
DESIGN AND IMPLEMENTATION OF 802.11
CONTROL API AND EXPERIMENTAL EVALUATION

OF CHANNEL SELECTION ALGORITHMS

BY PAVAN KULKARNI

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Dipankar Raychaudhuri

and approved by

New Brunswick, New Jersey

October, 2016

ABSTRACT OF THE THESIS

DESIGN AND IMPLEMENTATION OF 802.11

CONTROL API AND EXPERIMENTAL EVALUATION

OF CHANNEL SELECTION ALGORITHMS

by Pavan Kulkarni

Thesis Director: Professor Dipankar Raychaudhuri

This thesis presents design and implementation of an HTTP based control API on

top of the 802.11 software access point(hostapd) along with experimental evaluation

of channel coordination algorithms using the framework developed. The hostapd cli,

a front end program to interact with hostapd is modified to control the channel via

HTTP interface through CSA(Channel Switch Announcement) commands. The time

taken to switch the channel through this framework is studied experimentally. The

API is then used to enable experimental evaluation of radio resource management algo-

rithms running on a central controller. The control framework has been implemented

on the ORBIT testbed using a set of 802.11 nodes with specified topology controlled

by a logically centralized algorithm running on a server machine. The setup is used

to study candidate channel assignment algorithms in terms of metrics such as total

system throughput. Throughput analysis for different channel coordination algorithms

was carried out using iperf to compare their performance. The performance of WiFi

Automatic Channel Selection(ACS), a survey based channel selection algorithm, is com-

pared with alternative graph coloring algorithms including HSum and HMinMax. The

ii

experimental results show that the graph coloring algorithms HSum and HMinMax per-

form better when compared to ACS in terms of overall system throughput. The ORBIT

nodes were grouped to form two different networks and performance of inter-network

and intra-network cooperation was studied by controlling the channel through a logi-

cally centralized controller. The results show increased performance of inter-network

cooperation when compared to intra-network cooperation in terms of overall system

throughput.

iii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor Dipankar Ray-

chaudhuri for his support and invaluable guidance through this project. It has been

a great learning experience and pleasure working under his supervision. I am very

grateful to Ivan Seskar and Prof. Roy Yates for their valuable insights during weekly

meetings. I would like to thank Parishad Karimi and Francesco Branzino for all the

discussions we had that has helped structure most of the work. I am grateful to my

family for their constant support and encouragement. Lastly, I would like to thank my

friends at WINLAB and Rutgers University for making this journey a pleasant one.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . vii

List of Figures . viii

1. Introduction . 1

1.1. WiFi Channels in 2.4GHz band . 2

1.2. WiFi Access Point Controllers . 3

2. Evolution of Wi-Fi and Related Work in Channel Co-ordination . . 6

2.1. Hostapd . 6

2.1.1. Hostapd configuration file . 7

2.1.2. Hostapd architecture . 7

2.2. hostapd cli . 8

2.3. Channel Switch Announcement(CSA) 9

2.4. Related Work in Wi-Fi channel coordination 10

3. HTTP framework implementation on hostapd 15

3.1. GNU Libmicrohttpd . 15

3.2. Architecture . 16

4. Experimental Approach and Algorithmic design 19

4.1. ORBIT test bed setup . 19

4.2. Need for channel assignment algorithms 21

4.3. Channel assignment algorithms . 22

v

4.3.1. Automatic Channel Selection algorithm 23

4.3.2. HSum Algorithm . 24

4.3.3. HMinMax Algorithm . 26

4.4. Controller design and implementation in ORBIT test bed 27

5. Evaluation . 30

5.1. Evaluation of Channel Switch Time using the 802.11 Control API . . . 31

5.2. Evaluation of Channel Assignment algorithms 32

5.2.1. Topology for evaluation of channel assignment algorithms 33

5.2.2. Throughput analyses of Channel Assignment algorithms 33

5.3. Comparing Inter-network cooperation with Intra-network cooperation . 35

6. Conclusion and Future Work . 38

6.1. Future Work . 38

6.1.1. Distributed Channel Selection Mechanism 38

6.1.2. Algorithm for Access Points in Carrier Sense range and Interfer-

ence range . 39

References . 40

vi

List of Tables

1.1. IEEE 802.11 standards . 2

2.1. List of technologies used by hostapd . 6

2.2. hostapd cli commands . 9

5.1. Throughput Analyses of Channel Assignment Algorithms 34

5.2. Channel assigned to the nodes for algorithms 34

vii

List of Figures

1.1. 2.4GHz WiFi Channels . 2

1.2. UE association with Access Points with and without controller 4

1.3. WiFi Access Point Controller Architecture 5

2.1. Sample hostapd configuration file . 7

2.2. hostapd and wpa-supplicant architecture 8

2.3. CSA Packet Format . 9

3.1. Implementation Architecture . 16

3.2. Channel Switch Message Flow . 17

4.1. Indoor Grid setup in ORBIT testbed . 20

4.2. PLCP Frame Format . 22

4.3. A simple topology to illustrate the calculation of weight of an edge . . . 24

4.4. Overview of Controller Design in ORBIT testbed 28

5.1. Iperf throughput measurement for channel switch using 802.11 control

API . 32

5.2. Grid topology used for the experimentation 33

5.3. Grid topology showing Network-1 and Network-2 35

5.4. Inter-network cooperation mechanism 36

viii

1

Chapter 1

Introduction

The IEEE 802.11 working group for Wireless LAN was founded in 1992 under the chair-

manship of Vic Hayes [18]. In 1993 Henrik Sjdin proposed the idea of Public Access

Local Wireless Networks at the NetWorld+Interop conference in The Moscone Cen-

ter in San Francisco [16]. While he did not use the term hotspot, this is considered

the first mention of the concept. In 1994 funded by the National Science Foundation,

Dr. Alex Hills of Carnegie Mellon begins to implement ”Wireless Andrew” a wireless

research initiative which originally provided coverage to 7 buildings on campus. The

next milestone came when Australia's Commonwealth Scientific and Industrial Re-

search Organization (CSIRO) patented a technique for reducing multipath interference

of radio signals transmitted for computer networking and it was named the 802.11a

standard [14]. Eventually in 1997 the first 802.11 standard was released which provided

up to 2 Mbps link speeds. Then the term ”hotspot” was coined and MobileStar became

the first company to provide WiFi hotspots in public places like airports, hotels and

it signed contracts with companies like Starbucks, American Airlines etc. The WiFi

Alliance, a nonprofit trade association working for universal compatibility and quality

user experience was also formed. Then 802.11b standard was released for WiFi operat-

ing at 11Mbps link speeds on the 2.4GHz frequency. In the later years a series of 802.11

standards were released which supported efficient transmission and better speed. The

list of 802.11 technologies is summarized in the table below:

2

IEEE Standard Frequency Speed Transmission range Access Method

802.11 2.4GHz 1 to 2Mbps 20 feet indoors CSMA/CA

802.11a 5GHz Up to 54Mbps 20 to 75 feet indoors CSMA/CA

802.11b 2.4GHz Up to 11Mbps Up to 150 feet indoors CSMA/CA

802.11g 2.4GHz Up to 54Mbps Up to 150 feet indoors CSMA/CA

802.11n 2.4GHz/5GHz Up to 600Mbps 175+ feet indoors CSMA/CA

Table 1.1: IEEE 802.11 standards

According to study conducted by iPass [10] a commercial WiFi network provider,

by 2015 there were more than 50 million worldwide public hotspots, 80% increase since

2013. The number of hotspots is expected to grow rapidly and to hit 340 million global

hotspots by 2018. With this exponential growth, WiFi is emerging as a truly global

and roamable network.

