

h jE  is derived from event 
1,

v

h jE 
. 

 

For each enumerated event 
,

w

h jE , we record (i) the number of operating pairs in its 

corresponding state 
,

w

h jS , i.e. 
,

w

h jg ; (ii) the vector of the coefficient in Eq. (3.10), 
,

w

h jα ; and 

(c) the category of the event according to 
,

w

h jg  and 
,

w

h jα , denoted as 
,

w

h jc . 

 

Similarly, we obtain 
n

h , the total number of events with h  failed pairs using Eq. (4.2) by 

replacing 
n

h  by 
n

h . The meaning of 
n

h  is the average ratio between the number of 

follow-up states that can be generated from a state 
1,

w

h jS 
 and   1n h   which is the 
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greatest number of follow-up states that can be generated from a 
1,

w

h jS 
. Note that 1n

h   

when 1h  , 2, 3, ( 1)n   and n . Given   1n h k    a state 
1,

w

h jS 
 can generate at most 

  1n h   follow-up states when it is balanced without standby, and less than 

  1n h   follow-up states when it is rebalanced by forcing down operating pairs into 

standby. In the latter case, if state 
1,

w

h jS 
 is a failed state, i.e. 

1,

w

h jS 
 has less than k  operating 

pairs after being rebalanced, then it cannot generate any follow-up states. In each 

simulation run, we obtain an approximate value for n

h , particularly 

 
  

  

1,

1,

1 1, 1

,

1

,

( 1)

w
h j

w
h j

w w

h j h jn

S

w

S

w

h j

g I g k

n h





  






 




   (4.6) 

where  1,

w

h jS   is the size of the set  1,

w

h jS  ;  1, 1w

h jI g k    if 
1,

w

h jg k  , and 0 

otherwise. The approximate value for n

h  is obtained by taking the average of the 
,

n

h j  

obtained through all the simulation runs. 

 

In order to obtain the proportion of events with h  failed pairs in category c , 
,

n

h c , we 

synthesize the categorization of events  ,

w

h jE  from different simulation runs. In each 

simulation run, the events  ,

w

h jE  are categorized independently without considering the 

other simulation runs. The categorizations in all simulation runs are not synthesized. For 

example, the first category in simulation run 1j  could be the second category in simulation 

run 2j  or might not exist in simulation run 2j . 
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In each simulation run, we categorize  ,

w

h jE  into different groups. Suppose each event 

,

w

h jE  is assigned to a category 
,

w

h jc . Denote the number of unique values of 
,

w

h jc  (the number 

of unique categories) as  ,

w

h jc . We summarize the category information as follows. Let 

notations with a bar represent the category features for a specific simulation run. For each 

unique category   ,1, , w

h jc c , we first count the total number of events in this 

category, denoted as , ,h c jo ; then we record the common features of events in this category, 

i.e. the vector , ,h c jα  and the number of operating pairs , ,h c jg . 

 

To synthesize the event categorizations from different simulation runs, we first set the 

categorization obtained in the first simulation run as the synthesized categorization. We set 

the corresponding category features as the synthesized category features, i.e. 
, , ,1

ˆ n

h c h cα α , 

, , ,1
ˆ n

h c h cgg  , and 
, , ,1

ˆn

h c h coo   where notations with a hat represent the synthesized category 

features. Then for each h  ( 1, ,h n k   ), we match the categories obtained in the second 

simulation to the synthesized categories by comparing , ,2h cα  and , ,2h cg  with 
,

ˆ n

h cα  and 
,

ˆ n

h cg 
. 

If category c  in the second simulation can be matched to the synthesized category c , then 

we add the corresponding , ,2h co  to the 
,

ˆn

h co 
. If a category in the second simulation cannot 

be matched to any of the synthesized categories, we add a new category and its 

corresponding category features to the synthesized categorization. Then we carry out the 

matching procedure for all the other simulation runs iteratively to obtain the comprehensive 

synthesized categorization. Note that after we complete the matching procedure, we can 
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also reorganize the , ,h c jo  obtained in each simulation run. This way, the intermediate 

results for 
,

n

h c , denoted as 
, ,

n

h c j  can also be obtained. 

 

 

Figure 4.2 Flowchart of the Monte Carlo simulation for approximating n

h  and n

h  

 

When the synthesized categorization is obtained, we approximate the value of 
,

n

h c  as 

 
,

,

,1

ˆ

ˆ
n
h

n

h c

h

c

n

c
n

h c

o

o 






   (4.7) 

where 
n

h  is the number of categories of events with h  failed pairs out of the n  pairs. 

System reliability can be obtained as 

        
1 , , ,1

ˆ
n
h

n n n n n

sys

n k

h ch h c h c h cR t R t I g k P t


 
      


    (4.8) 
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where 
,

ˆ n

h cg  is the number of operating pairs remaining by the end of the events with h  

failed pairs in category c ;  ,

n

h cP t  is the probability of an event with h  failed pairs in 

category c . 

 

4.4.2.2 Algorithm Complexity 

We compare the complexity of the proposed algorithm and the exact algorithm in Section 

3.3.4.2. We only discuss the complexity of event enumeration. The complexity of the 

proposed method is  3CO n   as in Eq. (4.5). The computational complexity of the exact 

method can be obtained as follows. The number of fundamental instructions in the exact 

algorithm is as in Eq. (4.9). Thus the algorithm complexity is   1n k
O n

 
. 

  
 1

1 1

1
n k h

h j

n h
 

 

 
  

 
    (4.9) 

 

4.4.2.3 Comparison of Two Algorithms 

We propose two algorithms for the reliability approximation of k -out-of- n  pairs:G 

Balanced systems in two scenarios: In the first scenario unbalanced systems are considered 

as failed and in the second scenario unbalanced systems are rebalanced by using standby. 

We now compare the two algorithms. 

 

Similarities 
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 First, both algorithms approximate system reliability by approximating the 

parameters which describe the complete set of successful events. The parameters 

include n

h  in the first algorithm and n

h  and 
,

n

h c  in the second one. 

 Second, the method of randomly selecting system states and generating follow-up 

states is the same. 

 Third, the method of choosing the parameters is the same as introduced in Section 

4.5. 

 Fourth, the method of preventing simulation failure is the same. 

 

Differences 

 First, the parameters that describe the complete set of successful events are different 

in the two algorithms. Therefore, the information we obtain from the simulation is 

different. 

 Second, we need to rebalance the unbalanced system in the second algorithm. 

 

 Parameter Estimation Algorithm 

In the proposed algorithms, we have five parameters to set: 
,

s

h j , 
,

p

h j , u , and the 

maximum values for j , sn , and m , i.e. maxj , maxsn , and maxm . We now discuss the 

procedure for determining the values of the parameters. 

 

Parameter 
,

s

h j  is the proportion of states to select from  1,

w

h jS   to generate follow-up 

states  ,

w

h jS . For each state in  1,

w

h jS   we select 
,

p

h j  portion of its operating pairs to fail 
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to generate its follow-up states. We generate an adequate number of states to obtain at least 

u  balanced states in  ,

w

h jS  to avoid additional loops shown in blue in Figure 4.1 and 

Figure 4.2. 

 

We develop a rule to assign the values for 
,

s

h j  and 
,

p

h j . First, we calculate reasonable 

values for the number of states we want to generate in  ,

w

h jS , which we denote as med

hN . 

For instance, we always let 1 1medN  , and we let  2 1medN n  ,   1 2h

medN n n    for 

3h  . Second, we determine a reasonable sampling ratio for 
,

p

h j , which we denote as 0

p

h , 

e.g. we let 0 0.1p

h  . Then we determine the values by following the flowchart as shown 

in Figure 4.3 where 
1,h j

cN 
 is the number of generated successful states with  1h  failed 

pairs in the thj  simulation run; 0.5min med

h hN N ; 1.5max med

h hN N ; and 

 
 ,

1, ,1

s h
h j c p

h h j

m d

j

eN
B

N n h


  

  (4.10) 

and 

 
 ,

1, ,1

h
h j c

m

h j h

s

j

ed
p N

B
N n h


  

  (4.11)  

 

The basic idea of the algorithm is that 1) when the number of successful states in  1,

w

h jS   

is small, i.e. 
1,

c min

h j hN N  , we select all the states in  1,

w

h jS  , i.e. set 
,

s

h j  to 1, to increase 

the number of states in  ,

w

h jS  up to 
med

hN ; 2) when 
1,

c max

h j hN N  , we use the preset value 

, 0

p p

h j h   and make 
,

s

h j  small enough to reduce the number of states in  ,

w

h jS  down to 
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med

hN ; when 
1,

min c max

h h j hN N N  , we assign proper values to 
,

s

h j  and 
,

p

h j  to maintain the 

number of states in  ,

w

h jS  around med

hN . 

 

 

Figure 4.3 Rules of assigning the values for 
,

s

h j  and 
,

p

h j  

 

The value of u  can be obtained by trial. In fact, once we assign proper values for 
,

s

h j  and 

,

p

h j , it is likely to generate enough balanced states at each state, then we can simply let 

1u  . For the same reason the maximum value for m , i.e. maxm  can be selected arbitrarily 

in most of the cases. 
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The maximum value for j , i.e. 
maxj , depends on the value of n . A greater n  results in a 

greater 
maxj . Here we let maxj n  to 2n . The maximum value for sn , i.e. maxsn , is an 

arbitrary number that is much greater than 
maxj . 

 

 Numerical Examples 

In this section, we present two numerical examples to show the effectiveness and efficiency 

of the approximation approach proposed in this paper. The second scenario where 

unbalanced systems are rebalanced by standby pairs is a more general case. Therefore, we 

give the numerical examples based on the second scenario. In the numerical examples, we 

let 1 1medN  , and  2 1medN n  , and   1 2h

medN n n    for 3h   to determine the 

number of states to generate, i.e. the sample size. The algorithm for determining sample 

size and the notation, d

h

meN , are explained in the Section 4.5. Note that this setting for d

h

meN  

means that we generate all the possible system states with less than or equal to three failed 

pairs. This is because that the total numbers of system states with one, two, and three failed 

pairs are 1,  1n , and ( 1)( 2)n n  , respectively, when we always choose pair *1  to be 

the first pair to fail as indicated in both Figure 4.1 and Figure 4.2. Note all the pairs in the 

system are identical and can fail first with the same probability. Therefore, choosing pair 

*1  to fail first does not affect the simulation results. 
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4.6.1 Numerical Example 1: Approximation Accuracy 

Consider a 6-out-of-12 pairs:G Balanced system under the assumption that unbalanced 

system is rebalanced by standby pairs. The lifetime of individual units follows an 

exponential distribution with mean 40. We implement ten simulation runs to obtain the 

results. The approximate values for 12

h  where 4h   to 6  are plotted in the first subplot 

in Figure 4.4 where the black horizontal lines indicate the 0.95 confidence intervals of the 

simulated results. As shown, the approximate values are very close to the exact values, 

which validates the efficiency of the proposed approximation approach. In addition, we 

show the values of 12

,h j  in the second subplot in Figure 4.4 where different simulations are 

represented by different colors. 

 

As shown in Figure 4.4, different simulations results for different values of 12

,h j . The 

randomness is overall derived from two sources. First, the system states in each simulation 

run are randomly generated, which is only a portion of the complete set of system states. 

Therefore, the values of 12

,h j  calculated based on these states are random. Second, the 

number of system states generated in any simulation run is random. The number of system 

states generated is dynamically determined by the algorithm described in the Appendix. 

The number of generated system states with h  failed pairs depends on the number of 

generated operating system states with  1h  failed pairs. Since the states are randomly 

generated, the number of operating system states varies. Therefore, the number of states to 

be generated also shows randomness. 
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Figure 4.4 Simulation results: the values of 12

h  and 12

,h j  

 

From Figure 4.4, we observe that the approximate value of 12

4, j  does not show any 

randomness and the confidence interval of the approximate value of 12

4  has overlapping 

upper and lower bounds. Based on Eq. (4.6), the value of 12

4, j  is determined by the system 

states with three failed pairs. In this numerical example, we choose to generate all possible 

system states with three failed pairs as explained at the beginning of Section 4.5. Therefore, 

we observe no randomness in the value of 12

4, j . 

 

From Figure 4.4, we also observe that the value of 12

5, j  shows more discrepancy than that 

of 12

6, j . Generally, based on the algorithm described in the Appendix, we maintain the 

number of generated system states around a target value, 
d

h

meN . On the other hand, the total 

number of system states with h  failed pair increases with h . We expect the discrepancy 

in the value of 12

,h j  to increase with h . However, for a system with an even number of 
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pairs, unbalance is more likely to occur when h  is odd than when it is even, which creates 

additional randomness. This explains the greater discrepancy of 12

5, j  than 12

6, j . We show 

the simulation results of 11

,h j  and 12

,h j  when 1k   in Figure 4.5. We observe increasing 

discrepancy as h  increases both when 11n   (odd) and when 12n   (even). In addition, 

we observe greater discrepancy at odd-valued h  only when 12n   (even). 

 

 

Figure 4.5 Discrepancy in 
,

n

h j  when 11n   (odd) and 12 (even) 

 

The approximate value for 12

,h c  where 3h   to 6 is plotted in Figure 4.6. In Figure 4.6, the 

approximate values are represented by circles, and the exact values are represented by 

asterisks. Similarly, we indicate the 0.95 confidence intervals of the approximate values. 

Since there does not exist randomness when the number of failures 3h   as explained 

previously, the corresponding upper and lower bounds of the confidence interval in Figure 
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4.6 overlap. We also present the intermediate simulation results for 3h   to 6 in Figure 4.7 

where different colors represent different simulation runs. 

 

 

Figure 4.6 Simulation results: values of 12

,h c  

 

We then estimate the system reliability, as shown in Figure 4.8. The difference between 

the exact value and approximate value is negligible. The mean absolute error of 

approximation is 
44.4107 10 , and the maximum absolute error is 0.0030, which 

demonstrates the effectiveness of the approximation approach. The exact values are 

obtained by using the method introduced in Chapter 3 in a computational time of 41 

seconds compared with the 4 seconds used for the Monte Carlo simulation approximation. 

This shows our approximation approach is also efficient. 
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Figure 4.7 Simulation results: values of 12

, ,h c j  

 

 

Figure 4.8 Simulation results: reliability approximation 

 

We have shown the accuracy of the proposed method when n  is relatively small. Due to 

the large computation time required by the exact estimation method, it is very difficult to 

obtain the exact value of reliability for large systems. Thus, for large systems, we calculate 
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the sum of the probabilities of all the possible events, namely, we assume 0k  . Note that 

the exact reliability value for any 0-out-of- n  pairs:G Balanced system at any time should 

be 1. We calculate the absolute error of the approximate reliability value at each time for 

n 15 to 30. We found that the mean of the absolute errors is 39.56 10  and the maximum 

absolute error is 0.027, which is negligible. 

 

We also investigate the effect of sample size (the number of system states to be generated) 

and the number of simulation runs on the accuracy and efficiency of the approximation 

algorithm. We let the target sample size, med

hN , be 1 and  1n , respectively, when failure 

number 1h   and 2, and let it be constant for the other failure numbers. We calculate the 

approximate system reliability and its absolute error when the simulation number, sn , is 5 

to 25 with a step 5 and the target sample size med

hN  ( 2h  ) be 30, 70 and 110. We plot the 

absolute error of the approximate reliability and the computation time used by the 

algorithm in Figure 4.9 and Figure 4.10. 

 

In Figure 4.9 we present the boxplots of the absolute error of approximate reliability. Each 

subplot corresponds to a different target sample size. From Figure 4.9 we observe that the 

absolute error tends to decrease when simulation number and sample size increase. 
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Figure 4.9 The effect of the number of simulations and sample size on the algorithm 

accuracy 

 

 

Figure 4.10 The effect of the number of simulations and sample size on the algorithm 

efficiency 
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In Figure 4.10 we plot the computation time against simulation number and sample size in 

two subplots. It is clear that computation time increases linearly with simulation number 

and sample size. 

 

4.6.2 Numerical Example 2: Approximation Efficiency 

In addition, we show the computation efficiency of the proposed reliability approximation 

method by comparing its computation time with that of the exact reliability method 

introduced in Chapter 3. We estimate the reliability for several  5n -out-of- n  pairs:G 

Balanced systems for n 6 to 30 by assuming unbalanced systems can be rebalanced by 

standby. Again, we assume that the lifetimes of individual units follow an exponential 

distribution with mean 40. We plot the computation times by the two methods in Figure 

4.11 we plot the computation time for  5n -out-of- n pairs:G Balanced systems when 

{40,50, ,100}n  . We also indicate the horizontal lines of four hours and eight hours. 

This shows that the computation time of the approximate algorithm increases exponentially.  

 

In fact, when n  increases and k  decreases, the number of successful events to enumerate 

increases exponentially and the maximum dimension of the integral in Eq. (3.9) increases. 

The latter is due to the greater number of failures. Consequently, the performance of the 

algorithm is affected in two aspects: First, computation time increases exponentially. 

Second, the accuracy of the algorithm degrades since approximation error accumulates 

when we sum the probabilities of successful events. When the dimension of the integral in 

Eq. (3.9) increases, more zero-valued terms will be involved in its calculation. So the 
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probability is approximated with greater error. At the same time, we have more events to 

include into system reliability. Consequently the approximation error for system reliability 

increases. 

