Staff View
Chemical and structural characterization of boron carbide powders and ceramics

Descriptive

TitleInfo
Title
Chemical and structural characterization of boron carbide powders and ceramics
Name (type = personal)
NamePart (type = family)
Kuwelkar
NamePart (type = given)
Kanak Anant
NamePart (type = date)
1989-
DisplayForm
Kanak Anant Kuwelkar
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Haber
NamePart (type = given)
Richard A
DisplayForm
Richard A Haber
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Domnich
NamePart (type = given)
Vladislav
DisplayForm
Vladislav Domnich
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Chhowalla
NamePart (type = given)
Manish
DisplayForm
Manish Chhowalla
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Matthewson
NamePart (type = given)
John
DisplayForm
John Matthewson
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
LaSalvia
NamePart (type = given)
Jerry
DisplayForm
Jerry LaSalvia
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = personal)
NamePart (type = family)
Rafaniello
NamePart (type = given)
William
DisplayForm
William Rafaniello
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2016
DateOther (qualifier = exact); (type = degree)
2016-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2016
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Boron carbide is the material of choice for lightweight armor applications due to its extreme hardness, high Young's modulus and low specific weight. The homogeneity range in boron carbide extends from ~9 to ~20 at% carbon with the solubility limits not uniquely defined in literature. Over the homogeneity range, the exact lattice positions of boron and carbon atoms have not been unambiguously established, and this topic has been the consideration of significant debate over the last 60 years. The atomic configuration and positions of the boron and carbon atoms play a key role in the crystal structure of the boron carbide phases. Depending on the atomic structure, boron carbide exhibits different mechanical properties which may alter its ballistic performance under extreme dynamic conditions. This work focusses on refinement and development of analytical and chemical methods for an accurate determination of the boron carbide stoichiometry. These methods were then utilized to link structural changes of boron carbide across the solubility range to variations in mechanical properties. After an extensive assessment of the currently employed characterization techniques, it was discerned that the largest source of uncertainty in the determination of the boron carbide stoichiometry was found to arise from the method utilized to evaluate the free carbon concentration. To this end, a modified spiking technique was introduced for free carbon determination where curve fitting techniques were employed to model the asymmetry of the 002 free carbon diffraction peak based on the amorphous, disordered and graphitic nature of carbon. A relationship was then established between the relative intensities of the carbon and boron carbide peaks to the percentage of added carbon and the free-carbon content was obtained by extrapolation. Samples with varying chemistry and high purity were synthesized across the solubility range by hot pressing mixtures of amorphous boron and boron carbide. Vibrational mode frequencies and lattice parameter measurements from Rietveld refinement were correlated to the respective B:C ratios calculated using the developed characterization techniques. An expansion of the unit cell and change in slope in the lattice parameter-stoichiometry relationship were observed at more boron rich stoichiometries. These observations were justified through the proposal of a simplified structural model considering preferential substitution of boron atoms for carbon atoms in the icosahedra from 20 at% to 13.3 at% carbon, followed by formation of B-B bonds from 13.3 at % C to ~9 at% C. Hardness measurements uncovered decreased hardness values in boron rich boron carbide which was attributed to the formation of weaker unit cells. Load induced amorphization was also detected in all the indented materials. Finally, experimental observations have shown that failure in boron carbide may be governed by a mechanism other than amorphization and synthesizing boron carbide with a modified microstructure at stoichiometries close to B4C may be the way forward to attain improved ballistic performance.
Subject (authority = RUETD)
Topic
Materials Science and Engineering
Subject (authority = ETD-LCSH)
Topic
Boron
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_7476
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xxi, 186 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Kanak Anant Kuwelkar
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3Q242JT
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Kuwelkar
GivenName
Kanak
MiddleName
Anant
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-08-28 21:58:43
AssociatedEntity
Name
Kanak Kuwelkar
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-08-31T20:53:39
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-08-31T20:53:39
ApplicationName
Microsoft® Word 2013
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024