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ABSTRACT OF THE DISSERTATION

Reliability Estimation of Systems with Spatially Distributed Units

By DINGGUO HUA

DissertatiorDirector:

Elsayed A. Elsayed

Systems with spatially distributed units, e.g. Unmanned Aerial Vehicle (UAV), are
emerging in aerogge and military industries. In this dissertation, we present approaches
for the reliability estimation of such systems. In particular, we conkidat-of-n pairs:G
Balanced systems andeightedc-outof-n pairs:G Balanced systemsith spatially

distributed units which must meet balance requirements.

We first estimate the reliability metricdor k-outof-n pairs:G Balanced systems by
considering systems as failed when unbalanced system states occur. We further investigate
such sytems by balancing unbalanced sta¥®@&en unbalanced states occur, the system is
balanced by forcing down one or more operating pairs into standby. The reliability
estimation is computationally expensive for such systems with a large number of units.
Therdore, we develop an efficient approach for reliability approximation with high

accuracy based on Monte Carlo simulation.

Also, we investigate the system reliabilfiyrther by assuming that the units are subject to

degradationln many situations, unitsaibit degradation that can be monitoréée model



the degradation path ainy unit based on collected observations of the degradation
indicator and its physiebased or statistiesased degradation rate. We consider the effect

of unitso6 o psenthelr degrgdationopatitsi t i o

Moreoverav ai | abl e system capacity is an i mport
system fails when its capacity drops below a minimum value. We estimate the reliability
metrics of weighteat-out-of-n pairs:G Balanced systems, which considers the capacities

of individual units. We investigate the problem in two scenarios: First, we assume that the
capacity of any unibas multiple levelsSecond, we assume that the capacity of any unit

has two levels(either working or failed)whereas different units may have different

capacities. In the second scenario, we constdeFsharingeffect.

Furthermore optimal design for systems with spatially distributed units is the key to
maximizing the reliability oftie systems given the constraints such as the upper bound for
the total number of unitand loadsharing effectWe study the optimal configuration that

maximizesthe systenreliability metrics.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Research

In practice, many systenhgve units arranged ancertain spatial configuration to perform

their functions which we call systems with spatially distributed uRds.example, a flash

drive is composed of a number of memory cella cubic arrangememtith connections

in between a threedimensionalCT image consists othousands of pixels which form
patterns that indicate the health condition of an individasdupervision system has
multiple cameras digtvuted spatially to monitorreareaof concern[1]; an LED display

has a number of LEDs arranged in arraydigplay letters or digitsandan alternator has
multiple field coils arranged evenly on a circle to provide symmetric magneticAlux.
system with spatially distributed units requires that units at certain locations must operate
for the system to functioproperly. The spatial locations of unfitenceplay an important

role inthesystend eeliability estimation.

Suchsystems armost ofterredundant systems in the sense tiwdtall units in the systems
are requiredo operatdort h e s yppEetatomirsr@xampleadisease will be diagsed
only whenthe pixels at particular coordinatesof an CI' image form some pattern a
supervision system will only fail when the camerasartainspatialconfigurations faiko

thatthe remaining operating camerasrbt cover the monitored aregandan LED display



can still display recognizable letters with a few scattered failed LEDs though it cannot
display letters correctly if more than a certain number of LEDs fail in a cl@Gteerally,

such systems can be model®gmulti-dimensionalk -out-of-n :G/F systems.

The reliability estimation omulti-dimensionalk -out-of-n pairs:G/F systembasbeen
studied by many researchess multi-dimensionalk -out-of-n :G/F systems composed

of units configured according to the vectore.g. a cubic systeeomposeaf n. units in

the i™ dimension wheré =1, 2 and 3 The systenoperates/fails if and only if a group of
units configured as the vect&r operatg/fails. For example, a (2, 2, ut-of-(2, 2, 10)F
system fails if and only if there is at least 8 units fail in a cube of sirét2by 2 unitsby

2 units.

The reliability estimation of such systems is challenging due to the spatial configurations
of units. For instanceompared with & -out-of- n:F system, which fails when at ledst

units fail out of n units in total, it is more difficult to estimate the reliability of a
consecutivek -out-of- n:F system, which fails when at ledstconseutively arranged

units fail out ofn units in total[2], due to the consideration of relative locations of units

in the failure events. In other words, the cut set for reliability estimation cannot be
determined without considering the spatiabtieinship of units. The problem becomes

more complicated when the units are in a circular arrangemé¢ay.

A categoryof two-dimensionalk -outof-n:G systemwith units distributed evenly on a

circle is fast emerging in aespace and military industries. We name the systenks as



outof- n Pairs:G Balanced system®ne practical example of such systermgotary
Unmanned Aerial Vehicle (UAV3uch as octocopterahichpresents many potential uses

in various areas such as military, commercial and scientific research. The failure of such
systems may result in major consequences especially in areasghitiopiulation density.
However anextensivereview oftheliteraturereveals that research on reliability estimation

of such systems mpuitelimited. Therefore, m this dissertation, wiavestigate the reliability

estimation of a variety ok -out-of- n pairs:G Balanced systems.

1.2 Problem Definition and Assumptions

The reliability estimation of systems with spatially distributed units has been studied in the
past two decades by many researcliers to its importance and wide applicasoA
special case of systems with spatially distributed units i& toet-of- n pairs:G Balanced

systens.

1.2.1 System Description

1.2.1.1 k-out-of-n Pairs:G Balanced System

A k-out-of-n pairs:G Balanced system haspairs of units distributed evenly on a circle,

as shown irFigurel.1. Each pair of units is located along the same diameter of the circle.
At leastk out of n pairs should operate for the system to providedé@sired function.
Moreover, the system must maintain balancalaimes In the systems considered in this
dissertation, all the remaining operating units in the system should be symmetric w.r.t. at

least one pair of perpendicular axes of symmetry. fdgairement also implies that when



a unit fails, the other unit of the same pair is forced down immediately. Other balance
requirements can be imposed on the system as well. For instance, in some systems, the
units may be required to be rotationally symmeetv.r.t. a specifiedangle. The individual

units in the system can perform the same function, as ipldnetarydescending engine
systemg4], or different functions, as in UAV where any two adjacent rotors rotate in
opposite direction® providethe necessary lift for the UAWigurel.1b shows a possible
system configuration foan UAV with eight pairs of rotors where the arrows show the

rotational directions, i.e. either clockwise or anticlockwise, of each rotor.

o)
O
©

/
~
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Figurel.1 Two examples ok -out-of- n pairs:GBalancedsystems withn= 6 and8

1.2.1.2 Weightedc-out-of-n Pairs:G Balanced System

Weighted c -outof- n pairs:G Balanced system is a variant lofoutof- n pairs:G
Balanced system. In a weightedout-of- n pairs:G Balanced system, we haveoairs of

units distributed evenly on a circle asknout-of- n pairs:G Balanced system&ny unit



has some capacitfhe system requires at least a minimum capacity function while

maintaining balance.

The capcities of individual units can be the same or different. In addition, the capacity of
a unit has eithanultiple levels, e.g. full capacity, half capacity and zero capé#aeiityre),

or two levels,i.e. full capacity and zero capacity. In this dissertation, we will investigate
two scenarios othe reliabilty estimation of weighted: -outof- n pairs:G Balanced

systensin Chapers6 and7, respectively.

1.2.2 Definitions and Notations

1 Pair. A pair is composed of two units that are located on the same diameter of
the circular system arrangement.

1 Unit identity number and pair identit number We identify units and pairs by
using numbering system showrFigurel.1 throughout this dissertation unless
statedotherwise As shown, we start numbering the units from the unit on the
extremeright handside when we position one of the pairs horizontally. The
numbering increases anticlockwise. In addition, each pair is identified by the

smaller number in this pair but with asterisk superscript, e.g. units 1 and 7

constitute pairl . In this dissertation, we use letters such asid j to index

individual units and letters withn asteriskas supersapt such as” and j” to

index individualpairs. A pair identity number also has an asterisk as superscript.



