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ABSTRACT OF THE THESIS

TOWARDS GAIT-BASED HUMAN IDENTIFICATION

USING FRONT VIEW DEPTH IMAGES

By HITESH JHURANI

Thesis Director:

Prof. Janne Lindqvist

There are several competing approaches towards identifying humans based on their bio-

metrics. In this thesis, we designed, implemented a system towards human front gait

identification. We leveraged the depth information obtained from front view depth image

of a person. We explain how basic features which can be extracted from the depth image

of an individual can be used for identifying a person correctly. Basic features such as depth

values of legs, the angle between the legs and height of the person are utilized. We conclude

the thesis discussing tradeoffs of the approach and avenues for further research.
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Chapter 1

Introduction

1.1 Motivation

A person can be identified by a variety of biometric characteristics such as their fingerprints,

voice and face [1]. These features might seem to be sufficient when it comes to the level

of security in many cases, but they still require the user to actively participate when it

comes to retrieving a particular feature. Often it is inconvenient and difficult for people to

keep their fingers clean enough for the fingerprint reader [3, 7]. People who are aware they

are being registered while performing certain tasks, for example recording their signature

or voice record, could perform the same task in a different way compared to if they did

the same task under normal circumstances [24, 30, 31]. These kinds of problems can be

avoided if the person’s movements are registered continuously and the verification is done

automatically whenever necessary.

Gait recognition technology is a suitable solution to this problem. Gait is unique for

every person [1]. A Gait based authentication system helps in developing a method that can

automatically register a persons movements as well as the algorithms which can be used to

analyse the movements. Such a method for authentication will create a more comfortable

authentication process for the user.

1.2 Background

This section gives a brief overview of the fundamentals which are necessary to understand

a gait based authentication system. We present a detailed information about the different

biometric authentication systems currently being used. How the human gait is used for

authentication and different approaches to implement a gait based authentication system.
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1.2.1 Biometric Authentication

Biometric features from an information security perspective is a process by which the iden-

tity of a person can be confirmed. Use of biometric features for authentication is one of

the three most widely used approaches. The other two are, the use of hardware tokens for

example USB token, key fob, etc. owned by the user, while the other is the use of text based

passwords, pass-phrases and other secrets which is known only to the user [10, 13, 31]. Use

of passwords and tokens has been most commonly used method for authentication [1, 7].

Since the technology used to measure biometric features has been large and expensive [7,

10, 13, 31].

In recent years, biometric technology has not only become smaller the price has dropped

significantly as well. Therefore it has been used more often as an alternative to traditional

approaches for authentication, it has even been used in combination with passwords and

hardware tokens. Biometric authentication uses one of the many different biometric features

to authenticate the person correctly. Some of the most frequently used features today are

fingerprints, face, voice and iris.

Authenticating a person is a two step process. In the first step, the user has to be

enrolled and is required to register identity and the biometric feature by which the user will

be authenticated. For example, in the fingerprint recognition system, the user is required

to register one or several fingerprints using a fingerprint reader. The authentication system

stores a template of a fingerprint for every person. The fingerprint stored is a digital repre-

sentation, where unique features related to it are identified and extracted. Once enrollment

is performed, the user is known to the system.

The next step is the authentication attempt. This is done either by identification or

verification. When a verification attempt is done, the user enters the identity along with

the fingerprint. The system compares this fingerprint with the template stored in the system

for that particular user, that is a one-to-one comparison. During this identification process,

the user enters only the fingerprint and the system will check this with all of the fingerprint

templates stored in the database, that is a one-to-many comparison. If the results from the

comparison yields a matching score, then there is a similarity between the two templates.
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The system has a pre-set threshold value which determines how large the matching score

can be for two templates to be recognized as identical. The accuracy of the system depends

upon the threshold value. A pre-set threshold value is the reference value which decides

whether the person is genuine or an imposter. A small threshold value tolerates a low

similarity score, thus resulting in situations where two different people might be recognized

as the same person by the system; a false acceptance. False acceptance takes place when

a non-authorized person is authorized as genuine. A high threshold value tolerates a high

matching scores, which might result in enrolled persons not being recognized by the system;

a false rejection. False rejection takes place when a genuine person is rejected by the

system. These are two basic errors of any authentication system [1, 10, 31]. The amount of

false acceptances and rejections compared to the total number of authentication attempts

on a system is known as the false acceptance rate (FAR) and false rejection rate (FRR)

respectively.

1.2.2 The Human Gait

One of the first studies of human gait was made in early 1900s by Marks [2] who described

how the process of walking can be divided into different phases and observed how different

fake limb designs of an amputee gait had an effect on these phases. Nowadays, we divide

the human gait into different gait cycles, a gait cycle is defined as the period from an

initial contact of one foot to the following initial contact of the same foot. This period is

divided into three main steps, which again is divided into eight phases. The first step is the

weight acceptance period. In this step, one foot is placed on the ground and the stability

is maintained by shifting the body weight in order to absorb shock. The second step, is a

single limb support task consisting of a mid-stance phase, a terminal stance phase and a

transition to the pre-swing phase. In this step, the contra-lateral foot swings forward while

the stable foot maintains the body weight. The last step is the limb advancement, in this

step, the stable foot in the second step leaves the ground, which moves the body forward.
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1.2.3 Gait Based Human Identification System

A gait based identification system is an automatic recognition of people based on their

behavioural characteristics. Human gait is complex, but it has a distinctive pattern which

mainly comprises of synced movements of body parts and joints and the interaction between

them. Thus, it could be considered as one of the most distinctive components for biometric

authentication. As the psychological research discovery from Johannson [42] showed, people

are able to recognize their friend’s walking style based on the light markers that are fixed to

various important body parts. Since then, a lot of research work [7, 9, 10, 12, 17] has been

carried out on gait analysis which has shown that gait can be used to recognize people.

Human gait is an unobtrusive biometric component which can be captured from a dis-

tance without requiring any intervention from the user. The performance of gait recognition

system can be affected by different factors such as light illumination, duration, load carry-

ing, speed of walking, apparel of the subject and camera view-point. This makes designing

a gait recognition system a challenging problem. Recently numerous studies [22, 24, 35,

38, 40] have focused on view invariant gait recognition system similar to realistic surveil-

lance situations, i.e. users are expected to walk in many different directions to reach their

destination.

