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The central challenge in predictive modeling for survival analysis in medical prognostics 

is the management of censored observations in the data.  While time-to-event predictions 

can be modeled as regression problems, traditional regression techniques are challenged 

by the censored characteristics of the data.  In such problems the true target times of a 

majority of instances are unknown; what is known is a censored target representing some 

indeterminate time before the true target time.  The information for most patients is 

incomplete and only known “up-to-a-point.”  Patients who have experienced the endpoint 

of interest (cancer recurrence, death, etc) during an often multi-year study are considered 

as non-censored or events.  They may represent as little as 9% of the available sample.  

Most of the patients do not experience the endpoint or are lost to follow-up for various 

reasons (patient moved, died of other causes, etc.).  These censored samples often 

represent most of the available sample.  Modeling techniques which can correctly 

account for censored observations are crucial.  Such censored samples can be considered 
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as semi-supervised targets, however most efforts in semi-supervised regression do not 

take into account the partial nature of unsupervised information; with samples treated as 

either fully labelled or unlabeled.  This dissertation presents a novel transduction 

approach for semi-supervised survival analysis.  The true target times are approximated 

from the censored times through transduction to improve predictive performance.  The 

framework can be employed to transform traditional regression methods for survival 

analysis, or to enhance existing survival analysis algorithms for improved predictive 

performance.  This proposed approach represents one of the first applications of semi-

supervised regression to survival analysis and yields significant improvements in 

predictive performance for multiple applications in prostate and breast cancer 

prognostics. 
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CHAPTER 1 

INTRODUCTION 

 

 

There are two broad categories of applications for predictive time-to-event 

modeling in medical survival analysis.  The first is prognostic, developing models for 

how a certain disease will progress.  The purpose of such models includes understanding 

disease progression and prediction of how new patients will behave in the context of 

existing data.  Examples include predicting when prostate cancer will recur in patients so 

therapy can be initiated early [18] or identifying which group of patients will benefit 

more from a certain therapy.  The second purpose is explanatory, through factor analysis; 

to analyze disease processes and explore interaction effects between disease factors.  An 

example is determining whether a potentially significant gene will continue to be relevant 

when combined with other predictors in a multivariate model [18] in order to possibly 

prioritize and identify candidate genes for targeted therapeutic drug development. 

While time-to-event prediction is inherently a regression problem, survival 

analysis challenges computational modeling approaches due to the fact that healthcare 

data in such settings is characterized by censored and non-censored (event) observations.  

The term “censoring” in biostatistics describes the fact that the target survival time is not 

known for all samples in the survival analysis setting.  For instance, patients might not 

experience death or cancer relapse during the course of a study, or be lost to follow-up.  
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The only time known is their last record of being healthy; hence the target time for 

regression is incomplete and only known “up-to-a-point.”  This concept is distinctly 

different from the notion of missing data in machine learning [57].   

Censored observations contribute incomplete information as the event of interest 

(cancer recurrence, death from disease) may occur after patients are lost to follow-up.  

Simply omitting the censored observations [7, 58] or treating them as non-recurring 

samples in a classifier [61] both bias the resulting model and should be avoided.  

Additionally, in the field of healthcare diagnostics, due to the costs involved in 

identifying acceptable patients who will provide consent for inclusion in research, and 

then actively tracking them over a significant period of time, the sample size is often 

small, in the tens or hundreds.  Since most of the samples may be censored [e.g., 91% in 

prostate cancer [17], 76% in breast cancer [48]) dropping such patients is a very 

unattractive option and accounting for them is of crucial importance for a model.  

Survival analysis represents a special example of the typical complexity in modeling 

noisy high-dimensional biomedical data to predict complex medical phenomena. 

The core contribution of this dissertation is that a possible way of handling 

censored samples so common in time-to-event problems would be to consider them as 

semi-supervised targets.  While there has been significant work in semi-supervised 

classification approaches [3, 9, 10, 25, 26, 33, 56], there has been limited work in semi-

supervised regression [2, 13, 51, 63, 72].  Work thus far treats samples as either fully 

labeled or unlabeled and does not take into account the partial nature of unsupervised 

information, as is the case in time-to-event medical prognosis problems.   
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This dissertation presents a novel approach which treats the survival analysis 

problem as one of semi-supervised regression and transduces or learns through trial and 

error the appropriate target times.  This framework for transducing the appropriate times 

can be applied to any regression algorithm, whether originally developed for survival 

analysis or not.  In experiments with multiple algorithms on datasets for prostate and 

breast cancer, the proposed framework consistently yields significant improvement in 

predictive accuracy.  This dissertation is largely an empirical evaluation, supporting the 

proposed advancements with experimental findings. 

This dissertation is organized as follows.  Chapter 2 presents background material 

and related work.    It provides an overview of survival analysis, and different machine 

learning methods which have been employed for survival analysis.  Finally, it presents a 

description of semi-supervised approaches in both classification and regression contexts.  

Chapter 3 further presents background material, with a special focus on SVRc (not a 

contribution of this dissertation), a survival analysis approach based on support vector 

regression.  SVRc has previously been developed by us and is employed in many of the 

experiments presented in this dissertation, thus it necessitating a more detailed 

introduction.   

Chapter 4 presents the proposed semi-supervised transduction approach.  It 

discusses the idea behind the algorithm, and reviews the approach’s pseudocode.  Various 

subtle but important implementation details are reviewed, including optimizing the 

complexity of the algorithm.  Finally, experiments with the Cox proportional hazards 

model, support vector and neural network approaches are presented.  The results in 
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Chapter 4 have already been published in two workshops, a conferences and a journal 

[35, 36, 38, 40].   

Chapter 5 explores the application of the semi-supervised framework in a unique 

prognostic modeling situation where observatoins from earlier in a disease’s history are 

employed to model subsequent disease endpoints.  Prostate cancer is a complex disease 

which advances in stages.  While clinical failure (including metastasis) is a significant 

endpoint following a radical prostatectomy, it can often take years to manifest, usually 

too late to be optimistically treated.  Instead the earlier endpoint of PSA Recurrence is 

frequently used as a surrogate in prognostic modeling.  Our proposed approach leads to a 

significant increase in performance for predicting advanced prostate cancer from earlier 

endpoints.  These results were presented at the 2016 29
th
 IEEE International Symposium 

on Computer-Based Medical Systems (CBMS) [41].   

Chapter 6 presents the application of the proposed approach in the analysis of 

prostate biopsy imaging features.  One of the major uses of survival analysis methods is 

to explore the predictive power of features and especially their interactions in a 

multivariate setting.  In biomedical prognostics, there has recently been the development 

of a new “data fusion” paradigm where related features compete.  For researchers in 

biomedical imaging, of particular interest is how quantitative imaging characteristics 

compare with existing clinical variables which may be measuring the same biomedical 

properties.  We explore our novel approach for comparing clinical characteristics in 

prostate cancer, like the Gleason grade, with quantitative imaging algorithms.  These 

results were presented at the 2016 SPIE Medical Imaging Conference [39].   
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Chapter 7 evaluates how the novel semi-supervised framework improves the 

performance of biopsy based prostate cancer assays as the available amount of tumor for 

analysis decreases.  For newly diagnosed prostate cancer patients with a positive biopsy, 

there are a variety of treatment options to consider.  To aid physicians and patients in 

their decision making, a variety of predictive assays have emerged within the last decade, 

many of them imaging based.  These assays build predictive models for survival analysis 

to provide personalized risk assessments for the patients.  However, there have rarely 

been any published studies on how the amount of tumor in the positive prostate biopsy 

affects the predictive power of these imaging based assays.  We assess how different 

amounts of tumor in the prostate biopsy affect the accuracy of imaging based prognostic 

models employing our semi-supervised framework.  We show that the framework 

improves accuracy even with diminishing amounts of tumor, thereby enabling more 

accurate treatment decisions.  These results were presented at the 2016 38
th
 Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC) [42].   

Finally, Chapter 8 summarizes the findings and contributions of this dissertation 

and discusses potential future work. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

 

This chapter is divided into three sections.  First in Section 2.1 we present an 

overview of survival analysis.  Second in Section 2.2 we review existing literature in 

methods for survival analysis.  Third in Section 2.3 we present related work in semi-

supervised analysis including regression and transduction in the classification setting. 

 

2.1 Overview of Survival Analysis 

Healthcare data for prognostic modeling is usually obtained by tracking patients 

over the course of time in a well-designed study, perhaps lasting years.  Often a 

predefined event such as the relapse of a disease or death due to disease is the focus of 

the study.  The major difference between survival analysis and other time-to-event 

regression problems is that the event of interest is frequently not observed in many of the 

subjects.  Rather, the information for most subjects is incomplete and only their last 

healthy time is recorded.  Patients that did not experience the endpoint during the study or 

were lost to follow-up for any cause (ie the patient moved during a multi-year study) are 

considered as censored.  All that is known about them is that they were disease-free up to 

a certain point, but what occurred subsequently is unknown.  They may have actually 

experienced the endpoint of interest at a later point in time, but that is unknown.  



7 
 

 

Conversely, patients who have experienced the endpoint of interest (cancer recurrence, 

death, etc.) are considered as non-censored samples or events.   In many medical 

prognosis problems, the vast majority of instances (76% or even 91%) are censored, so 

they cannot be dropped.  The incomplete nature of the outcome targets in survival 

analysis prediction thus challenges traditional regression techniques and usually 

precludes their use.  Instead, methods which can correctly account for censored 

observations are essential [14, 29, 35, 57, 67]. 

 

 

Figure 1: Illustration of survival time during a study.  Event observations are 

indicated by solid dots, and censored observations by hollow dots.  Reproduced 

from [57] by permission, ©IEEE 2014. 

 

Figure 1 graphically represents a simplified example illustrating survival data for 

a study with six patients.  Patients 2 and 6 show observed events, having experienced the 

endpoint of interest during the course of the study as indicated by solid dots.  Patients 1, 3 

and 4 were lost to follow-up during the study, and patient 5 reached the end of the study 

and was still healthy.  Patients 1, 3, 4 and 5 are all considered as censored observations, if 
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they experienced the endpoint of interest, it was at some unobserved time following their 

last recorded observation. 

If we let Ti denote the actual target time, Ci the censored time for a censored 

observation and Ui the observed time for all patients, then for events Ui = Ti and for  

censored cases Ui = Ci < Ti.  The survival outcomes for n patients is then represented by 

pairs of the random variables (Ui , δi) for i = 1, …, n.  The variable δi indicates whether 

the observed survival time Ui corresponds to an event (δi = 1) or is censored (δi = 0).  

Given a d-dimensional vector xi Є R
d
, the data D for a medical prognosis problem can be 

represented as: 

 

D = { Ui, , xi , δi } ni=1 . 

Ui = min (Ti , Ci) 

 

 

An important assumption is that Ti and Ci are independent conditional on xi, 

meaning that the cause for censoring is independent of the survival time.  In Figure 1, 

patients 4 and 6 have the same observed survival time (U4 = U6) however their censoring 

indicator variables are different (δ4 = 0, δ6 = 1). 

Traditional statistical approaches to survival analysis attempt to estimate a 

survival function S(t), the probability that the time-to-event is greater than a given time t, 

or Pr (Ti > t ).  The general problem is to learn S (t | x ), the survival function conditional 

on the features of a patient in the data set.  Once learned, this model is employed for 

prediction or explanatory factor analysis as described in the Introduction [35, 57]. 
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The type of censoring described thus far (event-free and lost to follow-up) is 

known is “right-censoring,” since information on the right-hand side of a timeline is 

unknown, as illustrated in Figure 1.  The survival analysis problem is further confounded 

by the fact that non-censored patients actually experience the event-of-interest prior to 

their recorded time, that actually Ui > Ti.  For instance, a cancer patient may visit a doctor 

every six months; so if recurrence is observed, it happened somewhere in the six months 

between the last “healthy” visit and the visit where the disease was detected.  The term 

“left-censoring” describes this phenomenon where even the status of event patients is not 

completely known.  Given the timelines involved, right-censoring is considered a 

significantly more important challenge and most survival analysis algorithms tend to 

ignore the left-censored nature of events.  This dissertation as well concentrates on 

addressing the right-censoring problem, but it is important to be aware of left-censoring 

when working in survival analysis. 