In addition, it is immediate that paiir is composed of units and (i +n). For

example, units 1 and 7 compose daias shown irFigure1.1(a).

State ofa Unit. An individual unit has three possible states: operating, failed
andforceddown A unit is operating if it is performing its function. A unit is
failed if either it fails or it is forced down permanently due to the failure of the
other uit in the same pair. A unit iforceddown when it is forced down
together with the other unit in the same pair for system balance while they are
operating. In thisdissertation we consider two scenario¢) unbalanced
systems are coitkered as failed, rad (i) unbalanced systems are rebalanced.
Forceddown units do not resume operation in the first scenario, whereas they
are in standby and can resume operation when necessary in the second scenario.
The state of a unit is denoted as 1 if it is operatnd,t is failed, and 1 if it

is forceddown

State ofa Pair. Similarly, a pair of units has three possible states: operating,
failed, andforceddown A pair of units is operating when both units are
operating properly. A pair is considered failed wioee unit of the pair fails.

A pair isforceddownwhen the pair is properly operating but is forced down to
balance the system. Again, consider the two scenarios mentioned above.
Forceddown pairs do not resume operation in the first scendioaever,in

the second scenario, operating pairs are forced down into standby and can
resume operatioafterward when necessary. Forceldwn pairs in the second
scenaricareequivalent to standby pairs. The state of a pair is denoted as 1 if it

is operating, 0 if it is considered as failed, aadf it is forceddown



9 State ofa System The state of a system is the combination of the states of the
units in the system. Theadé of a system is denoted as a row vector of the states
of individual units in ascending order
1 Weight ofa Unit. The weight of a unit is used for calculatittge Moment
Difference (MD) as introduced @hapter3. Specifically, a unit has weight 1 if
it is operating and has weight O if it is failed (eithdrits or it is forced down
permanently due to the failure of the other unit in the same pair). A fdmed
unit has weight 0 in the first scenario where a fordedn unit does not resume
operationput has weight 1 in the second scenario where a fatoeach unit is

in standby and can resume operation.

1.2.3 Assumptions

Throughout thiglissertationye assume the following unless stated otherwise:

1 The units in a system, regardless of their functions, hagelifetimes.

1 The probability of two or more simultaneotailures is negligible.

1 For a pair of units, whenever one unit fails, the other one of the same pair is forced
down immediately and permanently; and the two units in the pair are always forced
down simultaneously when they are operating but forced domgystem balance.

1 The cumulative failure rate of a standby pair does not chdungegthe force down
period. In other words, its cumulative failure rate immediately after resumption is
thesame as when it is forced down.

1 A standby pair does not fail durinige forced down period.



1.3 Reliability Estimation of k-out-of-n Pairs:G Balanced Systems

We first estimate reliability metricef several types ok -outof- n pairs:G Balanced
systems with different configurations and balance requirements. We assume that units of
the same type have.d. lifetimes. Two scenarios are considered. In the first scenario, we
consider a system as failed when the system reachesalanced state. In the second
scenario, as a system reaches an unbalanced state, it is balanced by forcing down operating
pairs into standby. A standby pair can resume operaftenvardsvhen needed for either
balancing the system and/or providiagaddtional operating pair. Reliability estimation

for k-outof- n pairs:G Balanced systems presents three major challenges.

First, whenn increasesthes y st e mé s b al aurewmka uaitfid trreadibn e  f a i
obvious. By forcing down the opposite unit of the failed unit is not necessarily sufficient

to regain systembs bal ance. I n this <case,
balance the system. As one pair fails, we exathiestates of the other pairs and determine
which operating pairs to force down in ord

to keep the number éérceddownpairs as small as possible.

Second, locations and sequences of failures should tmdeoed to obtain the set of
successful events for reliability estimation. The failure of a system is determined by not
only the number of failedinits, but also their locations and sequences. For instance,
consider the systeshownin Figure1.1(a) and assumé& =3. When paird’ , 2° and3’

fail in any order, the system is balanced since¢h®aining operating pairs are symmetric

w.r.t. a pair of perpendicular axes, i.e. the aaesgpair 2 and pair5 . When pairsl’,



3 and 4 fail in any order, the system is unbalanced since the remaining operating pairs
are not symmetric w.r.t. any axes, as showrFigure 1.2(a) where white pairs are
considereaperatingandblackpairs are considered failed. The system should be balanced
by forcing down operating pa#’ into standby, as iffigure 1.2(b) wheregray pairs are
considered in standby, which results in less thape&atingpairs, hence a failed system.

In some cases, the order of failures matters. For instance, considgstimshownin

Figure 1.1(a) and assumek=2. When pairsl’ , 2, 3 and 4 fail sequentially, no
standby is needed to balance the system since the system is always balanced with
consecutively arranged failed pairs. When pdirs 3 and 4 fail sequentially, an
unbalanced system is resulted, as showkignire1.2(a), and standby is needed to bring

the system back to balance, as showfigure1.2(b). When pair2” fails afterwards pair

6 resumes operation since its resumption can bring an additional op@itifag shown

in Figurel.2(c). The two events are successful since they both result in two operating pairs

in the end, though they are two different events.

Figurel.2 Example of standby pair in an unbalanced system and the resumption of

standby pair
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Third, it is difficult to estimate the probability of some successful events. As mentioned
above, a successful event involves a sequentalafes and the order of failures matters.
The estimation of the probability of an event wittfailures requiresn h'" order integral.

If some operating pairs are forced down as standby to balancetamsit is quite difficult

to obtain a closed form expression for such integral.

1.4 Reliability Approximation of k-out-of-n Pairs:G Balanced Systems

The reliability estimation ok -out-of- n pairs:G Balanced systeis chdlenging in both
swecessful event enumeration and event probability tafmn as introduced in the
previous sectionThe reliability estimation becomes extremely difficult when the system
has a large number of units. Itvery timeconsuming, if indeed possible, to enumerate all
system states and determine the complete set of successful events by enumeration. For a

-outof- n pairs:G Balanced system, the number of uniquecessful events is
nnl

approximatelyg ?—' by considering that we ha\(en- (h 1)) options for then™ failure
i= -

to occur. Whenn=30 and k=15, the number of unique successful events is

2.1632 10°°. In addition, the determination of the probability of successful events, which

involves multidimensional integration, requires expensive computational time.

Therefore, in this disseration, we develop computationally efficient reliability
approximation fork -outof- n pairs:G Balanced systems. First, we investigate the
reliability approximation ofk -out-of- n pairs:G Balanced systems under the assumptions

that unbalanced systems are considered as failed systems and that individual units have
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i.i.d. lifetimes. Second, we investigate the reliability approximation of such systems under
the asamptions that unbalanced systems are balanced by considering standby and that

individual units have exponentiail.d. lifetimes.

Monte Carlo simulation is effective in estimating the reliability of complex sys[gms

[6]. In thisdissertatiopnwe use Monte Carlo simulation to approximate the reliabilitl of
-outof- n pairs:G Balanced systems. Utilizing simulation we can reduce the enumerations
of successful eventgnificantly by sampling a subset of events randomly as elaborated
later in Chapter4. In addition, we develop approximation for the muditnensonal
integral involved irthe probability calculation of successful events. Numerical examples
show that the reliability approximation approach proposed irdibgertations effective

and efficient.

1.5 Degradation Analysisof Systems with Spatially Distributed Units

In many situations sensors monitor the degradation processesritical units The
degradation measurements of individual units, which may be significantly affected by their
operating conditions, can be used nb&nce the accuracy of system reliability estimation.

