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This dissertation develops a general power estimation framework to estimate the 

variance of the new intervention effect estimate for longitudinal one-way crossover 

designs.  Orthogonalized decomposition is developed for compound symmetry 

correlation of repeated measurements over time. In particular, we merge conventional 

difference-in-differences (DD) and more newly developed general stepped-wedge (SW) 

studies for both randomized and non-randomized allocation of units to the intervention, 

and investigate on the optimality properties in terms of study power (i.e. minimum 

variance of the intervention effect estimate). For a fixed total number of repeated 

measurements, we quantitatively compare the efficiency in detecting new intervention 

effect using DD and SW designs using formulas for compound symmetry covariance 

structure and empirical calculations for more general Toeplitz correlations. For this we 

provide insights for researchers in planning longitudinal one-way crossover designs.  

The following thesis is composed of three chapters represented by three manuscripts. 

The first chapter develops a unified power estimation approach for continuous outcomes 
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in randomized difference-in-differences (R-DD) studies for both compound symmetry 

and more general Toeplitz correlation structures that were observed empirically. Optimal 

number of pre-and post-intervention allocation is analyzed. The second chapter extends 

the GLS power estimation framework to the non-randomized difference-in-differences 

(NR-DD) studies and quantitatively compare the penalty of being non-randomized versus 

randomized for a DD study. Optimal pre-post allocation is also analyzed for NR-DD 

studies.  The third chapter, further investigates on the more general stepped-wedge 

designs and develop an Orthogonalized Least Squares power estimation framework for 

both randomized and non-randomized SW (R-SW and NR-SW). The third chapter is 

research conducted during graduate studies that has been accepted for publication in 

Statistical Methods in Medical Research published by SAGE. 
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General Introduction and Overview 

To evaluate new intervention effect in studies, repeated measures of longitudinal 

continuous outcomes are gathered for the same units before and after intervention over 

several periods.  These “units” could be persons where for example the continuous 

longitudinal outcomes could be weight, blood pressure, or average number of cigarettes 

smoked per day in the prior six months.  The units could also be health care facilities 

such as hospitals where for example the continuous longitudinal outcomes could be 

portion of patients who are depressed, died from surgery or readmitted in 60 days after 

discharge.  The intervention would be something designed to improve these outcomes (i.e. 

reduce high blood pressure or portion of patients that die in surgery.) As described below, 

for this dissertation the intervention is something that once started cannot be removed (i.e. 

one-way crossover).   

One-way crossover studies are useful in longitudinal data analysis where as noted 

above, units can only switch from control to intervention in one direction; once switched 

they cannot switch back.  Reasons for this include that: i) once policies are implemented, 

they cannot be undone, ii) after people are educated for new behaviors, they will not 

forget and/or iii) ethical/logistical concerns of withdrawing a new support after is has 

been initiated.  Based on the number of crossover time points when units switched onto 

intervention, one-way crossover studies have been further classified into difference-in-

differences (DD) (only one switching time point) and the stepped-wedge (SW) designs 

(more than one switching time point).   
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The one-way crossover design that first used in practice is DD, where the all units 

that switch to the new intervention do so at one time, i.e. there is only one crossover point. 

Consider, for example, for 100 facilities where portions of patients that underwent 

surgery that died in January, February and March were recorded. Then 50 of the facilities 

were given a new intervention to reduce surgery mortality at the end of March.  Portions 

of patients that underwent surgery that died in April, May and June were recorded in all 

100 facilities and the changes in mortality from the first three months to the next three 

months were compared between the 50 facilities that did and the 50 that did not receive 

the new intervention.  While mixed models are not often formally used to compare the 

“difference in difference” this is arguably the best approach and thus is what is done for 

this dissertation.   

However, phased intervention is often preferable due to practical constraints. For 

example, in the previous example perhaps only enough resources exist to switch 20 new 

facilities to the new interventions at one time point and/or ethically/politically all 100 

facilities must eventually receive the intervention.   Thus starting in the late 1990s a more 

general one-way crossover design known as SW, where the intervention is delivered to 

new groups of units switched at sequential time orders, i.e. there are multiple crossover 

points.  The longitudinal before / after intervention changes are then compared within the 

group as a whole.  In the example of the previous paragraph one SW design would be to 

start all 100 facilities out untreated in January, then switch 20 onto treatment each in 

February, March, April, May and June so that by June all 100 are treated.  A mixed 

model would then be used to compare the “cascading longitudinal changes” as more 

facilities are switched onto the intervention. 
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As the SW is a newer design, there is less literature on SW studies than on DD 

studies.  There is also a growing awareness of different types of SW designs including a 

spectrum between DD and SW.  However, due to practical constraints that limit to 

simpler designs, this spectrum is probably more theoretical than actual. 

The mixed models used to compare both DD and SW designs take on standard 

Generalized Least squares forms of 𝛽̂ = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌 where (as described in 

each of the three chapters presented later) 𝛽̂ is the vector of coefficients one of which is 

for the intervention effect, X is the design matrix, Y is the outcome vector and V is the 

covariance matrix for the repeated measurements within the same unit.  The variance of 

the estimates is then (𝑋′𝑉−1𝑋)−1𝜎2. The choice of V is very important as often-

normative data on repeated measure correlation is unknown.  To our knowledge, the 

simplest correlation of compound symmetry (CS) is used in study planning power 

estimation with more complicated forms not having been investigated. A more general 

tenable form of V is the Toeplitz structure that is diagonal-constant, i.e., the correlation 

( 𝜌𝑗𝑗′) decreases as the distance of two time points j and j’ (i.e. |j – j’|) increases.  

One important aspect of designing either a DD or SW study is whether or not to 

randomize which units receive the intervention. While randomization of crossover is 

always preferred as a gold standard to minimize bias and improve efficiency, it is not 

always logistically feasible in practice.  The effect of randomization on the design matrix 

X is to remove column(s) that would otherwise be needed to account for any baseline pre-

intervention differences that can exist when randomization is not used. 

This dissertation focuses on expanding tools for power / sample size estimation for 

planning studies of one-way crossover designs such as DD and SW based on the 
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variances for the intervention effect from (𝑋′𝑉−1𝑋)−1𝜎2.  Very general methodologies 

for the analysis of randomized longitudinal repeated measure studies of all types using 

mixed models have been developed in recent years.  However, there is both a need for 

simple estimation tools in practical power calculation targeted towards DD and SW one 

way cross-over designs and exploration of more approaches for power / sample size 

estimation for DD and SW designs when assumptions needed for the simple tools do not 

hold. In particular, current literature gives less guidance on power and sample size 

calculation for non-randomized versus randomized one-way crossover designs.  

Again, power and sample size calculation is crucial to evaluate the effectiveness of 

the new intervention effect in longitudinal studies including one-way crossover designs.  

My dissertation has thus focused on developing and evaluating simple and robust tools 

for power / sample size estimation of various randomized and non-randomized 

Difference-in-Difference and Stepped-Wedge designs with continuous outcomes that 

conform to the central limit theorem.  Some empirical exploration is undertaken into 

whether the simple correlation structure that is typically assumed (compound symmetry) 

holds in practice versus the more general Toeplitz and if the true structure is not 

compound symmetry, whether a compound symmetry or some other simple 

approximations are tenable. In addition to the power estimation tools and corresponding 

knowledge for one way cross over study planning gained, the orthogonalized 

decomposition of interventions effect versus other design parameters that was 

implemented in the research is a salient characteristic.  

 

Three-Paper Dissertation Structure 
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My dissertation is presented using a three-paper format, consisting of three 

independent, yet congruent chapters.  

Chapter 1: Power / Sample Size Estimation for Randomized Two-Arm Pre-Post 

Intervention Trials with Repeated Longitudinal Outcomes 

The first chapter, develops a unified approach for continuous outcomes in 

randomized difference-in-differences (R-DD) studies by modeling the intervention effect 

in a Generalized Least Squares framework based on covariance of repeated measures. For 

compound symmetry (CS) correlation, the optimal pre-post allocation is presented with 

the advantage of closed form formulas. However, CS may not always hold in practice as 

was the case in four examples from nursing homes and HIV infected patients we used. 

For these cases a more general Toeplitz correlation is tenable, but would be harder to 

obtain in practice under study planning settings. The power for these Toeplitz settings are 

approximated using CS structures, however, even “conservative” CS approximations 

overestimated the power. Thus two alternative conservative approaches are presented: the 

simple 1-1 allocation and partial compound symmetry (PCS) based on mean summary 

statistics, but these often substantially underestimated power.   

The formulas presented here for R-DD designs can be easily implemented with 

current programming languages, which may promote further recognition, application and 

development of these issues. These results may enable investigators working on R-DD to 

i) perform needed sample size / power estimation using CS covariance structure; ii) 

provide alternative lower bunds for power approximation; iii) decide the optimal 

allocation of pre- to post-intervention time points in planning a study.  
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Chapter 2: Power / Sample Size Estimation for Non-Randomized Difference-in-

Differences Studies 

The second chapter, extends the GLS power estimation framework to the non-

randomized difference-in-differences (NR-DD) and quantitatively compares the 

advantage of optimal R-DD over optimal NR-DD. The penalty of non-randomization 

versus randomization on power / required sample size of DD designs is quantitatively 

calculated for compound symmetry correlation and empirically computed for Toeplitz 

correlation. While randomized designs have better precision, the advantage is minor for 

high within-unit correlation and/or with more baseline than follow-up measurements. For 

the more general Toeplitz correlation that is harder to obtain, the power approximated 

using CS and mean summary statistics approaches are presented, and compared to the 

Toeplitz using computer program with real examples from New Jersey nursing home and 

1012 Bronx HIV study.  

These results may enable investigators working on NR-DD to i) perform needed 

sample size / power estimation using CS covariance structure; ii) provide lower bounds 

for power approximation using mean summary statistics; iii) decide the optimal 

allocation in planning a study.  In particular, the formulas presented here for non-

randomized (as well as some new formulas for randomized) DD designs can be easily 

implemented with current programming languages, which again may promote further 

recognition, application and development of these issues.  

 

Chapter 3: Non-Randomized and Randomized Stepped-Wedge Designs using an 

Orthogonalized Least Squares Framework 
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The third chapter, develops a unified approach for continuous outcomes in SW 

studies by modeling the intervention effect in an Orthogonalized Least Squares 

framework. General closed form formulas for variance of the intervention effect are 

derived for SW studies and optimal R-SW and NR-SW designs to maximize power are 

further investigated for the balanced SW studies (where the same number of units are 

switched to the new intervention and the number of time periods before a switch is 

constant).   The impact of non-randomization on the baseline value of the outcome is 

modeled using both fixed and random effects.  The penalty of non-randomization (versus 

randomization) is quantified in terms of power / required sample size for stepped wedge 

designs. While randomized designs have better precision (particularly if the within-unit 

repeated measures correlation is ρ ≤ 0.30), the advantage is minor when ρ ≥ 0.50 as 

was the case in the examples of health outcomes in nursing homes from New Jersey. 

However, for a non-randomized design with ρ ≤ 0.30, the random effects (versus fixed 

effects) approach may considerably reduce the variance of estimated intervention effect, 

albeit use of random effects may increase bias in this setting.  In terms of optimality 

properties, optimally designed non-randomized SW designs tend to reduce variance of 

intervention effect estimates to about 75% of the best achievable with traditionally used 

difference-in-differences studies.    

These results may enable investigators to i) perform needed sample size / power 

estimation for SW studies and ii) decide the best study design to use.  In particular, the 

formulas presented here for non-randomized (as well as some new formulas for 

randomized) stepped-wedge designs can be easily implemented with current 
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programming languages, which promote further recognition, application and 

development of these issues.  
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Chapter 1 Power / Sample Size Estimation for Randomized Two-Arm Pre-Post 

Intervention Trials with Repeated Longitudinal Outcomes 

Abstract 

Intervention effect on normal continuous longitudinal processes is often estimated in 

randomized two-arm longitudinal clinical trials that have b ≥ 1 pre- and k ≥ 1 post-

intervention measures.  Power / sample size estimation methods for such studies that can 

be used with available normative data is often limited.  We derive simple Generalized 

Least Squares (GLS) power and sample size estimation formulas for randomized clinical 

trials (RCT) using the following correlation structures for the repeated measures: 

Toeplitz (TP), compound symmetry (CS) and partitioned compound symmetry (PCS) 

based on mean summary statistics. We then applied the GLS power estimation framework 

to examples from longitudinal nursing hospital and HIV outcomes where 𝑏 + 𝑘 = 7. In 

these examples with 𝑏 + 𝑘 = 7, setting 𝑏 = 1 produced optimal or close to optimal 

results to minimize variance of the estimated intervention effect (which maximizes power 

to detect an intervention difference), but having b=2 or b=3 often performed nearly as 

well by this metric. When there is uncertainty about exact Toeplitz structure, CS 

approaches approximate the “unknown” variance of the estimated intervention effect 

well when b=1 but can greatly underestimate this variance when b > 1. To avoid 

overestimation in power, we presented two approaches: PCS approximation based on 

mean summary statistics can serve as a conservative lower bound for GLS power 

calculation but greatly underestimated the power in two of our examples. An alternative 

lower bound approach with T=2 longitudinal measures (b=1 and k=1) obtained nearly 
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as precise estimates of the intervention effect as did any design with T=b+k=7 measures 

where b>1 in these two cases.  
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1. Introduction 

In clinical trials and other modern experiments, researchers often evaluate repeated 

measurements of continuous outcomes on each unit at systematic time points before and 

after intervention [1]. In our nomenclature, units could be facilities such as nursing 

homes or persons such as HIV infected patients. These repeated measure clinical trials 

are particularly done to compare long-term impact of a new policy / intervention versus 

the existing policy. When possible, randomization of units into each intervention arm is 

preferred to improve precision and minimize potential for bias; the randomized controlled 

trial (RCT) is considered a general gold standard [2]. Investigators first observe the 

longitudinal outcomes on each unit over b sequential time points pre-intervention. Then 

the units are randomly divided into two arms: one with intervention started and one 

without the intervention started and the outcomes are measured over k sequential time 

points (which are after receiving intervention for the intervention arm and still without 

intervention for the other arm). In medical research, there is increasing focus on power 

calculation and sample size determination for such longitudinal randomized clinical trials 

[3].  

Standard power calculations have been developed for various settings over the years: 

Overall and Doyle [4] discussed sample size determination for repeated measures models 

with two groups. A key characteristic for such designs including longitudinal measures is 

that repeated measures from same units are (typically positively) correlated [5]. Ignoring 

the correlations using standard linear models may introduce bias and/or inefficiency into 

power estimates [6]. The general linear model (GLM) takes correlation into account for 
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the normal distribution approximation, and generalized least squares (GLS) is the 

statistical method of choice which has the best linear unbiased estimator (BLUE) [7]. Self 

and Mauritsen [8] developed unified tools for sample size and power estimations using 

GLM. Liang and Zegar [9] proposed a general variance formula that incorporated the 

impact of randomization using a constrained longitudinal data analysis (cLDA) model in 

which the baseline “pre-intervention” outcome values as well as post-baseline outcome 

“post-intervention” values are modeled as longitudinal dependent variables. The 

‘constraint’ is that the baseline mean from different intervention arms are assumed equal 

due to randomization. While these approaches have established useful frameworks, they 

can be difficult to follow by researchers in power / sample size estimation as the generic 

design necessitates complex input structures including often unknown correlation 

structure for repeated measures.  

Our goal is to develop a simple power estimation framework based on generalized 

least squares estimate in pre-post randomized intervention longitudinal clinical trials with 

two intervention arms where central limit theorem normality holds. The chapter is 

organized as follows: Section 2 presents the general linear model (GLM) for longitudinal 

data with pre-post repeated measurements. Section 3 develops a generalized least squares 

(GLS) framework for estimation of the intervention effect and incorporates the GLS 

variance estimate into power / sample size estimation. As the variance of the intervention 

effect depends on the correlation structure of repeated measure, Section 4 introduces 

three correlation structures: the simplest CS for compound symmetry; a more general 

Toeplitz correlation structure that must be implemented on computer for variance 

estimation; and Partial Compound Symmetry (PCS) as a lower bound for Toeplitz 



13 

 

structures when there is uncertainty. Section 5 derives optimal b: k allocation for 

randomized longitudinal clinical trials for a fixed number of total time points for the CS 

correlation and discusses extension to more general Toeplitz structures. In Section 6, we 

extract Toeplitz patterns with T=b+k=7 and generally 𝜌 > 0.5 from important 

longitudinal health care outcomes of nursing homes, hospitals and HIV infected patients.  

We then compare the actual Toeplitz variances for estimated intervention effect from 

varying b: k, and analyze how close CS, and partitioned compound symmetry (PCS) 

approximations estimate the true variance for these settings. Section 7 summaries and 

discusses possible future work.  

 

2. The General Linear Model 

For randomized longitudinal studies with two intervention arms, researchers 

encounter repeated measures of a quantitative outcome at b+k systematic time points 

with b being before and k being after randomization to the intervention arms.  Let h 

denote the intervention arm with h=0 for placebo and h=1 for the new intervention. For 

each group there are 𝑛ℎ units (𝑛0 for the placebo and 𝑛1 for the new intervention) and j = 

{-b, -(b-1), …, -1, 1, 2, …,  k} denotes the ordered times with {-b, -(b-1), … , -1} prior to 

and {1, 2, …, k} being after the intervention onset.  The goal is to assess the impact of the 

new intervention (i.e. versus control) on pre-post change in a longitudinal continuous 

outcome Y where 𝑌1𝑖𝑗 represents measure j from unit i in the new intervention arm and 

𝑌0𝑖′𝑗′ represents measure j’ from unit i’ in the placebo arm.  
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For example, consider a trial with 𝑛0 = 𝑛1 = 𝑛 = 30 hospitals in each arm, let i 

denote hospitals (as “units”) where i=1, …, 𝑛ℎ.  For the intervention arm (h=1), “units” 

are followed for T=7 years total with b=2 years (2001 to 2002) prior and k=5 (2003 to 

2007) after the intervention implementation.  Thus 𝑌1,3,−2  and 𝑌0,17,3 respectively denote 

the measure taken in 2001 (2 years prior to start of the intervention) in the 3𝑟𝑑 hospital of 

the intervention arm and 2005 (3 years after the start of the intervention) in the 17𝑡ℎ 

hospital of the placebo arm, respectively. We assume complete data with T=b+k 

measures observed on each unit, which, in particular, is reasonable when the units are 

facilities that are required by regulations to keep records of the outcomes of interest.  

Now 𝑌ℎ𝑖𝑗  can be decomposed as:  

𝑌ℎ𝑖𝑗 = 𝛼 + 𝛽𝑗 + 𝜃𝑍ℎ𝑗 + 𝜀𝑖𝑗
∗                                                (1) 

The overall means (𝛼) for two intervention arms are assumed to be equal at baseline, 

which is reasonable due to randomization. The intervention effect (𝜃) only delivers to the 

intervention arm (h=1) on the k post-intervention measurements with the corresponding 

indicator 𝑍ℎ𝑗 = 𝐼{ℎ=1,𝑗>0}. Any random unit (i.e. i level) effects are subsumed into the 

within-unit error term 𝜀𝑖𝑗
∗ , where 𝜀𝑖𝑗

∗ ~𝑁(0, 𝜎2𝑉) with the correlation matrix V defined in 

(2).  We assume an immediate “jump effect” of size 𝜃 after the intervention begins at 

time j =1, that remains unchanged at subsequent time points. Note that other functions 

such as linear intervention effect increase 𝑗 ∗ 𝜃𝑍ℎ𝑗  for j ≥ 1 or threshold followed by 

exponential decay 𝑒−𝑗 ∗ 𝜃𝑍ℎ𝑗 for j ≥ 1 are possible. However, there may be settings 

where an immediate “jump effect” that continues forward unchanged is appropriate, such 
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as when the intervention is a process change at a medical facility that can be implemented 

quickly; a drug that the body does not develop resistance or acclimation to, or an 

immediately successful behavioral intervention. Even if the intervention impact was not 

“immediate jump”, it could be close to this.  

 

3. The GLS Power Estimate Framework 

3.1 GLS Variance Estimate 

The matrix form of (1) can be written as: 𝑌 = 𝑋𝛽 + 𝜀∗, where 𝜀𝑖𝑗
∗ ~𝑁(0, 𝜎2𝑉). Here X 

represents the design matrix and Y is a vector of outcomes.  For (1) with the general 

parameter vector 𝛽=(𝛼, 𝛽−(𝑏−1), … , 𝛽−1, 𝛽1, … , 𝛽𝑘, 𝜃), the corresponding X has 

columns (𝐼, 𝐽−(𝑏−1), … , 𝐽−1, 𝐽1, … , 𝐽𝑘, 𝑍), with N*T rows per column. 𝑍 is a column/vector 

of intervention indicator with 𝑍ℎ𝑗 coded (0, 1) as defined above; 𝐽−(𝑏−1), … , 𝐽−1, 𝐽1, … , 𝐽𝑘 

are columns corresponding to b+k-1 independent time coded variables as follows: for 

j=(-(b-1), -(b-2), …, -1, 1, 2, …k),  𝐽𝑗= {-1 at time –b (reference); 1 at time  j; and 0 at all 

other times}.  There is no column for 𝐽−𝑏 as 𝛽−𝑏 = −∑ 𝛽𝑗
𝑘
𝑗=−(𝑏−1)  under the fixed effects 

constraint ∑ 𝛽𝑗
𝑘
𝑗=−𝑏 = 0. Appendix 1 presents the full expansion of design matrix for 

randomized setting. 

The covariance matrix V is made up with (𝑛0 + 𝑛1) times block T diagonal matrices 

𝑉0′𝑠 with all off-block diagonal matrix elements being 0. The most basic assumptions for 

the error term is that measures are independent between units, and within-unit correlation 

structure is invariant given two time points j and j’, i.e., 𝜌𝑖,𝑗𝑗′ = 𝜌𝑖′,𝑗𝑗′ (i≠ 𝑖
′, j≠ 𝑗′) The 
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within-unit correlation structure (𝜌𝑗𝑗′) is often unknown in advance. Perhaps the 

correlation for any two time points would be monotonically non-increasing with |j –j’|, 

i.e., as two time points are further separated, they may become less correlated [10, 11]. 

We will make these types of restrictions later in the chapter.  

𝑉 = (
𝑉0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑉0

)

(𝑛0+𝑛1)𝑇

,          

where 𝑉0 =

(

 
 
 

 𝜌11  𝜌12  𝜌13
 𝜌21  𝜌22  𝜌23
 𝜌31  𝜌32  𝜌33

⋯  𝜌1,𝑇−1  𝜌1,𝑇
⋯  𝜌2,𝑇−1  𝜌2,𝑇
⋯  𝜌3,𝑇−1  𝜌3,𝑇

⋮ ⋮ ⋮
 𝜌𝑇−1,1  𝜌𝑇−1,2  𝜌𝑇−1,3
 𝜌𝑇,1  𝜌𝑇,2  𝜌𝑇,3

⋱ ⋮ ⋮
⋯  𝜌𝑇−1,𝑇−1  𝜌𝑇−1,𝑇
⋯  𝜌𝑇,𝑇−1  𝜌𝑇𝑇 )

 
 
 

𝑇

.                     (2) 

The GLS estimate for 𝛽 is 𝛽̂ in (3), which is the best linear unbiased estimator 

(BLUE) for 𝛽 and uniform minimum variance (UMVU) if 𝑌ℎ𝑖𝑗 is normally distributed 

[7]. The GLS variance for 𝛽̂ is Λ in (4) being a square matrix of order T+1.  The variance 

of 𝜃 is 

𝛽̂ = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌;                                             (3) 

Λ= (𝑋′𝑉−1𝑋)−1𝜎2.                                                    (4) 

3.2 General Power Estimation Formula  

We consider 𝐻0: 𝜃 = 0 versus 𝐻𝐴: 𝜃 = ±𝜃𝐴. Where without loss of generality, 𝛿 =
𝜃𝐴

𝜎
 

is a predefined clinically important effect size in terms of standard deviation, while 

𝛼 𝑎𝑛𝑑 𝛽 are Type I and Type II errors, respectively. For practical repeated measure 
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designs, the normal approximation of the non-central t distribution can be applied [12]. In 

specific, the two distributions are almost identical when degrees of freedom (DF) γ > 30 

and we have the following equations of power (1 − 𝛽) using the notation from [1], in 

which 𝑉𝑎𝑟(𝜃) as derived above in the GLS variance estimate in (4). 

𝜃𝐴 = (𝑧1−𝛼
2
+ 𝑧1−𝛽)√𝑉𝑎𝑟(𝜃).                                             (5) 

 

For smaller sample sizes, it may be appropriate to approximate degrees of freedom 

(DF) (γ) in non-central t distribution for the mixture variance (for example, by 

Satterthwaite’s [13], and Kenward-Roger’s approximations [14]) and adjust (5) for this. 

However, the full details are beyond the scope of this chapter. 

 

4. Covariance Matrices and Variance Formulas 

As just noted, one main difficulty in parametric analysis of longitudinal data lies in 

specifying covariance structure [15, 16], i.e. estimating 𝜌𝑗𝑗′for j ≠ j’.  Typically, 

normative data from historical settings must be structured for application to future 

settings.  In this section, we introduce several approximated correlation structures. 

Table 1 describes three types of covariance matrices (𝑉0) for within-unit correlation 

structure considered here with(𝑏, 𝑘) = (3, 4). The most simple approximation is 

compound symmetry structure (𝑉CS) where correlations among repeated measures are 

assumed to be equal within the same unit; 𝑉CS is often used in practice. But we believe 

Toeplitz structure (𝑉TP) where 𝜌𝑗𝑗′ = 𝜌|𝑗−𝑗′| is a reasonable estimate which may be 
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closer to true correlation structure, however, 𝑉TPmay be hard to estimate in practice.  In 

that case, an  approximation which we do not believe ever holds, but as we show later in 

the chapter gives conservative estimates for variance of the intervention effect estimates 

is partitioned compound symmetry structure (𝑉PCS) with four partitioned matrices divided 

by the time when intervention is delivered. Note that while Table 1 is constructed 

for 𝑇 = 𝑏 + 𝑘 = 7, the subsequent formulations are generalizable to all pairs of (𝑏, 𝑘).  

Further details now follow. 

Table 1: Summary of three covariance matrices (T=7)  

Table 1: Summary of three covariance matrices (T=7) 

Structure Example  

(b, k)=(3, 4) 

# of 

Parameters 

Compound 

Symmetry 

(CS) 

 

𝑉CS =

[
 
 
 
 
 
 
1 𝜌 𝜌 𝜌 𝜌 𝜌 𝜌

𝜌 1
𝜌 𝜌

𝜌 𝜌
1 𝜌

𝜌 𝜌 𝜌
𝜌 𝜌 𝜌

𝜌
𝜌

𝜌
𝜌

𝜌
𝜌

𝜌
𝜌

𝜌
𝜌

1
𝜌

𝜌
𝜌

𝜌
𝜌

𝜌 𝜌 𝜌
1 𝜌 𝜌
𝜌 1 𝜌
𝜌 𝜌 1]

 
 
 
 
 
 

 

1 

Toeplitz 

(TP) 

 

𝑉TP =

[
 
 
 
 
 
 
1 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6
𝜌1 1
𝜌2 𝜌1

𝜌1 𝜌2
1 𝜌1

𝜌3 𝜌4 𝜌5
𝜌2 𝜌3 𝜌4

𝜌3
𝜌4

𝜌2
𝜌3

𝜌5
𝜌6

𝜌4
𝜌5

𝜌1
𝜌2

1
𝜌1

𝜌3
𝜌4

𝜌2
𝜌3

𝜌1 𝜌2 𝜌3
1 𝜌1 𝜌2
𝜌1 1 𝜌1
𝜌2 𝜌1 1 ]

 
 
 
 
 
 

 

T-1 

Partitioned 

Compound 

Symmetry 

(PCS) 

𝑉PCS =

[
 
 
 
 
 
 
 
  1    𝜌pre 𝜌pre 𝜌cross 𝜌cross 𝜌cross 𝜌cross
𝜌pre 1
𝜌pre 𝜌pre

𝜌pre 𝜌cross
1 𝜌cross

𝜌cross
𝜌cross

𝜌cross
𝜌cross

𝜌cross
𝜌cross

𝜌cross
𝜌cross

𝜌cross
𝜌cross

𝜌cross
𝜌cross

𝜌cross
𝜌cross

𝜌cross
𝜌cross

1
𝜌post

𝜌cross
𝜌cross

𝜌post
𝜌post

𝜌post 𝜌post 𝜌post
1 𝜌post 𝜌post

𝜌post 1 𝜌post
𝜌post 𝜌post 1 ]

 
 
 
 
 
 
 

 

3 



19 

 

4.1. Compound Symmetry and a Simple Formula for Variance 

Compound Symmetry (CS, also denoted sphericity or equi-correlation), is a 

commonly used covariance [15, 16] either as the true structure or as an approximation. It 

is considered reasonable to expect that the largest covariance component would be a main 

effect for the unit i with much smaller within-unit temporal changes from 𝜀𝑖𝑗
∗ . This results 

in 𝜌|𝑗 –𝑗′|≈ 𝜌 with perhaps a small but ignorable decrease as |j –j’| increases. While 

surprisingly little empirical research has been done to confirm this structure holds given 

how often it is used, one study finds that CS was a reasonable simplification in 

quantitative planning of repeated measures trials for the examples used in that paper [1].  

