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ABSTRACT OF THE THESIS

Modeling, System Analysis and Control of A Proton Exchange

Membrane Fuel Cell

by Sudarshan Kolar

Thesis Director:

Professor Zoran Gajić

This thesis presents a control technique for a 9th-order linearized Proton Exchange

Membrane fuel cell model. This work starts with giving a brief introduction about

the construction and working of PEM fuel cell. Then, various fuel cell subsystems and

their corresponding non-linear dynamical equations are presented. These equations are

simulated to obtain steady state operating points of the model which is further used

in Jacobian linearization. The linearized model consists of nine states as opposed to

the eight states of the linearized model available in the literature. A pole placement

controller is designed for the linearized model to obtain desired transient performance.

This work concludes with inspiring the readers about some future works that can be

carried out on this model.
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Chapter 1

Introduction

Fuel cells were developed around mid 19th century by Sir William Grove. The principle

of operation, however, is believed to be discovered by Friedrich Schonbein [1, 2]. Over

the last few decades, fuel cell research is in boom, owning to the environmental impacts

of the fossil fuels and their fast depletion. The advantage with fuel cell is obvious. It

feeds on oxygen and hydrogen gases and generates clean electrical energy with water

as by-product of the reaction. Since fuel cells convert chemical energy directly into

electrical energy, it has higher efficiency in comparison to conventional heat engines [3].

The fuel cells were first employed by NASA in their Gemini Program in early 1960s.

Fuel cells were also employed in Apollo Program to support guidance and communi-

cation [1]. Today, fuel cells are used in many applications from automobiles, power

generation, heating to various space programs. Undeniably, fuel cells are the future of

renewable energy.

1.1 Fuel Cells: Principle, Construction and Working

1.1.1 Principle of Operation

Fuel cells are electrochemical devices that convert chemical energy into electricity, with-

out generating carbon-dioxide. The operation principle of fuel cells is exactly opposite

to that of water electrolysis. In water electrolysis electric energy is supplied to disso-

ciate water into constituent hydrogen and oxygen. In fuel cells, oxygen and hydrogen

are made to react to form water, hence releasing electrical energy during the process.
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1.1.2 Construction

The construction of a fuel cell is very similar to a triode. It consists of an anode,

membrane and cathode. Based on the material of the membrane , there are 6 different

classifications of fuel cells presented below [1].

1. Alkaline fuel cells (AFCs);

2. Proton Exchange Membrane or Polymer Electrolyte Membrane fuel cells (PEM-

FCs);

3. Phosphoric Acid fuel cells (PAFCs);

4. Molten Carbonate fuel cells (MCFCs);

5. Solid Oxide fuel cells (SOFCs);

6. Direct Methanol fuel cells (DMFCs).

Out of the above, following fuel cells are predominantly used in practice:

1. PEM fuel cells. PEM stands for proton exchange membrane. It is also called

polymer electrolyte membrane. The membrane is solid, teflon like material and

is an excellent conductor of protons and isolates electrons.

2. SOFC. SOFC stands for solid oxide fuel Cells. The membrane is made up of

ceramic type metal oxide. These membranes are excellent conductors of negatively

charged ions (electrons).

PEM fuel cells are the most developed and the best understood types of fuel cells and

are gaining popularity in the automobile applications. SOFCs are pre-dominantly being

researched for distributed electric power generations.

Some of the significant features of the PEM fuel cells are

1. Long cell life;

2. Low corrosion;
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3. High power density of around 2000Wh/Kg;

4. Low operating temperatures;

5. Higher energy conversion efficiency of around 50% against 25% of internal com-

bustion engines.

1.1.3 Basic Operation of PEM Fuel Cells

A PEM fuel cell is presented below in Figure 1.1 The chemical reactions taking place

Figure 1.1: Operating Principle of PEM Fuel Cell

in a PEM fuel cell are represented by

2 H2 −−→ 4 H+ + 4 e– (Anode)

4 H+ + 4 e– + O2 −−→ 2 H2O (Cathode)

The membrane, being a electron isolator, forces electrons to flow through the load,

generating electric current. Water is the by-product of a fuel cell chemical reaction.

1.1.4 V-I Characteristics

The V-I characteristics of a fuel cell is illustrated in Figure 1.2. The fuel cell charac-

teristics deviates from the ideal one because of the activation, ohmic and concentration

losses.

One fuel cell on an average produces 0.7V and has a current density of 0.8 A
cm2 .

A fuel cell with area of 100 cm2 hence, can produce around 56 W of power, sufficient
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Figure 1.2: V-I Characteristics of PEM Fuel Cell

to power up a single bulb.Since fuel cells are very thin, of the order of 1 mm, they

are stacked together in series to get higher voltage levels. For example, 100 fuel cells

stacked up together can produce approximately 6 kW of power, but will still be only

1 cm thick.

1.2 Literature Review

A lot of research has been done on fuel cell modeling. A simple third order linear model

has been proposed in [4, 5]. Third order bi-linear model, US-DoE (US Department of

Energy), has been presented in [6]. Then, a third order non-linear model has been

shown in [7]. The models of [5, 6, 4, 7] now ignored membrane humidity and pressure

of nitrogen in cathode. The model in [8] incorporates these states in a fifth order non-

linear model. Finally, an extensive work has been carried out in [9, 10, 11] to develop

a fuel cell model for an automobile application. This model is comprehensive and gives

a deeper insight into the fuel cell sub-system.

A number of different control strategies have been proposed for the fuel cell. To

start with, static and dynamic feedforward controls are developed in [3], followed by

LQR feedback control for the 8th order linearized PEM fuel cell model. An H∞ control

features in [12] to achieve robust voltage tracking. Sliding mode control for PEM fuel

cell is proposed in [13, 14, 15]. A more comprehensive listing of various control strategies

that can be applied to fuel cell can be found in [12].
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Chapter 2

Modeling of Fuel Cells

2.1 Fuel Cell System

This work is inspired from the 9th order model developed in [3]. The outline of this

chapter is as follows: various fuel cell subsystems are presented first followed by their

non-linear equations. This chapter concludes with a summary of all the non-linear

equations and corresponding constants.

2.1.1 State Space Model

State space approach is used for modeling the fuel cell. In state space model, each state

x represents a physical parameter of the system. In electrical circuits for example,

current through inductor or voltage across capacitor represents a state. In mechanical

system, displacement,velocity or acceleration of the body represents a state. In the

fuel cell model, mass and pressure of various gases are considered to be the states. A

non-linear state space model is represented as:

ẋ = f(x, u) (2.1)

Where, x is the state of the system and u is the control input. Following section

discusses all the 9 non-linear state equations with derivation.

2.1.2 Fuel Cell Subsystem

Compressor

A static compressor map is used to determine the air flow rate through the compressor.

The compressor speed, one of the state variables in the model, is defined using the
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concepts of mechanics. The model for the compressor and corresponding non-linear

equations are presented below.

The dynamics of the compressor speed ωcp is given by

dωcp
dt

= (τcm − τcp) (2.2)

Where, τcp [N-m] is the torque required for driving the compressor; τcm [N-m] is the

compressor motor torque.