In this thesis we have concentrated on a machine vision based gait recognition system.

Many of the machine vision based gait recognition systems [18, 22, 31] are initialized by

extracting what we call the human silhouette, which is basically attributing image pixels to

the shape of an individual, from images or video, to extract spatio temporal behaviour

patterns. These silhouettes are then processed for optimizing the registration process.

Different computer vision based algorithm and machine learning techniques are used to

extract features that are related to the gait. Following this, different gaits are then stored

in the database during the registration phase. In the authentication phase, a test sample is

recorded and is compared to the stored gait templates from the database to be used later

to identify or validate a person.
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1.2.4 Different Gait Authentication Techniques

Gait authentication techniques can be divided into three groups [10, 13, 32, 34, 37, 42, 44]:

Machine Vision: In the machine vision approach [10, 13, 14, 16, 18, 21, 22], images

of people while walking are captured using a camcorder placed at long distance. After the

image is captured, the gait patterns need to be extracted so image processing techniques,

such as converting images into black and white and background subtraction methods, can

be used. These features include long steps, static parameters of the body, the distance

between head and pelvis, the maximum distance between pelvis and legs and the distance

between legs. Machine vision based techniques are primarily used in surveillance scenarios.

Ground Sensors: In the ground sensors approach [32, 33, 34, 35], sensors are installed on

the ground which makes them suitable for controlling access to areas where high security is

required. When a person walks on them they are able to measure the force on the ground.

Characteristics which are be measured by sensors include heel strike, length of each step,

pace etc. These sensors usually are located in front of places with restricted access.

Wearable Sensors: In the wearable sensors approach [8, 11, 25, 36, 37, 39], the sensors

can be accelerometers (measuring the acceleration), gyro sensors (measuring the rotation

with number of degrees per rotation), force sensors (measuring force exerted while walking).

Sensors may be installed on a person’s belt, around their thigh or around their shin. These

sensors might be even put in a person’s pocket. These sensors were proposed to be utilized

in cellphones and portable electronic gadgets for support, protection and authentication

purposes. Hence, it can be used for continuous verification of the user without intervention.
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1.2.5 Challenges with Gait Authentication

Even though all of the biometric gait authentication approaches mentioned in the previous

section are encouraging, different factors affect the accuracy of such approaches. We can

divide these factors that influence a biometric gait system in two categories [1, 43, 44] :

External Factors: External factors mostly impose challenges on the recognition approach

(or algorithm). For example, different angles from which the person is viewed that is front

view or side view, whether the gait is recorded during day or night time, the surrounding

environment example indoor/outdoor, apparels of the user, the surface on which people are

walking like grass or concrete road, different types of shoes e.g. mountain boots/sandals, if

a person is carrying any object like briefcase or backpack.

Internal Factors: Internal factors can cause changes in natural gait due to sickness/injury

(example foot injury, lower limb disorder, Parkinsons disease etc.) or some physiological

changes in body because of age, drunkenness, pregnancy, gaining or losing weight.

One of the public gait databases mentioned in the paper published by Sarkar et al. [10]

discusses the five factors that can affect the authentication rate of the system. Factors

include change in the view angle, type of shoe, the surface on which the people walk, carry-

ing or not carrying any object and time elapsed between the samples which are compared.

An example in the paper shows the differences between the template and test samples of

shoe had type (X vs Y), viewing angle (right camera vs left camera), object (carried vs not

carried) and surface (soft surface vs hard surface) recognition rates that were 78 percent,

73 percent, 61 percent and 32 percent respectively.

Few of the external factors can have drastic effects on different gait authentication

approaches. If the person is carrying an object that affects the recognition of both wearable

sensor and machine vision based techniques, it creates difficulty in extraction of the human

silhouette in machine based techniques. The effect of a subject carrying an object was

studied by Gafurov et al. [11] they observed an increase in the equal error rate from 7.3

percent to 9.3 percent.
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1.2.6 Methods of Gait Authentication

Gait analysis can be divided into two major categories [20, 30, 31, 40, 44], the model-based

approach and the model-free approach.

Model Based Approach: The model based approach creates a representation of the

human body or motion and extracts the features to match them with different model com-

ponents. The knowledge of human body shapes and the dynamics of the human gait are

incorporated into the feature extraction phase. Gait dynamics are extracted by determin-

ing different joint positions. A few examples [4, 5, 12, 22] of this approach are static body

parameters, thigh joint trajectories, articulated model and two dimensional stick figures.

The advantage of the model based approach is that, it gives us the ability to directly derive

the dynamic gait features from the model parameters. There is no background noise and

there is also no effect of the person’s apparel or the camera view from which the gait is

recorded. The problem of creating many parameters from the extracted features is that, it

results in a complex model. Because of this, the total computation time and the storage

required for data results in a high cost due to complex searching and matching.

Model-Free Approach: The model-free approach differentiates the whole motion pat-

tern of the human body by terse representation, for example a silhouette, and does not

consider an underlying structure. The parameters are extracted from static gait features

like centroid, width and height of the silhouette. Research examples [12, 15, 20, 24] of

this approach are self-similarity eigenvalue gait, kinematic features, unwrapped silhouette,

higher order correlation, video oscillations and gait sequences. A few advantages of the

model-free approach are high speed processing, low computation cost and less storage re-

quired for data. However, the performance of this approach is usually affected by the

background noise and can be affected by the apparels worn by the subject.
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Chapter 2

Related Work

2.1 Initial Research in Gait Authentication

Studies on identifying humans initially began in the field of psychology in the 1970s. The

discovery made by Cutting and Kozlowski [3] describes how friends and family members

were able to recognise each other by the way they walked, they showed how the people

were recognized by only observing light reflecting markers which were attached to different

body parts of the person walking. Initial attempt of automatic gait analysis were performed

in 1994 by Niyogi and Adelson [4]. They described a way by which changes in a two di-

mensional video footage of a walking person could be analysed. They define gait as an

idiosyncratic feature of a person that is determined by, among other things, an individu-

als weight, limb height, footwear, and posture combined with characteristic motion. They

extend this definition to include appearance of the person, the aspect ratio of the torso,

the clothing, the amount of arm swing, and the period and phase of a walking cycle. From

these two definitions, it can be derived, gait is a useful parameter to distinguish different

people. Even though humans move in the same basic pattern there is a difference in the

relative timing and magnitude of gait motion. Many of these variations have been studied

in clinical gait analysis, which is used to distinguish pathological gait from normal gait and

not used for identification of humans as shown by Abdelkader et al. [5]. A case described

by Lynnerup and Vedel [6] shows how gait analysis was used to identify two bank robbers

in Aalsgarde, Denmark. The results obtained from that particular analysis does not result

into an evidence against the robbers, but it can be used as strong circumstantial evidence.
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2.2 Advantages of Using Gait According to Previous Experiments