 

We find that the application of the approximation method is limited when 30n   based on 

the results of additional numerical experiments. Overall, when 30 50n  , the value of k  

should be within [ 15n , n ], when 50 60n  , the value of k  should be within [ 10n , 

n ], and when 60n  , the value of k  should be within [ 5n , n ]. When the value of k  is 

out of the recommended range, extensive computation time and low accuracy is expected. 

 

 

Figure 4.11 Computation time of approximation method and exact estimation method 

 

 Conclusions 

In this chapter, we investigate the reliability approximation approach for k -out-of- n  

pairs:G Balanced systems in two scenarios: 1) unbalanced systems are considered as 
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failures; and 2) unbalanced systems are rebalanced by forcing down operating pairs into 

standby or resuming standby pairs into operation. The major difficulty in obtaining the 

exact reliability of such systems is the extensive computation time caused by (i) 

enumerating the complete set of successful events, which are sequences of ordered failures; 

and (ii) calculating the probabilities of successful events (only in the second scenario). 

 

We proposed Monte Carlo simulation-based approximation approaches for the two 

scenarios. The basic idea of the approaches is generating events sequentially by randomly 

selecting a portion of operating pairs to fail. The approximation of the key parameters for 

estimating system reliability is obtained by observing the system states and events, 

including failure events and successful events, generated in all simulation runs. 

 

The numerical examples validate the effectiveness and efficiency of the approximation 

approaches by showing that the approximate system reliability values are obtained with 

high accuracy in a much shorter computation time compared with the exact method. 

Equation Chapter (Next) Section 1 
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5. CHAPTER 5 

 

RELIABILITY ESTIMATION BASED ON DEGRADATION MODELING OF 

SPATIALLY DISTRIBUTED UNITS 

 

 Problem Definition and Assumptions 

Many systems are composed of spatially distributed units which are subject to different 

operating conditions. The reliability of such systems depends not only on the reliability of 

individual units but also on their configurations. In this chapter, we develop a degradation 

model for systems where units are spatially distributed and balanced. More specifically, 

we consider k-out-of-n pairs:G Balanced systems. The effect of operating conditions on the 

units is considered and the corresponding reliability estimate is obtained. The degradation 

path of every unit is modeled based on collected observations of the degradation indicators 

and its physics or statistics degradation rate. We investigate the effect of the system 

configuration on the overall system reliability. We also estimate the pdf of time to a 

specified failure. 

 

We first estimate the reliability metrics of a 1-out-of-6 pairs:G Balanced system, as shown 

in Figure 1.1(a), at the initial operation stage when no failures occur. We then provide a 

procedure for estimating the reliability metrics of any k -out-of- n  pairs:G Balanced 

systems at any stage when h   0 h n k    failures are observed. 
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The assumptions stated in the Introduction hold throughout this chapter except that the 

lifetimes of individual units in this chapter are not assumed to be i.i.d.. The distribution of 

any unit’s lifetime is determined by its degradation process. 

 

 System Description 

In this chapter, we first estimate reliability metrics for a 1-out-of-6 pairs:G Balanced 

system shown in Figure 1.1(a) with all units performing the same function. The system is 

considered balanced when the operating units are symmetric w.r.t. at least a pair of 

perpendicular axes. Unbalanced systems are rebalanced by forcing down additional 

operating pairs into a standby state. Standby pairs resume operation when their resumption 

can bring the system back to balance or bring additional operating pairs to the system. 

 

The state transition diagram of the system, which describes all of the possible states that 

may occur and all of the state transition paths that may lead to these states, is then obtained 

as shown in Figure 5.1. Note that each system state shown in Figure 5.1 is a typical state 

of all the states that have the same relative locations of failed pairs. For instance, system 

state 3 is a typical state of all the states that have two failed adjacent pairs. A system state 

itself contains no information on the sequence of failures. The sequence of failures is found 

by observing the transitions from one state to another. A successful event is a state 

transition path that leads to an operating system state. Here, an operating system state 

should have at least k  pairs of operating units that are symmetric w.r.t. at least a pair of 

perpendicular axes. 
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Figure 5.1 State transition diagram for 1-out-of-6 pairs:G Balanced system 

 

 Degradation Model for Individual Units 

In a system with spatially distributed units, the degradation paths of individual units can be 

significantly different due to the operating conditions at the spatial locations. In this section, 

we introduce a degradation model for individual units considering different operating 

conditions. We also investigate the effect of the standby state on the degradation of 

individual units. 

 

5.3.1 Baseline Degradation Rate Model 

We consider the following degradation model [86]: 

        i i i idD d dB          (5.1) 

where  iD   is the amount of degradation of unit i  at time  ;  idD   is the derivative of 

 iD   at  ;       0 ; ;i iA Ω S Θ      is the degradation rate of unit i  at  ; 
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  ;iA S Θ  is the acceleration factor due to the operating condition 

    ; 1,2, ,i ilS l o  S    which is a vector of stress factors affecting unit i  at  ; o  is 

the number of stress factors considered in the model;  0 ;Ω   is the baseline degradation 

rate of individual units of the same type when they are subject to baseline operating 

condition  0 0, ; 1, 2, ,lS l o  S ; and Ω  and Θ  are the parameter vectors of 

corresponding functions. Note that  0; 1A S Θ  and    0i      when   0i S S . 

Based on Eq. (5.1), the degradation increment  Δ iD t  in time interval  Δ ,t t t  follows a 

normal distribution. Specifically 

           ~ ,i i i i iD t N M t M t t V t V t t       (5.2) 

where 

    
0

:
t

i iM t d       (5.3) 

is the expected degradation increment of unit i  at time t  from its initial degradation value; 

and 

      
0

22:
t

i i i iiV t d M t        (5.4) 

is the variance of degradation increment of unit i  at time t  from its initial degradation 

value. 

 

Assume unit i  fails when its degradation value reaches a threshold ih , its reliability is 

obtained as [142] 
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  (5.5) 

where 0

ix  is the initial degradation value of unit i . 

 

The corresponding pdf of lifetime of unit i  is obtained as: 
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  (5.6) 

 

Note that when we obtain  iM t  and  iV t , the values of stress factors  ilS   in  i   

are not available for T  the observation time. In that case, we predict the stress factors 

after T  using their means through time T . Suppose we obtain the measurements of the 

stress factor l  of unit i  at discrete time jt ,  il jS t , by observation time T  where 

1,2, , 2i n    (because we have n  pairs of units and hence 2n  units in total) and 

1,2, ,j m   if there are m  measurements by time T . The means of the stress factors 

   
1

m

il il jj
S T S t m


  at time T  are used as a prediction of  ilS   when T . Note 

that     ; 1,2, ,i ilT S T l o  S . 
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5.3.2 Degradation Model Considering Observation Update and Standby 

Suppose we observe the degradation  iD T  of unit i  by time T , and the operating 

condition,  i TS , is known. The expected degradation increment of unit i  at t  ( t T ), i.e. 

 iM t , is updated accordingly. Specifically, Eq. (5.3) is modified as 

       0

0( )
t

i i
T

i iM t D T x A dT     S      (5.7) 

 

When standby is considered, the expected degradation increment of unit i  at t ,  iM t , is 

modified further to reflect the effect of possible standby periods during which standby pairs 

are not subject to degradation or failures. Note that for 1-out-of-6 pairs:G Balanced system, 

a pair can only be forced down into standby when the third failure occurs, and it resumes 

its operation when the fourth failure occurs, as shown in Figure 5.1. Two scenarios are 

considered, and the corresponding  iM t  is modified, respectively: 

 

(i) After observation time T , unit i  is forced down into standby at time 3  and not 

resumed by time t . In this scenario, the expected degradation increment does not increase 

after 3 , hence 

         
30

3 0;i i
T

i iM t D T x A dT     S


      (5.8) 

 

(ii) After T , unit i  is forced down into standby at time 3  and resumes operation at 4  

where 3 4 t   . In this scenario, the expected degradation increment does not increase 

during  3 4,   and 
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         
 4 3

4 0

0

3; , i i

t

i i
T

M t D TT x A d
 

     S
 

       (5.9) 

 

The reliability,  ir t  in Eq. (5.5), and pdf,  iq t  in Eq. (5.6), of unit i  in each scenario are 

then obtained based on the corresponding  iM t  in Eq. (5.8) and Eq. (5.9). 

 

 Reliability Metrics for 1-out-of-6 Pairs:G Balanced Systems with Units 

Performing One Function Considering Standby 

In this section, we estimate the system reliability and the pdf of the time to the h th failure 

of the 1-out-of-6 pairs:G Balanced system introduced in section 5.2. The reliability metrics 

are estimated at observation time T  at which we assume no failure occurs. 

 

The estimation is carried out according to the state transition diagram in Figure 5.1 from 

which all the possible events can be derived. In Figure 5.1, we observe an unbalanced 

system may result from the third failure. If this is indeed the case, an operating pair is 

forced down into standby to bring the system to balance. The standby pair resumes 

operation when the fourth failure occurs. If the third failure does not cause unbalanced 

system, then no pairs are forced into standby state. 

 

In this section, we use the following notations: Denote the pdf of the lifetime of pair 
*i  as 

*i
f  and its reliability as *i

R . The pdfs, iq  and i nq  , and reliability functions, ir  and i nr , of 

individual units i  and  i n  of pair 
*i  are obtained by Eq. (5.5) and Eq. (5.6), 

respectively. Then 
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      * i i ni
R t r t r t    (5.10) 

and 

          * i i n i i ni
f t q t r t r t q t       (5.11) 

 

Note that the  iM t  used in Eq. (5.5) and Eq. (5.6) should be modified when standby 

occurs in some events as specified in Eq. (5.8) and Eq. (5.9). In addition, we define: 

 U  universal set of pair identity numbers  * * * * * *1 ,2 ,3 ,4 ,5 ,6U  . 

 h  random variable of time to the h th failure starting from time zero. 

 6

,v SC  set of combinations of v  out of the 6 pairs the failure of which results in a 

symmetric (balanced) system. 

 6

,v AC  set of combinations of v  out of the 6 pairs the failure of which results in an 

asymmetric (unbalanced) system. 

 6

, ,v A BC  set of operating pairs that are forced down into standby to bring unbalanced 

systems back to balanced states. The i th element in 6

,v AC  corresponds to the i th 

element in 6

, ,v A BC . 

 

5.4.1 System Reliability Estimation 

At observation time T , we sum the probabilities of all successful events to obtain system 

reliability  sysR t . Conditional system reliability,  |sysR t T , is obtained by normalizing 

system reliability by its value at time T . In particular, 
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    
6 6,w

sys gg k w
R t P t


    (5.12) 

and 

      |sys sys sysR t T R t R T   (5.13) 

where  6,w

gP t  is the probability of a set of events that g  out of 6 pairs operate in balanced 

states by time   t t T . The same equation is used to obtain the probabilities of a set of 

events that share the same or similar relative locations and relative sequence of failures 

though the actual identities of failed pairs in each event are different and hence the 

probabilities of the events are different. The superscript w  is used to distinguish different 

sets of events that result in the same number of operating pairs out of the 6 pairs. 

 

The probability that all pairs are operating by time t  is 

    *

*

6

1

6

6

i
i

t R tP


   (5.14) 

 

The events that five pairs are operating by time t  include all the state transition paths from 

state 1 to state 2. The probability is obtained by 

        
 

* * *

* * *

5

6
6

1
i i

j i

j
i U

P t R T R t R t
  

       (5.15) 

 

The events that four pairs are operating by time t  include all the state transition paths from 

state 1 to states 3, 4 and 5. The probability is obtained by 

        * * *

6 * *
2,

6

4

S

i i j
c C i c j c

t R T R t R tP
  

        (5.16) 
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where    * *

*
i i

i c

R T R t


    is the probability that pairs in combination c  fail in any order 

between time instants  ,T t ; set 6

2,SC  includes all the combinations of choosing two pair 

identity numbers out of the six pair identity numbers in U ; and c U c   is the 

complement set of c . 

 

The only event for the system to have three operating pairs is that three pairs fail in a 

symmetric arrangement as in states 6 and 9. The events that three pairs are operating by 

time t  hence include all the state transition paths from state 1 to states 6 and 9. The 

probability is obtained by 

        * * *

6 * *
3,

6

3

S

i i j
c C i c j c

P t R T R t R t
  

        (5.17) 

where set 6

3,SC , elements of which are combinations of three pair identity numbers, is found 

in Table 5.1. 

 

As shown in Figure 5.1, states 7 and 8 with three failed pairs and states 10 and 11 with four 

failed pairs both have two operating pairs. The events that two pairs are operating by time 

t  include all the state transition paths (i) from state 1 to states 7 and 8; (ii) from state 1 to 

states 10 and 11 via states 6 and 9; and (iii) from state 1 to states 10 and 11 via states 7 and 

8. The probabilities of these events are obtained by Eq. (5.18), Eq. (5.19) and Eq. (5.20), 

respectively. The equations are derived based on the failures occurring sequentially at time 

h  ( 1h   to the total number of failures, e.g. totally three failures are considered in Eq. 

(5.18)) and the survival of standby pairs and operating pairs by time t  according to the 

corresponding state transitions paths. Specifically, Eq. (5.18) quantifies the probability of 
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all the events that two pairs in set  *

2c i  fail between time instants  3,T   in any order 

where  3 ,T t , then pair *

2i  fails at 3 , and standby pair *j  and all the other pairs (pairs 

in set  *c j ) survive time t . The first two failures result in a balanced system, but the 

third failure at 
3  makes the system unbalanced. This is why we differentiate between the 

first two failures and the third one. Once a combination c  from set 6

3,AC  is selected, the 

corresponding standby pair *j  in set 6

3, ,A BC  is determined. But the three pairs in c  can fail 

in any order. So the third failure occurs in any pair in c  which results in the second level 

of summation in Eq. (5.18). Specifically 

  

   
 

   

 
 

* * * *
23 * *

1 2

6 *
3, 2 *

* 6 * *
3

1

,

1

,

3 3 3 3

6,1

2

;

A

A B

t

i i i jT
i c i

c C i c
h

j C h c j

R T R f R t d

P t
R t


 

 

  

  
  

 
  

 
  


 




   

  (5.18) 

where set 6

3,AC  and set 6

3, ,A BC  are found in Table 5.1; and  * 3;
j

R t   is the reliability of the 

standby pair *j  given it is forced down at time 3  and not resumed by time t . To obtain 

 * 3;
j

R t  , we use Eq. (5.8) to obtain the corresponding expected degradation increments 

at t , i.e.  3;jM t   and  3;j nM t  , of units j  and  j n  in pair *j . Similarly Eq. (5.19) 

quantifies the probability of all the events that three pairs in set c  fail in any order between 

 4,T   where  4 ,T t , which results in a balanced system, then pair *j  fails at 4 , and 

all the other pairs survive time t . 

 

          
 

* * * *

46 * * * *
3,

6,2

4 4 42

S

t

i i j hT
c C j c i c h c j

P t R T R f d R t


    

 
 

    
  

         (5.19) 
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Eq. (5.20) quantifies the probability of all the events that two pairs in set  *

2c i  fail in 

any order between  3,T  , then pair *

2i  fails at 3 , then pair *h  fails at 4  where 

 3 4,T   and  4 ,T t , and then both pair *j  and pair *m  survive time t . The third 

failure results in an unbalanced system, so pair *j  is forced down into standby at 
3  to 

rebalance the system. When the fourth failure occurs at 4 , pair *j  is no longer needed in 

standby and hence resumes operation. Note that 3  is smaller than 4  so the upper limit of 

3 is 4 . Specifically 

 

   
 

   

 

 

 

* *
1 1

* *
1

* * *

6 * * *
3, 2

* * ** 6
3, , *

2

4

24 3

3

3 4

3 4 3 4

6,3

2

{ }

,

( )

; ,
A

A B

i i

i c i

t

i h mT T
c C h c j i c

m c j hj C
j

R T R

P t f f R t

R t d d

 

 
   

 

   
   

  
   

    
   
   
     



    


 



 

   

  (5.20) 

where  * 3 4; ,
j

R t    is the reliability of pair *j  given it is forced down into standby during 

3  and 4 . To obtain the value of  * 3 4; ,
j

R t   , we use Eq. (5.9) to obtain the 

corresponding expected degradation increments at t , i.e.  3 4; ,jM t    and  3 4; ,j nM t   , 

of units j  and  j n  in pair *j . 

 

The events that one pair is operating by time t  include all the state transition paths from 

state 1 to state 12 (i) via states 6 and 9; and (ii) via states 7 and 8. The probabilities are 

obtained by Eq. (5.21) and Eq. (5.22), respectively. Specifically, the events modeled by Eq. 

(5.21) are the same as Eq. (5.19) except that one of the two pairs in  *c j  fails between 
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 4 ,t  and the other one survives time t . Thus we have the third level of summation in Eq. 

(5.21). 