Further, the torques are given by

τcp =
Cp
ωcp

Tatm
ηcp

[(
psm
patm

) γ−1
γ

− 1

]
Wcp (2.3)

τcm = ηcm
kt
Rcm

(vcm − kvωcp) (2.4)

Cp is the specific heat capacity of air; γ is ratio of specific heats of air; psm and

patm are the supply manifold and atmospheric pressures respectively (in atm); kt, Rcm

and kv are motor constants given in Table 2.1.2; ηcm is the mechanical efficiency of the

motor.

The air temperature at the compressor outlet Tcp,out is calculated through

Tcp,out = Tatm +
Tatm
ηcp

[(
psm
patm

) γ−1
γ

− 1

]
(2.5)

ηcp is the maximum efficiency of the compressor.

Compressor air mass flow rate Wcp is given by

Wcp = Wcr
δ√
θ

(2.6)

Where, Wcr is the corrected mass mass flow rate, which takes into account variations

in the inlet flow pressure and temperature of the compressor.

Wcr = φρa
π

4
d2
cUc (2.7)

ρa is the air density [kg/m3]; dc is the compressor diameter [m]; Uc is the compressor

blade tip speed [m/s]; φ is the normalized compressor flow rate.

Uc is determined as follows

Uc =
π

60
dcNcr (2.8)
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Ncr is the corrected compressor speed (in rpm) given by Ncr = Ncp/
√
θ and corrected

temperature, θ =
Tcp,in

288 . φ is given by the following set of equations

φ = φmax

[
1− exp

(
β

(
ψ

ψmax
− 1

))]
(2.9)

(2.10)

Here, dimensionless head parameter ψ is a given as

ψ = CpTcp,in

[(
pcp,out
pcp,in

) γ−1
γ

]
/

(
U2
c

2

)
(2.11)

and, φmax, β and ψmax are polynomial function of the Mach number, M given by

M =
Uc√

γRaTcp,in
(2.12)

φmax = a4M
4 + a3M

3 + a2M
2 + a1M + a0 (2.13)

β = b2M
2 + b1M + b0 (2.14)

ψmax = c5M
5 + c4M

4 + c3M
3 + c2M

2 + c1M + c0 (2.15)

The regression coefficients ai, bi and ci are given in Table 2.1.2.

The following table lists all the constants required for compressor modeling:

Parameter V alue Units

pcp,in 101325 Pa

Tcp,in 298.15 K

Ra 2.869× 102 J/(kg.K)

ρa 1.23 kg/m3

dc 0.2286 m

δ 1 −

θ 298/288 −
(contd...)
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Parameter V alue Units

a4 −3.69906× 10−5 −

a3 2.70399× 10−4 −

a2 −5.36235× 10−4 −

a1 −4.63685× 10−5 −

a0 2.21195× 10−3 −

b2 1.76567 −

b1 −1.34837 −

b0 2.44419 −

c5 −9.78755× 10−3 −

c4 0.10581 −

c3 −0.42937 −

c2 0.80121 −

c1 −0.68344 −

c0 0.43331 −

Jcp 5× 10−5 kg.m2

kv 0.0153 V/(rad/sec)

kt 0.0153 N-m/Amp

Rcm 0.82 Ω

ηcm 98% −

Table 2.1: Compressor Constants

Following figure depicts the Compressor block diagram with all the inputs, outputs and

state. Compressor speed, ωcp, is one of the nine state variables of the fuel cell system

and is designated x4
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Figure 2.1: Compressor Block

Supply Manifold

The supply manifold is fed by the compressor which in turn feeds air into the cathode.

Usually, the air in the supply manifold is not sufficiently humidified and hence needs

humidification before being fed into the cathode. The supply manifold pressure and

mass are the two state variables of this sub-system. The mass conservation principle is

used to determine the mass flow rate through supply manifold and ideal gas equation

is used to determine the manifold filling dynamics.

The dynamics of the supply manifold are given by

dmsm

dt
= Wcp −Wsm,out (2.16)

dpsm
dt

=
γRa
Vsm

(WcpTcp,out −Wsm,outTsm) (2.17)

From the supply manifold perspective, Wcp is the inlet mass flow rate from the com-

pressor and Wsm,out is the outlet mass flow rate. Further, Vsm is the supply manifold

volume and Tsm is the supply manifold air temperature.

The outlet mass flow rate is calculated using a linearized nozzle flow equation

Wsm,out = ksm,out(psm − pca) (2.18)

ksm,out is the supply manifold outlet flow constant and pca is the cathode pressure.

Parameter V alue Units

Vsm 0.02 m3

ksm,out 0.3629× 10−5 kg/(s.Pa)

Table 2.2: Supply Manifold Constants
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The two states associated with supply manifold, the pressure, psm and mass of gas msm

are designated as states x5 and x6 respectively.

Figure 2.2: Supply Manifold

Cathode

This model computes the mass flow rates of various gases in the cathode. The input

for the cathode is humidified air from the compressor. Ideal gas equations and mass-

conservation principles are used to obtain differential equations for the states: mass of

oxygen, nitrogen, water vapor inside the cathode.

The three state dynamics corresponding to the cathode subsystem are

dmO2,ca

dt
= WO2,ca,in −WO2,ca,out −WO2,reacted (2.19)

dmN2,ca

dt
= WN2,ca,in −WO2,reacted (2.20)

dmw,ca

dt
= Wv,ca,in −Wv,ca,out +Wv,ca,gen +Wv,membr (2.21)

WO2,ca,in is the oxygen inlet mass flow rate; WO2,ca,out is the oxygen outlet mass flow

rate; WO2,reacted is the rate of oxygen reacted; Wv,membr is the water flow rate across

the fuel cell membrane.

The same notation has been extended for N2 and H2Oca.

The partial pressures of oxygen, nitrogen, and the water vapor inside the cathode

are calculated using ideal gas law

Oxygen gas partial pressure: pO2,ca =
mO2,caRO2Tst

Vca
(2.22)

Nitrogen gas partial pressure: pN2,ca =
mN2,caRN2Tst

Vca
(2.23)

Vapor partial pressure: pv,ca =
mv,caRvTst

Vca
(2.24)
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Here, Tst is the stack temperature assumed to be constant at 353 K; Vca is the cath-

ode volume; RO2 , RN2 and Rv are gas constants of oxygen, nitrogen and water vapor

respectively.

The partial pressure of dry air is

pa,ca = pO2,ca + pN2,ca (2.25)

Total cathode pressure is given by

pca = pa,ca + pv,ca (2.26)

The oxygen mole fraction is defined as

yO2,ca =
pO2,ca

pa,ca
(2.27)

and, relative humidity is given by

φca =
pv,ca

psat(Tst)
(2.28)

where, psat(Tst) is the vapor saturation pressure as a function of the stack temperature

Tst.