Human gait has several advantages compared to other more traditionally used biometric

features. If the gait is measured using motion capturing, it is not possible to capture gait

using a digital camera. Hence, the gait should be more difficult for anyone to forge and

allow for a more secure way for authentication according to Pratheepan [12]. According

to Freedman et al. [31] gait recognition does not require high quality images, good results

can be obtained using in low resolution. Connie et al. [41] have studied the variation

in height, girth and skeletal dimension which can provide a cue for recognition and make

the authentication much more difficult to break. The paper also mentions that unlike

fingerprints or retina scans, which requires cooperation with the users, the unobtrusive

nature of gait makes it much more suitable for surveillance and security applications.

2.3 Disadvantages and Challenges of Gait According to Previous Re-

search Experiments

Human gait has some disadvantages compared to the more traditional authentication meth-

ods. Its biggest weakness is that it is not stable when compared to other biometrics. A

change in footwear or clothing can manipulate the gait to hinder a person from being cor-

rectly recognized by the system. According to Orwell [7], the gait differs when the person

walks normally, runs and walks up and down stairs. Analysing a persons gait based on

video footage can be used misused, since it is possible to recognize people without their

knowledge or approval.

There are a different types of gait a person is able to perform. For simplification, this

research focuses on when a person is walking normally, at normal speed along a flat surface.

The average speed of walking for a person is 1.32 m/s, which gives an average of 60 gait

cycles each minute Chan and Rudins [8]. Chang et al. [14] defines the human gait consists of

many different elements which are characteristic for a person. The problem is to detect these

features and analyse them in a way which can give a significant result. Tanawongsuwan and

Bobicks [9] work mentions, one of the disadvantages with gait is, the gait changes during

different walking speeds and over time.
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2.4 Gait Analysis Systems

In the last decade gait has been introduced as a biometric feature. It can be divided into

three different categories. Machine vision based, which uses video from one or more cameras,

to capture gait data and video/image processing to extract features. Floor sensors, which

are sensors installed in the floor and are able to measure gait features such as ground reaction

forces and heel-to-toe ratio when a person walks on them. Wearable sensors, where the gait

data is collected using body-worn sensors. This method is normally used to authenticate a

person.

2.4.1 Floor Sensors

Gait recognition using floor sensors have shown good recognition rates. The magic carpet

explained in Paradiso et al. [32] is a 16 x 32 grid of piezoelectric wires which are used to

sense foot pressure and position. The LiteFoot mentioned by Fernstroem and Griffith [33]

is another system developed in parallel with the magic carpet. It is a 1.76 square meter by

10 centimetres high floor element, filled with 1,936 optical proximity sensors. It detects the

feet location by calculating the total impact force of the feet on the floor. The floor comes

with an embedded micro-controller which scans all sensors at 100 Hz. The Z-tile system

designed by McElligott et al. [34] has a modular design. The upper layer has an array of

20 pressure-sensitive elements, individually covered by carbon particles with sizes between

300 and 600 microns, while the inside of a tile houses micro-controllers and connections.

2.4.2 Wearable Sensors

The applications of wearable sensors are large and include clinical monitoring of humans,

rehabilitation, motion analysis, athlete training, as well as security and authentication ac-

cording to Ailisto et al. [37]. Wearable sensors can be a single accelerometer or a set of

accelerometers together with a gyroscope to acquire data which can be analysed by biome-

chanics, and can be worn in different places on the body Sung et al. [36]. The data acquired

is then used for classification of activities according to the application. The accelerometer in

the palmtop computers and smart phones can be used to acquire data. The accelerometer
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is mainly attached to these devices to detect the orientation of the device and present the

data accordingly. Currently these accelerometers are easily available and commercially in

use this has attracted many researchers to employ them in securing different biometrics

including voice, and finger prints which are already commercially in use. Ailisti et al. [37]

were the first researchers to conduct an experiment, where portable technology was used

for acquiring gait data using a portable accelerometer worn on the subject’s waist.

2.4.3 Machine Vision

Machine vision is a commonly used gait recognition technique, because it allows the col-

lection of gait features from a distance. Machine vision usually includes image processing

techniques which are used to extract features like stride length which are determined by

body geometry and body silhouettes. The machine vision-based gait analysis techniques

can be classified as model-based [14, 15] and model free [16, 17, 18, 19].

The machine vision based gait analysis can also be categorized according to the tech-

nology, as marker-based and marker less. In the marker based system specific points on the

subjects body are labelled by markers, these points are tracked in the video and the body

motion is tracked and analysed as shown by Soriano et al. [21], Ailisto et al. [37]. Benab-

delkader [81] used stride length as a feature and extracted it from 17 silhouettes walking in

an outdoor environment for 30 meters at a fixed speed. They achieved an Equal Error Rate

of 11 percent using linear regression for classification. Wang et al. [38] used the silhouette

over time to characterize gait, by calculating the silhouette center and obtaining its contour

they converted the 2 dimensional silhouette into a 1 dimension signal by calculating the

distance between the centroid and every pixel on the contour. Principal component anal-

ysis was used for dimensionality reduction of normalized distance signals using normalized

euclidean distance as a similarity measure and nearest neighbour classifier with respect to

the Extended Nearest Neighbour (ENN) classification approach, achieved an Equal Error

Rate (EER) of 20 percent, 13 percent, and 9 percent respectively.
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2.5 Gait Authentication Using VTM and SVR

Recent work done using VTM and SVR, described the classification of gender from human

gait using GEI (Gait Energy Image) [14]. In their experiment GEI is used as the dis-

tinguishing feature and the outcome achieved good performance in real time. In addition,

Arias-Enriquez et al. [15] used this method in the medical field by presenting a fuzzy system

to identify different human gait cycle anomalies during the phase of the cycle for knee and

thigh using the sagittal plane. Muramatsu’s [16] study proposes a gait based authentication

technique that uses a random view transformation arrangement to decrease the accuracy

drop due to view changes. A recent study by Iwashita et al. [17] shows promising results

in gait recognition by considering changes in the subjects path.