1.1 WiFi Channels in 2.4GHz band

802.11 workgroup currently documents use of WiFi in five distinct frequency ranges:

2.4GHz, 3.6GHz, 4.9GHz. 5GHz and 5.9GHz bands. Technologies like 802.11b/g/n

uses 2.4GHz band and it is most widely used WiFi frequency band. There are 14

channels in this band spaced 5MHz apart. As the protocol requires 16.25MHz to 22MHz

channel separation, adjacent channels overlap. The below figure shows the graphical

representation of 2.4GHz band channel overlapping.

Figure 1.1: 2.4GHz WiFi Channels

As seen in the above figure the adjacent channels overlap which creates interference

3

when data is transmitted through them. With 22MHz bandwidth for each channel,

2.4GHz band give three channels that do not overlap - Channels 1, 6 and 11. Trans-

mitting data through these channels will create close to zero interference.

Co-channel interference is not much of a problem unless there are multiple clients trans-

mitting in the same channel. The is so because WiFi undergoes carrier sensing and

backoff mechanism when it detects channel is busy. This time sharing mechanism does

not affect the throughput severely when there are limited number of clients associated

with the Access Point. Adjacent-Channel interference on the other hand is where you

run into problems and channel selection becomes critical [15]. These channel related in-

terference can be reduced or eliminated by selecting proper WiFi channels for a network.

1.2 WiFi Access Point Controllers

With increasing density of WLAN access points it becomes practically impossible to

configure each and every access point manually. Apart from that, manual configuration

of access points does not help in improving the system efficiency. Channel assignment

is important factor for throughput performance of a WLAN system. A WLAN system

should have least number of overlapping channels for better throughput performance.

One another important factor is load balancing. This cannot be done by stand alone

access points. Controller based access points can also balance the load keeping into

account the overall system performance. Consider there are two access points with

overlapping coverage as shown in the figure below

.

4

Figure 1.2: UE association with Access Points with and without controller

Suppose six clients are associated with AP-A and two clients associated with the

AP-B. Considering each client gives same amount of load to the access point, AP-A is

heavily loaded. In case of stand alone access points, they do not communicate which

result in load imbalance and thus performance is degraded. If there is a controller in

the system, it will have load information of both the access points. Thus it will reduce

the load on AP-A by associating few clients in the overlapping region to AP-B as shown

in the figure above.

5

Figure 1.3: WiFi Access Point Controller Architecture

Figure 1.3 shows a typical WLAN controller architecture. As shown in the archi-

tecture above, each access point is connected to the controller through a switch. The

controller has overall picture of the radio environment by maintaining a database of

Access Point’s operating channel, transmit power, location etc. Through these infor-

mation the controller constructs a radio map of the wireless environment. A suitable

algorithm is chosen and based on that new parameters are generated.

6

Chapter 2

Evolution of Wi-Fi and Related Work in Channel

Co-ordination

2.1 Hostapd

Hostapd(Host access point daemon) is a software access point capable of converting any

Wireless Interface card to an Access Point [12]. The latest version of hostapd supports

madwifi and mac80211 based drivers. For the evaluation purpose we use mac80211

drivers. The below table shows the list of technology hostapd supports.

Technology Band Year Max Speed

802.11a 5GHz 1999 54Mbps

802.11b 2.4GHz 1999 11Mbps

802.11g 2.4GHz 2003 54Mbps

802.11n 2.4GHz and 5GHz 2009 600Mbps

802.11ac 5GHz 2013 54Mbps

Table 2.1: List of technologies used by hostapd

As hostapd is a software access point, it has its own capabilities and drawbacks. It

can create multiple APs on the same card which have different SSIDs. Hostapd can

create one AP on one card and another AP on the second card all within the single

instance of the hostapd [12]. Although hostapd can create multiple APs on the same

card, all the APs should operate in the same channel. If there is a channel change,

both the APs have to change the channel. Another drawback is assigning IP to the AP

and the clients connected to the AP. This has to be done through DHCP server. In our

evaluation this is done using ifconfig commands.

7

2.1.1 Hostapd configuration file

The hostapd configuration file specifies the list of configuration parameters which it

uses to start the access point. The configuration parameters include interface to use,

SSID name, channel number, type of technology to use etc. The figure below shows a

sample configuration file.

Figure 2.1: Sample hostapd configuration file

As shown above, hostapd uses the parameters specified in the configuration file to

start the access point. Capabilities like type of driver being used and technology need

to be specified carefully considering the capabilities of the driver in the system. In

case of 2.4GHz band the channel number ranges from 1 to 13, with 1, 6 and 11 being

orthogonal channels. This differs based on the technology specified in configuration

file.

2.1.2 Hostapd architecture

Hostapd includes IEEE 802.11 access point management (authentication / association),

IEEE 802.1X/WPA/WPA2 Authenticator, EAP server, and RADIUS authentication

server functionality. It can be built with various configuration option, e.g., a standalone

AP management solution or a RADIUS authentication server with support for number

of EAP methods. Hostapd is designed in such a way that it is OS independent, has

a portable C code for all its functionality [12]. This helps the users to create softAP

on different platforms having different functionalities. Hostapd implements a control

interface that can be used by external programs to control the operations of the hostap

8

daemon and to get status information and event notifications. There is a small C library

that provides helper functions to facilitate the use of the control interface.

Figure 2.2: hostapd and wpa-supplicant architecture

The hostapd code-base comes with two main components, hostapd and wpa supplicant

as shown in the figure above. Hostapd is used to run the access point and wpa supplicant

is used for the client. Hostapd interacts with driver with the help of driver inter-

face functions. In the figure shown above nl80211 interface function interacts with the

nl80211 driver. Hostapd has a control interface which acts as an interface to hostapd cli.

hostapd cli exposes commands to users through which different hostapd parameters

can be controlled. hostapd cli is further used in our implementation to develop HTTP

framework on top of it.