However, even if the true correlation structure is believed to be non-CS Toeplitz, a 

compound symmetry approximation might still be used for power / sample size 

estimation either because as we will see later CS formulas are easier to implement or 

there is uncertainty about the values of the Toeplitz parameters {𝜌1, 𝜌2, … , 𝜌𝑏+𝑘−1}.  It 

this is done then is may be reasonable to use the weighted average of the observed or 

inferred 𝑉TP to estimate the CS 𝜌, used in the approximation i.e. 𝜌 = 𝜌𝑎𝑣𝑔 =

(𝑏+𝑘−1)𝜌1+(𝑏+𝑘−2)𝜌2+⋯+𝜌𝑏+𝑘−1

∑ 𝑖𝑏+𝑘−1
𝑖=1

. However, as we will show later using  𝜌𝑚𝑖𝑛 =

𝑚𝑖𝑛{𝜌1, 𝜌2, … , 𝜌𝑏+𝑘−1} as the in the CS approximation will give a more conservative 

estimate.  We explore later how good CS approximations using 𝜌𝑎𝑣𝑔and 𝜌𝑚𝑖𝑛 perform in 

real world settings in Section 7.1.  

Under the assumption of CS, we derive a closed form GLS formula for 𝑉𝑎𝑟(𝜃𝐶𝑆) 

follows. The GLS estimator of 𝛽 is therefore 𝛽̂ = (𝑋′𝑉−1𝑋)
−1
𝑋′𝑉−1𝑌 and has 

variance Λ = (𝑋′𝑉−1𝑋)
−1
𝜎2 where Λ is a square matrix of order b+k+1.  𝑉𝑎𝑟(𝜃𝐶𝑆) is 
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the last diagonal element of Λ. Using the inverse formula for portioned matrix, we 

calculate for the following GLS variance estimate of intervention effect in Appendix 2:  

𝑉𝑎𝑟(𝜃𝐶𝑆) = (
1

𝑛0
+

1

𝑛1
)
[1+(𝑏+𝑘−1)ρ](1−ρ)

𝑘[1+(𝑏−1)ρ]
𝜎2                                 (6) 

Therefore, 𝑉𝑎𝑟(𝜃𝐶𝑆) in (6) is a simple formula for GLS variance estimate that 

enables derivation of optimal properties in Section 5.  

4.2. Toeplitz a General Structure with Variance that can be obtained by 

Computer 

However, if CS does not hold it still seems that an essentially necessary assumption 

for estimabillity is Toeplitz (TP, also known as a diagonal-constant matrix), with 

correlations a function of the difference in j and j’ and independent of chronological time 

namely that 𝜌𝑗𝑗′≡ 𝜌|𝑗 –𝑗′|(with |j-j’| = 1, 2, …., T-1) as otherwise it seems impossible to 

have any stationary estimability for 𝜌𝑗𝑗′ from normative data [15, 16].  While, under this 

assumption, one would like to use 𝑉𝑇𝑃 in practice for variance estimation and power 

planning, typically, normative data to estimate {𝜌1, 𝜌2, … , 𝜌𝑏+𝑘−1}are not available and 

computation is difficult without sophisticated software to implement the estimation. The 

Restricted maximum likelihood (REML) is recommended for estimation of 

{𝜌1, 𝜌2, … , 𝜌𝑏+𝑘−1} from normative data when interest lies in estimating accurate variance 

components of mixed models [17]. In fact, REML estimation is included as a default 

option in many current model-fitting software packages (e.g., Proc Mixed in SAS).  

There is no simple form for the variance of the estimated intervention effect under 𝑉𝑇𝑃, 

rather  𝑉𝑎𝑟(𝜃𝑇𝑃) must be obtained by computer incorporating VTP  into (4).  
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4.3. Partitioned Compound Symmetry Gives a Simpler Upper Bound Variance 

Partitioned compound symmetry (PCS) using mean summary (MS) statistics [1] is 

now presented to be used as an approximation to Toepltiz (or for that matter other 

covariance structures), since as we show later it is able to obtain an upper bound for 

variance or lower bound for power. PCS effectively assumes repeated measures from 

both pre- and post-partitioned block are equicorrelated within block partitions as follows; 

the b pre-intervention time points have equal correlations to each other denoted as 𝜌pre, 

the k post-intervention time points have equal correlations to each other denoted 𝜌postand 

the cross correlations between each of the b pre- and k post-intervention time points is the 

same denoted as 𝜌cross. The common correlations of the partitions are calculated from 

“mean summary” statistics of the actual Toeplitz (or other) correlations as described 

below. If the correlation structures are Toeplitz as described above, then the mean 

summary statistics for  𝜌pre =
(𝑏−1)𝜌1+(𝑏−2)𝜌2+⋯+𝜌𝑏−1

(𝑏−1)+(𝑏−2)+⋯+1
 is the averaged correlation among 

the b pre-intervention time points, 𝜌post =
(𝑘−1)𝜌1+(𝑘−2)𝜌2+⋯+𝜌𝑘−1

(𝑘−1)+(𝑘−2)+⋯+1
 is the averaged 

correlation among the post-intervention time points and 𝜌cross =
∑ (𝜌𝑖+𝜌𝑖+1+…+𝜌𝑖+𝑏−1)
𝑘
𝑖=1

𝑏𝑘
=

∑ ∑ 𝜌𝑖+𝑗
𝑏−1
𝑗=0

𝑘
𝑖=1

𝑏𝑘
 is the averaged correlation between the pre- and post-intervention 

measurements. 

Frison & Pocock [1] proposed to use analogous mean summary statistics (𝑌̅ℎ𝑖.
𝑝𝑜𝑠𝑡 =

1

𝑘
∑ 𝑦ℎ𝑖𝑗
𝑘
𝑗=1  and 𝑌̅ℎ𝑖.

𝑝𝑟𝑒 =
1

𝑏
∑ 𝑦ℎ𝑖𝑗
−1
𝑗=−𝑏 ) to analyze repeated measurements in randomized 

trials with two intervention arms based on an Analysis of Covariance (ANCOVA) 

approach being used to model the data. Then the overall mean for the post-intervention is 
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𝜇̅ℎ..
𝑝𝑜𝑠𝑡

=
1

𝑛h
∑ 𝑌̅ℎ𝑖.

𝑝𝑜𝑠𝑡𝑛h
𝑖=1 ; and the overall mean for the pre-intervention is 𝜇̅…

𝑝𝑟𝑒 =

1

𝑛0+𝑛1
(∑ 𝑌̅0𝑖.

𝑝𝑟𝑒𝑛0
𝑖=1 +∑ 𝑌̅1𝑖.

𝑝𝑟𝑒𝑛1
𝑖=1 ), which is the same for both intervention arms due to 

randomization.  

The idea of ANCOVA is to model the pre-intervention mean for each unit as a 

covariate in a linear model for intervention arm comparison of the post-intervention 

mean.  

𝑌̅ℎ𝑖.
𝑝𝑜𝑠𝑡 = 𝜇̅ℎ..

𝑝𝑜𝑠𝑡 + 𝜃(𝑌̅ℎ𝑖.
𝑝𝑟𝑒 − 𝜇̅…

𝑝𝑟𝑒) + 𝜀𝑖                                   (7) 

Using the above PCS parameters, the variance estimate of 𝜃 is obtained by least 

squares from ANCOVA [1, 18]:   

 Var(𝜃𝑃𝐶𝑆) = (
1

𝑛0
+

1

𝑛1
) [
1+(𝑘−1)𝜌post

𝑘
-

𝑏𝜌𝑐𝑟𝑜𝑠𝑠
2

1+(𝑏−1)𝜌pre
]𝜎2                         (8) 

The ANCOVA estimate in (7) based on mean summary statistics using PCS is 

unbiased for 𝜃, and the GLS estimate in (1) is a best linear unbiased estimator (BLUE) 

[7]. We can conclude from the Gauss-Markov theorem that the GLS variance estimate 

𝑉𝑎𝑟(𝜃) based on 𝑉0 = 𝑉𝑇𝑃in (4) is no greater than the ANCOVA variance 

estimate Var(𝜃𝑃𝐶𝑆) in (8). Therefore, ANCOVA approach based on mean summary 

statistics can serve as an upper bound for the GLS variance of a given Toeplitz 

correlation (and a lower bound for power). It should be noted that under CS 

approximation formula (8) numerically gives the same results as formula (6) meaning the 

ANCOVA mean summary approach of Frison & Pocock and GLS produce the same 

𝑉𝑎𝑟(𝜃) estimate when CS holds.  
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5. Optimal Allocation of Pre-Post Intervention Measurements when 

Compound Symmetry is Easily Derived 

We now present one important property of the longitudinal clinical trial we have been 

studying that is easily derived for CS covariance structure as 𝑉𝑎𝑟(𝜃𝐶𝑆)has a simple 

closed form GLS variance formula (6).  A repeated measures design may have a 

constrained total number of longitudinal times T (T=b + k) because of the budget and/or 

time constraints. Finding the optimal allocation of T into b and k to maximize power or 

minimize the sample size needed to obtain a given power would be important.  From (6), 

for CS structure with constrained T given ρ, the optimal b with the local minimization of 

variance is:  

𝑏∗ = 𝑟𝑜𝑢𝑛𝑑(
𝑇+1

2
−

1

2𝜌
).                                             (9) 

Frison and Pocock [1] obtained this result using CS in their ANCOVA model. In 

general, the optimal b with ‘minimum variance’ becomes larger as the correlation 

coefficient 𝜌 increases for a constrained total time points (T) because the pre-intervention 

measurements are of greater use.  

For example, suppose T=7 and 𝜌 = 0.4 for a randomized trial, then we calculate the 

optimal pre-intervention measurements 𝑏∗ = 𝑟𝑜𝑢𝑛𝑑 (
7+1

2
−

1

2(0.4)
) = 𝑟𝑜𝑢𝑛𝑑(2.75) = 3. 

If T=6 and 𝜌 = 0.5, then 𝑏∗ = 𝑟𝑜𝑢𝑛𝑑 (
6+1

2
−

1

2(0.5)
) = 2.5 = 2 or 3. Note 𝑌 =

𝑟𝑜𝑢𝑛𝑑(𝑋) rounds each element of X to the nearest integer. If an element is exactly 

between two integers, then Y can be either of the two integers.  

The following contour lines in Figure 1 depict the distribution of optimal choice of 

pre-intervention measurements b for any given function of total time points T and 
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correlation 𝜌. Note: for any region between two contour lines, the optimal choice of pre-

intervention measurements is determined by the lower contour line. If it lies exactly on a 

contour line, then the optimal is determined by that particular value. Now look up (T, 𝜌) 

= (7, 0.4) and (7, 0.6) in the contour plot below: (7, 0.4) lies exactly on the contour line 

labeled with 3, so the optimal choice of b is 3; (7, 0.6) lies between two contour lines 

whose values are 3 and 4, so the optimal is the lower value 3.  

 

Figure 1: Optimal allocation for CS using contour plot 

Figure 1: Optimal allocation for CS using contour plot 

6. Empirical Examples, Properties with Toeplitz Correlation 

6.1. Examples having Toeplitz Correlation  

We now turn to the more general setting where the correlation structure is non-CS 

Toeplitz and begin with some real examples of where this happens.  Our first two 
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examples are from data collected on 365 New Jersey nursing homes being monitored 

every three months from the second quarter of 2011 to the fourth quarter of 2012 (seven 

quarters total) in the Nursing Home Compare [19] for proportions of: 1) long stay 

residents with long term need for help with activities of daily living (LS_ADL); and 2) 

short term stay patients that reported moderate to severe Pain (SS_Pain).  Higher levels of 

both LS_ADL and SS_Pain are undesirable and targeted for improvement at a facility 

level. The “unit” for these examples is the facility with the repeated measure being 

quarterly facility values.  Thus, for example, in a future study, it is conceivable that all 

365 New Jersey nursing homes could be followed for b baseline time points to obtain 

LS_ADL and/or SS_Pain proportions and then around 50% be moved to a facility 

intervention to improve one or both of these with k post-intervention measures obtained 

from both groups for comparison of change.  

The next two examples are obtained from 1012 Bronx HIV infected women [18] who 

had complete data for their first seven semiannual visits for CD4 counts and CESD 

Depression scores [19].  Higher CD4 and lower CESD are desired and have been 

previously targeted for interventions.  The repeated measures for these examples are from 

semiannual visits of patients.  It is conceivable that in a future study these patients could 

be followed for b baseline visits to obtain CD4 and/or CESD scores and then around 50% 

be put on an intervention to improve one or both of these outcomes with k post-

intervention measures obtained from both groups for comparison of change.  

Note we chose T=b+k=7 for these examples which is reasonable not only for our 

examples but for trials conducted over 2-4 years with repeated measures at 3-6 months 

interval. 



26 

 

Table 2 and Figure 2 summarize the empirical Toeplitz correlation structures for the 

four outcomes described above estimated using the mixed procedure in SAS from the 

normative data. Visually, Figure 2 illustrates a range from starting correlations at 𝜌1 of 

~0.60 to ~0.87 and in slight to steep generally monotonic linear declines going down 

to 𝜌6 ranging from ~0.34 to ~0.55.  

Table 2: Toeplitz correlation structures from four examples 

Table 2: Toeplitz correlation structures (𝑉𝑇𝑃) from four examples 

Time  𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 

Among Quarterly Evaluations of 365 New Jersey Nursing Homes 

LS_ADL 0.59 0.47 0.41 0.39 0.40 0.34 

SS_Pain 0.87 0.76 0.69 0.66 0.63 0.54 

Among Semiannual Visits of 1012 HIV-Infected Bronx-WIHS Patients 

CD4 0.84 0.74 0.65 0.57 0.46 0.47 

CESD 0.64 0.59 0.54 0.53 0.52 0.55 
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Figure 2: Visualization of Toeplitz correlation structures from real examples T=b+k=7 

Figure 2: Visualization of Toeplitz correlation structures from real examples 

For example with LS_ADL, the within facility correlation between times (i.e. 

quarters) j and j+1 is 𝜌1 = 0.59.  But this drops to 𝜌6 = 0.34 for between times j and 

j+6. More specifically, the correlations of CD4 and SS_Pain start higher at 𝜌1 ≈ 0.85 

than do those of LS_ADL and CESD at 𝜌1 ≈ 0.60; the decline (𝜌1 − 𝜌6) for SS_Pain, 

LS_ADL and CD4 (≈0.30) is greater than that for CESD (≈0.10).  But qualitatively we 

argue that none of these correlation structures are close to compound symmetry.  Thus 

Section 6.2 presents power estimates and optimality properties for these four examples 

obtained by computer using (4) and (5) incorporating the 𝑉𝑇𝑃 structures in Table 2 and 

Figure 2.   
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6.2. Empirical Optimal b: k allocation for the Four Toeplitz Examples 

In order to discover the optimal allocation with greatest power, we compared 

Var(𝜃𝑇𝑃) from (𝑋′𝑉−1𝑋)
−1
𝜎2 using the true Toeplitz correlation structure over all 

possible b: k allocations for each of the four examples assuming without loss of 

generality that the variance of each outcome was 𝜎 = 1 and 𝑛0 = 𝑛1 = 30. Table 3 

illustrates the computed variance from (4) using the appropriate 𝑉𝑇𝑃  as shown in  Table 2 

and Figure 2 over all possible allocations of (b, k) for T= 7. The optimal b: k allocation 

for each example occurs at the minimum variance as indicated in bold.  

Table 3: Toeplitz variances from four examples 

Table 3: Toeplitz variances from four examples (𝑛0 = 𝑛1 = 30, 𝜎 = 1, 𝑇 = 𝑏 + 𝑘 = 7) 

(b, k) (0, 7) (1, 6) (2, 5) (3, 4) (4, 3) (5, 2) (6, 1) 

LS_ADL 0.0360 0.0240 0.0231 0.0241 0.0263 0.0302 0.0400 

SS_Pain 0.0501 0.0140 0.0141 0.0142 0.0147 0.0153 0.0149 

CD4 0.0467 0.0149 0.0175 0.0175 0.0178 0.0181 0.0171 

CESD 0.0424 0.0216 0.0192 0.0192 0.0204 0.0231 0.0326 

 

From Table 3, we can see that b=0 performs particularly poorly for all examples and 

b=2 is the optimal choice for LS_ADL and CESD; b=1 is the optimal choice for SS_Pain 

and CD4. However, in many settings, minimizing b to maximize k and hence the ability 

to observe the long term intervention effects may be desired.  For ethical considerations, 

earlier intervention is also preferred in research on individuals at clinical high risk. To 

that end, b=1 performed well in Table 3 in that: i) b=1 was much better than b=0, which 

indicates at least one baseline measurement is required. ii) b>1 was at best minimally 
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better than b=1, which implies multiple pre-intervention measurements will not help 

much in variance estimation. 

While more comprehensive analyses for other values of T and 𝑉𝑇𝑃 is beyond the score 

of this chapter, we believe that: i) 𝑉𝑇𝑃 presented here are similar to those seen elsewhere 

[1] and thus likely to hold in many settings ii) T ≈ 7 may be reasonable for many settings 

so this observation may be widely applicable.   

 

7. Power Estimation using Simple Approximations to Toeplitz Structure 

If the actual structure of 𝑉𝑇𝑃 can be identified and the needed software is available, it 

is ideal to use it in (4) for variance / power calculation. However, in practice, 

investigators often have limited access to normative data from which to obtain 𝑉𝑇𝑃 or 

access/skills to use needed software to generate Var(𝜃𝑇𝑃)  from (4) in the limited time 

that is typically available to apply for study funding.  Furthermore, power/sample size 

estimates using 𝑉𝑇𝑃 could have unknown robustness properties against misspecification 

on {𝜌1, … , 𝜌𝑇−1}.  It thus may be of value to develop power estimate tools using simple 

approximations to the actual Toeplitz structure in longitudinal clinical trials in Section 

7.1 or otherwise to obtain conservative (upper bound) variance estimates as described in 

Section 7.2.  

7.1. Compound Symmetry Approximations to Toeplitz Variance 

The compound symmetry structure with a common 𝜌 is probably the simplest 

approximation if obtaining 𝑉𝑇𝑃 is impractical or impossible as (5) and (6) can be used to 

estimate power. However, which value of “approximated 𝜌” to use in (6) is not clear.  
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As discussed in Section 4.1, one reasonable approach is to estimate (i.e. what is 

believed to be) the equi-correlation 𝜌 with the weighted average of all (i.e. estimated) 

intra-unit correlations among the T time points, in the substituted 𝑉𝐶𝑆 where 𝜌 = 𝜌𝑎𝑣𝑔 =

(𝑏+𝑘−1)𝜌1+(𝑏+𝑘−2)𝜌2+⋯+𝜌𝑏+𝑘−1

∑ 𝑖𝑏+𝑘−1
𝑖=1

.  For example, for LS_ADL with (b, k) = (3, 4) using the 

observed correlations from Table 1, 𝜌𝑎𝑣𝑔 =
6𝜌1+5𝜌2+4𝜌3+3𝜌4+2𝜌5+𝜌6

21
= 0.47. The second 

approach is to let 𝜌 = 𝜌𝑚𝑖𝑛 as the common correlation in the substituted 𝑉𝐶𝑆where 𝜌𝑚𝑖𝑛is 

the minimum correlation in 𝑉𝑇𝑃. The second approach is more conservative in power 

estimation than the first in that it obtains larger variances since the GLS-CS variance in 

(6) increases as 𝜌 decreases.  This 𝜌𝑚𝑖𝑛, typically would be 𝜌1,𝑏+𝑘 if the correlations are 

decreasing with |j-j’|. For example, for LS_ADL with all values of (b, k), 𝜌𝑚𝑖𝑛 = 𝜌6 = 

0.34.  The first two columns of Table 4 give 𝜌𝑎𝑣𝑔and 𝜌𝑚𝑖𝑛 for T=b+k=7 based on the 𝑉𝑇𝑃 

in all four examples of Figure 2.  

Table 4: Calculated parameters for CS approximation and conservative approximations from the Toeplitz correlation structures in Table 2 for (b, k)=(3, 4) 

Table 4: Calculated parameters for CS approximation and conservative approximations from the Toeplitz 

correlation structures in Table 2 for (b, k)=(3, 4) (𝑛0 = 𝑛1 = 30, 𝜎 = 1) 

Outcome 

in Table 2 

Heuristics 

Approximations 

Conservative Approximations 

CS Parameters
1
 (b, k) = (1, 1) PCS Parameters       

 𝜌𝑎𝑣𝑔 𝜌𝑚𝑖𝑛 𝜌1 𝜌𝑝𝑟𝑒 𝜌𝑝𝑜𝑠𝑡 𝜌𝑐𝑟𝑜𝑠𝑠 

Among Quarterly Evaluations of 365 New Jersey Nursing Homes 

LS_ADL 0.47 0.34 0.59 0.55 0.52 0.42 

SS_Pain 0.74 0.54 0.87 0.83 0.80 0.69 

Among Semiannual Visits of 1012 HIV-Infected Bronx-WIHS Patients 
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CD4 0.69 0.46 0.84 0.81 0.78 0.61 

CESD 0.58 0.52 0.65 0.62 0.61 0.55 

1. The CS Approximation parameters 𝜌𝑎𝑣𝑔and 𝜌𝑚𝑖𝑛  are invariant to (b, k)  

While clearly one would prefer to use these 𝑉𝑇𝑃 directly in (4) id they and software 

for (4) were available it still is useful to see how close CS approximations from 𝜌𝑎𝑣𝑔and 

𝜌𝑚𝑖𝑛 ain (6) are as these are much easier to obtain.  Thus Figure 3 shows the results for 

the above four examples including the actual Var(𝜃𝑇𝑃)  in the randomized design for all 

possible allocations of (b, k) from Table 3 compared to those produced by CS 

approximations in (6) with 𝜌 = 𝜌𝑎𝑣𝑔 and 𝜌 = 𝜌𝑚𝑖𝑛 as shown in Table 4.  For b=1 and 

b=6, CS using 𝜌 = 𝜌𝑎𝑣𝑔  performed well for all four examples never being 

anticonservative and being almost exact to CESD and LS_ADL. By contrast, CS with 

𝜌 = 𝜌𝑚𝑖𝑛 greatly overestimated the variances when b=1 and 6 for CESD and LS_ADL. 

However, for b ranging from 2 to 5,  𝜌 = 𝜌𝑎𝑣𝑔 often greatly underestimated the variance 

and for CESD and LS_ADL even using 𝜌 = 𝜌𝑚𝑖𝑛 was anticonservative.  
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Figure 3: Variance approximations using CS compared to Toeplitz over all b: k allocations (𝑛0 = 𝑛1 =

30, 𝜎 = 1, 𝑇 = 𝑏 + 𝑘 = 7) 

Figure 3: Variance approximations using CS compared to Toeplitz over all b: k allocations  

7.2. Two Conservative Approximations to Toeplitz Variance 

The failure of even 𝜌 = 𝜌𝑚𝑖𝑛  in a CS approximation to consistently produce 

conservative estimates of Var(𝜃𝑇𝑃) motivates the need to have simple approaches to not 

underestimate Var(𝜃𝑇𝑃)  if direct calculation is not feasible.  

If b ≥ 1, perhaps the simplest conservative estimate for general T is to reduce the 

study to T=2 and (b, k) = (1, 1) with only one off-diagonal correlation, the correlation 

structure is by default 𝑉𝐶𝑆 with 𝜌 = 𝜌1 in (6).  Clearly restricting the study to T=2 

measures with one pre- and one post-intervention with this 𝜌 should yield smaller 

variance than using all T time points with more than one pre-intervention measure (𝑇 ≥ 2 

and 𝑏 ≥ 1); and one would also expect that for all 𝑇 ≥ 2 the maximum off-diagonal 
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correlation (i.e. 𝜌𝑚𝑎𝑥 = 𝜌1).  Note that if b=0 then this is not necessarily a conservative 

approximation.  

Restricting to only 2 of T (i.e. T=7) measures (i.e. when 𝑏 ≥ 1) at first glance seems 

overly conservative which motivates need for another lower bound.  To that end as 

described in Section 4.3, Frison & Pocock [1] proposed to use mean summary statistics 

(𝑌̅ℎ𝑖.
𝑝𝑜𝑠𝑡 =

1

𝑘
∑ 𝑦ℎ𝑖𝑗
𝑘
𝑗=1  and 𝑌̅ℎ𝑖.

𝑝𝑟𝑒 =
1

𝑏
∑ 𝑦ℎ𝑖𝑗
−1
𝑗=−𝑏 ) to analyze repeated measurements in 

randomized trials with two intervention arms. As we discussed in Section 4.3, Var(𝜃𝑃𝐶𝑆) 

in (8) can serve as an upper bound for Var(𝜃𝑇𝑃) in (6).  

Table 4, thus also describes four our 4 examples, implementation of the simple (b, k) 

= (1, 1) approximation when 𝑏 ≥ 1and the PCS approximation using mean summary 

statistics to derive upper bounds for Var(𝜃𝑇𝑃) (and thus a lower bound for power). The 

third column of Table 4 presents 𝜌1 for the (b, k) = (1, 1) conservative approximation.  

The last 3 columns of Table 4 present the values for PCS parameters with (b, k) = (3, 

4): 𝜌𝑝𝑟𝑒 , 𝜌𝑝𝑜𝑠𝑡 and  

𝜌𝑐𝑟𝑜𝑠𝑠 for LS_ADL, SS_Pain, CD4 and CESD outcomes described earlier with based on 

the longitudinal correlations shown in Table 1.  

Thus, note that for LS_ADL, incorporating 𝜌𝑚𝑎𝑥 = 𝜌1 = 0.59 with (b, k) = (1, 1) into 

(6) gives (
1

𝑛0
+

1

𝑛1
) ∗

[1+(2−1)∗0.59](1−0.59)

1∗[1+(1−1)∗0.59]
= 0.65 ∗ (

1

𝑛0
+

1

𝑛1
) = 0.043; while 

incorporating𝜌𝑝𝑟𝑒 = 0.55, 𝜌𝑝𝑜𝑠𝑡 = 0.52 and 𝜌𝑐𝑟𝑜𝑠𝑠=0.42 with (b, k) = (3, 4) into (8) 

gives (
1

𝑛0
+

1

𝑛1
) [ 

1+(4−1)∗0.52

4
−

3∗0.422

1+(3−1)∗0.55
] = 0.388 ∗ (

1

𝑛0
+

1

𝑛1
) = 0.026. Both numbers 

can serve as upper bound to the variance based on the actual Toeplitz structure in Table 3 
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where 𝑉𝑎𝑟(𝜃𝑇𝑃) = 0.024 for a randomized study of 𝑛0 units in placebo and 𝑛1 units in 

intervention with (b, k) = (3, 4) for LS_ADL.  

Figure 4 presents the results for the above four examples in the randomized design 

including the actual Var(𝜃𝑇𝑃) compared to conservative estimates produced by i) simple 

approximation with (b, k) = (1, 1) and 𝜌𝑚𝑎𝑥 = 𝜌1in (6) for when 𝑏 ≥ 1and ii) PCS 

approximations (with 𝜌𝑝𝑟𝑒 , 𝜌𝑝𝑜𝑠𝑡 and 𝜌𝑐𝑟𝑜𝑠𝑠) in (8). For SS_Pain and CD4 where the 

within-unit correlation 𝜌1 was very high at ~0.85 followed by rapid drop-off going to 𝜌2 

and beyond, the PCS approximation greatly overestimated the true variance as shown in 

Figure 4-B and Figure 4-C. However, surprisingly for all values of 𝑏 ≥ 1, the variance of 

the intervention effect was only barely smaller than from restricting to two time points (b, 

k) = (1, 1) with 𝜌𝑚𝑎𝑥 = 𝜌1. But for LS_ADL and CESD where the Toeplitz correlations 

were much closer to CS with much smaller drop-off from 𝜌1 to 𝜌6, the PCS upper bound 

was very close to the true Toeplitz variance for all values of b, while restricting to two 

time points with (b, k) = (1, 1) using 𝜌1 greatly overestimated the variance form the 

Toeplitz correlation.  
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Figure 4: Conservative approximations for randomized designs over all b: k allocations (𝒏𝟎 = 𝒏𝟏 =

𝟑𝟎, 𝝈 = 𝟏, 𝑻 = 𝒃 + 𝒌 = 𝟕) 

Figure 4: Conservative approximations for randomized designs over all b: k allocations  

8. Concluding Remarks 

Methodologies for the analysis of repeated measures have been developed in recent 

years based on general linear models. However, there is a need for simple estimation 

tools in practical power calculation.  One aim of this chapter was to develop “usable” 

power and sample size estimation tools for researchers working on randomized before 

and after two-arm intervention designs with repeated longitudinal measurements.  We 

developed tools for variance of the estimated intervention effect in randomized studies 

based on a Generalized Least Squares (GLS) framework.  We first used compound 

symmetry structure for the within-unit correlation and derived a simple GLS formula for 

𝑉𝑎𝑟(𝜃𝐶𝑆) in (6), which is easily calculated and implemented for power / sample size 
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estimation. With the advantage of closed form GLS formula based on CS, we explored 

the optimal value of b to minimize 𝑉𝑎𝑟(𝜃𝐶𝑆) for constrained T. In general, this optimal b 

was larger as the correlation coefficient 𝜌 increased for a constrained T because the pre-

intervention measurements became of greater use.  