2.6 Previous Work on Frontal Gait Analysis

A number of frontal gait recognition methods have been proposed in the past. The most

popular are based on two dimensional frontal-view silhouettes, such as statistical shape

analysis by L.Wang et al. [22]. This paper proposes an improved background subtraction

procedure that is used for extracting silhouettes of a walking figure from the background.

This method captures the structural characteristics of the gait, especially the shape of the

body. The algorithm was tested of database consisting of 240 sequences from 20 different

subjects with three viewing angles. They got Correct Classification Rate (CCR) using

Extended Neighbour Classification (ENN) of 88.75 percent for zero degree viewing angle,

87.50 percent for forty-five degree viewing angle and 90 percent for ninety degree viewing

angle.

One of the earliest works on frontal gait analysis was done by Goffredo et al. [29] in which

he used a single non-calibrated camera and extracted unique signatures from descriptors of

a silhouette’s deformation. This approach was mainly designed for surveillance systems like

CCTV cameras because the experiment involved the capturing of the upper-front view of the

participants. They achieved a mean Correct Classification Rate (CCR) of 96.3 percent which

proved, gait recognition of individuals observed from the front could be achieved without

any knowledge of the camera parameters. Another interesting work was done by Lee et al.
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[27] in which frontal motion analysis was done using a camera. In this experiment, various

body parts are attached with a set of light sources which allowed the participants to be

identified. The analysis was done through the phase-space analysis of the trajectories made

by the light sources attached to various body parts. They achieved a correct classification

rate of 85 percent. This approach was the first of its kind, where the trajectories of light

sources were used for identification of people.

Soriano et al. [21] introduces curve spreads, an efficient descriptor of the front-view gait

of humans walking towards the camera. Curve spread is a two dimensional representation

of the time-variations of a moving body outline. The identification tests using the curve

spreads yielded a 100 percent recognition rate for 50 frames per second and the recognition

rate falls to 92 percent for 80 frames which is approximately two walk cycles. Barnich et

al. [20] uses an intra-frame description of silhouettes which consists of rectangles that will

fit into any closed silhouette. A dynamic, inter frame is added by aggregating the size

distributions of these rectangles over successive frames.

A spatio-temporal approach for the front-view of gait recognition has been done by

computing the human point cloud in a three dimensional spherical space by Chen and Gao

[23]. They use the small soton gait database for testing which results into a recognition

rate of 90 percent. Motivated by the kinect camera which makes it possible to create cloud

points in three dimensional sphere and Cartesian spaces with a two dimensional based

approach Kamata and Ryu [24] suggest adding depth information with the help of depth

sensor. This helps in improving the overall recognition rate of the system by combining a

three dimensional human point cloud with two dimensional silhouettes.
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Chapter 3

Frontal Gait Analysis Using Depth Images

3.1 Frontal Gait Analysis

Many of the gait recognition approaches [3, 4, 5, 7, 18, 35] analyse side-view gait, for

example walking on a plane parallel to camera. It is because most of the gait dynamics can

be gathered as legs and hands when they extend to their maximum. However, it is shown

in many of the forensic usages and security applications [6, 38] that it is difficult to acquire

footages with side-view orientations. CCTV cameras are usually placed on the top corners

of buildings, and the subjects pose is generally captured from an upper frontal-view. An

example related to forensic analysis is mentioned by Lee et al. [27] which use frontal-gait

footages from CCTV cameras for criminal investigation like the case of the bank robber in

Noerager and the burglar in Lancashire (United Kingdom).

Another merit of frontal-view is that it only requires smaller physical space than the

space needed in the commonly used side-view. For instance, this can be advantageous where

an individual needs to verify his/her identity to enter a building or immigration checkpoints.

In these type of situations, people need to line up and pass by a narrow space where the

cameras/sensors are placed. In order, to capture 8 meters of walking distance in a side-

view, a camera distance of a minimum of 9 meters is required, while in front view, only the

corridor type of space is sufficient to capture the required gait cycle shown as by Lee et al.

[27]. This potential merit explains the requirement of front-view in portal-based security

authentication applications.

Nowadays smart-gates are installed at many airports. These smart-gates give travellers;

who are eligible; the option to self-process through passport control. But some of these

smart gates can have a few limitations. The main limitation of the iris and face-based
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authentications in these gates is that they need to capture the individual’s image in near-

field frontal-view, whereas the gait-based system does not require this. Hence, the gait,

iris, and face-based coupled system is ideal for providing robust, near and distance field

biometric authentication of an individual. However, coupling the gait with these existing

implementations requires to place cameras where the frontal view can be captured.

Capturing the front view has it’s own limitation. There is a need of compensation

for looming effect and a possibility for self occlusion which can occur between the hands,

legs and body. Only a small portion of the gait dynamics would be captured through two

dimensional image data which can lead to poor performance for recognition. Based on the

explanation by Sivapalan [31] three dimensional gait appearance based features are needed

to be computed from frontal-view for robust gait recognition. But the three dimensional

reconstruction will require multiple camera views. An alternative to acquire this data is to

use a depth sensing device. A front based depth image has the advantage to capture all of

the features of gait from a single point of view without the problem of self occlusion.

Depth images can be captured using google project tango. The tango tablet comes

with a depth sensor, a laser and a camera through which the depth image can be seen and

captured. Using Open CV library we can implement the depth map which can be used to

capture the frontal view depth image of the user.

3.2 Depth Image Processing

3.2.1 How a Depth Sensor Works

Some depth sensors have a RGB (Red Green Blue) camera, some do not. Two crucial

elements which must always be present for depth sensing: An IR (Infra-Red) projector, and

an IR camera. The IR projector projects a pattern of IR light which falls on to the objects

and forms a pattern of dots around the object. We cannot see the dots because the light is

projected in the IR color range. IR camera can see those dots.