It is hence of great significance to develop a degradation model for spatially distributed
units which considers the physibased or statistielsased underlying degradation rate,
captures the effect ajperating conditions othe degradation rate, and thariabilitiesin

the manufacturingof individual units. These factors bring more challenges in reliability

estimationof systems with spatially distributed units.
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In this dissertation, we model thegiadation of individual units ik -out-of- n pairs:G
Balanced systems. A unit fails when its degradation reaches a critical threshold. We assume
that individual units of the same type have an identical ineséegradation rate, which is
modeled as a function of time, e.g. power law. The effect of operating conditions on the
degradation processes of individual units is modeled by satesderation functions which
govern the relationship between operatingditions (stresses) and acceleration factor for

baseline degradation rate.

Assume that unbalanced systems are balanced by forcing down operating pairs into standby
or resuming standby pairs backdperation,and assume that the units are not subject to

degradation or failure during standby, this problem introduces two challenges:

First, successful events cannot be aggregated into groups to simplify computation. Under
the assumption dfi.d. lifetimes of indvidual units, successful events that have the same
relative locations and sequences of failures occur with the same probability and hence can

be aggregated into the same group to simplify computation. For instance, consider the
system inFigure 1.1(a), the event that paits, 2° and 3 fail sequentially and the event

that pairs2 , 3 and 4 fail sequentially can be aggregated into one group. When
individual units have different degradation paths due to different operating conditions, the
lifetimes of individual units are no longer identicallysttibuted. The probabilities of
successful events should be obtained separately even if the relative locations and sequences

of the failures in these events are the same.
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Second, randomness in the degradation rates of units due to the operating caddion

manufacturing variations among the units.

1.6 Reliability Estimation of Weighted-c-out-of-n Pairs:G Balanced Systems

In many cases, the function of systems depends on the capacities of individual units, e.g.,
engines with certain horsepower,gamerators witlkacertain output voltagen previously
mentioned topicghe capacities of units are considered as equal and ignored in reliability
modeling. For example, imadJAV that consists of identical rotqrthe rotors should be

able to provide th same lift power. But the capacities of units daorease andary from

unit to unitin some casesnd thus should be considered in reliability modeling.

In this dissertation, we investigate the relidgpilestimation of weightec -outof- n

pairs:G Balanced systems in two scenapiesentedn Chapters$ and7 respectively.

1.7 Load-Sharing Effect on System Reliability

We investigate theffect of loadsharing on system reliability metrics by assuming that the
load each unit shares, which depends on the numbenafiningoperating pairs in the
system, affects its hazard rate.a weighted c-out-of- n pairs:G Balanced system with
load-sharing effectthe load carried by failed units is rdistributed tothe remaining
operating units. Whethe operating units share more load, their hazard rates are affected

in an adverse way, which decreases system reliability. In addition, the way load is
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distributed to operating units should be consideredsystem reliability estimation

especially when unitsave different capacities.

1.8 Optimal Designfor Systems with Spatially Distributed Units

The k-out-of-n pairs:G Balanced systems exist in many applications such as the descent
system of planetary vehiclg¢4] and UAV. The reliability of such systems has a major
impact on the accomplishment of important missions, the cost that may occurawhen
failure happens, and public safety as in the case of UaWMre. The reliability
optimization for such systems hence is significant in pradibapter3 shows that there
exists an optimal reliability desigorfk-out-of-n pairs:G Balanced systemherefore, ve
investigate theptimal reliability designof a k-out-of-n pairs:G Balanced system this

dissertation

1.9 Organization of the Dissertation

This dissertation is organized as follows. In Cha@ewve present a comprehensive
literature review b the relatedresearch. In Chapte8 we present the procedures of
estimating system reliability metrics for-out-of- n pairs:G Balanced systems in two
scenarios: (i) unbalanced systems considered as a failed systems ambdignced
systens are rebalanced by considering standby pairs. In this chapter, we also propose an
approach for determining balance (symmetry) of a system and heuristics to determine
standby pairs for unbalanced systems. In Chaptee presenareliability approximation

approach for the systems introduced in Chaptén Chager 5 we propose a degradation
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model for spatially distributed units, based which reliability metrics ok -out-of- n
pairs:G Balanced systems are obtained. In Chaptere investigate the reliability
estimation of weighted-out-of-n pairs:G Balanced systems by assuming that the
individual units are subject to muliate capacity degradation. In Chaptene investigate
theload-sharingeffect on the reliability of weighted-out-of-n pairs:G Balanced systems.
In Chapter8 we study theoptimal desigrfor k -out-of- n pairs:G Balanced systems. In

Chapter9 we present theonclusions and future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review on Systems with Spatially Distributed Units

2.1.1 Multi-DimensionalConsecutivek-out-of-n:F Systems

A type of weltknown systems with spatially distributed unigsthe multi-dimensional
consecutive k -out-of- n :F systems. The applications of such systems range from
electronic devices composed of cell units in squares or dqubep8], TV supervision

systemg9] and disease diagnosis based era)([8].

A survey of themulti-dimensional systems derived from the -aliimensional consecutive
k -out-of- n:F systemis found in[10]. Salvia and Lasher propose a tdionensioml
consecutivek -out-of- n:F systen{7] by considering a square grid of units by sidethe
system fails if there exists a failed square grid of units by lsid€his is the first known
multi-dimensional consecutivk-out-of- n:F system considered theliterature Koutras

et al.[11],[12] provide estimates dhereliability of this system. Behmeet al.[9] propose

a more generalized model, i.e. connecbéelout—of—(m, n):F lattice system, where the
lattice of units can be rectangular, circular, and cylindrical. Boedtrakalso provide the
reliability estimation of such a system. A special case of the connectedtof- (m, n) ‘F
lattice system is the consecuti{e,s) -out-of-(m, n):F systemltsreliability estimation is

investigated further by Yamamoto and Miyakada], Makri and Psillaki§14], Godbole
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et al.[15], Hsieh and Che[16], and Zhacet al.[17]. Godboleet al [15] extend the result

for d -dimensionalsystem whered 2 3. Other systems such &swithin-consecutive
(r,s) -out-of- (m, n) :F systems[14], [18], [19] and consecutivgr,s) -out-of- (m, n) :F

systems with constnais onthetotal numbeliof operating unit$20] are investigated.

Boushaba andshora[21] introduce the thredimensional consecutiv& -outof- n:F

system and investigate its upper and lower reliability boundsey st at e t hat i
difficult, probably impossible, to deriveimple explicit formula for the reliability of a

general threelimensional consecutivk-outof-n: F sy st em. 0AzBua[R2s hab a ¢
propose another method for estimating the lower reliability bound. Q8jef23] attempt

to address this research area but the contributions are limited due to the difficulty of the

problem.

A thorough review of related workeveals that the reliability estimation of multi
dimensional consecutivk -out-of- n:F systems is important yet challenging. The research
is important since its applications can be found in many areas sdidease diagnosis by
reading an Xray [8] and other medical imagerf22], the failure model of three
dimensional flak memory cell$23], the failure model of thin film transistor liquid crystal
display[19], scatter water aa of a water sprinkler systd@¥], supervision syste®] and
pattern recognitiofi7]. However, due to the difficulty of the problem, a large portion of
the paper$7]-[12], [14]-[16], [21], [22], [25] only addresshe upper and lower bound$
system reliability without providing the exact values. In addition, very few p4pars

consider units with reliabilitjunctions
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2.1.2 k-out-of-n Pairs:G Balanced Systems

Another emerging system with spatially distributed unithérotary winged Unmanned

Air Vehicles (UAV) with multiple pairs of rotorg26]. UAV is set to play a major role in

the future of the aerospace indugfy] and its use in many applieahs. For examplen

UAV can collect more detailed geographic data than satgie Although UAVs have
numerous potential applications, its flight is highly restricted now because its reliability is
lower than manned aircrdf29]. No research is founelated tahe quantitative maeling

and estimation of the multiple rotary UAVS®S

Multiple rotary UAV falls irto the category ok -out-of- n pairs:G Balanced systems with
units distributed spatially in a circular configurati The reliability of such a system is
difficult to estimate as it has the same nature of aforementioned-dim#&nsional
consecutivek -out-of- n:F system. In addition, the consideration for system balanke

out-of- npairs:G Balanced systems adds to the difficulty in reliability estimation.

