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ABSTRACT OF THE DISSERTATION

Semi-Supervised Transductive Regression for Survival Analysiin Medical
Prognostics

By FAISAL M. KHAN

Dissertation Director:

Casimir A. Kulikowski

The central challenge in predictive modeling for survivalgsis in medical prognostics
is the management of censored observations in the tidh#e time-to-event predictions
can be modeled as regression problems, traditional remnesehniques are challenged
by the censored characteristics of the data. In sumblgms the true target times of a
majority of instances are unknown; what is known igm@sored target representing some
indeterminate time before the true target time. Therindtion for most patients is
incomplete and only known “up-to-a-point.” Patients wiawe experienced the endpoint
of interest (cancer recurrence, death, etc) during tem ofulti-year study are considered
asnon-censorear events They may represent as little as 9% of the availallaple.
Most of the patients do not experience the endpoint ofoatgo follow-up for various
reasons (patient moved, died of other causes, etc.)eseensoredsamples often
represent most of the available sample. Modeling techsiguigich can correctly

account for censored observations are crucial. Suclo@hsamples can be considered



as semi-supervised targets, however most efforts in sepervised regression do not
take into account the partial nature of unsupervised infeomatith samples treated as
either fully labelled or unlabeled. This dissertatioregents a novel transduction
approach for semi-supervised survival analysis. The trgettimes are approximated
from the censored times through transduction to improedigtive performance. The
framework can be employed to transform traditional esgion methods for survival
analysis, or to enhance existing survival analysis algositfon improved predictive

performance. This proposed approach represents one tfsthapplications of semi-

supervised regression to survival analysis and yields mgnif improvements in

predictive performance for multiple applications in pabs and breast cancer

prognostics.
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CHAPTER 1

INTRODUCTION

There are two broad categories of applications for ptigdi time-to-event
modeling in medical survival analysis. The first is progicpsleveloping models for
how a certain disease will progress. The purpose ofmoclkels includes understanding
disease progression and prediction of how new patieiltd@&have in the context of
existing data. Examples include predicting when prostateecavill recur in patients so
therapy can be initiated early [18] or identifying whiclowgp of patients will benefit
more from a certain therapy. The second purpose lameqory, through factor analysis;
to analyze disease processes and explore interadfexnts between disease factors. An
example is determining whether a potentially significamegeill continue to be relevant
when combined with other predictors in a multivariate rhgti@] in order to possibly
prioritize and identify candidate genes for targeted tfearac drug development.

While time-to-event prediction is inherently a regressignoblem, survival
analysis challenges computational modeling approaches dine tiact that healthcare
data in such settings is characterized by censored andemsnred (event) observations.
The term “censoring” in biostatistics describes the tlaat the target survival time is not
known for all samples in the survival analysis settingr iRstance, patients might not

experience death or cancer relapse during the coursetadyg er be lost to follow-up.



The only time known is their last record of being healthgnce the target time for
regression is incomplete and only known “up-to-a-poiniThis concept is distinctly
different from the notion of missing data in machirerteng [57].

Censored observations contribute incomplete informagthe event of interest
(cancer recurrence, death from disease) may occur [Eteents are lost to follow-up.
Simply omitting the censored observations [7, 58] or tngathem as non-recurring
samples in a classifier [61] both bias the resulting madel should be avoided.
Additionally, in the field of healthcare diagnostics, dtee the costs involved in
identifying acceptable patients who will provide consentifcfusion in research, and
then actively tracking them over a significant periddime, the sample size is often
small, in the tens or hundreds. Since most of the ssmmpay be censored [e.g., 91% in
prostate cancer [17], 76% in breast cancer [48]) dropping patients is a very
unattractive option and accounting for them is of cruamportance for a model.
Survival analysis represents a special example of ghiealycomplexity in modeling
noisy high-dimensional biomedical data to predict compidexiical phenomena.

The core contribution of this dissertation is thapassible way of handling
censored samples so common in time-to-event problem&dvibeuto consider them as
semi-supervised targets. While there has been significank w semi-supervised
classification approaches [3, 9, 10, 25, 26, 33, 56], therbédes limited work in semi-
supervised regression [2, 13, 51, 63, 72]. Work thus far treatgles as either fully
labeled or unlabeled and does not take into account thelpatiae of unsupervised

information, as is the case in time-to-event mdgicagnosis problems.



This dissertation presents a novel approach which ttbatsurvival analysis
problem as one of semi-supervised regression and transolulsssns through trial and
error the appropriate target times. This framework rfamgducing the appropriate times
can be applied to any regression algorithm, whether origici@veloped for survival
analysis or not. In experiments with multiple algums on datasets for prostate and
breast cancer, the proposed framework consistently ystgsficant improvement in
predictive accuracy. This dissertation is largely expieical evaluation, supporting the
proposed advancements with experimental findings.

This dissertation is organized as follows. Chapter 2eptedackground material
and related work. It provides an overview of survival ysig] and different machine
learning methods which have been employed for survival asaly@nally, it presents a
description of semi-supervised approaches in both clegsifiicand regression contexts.
Chapter 3 further presents background material, with a splecias on SVRc (not a
contribution of this dissertation), a survival analyapproach based on support vector
regression. SVRc has previously been developed by us anaplsyed in many of the
experiments presented in this dissertation, thus it ssge®ing a more detailed
introduction.

Chapter 4 presents the proposed semi-supervised transduppooach. It
discusses the idea behind the algorithm, and reviews theambfs @seudocode. Various
subtle but important implementation details are reviewrdluding optimizing the
complexity of the algorithm. Finally, experiments witietCox proportional hazards

model, support vector and neural network approaches arenfgése The results in



Chapter 4 have already been published in two workshops, arenoés and a journal
[35, 36, 38, 40].

Chapter 5 explores the application of the semi-supenfis@aework in a unique
prognostic modeling situation where observatoins fromezairli a disease’s history are
employed to model subsequent disease endpoints. Proatater is a complex disease
which advances in stages. While clinical failure (inclgdinetastasis) is a significant
endpoint following a radical prostatectomy, it can oftake years to manifest, usually
too late to be optimistically treated. Instead thdier endpoint of PSA Recurrence is
frequently used as a surrogate in prognostic modeling. ©@poged approach leads to a
significant increase in performance for predicting adedngrostate cancer from earlier
endpoints. These results were presented at the 2§1EEE International Symposium
on Computer-Based Medical Systems (CBMS) [41].

Chapter 6 presents the application of the proposed appioatie analysis of
prostate biopsy imaging features. One of the major usssraval analysis methods is
to explore the predictive power of features and especthllyr interactions in a
multivariate setting. In biomedical prognostics, theas tecently been the development
of a new “data fusion” paradigm where related featw@spete. For researchers in
biomedical imaging, of particular interest is how quatiie imaging characteristics
compare with existing clinical variables which may be ragag the same biomedical
properties. We explore our novel approach for compariimgcal characteristics in
prostate cancer, like the Gleason grade, with quargtamhaging algorithms. These

results were presented at the 2016 SPIE Medical Imaging eoo&[39].



Chapter 7 evaluates how the novel semi-supervised frameiwvgnioves the
performance of biopsy based prostate cancer assalge asdilable amount of tumor for
analysis decreases. For newly diagnosed prostaterqaattents with a positive biopsy,
there are a variety of treatment options to consideéo aid physicians and patients in
their decision making, a variety of predictive assaygeremerged within the last decade,
many of them imaging based. These assays build preditindels for survival analysis
to provide personalized risk assessments for the patieHbwever, there have rarely
been any published studies on how the amount of tumoripdbkitive prostate biopsy
affects the predictive power of these imaging based sss@lye assess how different
amounts of tumor in the prostate biopsy affect the acguof imaging based prognostic
models employing our semi-supervised framework. We show ttle framework
improves accuracy even with diminishing amounts of tunteereby enabling more
accurate treatment decisions. These results weremnpees at the 2016 38Annual
International Conference of the IEEE Engineering indMi@e and Biology Society
(EMBC) [42].

Finally, Chapter 8 summarizes the findings and contributidribi® dissertation

and discusses potential future work.



CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter is divided into three sections. First intie 2.1 we present an
overview of survival analysis. Second in Section 2.2 exew existing literature in
methods for survival analysis. Third in Section 2.3 we ptesdated work in semi-

supervised analysis including regression and transduction alassfication setting.

2.1 Overview of Survival Analysis

Healthcare data for prognostic modeling is usually obtaimetracking patients
over the course of time in a well-designed study, perHagng years. Often a
predefined event such as the relapse of a disease ordieath disease is the focus of
the study. The major difference between survival analgsd other time-to-event
regression problems is that the event of intereseguently not observed in many of the
subjects. Rather, the information for most subjectsig@mplete and only their last
healthy time is recorded. Patients that did not expeei¢he endpoint during the study or
were lost to follow-up for any cause (ie the patient rdoshering a multi-year study) are
considered asensored All that is known about them is that they wereedise-free up to
a certain point, but what occurred subsequently is unknoWmey may have actually

experienced the endpoint of interest at a later pointimme, but that is unknown.



Conversely, patients who have experienced the endpoimnteyest (cancer recurrence,
death, etc.) are considered asn-censoredsamples orevents In many medical
prognosis problems, the vast majority of instances (76%ven 91%) are censored, so
they cannot be dropped. The incomplete nature of theommetdargets in survival
analysis prediction thus challenges traditional regomesdiechniques and usually
precludes their use. Instead, methods which can correcdpunt for censored

observations are essential [14, 29, 35, 57, 67].

Ll = I = T =

L 1 1 1 Study time (f)

Figure 1: lllustration of survival time during a study. Evebservations are
indicated by solid dots, and censored observations by holltsv dReproduced

from [57] by permission, ©IEEE 2014.

Figure 1 graphically represents a simplified exampletiiimg survival data for
a study with six patients. Patients 2 and 6 show obdexvents, having experienced the
endpoint of interest during the course of the studydisated by solid dots. Patients 1, 3
and 4 were lost to follow-up during the study, and patiemahed the end of the study

and was still healthy. Patients 1, 3, 4 and 5 are aflidered as censored observations, if



they experienced the endpoint of interest, it was @tesonobserved time following their
last recorded observation.

If we let T; denote the actual target timg, the censored time for a censored
observation andJ; the observed time for all patients, then for evants T, and for
censored casds; = C; < T;. The survival outcomes far patients is then represented by
pairs of the random variableg;(, i) fori =1, ...,n. The variable; indicates whether
the observed survival timg; corresponds to an event € 1) or is censored (= 0).
Given ad-dimensional vectox, RY the dateD for a medical prognosis problem can be

represented as:

D={Ui %, i},

Ui = min (Ti ) Ci)
) 0, for censored observation,
0 =IT; <C;j) =1~ . '
1, for exact observation.