An IR camera is similar to regular RGB camera except the images are captured in the IR

color range. The camera sends the video information of this distorted dot pattern into the

depth sensor’s processor, the processor works out depth based on the displacement of the
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dots. The pattern is spread out for the objects which are near the sensor and the pattern

is dense for the objects which are far from the sensor. This depth map can be read from

the depth sensor into your computer, or you can extract the information directly from the

IR camera. When calibrating the RGBD tool kit, during the correspondence calibration

phase, we must take a feed from both the depth map and the IR camera feed.

3.3 Depth Measurement by Triangulation

The Project Tango sensor consists of an IR laser emitter, an IR camera and an RGB camera.

The laser emits a beam which splits into different beams by diffraction which results into

a pattern of small dots projected onto the screen. IR camera captures this pattern and

correlates it with a reference pattern. Reference pattern is obtained by capturing a plane,

at a known distance from the sensor, and is stored in the sensor. When a small dot is

projected on an object, whose distance to the sensor is smaller or larger than that of the

reference plane, the position of the small dot in the infra-red image will be shifted in the

direction of the baseline between the laser projector and the perspective center of the IR

camera. The shift is measured for all small dots by a simple image correlation procedure,

which gives a disparity image. For each pixel, the distance to the sensor can then be

retrieved from the corresponding disparity.

3.4 Mathematical Model

Figure 3.1: Relation between the distance of an object to the sensor relative to a reference
plane and the measured disparity d.
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To express the three dimensional coordinates for the object, a depth coordinate system

is taken into consideration with the origin at the center of the infra-red camera [47]. Z axis

is orthogonal to plane of the image in direction of the object, the X axis is perpendicular to

the Z axis in the direction of the baseline b between laser and IR camera center, the Y axis

is orthogonal to X and Z makes a right handed coordinate system. We assume an object is

on the reference plane at a distance Zo to the sensor, a small dot on the object is captured

on the image plane of the IR camera. If the object is shifted closer or further away from

sensor the location of the small dot on the image plane will be displaced in the X direction.

This is measured in the image space as disparity d corresponding to a point k in the object

space. From figure 3.1 using the similarity of triangles [45] we have:

D/d = (Zo − Zk)/Zo (3.1)

and

d/f = D/Zk (3.2)

where Zk denotes the depth of point k in object space, b is base length, f is focal length of

the IR camera, D is displacement of the point k in object space, and d is observed disparity

in image space. Substituting D from Equation (3.2) into Equation (3.1) and expressing Zk

in terms of the other variables yields:

Zk = (Zo)/(1 + (Zo/fb)d) (3.3)

Equation (3.3) is a mathematical model to derive the depth from the disparity observed,

provided that the constant parameters Zo, fb, and d can be determined by calibration.

The Z coordinate of a point, together with f, defines the imaging scale for that point.

The planimetric object coordinates of each point can then be calculated from its image

coordinates and the scale:

Xk = (−Zk/f) ∗ (xk − xo + dx)Yk = (−Zk/f) ∗ (yk − yo + dy) (3.4)

where xk and yk are the image coordinates of the point, xo and yo are the coordinates

of the principal point, and dx and dy are corrections for lens distortion.
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Chapter 4

Implementation

This chapter deals with the various aspects of implementation, such as the experimental

set-up, the software functions used for the implementation and the data collection methods

incorporated in order to test and verify the proper working of the depth map application.

Figure 4.1: Architectural overview of the application implemented using project tango

4.1 Depth Map Application Overview

Tango is a platform which uses computer vision which gives mobile devices the ability

to understand the position relative to the world around them. Tango tablet is an android

device with a wide angle camera, a depth sensing camera, accurate sensor. Tango offers API

in c, java and an sdk for unity. Tango gives the mobile devices to understand the position
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by using three core technologies: motion tracking, area learning and depth perception. For

our application we need the use of depth perception

The depth map application has two sections. The first section is the android sdk for

java. This part of the application consists of the user interface which consists of picture

in picture. One is the actual image of the participant and other is the depth map of the

participant. There is a button present when pressed starts storing the depth image of the

participant. When the button is pressed a call to function present in the second section

is initialized. The second section is the android ndk for c/c++ also called native android.

Both the sections are connected through the Java Native Interface (JNI) library which maps

the java functions into c/c++ and vice versa. When the call to native android is made, the

raw cloud points collected by the depth sensor are projected onto the screen. In order to

increase the number of raw data points another call to the depth sensor is made to increase

the number of points getting projected onto the screen. Once this is finished we use scene

module from the Open CV library [26]. In order to preserve the edges of the participants

body we have to use guided filtering which is an implementation of guided image filtering

in Open CV. The first filtering is done for the RGB frame captured and later for further

better quality of the depth map another type of guided filter called as infill filter is used in

order to decrease the noise in the image further.

Depth perception gives the application ability to understand distance to objects in the

real world. In our application’s case it is able to detect the participants when they walk

towards the device. Application uses the depth sensor along with the infra-red sensor to get

the distance between the participant and the device. When the distance is more than five

meters which is the maximum range of the depth sensor, the participant is not visible to the

depth sensor. As the the participant comes within the range the depth sensor starts to detect

the participant with the help of the infra-red sensor which is directly projected towards the

participant. When the distance decreases more depth information can be extracted from

the participant. For the implementation of the application we have to integrate the Open

CV library. Since the depth part is not populated as an API by google we have to integrate

the library and add it to the path of the android compiler.
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4.2 Open CV

Open CV [26] library is used to implement the depth image on Google Project Tango. Open

CV is a computer vision library with functions developed by Intel mainly for real-time com-

puter vision. The primary interface of OpenCV is in C++ with additional interfaces in

Matlab, Java and Python. Some of the areas in which Open CV is widely used are:

1. 2D and 3D feature tool kits

2. Facial Recognition

3. Gesture Recognition

4. Human Computer Interaction (HCI)

5. Object Identification

All of the OpenCV classes and functions are placed into the cv name-space. Therefore,

to access this functionality from the code, use the cv:: specifier or using name-space cv.

We primarily use three classes within the Open CV library for the implementation of the

application.

Core :- This is one of the building blocks of the Open CV library. This class is pri-

marily used for manipulation of the images at the pixel level. We use the basic structures

like Mat, Scalar and Mat::depth for creating the basic image matrix for the depth map.