Inlet gas vapor partial pressure can be determined as

pv,ca,in = φca,inpsat(Tca,in) (2.29)

Partial pressure of inlet dry air can be obtained

pa,ca,in = pca,in − pv,ca,in (2.30)

where, pca,in is the total inlet pressure at cathode

The humidity ratio is

ωca,in =
Mv

Ma,ca,in

pv,ca,in
pa,ca,in

(2.31)

The, air molar mass is given by

Ma,ca,in = yO2,ca,inMO2 + (1− yO2,ca,in)MN2 (2.32)
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where, MO2 and MN2 are the molar masses of oxygen and nitrogen respectively. yO2,ca,in

is assumed a constant = 0.21.

With all the above data, we can now calculate various inlet flows as follows

Mass flow rate of dry air,

Wa,ca,in =
1

1 + ωca,in
Wca,in (2.33)

Mass flow rate of vapor entering cathode,

Wv,ca,in = Wca,in −Wa,ca,in (2.34)

Mass flow rate of oxygen,

WO2,ca,in = xO2,ca,inWa,ca,in (2.35)

Mass flow rate of nitrogen,

WN2,ca,in = (1− xO2,ca,in)Wa,ca,in (2.36)

xO2,ca,in is the oxygen mass fraction defined by

xO2,ca,in =
yO2,ca,inMO2

yO2,ca,inMO2 + (1− yO2,ca,in)MN2

(2.37)

The total mass flow rate at the cathode exit is given by a linearized nozzle equation

Wca,out = kca,out(pca − prm) (2.38)

where, Pca is the cathode pressure, prm is the return manifold pressure, and kca,out is

the orifice constant. From the knowledge of Wca,out we can determine outlet flow rates

of oxygen, nitrogen and vapor following the exact same steps as was done in equations
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(2.29) to (2.37)

Ma,ca = yO2,caMO2 + (1− yO2,ca)MN2 (2.39)

ωca,out =
Mv

Ma,ca

pv,ca
pa,ca

(2.40)

Wa,ca,out =
1

1 + ωca,out
Wca,out (2.41)

Wv,ca,out = Wca,out −Wa,ca,out (2.42)

xO2,ca =
yO2,caMO2

yO2MO2 + (1− yO2,ca)MN2

(2.43)

WO2,ca,out = xO2,caWa,ca,out (2.44)

WN2,ca,out = (1− xO2,ca)Wa,ca,out (2.45)

Using the principles of electrochemistry mass flow rates of oxygen reacted and vapor

generated can be calculated as

WO2,reacted = MO2 ×
nIst
4F

(2.46)

Wv,ca,gen = Mv ×
nIst
2F

(2.47)

Here, Ist is the stack current.

Cathode inlet flow Wca,in is the composition of the dry air from the compressor and

water vapor from the humidifier. Wca,in and cathode inlet pressure pca,in are calculated

using a static humidifier model as follows

Wca,in = Wsm,out +Wv,inj (2.48)

pca,in = pa,cl + φdespsat(Tcl) (2.49)

Wv,inj is the rate of vapor injected and is given by

Wv,inj =
Mv

Ma

φdespsat(Tcl)

pa,cl
Wa,cl −Wv,cl (2.50)

Mv and Ma are the molar mass of vapor and dry air respectively, φdes is the desired

inlet humidity, psat(Tcl) is the saturation pressure at Tcl = 353 K. The dry air mass

flow rate Wa,cl and vapor mass flow rate Wv,cl is computed as

Wa,cl =
1

1 + ωcl
Wsm,out (2.51)

Wv,cl = Wsm,out −Wa,cl (2.52)
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Where ωcl is the humidity ratio given by

ωcl =
Mv

Ma

pv,cl
pa,cl

(2.53)

The dry air pressure pa,cl is given as

pv,cl = φclpsat(Tcl) (2.54)

pa,cl = psm − pv,cl (2.55)

psm, the supply manifold pressure was defined in (2.17)

Parameter V alue Units

Vca 0.01 m3

kca,out 0.2177× 10−5 kg/(s.Pa)

yO2,ca,in 0.21 −

Tca,in 353 K

Table 2.3: Cathode Constants

The cathode states, x1,x3 and x8 correspond to mass of oxygen, nitrogen and water

vapor respectively.

Figure 2.3: Cathode Model

Return Manifold

The return manifold releases un-reacted or partially reacted gases to the atmosphere.

The return manifold pressure is the only state variable of this model. Ideal gas law at

isothermic conditions is used to determine filling dynamics as follows

dprm
dt

=
RaTrm
Vrm

(Wca,out −Wrm,out) (2.56)
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Here, it is assumed that changes in air temperature inside return manifold are negligibly

small. Vrm is the return manifold volume and Trm is the temperature of the gas inside

the manifold. Wca,out is cathode outlet flow, as discussed in equation (2.38). The outlet

mass flow of return manifold Wrm,out is determined using nozzle equations.

Wrm,out =
CD,rmAT,rmprm√

RTrm

(
patm
prm

) 1
γ

{
2γ

γ − 1

[
1−

(
patm
prm

) γ−1
γ

]} 1
2

(2.57)

Where, AT,rm is the throttle opening area in m2; CD,rm is the discharge coefficient of

the nozzle; R̄ is the universal gas constant.

Parameter V alue Units

Vrm 0.005 m3

Trm 353 K

CD,rm 0.0124 −

AT,rm 0.002 m2

Table 2.4: Return Manifold Constants

The return manifold with it’s state x9 = return manifold pressure is shown below.

Figure 2.4: Return Manifold

Anode

Anode is fed with hydrogen from a tank. The states for this model are the hydrogen

mass inside anode mH2 and water vapor mass mw,an. The dynamic equations are

dmH2,an

dt
= WH2,an,in −WH2,reacted (2.58)

dmw,an

dt
= Wv,an,in −Wv,an,out −Wv,membr (2.59)
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where, WH2,an,in is the inlet hydrogen mass flow rate; WH2,reacted is the rate of hydrogen

reacted inside anode; Wv,membr is mass flow rate of water transfer across the membrane.

In this work, it is assumed that all outlet flow rates from anode are zero. Similar

principles discussed for cathode can be applied to anode to determine various supporting

values and parameters.

The partial pressures are,

Hydrogen Gas Partial Pressure:

pH2,an =
mH2,anRH2Tst

Van
(2.60)

Water Vapor Partial Pressure:

pv,an =
mv,anRvTst

Van
(2.61)

Total Anode Pressure:

pan = pH2,an + pv,an (2.62)

Relative humidity of the gas inside anode is

φan =
pv,an

psat(Tst)
(2.63)

psat(Tst) is the saturation pressure as a function of stack temperature.

Inlet vapor pressure pv,an,in and inlet hydrogen partial pressure pH2,an,in are given

by

pv,an,in = φan,inpsat(Tan,in) (2.64)

pH2,an,in = pan,in − pv,an,in (2.65)

Now, we find the anode humidity ratio as

ωan,in =
Mv

MH2

pv,an,in
pa,an,in

(2.66)

Here, Mv is the molar mass of vapor and MH2 is the molar mass of the hydrogen gas.

Finally, with all the above data, we can find various inlet flow rates as

WH2,an,in =
1

1 + ωan,in
Wan,in (2.67)

Wv,an,in = Wan,in −WH2,an,in (2.68)
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Where, the anode inlet flow Wan,in is given by

Wan,in = K1(K2psm − pan) (2.69)

Wan,in is assumed to be controlled by a simple proportional control that minimizes the

pressure difference across the membrane. Since cathode pressure cannot be measured

directly, it’s approximate value equal to K2psm is used in the equation. Here, K2 takes

into account the pressure drop between the supply manifold and cathode and K1 is the

gain of the proportional controller.