 

  
     

   
 

 
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


   

 

       
    

       


   

 

 

 (5.21) 

 

In addition, the events modeled by Eq. (5.22) are the same as Eq. (5.20) except that either 

pair *j , the standby pair, or pair *m  fails between  4 ,t . 
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  (5.22)  
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Table 5.1 Set 6

3,SC , 6

3,AC  and 6

3, ,A BC  

6

3,SC  6

3,AC  6

3, ,A BC  

1* 2* 3* 

2* 3* 4* 

3* 4* 5* 

4* 5* 6* 

1* 5* 6* 

1* 2* 6* 

1* 3* 5* 

2* 4* 6* 

2* 4* 5* 

1* 4* 5* 

1* 2* 5* 

1* 2* 4* 

3* 5* 6* 

2* 5* 6* 

2* 3* 6* 

2* 3* 5* 

3* 4* 6* 

1* 4* 6* 

1* 3* 6* 

1* 3* 4* 

1* 

2* 

4* 

5* 

2* 

3* 

5* 

6* 

1* 

3* 

4* 

6* 

 

5.4.2 The pdf of Time to the hth Failure 

For redundant systems such as k -out-of- n  pairs:G Balanced systems investigated in this 

chapter, it is important to estimate the time to the h th failure to support maintenance actions. 

In this section, we discuss the estimation for the pdf of the time to the h th failure. Again, 

we consider the 1-out-of-6 pairs:G Balanced system. 
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Let  h hg   denote the pdf of time to the h th failure, h , starting from time zero. The sets 

6

3,SC , 6

3,AC , and 6

3, ,A BC  used in the following equations are found in Table 5.1. In addition, 

6

2,SC  is composed of all the combinations of choosing two pair identity numbers out of the 

six pair identity numbers in U . 

 

We estimate pdf of time to the h th failure as follows. The pdf of time to the first failure is 

    
 

 * *

* * *

6

1 1

1

1 1i j
i U ij

g Rf
  

      (5.23) 

 

By considering the scenarios where states 3, 4, or 5 are reached at 2 , as shown in Figure 

5.1, the pdf of time to the second failure is obtained as in Eq. (5.24). Specifically, Eq. (5.24) 

is the probability density of all the events that pair *

1i  fails between  2,T  , then pair *

2i  

fails at 2 , and all the other pairs survives beyond 2 . 

 

          * * * *
1 1 2

*6 *
12,
* *
2 1

2 22

}

2 2

{
S

i i i
i cc C j c

i c i

j
g R T R f R

 

 

  
       (5.24) 

 

Two scenarios can happen when the third failure occurs: (i) three pairs fail in symmetric 

arrangements at 2 , i.e. either state 6 or state 9 is reached at 2 ; or (ii) three pairs fail in 

asymmetric arrangements and one operating pair is forced down into standby when the 

third failure occurs at 3 , i.e. either state 7 or state 8 is reached at 3 . The pdf of time to 

the third failure  3 3g   is hence composed of two parts:  3, 3Sg   and  3, 3Ag   which 
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correspond to the two scenarios, as shown in Eq. (5.26) and Eq. (5.27). Specifically, the 

two equations quantify the probability density of all the events that two pairs fail between 

 3,T  , then pair *

2i  fails at 3 , which results in a balanced system, as in Eq. (5.26), or an 

unbalanced system, as in Eq. (5.27), and all the other pairs survive 3 . 

 

      3 3 3, 3 3, 3S Ag g g      (5.25) 

where 
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  (5.26) 

and 

    
   

   

1
* *

* *

*6
3, * *

1

1 2

2

2
*

,

3

33

3 3A

i i

i c i

A

i cc C
i j

j c

R T R

g

f R

 





  
   

  
 
  











  (5.27) 

 

Similarly,  4 4g  ,  5 5g  , and  6 6g   are composed of two parts, which correspond to 

the two possible branches of transition paths after the third failure. The pdfs can be obtained 

as follows. 

 

By considering the scenario that either state 10 or state 11 is reached at 4  via either state 

6 or state 9, we obtain the first part of  4 4g   as 
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Eq. (5.28) quantifies the probability density of all the events that the three pairs in set c  

fail in any order between  4,T  , which results in a balanced system, then pair *j  fails at 

4 , and all the other pairs survive time 
4 . By considering the scenario that either state 10 

or state 11 is reached at 4  via either state 7 or state 8, we obtain the second part of  4 4g   

as 
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  (5.29) 

 

Eq. (5.29) quantifies the probability density of all the events that the two pairs in set 

 *

2c i  fail in any order between  3,T   where  3 4,T  , then pair 
*

2i  fails at 3 , which 

results in an unbalanced system, pair *j  is forced down into standby at 3  to rebalance the 

system, which means pair *j  survives 3 , then pair *h  fails at 4 , and pair *m  survive 

time 4 . Similarly, we obtain  5, 5Sg  ,  5, 5Ag  ,  66,Sg  , and  66,Ag  . Then 

   5 5 5, 5 5, 5( )S Ag g g     and    6 6,6 666, ( )S Ag g g    . The derivations of Eq. (5.30) 

to Eq. (5.33) are obvious by referring to the above explanation. 
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  (5.31) 

where  * 5 3 4; ,
j

f     is the pdf of pair *j  at 5  given it is forced down into standby 

between 3  and 4 . To obtain the value for  5 3 4; ,jf    , we use Eq. (5.9) to obtain 

corresponding expected degradation increments of units j  and  j n  at 5 , i.e. 

 5 3 4; ,jM     and  5 3 4; ,j nM     . 
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The conditional pdf can be obtained by normalizing the pdf using a factor  . 

  sys TR   (5.34) 

 

If we estimate the pdf at 0T  , then 1 . Otherwise, the range of pdf should exclude 

 0,T , and pdf should then be normalized by   which is the probability that no failure 

occurs by observation time T . 

 

 Model Generalization 

In this section, we present a procedure for estimating reliability metrics of any k -out-of-

n  pairs:G Balanced systems. In the previous section, we estimate the system reliability and 

pdf of time to the h th failure of the 1-out-of-6 pairs:G Balanced system with all units 

performing the same function at observation time T  under the assumption that no failure 

occurs by T . In this section, we generalize the model to estimate the reliability metrics 
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when any possible system state is observed by time T . Consider the 1-out-of-6 pairs:G 

Balanced system as an example. When state 7 in Figure 5.1 is observed at time T , the 

system already has three pairs failed and one pair in standby. In this case, we estimate the 

system reliability, pdfs of times to the 4th, 5th, and 6th failures, and their conditional values 

by considering all the possible state transition paths derived from state 7, as shown in 

Figure 5.1. 

 

Again, we assume that the degradation processes of individual units are affected by their 

corresponding operating conditions. We use the following notations and define: 

 U  universal set of pair identity numbers. 

 u  number of failed pairs by observation time T . 

 h  random variable of time to the h th failure. 

 h  actual time to the h th failure which is known after the thh  failure is observed by 

time T . 

 

5.5.1 System Reliability Estimation 

At any observation time T , system reliability at   t t T  can be obtained by 

    ,u wn k

sys h u w hPR t t



    (5.35) 

where  ,u w

hP t  is the probability of a successful event that h  pairs fail sequentially by time 

  t t T , which results in a balanced system with no less than k  operating pairs by time 

t  given that u  pairs have already failed by observation time T . The superscript w  is used 
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to distinguish different events which all have the same values of u and h . The conditional 

system reliability is obtained by Eq. (5.13). 

 

5.5.1.1 Probability of Each Successful Event 

Probability  ,u w

hP t  is obtained as 
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   (5.36) 

where i  is the index for the failures that occur by time t ; *

ix  is the identity number of the 

i th failed pair and can be found in the set of identity numbers of failed pairs at time t  which 

we denote as ,u w

hX ; ,u w

hY  is the set of identity numbers of standby pairs at time t ; ,u w

hG  is 

the set of identity numbers of operating pairs at time t ; and *

,

,

u w

h p
b  is a row vector of length 

h  that records the actions, which include being forced down into standby, resuming 

operation, and either continuing operating or failing, that pair *p  is subjected to at each 

failure time i (or i ) ( 1, ,i h  ) from time 0t  . Note that the two units in pair *p , i.e. 

units p  and  p n  share the same vector *

,

,

u w

h p
b  because both units are forced down and 

resumed simultaneously. Again, we denote i  ( 1i   to u ) as the times when the first u  

failures actually occur before observation time T , which have deterministic values, and 

denote i  ( 1i u   to )h  as the times when the later  h u  failures occur after T , which 
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are random variables. Specifically, the i th element in *

,

,

u w

h p
b ,  *

,

,

u w

h p
ib , equals 1  if pair *p  

is forced down into standby at i  (or i );  *

,

,
1u w

h p
i b  if pair *p  resumes operation at i  

(or i ); and  *

,

,
0u w

h p
i b  otherwise. Note that the elements of *

,

,

u w

h p
b  include not only the 

actions at i  before T ; but also the actions at i  between time interval  ,T t . 

 

In (5.36),  * *
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,
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;
i i

h
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f d
 

 b   is the probability that the thi  failure occurs at time i  where 

 1 , ,i u h   and  1,i iT    for i h  and  ,h T t ;  * *
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z G
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 b  are the conditional probabilities that standby pairs in ,u w

hY  and operating 

pairs in ,u w

hG  survive time t  given the thi  failure occurs at time i  where  1 , ,i u h  . 

When h u , we modify (5.36) as 
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where we do not have superscript w  because there is only one event where no further 

failures occur after observation time T . 

 

To obtain the reliability and lifetime pdf of individual pairs, i.e.  * *,

,ˆ;
p h

u

p

wR t b  and 

 * *,

,ˆ;
p h

u

p

wf t b , where ˆ
it   if pair *p  fails at i  and t̂ t  if pair *p  is either operating or 

in standby at t , in the expression of  ,u w

hP t  as shown in Eq. (5.36), we obtain 
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 *,

,ˆ;p h
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wM t b  and  *,

,;ˆ u

n

w

p h p
M t b  for units p  and  p n  in pair *p  first. In particular, for 

unit p  
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where the lower bound of the integral is 
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and the upper bound of the integral is 
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In Eqs. (5.39) and (5.40), the coefficients  *

,

1
,

1
u

c

u w

h p
c



 
 

 
b  and  *
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1
,

1
h

c

u w

h p
c



 
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 
b  before T  

and t̂  equal either 1 or 0 because: first, vector *

,

,

u w

h p
b either has the same number of “–1” 

(representing forcing-down) and “1” (representing resumption) or has one more “–1” than 

“1”; second, vector *

,

,

u w

h p
b  must have exactly one “1” between two “–1”; and third, the other 

elements besides “–1” and “1” in vector *

,

,

u w

h p
b  are all zeroes. The coefficients equal 0 if and 

only if pair *p  is in standby at T  or t̂ . If a coefficient is 1, T  (or T ) is T  (or t̂ ) minus 

the time interval during which pair *p  is in standby, i.e.  *

1

,

,

u

c

w

p

u

h cc


b   (or 

   * *, ,
1

,

1

,u w u w

h p h p

u h

c c

c c u

c c
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 
 

 
 b b  ). If a coefficient is 0, then T  (or T ) is the last time when 

pair *p  is forced down, which is the greatest c  (or c  ) that corresponds to a 
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 *

,

,
1u w

h p
c  b  minus the time interval during which pair *p  is in standby. For example, if 

pair *p  is forced down at  1 1h h u    and never resumes operation afterwards, then T  

is 1h  minus    * *

,
2

1
,

1

,

,

u w u
u h

c c

w

h p
u
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c c

h
c c



  

 
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 
 b b  . 

 

Similarly  *

,

,
ˆ; u w

p n h p
M t b  is obtained by changing the subscript p  in Eq. (5.38) to  p n  

and using the same lower and upper bounds T  and T  as obtained in Eq. (5.39) and Eq. 

(5.40) because both units p  and  p n  are forced down and resumed together as a pair 

*p  as indicated in *

,

,

u w

h p
b . 

 

5.5.1.2 Event Set Enumeration for System Reliability Estimation 

In this section, we introduce the procedure to obtain the event set for estimating system 

reliability given the observation of the system at time T . Starting from the observed system 

state at T , we enumerate all its follow-up states until we exhaust all the possible states and 

all the possible transitions between these states. A follow-up state of a state can be obtained 

by turning one of the operating pairs in the current system into failure and rebalancing it if 

the additional failure results in an unbalanced system. A successful event for estimating 

system reliability is a transition path that leads to a successful state, i.e. a balanced state 

with at least k  operating pairs. Consider the state transition diagram in Figure 5.1, the 

successful events of a 2-out-of-6 pairs:G Balanced system are all the transition paths that 

lead to states 1 to 11. 
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The procedure of enumerating the successful event set for system reliability estimation 

given we observe u  failed pairs at time T  is as follows. 

 

Step 1. If n k u  , record the current system state, which is a successful state, as u

uS , and 

the event of staying in the current state, which is a successful event, as u

uE . We record the 

actions, such as being forced down into standby, resuming operation, and either continuing 

operating or failing, that pair *p  is subject to at each observed failure time i  ( 1, ,i u   ) 

by observation time T  in a row vector *,

u

u p
b  ( * * *1 , ,p n  ) where *,

u

u p
b  is composed of 

elements with values 0, –1, and 1 as explained above. In addition, the n  vectors compose 

a matrix, u

uB , with n  rows and u  columns with each row of u

uB  being *,

u

u p
b  for an 

individual pair *p . In addition, record the identity numbers of failed pairs in u

uX  in the 

order of failures, and the identity numbers of remaining operating pairs in u

uG . 

 

Step 2. If 1n k u   , enumerate all the follow-up states of the observed system state u

uS . 

Each follow-up state with at least k  operating pairs is a successful state, and the transition 

path that leads to this state is a successful event. Record the successful states and events 

obtained in this step in  ,

1

u w

uS   and  ,

1

u w

uE  , respectively where w  is used to distinguish 

different elements in the sets. For each 
,

1

u w

uE   we record the matrix, 
,

1

u w

uB , with n  rows and 

 1u   columns with each row being vector *,

,

1u p

u w


b  for pair *p . The first u  columns of 

,

1

u w

uB  is 
u

uB . The  1u  st column of 
,

1

u w

uB  is obtained based on the forcing-down or 
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resumption of the individual pairs at 1u  when we derive successful state ,

1

u w

uS   from u

uS . 

In addition, record the corresponding set of identity numbers of failed pairs, ,

1u

u wX  , in the 

order of failures, and the set of identity numbers of remaining operating pairs, ,

1u

u wG  , for 

each successful event. 

 

Step 3. Repeat Step 2 to enumerate the other successful events with h  failed pairs 

iteratively, where 1n k h u    . In each repetition of Step 2, enumerate all the follow-

up states of the successful states with  1h  failed pairs in  ,

1h

u wS  . Record all the 

successful states and successful events obtained in this step in sets  ,u w

hS  and  ,w

h

uE , 

respectively. The first  1h  columns of ,w

h

u
B  equal to ,

1

v

h

u

B  when ,w

h

uS  is a follow-up 

state of ,

1h

u vS  . We obtain the h th column of ,w

h

u
B  based on the forcing-down or resumption 

of all the individual pairs at h  when we derive successful state 
,w

h

uS  from 
,

1h

w vS  . In addition, 

record the set of identity numbers of failed pairs, ,u w

hX , in the order of failures, and the set 

of identity numbers of remaining operating pairs, ,u w

hG , for each successful event. 

 

In each step, the set of pairs in standby, i.e. 
,u w

hY , can be obtained by finding the 

complement set of failed pairs and operating pairs given the universal set U  which 

includes all the identity numbers of individual pairs. 
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5.5.2 Estimation of the Distribution of the Time to the hth Failure 

The estimation of pdf of time to the h th failure after a system state with u  failed pairs is 

observed, denoted as  h

u

hg  , should consider all the possible events that lead to the h th 

failure where h u , which are all the state transition paths from the observed state to states 

with h  failed pairs via successful states with  1h  failed units. We can determine the 

event set immediately based on the set of successful events for system reliability estimation 

that leads to  1h  failed pairs, i.e. ,

1

u w

hE  , by considering all the follow-up states of 

 ,

1

u w

hS  . In other words, each event considered in the estimation of  h

u

hg   is a state 

transition path recorded in ,

1

u w

hE   extended by an additional failure of the remaining 

operating pairs recorded in ,

1

u w

hG  . Note that the h th failure here does not necessarily result 

in a successful system state. Thus, the event set for estimating the pdf of time to the h th 

failure is not the same as  ,u w

hE , the set of successful events that have h  pairs failed. The 

pdf of the time to the h th failure can then be estimated by summing up all the probability 

densities of the corresponding events. 
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  (5.41) 

where 
,

1

u w

hG   is the set of operating pairs corresponding to the successful state 
,

1

u w

hS  . 
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In Eq. (5.41),  * *

1
,

1,
1

;
i i

h
u w

ix h x
i

i

u

f d



 

 b   is the probability that the thi  failure occurs at time i  

where    1 , , 1i u h    and  1,i iT   ;  * *

,

1,
;

h h

u w

hx xhf


b  is the conditional probability 

density that the thh  failure occurs at h  given the thi  failure occurs at time i  where 

   1 , , 1i u h   ;  * *

* ,
1

,

1,
;

u w
h

u w

y h y
y

h

Y

R






 b  and  
 

* *

* , *
1

,

1,
;

u w
hh

u w

z h z

z

h

G x

R

 

 b  are the conditional 

probabilities that standby pairs in ,

1

u w

hY   and operating pairs in  , *

1

u w

h hG x   survive time h  

given the thi  failure occurs at time i  where    1 , , 1i u h   . 

