
 

 

 ASSEMBLY LINE REBALANCING WITH NON-CONSTANT TASK TIME 

ATTRIBUTE 

                                                         by 

YUCHEN LI 

 

A dissertation submitted to the  

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

In partial fulfillment of the requirements 

For the degree of  

Doctor of Philosophy 

Graduate Program in Industrial and Systems Engineering  

written under the direction of  

Thomas Boucher 

And approved by 

_______________________________ 

_______________________________ 

_______________________________ 

_______________________________ 

_______________________________ 

_______________________________ 

 

 

 

New Brunswick, New Jersey  

OCTOBER, 2016



ii 

 

ABSTRACT OF THE DISSERTATION 

ASSEMBLY LINE REBALANCING WITH NON-CONSTANT TASK TIME 

ATTRIBUTE 

By YUCHEN LI 

 

Dissertation Director: 

Thomas Boucher 

 

 

 

 

Assembly line has been widely used in producing complex items, such as 

automobiles and other transportation equipment, household appliances and electronic 

goods. Assembly line balancing is to maximize the efficiency of the assembly line so that 

the optimal production rate or optimal length of the line is obtained. Since the 1950s there 

has been a plethora of research studies focusing on the methodologies for assembly line 

balancing. Methods and algorithms were developed to balance an assembly line, which is 

operated by human workers, in a fast and efficient fashion. However, more and more 

assembly lines are incorporating automation in the design of the line, and in that case the 

line balancing problem structure is altered. For these automated assembly lines, novel 

algorithms are provided in this dissertation to efficiently solve the automated line balancing 

problem when the assembly line includes learning automata. 

 

https://en.wikipedia.org/wiki/Automobile
https://en.wikipedia.org/wiki/Transportation
https://en.wikipedia.org/wiki/Household
https://en.wikipedia.org/wiki/Consumer_electronics
https://en.wikipedia.org/wiki/Consumer_electronics


 

 

iii 

 

Recent studies show that the task time can be improved during production due to 

machine learning, which gives the opportunities to rebalance the assembly line as the 

improvements occur and are observed. The concept of assembly line rebalancing or task 

reassignment are crucial for the assembly which is designed for small volume production 

because of the demand variation and rapid innovation of new product.  In this dissertation, 

two forms of rebalancing are provided, forward planning and real time adjustment.  The 

first one is to develop a planning schedule before production begins given the task time 

improvement is deterministic. The second one is to rebalance the line after the 

improvements are realized given the task time improvement is random. Algorithms address 

one sided and two sided assembly lines are proposed.  Computation experiments are 

performed in order to test the performance of the novel algorithms and empirically validate 

the merit of improvement of production statistics.    

 

 

 

 

 

 

 

 

 

 

 



 

 

iv 

 

ACKNOWLEDGEMENT 

The dissertation “assembly line rebalancing with non-constant task time attribute” 

concludes my career as a Ph.D. student at Rutgers University. It is a great journey that I 

could never imagine I have finished in such an amazing way.  Not only the unanimous 

passes but also the greatest ever compliments receiving from all committee members of 

my defense do make me feel all the gritty effort of the past four years finally starts paying 

off. 

My beloved parents, Jin Li and Shangtao Ding provide me untiring, unconditional 

supports which lead me this far. There are no words to describe how important they are to 

me. I am so grateful to be their son.  

My adviser, Dr. Thomas Boucher, who has been inspiring me from day 1 when I 

got into the ISE program. He opened the door of my research and help me clean all of the 

road bumps on the path of completing the dissertation. Thank you, Mr. big picture, I am 

grateful to be your apprentice.  

Now, my friends, who sit tight in the cheering section offering me everything they 

could possibly offer when I am in dire need. Youhu Zhao comforted me and shared his 

experience when I hit my bottom and could not escape the trough on my own. Chengguang 

Lu, Ching Wong, and Yi Zhang are always there to soothe the pain of my loneliness when 

I need company. Also, special thanks to ChuanChuan (Caroline), who taught me to become 

a tough person, which I think will benefit me in the future. I am grateful to be your lifelong 

friends. 



 

 

v 

 

I also appreciate my committee members, Sanchoy Das, Susan Albin, Honggang 

Wang, David Coit, and David Nembhard for their invaluable advice on how to shape the 

dissertation crystal clear and rock solid.   