An important assumption is thdt and C; are independent conditional o
meaning that the cause for censoring is independent cfuttveval time. In Figure 1,
patients 4 and 6 have the same observed survival e (Js) however their censoring
indicator variables are differenty(= 0, ¢=1).

Traditional statistical approaches to survival analysienapt to estimate a
survival functionS(t), the probability that the time-to-event is greatenthaiven timd,
or Pr (Ti > t). The general problem is to le&t | x ), the survival function conditional
on the features of a patient in the data set. Oramdd, this model is employed for

prediction or explanatory factor analysis as describeta Introduction [35, 57].



The type of censoring described thus far (event-freelastdto follow-up) is
known is “right-censoring,” since information on thght-hand side of a timeline is
unknown, as illustrated in Figure 1. The survival analysiblem is further confounded
by the fact that non-censored patients actually experi¢ime event-of-interest prior to
their recorded time, that actuallyy > T;. For instance, a cancer patient may visit a doctor
every six months; so if recurrence is observed, it hagpbsomewhere in the six months
between the last “healthy” visit and the visit where tlisease was detected. The term
“left-censoring” describes this phenomenon where ¢herstatus of event patients is not
completely known. Given the timelines involved, rigensoring is considered a
significantly more important challenge and most survivallysma algorithms tend to
ignore the left-censored nature of events. This d&ssen as well concentrates on
addressing the right-censoring problem, but it is impotti@aite aware of left-censoring

when working in survival analysis.

2.2 Related Work in Survival Analysis

2.2.1 Cox Proportional Hazards Model

The field of prognostic survival analysis has primarilyetbethe focus of
biostatisticians. The vast majority of practical eesé for new clinical trials, drug
therapies, cancer prognosis, etc. in biological liteea is performed with the Cox
Proportional Hazards Model [14, 29, 36, 43, 67]. The Cox Medgmates the log
hazard for a patient as a linear combination of the mt&ideatures, plus a baseline
hazard. The Cox Model makes the crucial but generaltyrate assumption that the

hazard function (the instantaneous rate of decline imiv&lrat a point in time) is
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proportional for all individuals at each time point; & a constant ratio. This

proportionality assumption is reflected in the genegabg¢ion for the approach

hi(t) =exp ( i b,-Xi,-) ho (1).

j=1

Wherehi(t) is the hazard function for th® individual, b; is the slope term for th&
feature (which can be either categorical or continud(sis the value of featurefor
individuali, exp()refers to the exponential function, i.exp(u) = € andho(t) refers to
the “baseline hazard function”, the hazard function foindividual with simultaneous
zero values for all features. Thus all hazard funstenme assumed to be parallel to the
baseline hazard function. Estimates of regressiomyeas (thé terms) are obtained
via partial maximum likelihood estimation. The predichazard function for an
individual allows predictions of an individual’'s survivalhd Cox Model only employs
censored patients’ data in calculating the hazard fumefioto the time of censoring;
afterwards they are excluded [22, 29, 30].

The Cox Model falls under the category of statissesmi-parametric approaches
since the baseline hazard function is treated non-pétiaally. To be more specific, the
weights in the model are derived, however the baskazard function remains
unspecified. It is a part of the Generalized Linear M¢@&M) family; however it can
be observed that the parameters have a multiplicatfeet on the hazard value which
makes it different from other linear regression modéss 49].

In general, the reliability of the Cox Model deteriesif the number of features

is greater than the number of events divided by ten [28hs€quently, the Cox Model is
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challenged by emerging trends in biology where large nusrdgpredictive factors such

as genes are being analyzed in relatively small sarfipled 8, 52].

2.2.2 Machine Learning Approaches for Survival Agesl

While the field of survival analysis in medical applioas has traditionally been
the focus of statisticians, particularly biostatistics, various machine learning
approaches have also been explored. The use of aetrises adapted for censored data
represent some of the earliest work in the field [28,546 73]. Other techniques such as
linear programming [48] have also been investigated.

An artificial neural network (ANN) is a complex modwgji algorithm inspired by
the biological neurons in a human brain. It consista aeries of network nodes at
multiple layers which are “activated” through a math&oal function, often a sigmoid of

the form:

14 e 07«

Overall, given a training set of input vectorswith a corresponding set of target vectors

ti, the algorithm minimizes the error function:

N
1
Ew) =3 ) [1yGo,w) = 6,1
n=1
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Various forms of artificial neural networks have alsei applied to survival analysis [5,
7, 61, 71, 74], with varying results. Some advantages anse & neural network’s
ability to model nonlinearities. However, many have inectly treated the time-to-event
problem as a classification problem rather than as segme and often also struggled
with the high dimensional data commonly found in biomegic NNci [71] is an
implementation which treats the problem as one of ssgye, but modifies the use of the
ANN’s objective function to instead optimize the Coranice Index (Cl). The Cl is a
performance measure of accuracy unique to survival anaysl is described further in
Chapter 4. This implementation adapts NNs in a wayrtlakies them directly applicable
to the survival analysis problem in medical prognostics.

Widespread adoption of SVMs in various machine learning deas also led
to recent applications for survival analysis [22, 34, 35, 57/68B However, approaches
such as [22] treat the problem in a classification cantgker than a regression problem.
An adaptation of SVR has been proposed [69], however it aotpunts for right-
censored data, and while matching the performance of then@ulel, it yields no
improvements over that standard. Another approach [58]matlified the error margin
of the penalty function and not the penalty weight.adidition, left and right-censored
cases were treated equivalently.

Another interesting avenue of research has beemtbine the kernel concepts of
methods such as SVMs with the Cox model to develop kemmel€lression approaches

[47].
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2.2.3 SVRc

The Support Vector Regression (SVR) [59, 60] algorithm haxgeprto be a robust
and useful tool in a variety of domains with an extensogylof literature describing its
applications. However, since conventional SVR is undbl handle the censored data
prevalent in survival analysis, it has not been more lwiéenployed in the medical
prognostics domain. Support Vector Regression for Censatd(BVRCc) [34, 45] is an
approach for addressing this issue. This dissertationogg@VRc in many experiments,

and thus the SVRc algorithm is further described in grelatail in Chapter 3.

2.3 Related Semi-Supervised Work

There has been a significant body of work in semi-suped approaches for
classification problems [3, 9, 10, 25, 26, 33, 56]. In many edd¢hmethods, the target
class/label is learned or “transduced” by assigning differelass labels to the
unknown/unlabeled instances and selecting the one whichtheabest performance
criteria in some optimization problem. Similar ideas explored in semi-supervised

regression.

2.3.1 Semi-Supervised Regression

The basic idea of transductive regression [13] is thangivlabeled data and labels;(x
V1), ..., (%n, Ym) @s well ass unlabeled data pointsnx, ..., Xn+u transductive regression
learning algorithms must accurately predict the labgls, y.., ym«. TO date, there have
been various approaches developed for semi-supervised regrebsi[13] there are two

basic steps described for such algorithms. The filsta estimation where initial labels
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of unlabeled datapoints are assigned based on their pesghthrough a weighted
averaging scheme. In the second step, through glgiiahipation, a hypothesis is
selected that best fits the supervised labels and thea¢stl labels from the first step of
the unlabeled samples.

The local linear semi-supervised regression algorithm [&& JWwo properties: 1) It
fits a linear function at each point like in localdar regression; and 2) The estimation of
the labels of any particular data point depends on tireass for all the other samples in
its neighborhood as in Gaussian Fields. Reference [3Jopeal a family of learning
algorithms that exploit the geometric distribution adtf@es as a manifold regularization
term. There are two proposed algorithms, a Laplacigaliezed SVM for classification
and the Laplacian-regularized least-squares approachefpession. Reference [72]
proposed a generalization of a well-known co-training ritlgm for classification. The
original algorithm trains two classifiers separatelytwa sufficient yet redundant attribute
sets, each of which is sufficient for learning andasditionally independent of the other
given the class label. The approach employs the pi@ticof each classifier on labeled
samples to augment the training set of the othereddsbf two attributes, [72] adopts two
kNN regressors, each of which is refined iteratively with help of unlabeled samples
that are labeled by the latest updated version of the mbeessor. On convergence, the
final output is the average of the two models.

In all these approaches, a major challenge is thieelnd the initial sample label
transduced for the unsupervised instances. There are ledtipices for computing

similarity measures between feature vectors to computmitize labels of the unlabeled
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data, such as the Euclidean distance, kNN, Markov randalks [63], or normalized
Laplacian [2].

While many of these approaches work well for classicahisupervised
regression problems, where instances are fully ldketel unlabeled, their direct adoption
for survival analysis is not ideal since they do noetage the partial information of true
outcome present in the partial labels (the censoneels)i of a majority of the instances.
Additionally, classical semi-supervised regression proflelm not reflect the typical
circumstances of survival analysis where up to 91% oindtances may be unsupervised,
but contain partial information. The relative scaratyneighboring events with known
target labels for censored instances may challenge th®r instance, [13] drops samples
from analysis if there aren’t enough neighbors tostlace a label for them.

Reference [1] applies semi-supervised methods for survnaysis. However,
[1] does not leverage the concept of partial informatioceimsored target times. Instead,
unsupervised clustering is performed to recognize relategsgérilowed by supervised
modeling. The method is semi-supervised in the senseinkapervised gene discovery
is paired with supervised prediction modeling. To the bestioknowledge, leveraging
the partial knowledge of true outcome in the censoredstifor survival analysis is a
largely neglected and potentially rich area of researdhis dissertation proposes an
overall framework for transducing times for censored mtsta in survival by leveraging

the partial semi-supervised nature of the censored times.
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CHAPTER 3
BACKGROUND AND RELATED WORK: FOCUS ON

SVRc

Developed at AT&T Bell Labs by Viadimir Vapnik, Support aciMachines
(SVMs) [6, 59, 60, 70] have emerged as a powerful and comgebiol in the field of
machine learning. Advantages that have driven widespread adaptiude a grounding
in statistical learning theory, extension of linear medel nonlinear problems [31], and
applicability to high-dimensional data while overcoming these of dimensionality;
numerous case studies have been published documenting tikerxperformance of
SVMs in various problem domains. Although the algorithm indmlly developed in a
classification setting, it was quickly adapted for tiseries prediction and regression
problems.

The SVM algorithm is well grounded in statistical learnitigeory, but is
abstractly a simple and intuitive linear algorithm; SVt linear models capable of
linear and nonlinear modeling. Usually, linear models acapable of representing a
model with nonlinear relationships. SVMs employ lineadsais to represent both linear
and nonlinear relationships by transforming the input feaspace, into a new higher-
dimensional feature space using a mapping. This transformatfacilitated through the

use of mathematical functions called kernels. The S\Qdrahm abstractly maintains a



17

linear relationship between outcomes and features; palttemonlinearities are
encapsulated within the feature space via the kernel mapagsequently, complex
pattern recognition, classification and regression appesacan abstractly be represented
linearly.