Attempts have been made for estimating the reliabilitk afut-of- n pairs:G Balanced
systems. Sarper and Sauy}, [30] consider two balanced engine systems in planetary
descent vehicled estimate their reliability. The balanced engine system has four (or six)
engines located evenly on a circular configuration to keep the descent vehicle in balance.
Two (or three) engine pairs are formed along diameters of the circle. In each pair, when
one engine fails, the second engine of the same pair is forced down to maintain balance.

The system operates if and only if at least one (or two) engine pairs operate properly.



19

However, the two balanced engine systems with only two or three pairs oarengsite
simple. The methods developed for estimating the reliability of these two systems hence

cannot be used for more general systems.

2.2 Applications of k-out-of-n Pairs:G Balanced Systems

In practice,k -out-of- n pairs:G Balanced systems are already used in many applications.

We provide some examples as follows:

2.2.1 Engine Systems in Planetary Descent Vehicles

Sarper and Saué4] present two balancedgine systems in planetary descent vehicles
and estimate their reliability. The balanced engine system has four (or six) engines located
evenly on a circle to keep the descent vehicle in balance. Two (or three) engine pairs are
formed along diameters ofdttircle. When one engine fails, the second engine of the same
pair is forced down to regain balance. The system operates if and only if at least one (or

two) engine pairs operate properly depending on the requirements of the system.

2.2.2 Unmanned Aerial Vehites

Unmanned Aerial Vehicles (UAVs), a.k.a. drones, are widely used in military and
commercial applications. UAVs with multiple rotors, e.g. quadcopter, hexacopter, and
octocopter, are used in border protection and are being prototyped for package delivery
and other applications. UAVs with multiple rotors can be modeldd-ast-of- n pairs:G

Balanced systems. The individual rotors rotate in two opposite directions to provide thrust
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for UAVs, and at the santane, provide UAVSs the ability to pitch, roll or yaw. Not all the
rotors have to be rotating fon&AV to fly safely when more than 6 rotors are mounted

in the system, though the number of working rotors should be above a critical number. A
UAV also requres balance in the sense that the operating rotors should be symmetric, and

the number of rotors rotating in the opposite directions should be equal

2.2.3 Generators antbr Alternators

The stators and rotors of wind turbine generators are composed of enséiplof three
phase windings. In each set of windings, the windiofyslifferent phases should be
mounted evenly on a circle witB/3v degrees between them. The multiple sets of
windings are then mounted evenly with the other wigslion the circle in a symmetric
manner. The symmetry of windings is critical for fiealttd condition of the generators
[31], [32]. The symmetry among windings is necessary to avoid failure of the generator.
The winding sets can eodeled as & -out-of- n pairs:G Balanced system by considering

each winding as a pair because each winding occupies the two ends of a diameter of a circle.

For an alternator, its salient pole rotor hadtiple field coils arranged evenly on a circle
to provide magnetic flux. The coils should be arranged in such a way that any two adjacent
coils should provide opposite magnetic poles. The sets of coils can also be moddted as a

-out-of- n pairs:G Balanced system by considering each coil as a unit.
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2.3 Literature Review on Symmetry Measure

The existing research on axes of symmetry, whidhtsin various areas such as chemistry

and phytology, can be categorized into two major areas: seeking axes of symmetry for
symmetric or approximately symmetric shapes or im§gf@ls and measuring asymmetry

or symmetry of a shape or image and determining the minimum change needed to get the
shape or image into a symmetric ¢84]. The balance of the propos&dout-of- n pairs:G
Balanced system highly depends d@s symmetry. Themeasureof symmetry and
rebalancing an unbalanced system is a variant of the second research area. However, the
minimum change involved in the second area is not to omit or add elements such as points
or pixels, but to adjust the locations of currentlyséirg elements. So the methods cannot

be applied to the problem under study which involves forcing down operating pairs into
standby and resuming standby pairs back to operation (omitting and adding elements

temporarily from the system).

In thisdissertabn, we develop a measuoésymmetryto determine the balance kfout
of- n pairs:G Balanced systems. In the scenario where standby is considered, we develop
heuristics to determine which operating pairforce down into standby and which standby

pairs to resume operation to rebalance unbalanced systems.

2.4 Literature Review on Monte Carlo Simulation-Based Reliability
Approximation
In this section, we provide a literature review on Monte Carlo simutaigeed reliability

approximation. Monte Carlo simulatidvased methods are widely used in reliability
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approximation. Crude Monte Carlo simulation performs well in simple problems, though
becomes timeonsuming when problems become more complex. Thereforey man
methods arelevelopedfor variance reducticto improve the efficiency of the Monte

Carlo simulation, e.g. subset simulation and importance sampling.

A thorough review otheliterature shows that the existing methods either lack the ability
to approximate the reliability ok -outof- n pairs:G Balanced systems oequire
significant effort to be applied to the systems. In thssertation, we develop an efficient
and effective reliability approximation method flerout-of- n pairs:G Balanced systems
based on Monte Carlo simulation. In addition, this method can be easily gestbtaliz

approximate the reliability of other systems with spatidistributedunits.

2.4.1 Crude Monte Carlo Simulation

TheCrude Monte Carlo simulation method repeatedly generates the realizations of system
states by randomly drawing samples from the distribuons of component s o
A system state is considered successful if the remaining operating components, the failure
times of which are greater than the mission time, form a path. Approximate value of system
reliability is obtained as the ratid the number of successful system states over the total
number of states generated through a large number of simulation runs. The approximate
value converges to the true value as more simulation runs are implemented. Research in

this area is found if85], [36], [37], [38], and[39].
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This method, though straightforward, tends to require a great amoumiedbtconverge.
Especially when the target system states occur with small probabilities, it requires a
significant numbeof simulation runs to draw enough samples from the target régdpn
Thus many papers propose variance reduction methods to improve the simulation

efficiency.

2.4.2 Subset Simulation

Subset simulation treats each system state as a result of a sequence of intermediate system
states. The underlying idea is to express the probability of a target system state, which can
be very small in many cases, as a product of prokbabiibnditional on some intermediate
system statelgl0]. Thus a rare system state can be generated by a sequence of simulations
of more frequent intermediate system states. This method can be used when it is possible
to model system states as a vector of parameters so that target staeerand its
intermediate system states can be modeled as subsets of the universal set of the parameter

vectors. Research in this area is founfidl, [41], [42], [43], and[44].

In this dissertationwe considethe k -out-of- n pairs:G Balanced systems. The function
of such systems depends on the sequence and location of the failures; and it is very difficult,
if not impossible, to model intermediate system states into subsets especially when there

are system states with forchagpwn and resumption of standby pairs.
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2.4.3 Importance Sampling

Importance sampling is a widely used variance reduction method to improve simulation
efficiency. The basic idea is to draw samples from an importance distribution that
overweighs the target regianstead of the original distribution, and then adjust the
estimation with a likelihood ratio, namely the ratiopalf of the original distribution over

the pdf of the importance distribution. Due to the oversampling in the region of concern,
theimportan@ sampling method converges in significantly less simulation[A&}sThis
method is especially used in the case of highlyabéd systems and hence a small failure

region. Research and survey in this area are fouptbn[47], [48], and[49].

The success of the method relies on a prudent choice of the importance distrishiob
requires knowledge of the system in the failure re¢d@). However, it is difficult, if not
impossible, to determine the importance distribution for the failure regiénaft-of- n

pairs:G Balanced systems.