Mat::depth returns the depth of a matrix element. The method returns the identifier of

the matrix element depth.

Mat represents an n-dimensional numerical single or multiple channel array. It is used

to store real or complex value vectors and matrices. This stores the cloud points which

are projected by the depth sensor. The information from these cloud points are used for

creation of the depth map.

Imgproc :- This is part of the image processing module and it is used for smoothing the

edges of of the objects which are projected in the depth map. Geometrical image transfor-

mations maintain the natural shapes of the objects in the depth map.
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Erode the function erodes a source image using the specified structuring element that de-

termines shape of a pixel over which minimum is taken. The function supports the inplace

mode. This method is used for smoothing out the edges of the objects so that there is no

loss of information.

cvtColor the function converts an input image from one color to another. In case of trans-

formation to-from RGB color space, the order of the channels should be specified explicitly.

This function starts the first step which leads to formation of the depth map. The actual

image is first converted into a gray scale image while the depth information is being col-

lected. This step is achieved via cvtColor.

Highgui :- This provides an easy interface to create and manipulate windows that can

display images and read and write images to/from disk or memory. We use the imwrite

function from this class.

Imwrite helps in saving the depth image to a specified file. The file can be saved in JPEG,

or PNG formats. In this thesis we store the image in JPEG format. The parameter provided

to these functions are name of the file, the array or matrix of the image and the format in

which the image is to be stored.

In order to use the depth perception using Open CV we need to attach an XYZijAvailable

callback. A callback function is used to inform a class that some work is being done in

another class. XYZijAvailable callback is used for allocating memory and processing of the

image buffer which contains the pixel values of the depth map. The callback is called each

time a new depth data is available. On the Tango tablet, the depth callback occurs at 5 Hz.

An optional argument following the callback pointer can be supplied and can be returned

in the callback context parameter.

4.3 Experimental Set-up

Google Project Tango was used for the implementation of the depth map application. The

device is based on the Android Operating System. The device is equipped with three

dimensional sensors that measure the distance from a device to objects in the read world.

Current devices are designed to work best indoors at moderate distance up to 4 meters.

The depth data allows an application to understand the distance of visible objects to the
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device. The depth information is returned to the device in two main formats Point Clouds

and a device specific format called XY Zij designed to aid meshing. In the experiment we

use the XY Zij device specific format. It is a combination of an XY Z point cloud and a

2-D lookup table which allows the generation of a depth map. But since the ij part is not

populated as an API we could not use it directly, hence we had to integrate an Open CV

library for our experiment. For that reason, we had to transform the depth information

into an image like depth map (similar output found in microsoft kinect).

Figure 4.2: Google Project Tango

4.4 Implementation of Depth Map

In order to implement Depth Map, we first had to integrate the native part of Open CV to

the C/C++ part of the code. Microsoft kinect has its own version of Open CV which can

be directly used for implementation of depth map. But in case of tango tablet the device

does not have an implementation of Open CV which can be used directly. In order to use

Open CV we have to manually build our own version by downloading the C/C++ variant

of Open CV library and adding it to the path of the android ndk compiler.

To integrate we had to build our own variant similar to that described in documentation

available for using Open CV in android [28]. In order to build our own variant, the library

files for the c/c++ version has to be downloaded from the official Open CV website. The

library is to be added to the main depth map application folder. Path of the library has

to be included in the Android.mk file so that the compiler can retrieve the library. When

the application starts, the depth camera information is obtained from the functions which
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Figure 4.3: The figure shows the set-up of Google Project Tango in the experiment. Since
the range of the depth sensor is about four to five meters, to be on the safe side we kept
the initial distance between the participant and the depth sensor as three meters. This
is the maximum distance between the participant and the device. The participant covers
approximately 2.3 meters. After that the collection of data is stopped the width of the area
is 0.8 meters.

are already populated by Google API for depth camera intrinsics. In order for proper

implementation of the depth map we have to check some paths and files.

Check all of the Open CV related paths in Android.mk which need to be set-up in order to

your build path.

Open CV library as gradle-java project in the gradle dependencies.

Check the obj folder for an available libopencv-java3.so file after build to check if the library

inclusion is working.

4.5 Data Collection

The data was collected in an enclosed environment in a conference room. The reason being,

the sensitivity of depth sensor to light as well as the distance limitation of the depth sensor.

We recorded the gait cycles of five different participant whose body shape were different.

Every participant was asked to walk three times. We asked the participants to walk three

different times because we wanted to incorporate the variance in the walking style for the

same participant.
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Every cycle consisted of seven samples. These samples were depth images captured while

the participant walked towards the depth sensor in the device. The total distance covered by

every participant in every cycle is approximately three to four meters. The distance varied

with every participant because of the stride of every step for each participant is different.

Figure 4.4: The figure represents the seven samples of the depth image captured for Par-
ticipant 3. These seven samples combine together to form one complete cycle for each
participant. Similarly all the participants were asked to completed three cycles in order
to accommodate any variation in the style of walking for same participant across different
cycle.

There were two different scenarios: the distance between the device and the participants

are same in both the cases, but in the first case more information about the upper body

was captured and in the second scenario more information about lower part of the body

was captured.

This was done to observe from which part of the body can the maximum number features

be extracted from the authentication perspective. After observing the different gait cycles

of participants, we decided to use the gait cycles which concentrated more on the lower part

of the body. After observing the depth images we came to the conclusion that the upper

body shape of a participant can vary. This is substantiated by previous research [16, 38,

40] has shown that authentication systems have failed to recognize a person if the person is

carrying an object in hand. Also some systems have failed to recognize the correct person
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if a person is wearing a jacket. Whereas the lower part of the body is free from all of these

variations. It was observed that we could extract features like the distance covered, the

swing angle of the feet, maximum angle between the two legs, and the difference in the

pixel intensity values from the lower part of the body.
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Chapter 5

Analysis of Gait Images Captured

Figure 5.1: Block diagram of the approach. We give depth image as the input for the
authentication system. For EER we give the depth values for both legs as the input and
the EER is calculated from the similarity table calculated using DTW over depth values.
For classification we use the angle between the legs and height along with the depth values
of the legs.

Three cycles were captured for every participant and every cycle consists of seven sam-

ples. Each sample is a depth image of the participant walking towards the device.