The choice of the kernel function and the resultaatuiee space is important in
theoretical and practical terms. It determines thetfanal form of the model; thus,
different kernels may behave differently. For a lmeatatical function to be a valid
kernel it must meet a set of conditions as outlined ih. [Bome of the most basic and

common kernels are:

Linear: F(X,Y)=(X -Y)
Polynomial: F (X,Y) = (X - Y)¢
Radial Basis Function (RBFE (X,Y) =exp( || X - Y |]* /(25 ?))

Sigmoid: F (X,Y) =tanh((X - Y)+ Q)

This chapter is organized as follows. Section 3.1 presiwet formulation of
traditional Support Vector Regression. Section 3.2 theneptesthe adaptation of

traditional SVR into SVRc, a modified version for survigaalysis.

3.1 Support Vector Regression (SVR)

The Support Vector Regression (SVR) [59, 60] algorithemigxtension of SVMs
to the regression setting. Once a SVR model haslbaemed, it can be applied to a new

instance x through the following equation:
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f(X)=W-F(X)+b

Thus, the SVR algorithm can abstractly be considergrbarlalgorithm similar
to basic linear regression where the variabiemdb are learned for the equation
y=mx+b. The potential nonlinearity of a problem is encapsdlatithin the kernel
function F (x) , and the complexity of the problem is resolved withinhigder
dimensional feature space.

During SVR training, following the transformation of thealatto the feature
space, the algorithm learns the regression funéfigrihat best fits the data in the feature
space. SVR training involves minimizing the training eresngirical risk) controlled by
a single regularization parametéiand a margin of error. This translates to obtaining
the coefficientdV andb through an optimization problem. Given a set ofput
instance vectorX (X, X, ... %) with corresponding target valu§¥s(ys, ¥», ... W), the

algorithm minimizes the following objective function:

B I .
min SIWIF+C G+ x)

i=1

given the constraints:
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Yi- W-F(x)+b) £ e+x
W F(x)+b)- y £e+X
X,x 30, i=1.n

whereW is a vector with the weights of all the featureshim higher dimensional kernel

space, and- (x;, represents the transformation of the instanae the higher

dimensional kernel space. The slack variabdgsxi* make the constraints of the
optimization problem feasible. The slack variablescharacterized by the epsilon-

insensitive loss functiohX |, where:

0 if |x[Ee

| x|, = .
|x |- e otherwise

e

The variable€ and shall now be explained in more detail in section 3.1.1.

3.1.1 Further Details of SVR Training

During SVR training, a common optimization function usedars epsilon
insensitive loss function. In each iteration of dpimization, the algorithm attempts to
find the best fit line for the data in the kernel spaE®wever, since it is not possible to

build a model that will perfectly fit all the trainingstances; an acceptable margin of

error is set with the parameteras illustrated in Figure 2. Instances for which thierer

(f(x)-y) of the model's predictiof(x) and actual target valyeis within are considered
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to be fitted by the model; instances outside thea®d “ -insensitive tube” are poorly

fit by the model.

Figure 2: An illustration of the-insensitive tube, inspired by [59].

There is a model penalty associated with the icgsthat the line doesn't fit; this

is controlled by the structural risk regularizatiparameter,C. During the training
optimization, instances within the “ insensitive tube” have a penalty of zero, the etod
fits them correctly. The model receives a penfatytraining records with error$(x)-y)
greater than. The penalty is determined relative to the sizthe error by a line with a

slope ofC. The larger the error, the larger the penaltydeermined byC. Figure 3

illustrates this relationship [34].
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Figure 3: A graphical representation of the paramélesd in SVR. The x-

axis represents the model error f(x) — y for an instari&4].

The parameters andC achieve a balance between a good fit of the training data

and the simplicity and generalization ability of thduson. The parameter sets a

threshold of insignificant error in the function approatman. Simultaneously, it defines

the complexity of the approximation. In SVR, the supp@ttors are the instances
which have a difference between predicted and target vgteeser than. A smaller

leads to more support vectors and an increased comptexitge approximation. If the
approximation is too complex, it may lead to overfittinihe value of the parameteiis
closely related with the precision of the training daté.it is known that errors in
measuring the targgtare on the order of then it does not make sense to have the value
of lessthan. The parameteC controls relative importance of the two components of

the functional: the relative risk, characterizing thlity of fit, and the complexity of the

approximations.
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Further details of the algorithm and its underlying math&alatheory are

available in an excellent tutorial by Smola and Scholk69F.

3.2 Support Vector Regression for Censored Data: SVRc

The Support Vector Regression (SVR) [59, 60] algorithm haxgeprto be a robust
and useful tool in a variety of domains with an extensoylof literature describing its
applications. However, since conventional SVR is undbl handle the censored data
prevalent in survival analysis, it has not been more lwiéenployed in the medical
prognostics domain. Support Vector Regression for Censatad(BVRCc) [34, 45] is an
approach for addressing this issue. The key issue in apptgngentional SVR to
survival analysis is the inability to handle the diffieces between censored and event
instances. The (left-censored) target regression véduesvents are fairly certain; the
actual time may have occurred a short time prior tordwrded observation. The
censored target values are extremely uncertain. dileeSVRc concept is to account for
the differences between these instances by asymnfigtnoadifying the - insensitive
loss function optimized during training. The update introddcesnew versions of both

C (penalty slope) and (insensitive penalty threshold) parameters that a¢céam

censored and non-censored instances differently.

3.2.1 Events in SVRc

For events in the training cohort, the SVRc algorithrtrotiuces four new

parameter<C’ and C, which replace C, an@ and e, which replace. The approach



23

takes into account the left-censored nature of eveatgpatients experiencing a disease

event before it’s detected during a visit to the doctor.
The parametee, defines the acceptable margin of error if the modekslisted
value is greater than the actual tar@et)>y); if so, the penalty function is controlled by

C.. The parameteg defines the acceptable margin of error if the model's ipted

n

value is less than the actual tarfét)<y); if so the penalty function is controlled I6 .

The suggested relationships between these parametegs>ageand C, <C. to account
for the left-censored nature of events. Consequenttreifmodel predicts an event as
occurring before the actual target value, there is aively larger error margin and
smaller penalty. Figure illustrates this relationship. However, if one doeswish to
account for the left censored nature of events, themgess can simply be chosen to

follow the relationshipe,=e, andC =C..

Loss/Penalty

|
! flx)
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—— | =t

&/ Cn El -
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Figure 4: A graphical representation of the SVRc param&eevents. The x-

axis represents the model error f(x) — y for an instari&4].
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3.2.2 Censored Instances in SVRc

The censored instances in the cohort are treatedaslynds the events. The

SVRc algorithm introduces four new parametéfsand C_ which replace C, and, and
e. which replace. The algorithm accounts for the right-censored nattitlesosamples;
patients experiencing an event of interest after thsirrecorded disease free time.

The parametee, defines the acceptable margin of error if the mogwksiicted
value is greater than the actual tar@et)>y); if so, the penalty function is controlled by
C.. The parametez, defines the acceptable margin of error if the modekslioted value
is less than the actual tardix)<y); if so the penalty function is controlled 18y,. The
suggested relationships between these parametees<ageand C_>C_ to account for the

right-censored instances. If the model predicts aotedsinstance as occurring after the
actual target value, there is a relatively larger emargin and smaller penalty. Figure 5

illustrates this relationship

Loss/Panalty

Figure 5: A graphical representation of the SVRc paramé&erensored

instances. The x-axis represents the model error (X an instance x [34].
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3.2.3 Overall SVRc Algorithm

For events in the training cohort, the SVRc algoritimtroduces four new
parameters to model the left-censored nature of evdfds censored cases, there are an
additional four new parameters to asymmetrically givesoeed predictions larger than
the target time a wider margin of error with less pgmnaln the context of the overall
approach that encompasses both censored and event asstdre algorithm minimizes

the following objective function:

min ZIWIE+ (G +Cix))
Wb 2

i=1
given the constraints:

Y - (\N F(Xi)+b)£6i +X;
W-F(x)+b)-y £6 +x
x730 i=1.n

where:

s=1 if censored
s=0 if event

C” =sC0 + (- 5)C!

e =5 + (- 5)el
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The suggested relationships between the eight paramete@ ar€, < C = C,

and > e > e =e. This is because the penalty for censored prediiiess than the

target time or event predictions greater than the tairgetshould be equivalent and the
largest, since these predictions are clearly incorrébiere should be a small adjustment
for non-censored predictions before the target time duiedeft-censored nature of

events, and the greatest allowance should be madesfsoied predictions after the

target time because they may in fact be correct.

This update of the SVR loss function for different ereord structural risk
parameters and the asymmetric relationships between {terseneters is the core
contribution of SVRc. The algorithm retains all thgvantages of conventional SVR
such as the mathematical mapping via kernels into highegrdiions, the concentration
on the most important instances in a dataset, the aksrtesusceptibility to overfitting,
and the ability to model with more features, plus it naw be applied to the field of
survival analysis where censored data is prevalent. T 3igorithm is leveraged for
multiple experiments in this dissertation and thus mlesd in detail here; however the

development of SVRc is not part of the research dmuttons of this dissertation.



27

CHAPTER 4
A FRAMEWORK FOR SEMI-SUPERVISED
SURVIVAL ANALYSIS BY TRANSUDCING CENSORED

REGRESSION TARGETS

This chapter is presented in three sections. Sectioneédrides the proposed
semi-supervised transduction framework for regression wvalranalysis. Section 4.2
discusses accuracy metrics for evaluating the performainsarvival models. Section
4.3 presents the results of applying the proposed framewadtet&ox Model, neural
network and support vector approaches for predicting medioghpses in prostate and

breast cancers.