2.4.4 Other VarianceReduction Methods

Other variance reduction methodse found in the literature. However, these methods
require prior knowledge of the system, e.g. complete minimum cyb@&eor fault tree

[51], lack the ability to model the effect of failure sequefd, [53] or locationg[54],

[55], or are developed for specific systems, e.g. series and parallel s}ys2&nmetwork
systemd53], [56], linear sensor systenfi§7], or construction structurds8], [59], [60],

[61]. It requires much extra effort to apply these methods to the reliability approximation

of k-outof- n pairs:G Balanced systems, if indeed possible.
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2.5 Literature Review on Degradation Modeling of Individual Units

2.5.1 PhysicsBased Degradation Model

Modeling the degradation process of products basgehgsics of failure is common for
products with known failure mechanisms. Using phyb@sed degradation models results

in amore accurate prediction for the reliability metrics of a batch of products.

A recent thesis by Kulkarp62] investigates the physics degradation model for electrolytic
capacitors. Tyaginoet al. [63] analyze and classify the existing +oatrrier degradation

models and present a novel degradation model that includes all essential aspeets of hot
carrier degradation. McPhersof64] presents three generally used phykiased
degradation models: powéra w , exponenti al, and | ogarithi

selected because they tend[64 o occur rather

Power law model is more frequently observed according to McPhfgdhrHot carrier

induced degradation ofan SOI (Silicon on Insulator) MOSFET (Metal Oxidei
SemiconductorField-Effect Transistor)is best described by power labt" where the

exponenm is centered at around 0.25 or 0.5 depending on the stress condispriBhe

threstold voltage ofan AMOS (P-type MetaltOxide-Semiconductorjransistorsalso has a

degradation process in the form bf"[66], [67].



26

Exponential and logarithmic models are used when power law model does not fit the data.
Dragreductioneffect of polymer additive decreases following an exponential [6&{h
Meeker and LuVallg69] describe arexample of exponential degradation processon
circuit board. The remaining salts in printed circuit boards after manufacturing react with
copper to generate copper chlorine compounds that may cause failure of circuit boards.
The amount of copper chlorimmpounds increases in an exponential form. Dp30é

finds that the weight loss of a silicon resin in time follasgarithmc model. He also
stateghat the logarithmic process is encountered quite often not only in weight loss studies
but also in some studies of moistw@ption and desorption, as well as loss of dielectric

strength by solid polymers during heaging.

Physicsbased degradation models utilize the information ofpghegsics of thefailure
mechanisms of products and provide perspectivigsaegradatiorprocessesHowever,

the limitations of physicbased degradation models are also obvious. First, these models
are much more difficult toonstruct Extensive experiments must be carried out based on
in-depthknowledge of physics, chemistry and metallurgical properties of the components.
Second, the models are usually for simple electronic devices or mechanical components.
The application of these models is limited complex systemwith multiple components.

Third, physicsbased degradation models tend to result in less accurate prediction for
individual products due to the diversity of products and the stochastic nature of failures

[71].



27

Statisticsbased degradation models are used witersicsbased degradation models are

not adequate due to its limitations.

2.5.2 Stochastic Process/Statisti@ased Model

A general degradation path is proposgdeeker and Escob§r2]. The degradation of

uniti at timet; is modeled asy; =Y, 4§ whereY; is the actual path ang;, which

follows a normal distribution with zeromean is the residual deviation. In addition,
stochastic processes a@mmonlyused to describetttte gr adat i on pr ocesse
models, as an alternative, are preferred whenever thHackisf experimental data or prior

knowl edge ab o U%3] Btowngan matian cind dGarsma processes are two

widely used stochastrocessefor modelng thedegradation paths.

Gebraeekt al.[74] model the degradation process of prodigihg an exponential model
where the randomness from unit to unit is modeled with a centered Brownian motion.
According to Gebraeett al. [74], [75], the randomness from unit it can also be
modeled with a standard normal distribution. Wanhg|.[76] propose a degradatidrased
remaining useful life prediction method where the degradation is modeled asing
Brownian motion with drift. The drift parameter is adaptive to the history of condition
monitoring information. Wet al. [77] propose a degradatidrased reliability estimation

method with random failure threshold.

Marseguerraet al. [78] model the degradation of a maintainable system with a discrete

time Markov chain thadlescribs the condition of the system before or aftaimienance.
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Grall et al.[79] present condition based maintenance (CBM) approach where the condition
(degradation) of sigle-unit-system is modeled withMarkovian stochastic process. Since

the inspections are carried out at discrete instants of time when degradation increments
occur, the model can also be considered as a cumulative damage model. The increments
are conside=dto follow exponential distribution or Gamma distributi@elouxet al.[80]

study the maintenance optimization of a system subgeenvironmental stresses. The
degradation of the system is modelech@&Samma process. Liaet al. [81] use Gamma
process to model the degradation of systems in numerical simuldtiento the

monotonous increments property of Gamma process.

2.5.3 Degradation Modeling Considering Operating Conditions

Many degradation model$at consider operating conditions are found in Hreaof
Accelerated Degradation Testing (ADT). Meeketr al. [82] provide an extensive
introduction of ADT. Brownian motion or geometric Brownian motion with stress
(operating condition) dependent drift coefficient and gamma process withddmmsdent
shape parameter aveidely used to model degradation processes considering operating

conditions[83], [84], [85].

Liu et al.[86] present a degradation model for individual units considering the effect of
operating conditions using Brownian motion with time variant drift and diffusion
coefficients. The model is composed of two parts: the deterministic part which deals with
either physicdased or statistiesased degradation rate, and the stochastic part which

considers the randomnesdire degradation processes. The effect of operating conditions
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on degradation rate is modeled by applying a stessleration factor. Closed form

expressions fopdf of lifetimes and reliability function of individual units are obtained.

2.5.4 StressAcceleraton Functions

Stressacceleration functions are widely used to model the effect of stresses (operating
conditions) on degradation processes. Stagseleration functions can be categorized into

experimerdl-based functions and empirical functid8g] as explained below.

2.5.4.1 Experimeral-Based Functions

The Arrhenius equation is one of the most widely used sa@ssderation functions. It
relates the rate o& simple (first order) chemical reaction rate (degradation rate) and

temperaturg88] as given irgq. (2.1)

.4 E
m=C €X a 2.1
péae Ka (2.1)

where m is the reaction rateC is a constantE, is the activation energy of the reaction,

usually in electrorvolts; T is the absolute Kelvin temperature; aKdis Boltzmann

constant.

Another widely used stresgceleration function is the Eyrirgjuation thatlescribes the
effect of temperature on the reaction rate pfacess

m=C ®(T) exbg E, (2.2

K
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where f (T) is a function of temperature determined by the specifics of the reaction

dynamics Applications in the literature typically assurhéT) =T" with a fixed value of

m [87].

2.5.4.2 Empirical Functions

It is possible to obtain stressceleration functions via experimental observations or based
on knowledge of physics or chemistry, yet itime-consumingand sometimes infeasible
to do so. Simple empirical functions have been used to describe thedsigesdation

relationship.

In sonme Brownian motion based degradation models, the degradation rate (drift coefficient

of the Brownian motionyn is expressed as an exponential function osthess vectos:
mS) =expga b /(S (2.3)
where/ (S) is afunctionof stress vecto, and a and b areconstantsWanget al.[89]

andLiao and Elsaye{B3] use this model in ADT. Other empirical functions such as power

law model are described jiA3], [90], [91].

2.6 Literature Review on the Degradation Analysis of Systems with MultipleUnits

2.6.1 Systems witta Smple Configuration of Units

Most of the research focuses on the degradation of simple systems such as series systems,

parallel systems, the combinations of series and parallel systemg, -anebf- n:G/F
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systems where at leaktout of n units must operate or fail. In such systems, only certain

configurations of the units are required for the systems to operate. In other words, the

spatal relationships of individual units have no effect on reliability analysis.