The rate of hydrogen reacted or consumed during the electrochemical reaction is

given by

WH2,reacted = MH2 ×
nIst
2F

(2.70)

Parameter V alue Units

Van 0.005 kg/m3

Tan,in 353 K

φan,in 1 −

Table 2.5: Anode Constants

The anode block diagram and its corresponding designated states are presented below

Figure 2.5: Anode Model

Membrane Hydration

This model captures the dynamics associated with water mass flow rate across the

membrane. The mass flow rate obtained in this model is used in both the cathode and

anode model.
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The water flow across the membrane is given by

Nv,membr = nd
i

F
−Dw

cv,ca − cv,an
tm

(2.71)

Where, tm is the membrane thickness [cm]; nd is the electro-osmotic drag coefficient;

Dw is diffusion coefficient [cm2/sec]; cv is the water concentration [mol/cm3].

Each of the above constants are presented below.

Water concentration at the membrane surface is given by

cv,an =
ρm,dry
Mm,dry

λan (2.72)

cv,ca =
ρm,dry
Mm,dry

λca (2.73)

Where, ρm,dry is the membrane dry density in kg/cm3 and Mm,dry is the membrane dry

equivalent weight in kg/mol. The water content in the membrane, λi is defined as

λi =


0.043 + 17.81ai − 39.85a2

i + 36.0a3
i , 0 < ai < 1.

14 + 1.4(ai − 1), 1 < ai ≤ 3.

(2.74)

Where, ai is the water activity and the subscript i denotes either anode (an), cathode

(ca) or membrane (m). These activities are defined below

ai =
pv,i
psat,i

(2.75)

am =
aan + aca

2
(2.76)

Electro-osmotic drag coefficient can be determined from the membrane water con-

tent λm as

nd = 0.0029λ2
m + 0.05λm − 3.4× 10−19 (2.77)

The diffusion coefficient is given by

Dw = Dλ exp

(
2416

(
1

303
− 1

Tfc

))
(2.78)

Where Dλ is assumed to be a constant equal to 1.25 × 10−6 and Tfc is the fuel cell

temperature, assumed to be equal to the stack temperature. Nv,membr [mol/(sec.cm2)]
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gives the water flow rate per unit area in one fuel cell. The total mass flow rate across

the entire fuel cell stack is given by

Wv,membr = Nv,membr ×Mv ×Afc × 104 × n (2.79)

Mv is the molar mass of vapor, Afc is the fuel cell area in cm2 and n is the number of

fuel cells in the stack.

Parameter V alue Units

ρm,dry 0.002 kg/cm3

Mm,dry 1.1 kg/mol

tm 0.01275× 10−2 m

Afc 280× 10−4 m2

Dλ 1.25× 10−6 −

λm 14 −

Table 2.6: Membrane Hydration Constants

The membrane hydration model generates constants for the rest of the subsystem and

hence has no states associated with it. The following block diagram shows the input

and output of the membrane hydration model.

Figure 2.6: Membrane Hydration Model
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2.1.3 Non Linear Equations

In this section, all the nine non-linear equations of the PEM fuel cell are presented.

These equations are derived from the discussion of various subsystems, presented pre-

viously. They are represented using state space form with

x1 = Mass of oxygen in cathode

x2 = Mass of hydrogen in anode

x3 = Mass of nitrogen in cathode

x4 = Compressor angular speed

x5 = Supply manifold pressure

x6 = Mass of gas in supply manifold

x7 = Mass of water in anode

x8 = Mass of water in cathode

x9 = Return manifold pressure

All masses are expressed in grams, pressures are in bar and the compressor speed is

in rad/s.
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ẋ
8

=
k
ca
,o
u
t

( x
9
−
t s
t

(R
O

2
x

1
+
R
N

2
x

3
+
R
v
x

8
)

V
ca

)
(2

.8
7
)

−

k
s
m
,o
u
t

( x
5
−
t s
t
(R
O
2
x
1
+
R
N
2
x
3
+
R
v
x
8
)

V
c
a

)
M
v
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

M
a
P
a
tm

( x
5
−
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

P
a
tm

) +
1

+
M
v
k
s
m
,o
u
t
p
s
a
t
(T
c
l)
φ
d
e
s

( x
5
−
t s
t
(R
O
2
x
1
+
R
N
2
x
3
+
R
v
x
8
)

V
c
a

)

M
a

( x
5
−
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

P
a
tm

) 
M
v
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

M
a
P
a
tm

( x
5
−
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

P
a
tm

) +
1

 
M
v
p
s
a
t
(T
a
tm

)
p
s
a
t
(T
c
a
,i
n

)
x
5

2
P
a
tm

p
s
a
t
(T
c
l)

(M
O
2
y
O
2
,c
a
,i
n
−
M
N
2
(y
O
2
,c
a
,i
n
−

1
))
( x

5
+
p
s
a
t
(T
c
l)
φ
d
e
s
−
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

P
a
tm

−
p
s
a
t
(T
a
tm

)
p
s
a
t
(T
c
a
,i
n
)
x
5

2
P
a
tm

p
s
a
t
(T
c
l)

) +
1

+

k
sm

,o
u
t

( x
5
−

t s
t
(R

O
2
x
1
+
R
N
2
x
3
+
R
v
x
8
)

V
c
a

)
M
v
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

M
a
P
a
tm

( x
5
−
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

P
a
tm

) +
1

+

k
ca
,o
u
t

( x
9
−

t s
t
(R

O
2
x
1
+
R
N
2
x
3
+
R
v
x
8
)

V
c
a

)
M
v
R
v
t s
t
x
8

V
c
a

( R O
2
t s
t
x
1

V
c
a

+
R
N
2
t s
t
x
3

V
c
a

)  M
N
2

  
R
O
2
t s
t
x
1

V
c
a

( R
O
2
t s
t
x
1

V
c
a

+
R
N
2
t s
t
x
3

V
c
a

) −
1

  −
M
O
2
R
O
2
t s
t
x
1

V
c
a

( R
O
2
t s
t
x
1

V
c
a

+
R
N
2
t s
t
x
3

V
c
a

)  −
1

+
M
v
i s
t
n

2
F

+
10

4
A
f
c
M
v
n

     D
λ
e

2
4
1
6

3
0
3
−

2
4
1
6

t s
t

( 1
4
ρ
m
,d
r
y

M
m
,d
r
y
−

ρ
m
,d
r
y

( γ
(

R
t s
t
x
8

M
v
p
s
a
t
(T
s
t
)
V
a
n
−

1
) +

1
4
)

M
m
,d
r
y

)
10

2
t m

+
i s
t
n
d

10
8
A
f
c
F

     

+

M
v
k
sm

,o
u
t
p
sa
t(
T
cl

)
φ
d
es

( x
5
−

t s
t
(R

O
2
x
1
+
R
N
2
x
3
+
R
v
x
8
)

V
c
a

)
M
a

( x
5
−

p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

P
a
tm

)(
M
v
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

M
a
P
a
tm

( x
5
−
p
s
a
t
(T
a
tm

)
φ
a
tm

x
5

P
a
tm

) +
1

)



27

ẋ
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Chapter 3

Simulation of the Fuel Cell Model

3.1 SIMULINK implementation of Subsystems

In this section, the SIMULINK models of the fuel cell subsystems are presented. Various

subsystem blocks are individually discussed and all the subsystem blocks are finally

inter-connected to form an entire PEM fuel cell. The blocks are implementation of the

non-linear equations discussed in Chapter 2.