However, in our real data examples using outcomes from long term care facilities and 

HIV patients, the correlation structures were (sometimes very) different from compound 

symmetry suggesting further investigation on power estimation with the more general 

Toeplitz correlation was needed. We thus computed and analyzed 𝑉𝑎𝑟(𝜃𝑇𝑃)with the 

empirical Toeplitz correlation structures of these examples. As closed form formulas for 

variance of estimated intervention effect are not directly available for Toeplitz 

correlations we numerically evaluated the properties of 𝑉𝑎𝑟(𝜃𝑇𝑃)using computer 

software in (4). Our four examples suggest that b=1 gave close to optimal results 

although larger values of b up to 4 were often better. In addition, having at least one 

baseline pre-intervention measure is important as b=0 always did much worse.  

In practice, investigators often neither have precise normative data on the Toeplitz 

variance parameters {𝜌1, … , 𝜌𝑇−1} of repeated measures nor the software/expertise to 

derive or implement 𝑉𝑇𝑃. We thus investigated power approximation approaches using 

closed form formula variances in (6) for CS approximations to 𝑉𝑇𝑃 when T=b+k=7. The 

CS approximations using  𝜌 = 𝜌𝑎𝑣𝑔 sometimes substantially underestimated the true 

𝑉𝑎𝑟(𝜃𝑇𝑃) of the estimated intervention effect and thus overestimated power. Moreover, 

even the more conservative CS approximations using 𝜌 = 𝜌𝑚𝑖𝑛 sometimes resulted in 

substantial power overestimation.  
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We thus looked for approaches to derive upper bounds to 𝑉𝑎𝑟(𝜃𝑇𝑃) for our four 

examples and had some surprising results. The PCS approximation based on mean 

summary statistics provided an alternative upper bound for 𝑉𝑎𝑟(𝜃𝑇𝑃)  (equivalently 

lower bound for power). Note that for the two examples with high 𝜌1 that dropped off 

rapidly (SS_Pain and CD4), the PCS approximation greatly overestimated 𝑉𝑎𝑟(𝜃𝑇𝑃).  

Furthermore for these examples using (b, k) = (1, 1) produced only slightly lower 

variances than 𝑉𝑎𝑟(𝜃𝑇𝑃) when 𝑏 ≥ 1, T=7, meaning that having only T=2 time points 

may be sufficient and much less costly than T=7 for these settings. However, for the other 

two examples where  𝜌1 was smaller and the drop-off between 𝜌1 and 𝜌6was smaller 

(LS_ADL and CESD) the PCS approximation only slightly overestimated 𝑉𝑎𝑟(𝜃𝑇𝑃) and 

restriction to T = 2 total time points with (b, k) = (1, 1), resulted in a large increase in 

variance. Thus it does not appear to be a simple way to obtain simple upper bounds for 

𝑉𝑎𝑟(𝜃𝑇𝑃) that works in all settings. Thus, it does not appear to be a simple way to derive 

upper bounds for 𝑉𝑎𝑟(𝜃𝑇𝑃) that works in all settings. 

There are some limitations in our work. We assumed an immediate one-time jump 

effect of the intervention, but in some settings the effect may be linear cumulative or 

some other pattern. The illustrative examples we used are limited with a fixed total time 

points (𝑇 = 7). While more comprehensive analyses for other values of T in general and 

other correlation structures is beyond the scope of this chapter, we believe that the 

correlation structures in the four examples presented here are likely generalizable and that 

𝑇 ≈ 7 may be reasonable for many settings with repeated measures taken at 3-6 month 

intervals.  Although we assumed static covariance (a minimum requisite to use historical 

data for correlation estimation), covariance could change over time from uncontrollable 
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mechanisms in practice. Relaxation of the above assumptions may likely lead to 

complicated settings that perhaps can only be addressed with simulation.   

In conclusion, this chapter developed a power estimation framework based on 

covariance approximations and investigated optimal allocation of number of pre- (b) and 

post- (k) intervention measurements for constrained T for randomized longitudinal 

difference in differences studies. Under the assumption of compound symmetry 

correlation, we derived simple formulas for 𝑉𝑎𝑟(𝜃𝐶𝑆) in (6). However, CS may not 

always hold in the real world as shown in our examples. Our illustrative examples using 

observed Toeplitz correlations did not always empirically support similar properties for 

optimal allocation of b: k as were derived for CS using closed form formulas. When the 

exact Toeplitz structure is unknown or hard to apply, we presented conservative lower 

bounds for power based on simple (b, k) = (1, 1) approximation and PCS approximation 

using mean summary statistics. Thus, while it may be difficult for many investigators 

both to obtain normative data for Toeplitz correlation structure and to compute variances 

of intervention effect estimates based on Toeplitz variances, our efforts to identify simple 

and conservative approximations had mixed success.  
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Appendix 1: Design Matrix 

For (1) with the general parameter vector 𝛽=(𝛼, 𝛽−(𝑏−1), … , 𝛽−1, 𝛽1, … , 𝛽𝑘, 𝜃), the 

corresponding design matrix has columns (𝐼, 𝐽−(𝑏−1), … , 𝐽−1, 𝐽1, … , 𝐽𝑘, 𝑍).  

The design matrix X is made up of (𝑛0 + 𝑛1) row-stacked 𝑋ℎ,𝑖’s, where 𝑋ℎ=0,𝑖denotes 

the partial design matrix for each unit in the untreated group and 𝑋ℎ=1,𝑖denotes for each 

unit in the treated group. Note the (𝑇 + 1)𝑡ℎcolumn stands for intervention effect 𝜃.  That 

is: 

𝑋 =

[
 
 
 
 
 
 𝑋ℎ=0,1
⋮

 𝑋ℎ=0,𝑛0 
 𝑋ℎ=1,1
⋮

 𝑋ℎ=1,𝑛0 ]
 
 
 
 
 

 where 

 𝑋ℎ=0,𝑖 =

[
 
 
 
 
 
1  1 …  0  0 ⋯  0
⋮   ⋮  ⋱ ⋮ ⋮ ⋱ ⋮
1  0 ⋯  1  0 ⋯  0

0
⋮
0

1  0 ⋯  0  1 ⋯  0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

1 −1 ⋯ −1 −1 ⋯ −1

0
⋮
0]
 
 
 
 
 

𝑇∗(𝑇+2)

 

 𝑋ℎ=1,𝑖 =

[
 
 
 
 
 
1  1 …  0  0 ⋯  0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
1  0 ⋯  1  0 ⋯  0

0
⋮
0

1  0 ⋯  0  1 ⋯  0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

1 −1 ⋯ −1 −1 ⋯ −1

1
⋮
1]
 
 
 
 
 

𝑇∗(𝑇+2)

 

 

Appendix 2: Covariance Matrix and GLS Estimate 

The goal is to find (𝑋′𝑉−1𝑋)−1as the most lower right element of (𝑋′𝑉−1𝑋)−1𝜎2 is 

𝑉𝑎𝑟(𝜃). First under CS where 𝜌𝑗𝑗′ ≡ 𝜌, the covariance matrix in (2) reduces to 𝑉𝐶𝑆 =
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(
1 ⋯ 𝜌
⋮ ⋱ ⋮
𝜌 ⋯ 1

)

𝑇

and 𝑉−1 = (
𝑉0
−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑉0

−1
)

(𝑛0+𝑛1)𝑇

with 

 𝑉0
−1 =

1

[1+(𝑇−1)𝜌](1−𝜌)
(
1 + (𝑇 − 2)𝜌 ⋯ −𝜌

⋮ ⋱ ⋮
−𝜌 ⋯ 1 + (𝑇 − 2)𝜌

)

𝑇

. 

Then we apply the technique for the inverse of the partitioned matrix.  

(𝑋′𝑉−1𝑋)−1 = [
𝐴11 𝐴21
𝐴21 𝐴22

]
−1

= [
𝐵11 𝐵21
𝐵21 𝐵22

] 

where 𝐵22 = (𝐴22 − 𝐴21𝐴11
−1𝐴12)

−1and 𝑉𝑎𝑟(𝜃)is contained in 𝐵22 to derive this 

simple closed form formula for GLS-CS estimate of variance.  

(𝑋′𝑉−1𝑋)−1 = (
1

𝑛0
+
1

𝑛1
) [1 + (𝑇 − 1)𝜌](1 − 𝜌) 

[
 
 
 
 
2𝑇(1 − 𝜌) 2(1 − 𝜌)

2(1 − 𝜌) 2[1 + (𝑇 − 2)𝜌]
⋯      2(1 − 𝜌)
⋯      −2𝜌

⋮              ⋮      
2(1 − 𝜌)                 −2𝜌        

  ⋱ ⋮
⋯ 2[1 + (𝑇 − 2)𝜌]

0
0
⋮
0

0                       0                ⋯                0 𝑘[1 + (𝑏 − 1)𝜌]]
 
 
 
 
−1

 

= (
1

𝑛0
+

1

𝑛1
) [1 + (𝑇 − 1)𝜌](1 − 𝜌) [

𝐴11 𝐴21
𝐴21 𝐴22

]
−1

,  

where 𝐴11 = [

2T(1 − ρ) 2(1 − ρ)

2(1 − ρ) 2[1 + (𝑇 − 2)𝜌]
⋯ 2(1 − ρ)
⋯ −2𝜌

⋮              ⋮      
2(1 − ρ)                 −2𝜌        

⋱ ⋮
⋯ 2[1 + (𝑇 − 2)𝜌]

],  

𝐴22 = [
𝑘[1+(𝑏−1)𝜌]

2
] and 𝐴21 = 𝐴12

′ = [

0
0
⋮
0

].  

Because 𝐴21𝐴11
−1𝐴12 = 0,  

𝐵22 = (𝐴22 − 𝐴21𝐴11
−1𝐴12)

−1 = 𝐴22
−1 =

1

𝑘[1+(𝑏−1)𝜌]
.   
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Thus 𝑉𝑎𝑟(𝜃𝑅−𝐶𝑆) = (
1

𝑛0
+

1

𝑛1
)
[1+(𝑇−1)ρ](1−ρ)

𝑘[1+(𝑏−1)ρ]
𝜎2.  

 

 

 



 

 

Chapter 2 Power / Sample Size Estimation for Non-Randomized Difference-in-

Differences Studies 

Abstract 

Intervention effect on continuous chronic normal or normal approximated conditions 

is often estimated in two-arm longitudinal clinical trials with T=b+k total time points. 

One arm receives the intervention with b≥1 pre- and k≥1 post-intervention measures 

while the other arm is untreated for all T times. Although randomization of which units 

receive treatment is preferred, non-randomized designs using Difference-in Differences 

(DD) analyses are often necessary for practical issues. Estimated variance of the 

intervention effect that incorporates the covariance structure of repeated measures are 

needed for power/sample size estimation of DD analyses. We develop Generalized Least 

Squares (GLS) based tools for variance of the intervention effect estimate in non-

randomized DD studies using compound symmetry (CS) and Toeplitz covariance.  For 

compound symmetry (CS) repeated measure correlation, a closed form variance of the 

estimated intervention effect was derived, and is minimized (hence power maximized) 

with equal number of pre-and post-intervention measurements (b=k) for T even and |b-

k|=1 for T odd. While given the same b and k, randomized designs are superior, non-

randomized designs deliver nearly as precise estimates of intervention effect for high 

within-unit correlation and/or with more baseline than follow-up measurements (𝑏 ≫ 𝑘). 

However, CS correlation structure did not hold for the four longitudinal nursing hospital 

and HIV examples we evaluated where T=7. We thus calculated the power directly for 
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these examples using the observed Toeplitz covariance. Again randomization improved 

the precision of the intervention effect estimate for these examples. As normative data for 

Toeplitz correlation may be difficult to derive or implement in practice, we explored 

simpler approaches to approximation of the variance of the intervention effect in this 

setting. However, none of these approximations performed uniformly well.  But one of 

these approach revealed that in some cases T=2 longitudinal measures with b=1 and 

k=1 obtained nearly as precise estimates of the intervention effect as did any design with 

T=b+k=7 measures.   
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1. Introduction 

Clinical trials and other prospective studies often evaluate repeated measurements of 

continuous normal (or normal approximated) chronic outcomes on treated units at 

systematic time points before and after an intervention compared to the same times on 

controls whom are never treated [1-3].  In our nomenclature “units” could refer to 

“treatment/care facilities” such as nursing homes or refer to “persons”.  While 

randomization of which units are treated is preferred to improve precision, it is not 

always feasible; particularly in health economics and services research. Thus non-

randomized designs known as Difference-in-Differences (DD) analyses are widely 

applied [2, 3] to estimate the impact of new interventions or policies introduced at a given 

time point into non-randomized facilities (or individuals), compared to controls 

continuing on the existing regimen.  Units in both arms introduced to the intervention and 

the controls are measured at the same T longitudinal time points. The outcome being 

affected by the intervention is measured at b consecutive time points (denoted -b, - (b-

1)… -1) prior and k consecutive time points (denoted 1, 2… k) after the intervention is 

introduced to the intervention arm with b+k=T. The difference in outcomes for the 

intervention arm during the b pre- and k post-intervention periods is compared to that for 

the control arm. Difference-in-differences analysis is best applied using a mixed model 

framework that adjusts for serial correlation of repeated measures within the same 

intervention facility or individual [4].  

We assume for this chapter “non-randomized” allocation to intervention and control 

arms is done by convenience or other processes that are not purposely based on levels of 

the outcome over the first b time points.  For example, maybe hospitals that are closer to 
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a university are assigned the intervention developed at that university. Still, the pre-

intervention levels of the outcome may differ by an unknown amount between the 

intervention arms due to confounding from the criteria that such “circumstance” 

allocation was based on.  For example, the hospitals closer to the University may have 

worse pre-existing levels of the outcome. Such differences will (i.e. with or without an 

intervention) continue into the k post-intervention measurements. This contrasts with a 

regression to the mean phenomenon [5, 6], which would be generated if units (i.e. 

hospitals) that were performing worst prior to the initiation of the intervention were 

deliberately over-selected (or under-selected) to be given the intervention. That setting is 

discussed in Appendix 1, but again is assumed not to exist in this chapter.  

To design and plan a longitudinal study in evaluating a new intervention, it is 

important to estimate whether one has a large enough sample for adequate power to 

detect a reasonable intervention effect. This depends on what the variance of the 

intervention effect estimate will be, which among other things, depends on the often-

unknown correlation structure between repeated measures of the same unit. We develop 

variances of the intervention effect estimate using generalized least squares (GLS) 

models based on i) the simplest repeat-measure correlation structure (compound 

symmetry) and ii) a more complex, but more empirically tenable Toeplitz correlation 

structure.  

The chapter is organized as follows: Section 2 presents the general linear model 

(GLM) for DD analysis. Section 3 introduces general GLS variance/power formulas for 

intervention effect estimates from GLM. Section 4 provides insights on allocation of T 

into b: k and discusses the penalty of non-randomization (versus randomization) if 
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compound symmetry repeat-measure correlation (CS) holds. Section 5 investigates the 

Toeplitz repeat-measure correlation and discusses the optimal b: k allocation using 

illustrative examples from real data where CS does not hold. Section 6 develops and 

compares simple / conservative variance estimates for Toeplitz covariance when there is 

uncertainty about the actual Toeplitz structure. Section 7 summarizes and discusses 

possible future work.  

 

2. Difference-in-Differences Design Examples and General Linear Model 

In DD studies, Let Y denote the longitudinal continuous outcomes observed at b times 

before and k times after the intervention implementation in the new intervention arm and 

at all 𝑇 = 𝑏 + 𝑘 times in the control arm; j = {-b, -(b-1), …, -1, 1, 2, …, k} denotes the 

ordered times with before the intervention is implemented being {-b, -(b-1), …, -1} and 

after the intervention is implemented being {1, 2, …, k}; h denotes the intervention arm 

with h=0 for control and h=1 for the new intervention.  There are 𝑛0 units receiving the 

control and 𝑛1receiving the new intervention (or 𝑛 in each if 𝑛0 = 𝑛1); unit (nested 

within intervention arm) is denoted by i.  Thus 𝑌1𝑖𝑗 represents the measure at time j from 

unit i in the new intervention arm and 𝑌0𝑖′𝑗′ represents the measure at 𝑗′ from unit 𝑖′ in the 

control arm. For example, consider a trial with 𝑛0 = 𝑛1 = 𝑛 = 30 hospitals in each arm, 

let i denote hospitals (as “units”) where i=1, …, 𝑛ℎ. For the intervention arm (h=1), 

“units” are followed for T=7 years total with b=2 years (2001 to 2002) prior and k=5 

years (2003 to 2007) after the intervention implementation.  Thus 𝑌1,3,−2  and 

𝑌0,17,3 respectively denote the measure taken in 2001 (2 years prior to start of the 
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intervention) in the 3𝑟𝑑 hospital of the intervention arm and 2005 (3 years after the start 

of the intervention) in the 17𝑡ℎ hospital of the control arm, respectively. We assume 

complete data with T=b+k measures observed on each unit, which, in particular, is 

reasonable when the units are facilities that are required by regulations to keep regular 

records of the outcomes of interest.  

The 𝑌ℎ𝑖𝑗  measure is decomposed as:  

𝑌ℎ𝑖𝑗 = 𝛼0 + 𝛼1𝐼{ℎ=1} + 𝛽𝑗 + 𝜃𝑍ℎ𝑗 + 𝜀𝑖𝑗
∗                                    (1) 

With 𝛼0denoting the average baseline value taken at j=-b for control units; 

𝛼1denoting a potentially different central tendency at j=-b from the “circumstance” 

selection of h=1 versus h=0; a difference that continues onto subsequent times; 𝛽𝑗 

denoting the fixed effects corresponding to time j (j = -(b-1), …, -1, 1, …,k relative to j=-

b);. Now 𝑍ℎ𝑗 = 𝐼{ℎ=1,𝑗>0} is an indicator of if the intervention is delivered in arm h at 

time j with 1=intervention delivered and 0=control delivered while θ is the size of the 

intervention effect on the outcome as described below. Any random unit (i.e. i level) 

effects are subsumed into the within-unit error term 𝜀𝑖𝑗
∗ , where 𝜀𝑖𝑗

∗ ~𝑁(0, 𝜎2𝑉) with the 

correlation matrix V defined in (2).   

We assume an immediate “jump effect” of size 𝜃 after the intervention begins that 

remains unchanged at subsequent time points, with 𝑗 ≥ 1.  Note that other functions such 

as linear intervention effect increase 𝑗 ∗ 𝜃𝑍ℎ𝑗 or threshold followed by exponential decay 

𝑒−
𝑗

𝑚 ∗ 𝜃𝑍ℎ𝑗 for some constant m > 0 are possible. However, there may be settings where 
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an immediate “jump effect” is appropriate such as when the intervention is a process 

change at a medical facility that is implemented quickly, a drug that the body does not 

develop resistance or acclimation to, or an immediately successful behavioral 

intervention. Even if the intervention impact (or differential intervention) was not exactly 

immediate jump it could be close to this.  

 

3. GLS Variance / Power Estimate Framework 

3.1. GLS variance estimate  

The matrix form of (1) can be written as: 𝑌 = 𝑋𝛽 + 𝜀∗, where 𝜀𝑖𝑗
∗ ~𝑁(0, 𝜎2𝑉). Here X 

represents the design matrix and Y is a vector of outcomes.  For (1) with the general 

parameter vector 𝛽=(𝛼0, 𝛼1, 𝛽−(𝑏−1), … , 𝛽−1, 𝛽1, … , 𝛽𝑘, 𝜃), the corresponding X has 

columns (𝐼, 𝐼{ℎ=1}, 𝐽−(𝑏−1), … , 𝐽−1, 𝐽1, … , 𝐽𝑘, 𝑍), with (𝑛0 + 𝑛1)*T rows per column. 𝑍 is a 

column/vector of intervention indicators 𝑍ℎ𝑗 coded (0, 1) as defined above; 

𝐽−(𝑏−1), … , 𝐽−1, 𝐽1, … , 𝐽𝑘 are columns corresponding to b+k-1 independent time coded 

variables as follows: for j= (-(b-1), -(b-2), …, -1, 1, 2, …k),  𝐽𝑗= {-1 at time –b 

(reference); 1 at time  j; and 0 at all other times}.  There is no column for 𝐽−𝑏 as 𝛽−𝑏 =

−∑ 𝛽𝑗
𝑘
𝑗=−(𝑏−1)  under the fixed effects constraint ∑ 𝛽𝑗

𝑘
𝑗=−𝑏 = 0. Thus X (where 𝑋ℎ,𝑖 as 

defined in Appendix 2) and V can be written as: 
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𝑋 =

(

 
 
 
 

𝑋ℎ=0,𝑖=1
⋮

𝑋ℎ=0,𝑖=𝑛0
𝑋ℎ=1,𝑖=1

⋮
𝑋ℎ=1,𝑖=𝑛0)

 
 
 
 

(𝑛0+𝑛1) 𝑇∗(𝑇+1)

, 𝑉 = (
𝑉0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑉0

)

(𝑛0+𝑛1)𝑇

, 

where 𝑉0 =

(

 
 
 

 𝜌11  𝜌12  𝜌13
 𝜌21  𝜌22  𝜌23
 𝜌31  𝜌32  𝜌33

⋯  𝜌1,𝑇−1  𝜌1,𝑇
⋯  𝜌2,𝑇−1  𝜌2,𝑇
⋯  𝜌3,𝑇−1  𝜌3,𝑇

⋮ ⋮ ⋮
 𝜌𝑇−1,1  𝜌𝑇−1,2  𝜌𝑇−1,3
 𝜌𝑇,1  𝜌𝑇,2  𝜌𝑇,3

⋱ ⋮ ⋮
⋯  𝜌𝑇−1,𝑇−1  𝜌𝑇−1,𝑇
⋯  𝜌𝑇,𝑇−1  𝜌𝑇𝑇 )

 
 
 

𝑇

.                     (2) 

The covariance matrix V is made up with (𝑛0 + 𝑛1) block T diagonal matrices 𝑉0′𝑠 

with all off-block diagonal matrix elements being 0. The most basic assumptions for the 

error term is that measures are independent between units, and correlation structure is 

invariant given two time points j and j’ for any unit, i.e., 𝜌𝑖,𝑗𝑗′ = 𝜌𝑖′,𝑗𝑗′ (i≠ 𝑖
′, j≠ 𝑗′) The 

within-unit correlation structure (𝜌𝑗𝑗′) is often unknown in advance. Typically, the 

correlation for any two time points is generally non-increasing, i.e., the closer the two 

time points are, the higher the correlation is; as they are further away, they become less 

correlated [10, 11]. We will restrict correlation assumptions further later in the chapter.  

Note that for the randomized setting where units are randomized into the intervention 

arm, the baseline measurements from both groups are the same due to randomization 

where 𝛼1 = 0, and thus renaming the only intercept parameter 𝛼0 as 𝛼. The parameter 

vector reduces to 𝛽=(𝛼, 𝛽−(𝑏−1), … , 𝛽−1, 𝛽1, … , 𝛽𝑘, 𝜃) where 𝛼 ≡ 1 and the other 

parameters as defined before. Appendix 2 presents the full expansion of design matrix for 

the non-randomized (NR) as well as the randomized (R) setting. 
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The GLS estimate for 𝛽 is 𝛽̂, which is the best linear unbiased estimator 

(BLUE) for 𝛽 and uniform minimum variance (UMVU) if 𝑌ℎ𝑖𝑗 is normally distributed 

[9]. The GLS variance for 𝛽̂ is Λ being a square matrix of order T+1. The variance of 𝜃 is 

the lowest-right diagonal element of Λ.   

𝛽̂ = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌;                                                 (3) 

Λ= (𝑋′𝑉−1𝑋)−1𝜎2.                                                          (4) 

3.2. General Power Estimation Approach  

We consider 𝐻0: 𝜃 = 0 versus 𝐻𝐴: 𝜃 = ±𝜃𝐴. Without loss of generality, 𝛿 =
𝜃𝐴

𝜎
 is a 

predefined clinically important effect size in terms of standard deviation, while 

𝛼 𝑎𝑛𝑑 𝛽 are Type I and Type II errors, respectively. We have the following equations of 

power (1 − 𝛽) using the notation from [8], in which 𝑉𝑎𝑟(𝜃) is derived from the GLS 

variance estimate in equation (4). 

𝜃𝐴 = (𝑧1−𝛼
2
+ 𝑧1−𝛽)√𝑉𝑎𝑟(𝜃).                                           (5) 

For practical repeated measure designs, the normal approximation of the non-central t 

distribution is applied for studies with relative large sample sizes [14]. In specific, the 

two distributions are almost identical when degrees of freedom (DF) γ > 30.  For smaller 

sample sizes, it may be appropriate to approximate degrees of freedom (DF) (γ) in non-

central t distribution for the mixture variance (for example, by Satterthwaite’s (1946) 

[15], and Kenward-Roger’s (1997) approximations [16]) and adjust equation (5) for this. 

But the full details are beyond the scope of this chapter. 
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4. Power Estimation Framework based on Compound Symmetry 

4.1. GLS variance under compound symmetry 

Compound symmetry (CS), also denoted sphericity or equi-correlation [11, 12], is a 

commonly used within-unit covariance matrix for 𝜺∗ in this type of setting [8] as CS only 

requires assumption of one unknown correlation parameter.  It can be reasonable to 

expect that the largest (and perhaps only) covariance component of 𝜺𝒊𝒋
∗  within the same 

unit i, would be a main effect for the unit i with smaller ignorable within-unit temporal 

changes over j.  While little empirical research has been done to confirm this structure 

holds, one study finds that CS was a reasonable simplification in quantitative planning of 

repeated measures clinical trials [8]. In this section, we derive the GLS estimate replacing 

𝑉0 in equation (2) with 𝑉𝐶𝑆 having a common 𝜌. Note that 𝜌 =
𝜏2

𝜏2+𝜎𝑒
2 where 𝜏2 is a unit (i-

level) variance and 𝜎𝑒
2 is an independent unit-visit (ij-level) variance as described in 

Appendix 4. For T=7, 𝑉0 = 𝑉𝐶𝑆 =

[
 
 
 
 
 
 
1 𝜌 𝜌 𝜌 𝜌 𝜌 𝜌

𝜌 1
𝜌 𝜌

𝜌 𝜌
1 𝜌

𝜌 𝜌 𝜌
𝜌 𝜌 𝜌

𝜌
𝜌

𝜌
𝜌

𝜌
𝜌

𝜌
𝜌

𝜌
𝜌

1
𝜌

𝜌
𝜌

𝜌
𝜌

𝜌 𝜌 𝜌
1 𝜌 𝜌
𝜌 1 𝜌
𝜌 𝜌 1]

 
 
 
 
 
 

.  

Under the assumption of CS we derive a closed form GLS-CS formula for the 

variance of 𝜃 as follows. Using the inverse formula for a partitioned matrix described in 

Appendix 3, the following GLS-CS variance estimate depends on b, k, 𝜎 and 𝜌.  

For non-randomized designs (NR-DD) under CS in equation (1),   



54 

 

𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆)  =  (
1

𝑛0
+

1

𝑛1
)
(𝑏+𝑘)(1−𝜌)

𝑏𝑘
𝜎2;                                    (6) 

For randomized designs (R-DD) under CS,  

𝑉𝑎𝑟(𝜃𝑅−𝐶𝑆)  =  (
1

𝑛0
+

1

𝑛1
)
[1+(𝑏+𝑘−1)𝜌](1−𝜌)

𝑘[1+(𝑏−1)𝜌]
𝜎2.                           (7) 

Note that as Appendix 4 shows, compared to fitting any R-DD, the NR-DD with non-

randomization effects under the same setting will result in a possibly lower model within-

population measurement variance on 𝑌𝑖𝑗 (𝜎𝑁𝑅
2 ≤ 𝜎𝑅

2) together with a possibly smaller 

within-unit correlation of 𝑌𝑖𝑗 and𝑌𝑖𝑗′ (𝜌𝑁𝑅 ≤ 𝜌𝑅) due to elimination of variance from 

about a common 𝛼 to that about dispersed intercepts, 𝛼0 and 𝛼0 + 𝛼1.  However, from 

equation (6), 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) only depends on 𝜎2and 𝜌 through the product (1 − 𝜌)𝜎2.  To 

that end Appendix 4 shows this product is unchanged by application of the fixed effects 

NR-DD design in that it turns out that always, (1 − 𝜌𝑁𝑅)𝜎𝑁𝑅
2 = (1 − 𝜌𝑅)𝜎𝑅

2. This 

invariance property means that under compound symmetry, the “pre non-randomization 

study design” effect parameters for 𝜎2and 𝜌 can be used in equation (6) no matter what 

the impact of the fixed effects NR-DD on the final 𝜎2and 𝜌 is.  

To calculate the number of units needed in each arm to achieve a given power (1 −

𝛽), if CS correlation structure is used then plugging equations (6-7) into (5) and 

reorganizing, gives the number of units (𝑛𝑁𝑅−𝐶𝑆) needed to obtain given power for NR-

DD studies: 

𝑛𝑁𝑅−𝐶𝑆 =
(b+k)(1−ρ)

𝑏𝑘𝛿2
(𝑧1−𝛼

2
+ 𝑧1−𝛽)

2;                                     (8) 

and the number of units (𝑛𝑁𝑅−𝐶𝑆)  needed to obtain given power using R-DD studies is: 



55 

 

𝑛𝑅−𝐶𝑆 =
[1+(𝑏+𝑘−1)ρ](1−ρ)

𝑘[1+(𝑏−1)ρ]𝛿2
(𝑧1−𝛼

2
+ 𝑧1−𝛽)

2.                                  (9) 

Note that equation (8) is symmetric on b and k in that (b’, k’)=(k, b) gives the same 

variance as (b, k). This symmetry follows from the symmetry of 𝑉0 and can also be 

shown through a reformulation of the problem that reverses the timescales and thus (b’, 

k’) replaces 𝛼1 with 𝛼1 + 𝜃 and 𝜃 with −𝜃. 