 

The conditional pdf is 

      | /u u

h h h h sysg T g R T    (5.42) 

 

5.5.3 Application of k-out-of-n Pairs:G Balanced Systems in UAV Systems 

In the Introduction, we present three applications of k -out-of- n  pairs:G Balanced systems. 

In this section, we demonstrate the application of the proposed model and reliability 

estimation procedure in practice using UAV systems as an example. Consider an 

octocopter, which is an UAV with four pairs of rotors distributed evenly on a circle, its 

function depends on the balance of the rotor pairs. To evaluate the reliability of the 

octocopter in real-time, we monitor the vibration, current, or voltage of each rotor as a 

degradation indicator. We also monitor temperature and humidity of the operating 
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conditions. We obtain the reliability of each rotor and hence the reliability of each pair by 

fitting our degradation model to the real-time data. 

 

We introduce the reliability estimation procedure based on the balance requirement that 

the operating pairs should be symmetric w.r.t. at least a pair of perpendicular axes. An 

UAV may have additional balance requirements due to the spatial configuration of rotors 

with different rotational directions. But this does not affect the application of our method 

in this case. We first develop a heuristic for determining the balance of the system and the 

operating pairs to be forced down into standby or the standby pairs to resume operation 

when the system is unbalanced. Then we enumerate all the successful events using the 

proposed procedure and the heuristic developed specifically for the octocopter system. 

Then we estimate system reliability and probability density of time to an ordered failure 

based on the derived equations. 

 

 Maximum Likelihood Parameter Estimation 

Suppose we have observations of degradation values   i jD t  and operating condition 

    i j il jt S tS  for unit i  at discrete time jt  where 1,2, ,j m   if there are m  

observations by time T . Let 0 0t   and   0

0i iD t x , and       0 ; ;i iA Ω S Θ      

has the parameters Ω  and Θ . We assume that the operating conditions between time 

 1,j jt t
  can be approximated by its value at jt . In addition, we assume that the forcing-

down and resumption of units occur at jt . Then the likelihood function is obtained as 
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  (5.43) 

where 1ij   if unit i  is operating during time interval  1,j jt t
 , 0 otherwise; i  is the 

weight for the degradation observations of individual unit i ; and , 1i j  is the length of time 

during which unit i  is in standby and not subject to degradation by time 1jt  . Note that 

when 0ij  , we can just assign any real value to the part in the braces. The degradation 

observations of an individual unit should have a lower contribution to the likelihood 

function after it has failed by the observation time. Meanwhile, the parameters of the 

degradation model should reflect the properties of units that survive up to the observation 

time, namely operating units and standby units, because system reliability is estimated 

based on the reliabilities of such units. We then assign weights to the degradation 

observations of individual units. In particular, a lower weight is assigned to the failed units 

and a higher weight to the operating units and the standby units. Here, we set i  0.8 if 

unit i  survives observation time and 0.2 otherwise. 

 

Maximizing Eq. (5.43) is equivalent to minimizing Eq. (5.44). 
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  (5.44) 

 

Taking the derivative of  ,, , | , ,i i ii il D S Θ Ω    w.r.t. i  and equating the resultant 

equations to zero, we obtain 
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  (5.45) 

 

Now we can substitute this for 2

i  in Eq. (5.44) so that we have only Θ  and Ω  to estimate. 

 

 Numerical Example 

In this section, we present a numerical example for the 1-out-of-6 pairs:G Balanced system. 

Consider the degradation model in Eq. (5.1). Suppose we only consider the temperature 

effect on the units. Let the baseline degradation rate  0 t t    and acceleration factor 

    0expi iA Temp t C e Temp e Temp t     where  iTemp t  is the operating 

temperature of unit i  at time t , 0Temp  is the baseline operating temperature expressed in 

Kelvin and e is a scale parameter. Note that 
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where  0expC e Temp    is constant, which we denote as  . We re-parameterize the 

model as follows to simplify the parameter estimation. 

 

  
 

expi

i

e
t t

Temp t

 
  

 

     (5.47) 

 

Let ' 2 , 0.3 , 1i  , 0 0ix  , 100ih   and 400e  . In addition, we set the design 

working temperature 0Temp =293K. We generate temperature data,  iTemp t , as shown in 

Figure 5.2 by considering an average temperature of 293K. The temperature data are 

generated in a way so that any two adjacent units according to Figure 1.1(a) have similar 

temperature values. 

 

The degradation paths are generated by a Gamma process, as shown in Figure 5.3. The 

increments of the Gamma process in  ,t t t  follow a Gamma distribution with a scale 

parameter i  and a shape parameter     Δi iM t M t t  . Note that because 1i  , the 

degradation increments generated by the Gamma distribution have same mean and variance 

as the normally distributed degradation increments as specified in Eq. (5.2). Hence the 

generated degradation paths can be modeled with Eq. (5.1). The degradation value of a unit 
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is constant when the unit is in standby, e.g. the degradation paths of units 4 and 10 are flat 

between times 66 and 73 during which they are in standby; when the unit fails, e.g. unit 1 

has a flat degradation path after it fails at time 52; or when the other unit of a pair fails, e.g. 

unit 7 has a flat degradation path after unit 1 fails at 52. 

 

The states of individual units are shown in Figure 5.4. The state of a unit is 1 if it is 

operating, –1 if it is in standby, and 0 if it is failed or the other unit in the same pair has 

failed. In addition, we observe the times when units fail, are forced down or resume 

operation. If unit i  fails at j , then we mark j  in the subplot for unit i  but not in the 

subplot of unit  i n  or unit  i n ; and if unit i  is forced down into standby or resumes 

operation, we mark the corresponding time in its subplot. 

 

 

Figure 5.2 Temperature profile of the operating environment 
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Figure 5.3 Degradation paths of individual units and the failure times 

 

 

Figure 5.4 States of individual units over time 
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5.7.1 Reliability Metric Estimation 

First, we predict the system reliability and pdf of the time to the h th failure when the system 

starts at t  0. Because we have no degradation observations or temperature measurements 

available, we let the parameters of the degradation model have their theoretical values, i.e. 

the values used for data generation, and let the operating temperature be 0Temp . The plots 

of system reliability and pdf are shown in Figure 5.5 and Figure 5.6, respectively. Note that 

‘ i  bar’ means i , i.e. the actual time when the i th failure occurs, in the figure legend. As 

shown in Figure 5.6, the estimation of pdf of time to the h th failure based on theoretical 

values of degradation parameters does not accurately reflect the actual failure times. This 

is to be expected since the theoretical degradation parameter values only reflect the 

statistical properties of units from a large population under the design operating condition. 

 

 

Figure 5.5 System reliability 
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Figure 5.6 The pdf of time to the hth failure 

 

Then we estimate system reliability and conditional pdf of the time to the h th failure at 

different observation times. System reliability plots are shown in Figure 5.7 where the 

dashed line with asterisks is the real-time system reliability estimate which is updated when 

we have more degradation observations and when an additional failure occurs. 

 

We estimate the system residual life, including the mean and its 0.95 confidence interval, 

based on conditional system reliability, as shown in Figure 5.8. The actual value of the 

residual life is a naïve inference from the actual system failure time by assuming the 

residual life is linearly decreasing. The system residual life may not be a good indicator of 

a system’s condition in the early stage due to the small number of failed pairs. Therefore, 

we estimate the time to the h th failure instead. 
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Figure 5.7 System reliability plots at different observation times 

 

 

Figure 5.8 System residual life 

 

Finally, we estimate the conditional pdf of the time to the h th failure when  1h  failures 

occur. The conditional pdfs of the times to the h th failure at different observation times are 

shown in Figure 5.9. Based on the pdfs, the mean times to the h th failure ( h 1 to 6), and 



 

 

153 

their 0.95 confidence intervals are also estimated at different observation times, i.e. 

 1 22 ,  1 1 ,  2 1 ,  3 1 ,  4 1 , and  6 4 , as shown in Figure 5.10. Note 

that the time to the h th failure is from time t  0, instead of from the  1h st failure. The 

estimates of mean times to the h th failure approach the actual values as time elapses. In 

addition, the 0.95 confidence intervals of the times to the h th failures are narrow enough 

by noticing that they do not cover the mean times to the  1h st failures. 

 

 

Figure 5.9 Conditional pdf of time to the hth failure where h = 1 to 6 
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Figure 5.10 Time to the hth failure where h = 1 to 6 

 

5.7.2 Reliability Computation 

The estimation of reliability metrics requires integration of complex equations. We discuss 

the computational time and accuracy of the integration in this section. The reliability 

estimate in this example is obtained using Matlab 2013a running on a desktop computer 

with an Intel(R) Core(TM) i7-3770S CPU, 16GB RAM, and 64-bit Windows 7 operating 

system. In general, a system with a large n  and small k  tends to have more successful 

events and more state transitions, which results in more complicated integration and hence 

higher computational time. The accuracy of the reliability estimation depends on the 

algorithm used for carrying out the integration. Matlab provides functions for calculating 

the numerical values of one to three-dimensional integrations with high accuracy. 

 

Consider the computation time for system reliability when the system is new, as shown in 

Figure 5.5. This requires the most integration processes since, on one hand, it involves the 
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most successful events, and on the other hand, it considers the most time instants. The total 

computation time is approximately one hour. It involves 10800 single integrations and 

21600 double integrations. The average computation time of a single integration is 0.0189 

second, and 0.1722 second for a double integration. 

 

We also investigate the increment of computation time with the dimension of integration 

by carrying out a simulation study as follows. In each simulation run we first carry out ten 

single integrations in the form of    * *

1 1
1 1 1

t

i i
f R d

    , ten double integrations in the form 

of    
2

* *

2 1

2

11 1

t

j i j jj i
f R d

 
 



 
   , and ten triple integrations in the form of 

   
3 2

* *

3 2 1

3
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j j jj i i
f R d

  
  

 

  
   , where * * * *{1 ,2 , ,6 }i    and t  are generated 

randomly. Then we obtain the average computation times for the single, double and triple 

integrations. We run the simulation for ten times. We plot the average computation times 

in Figure 5.11 where we observe that the average integration computation time (in seconds) 

is exponentially increasing with the dimension of integration. For many practical 

applications n  is relatively small and k  is relatively large, and the dimensions of 

integrations can be reduced by considering the relationship between pdf and reliability 

function, thus the computation burden is insignificant. For example, the double integration 

   
2

* *

2 1
1 2 1 2

t

i jT T
f f d d

  


 
     can be reduced into a single integration 
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
      . 
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Figure 5.11 Computation time for integrations of different dimensions 

 

 Conclusions 

Systems with spatially distributed units have emerged in many applications. The reliability 

estimation of such systems considering the degradation paths of individual units is 

challenging. In this chapter, we investigate 1-out-of-6 pairs:G Balanced system with all 

units performing the same function, which is a complex system with spatially distributed 

units. The system reliability and conditional pdf of time to the h th failure are estimated by 

considering the degradation paths of individual units which are affected by different 

operating conditions. In addition, we update the estimation when system state changes and 

more degradation observations become available. A numerical example shows that the 

estimates for reliability metrics approach actual values as time elapses. 

 

We also generalize the degradation model for individual units considering operating 

conditions and the procedure for estimating system reliability metrics. The generalized 
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model and procedure can be used for any k -out-of- n  pairs:G Balanced systems when 

predicting reliability metrics when the system is new and actual degradation observations 

are available; and when updating observable reliability metrics after some failures have 

occurred or when more degradation observations become available. 

 

Equation Chapter (Next) Section 1  
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6. CHAPTER 6 

 

RELIABILITY ESTIMATION CONSIDERING MULTI-STATE UNITS 

 

 Problem Definition and Assumptions 

In many cases, systems are required to provide a specified capacity such as the case of 

power distribution systems. A system fails when its capacity does not meet the required 

minimum capacity. The capacities of the systems are the sum of the capacities of individual 

units, e.g., several engines collectively generating certain horsepower, or generators with 

a certain output voltage. In the previous chapters, the capacities of units are considered as 

equal and are ignored in reliability estimation. For example, in an UAV that consists of 

identical rotors that provide the same lift power. However, the capacities of units can 

decrease and vary from each other in some cases and thus should be considered in 

reliability estimation. 

 

In this chapter, we investigate the reliability estimation of weighted- c -out-of- n  pairs:G 

Balanced system, which is a variant of k -out-of- n  pairs:G Balanced system. In the 

weighted- c -out-of- n  pairs:G Balanced system, we have n  pairs of units distributed 

evenly on a circle as in the k -out-of- n  pairs:G Balanced systems. We consider the 

capacity of each unit. The capacities of individual units can decrease from a level to a lower 

level. The system requires at least a minimum capacity c  to function while maintaining 

balance.  
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6.1.1 Assumptions 

In this chapter, we assume the following: 

 The units in the system are identical and have the same capacity at the start time of 

the system’s operation. 

 The capacity of a unit has multiple levels, i.e. levels  , 1 , ,1,0m m   where m  is 

the highest level and 0  is the lowest level (failure). 

 The capacity of a unit decreases discretely and may decrease more than one level 

at each instant. For example, the capacity can decrease from level m  to level 

 1m , and then from level  1m  to level  3m . 

 The transition times from one capacity level to another follow independent 

exponential distributions. 

 

6.1.2 Definitions 

Actual capacity: the maximum capacity that a unit or pair can provide. When two units of 

the same pair have different maximum capacities due to different degrees of degradation, 

their actual capacities are the lower maximum capacity of the two units. The additional 

capacity of either unit in the same pair is forced down permanently. Therefore, the actual 

capacity of a pair is twice the actual capacity of one of the units. 

 

Serving capacity: the working capacity that a unit or pair actually provides to the system. 

The serving capacity of a unit or pair is always lower than or equal to its actual capacity. 
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In some cases, we force down a portion of the actual capacity of a pair to rebalance the 

system. In such cases, the serving capacity is the remaining portion of the actual capacity. 

 

 System Description 

6.2.1 General System Configuration 

A weighted- c -out-of- n  pairs:G Balanced system has n  pairs of units distributed evenly 

on a circle as in k -out-of- n  pairs:G Balanced systems. All units have the same initial 

capacity. The capacity of any unit has    1m  levels:  , 1, ,1,0m m   where m  

represents maximum capacity level and 0 represents failure. The capacity of any unit 

decreases from one level to another by one or more levels at each change instant. 

 

A minimum capacity c is required to maintain the system’s function. The system must be 

balanced in the sense that the operating units with different capacity levels should be 

symmetric w.r.t. at least one common pair of perpendicular axes of symmetry. 

 

6.2.2 System Balance 

As we introduced in Chapter 3, to keep the system balanced, the two units in any pair must 

be in the same state. Therefore, we assume that whenever the capacity (actual or serving) 

of a unit changes, the capacity (actual or serving) of the other unit of the same pair changes 

to the same level instantaneously. 
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Consider a system with six pairs of units where any pair has three capacity levels as shown 

in Figure 6.1. In this chapter we use white circles to represent units with level 2 actual 

capacity and level 2 serving capacity, white triangles to represent units with level 1 actual 

capacity and level 1 serving capacity, black circles to represent failed units (units of level 

0 actual capacity), and blue bold lines to represent a common pair of perpendicular axes of 

symmetry for operating units with different serving capacities 

 

 

Figure 6.1 Example of a balanced system 

 

When the system is unbalanced, we rebalance the system by switching the serving 

capacities of some pairs to lower levels. Note that when the serving capacity of a pair is 

switched to a lower level, it can switch to any higher level within the actual capacity later 

if it is necessary for rebalancing the system. For example, suppose a pair has a level 4 actual 

capacity and its serving capacity switches from level 4 to level 3. The serving capacity can 

recover to level 4 if necessary, unless the actual capacity decreases to levels 2 or lower. 
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Again, consider a system with six pairs of units where any pair has three capacity levels. 

Figure 6.2 shows two unbalanced systems. The system in Figure 6.2(a) is unbalanced since 

there does not exist any axis of symmetry for the operating units. The system in Figure 

6.2(b) is also unbalanced since the operating units in white circles and those in white 

triangles are not symmetric w.r.t. a common pair of perpendicular axes. Even though the 

operating units in white circles (triangles) are symmetric w.r.t. the red (green) axes, the two 

axes pairs are not the same. Therefore, the system is unbalanced.  

 

  

(a)                                                 (b) 

Figure 6.2 Examples of unbalanced systems 

 

We can rebalance the systems in Figure 6.2 as shown in Figure 6.3. The system in Figure 

6.2(a) is rebalanced into the system in Figure 6.3(a) by switching the serving capacity of a 

pair from level 2 to level 1, as shown by a circle in gray containing a triangle in white. Note 

that when additional failures occur the serving capacity of this pair can switch back to level 

2 if it is necessary for rebalancing the system, as shown in Figure 6.4(a), or fail, as shown 
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in Figure 6.4(b). The system in Figure 6.2(b) is rebalanced into the system in Figure 6.3(b) 

by switching the serving capacity of a pair from level 1 to level 0, as shown by a triangle 

in gray. Similarly, the serving capacity of this pair can switch back to level 1, as shown in 

Figure 6.4(c). However, it does not fail during the time when its serving capacity is at level 

0. 