2.2 hostapd cli

hostapd cli is a frontend program to interact with hostapd. It is used to query the

status of hostapd and set parameters through command line interface. hostapd cli has

two modes, interactive and command line. Both the modes share the common set

9

of commands. Interactive mode is started when hostapd cli is executed without any

parameters on the command line. Commands are then entered from the controlling

terminal in response to the hostapd cli prompt. In command line mode, the same

commands are entered as command line arguments. The table below shows few of the

commands supported by hostapd cli:

Command Description

status Reports information pertaining to number of clients connected, channel etc.

interface Show available interfaces and/or set the current interface.

get config Get information present in hostapd configuration file.

chan switch Switch channel through CSA(Channel Switch Announcement) mechanism.

Table 2.2: hostapd cli commands

The chan switch command is used to develop HTTP framework on top of hostapd.

The format of the command is shown below:

chan switch #beacons #freq

Where #beacons shows the number of beacons after which the channel switch command

is sent. #freq is the frequency of the new channel.

2.3 Channel Switch Announcement(CSA)

The Channel Switch Announcement is used by an Access Point in a BSS to advertise

when it is changing to a new channel and the channel number of the new channel [2].

The format of the Channel Switch Announcement element is shown below.

Figure 2.3: CSA Packet Format

10

• Channel Switch Mode: Indicates any restrictions on transmission until a channel

switch. An AP in a BSS sets the Channel Switch Mode field to either 0 or 1 on

transmission.

• New Channel Number: set the number of the channel to which the AP is switch-

ing.

• Channel Switch Count: this field either is set to the number of TBTTs(Target

Beacon Transmission Time) until the AP sending the Channel Switch Announce-

ment element switches to the new channel or is set to 0. A value of 1 indicates

that the switch occurs immediately before the next TBTT. A value of 0 indi-

cates that the switch occurs at any time after the frame containing the element

is transmitted.

An AP shall inform associated STAs that the AP is moving to a new channel and

maintain the association by advertising the switch using Channel Switch Announcement

elements in Beacon frames, Probe Response frames, and Channel Switch Announcement

frames until the intended channel switch time [2]. The AP may force STAs in the BSS to

stop transmissions until the channel switch takes place by setting the Channel Switch

Mode field in the Channel Switch Announcement element to 1. The channel switch

should be scheduled so that all STAs in the BSS, including STAs in power save mode,

have the opportunity to receive at least one Channel Switch Announcement element

before the switch. The AP may send the Channel Switch Announcement frame in a BSS

without performing a backoff, after determining the WM is idle for one PIFS period. A

STA that receives a Channel Switch Announcement element may choose not to perform

the specified switch, but to take alternative action. For example, it may choose to move

to a different BSS. A STA in a BSS that is not the AP shall not transmit the Channel

Switch Announcement element.

2.4 Related Work in Wi-Fi channel coordination

[7] analyses the growing problem of dense wireless networks. It studies the coexistence

of low cost residential APs and actively managed service provider APs in overlapping

11

frequency and time domains. Detailed simulation experimentation is done for increas-

ing ratio of residential APs compared to managed APs and the other way around. The

impact on throughput on clients as the ratio of residential APs increase is examined

in this paper. A key finding of the paper is that as the density of the managed APs

increase, although the overall band utilization increase the managed APs would per-

form worse compared to residential APs. Liew’s MIS model is constructed for the given

contention graph and performance of different channel assignment schemes is studied.

The simulation results show that the performance of single APs would be comparatively

better if a un-managed AP is added into its vicinity rather than adding a managed AP.

Reference [19] studies the existence of WiFi and LTE in unlicensed band. The stud-

ies in the paper show that co-existence of WiFi and LTE Unlicensed networks causes

significant interference to WiFi as LTE is not designed to sense the channel before

transmitting data. This causes WiFi to back off multiple times as LTE continuously

transmits data and keep the channel busy. WiFi and LTE throughput characteriza-

tion is formulated based on the distance and power received from the interfering AP.

In the case of WiFi the interfering AP is LTE base station and in the case of LTE,

the interfering AP is WiFi base station. Two type of optimization is discussed, Joint

Power Control Optimization and Joint Time Division Channel Access Optimization.

The Joint Power Control Optimization optimizes the power transmitted by each base

station so that the aggregate throughput received is increased. The Joint Time Divi-

sion Optimization optimizes the time share of each Access Point so that the aggregate

throughput received by all the base station is increased. The centralized optimization

approach of WiFi and LTE parameters is incorporated in our evaluation of WiFi chan-

nel coordination algorithms.

Reference [17] paper presents the design and proof of concept validation of a novel

network assisted spectrum coordination service. The paper suggests an overlay net-

work for dissemination of spectrum usage information to otherwise independent radio

devices. This is used to execute a decentralized spectrum coexistence policies. A

12

system architecture for spectrum coordination is suggested which contains in-network

Spectrum Gateways(SGs) that connect between themselves and to all wireless devices

in the region through a overlay network. The differentiating feature of this architecture

is that the spectrum updates from a wireless device are updated to those devices which

are under the influence of the wireless device. This is done using a region of inter-

est based geo-routing protocol. Therefore each wireless entity acquires updates from

the devices which are in its influence. Finally a distributed coexistence algorithm is

suggested having Non-adaptive parameter selection(NAPS), Adaptive Parameter Selec-

tion(APS) and Global Coordinated Resource Packing(GCRP). These methods describe

the way in which radio parameters are disseminated across the network. Three dif-

ferent association schemes are compared: Least Distance, Intra-Network Optimization

and Cooperative Optimization.

Reference [8] proposes a technique to improve the usage of wireless spectrum in the

case WLAN environment. A weighted form of graph coloring is proposed that takes

into account the interference observed from each of the wireless node in the topology.

A scalable distributed algorithm for channel assignment is proposed. The paper also

demonstrates that better performance can be achieved by assigning partially overlap-

ping channels to Access Points. The weights are assigned to the edges based on the

potential of interference. Higher the weight, higher the interference in that particular

edge. So, the channels are assigned based on the weight of the edge. Two different

channel assignment algorithms are discussed in this paper, HSum and HMinMax. The

HSum algorithm uses the sum of the weights to the adjacent nodes which have the

same channel. The channel is assigned based on the minimum sum. HMinMax is based

on the maximum weight of the edge for each particular adjacent node. The channel

is assigned based on least maximum value. Finally the simulation results for each al-

gorithm is performed and the average system throughput is measured based on the

channel assigned to each node. The results also show that HSum performs better in

terms of overall system throughput when compared to HMinMax.