In order to distinguish each user we are extracting three features which are unique to each

participant. The features are, the depth values of the legs, the maximum angle between

the two legs and height of the person. The first two features are dependent on the lower

part of body and the height is from the whole body. We tried classifying every participant

using two different techniques, one was using only the depth values of the legs. The second

is done using all three features.

5.1 Experiment with Depth Values

The first experiment for differentiating each participant was done using only the depth values

for left and right legs. In order to extract the maximum depth information we divided each
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Figure 5.2: The leg is divided into four parts since we needed to extract the maximum
information of the change in the depth value for each part for every sample. We have used
the Image Processing Toolbox available in MATLAB to divide both leg and right leg into
four different parts which in total gives us eight features based on the classification for every
participant.

leg into four different parts, so effectively we were getting eight features in total. To do the

analysis, we have used Matlab and its applications for extracting the features and classifying

the participants.

We used Dynamic Time Warping (DTW) to find the relationship of the depth information

extracted from every participant. DTW compares the depth values for both tables from

which we make a similarity matrix used for calculating the Equal Error Rate (EER). For

every participant multiple points were marked on every part of the leg and then the average

value was taken as the depth value for that part of the leg. This process was for every part

of the leg done manually using Matlab Impixel command. For reference purpose we also

took the depth value for the upper part of the body. All of the depth values for the legs are

then subtracted from the depth value of the upper body. This is done to normalize the data

and bring it within a specific range. These subtracted values were then given as input for

the DTW algorithm which is used because it measures the similarity between two temporal

sequences, in this case the depth values that vary with time.
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5.1.1 Dynamic Time Warping

DTW is a time series algorithm originally developed for speech recognition. The algorithm

aligns two sequences of feature vectors by warping the time axis iteratively until an optimal

match between the two sequences is found.

Consider two sequences:

A = a1, a2, ....., ...an (5.1)

B = b1, b2, ....., ...bn (5.2)

Each cell has a distance measure, we get this distance value by comparing the cor-

responding elements of the two sequences. In order to find the best match between two

sequences we need to find a path through the grid which results in a minimum distance be-

tween them. To find the overall distance we have to find all possible combinations of routes

through the grid and for each one compute the overall distance. The overall distance is the

minimum of the sum of the distances between the individual elements on the path divided

by the sum of the weighting function. The weighting function is used to normalise for the

path length. For any considerably long sequences the number of possible paths through the

grid will be very large.

The results from DTW are stored in a similarity matrix, which gives us a view of how

close the depth values are when compared to different participants. When the comparison

is between the same participant for the same cycle we get zero, hence all the diagonal values

in the matrix are zero. The remainder of the values show how different participants depth

values are close to each other.

5.2 Experiment with Depth Values, Height and Angle Between the Legs

In this experiment we try to incorporate more features which can be used for classifying

different participants. One of the key feature is the angle between the legs. The angle

between the legs for each participant is different because of the step size every participant

takes. We observed that the smallest angle is for the participant who is shortest among

all the participants and the angle is greatest for the participant who is tallest among all

the participants. The initial approach was to only calculate the maximum angle between
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Figure 5.3: In order to measure the angle between the legs impixel command in MATLAB
is used. This command enables us to measure the distance from waist to foot for each
leg. Once the distance is obtained we apply the cosine rule to find the approximate angle
between the leg in degree. The command also enables in measuring the height for every
participant.

the legs for every participant. But, after observing the resulting angles, the range between

which this angle varies is also different for every participant and hence we need to consider

angles for every sample in every cycle.

To calculate the angle we take the sample, we form a triangle using the two legs and the

distance from the lower half of the body to the floor, by using the sin and cosine rules we

calculate the angles between the legs.

For figure 5.3 the angle will be:-

cos(A) = (662 + 65.752 − 14.492)/(2 ∗ 66 ∗ 65.72) (5.3)

cos(A) = 0.9892 (5.4)

A = cos−1(0.9892) (5.5)

A = 10.89o (5.6)
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To extract the second feature, the variance in the height of every participant, we calculate

the height for every participant for every sample in every cycle. From the data collected

we observed, each participant had a minimum and maximum value between the value of

height varied. Though there was some difference in values of height for every person for

same sample number in different cycles, the variance was not significant.

To calculate the height of each participant, we measured the distance from each person’s

head to the floor. We used the image viewer tool in Matlab for calculating both the height

and angle between legs for every participant.

We concentrated on the legs because, previous research [10, 21, 24, 27, 31] has proved

the recognition rate is affected when upper body parameters like the swing of the arms,

width of the shoulders are affected by the apparels of the users hence we did not take

the upper body into consideration. Another parameter which we did not consider is the

shape of the body which is a commonly used parameter in side view gait authentication

[3, 5, 8]. We did not use it because after observing the depth image we saw some of the

images had noise which did not show proper body shape of the participants. Initially we

tried incorporating the direction in which the foot of the participants was pointing but that

could be observed only when the participants were very close to the depth sensor and some

of the participants had their foot pointing in the same direction which could have affected

the over all recognition rate of the system. One parameter which we could have included

is the distance covered by different participants while they were walking towards the depth

sensor. But we could not derive a relationship between the depth values and the distance

covered by the participants. If we can find this relationship, we can use it as a feature for

improving the recognition rate of the system.
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Chapter 6

Results

This chapter presents the results obtained for calculation of EER for depth values and

classification with height, angle between the legs and depth values. The first part of the

results will discuss how we calculated the EER, which shows the efficiency of our system

when only depth values of the left and right leg is taken into consideration. The second

part of the results consider the angle between the legs and height of the person along with

the depth values of legs for each participant. These features are given as input to a machine

learning in order to see the accuracy of the system and to differentiate between different

participants.

6.1 Equal Error Rate(EER) for Only Depth Values

Figure 6.1: The ROC plot for the system with EER of 0.333 and the optimal threshold of
8.7352. The value of TPR at the crosspoint is 0.3313 and the value of FPR is 0.3313.
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We created a table for every participant and added all of the depth values for both the

legs inside this table. In order to normalize the data and to bring it within a given range, we

take the difference between the upper body depth value and the legs depth value. The value

for the upper body was taken in a similar manner as described in Chapter 6. In the upper

body case we took the average value for the upper part of the body rather than dividing it

into four different parts. As described in Chapter 6, these values are further processed by

DTW and a similarity matrix is obtained. These values are further used for obtaining the

EER to see how much error is present in the system for the given data.