 

  

(a)                                                 (b) 

Figure 6.3 Examples of rebalancing unbalanced systems 

 

 

(a)                                        (b)                                        (c) 

Figure 6.4 Examples of capacity recovery and loss 
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 Axis of Symmetry Algorithm 

For this system, due to a large number of states of the pairs, we enumerate all the candidate 

axes. We start the enumeration from an arbitrary axis. Any candidate axis is either along a 

pair or in the middle of two pairs. There are n  unique pairs of perpendicular axes. Starting 

from an arbitrary candidate axis, we enumerate n  axes consecutively. We ignore their 

perpendicular axes in this case since they will result in the same information. 

 

For each candidate axis, we compare the units on the two sides of the axis one by one. We 

only consider the units within / 2  around the axis. The states of the other half of the 

units are determined by considering the opposite units in the same pairs. Each unit is 

compared with the symmetric unit w.r.t. the candidate axis. If any two units have the same 

actual capacity, switch their serving capacities to the actual capacity if the serving 

capacities are lower than the actual capacity; if they have different actual capacities, switch 

their serving capacities to the lower actual capacity value. For each pair of compared units, 

we determine their capacity difference: the difference between the two units’ actual 

capacities. The total capacity difference is the sum of the capacity differences of all the 

compared units. 

 

When the total capacity difference is zero, the system is balanced without switching the 

serving capacity of any unit into a level lower than its actual capacity. When there exists 

such a candidate axis, then it is the axis of the symmetry of the system. Otherwise, we find 

the one that corresponds to the lowest total capacity difference as the axis of the symmetry. 

We break ties by using other criteria. 



 

 

165 

 

 Successful Event Enumeration 

6.4.1 System Modeling 

The state of the system is modeled as a continuous-time Markov chain (CTMC) since we 

assume that the transition times from one capacity level to another follow independent 

exponential distributions. We let the states of the failed systems be absorbing states, and 

let the successful system states be transient states. The system reliability at any time is the 

probability that the system is in a transient state. Let xc  be the level x  capacity of any pair. 

We model the state of any pair with a two-element vector  ,i j  when its actual capacity is 

ic  and serving capacity is jc , where 0m i jc c c c   . Any pair has 
  2 1

2

m m 
 

possible states since j  can be 0 to i  for any  0,1, ,i m  . 

 

Generally, the state of any pair has two possible transitions: transition due to the actual 

capacity decrease and transition due to the serving capacity switch. The first type of 

transition can be modeled by a Markov chain. The second type of transition always occurs 

simultaneously with the first type. To model the second type of transition, we find the 

necessary switch by using the algorithm proposed in Section 6.3 as the first type transition 

occurs. Numerically, since the state of a pair is modeled with a two-element vector  ,i j , 

the first (second) type of transition is represented by the change in the first (second) element 

of the vector. 
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The system state is any combination of the states of the n  pairs and is modeled as a vector 

that contains all the states of the pairs in order. For instance, the system state shown in 

Figure 6.3(b) is [(0,0), (2,2), (2,2), (2,2), (1,0), (1,1)] where (0,0) represents that the first 

pair is failed, (2,2) represents that the next three pairs have level 2 actual capacity, i.e. full 

capacity, and operating with full capacity, (1,0) represents that the 5th pair has level 1 actual 

capacity though it is forced down for system balance and consequently not operating (0 

serving capacity), and (1,1) represents that the last pair has level 1 actual capacity and is 

operating at level 1 capacity. For another instance, the system shown in Figure 6.4(a) is 

[(2,2), (0,0), (2,2), (2,1), (1,1), (1,1)] where (2,1) represents that the 4th pair has level 2 

actual capacity but a part of its capacity is forced down for system balance which results 

in a level 1 serving capacity. 

 

When all the units are identical, it is possible to aggregate multiple system states into one 

category when they are the repetition of each other. In this dissertation, to determine if a 

row vector b , e.g. a system state, is a repetition of another row vector a , we compare them 

by searching a  in the vector of  ,b b . If a  can be found in  ,b b , then a  is a repetition 

of b . In some cases, two system states are repetition to each other if either one of them 

flips in the left-right direction. In these cases, the two system states are also aggregated into 

one category. Consider a system state 1 s [(1,1) (1,1) (0,0) (2,1)]. System state 2 s [(1,1) 

(2,1) (0,0) (1,1)] is its left-right repetition. This is because the left-fight flip of the 2s  is 

[(1,1) (0,0) (2,1) (1,1)], which is a repetition of 1s . 

 



 

 

167 

6.4.2 Event Enumeration 

To enumerate successful events, we build a system state transition diagram as in Chapter 

3. Due to the multiple levels of pair capacity, the state of any system has more than one 

transition direction since each system state transition is due to the capacity reduction of a 

pair. We model the system state transition using an m -dimensional coordinate system. The 

thi  dimension of the coordinate system corresponds to a capacity level  m i  where 

 1, ,i m  . The value of the th i  dimension is the number of pairs that have an actual 

capacity level  m i , which we denote as iu . Each coordinate represents all the system 

states that have iu  pairs that have an actual capacity level  m i . The origin of the 

coordinate system represents the original system state with all pairs of full capacity 

(capacity level m ). Apparently we only consider the origin and the non-negative integer 

space of the coordinate system. It is immediate that 
1

m

l

l

u n


 . Let 0u  denote the number of 

pairs that have an actual capacity level m , it follows that 
0

m

l

l

u n


 . 

 

We use an m -element vector to denote all the possible system state transition directions 

when any pair has  1m  capacity levels. Each element in the vector can have any value 

in the range {1, 0, 1}. When one pair in the system has its actual capacity level reduced 

to level  m i  from level  m j , the 
thi  element takes value 1 and the thj  element takes 

value 1 since the system has one more pair of the level  m i  actual capacity and, at the 

same time, one less pair of the level  m j  actual capacity. Note when 0j   there is no 
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element of value 1. The thi  element takes value 0 when the transition does not involve 

any pair of an actual capacity level  m i . Since we assume that multiple reductions in 

actual capacity cannot occur at the same time, any state transition direction vector has one 

and only one element of value 1. Moreover, it must have one element of value 1 unless 

the actual capacity of the pair is reduced from the highest level, i.e. level m . We sort the 

elements in the vector in the descending order of the capacity levels. Then the element of 

value 1 must precede the element of value 1. It is immediate that there exist 

 
 1

1 1
2

m m
m m


     possible directions. 

 

 

Figure 6.5 Coordinate system and system state transition directions when 2m  

 

For example, as shown in Figure 6.5 when any pair has three capacity levels, i.e. 2m , 

we use vector (1, 0), (0, 1) and (1, 1) to denote the directions of transition where the actual 

capacity of any pair decreases from level 2 to level 1, from level 2 to level 0, and from 
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level 1 to level 0, respectively. Also, as shown in Figure 6.6 when 3m  , we use vector (1, 

0, 0) and (1, 1, 0) to denote the directions of transition where the actual capacity of any 

pair decreases from level 3 to level 2 and from capacity level 2 to level 1, respectively. 

 

 

Figure 6.6 Coordinate system and system state transition directions when 3m   
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6.4.3 State Transition Diagram 

We now introduce the algorithm for enumerating system states and transitions. The main 

idea of the algorithm is to enumerate the system states according to an m -dimensional 

coordinate system. In the remainder of this chapter, we use brackets to represent subsets: 

when a  is a vector, then [ ]a i  is the thi  element in a ; when A  is a set of vectors (or a set 

of sets), then [ ][ ]A i j  is the thj  element of the thi  vector (set) in A . 

 

For each coordinate v , a transition direction d  is valid when  

 There exists element   1d i   for one and only one i . 

 There exists element   1d j    for at most one j  and j i . 

 Coordinate  fv v d   does not have any negative elements. 

 Coordinate  fv v d   results in any system state with a capacity greater than c . 

 

We define a coordinate fv  as a follow-up coordinate of another coordinate v  when fv  can 

be reached from v  via a valid transition direction. Also, we define v  as a preceding 

coordinate of fv . Similarly we define a system state fS  as a follow-up state of a state S  

and S  as the preceding state of fS  when fS  can be reached from S  via a valid transition 

direction. 

 

Starting from the origin and the initial system state, we enumerate all the possible follow-

up coordinates and corresponding system states via all the valid transition directions. 

Generally, for each coordinate, we enumerate all of its follow-up coordinates via all 
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possible valid transition directions. Simultaneously, we enumerate all of the possible 

transitions between the system states corresponding to the current coordinate and their 

follow-up states corresponding to the follow-up coordinates. This procedure is completed 

when all successful states and the transitions between them are enumerated. 

 

Consider the 2-dimensional coordinate system in Figure 6.5. The first dimension is vertical 

and the second dimension is horizontal. The corresponding three state transition directions 

are also as shown in the right bottom corner of Figure 6.5. Each node in Figure 6.5 is a 

coordinate. The arrows between the nodes represent valid transition directions. For 

example, node 1 is origin (0, 0), node 2 is (1, 0), node 3 is (0, 1),  and node 5 is (1, 1). The 

transition from node 1 to node 2 is along the direction of (1, 0). When we denote the 

complete set of coordinates and transition directions as V  and D ,  1V  (0, 0),  2V  (1, 

0),  1D (1, 0), the transition can be modeled as      2 1 1V V D  . 

 

Consider the 3-dimensional coordinate system in Figure 6.6. The first dimension is along 

nodes 1 to 2, the second one is along nodes 1 to 3, and the third one is along nodes 1 to 4. 

There are five transition directions as shown in the bottom right corner of Figure 6.6. 

 

6.4.3.1 State Transition Diagram Example 

Figure 6.7 shows a system state transition diagram for a system where any pair has three 

capacity levels, 2, 1 and 0. In Figure 6.7, any system state is a representative of a category 

of system states where a system is either a repetition or a left-right repetition of the other 
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states. The transitions between the system states are shown as arrows. The number of 

possible transitions between two states is annotated on the corresponding arrow unless 

there is only one possible transition. As in Figure 6.5, we use different colors to represent 

different transition directions. 

 

We explain several transition paths in Figure 6.7 and the remaining paths can be explained 

similarly. From the initial state (state 0), there are two possible transition paths: The 

capacity of any pair drops from level 2 to level 1 via transition direction (1, 0) and from 

level 2 to level 0 via transition direction (0, 1). The two transition paths lead to states 1 and 

2, respectively. From state 1, we have five possible transition paths via three possible 

transition directions: The first two paths are from state 1 to states 3 and 4, respectively, via 

transition direction (1, 0) that leads to one more pair with capacity level 1 and one less pair 

with capacity level 2. State 3 represents all states that have only two consecutive pairs with 

level 1 capacities. There are two possible ways to transition from state 1 to state 3 since in 

state 1 there are two pairs with level 2 capacity next to the pair with level 1 capacity. There 

is only one possible way to transition from state 1 to state 4 since in state 1 there is only 

one pair with level 2 capacity that is perpendicular to the pair with level 1 capacity. The 

next two possible transition paths are from state 1 to states 5 and 6, respectively, via 

transition direction (0, 1) that leads to one more pair with capacity level 0 (failed pair) and 

one less pair with capacity level 2. Similarly, there are two possible ways to transition from 

state 1 to state 5 and only one possible way from state 1 to state 6. The fifth possible 

transition path is from state 1 to state 2 via transition direction (1, 1) that leads to one 



 

 

173 

more pair with level 0 capacity and one less pair with level 1 capacity. The pair with level 

1 capacity in state 1 simply degrades to a lower capacity level through this transition path. 

 

 

Figure 6.7 System state transition diagram 

 

6.4.3.2 State Transition Diagram Algorithm 

We build the state transition diagram via two levels of enumeration: the first level is to 

enumerate the coordinates; the second level is to enumerate the transitions from the system 

states represented by a coordinate to those represented by its follow-up coordinates. Figure 
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6.8 and Figure 6.9 show the flowcharts for the algorithm. In this section, we use the 

notations as follows: 

 

D  the complete set of transition directions 

P  the complete set of representative system states 

V  the complete set of coordinates: each element in V  is a m -dimensional vector 

and corresponds to at least one representative system states 

U  the complete set of indices of representative system states in P  that correspond 

to the coordinates in V : each element in U  is a set of indices of representative 

system states in P  corresponding to one coordinate in V  

In the index of the element equal to 1 in a transition direction 

De the index of the element equal to –1 in a transition direction  

S   the current system state 

fS   the follow-up system state 

IC the set of indices of pairs in S  to change state to get the follow-up system states 

)( , fS S  the transition rate from the current state S  to the follow-up state fS   

Λ  the transition matrix between system states 

d  the index for transition direction 

q  the index of the most recently found representative system states in P  

v  the index of the current coordinate in V  

fv  the index of the follow-up coordinate in V   

l  the index of the most recently added coordinate in V  
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As mentioned previously, multiple system states corresponding to the same coordinate are 

categorized into one group, we chose one of them as the representative system state. We 

use P  to record all the representative system states. We use  U v  to record the indices of 

the representative system states in P  corresponding to  V v . Therefore, any 

representative system state corresponding to  V v  is retrieved from P  by   P U v i    

where 1i   to the length of  U v . 

 

The first level of enumeration is coordinate enumeration. We enumerate the coordinates 

by the following procedure: 

 We start the enumeration from the origin coordinate and index it as 1. We 

enumerate the follow-up coordinate of the origin. We assign an index to any 

coordinate according to the order the first time it is enumerated as a follow-up 

coordinate. Note that a coordinate can be the follow-up coordinate of more than 

one coordinate. Therefore, we assign the index when it is enumerated the first time. 

 We then enumerate the coordinates in the order of their indices. For each coordinate 

we enumerate its follow-up coordinates via all the valid transition directions for the 

coordinate in the order specified as follows: The valid transition directions are 

ordered according to the location of the “1” element and “–1” element in the 

direction vector: 

o When a direction has no “–1”, we order it before any other direction. 

o A direction with the 
thi  element being “–1” should be ordered before the 

directions with the thj  element being “–1” when j i .  
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o For two directions both with the thi  element being “–1” or both with no “–

1”, we order them in the same way according to the location of “1”.  

 The coordinate enumeration stops when we finish enumerating the follow-up 

coordinates of the most recently added coordinate but no new coordinate is 

generated. 

 

Consider the coordinate system in Figure 6.6. There are six possible transition directions 

as mentioned previously: (1, 0, 0), (0, 1, 0), (0, 0, 1), (–1, 1, 0), (–1, 0, 1) and (0, –1, 1) in 

order. None of  the (1, 0, 0), (0, 1, 0) and (0, 0, 1) has “–1”, we order them according to the 

location of “1”. (–1, 1, 0) and (–1, 0, 1) are ordered before (0, –1, 1) since the former two 

directions have “–1” at the first dimension and the latter has “–1” at the second dimension. 

(–1, 1, 0) is ordered before (–1, 0, 1) since the former direction has “1” in the second 

dimension and the latter has “1” in the third dimension.  

 

We start the enumeration from the origin (0, 0, 0) with node index 1. It has three valid 

transition directions: (1, 0, 0), (0, 1, 0) and (0, 0, 1) because [(0, 0, 0) + (1, 0, 0)], [(0, 1, 0) 

+ (1, 0, 0)] and [(0, 0, 1) + (1, 0, 0)] all result in non-negative coordinates (1, 0, 0), (0, 1, 

0) and (0, 0, 1). Then we enumerte coordinates in the order of (1, 0, 0), (0, 1, 0) and (0, 0, 

1). We aslo assign indices 2, 3 and 4 to the three coordinates. We then move to coordinate 

(1, 0, 0) since its corresponding node has index 2. This coordinate has four valid directions 

(1, 0, 0), (0, 1, 0), (0, 0, 1) and (–1, 1, 0). Direction (–1, 1, 0) is valid because [(1, 0, 0) + 

(–1, 1, 0)] = (0, 1, 0) is all non-negative coordinate. Thus it results in coordinate (2, 0, 0), 

(1, 1, 0), (1, 0, 1), and (0, 1, 0). For the coordinates that are enumerated as follow-up 
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coordinates the first time, i.e. (2, 0, 0), (1, 1, 0) and (1, 0, 1), we assign indices 5, 6 and 7, 

respectively. We then move to coordinate (0, 1, 0) which cooreponds to node 3 and the 

procedure continues in the fashion. 

 

 

Figure 6.8 Flowchart of the algorithm of enumerating coordinates 

 

The second level of enumeration is to find transitions between the system states 

corresponding to the current coordinate  V v  and the system states corresponding to any 
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follow-up coordinate fV v    of  V v  as shown in the black box in Figure 6.8. The 

flowchart of this procedure is shown in Figure 6.9. In general, the procedure can be 

summarized as follows: 

 For each system states S  corresponding to coordinate  V v , we find its follow-up 

states fS  corresponding to coordinate fV v   . To do this, we find the indices of 

change by examining the direction  D d  via which fV v    is derived from  V v , 

as shown in Figure 6.9. 

 For each follow-up state corresponding to fV v   , we balance the system and 

determine if it is already in the set of the representative system states, P . If not, we 

add it to the end of P  and assign an index q  to the state. We also add the index to 

fU v   , the set of indices of the representative system states corresponding the 

coordinate fV v   . 