13

Reference [6] proposes a Smart WiFi methodology that improve the spectrum utiliza-

tion and overall WiFi performance. The paper proposes two different entities, Radio

Environment Maps(REM) and Radio Resource Management(RRM). REM enables use

of wireless environment data sets such as Access Point location, pathloss models, real

time interference levels and statistical channel occupancies. RRM is used for efficient

WiFi coordination and optimization that utilizes REM information. REM is generated

using Measurement Capable Devices like smart-phones, WiFi access points. These de-

vices are exclusively for measurement purposes and they report the information to REM

data storage and acquisition. The REM data can be used by different entities like User

Interface program, RRM unit etc. RRM algorithm is proposed that focuses on maxi-

mizing the WiFi sum throughput through Signal to Interference plus Noise ratio. Two

resource allocation strategies are discussed for optimal WiFi performance. Strategy one

discusses appropriately allocating disjoint communication channels to each of the access

point so that there is minimal interference. However this can be used where there is sig-

nificant spectrum under utilization. In the case of dense WiFi network multiple access

point in a location have to be assigned same channel. To deal with this, strategy two

is proposed. Strategy two discusses assigning overlapping channels to access points by

introducing a power optimization algorithm. The algorithm ensures maximum system

throughput. The RRM also utilizes historical information of the access points to make

the decisions. Here the RRM can be compared to a controller which has overall picture

of radio environment.

Reference [9] discusses fairness problems in uncoordinated WiFi deployments. In the

case of dense WiFi network few of the access points struggle to get their share of

channels which in turn affects the overall system performance. An algorithm called

MAXChop is proposed which works on channel hopping technique and uses only or-

thogonal channels. An uncoordinated deployment is examined where there is no central

entity which controls the position of the access point, transmit power, channel assign-

ment and other important factors. The fairness is examined only at the access point

level and not between access point and client. The paper suggests that even if a graph

14

is k-colorable, a good static channel assignment algorithm will have unfairness for few

access points. To improve the unfairness in static channel assignment, channel hopping

technique is discussed. In order to fairly treat all access point channel hopping tech-

nique is used. So, basically time is divided into slots and at the end of each time slot

channel is switched. The channel hopping sequence is obtained through the MaxChop

algorithm. The algorithm at first obtains the hopping sequence of all the neighboring

APs. Based on that it decides its own hopping sequence. The channel hop is performed

asynchronously. The results show that channel hopping increases the overall system

throughput. The fairness of the APs especially the ones which are affected in static

assignment is increased. The UDP throughput of the overall system increased by about

10% although channel switching did reduce the system throughput by 0.5% to 0.6%.

15

Chapter 3

HTTP framework implementation on hostapd

3.1 GNU Libmicrohttpd

GNU Libmicrohttpd is a C library used to run HTTP server as part of another ap-

plication [3]. GNU libmicrohttpd can be used as a independent library without any

dependencies. The APIs provided by the library are simple to use, well documented

and are backward compatible with all the versions of HTTP. Libmicrohttpd is imple-

mented in such a way that the HTTP server runs concurrently with other applications

and message exchange between http server and other applications is made simple and

supports almost all formats. These features are the main factors to use Libmicrohttpd

in the framework developed.

The APIs used for the development of the framework are discussed below.

MHD start daemon(MHD USE SELECT INTERNALLY , PORT, NULL, NULL, &

answer to connection, (void *) PAGE, MHD OPTION END): Starts HTTP server on

the given port number. answer to connection is a callback function which is triggered

when there is HTTP request. The arguments have to end with MHD OPTION END.

The function returns NULL on error and handle to the daemon on success.

MHD create response from data(size t sz, void *data, int must free, int must copy):

Creates a response with size sz and data pointed by the pointer ”data”. When must free

is set to true the data is erased after the response it sent. When must copy is set to

true, the daemon makes a copy of the data sent in the response. The function returns

NULL on error.

16

3.2 Architecture

Figure 3.1: Implementation Architecture

Figure 3.1 shows the implementation architecture of HTTP framework to control the

channel parameter of hostapd. The hostap daemon running the access point using the

wireless interface is executed in each node. This software uses IEEE802.11 drivers to

run the access point. The hostapd cli is a command line interface based front end

program for interacting with hostapd. It has set of commands which you can use to

change certain parameters in hostapd. For example ”interface” command shows avail-

able interfaces in the node and sets the interface when multiple interfaces are available.

Similarly another command is set chan which is used to set the channel of access point.

This is used only if the driver supports Channel Switch Announcement(CSA) feature

as discussed in Section 2.3. The hostapd cli interacts with hostapd through the control

interface. hostapd implements a control interface that can be used by external pro-

grams to control the operations of hostap daemon and to get status information and

event notifications. There is a small C library, in form of a single C file, wpa ctrl.c, that

provides helper functions to facilitate the use of control interface. External program

that needs to communicate with hostapd can use hostapd cli by linking wpa ctrl.c.

The HTTP server acts as an interface between controller and hostapd cli. The HTTP

server sends the GET and SET signal sent by the controller to the hostapd cli through

a shared memory. The HTTP SET signal received from the controller has parameter

17

type and value. Once the HTTP SET signal is received from the controller, the values

embedded in the request are updated in the shared memory. Once the values are up-

dated, HTTP server sends SIGINT signal to hostapd cli. hostapd cli after receiving the

SIGINT signal accesses the updated value and perform the related function. A typical

message flow within the system for channel switch is shown below

Figure 3.2: Channel Switch Message Flow

The figure above shows how the HTTP channel switch message flows through the

framework. At first the controller decides the new channel to which an access point

has to change. It frames a HTTP request by embedding new channel number into

the HTTP request. This HTTP request is sent to the HTTP server by mentioning

appropriate port number. The port number in the HTTP message request and the

18

port number in which the HTTP server is running has to match. A call back function

answer to connection is implemented in HTTP server to receive the HTTP request

message. Once this message is received by the server it extracts the parameter in the

message. First it decides whether the message is GET or SET request. In this example it

will be a SET request. Then the function extracts the channel number in the message

request. Once the channel number is received the next task is to send the channel

information to hostapd cli. To do this task, shared memory is used. The channel

number is shared between HTTP server and hostapd cli by using shared memory. This

is explained in the Figure 3.1. hostapd cli accesses the updated channel through the

shared memory. hostapd cli is a software on top of hostapd which is developed to

control different parameters like channel power etc. This software gives command line

interface to the user to control the parameters through set of commands. The software

has been modified to remove the command line interface feature and to act as an

interface between HTTP server and hostapd cli. The channel number is accessed and

the appropriate command is generated. The command generated is sent to hostapd

through wpa control interface. Finally wpa control interface triggers a channel switch

using Channel Switch Announcement packets. Client connected to the access point

receives this packet and internally switches the channel.