Phamet al. [92] investigate the reliability metrics of la-out-of- n:G system with units

that are subject to both discrete degradation stages and catastrophic failure. An individual

unit either fails as it reaches the last stage of degradation or fails catastrophicallgt Song
al. [93] propose a degradation model for individualtsimonsidering the impact of shocks,
which is shared by all units, on their degradation. The estimation of system reliability for
series systems, parallel systeansd seriegparallel systems is given. Gupta and Lawsirirat
[94] present a general model for systems with mdtgegrading units using Failure Modes

and Effects Analysis (FMEA) to obtain interaction intensitiesbetween individual units

i and j, the system degradation at timeD, (t) is obtained as

N N
Dsys(t):\/a A’ iDiDi; Yy (2.4)

i=1j 2

where D, is the degradation of unit(i =1,2, » N) at timet; and J,, is the damage

syst
caused to the system duethe failure of individual units. This model depends on the

accuracy ofr; obtained through FMEA, which is difficult to obtain for complex systems.
Bian and Gebraegb5] propose a degradation model for multiple units considering the

dependence between the degradation rates of the units, rekidbs ina more accurate

predictionof the remaining useful life of individual units.
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2.6.2 Systems with Spatially Distributed Units

Degradation analysis for systems with spatially distributed units is much more complicated
due to the consideration of locations and sequences of failures. Work related to this area is
sparse. Enright and Frangod®b] investigate the reliability of a highway bridge with
multiple spatially distributed girders. Series systems and gegiedlel systems are used

to model the bridge. The degradation of resistance of the girders is modeled with a
deterministic polynomial unction of time with a time variant random threshold as
explained later. The overall load on the bridge, which follows a known distribution, occurs
according taa Poisson process. This problem involves load redistribution whenever some
girders fail, whichis complicated due to the spatial distribution of the girders. The load
shared by remaining girders, which can be considered as the critical thresholds for their
resistance, depends on their spatial locations and the locations of failed girders. A failure
tree describing the events with girders in different locations failing in different sequences

is built to facilitate reliability estimation.

Marsh and Frangop@7] investigate the reliability of reinforced concrérédge decks by
considering the corrosion of the reinforcing steels. Spatial correlation between corrosion
of the reinforcing steels at different locations of the deck is considered in the model to
enhance the accuracy of reliability estimation. The lonatof reinforcing steels hawe
significanteffect on the overall resistance capacity of the bridge deck to the applied load.
No explicit expression for system reliability is obtained due to the modeling and
computation challenges of the probldmstead Monte Carlo simulation is used to obtain

system reliability.
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2.7 Literature Review on Multi -State k-out-of-n:G/F Systems
El-Neweihi et al. [98] propose the first definition for a mutstate k -out-of- n system

model, where the systertateis defined as the state of thé' best uni{99]. Boedigheimer
and Kapur[100] define the multistatek -out-of-n system in terms of lower and upper
boundary points, which is considered as consiq@9it with the one proposed by El

Neweihi et al. [98]. Huanget al. [101] propose a generalized mudtiatek -out-of-n:G

system where the state space of each unit and the sys{érﬂ,@ ;NI}Z and a lower state

level represents a wee or equal performance of the unit or the system. The definition of

the system is as follows:

An n-component system is called a generalized rstdtie k -out-of- n:G system if

f(x)2j(j 42 ™Qwhenever there exists an integer val¢ ¢| & ) such that at
leastk, components are in states at least as godd #¢herex =(x, %, QX)) is ann-

dimensional vector repreding the states of all componenvs(x) is the state of the

system, which is also called theustture function of the system.

A corresponding mukstatek -out-of- n:F system is defined as follof&02]:

An n-component system is called a generalized nstdtie k -out-of- n :F system if

f(x)<j(1 ¢ M) whenever the states of at le&stcomponerts are below for all |

such thatj ¢I @ .
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An example ofk -out-of- n:G systemis given by Zucet al.[102] as follows:

AConsi der a power station with three ge
component, and there are three poments in the system. Each generator may be in
three possible states: 0, 1, and 2. When a generator is in state 2, it is capable of
generating 10 megawatts of power output; in state 1, 2 megawatts, aateif,s0
megawatt. The total power output of the system is equal to the sum of the power output
from all three generators. We can describe this model as follows: The system is in state
2 whenever at least 1 component is in state 2; in state 1 or above whenever either at
least 1 component is in state 2 or at least 2 components are in state 1 oaatone;
state O otherwise.o

The reliallity metric estimation of the syshs is discussed st01], [103], [104], [105],

[106] and [107]. A comparison of the methad given by Moet al. [108]. Overall, the

objectiveis to increase the efficiency of relialtyl estimation algorithmandto reduce

computaton time, or to provide boundg04] and approximation107] for system

reliability metrics.Tian et al.[99] propose a new muitatek -out-of- n:G system with

the following definition:

An n -component system is called a mugtate k -outof- n :G system if

f(x)2j(i 22 ™QPwhenever atleast, components are in stateor abovefor all |

such thatl¢ | ¢j.

Similarly, there is a corresponding definition for mugitatek -out-of- n:F system. The

reliability of such systems are dissed in[99], [107], and[108].
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Another variant of the mukstatek -out-of- n:G/F systems is mulstate consecutivé -
out-of- n systemg109], [110], [111]. Explicit recursive formulas are provided for special

systems and algorithms are developedHhergeneralized systesn

2.8 Literature Review on Weighted-c-out-of-n:G/F Systems

In theresearch related the reliability estimation of redundant systems, it is assumed that
each individual unit in the systerhssits own integer weight, which can be considered as

its capacity. The systems are called systems with weighted units.

Wu and Chen first propose vghited c -out-of- n:G system[112] and consecutive
weighted c-out-of- n:F system113]. The systems consist of units, each of which has

its own integer weight. The former system operates if and only if the total weight of
operating units is at least, whereas the latter system fails if and only if the total weight
of the consecutivelyailed units is at least. Recursive algorithms are developed to
estimate the reliability of these systems. Chetrag.[114] investigate circular consecutive

weighted c-out-of- n:F system and develop afgorithm for estimating its reliability.

Eryilmaz[115] investigates the reliability of &-out-of- n:G system with units of random
integer weights. The system operates if and only if there are aklegstrating units, and
the total weight of all operating units is abover#ical valuec. Kamaljaand Amrutkar

[116] and EryilmaZz117] provide reviews of systems with weighted units.



36

2.9 Literature Review on Load-Sharing Models

2.9.1 Load-Sharing Rules

Most of theresearchthat addresshe load-sharingeffect on system reliability utilize the
monotone loagharing rulewhere the loadncrementdue to failures of some units
shared among the remaining operating ufiis8]. Two special cases d¢fhe monotone
load-sharing rule aréhe equalload-sharing ruleandlocal load-sharing rule[119]. Under

the equal loagharing rule, all operating units share overall system load edaa).
Under the local loagharing rule, the load carried by failed units is distributed only to their

adjacent units.

2.9.2 Load-Sharing Effect Models

The most widely used models for lealdaring effect are Accelerated Failure Time Model
(AFTM) [121], Tampered Failure Rate (TFR) mofiE20], Cumulative Effect (CE) model

and Proportional Hards Model (PHM).

2.9.3 Baseline Hazard Rate Models

Constant Baseline Hazard Rate Mad€bnstant baseline hazard rate model simplifies
load-sharing problems and henisewidely used in literatureScheuef122] investigates
the reliability of k -out-of-n:G system under two assumptions: (i) individual units have
i.i.d. exponentiallifetimes, which implies identical constant hazard rate, and (ii) the
identical hazard rate of operating units increases wddailure occurs. Shao and

Lambersorj123] study the problem by assuming repairable units and imperfect switching,
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i.e. failure to detect and disconnect failedts. Linet al.[124] investigate the problem in

[122] further by assuming neidentical units.

TimeVariant Baseline Hazard Rate Moddlime-variant baseline hazard rate model is
more general and realistic but complicates {shdring problems. Hassedt al. [125]
provide analyticalresuls for the reliability and availability of systems with one or two
units that have neidentical power law time&ariant hazard ratend repair rate. Amast

al. [120] provide analytical results fok -out-of- n:G systemsconsidering TFR load
sharing effect and generalize the restdta wide range of timeariant baseline hazard

rate models.