4.2. Non-Randomized Versus Randomized Designs under Compound Symmetry 

While it is known that randomization is superior to non-randomization, as 

randomized studies can be more costly and logistically more difficult to conduct, the 

relative superiority may be important to know. Under CS, the ratio of the variances of 

non-randomized to randomized DD studies is calculated below using equation (6) and 

equation (7) with the randomized setting as a reference.  

𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝐶𝑆)

𝑉𝑎𝑟(𝜃̂𝑅−𝐶𝑆)
=
(𝑏+𝑘)[1+(𝑏−1)𝜌]

𝑏[1+(𝑏+𝑘−1)𝜌]
= 1 +

𝑘(1−𝜌)

𝑏[1+(𝑏+𝑘−1)𝜌]
> 1.                     (10) 

The ratio in equation (10) indicates 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) > 𝑉𝑎𝑟(𝜃𝑅−𝐶𝑆), and thus confirms 

that power in randomized design is greater than the non-randomized setting with the 

same design parameters. As 𝜌 → 1, the ratio goes to 1, meaning the randomized design 

behaves similar to, but still better than the non-randomized design when 𝜌 is close to 1. 

As 𝜌 → 0, the ratio reduces to 1 +
𝑘

𝑏
, meaning an NR-DD requires (1 +

𝑘

𝑏
) times more 

units than the comparable R-DD design to achieve the same power. Thus increasing k or 

decreasing b (with all other parameters fixed) can lead to more advantages in conducting 

randomization. For 𝑏 ≥ 𝑘, the ratio lies within (1, 2); for very small 
𝑘

𝑏
, the ratio is close to 
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1, meaning that randomization does not significantly reduce variance of the intervention 

effect estimate. 

Figure 1 provides examples with the number of pre-visits (b) varying between 1 and 6 

for T=7.  Note that here and elsewhere, we chose the total number of visits to be 7 as it 

seems reasonable for the four examples presented later in Section 5 and other settings 

where trials would be conducted over periods of 2-3 years with repeated measures at 3-6 

month intervals. For 𝜌 ≥ 0.6 and 𝑏 ≥ 2, non-randomization performs close to 

randomization as the variance ratio is less than 1.22. But for b=1 variance from non-

randomization did not approach that from randomization until 𝜌 > 0.8 where the 

variance ratio was 1.21.  

 

Figure 1: Ratio of variances in NR-DD versus R-DD assuming CS structure (𝑇 = 𝑏 + 𝑘 = 7) 

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

value of p

R
a
ti
o

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

value of p

R
a
ti
o

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

value of p

R
a
ti
o

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

value of p

R
a
ti
o

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

value of p

R
a
ti
o

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

value of p

R
a
ti
o

b=1

b=2

b=3

b=4

b=5

b=6



57 

 

Figure 5: Ratio of variances in NR-DD versus R-DD assuming CS structure  

4.3. Power by b: k Allocation for Non-Randomized Designs under Compound 

Symmetry 

Focusing now on the non-randomized design (the main subject of this chapter), in 

practice, the total number of visits T (T=b + k) will likely be fixed because of budget 

and/or time constraints. To investigate the optimal allocation of b: k that maximizes 

power of NR-DD designs by minimizing 𝑉𝑎𝑟(𝜃𝑅−𝐶𝑆), we find the optimal 𝑏∗ where 

𝑏∗ = argmax⏟
b

Power = argmin⏟
b

Var(𝜃𝑅−𝐶𝑆) under the constraint of T=b + k.  For the 

CS, setting the derivative of log(𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆)) in equation (6) with respect to b be 0 

yields (
1

𝑇−𝑏
−
1

𝑏
) = 0 which occurs when b = k.  Optimal allocation to minimize the 

variance and maximize the power is 𝑏∗ ≈ 𝑘∗. Thus if T is even, then 𝑏∗ = 𝑘∗ =
𝑇

2
; if T is 

odd, then 𝑏∗ =
𝑇−1

2
 𝑜𝑟 

𝑇+1

2
. For example, if T=6, then 𝑏∗ = 𝑘∗ =

𝑇

2
= 3; if T=7, then 

(𝑏∗, 𝑘∗) = (3, 4) or equivalently (𝑏∗, 𝑘∗) = (4, 3).  

We can also quantitatively measure the impact on 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) by comparing the 

ratio of this variance from any given (b, k) versus the optimal (b
*
, k

*
) assuming constant 

T, i.e., 
Var(𝜃̂𝑁𝑅−𝐶𝑆)|(𝑏,𝑘)

Var(𝜃̂𝑁𝑅−𝐶𝑆)|(𝑏∗,𝑘∗)
=
𝑏∗𝑘∗

𝑏𝑘
 using equation (6). For example (T=7), when (𝑏, 𝑘) =

(1, 6), the ratio of variance is 
𝑏∗𝑘∗

𝑏𝑘
=
3∗4

1∗6
= 2, meaning that 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) for  (𝑏, 𝑘) =

(1, 6) is twice than that for the optimal (𝑏∗, 𝑘∗) = (3, 4); but when (𝑏, 𝑘) = (2, 5), the 

ratio of variance is only 
𝑏∗𝑘∗

𝑏𝑘
=
3∗4

2∗5
=
6

5
 = 1.20. Thus if 𝑏 is close to 𝑏∗, the ratio is close to 

1 and differences in power estimation are small. However, as 𝑏 goes further away from 

𝑏∗, the ratio gets larger and differences in power estimation become meaningful.   
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5. GLS Power Estimation using Toeplitz Structure 

While compound symmetry has led to simple and useful closed form variance and 

power formulas, the issue of how well this structure fits in practice needs to be broached. 

The first step in this process is to have an alternate and usable correlation. We propose 

the Toeplitz (TP) which is more general than CS, and present power estimation with four 

illustrative examples.  

5.1. GLS variance estimate given Toeplitz correlation 

In loosing the assumption beyond CS, an essentially necessary assumption for 

estimability is that correlations be stationary over chronological time and thus a function 

of the difference in j and j’ (𝜌𝑗𝑗′≡ 𝜌|j –j′|) [11, 12] as otherwise it is impossible to project 

historical normative data to a future study.  This is known as Toeplitz structure (𝑉𝑇𝑃) with 

correlations denoted 𝜌1 for |j-j’|=1, 𝜌2 for |j-j’|=2, … , 𝜌𝑏+𝑘−1 for |j-j’|=b+k-1 as 

illustrated in (11) for T=7.   

𝑉0 = 𝑉𝑇𝑃 =

[
 
 
 
 
 
 
1 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6
𝜌1 1
𝜌2 𝜌1

𝜌1 𝜌2
1 𝜌1

𝜌3 𝜌4 𝜌5
𝜌2 𝜌3 𝜌4

𝜌3
𝜌4

𝜌2
𝜌3

𝜌5
𝜌6

𝜌4
𝜌5

𝜌1
𝜌2

1
𝜌1

𝜌3
𝜌4

𝜌2
𝜌3

𝜌1 𝜌2 𝜌3
1 𝜌1 𝜌2
𝜌1 1 𝜌1
𝜌2 𝜌1 1 ]

 
 
 
 
 
 

.                              (11) 

The generalized least squares (GLS) estimate of all the parameters in (1) is then given 

in equations (4, 5), with 𝑉0 = 𝑉𝑇𝑃. Now 𝜌𝑗  is generally non-increasing with |j-j’| where 

CS is the special case of 𝜌𝑗 = 𝜌; and for T=7, if 𝜌6 is not too much less than 𝜌1 then 

perhaps CS as an approximation would be good.  
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We now estimate Toeplitz correlation structures for four illustrative examples. The 

first two are from data collected on 365 New Jersey nursing homes being monitored 

every three months from the second quarter of 2011 to the fourth quarter of 2012 (seven 

quarters total) in the Nursing Home Compare [17] for proportions of: 1) long stay 

residents with long term need for help with activities of daily living (LS_ADL); and 2) 

short term stay patients that experience moderate to severe (SS_Pain).  Higher levels of 

both LS_ADL and SS_Pain are undesirable and targeted for improvement at a facility 

level. The “unit” for these examples is the facility with the repeated measure being 

quarterly facility averaged values.  Thus, for example, in a future study it is conceivable 

that all 365 facilities could be followed for b baseline time points to obtain LS_ADL 

and/or SS_Pain proportions and then around 50% be moved to a facility intervention to 

improve one or both of these with k post-intervention measures obtained from both 

groups for comparison of change.   

The second two examples are obtained from 224 Bronx HIV infected women [18] 

who had complete data for their first seven semiannual visits for CD4 counts and CESD 

Depression scores [19].  Higher CD4 and lower CESD are desired and have been 

previously targeted for interventions.  The repeated measures for these examples are from 

semiannual visits of patients.  It is conceivable that in a future study these patients could 

be followed for b baseline visits to obtain CD4 and / or CESD scores and then around 

50% be put on an intervention to improve one or both of these with k post-intervention 

measures obtained from both groups for comparison of change. Again, we chose 

T=b+k=7 which is reasonable not only for our examples but also for trials conducted 

over 2-4 years with repeated measures at 3-6 months interval.  
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Table 1 and Figure 2 summarize the Toeplitz correlation structures for the four 

outcomes described above estimated using the mixed procedure in SAS from the 

normative data. Visually, Figure 2 illustrates a range from starting correlations at 𝜌1 of 

~0.60 to ~0.87 and in slight to steep generally monotonic linear declines going down 

to 𝜌6 ranging from ~0.34 to ~0.55.  

Table 5: Toeplitz correlation structures from four examples 

Table 1: Toeplitz correlation structures from four examples 

Time  𝝆𝟏 𝝆𝟐 𝝆𝟑 𝝆𝟒 𝝆𝟓 𝝆𝟔 

Among Quarterly Evaluations of 365 New Jersey Nursing Homes 

LS_ADL 0.59 0.47 0.41 0.39 0.40 0.34 

SS_Pain 0.87 0.76 0.69 0.66 0.63 0.54 

Among Semiannual Visits of 1012 HIV-Infected Bronx-WIHS Patients 

CD4 0.84 0.74 0.65 0.57 0.46 0.47 

CESD 0.64 0.59 0.54 0.53 0.52 0.55 

four examples 

 

Figure 2: Visualization of Toeplitz correlation structures from real examples (𝑇 = 𝑏 + 𝑘 = 7) 
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Figure 6: Visualization of Toeplitz correlation structures from real examples  

For example, the correlations of CD4 and SS_Pain start higher at 𝜌1 ≈ 0.85 than do 

those of LS_ADL and CESD at 𝜌1 ≈ 0.60. For CESD, the decline is 𝜌1 − 𝜌6 ≈ 0.10 

which might be qualitativley close to CS. The decline for SS_Pain, LS_ADL and CD4 is 

𝜌1 − 𝜌6 ≈ 0.35, thus these correlation structures are not close to compound symmetry.  

The remainder of Section 5 presents power estimates and properties for these four 

examples based on the empirical Toeplitz correlation structures in Table 1 and Figure 2.  

In Section 6 we evaluate whether compound symmetry or another simple approach can 

be used to get good estimates of variance and power for these examples in the case of 

where the Toeplitz structure could not be estimated or where a robust approach is needed.  

5.2. Power by b: k Allocation for Given Toeplitz Correlation 

As we could not derive a simple variance estimate for the general Toeplitz structure, 

we begin by presenting the empirical Toeplitz variance estimates for the four examples 

with the added goal of replicating Section 4.2 comparing randomized versus non-

randomized variance by b: k allocation for the given Toeplitz structures in Table 1.  We 

computed the 𝑉𝑎𝑟(𝜃) in equation (4) by computer for the given Toeplitz correlation 

structure over all possible b: k allocations for each of the four examples. Without loss of 

generality and to facilitate comparisons, these computations assumed the variance of each 

outcome was 𝜎 = 1 and 𝑛0 = 𝑛1 = 30. Figure 3 presents variances for both non-

randomized and randomized designs; the number of pre- and post-intervention (b, k) were 

allowed to be (1, 6); (2: 5); (3, 4); (4, 3); (5, 2); (6, 1).  The solid lines stand for the 

variance under 𝑉𝑇𝑃 of non-randomized designs, 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃), and the dotted lines for 
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that from randomized designs 𝑉𝑎𝑟(𝜃𝑅−𝑇𝑃). The optimal b: k allocation to minimize 

𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) in each example occurs at the value of b where the solid line hits the 

minimum.  

It should be noted that while comparisons of 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) to 𝑉𝑎𝑟(𝜃𝑅−𝑇𝑃)  in Figure 

3 assume that the NR and R designs has the same repeated measure correlation / variance 

structure, we acknowledge that the imposition of NR designs may change the correlation 

/ variance structure.  Appendix 4 showed that for CS repeated measure correlation, the 

impact on the variance and correlation structure from absorption of variance by imposing 

an NR design on an R setting canceled out in terms of 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) in equation (6).  But 

we are not able to derive this same result for Toeplitz correlation in general.  So while we 

believe the comparisons of 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) to 𝑉𝑎𝑟(𝜃𝑅−𝑇𝑃) given Toeplitz in Figure 3 are 

qualitatively meaningful, we acknowledge this limitation.  
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Figure 3:  Ratio of variances in NR-DD versus R-DD from Toeplitz examples over all b: k allocations 

(𝑛0 = 𝑛1 = 30, 𝜎 = 1, 𝑇 = 𝑏 + 𝑘 = 7) 

Figure 7: Ratio of variances in NR-DD versus R-DD from Toeplitz examples over all b: k allocations 

The examples in Figure 3 show that: i) The same optimal allocation of b and k under 

CS (𝑏 ≈ 𝑘) held for the Toeplitz with three of the examples where (b, k) = (3, 4) and (b, 

k) = (4, 3) for NR-DD designs symmetrically had the smallest variances with T=7. But 

for CD4 in Figure 3-C, the variances from (b, k) = (1, 6) and (b, k) = (6, 1) are smaller 

than those from 𝑏 ≈ 𝑘.  ii) Not surprisingly, the variances for the randomized setting 

were always smaller than those for non-randomized designs over all possible allocations.  

As b became larger the advantages for randomization decreased and were arguably 

minimal for 𝑏 ≥ 2 for CD4 (with ratio 
𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝑇𝑃)

𝑉𝑎𝑟(𝜃̂𝑅−𝑇𝑃)
= 1.12 at b = 2) and SS_Pain (with 
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ratio 
𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝑇𝑃)

𝑉𝑎𝑟(𝜃̂𝑅−𝑇𝑃)
= 1.12 at b = 2) and 𝑏 ≥ 4 for CESD (with ratio 

𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝑇𝑃)

𝑉𝑎𝑟(𝜃̂𝑅−𝑇𝑃)
= 1.10 at 

b = 4) and LS_ADL (with ratio 
𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝑇𝑃)

𝑉𝑎𝑟(𝜃̂𝑅−𝑇𝑃)
= 1.16 at b = 4); iii) As was described in the 

last paragraph of Section 4.1 because the Toeplitz correlation structure is symmetric, 

𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) is identical for (b, k) and (b’, k’) where (b’, k’)=(k, b).  

 

6. Power Estimation for Non-Randomized Designs using Simple 

Approximations to Toeplitz Correlation 

If the actual structure of 𝑉𝑇𝑃 can be identified from normative data, it is ideal to use it 

as 𝑉0 in (𝑋
′𝑉−1𝑋)−1𝜎2 for variance / power calculation. However, in practice, 

investigators often have limited access or software to obtain 𝑉𝑇𝑃 from normative data in 

the limited time that is typically available to apply for study funding which may make 

estimation of power based on 𝑉𝑇𝑃 prohibitive.  Furthermore, power/sample size estimates 

using 𝑉𝑇𝑃 could have unknown robustness properties against misspecification on 

(𝜌1, … , 𝜌𝑇−1).   

With so much complexity, uncertainly and difficulty in deriving parameters 

investigator may consider using heuristics approximations with less unknown parameters 

to estimate power and variance for non-randomized DD studies with Toeplitz covariance.  

We thus compared variances from several heuristic approximations to the 

actual 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃).  
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6.1. Compound Symmetry-Heuristics Approximation to Toeplitz Correlation 

A compound symmetry structure with a common 𝜌 is probably the simplest 

approximation for 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) if obtaining 𝑉𝑇𝑃 seemed impractical or impossible as 

this 𝜌 can be input into (6) or (8) as heuristically estimates to 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃).  

However, which value of “approximated𝜌” to use in (6) or (8) is not clear. One 

reasonable approach is to estimate (i.e. what is believed to be) the equi-correlation 𝜌 with 

the weighted average of all (i.e. estimated) intra-unit correlations among the T time 

points, in the 𝑉𝐶𝑆 matrix that is being substituted for 𝑉𝑇𝑃. That is use 𝜌 = 𝜌𝑎𝑣𝑔 =

(𝑏+𝑘−1)𝜌1+(𝑏+𝑘−2)𝜌2+⋯+𝜌𝑏+𝑘−1

∑ 𝑖𝑏+𝑘−1
𝑖=1

.  For example,  for LS_ADL with (b, k) = (3, 4) using the 

observed correlations from Table 1, 𝜌𝑎𝑣𝑔 =
6𝜌1+5𝜌2+4𝜌3+3𝜌4+2𝜌5+𝜌6

21
= 0.47. 

A second approach that is more conservative is to let 𝜌 = 𝜌𝑚𝑖𝑛 as the common 

correlation in the substituted 𝑉𝐶𝑆where 𝜌𝑚𝑖𝑛is the minimum correlation in 𝑉𝑇𝑃. The 

second approach is more conservative in power estimation than the first in that it obtains 

larger variances since the GLS-CS variance in (6) increases as 𝜌 decreases.  This 𝜌𝑚𝑖𝑛, 

typically would be 𝜌1,𝑏+𝑘 if the correlations are decreasing with |j-j’|. For example, for 

LS_ADL with all values of (b, k), 𝜌𝑚𝑖𝑛 = 𝜌6 = 0.34.   

The first two columns of Table 2, respectively, present CS parameters (𝜌𝑎𝑣𝑔 and 𝜌𝑚𝑖𝑛) 

in 𝑉𝐶𝑆 approximation of 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) using the observed correlations in all four 

examples of Figure 3. Again, by symmetry as described at the end of Section 4.1, 𝜌𝑎𝑣𝑔 in 

the first column also holds for (b, k)=(3, 4). The 𝜌𝑚𝑖𝑛 given in the second column holds 

for all T=b+k=7. 

Table 6: Calculated parameters for CS approximations and conservative approximations from the Toeplitz correlation structures in Table 1 for (b, k) = (3, 4) 
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Table 2: Calculated parameters for CS approximations and conservative approximations from the 

Toeplitz correlation structures in Table 1 for (b, k) = (3, 4) (𝑛0 = 𝑛1 = 30, 𝜎 = 1) 

Outcome 

in Table 1 

Heuristics 

Approximations 

Conservative Approximations 

CS Parameters
1
 (b, k) = (1, 1) PCS Parameters       

 𝜌𝑎𝑣𝑔 𝜌𝑚𝑖𝑛 𝜌1 𝜌𝑝𝑟𝑒 𝜌𝑝𝑜𝑠𝑡 𝜌𝑐𝑟𝑜𝑠𝑠 

Among Quarterly Evaluations of 365 New Jersey Nursing Homes 

LS_ADL 0.47 0.34 0.59 0.55 0.52 0.42 

SS_Pain 0.74 0.54 0.87 0.83 0.80 0.69 

Among Semiannual Visits of 1012 HIV-Infected Bronx-WIHS Patients 

CD4 0.69 0.46 0.84 0.81 0.78 0.61 

CESD 0.58 0.52 0.65 0.62 0.61 0.55 

    1.  The CS Approximation parameters 𝜌𝑎𝑣𝑔and 𝜌𝑚𝑖𝑛  are invariant to (b, k)  

Figure 4 compares the approximated variances from 𝑉𝐶𝑆 using 𝜌 = 𝜌𝑎𝑣𝑔 and  𝜌 =

𝜌𝑚𝑖𝑛 for the four examples in Table 1 to the actual 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃)  for all possible 

allocations of (b, k).  Without loss of generality for making comparisons, we again 

assume that 𝑛0 = 𝑛1 = 30, 𝜎 = 1, 𝑇 = 𝑏 + 𝑘 = 7. For b=1 and b=6, the 

𝑉𝐶𝑆approximation to 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) using 𝜌 = 𝜌𝑎𝑣𝑔 performed well for all four examples 

never being anticonservative with both values almost exactly equaling each other for 

CESD and LS_ADL. By contrast, the 𝑉𝐶𝑆 approximation with 𝜌 = 𝜌𝑚𝑖𝑛 greatly 

overestimated 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃)  when b=1 and 6 for CESD and LS_ADL. However, for b 

ranging from 2 to 5, the 𝑉𝐶𝑆 approximation using  𝜌 = 𝜌𝑎𝑣𝑔 often greatly underestimated 

𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) and for CESD and LS_ADL even the 𝑉𝐶𝑆 approximation using 𝜌 = 𝜌𝑚𝑖𝑛 
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often underestimated 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃)  which would result in anticonservative power 

calculations. 

 

Figure 4: Variance approximations using CS (𝝆 = 𝝆𝒎𝒊𝒏 and 𝝆 = 𝝆𝒂𝒗𝒈) compared to Toeplitz over all 

b: k allocations (𝒏𝟎 = 𝒏𝟏 = 𝟑𝟎, 𝝈 = 𝟏, 𝑻 = 𝒃 + 𝒌 = 𝟕) 

 Figure 8: Variance approximations using CS compared to the Toeplitz over all b: k allocations 

6.2. Two Conservative Approximations to Toeplitz Variance 

The fact that using 𝑉𝐶𝑆 approximations even with 𝜌 = 𝜌𝑚𝑖𝑛 often underestimated 

𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) suggests that simple approaches which conservatively estimate (i.e. not 

underestimate) 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) might be better. Perhaps the simplest conservative estimate 

for general T is to reduce the study to T=2 and (b, k) = (1, 1) with only one off-diagonal 

correlation, the correlation structure is by default 𝑉𝐶𝑆 with 𝜌 = 𝜌1 in (6) and (8).  Clearly 
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restricting the study to T=2 measures with one pre- and one post-intervention with this 𝜌 

should yield smaller variance than using all T (𝑇 ≥ 2) timepoints; and ii) one would also 

expect that for all 𝑇 ≥ 2 the maximum off diagonal correlation (i.e.𝜌𝑚𝑎𝑥 = 𝜌1).  

However, restricting to only 2 of T (i.e. T=7) measures at first glance seems overly 

conservative which motivates need for another lower bound.  Frison & Pocock [8] 

proposed to use mean summary statistics (𝑌̅ℎ𝑖.
𝑝𝑜𝑠𝑡 =

1

𝑘
∑ 𝑦ℎ𝑖𝑗
𝑘
𝑗=1  and 𝑌̅ℎ𝑖.

𝑝𝑟𝑒 =
1

𝑏
∑ 𝑦ℎ𝑖𝑗
−1
𝑗=−𝑏 ) 

to analyze repeated measurements in randomized trials with two intervention arms. Using 

the same idea for a non-randomized study for each unit, the summary statistic is the mean 

change: 𝑌̅ℎ𝑖.
𝑝𝑜𝑠𝑡 −  𝑌̅ℎ𝑖.

𝑝𝑟𝑒
. Then the overall intervention difference in these mean changes is: 

1

𝑛0
∑ ( 𝑌̅0𝑖.

𝑝𝑜𝑠𝑡 −  𝑌̅0𝑖.
𝑝𝑟𝑒)

𝑛0
𝑖=1 −

1

𝑛1
∑ ( 𝑌̅1𝑖.

𝑝𝑜𝑠𝑡 −  𝑌̅1𝑖.
𝑝𝑟𝑒)

𝑛1
𝑖=1 = (𝑌̅0..

𝑝𝑜𝑠𝑡 − 𝑌̅0..
𝑝𝑟𝑒) − (𝑌̅1..

𝑝𝑜𝑠𝑡 − 𝑌̅1..
𝑝𝑟𝑒), 

which has expected value (𝜇̅0
𝑝𝑜𝑠𝑡 − 𝜇̅0

𝑝𝑟𝑒) − (𝜇̅1
𝑝𝑜𝑠𝑡 − 𝜇̅1

𝑝𝑟𝑒) and variance:  

𝑉𝑎𝑟(𝜃𝑁𝑅−𝑀𝑆) = Var[(𝑌̅0..
𝑝𝑜𝑠𝑡 − 𝑌̅0..

𝑝𝑟𝑒) − (𝑌̅1..
𝑝𝑜𝑠𝑡 − 𝑌̅1..

𝑝𝑟𝑒)] 

= (
1

𝑛0
+

1

𝑛1
)[ 
1+(𝑘−1)𝜌𝑝𝑜𝑠𝑡

𝑘
+ 

1+(𝑏−1)𝜌𝑝𝑟𝑒

𝑏
− 2𝜌𝑐𝑟𝑜𝑠𝑠]𝜎

2                    (12) 

 Where i) 𝜌𝑝𝑟𝑒is the averaged correlation among the pre-intervention timepoints and 

if the correlation structure is 𝑉𝑇𝑃 then 𝜌𝑝𝑟𝑒 =
(𝑏−1)𝜌1+(𝑏−2)𝜌2+⋯+𝜌𝑏−1

(𝑏−1)+(𝑏−2)+⋯+1
;  ii) 𝜌𝑝𝑜𝑠𝑡 is 

the averaged correlation among the post-intervention timepoints and if the correlation 

structure is 𝑉𝑇𝑃 then 𝜌𝑝𝑜𝑠𝑡 =
(𝑘−1)𝜌1+(𝑘−2)𝜌2+⋯+𝜌𝑘−1

(𝑘−1)+(𝑘−2)+⋯+1
 and iii) 𝜌𝑐𝑟𝑜𝑠𝑠 is the averaged 

correlation between the pre- and post-intervention time points and if the correlation 

structure is 𝑉𝑇𝑃 then 𝜌𝑐𝑟𝑜𝑠𝑠 =
∑ (𝜌𝑖+𝜌𝑖+1+…+𝜌𝑖+𝑏−1)
𝑘
𝑖=1

𝑏𝑘
=
∑ ∑ 𝜌𝑖+𝑗

𝑏−1
𝑗=0

𝑘
𝑖=1

𝑏𝑘
 . 
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The GLS estimator is a best linear unbiased estimator (BLUE) [8, 9, 13] and the mean 

change above is unbiased for 𝜃.  We can thus conclude from the Gauss-Markov theorem 

that GLS variance estimate in (4) based on 𝑉0 = 𝑉𝑇𝑃 is no greater than the MS variance 

estimate in (12). We thus employ the mean summary statistics approach to derive an 

upper bound for the GLS variance of a given Toeplitz correlation. 

Table 2 in the last 4 columns also presents the values described in this section for the 

examples in Table 1 (LS_ADL, SS_Pain, CD4 and CESD) based on their given empirical 

Toeplitz correlations in Table1 for T=7 with (b, k) = (3, 4): i) Using PCS parameters 

(𝜌𝑝𝑟𝑒 , 𝜌𝑝𝑜𝑠𝑡 and 𝜌𝑐𝑟𝑜𝑠𝑠) for T=7 with (b, k) = (3, 4).  

For example, looking at LS_ADL based on Table 2, incorporating 𝜌𝑚𝑎𝑥 = 𝜌1 = 0.59 

with (b, k) = (1, 1) into (6) gives and approximated variance of  

(
1

𝑛0
+

1

𝑛1
) ∗

2∗(1−0.59)

1∗1
𝜎2 = 0.82 ∗ (

1

𝑛0
+

1

𝑛1
)𝜎2 as an upper bound for 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) not 

only for (b, k) = (3, 4), but also for all values of (𝑏 ≥ 1, 𝑘 ≥ 1). Similarly, again for 

LS_ADL but now specifically for (b, k) = (3, 4) incorporating 𝜌𝑝𝑟𝑒 = 0.55, 𝜌𝑝𝑜𝑠𝑡 =

0.52and 𝜌𝑐𝑟𝑜𝑠𝑠 = 0.42 from Table 2 into (12) gives (
1

𝑛0
+

1

𝑛1
) [ 

1+(4−1)∗0.52

4
+

 
1+(3−1)∗0.55

3
− 2 ∗ 0.42] 𝜎2 = 0.50 ∗ (

1

𝑛0
+

1

𝑛1
)𝜎2 as an upper bound for 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) 

for LS_ADL when T=7 and (b, k) = (3, 4) and also symmetrically for (b, k) = (4, 3).   

In Figure 5, for LS_ADL, SS_Pain, CD4 and CESD in the non-randomized designs 

among all possible values of (b, k) (i.e. satisfying T=b+k =7), we present the actual 

𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) compared to the upper bounds for this produced by i) T=2 with (b, k) = (1, 

1) and 𝜌𝑚𝑎𝑥 = 𝜌1in (6) and ii) MS approximations (with 𝜌𝑝𝑟𝑒 , 𝜌𝑝𝑜𝑠𝑡 and 𝜌𝑐𝑟𝑜𝑠𝑠) in (12). 