19

Chapter 4

Experimental Approach and Algorithmic design

Channel planning for the access points especially in public places where there are nu-

merous access points is very crucial. Efficient planning of channel assignment is in

direct correlation with the overall system throughput. The HTTP framework devel-

oped exposes APIs to GET and SET the channel of an access point through hostapd cli

interface. ORBIT is a Radio Grid testbed to test scalable wireless protocols. The OR-

BIT infrastructure is used to perform the experimentation. The prime advantage of

using the ORBIT testbed is that the experimentation can be carried out in real world

indoor wireless environment. The other advantage is that the experiment can be scaled

to many nodes and the results can be obtained for different topologies.

4.1 ORBIT test bed setup

The ORBIT test bed is a indoor radio grid setup at WINLAB, Rutgers University [13].

It is used as a emulator for controlled indoor wireless experimentation. The radio grid

consists of 20x20 wireless nodes having 802.11a/b/g wireless cards with around 1 meter

spacing in between. The users of the node can run their own OS image and software

packages on top of the operating system. The users also have access to node console

and the console logs. For example, users can run their own network layer protocols or

new application software to test a specific network application. The following figure

shows the indoor grid set up in orbit test bed.

20

Figure 4.1: Indoor Grid setup in ORBIT testbed

The grid contains ORBIT radio nodes which serve as a primary platform for user

experimentation. It contains 20x20 nodes arranged in rectangular position as shown in

the figure above. Each row has 20 nodes aligned next to each other. The distance be-

tween the adjacent node is close to 1.13 meter. Each node is a computing machine with

re-loadable user Operating System and have WLAN interfaces. The instrumentation

subsystem is used to measure radio measurements and is also used to generate artificial

subsystem. There are two types of support servers. The front-end server support the

web services and back end servers is used for experimentation and data storage.

The ORBIT testbed has Management/Control software and user level application soft-

ware to control the Radio nodes. The Management/Control software contains Node

21

Handler, Collection Server and Disk Loading Server. The Node handler distributes the

experimental script to the nodes through multicast. The user has the power to group

the nodes and run the experiments simultaneously on all the nodes. The nodes in the

group receive the script and run the experiments. The collection server collects the

results obtained through experiment. The nodes after running the script, collect the

statistics and send the results to multicast server through multicast channel. The disk

loading server is used to load the user image on hard disk on nodes. An image can

be loaded on multiple nodes through a multicast channel. The radio nodes software

contains Node Agent, ORBIT Measurement Library(OML) and Libmac. Node agent

resides in nodes and receive commands from Node Handler. It is responsible to run and

stop the application and report the status of the experiment to the Node Handler. The

ORBIT Measurement Library defines a data structure for sending/receiving, encod-

ing/decoding measurement data that are exchanged. Libmac is a user space C library

to control MAC layer parameters like Tx power, Channel Setting etc. It is developed

on top of device drivers present in the node.

4.2 Need for channel assignment algorithms

WiFi works on carrier sensing mechanism. Each access point scans its wireless envi-

ronment to see if the frequency in which it is intended to operate on is busy or free. If

it senses that a particular channel is busy it backs off and scans the wireless environ-

ment again. This repeats till the channel becomes free. Basically WiFi carrier sensing

is composed of two distinct functions, Clear Channel Assessment(CCA) and Network

Allocation Vector(NAV). Clear Channel Assessment is based on physical carrier sensing

which listens to received energy on radio interface. CCA is defined in IEEE 802.11-2007

as part of Physical Medium Dependent(PMD) and Physical Layer Convergence Proto-

col(PLCP) layer [11]. NAV is virtual carrier sensing where the channel is kept busy

for mandatory amount of frames. The atheros ath9k driver uses the CCA mechanism

for carrier sensing. Clear Channel Assessment is composed of two related functions,

carrier sense(CS) and energy detection(ED). Carrier sense is the ability of an access

22

point to receive and decode a incoming WiFi signal preamble. In addition CCA must

report the channel as BUSY for the length of received frame indicated in the frame’s

PLCP length field. PLCP header has either one of the following information: the time

required to transmit the frame of the number of the octets present in the frame. Based

on this information the access point is backed off for a particular amount of time. The

PLCP frame format is shown in the below figure.

Figure 4.2: PLCP Frame Format

PLCP header contains fixed data rate so that the station receiving that packet can

decode the information [5]. Energy detection is referred to ability of the access point

to detect non WiFi signals. The signal may involve signals from interference sources

and unidentifiable WiFi transmissions that have been corrupted or no longer can be

decoded. ED may involve power threshold below which the channel is not termed busy.

As discussed above if the channel is busy there is significant impact on the throughput of

the access point which is trying to transmit data in the same channel. So, uncoordinated

WLANs can be greatly affected by interference from neighboring WLANs. There has

to be proper channel planning based on the radio map as channel assignment has direct

correlation with the overall system throughput.

4.3 Channel assignment algorithms

There are different approaches to the channel assignment based on how the algorithms

are executed. The algorithms can be broadly classified as centralized and distributed.

23

The centralized algorithm works on a central controller. The central controller accesses

the WiFi parameters of all the access points it is controlling. It has overall picture of

the access points and their radio interference region. The controller after receiving the

parameters of the underlying access points executes the algorithm. The parameters

are accessed through an interface between Controller and Access Points. The channel

assignments algorithms used for the evaluation are discussed below.

4.3.1 Automatic Channel Selection algorithm

Automatic Channel Selection(ACS) is a software package that is inbuilt with hostapd

[1]. The algorithm enables the interfaces to automatically figure out the channel of

operation based on the radio environment. ACS is a survey based algorithm that uses

nl80211 survey API command to query interface for channel active time, channel busy

time, channel tx time and noise. The active time is the amount of time interface has

spent in the channel and the busy time is the amount time the interface has found that

the channel is busy and could not initiate communication. The tx time is the amount

of time the interface has spent transmitting data in the channel. A parameter known

as interference factor is calculated for each channel to determine which channel to se-

lect. The interference factor is the ratio of amount of time the interface has observed

the channel busy to amount of time the interface has spent transmitting data. This

corresponds to:

(busy time− tx time)/(active time− tx time) ∗ 2(chan nf−band min nf)

The power 2 reflects the way power decreases with distance. Minimum noise floor is the

lowest recorded noise in all the channels. There are factors that are considered along

with interference factor to decide the channel. The target operational bandwidth is one

of them. For eg: 20MHz band in 2.4GHz channel overlap and 20MHz band in 5GHz

band do not overlap. These factors are considered to select the channel.

Automatic channel selection is triggered by enabling ACS in hostapd config file. The

.config file is edited as follows to enable ACS.

24

CONFIG ACS = y

To make hostapd perform ACS during run time, channel number in hostapd.conf file

has to be set to 0 or acs as follows

channel = 0

or

channel = acs survey

Once the hostapd is started with this configuration the ACS algorithm is triggered

before the driver is initialized. After execution of algorithm the channel is decided and

this channel number is used to start the access point. Once ACS is executed at the

start the channel is constant for the life time of the access point.