2.9.4 Other Research

Yamamotoet al. [126] investigate the optimal load allocation (lesldaring rule) fork -
out-of- n:F systemsand find thatsystemlifetime is maximized by allocatinthe load to
units according to thenesiduallifetimes Huang and X{i127] estimate the reliability of a

k -out-of- n:G system with maximallyn (k ¢ m ¢n) active units at all times. Load (tasks)
is assigned tanitsby acontroller, and active units can be either busy or idleetail.[128]
investigate the optimal maintenance policy for ls&dring computer systems wikhrout-

of- n:G redundant configuration.
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2.10 Literature Review on Optimal Designfor System® R e | iwahbSpatially y

Distributed Units

The system reliability optimization without considering maintenance can generally be
categorized into redundancy allocation problem, reliability allocation problem and the
combination of the tw129]. Redundancy allocation problem is to add redundant units to
the system and/or to allocate redundant units tesgatems in the form of cold, warm or
hot standby. The subystems can take a varietyfofms such as parallel systemskayut-

of-n systems. On the other hand, reliability allocation problem treats the reliability of the
units allocated to any stdystem as a decision variable. Cett al. [130] study the
redundancy allocation problem for systems with multipdait-of-n subsystems in series.
Elegbedeet al. [131] and Tianand Zuo [132] investigate the redundancgliability
allocation problem considering parallel ssystems in series. Reviews on the reliability

optimization research are given in Kli29], [133].

The redundancy allocation and reliability allocation problems are proven to {andP
[134], [135]. As the com[exity of the problems grows, heuristics become a common
technique for solving the optimization problefis33], [136], [137]. The most popular
heuristics include Ant Colony, éhetic Algorithm, Tabu Search, and Simulated Annealing

[133].

The reliability optimization fok-out-of-n:F/G systems has been a subject of investigation.
Yosi [138] studies the reliability optimization éfout-of-n systems when the units have

two failure modes. Zufl39] investigates the relialty allocation for consecutivk-out
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of-n:F/G systems. The objective functions include exact values of system reliability metrics,
upper or lower boundsf system reliability metrics, and overall cost considering system
reliability and cost of failure. Aamprehensive review of reliability optimization feout-

of-n:F/G systems is given i140].

However, reliability optimizaon for multirdimensional k-out-of-n:F/G systems is
sparsely studied140]. Zuo [141] investigates the reliability optimization for-2
consecutivek -out-of- n:F systems. This dissertation is the first to investigate the reliability
optimization fork -out-of- n pairs:G Balanced systems. We investigate both redundancy
allocation and reliability allocation problerfts k-out-of-n pairs:G Balanced systems. First,
we determine the optimal number of pairs and optimal standby policy, which is a
redundancy allocation problem. Second, we allocate pairs with different lifetime
distributions to different locations in the s to optimize the overall system reliability

metrics, which is a reliability allocation problem.
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CHAPTER 3

RELIABILITY ESTIMATION OF k-OUT-OF-n PAIRS:G BALANCED

SYSTEMS

3.1 Problem Definition and Assumptions

In thischapterwe present methods for reliability estimation of different typdsamit-of-
n pairs:G Balanced systems in two scenarios: (i) unbalanced systems are considered as
failed systems and (ii) unbalanced systems are rebalanced. We develop a systematic
approach for enumerating the complete set of successful events, which are ordered
sequenes of failures described by system state transition paths, and dlotsed form
expressions for calculating the probabilities of successful events. The developed methods

can be generalized to other systems with spatially distributed units.

The assumptins stated in the Chapter 1 hold throughout this chapter. We also assume that

the hazard rates of individual units are not affected by the total number of operating units.

3.2 Reliability Estimation of Systems Considering Unbalanced States as Failure of

the System

3.2.1 System Description

In this section, we consider two typeslofout-of-n pairs:G Balanced systems with the

constraint that a system fails once it becomes unbalanced even if there &r@stilore
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operating pairs remaining in the system. In the first type of systems, all units perform the
same function; whereas in the second type, the units perform complementary functions

with any two adjacent units performing diféat functions as explained later.

For clarity and simplicity, when we mention state pattern, typical state, and{otictate,

we mean the system state rather than the unit state or the pair state.

3.2.2 Symmetry Determination

If a system is balanced, itsgmmetric in the sense that all the operating units in the system
should be symmetric w.r.t. at least one pair of perpendicular axes. We introduce the concept
of Moment Difference (MD) to determine the degree of symmetry of a system w.r.t. any

candidate @es. The MD of a system w.r.t. candidate axis calculated as

M, = & wsing,, (31)

iU,
where M, is the MD of the system w.r.t. candidate aaisU, is the complete set of all
the units within® p/ 2 of candidate axis; w, is the weight of unit ; andg, , is the angle

from the axis on which unit is located to candidate ax#. The weight of each unit is as

defined in the Introduction. The angie, has a positive value if it is clockwise and

negative value otherwise.

For k-out-of- n pairs:G Balanced systems considered in this chapter, a candidate axis of
symmetry is either along a pair of units, or in the middle of two adjacent pairs. In a system

with n pairs of units, there ar@n cardidate axes which compose pairs of the
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perpendicular candidate axes. We examine the symmetry of the system wirpaath of

the perpendicular candidate axes by corresponding MD values.

Consider thesystemshownin Figure3.1(a) which hasn =8 pairs of units. The state of the
system is (0101011101010111), i.e. the units in white have state 1 and the units in black
have state 0 as mentioned in the Introduction. This system f8spairs of perpendicular

candidate axes. Wadex the candidate axes as showirigure3.1(b). We simply index

the 8 pairs of perpendicular candidate axes by nundbers. In addition, to differentiate

between the two perpendicular candidate axes in each axis pair, we index them with (I) and
(1. For example, the vertical axis is indexedﬁs) and its perpendicular axis is indexed
asf(ll). Consider the candidate a>Es§I) shown by the dashed line igure3.1(a). The
complete set of units withiAp/2 of the axis isUE(I) :{3,4, QIQ the corresponding
weightsw. for the units i”UE(u) are[0,1,0,1,1,1,0,1, and corresponding anglq;g(l) are
{,0/8('() 35 25 15 05, 05,15, 25, X}. For instance, irFigure 3.1(a) the

angle from the axis on whiclunit 3 is located to the candidate axgl) is

Tk = 35 p#8. The MD value of the system w.r.t. this candidate axis is 0.7049.

Similarly, the MD w.r.t. the perpendicular candidate axis, g(itk) shown by dotted

dashed line, i$0.4710.

Starting from the vertical and horizontal candidate axes, i.e. Expand ¥11) in Figure

3.1(b), we consider the =8 pairs of perpendicular candidate axes anticlockwise. The MD
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values are shown iRigure 3.2 where the Moment Difference | and Il represent the MD

values of the system w.r.t. the 8 candidate axes indexed Witnd (11 ), respectively.

We then eamine if there are any pairs pérpendicular candidate axes that have zero MD
values w.r.t. both candidate axes. If so, the system is symmetric; otherwise, the system is

asymmetric. For instance, iigure 3.1(a) we can easily conclude that the system is
symmetric since all the operating pairs are symmetric w.r.t. candidatg@)eand E( II) .
The MD values for the two candidate axes are both zero as shdviguire3.2. We can
numerically validate that MD is effective in determining syssymmetry whem is less

than 30. Whem is large, we add another condition for system symmetry as introduced in

Section4.2.1

(@) (b)

Figure3.1 lllustration of a system for Moment Difference calculation
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Moment Difference
=

Candidate Axis Pairs

—C=—Moment Difference |  —fl—Moment Difference II

Figure3.2 lllustration of Moment Diffeence for all candidate axes in a system

3.2.3 Fundamental Method of Successful Event Enumeration

In order to estimate the reliability &f-out-of- n pairs:G Balanced system, we first obtain

all the successful ewnts, i.e. system state transition paths that lead to operating system
states, and estimate the probability of each event. The system state transition paths can be
aggregated into several types, which reduces the computational time significantly.
Moreover,the number of realizations of each type of system state transition paths is also

determined.