As before, we set 𝜎 = 1, 𝑛0 = 𝑛1 = 30. 
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For SS_Pain and CD4 where 𝜌1 were very high (i.e. ~0.85 in Table 1 and Figure 2) 

followed by rapid drop to 𝜌2, … , 𝜌𝑏+𝑘−1, the MS approximation greatly overestimated the 

true variance as shown in Figures 5-B and 5-C. However, for these outcomes surprisingly 

the true 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) were only barely smaller than the simple approximation from 

restricting to T=2, (b, k) = (1, 1) with 𝜌𝑚𝑎𝑥 = 𝜌1.  

For LS_ADL and CESD where 𝜌1were lower (i.e. ~0.60 in Table 1 and Figure 2) and 

the drop to 𝜌2, … , 𝜌𝑏+𝑘−1were smaller (especially for CESD), the MS upper bounds were 

very close to 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) at all values of b. However, for these outcomes as shown in 

Figures 5-A and 5-D, restricting to two timepoints with (b, k) = (1, 1) using 𝜌1 greatly 

overestimated 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃). 
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Figure 5: Conservative variance approximations compared to Toeplitz over all b: k allocations 

(𝑛0 = 𝑛1 = 30, 𝜎 = 1, 𝑇 = 𝑏 + 𝑘 = 7) 

Figure 9: Conservative variance approximations compared to Toeplitz over all b: k allocations  

 

7. Concluding Remarks 

This chapter developed estimation tools for variance of the intervention effect 

estimate in non-randomized difference-in-differences studies based on a Generalized 

Least Squares (GLS) framework.  We first used compound symmetry structure for the 

within-unit correlation and derived closed form GLS variance estimate formulas.  The 

closed form formulas in (6) and (8) are easily calculated and implemented in (5) and 

elsewhere for power / sample size estimation. We explored the optimal allocation into 

pre- and post-intervention (b: k) under CS when (T=b+k) is constrained but the 

investigators can choose b and k.  Not surprisingly, equal (or closest to equal) number of 

pre- and post-intervention measurements (b=k for T even and b=k±1 for T odd) 

minimized 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆). We then quantitatively compared randomized to non-

randomized DD studies in terms of 𝑉𝑎𝑟(𝜃𝑅−𝐶𝑆)/𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆). Although 𝑉𝑎𝑟(𝜃𝑅−𝐶𝑆) <

𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) for the same design parameters (b, k and 𝜌), non-randomization can work 

nearly as well in compound symmetry settings if within-unit correlation 𝜌 is high 

and/or 𝑏 ≥ 𝑘.  

However, in our real data examples using outcomes from long term care facilities and 

HIV patients, the correlation structures were (sometimes very) different from compound 

symmetry suggesting further investigation on power estimation with the more general 

Toeplitz correlation was needed. As simple closed form formulas for 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) were 
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not feasible, we presented the GLS variance estimates from computer calculation using 

the empirical Toeplitz correlation structures of these examples.  The same optimal 

allocation of b and k under CS, (𝑏 ≈ 𝑘) held for the Toeplitz for only two of the examples 

where T=7. Again while R-DD designs yielded lower variance than NR-DD designs, the 

advantage of randomization was less when correlations were larger and as b increased.  

In practice, investigators often neither have precise normative data on the Toeplitz 

variance parameters (𝜌1, … , 𝜌𝑇−1) of repeated measures nor the software/expertise to 

derive variances from this Toeplitz structure. We thus investigated approximations to  

𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) by closed form formula variances using CS for T=b+k=7. The CS 

approximations to 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃)using the average correlation (i.e. 𝑉𝐶𝑆 using 𝜌 = 𝜌𝑎𝑣𝑔) 

performed well when (b, k) = (1, 6) and (b, k) = (6, 1). But for other values of (b, k), 𝑉𝐶𝑆 

using 𝜌 = 𝜌𝑎𝑣𝑔 sometimes substantially underestimated 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) and thus 

overestimated power. Even CS approximations to the Toeplitz structure that seemed 

conservative (i.e. 𝑉𝐶𝑆with  𝜌 = 𝜌𝑚𝑖𝑛) resulted in substantial power overestimation. Thus 

while investigators might be tempted to do so as it is easy, misuse of CS with 𝜌 = 𝜌𝑎𝑣𝑔 

causes even greater power overestimation.  

We then studied approaches to derive upper bounds to 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) for our four 

examples and had some surprising results. In two examples where correlation was high at 

𝜌1 and dropped off rapidly (SS_Pain and CD4), it turned out that just using simple 

approximation with T = 2 total time points with one pre- and one post-intervention 

measurement resulted in a variance for the intervention effect that was only slightly 

larger than 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) with all T=7 timepoints.  This is, of course premised on our 
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assumption that the intervention effect is an immediate jump and might not be the case if 

the intervention effect was cumulatively increasing over time.  However, for at least one 

of the outcomes we studied, interventions to increase CD4 count in fact often do have 

close to a short term jump effect that is mostly fully manifested by three months [20, 21].   

The MS approximation provided an alternative upper bound for 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃)  

(equivalently lower bound for power). Note that for the same two examples with high 𝜌1 

that dropped off rapidly (SS_Pain and CD4), the MS upper bound for variance greatly 

overestimated 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃).  However, for the other two examples where  𝜌1 was 

smaller and the drop-off between 𝜌1 and 𝜌6was smaller (LS_ADL and CESD) the MS 

approximation upper bounds only slightly overestimated 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) and restriction to 

T = 2 total time points with (b, k) = (1, 1), resulted in a large increase in variance. Thus it 

does not appear to be a simple way to derive upper bounds for 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) that works 

in all settings. 

There are some limitations in our work. We assumed an immediate jump effect of the 

intervention but in some settings the effect may be linear cumulative or some other 

pattern.  The illustrative examples we used are limited with a fixed total visits (𝑇 = 7). 

While more comprehensive analyses for other values of T and other correlation structures 

is beyond the scope of this chapter, we believe that the correlation structures presented 

here are likely generalizable and that 𝑇 ≈ 7 may be reasonable for many settings.  

Although we assumed static covariance (a minimum requisite to use historical data for 

correlation estimation), covariance could change over time from uncontrollable 

mechanisms in practice.  Non-randomized designs could lead to potential regression to 

the mean biases (Appendix 1) if units were deliberately chosen to receive (or to not 
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receive) the interventions based on poor (or good) baseline performance over the b pre-

intervention visits.  So investigators must ensure that this does not happen in the 

intervention arm allocation. The above limitations lead to complicated settings whose 

statistical properties perhaps can only be studied with simulation.   

In conclusion, we derived closed form GLS formulas for variance of the estimated 

intervention effect and investigated optimal designs for non-randomized difference in 

difference studies based on compound symmetry correlation structure for repeated 

measures within the unit. For DD studies with CS correlation, the penalty from non-

randomization (versus randomization) on variance of the estimated intervention effect 

was lessened by having larger numbers of pre-intervention measures relative to numbed 

of post-intervention measures and with larger 𝜌. However, CS may not always hold in the 

real world as shown in our examples. Our illustrative examples using observed Toeplitz 

correlations did not always empirically support similar properties as were derived for CS 

using closed form formulas such as 𝑏 ≈ 𝑘 minimizes the variance of the estimated 

intervention effect. Furthermore, in some empirical settings, T=2 measures with (b, k) = 

(1, 1) may be almost as powerful as having T=7 measures. While it may be difficult for 

many investigators both to obtain normative data for Toeplitz correlation structure and to 

compute variances of intervention effect estimates based on Toeplitz variances, our 

efforts to identify simple and conservative approximations had mixed success.  
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Appendix 1: Gradient Non-Randomized Designs 

There may be ethical pressure to use a process that we define here as “gradient 

randomization” to give treatment to the most-needy units. In other words, units are 

selected to be given the new intervention based on the levels of the outcome at time j=-1, 

most likely under a gradient that those with worse levels at that time being more likely to 

be chosen for the intervention. Unfortunately, a “regression to the mean (RTM)” 

phenomenon [5, 6] is likely to occur in such gradient non-randomized designs. In general, 

high (or low) measurements in a longitudinal process are likely to be followed by less 

extreme ones that are closer to the unit’s true mean at subsequent times. Thus many of 

those “poor-outcome” sites that were given preference for the intervention by performing 

badly at j=-1, are likely to regress back (i.e. improve) on their own even without the 

intervention.  

The practical problem of RTM is to distinguish the intervention change from the 

expected change due to the natural variation [21]. This can, perhaps, be modeled with 

both long-term (𝛼1) and short-term (𝛼2) components for baseline differences between 

facilities that are and are not randomized to receive interventions shown in (A). The long-

term pre-intervention gradient α1captures overall treatment arm differences at j=–b, -(b-

1), …, -1 coming from the fact that facilities that perform worse in general are more 

likely to perform worse at j=-1. The short-term immediate pre-intervention gradient (𝛼2) 

captures the selection effect from those facilities that have a directional shift at j=-1 being 

selected on this basis into the intervention arm.   

𝑌ℎ𝑖𝑗 = 𝛼0 + 𝛼1𝐼{ℎ=1} + 𝛼2𝐼{ℎ=1,𝑗=−1} + 𝛽𝑗 + 𝜃𝑍ℎ𝑗 + 𝜀𝑖𝑗
∗                             (A) 
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Again 𝛽𝑗  denotes main effects of times j = -(b-1), …, -1, 1, …,k relative to j=-b; as 

before 𝛼0 denotes the average baseline value taken at j=-b for control units; 𝛼1denotes 

any long-term gradient effect of h=1 versus h=0 that lead to selection into the 

intervention arm; 𝛼2 captures any short-term gradient effect of h=1 versus h=0 that lead 

to selection for intervention at j=-1; 𝜃 denotes a constant relative post-intervention 

change from treatment h=1 (as opposed to h=0) after j=0.  

We are assuming that the short-term intervention selection gradient manifests only at 

j=-1. If so, and we exclude the time point j=-1, from the study, then b becomes b-

1, 𝛼2 drops out of (A), and the model becomes the same as (1) in the main chapter with 

parameters (b-1, k) under CS. But note if CS does not hold then the setting is more 

complicated, which is beyond the scope of this chapter. Also, note that it could be argued 

that the error term at j=-1 is altered by the gradient selection bias which manifests in part 

through subsuming the error term into 𝛼1. However, even if so, the approach described 

above to exclude the timepoint j=-1from the analysis should be valid. 

 

Appendix 2: Design Matrix 

For (1) with the general parameter vector 𝛽=(𝛼0, 𝛼1, 𝛽−(𝑏−1), … , 𝛽−1, 𝛽1, … , 𝛽𝑘, 𝜃), 

the corresponding design matrix has columns (𝐼, 𝐼{ℎ=1}, 𝐽−(𝑏−1), … , 𝐽−1, 𝐽1, … , 𝐽𝑘 , 𝑍). To 

simplify the calculation in (𝑋′𝑉−1𝑋)−1 in Appendix 3, we reorder the parameter vector 

to put 𝛼1and 𝜃 together with 𝑋 = (𝐼, 𝐽−(𝑏−1), … , 𝐽−1, 𝐽1, … , 𝐽𝑘, 𝐼{ℎ=1}, 𝑍).   

As shown in (B), the general design matrix X is made up of (𝑛0 + 𝑛1) times 𝑋ℎ,𝑖’s, 

where𝑋ℎ=0,𝑖denotes the partial design matrix for each unit in the untreated group 
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and 𝑋ℎ=1,𝑖 stands for each unit in the treated group. Note the (𝑇 + 1)𝑡ℎcolumn indicates a 

long-term pre-intervention gradient corresponding to 𝛼1due to non-randomization, and 

the (𝑇 + 2)𝑡ℎcolumn stands for intervention effect 𝜃. Therefore, for the NR-DD, the 

design matrix is 𝑋 = 𝑋𝑁𝑅.  

𝑋𝑁𝑅 =

[
 
 
 
 
 
 𝑋ℎ=0,1
⋮

 𝑋ℎ=0,𝑛0 
 𝑋ℎ=1,1
⋮

 𝑋ℎ=1,𝑛0 ]
 
 
 
 
 

 where 

 𝑋ℎ=0,𝑖 =

[
 
 
 
 
 
1  1 …  0  0 ⋯  0
⋮   ⋮  ⋱ ⋮ ⋮ ⋱ ⋮
1  0 ⋯  1  0 ⋯  0

0 0
⋮ ⋮
0 0

1  0 ⋯  0  1 ⋯  0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

1 −1 ⋯ −1 −1 ⋯ −1

0 0
⋮ ⋮
0 0]

 
 
 
 
 

𝑇∗(𝑇+2)

; 

 𝑋ℎ=1,𝑖 =

[
 
 
 
 
 
1  1 …  0  0 ⋯  0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
1  0 ⋯  1  0 ⋯  0

1 0
⋮ ⋮
1 0

1  0 ⋯  0  1 ⋯  0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

1 −1 ⋯ −1 −1 ⋯ −1

1 1
⋮ ⋮
1 1]

 
 
 
 
 

𝑇∗(𝑇+2)

.                           (B) 

Now for the randomized design the design matrix 𝑋𝑅 is the same as 𝑋𝑁𝑅 shown above 

except that the second to last column corresponding to 𝛼1is removed. 

 

Appendix 3: GLS Variance Estimate 

The goal is to find (𝑋′𝑉−1𝑋)−1as the lower right element of (𝑋′𝑉−1𝑋)−1𝜎2 is 

𝑉𝑎𝑟(𝜃) where X is the design matrix described in Appendix 2. First under CS 

where 𝜌𝑗𝑗′ ≡ 𝜌, the covariance matrix in (2) reduces to 𝑉𝐶𝑆 = (
1 ⋯ 𝜌
⋮ ⋱ ⋮
𝜌 ⋯ 1

)

𝑇

and 𝑉−1 =
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(
𝑉0
−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑉0

−1
)

(𝑛0+𝑛1)𝑇

with 

 𝑉0
−1 =

1

[1+(𝑇−1)𝜌](1−𝜌)
(
1 + (𝑇 − 2)𝜌 ⋯ −𝜌

⋮ ⋱ ⋮
−𝜌 ⋯ 1 + (𝑇 − 2)𝜌

)

𝑇

. 

Then we apply the technique for the inverse of the partitioned matrix.  

(𝑋′𝑉−1𝑋)−1 = [
𝐴11 𝐴21
𝐴21 𝐴22

]
−1

= [
𝐵11 𝐵21
𝐵21 𝐵22

] 

where 𝐵22 = (𝐴22 − 𝐴21𝐴11
−1𝐴12)

−1and 𝑉𝑎𝑟(𝜃)is contained in 𝐵22. We then derive this 

simple closed form formula for GLS-CS estimate of variance.  

Here we take NR design as an example. For NR-DD,  

(𝑋𝑁𝑅
′ 𝑉−1𝑋𝑁𝑅)

−1
= (

1

𝑛0
+
1

𝑛1
) [1 + (𝑇 − 1)𝜌](1 − 𝜌) 

[
 
 
 
 
 
 
 
 
2T(1 − ρ) 2(1 − ρ)

2(1 − ρ) 2[1 + (𝑇 − 2)𝜌]
⋯      2(1 − ρ)
⋯      −2𝜌

⋮              ⋮      
2(1 − ρ)                 −2𝜌        

  ⋱ ⋮
⋯ 2[1 + (𝑇 − 2)𝜌]

0              0         
0             0        
⋮              ⋮         
0              0         

  0                           0
0                         0

            
    ⋯        0          
⋯ 0       

T(1 − ρ)

2

1 − ρ

2
1 − ρ

2

[1 + (𝑇 − 2)𝜌]

2 ]
 
 
 
 
 
 
 
 
−1

 

= (
1

𝑛0
+

1

𝑛1
) [1 + (𝑇 − 1)𝜌](1 − 𝜌) [

𝐴11 𝐴21
𝐴21 𝐴22

]
−1

.  

In this partitioned matrix,  
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𝐴11 = [

2T(1 − ρ) 2(1 − ρ)

2(1 − ρ) 2[1 + (𝑇 − 2)𝜌]
⋯ 2(1 − ρ)
⋯ −2𝜌

⋮              ⋮      
2(1 − ρ)                 −2𝜌        

⋱ ⋮
⋯ 2[1 + (𝑇 − 2)𝜌]

] =

[

2T(1 − ρ) 2(1 − ρ) ⋯ 2(1 − ρ)

2(1 − ρ)
⋮

2(1 − ρ)
𝐶11

] where C11 is compound symmetry with 2[1 +

(T − 2)ρ] on diagonal and −2ρ off diagonal and the same meaning for this same pattern 

holds when it occurs in the other matrices presented in Appendix 3;  

 

𝐴22 = [

T(1−ρ)

2

1−ρ

2
1−ρ

2

[1+(𝑇−2)𝜌]

2

] and 𝐴21 = 𝐴12
′ = [

0 0
0 0
⋮ ⋮
0 0

].  

Because 𝐴21𝐴11
−1𝐴12 = [

0 0
0 0

],  

𝐵22 = (𝐴22 − 𝐴21𝐴11
−1𝐴12)

−1 = 𝐴22
−1 = [

T(1−ρ)

2

1−ρ

2
1−ρ

2

[1+(𝑇−2)𝜌]

2

]

−1

.  

Upon inverting 𝐴22, the lower right element in 𝐵22 implies the the GLS variance 

estimate for non-randomized designs.  

 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) = (
1

𝑛0
+

1

𝑛1
)
T(1−ρ)

bk
σ2.  

Similarly, to calculate (𝑋𝑅
′ 𝑉−1𝑋𝑅)

−1
 using the partitioned matrix inverse approach 

described above, the GLS variance estimate for randomized designs is 

 𝑉𝑎𝑟(𝜃𝑅−𝐶𝑆) = (
1

𝑛0
+

1

𝑛1
)
[1+(𝑇−1)ρ](1−ρ)

𝑘[1+(𝑏−1)ρ]
𝜎2.  

 



82 

 

Appendix 4: Variance is Invariant to Absorption from Non-Randomization 

Dispersion under Compound Symmetry 

For the NR-DD model as defined in (1), the strata effects (𝛼0 + 𝛼1𝐼{ℎ=1}) are treated 

as fixed, i.e., 𝛼0 for the control arm and 𝛼0 + 𝛼1 for the intervention arm. Using 

compound symmetry, 𝜀𝑖𝑗
∗

 can be decomposed as (𝜇𝑖 + 𝜀𝑖𝑗) in (B) with 𝜇𝑖 being a main 

error for the unit i, and 𝜀𝑖𝑗 is independent random error at each time j within-unit i.  

𝑌ℎ𝑖𝑗 = 𝛼0 + 𝛼1𝐼{ℎ=1}+(𝜇𝑖 − 𝛼0 − 𝛼1𝐼{ℎ=1}) + 𝛽𝑗 + 𝜃𝑍ℎ𝑗 + 𝜀𝑖𝑗                         (B) 

However, had randomization been used in this setting, then there would be a 

common intercept 𝛼 with the model being (C). 

𝑌ℎ𝑖𝑗 = 𝛼 + (𝜇𝑖 − 𝛼) + 𝛽𝑗 + 𝜃𝑍ℎ𝑗 + 𝜀𝑖𝑗                                                                     (C) 

where for example with 𝑛0 = 𝑛1, 𝛼 = 𝛼0 +
𝛼1

2
. In the R setting, 

𝑉𝑎𝑟(𝜇𝑖) = 𝜏
2, 𝑉𝑎𝑟(𝜀𝑖𝑗) = 𝜎𝑒

2 with 𝜏2 + 𝜎𝑒
2 = 𝜎2, and 𝜌 =

𝜏2

𝜏2+𝜎𝑒
2.  

But for the NR-DD model imposed in the same setting, the strata effects are treated 

as fixed. The within person common error now is (𝜇𝑖 − 𝛼0 − 𝛼1𝐼{ℎ=1}) with the 

variance (𝜏2 − 𝜎ℎ
2) where 𝜎ℎ

2 =
𝛼1
2

4
 . The 𝑉𝑎𝑟(𝜀𝑖𝑗) = 𝜎𝑒

2 is unchanged by the NR design. 

For the NR-DD model applied to this setting, the overall variance of an observation 

is 𝜎𝑁𝑅
2 = (𝜏2 − 𝜎ℎ

2) + 𝜎𝑒
2 and the within person repeated measure correlation is 𝜌𝑁𝑅 =

𝜏2−𝜎ℎ
2

𝜎𝑁𝑅
2 =

𝜏2−𝜎ℎ
2

(𝜏2−𝜎ℎ
2)+𝜎𝑒

2 thus (1 − 𝜌𝑁𝑅) =
𝜎𝑒
2

(𝜏2−𝜎ℎ
2)+𝜎𝑒

2. 

However, from (6) the 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐶𝑆) in NR-DD only depends on 𝜎2and 𝜌 through 

the product(1 − 𝜌)𝜎2. To that end, this product is unchanged by application of the NR-

DD design in that(1 − 𝜌𝑁𝑅)𝜎𝑁𝑅
2 = (1 − 𝜌𝑅)𝜎𝑅

2 = 𝜎𝑒
2. Thus the parameters for 𝜎2 and 
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𝜌 from the “pre-nonrandomized” study design population can be used in (6) no matter 

what the impact of the NR-DD on the final 𝜎2and 𝜌 are. 

We should note that a similar decomposition for the general Toeplitz covariance 

matrix is too complicated to present at this stage and may not even have a well-defined 

formulation. In our comparisons of Randomized and Non-randomized designs in terms 

of 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃) and 𝑉𝑎𝑟(𝜃𝑅−𝑇𝑃), we assumed that any impact of imposing a DD model 

on the variances and underlying correlations of repeated measures in the NR (versus the 

R design) will roughly cancel out in the determination of 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑇𝑃). But this remains 

to be verified empirically.  
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Chapter 3 Non-Randomized and Randomized Stepped-Wedge Designs using an 

Orthogonalized Least Squares Framework 

Abstract 

Randomized stepped-wedge (R-SW) designs are increasingly used to evaluate 

interventions targeting continuous longitudinal outcomes measured at T fixed time points. 

Typically, all units start out untreated, and randomly chosen units switch to intervention 

at sequential time points until all receive intervention. As randomization is not always 

feasible, non-randomized stepped-wedge (NR-SW) designs (units switching to 

intervention are not randomly chosen) have attracted researchers. We develop an 

orthogonlized generalized least squares framework for both R-SW and NR-SW designs.  

The variance of the intervention effect estimate depends on the number of steps (S), 

length of step sizes (𝑡𝑠) and number of units (𝑛𝑠) switched at each step (s=1, …, S). If all 

other design parameters are equal, this variance is higher for the NR-SW than for the 

equivalent R-SW design (particularly if the intercepts of non-randomly stepped switching 

strata are analyzed as fixed effects). We focus on balanced SW (BR-SW, BNR-SW) 

designs (where 𝑡𝑠 and 𝑛𝑠 remain constant across s) to obtain insights into optimality for 

variance of the estimated intervention effect. As previously observed for the BR-SW, the 

optimal choice for number of time points at each step is also 𝑡𝑠 ≡ 1 for the BNR-SW. In 

our examples, when compared to BR-SW designs, equivalent BNR-SW designs even with 

intercepts of non-randomly stepped switching strata analyzed using fixed effects sacrifice 

little efficiency given an intra-unit repeated measure correlation 𝜌 ≥ 0.50. Compared to 

traditional difference-in-differences designs, optimal BNR-SW designs are more efficient 



85 

 

with the ratio of variances of these designs converging to 0.75 when T>10. We illustrate 

these findings using longitudinal outcomes in long-term care facilities.  
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1. Introduction 

Recently developed randomized stepped wedge (SW) designs [1, 2] are applied to 

longitudinal outcomes repeatedly measured at T fixed time points in N units being placed 

on the new intervention over time using a staggered schedule. For the examples used in 

this chapter, a unit is a single medical facility undergoing a facility-wide intervention 

with facility-level measurements taken over time. Although we do not have the person-

level data within these units, we extend to such designs in Appendix 1 where units could 

in fact be individual persons undergoing person-level interventions against chronic 

conditions being measured over time. Typically, at the first time point all units are not on 

the new intervention (i.e. untreated). More units (who then remain on the intervention 

until end of study) are switched onto the new intervention (i.e. treated) at subsequent time 

points. A pooled comparison of the study outcome for “treated” versus “untreated” unit-

measures that adjusts for secular time effect is made.  The SW designs are increasingly 

implemented in diverse areas including: cardiovascular disease [3, 4], cancer [5, 6], HIV 

[7], respiratory disease [8], nutrition [9], maternal and child health [10], and health care 

financing [11].  

Shifting of units onto intervention at different times complicates SW analysis in that 

we need to account for secular time effects and intra-unit correlation [1, 12].   Often the 

randomized stepped wedge (R-SW) is applied to “cluster randomized trials” where the 

“unit” is a cluster of a fixed m>1 individuals with a shared intercept measured at fixed 

time points [1, 2, 12, 13].  The analysis is based on the means of all individuals in the 

cluster at each time. However, the R-SW is also used for cases where there is only 1 

measure at each time point (i.e. m=1) sometimes referred to as a wait list design [13].  



87 

 

This is also the case for the examples in our analysis so our derivations are for m=1 as is 

typically the case in facility-level analyses for health care settings [14, 15]. Appendix 1 

gives a conversion between our setting and cluster-randomized trials with m>1.  Hussey 

and Hughes [12] provided approaches to sample size and power calculations for R-SW 

implementation of cluster-randomized trials.  The R-SW often has greater statistical 

power than traditional designs including: randomized longitudinal parallel designs [16] 

where randomly chosen participants treated at all time points are compared to those 

untreated at all time points and randomized longitudinal difference in difference (R-DD) 

designs [17] where all units start out untreated and are measured for a fixed number of 

time points, then at the same fixed time point a randomly chosen subset of units are 

switched to the intervention and remain switched until the end.  

While randomization of units to intervention arms is preferred as a gold standard to 

reduce bias and improve efficiency [18], it is not always feasible, particularly in health 

service settings, because of resource and logistical constraints [19]. Thus, for example, 

non-randomized difference-in-differences (NR-DD) studies are applied to estimate 

impact of new interventions or policies [20].  In NR-DD designs, all units start out 

untreated and are followed for a fixed number of visits; then non-randomly chosen units 

are switched to the new policy or intervention and compared to controls continuing to be 

untreated.  However, non-randomized stepped-wedge (NR-SW) designs have recently 

attracted researchers [21, 22]. While it is known that generalized linear mixed models 

[12, 23] can evaluate intervention effects on continuous outcomes under normal 

approximation, these have not been formally applied to NR-SW design including for 

power and sample size estimation.  



88 

 

This chapter develops a unifying orthogonalized framework for stepped-wedge 

designs and obtains simple formulas for variance of intervention effects on continuous 

outcomes.  Section 2 develops a general linear model for both R-SW and NR-SW designs 

and proposes an orthogonalized design matrix to simplify derivation of variance 

estimates. Section 3 presents general least squares (GLS) estimates for variance of 

intervention effect using a within-unit compound symmetry repeated measure correlation 

and discusses the general framework for power estimation. Section 4 focuses on a special 

but common case of stepped wedge designs where equal numbers of units are switched at 

equally spaced times that we denote as balanced designs (BR-SW for randomized and 

BNR-SW for non-randomized) and derives simple closed form solutions for variance of 

the intervention effect estimate for these designs. Variances of optimal designs for BR-

SW and BNR-SW studies are compared. Section 5 compares the optimal BNR-SW 

design to the optimal NR-DD studies. Section 6 presents illustrative examples from long-

term care facilities and Section 7 summarizes and discusses possible future work.  

 

2. Stepped-Wedge Models 

2.1. Notations 

Let T be the number of measured time points, S be the number of these time points at 

which one or more units is transitioned onto intervention (i.e. “steps”) and N be the total 

number of units. Typically, at the first step, all of the units start in the control (untreated) 

condition and baseline measurements are taken, although we expand this to allow some 

units treated at baseline. Once switched onto the intervention, units remain treated until 

the end. At the last step, often all units have switched to the intervention, but we expand 
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to allow some units to remain untreated. Let s = 1, …, S enumerate the ordered stratum 

(of units) that is switched to intervention per step. Here a stratum is a group of units that 

share a common characteristic, i.e., the time when the intervention is first delivered. Let 

𝐴𝑠 denote the 𝑠𝑡ℎ “shifting strata” (the subset of units that switched to the intervention at 

step s) and 𝑛𝑠 be the number of units in 𝐴𝑠.  