3.1.1 Compressor

Figure 3.1: Compressor Subsystem

Figure 3.2: Inside the Compressor Subsystem

The masked subsystems generating the compressor motor torque τcm and torque

required to drive the compressor τcp are presented next.
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Figure 3.3: τcm Subsystem

Figure 3.4: τcp Subsystem

3.1.2 Supply Manifold

Figure 3.5: Supply Manifold Subsystem

Masked subsystems generating the mass of air in supply manifold msm and supply

manifold pressure psm are presented below
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Figure 3.6: Inside the Supply Manifold Subsystem

Figure 3.7: msm Generating Subsystem
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Figure 3.8: Psm Generating Subsystem

The tcp,out is generated as follows

Figure 3.9: tcp,out Generating Subsystem
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3.1.3 Cathode

Figure 3.10: Cathode Subsystem

Figure 3.11: Inside the Cathode Subsystem

Here, the SIMULINK block Subsystem1,Subsystem4 and Subsystem3 generate the

inlet flow, outlet flow and other cathode parameters respectively. They have been

expanded below:
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Figure 3.12: O2 and N2 Inlet Flow Rate Generating Subsystem

Figure 3.13: Inlet Water Flow Rate Generating Subsystem

Figure 3.14: O2 and N2 Outlet Flow Rate Generating Subsystem
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Figure 3.15: Outlet Water Flow Rate Generating Subsystem
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3.1.4 Return Manifold

Figure 3.16: Return Manifold Subsystem

The return manifold implementation is simple and straightforward, as presented

below:

Figure 3.17: Inside the Return Manifold Subsystem

3.1.5 Anode

Similar to cathode, Subsystem5 and Subsystem4 are used to compute inlet flow proper-

ties and Anode internal properties respectively. Their in-depth implementation is given

below:
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Figure 3.18: Anode

Figure 3.19: Inside the Anode Subsystem

Figure 3.20: Inlet Flow Rate Generating Subsystem

Figure 3.21: Partial Pressure Generating Subsystem



38

3.1.6 Membrane Hydration

Figure 3.22: Membrane Hydration Model

The membrane hydration is implemented as follows:

Figure 3.23: Inside the Membrane Hydration Model

3.1.7 PEM Fuel Cell model

All the different SIMULINK blocks presented above can be inter-connected as shown

in Figure 3.24 to form the entire PEM fuel cell. Various constants used in the model

are presented below
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Parameter V alue Units

RO2 259.8 −

RN2 296.8 −

Rv 461.5 −

RH2 4124.3 −

Ra 286.9 J/(kg.K)

R̄ 8.3145 J/(mol.K)

MO2 32× 10−3 kg/mol

MN2 28× 10−3 kg/mol

Mv 18.02× 10−3 kg/mol

MH2 2.016× 10−3 kg/mol

Ma 28.84× 10−3 kg/mol

Table 3.1: Gas Constants and Molar Masses

Parameter V alue Units

patm 101325 Pa

Tatm 298.15 K

Tcl 353 K

Tst 353 K

Tfc 353 K

ρa 1.23 kg/m3

γ 1.4 −

Cp 1004 J/kg/K

F 96485 Coulombs

φdes 1 −

φatm 0.5 −

n 381 −

Table 3.2: Simulation Constants
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Figure 3.24: PEM Fuel Cell

3.2 Steady State Operating Point Determination

The PEM fuel cell model in Figure 3.24 was used to determine the system steady state

or equilibrium operating point. The overall system has only one input, the compressor

motor input voltage, vcm. A steady state value of 164 V was applied to the system

and resulting state values were recorded in MATLAB. Figure 3.25 shows steady state

operating points for different states.

Figure 3.25: Steady State Operating Points
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These steady state operating points are given by

Parameter V alue Units

mss
O2

1.999484727104× 10−3 Kg

mss
H2

1.106307688879306× 10−4 Kg

mss
N2

1.3448696345856× 10−2 Kg

ωsscp 8.521153438978479× 103 rad/sec

psssm 2.325384109890503× 105 Pa

mss
sm 4.0533533620127× 10−2 Kg

mss
w,an 5.717655072000× 10−3 Kg

mss
w,ca 3.615207662826× 10−3 Kg

pssrm 1.927946017884893× 105 Pa

Table 3.3: Steady State Operating Points

These values are further used in Chapter 4 for Jacobian linearization.
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Chapter 4

Control of Linearized Fuel Cell System

4.1 Jacobian Linearization

Jacobian linearization is one of the several techniques used to linearize a non-linear

system. It is based on the Taylor series expansion of a non-linear differential equation

around a nominal operating point[16].

Consider the following time invariant non-linear dynamical system given by

ẋ(t) = f(x(t), u(t)) (4.1)

f(t), x(t) ∈ Rn, u(t) ∈ Rm

Let uo(t) be the nominal or steady state input and xo(t) be the resulting nominal

state trajectory. We can approximate the state trajectory around the nominal operating

points using the Taylor series expansion as

x(t) = xo(t) + δx(t) (4.2)

u(t) = uo(t) + δu(t) (4.3)

ẋo(t) = f(xo(t), uo(t)) (4.4)

Expanding equation (4.1) using Taylor series we get

ẋo(t) + δẋ(t) = f(xo(t) + δx(t), uo(t) + δu(t) (4.5)

= f(xo(t), uo(t)) +

(
∂f

∂x

)∣∣∣∣
xo(t),uo(t)

δx(t) +

(
∂f

∂u

)∣∣∣∣
xo(t),uo(t)

δu(t) + h.o.t

(4.6)
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Where, h.o.t stands for high order terms. Since δx and δu are small, we can neglect

the higher order terms.

The matrices of partial derivatives are given by

(
∂f

∂x

)∣∣∣∣
xo(t),uo(t)

= An×n =



∂f1
∂x1

. . . . . . ∂f1
∂xn

∂f2
∂x1

. . . . . . ∂f2
∂xn

. . . . . . . . . . . .

∂fn
∂x1

. . . . . . ∂fn
∂xn



∣∣∣∣∣∣∣∣∣∣∣∣∣
xo(t),uo(t)

(4.7)

(
∂f

∂u

)∣∣∣∣
xo(t),uo(t)

= Bn×m =



∂f1
∂u1

. . . . . . ∂f1
∂um

∂f2
∂u1

. . . . . . ∂f2
∂um

. . . . . . . . . . . .