 

2.2 Related Work in Survival Analysis 

2.2.1 Cox Proportional Hazards Model 

The field of prognostic survival analysis has primarily been the focus of 

biostatisticians.  The vast majority of practical research for new clinical trials, drug 

therapies, cancer prognosis, etc. in biological literature is performed with the Cox 

Proportional Hazards Model [14, 29, 36, 43, 67].  The Cox Model estimates the log 

hazard for a patient as a linear combination of the patient’s features, plus a baseline 

hazard.  The Cox Model makes the crucial but generally accurate assumption that the 

hazard function (the instantaneous rate of decline in survival at a point in time) is 
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proportional for all individuals at each time point; it is a constant ratio.  This 

proportionality assumption is reflected in the general equation for the approach  

 

hi (t)  = exp ( ∑
=

p

j

b
1

j Xij ) h0 (t). 

 

Where hi(t)  is the hazard function for the ith
 individual, bj is the slope term for the jth

  

feature (which can be either categorical or continuous), Xij is the value of feature j for 

individual i, exp() refers to the exponential function, i.e., exp(u) = eu
 and h0(t) refers to 

the “baseline hazard function”, the hazard function for an individual with simultaneous 

zero values for all features.  Thus all hazard functions are assumed to be parallel to the 

baseline hazard function.  Estimates of regression parameters (the b terms) are obtained 

via partial maximum likelihood estimation.   The predicted hazard function for an 

individual allows predictions of an individual’s survival.  The Cox Model only employs 

censored patients’ data in calculating the hazard function up to the time of censoring; 

afterwards they are excluded [22, 29, 30].   

 The Cox Model falls under the category of statistical semi-parametric approaches 

since the baseline hazard function is treated non-parametrically.  To be more specific, the 

weights in the model are derived, however the baseline hazard function remains 

unspecified.  It is a part of the Generalized Linear Model (GLM) family; however it can 

be observed that the parameters have a multiplicative effect on the hazard value which 

makes it different from other linear regression models [43, 49]. 

In general, the reliability of the Cox Model deteriorates if the number of features 

is greater than the number of events divided by ten [29].  Consequently, the Cox Model is 
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challenged by emerging trends in biology where large numbers of predictive factors such 

as genes are being analyzed in relatively small samples [17, 18, 52]. 

 

2.2.2 Machine Learning Approaches for Survival Analysis 

 While the field of survival analysis in medical applications has traditionally been 

the focus of statisticians, particularly biostatisticians, various machine learning 

approaches have also been explored.  The use of decision trees adapted for censored data 

represent some of the earliest work in the field [28, 46, 54, 73].  Other techniques such as 

linear programming [48] have also been investigated. 

 An artificial neural network (ANN) is a complex modeling algorithm inspired by 

the biological neurons in a human brain.  It consists of a series of network nodes at 

multiple layers which are “activated” through a mathematical function, often a sigmoid of 

the form: 

 

 

 

Overall, given a training set of input vectors xi, with a corresponding set of target vectors 

ti, the algorithm minimizes the error function: 
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Various forms of artificial neural networks have also been applied to survival analysis [5, 

7, 61, 71, 74], with varying results.  Some advantages arise from a neural network’s 

ability to model nonlinearities.  However, many have incorrectly treated the time-to-event 

problem as a classification problem rather than as regression, and often also struggled 

with the high dimensional data commonly found in biomedicine.  NNci [71] is an 

implementation which treats the problem as one of regression, but modifies the use of the 

ANN’s objective function to instead optimize the Concordance Index (CI).  The CI is a 

performance measure of accuracy unique to survival analysis and is described further in 

Chapter 4.  This implementation adapts NNs in a way that makes them directly applicable 

to the survival analysis problem in medical prognostics. 

 Widespread adoption of SVMs in various machine learning domains has also led 

to recent applications for survival analysis [22, 34, 35, 57, 58, 69].  However, approaches 

such as [22] treat the problem in a classification context rather than a regression problem.  

An adaptation of SVR has been proposed [69], however it only accounts for right-

censored data, and while matching the performance of the Cox model, it yields no 

improvements over that standard.  Another approach [58] only modified the error margin 

of the penalty function and not the penalty weight.  In addition, left and right-censored 

cases were treated equivalently.   

 Another interesting avenue of research has been to combine the kernel concepts of 

methods such as SVMs with the Cox model to develop kernel Cox regression approaches 

[47]. 
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2.2.3 SVRc 

 The Support Vector Regression (SVR) [59, 60] algorithm has proven to be a robust 

and useful tool in a variety of domains with an extensive body of literature describing its 

applications.  However, since conventional SVR is unable to handle the censored data 

prevalent in survival analysis, it has not been more widely employed in the medical 

prognostics domain.  Support Vector Regression for Censored Data (SVRc) [34, 45] is an 

approach for addressing this issue. This dissertation employs SVRc in many experiments, 

and thus the SVRc algorithm is further described in greater detail in Chapter 3.   

 

2.3 Related Semi-Supervised Work 

There has been a significant body of work in semi-supervised approaches for 

classification problems [3, 9, 10, 25, 26, 33, 56].  In many of these methods, the target 

class/label is learned or “transduced” by assigning different class labels to the 

unknown/unlabeled instances and selecting the one which has the best performance 

criteria in some optimization problem. Similar ideas are explored in semi-supervised 

regression. 

 

2.3.1 Semi-Supervised Regression 

The basic idea of transductive regression [13] is that given m labeled data and labels (x1, 

y1), …, (xm, ym) as well as u unlabeled data points xm+1, …, xm+u, transductive regression 

learning algorithms must accurately predict the labels ym+1, …, ym+u.  To date, there have 

been various approaches developed for semi-supervised regression.  In [13] there are two 

basic steps described for such algorithms.  The first is local estimation where initial labels 
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of unlabeled datapoints are assigned based on their neighbors, through a weighted 

averaging scheme.  In the second step, through global optimization, a hypothesis is 

selected that best fits the supervised labels and the estimated labels from the first step of 

the unlabeled samples.   

 The local linear semi-supervised regression algorithm [51] has two properties: 1) It 

fits a linear function at each point like in local linear regression; and 2) The estimation of 

the labels of any particular data point depends on the estimates for all the other samples in 

its neighborhood as in Gaussian Fields.  Reference [2] proposed a family of learning 

algorithms that exploit the geometric distribution of features as a manifold regularization 

term.  There are two proposed algorithms, a Laplacian-regularized SVM for classification 

and the Laplacian-regularized least-squares approach for regression. Reference [72] 

proposed a generalization of a well-known co-training algorithm for classification.  The 

original algorithm trains two classifiers separately on two sufficient yet redundant attribute 

sets, each of which is sufficient for learning and is conditionally independent of the other 

given the class label.  The approach employs the predictions of each classifier on labeled 

samples to augment the training set of the other.  Instead of two attributes, [72] adopts two 

kNN regressors, each of which is refined iteratively with the help of unlabeled samples 

that are labeled by the latest updated version of the other regressor.  On convergence, the 

final output is the average of the two models.  

 In all these approaches, a major challenge is the choice of the initial sample label 

transduced for the unsupervised instances.  There are multiple choices for computing 

similarity measures between feature vectors to compute the initial labels of the unlabeled 
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data, such as the Euclidean distance, kNN, Markov random walks [63], or normalized 

Laplacian [2]. 

 While many of these approaches work well for classical semi-supervised 

regression problems, where instances are fully labeled and unlabeled, their direct adoption 

for survival analysis is not ideal since they do not leverage the partial information of true 

outcome present in the partial labels (the censored times) of a majority of the instances.  

Additionally, classical semi-supervised regression problems do not reflect the typical 

circumstances of survival analysis where up to 91% of the instances may be unsupervised, 

but contain partial information.  The relative scarcity of neighboring events with known 

target labels for censored instances may challenge them.  For instance, [13] drops samples 

from analysis if there aren’t enough neighbors to transduce a label for them.   

Reference [1] applies semi-supervised methods for survival analysis.  However, 

[1] does not leverage the concept of partial information in censored target times.  Instead, 

unsupervised clustering is performed to recognize related genes, followed by supervised 

modeling.  The method is semi-supervised in the sense that unsupervised gene discovery 

is paired with supervised prediction modeling.  To the best of our knowledge, leveraging 

the partial knowledge of true outcome in the censored times for survival analysis is a 

largely neglected and potentially rich area of research.  This dissertation proposes an 

overall framework for transducing times for censored instances in survival by leveraging 

the partial semi-supervised nature of the censored times.   
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CHAPTER 3 

BACKGROUND AND RELATED WORK: FOCUS ON 

SVRc 

 

 

Developed at AT&T Bell Labs by Vladimir Vapnik, Support Vector Machines 

(SVMs) [6, 59, 60, 70] have emerged as a powerful and compelling tool in the field of 

machine learning.  Advantages that have driven widespread adoption include a grounding 

in statistical learning theory, extension of linear models to nonlinear problems [31], and 

applicability to high-dimensional data while overcoming the curse of dimensionality; 

numerous case studies have been published documenting the excellent performance of 

SVMs in various problem domains.  Although the algorithm was initially developed in a 

classification setting, it was quickly adapted for time series prediction and regression 

problems. 

The SVM algorithm is well grounded in statistical learning theory, but is 

abstractly a simple and intuitive linear algorithm; SVMs are linear models capable of 

linear and nonlinear modeling.  Usually, linear models are incapable of representing a 

model with nonlinear relationships.  SVMs employ linear models to represent both linear 

and nonlinear relationships by transforming the input feature space, into a new higher-

dimensional feature space using a mapping.  This transformation is facilitated through the 

use of mathematical functions called kernels.  The SVM algorithm abstractly maintains a 
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linear relationship between outcomes and features; potential nonlinearities are 

encapsulated within the feature space via the kernel mapping.  Consequently, complex 

pattern recognition, classification and regression approaches can abstractly be represented 

linearly.   

The choice of the kernel function and the resultant feature space is important in 

theoretical and practical terms.  It determines the functional form of the model; thus, 

different kernels may behave differently.  For a mathematical function to be a valid 

kernel it must meet a set of conditions as outlined in [31].  Some of the most basic and 

common kernels are: 

 

Linear: )(),( YXYX
rrrr

•=Φ         

Polynomial: dYXYX )(),(
rrrr

•=Φ        

Radial Basis Function (RBF): ))2/(||||exp(),(
22 σYXYX

rrrr
−−=Φ    

Sigmoid: ))tanh((),( Θ+•=Φ YXYX
rrrr

      

 

This chapter is organized as follows.  Section 3.1 presents the formulation of 

traditional Support Vector Regression.  Section 3.2 then presents the adaptation of 

traditional SVR into SVRc, a modified version for survival analysis. 

 

3.1 Support Vector Regression (SVR) 

 The Support Vector Regression (SVR) [59, 60] algorithm is an extension of SVMs 

to the regression setting.  Once a SVR model has been learned, it can be applied to a new 

instance x through the following equation: 
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bxWxf +Φ•= )()(  

     

 Thus, the SVR algorithm can abstractly be considered a linear algorithm similar 

to basic linear regression where the variables m and b are learned for the equation 

y=mx+b.  The potential nonlinearity of a problem is encapsulated within the kernel 

function )(xΦ , and the complexity of the problem is resolved within the higher 

dimensional feature space. 

During SVR training, following the transformation of the data into the feature 

space, the algorithm learns the regression function f(x) that best fits the data in the feature 

space.  SVR training involves minimizing the training error (empirical risk) controlled by 

a single regularization parameter C and a margin of error ε.  This translates to obtaining 

the coefficients W and b through an optimization problem.  Given a set of n input 

instance vectors x
r

 (x1, x2, … xn) with corresponding target values y
r

 (y1, y2, … yn), the 

algorithm minimizes the following objective function: 
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given the constraints: 
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where W is a vector with the weights of all the features in the higher dimensional kernel 

space, and )( ixΦ represents the transformation of the instance xi in the higher 

dimensional kernel space.  The slack variables 
*

, ii ξξ  make the constraints of the 

optimization problem feasible.  The slack variables are characterized by the epsilon-

insensitive loss function εξ ||  where:  
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The variables C and ε shall now be explained in more detail in section 3.1.1.  

 

3.1.1 Further Details of SVR Training 

During SVR training, a common optimization function used is an epsilon 

insensitive loss function.  In each iteration of the optimization, the algorithm attempts to 

find the best fit line for the data in the kernel space.  However, since it is not possible to 

build a model that will perfectly fit all the training instances; an acceptable margin of 

error is set with the parameter ε, as illustrated in Figure 2.  Instances for which the error 

(f(x)-y) of the model’s prediction f(x) and actual target value y is within ε are considered 
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to be fitted by the model; instances outside the so-called “ε-insensitive tube” are poorly 

fit by the model.  

 

 

Figure 2: An illustration of the ε-insensitive tube, inspired by [59]. 