Let i = 1, …, N enumerate the units with the enumeration ordered by the stratum. For 

instance, 𝐴1contains {1, 2, … , 𝑛1}, i.e., stratum s=1 with units 𝑖 ∈ 𝐴1 switched to the 

intervention at the first step; 𝐴2 contains {𝑛1 + 1, 𝑛1 + 2,… , 𝑛1 + 𝑛2}, i.e., stratum s=2 

with units 𝑖 ∈ 𝐴2 switched to the intervention at the second step and so on.  The number 

of consecutive time periods or step size per step is denoted (𝑡0, 𝑡1, … , 𝑡𝑆) with ∑ 𝑡𝑠 =
𝑆
𝑠=0

𝑇, but note that 𝑡0 = 0 if some (i.e. 𝑛1)  units are already treated when the study starts.  If 

all units have not been shifted to treatment by the end of the study, 𝑡𝑆 = 0 and 𝑛𝑆 denotes 

the number of units never shifted onto treatment. Let 𝑗𝑠 = ∑ 𝑡𝑙
𝑠−1
𝑙=0  denote the first time 

point that units in the 𝑠𝑡ℎstratum are treated (with 𝑗𝑠 =∞ if some units are never treated); 

and 𝑍𝑖𝑗 denote if unit i is treated at time j (0=no, 1=yes) with 𝑍𝑖𝑗 = 0 if 𝑗 < 𝑗𝑠 and 𝑍𝑖𝑗 =

1 if 𝑗 ≥ 𝑗𝑠 where s is the ordered stratum that unit i belongs to. Figure 1 illustrates the 

general SW study where all units start out untreated (𝑡0 > 0), and all units are treated 

after the last step (𝑡𝑆 > 0).   
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Figure 1: Overview for general Stepped-Wedge designs 

Figure 10: Overview for general Stepped-Wedge designs 

We expand the general SW design to three special subcases: 1) Not all units are 

shifted onto treatment (or 𝑡𝑆 = 0), even though the last 𝑛𝑆 units are not shifted onto 

treatment, they do constitute a “shifting strata” and step “S” can be thought of as “never 

shifted”.  Note when 𝑆 = 2, this subcase reduces to a DD design.  2) The study does not 

begin until after the first 𝑛1 unit had been put on treatment.  The fact that these units are 

never untreated is captured by 𝑡0 = 0.  3) Both previous conditions 𝑡0 = 𝑡𝑆 = 0 happen 

with some units started on treatment and some units never shifted to treatment. Note this 

subcase reduces to a parallel design when 𝑆 = 2.  

2.2. Statistical model and orthogonal coding for design matrix 

Let 𝑌𝑖𝑗 be the measurement at the 𝑗𝑡ℎtime point from unit i. Again for this chapter we 

only have single facility-level measures over time.  If there are m patient-level measures 

nested within each facility then 𝑌̅𝑖𝑗 can be analyzed using the conversion in Appendix 1.  

For any given unit i at time j, we can model the outcome of interest as  𝑌𝑖𝑗 = 𝜇𝑖 +

𝛽𝑗 + 𝜃𝑍𝑖𝑗 + 𝜀𝑖𝑗. Here 𝜇𝑖 is the main effect for unit i, 𝛽𝑗 is the main effect for time j, θ is 

the effect of the intervention and 𝜀𝑖𝑗  is random error. The intervention effect (𝜃) is 
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modeled as an “immediate jump” effect and remains constant in the post-intervention 

measurements. Now 𝜇𝑖~𝑁(𝛼0, 𝜏
2) and 𝜀𝑖𝑗~𝑁(0, 𝜎𝑒

2) with all previous terms being 

independent. Randomization, also known as random allocation of the units into shifting 

strata, results in each unit having an equal probability of being assigned to each of the S 

shifting strata. The purpose of randomization is to eliminate allocation bias and achieve 

shifting strata similar in baseline characteristics [24]. If we subsume the random unit 

deviation (𝜇𝑖 − 𝛼0) into the error term 𝜀𝑖𝑗
∗  (i.e. 𝜀𝑖𝑗

∗ = (𝜇𝑖 − 𝛼0) + 𝜀𝑖𝑗), the R-SW model 

is:  

𝑌𝑖𝑗 = 𝛼0 + 𝛽𝑗 + 𝜃𝑍𝑖𝑗 + 𝜀𝑖𝑗
∗                                                         (1) 

Now 𝜀𝑖𝑗
∗ ~𝑁(0, 𝜎2) where 𝜎2 = 𝜏2 + 𝜎𝑒

2 and is independent between different units as 

shown in (6) but has correlation  𝜌 =
𝜏2

𝜏2+𝜎𝑒
2 

 within two timepoints j and j’ within the 

same unit i. 

As discussed in Appendix 1, we should caution that our notation for 𝜌 uses the wait 

list design or an already averaged unit as a single observation. This differs from that used 

in most cluster randomized stepped wedge design papers as our response is a single 

measure (𝑌𝑖𝑗) as opposed to the average of m independent observations for a cluster i at 

time j (𝑌̅𝑖𝑗). To convert between the two notations, our 𝜌 =
𝜌 ̃

𝜌 ̃+
1−𝜌 ̃

𝑚

 where 𝜌 ̃ denotes the 

“𝜌” used in “cluster randomization notation” papers [12, 25-27].  

For a non-randomized design with S steps (and thus S shifting strata), we assume that 

the non-randomization is associated with the central tendency (mean) of the observations 

within the strata, but not otherwise with the trajectories.  The mean effect is no longer a 
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common 𝛼0, but differs by 𝛼𝑠(𝑠 = 1,… , 𝑆) that captures the non-randomization 

displacement for being in shifting stratum s. The shared random error of the unit effect 

(i.e. 𝜇𝑖 − 𝛼𝑠)  is again subsumed into the variance and within-unit covariance of 𝜀𝑖𝑗
∗  

(i.e. 𝜀𝑖𝑗
∗ = (𝜇𝑖 − 𝛼𝑠) + 𝜀𝑖𝑗). The model being fit for NR-SW is thus:  

𝑌𝑖𝑗 = 𝛼𝑠𝐼{𝑖∈𝐴𝑠} + 𝛽𝑗 + 𝜃𝑍𝑖𝑗 + 𝜀𝑖𝑗
∗ .                                                    (2) 

We consider in (2) the strata effects (i.e. 𝛼𝑠 − 𝛼0) to be “fixed” rather than “random” 

effects [28].  In many NR-SW settings it may be hard to argue that strata effects are 

random (for example with respect to strata order and hence number of time points 

treated), normally distributed, and/or that a random-effects state model is numerically 

stable [29].  The Hausman Test [28] for this admissibility of random effects models could 

be used in such settings. Or correlation of 𝛼𝑠 with s could be examined, and random 

effects models not be used for non-zero correlation. 

However, if the strata effects are considered random in the NR-SW model, then the 

assumption on the covariance of 𝜀𝑖𝑗
∗  will be different from that in (6). For the NR-SW 

with the strata effects considered random, measurements from units in different strata are 

independent, and the repeated measure correlation within the same unit is 𝜌, but now the 

correlation of the error 𝜀𝑖𝑗 and 𝜀𝑖′𝑗 from two different units in the same stratum is 𝜌𝑠 

where 0 ≤ 𝜌𝑠 ≤ 𝜌 as shown in (7).  

For both R-SW and NR-SW in (1) and (2), the coding for intervention effect (𝑍𝑖𝑗) is 

effectively (0, 1) with 0 for control and 1 for intervention. For 𝑡0 (possibly zero) baseline 

measures, all units stay in control and the coding is 0. In the “build-up” steps, the coding 

switches from 0 to 1 sequentially as 𝑗 ≥ 𝑗𝑠. Eventually for the last step (unless 𝑡𝑆 = 0), 
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every unit receives intervention and the coding is 1.  However, to obtain an 

orthogonalized decomposition of the intervention parameters from the time parameters, 

we re-parameterize (1) and (2) as below.  

For R-SW,  

𝑌𝑖𝑗 = 𝛼0 + 𝛽𝑗
∗ + 𝜃𝑍𝑖𝑗

∗ + 𝜀𝑖𝑗
∗ ;                                               (3) 

For NR-SW,   

𝑌𝑖𝑗 = 𝛼𝑠𝐼{𝑖∈𝐴𝑠} + 𝛽𝑗
∗ + 𝜃𝑍𝑖𝑗

∗ + 𝜀𝑖𝑗
∗ ;                                      (4) 

where 𝑍𝑖𝑗 = 0 for if 𝑗 < 𝑗1 or if 𝑗 ≥ 𝑗𝑆  as all units are in the same treatment condition, 

otherwise for 𝑗𝑠 ≤ 𝑗 < 𝑗𝑠+1,  

𝑍𝑖𝑗
∗ = {

−
∑ 𝑛𝑙
𝑠
𝑙=1

𝑁
,           𝑖𝑓 𝑍𝑖𝑗 = 0

𝑁−∑ 𝑛𝑙
𝑠
𝑙=1

𝑁
,           𝑖𝑓 𝑍𝑖𝑗 = 1

.                                       (5) 

Equivalently, 𝑍𝑖𝑗
∗ = 𝑍𝑖𝑗 −

∑ 𝑛𝑙
𝑠
𝑙=1

𝑁
 and thus 𝛽𝑗

∗= 𝛽𝑗 +
∑ 𝑛𝑙
𝑠
𝑙=1

𝑁
𝜃.  

The orthogonal coding of intervention effect (5) for unit-time can be found in 

Appendix 2. The advantage of the proposed orthogonal coding is it simplifies the solution 

for the GLS estimates obtained in Section 3.   

 

3. GLS Variance Formula and Power Estimation 

3.1. General formula for GLS estimate 

The matrix forms of (3) and (4) can be written as: 𝑌 = 𝑋𝛽 + 𝜖, where 𝜀~𝑁(0, 𝜎2𝑉). 

Here X represents the design matrix and Y is a vector of outcomes.  For (4) with the 
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general parameter vector 𝛽=(𝛼1, … , 𝛼𝑆, 𝛽1
∗, … , 𝛽𝑇−1

∗ , 𝜃), the corresponding X has columns 

(𝐼{𝑖∈𝐴1}, … , 𝐼{𝑖∈𝐴𝑆}, 𝐽1, … , 𝐽𝑇−1, 𝑍
∗) with N rows per column. 𝑍∗ is a column with 

orthogonal coding in (5) (as shown in Appendix 2) and 𝐽1, … , 𝐽𝑇−1 are columns 

corresponding to dummy T-1 independent time coded (-1, 1), so here and elsewhere with 

for j=T, 𝛽𝑇 = −∑ 𝛽𝑗
𝑇−1
𝑗=1  under the fixed effects constraint ∑ 𝛽𝑗

𝑇
𝑗=1 = 0. Similarly for (3) 

except that 𝛽=(𝛼0, 𝛽1
∗, … , 𝛽𝑇−1

∗ , 𝜃).  

As shown below for the R-SW in (3) and the fixed effects NR-SW in (4), the 

covariance matrix V is the overall correlation matrix of 𝜀𝑖𝑗
∗ , which is made up of N block 

diagonals of 𝑉0 with all off-block diagonal matrix elements being 0. Each 𝑉0 is the 

correlation matrix of repeated measures within each single unit, with dimension T.  

𝑉 = (
𝑉0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑉0

)

𝑁 𝑇

, where 𝑉0 = (
1 ⋯ 𝜌
⋮ ⋱ ⋮
𝜌 ⋯ 1

)

𝑇

.                                   (6) 

The NR-SW with the strata effects treated as random uses (3) but with V now being a 

block diagonal of shifting stratum variances 𝑉𝑠 (s = 1, … , S) where the random strata 

effects are subsumed in 𝜌𝑠.  

𝑉 = (
𝑉1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑉𝑆

)

𝑁 𝑇

with 𝑉s = (
𝑉0 ⋯ 𝜌𝑠
⋮ ⋱ ⋮
𝜌𝑠 ⋯ 𝑉0

)

𝑛𝑠T

.                                   (7) 

With 𝑉0 as defined above and all 𝑉s correlations not in the 𝑉0 being 𝜌𝑠, the intra-

stratum correlation is mediated by the non-randomization selection effect. The GLS 

estimate for 𝛽 is 𝛽̂ = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌 and has variance Λ = (𝑋′𝑉−1𝑋)−1𝜎2 where Λ 
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is a square matrix of order (S+T) for NR-SW and (T+1) for R-SW.  The variance of 𝜃 is 

the last diagonal element of Λ.  This 𝛽̂ is the best linear unbiased estimator (BLUE) for 𝛽 

and uniform minimum variance (UMVU) if 𝑌𝑖𝑗 is normally distributed [30].  

Although the inverse of Λ is complicated, the orthogonalized coded 

= (𝐼{𝑖∈𝐴1}, … , 𝐼{𝑖∈𝐴𝑆}, 𝐽1, … , 𝐽𝑇−1, 𝑍
∗) , for the fixed effects NR-SW based on (4) with V as 

defined by (6) simplifies 𝑋′𝑉−1𝑋 with most cross-products being zero which simplifies 

derivation of (𝑋′𝑉−1𝑋)−1.  

As Appendix 3 proves, 𝑉𝑎𝑟(𝜃) =
1

𝑂𝑇𝐷−𝐼𝐷𝑃
𝜎2, where 𝑂𝑇𝐷 = ∑ 𝑛𝑠

𝑆
𝑠=1 𝑍𝑠

∗′𝑉0
−1𝑍𝑠

∗ 

stands for the “orthogonalized treatment dispersion” (𝑍𝑠
∗ is the orthogonal coding for the 

𝑠thstratum in Table A as defined Appendix 2); 𝐼𝐷𝑃 =

∑
[1+(𝑇−1)𝜌]

𝑛𝑠𝑇
(𝐼{𝑖∈𝐴𝑠}
′ 𝑉−1𝑍∗)2𝑆

𝑠=1  denotes “intercept dispersion penalty” and reflects 

reduction from OTD by the treatment term being dispersed about different intercepts 𝛼𝑠 

(rather than always about a common 𝛼0) due to the fixed effects non-randomization. Full 

expansions of OTD and IDP are presented in Appendix 3.  

For the fixed effects NR-SW, 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑆𝑊) =
1

𝑂𝑇𝐷−𝐼𝐷𝑃
𝜎2 

=
(1−𝜌)𝜎2

∑
𝑡𝑙(∑ 𝑛ℎ

𝑙
ℎ=1 )(𝑁−∑ 𝑛ℎ

𝑙
ℎ=1 )

𝑁
𝑆−1
𝑙=1 −

1

𝑇
∑ 𝑛𝑠
𝑆
𝑠=1 [∑

𝑡𝑙(𝑁−∑ 𝑛ℎ
𝑙
ℎ=1 )

𝑁
𝑆−1
𝑙=1 −∑ 𝑡ℎ

𝑠−1
ℎ=1 ]2

.                       (8) 

Note that here and elsewhere, 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑆𝑊) denotes the variance for “fixed effects” 

modeling.  
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For the R-SW, IDP=0, therefore the variance reduces to, 𝑉𝑎𝑟(𝜃𝑅−𝑆𝑊) =
1

𝑂𝑇𝐷
𝜎2 

=
(1−𝜌)𝜎2

1

(1−𝜌)
∑

𝑡𝑙(∑ 𝑛ℎ
𝑙
ℎ=1 )(𝑁−∑ 𝑛ℎ

𝑙
ℎ=1 )

𝑁
𝑆−1
𝑙=1 −

𝜌

[1+(𝑇−1)𝜌]
∑ 𝑛𝑠
𝑆
𝑠=1 [∑

𝑡𝑙(𝑁−∑ 𝑛ℎ
𝑙
ℎ=1 )

𝑁
𝑆−1
𝑙=1 −∑ 𝑡ℎ

𝑠−1
ℎ=1 ]

2.    

                                                                                                                            (9) 

For the same given SW design, 𝑉𝑎𝑟(𝜃𝑅−𝑆𝑊) is lower with randomization of units 

into the shifting strata (compared to fixed effects NR-SW) by the ratio of (9)/(8) being 

𝑂𝑇𝐷−𝐼𝐷𝑃

𝑂𝑇𝐷
< 1.  

Finally, the solution to 𝑉𝑎𝑟(𝜃) for the random effects NR-SW from (7) is difficult as 

the 𝜌𝑠 elements in the 𝑉𝑠′𝑠 lead to numerically complicated inverses and thus is not 

presented here.  

Both 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑆𝑊) and 𝑉𝑎𝑟(𝜃𝑅−𝑆𝑊) are invariant to 𝑡0 and 𝑡𝑆 conditional on the 

sum 𝑡0 + 𝑡𝑆 = 𝐸 (where E denotes the number of time points where all units are 

homogeneous with respect to intervention assignment which occurs on the front or back 

“edges” of the SW) for an otherwise identical design. Because of the orthogonal coding, 

𝑍𝑖𝑗
∗ = 0 for 𝑗 < 𝑗1 and 𝑗 ≥ 𝑗𝑆, meaning that observations falling in these periods 

contribute equally to IDP and OTD and doing so only by dampening 𝑉0
−1. For example, 

in a stepped-wedge design with S=3 and (𝑡0, 𝑡1, 𝑡2, 𝑡3) = (1, 1, 1, 2), 𝑉𝑎𝑟(𝜃) is invariant 

to 𝑡0 (or 𝑡3) given the sum of the two is some fixed value E where 𝐸 = 𝑡0 +  𝑡3 = 3. 

Thus, (𝑡0, 𝑡3) = (1, 2) and (𝑡0, 𝑡3) = (2, 1) (with 𝑡1 = 𝑡2 = 1 remaining the same) 

achieve the same 𝑉𝑎𝑟(𝜃) since 1+2 = 2+1 = 3.  
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3.2. Variance and Power Estimation 

Hussey and Hughes [12] determined power for R-SW designs by using a Wald test 

for intervention effect. Similarly, we consider two hypotheses for intervention effect with 

S steps and T total visits: 𝐻0: 𝜃 = 0; 𝐻1: 𝜃 = ±𝜃1.  Here 𝜃1 is the minimum detectable 

difference (or effect size 𝛿1 expressed as a multiple of 𝜎, i.e., 𝜃1 = 𝛿1𝜎) for a stepped 

wedge design given α, β, N. For practical repeated measure designs, the sample sizes are 

often large enough to permit normal approximation of the non-central t distribution when 

df > 30 [31]. With 𝛼 and 𝛽 being Type I and Type II errors, these are met for a given 𝜃1 

if 𝑉𝑎𝑟(𝜃)is such that 

𝜃1 = (𝑧1−𝛼
2
+ 𝑧1−𝛽)√𝑉𝑎𝑟(𝜃).                                            (10) 

For the fixed effects NR-SW and the R-SW, respectively, 𝑉𝑎𝑟(𝜃) is obtained from 

the GLS variance estimates in (8) and (9). Thus if ∅ is the cumulative distribution 

function for standard normal 𝑁(0, 1), rearranging (10) gives the power for conducting a 

two-sided test of size 𝛼 as:  

𝑃𝑜𝑤𝑒𝑟 = ∅(
𝜃1

√𝑉𝑎𝑟(𝜃̂)

− 𝑧1−𝛼
2
).                                               (11) 

 

4. Balanced SW Designs and Optimality Properties 

This section focuses on a specific design we define as “balanced” stepped-wedge, 

which numerically simplifies formulas and thus enables derivation of optimality 

properties.  The SW design is balanced if the same number of units (𝑛1 = ⋯ = 𝑛𝑆 = 𝑛) 
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are switched per step with equal step sizes (𝑡0 = 𝑡1 = ⋯ = 𝑡𝑆 = 𝑡).  For the general 

balanced design given t and n, starting at time t+1, n units switch to intervention and then 

t measures are taken before the next switch. This continues until all units have switched 

and after t more measures the study ends; thus 𝑇 = (1 + 𝑆) ∗ 𝑡 and 𝑁 = 𝑛 ∗ 𝑆.  Such 

balanced designs could occur in practice if say it took t time points to ramp up application 

to 𝑛 new units for each new step.  Balanced designs can be either non-randomized (BNR-

SW) or randomized (BR-SW).  This section first presents and compares simplified 

formulas for variance of the fixed effects BNR-SW and BR-SW, then investigates the 

optimal design to find the optimal values of S (or equivalently t) to achieve greatest 

power for a balanced design with fixed T and N. Finally, efficiency of the optimal fixed 

effects BNR-SW design is compared to that of the NR-DD for any given T and 𝜌.  

4.1. Power and Sample Size estimation for Balanced SW Designs 

For a balanced fixed effects BNR-SW design, variance in (8) simplifies to:  

𝑉𝑎𝑟(𝜃𝐵𝑁𝑅−𝑆𝑊) =
12𝑆(S+1)

𝑁𝑇(𝑆−1)(𝑆+2)
(1 − 𝜌)𝜎2.                                (12) 

Again here and elsewhere 𝜃𝐵𝑁𝑅−𝑆𝑊 denotes the estimated intervention effect for the fixed 

effects balanced non-randomized model as we did not derive closed form variance 

estimates for random effects non-randomized models.  

For a balanced BR-SW design, variance in (9) simplifies to:  

𝑉𝑎𝑟(𝜃𝐵𝑅−𝑆𝑊) =
6𝑆[1+(𝑇−1)𝜌](1−𝜌)

𝑁𝑇(𝑆−1)[1+(𝑇−1−
𝑆𝑡

2
)𝜌]
𝜎2.                                 (13)  
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Note that (13) is the same as formulas in Woertman et. al. [25] and Hussey & Hughes 

[12] after the previously noted conversion 𝜌 =
ρ ̃

ρ ̃+
1−ρ ̃

𝑚

 (also illustrated in Appendix 1), 

where ρ ̃ denotes the intra-class correlation in their cluster-randomized SW papers.  

As Appendix 4 shows (with 𝜎𝐹𝐸−𝑁𝑅
2 , 𝜎𝑅

2, 𝜌𝐹𝐸−𝑁𝑅 , 𝜌𝑅 defined in that Appendix), 

compared to fitting any R-SW, the NR-SW with fixed strata effects (FE) under the same 

setting will result in a lower model within population measurement variance on 𝑌𝑖𝑗 

(𝜎𝐹𝐸−𝑁𝑅
2 < 𝜎𝑅

2) together with a smaller within-unit correlation of 𝑌𝑖𝑗 and𝑌𝑖𝑗′ (𝜌𝐹𝐸−𝑁𝑅 <

𝜌𝑅) due to elimination of variance about the 𝛼𝑠 from the total variance about a common 

𝛼0. However, from (8) and (12) the 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑆𝑊) only depends on 𝜎2and 𝜌 through the 

product (1 − 𝜌)𝜎2.  To that end, this product is unchanged by application of the fixed 

effects NR-SW design in that (1 − 𝜌𝐹𝐸−𝑁𝑅)𝜎𝐹𝐸−𝑁𝑅
2 = (1 − 𝜌𝑅)𝜎𝑅

2 = 𝜎𝑒
2. This invariance 

property means that the “randomized study design” effect parameters 𝜎2and 𝜌 can be 

directly used in (8) and (12) for estimation of the variance of the intervention effect 

estimate no matter the impact of the fixed effects NR-SW on the final 𝜎2and 𝜌.  

4.2. Optimal t for Balanced SW Designs 

A balanced SW design may have a fixed total number of longitudinal times T because 

of budget and/or time constraints. For example, a study may be funded for T = 6 monthly 

measures on each unit. Finding the optimal balanced SW design with regards to the step 

size t from all possible integer step sizes (t= 1, 2 and 3) that can maximize power (or 

minimize the sample size needed to obtain a given power) would be important.  We start 

with fixed effects balanced non-randomized designs (BNR-SW), which corresponds to 
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finding the optimal 𝑡∗(or equivalently 𝑆∗) that maximizes the power (by minimizing the 

variance in (8)), given T, N and 𝜌.  

𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟
𝑆

𝑃𝑜𝑤𝑒𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟
𝑆

𝑉𝑎𝑟(𝜃𝐵𝑁𝑅−𝑆𝑊);  

𝑡∗ =
𝑇

1+𝑆∗
. 

The derivative of log(𝑉𝑎𝑟(𝜃𝐵𝑁𝑅−𝑆𝑊)) in (8) with respect to S is (
1

𝑆
−

1

𝑆−1
) +

(
1

1+𝑆
−

1

2+𝑆
) and is negative for 𝑆 ≥ 1 meaning 𝑉𝑎𝑟(𝜃𝐵𝑁𝑅−𝑆𝑊) monotonically decreases 

as S increases. The optimal 𝑆∗ should be as large as possible, and the corresponding 

optimal 𝑡∗should be as small as possible.  Accordingly, 𝑡∗ = 1 maximizes power. 

Likewise for randomized balanced BR-SW design, the derivative of log(𝑉𝑎𝑟(𝜃𝐵𝑅−𝑆𝑊))) 

in (13) with respect to S, is (
1

𝑆
−

1

𝑆−1
) −

𝑇𝜌

2(1+𝑆)2
, which is also negative for 𝑆 ≥ 1 and thus 

is optimized by 𝑡∗ = 1 as has been previously observed or surmised [12, 25-27].  

In the Supplementary Appendix, we investigate designs that are equivalent in terms 

of N, T and S with (𝑡1 = ⋯ = 𝑡𝑆−1 = 𝑡) but 𝑡0 and 𝑡𝑆 unconstrained, which we denote as 

“internally balanced”. For these designs, variance is often minimized with 𝑡0 and 𝑡𝑆 being 

less than t, which for t=1 is at 𝑡0 = 𝑡𝑆 = 0.  However, if many pre-existing baseline 

(𝑡0 ≫ 1) or/and post full implementation (𝑡𝑆 ≫ 1) measures will be available, the 

Supplementary Appendix shows that reducing the number of steps (i.e. S) may increase 

power.  
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4.3. Variance Ratio of Balanced Fixed Effects BNR-SW to BR-SW Designs 

For the balanced setting with the same N, T, S and t, the ratio of 
𝑉𝑎𝑟(𝜃̂𝐵𝑅−𝑆𝑊)

𝑉𝑎𝑟(𝜃̂𝐵𝑁𝑅−𝑆𝑊)
 in 

(9)/(8) reduces to (13)/(12) which is a function of T and 𝜌 that falls between 
1

2
 and 1 as 

shown below.   

1

2
<

𝑉𝑎𝑟(𝜃̂𝐵𝑅−𝑆𝑊)

𝑉𝑎𝑟(𝜃̂𝐵𝑁𝑅−𝑆𝑊)
=
(𝑇+𝑡)[1+(𝑇−1)𝜌]

2𝑇[1+(
𝑇+𝑡

2
−1)𝜌]

< 1.                                    (14) 

In particular, with optimal choice 𝑡∗ = 1, the ratio in (14) reduces to:  

1

2
<

𝑉𝑎𝑟(𝜃̂𝐵𝑅−𝑆𝑊)

𝑉𝑎𝑟(𝜃̂𝐵𝑁𝑅−𝑆𝑊)
|{𝑡∗ = 1} =

(𝑇+1)[1+(𝑇−1)𝜌]

2𝑇[1+(
𝑇−1

2
)𝜌]

< 1.                          (15) 

The ratio plots in Figure 2 summarize the variance comparisons for optimal balanced 

BR-SW versus fixed effects BNR-SW designs (t=1) as functions of T and 𝜌. The ratio of 

variances in (14) converges to 1 as 𝜌 increases for any T, but at a slower rate as T 

becomes larger.  
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Figure 2: Ratio of variance in optimal BR-SW versus BNR-SW for T=6, 9, 12 (𝑡∗ = 1) 

Figure 11: Ratio of variance in optimal BR-SW versus BNR-SW for T=6, 9, 12 

5. Comparing Balanced Fixed Effects BNR-SW to NR-DD Designs 

It is also of interest to assess the relative efficiency of NR-SW compared to the more 

traditional NR-DD study with the same N and T as there may be settings where an 

investigator is not able to randomize and has to choose between SW and DD designs.  

The optimal NR-DD design (Fixed Effects) which minimizes 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐷𝐷) 

switches 𝑛∗units to intervention after 𝑏∗ time points [14] where for 𝑁 even, 𝑛∗ =

𝑁

2
, 𝑏∗ = {

𝑇

2
,                              𝑖𝑓 𝑇 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑇−1

2
𝑜𝑟 

𝑇+1

2
               𝑖𝑓 𝑇 𝑖𝑠 𝑜𝑑𝑑    

. 

The 𝑉𝑎𝑟(𝜃𝑁𝑅−𝐷𝐷) in this optimal NR-DD design is 
4T

𝑁𝑏∗(𝑇−𝑏∗)
(1 − 𝜌)𝜎2.   
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Taking the ratio of the variance of fixed effects balanced NR-SW versus optimal NR-

DD gives (16).  

𝑉𝑎𝑟(𝜃̂𝐵𝑁𝑅−𝑆𝑊)

𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝐷𝐷)|{𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑏∗}
=
3𝑆(𝑆+1)𝑏∗(𝑇−𝑏∗)

𝑇2(𝑆−1)(𝑆+2)
= {

3(𝑆+1)𝑆

4(𝑆−1)(𝑆+2)
,                      𝑖𝑓 𝑇 𝑖𝑠 𝑒𝑣𝑒𝑛

3(𝑆+1)𝑆

4(𝑆−1)(𝑆+2)

(𝑇−1)(𝑇+1)

𝑇2
,     𝑖𝑓 𝑇 𝑖𝑠 𝑜𝑑𝑑

    (16) 

In particular, for optimal balanced NR-SW with 𝑡∗ = 1, the variance in (12) 

simplifies to 𝑉𝑎𝑟(𝜃)  =
12(𝑇−1)(1−𝜌)

𝑁(𝑇−2)(𝑇+1)
σ2 and the ratio in (16) reduces to (17).  