4.1 Semi-Supervised Framework for Transducing Regressiohargets in

Survival Analysis

As discussed, the ability to leverage the incompleternmibion in the censored
samples of time-to-event problems could provide signifieavantages. If the “true”
target as opposed to the censored target was known, tfernpence of predictive

models would be increased.
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We present an innovative approach that is, in essenserapper around any
regression function, whether developed for survival amalys not. For each censored
case Ui, i = 0), it iterates through possible target values betwéeand Tmax (the
maximum observed timég in the dataset). It then transduces or chooses aanget time
UT; which improves accuracy, maximizing some criterion foeasuring predictive
performance. The approach is extremely flexible, ableadk with almost any regression
functionF() and measure of accuraCyiterion (y , t) Given a dataset

D={U; x. i}"1, the algorithm can be described as:

~ max ) y=F(D={U;,x;,6; }iL1)
Criterion (y.,U), UT

Given the constraints:

Tmax=max (U-=1,.. n)
Ui UTl Tax , if i=0

UTi:Ui X ifi:l

A key issue is exploring the space of possible targetiegal Semi-supervised
classification algorithms initially employed an exhawestmethod assigning each class
label to every unlabeled instance, in order to transthe®ptimal label. Unfortunately,
this led to a transduction complexity of @here C is the number of classes anthe
number of unlabeled instances. Accordingly, researchezgan to develop

computationally more reasonable methods.
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The proposed semi-supervised regression approach exptatsared instance’s
own partial information of true outcome rather thas neighbor’s labels to transduce
optimal target times. The censored time represeatsmthimum possible value of the true
target. The optimal target for each censored instaoglkel thus be transduced by testing
values in increments from the censored time to themrmaxi survival time in the training
cohort. The initial idea was to replicate the exhaassearch of semi-supervised
classification, but this is impractical. In one séemataset, an average of 10 target values
per each of the 341 censored cases would result in aaeiios complexity of 1¥%. To
avoid this, the proposed technique is a singular transdyataoedure which forgoes the
exhaustive method. In this scenario, each instamteated independently, and the best
time for each censored case is found independent of ther atensored cases.
Consequently, a slight modification is required for alfgporithm’s optimization function

described above, resulting in a singular rather thanusxiva transduction approach:

n
( max — y=F (D = {Uf:xfzfsf}?:ﬂ)_

Criterion (y.U), UT; i=1

Figure 6 below presents the proposed approach in pseudo code:
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1 w=number censored

z best target=original target

3 Model = Regression [original target)

4 orig criteria=Ferformance (original target,Model)
5

= for i=l:m

7 target=orig target;

=] beszt_criteria=orig criteria;

9 best_time=target (1]

10

11 for time=original target (i) :max_ time
12 titme=time+x

13 target (i) =time

14 Hodel=Fegreszion (target)

15 critera=Performance (original target,Model)
16 ificriteriarbest criteria)

17 best_criteria=criteria

15 best time=time

19 end
20 end
21 best_target (i) =hest_time:
22 end
23

24 Model=Regression(hest_target)
25 Fesults=Performance (original target,Model)

Figure 6: Pseudocode of proposed approach.

Initially, a traditional regression model is constructgzdeudocode line 3).
Subsequently, each of th& censored instances in a training cohort is singularly
transduced (pseudocode for-loop in lines 6-22). In dAdkirigular transduction iteration
(where i is between 1 and), models are constructed as the target for ‘theehsored
instance increments from tH& éensored time to the maximum time in intervalg afits
(pseudocode for-loop in lines 11-20). Meanwhile, the origoeisored targets are
maintained for the othen-1 censored cases. The time that yields the best waprent in
performance criteria is the transduced target labetHat instance. In the subsequent

iterations for other censored cases, the originaloredstime for this™ instance is used
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(not the new transduced target time). Hence, this proeetligids favoring a particular
censored instance by transducing its time first. Onother hand, the approach does
preclude the discovery of transduction times that wouldiré®m an exhaustive search.
Finally, once an optimal target time has been traretldor each censored instance, the
final regression model is created using the new targest(pseudocode line 24).

One subtle but crucial point to note is that when evemigahe fit of the model on
the training data (during the search to choose the best temgeand at the end when the
final model is built in pseudocode lines 14 and 24), theuatiain should be done with
the original censored times rather than the new traestitimes. Otherwise the resulting
performance metrics may artificially be inflated a®ythwill be calculated on the
discovered targets that were derived precisely to impparéormance. Subsequently
when testing on an independent validation set where ibtigossible to transduce the
times but to simply apply the model, the resulting madalild grossly overfit; as was
observed. This is exactly why in the functions abowe maximizeCriterion (y , U)
rather thanCriterion ( y, UT) Again this is important due to the unique nature of

survival analysis in medical prognosis where most ofrisinces are censored.

4.2 Performance Metrics

In conventional regression, a useful metric of aaguia the model's error in
predicting the targets. However, in survival analysis tki not possible due to the
prevalence of censored instances. For events, tde&tiwea error can be easily assessed.
For censored records, predictions are wrong only if they less than the targets,

otherwise the error, if any, is unknown. This requites@ate performance criteria.
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The concordance index (CI) is the standard metricaksessing the predictive
ability of a survival model [22, 29, 34, 49, 69, 71]. The Chswees the concordance
between model results and the observed survival tirBesvival analysis is inherently a
ranking problem and the CI measures the accuracy ohgaakmodel’s results against the
patients’ survival times. It is calculated in pair wisemparisons of all comparable
patients in the cohort, and is the probability that g&patvith a shorter survival time will
have a smaller predicted result. The CI ranges fromlQ wath 0.5 indicating an absence
of correlation, a random result. A value of O indésaperfect negative correlation, and 1
indicates perfect positive correlation. It is a lingansform of the Somers’ d statistic, and
is similar in interpretation to the area under the RfDfve (AUC) and the Mann-Whitney
statistics [49, 69, 71].

This can be observed since for a two-class classditaroblem, the AUC has the

form:

Where sand sare classifier outputs for a positive samipénd a negative sampjle
consists only of the pairs of positive samglesd negative samplgs Hence the AUC
doesn’t compare within the same class, but only conspgleraise comparisons between
a pair of positive and negative samples. While acbéptior a standard classification
task, the AUC cannot account for the critical survivaletiin a survival analysis problem.

The CI makes pairwise comparisons of all patients wahilataset under two conditions:
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1) Patientsi andj who both experiences the event of interest and tbateime t of
patienti is less than patiefis event time;jt

2) Only patienti is non-censored ang< t (patientj’s follow-up censored time).

Here represents the set of all possible comparisons betes®sr two events, or all
censored times after an event time, but not comparisetween two censored times [71].

One of the main uses of a survival model in medicaliegmins is to stratify a
patient population into high and low risk groups. Divers& profiles can lead to
different and better targeted therapies and diseasegemaeat for improved treatment.
For a specific time point, patients can be stratifred high and low risk groups based on
a model's predictions. The positive class identifieepgs who are events prior to this
time point, and the negative class identifies patiesgaqored or events) with targets after
the time point. Censored patients with targets privhéaime point are excluded. Hence,
in addition to evaluating a model's overall accuracy e €I, the ability to correctly
identify high and low risk groups is measured via the geigitand specificity of the
low/high risk group classification. Since censored patievith targets earlier than the
time point are excluded, it is often a good idea to evaliregeCl and the classification
metrics at the same time.

Both the CI and the sensitivity-specificity pairing anetrics independently used
in the medical literature [17, 18]. However, in ortterassess both measures at the same

time, we employed a performance criterion which combipeith metrics, emphasizing
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equally the CI and the product of the sensitivity and §pggi The product of the
sensitivity and specificity is a good measure of both lthatthe same scale of accuracy as
the CI. While in absolute theory, the Cl may not hdneedame range as the product of
sensitivity and specificity because CI values less th&nimply negative correlation
(similar to the AUC), this is not problematic frompgactical perspective as all useful
models must have Cis greater than 0.5. Consequentdil,tire presented experiments the

performance criterion for evaluation was:

Criterion = Cl + (Sensitivity * Specificity)

4.3 Experimental Results

The proposed framework can be employed for any regresigiontm, whether
or not it was originally developed for survival analysis.e Wécused our attention on
evaluating the approach and combining it with the Cox MobtiNci and SVRc.
Additionally, since NNci is an evolution of ANN and S¥Rs a modification of
traditional SVR, we also compared the improvement o#mai-supervised transduction
framework for these core regression algorithms as weElle aim was to compare the
performance of both the core and survival analysis vessad theses algorithms when
the framework was layered on top.

We conducted experiments with four survival analysis detasgpresenting
prognostic problems in prostate and breast cancerl éx@driments, the interval of time
used to explore the target space (variable x in the psedéperas 10 months. All

feature values were scaled between -1 and 1 based onntineum and maximum values
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in training. As noted, in all experiments the performanoetrics were assessed
according to the original times; no transduced targetse wesed in the accuracy
assessments.

In developing medical prognostics, it is necessary totaii separate training
and validation sets (rather than combined cross-validégjman approaches) due to FDA
regulatory requirements for independent testing and valatiSimilar requirements
exist for health insurance companies as well when evatuatimether to cover and
reimburse costs for a potentially expensive prognostic hayakassay.

Study 1 [11] analyzed the endpoint of PSA Recurrence postigutmstatectomy
(RP) in patients treated for prostate cancer. Highlaw risk groups were assessed for
PSA Recurrence at 5 years post-RP. The study consisté82opatients from the
Memorial Sloan Kettering Cancer Center (MSKCC) spiito 342 training and 340
validation patients. 40 features representing clinidabmolecular and image
morphometric domains were analyzed. Eighty-three permkthe training and eighty-
seven percent of the validation patients were censored.

Study 2 [17] analyzed the endpoint of clinical failure l(lding metastatic disease
progression) post-RP in 758 MSKCC prostate cancer patiefie patients were split
into 373 training and 385 validation records; the same 40 featepessenting clinical,
genetic and imaging information as study 1 were analyzagh &hd low risk groups at 5
years were studied. Ninety-one percent of the trainmd) r@nety-two percent of the
validation patients were censored.

Study 3 [18] also analyzed the endpoint of clinical failpost-RP in a multi-

institutional cohort of 1027 patients from the Mayo Cliniduke-Durham Veterans
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Affairs Medical Center, University of Connecticut HéalScience Center, and the
University Hospital at Uppsala. It was split into 686rireg and 341 validation records.
A different set of 40 features representing clinig@netic and imaging information was
analyzed. High and low risk groups were at 8 years. céhsoring rate in both training
and validation datasets was eighty-seven percent.

Study 4 [48] was conducted on a publicly available cohort of 184sb cancer
patients. The patient data was split into 129 training anga&ation records. The 32
features representing clinical and imaging charactesistere modeled and high and low
risk groups at 3 years were calculated. Seventy-six pgeofehe training and seventy-

seven percent of the validation patients were censored.

4.3.1 Results with the Cox Proportional Hazards klod

Table 1 below presents the results in both trainingvatidation sets for all four
studies of just the Cox Model by itself, and the proposeddvwark layered on top of the
Cox Model. With the exception of Study 3, the proposadéwork is improving the

accuracy of the Cox Model in both training and validatiesults.