 

There is a model penalty associated with the instances that the line doesn’t fit; this 

is controlled by the structural risk regularization parameter, C.  During the training 

optimization, instances within the “ε - insensitive tube” have a penalty of zero, the model 

fits them correctly.  The model receives a penalty for training records with errors (f(x)-y) 

greater than ε.  The penalty is determined relative to the size of the error by a line with a 

slope of C.  The larger the error, the larger the penalty as determined by C.  Figure 3 

illustrates this relationship [34].  
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Figure 3: A graphical representation of the parameters C and ε in SVR.  The x-

axis represents the model error f(x) – y for an instance x [34]. 

 

The parameters ε and C achieve a balance between a good fit of the training data 

and the simplicity and generalization ability of the solution.  The parameter ε sets a 

threshold of insignificant error in the function approximation.  Simultaneously, it defines 

the complexity of the approximation.  In SVR, the support vectors are the instances 

which have a difference between predicted and target values greater than ε.  A smaller ε 

leads to more support vectors and an increased complexity of the approximation.  If the 

approximation is too complex, it may lead to overfitting.  The value of the parameter ε is 

closely related with the precision of the training data.  If it is known that errors in 

measuring the target y are on the order of γ, then it does not make sense to have the value 

of ε less than γ.  The parameter C controls relative importance of the two components of 

the functional: the relative risk, characterizing the quality of fit, and the complexity of the 

approximations.   
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Further details of the algorithm and its underlying mathematical theory are 

available in an excellent tutorial by Smola and Schölkopf [59]. 

 

3.2 Support Vector Regression for Censored Data: SVRc 

 The Support Vector Regression (SVR) [59, 60] algorithm has proven to be a robust 

and useful tool in a variety of domains with an extensive body of literature describing its 

applications.  However, since conventional SVR is unable to handle the censored data 

prevalent in survival analysis, it has not been more widely employed in the medical 

prognostics domain.  Support Vector Regression for Censored Data (SVRc) [34, 45] is an 

approach for addressing this issue. The key issue in applying conventional SVR to 

survival analysis is the inability to handle the differences between censored and event 

instances.  The (left-censored) target regression values for events are fairly certain; the 

actual time may have occurred a short time prior to the recorded observation.  The 

censored target values are extremely uncertain.  The core SVRc concept is to account for 

the differences between these instances by asymmetrically modifying the ε - insensitive 

loss function optimized during training.  The update introduces four new versions of both 

C (penalty slope) and ε (insensitive penalty threshold) parameters that account for 

censored and non-censored instances differently.   

 

3.2.1 Events in SVRc 

For events in the training cohort, the SVRc algorithm introduces four new 

parameters *

nC  and nC  which replace C, and *

nε  and nε  which replace ε.  The approach 



23 
 

 

takes into account the left-censored nature of events; i.e. patients experiencing a disease 

event before it’s detected during a visit to the doctor. 

The parameter *

nε  defines the acceptable margin of error if the model’s predicted 

value is greater than the actual target (f(x)>y); if so, the penalty function is controlled by 

*

nC .  The parameter nε defines the acceptable margin of error if the model’s predicted 

value is less than the actual target (f(x)<y); if so the penalty function is controlled by nC .  

The suggested relationships between these parameters are nε > *

nε and nC < *

nC  to account 

for the left-censored nature of events.  Consequently, if the model predicts an event as 

occurring before the actual target value, there is a relatively larger error margin and 

smaller penalty.  Figure 4 illustrates this relationship.  However, if one does not wish to 

account for the left censored nature of events, the parameters can simply be chosen to 

follow the relationship nε = *

nε  and nC = *

nC . 

 

 

Figure 4: A graphical representation of the SVRc parameters for events.  The x-

axis represents the model error f(x) – y for an instance x [34]. 
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3.2.2 Censored Instances in SVRc 

The censored instances in the cohort are treated similarly as the events.  The 

SVRc algorithm introduces four new parameters *

cC  and cC  which replace C, and *

cε  and 

cε  which replace ε.  The algorithm accounts for the right-censored nature of the samples; 

patients experiencing an event of interest after their last recorded disease free time. 

The parameter *

cε  defines the acceptable margin of error if the model’s predicted 

value is greater than the actual target (f(x)>y); if so, the penalty function is controlled by 

*

cC .  The parameter cε defines the acceptable margin of error if the model’s predicted value 

is less than the actual target (f(x)<y); if so the penalty function is controlled by cC .  The 

suggested relationships between these parameters are cε < *

cε and cC > *

cC  to account for the 

right-censored instances.  If the model predicts a censored instance as occurring after the 

actual target value, there is a relatively larger error margin and smaller penalty.  Figure 5 

illustrates this relationship 

 

 

Figure 5: A graphical representation of the SVRc parameters for censored 

instances.  The x-axis represents the model error f(x) - y for an instance x [34]. 
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3.2.3 Overall SVRc Algorithm 

 For events in the training cohort, the SVRc algorithm introduces four new 

parameters to model the left-censored nature of events.  For censored cases, there are an 

additional four new parameters to asymmetrically give censored predictions larger than 

the target time a wider margin of error with less penalty.  In the context of the overall 

approach that encompasses both censored and event instances, the algorithm minimizes 

the following objective function: 
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The suggested relationships between the eight parameters are *

cC < nC < *

nC = cC

and *

cε > nε > *

nε = cε .  This is because the penalty for censored predictions less than the 

target time or event predictions greater than the target time should be equivalent and the 

largest, since these predictions are clearly incorrect.  There should be a small adjustment 

for non-censored predictions before the target time due to the left-censored nature of 

events, and the greatest allowance should be made for censored predictions after the 

target time because they may in fact be correct. 

This update of the SVR loss function for different error and structural risk 

parameters and the asymmetric relationships between those parameters is the core 

contribution of SVRc.  The algorithm retains all the advantages of conventional SVR 

such as the mathematical mapping via kernels into higher dimensions, the concentration 

on the most important instances in a dataset, the decreased susceptibility to overfitting, 

and the ability to model with more features, plus it can now be applied to the field of 

survival analysis where censored data is prevalent.  The SVRc algorithm is leveraged for 

multiple experiments in this dissertation and thus described in detail here; however the 

development of SVRc is not part of the research contributions of this dissertation. 
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CHAPTER 4 

A FRAMEWORK FOR SEMI-SUPERVISED 

SURVIVAL ANALYSIS BY TRANSUDCING CENSORED 

REGRESSION TARGETS 

 

 

This chapter is presented in three sections.  Section 4.1 describes the proposed 

semi-supervised transduction framework for regression in survival analysis.  Section 4.2 

discusses accuracy metrics for evaluating the performance of survival models.  Section 

4.3 presents the results of applying the proposed framework to the Cox Model, neural 

network and support vector approaches for predicting medical prognoses in prostate and 

breast cancers. 

 

4.1 Semi-Supervised Framework for Transducing Regression Targets in 

Survival Analysis 

As discussed, the ability to leverage the incomplete information in the censored 

samples of time-to-event problems could provide significant advantages.  If the “true” 

target as opposed to the censored target was known, the performance of predictive 

models would be increased. 
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 We present an innovative approach that is, in essence, a wrapper around any 

regression function, whether developed for survival analysis or not.  For each censored 

case (Ui , δi = 0), it iterates through possible target values between Ui and Tmax (the 

maximum observed time U in the dataset).  It then transduces or chooses a new target time 

ÛTi which improves accuracy, maximizing some criterion for measuring predictive 

performance.  The approach is extremely flexible, able to work with almost any regression 

function F() and measure of accuracy Criterion (y , t).  Given a dataset  

D = { Ui, , xi , δi } Ni=1, the algorithm can be described as: 

 

 

 

Given the constraints: 

 

Tmax = max (Ui=1,…,n) 

Ui ≤ ÛTi ≤ Tmax ; if δi = 0 

ÛTi = Ui             ;           if δi = 1 

  

A key issue is exploring the space of possible target values.  Semi-supervised 

classification algorithms initially employed an exhaustive method assigning each class 

label to every unlabeled instance, in order to transduce the optimal label.  Unfortunately, 

this led to a transduction complexity of C
n
 where C is the number of classes and n the 

number of unlabeled instances.  Accordingly, researchers began to develop 

computationally more reasonable methods.   
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 The proposed semi-supervised regression approach exploits a censored instance’s 

own partial information of true outcome rather than its neighbor’s labels to transduce 

optimal target times.  The censored time represents the minimum possible value of the true 

target.  The optimal target for each censored instance could thus be transduced by testing 

values in increments from the censored time to the maximum survival time in the training 

cohort.  The initial idea was to replicate the exhaustive search of semi-supervised 

classification, but this is impractical.  In one sample dataset, an average of 10 target values 

per each of the 341 censored cases would result in a transduction complexity of 10
341

.  To 

avoid this, the proposed technique is a singular transduction procedure which forgoes the 

exhaustive method.  In this scenario, each instance is treated independently, and the best 

time for each censored case is found independent of the other censored cases.  

Consequently, a slight modification is required for the algorithm’s optimization function 

described above, resulting in a singular rather than exhaustive transduction approach: 

 

 

 

Figure 6 below presents the proposed approach in pseudo code:  
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Figure 6: Pseudocode of proposed approach. 

 

 Initially, a traditional regression model is constructed (pseudocode line 3).  

Subsequently, each of the m censored instances in a training cohort is singularly 

transduced (pseudocode for-loop in lines 6-22).  In each i
th

  singular transduction iteration 

(where i is between 1 and m), models are constructed as the target for the i
th

 censored 

instance increments from the i
th

 censored time to the maximum time in intervals of x units 

(pseudocode for-loop in lines 11-20).  Meanwhile, the original censored targets are 

maintained for the other m-1 censored cases.  The time that yields the best improvement in 

performance criteria is the transduced target label for that instance.  In the subsequent 

iterations for other censored cases, the original censored time for this i
th
 instance is used 
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(not the new transduced target time).  Hence, this procedure avoids favoring a particular 

censored instance by transducing its time first.  On the other hand, the approach does 

preclude the discovery of transduction times that would result from an exhaustive search.  

Finally, once an optimal target time has been transduced for each censored instance, the 

final regression model is created using the new target times (pseudocode line 24). 

One subtle but crucial point to note is that when evaluating the fit of the model on 

the training data (during the search to choose the best target time and at the end when the 

final model is built in pseudocode lines 14 and 24), the evaluation should be done with 

the original censored times rather than the new transduced times.  Otherwise the resulting 

performance metrics may artificially be inflated as they will be calculated on the 

discovered targets that were derived precisely to improve performance.  Subsequently 

when testing on an independent validation set where it is not possible to transduce the 

times but to simply apply the model, the resulting model would grossly overfit; as was 

observed.  This is exactly why in the functions above we maximize Criterion ( y , U) 

rather than Criterion ( y, ÛT).  Again this is important due to the unique nature of 

survival analysis in medical prognosis where most of the instances are censored. 

 

4.2 Performance Metrics 

 In conventional regression, a useful metric of accuracy is the model’s error in 

predicting the targets.  However, in survival analysis this is not possible due to the 

prevalence of censored instances.  For events, the prediction error can be easily assessed.  

For censored records, predictions are wrong only if they are less than the targets, 

otherwise the error, if any, is unknown.  This requires alternate performance criteria. 
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 The concordance index (CI) is the standard metric for assessing the predictive 

ability of a survival model [22, 29, 34, 49, 69, 71].  The CI measures the concordance 

between model results and the observed survival times.  Survival analysis is inherently a 

ranking problem and the CI measures the accuracy of ranking a model’s results against the 

patients’ survival times.  It is calculated in pair wise comparisons of all comparable 

patients in the cohort, and is the probability that a patient with a shorter survival time will 

have a smaller predicted result.  The CI ranges from 0 to 1, with 0.5 indicating an absence 

of correlation, a random result.  A value of 0 indicates perfect negative correlation, and 1 

indicates perfect positive correlation.  It is a linear transform of the Somers’ d statistic, and 

is similar in interpretation to the area under the ROC curve (AUC) and the Mann-Whitney 

statistics [49, 69, 71]. 

 This can be observed since for a two-class classification problem, the AUC has the 

form: 

 

��� =
∑ �(�	, ��)(	,�)∈�

|�|
 

 

Where si and sj are classifier outputs for a positive sample i and a negative sample j.   θ 

consists only of the pairs of positive samples i and negative samples j.  Hence the AUC 

doesn’t compare within the same class, but only considers pairwise comparisons between 

a pair of positive and negative samples.  While acceptable for a standard classification 

task, the AUC cannot account for the critical survival time in a survival analysis problem.  