 When a transition from current state S  to its follow-up state fS  is found, we add 

the transition rate  , fS S  between S  and fS  to the matrix of transition rate, Λ : 

     , , , fu w u w S S Λ Λ   where u  and w  are the indices of S  and fS  in P , 

respectively. Note that  ,u wΛ  has zero value when initialized at the beginning of 

the algorithm. 

 This enumeration procedure is finished when all the follow-up states 

(corresponding to coordinate fV v   ) of the system states (corresponding to 

coordinate  V v ) are exhausted. 
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Figure 6.9 Flowchart of enumerating transitions between system states corresponding to 

two coordinates 
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 Reliability Estimation 

System reliability can be obtained by estimating the probability that the system is at an 

operating system state at time t . Since we assume that transition rates between system 

states are constant, then the state transition can be modeled with a continuous-time Markov 

chain (CTMC). System reliability is the probability that the system is in a transient state 

when any operating (failed) system state is considered as a transient (an absorbing) state. 

 

6.5.1 Fundamental Theory on Lumpable CTMC 

As mentioned previously, any system state in a state transition diagram is a representative 

of multiple similar system states: Any two system states are grouped in the same category 

when a system state is a repetition of the other state or its left-right flip. To justify that the 

transitions between two categories of system states can also be aggregated, we need to 

justify the lumpability of the CTMC. We now introduce the definition of a lumpable CTMC 

and the necessary and sufficient condition for an CTMC to be lumpable. 

 

Let  nX  be a Markov chain with state space  1 2, , , re e e Θ  and initial vector  . 

Given a partition  1 2, , , vE E E Θ  of the state space Θ , a new chain { nX } can be 

defined as follows: At the thj  step, the state of the new chain is the set iE  when iE  

contains the state of the thj  step of the original chain. 
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Definition. Consider an CTMC  X t  on a finite state space Θ  with transition probability 

matrix     ijP t p t . The CTMC  X t  is said to be lumpable with respect to the 

partition Θ  if, for ie , je E  , 

    
k k

ik jk

e E e E

p t p t
 

 
 

  (6.1) 

for all 0t  . 

 

Definition. The generator Q  of an CTMC is lumpable if  

 
l l

il jl

e E e E

q q
 

 
 

  (6.2) 

for ie , je E  . 

 

Theorem. A necessary and sufficient condition for an CTMC  X t  to be lumpable is that 

its generator Q  is lumpable. When Q  is lumpable, we have   tQP t e . 

 

6.5.2 Lumpability of the System State Transition Process 

When we model the state transition process without aggregating different system states, 

the generator matrix Q  is quite sparse. Therefore, as introduced previously, we aggregate 

any two system states into one category when one state is the repetition of the other state 

or its left-right flip. To obtain the left-right flip of a state we reverse the order of the 

elements in the vector of the state. The aggregation has the following two properties. 
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First, if a system state, 
1S , is the repetition of another state, 

2S , then 
1S  has the same 

number of follow-up states as 
2S , and each follow-up state of 

1S  corresponds to a follow-

up state of 
2S . The two follow-up states are also repetition of each other. For example, let 

1S  [(2,2), (0,0), (2,2), (2,1), (1,1), (1,1)], as shown in Figure 6.4(a), and 
2S  [(1,1), (2,2), 

(0,0), (2,2), (2,1), (1,1)]. 
1S  is a repetition of 

2S . Also each follow-up state of 
1S  

corresponds to one of 
2S . For example, a follow-up state of 

1S  is [(2,2), (0,0), (0,0), (2,2), 

(1,1), (1,1)]. It corresponds to the follow-up state of 2S , [(1,1), (2,2), (0,0), (0,0), (2,2), 

(1,1)].  

 

Second, if a system state, 1S , is the repetition of the left-right flip of another state 2S , 1S  

has the same number of follow-up states as 2S  does, and each follow-up state of 1S  

corresponds to a follow-up state of 2S . Any follow-up state of 1S  is a repetition of a 

follow-up state of 2S  if we flip one of them in left-right direction. For example, we 

consider the 1S  [(2,2), (0,0), (2,2), (2,1), (1,1), (1,1)] mentioned above. We let 2S  be 

[(1,1), (1,1), (2,1), (2,2), (0,0), (2,2)]. The left-right flip of 2S  is exactly 1S . As mentioned 

earlier, a follow-up state of 1S  is 1S   [(2,2), (0,0), (0,0), (2,2), (1,1), (1,1)], it corresponds 

to a follow-up state of 2S , i.e. 2S  [(1,1), (1,1), (2,2), (0,0), (0,0), (2,2)]. Apparently the 

left-right flip of 2S   is exactly 1S   and hence a repetition of 1S  . 

 

Since the aggregated system states have the two properties mentioned above, the CTMC, 

 X t  composed of all the system states can be lumped into an CTMC,  X t , with each 
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state representing a category of similar system states. The corresponding generator matrix 

is Q . Based on the two properties, for the system states in a category (partition), denoted 

as E , their follow-up states should also be in one category, E . Moreover, due to the 

correspondence between the states in the two categories, any state ie  in E  has the same 

number of follow-up states in E . The transition rates from a state ie E   to its follow-up 

states in E  and the transition rates from je E  to its follow-up states in E  are the same. 

 

The aggregated generator matrix Q  has elements  

 
l

il

e E

q q


 


   (6.3) 

for any ie E  . 

 

6.5.3 Probabilities of Successful Events 

Here a successful event is that the system is in a transient state at time t . To obtain the 

probability that the system is in a certain state at time t , we need to obtain the transient 

probabilities of the CTMC by solving a linear system of differential equations, known as 

Chapman-Kolmogorov differential equations as described next. Here the aggregated 

generator matrix Q  is obtained previously as Λ . 

 

Once we obtain the transient probability of any state, we can obtain system reliability by 

summing the transient probabilities of all the transient states (operating system states). 
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Let         1 2, , , vt t t t      be the transient probabilities, e.g. 

    Prt X t E   . Moreover, let  Q q   where 
l

il

e E

q q


 


  for any ie E   

when   , and q q


  

 

. The linear system of differential equations is 

      ,
E

d
t Q t

dt 

 
Θ

       (6.4) 

for any E Θ . The solution of the differential equation in vector form is 

    0 Qtt eπ π   (6.5) 

given the initial vector  0π . However, this solution is difficult to obtain since Q  is a large 

matrix. Therefore, we approximate the probabilities as follows. 

 

We first obtain the Taylor series of  tπ  based on Eq. (6.6). 

    
 

0

0
!

i

i

Qt
t

i

 π π


  (6.6) 

 

Let 
Q

U I
q

   where I  is an identity matrix of the same dimension as Q  and 

 maxq q 


. It follows that  Q q U I  . Therefore, 

          
 

0

0 0 0
!

i

q U I t qt qtU qt

i

qtU
t e e e e

i

  



   π π π π


  (6.7) 
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Then  tπ  is approximated by truncating the summation of 
 

!

i
qtU

i
 to  . To find the   

so that the error is no more than  , we let  

 
 

 
 

 
 

 
0 0 1! ! !

ˆ ˆ ˆ

i i iqt qt qt

i i i

e qt e qt e qt
i i i

i i i

   

   

    π π π








   (6.8) 

where    ˆ ii t Uπ  . Since  ˆ 1i π , it follows that we should choose   such that 

 
   

1 0

1
! !

i iqt qt

i i

e qt e qt

i i

 

  

   








   (6.9) 

 

Since 
 

0

1
!

iqt

i

e qt

i





 
 

 
 




 increases when t  increases, we should increase   as t  increases. 

Or we set   according to the largest value of t  of concern. 

 

 Numerical Examples 

6.6.1 Numerical Example 1 

We first consider a system with only two capacity levels. The system is reduced to the 

system studied in Chapter 3. As in the second numerical example in Chapter 3, we let the 

individual units have exponentially i.i.d. lifetimes with a failure rate 0.025. That is: we let 

the transition rate of each pair from capacity level 1 to capacity level 0 be 0.05. 

 

We estimate the reliability of the k -out-of-6 pairs:G Balanced systems where 1k   to 6. 

We found that the results are very close to those obtained in Chapter 3. The reliability 
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functions are shown in Figure 6.10 where the lines marked with circles are reliability 

functions obtained by the method in Chapter 3 and the solid red lines are reliability 

functions obtained by the method proposed in this chapter. Also, system reliability 

decreases when k  increases. 

 

This numerical example validates that the method is theoretically correct. 

 

 

Figure 6.10 Comparison between the method in Chapter 3 and the method proposed in 

this chapter 

 

6.6.2 Numerical Example 2 

In this example, we let 2m  which means any pair has three capacity levels. Also, we let 

the capacity of each pair at different levels be 2 4c  , 1 2c  , and 0 0c  . We use ij  to 

denote the rate of transition that the actual capacity of any pair decreases from level i  to 
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level j  given its serving capacity is equal to its actual capacity. We use '

ij  to denote the 

transition rate given the serving capacity is less than the actual capacity. We let 21 0.04 , 

20 0.02 , 
10 0.03 , and '

20 0.025 . 

 

We consider a system with 6 pairs. Therefore, the maximum system capacity is 24. We 

estimate the reliability functions when the minimum capacity requirement 

 2,4,6 ,24c   . 

 

Figure 6.11 shows the 12 reliability functions where a lower reliability function 

corresponds to a greater value of c . 

 

 

Figure 6.11 Reliability functions of weighted-c-out-of-6 pairs:G Balanced systems with 

different c 
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 Conclusions 

In this chapter, we investigate the reliability estimation for weighted- c -out-of- n  pairs:G 

Balanced system with pairs of multiple capacity levels. The capacity of any pair decreases 

from a level to a lower level. A pair fails when its capacity reaches capacity level 0. The 

system fails when its total available capacity is lower than a minimum requirement. We 

use lumpable CTMC to model and estimate the system reliability. A numerical example 

shows the validity of the method. 

 

Equation Chapter (Next) Section 1 
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7. CHAPTER 7 

 

LOAD-SHARING EFFECT ON SYSTEM RELIABILITY 

 

 Problem Definition and Assumptions 

In this chapter, we investigate reliability estimation of weighted-c-out-of-n pairs:G 

Balanced systems by considering load-sharing effect: When one of the units fails its load 

is shared among the remaining units. The load shared by each operating unit affects its 

reliability and hence the system reliability. 

 

In this chapter, we only consider weighted- c -out-of- n  pairs:G Balanced systems with 

units of two different capacities. The units have either full capacity when it is operating or 

zero capacity when it fails. Figure 7.1 shows a weighted- c -out-of-6 pairs:G Balanced 

system with units of two different capacities. In Figure 7.1, the capacities of units are 

represented by different shapes, i.e. circle and triangle. The circle shaped units have 

capacity 1c  and triangle shaped units have capacity 2c  where 1 2c c . 

 

We assume that when a unit fails the load corresponding to its pair is shared by the 

remaining operating pairs, which increases their hazard rates. We also assume that the 

lifetimes of individual units are independent random variables. These two assumptions 

imply that the lifetimes of individual pairs are independent except that the lifetimes are 

affected by the load shared by the operating pairs. 
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Figure 7.1 Example of weighted-c-out-of-n pairs:G Balanced system with 6 pairs 

 

In addition, we assume that the individual units of the same type have identical lifetime 

distributions. Therefore, pairs composed of the same type of units have identical lifetime 

distributions as well. 

 

Furthermore, we assume that when a pair *p  experiences an event such as failure, being 

forced down, or resumption of operation at time  , the state of pair *p  at   is the same 

with its state immediately before the event. We use a step function,  *p
  , to describe the 

up (operating) and down (failed or forced-down) of pair *p . The function  *p
   has a 

value of 1 if the pair *p  is operating at   and 0 otherwise. Note that if the pair *p  fails or 

is forced down at time  , then  * 1
p

   and  * 0
p

    where 
  is the immediate 

time instant after time  . 
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 System Description 

In this section, we introduce the weighted- c -out-of- n  pairs:G Balanced system considered 

in this chapter. The system consists of an even number of pairs of units that have either of 

two capacities 1c  and 
2c . Units are arranged in such a way that any two adjacent units have 

different capacities as shown in Figure 7.1. The system fails when either of the two 

scenarios occurs: (i) The total capacity of the system is lower than c . (ii) The load shared 

by any pair is greater than the capacity of the pair. 

 

The system is required to maintain balance at all times, i.e. the operating units are 

symmetric w.r.t. at least a pair of perpendicular axes, and that the operating units with the 

same capacity are symmetric w.r.t. the same pair of axes as well. Consider the system in 

Figure 7.1 We present some states of the system in Figure 7.2 where pairs in white are 

operating, pairs in black are failed, and pairs in gray are in standby. 

 

Again, the circle shaped units have capacity 1c  and triangle shaped units have capacity 2c  

where 1 2c c . The system state in Figure 7.2(a) is balanced because operating units with 

both capacities 1c  and 2c  are symmetric w.r.t. the perpendicular axes which are shown as 

two blue lines. The system state shown in Figure 7.2(b) is unbalanced even though the 

operating units with capacity 1c  ( 2c ) are symmetric w.r.t. the perpendicular axes in red 

(green) dashed lines, the two sets of axes of symmetry do not overlap. 
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(a)                                                 (b) 

       

(c)                                                 (d) 

Figure 7.2 Illustration for balanced system state, unbalanced system state, and standby 

pair 

 

In addition, the unbalanced system is rebalanced by forcing down operating pairs into 

standby and/or resuming standby pairs into operation when feasible. For example, to regain 

the balance of the system state in Figure 7.2(b), we force down an operating pair, pair *4 , 

into standby as shown in Figure 7.2(c). The corresponding axes of symmetry are shown in 

blue lines. Note that we can force down pair *1  instead to regain the balance of the system 

state in Figure 7.2(b). However, pair *4  has lower capacity; we lose less capacity if pair 

*4  is forced down. 
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When a standby pair is no longer necessary to keep a system in balance, we resume the 

standby pair into operation. Suppose a system is in the state shown in Figure 7.2(c), and 

pair *1  fails afterwards. Now it is no longer necessary for pair *4  to be in standby to keep 

the system in balance. Pair *4  is then resumed into operation as shown in Figure 7.2(d). 

 

 System Balance Determination 

We now introduce the method for determining the balance of a weighted- c -out-of- n  

pairs:G Balanced system with units of two capacities, and finding the axes of symmetry 

and operating pairs to be forced down into standby and/or standby pairs to be resumed into 

operation when the system is unbalanced. 

 

7.3.1 Simple Rules 

Some rules can be applied if system state falls into some special cases. 

 

Rule 1. When there is only one failed pair, the system is balanced and the axes of symmetry 

are along and perpendicular to this pair. 

 

Rule 2. When there are two failed pairs: 

(i) When the two failed pairs have the same capacity, the system is balanced, and an 

axis of symmetry is in the middle of the two pairs. 

(ii) When the two failed pairs have different capacities: (a) If the two pairs are along 

two perpendicular axes, then the system is balanced, and the axes of symmetry are 
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along the two failed pairs. (b) Otherwise, the system is not balanced. We choose 

the pair with the larger capacity as an axis of symmetry, and force down an 

operating pair that is symmetric with the other failed pair w.r.t. the axis of symmetry. 

This results in a balanced system with the maximum available system capacity. 

 

Rule 3. When the total number of operating and standby pairs is two: 

(i) When the two pairs have the same capacity, resume standby pair if any. This results 

in a balanced system and the axis of symmetry is in the middle of the two pairs. 

(ii) When the two pairs have different capacities: (a) If the two pairs are perpendicular 

to each other, resume standby pair if any. This results in a balanced system and the 

axes of the symmetry are along the two pairs. (b) Otherwise, we choose the pair 

with the larger capacity as an axis of symmetry and resume its operation if it is in 

standby. The other pair should stay in standby if it is a standby pair, or be forced 

down into standby if it is operating. 

 

Rule 4. When the failed pairs are consecutively arranged, resume all the standby pairs if 

any: 

(i) When the number of failed pairs is odd, the axis of symmetry is in the middle of 

the failed pairs. 

(ii) Otherwise, force down the operating pair that has the lower capacity and is next to 

the consecutive failed pairs. The axis of symmetry is in the middle of the failed 

pairs and the standby pair which is just forced down. 
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7.3.2 Axis of Symmetry Algorithm 

When the system state does not fall into any of the above mentioned special cases, we use 

the method introduced in Chapter 4 to determine the symmetry (balance) of the system. 

We need the weights of individual units to obtain the Moment Difference (MD). Since 

individual units have different capacities, the weights for the units here are the absolute 

values of their states times their capacities. A unit has state 1 if it is operating, 0 if it is 

failed, and –1 if it is forced down into standby. 

 

If the system is not symmetric we use MD to determine an initial candidate axis, from 

which we begin to enumerate a series of candidate axes. A candidate axis of symmetry is 

along a pair of units. Due to the orthogonal relationship of the candidate axes, there are 

/ 2n  unique candidate axes of symmetry in total. The other / 2n  candidate axes are 

perpendicular to them. 