Table 1: Experimental Results of the Cox Model and the l@odel with Transduction
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4.3.2 Results with ANNs and NNci

We compared two adaptations of neural networks. Theviies a basic ANN
regression approach and the second was NNci, a spetialde developed specifically
for Survival Analysis.We employed feed-forward ANNs in Matlab (with the beberg-
Marquardt back-propagation method) with 3 hidden layers running@ fmaximum of
100 iterations per ANN optimization. Results of a ba&NN compared with our
proposed approach layered on top of the basic ANN aremgeskin Table 3. In Table 3
we present the results of NNci and the proposed semixss@erframework combined

with NNci.
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Table 2: Experimental Results of the Basic ANN and BASIN with Transduction

#$$
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Table 3: Experimental Results of NNci and NNci withAsduction

$$

$$

40



41



42

These experimental results in four real world datakatsgrostate and breast
cancer from different institutions appear to confirmvbh&dity of the proposed approach
for ANNs. In all the experiments, whether we consithe basic ANN or NNci, both in
training and validation, the transduction framework impsoperformance as measured
by the defined Criterion. While independent components ottierion do vary, the
algorithm was designed to optimize the overall criteriand it has performed well.
Researchers can emphasize whichever measure of ac@iraoye appropriate for their
specific task, and the results seem to indicate Heaptoposed approach could improve
results in not only training, but the all-important separvalidation set. In the current

experiments, the neural network architecture was fixetplg the bias and weight terms
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were optimized during transduction. Given the complegityneural networks, future
work would be to allow evolution of the architecture adlwluring transduction. This
would significantly increase the complexity and executiome of the approach, but with

research into optimization methodologies, could yieidroved results.

4.3.3 Results with SVR and SVRc

We evaluated the performance of the proposed semi-sugbriveamework with
SVRec, a current advanced approach for survival analysilitionally, since SVRc is a
modification of traditional SVR, we also compared thgrovement of our semi-
supervised approach combined with SVR. The aim was tessasgeether the semi-

supervised approach layered on top of basic SVR would matgetfeemance of SVRc.
The SVRc parameters per [34] weEe =1,C =5,C =C_=6,6 =12,¢ =5,€ =
e.= 2 and correspondingly the SVR parameters were s6t=aé and = 2. Results of

traditional SVR compared with our proposed approach layarddmof traditional SVR
are presented in Table 4. In Table 5 we present thesefuSVRc and the proposed

semi-supervised framework combined with SVRc.

Table 4: Experimental Results of SVR and SVR with Tadaoton

%& %&
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Table 5: Experimental Results of SVRc and SVRc witm3daction

%&

%&
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Concentrating on the more accurate assessment ofrparfoe in the test sets, in
almost all the experiments the semi-supervised transdudtimework we have
proposed outperforms the underlying regression method; dénaomg the effectiveness
of our proposed approach. One exception is in study 3 forcSMtere the approach
doesn’'t improve performance, but doesn’t hurt eithemadtintains the same level of
performance. This is not completely unexpected asdtiers in study 3 were part of a
study where a concerted effort was made to track patieggslting in relatively longer
follow up time. Hence, the censored time is alreagg@d representation of the outcome
and there may have been fewer “true” targets to learn.

One option to explore for study 3 would be to incretds maximum time
allowed for transduction. Rather than transduce tartagimum time in the cohort, an
even longer time could be chosen, thereby allowing naeortunities for censored
cases to be transduced, and perhaps allowing for furtipeowe@ments in overall results

than is currently observed in study 3.
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Of note is the fact that even with more informatitraditional SVR does not
outperform SVRc in study 3; only with the proposed semi-sigeat algorithm does it
match SVRc’s performance.

It is interesting to note that the Cox model in aggregatele benefitting from
the transduction approach, appears to have the leasimental improvement when
compared with the other algorithms. In addition, everpgrérmance of the Cox model
with transduction is usually worse than the performaoicéhe other approaches with
transduction. Combined with the manifest tendency of therGodel to overfit more in
training and have a larger decrease in validation perfacejat may be suggested that
the more advanced machine learning algorithms are desiritaatives to the Cox
model.

Another observation to note from a practical perspectn conducting these
experiments is that the ANN experiments were timesaaring. There was significant
trial and error in tuning the ANN parameters, including bamof hidden nodes and
layers. These are well known issues when working AitiNs, but also complicate the

use of this family of algorithms from a practical persjec
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CHAPTER 5

PREDICTING ADVANCED PROSTATE CANCER

ENDPOINTS FROM EARLY INDICATOINS VIA

TRANSDUCTIVE SEMI-SUPERVISED REGRESSION

Prostate cancer is the most prevalent form of camuethe second most common
cause of cancer morbidity among men in the United Stdtke most common treatment
is the surgical removal of the prostate through a &hdjgrostatectomy (RP).
Unfortunately, RP is no guarantee of a cure. Approximadebfo of men post-RP
experience significant clinical failure (CF) including nsttsis and/or death-of-cancer.
While CF is a clinically meaningful endpoint, it carnesf take years to present; and when
it does the disease maybe too advanced for effectia¢ntemt. Therefore, an earlier
endpoint of prostate-specific-antigen-recurrence (PSAR)-B® is frequently employed
as a surrogate. This is however a noisier endpoint,hvc25% of men experience
post-RP. Not everyone with PSAR progresses to the awwanced stage of CF. Since
PSAR occurs years earlier though, a physician and patantstart to make complex
decisions about treatment options and impact on qualilifeof Accurate prognosis is
important as it is the principal factor in determining theatment plan. In prognostic

modeling, PSAR data is frequently employed to predict XaE 17].
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Thus far, our proposed semi-supervised framework for trangduegression has
only been applied to directly predict a medical prognostidpoint. In the present
chapter, we consider the interesting and practical probldrare an earlier disease
endpoint is used to predict a later one. We concenbratde highly relevant prostate
cancer space as, unlike other cancers, prostate cancanddrag multi-year horizon with
multiple stages of the disease.

We applied the proposed transduction framework to build REsprognostic
models using PSAR outcomes to predict the subsequent ohaaced disease endpoint
of CF. We analyzed three prostate cancer datasetsasdddl [11] consisted of 262
patients with 8 clinical features, 37 of whom experienc&RAR (14% event rate).
Dataset 2 [11] from a second institution consisted of 342 miaties8 of whom
experienced PSAR (17% event rate). Dataset 3 [11, 17]stedsof 340 new patients
also from the second institution. Dataset 3 was uniquausecboth the early PSAR
endpoint and the later CF endpoint were available forthedl patients. 43 patients
experienced PSAR (13% event rate) and 12 experienced CF €806 rate). Both
Datasets 2 and 3 had 9 clinical features. The goal wasdess in Dataset 3 PSAR
models built with Datasets 1 and/or 2.

We layered our semi-supervised transduction framework ooftbpth SVRc and
the Cox Model, and compared the performance with ancuitthe transductive semi-
supervised regression. We performed two rounds of expesméniTable 6, we present
the first where PSAR models were built with Datdlsaind validated for both PSAR and
CF with Dataset 3. In Table 7 we present the seconddrotnere PSAR models were

built with Dataset 2 and validated for both PSAR and @k @ataset 3. As noted earlier
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in Chapter 4, we maintained separate training and validataiasets which is the
convention in developing medical prognostics. Additionallyin all earlier experiments
the performance metrics were assessed according torihieabtimes; no transduced

targets were used in the accuracy assessments.

Table 6: Results training on Dataset 1 and validating dadea3

. Cox Model
SVRc SURE W't.h Cox Model with
Transduction .
Transduction

PSAR Training Performance

(¢]] 0.79 0.81
Sensitivity 0.77 0.87
Specificity 0.76 0.72
Criterion 1.38 1.44

PSAR Validation Performance

Cl 0.74 0.76
Sensitivity 0.79 0.90
Specificity 0.62 0.58
Criterion 1.23 1.28

CF Validation Performance

Cl 0.76 0.78
Sensitivity 0.83 1.00
Specificity 0.58 0.53

Criterion 1.24 1.31
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Table 7: Results training on Dataset 2 and validating dadea3

Table Column Head

. Cox Model
SVRc SURE W't.h Cox Model with
Transduction .
Transduction

PSAR Training Performance

(¢]] 0.78 0.79
Sensitivity 0.77 0.68
Specificity 0.73 0.83
Criterion 1.34 L&

PSAR Validation Performance

(¢]] 0.80 0.81
Sensitivity 0.74 0.69
Specificity 0.72 0.83
Criterion 1.33 1.38

CF Validation Performance

Cl 0.88 0.88
Sensitivity 1.00 1.00
Specificity 0.68 0.78
Criterion 1.56 1.66 ' I

These prostate cancer experimental results appearworbrne the value of
transductive semi-supervised regression for predictingstaigge disease endpoints from
earlier indications. For data from multiple insticuts, existing survival analysis methods
manifest an increase in predictive accuracy when tmsdcection framework is layered
on top. In all the experiments, whether we cons&éRc or the Cox model, in training
and both validations, the transduction framework imprgerformance as measured by

the defined Criterion. While independent components ef dhiterion do vary, the
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algorithm was designed to optimize the overall criteri@nd it has performed
outstandingly.

Not only is the accuracy for PSAR improved, but more irgaly, CF is better
predicted from the PSAR endpoint. In Table 8 there sgaificant improvement in
validation specificity. This is likely because all t8& patients experienced PSAR and
the PSAR assessment of high risk captures them, butbaply also has a high number
of false positives since PSAR is a noisier endpoird aat all patients with PSAR
experience CF. The accuracy of predicting CF is higime CF is a more concrete and
relevant endpoint.

These results manifest the value of a novel transauctgmi-supervised
regression framework in the challenging problem of predjcdidvanced prostate cancer
from earlier disease endpoints. This work presentfirdtannovative application of this
recently developed technique for predicting subsequent endf@nisearlier ones and

may be useful in other diseases as well, not justgimsancer.

5.1 Deeper dive on features driving improvement

An interesting question to pose is whether thered#ferences in the features
driving the improved prediction of validation performance foth SVRc and the Cox
Model in the semi-supervised framework. We investigatedaviights of all the clinical
features in the models. It is difficult to compare Weghts of a feature across models;
the magnitude of the weight only makes sense within timegb of a single model.
Hence, we normalized the weights in each model byitfieest weighted feature, thereby

enabling a relative comparison of how important a pddiideature is in a model.