The CI makes pairwise comparisons of all patients within a dataset under two conditions: 
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1) Patients i and j who both experiences the event of interest and the event time ti of 

patient i is less than patient j’s event time tj 

2) Only patient i is non-censored and ti < tj (patient j’s follow-up censored time). 

 

�� =
∑ �(�	, ��)(	,�)∈�

|�|
 

 

Here Ω represents the set of all possible comparisons between either two events, or all 

censored times after an event time, but not comparisons between two censored times [71]. 

 One of the main uses of a survival model in medical applications is to stratify a 

patient population into high and low risk groups.  Diverse risk profiles can lead to 

different and better targeted therapies and disease management for improved treatment.  

For a specific time point, patients can be stratified into high and low risk groups based on 

a model’s predictions.  The positive class identifies patients who are events prior to this 

time point, and the negative class identifies patients (censored or events) with targets after 

the time point.  Censored patients with targets prior to the time point are excluded.  Hence, 

in addition to evaluating a model’s overall accuracy via the CI, the ability to correctly 

identify high and low risk groups is measured via the sensitivity and specificity of the 

low/high risk group classification.  Since censored patients with targets earlier than the 

time point are excluded, it is often a good idea to evaluate the CI and the classification 

metrics at the same time. 

 Both the CI and the sensitivity-specificity pairing are metrics independently used 

in the medical literature [17, 18].  However, in order to assess both measures at the same 

time, we employed a performance criterion which combined both metrics, emphasizing 
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equally the CI and the product of the sensitivity and specificity.  The product of the 

sensitivity and specificity is a good measure of both that has the same scale of accuracy as 

the CI.  While in absolute theory, the CI may not have the same range as the product of 

sensitivity and specificity because CI values less than 0.5 imply negative correlation 

(similar to the AUC), this is not problematic from a practical perspective as all useful 

models must have Cis greater than 0.5.  Consequently, in all the presented experiments the 

performance criterion for evaluation was: 

 

)*( ySpecificitySensitivitCICriterion +=  

 

4.3 Experimental Results 

The proposed framework can be employed for any regression algorithm, whether 

or not it was originally developed for survival analysis.  We focused our attention on 

evaluating the approach and combining it with the Cox Model, NNci and SVRc.  

Additionally, since NNci is an evolution of ANN and SVRc is a modification of 

traditional SVR, we also compared the improvement of the semi-supervised transduction 

framework for these core regression algorithms as well.  The aim was to compare the 

performance of both the core and survival analysis versions of theses algorithms when 

the framework was layered on top. 

We conducted experiments with four survival analysis datasets representing 

prognostic problems in prostate and breast cancer.  In all experiments, the interval of time 

used to explore the target space (variable x in the pseudocode) was 10 months.  All 

feature values were scaled between -1 and 1 based on the minimum and maximum values 
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in training.  As noted, in all experiments the performance metrics were assessed 

according to the original times; no transduced targets were used in the accuracy 

assessments. 

In developing medical prognostics, it is necessary to maintain separate training 

and validation sets (rather than combined cross-validation type approaches) due to FDA 

regulatory requirements for independent testing and validation.  Similar requirements 

exist for health insurance companies as well when evaluating whether to cover and 

reimburse costs for a potentially expensive prognostic model and assay. 

Study 1 [11] analyzed the endpoint of PSA Recurrence post-radical prostatectomy 

(RP) in patients treated for prostate cancer.  High and low risk groups were assessed for 

PSA Recurrence at 5 years post-RP.  The study consisted of 682 patients from the 

Memorial Sloan Kettering Cancer Center (MSKCC) split into 342 training and 340 

validation patients.  40 features representing clinical, biomolecular and image 

morphometric domains were analyzed.  Eighty-three percent of the training and eighty-

seven percent of the validation patients were censored. 

Study 2 [17] analyzed the endpoint of clinical failure (including metastatic disease 

progression) post-RP in 758 MSKCC prostate cancer patients.  The patients were split 

into 373 training and 385 validation records; the same 40 features representing clinical, 

genetic and imaging information as study 1 were analyzed.  High and low risk groups at 5 

years were studied.  Ninety-one percent of the training and ninety-two percent of the 

validation patients were censored. 

Study 3 [18] also analyzed the endpoint of clinical failure post-RP in a multi-

institutional cohort of 1027 patients from the Mayo Clinic, Duke-Durham Veterans 
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Affairs Medical Center, University of Connecticut Health Science Center, and the 

University Hospital at Uppsala.  It was split into 686 training and 341 validation records.  

A different set of 40 features representing clinical, genetic and imaging information was 

analyzed.  High and low risk groups were at 8 years.  The censoring rate in both training 

and validation datasets was eighty-seven percent. 

Study 4 [48] was conducted on a publicly available cohort of 194 breast cancer 

patients.  The patient data was split into 129 training and 65 validation records.  The 32 

features representing clinical and imaging characteristics were modeled and high and low 

risk groups at 3 years were calculated.  Seventy-six percent of the training and seventy-

seven percent of the validation patients were censored. 

 

4.3.1 Results with the Cox Proportional Hazards Model 

 Table 1 below presents the results in both training and validation sets for all four 

studies of just the Cox Model by itself, and the proposed framework layered on top of the 

Cox Model.  With the exception of Study 3, the proposed framework is improving the 

accuracy of the Cox Model in both training and validation results. 

 

Table 1: Experimental Results of the Cox Model and the Cox Model with Transduction 

Cox Model Cox Model  with Transduction 

Study 1  

Train CI: 0.87 Train CI: 0.87 

Train Sensitivity: 0.75 Train Sensitivity: 0.76 

Train Specificity: 0.90 Train Specificity: 0.90 
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Train Criteria: 1.54 Train Criteria: 1.55 

Test CI: 0.73 Test CI: 0.73 

Test Sensitivity: 0.44 Test Sensitivity: 0.45 

Test Specificity: 0.84 Test Specificity: 0.84 

Test Criteria: 1.09 Test Criteria: 1.11 

    

Study 2    

Train CI: 0.94 Train CI: 0.93 

Train Sensitivity: 0.86 Train Sensitivity: 0.90 

Train Specificity: 0.91 Train Specificity: 0.87 

Train Criteria: 1.71 Train Criteria: 1.72 

Test CI: 0.80 Test CI: 0.81 

Test Sensitivity: 0.47 Test Sensitivity: 0.63 

Test Specificity: 0.87 Test Specificity: 0.85 

Test Criteria: 1.22 Test Criteria: 1.35 

    

Study 3    

Train CI: 0.78 Train CI: 0.78 

Train Sensitivity: 0.77 Train Sensitivity: 0.70 

Train Specificity: 0.81 Train Specificity: 0.84 

Train Criteria: 1.40 Train Criteria: 1.42 

Test CI: 0.67 Test CI: 0.67 

Test Sensitivity: 0.52 Test Sensitivity: 0.45 

Test Specificity: 0.79 Test Specificity: 0.79 
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Test Criteria: 1.08 Test Criteria: 1.03 

    

Study 4    

Train CI: 0.81 Train CI: 0.82 

Train Sensitivity: 0.81 Train Sensitivity: 0.81 

Train Specificity: 0.78 Train Specificity: 0.80 

Train Criteria: 1.44 Train Criteria: 1.47 

Test CI: 0.60 Test CI: 0.61 

Test Sensitivity: 0.55 Test Sensitivity: 0.55 

Test Specificity: 0.65 Test Specificity: 0.70 

Test Criteria: 0.96 Test Criteria: 0.99 

 

 

4.3.2 Results with ANNs and NNci 

We compared two adaptations of neural networks.  The first was a basic ANN 

regression approach and the second was NNci, a specialized ANN developed specifically 

for Survival Analysis.  We employed feed-forward ANNs in Matlab (with the Levenberg-

Marquardt back-propagation method) with 3 hidden layers running for a maximum of 

100 iterations per ANN optimization.  Results of a basic ANN compared with our 

proposed approach layered on top of the basic ANN are presented in Table 3.  In Table 3 

we present the results of NNci and the proposed semi-supervised framework combined 

with NNci. 
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Table 2: Experimental Results of the Basic ANN and Basic ANN with Transduction 

Basic ANN Basic ANN with Transduction 

Study 1  

Train CI: 0.76 Train CI: 0.84 

Train Sensitivity: 0.82 Train Sensitivity: 0.86 

Train Specificity: 0.80 Train Specificity: 0.88 

Train Criterion: 1.42 Train Criterion: 1.60 

Test CI: 0.61 Test CI: 0.68 

Test Sensitivity: 0.67 Test Sensitivity: 0.64 

Test Specificity: 0.71 Test Specificity: 0.71 

Test Criterion: 1.09 Test Criterion: 1.13 

    

Study 2    

Train CI: 0.80 Train CI: 0.93 

Train Sensitivity: 0.76 Train Sensitivity: 0.95 

Train Specificity: 0.91 Train Specificity: 0.97 

Train Criterion: 1.49 Train Criterion: 1.86 

Test CI: 0.67 Test CI: 0.75 

Test Sensitivity: 0.63 Test Sensitivity: 0.84 

Test Specificity: 0.78 Test Specificity: 0.71 

Test Criterion: 1.16 Test Criterion: 1.35 

    

Study 3    

Train CI: 0.67 Train CI: 0.79 
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Train Sensitivity: 0.66 Train Sensitivity: 0.86 

Train Specificity: 0.73 Train Specificity: 0.83 

Train Criterion: 1.15 Train Criterion: 1.51 

Test CI: 0.59 Test CI: 0.62 

Test Sensitivity: 0.64 Test Sensitivity: 0.67 

Test Specificity: 0.63 Test Specificity: 0.76 

Test Criterion: 0.99 Test Criterion: 1.13 

    

Study 4    

Train CI: 0.62 Train CI: 0.70 

Train Sensitivity: 0.68 Train Sensitivity: 0.82 

Train Specificity: 0.55 Train Specificity: 0.72 

Train Criterion: 1.00 Train Criterion: 1.30 

Test CI: 0.61 Test CI: 0.67 

Test Sensitivity: 0.64 Test Sensitivity: 0.73 

Test Specificity: 0.59 Test Specificity: 0.59 

Test Criterion: 0.99 Test Criterion: 1.10 

 

 

Table 3: Experimental Results of NNci and NNci with Transduction 

NNci NNci with Transduction 

Study 1  

Train CI: 0.61 Train CI: 0.76 

Train Sensitivity: 0.43 Train Sensitivity: 0.80 
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Train Specificity: 0.81 Train Specificity: 0.82 

Train Criterion: 0.96 Train Criterion: 1.41 

Test CI: 0.62 Test CI: 0.73 

Test Sensitivity: 0.44 Test Sensitivity: 0.74 

Test Specificity: 0.83 Test Specificity: 0.71 

Test Criterion: 0.98 Test Criterion: 1.26 

    

Study 2    

Train CI: 0.81 Train CI: 0.88 

Train Sensitivity: 0.86 Train Sensitivity: 0.95 

Train Specificity: 0.80 Train Specificity: 0.92 

Train Criterion: 1.49 Train Criterion: 1.75 

Test CI: 0.74 Test CI: 0.80 

Test Sensitivity: 0.79 Test Sensitivity: 0.84 

Test Specificity: 0.73 Test Specificity: 0.75 

Test Criterion: 1.32 Test Criterion: 1.43 

    

Study 3    

Train CI: 0.73 Train CI: 0.74 

Train Sensitivity: 0.78 Train Sensitivity: 0.69 

Train Specificity: 0.65 Train Specificity: 0.78 

Train Criterion: 1.24 Train Criterion: 1.27 

Test CI: 0.66 Test CI: 0.65 

Test Sensitivity: 0.70 Test Sensitivity: 0.76 
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Test Specificity: 0.65 Test Specificity: 0.67 

Test Criterion: 1.12 Test Criterion: 1.15 

    

Study 4    

Train CI: 0.60 Train CI: 0.71 

Train Sensitivity: 0.95 Train Sensitivity: 0.77 

Train Specificity: 0.04 Train Specificity: 0.68 

Train Criterion: 0.64 Train Criterion: 1.24 

Test CI: 0.58 Test CI: 0.66 

Test Sensitivity: 0.45 Test Sensitivity: 0.64 

Test Specificity: 0.51 Test Specificity: 0.65 

Test Criterion: 0.81 Test Criterion: 1.07 

 

 

These experimental results in four real world datasets for prostate and breast 

cancer from different institutions appear to confirm the validity of the proposed approach 

for ANNs.  In all the experiments, whether we consider the basic ANN or NNci, both in 

training and validation, the transduction framework improves performance as measured 

by the defined Criterion.  While independent components of the criterion do vary, the 

algorithm was designed to optimize the overall criterion, and it has performed well.  