4.3.2 HSum Algorithm

HSum is a channel coloring algorithm and it works well in the region where multiple

wireless devices share a limited RF spectrum. The algorithm can be implemented in

centralized as well as in distributed fashion. Before we go into details of the algorithm,

we shall discuss the method of calculating the weights between nodes to run the algo-

rithm. Let us consider a simple four node graph as shown below:

Figure 4.3: A simple topology to illustrate the calculation of weight of an edge

25

Let the distance between each pair of access point be d1, d2 upto d6 as shown in

the figure above. Here we assume that all the access points transmit with the same

power. The received signal strength is calculated based on the distance between the

access points. The path-loss increases with the increase in distance between the nodes.

Following path-loss model is used to calculate the received power [20].

L = 20logf + Nlogd + Pf (n)− 28

where,

L = total pathloss in dB.

f = frequency of transmission in MHz.

d = Distance in meters.

N = The distance power loss coefficient.

n = Number of floors between transmitter and receiver.

Pf(n) = Floor loss penetration factor.

The distance power loss coefficient for 2.4GHz frequency is 28 and and floor loss co-

efficient for single floor is 15. Based on the above formulation the path-loss for each

access point from the remaining access point is calculated. The received power in dB

is determined based on the pathloss calculated and transmit power. Considering there

are N access points, each access point receives signals from N-1 access points. There-

fore each access point perform N-1 pathloss calculations. Total pathloss calculations

performed in the overall system is N ∗ (N − 1). Therefore pathloss calculations in a

system is proportional to N2 where N is total number of access points.

The algorithm has two steps, the initialization step and the optimization step. In

the initialization step all the access points are either assigned a random channel or

LCCS(Least Congested Channel Search) is performed to assign the channels. Then in

the optimization step the algorithm is executed. The algorithm can be explained in

following manner:

Notations:

k : Number of available channels.

N(api): Set of neighbors of api.

26

C(api): Channel assignment for api.

Initialization step:

• LCCS : Run hostapd’s ACS algorithm for the initial channel assignment.

• (C(api)) → ci: Assign channel ci to AP i.

Optimization steps:

• sumi =
∑i

n=1wi ∀ i ∈ ci: Add the weights of all the edges which have the

vertices (Access Points) operating in the same channel.

• min(sumi) ∀i: Calculate the minimum of the summations calculated in the pre-

vious step.

• Assign the channel which has minimum summation.

Based on the summation of the weights of the edges operating in same channel the

new channel is decided. At the start a random node is chosen and the above steps are

performed. After completion of the above mentioned algorithmic steps next random

node is chosen. This is followed untill all the nodes in the graph are covered. In

the example graph shown in Figure 4.3 one of the ways in which algorithm progresses

might be AP1, AP2, AP3 and AP4. The channels are assigned in a serial fashion and

an iteration is complete once all the nodes in the graph are covered.

4.3.3 HMinMax Algorithm

The algorithm has two steps, initialization step and optimization step. In the initial-

ization step all the access points are either assigned a random channel or LCCS(Least

Congested Channel Search) is performed to assign the channels. Then in the optimiza-

tion step the algorithm is executed. The following steps explains the algorithm:

Notations:

k : Number of available channels.

N(api): Set of neighbors of api.

C(api): Channel assignment for api.

Initialization step:

27

• LCCS : Run hostapd’s ACS algorithm for the initial channel assignment.

• (C(api)) → ci: Assign channel ci to AP i.

Optimization steps:

• maxi = maxi
n=1wi ∀ i ∈ ci: Find the maximum among all the edges which have

the vertices (Access Points) operating in the same channel.

• min(maxi) ∀i: Calculate the minimum of the summations calculated in the pre-

vious step.

• Assign the channel which has minimum summation.

Based on the maximum value in the weights of the edges operating in same channel

the new channel is decided. Similar to HSum algorithm discussed above, at the start

a random node is chosen and the above steps are performed. After completion of the

algorithmic steps next random node is chosen. This is followed until all the nodes in the

graph are covered. In the example graph shown in figure 4.3 one of the ways in which

algorithm progresses might be AP1, AP2, AP3 and AP4. The channels are assigned in

a serial fashion and an iteration is complete once all the nodes in the graph are covered.

4.4 Controller design and implementation in ORBIT test bed

ORBIT console is used to develop controller which controls multiple nodes in the grid.

The nodes are grouped to form a logical network. A set of tasks are simultaneously

executed for the nodes that are grouped. An overview of the controller architecture is

as shown below.

28

Figure 4.4: Overview of Controller Design in ORBIT testbed

The controller implemented in the console interacts with ORBIT nodes through

an interface which connects application server to grid through a dataplane switch. A

typical controller experiment having eight nodes to measure a throughput performance

when channel of few of the nodes are switched is explained below.

• Define Topology: Choose appropriate nodes in the grid to perform experiment.

The factors considered in choosing a node can be position of the node, its driver

capabilities etc. The position has to be chosen appropriately so that the experi-

ment depicts a real world scenario. For the channel switch through CSA(Channel

Switch Announcement) mechanism each node has to be equipped with ath9k

driver. In the experiments we perform, the client is collocated in the same node

where the modified hostapd is triggered. So, each node should support two wire-

less interfaces WLAN0 and WLAN1.

• Define Group: Set of nodes are grouped to form a logical network. defGroup

a OMF command is used to logically place the nodes in a network to perform

synchronous operations.

• Load Drivers: After the groups are defined appropriate drivers are loaded onto

29

the nodes. ath9k driver is used which supports Channel Switch Announcement

mechanism. iwlwifi driver is used in the second interface WLAN1 which acts as

a client.

• Configuration changes: Configuration files are edited using sed functions for the

initial channel assignment and unique access point names.

• Throughput test using iperf and IEEE 802.11 control API: Iperf server is executed

in the access point and iperf client is executed in the clients. Iperf client server con-

nection is established by appropriately specifying the IP addresses. Throughput

measurements are performed by sending HTTP GET/SET messages to appropri-

ate nodes.

30

Chapter 5

Evaluation

Experiments were conducted to evaluate the algorithms discussed in the previous sec-

tion using the HTTP framework developed. These evaluations were conducted using

the ORBIT facility at WINLAB [4]. The 400 node indoor grid was used for the exper-

imentation. Topologies are created in the grid by selecting different nodes. The nodes

are selected based on their location so that the evaluation is realistic. Also there are

restrictions on the driver capabilities of nodes. As discussed earlier the nodes are used

in such a way that both access point and client connected to it reside in the same node.