Table 8: Weights of Features in Cox Models

Cox Model Cox Model with
Transduction
Feature Original Normalized | Original Normalized
Weight Weight Weight Weight
Clinical Stage 0.314 0.217 0.355 0.316
PSA 0.743 0.513 0.818 0.728
Dominant Biopsy
Gleason Grade -0.198 -0.137 0.134 0.119
Biopsy Gleason
Sum 1.448 1.000 1.124 1.000
Dominant
Prostatectomy
Gleason Grade 0.872 0.602 1.002 0.891
Prostatectomy
Gleason Sum 0.073 0.050 -0.139 -0.123
Seminal Vesicle
Invasion 0.747 0.516 0.796 0.708
Positive Surgical
Margin 0.306 0.212 0.261 0.232
Extra Capsular
Extension 0.198 0.137 0.161 0.143

54
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Table 9: Weights of Features in SVRc Models

SVRcC SVRc with Transduction
Feature Original Normalized | Original Normalized
Weight Weight Weight Weight
Clinical Stage -2.939 -0.120 -4.496 -0.197
PSA -10.329 -0.423 -8.397 -0.368
Dominant Biopsy
Gleason Grade -3.909 -0.160 -8.193 -0.359
Biopsy Gleason
Sum -24.394 -1.000 -22.826 -1.000
Dominant
Prostatectomy
Gleason Grade -4.363 -0.179 -6.433 -0.282
Prostatectomy
Gleason Sum -11.852 -0.486 -8.784 -0.385
Seminal Vesicle
Invasion -23.926 -0.981 -25.963 -1.137
Positive Surgical
Margin -2.778 -0.114 -3.964 -0.174
Extra Capsular
Extension -4.259 -0.175 -3.499 -0.153

One interesting observation to note is that for bothlel®with SVRc and the
Cox Model, the dominant prostatectomy Gleason grade ansetiinal vesicle invastoin
status [11, 17] both have a much higher relative weighhentransduction framework
than in the models without the transduction frameworkdoth the Cox model and
SVRc. The implication being that perhaps these featiarparticular are leading to an
improved prediction. This is a noteworthy observatiomges the roles of both features
for predicting CF are very interesting to urologistd ancologists. In particular, the fact
that the interaction of these two is intriguing as tlmeninant prostatectomy Gleason
grade is a measure of how advanced the disease is asehtiveal vesicle invasion status

is a measure of how much the disease has proliferapeaidad into the surrounding
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tissue and critical organs around the prostate. This sty not designed to fully

explore these insights, but they are worth considenrigture work.
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CHAPTER 6

THE ROLE OF IMAGING BASED PROSTATE

BIOPSY MORPHOLOGY IN A DATA FUSION PARADIGM

FOR TRANSDUCING PROGOSTIC PREDICTIONS

A major focus area for precision medicine is in managiiegtreatment of newly
diagnosed prostate cancer patients. For patientsawatisitive biopsy, clinicians aim to
develop an individualized treatment plan based on a metliaunderstanding of the
disease factors unique to each patient. Recentlye tiees been a movement towards a
multi-modal view of the cancer through the fusion of diiative information from
multiple sources, imaging and otherwise.

Simultaneously, there have been significant advancesnachine learning
methods for medical prognostics which integrate a rodiitof predictive factors to
develop an individualized risk assessment and prognosistieniza

In this work, we apply our novel semi-supervised approactsdigport vector
regression to predict the prognosis for newly diagnosedtate cancer patients. We
integrate clinical characteristics of a patient’sedse with imaging derived metrics for
biomarker expression as well as glandular and nuclear wiogh In particular, our

goal was to explore the performance of nuclear and glandwchitecture within the
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transduction algorithm and assess their predictive powernwdompared with the

Gleason score manually assigned by a pathologist.

6.1 Background

Prostate cancer is the most prevalent form of cameethe second most common
cause of cancer deaths among men in the United Statagafeprognosis is important
as it is the principal factor in determining the treathpgan. Prostate cancer is primarily
assessed by the Gleason grading system which clash#i¢ssue architecture into five
patterns of increasing severity [21, 27, 64, 23]. The Glegsaate characterizes tumor
differentiation, i.e. the degree of tumor resemblaimcadrmal tissue. In the lower risk
Gleason grades of 1 through 3, the architecture consistargyiraf isolated or touching
gland rings surrounded by fibromuscular stromal tissue. Bkuoid is composed of a
ring of epithelial cells surrounding a duct, the lumere Tbnnected glandular cytoplasm,
or “epithelial unit”, contains just one gland ring. s cancer progresses to grade 4,
epithelial units fuse together creating chains of glangs, or “cribriform” sheets of
rings. A second axis of variation in grade 4 and 5 disasatde iincreasing fragmentation
of rings resulting in sheets of isolated cells and nog-epithelial fragments (the terms
“glandular” and “epithelial” are interchangeable). #& cancer progresses, epithelial
cells replicate in an uncontrolled manner, disrupting rgular arrangement of gland

units.
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Figure 7: Samples of H&E stained prostate tissue withingryegrees of
differentiation: (a) normal, (b) grade 2 well diffeteed cancer associated with

favorable outcomes and (c) grade 5 poorly differentiateder corresponding to

aggressive disease [64].
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There has been significant research in automaticallycximating the Gleason
grade and quantifying other aspects of prostate morpholégy P3, 20, 62].
Simultaneously, advances have been made in automated gasotifiof molecular and
protein biomarker expression [8, 53]. These quantitativggénanalyses from multiple
modalities have become prevalent, yielding independengnpstic predictors of
outcome. In recent years, there has been a trenddswdegrating these independent
predictors together into a “data-fusion” approach [18, 68, 24hen combined together,
these disparate information modalities provide a morepcelnensive and powerful,
personalized view of disease prognosis and staging. Yawwéhe fusion of these
disparate information sources in a multivariate conigxtot trivial given the censored
nature of outcome in survival analysis.

In this work, we explore the interaction of advancedgimg features for prostate
morphology and biomarker quantification, with clinicatighles, including the Gleason
grade, in our novel semi-supervised framework for transmluategression targets in
survival analysis. In particular, we aimed to explone interaction of quantitative
morphology with the pathological Gleason score. Tiegresents one of the first

explorations of multi-modal data fusion for semi-supsegi prognostics.

6.2 Imaging Methods Employed
6.2.1 H&E Morphology

Morphological and architectural characteristics of ghestate tissue, such as
epithelial nuclei and cytoplasm, provide critical inf@tion for the diagnosis, prognosis

and therapeutic decision making of prostate cancer.sibjective and variable Gleason
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grade assessed by expert pathologists in Hematoxylin a%in EH&E) stained
specimens has been the standard for prostate canceosimgnd prognosis.

While there has been significant work in automaticafiproximating the Gleason
grade and quantifying other aspects of prostate morphologym#jority of proposed
approaches consider various tissue components such as lumeles,and cytoplasm
independently. Instead, regarding the entire glandulao@iepithelial nuclei, cytoplasm
and stroma around a lumen would provide a more accuratecamgprehensive
morphological assessment of disease severity.

We leveraged a method proposed by Fogarasi et al. [23)ifomated analysis of
gland unit features from H&E images. The approach Iiteegments and classifies
primary cellular components such as cytoplasm, nuskegmal fibroblasts, lumens,
blood vessels and artifacts. This segmentation reliesedlular properties such as
distance of tumor cells from lumens, as well as cadbape, texture and neighborhood
properties. The relationships between these compoaeatanalyzed and leverage to
construct distinct “gland units.” Biological characséigs, such as logical and relative
object positioning are employed to develop initial seediéch are optimized in an
iterative classification process.

Gland units are objects created by uniform and symmetriwrgesound lumens
that are seeds. Growth proceeds around these objectsghhispectrally uniform
segmented epithelial cells. The accuracy of the basddetermined by differentiating
cytoplasm from the remaining tissue. Gland unit creasothus a controlled object
based region growing of epithelial cells. Region grgvcommences at the lumen

boundaries, and continues through the tumor tissue umti# dwological boundary such



62

as a tear, stroma tissue, or another growing gland umached. As each growth “ring”
is added to the gland, the surrounding epithelial nucldi @lls are evaluated to be

“within” or “outside” a gland unit.

Figure 8: Images representing prostate cancer grades 3 @\B)F) and 5 (G-
). Images representing the original H&E stain (A, D, @imary object
segmentation (B, E, H) and glandular object classifiog{C, F, 1) are presented

[23].

Without the addition of stop conditions, uncontrolledvgitoof gland units would

occur. Consequently small lumens are ignored as glaus sand the controlled region-
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growing algorithm continues in a manner which constrainsctiiision against other
morphological objects.  Subsequently, all meaningfululzel components such as
epithelial and stromal nuclei are evaluated in relatorthese gland units to create

morphological features. In Figure 8, we present reptatee images from this analysis.

6.2.2 IF Morphology and Biomarkers

In multispectral immunofluorescence (IF) microsco4,[ 53, 65], multiple
proteins in the tissue specimen are simultaneously hbata different fluorescent dyes.
Each dye has a distinct emission spectrum and itsiassd antibody binds to its target
protein within a tissue compartment (ie nuclei or cytopla The stained slide is
illuminated under a fluorescence microscope with a lighurce for a specific
wavelength. This excitation light is absorbed by therfisoent dye causing it to emit
light of a longer wavelength. The intensity of tmitéed light is a measure of the target
protein’s concentration. In multiplexed IF images, tissue is labeled with several
antibodies at the same time. Each antibody is éabeith a unique fluorescent dye with
distinct spectral characteristics. The tissue i tiheaged with a multispectral camera,
then spectrally un-mixed, to yield multiple images wiahe image per individual
dye/antibody. Two common dyes that reveal the tistuecture are DAPI (a nuclear
stain) and CK18 (stains epithelial cytoplasm). Nucl@ajects are segmented and then
separated using a co-localization scheme into epitheli@ei positive for both DAPI and
CK18 and stromal nuclei positive for DAPI but not CK18. ®gjpently prognostic

biomarkers such as AR (androgen receptor) are evaluatedch vatdth co-localized
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compartment. Figure 9 illustrates a sample prostate giamixed into DAPI, CK18 and

AR specific images.

Figure 9: Sample composite image of a prostate gland siheatreixed into

individual images representing DAPI, CK18 and AR biomarkers [64]

In this work we build upon previous work in IF biomarker quadtion [53, 65].
Specifically, we analyzed expression of AR and Ki67 @tesbiomarkers as proposed by
Sapir et al [53]. Quantification of a biomarker is ach@ in two stages. First, a
biomarker relevant comparted is detected. Then, thealsignseparated from the
background within the compartment via intensity thresholdiRgllowing the definition
of epithelial and stromal nuclei, as well as epitdelcytoplasm, background
autofluorescence and non-specific binding effects arediteut. An interactive model
based thresholding technique is used to classify whether reaxtéi is positive for a
particular biomarker. The expression of each biomarker then be quantized and

normalized (epithelial signal normalized by stromal egpi@). Features representing
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the relative rise of the biomarker in the epithetlssease specific compartments were
recognized to be prognostic as they measure thandignrange of biomarker expression

in an image.

(@) (b)
Figure 10: A multiplex IF pseudo-color image cotiag of the DAPI

counterstain (blue) and the CK18 biomarker (greangl, (b) segmented epithelial

nuclei (blue), stroma nuclei (purple) and epitHadigoplasm (green) [64].