Researchers can emphasize whichever measure of accuracy is more appropriate for their 

specific task, and the results seem to indicate that the proposed approach could improve 

results in not only training, but the all-important separate validation set.  In the current 

experiments, the neural network architecture was fixed; simply the bias and weight terms 
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were optimized during transduction.  Given the complexity of neural networks, future 

work would be to allow evolution of the architecture as well during transduction.  This 

would significantly increase the complexity and execution time of the approach, but with 

research into optimization methodologies, could yield improved results. 

 

4.3.3 Results with SVR and SVRc 

 We evaluated the performance of the proposed semi-supervised framework with 

SVRc, a current advanced approach for survival analysis.  Additionally, since SVRc is a 

modification of traditional SVR, we also compared the improvement of our semi-

supervised approach combined with SVR.  The aim was to assess whether the semi-

supervised approach layered on top of basic SVR would match the performance of SVRc.  

The SVRc parameters per [34] were *

cC  = 1, nC  = 5, *

nC  = cC  = 6, *

cε  = 12, nε  = 5, *

nε  = 

cε = 2 and correspondingly the SVR parameters were set as C = 6 and ε = 2.  Results of 

traditional SVR compared with our proposed approach layered on top of traditional SVR 

are presented in Table 4.  In Table 5 we present the results of SVRc and the proposed 

semi-supervised framework combined with SVRc. 

 

Table 4: Experimental Results of SVR and SVR with Transduction 

SVR SVR with Transduction 

Study 1  

Train CI: 0.74 Train CI: 0.79 

Train Sensitivity: 0.68 Train Sensitivity: 0.77 

Train Specificity: 0.79 Train Specificity: 0.83 
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Train Criteria: 1.28 Train Criteria: 1.43 

Test CI: 0.71 Test CI: 0.72 

Test Sensitivity: 0.59 Test Sensitivity: 0.62 

Test Specificity: 0.68 Test Specificity: 0.73 

Test Criteria: 1.11 Test Criteria: 1.17 

    

Study 2    

Train CI: 0.74 Train CI: 0.80 

Train Sensitivity: 0.76 Train Sensitivity: 0.76 

Train Specificity: 0.79 Train Specificity: 0.87 

Train Criteria: 1.34 Train Criteria: 1.46 

Test CI: 0.71 Test CI: 0.76 

Test Sensitivity: 0.68 Test Sensitivity: 0.74 

Test Specificity: 0.70 Test Specificity: 0.80 

Test Criteria: 1.19 Test Criteria: 1.35 

    

Study 3    

Train CI: 0.70 Train CI: 0.73 

Train Sensitivity: 0.69 Train Sensitivity: 0.66 

Train Specificity: 0.71 Train Specificity: 0.80 

Train Criteria: 1.19 Train Criteria: 1.26 

Test CI: 0.64 Test CI: 0.67 

Test Sensitivity: 0.61 Test Sensitivity: 0.61 

Test Specificity: 0.70 Test Specificity: 0.74 
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Test Criteria: 1.07 Test Criteria: 1.12 

    

Study 4    

Train CI: 0.64 Train CI: 0.67 

Train Sensitivity: 0.63 Train Sensitivity: 0.63 

Train Specificity: 0.67 Train Specificity: 0.77 

Train Criteria: 1.06 Train Criteria: 1.16 

Test CI: 0.62 Test CI: 0.67 

Test Sensitivity: 0.55 Test Sensitivity: 0.55 

Test Specificity: 0.77 Test Specificity: 0.84 

Test Criteria: 1.04 Test Criteria: 1.13 

 

 

Table 5: Experimental Results of SVRc and SVRc with Transduction 

SVRc SVRc with Transduction 

Study 1  

Train CI: 0.84 Train CI: 0.85 

Train Sensitivity: 0.86 Train Sensitivity: 0.84 

Train Specificity: 0.72 Train Specificity: 0.74 

Train Criteria: 1.46 Train Criteria: 1.47 

Test CI: 0.74 Test CI: 0.75 

Test Sensitivity: 0.69 Test Sensitivity: 0.69 

Test Specificity: 0.66 Test Specificity: 0.71 

Test Criteria: 1.20 Test Criteria: 1.24 
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Study 2    

Train CI: 0.91 Train CI: 0.93 

Train Sensitivity: 0.90 Train Sensitivity: 0.90 

Train Specificity: 0.85 Train Specificity: 0.88 

Train Criteria: 1.68 Train Criteria: 1.72 

Test CI: 0.83 Test CI: 0.85 

Test Sensitivity: 0.84 Test Sensitivity: 0.95 

Test Specificity: 0.77 Test Specificity: 0.79 

Test Criteria: 1.48 Test Criteria: 1.60 

    

Study 3    

Train CI: 0.74 Train CI: 0.74 

Train Sensitivity: 0.66 Train Sensitivity: 0.66 

Train Specificity: 0.80 Train Specificity: 0.80 

Train Criteria: 1.27 Train Criteria: 1.27 

Test CI: 0.68 Test CI: 0.68 

Test Sensitivity: 0.55 Test Sensitivity: 0.55 

Test Specificity: 0.75 Test Specificity: 0.75 

Test Criteria: 1.09 Test Criteria: 1.09 

    

Study 4    

Train CI: 0.68 Train CI: 0.70 

Train Sensitivity: 0.75 Train Sensitivity: 0.75 
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Train Specificity: 0.65 Train Specificity: 0.72 

Train Criteria: 1.17 Train Criteria: 1.24 

Test CI: 0.70 Test CI: 0.71 

Test Sensitivity: 0.64 Test Sensitivity: 0.64 

Test Specificity: 0.77 Test Specificity: 0.77 

Test Criteria: 1.19 Test Criteria: 1.20 

 

 

Concentrating on the more accurate assessment of performance in the test sets, in 

almost all the experiments the semi-supervised transduction framework we have 

proposed outperforms the underlying regression method; demonstrating the effectiveness 

of our proposed approach.  One exception is in study 3 for SVRc where the approach 

doesn’t improve performance, but doesn’t hurt either; it maintains the same level of 

performance.  This is not completely unexpected as the patients in study 3 were part of a 

study where a concerted effort was made to track patients, resulting in relatively longer 

follow up time.  Hence, the censored time is already a good representation of the outcome 

and there may have been fewer “true” targets to learn.   

One option to explore for study 3 would be to increase the maximum time 

allowed for transduction.  Rather than transduce to the maximum time in the cohort, an 

even longer time could be chosen, thereby allowing more opportunities for censored 

cases to be transduced, and perhaps allowing for further improvements in overall results 

than is currently observed in study 3. 
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Of note is the fact that even with more information, traditional SVR does not 

outperform SVRc in study 3; only with the proposed semi-supervised algorithm does it 

match SVRc’s performance. 

It is interesting to note that the Cox model in aggregate, while benefitting from 

the transduction approach, appears to have the least incremental improvement when 

compared with the other algorithms.  In addition, even the performance of the Cox model 

with transduction is usually worse than the performance of the other approaches with 

transduction.  Combined with the manifest tendency of the Cox model to overfit more in 

training and have a larger decrease in validation performance, it may be suggested that 

the more advanced machine learning algorithms are desirable alternatives to the Cox 

model. 

Another observation to note from a practical perspective in conducting these 

experiments is that the ANN experiments were time-consuming.  There was significant 

trial and error in tuning the ANN parameters, including number of hidden nodes and 

layers.  These are well known issues when working with ANNs, but also complicate the 

use of this family of algorithms from a practical perspective. 

 

 

 

 

 

 

 



49 
 

 

 

CHAPTER 5 

PREDICTING ADVANCED PROSTATE CANCER 

ENDPOINTS FROM EARLY INDICATOINS VIA 

TRANSDUCTIVE SEMI-SUPERVISED REGRESSION 

 

 

Prostate cancer is the most prevalent form of cancer and the second most common 

cause of cancer morbidity among men in the United States.  The most common treatment 

is the surgical removal of the prostate through a radical prostatectomy (RP).  

Unfortunately, RP is no guarantee of a cure.  Approximately 3-5% of men post-RP 

experience significant clinical failure (CF) including metastasis and/or death-of-cancer.  

While CF is a clinically meaningful endpoint, it can often take years to present; and when 

it does the disease maybe too advanced for effective treatment.  Therefore, an earlier 

endpoint of prostate-specific-antigen-recurrence (PSAR) post-RP is frequently employed 

as a surrogate.  This is however a noisier endpoint, which 15-25% of men experience 

post-RP.  Not everyone with PSAR progresses to the more advanced stage of CF.  Since 

PSAR occurs years earlier though, a physician and patient can start to make complex 

decisions about treatment options and impact on quality of life.  Accurate prognosis is 

important as it is the principal factor in determining the treatment plan. In prognostic 

modeling, PSAR data is frequently employed to predict CF [11, 17]. 
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Thus far, our proposed semi-supervised framework for transductive regression has 

only been applied to directly predict a medical prognostic endpoint.  In the present 

chapter, we consider the interesting and practical problem where an earlier disease 

endpoint is used to predict a later one.  We concentrate on the highly relevant prostate 

cancer space as, unlike other cancers, prostate cancer has a long multi-year horizon with 

multiple stages of the disease. 

We applied the proposed transduction framework to build post-RP prognostic 

models using PSAR outcomes to predict the subsequent more advanced disease endpoint 

of CF.  We analyzed three prostate cancer datasets.  Dataset 1 [11] consisted of 262 

patients with 8 clinical features, 37 of whom experienced PSAR (14% event rate).  

Dataset 2 [11] from a second institution consisted of 342 patients, 58 of whom 

experienced PSAR (17% event rate).  Dataset 3 [11, 17] consisted of 340 new patients 

also from the second institution.  Dataset 3 was unique because both the early PSAR 

endpoint and the later CF endpoint were available for all the patients.  43 patients 

experienced PSAR (13% event rate) and 12 experienced CF (3.5% event rate).  Both 

Datasets 2 and 3 had 9 clinical features.  The goal was to assess in Dataset 3 PSAR 

models built with Datasets 1 and/or 2. 

We layered our semi-supervised transduction framework on top of both SVRc and 

the Cox Model, and compared the performance with and without the transductive semi-

supervised regression.  We performed two rounds of experiments.  In Table 6, we present 

the first where PSAR models were built with Dataset 1 and validated for both PSAR and 

CF with Dataset 3.  In Table 7 we present the second round where PSAR models were 

built with Dataset 2 and validated for both PSAR and CF with Dataset 3.  As noted earlier 
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in Chapter 4, we maintained separate training and validation datasets which is the 

convention in developing medical prognostics.  Additionally, as in all earlier experiments 

the performance metrics were assessed according to the original times; no transduced 

targets were used in the accuracy assessments. 

 

Table 6: Results training on Dataset 1 and validating on Dataset 3   

 
SVRc  

SVRc with 

Transduction 
Cox Model  

Cox Model  

with 

Transduction 

 
PSAR Training Performance 

CI 0.79 0.81 
0.80 0.80 

Sensitivity 0.77 0.87 
0.80 0.70 

Specificity 0.76 0.72 
0.73 0.85 

Criterion 1.38 1.44 
1.38 1.40 

 PSAR Validation Performance 

CI 0.74 0.76 
0.77 0.80 

Sensitivity 0.79 0.90 
0.79 0.69 

Specificity 0.62 0.58 
0.59 0.75 

Criterion 1.23 1.28 
1.24 1.32 

 
CF Validation Performance 

CI 0.76 0.78 
0.79 0.79 

Sensitivity 0.83 1.00 
1.00 1.00 

Specificity 0.58 0.53 
0.57 0.72 

Criterion 1.24 1.31 
1.36 1.51 
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Table 7: Results training on Dataset 2 and validating on Dataset 3   

 

Table Column Head 

SVRc  
SVRc with 

Transduction 
Cox Model  

Cox Model  

with 

Transduction 

 
PSAR Training Performance 

CI 0.78 0.79 
0.80 0.81 

Sensitivity 0.77 0.68 
0.82 0.77 

Specificity 0.73 0.83 
0.71 0.75 

Criterion 1.34 1.35 
1.38 1.39 

 PSAR Validation Performance 

CI 0.80 0.81 
0.82 0.82 

Sensitivity 0.74 0.69 
0.79 0.79 

Specificity 0.72 0.83 
0.72 0.82 

Criterion 1.33 1.38 
1..39 1.47 

 
CF Validation Performance 

CI 0.88 0.88 
0.88 0.88 

Sensitivity 1.00 1.00 
1.00 1.00 

Specificity 0.68 0.78 
0.68 0.75 

Criterion 1.56 1.66 
1.56 1.63 

 

 

These prostate cancer experimental results appear to confirm the value of 

transductive semi-supervised regression for predicting late stage disease endpoints from 

earlier indications.  For data from multiple institutions, existing survival analysis methods 

manifest an increase in predictive accuracy when the transduction framework is layered 

on top.  In all the experiments, whether we consider SVRc or the Cox model, in training 

and both validations, the transduction framework improves performance as measured by 

the defined Criterion.  While independent components of the criterion do vary, the 
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algorithm was designed to optimize the overall criterion, and it has performed 

outstandingly. 