Ultimately, I wish the dissertation would provide the readers a whole new 

perspective to the line balancing area. I also ask for your forgiveness in advance for any 

inaccurate and insufficient statements I made throughout my dissertation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                           Yuchen Li at                              

Library of Science and Medicine café lounge 

                                                                                                           09/12/2016 



 

 

vi 

 

TABLE OF CONTENT 

 

ABSTRACT OF THE DISSERTATION ....................................................................... ii 

ACKNOWLEDGEMENT ............................................................................................... iv 

TABLE OF CONTENT ................................................................................................... vi 

LIST OF FIGURES ......................................................................................................... xi 

LIST OF TABLES ......................................................................................................... xiii 

1. Introduction ............................................................................................................... 1 

1.1 Traditional flow assembly line............................................................................ 1 

1.2 Automated Flexible Assembly Line ................................................................... 3 

1.3 Motivation ........................................................................................................... 5 

1.4 Notations ............................................................................................................. 7 

1.5 Assembly Line Balancing Problem .................................................................... 9 

1.5.1 SALBPF......................................................................................................... 12 

1.5.2 SALBP1 ......................................................................................................... 12 

1.5.3 SALBP2 ......................................................................................................... 14 

1.5.4 SALBPE......................................................................................................... 15 

1.5.5 TALBP1 ......................................................................................................... 15 

1.5.6 Forward Planning for SALBP1 under dynamic task attributes .................... 15 

1.5.7 Task reassignment for SALBP2 under non-constant task attributes ............ 18 

1.6 Summary ........................................................................................................... 19 



 

 

vii 

 

2. Literature review .................................................................................................... 21 

2.1 Literature Review on data structure and complexity ........................................ 21 

2.1.1 Data structure ............................................................................................... 21 

2.1.2 Complexity of data set ................................................................................... 22 

2.2 An overview of algorithms addressing SALBP ................................................ 23 

2.3 Literature Review on Dynamic Programming .................................................. 24 

2.4 Literature Review of the Branch and Bound procedure in Assembly Line 

Balancing ...................................................................................................................... 26 

2.4.1 Lower bounds ................................................................................................ 27 

2.4.2 Dominance rules ........................................................................................... 29 

2.4.3 Branch and Bound procedure on SALBP1 ................................................... 30 

2.4.4 Branch and Bound procedure on SALBP2 ................................................... 33 

2.5 Literature Review on Priority-based methods .................................................. 36 

2.6 Literature Review on task attributes ................................................................. 38 

2.6.1 Dynamic task attributes ................................................................................ 39 

2.6.2 Uncertain task attributes............................................................................... 40 

2.6.3 Recent research on ALBP considering non-constant task attribute ............. 40 

2.7 Summary ........................................................................................................... 42 

3. Simple Assembly Line Balancing Problem-1 with dynamic task time attribute

 43 

3.1 Conventional BnB procedure ............................................................................ 43 

3.2 Line rebalancing schedule ................................................................................. 44 



 

 

viii 

 

3.3 Backward induction algorithm .......................................................................... 44 

3.4 Computational experiments .............................................................................. 50 

3.4.1 Backward Induction (weak) and Conventional Algorithm ........................... 50 

3.4.2 Backward Induction (Strong) and Conventional algorithm ......................... 54 

3.5 Case study ......................................................................................................... 55 

3.6 Summary ........................................................................................................... 61 

4. Simple Assembly Line Balancing Problem-2 with non-constant task time 

attribute ........................................................................................................................... 63 

4.1 Rebalancing schedule with non-constant task time attributes .......................... 63 

4.2 A BnB based exact solution procedure to solve SALBP2 with non-constant task 

time 66 

4.2.1 A conventional algorithm .............................................................................. 66 

4.2.2 ENCORE ....................................................................................................... 67 

4.2.3 An illustrative example ................................................................................. 71 

4.2.4 The comparison between the conventional solution and ENCORE.............. 74 

4.2.5 Computational experiment ............................................................................ 76 

4.3 Design of Experiments ...................................................................................... 78 

4.3.1 Components of an experiment ....................................................................... 79 

4.3.2 Pretest ........................................................................................................... 80 

4.3.3 One sample t test ........................................................................................... 83 

4.4 Summary ........................................................................................................... 86 

5. Priority rules-based algorithmic design on two sided assembly line balancing 87 



 

 

ix 

 

5.1 The investigation of PRBMs in TALBP ........................................................... 87 

5.1.1 Application of elementary rules .................................................................... 88 

5.1.2 Application of composite rules...................................................................... 93 

5.2 Algorithmic design with BDP ........................................................................... 95 

5.2.1 Enumeration of states ................................................................................... 96 

5.2.2 Solution space reduction approaches ........................................................... 97 

5.2.3 The application of PR_BDP.......................................................................... 99 

5.2.4 Design of Experiments ................................................................................ 102 

5.3 Summary ......................................................................................................... 104 

6. Summary ................................................................................................................ 106 

References ...................................................................................................................... 111 

Appendix A: Benchmark data sets .............................................................................. 118 

Appendix B: The basic flow chart of ENCORE ......................................................... 132 

Appendix C: Computational tests for backward induction algorithm .................... 133 

Appendix D: Case study ............................................................................................... 144 