The blue line in the graph below denotes the False Positive Rate (FPR) and the red

line denotes the True Positive Rate (TPR). At the intersection of both of these curves we

obtain an EER. For the system the EER value comes out to be 0.3333.

FPR is generally stated a percentage at which an imposter is accepted as authentic by

the biometric system. TPR is generally stated as percentage at which the correct person is

authenticated by the biometric system. For our biometric system the TPR value is 0.3313

and FPR value is 0.3313.

The EER of 0.3333 means that, the proposed gait authentication system takes about

33 out of 100 decisions that are wrong. This means if an intruder tries a brute force

attack with a large number of different gait samples, 33 out of 100 attempts will succeed

on average. EER is usually used as an indicator of the system’s performance. In our case

the EER is high when compared to the EER of approaches where the side view is used for

authentication [6, 12 13]. On of the key reasons for such a low EER is the resolution of

the depth sensor. Previous experiments done with a depth sensor for the front view gait

analysis [21, 22, 30] use devices with a resolution much higher than that of the project tango

tablet. If the resolution of the depth sensor is improved the depth values returned from the

legs will be much more accurate resulting in a lower value of EER. Another reason is that

the points projected by the laser from the depth sensor on the participants, the number

of points projected is almost 1/3rd of the total number of points it can project. This is

also another hardware limitation of the device. Because of the limited number of points at

times we did not get the proper shape of the participant which could have been used as a

feature to distinguish different participants. Another way of improving the EER is to add
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more features which can be extracted from the front view of the gait. We have extracted

in total eight features for all the participants, but a few more features would decrease the

value of EER further.

6.2 Classification with Height and Angle Between Legs with Depth Val-

ues

Figure 6.2: Confusion Matrix for Complex Tree Classifier. A confusion matrix is a table
that is often used to describe the performance of a classification model (or classifier) on
a set of test data for which the true values are known. In this case for P1, out of the 21
samples for P1, 11 were correctly identified and next closest was P3. We obtained the best
classification result for Participant P4 where 17 were correctly identified.

In this section we will discuss the results obtained from the classification of the features

which are used for authentication of each participant. We use the MATLAB application

called classification learner. The data is provided to this application which comes with

different classifiers.
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For classification we use 2 fold cross validation since this model evaluation method is better

than residuals [46]. We use 2 fold cross validation because we did not have a separate train-

ing dataset and testing dataset. Hence 2 fold cross validation helps in training and testing

the system for classification.

The problem with residual evaluations is that they do not give an indication of how well

the learner will perform when it is asked to make new predictions for data it has not already

seen. One way to overcome this problem is to not use the entire data set when training a

learner. Some of the data is removed before training begins. Then when training is done,

the data that was removed can be used to test the performance of the learned model on

new data. This is the basic idea for a whole class of model evaluation methods called cross

validation.

We use 2 Fold Cross Validation which is K-Fold Cross Validation. The data set is divided

into k subsets, and the holdout method is repeated k times. Each time, one of the k subsets

is used as the test set and the other k-1 subsets are put together to form a training set.

Then the average error across all k trials is computed. The advantage of this method is that

it matters less how the data gets divided. Every data point gets to be in a test set exactly

once, and gets to be in a training set k-1 times. The variance of the resulting estimate is

reduced as k is increased. In our case we use the Complex Tree Classifier which gives us an

accuracy of 60 percent.

The accuracy in this case is calculated by taking a ratio of true positive to total the

sum of the true positive and false positive. From the confusion matrix in Figure 6.2 we

can obtain the true positive and false negative value. The values in the green box are the

true positive values and the values in red are the false positive values. In our case there is

no true negative and hence the white boxes in the confusion matrix indicates that. Hence,

by this definition we can calculate the accuracy for our authentication system using the

confusion matrix in figure 6.2 all the values in green are true positive and all the values in

red are false positive.

True Positive(TP) = 11 + 12 + 10 + 17 + 13 = 64

False Positive(FP) = 10 + 9 + 11 + 4 + 8 = 42

Accuracy = (TP)/(TP + FP) = 60 percent
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The accuracy for our gait authentication system is 60 percent, which when compared

with other approaches [21, 22, 29, 31, 40] is less. However we only extracted the basic

features. The amount of pre processing required in our case is less because we don’t have

to extract the human silhouette from the image. The previous approach [21, 22, 29, 31,

40] does not take depth information into consideration. Though our accuracy is less, we

can improve this by including more features. For example,we could include the distance

covered by each participant while the data is recorded. If we can find the relationship

between the depth information obtained and the distance covered that could be used as a

feature for classification. One such approach [22] uses the body shape as a distinguishing

feature because of the low depth sensor resolution. However, with this approach the proper

body shape of the person is lost in some cases and could not be included as a feature for

classification. The accuracy is also affected by the variation which occurs in the behaviour

of the participants while walking. Also the low resolution of depth sensor results into noise

in depth image, if this noise can be removed the accuracy of the will improve further.
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Chapter 7

Conclusion

This thesis provides a way in which a person can be authenticated using gait as a biometric

feature. We implemented the gait authentication system by using the depth information,

height and angle between the legs which is obtained from the depth image of the participants.

Three cycles were captured for every participant to take into account the variance of

gait for the same participant. Every cycle had seven samples where we try to see the change

in depth value as the participant comes closer to the device. Two different experiments are

performed, the first one was on the depth values, where we have concentrated on the lower

part of the body, with both legs divided in four parts giving us a total of eight features.

These features are then normalized and given to DTW from which we get a similarity matrix

which is used to determine EER of the system. The EER for our system is 0.33.

In second experiment we have extracted additional features such as the angle between

the two legs and the height in every sample for all three cycles. We need more features

to improve the accuracy of the system to distinguish different participants. Here we have

collected the data and used the classifier available with MATLAB. One crucial observation

was that the accuracy changed with the way we organized the dataset.

Frontally captured data has many advantages over a lateral view for gait based biometric

authentication, including easy integration into biometric portals and similar devices, as well

as not having field of view issues in confined spaces such as a narrow corridor. The addition

of depth also enables more data to be captured than from the side, as there is no issue of

self-occlusion.
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