Not only is the accuracy for PSAR improved, but more importantly, CF is better 

predicted from the PSAR endpoint.  In Table 8 there is a significant improvement in 

validation specificity.  This is likely because all the CF patients experienced PSAR and 

the PSAR assessment of high risk captures them, but it probably also has a high number 

of false positives since PSAR is a noisier endpoint and not all patients with PSAR 

experience CF.  The accuracy of predicting CF is higher since CF is a more concrete and 

relevant endpoint. 

These results manifest the value of a novel transductive semi-supervised 

regression framework in the challenging problem of predicting advanced prostate cancer 

from earlier disease endpoints.  This work presents the first innovative application of this 

recently developed technique for predicting subsequent endpoints from earlier ones and 

may be useful in other diseases as well, not just prostate cancer. 

 

5.1 Deeper dive on features driving improvement 

An interesting question to pose is whether there are differences in the features 

driving the improved prediction of validation performance for both SVRc and the Cox 

Model in the semi-supervised framework.  We investigated the weights of all the clinical 

features in the models.  It is difficult to compare the weights of a feature across models; 

the magnitude of the weight only makes sense within the context of a single model.  

Hence, we normalized the weights in each model by the highest weighted feature, thereby 

enabling a relative comparison of how important a particular feature is in a model.   
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Table 8: Weights of Features in Cox Models 

 Cox Model Cox Model with 

Transduction  

Feature Original 

Weight 

Normalized 

Weight 

Original 

Weight 

Normalized 

Weight 

Clinical Stage 0.314 0.217 0.355 0.316 

PSA 0.743 0.513 0.818 0.728 

Dominant Biopsy 

Gleason Grade -0.198 -0.137 0.134 0.119 

Biopsy Gleason 

Sum 1.448 1.000 1.124 1.000 

Dominant 

Prostatectomy 

Gleason Grade 0.872 0.602 1.002 0.891 

Prostatectomy 

Gleason Sum 0.073 0.050 -0.139 -0.123 

Seminal Vesicle 

Invasion  0.747 0.516 0.796 0.708 

Positive Surgical 

Margin  0.306 0.212 0.261 0.232 

Extra Capsular 

Extension  0.198 0.137 0.161 0.143 
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Table 9: Weights of Features in SVRc Models 

 SVRc SVRc with Transduction  

Feature Original 

Weight 

Normalized 

Weight 

Original 

Weight 

Normalized 

Weight 

Clinical Stage -2.939 -0.120 -4.496 -0.197 

PSA -10.329 -0.423 -8.397 -0.368 

Dominant Biopsy 

Gleason Grade -3.909 -0.160 -8.193 -0.359 

Biopsy Gleason 

Sum -24.394 -1.000 -22.826 -1.000 

Dominant 

Prostatectomy 

Gleason Grade -4.363 -0.179 -6.433 -0.282 

Prostatectomy 

Gleason Sum -11.852 -0.486 -8.784 -0.385 

Seminal Vesicle 

Invasion  -23.926 -0.981 -25.963 -1.137 

Positive Surgical 

Margin  -2.778 -0.114 -3.964 -0.174 

Extra Capsular 

Extension  -4.259 -0.175 -3.499 -0.153 

 

One interesting observation to note is that for both models with SVRc and the 

Cox Model, the dominant prostatectomy Gleason grade and the seminal vesicle invastoin 

status [11, 17] both have a much higher relative weight in the transduction framework 

than in the models without the transduction framework for both the Cox model and 

SVRc.  The implication being that perhaps these features in particular are leading to an 

improved prediction.  This is a noteworthy observation, since the roles of both features 

for predicting CF are very interesting to urologists and oncologists.  In particular, the fact 

that the interaction of these two is intriguing as the dominant prostatectomy Gleason 

grade is a measure of how advanced the disease is and the seminal vesicle invasion status 

is a measure of how much the disease has proliferated/expanded into the surrounding 
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tissue and critical organs around the prostate.  This study was not designed to fully 

explore these insights, but they are worth considering in future work. 
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CHAPTER 6 

THE ROLE OF IMAGING BASED PROSTATE 

BIOPSY MORPHOLOGY IN A DATA FUSION PARADIGM 

FOR TRANSDUCING PROGOSTIC PREDICTIONS 

 

 

A major focus area for precision medicine is in managing the treatment of newly 

diagnosed prostate cancer patients.  For patients with a positive biopsy, clinicians aim to 

develop an individualized treatment plan based on a mechanistic understanding of the 

disease factors unique to each patient.  Recently, there has been a movement towards a 

multi-modal view of the cancer through the fusion of quantitative information from 

multiple sources, imaging and otherwise. 

Simultaneously, there have been significant advances in machine learning 

methods for medical prognostics which integrate a multitude of predictive factors to 

develop an individualized risk assessment and prognosis for patients. 

In this work, we apply our novel semi-supervised approach for support vector 

regression to predict the prognosis for newly diagnosed prostate cancer patients.  We 

integrate clinical characteristics of a patient’s disease with imaging derived metrics for 

biomarker expression as well as glandular and nuclear morphology.  In particular, our 

goal was to explore the performance of nuclear and glandular architecture within the 



58 
 

 

transduction algorithm and assess their predictive power when compared with the 

Gleason score manually assigned by a pathologist. 

 

6.1 Background 

Prostate cancer is the most prevalent form of cancer and the second most common 

cause of cancer deaths among men in the United States. Accurate prognosis is important 

as it is the principal factor in determining the treatment plan.  Prostate cancer is primarily 

assessed by the Gleason grading system which classifies the tissue architecture into five 

patterns of increasing severity [21, 27, 64, 23].  The Gleason grade characterizes tumor 

differentiation, i.e. the degree of tumor resemblance to normal tissue.  In the lower risk 

Gleason grades of 1 through 3, the architecture consists primarily of isolated or touching 

gland rings surrounded by fibromuscular stromal tissue.  Each gland is composed of a 

ring of epithelial cells surrounding a duct, the lumen. The connected glandular cytoplasm, 

or “epithelial unit”, contains just one gland ring. As the cancer progresses to grade 4, 

epithelial units fuse together creating chains of gland rings, or “cribriform” sheets of 

rings.  A second axis of variation in grade 4 and 5 disease is the increasing fragmentation 

of rings resulting in sheets of isolated cells and non-ring epithelial fragments (the terms 

“glandular” and “epithelial” are interchangeable).  As the cancer progresses, epithelial 

cells replicate in an uncontrolled manner, disrupting the regular arrangement of gland 

units.   
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Figure 7: Samples of H&E stained prostate tissue with varying degrees of 

differentiation: (a) normal, (b) grade 2 well differentiated cancer associated with 

favorable outcomes and (c) grade 5 poorly differentiated cancer corresponding to 

aggressive disease [64]. 
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There has been significant research in automatically approximating the Gleason 

grade and quantifying other aspects of prostate morphology [64, 23, 20, 62].  

Simultaneously, advances have been made in automated quantification of molecular and 

protein biomarker expression [8, 53].  These quantitative image analyses from multiple 

modalities have become prevalent, yielding independent prognostic predictors of 

outcome.  In recent years, there has been a trend towards integrating these independent 

predictors together into a “data-fusion” approach [18, 68, 24].   When combined together, 

these disparate information modalities provide a more comprehensive and powerful, 

personalized view of disease prognosis and staging.  However, the fusion of these 

disparate information sources in a multivariate context is not trivial given the censored 

nature of outcome in survival analysis.   

In this work, we explore the interaction of advanced imaging features for prostate 

morphology and biomarker quantification, with clinical variables, including the Gleason 

grade, in our novel semi-supervised framework for transduction regression targets in 

survival analysis.  In particular, we aimed to explore the interaction of quantitative 

morphology with the pathological Gleason score.  This represents one of the first 

explorations of multi-modal data fusion for semi-supervised prognostics. 

 

6.2 Imaging Methods Employed 

6.2.1 H&E Morphology 

Morphological and architectural characteristics of the prostate tissue, such as 

epithelial nuclei and cytoplasm, provide critical information for the diagnosis, prognosis 

and therapeutic decision making of prostate cancer.  The subjective and variable Gleason 
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grade assessed by expert pathologists in Hematoxylin and Eosin (H&E) stained 

specimens has been the standard for prostate cancer diagnosis and prognosis.   

While there has been significant work in automatically approximating the Gleason 

grade and quantifying other aspects of prostate morphology, the majority of proposed 

approaches consider various tissue components such as lumens, nuclei and cytoplasm 

independently.  Instead, regarding the entire glandular unit of epithelial nuclei, cytoplasm 

and stroma around a lumen would provide a more accurate and comprehensive 

morphological assessment of disease severity. 

We leveraged a method proposed by Fogarasi et al. [23] for automated analysis of 

gland unit features from H&E images.  The approach initially segments and classifies 

primary cellular components such as cytoplasm, nuclei, stromal fibroblasts, lumens, 

blood vessels and artifacts.  This segmentation relies on cellular properties such as 

distance of tumor cells from lumens, as well as color, shape, texture and neighborhood 

properties.  The relationships between these components are analyzed and leverage to 

construct distinct “gland units.”  Biological characteristics, such as logical and relative 

object positioning are employed to develop initial seeds which are optimized in an 

iterative classification process.   

Gland units are objects created by uniform and symmetric grown around lumens 

that are seeds.  Growth proceeds around these objects through spectrally uniform 

segmented epithelial cells.  The accuracy of the border is determined by differentiating 

cytoplasm from the remaining tissue.  Gland unit creation is thus a controlled object 

based region growing of epithelial cells.  Region growing commences at the lumen 

boundaries, and continues through the tumor tissue until some biological boundary such 
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as a tear, stroma tissue, or another growing gland unit is reached.  As each growth “ring” 

is added to the gland, the surrounding epithelial nuclei and cells are evaluated to be 

“within” or “outside” a gland unit.   

 

 

Figure 8: Images representing prostate cancer grades 3 (A-C), 4 (D-F) and 5 (G-

I).  Images representing the original H&E stain (A, D, G), primary object 

segmentation (B, E, H) and glandular object classification (C, F, I) are presented 

[23]. 

 

Without the addition of stop conditions, uncontrolled growth of gland units would 

occur.  Consequently small lumens are ignored as gland seeds and the controlled region-
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growing algorithm continues in a manner which constrains the collision against other 

morphological objects.   Subsequently, all meaningful cellular components such as 

epithelial and stromal nuclei are evaluated in relation to these gland units to create 

morphological features.  In Figure 8, we present representative images from this analysis.   

 

6.2.2 IF Morphology and Biomarkers 

In multispectral immunofluorescence (IF) microscopy [64, 53, 65], multiple 

proteins in the tissue specimen are simultaneously labeled with different fluorescent dyes.  

Each dye has a distinct emission spectrum and its associated antibody binds to its target 

protein within a tissue compartment (ie  nuclei or cytoplasm).  The stained slide is 

illuminated under a fluorescence microscope with a light source for a specific 

wavelength.  This excitation light is absorbed by the fluorescent dye causing it to emit 

light of a longer wavelength.  The intensity of the emitted light is a measure of the target 

protein’s concentration.  In multiplexed IF images, the tissue is labeled with several 

antibodies at the same time.  Each antibody is labeled with a unique fluorescent dye with 

distinct spectral characteristics.  The tissue is then imaged with a multispectral camera, 

then spectrally un-mixed, to yield multiple images with one image per individual 

dye/antibody.  Two common dyes that reveal the tissue structure are DAPI (a nuclear 

stain) and CK18 (stains epithelial cytoplasm).  Nuclear objects are segmented and then 

separated using a co-localization scheme into epithelial nuclei positive for both DAPI and 

CK18 and stromal nuclei positive for DAPI but not CK18.  Subsequently prognostic 

biomarkers such as AR (androgen receptor) are evaluated within each co-localized 
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compartment.  Figure 9 illustrates a sample prostate gland unmixed into DAPI, CK18 and 

AR specific images. 