 

The procedure of enumerating candidate axes is the same as the one introduced in Chapter 

3. Among all the candidate axes of symmetry, we choose the one that results in the 

maximum available system capacity. When available system capacity alone cannot 

differentiate the candidate axes, we use other criteria based on system requirements. 

 

 Reliability Estimation Considering Load-Sharing Effect 

In this section, we discuss the reliability estimation of weighted- c -out-of- n  pairs:G 

Balanced system considering load-sharing effect. The basic procedure is as follows. First, 

we enumerate all the possible successful events 
w

hE  where h  pairs fail resulting in a 
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balanced or rebalanced system (the unbalanced system is rebalanced by considering 

standby) with at least c  available capacity. The superscript w  is to distinguish different 

events with the same h . Second, we obtain the probability of any successful event  w

hP t . 

Then, system reliability is obtained by summing the probabilities of all the successful 

events: 

  
0

( )
H

w

sys h

h w

R t P t


   (7.1) 

where H is the maximum value of h  that results in a successful system, i.e. a balanced or 

rebalanced system with at least c  available capacity. 

 

7.4.1 Successful Event Enumeration 

We follow the fundamental method of event enumeration introduced in Chapter 3: starting 

from a system state with no failures, we enumerate its follow-up states until we exhaust all 

the possible successful system states with at least c  available capacity and all the possible 

transitions between these states. A follow-up state of a state can be obtained by turning one 

of the operating pairs in the current system state into failure and rebalancing it if the 

additional failure results in an unbalanced system state. A successful event is a transition 

path that leads to a balanced or rebalanced system state with at least c  available system 

capacity. For instance, as shown in Figure 7.3, the successful events of a 4-out-of-12 

capacity:G Balanced system, which consists of units with two types of capacities  1 2c   

(represented by a circle) and 2 1c   (represented by a triangle), are all the transition paths 

that lead to system states 1 to 8 and states 14 and 15. For each successful event, we record 

necessary information to calculate its probability as indicated below. 
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Note that the units have two different capacities. Hence there are two possible branches of 

state transition paths which start with the failure of units with two different capacities 

respectively. As shown in Figure 7.3, the two branches are on the left and right sides of 

state 0, respectively. 

 

 

Figure 7.3 Diagram of state transition paths for system with four pairs of units with two 

different capacities 

 

7.4.2 Probability Function of Successful Event 

7.4.2.1 Probability Model 

The probability of a successful event when h  pairs fail by time t  can be expressed as 
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  (7.2) 

where the superscript w  is used to distinguish different all events that have h  failed pairs 

by time t ; i  is the order of failures; i  is the time when the thi  failure occurs which is a 

random variable; *

ix  is the identity number of the thi  failed pair; w

hY  is the set of identity 

numbers of standby pairs at time t ; *y  is the identity number of standby pair; *,

w

h y
T  is the 

last time when pair *y  is forced down (and not resumed by time t ) the value of which is 

one of the i ’s; w

hG  is the set of identity numbers of operating pairs at time t ; *z  is the 

identity number of operating pair;  *,

w

h p
  is the hazard rate of pair *p ;  *,

w

h p
   is the 

cumulative hazard rate of pair *p . Eq. (7.2) has three parts in the braces: the first part in 

the braces is the probability that h  pairs fail at time i ’s by time t ; the second part is the 

probability that pairs in set w

hY  are forced down into standby at time *,

w

h y
T  and stay in 

standby by time t ; the third part is the probability that operating pairs in set w

hG  survive 

time t . 

 

7.4.2.2 Hazard Rate Model 
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In this section, we present the hazard rate model for this load-sharing system. Let overall 

system load at time   be  D   and load shared by operating pair *p  at   be  *p
d  . 

When the equal load-sharing rule is followed,      *p
d D g    where  g   is the 

number of operating pairs at time  . 

 

Let the hazard rate for pair *p  be  * * * *,, , ,
ppp p

d     . A typical example for   is 
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      

  (7.3) 

where  *p
  is the baseline hazard rate of pair *p ;  *p

   is the standby duration of pair 

*p  by time  ; the exponential function expresses the effect of load-sharing on hazard rate; 

0a  and 1a  are constants. 

 

Another example for   is 
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  (7.4) 

where the effect of load-sharing on hazard rate is modeled by the sum in the square brackets. 

 

The cumulative hazard rate 
*p

  can be obtained by 
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where  h   is the number of failures up to time  . 

 

7.4.2.3 Simplified Probability Function of Successful Event 

The problem can be simplified by the following assumptions. 

  D   is constant, which results in a constant  *p
d   value between any two 

consecutive failure times,  1,i i  . 

 The baseline hazard rate of any pair *p , *p
 , is constant. 

 

The two assumptions imply that hazard rates of any pairs are constant during  1,i i  . 

Under the two assumptions,  *p
   can be simplified into a discrete model 
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  (7.6) 

where v  is the time when the 
thv  failure occurs and 0 0 ; * ,p v

  is the hazard rate of pair 

*p  immediately after the thv  failure which is constant until the  
st

1v   failure. Examples 

for hazard rate are 

  ** * *0 1, , ,
exp

p v p vpv p
a a d      (7.7) 

or 
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  * * * *0 1, , ,pp v p v p v
a a d      (7.8) 

where * ,p v
d  is the load pair *p  shares after the thv  failure and before the  

st
1v   failure;

* ,
1

p v
  if pair *p  is operating after the thv  failure and 0 otherwise. 

 

The probability of successful events can then be simplified as 
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where the superscript and subscript combination, w

h , is used to distinguish the variables 

corresponding to a specific event and the other subscripts should be interpreted as 

mentioned above without considering w

h ;  * **, , , ,1 , 1

w w w

h i h p i h pp i

n


     is the coefficient of 

i . We develop an iterative procedure in Chapter 3 to obtain the closed form expression 

and the numerical value for Eq. (7.9). 

 

When enumerating successful events, we record * ,,

w

h p i
  and *, ,

w

h p i
d  at each i , from which 

we obtain a matrix of hazard rate 
 

*, , 1p i

w w

h
h h n 

 
 

L   where * 1p   to n  and 0i   to h . 

The coefficients for i  can then be obtained as 
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h h h h h

w w

h h

mn

h h



     

 







α
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  (7.10) 
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where 
column M  is the row vector resulting from summing the columns of a matrix M , 

 , :i jL  is the columns i  to j  of the matrix L . 

 

7.4.2.4 Proportional Load-Sharing Rule 

The equal load-sharing rule mentioned in the Introduction section does not consider 

capacities of individual units. It is not applicable in the case where system load is 

distributed to units according to their capacities. We introduce the proportional load-

sharing rule. 

 

Under the proportional load-sharing rule, overall system load is distributed to units 

proportional to their capacities. Consider the system in Figure 7.1. Suppose units (identified 

by a circle) have capacity 1 2c   and units (identified by a triangle) have capacity 2 1c  , 

the total system capacity is 18. When all pairs of units are operating, each pair composed 

of units in circle shares load 4 /18D  and each pair composed of units in triangle shares 

load 2 /18D . Suppose unit 2 fails, unit 8 is forced down and the system is balanced. Now 

total system available capacity is 16. Each pair composed of units in circle shares load 

4 /16D  and each pair composed of units in triangle shares load 2 /16D . 

 

 Numerical Example 

In this section, we present a numerical example for a weighted- c -out-of- n  pairs:G 

Balanced system to show the effect of load-sharing on system reliability. In this system, 

we have 6n   pairs of units with any two adjacent units having two different capacities: 
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1 2c   and 2 1c  . When the two units in pair *p  have capacity ic  ( 1i   or 2), baseline 

hazard rate of pair *p  is * 0.1 ip
c    and the capacity of pair *p  is * 2 ip

C c . In addition, 

we assume overall system load D c . 

 

We maintain the assumptions in the simplified model and specify the hazard rate function 

as 

 
*

* * *

*

,

0 1, ,
exp 1

v

p

p

p v p v

p

d
a

C
a

 
   


 
 
 



 

      (7.11) 

where 0a  and 1a  are two constants. From Eq. (7.11) we observe that when * * 1,p v p
d C a  

and * ,
1

p v
 , i.e. pair *p  is operating after the thv  failure, its hazard rate is equal to its 

baseline hazard rate. We name * 1p
C a  as the baseline load of pair *p . 

 

We estimate the reliability of the weighted- c -out-of-6 pairs:G Balanced system and let the 

required capacity c  be 6, 9, and 12, respectively. Let 0 1a  ; 1a  1, 1.5, and 2;   0.5, 1, 

and 2. The reliability functions with different coefficient values are plotted in Figure 7.4 

and Figure 7.5. In Figure 7.4 each row represents a value for c  and each column represents 

a value for  . In Figure 7.5 each row represents a value for c  and each column represents 

a value for 1a . From Figure 7.4 and Figure 7.5, we have the following conclusions: 

(a) System reliability decreases when c  increases. 
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(b) System reliability decreases when 
1a  increases. This is because the baseline loads 

of individual pairs decrease when 
1a  increases. The load-sharing effect is more 

significant due to a larger 
1a . 

(c) System reliability increases when   increases. This is because baseline hazard 

rates of individual units decrease when   increases. 

 

 

Figure 7.4 Reliability plots against a1 
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Figure 7.5 Reliability plots against θ 

 

 

Figure 7.6 Reliability plots against load-sharing rules 

 

Set the coefficient values as 6c  , 1 5a  , and 2 . We estimate system reliability in 

three scenarios: equal load-sharing rule, proportional load-sharing rule, and no load-
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sharing effect. The results are in Figure 7.6. The system has higher reliability when there 

exists no load-sharing effect which implies that load-sharing effect has an adverse effect 

on the system reliability. We also observe that system has higher reliability when the load 

is distributed to units proportional to its capacity. 

 

 Conclusions 

In this chapter, we investigate the effect of load-sharing on the reliability of weighted- c -

out-of- n  pairs:G Balanced system. We develop a heuristic to determine the axes of 

symmetry, a procedure for enumerating successful events, and the probability functions for 

successful events. We assume that higher load-sharing increases hazard rate and hence has 

an adverse effect on system reliability as demonstrated using the numerical example. 

 

The reliability model proposed in this chapter provides more realistic reliability estimation 

for weighted- c -out-of- n  pairs:G Balanced system with significant load-sharing effect. In 

addition, we also consider the capacities of units in load distribution model. 

Equation Chapter (Next) Section 1 
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8. CHAPTER 8 

 

OPTIMAL DESIGN FOR RELIABILITY 

 

 Problem Definition 

The k-out-of-n pairs:G Balanced systems are emerging systems in many industries such as 

aerospace, military, and service. It is critical to optimize the system to achieve maximum 

reliability of given the constraints on the total number of pairs in the systems, the minimum 

required operating pairs, the spatial configurations of the  units in the system, and the load-

sharing effect among individual pairs. Additional constraints include the available number 

of pairs of each type when the system is composed of pairs with different lifetime 

distributions. 

 

In this chapter, we first maximize the system reliability metrics by searching for the optimal 

total number of pairs and the optimal standby policy for k-out-of-n pairs:G Balanced 

systems. Then we maximize the reliability metrics by allocating the pairs of different 

lifetime distributions given the total number of pairs in the system. We study the first 

reliability optimization problem in Section 8.2. We perform the optimization in two 

sequential parts in Sections 8.2.1 and 8.2.2. Then we study the second optimization 

problem in Section 8.3 and  provide conclusions in Section 8.4. 
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 Optimal Total Number of Pairs and Optimal Standby Policy 

The assumptions in the Introduction section still hold. Moreover, in this section, we assume 

the following: 

 All units are identical and the lifetimes of individual units are i.i.d. exponential 

random variables. 

 The hazard rates of the individual units are identical. 

 

In general, the problem can be defined as follows: 

Objective: Maximize reliability metrics such as MTTF of the k-out-of-

n pairs:G Balanced system.  

Decision variables:  n , the total number of pairs in the system; 

hK  (h = 0 to (n – k)), the minimum number of standby when 

the system has h failed pairs. 

Constraints:   Upper and lower bounds of n ; 

    Upper and lower bounds of hK . 

 

Note that k, the minimum number of operating pairs in the system is determined by the 

total load on the system and the capacity of each operating pair since the total capacity of 

operating pairs should meet the total load on the system. We assume that the load on the 

system, sw , consists of two parts: the initial load, ow , and the load caused by adding more 

pairs, pw . Specifically, s o pw ww n   . When the capacity of each pair is pc , the 
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minimum number of operating pairs needed is s pk w c . It is clear that k  is determined 

by n  given the values of ow , pw  and pc . 

 

We decompose the problem into two sequential parts. First, we find the optimal value for 

n by fixing the minimum number of standby pairs, i.e. let 0hK   for 0h   to ( n k ). 

Second, we find the optimal values for hK  given the optimal value for n  obtained in the 

first part. In the second part, we also search for values in the neighborhood of the optimal 

n  to explore the possibility that the optimal n  found in the first part may not be optimal 

in the second part. 

 

8.2.1 Optimal Total Number of Pairs 

8.2.1.1 Problem Modeling 

The problem is modeled as follows: 

Maximize Reliability metrics,  R n  (e.g. MTTF), of k -out-of- n  pairs:G Balanced 

system. 

s.t.  maxn n . 

 

In general, we obtain the reliability metrics by using the Monte Carlo simulation-based 

approximation algorithm introduced in Chapter 4. We only introduce the details related to 

the reliability optimization problem. As shown in Chapter 7, the probability of the system 

survival when h  failed pairs occur is obtained as  
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        2

1
1 111 0 0

exp exp
h

t h

i h h i i hi
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i
g dt t dP    

         


 
        (8.1) 

where i  is the failure rate after the thi  failure, i  is the time of the thi  failure, and hg  is 

the number of operating pairs given there are h failed pairs. The coefficients of failure time 

i  are obtained as 

 1 1i i i i ig g       (8.2) 

where ig  is the is the number of operating pairs given there are i  failed pairs. 

 

In addition, we consider the load-sharing effect. The load shared by each pair is 

 /p s hl w n h s    where h  is the number of failed pairs and hs  is the number of standby 

pairs given there are h failed pairs. We assume that the load affects the hazard rate of each 

operating pair. Furthermore, we consider the effect of standby. The standby pairs do not 

share the load when they are in the standby state; hence the failure rates are not affected. 

When resuming operation, the standby pairs have lower hazard rates than the other pairs. 

Subsequently, the system has a lower overall hazard rate. Assigning different pairs with 

different hazard rates complicates the problem modeling significantly. Instead of 

modifying the hazard rates of specific pairs, we assume that the hazard rates of all operating 

pairs are the same, and modify the common hazard rate to model the effect of standby on 

the overall system hazard rate.  

 

We obtain the hazard rate after the 
thh  failure by combining the effects of both load-sharing 

and standby. For example, the hazard rate after the 
thh  failure can be described by Eq. (8.3). 

 1 2h o        (8.3) 
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where 
o  is the baseline hazard rate, 

1  is the effect of load-sharing, e.g. 

   1 1exp pl        (8.4) 

with coefficients  ,   and  ; and 
2  is the effect of standby, e.g. 

   
1/

2

1

0
1 /

ig

i i

h
s n i




     (8.5) 

where is  is the number of standby pairs and 
ig  is the number of operating pairs given there 

are i  failed pairs. 

 

8.2.1.2 Optimization Approach 

Indeed, the objective function of the optimization problem is highly nonlinear and cannot 

be solved by analytical optimization algorithms but by enumerating all the possible 

solutions. Fortunately, some observations may simplify the enumeration process. As 

previously mentioned, k  is partially determined by n . Let the ratio between the capacity 

of a pair and the load it adds to the system be 2 /c w p pr c w , it follows that 

2o p c wk w c n r    . k  is indeed a function of n  and the increment slope of k  is 

determined by the value of 2c wr . 

 

We observe that different n may correspond to the same k. It is true that for two k-out-of-n 

pairs:G Balanced systems with the same k, the system with a greater n has higher reliability 

since it has more redundancy. It is reasonable to only enumerate the largest n value that 

corresponds to the same k. The value of k increases linearly with n for a number of n values, 

then stays constant for a number of n values. This cycle repeats itself. One example is 
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shown in Figure 8.1. It is observed from numerical experiments that the systems with n 

values at the end of the cycles, annotated as asterisks in Figure 8.1, tend to have higher 

reliability. Therefore, we enumerate these n values first to narrow down the range of further 

enumeration. We denote the vector composed of these n values as *
n . 

 

The enumeration is carried out in two phases. In the first phase, we enumerate *
n  to narrow 

down the search range. In this phase, we calculate the reliability metrics until we find the 

first *( )in  such that * *( )) ( )( )(R Ri jn n  for  1j i   to  i m , or until we reach a 

*( )in  greater than maxn . In other words, the first phase stops when we find the first *( )in  

that corresponds to the maximum reliability metric followed by a certain number, m , of 

*( )jn  values that correspond to smaller reliability metric values, or when we exhaust the 

entire search range. We now narrow the range down to * *[ ( 1),min( , )( 1) ]maxi i n n n . In 

the second phase, we search the narrowed range to find the n value that corresponds to the 

maximum reliability metrics, denoted as n*. 

 

When we approximate the reliability metrics of the systems, we set the number of 

simulation runs between n and 2n to achieve high accuracy. In the first phase of 

enumeration, we can reduce the number of simulation runs to shorten the computation time. 