∂fn
∂u1

. . . . . . ∂fn
∂um



∣∣∣∣∣∣∣∣∣∣∣∣∣
xo(t),uo(t)

(4.8)

The matricesA andB are called Jacobian matrices and are evaluated at nominal/operating

points. We can extend the same concept to the output equation as follows.

y(t) = g(x(t), u(t)) (4.9)

where y(t), g(t) ∈ Rp.

Applying the Taylor series expansion around yo(t) in equation (4.9) we have

δy =

(
∂g

∂x

)∣∣∣∣
xo(t),uo(t)

δx(t) +

(
∂g

∂u

)∣∣∣∣
xo(t),uo(t)

δu(t) + h.o.t (4.10)

Here,

(
∂g

∂x

)∣∣∣∣
xo(t),uo(t)

= Cp×n =



∂g1
∂x1

. . . . . . ∂g1
∂xn

∂g2
∂x1

. . . . . . ∂g2
∂xn

. . . . . . . . . . . .

∂gp
∂x1

. . . . . .
∂gp
∂xn



∣∣∣∣∣∣∣∣∣∣∣∣∣
xo(t),uo(t)

(4.11)

(
∂g

∂u

)∣∣∣∣
xo(t),uo(t)

= Dp×m =



∂g1
∂u1

. . . . . . ∂g1
∂um

∂g2
∂u1

. . . . . . ∂g2
∂um

. . . . . . . . . . . .

∂gp
∂u1

. . . . . .
∂gp
∂um



∣∣∣∣∣∣∣∣∣∣∣∣∣
xo(t),uo(t)

(4.12)
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Combining the results from equation (4.7),(4.8),(4.11),(4.12) we can write

δẋ(t) = Aδx(t) +Bδu(t) (4.13)

δy(t) = Cδx(t) +Dδu(t) (4.14)

The above equations are linearized versions of the non-linear equations (4.1) and (4.9)

4.2 Linearized Model

MATLAB symbolic toolbox is used for Jacobian linearization. All the non-linear equa-

tions from (2.80) to (2.88) are expressed as symbolic equations in MATLAB and the

command jacobian() does the linearization. The linearized symbolic model is then

evaluated at the steady state operating point presented in Table 3.3. MATLAB code

for achieving the linearization is presented below.

% Define the symbolic variables

syms x1 x2 x3 x4 x5 x6 x7 x8 x9 u i_st

% Write the non-linear equations in terms of symbolic variables

%state equations

f1=((y_o2_ca_in*M_o2/(y_o2_ca_in*M_o2+(1-y_o2_ca_in)*M_n2))*...

f2=((1/(1+((M_v/M_h2)*((phi_an_in*((10^(-1.69*10^-10*t_an_in^4+...

.

.

.

f9=(R_a*T_rm/v_rm)*((k_ca_out*(((x1*R_o2+x3*R_n2+x8*R_v)*t_st/v_ca)-x9))-...

%output equations

g1=((((a_4*(((pi/60)*d_c*(((60*x4)/(2*pi))/sqrt(theta)))/sqrt(1.4*298*2.869*100))^4+...

g2=x5

g3=n*((1.229-8.5*10^-4*(t_fc-298.15)+4.308*10^-5*t_fc*...
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% Linearize the equations

A=jacobian([f1; f2; f3; f4; f5; f6; f7; f8; f9],[x1 x2 x3 x4 x5 x6 x7 x8 x9]);

B=jacobian([f1; f2; f3; f4; f5; f6; f7; f8; f9],u);

C=jacobian([g1; g2; g3],[x1 x2 x3 x4 x5 x6 x7 x8 x9]);

D=jacobian([g1; g2; g3],u);

% Define the steady state values

x1=0.001999484727104;

x2=1.106307688879306e-004;

x3=0.013448696345856;

x4=8.521153438978479e+003;

x5=2.325384109890503e+005;

x6=0.040533533620127;

x7=0.005717655072000;

x8=0.003615207662826;

x9=1.927946017884893e+005;

%Evaluate the matrices

A=eval(A);

B=eval(B);

C=eval(C);

D=eval(D);
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The linearization results are as follows:

A =


−13.1969 0 −11.8130 0 92.2081 0 0 −18.5365 22.8385

0 −6.1101×105 0 0 1.9725×105 0 −6.8370×104 0 0
−40.0581 0 −48.9479 0 303.5182 0 0 −72.7422 153.5547

0 0 0 −16.0045 184.5824 0 0 0 0
2.6731 0 3.0538 0.5052 −40.8247 0.1036 0 4.7483 0
33.2813 0 38.0212 6.3240 −449.1373 0 0 59.1199 0

0 −463.1732 0 0 149.5259 0 −51.8281 1.1402 0
−3.5133 0 −4.0921 0 3.0008 0 0 −10.7027 41.3067
4.0440 0 4.6199 0 0 0 0 7.1836 −50.4044


(4.15)

B =


0
0
0

3.4922
0
0
0
0
0



C =
[

0 0 0 0.0063 −131.2373 0 0 0 0
0 0 0 0 1 0 0 0 0

19.7004 52.3720 −0.5182 0 0 0 0 −0.8057 0

]

D =
[

0
0
0

]
Note that the linearized fuel cell model is a 9th order model. The next chapter

discusses Controllability, Observability and Stability issues of this model.
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Chapter 5

System Analysis

This chapter discusses stability, controllability, and observability of the linearized PEM

fuel cell model presented in Chapter 4.

5.1 Stability Analysis of Linearized PEM Fuel Cell Model

The eigenvalues of the system matrix A are

λ(A) =



−6.1105× 105

−104.64

−46.7355

−17.5058

−4.1091

−2.8769 + 0.0726i

−2.8769− 0.0726i

−1.3322

−1.0481× 10−15



(5.1)

Though one of the eigenvalue is very small and is very close to the origin, the system

is still asymptotically stable. Next section examines controllability and observability of

the fuel cell system.

5.2 Controllability and Observability test

For the eigenvalue placement feedback control technique, the system has to be control-

lable. For designing observers the system has to be observable. There are several tests

to determine whether the given linear dynamical system is controllable (observable) or
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not, like the grammiam test, rank of controllability (observability) matrix etc. [16].

But the most elegant tests are the Popov Belevitch eigenvalue and eigenvector tests.

These tests are very accurate over other tests and are highly recommended in environ-

ments like MATLAB, where the possibility of numerical precision errors are not in the

programmer’s control.

5.2.1 Popov Belevitch Eigenvalue Test

This theorem states that a system is controllable if the matrix

[A− λI B]

has full rank for every λ where λ = eig(A), i.e.

rank[A− λiI B] = n ∀λi(A), i = 1, 2..., n

The test, as applied to the fuel cell model (4.15), is presented below.