 

 

Figure 9: Sample composite image of a prostate gland spectrally unmixed into 

individual images representing DAPI, CK18 and AR biomarkers [64]. 

 

In this work we build upon previous work in IF biomarker quantification [53, 65].  

Specifically, we analyzed expression of AR and Ki67 prostate biomarkers as proposed by 

Sapir et al [53].   Quantification of a biomarker is achieved in two stages.  First, a 

biomarker relevant comparted is detected.  Then, the signal is separated from the 

background within the compartment via intensity thresholding.  Following the definition 

of epithelial and stromal nuclei, as well as epithelial cytoplasm, background 

autofluorescence and non-specific binding effects are filtered out.  An interactive model 

based thresholding technique is used to classify whether each nuclei is positive for a 

particular biomarker.  The expression of each biomarker can then be quantized and 

normalized (epithelial signal normalized by stromal expression).  Features representing 
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the relative rise of the biomarker in the epithelial disease specific compartments were 

recognized to be prognostic as they measure the dynamic range of biomarker expression 

in an image.    

 

 
(a) 

 
(b) 

Figure 10: A multiplex IF pseudo-color image consisting of the DAPI 

counterstain (blue) and the CK18 biomarker (green); and (b) segmented epithelial 

nuclei (blue), stroma nuclei (purple) and epithelial cytoplasm (green) [64]. 

 

Additionally, these tissue objects can be analyzed for morphological properties 

such as distance based minimum-spanning-tree (MST) measures, as well as the fractal 

dimension of the glandular boundaries.  MST, fractal and wavelet features proposed by 

Tabesh et al [64] were employed in this analysis.   

The MST connecting the centroids of all epithelial nuclei in the tissue is the basis 

for extracting feature characterizing tissue architecture.  The MST of a graph is defined 

as the tree connecting all vertices (i.e., epithelial nuclei centroids) such that the sum of 

the lengths of the lines (edges) connecting the vertices is minimized.  Many algorithms 

exist for constructing the MST of a graph.  We used the well-known Prim’s algorithm 
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[12, 64].  Let },{ EVG =  denote a graph with vertices V  and edges E , and let 

},{ MSTMSTMST EVG =  denote the MST of G . The algorithm starts by adding an arbitrary 

vertex v  in V  to MSTV , that is, }{MST vV = . Then, the algorithm finds the nearest vertex in 

the rest of the graph to the current MSTG . That is, the shortest edge e  connecting the 

vertices u  and  v  is found such that MSTVu ∈  and MSTVv ∉ . Then, MSTG  is updated by 

adding v  to MSTV  and adding e  to MSTE . The process of adding vertices is continued until 

all of them are included in MSTV .  Figure 11 illustrates the MST of the epithelial nuclei in 

Figure 10.  

 

 

Figure 11:  MST connecting the epithelial nuclei in Figure YY.  Segmented 

epithelial nuclei are marked in grey, and stromal nuclei and other compartments 

are masked out.  Epithelial nuclei centroids and intra-gland MST edges are 

marked in yellow and inter-gland edges are marked in red [64]. 

 

The fractal dimension of the boundaries between the glands and the surrounding 

stroma provides a quantitative measure of the irregularity of the shape of the boundary.  
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In general, the fractal dimension is a measure of the space-filling capacity of an object.  

The fractal dimension of a straight line is one, whereas the fractal dimension of a more 

irregular planar curve is between 1 and 2.  Gland boundaries with lumen and stroma are 

defined as pixels that have at least one non-gland and one gland pixel among their 4-

connected neighbors.  As lumens and stroma appear similar in our multiplex IF images, 

we used morphological operations to distinguish them.  We defined lumens as pixels 

belonging to “holes” in the gland regions, i.e., pixels that cannot be reached by flood-

filling the non-gland region starting from pixels on the edge of the image.  Two features 

were considered, namely, the fractal dimension of gland-stroma boundaries, and the 

fractal dimension of gland boundaries with both stroma and lumens.  We estimated these 

features using the box-counting algorithm described in [64].  A detailed description of 

fractal theory is available in [66]. 

 

6.3 Results 

We analyzed prostate biopsies from a mult-institutional cohort of 1027 patients.  

Each patient had clinical data available including age, the clinical stage, Gleason grade 

and PSA (prostate specific antigen) level.  Each patient had up to 3 H&E and 6 IF images 

captured which were then quantized and analyzed to develop predictive features.  We 

then evaluated all the features in a multi-variate fusion approach leveraging our semi-

supervised regression framework with SVRc.  We trained the semi-supervised 

transductive models on 686 patients and validated on 341 patients.  Three different types 

of models were created.  Model 1 was solely based on the PSA, clinical Gleason and IF 

biomarker (AR and Ki67) expression features.  Model 2 was developed without the 
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clinical Gleason and with the morphometric IF and H&E features added.  Model 3 was 

built with all the feature modalities represented.  Results are presented in Table 10. 

 

Table 10: Results of all three models in training and test data sets   

  

Model 1: Clinical and 

IF Biomarker Features 

Model 2: PSA, IF biomarker and IF 

and H&E Morphology features 

Model 3: All 

Features 

Train CI 0.75 0.76 0.75 

Train 

Sensitivity 0.67 0.70 0.67 

Train 

Specificity 0.77 0.78 0.76 

Train 

Criterion 1.27 1.31 1.26 

Test CI 0.69 0.67 0.68 

Test 

Sensitivity 0.48 0.64 0.55 

Test 

Specificity 0.81 0.74 0.80 

Test 

Criterion 1.08 1.14 1.11 

 

 

As can be observed, the quantitative morphological features not only improved 

the predictive performance, but removing the pathologist assigned clinical Gleason 

increases the accuracy of the prediction in both training and test sets.  This is likely due to 

the removal of the subjective, noisy and non-robust manual assessment of the Gleason 

grade. 
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6.4 Chapter 6 Summary 

This work presents an application of our unique semi-supervised approach for 

medical prognosis in the context of fusing multi-modal features from positive prostate 

biopsies.  It represents an evaluation of the Gleason score with metrics for morphology 

derived from quantitative image analysis in this context.  The results on a multi-

institutional cohort of 1027 prostate biopsy patients indicate that morphometric IF and 

H&E features when fused with other characteristics in a multi-model framework, 

improve predictive performance, especially with the absence of a pathologically assigned 

Gleason score.  This is the first exploration of an interaction of advanced imaging 

features for prostate morphology and biomarker quantification, with clinical variables, 

including the assessment of quantitative prostate biopsy architecture versus the Gleason 

grade in the context of a data fusion paradigm which leverages a semi-supervised 

approach for risk prognosis.  We plan further analysis of multi-modal data fusion for 

semi-supervised prognostics. 
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CHAPTER 7 

ASSESSING THE IMPACT OF PROSTATE BIOPSY 

TUMOR AMOUNT ON IMAGING BASED PROGNOSTICS 

EMPLOYING TRANSDUCTIVE SEMI-SUPERVISED 

REGRESSION 

 

 

Prostate cancer is the most common form of cancer diagnosed in American men 

and the second deadliest of all cancers affecting men [17].  Newly diagnosed patients 

with a positive prostate biopsy and their physicians face a variety of potential treatment 

options including surgery, radiation therapy, active surveillance, and more.  Which option 

is best for the individual patient is not always clear, and there have been a number of 

assays developed to analyze a patient’s tumor specimen and provide a personalized 

assessment of cancer severity and risk [4, 15, 16, 18, 44].  Some of these assays employ 

image analysis algorithms to extract morphometric and biomolecular characteristics from 

the tumor specimen as features in predictive models for risk assessment.  A practical 

challenge however is that there is often not enough tumor present in the biopsy specimen 

for analysis.  Even if sufficient tumor is present, the amount of cancerous material may 

affect the accuracy of the predictive models.  To the best of our knowledge, there have 
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been limited published studies on how different amounts of tumor in a prostate biopsy 

would affect the performance of imaging features in a predictive model [37].    

The predictive models for these prognostic assays are often constructed analyzing 

the features of prognostic risk and predicting the time to cancer progression (including 

metastasis) based on these disease characteristics.  Scientists leverage statistical and 

machine learning techniques for survival analysis in these endeavors [17, 34, 57].  In this 

chapter we explore how the prognostic performance of our semi-supervised framework is 

affected as automated image analysis algorithms extract morphometric and biomolecular 

features from varying amounts of tumor. 

 

7.1 Background on Prostate Biopsy Image Analysis   

For prostate cancer patients with a positive biopsy, clinicians aim to develop an 

individualized treatment plan based on a mechanistic understanding of the disease factors 

unique to each patient.  Two main information sources are the architecture of the tumor 

morphology and biomolecular mechanisms of the disease as assessed by biomarkers [90, 

17, 23, 53, 64].  There has been significant research in image analysis of prostate 

morphology as well as automated quantification of molecular and protein biomarker 

expression [23, 53, 64].  These quantitative image analyses from multiple modalities have 

become prevalent, yielding not only independent prognostic predictors of outcome, but 

also features which can be combined into multivariate models [17, 37].  In this work, we 

explore morphometric features from H&E (hematoxylin and eosin) and IF 

(immunofluorescent) images, as well as IF biomarker features. 
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7.1.1 H&E Morphology 

Morphological and architectural characteristics of the prostate tissue, such as 

epithelial nuclei and cytoplasm, provide critical information for the diagnosis, prognosis 

and therapeutic decision making of prostate cancer.  We leveraged a method proposed by 

Fogarasi et al [23] for automated analysis of gland unit features from H&E images. 

 

7.1.2 IF Morphology and Biomarkers 

In multispectral IF microscopy [53, 64] multiple proteins in the tissue are 

simultaneously labeled with different fluorescent dyes.  Each dye has a distinct emission 

spectrum and its associated antibody binds to its target protein within a tissue 

compartment (ie nuclei or cytoplasm).  The stained slide is illuminated under a 

fluorescence microscope with a light source for a specific wavelength.  This excitation 

light is absorbed by the fluorescent dye causing it to emit light of a longer wavelength.  

The intensity of the emitted light is a measure of the target protein’s concentration.  Two 

common dyes that reveal the tissue structure are DAPI (a nuclear stain) and CK18 (stains 

epithelial cytoplasm).  Nuclear objects are segmented and then separated using a co-

localization scheme into epithelial nuclei positive for both DAPI and CK18 and stromal 

nuclei positive for DAPI but not CK18.  Subsequently prognostic biomarkers such as AR 

(androgen receptor) or Ki67 are evaluated within each co-localized compartment.   

We analyzed expression of AR and Ki67 prostate biomarkers as proposed in [53].  

Additionally, tissue objects like epithelial nuclei (DAPI and CK18 positive nuclei) can be 

analyzed for morphological properties such as distance based minimum-spanning-tree 

(MST) measures proposed in [64]. 
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7.2 Study Design 

The purpose of this study was to assess the impact of decreasing tumor on 

prostate biopsy prognostic models built with the transductive regression framework.  We 

employed a dataset of 226 patients with positive prostate cancer biopsies [37].  This 

dataset was from a previous tumor analysis of a SVRc based prostate biopsy model [18] 

and had concluded that the imaging features were robust down to 20% of the field-of-

view   Each patient had one H&E image, and two IF images: one for AR and a second for 

Ki67.  All images were acquired at a 20x magnification field-of-view, and had tumor in 

at least 80% of the image.  Images were then masked by expert pathologists using pre-

defined masks representing 80%, 60%, 40%, 20% and 10% of the field-of-view.    

Pathologists identified areas of tumor with these masks which were then analyzed to 

extract H&G gland unit morphology features, IF MST features and AR and Ki67 

biomarker expression features.  In summary, three images for 226 patients with five 

masks of decreasing tumor levels led to a total of 3390 images analyzed in this study.  

The figures below illustrate sample segmented images for a representative patient at the 

80% and 20% mask levels.  Variations in the amount of tumor analyzed are evident in 

these representative samples.  It is interesting to note how the different tumor amounts 

available for analysis changes the segmentation and classification of tissue objects as 

illustrated by the different colors for the same part of the tissue in the different masks.  
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(a) 
 

 

    (b) 

Figure 12: Segmented H&E image at 80% (a) and 20% (b) tumor mask levels.  