Additionally, these tissue objects can be analyfmedmorphological properties
such as distance based minimum-spanning-tree (M&Bsures, as well as the fractal
dimension of the glandular boundaries. MST, frbatal wavelet features proposed by
Tabesh et al [64] were employed in this analysis.

The MST connecting the centroids of all epithetiatlei in the tissue is the basis
for extracting feature characterizing tissue agtttiire. The MST of a graph is defined
as the tree connecting all vertices (i.e., epigtheiuclei centroids) such that the sum of
the lengths of the lines (edges) connecting théicesr is minimized. Many algorithms

exist for constructing the MST of a graph. We usiegl well-known Prim’s algorithm
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[12, 64]. Let G={V, E} denote a graph with verticeg and edgesg, and let
Gust ={Vust: Eust} denote the MST ofs. The algorithm starts by adding an arbitrary
vertexv in v toV,g,, that is,V,,s; ={V} . Then, the algorithm finds the nearest vertex in
the rest of the graph to the curre®},;. That is, the shortest edge connecting the
verticesu and v is found such thatl V,; and vi V. Then, G, is updated by
addingv to V,,s; and addinge to E,s;. The process of adding vertices is continued until
all of them are included iN,,s;. Figure 11lillustrates the MST of the epithelial nuclei in

Figure 10

Figure 11: MST connecting the epithelial nuclei in Figuhe YSegmented
epithelial nuclei are marked in grey, and stromal nucidi@her compartments
are masked out. Epithelial nuclei centroids and intradgM8T edges are

marked in yellow and inter-gland edges are marked in red [64].

The fractal dimension of the boundaries between thedgland the surrounding

stroma provides a quantitative measure of the irregulafithe shape of the boundary.



67

In general, the fractal dimension is a measure ospaee-filling capacity of an object.
The fractal dimension of a straight line is one, mehas the fractal dimension of a more
irregular planar curve is between 1 and 2. Gland boundaiiedumen and stroma are
defined as pixels that have at least one non-gland andgjland pixel among their 4-
connected neighbors. As lumens and stroma appeaasimibur multiplex IF images,
we used morphological operations to distinguish theme d&fined lumens as pixels
belonging to “holes” in the gland regions, i.e., pixélat cannot be reached by flood-
filling the non-gland region starting from pixels on #dge of the image. Two features
were considered, namely, the fractal dimension of glamara boundaries, and the
fractal dimension of gland boundaries with both sewand lumens. We estimated these
features using the box-counting algorithm described in [64]defailed description of

fractal theory is available in [66].

6.3 Results

We analyzed prostate biopsies from a mult-institutiomdloct of 1027 patients.
Each patient had clinical data available including ageclinical stage, Gleason grade
and PSA (prostate specific antigen) level. Each paliattup to 3 H&E and 6 IF images
captured which were then quantized and analyzed to develogtpedeatures. We
then evaluated all the features in a multi-variateofuspproach leveraging our semi-
supervised regression framework with SVRc. We trained sbeii-supervised
transductive models on 686 patients and validated on 341 tsati€hree different types
of models were created. Model 1 was solely based oR$e clinical Gleason and IF

biomarker (AR and Ki67) expression features. Model 2 waldpgd without the
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clinical Gleason and with the morphometric IF and H&&tures added. Model 3 was

built with all the feature modalities represented. UResare presented in Table 10.

Table 10: Results of all three models in training and tdat ks

+#, '(-)r X #
") * ( /0 1 23 (

As can be observed, the quantitative morphological fesatooe only improved
the predictive performance, but removing the pathologsdigned clinical Gleason
increases the accuracy of the prediction in both trgiand test sets. This is likely due to
the removal of the subjective, noisy and non-robustuaaassessment of the Gleason

grade.
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6.4 Chapter 6 Summary

This work presents an application of our unique semi-supenr@ppdoach for
medical prognosis in the context of fusing multi-modatdees from positive prostate
biopsies. It represents an evaluation of the Gleasore svith metrics for morphology
derived from quantitative image analysis in this contexthe results on a multi-
institutional cohort of 1027 prostate biopsy patients indidaat morphometric IF and
H&E features when fused with other characteristics imalti-model framework,
improve predictive performance, especially with the absef a pathologically assigned
Gleason score. This is the first exploration of iateraction of advanced imaging
features for prostate morphology and biomarker quantiingtvith clinical variables,
including the assessment of quantitative prostate biopsytertire versus the Gleason
grade in the context of a data fusion paradigm whiclkeregges a semi-supervised
approach for risk prognosis. We plan further analysisnaofti-modal data fusion for

semi-supervised prognostics.
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CHAPTER 7

ASSESSING THE IMPACT OF PROSTATE BIOPSY

TUMOR AMOUNT ON IMAGING BASED PROGNOSTICS

EMPLOYING TRANSDUCTIVE SEMI-SUPERVISED

REGRESSION

Prostate cancer is the most common form of can@gndsed in American men
and the second deadliest of all cancers affecting [ Newly diagnosed patients
with a positive prostate biopsy and their physicians tae@riety of potential treatment
options including surgery, radiation therapy, active sllanee, and more. Which option
is best for the individual patient is not always clesargd there have been a number of
assays developed to analyze a patient’s tumor specinerpravide a personalized
assessment of cancer severity and risk [4, 15, 16, 18, #fhe 8f these assays employ
image analysis algorithms to extract morphometric anchdlecular characteristics from
the tumor specimen as features in predictive modelsigkrassessment. A practical
challenge however is that there is often not endugior present in the biopsy specimen
for analysis. Even if sufficient tumor is preseiig amount of cancerous material may

affect the accuracy of the predictive models. Tolbst of our knowledge, there have
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been limited published studies on how different amoohtsimor in a prostate biopsy
would affect the performance of imaging features in a ptiedi model [37].

The predictive models for these prognostic assays ter obnstructed analyzing
the features of prognostic risk and predicting the timeancer progression (including
metastasis) based on these disease characterisiicentists leverage statistical and
machine learning techniques for survival analysis in these eodef 7, 34, 57]. In this
chapter we explore how the prognostic performance o$emni-supervised framework is
affected as automated image analysis algorithms extragghometric and biomolecular

features from varying amounts of tumor.

7.1 Background on Prostate Biopsy Image Analysis

For prostate cancer patients with a positive biopsgjodins aim to develop an
individualized treatment plan based on a mechanistic stateling of the disease factors
unique to each patient. Two main information sourcesterarchitecture of the tumor
morphology and biomolecular mechanisms of the disaasessessed by biomarkers [90,
17, 23, 53, 64]. There has been significant research in iraaghsis of prostate
morphology as well as automated quantification of mdé&cand protein biomarker
expression [23, 53, 64]. These quantitative image andilysasmnultiple modalities have
become prevalent, yielding not only independent prognostidigiors of outcome, but
also features which can be combined into multivariate rsddé&| 37]. In this work, we
explore morphometric features from H&E (hematoxylin amasin) and IF

(immunofluorescent) images, as well as IF biomarkatuies.
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7.1.1 H&E Morphology

Morphological and architectural characteristics of fhestate tissue, such as
epithelial nuclei and cytoplasm, provide critical inf@tion for the diagnosis, prognosis
and therapeutic decision making of prostate cancer. Véealged a method proposed by

Fogarasi et al [23] for automated analysis of gland eaiuires from H&E images.

7.1.2 IF Morphology and Biomarkers

In multispectral IF microscopy [53, 64] multiple proteins the tissue are
simultaneously labeled with different fluorescent dy&ach dye has a distinct emission
spectrum and its associated antibody binds to its targateipr within a tissue
compartment (ie nuclei or cytoplasm). The stained slglelluminated under a
fluorescence microscope with a light source for a spewsidvelength. This excitation
light is absorbed by the fluorescent dye causing it to kghit of a longer wavelength.
The intensity of the emitted light is a measure eftdrget protein’s concentration. Two
common dyes that reveal the tissue structure are Q&RUclear stain) and CK18 (stains
epithelial cytoplasm). Nuclear objects are segmeatsd then separated using a co-
localization scheme into epithelial nuclei positieg both DAPI and CK18 and stromal
nuclei positive for DAPI but not CK18. Subsequently progodsbmarkers such as AR
(androgen receptor) or Ki67 are evaluated within each caltked compartment.

We analyzed expression of AR and Ki67 prostate biomarlsepsagposed in [53].
Additionally, tissue objects like epithelial nuclei (DA&#hd CK18 positive nuclei) can be
analyzed for morphological properties such as distansedbaninimum-spanning-tree

(MST) measures proposed in [64].
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7.2 Study Design

The purpose of this study was to assess the impact oéa$dog tumor on
prostate biopsy prognostic models built with the transdeicegression framework. We
employed a dataset of 226 patients with positive prostateecaiopsies [37]. This
dataset was from a previous tumor analysis of a SVRdl@sestate biopsy model [18]
and had concluded that the imaging features were robust to®0% of the field-of-
view Each patient had one H&E image, and two IF images:for AR and a second for
Ki67. All images were acquired at a 20x magnificationdfief-view, and had tumor in
at least 80% of the image. Images were then masked byt @gthologists using pre-
defined masks representing 80%, 60%, 40%, 20% and 10% of the fieighof-
Pathologists identified areas of tumor with these mashkich were then analyzed to
extract H&G gland unit morphology features, IF MST téeas and AR and Ki67
biomarker expression features. In summary, three imégeg26 patients with five
masks of decreasing tumor levels led to a total of 3390 imagésaman this study.
The figures below illustrate sample segmented imagea fepresentative patient at the
80% and 20% mask levels. Variations in the amount of tanalyzed are evident in
these representative samples. It is interestingpte how the different tumor amounts
available for analysis changes the segmentation amsdiftdation of tissue objects as

illustrated by the different colors for the same pédithe tissue in the different masks.



(@)

(b)
Figure 12: Segmented H&E image at 80% (a) and 20% (b) tumorlenasdk.
Regions outside the mask are illustrated as the origi®&l image and the

analyzed area has segmented components [37].

74
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(@)

(b)
Figure 13: Masked and segmented IF image at 80% (a) and 2@&tnf) mask

levels [37].
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Following the extraction of morphological and biomolecumaging features at
the four different tumor mask levels, we then constduct®dels for prostate cancer
progression. First the 226 patient cohort was split trdining and validation sets, each
with 113 patients. As a reminder, in developing medicagjpostics, it is necessary to
maintain separate training and validation sets (ratlaar cbmbined cross-validation type
approaches) due to FDA regulatory requirements for indepéteting and validation.

We then constructed models to predict significant dispesgression (including
metastasis) and validated them. A new model was creeie validated for each tumor
level. We built models with SVRc alone and SVRc camabiwith our semi-supervised
transductive regression framework. We employed the sgtimization criterion for the

framework which has previously proven successful.