Each node has two WLAN interfaces, these two interfaces are used to create the access

point and client. The access point was created in the WLAN0 interface having ath9k

driver and client connecting the access point is created in WLAN1 interface having iwl-

wifi driver. Each client is connected to the access point through the wireless channel.

Iperf is used to communicate between access point and client. Iperf server is started

at the access point running at the interface WLAN0 and iperf client is started at the

interface WLAN1. With iperf client acting as a sender of data and iperf server acting

as a receiver of data, uplink throughput measurements are conducted in all the ex-

periments. Throughput measurement is done by conducting iperf traffic measurement

between client and server. We need to keep note of one point in this setup. If both

iperf server and client are running in the same machine, by default the traffic is directed

towards the client through the internal system. But for the experimental evaluation the

throughput measurement has to be done through the external wireless interface. To

achieve this, routing configurations are done within the nodes so that traffic between

interface WLAN0 and WLAN1 is passed through the external wireless interface.

31

5.1 Evaluation of Channel Switch Time using the 802.11 Control API

The HTTP framework developed which is discussed in Chapter 3 uses hostapd cli soft-

ware to switch channel without bringing down the interface. A unique HTTP URL

which contains the new channel is sent to the HTTP server. The server receives the

URL and extracts the channel number present in it. The new channel number is shared

to hostpd cli software. Using this channel hostapd cli sends a channel switch command

to hostapd. Channel Switch Announcement(CSA) mechanism discussed in section 2.3

is used to switch channel. The client connected to the access point receive the CSA

packed and switches the channel. All these steps happen without loss in connectivity.

In this section we study the performance of the hostapd channel switch through CSA

mechanism.

Two nodes in ORBIT testbed were used to perform this experiment. Initially both

nodes are assigned the same channel and the access points are started. Throughput

performance of the nodes is monitored using the iperf server and client setup. Iperf

server is started at the access point. The client connected to the access point runs the

iperf client. Iperf communication between access point and the client is triggered once

the connection between access point and client is established. The channel is switched

using the API and throughput measurements are done. The figure below shows the

varying throughput as the channel is switched.

32

Figure 5.1: Iperf throughput measurement for channel switch using 802.11 control API

As shown in the figure above Node-1 and Node-2 start their respective access points

with channel 1. Between 0 to 15 seconds both nodes are operating in same channel.

Channel switch is triggered using 802.11 control API just after 15th second. Node-2

is changed to channel 6 during second half of the experiment. Channel 6 is chosen

because it is orthogonal to channel 1 and nodes operating simultaneously in these

channels have close to zero interference. The sudden peak in throughput is seen after

15th second due to channel switch. The iperf traffic was generated using UDP packets.

Average throughput of both the nodes before channel switch is 3.358Mbps and average

throughput of the nodes after channel switch is 6.478Mbps.

5.2 Evaluation of Channel Assignment algorithms

Throughput analysis of the channel assignment algorithms discussed in chapter 4 is per-

formed in this section. Three algorithms Automatic Channel Selection(ACS), HSum

and HMinMax are compared and the results are analyzed.

33

5.2.1 Topology for evaluation of channel assignment algorithms

The experimental setup for the throughput analyses involve setting up a topology in

ORBIT testbed by choosing appropriate nodes. The nodes are selected based on their

position and capability. Location of nodes are chosen so that it imitates a real world

scenario. The topology used in the grid for the experimentation is shown below:

Figure 5.2: Grid topology used for the experimentation

The figure above shows the relative positioning of the nodes in the topology. The

nodes are numbered 1 through 8. Also the position of the node in grid is specified by

specifying two dimensional names. For eg. node 20-7 is in 20th column and 7th row in

the grid.

5.2.2 Throughput analyses of Channel Assignment algorithms

Channel assignment algorithm discussed in Chapter 4 are compared by setting up the

topology discussed in the section above. Each node in the grid has a collocated Access

point and a client. We note that as the experiment was conducted in ORBIT grid

testbed facility, there were other access points operational in the same frequency band.

The interference obtained from those access points is also considered in executing the

algorithm. Iperf server client communication setup is used to measure the throughput.

The below table summarizes the throughput results obtained.

34

Algorithm ACS HMinMax HSum

Average System Throughput 7.872Mbps 8.13Mbps 8.94Mbps

15 Percentile Throughput 0.95Mbps 1.37Mbps 1.1Mbps

Table 5.1: Throughput Analyses of Channel Assignment Algorithms

The results obtained above are averaged over 3 experiments. From the table above it

is seen that HMinMax and HSum performed better in term of over all system through-

put when compared to hostapd’s Automatic Channel Selection algorithm. HSum algo-

rithm performed better compared to HMinMax which comes from the fact that HSum

algorithm considers the sum interfering signals where as HMinMax algorithm considers

only maximum of the interfering signals. From these arguments we can conclude that

HSum has better picture of interfering access points when compared to HMinMax al-

gorithm. When it comes to 15 percentile throughput HMinMax and HSum performed

better when compared to ACS algorithm. This can be attributed to the fact that ACS

only considers the interface’s active and busy time in the channel to calculate the inter-

ference and come up with the least interfering channel. HMinMax and HSum considers

the overall interference environment by considering received signal index from each

access point. Contrary to overall system throughput measurements, HMinMax per-

formed better than HSum algorithm. This can be attributed to the fact that for each

node HMinMax considers maximum interfering edge to replace the channel whereas for

HSum the sum of all the interfering edges is considered. The channel assignment for

each of the algorithm is shown in the table below:

Algorithm Node20-7 Node20-14 Node19-4 Node14-8 Node9-7 Node9-14 Node7-13 Node1-13

ACS 1 11 6 6 6 6 6 6

HMinMax 11 1 1 6 6 6 11 1

HSum 11 6 1 6 6 1 11 6

Table 5.2: Channel assigned to the nodes for algorithms

35

The above table shows channel number assigned to nodes for the channel selection

algorithms. As we see most of the nodes performing ACS are assigned the same channel.

HMinMax and HSum have varied channel assignments. Better performance of HSum

and HMinMax algorithm can be attributed to channel assignments of the nodes as

interference reduces when the nearby access points are assigned orthogonal channels.

5.3 Comparing Inter-network cooperation with Intra-network coop-

eration

In this section we compare inter network and intra network cooperation. The following

figure shows the eight node topology used. Two different networks are shown in the

figure below in two different colors.

Figure 5.3: Grid topology showing Network-1 and Network-2

The nodes are logically divided into two networks using the defGroup functionality

in OMF script. In intra-network cooperation each network independently execute the

channel coordination algorithm without communicating the interference graph to other

network. In inter-network cooperation controller of network-2 gets the interference

graph of the nodes present in its network and transfers the interference information to

controller in network-1. This is summarized in the figure below.