We increase the number of simulation runs after we find a promising search range. 

 



 

 

213 

 

Figure 8.1 The pattern of k  increasing with n  

 

8.2.2 Optimal Number of Standby Pairs 

8.2.2.1 Problem Modeling 

The problem is described as follows: 

Maximize Reliability metrics,  , iR n K , of k-out-of-n pairs:G Balanced system. 

s.t.  n   the values determined by the previous optimization procedure; 

   ,min ,  for ,00 ,i i max ni kK n k K i     . 

 

It is possible that we need more than iK  standby pairs to balance an unbalanced system in 

some cases. We allow i  additional standby pairs where 0 i in k i K    , the number 

of standby pairs is thus ( )i iK  . 
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Here we introduce the approach for system reliability estimation. We find that the locations 

of the standby pairs are irrelevant to the probability of any successful event calculated by 

Eq. (8.1). Eq. (8.2) indicates that 
i ’s are determined by the number of operating pairs and 

hazard rates,
i . In addition, Eq. (8.3) to Eq. (8.5) indicate that the hazard rates are 

determined by the number of standby pairs and operating pairs. It follows that the 

probability of any successful event is determined by the number of standby pairs given the 

number of failed pairs. 

 

On the other hand, the system states and the set of successful events are determined by the 

locations of the standby pairs given the locations of failed pairs since standby pairs do not 

fail during the standby period. Therefore, the locations of standby pairs should also be 

considered as decision variables. However, this would make the problem intractable since 

the locations of standby pairs have to be determined for all the possible states. To simplify 

the problem, we approximate the reliability function using the following procedure. 

 

Step 1. We determine all the possible numbers of standby pairs to keep a balanced system 

given the number of failed pairs. We enumerate all of the possible system states and the 

corresponding numbers of realizations based on the procedure in Chapter 3. For each 

system state with h failed pairs where h = 0 to (n – k), we enumerate all the candidate axes 

of symmetry and determine the corresponding minimum numbers of standby pairs needed 

to make the operating pairs symmetric to the candidate axes. We then obtain all of the 

possible numbers of standby pairs for that system state by the following rules: 
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(i) When a system state with h failed pairs can be balanced with 
hs  standby pairs, 

it also can be balanced with ( 2 )hs i   standby pairs where 

{0,1, , ( ) 2 }hi n k h s       since a system can maintain symmetry if any 

two pairs that are symmetric w.r.t. the axis of symmetry are forced down. 

(ii) When a system has only one failed pair or consecutive failed pairs, it can be 

balanced by 0 to (n – k – h) standby pairs since we can arrange all the standby 

pairs next to the failed pairs consecutively and a system with consecutive failed 

and standby pairs is indeed balanced. 

(iii) When there are two failed pairs, and there is an odd number of operating pairs 

in between, the system can have 0 to (n – k – h) standby pairs. 

 

Step 2. We obtain the probability that at least h  additional standby pairs are required to 

regain system balance given that there are h failed pairs in the system, and at least hK  

standby pairs are set to be forced down. We denote the probability as | ,h hh Kp . For example, 

a 2-out-of-6 pairs:G Balanced system with one failure can be balanced without a standby 

pair. Here 6n  , 2k  , 1h   and hence  1 0,1,2,3K  . As mentioned previously, a 

system with consecutive failed and standby pairs is balanced. Therefore, no additional 

standby pairs are needed, i.e. 1 0 , since we can always arrange all the standby pairs next 

to the failed pairs consecutively. Here 0|1,0 0|1,1 0|1,2 0|1,3 1p p p p    . But when a 2-out-of-

6 pairs:G Balanced system has 3 failed pairs, it is possible that the system is unbalanced 

and at least one standby pair is required to regain system balance. We found that the system 

might have four different states: two of them need at least one standby pair and have 6 
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realizations, respectively; the other two states are balanced without standby and have 2 and 

6 realizations, respectively. Thus, we obtain 0|3,0 (2 6) / (6 6 2 6) 0.4p       , 1|3,0p   

(6 6) / (6 6 2 6) 0.6      and 0|3,1 1p   and 1|3,1 0p  . In fact, when 3 1K  , 3  can only 

be zero since 3 30 3 0n k K      . 

 

Step 3. The reliability can be obtained by Eq. (8.6) 
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where | ,i ii K   is the failure rate of individual pairs after the thi  failure given there are 

 i iK   standby pairs after the thi  failure; and | ,i ii K   is the value of i  given there are 

 i iK   standby pairs after the 
thi  failure. Specifically | ,i ii K   is a function of the number 

of operating pair ( )i i ig n i K    , e.g. as described in Eq. (8.3). 

 

8.2.2.2 Optimization Approach 

The problem can be solved by enumerating all possible combinations for n  and iK  ( 0i   

to  n k ) when the number of combinations is small or by using heuristics, such as 

Genetic Algorithms, when the number of combinations is large.  
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8.2.3 Numerical Examples 

8.2.3.1 Numerical Example 1 

We use the model assuming the hazard rate is described by Eq. (8.3) to Eq. (8.5). Let 

0.01o  , 1ow  , 1pw  , 2 1.25c wr  , 1 , 1 , 1 . In addition, we set 5m   and 

50maxn  . We search for the n  that maximizes the MTTF of the k -out-of- n  pairs:G 

Balanced system by assuming the minimum number of standby is always 0, i.e. 0hK  . 

The maximum MTTF (19.81) is obtained when 14n  , as shown in Figure 8.2 where the 

circles and asterisks represent the MTTF values obtained in the first and second 

enumeration phases, respectively. The corresponding k  values are shown in Figure 8.1. 

The value of k  is 12 when 14n  . 

 

8.2.3.2 Numerical Example 2 

When the optimal value for n  is determined under the assumption that 0hK  , we can 

optimize the system reliability metrics by searching the optimal values for hK . We use the 

parameter settings in numerical example 1 and 
* 14n  . We search for the optimal hK  and 

the maximum reliability metrics when  9,19n  which is a narrowed range determined 

by observing Figure 8.2 and 
* 14n  . The plot of MTTF against n  is as shown in Figure 

8.3 which indicates that the optimal n  is still 
* 14n  . The optimal standby sequence, hK  

for h 0, 1 and 2, is [1, 0, 0]. The optimal MTTF is 19.83 which is slightly higher than the 

optimal MTTF when 0hK   in numerical example 1. 
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Figure 8.2 Plot of MTTF against n  when searching for the optimal value for n  

 

 

Figure 8.3 Plot of MTTF against n  when searching for the optimal values for both n and 

hK  
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 Optimal Reliability Allocation 

8.3.1 Problem Description 

Given the total number of pairs in the system, and the constraints on the number of pairs 

with different lifetime distributions, we optimize the system reliability by allocating the 

pairs to different locations in the system. We assume that all the pairs are identical and 

perform the same function. 

 

Suppose we have M  types of pairs. The lifetimes of all of  the type i  pairs follow the same 

distribution with pdf if , a scale parameter ia , and a shape parameter ib . The upper bound 

for the total number of type i  pairs is iu . The minimum number of type i  pairs required 

in the system is il . The optimization problem can be described as follows: 

 

Objective: Maximize reliability metrics of the k-out-of-n pairs:G 

Balanced system.  

Decision variables:  jy , the type of pair at location j  of the system. 

Constraints:   i i il n u   for 1 i M  ; 

 
1

M

i

i

nn


  where  
1

:
n

i j

j

n y iI


   is the number of type i  

pairs used in the system, and   1jI y i   if jy i  and 0 

otherwise. 
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Note that we use the same numbering method for the locations of the pairs as in Chapter 1: 

We number the pairs anticlockwise starting from the horizontal pair when we position one 

of the pairs horizontally. 

 

8.3.2 Objective Function Estimation 

Since the lifetime distributions of different types of pairs are not identical, the 

approximation method used previously cannot be applied. Therefore, we propose a new 

simulation-based reliability approximation method for k -out-of- n  pairs:G Balanced 

system. 

 

8.3.2.1 Simulation Method without Considering Time-Variant Effects 

In this section, we introduce the simulation procedure to obtain the system reliability 

without considering time-variant effects such as load-sharing effect and standby effect. Let 

h  denote the number of failed pairs, hZ , hX , and hY  respectively denote the sets of 

operating pairs, failed pairs, and standby pairs when there are h  failed pairs, ,h it  denote 

the randomly generated failure time for the 
thi  pair after the 

thh  failure, and h  denote the 

time of the 
thh  failure. In the following procedure, hY  is determined by hX  based on the 

axis of symmetry algorithm introduced in Chapter 3. We also record the results into a table 

of hX  and its corresponding hY  to reduce the computation time. The simulation procedure 

is as follows: 
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(i) When 0h  ,  0 1,2, ,Z n  , 0X  , 0Y  . Generate the failure times, ,0it , 

for all the operating pairs, i.e. for 0i Z . 

 

(ii) When 1h  , ,1 ,0i it t  for 0i Z .  
0

1 ,1arg min i
Zi

j t


 . 
11 ,1jt .  1 0 1X X j  , 1Y  is 

determined by 
1X , and 1 0 1 1Z Z X Y   . 

 

(iii)When 2h  , ,2 ,1i it t  for 1i Z .  
1

,2 2arg min i
Zi

j t


 . 
2 22 ,jt .  ,2 ,1 2 1i it t     

for 1i Y .  2 1 2X X j  , 2Y  is determined by 2X , and 2 0 2 2Z Z X Y   . 

 

(iv) For an arbitrary h , , , 1i h i ht t   for 1hi Z  .  
1

,arg min
h

h
i

i h
Z

j t


 . ,h hh jt . 

 , , 1 1i h i hh ht t       for 1hi Y  .  1h h hX X j  , hY  is determined by hX , and 

0h h hZ Z X Y   . 

 

The procedure stops when the system fails, i.e. when the size of hZ  is less than k . Note 

that the system can have at most  n k  failures. Therefore, each procedure can result in 

 1n k   failure times. However, when the system has less than  1n k   failures but 

needs to be rebalanced by forcing down additional operating pairs, the number of operating 

pairs may be less than k , hence the system fails. In this case, the procedure results in less 

than  1n k   failure times. System’s failure time is always the last failure time generated 

in any procedure. 
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We implement the procedure for N  simulation runs to obtain N  samples of system failure 

time and consequently the approximation of system reliability. 

 

8.3.2.2 Simulation Method Considering Time-Variant Effects 

In this section, we introduce the simulation procedure to obtain the system reliability when 

time-variant effects such as load-sharing effect are considered. We assume that the shape 

parameter of a distribution is not affected by the time-varying effects. The load-sharing 

effect and standby effect on the scale parameter can be modeled by Eq. (8.3) to Eq. (8.5) 

and by considering the reciprocal of the scale parameter as  . Let ,i h  denote the 

cumulative time by the thh  failure during which the thi  pair is in standby. The simulation 

procedure is as follows: 

 

(i) When 0h  ,  0 1,2, ,Z n  , 0Y  , 0X  . ,0 0i   for i . 

 

(ii) For an arbitrary h  , we determine  , 1i hf t
, the lifetime distribution of the 

thi  pair 

given  1h  pairs have failed, by system states and the previous  1h  failures. 

Generate , 1i ht   by  , 1i hf t
 for 1hi Z  .  

1
, 1arg min

hi
h i h

Z
j t





 . , 1h hh jt  . 

 1h h hX X j  , hY  is determined by hX , and 0h h hZ Z X Y   . , 1, hi h i    for 

1hi Z   and , , 1 1i h i h h h        for 1hi Y  . 
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Similarly, the procedure stops when the system fails, i.e. when the size of hZ  is less than 

k . 

 

8.3.3 Optimization Approach 

The decision variables can be described by a vector of n  elements. The thj  element jy  is 

the type of pairs at location j  of the system, i.e. an integer. The combinations of jy  can 

easily reach a large number. Therefore, we use Genetic Algorithm to obtain the optimal 

solution. 

 

8.3.4 Numerical Example 

In this example, we consider k-out-of-6 pairs:G Balanced systems with k = 1 and 2. We 

consider two types of pairs. Each type of pairs is composed of two identical units with 

Weibull distributed lifetimes having a scale parameter ia  and a shape parameter ib . We let 

1 40a  , 2 60a  , 1 3b  , and 2 1b  . Type 1 units have shorter expected lifetime and less 

variance, whereas the type 2 units have greater expected lifetime and greater variance. We 

let the lower and upper bounds for the number of the type i  pairs be 0il   and 4iu  . We 

carry out a few numerical experiments to observe if there exists any rule or pattern for the 

optimal solutions. In each experiment, we choose an objective function and a value for k . 

Options for objective function include MTTF, the coefficient of variation of time to failure 

(CVTTF), i.e. the ratio between the mean and standard deviation of the time to failure, and 

reliability at the end of the mission time, respectively. The value for k  is either 1 or 2. 
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Table 8.1 Numerical experiment results 

Objective Function k Optimal Solution Symmetry 

MTTF 

1 [1 2 2 1 2 2] Yes 

2 [1 2 1 2 2 2] Yes 

CVTTF 

1 [2 1 1 2 1 1] Yes 

2 [1 1 1 1 2 2] Yes 

Reliability at the end of the 

mission time (40) 

1 [1 2 2 1 2 2] Yes 

2 [1 2 1 2 2 2] Yes 

 

Table 8.1 shows the optimal solutions for the reliability allocation problems with different 

objectives. Any solution is a vector with each element being the type of pair allocated to 

the corresponding location. The optimal solutions tend to include more type 2 pairs when 

the objective function is either MTTF or reliability at the end of the mission time, whereas 

the solutions tend to include more type 1 pairs when the objective function is CVTTF. 

 

In addition, we examine the symmetry of the allocation. An allocation is symmetric if  there 

is an axis of symmetry for either type of the pairs. Based on the results in Table 8.1 we find 

that the optimal allocation is indeed symmetric. 
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 Conclusions 

This is the first research that investigates the reliability optimization for k-out-of-n pairs:G 

Balanced system. The objective function, i.e. the system reliability metric, is calculated by 

approximation methods due to the extensive computation time required to obtain the exact 

value.  

 

First, we determine the optimal n by fixing the numbers of standby, i.e. 0hK   for h = 0 

to (n – k). Second, we obtain the optimal hK  by referring to the optimal n obtained in the 

first phase. Third, given the value of n, we determine the optimal allocation of pairs with 

different lifetime distributions. 

 

Equation Chapter (Next) Section 1 
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9. CHAPTER 9 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

 Conclusions 

The major contribution of this dissertation is the investigation of methodologies for 

estimating the reliability of systems with spatially distributed units, or spatial systems in 

short. The function of any spatial system depends on the locations of the operating units 

and/or failed units. For some spatial systems, both the sequence and locations of failures 

play an important role in system function. In this dissertation, we focus on an emerging 

spatial system, k -out-of- n  pairs:G Balanced system, and its variant weighted- c -out-of- n  

pairs:G Balanced system. We develop procedures for estimating and approximating the 

reliability of such systems. We also investigate the effect of degradation and load-sharing 

on system reliability. Furthermore, we investigate the optimal reliability design for such 

systems. The research can be easily extended to other spatial systems. 

 

More specifically, we first investigate the reliability estimation and approximation for 

multiple k -out-of- n  pairs:G Balanced systems. We propose procedures of enumerating 

successful events, derive a closed form expression of event probabilities, and obtain the 

system reliability. To estimate the system reliability in a short computational time, 

especially when the system is large with many units, we propose Monte Carlo simulation-

based approximation algorithms. Numerical examples show that the approximation is of 
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high accuracy. The basic idea of the algorithms can be easily extended to other spatial 

systems. 

 

Second, we propose a degradation model for spatially distributed units by considering the 

operating conditions and the dependence among the units. The real-time system reliability 

of k -out-of- n  pairs:G Balanced systems is obtained by analyzing the degradation data of 

individual units at a system level. We also generalize the degradation model to be used for 

other spatial systems. 

 

Third, we consider the capacities of the units in the system and investigate the reliability 

estimation for weighted- c -out-of- n  pairs:G Balanced systems. We first investigate the 

scenario when each unit has multi-state capacity levels. We then examine the effect of load-

sharing on system reliability. 

 

Finally, we investigate the optimal reliability design for k -out-of- n  pairs:G Balanced 

systems by considering the effects of load-sharing and standby. The optimal design 

includes three phases: the first phase determines the optimal value for n , the second phase 

finds the optimal number of standby pairs given the number of failed pairs, and the third 

phase allocates pairs with different reliability features to different locations in the system. 

 

 Future Research 

The following problems can be explored as future research: 
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Problem 1: In Chapter 4, we develop reliability approximation algorithms for k -out-of- n  

pairs:G Balanced systems given the lifetime distributions of individual units. In the future, 

we will investigate the reliability approximation methods for such systems by considering 

the degradation processes of individual units. 

 

Problem 2: In Chapter 7, we investigate the load-sharing effect on system reliability. We 

observe that the system has higher reliability when the load is proportionally distributed to 

units according to its capacities than when it is equally distributed. This interesting 

observation suggests some future research on optimal load-sharing rules for weighted- c -

out-of- n  pairs:G Balanced systems. 
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