First, we enumerate all the state patterns with a certain numbédr, sdyailed pairs. All

the system states can be categorized into some state patterns. Consider the Bigptieen in

1.1(a), the two system states wheairs1 , 2, 3 fail and when paird , 5, 6 fail can

be categorized into the same state pattern with tloresecutive failed pairs. We represent
each state pattern with one typical state. A typical state of a state pattern is an arbitrary
state of the system with failures arranged in the corresponding state pattern. Consider the

system irFigurel.1(a), the typical state of state pattern with three consecutive failed pairs
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can be anyone of these states (000111000111), (100011100011), (110001110001),

(111000111000), (011100011100) or (001110001110).

Then, we enumerate all the transitions from state patternshwitliled pairs to state
patterns With(h+1) failed pairs, wheréh increases from zero to a maximum allowed
value by increment 1. We determine the transitions between state patterns as follows. An

unbalanced state pattern has no output transitions although it may have input transitions.

When we determine the transitions frarbalanced state pattern withfailed pairs to state
patterns with(h+1) failed pairs, we enumerate the follay states derived from the
typical state of the balanced state pattern itfailed pairs. A followup state of a typical

state can be obtained by turning one operating pair of the typical state into failure. Each
follow-up state is matched with one of the state patterns(\h'rﬂl) failed pairs. If we find

such a match, an allowable transition is made. Note there can be more than one realization
of the transition between two state patterns. To match a state to a state pattern, we determine

if the state is a repetition of the typical state of the staterpattso, then we find a match.

In this dissertation, to determine if a row veclgre.g. a system state, is a repetition of

another row vectoa, we compare them by searchiagn the vector of(b,b). If a can

be found in(b,b), thena is a repetition ob.

We record the number of realizable transitions from balanced state patterris failéd

pairs to those Witr(h+1) failed pairs in a transition matri, ., whichhasm, rows and

m,,, columns wheram, is the number of balanced state patterns thathhiasled pairs.
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Qi (iv]) is the number of realizable transitions from tfestate pattern witth failed

pairs to thej" state pattern witt{h+1) failed pairs. The matrix does not include the

transitions from balanced state patternsrtbalanced ones.

3.2.4 Reliability Estimation of Systems with Units Performing Single Function

In this section we discuss the reliability estimationkofoutof- n pairs:G Balanced
systems with all units perforngrthe same function. Such a system is considered balanced
if the operating units in the system are symmetric w.r.t. at least one pair of perpendicular

axes. We use the Moment Difference to determine the symmetry of such systems.

3.2.4.1 Successful Event Enumenrati

Each state pattern can be represented by a sequence of numbers of angles between failed
units starting from a failed unit in a failed pair to the other failed unit in the same failed

pair in an anticlockwise direction, which we call feature segment.

A feature segment of a state pattern is determined based on its typical state by listing the

number of angles between failed units starting from a failed unit. Each angle pduals

Consider the system fRigure1.1(a), when paird , 2', and3’ fail, starting from unit 1,

the numbers of angles between faileuts in the anticlockwise direction are (114114). We

can choose any one of (114), (141), and (411) as the feature segment. If the system has a
different state in the same state pattern, we can still find the feature segment in the sequence

of numbers of agles between failed units. Again, consider the systeRigare 1.1(a),
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when pairsl’, 5, and6 fail, the system is in the same state pattern as whenlpai?s,
and 3 falil, i.e. the state pattern with three consecutive failed pairs. Starting frdrt, uni
the number of angles between failed units in the anticlockwise direction are (411411)

where we can find all three possible feature segments (114), (141), and (411).

All possible state patterns with a certain number,lsagf failed pairs, are obtained using

their feature segments by enumerating all the permutatiohgpokitive integers that sum

up to n. Since different feature segments can represent the same state watedimjnate

the repetitions by the method introduced above to find the set of unique feature segments

from which we obtain the corresponding state patterns and typical states.
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Figure3.3 State transitiomliagram for 2out-of-6 pairs:G Balanced system with units

performing single function

An illustrative example of state transition diagram is showfignre3.3 where we list all

possible state patterns with zero to four failed pairs, balanced or unbalanced. Each state
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pattern is represented by its typical state. Note that the white colored pairs are operating
pairs and the black colored pairs are fhifgirs. The number series in brackets are the
corresponding feature segments. The solid links are transitions between balanced state
patterns, and the dashi@iks are transitions from a balanced state pattern to an unbalanced
state pattern. The number of realizations of a transition, which is recorded in transition
matrix, is one unless a greater number is associated with the corresponding transition link.

For inseince, the transition matrix from balanced state patterns with 3 failed pairs to those

22 1
with 4 failed pairs isQ,, :g‘%
¢

where, for instanceQ,,(1,2) = 1 means there is

only one possible transition from thé& 4tate pattern ith three failed pairs and feature
segment (114) to thé'Pstate pattern with four failed pairs and feature segment (1122), as

shown inFigure3.3.

3.2.4.2 System Reliability Estimation
Let the probability density functioppdf) and the cumulative distribution function (CDF)

of the life of any pair of units bé and F respectively, and leE =1 -F . When thepdf

of an individual unit isg and CDF isG, then we havef (t) =2g(t)gl -G(t) and

F(t)=& G(t) 2{. The reliability of ak -outof- n pairs:G Balanced system can be
obtained as

Ry(0)=& . F(1) 32)

where R (t) = Pr{ h pairs fail in balanced state pattbyn} which can be obtained by
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R()=AF. O 1) (D0 gF()E

(3.3)

whereh, is the number of realizable system state transition paths that lead to balanced

state patterns with failed pairs. Leth; =1, and/, whenl¢h dn kis obtained as

=20 Q. (3.4)

For instancef for transition diagram ifrigure3.3 is

a2 o0
n=8Q,QQ, =86(2 2 13 1
g% 0

A¢ (35)

1-O0: O: Ot

3.2.5 Reliability Estimation of Systems with Units Performing Complementary

Functions

In this section, we assume that any two adjacent units perform complementary functions.
For example, any two adjacent rotorsaim WA have opposite rotational directions. We

refer to any two adjacent rotors as units performing complementary functions as shown in
Figure3.4(a). We asume the units, regardless of their functions, have identical lifetime
distributions. The balance requirements for such a system are: (i) the system should be
symmetric in a sense that operating units should be symmetric w.r.t. at least a pair of
perpendialar axes; (ii) any two adjacent operating pairs should perform complementary
functions. Given the second balance requirement is satisfied, we determine the balance of

such systems by examining the symmetry of the system using Moment Difference.
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When n is odd (even), we should always have an odd (even) number of operating pairs to
satisfy the second requirement, and hence correspohkdsigould be odd (even). An

example of such system with all units opergtis shown irFigure3.4(a).

To meet the second balance requirement, we force down the operating pair closest to, not
necessarily adjacent to, the failed pair on either side with probability 0.5. Consider the
system inFigure 3.4(a), when only unit 1 fails, unit 9 is forced down permanently and
either pair2 or pair 8 is forced down with probability 0.5. Suppose that [#ifs forced

down. When another unit actually fails, say unit 11, then unit 3 is forced down permanently,

and either pai&’ or pair8 is forced down.

(a) (b)
Figure3.4 Examples ok-out-of-n pairs:G Balanced system with any two adjacent units

performing complementary functions= 8 in this figure

Due to the balance requirements and the procedure for forcing down operating pairs, we

conclude that (i) the system always has an even number of pairs that are either failed or




























































































































































































































































































































































































































































































































