36

Figure 5.4: Inter-network cooperation mechanism

As shown in the figure controller-1 gets the interference graph of network-1 and

controller-2 gets the interference graph of network-2. In the case of inter-network co-

operation controller-2 after getting the interference graph for network-2 transfers the

information to controller-1. Controller-2 after getting the information executes the

channel selection algorithm. Note that two controller infrastructure was emulated in a

single ORBIT console script for simplicity purpose.

Throughput measurements were performed comparing intra-network and inter-network

cooperation with collocated access point and client as discussed before. Average system

throughput for inter-network cooperation was 0.762Mbps and for inter-network coopera-

tion the average system throughput was 1.42Mbps. Better performance of inter-network

cooperation is due to the fact that inter-network cooperation considers the interference

graph of both the networks before running the algorithm, where as intra-network co-

operation considers only its own interference graph. The average system throughput

increased by about 86% with inter-network cooperation. This result shows the impor-

tance of inter-network cooperation especially in regions where density of access points

is high.

Note that ACS is used for initial channel assignment. Although the nodes are logically

37

grouped to form two different networks, ACS considers nodes in both the networks

for channel assignment. The main aim of this section is to study the comparison of

intra-network cooperation with inter-network cooperation. With all the nodes in carrier

sense range, each node can extract the beacons from every other node in our exper-

imental topology. Thus in the case on intra-network cooperation, even though each

node in Network-A is in carrier sense of every other node in Network-B the algorithm

was separately executed for each network.

38

Chapter 6

Conclusion and Future Work

This work motivates the use of seamless channel switching to improve WLAN system

performance. It emphasizes channel switching ability of hostapd’s CSA mechanism

through a control API developed using HTTP infrastructure on top of hostapd. The

ability of an access point to switch channels without bringing down the interface using

the API developed is stressed upon. Three different channel selection algorithms are

compared using throughput measurements. Through the results obtained, it was found

that the channel coloring algorithms: HMinMax and HSum performed better than the

hostapd’s default channel selection algorithm ACS in term of average system through-

put. This result shows the performance benefits of channel coloring algorithms as they

use interference graph of the WLAN system. Next inter-network and intra-network

cooperation was studied for channel cooperation. The results show the benefits of inter-

network cooperation with better system throughput when compared to intra-network

cooperation.

6.1 Future Work

6.1.1 Distributed Channel Selection Mechanism

The work in this thesis discusses the implementation of channel selection algorithm in

a centralized manner. A mechanism to execute the algorithm in a distributed fashion

is yet to be explored. Based on the interference graph, each node in the topology

could decide its channel by independently running the distributed algorithm. The

interference graph used to run the algorithm can either be provided by a centralized

entity or the node itself could generate the interference graph based on different scanning

39

mechanisms.

6.1.2 Algorithm for Access Points in Carrier Sense range and Inter-

ference range

In the experiments performed all the nodes were in Carrier Sense range i.e they were

able to extract the information in the becons received by all the nodes. Whereas nodes

present in interference range will not be able to extract the beacons i.e they will not

able to perform CSMA mechanism. There is a need for channel selection algorithm for

the nodes present in carrier sense range and interference range. An algorithm for nodes

in carrier sense and interference range needs to be formulated.

40

References

[1] Automatic channel selection(acs). Available: https://wireless.wiki.kernel.

org/en/users/documentation/acs.

[2] Channel switch announcement - csa. Available: https://mrncciew.com/2014/

10/29/cwap-channel-switch-announcement/.

[3] Gnu operating system. Available: https://www.gnu.org/software/

libmicrohttpd/.

[4] Orbit testbed - winlab. Available: http://www.orbit-lab.org/.

[5] Wifi carrier sense. Available: http://www.revolutionwifi.net/

revolutionwifi/2011/03/understanding-wi-fi-carrier-sense.html.

[6] Valentin Rakovic, Daniel Denkovski, Vladimir Atanasovski and Liljana
Gavrilovska. Radio resource management based on radio environmental maps:
Case of smart-wifi. International Conference on Telecommunications (ICT), June.
2016.

[7] Akash Baid and Dipankar Raychaudhuri. Understanding channel selection dynam-
ics in dense wi-fi networks. IEEE Communications Magazine, January. 2015.

[8] Arunesh Mishra, Suman Banerjee and William Arbaugh. Weighted coloring based
channel assignment for wlans. ACM SIGMOBILE Mobile Computing and Com-
munications Review, 9:19–31, July. 2005.

[9] Arunesh Mishra, Vivek Shrivastava, Dheeraj Agarwal, Suman Banerjee and Sam-
rat Ganguly. Distributed channel management in uncoordinated wireless environ-
ments. MobiCom, Sept. 2006.

[10] iPass. Wi-fi growth map, 2014. Available: https://www.ipass.com/

wifi-growth-map/.

[11] Liqun Fu, Soung Chang Liew and Jianwei Huang. Safe carrier sensing range in
csma network under physical interference model. IEEE Transactions on Mobile
Computing, Jan. 2009.

[12] Gentoo Linux. Hostapd. Available: https://wiki.gentoo.org/wiki/Hostapd.

[13] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R.
Siracusa, H. Liu and M. Singh. Overview of the orbit radio grid testbed for eval-
uation of next-generation wireless network protocols. Wireless Communications
and Networking Conference, March. 2005.

[14] J.D. O’Sullivan, G.R. Daniels, T.M.P. Percival, D.I. Ostry, and J.F. Deane. Wire-
less lan, January 23 1996. US Patent 5,487,069.

41

[15] Vangelis Angelakis, Stefanos Papadakis and Vasilios A. Siris. Adjacent channel
interference in 802.11a is harmful: Testbed validation of a simple quantification
model. IEEE Communications Magazine, 49, March. 2011.

[16] Qualcomm. The wi-fi evolution an integral part of the wireless landscape, 2014.
Available: https://www.qualcomm.com/products/vive/evolution.

[17] Dipankar Raychaudhuri and Akash Baid. Nascor: Network assisted spectrum
coordination service for coexistence between heterogeneous radio systems. The
Institute of Electronics, Information and Communication Engineers, Jan. 2014.

[18] Bhavneet Sidhu, Hardeep Singh and Amit Chhabra. Emerging wireless standards
- wifi, zigbee and wimax. World Academy of Science, Engineering and Technology,
Nov 2007.

[19] Shweta Sagari, Samuel Baysting, Dola Saha, Ivan Seskar, Wade Trappe and Di-
pankar Raychaudhuri. Coordinated dynamic spectrum management of lte-u and
wi-fi networks. IEEE International Symposium, Dec. 2015.

[20] International Telecommunication Union. Propagation data and prediction mod-
els for the planning of indoor radiocommunication systems and radio local area
networks in the frequency range 900 mhz to 100 ghz. ITU Radio communication
Assembly, 1997.