𝑉𝑎𝑟(𝜃̂𝐵𝑁𝑅−𝑆𝑊)|{𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑡
∗=1}

𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝐷𝐷)|{𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑏∗}
=
3(𝑇−1)𝑏∗(𝑇−𝑏∗)

𝑇(𝑇−2)(𝑇+1)
= {

3(𝑇−1)𝑇

4(𝑇−2)(𝑇+1)
,       𝑖𝑓 𝑇 𝑖𝑠 𝑒𝑣𝑒𝑛

3(𝑇−1)2

4𝑇(𝑇−2)
,                𝑖𝑓 𝑇 𝑖𝑠 𝑜𝑑𝑑

         (17)  

The ratio in (16) and (17) depends only on T and S (or equivalently T and t based on 

𝑡 =
𝑇

1+𝑆
).  Figure 3 uses (16) to illustrate the ratio of variance for balanced fixed effects 

NR-SW versus optimal NR-DD for different values of t. Each symbol stands for one 

specific value of t.  Note that to fit a balanced SW, T must be divisible by t. Under fixed 

effects for the same T (T>3) and N, the ratio in (17) for optimal balanced NR-SW and 

NR-DD indicates 
𝑉𝑎𝑟(𝜃̂𝐵𝑁𝑅−𝑆𝑊)

𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝐷𝐷)
< 1.  Now the two designs produce the same variance 

when T=3.  But the ratio in (17) increases roughly as T increases, and converges to 0.75 

when T>15.  However, for a given T as t increases, the variance reduction of 𝑉𝑎𝑟(𝜃) 

from the fixed effects NR-SW versus the optimal NR-DD, reduces and can reverse, but 

again for any fixed t, as T increases, the ratio decreases and converges to 0.75.  
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Figure 3: Ratio of variance for BNR-SW versus optimal NR-DD (both are fixed effects designs) 

Figure 12: Ratio of variance for BNR-SW versus optimal NR-DD 

6. Examples from New Jersey Long Term Care Facilities 

Both urinary incontinence and ulcers (bedsores) are common chronic conditions for 

residents that are improved by better treatment at long term care facilities (LTCF).  Five 

Star Quality Data [32] over 7 quarters from Spring 2012 through Fall 2013 reported the 

average percentages of all long-stay residents that had incontinence and ulcers in each of 

270 New Jersey Long Term facilities. The overall quarter averaged unit average of binary 

outcomes with incontinence was 32% (or 0.32) with 𝜎 = 0.14 and correlation of 

repeated measures in the same unit was 𝜌 = 0.85. For ulcers the unit average was 9.5% 

(or 0.095) with 𝜎 = 0.0475 and 𝜌 = 0.50. We used this normative data to guide 

estimation of minimal detectable effect sizes 𝛿1 for BNR-SW designs and compare these 
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to NR-DD and BR-SW designs for a two sided 𝛼 = 0.05, 𝛽 = 0.20 on intervention trials 

that would be conducted at N=30 long term care facilities lasting from 1.25 (T=6) years. 

While 𝜌 ranged from 0.50 to 0.85, for outcomes in New Jersey LTCF we added 𝜌 =

0.00 and 0.30 to provide insight into outcomes with lower 𝜌.   

Suppose it is impossible to plan a randomized study and one must choose between a 

NR-DD and a BNR-SW.  Table 1 presents the minimal effect size 𝛿1that can be detected 

with fixed effects analysis of BNR-SW designs for t = 1, 2 and 3 from (10) and (12) and 

optimal NR-DD for 𝑏∗ =
𝑇

2
.  We do not consider random effects model here as it will be 

directionally biased for NR-DD with only two strata that are unbalanced with respect to 

proportions treated.  

Table 7: Minimal detectable Effect Size in a Study of 30 LTCF (T=6) for Non-Randomized designs 

Table 1: Minimal detectable Effect Size (𝛿1) in a Study of 30 LTCF (T=6) for Non-Randomized 

designs  

T=6 BNR-SW 

(fixed effects) 

NR-DD
1 

 

 t=1 (S=5) t=2 (S=2) 
𝑏∗ =

𝑇

2
 

𝜌 = 0.852 0.290 0.343 0.323 

𝜌 = 0.503 0.529 0.626 0.590 

𝜌 = 0.30 0.626 0.741 0.699 

𝜌 = 0.00 0.749 0.886 0.835 

1. Fixed Effects by Default as a Random Effects Model on a Difference in Difference Design is 

structurally biased 

2. This ρ was observed for incontinence over 7 quarters at New Jersey LTCF 

3. This ρ was observed for ulcers over 7 quarters at New Jersey LTCF 
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Thus using ulcers (𝜌 = 0.50), with T=6 and t=1, the minimal detectable effect size 

from the BNR-SW fixed effects design is 𝛿1=0.529 or 0.095 ± 0.529*0.0475 which is 

≤0.07 or ≥0.12. By contrast, the minimal detectable 𝛿1=0.590 or 0.095 ± 0.590*0.0475 

which is ≤0.067 or ≥0.123 for an NR-DD. While the BNR-SW is preferable from this 

standpoint, one would have to consider if this benefit were enough if the SW design was 

more complicated to implement.  For t=2 the BNR-SW is less efficient than the NR-DD 

when T=6.   

We caution the reader on one point for interpreting Table 1.  Often a large number of 

baselines with 𝑡0 > 𝑡 measures is available from historical data where all units were 

untreated over a long longitudinal monitoring period meaning the 𝑡𝑠’s can only be 

balanced in the future with 𝑡0 > 𝑡1 = ⋯ = 𝑡𝑠.  While the full details are beyond this 

chapter, the Supplementary Appendix suggests that if this is the case the NR-DD 

approach becomes more favorable relative to the best possible NR-SW than what is seen 

in Table 1. 

Now suppose a balanced SW design will be used, but the investigator wants to 

determine if randomization is worth the extra effort. Table 2 compares minimal 

detectable 𝛿1 for BR-SW (from (13)), BNR-SW designs analyzed as fixed effects (from 

(12)) and as random effects (calculated on computer using Λ = (𝑋′𝑉−1𝑋)−1𝜎2 with V 

based on (7)). We let 𝜎 and 𝜌 be the same for the BNR-SW and BR-SW random/fixed 

effects designs since as Section 4.1 and Appendix 4 show any changes on 𝜎 and 𝜌 from 

non-randomization in the fixed effects NR-SW formulation cancel out. We assume 𝜌𝑠 is 

proportional to 𝜌 as it seems reasonable that the level of differentiation between the non-

randomized shifting strata intercepts will be proportional to the differentiation between 
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persons. We choose 𝜌𝑠 = 0.1𝜌 for a small, 𝜌𝑠 = 0.25𝜌 for a noticeable, and 𝜌𝑠 = 𝜌 as an 

extreme value for intra-stratum correlation. Note the result for 𝜌𝑠 = 0 (no strata effects) 

is mathematically the same as BR-SW.   

Table 8: Minimal detectable Effect Size in a Study of 30 LTCF (T=6) for Balanced Stepped-Wedge designs 

Table 2: Minimal detectable Effect Size (𝛿1) in a Study of 30 LTCF (T=6) for Balanced Stepped-

Wedge designs  

T=6 

N=30 

 

𝑡 

Non-randomized Stepped-wedge Randomized 

Stepped-wedge Fixed 

Effects 

Random Effects 

𝜌𝑠 = 𝜌 𝜌𝑠 = 0.25𝜌 𝜌𝑠 = 0.1𝜌  

𝜌 = 0.851 𝑡∗ = 1 0.290 0.289 0.289 0.288 0.287 

𝑡 = 2 0.343 0.343 0.343 0.342 0.341 

𝜌 = 0.502 𝑡∗ = 1 0.529 0.524 0.517 0.511 0.504 

𝑡 = 2 0.626 0.625 0.621 0.616 0.605 

𝜌 = 0.30 𝑡∗ = 1 0.626 0.613 0.596 0.584 0.572 

𝑡 = 2 0.741 0.727 0.727 0.717 0.694 

𝜌 = 0 𝑡∗ = 1 0.749 NA NA NA 0.572 

𝑡 = 2 0.886 NA NA NA 0.723 

 

Thus, for example, with T=6, 𝜌 = 0.85, t=1, the randomization benefit is barely 

noticeable with the minimal detectable 𝛿1 only dropping from 0.290 in a fixed effects 

BNR-SW down to 0.287 in a R-SW.  However, for 𝜌 = 0 when T=6, t=1, the minimal 

detectable 𝛿1 drops from 0.749 in a fixed effects BNR-SW down to 0.572 in the BR-SW.  

The BR-SW performs better than both fixed and random effects BNR-SW; and the 

random effects BNR-SW is more powerful than fixed effects BNR-SW in terms of 

minimum detectable effect size particularly as 𝜌𝑠 decreases.  However, for larger values 
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of 𝜌 (𝜌 ≥ 0.50), as was seen in New Jersey LTCF outcomes, the differences between 

minimal detectable 𝛿1between even BR-SW and fixed effects BNR-SW are very small. 

This suggests that if 𝜌 ≥ 0.50, the penalty for doing BNR-SW instead of BR-SW on the 

variance of estimated intervention effect may be ignorable and also that a BNR-SW 

design should be analyzed as fixed rather than random effects to avoid bias.  For 

smaller 𝜌 (𝜌 ≤ 0.30), well below the range of what we saw for outcomes in New Jersey 

LTCF, the range between minimal detectable 𝛿1 from BR-SW and random/fixed effects 

NR-SW are larger.  In these settings, it may be more important to fit BR-SW or use 

random effects analysis on BNR-SW to preserve power. However, other designs such as 

randomized parallel may be preferable to the SW if 𝜌 ≤ 0.30 [26].  

 

7. Conclusion 

This chapter presents generalized stepped-wedge designs expanded to non-

randomized settings.  An orthogonalized framework for estimating GLS variance and 

corresponding power for intervention effects is developed assuming compound symmetry 

for intra-unit correlation of repeated measures. With the above orthogonal coding for 

intervention effect, we showed the following properties. First, for any given SW design, 

randomized unit allocation achieves greater power than does non-randomized allocation 

analyzed using fixed effects due to the added IDP penalty term in the denominator of the 

NR-SW variance estimate (i.e. (8) versus (9)). Second, for any otherwise equivalent R-

SW and NR-SW fixed effects design, the GLS power estimate is invariant to 𝑡0 (𝑜𝑟 𝑡𝑆) 

conditional on the sum 𝑡0 + 𝑡𝑆(= 𝐸) because observations falling in those two edges 

contribute equally to the GLS variance.  
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To further investigate the optimal design in terms of power, we focused on the 

balanced SW design that simplifies variance formulas to (12) and (13). For both BR-SW 

and BNR-SW using fixed effects for a given T, the power increases as step size (t) 

decreases and thus the optimal design for both BR-SW and BNR-SW is with 𝑡∗ = 1. In a 

more comprehensive investigation of optimality for the R-SW, Lawrie et al [27] also 

observed optimization at 𝑡∗ = 1, but as their analysis allowed 𝑛𝑠 to vary (we did not), 

they observed having {𝑛1 = 𝑛𝑆} > {𝑛2 = ⋯ = 𝑛𝑆−1} maximized efficiency.   

For power approximation in balanced SW designs, the advantage of random 

allocation decreases as 𝜌 increases and becomes ignorable when 𝜌 ≥ 0.50. Therefore, for 

𝜌 in this range, as was the case for our illustrative example of New Jersey LTCF, we 

believe a BNR-SW design even analyzed using fixed effects may achieve very similar 

power as does the comparable BR-SW design. However, potential biases from 

differential secular trends in non-randomized designs need to be considered [33].  For 

small values of 𝜌 (i.e. 𝜌 < 0.30), we suggest researchers should be cautious to use NR-

SW instead of R-SW and perhaps not use any SW design at all. However, in this range 

of 𝜌, use of random effects rather than fixed effects analyses to model the non-

randomized strata effects considerably improves power in the BNR-SW design. Thus, 

further research into whether the strata effects could be modeled as random effects in a 

NR-SW design may be warranted.  

In non-randomized settings with fixed T and N, we discovered that the optimal BNR-

SW (𝑡∗ = 1) is always better than optimal NR-DD in terms of lower variance for the 

intervention effect estimate. More specifically, for all t the relative efficiency of BNR-

SW to NR-DD increases as T increases, but the ratio of variance eventually converges to 
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0.75 as T gets larger. For any fixed T, as the step size 𝑡 increases, the advantage of BNR-

SW to NR-DD gets smaller and eventually reverses to favor NR-DD.  

Several limitations should be mentioned. We assumed a constant intervention effect 

across unit and time, which could be extended by modeling an interaction term of 

intervention and time and/or including intervention heterogeneity into the covariance 

structure. While compound symmetry might be a usable approximation if the intra-unit 

repeated measure correlation does not change or decays slowly over time [31], there may 

be cases where time decay is too large for CS to be reasonable. In such cases, extension 

to Toeplitz decay covariance structures may yield a better power estimation. Analytical 

based methods get much more complicated in random effects NR-SW models due to the 

additional level of intra-stratum correlation; it is unclear if simple variance estimates can 

be achieved for this setting. As is often done for stepped wedge studies, we assumed 

normality or that sample size was large enough for the central limit theorem do hold. 

Future work on simulation-based methods may be promising to address all of the above 

issues because they provide flexible alternatives in power and sample size calculation that 

can deal with specific features of given studies at hand [34].  

In conclusion, researchers have recognized the usefulness of stepped-wedge designs 

in recent years [2, 12, 25, 35]. While considerable development has been made into 

deriving variance estimates of the intervention effect, this process is still at the beginning 

for randomized designs and to our knowledge has not been explored for the non-

randomized setting. We developed an orthogonalized least squares framework for both R-

SW and NR-SW in which number of steps (S), length of step sizes (𝑡𝑠) and number of 

units switched at each step (𝑛𝑠) can be varied. We then focused on balanced settings to 
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obtain insights on optimal designs in terms of power. While BR-SW always achieved 

lower variance for the intervention effect estimate than did BNR-SW designs, the 

differences are small for 𝜌 ≥ 0.50. Compared to the traditional NR-DD design, optimal 

BNR-SW (𝑡∗ = 1) is more efficient. As the length of step size 𝑡 increases in BNR-SW, 

the advantage over NR-DD gets smaller and eventually reverses. Further, as the 

Supplementary Appendix implies, a large number of historical untreated baseline time 

points may further shift the advantage to the NR-DD approach.  Future work perhaps 

including structured simulations may help to clarify numerous unresolved issues.  

  



112 

 

References 

1. Brown CA, Lilford RJ. The stepped wedge trial design: a systematic review. BMC Med 

Res Methodology 2006;6:54. 

2. Mdege N, Man M, Brown C and Torgersen D. Systematic review of stepped wedge 

cluster randomised trials shows that design is particularly used to evaluate interventions 

during routine implementation. J Clin Epidemiol 2011;64:936–48.  

3. Viera AJ, Garrett JM. Preliminary study of a school-based program to improve 

hypertension awareness in the community. Family Medicine 2008; 40:264e70.  

4. Liddy C, Hogg W, Russell G, et al. Improved Delivery of Cardiovascular Care 

(IDOCC) through Outreach Facilitation: study protocol and implementation details of a 

cluster randomized controlled trial in primary care. Implement Science 2011, 6:110. 

5. Gambia Hepatitis Study Group. The Gambia Hepatitis Intervention Study. Cancer 

Research 1987;47:5782e7. 

6. Husaini BA, Reece MC, Emerson JS, Scales S, Hull PC and Levine RS. A church-

based program on prostate cancer screening for African American men: reducing health 

disparities. Ethnicity & Disease 2008;18(2 Suppl. 2):179e84. 

7. Hughes J, Goldenberg RL, Wilfert CM, Valentine M, Mwinga KS and Stringer JSA. 

Design of the HIV prevention trials network (HPTN) protocol 054: a cluster randomized 

crossover trial to evaluate combined access to nevirapine in developing countries. UW 

Biostatistics Working Paper Series 2003;195. 

8. Somerville M, Basham M, Foy C, et al. From local concern to randomised trial: the 

Watcombe Housing Project. Health Expect 2002;5:127e35. 

9. Ciliberto MA, Sandige H, Ndekha MJ, et al. Comparison of home-based therapy with 

ready-to-use therapeutic food with standard therapy in the treatment of malnourished 

Malawian children: a controlled, clinical effectiveness trial. Am J Clin Nutr 

2005;81:864e70. 

10. Winani S, Wood S, Coffey P, et al. Use of a clean delivery kit and factors associated 

with cord infection and puerperal sepsis in Mwanza, Tanzania. J Midwifery Womens 

Health 2007;52(1):37e43. 

11. Allegri M, Pokhrel S, Becher H, et al. Step-wedge cluster-randomised community-

based trials: an application to the study of the impact of community health insurance. 

Health Res Policy Syst 2008;6:10. 

12. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized 

trials. Contemp Clin Trials 2007;28(2):182–191. 



113 

 

13. Margaret A. Handley, Dean Schillinger and Stephen Shiboski. Quasi-Experimental 

Designs in Practice-based Research Settings: Design and Implementation Considerations. 

JABFM 2011; Vol. 24, No. 5. 

14. Dimick JB, Ryan AM. Methods for evaluating changes in health care policy: The 

difference-in-differences approach. JAMA guide to statistics and methods 2014, Volume 

312, Number 22.  

15. Athey S, Imbens GW. Identification and inference in nonlinear difference-in-

differences models. Econometrica 2006; Vol.74, No.2, 431-497. 

16. Moher D, Schultz KF, Altman DG, The CONSORT Group: The CONSORT 

Statement: revised recommendations for improving the quality of reports of parallel-

group randomised trials. Lancet. 2001, 357: 1191-1194.  

17. Pearson D, Torgerson D, McDougall C and Bowles R. Parable of two agencies, one 

of which randomizes. Ann Am Acad Pol Soc Sci 2010;628(1):11e29. 

18. Meldrum ML. A brief history of the randomized controlled trial. From oranges and 

lemons to the gold standard. Hematol Oncol Clin North Am 2000, 14 (4): 745–60. 

19. West SG, Duan N, Pequegnat W, et al. Alternatives to the randomized controlled trial. 

Am J Public Health 2008; 98(8): 1359-1366. 

20. Abadie A. Semiparametric difference-in-differences estimators. Review of Economic 

Studies 2005, 72 (1): 1–19. doi:10.1111/0034-6527.00321. 

21. Brand SL, Musgrove A, Jeffcoate WJ and Lincoln NB. Evaluation of the effect of 

nurse education on patient-reported foot checks and foot care behaviour of people with 

diabetes receiving haemodialysis. Diabet Medicine 2015 Jun 4. doi: 10.1111/dme.12831. 

22. Davey C, Boulay M and Hargreaves JR. Strengthening nonrandomized studies of 

health communication strategies for HIV prevention. J Acquir Immune Defic Syndr 2014; 

66 (suppl 3): S271–S277.  

23. Murray DM, Varnell SP, and Blitstein JL.  Design and Analysis of Group-

Randomized Trials: A Review of Recent Methodological Developments. American 

Journal of Public Health. 2004, Vol. 94, No. 3, pp. 423-432. 

24. Sedgwick P. Randomised controlled trials: balance in baseline characteristics. 

BMJ 2014;349:g5721.  

25. Woertman W, de Hoop E, Moerbeek M, et al. Stepped wedge designs could reduce 

the required sample size in cluster randomized trials. J Clin Epidemiol 2013, 66(7):752–

758. 

26. Hemming K, Taljaard MJ. Sample size calculations for stepped wedge and cluster 

randomised trials: a unified approach. Clin Epidemiol. Epub ahead of print 2015 Sep 5. 

DOI: 10.1016/j.jclinepi.2015.08.015.  

http://www.jabfm.org/search?author1=Margaret+A.+Handley&sortspec=date&submit=Submit
http://www.jabfm.org/search?author1=Dean+Schillinger&sortspec=date&submit=Submit
http://www.jabfm.org/search?author1=Stephen+Shiboski&sortspec=date&submit=Submit
http://en.wikipedia.org/w/index.php?title=Hematol_Oncol_Clin_North_Am&action=edit&redlink=1
http://dx.doi.org/10.1016/j.jclinepi.2015.08.015


114 

 

27. Lawrie J, Carlin JB, Forbes AB. Optimal stepped wedge designs. Statistics and 

probability letters 2015; 210-214. 

28. Hausman JA. Specification Tests in Econometrics. Econometrica 1978; 46 (6): 1251–

1271. 

29. Snijders TAB, Fixed and random effect. Encyclopedia of Statistics in Behavioral 

Science 2005; Volume 2, 664-665. 

30. Aitken AC. On Least-squares and Linear Combinations of Observations. Proceedings 

of the Royal Society of Edinburgh 1934; 55: 42–48. 

31. Fisher, RA. Applications of "Student's" distribution. Metron 1925; 5: 90–104. 

32. Centers for Medicare and Medicaid Services Five Star Quality Rating System, 

https://www.cms.gov/medicare/provider-enrollment-and-

certification/certificationandcomplianc /fsqrs.html 

33. Frison L, Pocock SJ. Repeated measures in clinical trials: Analysis using mean 

summary statistics and its implications for design. Stat Med 1992; 11: 1685–704. 

34. Baio G, Copas A, Ambler G, et al. Sample size calculation for a stepped wedge trial. 

Trials 2015; 16:354.  

35. de Hoop EO (2015) Efficient designs for cluster randomized trials with small 

numbers of clusters. PhD Thesis 

http://repository.ubn.ru.nl/bitstream/handle/2066/134179/134179.pdf. 

 

  

https://en.wikipedia.org/wiki/Ronald_Fisher
https://www.cms.gov/medicare/provider-enrollment-and-certification/certificationandcomplianc%20/fsqrs.html
https://www.cms.gov/medicare/provider-enrollment-and-certification/certificationandcomplianc%20/fsqrs.html
http://repository.ubn.ru.nl/bitstream/handle/2066/134179/134179.pdf


115 

 

Appendix 1: Conversion of Cluster-Randomized Designs to our Setting 

We should caution those readers who are familiar with cluster-randomized trials 

(CRT) that; while our design has level i=unit (denoted as cluster in those papers) and 

j=time, it does not have a level k nested within i and j as our examples do not have data 

down to such a level. This differs from cluster-randomized SW designs [12, 25-27], 

which do have a level k (person-visit measure) from m randomly chosen independent 

patients of cluster i at time j.  In such cluster-randomized designs, 𝑌𝑖𝑗𝑘 denotes the 

outcome of the 𝑘𝑡ℎperson of cluster i from time j; however 𝑌̅𝑖𝑗 the average outcome of all 

m persons at i, j is the functional outcome used in those papers and corresponds to 𝑌𝑖𝑗 

used here.  

Further our notation for 𝜌 is for within i intra-class correlation of 𝑌𝑖𝑗 and 𝑌𝑖𝑗′, which 

would correspond to the intra-class correlation of 𝑌̅𝑖𝑗, 𝑌̅𝑖𝑗′.  This differs from the intra-

class correlation used in cluster-randomized stepped wedge designs taken down to the 

nested level k which are for the correlation of repeated measures 𝑌𝑖𝑗𝑘 and 𝑌𝑖𝑗′𝑘′ within the 

same i, because our response here is a single measure (𝑌𝑖𝑗) as opposed to the average of m 

independent observations for a cluster i at time j (𝑌̅𝑖𝑗).  However, if ρ ̃ denotes the “𝜌” 

used in those “cluster-randomization notation” papers for intra-class correlation of 𝑌𝑖𝑗𝑘 

and 𝑌𝑖𝑗′𝑘′, then 
ρ ̃

ρ ̃+
1−ρ ̃

𝑚

 will be the intra-class correlation of 𝑌̅𝑖𝑗, 𝑌̅𝑖𝑗′ from those designs.  

Thus to apply our formulas to such cluster-randomized trials, just substitute for 𝜌 in our 

given formula 
ρ ̃

ρ ̃+
1−ρ ̃

𝑚

 where ρ ̃ is the "𝜌” in those cluster-randomized design papers.   
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Appendix 2: Orthogonal Coding for Intervention Effect 

With the orthogonal coding for intervention effect shown below, we are able to 

simplify the GLS component and calculate the variance of 𝜃.  

Table A: Summary of orthogonal coding of 𝑍𝑠
∗(s=1, …, S) at each step

 

Transition 

stratum 

(1, 𝑗1) 

contains 𝑡0 

timepoints 

( 𝑗1 + 1, 𝑗2) 

contains 𝑡1 

timepoints 

(𝑗2 + 1, 𝑗3) 

contains 𝑡2 

timepoints 

… (𝑗𝑆−1 + 1, 𝑗𝑆) 

contains 𝑡𝑆−1 

timepoints 

(𝑗𝑆 + 1,𝑇) 

contains 𝑡𝑆 

timepoints 

𝑛𝑆 units in 𝑆th 

stratum/step 

0 −
𝑛1
𝑁

 

 

−
∑ 𝑛𝑠
2
𝑠=1

𝑁
 

 

… 
−
∑ 𝑛𝑠
𝑆−1
𝑠=1

𝑁
 

 

0 

𝑛𝑆−1 units 

in 𝑆 − 1th 

stratum/step 

0 −
𝑛1
𝑁

 

 

−
∑ 𝑛𝑠
2
𝑠=1

𝑁
 

 

… 

 

𝑁 − ∑ 𝑛𝑠
𝑆−1
𝑠=1

𝑁
 

 

0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑛2 units in 2nd 

stratum/step 

0 −
𝑛1
𝑁

 

 

𝑁 − ∑ 𝑛𝑠
2
𝑠=1

𝑁
 

 

… 𝑁 − ∑ 𝑛𝑠
𝑆−1
𝑠=1

𝑁
 

 

0 

𝑛1 units in 1st 

stratum/step 

0 𝑁 − 𝑛1
𝑁

 

 

𝑁 − ∑ 𝑛𝑠
2
𝑠=1

𝑁
 

 

… 𝑁 − ∑ 𝑛𝑠
𝑆−1
𝑠=1

𝑁
 

 

0 

𝑍1
∗ = (0,… , 0⏟  

𝑡0

,
𝑁−𝑛1

𝑁
, … . ,

𝑁−𝑛1

𝑁⏟        
𝑡1

,
𝑁−∑ 𝑛𝑠

2
𝑠=1

𝑁
, … ,

𝑁−∑ 𝑛𝑠
2
𝑠=1

𝑁⏟              
𝑡2

, … ,
𝑁−∑ 𝑛𝑠

𝑆−1
𝑠=1

𝑁
, … ,

𝑁−∑ 𝑛𝑠
𝑆−1
𝑠=1

𝑁⏟              
𝑡𝑆

); 

𝑍2
∗ = (0,… , 0⏟  

𝑡0

, −
𝑛1

𝑁
, … , −

𝑛1

𝑁
 ⏟        

𝑡1

,
𝑁−∑ 𝑛𝑠

2
𝑠=1

𝑁
, … ,

𝑁−∑ 𝑛𝑠
2
𝑠=1

𝑁⏟              
𝑡2

, … ,
𝑁−∑ 𝑛𝑠

𝑆−1
𝑠=1

𝑁
, … ,

𝑁−∑ 𝑛𝑠
𝑆−1
𝑠=1

𝑁⏟              
𝑡𝑆

); 

… 

𝑍𝑆
∗ = (0,… , 0⏟  

𝑡0

, −
𝑛1

𝑁
, … , −

𝑛1

𝑁
 ⏟        

𝑡1

, −
∑ 𝑛𝑠
2
𝑠=1

𝑁
, … , −

∑ 𝑛𝑠
2
𝑠=1

𝑁⏟            
𝑡2

, … , −
∑ 𝑛𝑠
𝑆−1
𝑠=1

𝑁
, … , −

∑ 𝑛𝑠
𝑆−1
𝑠=1

𝑁⏟            
𝑡𝑆

); 
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𝑍∗ = (𝑍1
∗, … , 𝑍1

∗⏟      
𝑛1

, 𝑍2
∗, … , 𝑍2

∗⏟      
𝑛2

, …𝑍𝑆
∗, … , 𝑍𝑆

∗
⏟      

𝑛𝑆

). 

The advantage of this orthogonal coding is to set cross-products that involve the time 

periods and the intervention in 𝑋′𝑉−1𝑋 to 0, which makes it easier to invert the cross-

product matrix for the purpose of finding the variance of the intervention effect estimate 

as is done in Appendix 3.  

 

Appendix 3: Derivation of GLS Variance Estimate 

The goal is to find the last element of (𝑋′𝑉−1𝑋)−1𝜎2 which is 𝑉𝑎𝑟(𝜃). Because of 

the orthogonal coding, we are able to compute (𝑋′𝑉−1𝑋)−1 by applying the inverse of 

partitioned matrix twice.  

𝑋′𝑉−1𝑋 =

[
 
 
 
 
 
 
 
 
 

𝑛1𝑇

[1+(𝑇−1)𝜌]
… 0

⋮ ⋱ ⋮

0 …
𝑛𝑆𝑇

[1+(𝑇−1)𝜌]

0        …      0
⋮        ⋱     ⋮
0        …      0

𝐼{𝑖∈𝐴1}
′ 𝑉−1𝑍∗

⋮
𝐼{𝑖∈𝐴𝑆}
′ 𝑉−1𝑍∗

0           …         0
⋮          ⋱        ⋮
0          …         0

2𝑁

(1−𝜌)
…

𝑁

(1−𝜌)

⋮ ⋱ ⋮
𝑁

(1−𝜌)
…

2𝑁

(1−𝜌)

0
⋮
0

𝐼{𝑖∈𝐴1}
′ 𝑉−1𝑍∗   ⋯ 𝐼{𝑖∈𝐴𝑆}

′ 𝑉−1𝑍∗ 0        …      0 OTD ]
 
 
 
 
 
 
 
 
 

. 

For the first inverse of portioned matrix, (𝑋′𝑉−1𝑋)−1 = [
𝐴11 𝐴12
𝐴21 𝐴22

]
−1

= [
𝐵11 𝐵12
𝐵21 𝐵22

] 

where 𝐴11 = [

𝑛1𝑇

[1+(𝑇−1)𝜌]
… 0

⋮ ⋱ ⋮

0 …
𝑛𝑆𝑇

[1+(𝑇−1)𝜌]

] ,  
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𝐴12 = 𝐴21
′ = [

0        …      0
⋮        ⋱     ⋮
0        …      0

𝐼{𝑖∈𝐴1}
′ 𝑉−1𝑍∗

⋮
𝐼{𝑖∈𝐴𝑆}
′ 𝑉−1𝑍∗

], and 𝐴22 =

[
 
 
 
 
2𝑁

(1−𝜌)
…

𝑁

(1−𝜌)

⋮ ⋱ ⋮
𝑁

(1−𝜌)
…

2𝑁

(1−𝜌)

0
⋮
0

0        …      0 OTD]
 
 
 
 

 . 