Controllability of Linearized PEM Fuel Cell

rank[A− λ1I B] = 9 (5.2)

rank[A− λ2I B] = 9 (5.3)

rank[A− λ3I B] = 9 (5.4)

rank[A− λ4I B] = 9 (5.5)

rank[A− λ5I B] = 9 (5.6)

rank[A− λ6I B] = 9 (5.7)

rank[A− λ7I B] = 9 (5.8)

rank[A− λ8I B] = 9 (5.9)

rank[A− λ9I B] = 9 (5.10)

From (5.2)-(5.10), it is clear that the linearized model (4.15) is completely controllable.
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Observability of Linearized PEM Fuel Cell

Popov Belevitch test for observability states that: A system is observable if,

rank

λiI −A
C

 = n ∀λi(A), i = 1, 2..., n

This test, as applied to the linearized fuel cell model, is presented below.

rank

λ1I −A

C

 = 9 (5.11)

rank

λ2I −A

C

 = 9 (5.12)

rank

λ3I −A

C

 = 9 (5.13)

rank

λ4I −A

C

 = 9 (5.14)

rank

λ5I −A

C

 = 9 (5.15)

rank

λ6I −A

C

 = 9 (5.16)

rank

λ7I −A

C

 = 9 (5.17)

rank

λ8I −A

C

 = 9 (5.18)

rank

λ9I −A

C

 = 9 (5.19)

Obviously, from (5.11)-(5.19), (4.15) is completely observable.

5.2.2 Popov Belevitch Eigenvector Test

This is another elegant test for determining whether a system is controllable (observ-

able) or not. The controllability test says that, a system is controllable if, no left
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eigenvector of A is orthogonal to B [17].

i.e. if v∗ is the left eigenvector of A, corresponding to any λ then

v∗A = v∗λ

⇒ v∗B 6= 0

Controllability of Linearized PEM Fuel Cell

The controllability of the linearized 9th order PEM fuel cell model in (4.15) is determined

using the Popov Belevitch eigenvector test. The resulting vectors v∗B for controllability

v∗1B = 8.8212e− 007 6= 0 (5.20)

v∗2B = −0.0154 6= 0 (5.21)

v∗3B = −0.0460 6= 0 (5.22)

v∗4B = 0.5730 6= 0 (5.23)

v∗5B = 0.0792 6= 0 (5.24)

v∗6B = 0.0728− 0.0019i =⇒ ||v∗6B|| = 0.0728 6= 0 (5.25)

v∗7B = 0.0728 + 0.0019i =⇒ ||v∗7B|| = 0.0728 6= 0 (5.26)

v∗8B = 0.0032 6= 0 (5.27)

v∗9B = 0.0017 6= 0 (5.28)

Where, v∗i is the left eigenvector corresponding to λi. The above results confirms the

conclusion obtained in the previous section.

Note: The Popov Belevitch eigenvector test can not give the controllability mea-

sure of a particular state variable.

Observability of Linearized PEM Fuel Cell

The results presented above can be extended to observability. For a system to be

observable [17],

Cxi 6= 0 for Axi = λxi i = 1, 2, ..., n
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Cxi for the observability test are presented below.

Cx1 = [0 0 52.3720]T =⇒ ||Cx1|| = 52.3720 6= 0 (5.29)

Cx2 = [−6.4719 0.0493 − 2.3561]T =⇒ ||Cx2|| = 6.8876 6= 0 (5.30)

Cx3 = [9.1423 − 0.0696 0.9599]T =⇒ ||Cx3|| = 9.1928 6= 0 (5.31)

Cx4 = [1.0427 − 0.0079 − 1.5757]T =⇒ ||Cx4|| = 1.8895 6= 0 (5.32)

Cx5 = [−5.0079 0.0382 − 1.1778]T =⇒ ||Cx5|| = 5.1447 6= 0 (5.33)

Cx6 = [−5.160− 0.028i 0.039 + 0.0002i − 2.055 + 7.096i]T (5.34)

=⇒ ||Cx6|| = 9.0116 6= 0 (5.35)

Cx7 = [−5.1603 + 0.0285i 0.0393− 0.0002i − 2.0555− 7.0959i]T (5.36)

=⇒ ||Cx7|| = 9.0116 6= 0 (5.37)

Cx8 = [2.6632 − 0.0203 − 1.0124]T =⇒ ||Cx8|| = 2.8492 6= 0 (5.38)

Cx9 = [0 0 5.8240]T =⇒ ||Cx9|| = 5.8240 6= 0 (5.39)

Where, xi is the eigenvector corresponding to λi

It can be seen from (5.29)-(5.39) that the fuel cell model is completely observable.

Note: The Popov Belevitch eigenvector test can not give the observability measure

of a particular state variable.

5.3 Model Reduction

If the state of a system is weakly controllable and weakly observable, it can be discarded

from the model without affecting the system dynamics to a reasonable extent. This

technique is called system order reduction [16].

One of the methods to achieve model reduction is through balanced transformation

or simply balancing. Balancing is a similarity transformation that puts the system such

that its controllability and observability grammiams are identical and diagonal, with

Hankel singular values on the diagonal of the grammiam matrix [18]. Hankel singular

values give the controllability and observability measure of each state. The Hankel
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singular values of the fuel cell model presented in (4.15) is presented below

σ =


∞

1.281038
0.098375

0.032746
0.009357

0.002487
0.000160

0.000121
3.9915×10−11

 (5.40)

The last singular value being extremely small, indicates the presence of a weakly

controllable and weakly observable mode, and can be removed from the system dynam-

ics.

5.3.1 Truncated Model

The original 9th order model has been reduced to an 8th order model using balanced

truncation. The model is presented below:

Ar =


8.755×10−16 0 0 0 0 0 0 0

0 −2.022 −4.074 −0.4982 1.01 0.1089 −0.1858 −0.03214
0 4.11 −23.21 −4.301 7.687 1.374 −1.79 −0.3882
0 0.7252 −7.28 −2.456 −6.442 0.7262 0.4688 −0.1478
0 −1.729 20.32 13.71 −50.17 0.9117 18.26 1.065
0 −0.1221 1.456 0.785 −7.346 −0.9462 0.428 0.4205
0 0.3187 −3.894 −2.199 18.26 4.92 −99.93 7.984
0 0.03214 −0.3924 −0.2209 1.859 0.4783 −26.18 −1.345

 (5.41)

Br =


0.05898
2.276
−2.137
−0.401
0.9689
0.0686
−0.1794
−0.01809



Cr = [ 8.357×10−14 −2.089 −1.821 −0.1303 0.82840.04379 −0.1538 −0.01662 ]

Dr = 0 (5.42)
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The eigen values of the truncated system are:

λ(Ar) =



−104.6445

−46.7355

−17.5058

−1.3322

−4.1091

−2.8769 + 0.0726i

−2.8769− 0.0726i

8.7553× 10−16



(5.43)

This system is controllable and observable with respect to all the eigenvalues. The

claim has been verified using Popov Belevitch test.

Comments: State x9 is truncated from the balanced system. The next step is to

determine the relation between the eliminated x9 in the balanced coordinate and the

states in the original coordinate system. The similarity transformation matrix T in the

transformation, xb = Tx is used to determine the relation. The subscript b indicates

the balanced system.

x9,b = −0.0103x1 − 7496.7023x2 − 0.0120x3 − 0.0019x4 + 2420.3164x5

− 0.00042x6 − 838.8643x7 − 0.0170x8 − 0.00051x9

(5.44)

From equation (5.44), one things that stands out is x9,b is predominantly dependent

on mass of hydrogen in anode, x2; pressure of gas in supply manifold, x5, and mass of

water in anode, x7.

x9,b ≈ −7496.7023x2 + 2420.3164x5 − 838.8643x7 (5.45)

It seems like one of these three states is weakly controllable and weakly observable. To

get a better picture of the scenario, the system needs to be analysed in a new coordinate

system, which is presented in the next section.