7.3 Experimental Results and Discussion

The complete results of the study are presented ireTehl These experiments
appear to confirm that the semi-supervised transductiveessign framework for
survival analysis performs better with reduced amountsiabr in the prostate biopsy.
At all tumor levels, the accuracy in the validation eéthe performance criterion is
higher when the framework is layered on top of SVRbemathan with SVRc alone. In
fact, for all tumor levels except 10%, the accuraclpatter in training as well. While
independent components of the criterion do vary, the ifligors designed to optimize

the overall criterion, in which it has succeeded.
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Table 11: Results of training and testing SVRc models atdsitig tumor levels with

and without the semi-supervised transduction framework

Tumor 80% 60% 40% 20% 10%
Mask Level

SVRc Training Performance

Cl

Sensitivity

Specificity

Criterion

SVRc Validation Performance

Cl

Sensitivity

Specificity

Criterion

SVRc with Transduction Training Performance

Cl

Sensitivity

Specificity

Criterion

SVRc with Transduction Validation Performance

Cl

Sensitivity

Specificity

Criterion

It is interesting to note that the validation perfornemare not very different at
the 80% tumor level when there is a significant amadinttmor available to analyze for
the imaging features. But as the available tumor amtegreases, the value of the semi-

supervised framework becomes apparent. Another observatibat there is a decrease
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for both SVRc alone and with the transduction framéwat the 20% level. The
transduction framework still does better, but this maydbe to some artifact in the
imaging features which is emerging at the 20% tumor level.

These are the results of a robust study designed tssabeeimpact of decreasing
tumor amounts on prostate biopsy prognostic assays. $hksrbave proven the value
of the proposed semi-supervised transductive regressioewvrairk for building prostate
biopsy prognostic models with imaging features extractech fprogressively smaller
proportions of tumor in the biopsy specimen. The studilyaad different imaging
domains, with prognostic features for each domain analya@etive different masks of
decreasing size. This works represents one of the feuspadtlstudies of how different
proportions of tumor can affect prostate cancer assagspncology predictive assays in
general. We would urge scientists developing these sissalyclinicians using them that
such robustness and sensitivity studies should carriedegutarly. Our results suggest
that a semi-supervised transductive regression frameworkufvival analysis may be
beneficial in ensuring robust results as the amount obrtuavailable for analysis

decreases.
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CHAPTER 8

SUMMARY AND CONCLUSION

While model-based medical survival analysis has been oyl by
biostatisticians since the 1970s, modern machine learning appsoaach as NNci and
SVRc can improve the predictive power of such analydesspite the fact that these
prediction methods have multiple ways of accountingctemsored cases, none of them
up to now had employed semi-supervised approaches to lebemgartial information
about survival endpoint times. In this dissertation, wevidesl evidence that a
transduction framework when combined with machine learninghadst can be a
powerful tool for improving the accuracy of survival anays a range of medical
prognostic problems. Interestingly, the core ideas blethie proposed approach are
scalable with a large variety of regression algorithnts @an be applied to a wide scope
of survival analyses.

It seems straightforward to expand our transduction fraorleto work with other
regression algorithms. There are a variety of sugbriéhms to explore including the
ones described in Chapter 2 as well as recent promisirgyatians such as Deep
Survival which proposes a hybrid mix of deep learning and the Madel [32], or

Conditional Random Fields that take into account tlypesatial structure of the input
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data and/or the labels. Additionally, we anticipatet thather tuning the SVRc
parameters and NNci neural network architectures couldyskbimproved results.

This dissertation has presented a new methodology \edigatpirically through
a rather constrained set of clinical results. Mdgadaby these promising evidence-based
analytics, future areas of development could include thedaliien of more theoretical
foundations for this line of research. Specificallyp tmain opportunities arise. The first
one is to develop a more theoretical understanding o jhint CI and
sensitivity/specificity criterion which could help algrhow we can assess performance
under semi-supervised leaning formulations of dependency-&atenks (ie conditional
random fields or other deeper semantically-motivated atams associated categorical
temporally-constrained networks) or alternatively timéesemodel-based predictions.

An interesting extension of this performance criteneould be to consider each
component (Cl, sensitivity and specificity) as an axis three dimensional space, and
the overall criterion to optimize would be a (perhd&psclidean) distance of a point
representing these three metrics from the origin. pasformance of each metric
improves, the distance would increase. Ideally, suchpomoach would be robust to
improvements in one metric over the others. This d@lso have the added benefit of
allowing visualization of performance, and perhaps evewradhstruction of manifolds in
the three dimensional space as different models amnetrticted. Another alternative
would be to introduce weighting parameters to differegtialeigh the ClI and the
product of sensitivity and specificity. This would allow maontrol over the importance

of the individual metrics within the overall criterion.
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The second set of opportunities to pursue is more caattie)lthrough abstracted
and simplified simulations. These would allow us t@lese the behavior of the
transduction framework in various settings where therenore control of the data
generation under various model assumptions than what weirhdahe experiments
analyzed in the presented dissertation. In this waycaudd investigate how different
rates of censoring, either through simulated datasetrticially introduced, might
affect performance under different types and degreetudtgre in a model's assumed
dependencies. Based on the results presented in prebh@apieis, we speculate that our
approach will prove its value in problems with high degrdeseasoring, but this needs
further investigation. Relatedly, how should one sulpdarthe feature subsets, and how
this affects the results, remain to be seen. Wheunreess dependency structures in an
underlying model are strong, one can also assume thatctwadi will be better
accounted for and the transductive “guessing” of outcomepeimis less necessary for
these kinds of problems. An interesting question is kdretone could identify
“translational” situations where transduction mightl $telp, though not as much as in
weakly structured problems with data censoring. Expandintherareas of research
described in the previous paragraph, as such models arteucted simulating various
situations, a manifold of the how the performance moite behaves in a three
dimensional space would facilitate a geometric inteégpien of the results.

Our experimental applications were concentrated onlogioal problems, with
data concerning prostate and breast cancer outcomes.prdpesed approach in this
dissertation could be extended to any type of diseage sthere survival is a major

problem, and for a variety of medical prognostic apgbecest Furthermore, there is no
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reason to believe that the proposed transduction frankeweed be limited to the
medical domain. On the contrary, it could be employadsurvival or failure-time
analysis problems in industrial manufacturing, customarrcprediction, reliability and
the induced or controlled analysis of equipment failua@song others.

It is important to note that this dissertation doesautress the crucial issue of
feature selection. Being motivated by and focused onaakgroblems, these present
with great difficulties and expense in assessing underlyatgss or measurable features
such as gene expressions which usually require time andimahdosts for assays to be
run, hence maintaining performance with a minimal featset is of paramount
importance. This dissertation’s research does not sudgeg the many different
approaches to feature selection could affect the transductsults in systematic ways.
Feature selection procedures could be executed prior taahsdtiction of targets in
order to choose the best feature set to work with, gathavould also vary with any
prior assumptions of underlying (hidden) state dependenciesatlat help structure and
constrain the expected temporal model results in motail.de On one hand, the
advantages of this approach are a reduction in overall cotigmatiacomplexity and that
the transduction will be conducted on supposedly meaningditlifies, further reducing
the impact of noise in the data. On the other hand,dib@dvantages are that the
translation of features across different models i always straightforward and prior
feature selection could yield less informative featuassthey would be derived from a
suboptimal, non-transduced model. While many of theaufeatwould be the same, it is
possible that some features which may not have beeotsdlmay be important in the

context of the final transduced model, and other featungshwnay initially be important
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may lose their relevance following the generationnagfrioved targets. Alternatively, if
feature selection is performed after transduction,eéhtufes selected will be better suited
for the transduced model. However, the disadvantagesthate the transduction
procedure would contain potentially noisy and unnecessangngions that could
adversely affect performance and would be less effidesst to increased complexity.
Existing wrapper type approaches for feature selectionnm-sgpervised classification
could be employed [50]. An interesting idea would be to taddpaplacian score for
feature selection which has already been explorechensemi-supervised regression
setting [19], though the generality of these resultsrd ko assess.

Adapting the incremental period for the target time irhasration could also be
beneficial empirically in our approach. In the curregit of experiments an interval of 10
months was heuristically derived given the length ofrtieximum time in the training
cohorts, the average censored time and observed exetioti®@of the program.

An important point is that our work at present only adsFsgight-censoring in
non-event patients. As discussed in the introductiomyival analysis is further
complicated by the left-censored nature of events. Tdreseanother area of future
research could be to extend our work to transduce the &wesg as well, decreasing
them slightly in order to improve performance.

Additional ideas under consideration are to leverage th&igs such as the
internal SVR error, instead of the external modelleation criteria, for selecting the best
model. Additionally, each instance is now transducedpedeéently. It is worth testing
whether having a dependent order of transduction would waptbe results: first

transducing the censored instance with the highest Sv#t, eand then keeping its
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derived target value when moving on to the case with tt@nsehighest error, etc. This
is an approach related to active learning concepts [55] vamer@ims to achieve as high
a predictive accuracy with as few labeled instances agfgoss

Since it is computationally intensive to conduct an exiaisearch of the target
space, perhaps five to ten instances with either the stigdneor or the maximal weight
(SVM alpha values) could be selected and an exhaustarelseould be conducted
within this target space. While this would attempt to miggae singular nature of our
proposed approach, it would also increase its computanomaplexity. Hence, further
algorithmic optimization to reduce the computational comiplas also a crucial area of
future work. The proposed approach scales with the nunfbegnsored cases being
transduced, the length of the maximum time in the traiootgprt, and the time interval
of increase in each iteration.

Showing initially promising sets of results with notabimproved overall
prediction performance over existing methods, the propasetduction framework
approach is, to our knowledge, the first application efissupervised learning to
survival analysis. As noted from the concluding commants suggestions for futures
discussed above, this dissertation’s approach and iteadiaes of research suggest the
value of further investigation and research.

In summary, we have presented a novel semi-supervised apgovdransducing
regression targets in survival analysis problems, withcad on medical prognosis. Our
method can be combined with almost any regression algorithmather designed for
survival analysis or not. The innovative procedure masifasinarked improvement in

the performance of current algorithms. In experimeegseasenting prostate and breast
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cancer, our proposed method has outperformed the cueading algorithms for

survival analysis. Additionally, the method has provenuiility in various medical

prognostic applications where survival analysis algorithems employed, such as
building models for late stage disease endpoints frofreeardications, evaluating the
interaction of quantitative image analysis metricshwatinical characteristics in a data
fusion paradigm, and assessing the impact of decreasing tum@rostate biopsy assay.
This dissertation represents one of the first apptinatof semi-supervised learning for
survival analysis and has introduced the notion of lemegathe partial knowledge of

true outcome in censored times.
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