We then apply the inverse of the partitioned matrix to 𝐵22 as below. 𝐵22 = (𝐴22 −

𝐴21𝐴11
−1𝐴12)

−1 =

[
 
 
 
 

2𝑁

(1−𝜌)
…

𝑁

(1−𝜌)

⋮ ⋱ ⋮
𝑁

(1−𝜌)
…

2𝑁

(1−𝜌)

0
⋮
0

0        …         0 OTD − IDP]
 
 
 
 
−1

.  

For the “nested” inverse of portioned matrix, 𝐵22 = [
𝐶11 𝐶12
𝐶21 𝐶22

]
−1

= [
𝐷11 𝐷12
𝐷21 𝐷22

] 

where 𝐶11 = [

2𝑁

(1−𝜌)
…

𝑁

(1−𝜌)

⋮ ⋱ ⋮
𝑁

(1−𝜌)
…

2𝑁

(1−𝜌)

], 𝐶12 = 𝐶21
′ = [

0
⋮
0
], and 𝐶22 = [𝑂𝑇𝐷 − 𝐼𝐷𝑃]. It turns out 

that 𝐷12 = 𝐷21
′ = [

0
⋮
0
]. Therefore, 𝑉𝑎𝑟(𝜃) = 𝐷22𝜎

2 = (𝐶22 − 𝐶21𝐶11
−1𝐶12)

−1𝜎2 =

1

𝑂𝑇𝐷−𝐼𝐷𝑃
𝜎2.  

Where the full expansions of OTD, IDP and OTD-IDP are:  

𝑂𝑇𝐷 =
1

(1−𝜌)
∑

𝑡𝑙(∑ 𝑛ℎ
𝑙
ℎ=1 )(𝑁−∑ 𝑛ℎ

𝑙
ℎ=1 )

𝑁

𝑆−1
𝑙=1 −

𝜌

[1+(𝑇−1)𝜌](1−𝜌)
∑ 𝑛𝑠[∑ 𝑡𝑙

𝑁−∑ 𝑛ℎ
𝑙
ℎ=1

𝑁

𝑆−1
𝑙=1 −𝑆

𝑠=1

∑ 𝑡𝑙𝐼{𝑠>1}
𝑠−1
𝑙=1 ]2;       

𝐼𝐷𝑃 = ∑
[1+(𝑇−1)𝜌]

𝑛𝑠𝑇
(𝑋𝛼𝑠′𝑉

−1𝑋𝑇𝑥)
2𝑆

𝑠=1 =
1

[1+(𝑇−1)𝜌]𝑇
∑ 𝑛𝑠[∑ 𝑡𝑙

𝑁−∑ 𝑛ℎ
𝑙
ℎ=1

𝑁

𝑆−1
𝑙=1 −𝑆

𝑠=1

∑ 𝑡𝑙𝐼{𝑠>1}
𝑠−1
𝑙=1 ]2; 
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𝑂𝑇𝐷 − 𝐼𝐷𝑃 = 
1

(1−𝜌)
{∑

𝑡𝑙(∑ 𝑛ℎ
𝑙
ℎ=1 )(𝑁−∑ 𝑛ℎ

𝑙
ℎ=1 )

𝑁

𝑆−1
𝑙=1 −

1

𝑇
∑ 𝑛𝑠
𝑆
𝑠=1 [∑

𝑡𝑙(𝑁−∑ 𝑛ℎ
𝑙
ℎ=1 )

𝑁

𝑆−1
𝑙=1 −

∑ 𝑡ℎ
𝑠−1
ℎ=1 ]2}. 

 Note that in the R-SW design from (3), IDP=0 and 

𝑋′𝑉−1𝑋 =

[
 
 
 
 
 
 

𝑁𝑇

[1+(𝑇−1)𝜌]
0        …      0 0

0
⋮
0

2𝑁

(1−𝜌)
…

𝑁

(1−𝜌)

⋮ ⋱ ⋮
𝑁

(1−𝜌)
…

2𝑁

(1−𝜌)

0
⋮
0

0 0        …      0 OTD]
 
 
 
 
 
 

. Therefore, 𝑉𝑎𝑟(𝜃𝑅−𝑆𝑊) = 
1

𝑂𝑇𝐷
𝜎2.  

 

Appendix 4: Variance in Fixed Effects NR-SW is Invariant to Absorption from 

Strata Dispersion 

For the randomized model in (3),  

𝑌𝑖𝑗 = 𝜇𝑖 + 𝛽𝑗
∗ + 𝜃𝑍𝑖𝑗

∗ + 𝜀𝑖𝑗, 

where the mean displacement of unit i is 𝜇𝑖~𝑁(𝛼0, 𝜏
2), 𝜀𝑖𝑗~𝑁(0, 𝜎𝑒

2).   In this R-SW 

design the total variance decomposition 𝜎𝑅
2 = 𝜏2 + 𝜎𝑒

2, and the correlation of repeated 

measures from the same unit is 𝜌𝑅 =
𝜏2

𝜏2+𝜎𝑒
2 , thus 1 − 𝜌𝑅 =

𝜎𝑒
2

𝜏2+𝜎𝑒
2. 

A non-randomized stepped wedge (NR-SW) to the same setting can be presented in 

(4) as 

𝑌𝑖𝑗 = 𝛼𝑠 + (𝜇𝑖 − 𝛼𝑠) + 𝛽𝑗
∗ + 𝜃𝑍𝑖𝑗

∗ + 𝜀𝑖𝑗, 

where 𝛼𝑠~𝑁(𝛼0, 𝜎𝑠
2), (𝜇𝑖 − 𝛼𝑠)~𝑁(0, 𝜏

2 − 𝜎𝑠
2) and 𝜀𝑖𝑗~𝑁(0, 𝜎𝑒

2); 𝛼𝑠, 𝜇𝑖 are 

independent.  The variance with 𝜇𝑖treated as random effects (RE) decomposes 

into 𝜎𝑅𝐸−𝑁𝑅
2 = 𝜎𝑠

2 + (𝜏2 − 𝜎𝑠
2) + 𝜎𝑒

2 = 𝜏2 + 𝜎𝑒
2 (which is the same total variance as 𝜎𝑅

2).  

Now the within-unit factor 𝜇𝑖has been decomposed into “stratum mean” and “unit mean 
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about stratum mean” random factors 𝛼𝑠 + (𝜇𝑖 − 𝛼𝑠). When fitting a random effects 

model to the NR-SW design, the within-unit repeated measure correlation is 𝜌𝑅𝐸−𝑁𝑅 =

𝜏2

𝜏2+𝜎𝑒
2 (the same value as 𝜌𝑅), but there is also a within strata correlation of measures of 

different units in the same stratum of 𝜌𝑠  =  
𝜎𝑠
2

𝜏2+𝜎𝑒
2 .  

However, for the NR-SW fixed effects (FE) model, 𝛼𝑠 the strata effects are treated as 

fixed eliminating 𝜎𝑠
2 from both the overall variance and the within-unit correlation.  The 

within-unit factor now is (𝜇𝑖 − 𝛼𝑠). Thus for the NR-SW fixed effects model applied to 

this setting, the overall variance of an observation is 𝜎𝐹𝐸−𝑁𝑅
2 = (𝜏2 − 𝜎𝑠

2) + 𝜎𝑒
2 and the 

within-unit mean variance correlation is 𝜌𝐹𝐸−𝑁𝑅 =
𝜏2−𝜎𝑠

2

𝜎𝑁𝑅
2 =

𝜏2−𝜎𝑠
2

(𝜏2−𝜎𝑠
2)+𝜎𝑒

2, and (1 −

𝜌𝐹𝐸−𝑁𝑅) =
𝜎𝑒
2

(𝜏2−𝜎𝑠
2)+𝜎𝑒

2. 

        This leads to a potential awkwardness in Tables 1 and Table 2 where different NR-

SW fixed effects designs are compared to each other and to the R-SW and NR-SW 

random effects designs in that both the variance and the intra-class correlations are 

changed from 𝜎2 = 𝜎𝑅
2 and 𝜌 = 𝜌𝑅  to 𝜎2 = 𝜎𝑅𝐸−𝑁𝑅

2  and 𝜌 = 𝜌𝑅𝐸−𝑁𝑅 by the absorption 

of variance into the stratum specific intercepts in the NR-SW designs.  However, 

𝑉𝑎𝑟(𝜃𝑁𝑅−𝑆𝑊) in (8) and 𝑉𝑎𝑟(𝜃𝐵𝑁𝑅−𝑆𝑊) in (12) for fixed effects NR-SW only depend on 

𝜎2and 𝜌 through the product(1 − 𝜌)𝜎2.  To that end, this product is unchanged by 

application of the fixed effects NR-SW design in that (1 − 𝜌𝐹𝐸−𝑁𝑅)𝜎𝐹𝐸−𝑁𝑅
2 =

(1 − 𝜌𝑅)𝜎𝑅
2 = 𝜎𝑒

2. Thus the parameters for 𝜎2and 𝜌 from the “pre-nonrandomized” study 

design population can be used in (8) and (12) no matter what the impact of the fixed 

effects NR-SW on the final 𝜎2and 𝜌.   
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A special case of this principle is when 𝑛𝑠 = 1 for all s.  In this case 𝜇𝑖 and 𝛼𝑠 are 

unidentifiable and the maximization process sets 𝜇𝑖 = 𝛼𝑠 which results in 𝜎𝑠
2 = 𝜏2 or the 

estimated target 𝜎𝐹𝐸−𝑁𝑅
2 = 𝜎𝑒

2;   𝜌𝐹𝐸−𝑁𝑅 = 0.  But again, (1 − 𝜌𝐹𝐸−𝑁𝑅)𝜎𝐹𝐸−𝑁𝑅
2 =

(1 − 𝜌𝑅)𝜎𝑅
2 = 𝜎𝑒

2 so (12) can be applied with normative parameters from the randomized 

design.  
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Supplementary Appendix: Design Changes in Fixed Effects Models 

Most of the paper focused on balanced designs with 𝑡0 = 𝑡1 = ⋯ = 𝑡𝑆−1 = 𝑡𝑆 = 𝑡, 

and 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑆 = 𝑛 as these are easiest to resolve mathematically and often have 

logistical advantages.  We show here that given a fixed N and under certain constraints on 

S, T, and/or or E, other designs can achieve lower variance for 𝜃.  Note that the formula 

numbers given here and References cited are in the main chapter.  For easier 

conceptualization, we refer to the time periods on 𝑡0 with no units treated as the “Front 

Edge” of the wedge and the time periods on 𝑡𝑆 with all units treated as the “Back Edge” 

of the wedge and combined 𝑡0, 𝑡𝑆 as the “Edges”. The remaining time periods on 

𝑡1, … , 𝑡𝑆−1 are the “Interior”.   

A. Minimal Fixed effects NR-SW Variance with 𝑺 ≥ 𝟑, 𝒕𝟎 ≥ 𝟏and 𝒕𝑺 ≥ 𝟏 

Often for logistical and/or ethical regions the Front Edge and Back Edge should have 

at least one time period each and there must be at least one interior period (or 𝑆 ≥ 3, 𝑡0 ≥

1, 𝑡𝑆 ≥ 1. Lawrie, Forbes and Carlin [27]) showed that under these common constraints, 

the optimal R-SW design is almost fully balanced with, 𝑆 = 𝑇 − 1 and 𝑡 = 1 but not 

constant n;  𝑛1 = 𝑛𝑆 =
(1+2𝜌)𝑁

2(1+𝜌(𝑇−1)
 and 𝑛2 = ⋯ = 𝑛𝑆−1 =

𝜌𝑁

(1+𝜌(𝑇−1)
.   Setting 𝜌 = 1 in the 

previous fractions derives the optimal allocation for the NR-SW design under the same 

constraints thus 𝑆 = 𝑇 − 1, 𝑡 = 1, 𝑛1 = 𝑛𝑆 =
3𝑁

2𝑇
 and 𝑛2 = ⋯ = 𝑛𝑆−1 =

𝑁

𝑇
 with the ratio 

3𝑁

2𝑇
/
𝑁

𝑇
  =1.5.  This for example follows from that as 𝜌 goes to 1, the ratio of (8) / (9) goes 

to 1 meaning that the optimal R-SW design converges to the optimal NR-SW design.   

However, the optimal NR-SW design is invariant to 𝜌, which only appears as a multiplier 

(1 − 𝜌) in (13).   As an illustrative example consider a fully balanced design 𝑇 = 4 
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months (January, February, March and April), 𝑆 = 3, N=120, 𝑡 = 1 and in the balanced 

design n=40.  As the first row of Table A shows 𝑉𝑎𝑟(𝜃𝐵𝑁𝑅−𝑆𝑊) for this design from (11) 

is 0.0300 (1 − 𝜌)𝜎2.  Going back to this example in Table A (keeping T, S and N the 

same under the constraints that 𝑡0 and 𝑡𝑆 each > 1), the optimal 1.5: 1 Edge: Interior 

allocation is 𝑛1 = 𝑛3 = 45, 𝑛2 = 30, (i.e. ratio of 𝑛1 (or 𝑛3) to 𝑛2 is 1.5).  The variance 

from (8) is reduced very slightly from the balanced design to 0.0296 (1 − 𝜌)𝜎2.  

Table A:  𝑉𝑎𝑟(𝜃̂𝑁𝑅−𝑆𝑊) for Balanced and Other SW Designs with N=120 subjects, 𝑡𝑗 = 1 unless 

specified otherwise 

Study Design Month / Cumulative Number Treated 𝑉𝑎𝑟(𝜃𝑁𝑅−𝑆𝑊) 

Jan (and 

before) 

Feb March April (and after) 

Balanced 

(S=3, T=4) 

0 40 

(𝑛1 = 40) 

80 

(𝑛2 = 40) 

120 

(𝑛3 = 40) 

0.0300(1 − 𝜌)𝜎2 
 

Optimal 1.5:1 Allocation 
(S=3, T=4) 

0 45 

(𝑛1 = 45) 

75 

(𝑛2 = 30) 

120 

(𝑛3 = 45) 
0.0296(1 − 𝜌)𝜎2 

 

Edges Trimmed 
Internally Balanced 

𝑡0 = 𝑡3 = 0 
(S=5, T=4) 

24 

(𝑛1 =
24) 

48 

(𝑛2 = 24) 

72 

(𝑛3 = 24) 

96a 

(𝑛4 = 24) 
0.0278(1 − 𝜌)𝜎2 

 

Edges Expanded to 𝑡0 =
𝑡3 = 3

b 
Internally Balanced 

(S=3, T=8) 

0b 

𝑡0 = 3 

40 

(𝑛1 = 40) 

80 

(𝑛2 = 40) 

120b 

(𝑛3 = 40) 

t3=3 

0.0232(1 − 𝜌)𝜎2 
 

Edges Expanded to 𝑡0 =
𝑡2 = 3

b,c 

Internal Steps Merged 
(S=2, T=8) 

0b 

𝑡0 = 3 

60 

(𝑛1 = 60) 

𝑡1 = 2 

120b 

(𝑛2 = 60) 

𝑡2 = 3 

0.0208(1 − 𝜌)𝜎2 
 

a Note 𝑛5 = 24 are never treated 

b 𝑡0 = 3 (November, December, January), 𝑡𝑆 = 3 (April, May, June) 

c Equivalent to a DD design 𝑡0 = 6 (August, September, …, February), 𝑡1 = 2 (March, April), 

𝑡2 = 0 

 

B. Trimming the Edges lowers 𝑽𝒂𝒓(𝜽̂) when T is constrained 

Now allow the edges 𝑡0, 𝑡𝑆 to take on different values when the interior times (𝑡𝑠’s) 

are constant 𝑡1 = ⋯ = 𝑡𝑆−1 = 𝑡 and 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑆 = 𝑛.  We call this an internally 

balanced design in that the times in the middle are the same.  Such designs may occur in 

practice for example if the intervention once started must be ramped up on a standard 
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time schedule but otherwise measures at varying numbers of times can be available 

before any units have been treated and/after all units have been treated.  Again let 

𝑡0 + 𝑡𝑆 = 𝐸, then 𝑇 = 𝐸 + (𝑆 − 1)𝑡.  

We start by optimizing the ratio of E to t under constrained S and T.  With constant n, 

as defined before 𝑁 = 𝑛 ∗ 𝑆.  Therefore, the variance for intervention effect in (8) and (9) 

can be rewritten for the internal balanced non-randomized stepped wedge (IBNR-SW) as 

𝑉𝑎𝑟(𝜃𝐼𝐵𝑁𝑅−𝑆𝑊) =
12𝑇(1−𝜌)

𝑛(𝑆−1)(𝑆+1)𝑡(2𝑇−𝑆𝑡)
𝜎2.   Taking the derivatives of 

𝑉𝑎𝑟(𝜃𝐼𝐵𝑁𝑅−𝑆𝑊)with regards to t and setting to 0 (as the second derivative is negative) 

yields the optimal allocation ratio of 
𝐸

𝑡
, i.e., 

𝜕𝑉𝑎𝑟(𝜃̂𝐼𝐵𝑁𝑅−𝑆𝑊)
−1

𝜕𝑡
= 2𝑇 − 2𝑆𝑡 = 2(𝐸 − 𝑡) 

which equals 0 when 𝐸∗ =  𝑡∗ which means 𝑡∗ =
𝑇

𝑆
.  Thus, the IBNR-SW under 

constrained T and S is optimized when (𝑡0 + 𝑡𝑆)
∗ = 𝑡∗the number of time periods in each 

internal step.   

A similar result happens for the internally balanced R-SW (IBR-SW) 

where 𝑉𝑎𝑟(𝜃𝐼𝐵𝑅−𝑆𝑊) =
6[1+(𝑇−1)𝜌](1−𝜌)

𝑛𝑡(𝑆−1)[1+(𝑇−1−
𝑆𝑡

2
)𝜌]
𝜎2.  Similarly,  

𝜕𝑉𝑎𝑟(𝜃̂𝐼𝐵𝑅−𝑆𝑊)
−1

𝜕𝑡
= 1 +

(𝑇 − 1 − 𝑆𝑡)𝜌 = 1 + (𝐸 − 𝑡 − 1)𝜌 = 0 when 𝐸∗ = 𝑡∗ + 1 −
1

𝜌
   Thus, for the IBR-SW 

under constrained T and S, the optimal allocation is given by 𝐸∗ = 𝑚𝑎𝑥  (𝑡∗ + 1 −
1

𝜌
, 0), 

which means 𝑇 = (𝑆 − 1)𝑡∗ +𝑚𝑎𝑥  (𝑡∗ + 1 −
1

𝜌
, 0).  Therefore, (𝑡0 + 𝑡𝑆)

∗ ≤ 𝑡∗. Thus if 

𝑆−1

𝑇+𝑆−1
< 𝜌, then 𝐸∗ = 0 meaning no “Edge” time periods. 
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Moreover, as was seen in this chapter, t=1 is often optimal.  With t=1, 𝑇 = 𝐸 +

(𝑆 − 1)𝑡 = 𝐸 + (𝑆 − 1), 𝐸 ≥ 0.   After plugging in the above design parameters, the 

variance for intervention effect in (8) simplifies for IBNR-SW with t=1 to:  

𝑉𝑎𝑟(𝜃𝐼𝐵𝑁𝑅−𝑆𝑊) =
12𝑇(1−𝜌)

𝑛(𝑆−1)(𝑆+1)(2𝑇−𝑆)
𝜎2                                             (A1) 

      Taking the first derivative of with regards to S yields to the optimal allocation of E 

and t as: 
𝜕𝑉𝑎𝑟(𝜃̂𝐼𝐵𝑁𝑅−𝑆𝑊)

−1

𝜕𝑆
= 4𝑆𝑇 − 3𝑆2 + 1 > 0 for S ∈ (0, T+1).  Thus the variance is 

maximized by maximizing S by making 𝐸∗ = (𝑡0 + 𝑡𝑆)
∗ = 0.   Going back to the 

illustrative example of Table A with T=4 and N=120, now with 𝑡0 = 𝑡𝑆 = 0, S becomes 5 

and n = 120/5 = 24.  The third row of Table A shows 𝑉𝑎𝑟(𝜃𝐼𝐵𝑁𝑅−𝑆𝑊) for this design 

from (A1) reduces to 0.0278(1 − 𝜌)𝜎2.   

It should be noted that a similar result holds for the IBR-SW with t=1: 

𝑉𝑎𝑟(𝜃𝐼𝐵𝑅−𝑆𝑊) =
6[1+(𝑇−1)𝜌](1−𝜌)

𝑛(𝑆−1)[1+(𝑇−1−
𝑆

2
)𝜌]
𝜎2,                                        (A2) 

so 
𝜕𝑉𝑎𝑟(𝜃̂𝐼𝐵𝑅−𝑆𝑊)

−1

𝜕𝑆
= 1 + (𝑇 − 𝑆 −

1

2
) 𝜌 for 𝑆 ∈ (0, 𝑇 + 1) which again is  > 0 for 

𝑆 ∈ (0, 𝑇 + 1) or again S is maximized when 𝐸∗ = (𝑡0 + 𝑡𝑆) 
∗ = 0.  However, we could 

not find a simple expansion for the Larwy, Forbes, Carlin optimal design [27] to R-SW or 

NR-SW settings where 𝑡0 and/or 𝑡𝑆 = 0 was allowed.  

 

C. Expanding Edges lowers 𝑽𝒂𝒓(𝜽̂) when Number of Interior Times is 

Constrained 

In some settings number of interior times of a NR-SW may be constrained in that 

ramp up must occur over a fixed number of consecutive time points possibly using an 
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interior balanced design with n units added to treatment each time.  However, there may 

be flexibility in the edges in that pre ramp up time 𝑡0 > 𝑡 and post ramp up times 𝑡𝑆 > 1 

could be used.  From (8) for the NR-SW such an expansion of E lowers the variance 

through increasing T on the order of (1 −
1

𝑇
) and thus has limited benefit for T large.  (A 

similar result in (9) dampened by 𝜌 holds for the R-SW when 𝜌 > 0).  For example with 

the NR-SW in Table A if 𝑡0 is expanded to 3 (November, December, January) and 𝑡𝑆 to 3 

(April, May, June, then T=8.  From (A1) the variance reduces to 0.0232(1 − 𝜌)𝜎2.  

But we should note that it the investigator knows 𝐸 = 𝑡0 + 𝑡𝑆 = 6  homogenous 

treatment measures will be available from before/after implementation of the treatment 

ramp up, a better approach would be to merge the internal steps thus shifting half the 

sample (60 subjects) to treatment in February and shift the remaining 60 subjects onto 

treatment in April.  This variance of the estimated intervention effect further reduces to 

0.0208(1 − 𝜌)𝜎2(row 4 of Table A).   While a full exploration is beyond the scope of this 

chapter, availability of extra observations at either end of the edges may push the optimal 

design in the interior from being “SW” towards being flat (dampening the internal steps 

with ~50% of subjects treated throughout).  If the extra observations are all available at 𝑡0 

(the front edge), this is pushing the design towards DD. 

While a full exploration is beyond the scope here, availability of extra observations at 

either end of the edges may push the optimal design in the interior from being “SW” 

towards being flat (dampening the internal steps with ~50% of units treated throughout).  

If the extra observations are all available at 𝑡0 (the front edge), this is pushing the design 

towards DD. 
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In summary, we believe that the NR-SW design differences for 𝑉𝑎𝑟(𝜃) seen in Table 

A were often small and would be even smaller for larger T and S.  Thus other 

considerations such as ethical and logistical may be more important for choosing between 

potential NR-SW (and also R-SW) designs.  However, if preexisting baseline (𝑡0 ≫ 1) or 

post full implementation (𝑡𝑆 ≫ 1) will be available, using all of these measures improves 

power more; including that elimination or dampening of internal steps (i.e. reducing S) 

could be beneficial.  
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Overall Conclusions 

The three main chapters comprising my dissertation build upon one another to 

investigate the intervention effect using GLS power estimation framework based on 

covariance of repeated measures in longitudinal one-way crossover studies. Based on the 

number of crossover time points when units switched onto intervention, one-way 

crossover studies have been further classified into difference-in-differences (DD as 

discussed in Chapter 1 and Chapter 2) and the stepped-wedge designs (SW as illustrated 

in Chapter 3).   

Chapter 1 and Chapter 2 start with the simplest one-way crossover design by studying 

difference-in-differences designs where all the units that are switched to the intervention 

are done so at the same time point. By investigating on the simple compound symmetry 

and more general Toeplitz correlation structures, Chapter 1 developed a unified GLS 

power estimation framework together with the alternative lower bound approaches for 

power estimation in the randomized difference-in-differences (R-DD) studies. The 

theoretical results for optimal pre-post allocation based on CS approximation are 

presented and compared to the empirical Toeplitz results from the nursing homes and 

HIV infected patients’ examples with T=b+k=7. For these examples where T=b+k=7 in 

the R-DD studies, setting the number of pre-intervention measurements b=1 produced 

optimal or close to optimal results to maximize power to detect an intervention effect, but 

having  𝑏 > 1 often performed nearly as well in terms of power (i.e. variance of the 

intervention effect estimate).  

Although randomization is always preferred as a gold standard in clinical trials, it is 

not always feasible due to practical constraints. By modeling the non-randomization 



129 

 

effect associated with the central tendencies of each intervention arm using general linear 

model, Chapter 2 extended the GLS power estimation framework to the non-randomized 

difference-in-differences (NR-DD) setting. The optimal pre-post allocation for NR-DD 

studies is given by equal number of pre-and post-intervention measures (b=k) for T even 

and |b-k|=1 for T odd. With the advantage of closed form GLS variance formulas for R-

DD and NR-DD under CS approximation, the superiority of randomized over non-

randomized setting are quantitatively measured. While given the same b and k, 

randomized designs are superior, non-randomized designs deliver nearly as precise 

estimates of intervention effect for high within-unit correlation and/or with more baseline 

than follow-up measurements (𝑏 ≫ 𝑘). 

 As illustrated in Chapter 1 and Chapter 2 where there is uncertainty about the exact 

Toeplitz structure in Difference-in-Differences studies, CS approaches approximate the 

“unknown” variance of the estimated intervention effect well when b=1 but can greatly 

underestimate this variance when  𝑏 > 1 . To avoid overestimation in power, two 

conservative approaches are proposed: PCS approximation based on mean summary 

statistics can serve as a conservative lower bound for GLS power calculation but greatly 

underestimate the power in two of our examples; an alternative lower bound approach 

with T=b+k =2 longitudinal measures (b=1 and k=1) can obtain nearly as precise 

estimates of the intervention effect as did any design with T=b+k=7 measures where 

𝑏 > 1 in these two cases. However, none of these approximations performed uniformly 

well.   

Chapter 3 presents the general one-way crossover designs known as the stepped-

wedge designs, where the intervention is delivered at sequential time points but 
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eventually all units would receive the intervention. The Orthogonalized Least Squares 

power estimation framework is developed based on compound symmetry approximation. 

To investigate the optimal designs in terms of power, balanced SW designs are 

investigated because they can further simplify implementation of GLS variance formulas. 

For both BR-SW and BNR-SW designs, the optimal design to maximize power is given 

by 𝑡𝑠 ≡ 1 which means that new units are shifted to intervention at each time point in the 

study. In the examples we used from New Jersey nursing homes, when compared to BR-

SW designs, equivalent BNR-SW designs even with intercepts of non-randomly stepped 

switching strata analyzed using fixed effects sacrifice little efficiency given an intra-unit 

repeated measure correlation 𝜌 ≥ 0.50. Compared to traditional NR-DD designs, optimal 

BNR-SW designs are more efficient with the ratio of variances of these designs 

converging to 0.75 when T>10. For any fixed T, as the step size 𝑡𝑠 increases (𝑡𝑠 > 1), the 

advantage of BNR-SW to NR-DD gets smaller and eventually reverses to favor NR-DD.  

Several limitations need to be considered for all of the chapters in this dissertation. In 

the general linear models for both DD and SW designs, the assumption of constant 

intervention effect across unit and time may not hold.  However, if so, the models 

presented here can be extended by modeling an interaction term of intervention and time 

and/or including intervention heterogeneity into the covariance structure. Although the 

covariance is assumed to be static (a minimum requisite to use historical data for future 

correlation estimation), it could change over time due to uncontrollable mechanisms in 

practice. Relaxation of the above assumptions may likely lead to complicated settings 

that perhaps can only be addressed with simulation. The illustrative examples presented 

are limited with a fixed total time points (𝑇 = 7). While more comprehensive analyses 
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for other values of T in general and other correlation structures is beyond the scope of this 

dissertation, the correlation structures in the four examples presented here are likely 

generalizable and that 𝑇 ≈ 7 may be reasonable for many settings with repeated 

measures taken at 3-6 month intervals.   

In conclusion, this “three paper” dissertation develops an Orthogonalized Least 

Squares power estimation framework based on covariance of repeated measures in 

longitudinal one-way crossover studies. For researchers who are interested in planning a 

one-way crossover study with longitudinal repeated measurements, our efforts to identify 

simple and conservative approximations based on compound symmetry and mean 

summary approaches have mixed success.  

 

 

 

 

 