Regions outside the mask are illustrated as the original H&E image and the 

analyzed area has segmented components [37]. 
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(a) 

 

 

      (b) 

Figure 13: Masked and segmented IF image at 80% (a) and 20% (b) tumor mask 

levels [37]. 
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Following the extraction of morphological and biomolecular imaging features at 

the four different tumor mask levels, we then constructed models for prostate cancer 

progression.  First the 226 patient cohort was split into training and validation sets, each 

with 113 patients.  As a reminder, in developing medical prognostics, it is necessary to 

maintain separate training and validation sets (rather than combined cross-validation type 

approaches) due to FDA regulatory requirements for independent testing and validation.  

We then constructed models to predict significant disease progression (including 

metastasis) and validated them.  A new model was created and validated for each tumor 

level.  We built models with SVRc alone and SVRc combined with our semi-supervised 

transductive regression framework.  We employed the same optimization criterion for the 

framework which has previously proven successful. 

 

7.3 Experimental Results and Discussion 

The complete results of the study are presented in Table 11.  These experiments 

appear to confirm that the semi-supervised transductive regression framework for 

survival analysis performs better with reduced amounts of tumor in the prostate biopsy.  

At all tumor levels, the accuracy in the validation set of the performance criterion is 

higher when the framework is layered on top of SVRc rather than with SVRc alone.  In 

fact, for all tumor levels except 10%, the accuracy is better in training as well.  While 

independent components of the criterion do vary, the algorithm is designed to optimize 

the overall criterion, in which it has succeeded. 
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Table 11: Results of training and testing SVRc models at decreasing tumor levels with 

and without the semi-supervised transduction framework   

Tumor 

Mask Level 
80% 60% 40% 20% 10% 

SVRc Training Performance 

CI 0.70 0.72 0.73 0.76 0.67 

Sensitivity 0.64 0.82 0.73 0.82 0.73 

Specificity 0.78 0.68 0.82 0.70 0.67 

Criterion 1.20 1.28 1.33 1.33 1.16 

SVRc Validation Performance 

CI 0.69 0.68 0.66 0.59 0.68 

Sensitivity 0.73 0.73 0.55 0.27 0.64 

Specificity 0.77 0.67 0.73 0.75 0.59 

Criterion 1.25 1.17 1.06 0.79 1.06 

SVRc with Transduction Training Performance 

CI 0.74 0.76 0.75 0.79 0.67 

Sensitivity 0.82 0.82 0.82 0.73 0.73 

Specificity 0.75 0.80 0.75 0.85 0.67 

Criterion 1.36 1.42 1.37 1.41 1.16 

SVRc with Transduction Validation Performance 

CI 0.70 0.69 0.68 0.60 0.68 

Sensitivity 0.73 0.64 0.82 0.45 0.73 

Specificity 0.77 0.83 0.68 0.62 0.64 

Criterion 1.26 1.22 1.24 0.88 1.15 

 

 

It is interesting to note that the validation performances are not very different at 

the 80% tumor level when there is a significant amount of tumor available to analyze for 

the imaging features.  But as the available tumor amount decreases, the value of the semi-

supervised framework becomes apparent.  Another observation is that there is a decrease 
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for both SVRc alone and with the transduction framework at the 20% level.  The 

transduction framework still does better, but this may be due to some artifact in the 

imaging features which is emerging at the 20% tumor level.   

These are the results of a robust study designed to assess the impact of decreasing 

tumor amounts on prostate biopsy prognostic assays.  The results have proven the value 

of the proposed semi-supervised transductive regression framework for building prostate 

biopsy prognostic models with imaging features extracted from progressively smaller 

proportions of tumor in the biopsy specimen.  The study analyzed different imaging 

domains, with prognostic features for each domain analyzed for five different masks of 

decreasing size.  This works represents one of the few published studies of how different 

proportions of tumor can affect prostate cancer assays, and oncology predictive assays in 

general.  We would urge scientists developing these assays and clinicians using them that 

such robustness and sensitivity studies should carried out regularly.  Our results suggest 

that a semi-supervised transductive regression framework for survival analysis may be 

beneficial in ensuring robust results as the amount of tumor available for analysis 

decreases. 
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CHAPTER 8 

SUMMARY AND CONCLUSION 

 

 

While model-based medical survival analysis has been employed by 

biostatisticians since the 1970s, modern machine learning approaches such as NNci and 

SVRc can improve the predictive power of such analyses.  Despite the fact that these 

prediction methods have multiple ways of accounting for censored cases, none of them 

up to now had employed semi-supervised approaches to leverage the partial information 

about survival endpoint times.  In this dissertation, we provided evidence that a 

transduction framework when combined with machine learning methods can be a 

powerful tool for improving the accuracy of survival analysis in a range of medical 

prognostic problems.  Interestingly, the core ideas behind the proposed approach are 

scalable with a large variety of regression algorithms and can be applied to a wide scope 

of survival analyses. 

It seems straightforward to expand our transduction framework to work with other 

regression algorithms.  There are a variety of such algorithms to explore including the 

ones described in Chapter 2 as well as recent promising innovations such as Deep 

Survival which proposes a hybrid mix of deep learning and the Cox Model [32], or 

Conditional Random Fields that take into account the sequential structure of the input 
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data and/or the labels.  Additionally, we anticipate that further tuning the SVRc 

parameters and NNci neural network architectures could also yield improved results.   

This dissertation has presented a new methodology validated empirically through 

a rather constrained set of clinical results.  Motivated by these promising evidence-based 

analytics, future areas of development could include the elucidation of more theoretical 

foundations for this line of research.  Specifically, two main opportunities arise.  The first 

one is to develop a more theoretical understanding of the joint CI and 

sensitivity/specificity criterion which could help clarify how we can assess performance 

under semi-supervised leaning formulations of dependency-state-networks (ie conditional 

random fields or other deeper semantically-motivated causal or associated categorical 

temporally-constrained networks) or alternatively time series model-based predictions.   

An interesting extension of this performance criterion would be to consider each 

component (CI, sensitivity and specificity) as an axis in a three dimensional space, and 

the overall criterion to optimize would be a (perhaps Euclidean) distance of a point 

representing these three metrics from the origin.  As performance of each metric 

improves, the distance would increase.  Ideally, such an approach would be robust to 

improvements in one metric over the others.  This would also have the added benefit of 

allowing visualization of performance, and perhaps even the construction of manifolds in 

the three dimensional space as different models are constructed.  Another alternative 

would be to introduce weighting parameters to differentially weigh the CI and the 

product of sensitivity and specificity.  This would allow more control over the importance 

of the individual metrics within the overall criterion.  
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The second set of opportunities to pursue is more controllable, through abstracted 

and simplified simulations.  These would allow us to explore the behavior of the 

transduction framework in various settings where there is more control of the data 

generation under various model assumptions than what we had in the experiments 

analyzed in the presented dissertation.  In this way, we could investigate how different 

rates of censoring, either through simulated datasets or artificially introduced, might 

affect performance under different types and degrees of structure in a model’s assumed 

dependencies.  Based on the results presented in previous chapters, we speculate that our 

approach will prove its value in problems with high degrees of censoring, but this needs 

further investigation.  Relatedly, how should one subsample the feature subsets, and how 

this affects the results, remain to be seen.  When assumed dependency structures in an 

underlying model are strong, one can also assume that predictions will be better 

accounted for and the transductive “guessing” of outcome end-points less necessary for 

these kinds of problems.  An interesting question is whether one could identify 

“translational” situations where transduction might still help, though not as much as in 

weakly structured problems with data censoring.  Expanding on the areas of research 

described in the previous paragraph, as such models are constructed simulating various 

situations, a manifold of the how the performance criterion behaves in a three 

dimensional space would facilitate a geometric interpretation of the results. 

Our experimental applications were concentrated on oncological problems, with 

data concerning prostate and breast cancer outcomes.  The proposed approach in this 

dissertation could be extended to any type of disease state where survival is a major 

problem, and for a variety of medical prognostic applications.  Furthermore, there is no 
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reason to believe that the proposed transduction framework need be limited to the 

medical domain.  On the contrary, it could be employed for survival or failure-time 

analysis problems in industrial manufacturing, customer churn prediction, reliability and 

the induced or controlled analysis of equipment failures, among others. 

It is important to note that this dissertation does not address the crucial issue of 

feature selection.  Being motivated by and focused on medical problems, these present 

with great difficulties and expense in assessing underlying states, or measurable features 

such as gene expressions which usually require time and non-trivial costs for assays to be 

run, hence maintaining performance with a minimal feature set is of paramount 

importance.  This dissertation’s research does not suggest how the many different 

approaches to feature selection could affect the transduction results in systematic ways.  

Feature selection procedures could be executed prior to the transduction of targets in 

order to choose the best feature set to work with, and again would also vary with any 

prior assumptions of underlying (hidden) state dependencies that could help structure and 

constrain the expected temporal model results in more detail.  On one hand, the 

advantages of this approach are a reduction in overall computational complexity and that 

the transduction will be conducted on supposedly meaningful features, further reducing 

the impact of noise in the data.  On the other hand, the disadvantages are that the 

translation of features across different models is not always straightforward and prior 

feature selection could yield less informative features, as they would be derived from a 

suboptimal, non-transduced model.  While many of the features would be the same, it is 

possible that some features which may not have been selected may be important in the 

context of the final transduced model, and other features which may initially be important 
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may lose their relevance following the generation of improved targets.  Alternatively, if 

feature selection is performed after transduction, the features selected will be better suited 

for the transduced model.  However, the disadvantages are that the transduction 

procedure would contain potentially noisy and unnecessary dimensions that could 

adversely affect performance and would be less efficient due to increased complexity.  

Existing wrapper type approaches for feature selection in semi-supervised classification 

could be employed [50].  An interesting idea would be to adapt a Laplacian score for 

feature selection which has already been explored in the semi-supervised regression 

setting [19], though the generality of these results is hard to assess. 

Adapting the incremental period for the target time in each iteration could also be 

beneficial empirically in our approach.  In the current set of experiments an interval of 10 

months was heuristically derived given the length of the maximum time in the training 

cohorts, the average censored time and observed execution time of the program.   

An important point is that our work at present only addresses right-censoring in 

non-event patients.  As discussed in the introduction, survival analysis is further 

complicated by the left-censored nature of events.  Therefore, another area of future 

research could be to extend our work to transduce the event times as well, decreasing 

them slightly in order to improve performance. 

Additional ideas under consideration are to leverage the metrics such as the 

internal SVR error, instead of the external model evaluation criteria, for selecting the best 

model.  Additionally, each instance is now transduced independently.  It is worth testing 

whether  having a dependent order of transduction would improve the results: first 

transducing the censored instance with the highest SVR error, and then keeping its 
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derived target value when moving on to the case with the second highest error, etc.  This 

is an approach related to active learning concepts [55] where one aims to achieve as high 

a predictive accuracy with as few labeled instances as possible.   

Since it is computationally intensive to conduct an exhaustive search of the target 

space, perhaps five to ten instances with either the highest error or the maximal weight 

(SVM alpha values) could be selected and an exhaustive search could be conducted 

within this target space.  While this would attempt to mitigate the singular nature of our 

proposed approach, it would also increase its computational complexity.  Hence, further 

algorithmic optimization to reduce the computational complexity is also a crucial area of 

future work.  The proposed approach scales with the number of censored cases being 

transduced, the length of the maximum time in the training cohort, and the time interval 

of increase in each iteration. 

Showing initially promising sets of results with notably improved overall 

prediction performance over existing methods, the proposed transduction framework 

approach is, to our knowledge, the first application of semi-supervised learning to 

survival analysis.  As noted from the concluding comments and suggestions for futures 

discussed above, this dissertation’s approach and its related lines of research suggest the 

value of further investigation and research. 

In summary, we have presented a novel semi-supervised approach for transducing 

regression targets in survival analysis problems, with a focus on medical prognosis.  Our 

method can be combined with almost any regression algorithm, whether designed for 

survival analysis or not.  The innovative procedure manifests a marked improvement in 

the performance of current algorithms.  In experiments representing prostate and breast 
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cancer, our proposed method has outperformed the current leading algorithms for 

survival analysis.  Additionally, the method has proven its utility in various medical 

prognostic applications where survival analysis algorithms are employed, such as 

building models for late stage disease endpoints from earlier indications, evaluating the 

interaction of quantitative image analysis metrics with clinical characteristics in a data 

fusion paradigm, and assessing the impact of decreasing tumor in a prostate biopsy assay.  

This dissertation represents one of the first applications of semi-supervised learning for 

survival analysis and has introduced the notion of leveraging the partial knowledge of 

true outcome in censored times. 
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