5.4 Modal Transformation

The intention of this section is to get a more clear picture, if possible, to determine which

state in original state space coordinates is weakly controllable and weakly observable
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based on the observations from the truncated system in (5.41). The modal transforma-

tion is a similarity transformation that generates a diagonal system matrix A. It gives

a nice decoupled system equation. The transformation matrix P in z = P−1x that does

this is simply the eigenvector matrix of A. The system (4.15) in modal coordinates is

presented below:

Ā =


−6.1105×105

−104.64
−46.7355

−17.5058
−4.1091

−2.8769+0.0726i
−2.8769−0.0726i

−1.3322
−1.0481×10−15


(5.46)

B̄ =


9.32117816810097×10−7

−0.0698
0.3544
2.734
−0.2987

0.7899−0.4771i
0.7899+0.4771i

0.0606
−0.0018



C̄ =

[
3.6285×10−17 −6.4719 9.1423 1.0427 −5.0078 −5.1603−0.0285i −5.1603+0.0285i 2.6632 3.6324×10−13

0 0.0493 −0.0696 −0.0078 0.03818 0.0393+0.00021i 0.0393−0.00021i −0.0203 −2.7694×10−15

52.372 −2.3560 0.9598 −1.5757 −1.1778 −2.0554+7.0958i −2.0554−7.0958i −1.0123 5.8239

]
From the modal transformation, we get nine decoupled system equations given by

żi = λizi + βiui (5.47)

yi = γizi ∀i = 1, 2...9
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The Hankel singular values of all nine decoupled systems are:

σz1 = 3.9945× 10−11 (5.48)

σz2 = 0.0023 (5.49)

σz3 = 0.0349 (5.50)

σz4 = 0.1476 (5.51)

σz5 = 0.1870 (5.52)

σz6 = 1.4453 (5.53)

σz7 = 1.4453 (5.54)

σz8 = 0.0649 (5.55)

σz9 =∞ (5.56)

Observe that the order of magnitude of the singular values in the modal coordinate are

almost similar to that of the balanced system.

Comments: Out of the nine system equations, the state variable z1 corresponds to

smallest Hankel Singular Value after balancing, with the corresponding singular value

σ = 3.9945 × 10−11. The transformation relating z1 and the original state space coor-

dinates is

z1 = 1.412× 10−6x1 + 0.999x2 + 1.613× 10−6x3 + 2.669× 10−7x4 − 0.322x5

+ 5.471× 10−8x6 + 0.112x7 + 2.3× 10−6x8 − 6.138× 10−10x9

(5.57)

Again, z1 predominantly depends on a linear combination of x2, x5, x7, which is consis-

tent with the conclusion obtained in the previous section.

z1 ≈ 0.999x2 − 0.322x5 + 0.112x7 (5.58)

Conclusion: Equations (5.45) and (5.58) suggest that either one or more of x2,

x5 or x7 is both weakly controllable and observable. Since the weight of x2 is more,

it seems reasonable to say that x2 is weakly controllable and weakly observable. But,

this statement is counter-intuitive, because x2 is mass of hydrogen gas in anode, which

is the key part of fuel cell dynamics. Since the state space model is not unique and

it does not preserve the units of the states, it is very difficult in general to determine
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which state in the original coordinate is weakly controllable and weakly observable by

looking at the balanced or modal coordinates.
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Chapter 6

Controller Design

This chapter discusses simple pole placement control design for the linearized PEM fuel

cell model (4.15). Stack current acts as a disturbance in the fuel cell model, but is not

considered in this work.

6.1 Eigenvalue Assignment Controller

If the system is controllable, its eigen values can be assigned at any desired location

in the s-plane using state feedback [16]. If all the states are not available directly for

feedback, an observer can be designed to estimate the states and these estimates can,

in turn, be used for state feedback, provided the system is observable.

Consider a linear dynamical system in state space form as

ẋ(t) = Ax(t) +Bu(t) (6.1)

y(t) = Cx(t) +Du(t) (6.2)

Assuming all states are readily available for feedback, we can write u(t) = −Kx(t),

where K is feedback gain vector. The value of K depends on the desired values of the

closed-loop eigenvalues.

With state feedback, we can write (6.2) as

ẋ(t) = (A−BK)x(t)

=⇒ x(t) = e(A−BK)tx0, x0 is the initial condition of the states (6.3)

Equation (6.3) implies that the eigenvalues of the matrix A−BK decide the transient

response of the system. Hence, to achieve faster convergence to steady state, the eigen-

values of A − BK should be placed to the left half of the s-plane. The farther the
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eigenvalue from the origin on negative half of s-plane, the faster will be the transient

response, i.e. Re{λ(A−BK)� 0}.

In many practical applications, the intention is to lead the states to their respective

steady state values quickly. The equation u(t) = −Kx(t), leads all the states to zero.

Hence, for practical purposes the equation of state feedback is modified as u(t) =

u0−Kx(t), where u0 is the input corresponding to the desired steady state values of the

system. Following figure depicts the full state feedback as implemented in SIMULINK.

Figure 6.1: Pole Placement Control Design

The pole placement controller is designed for the linear plant and is applied to the

non-linear plant. The eigenvalues used for eigenvalue assignment and the resulting gain

matrix K is given below:

λdesired = [−6.1106×105,−200,−100,−50,−25,−20,−3,−2,−1 ] (6.4)

K = [−820.345, −317.860, −270.734, 63.259, 69878.457, −5224.392, 419312.572, 122743.826, 99979.740 ]

(6.5)

This controller is designed assuming all states are available for feedback, which is

not actually the case. In fact, it’s evident from the output equation in (4.15) that
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only x5 is directly available from the measurement. Rest of the eight states need to be

extracted from the measurement, using observers.



60

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis goes about developing a 9th order linear model of PEM fuel cells. The

Pukrushpans non-linear model [3] is used for linearization. Simulations are carried out

to determine the steady state operating values of the model and are subsequently used

in Jacobian linearization. The linearized model is controllable and observable with

respect to all the states and requires no order reduction. This model represents the

system dynamics in a more comprehensive and accurate manner. A pole-placement

controller is incorporated to achieve desired transient response from the system.

7.2 Future Work

In this thesis, we have assumed that all the states are directly measurable. In reality

though, the output equations suggest that only the state x5 = Psm is available for direct

measurement. Hence, for pole placement we need a state observer that will estimate the

other 8 states. Since, the system is completely observable, we can design an observer

and can use the estimated states needed for pole placement. Further, stack current acts

as a disturbance for the fuel cell system. We can add an integral control in addition to

pole placement controller to remove the effects of disturbance.

In non-linear realm, a sliding mode control strategy can also be applied to the

system, without even linearizing it. Evidently, this work has been carried out on 5th

order non-linear model [15]. Works by [12][14][13] also deal with sliding mode control

of PEM fuel cells.
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