Appendix E: Computational tests for ENCORE ....................................................... 146 

Appendix F: Design of Experiments (ENCORE) ....................................................... 164 

Appendix G: Performance of elementary rules ......................................................... 168 

Appendix H: Performance of enhanced elementary rules ........................................ 177 

Appendix I: Performance of the composite rules....................................................... 183 



 

 

x 

 

Appendix J: Performance of the priority-based bounded dynamic programing ... 187 

Appendix K: Design of Experiments (PR_BDP) ........................................................ 191 

 

 

  



 

 

xi 

 

LIST OF FIGURES 

Figure 1 Basic structure of two-sided assembly line .......................................................... 2 

Figure 2 Learning the peg-into-hole assembly operation Left: evolution of the insertion 

time. Right: evolution of the average quality based on the contact forces (Source: 

Nuttin and Von Brussel, 1999) ............................................................................... 4 

Figure 3 Error rate per attribute value versus the number of examples [Source: Lopes and 

Camarinha-Matos(1995)] ........................................................................................ 5 

Figure 4 Precedence graph of SALBP ................................................................................ 9 

Figure 5 Precedence graph of TALBP .............................................................................. 11 

Figure 6 Sample assignment of the example problem ...................................................... 11 

Figure 7 Task reassignment procedure ............................................................................. 17 

Figure 8 Simple solution to SALBP with cycle time 9 ..................................................... 26 

Figure 9 Example for BnB procedure for SALBP1 .......................................................... 31 

Figure 10 Tree structural solution for SALBP1 (DFS) ..................................................... 32 

Figure 11 Tree structural solution for SALBP1 (SALOME1).......................................... 33 

Figure 12 Tree structural solution for SALBP2 (SALOME2).......................................... 36 

Figure 13 12 Tasks two sided assembly line .................................................................... 38 

Figure 14 Illustrative Case Study System Architecture .................................................... 56 

Figure 15 Actions in the rebalancing process ................................................................... 59 

Figure 16 Task reassignment schedule for b=1000 .......................................................... 61 

Figure 17 Task reassignment under the dynamic task time attribute ................................ 64 

Figure 18 Task reassignment under uncertain and discrete task time improvements ....... 65 



 

 

xii 

 

Figure 19 The solution structure to a simple SALBP2 problem with  non-constant task time 

and a lot size of to 30 ............................................................................................ 66 

Figure 20 Simple example. Top: original problem. Bottom: new problem ...................... 73 

Figure 21 Solution of the original problem (optimal cycle time=9) ................................. 74 

Figure 22 Line-oriented cycle time adjustment procedure (current upper bound=8.5) .... 74 

Figure 23 Station-oriented cycle time adjustment procedure (optimal cycle time=8)...... 74 

Figure 24 Relationship between p value and improvement (Spline interpolation is used to 

find the boundary) ................................................................................................. 86 

Figure 25 The enumerative procedure of elementary PRBMs ......................................... 89 

Figure 26 Top: 4 task data set; Middle: Solution 1; Bottom: Solution 2 .......................... 91 

Figure 27 Number of best solutions of composite rules in relation to the weight of F .... 95 

Figure 28 Structure of PR_BDP ....................................................................................... 99 

Figure 30 Precedence graph of Mansoor's data set ......................................................... 118 

Figure 31 Precedence graph of Heskiaoff's data set ....................................................... 118 

 

 

  



 

 

xiii 

 

LIST OF TABLES 

Table 1 Notations ................................................................................................................ 8 

Table 2 Taxonomy of SALBP .......................................................................................... 10 

Table 3 The precedence matrix for the example of Figure 4 ............................................ 22 

Table 4 Processing time and tails of Figure 4 ................................................................... 29 

Table 5 The performance of algorithms on Mansoor's data set (Mansoor,1964, cycle time 

is 48)...................................................................................................................... 51 

Table 6 The performance of algorithms on Heskiaoff's data set (Heskiaoff,1968, cycle time 

is168)..................................................................................................................... 52 

Table 7 The performance of algorithms on Scholl's (Figure 4) data set (cycle time is 10).

............................................................................................................................... 53 

Table 8 The performance of algorithms on Mansoor's data set (cycle time is 48) ........... 54 

Table 9 The performance of algorithms on Heskiaoff's data set (cycle time is 168)........ 54 

Table 10 The performance of algorithms on Scholl's (Figure 4) data set (cycle time is 10)

............................................................................................................................... 55 

Table 11 Production statistics ........................................................................................... 60 

Table 12 Computational performance between algorithms in Heskiaoff's data set (n=28) 

given m=8 ............................................................................................................. 77 

Table 13 Computational performance between algorithms in Kilbrid's data set (n=45) given 

m=8 ....................................................................................................................... 77 

Table 14 Computational performance between algorithms in Arcus's data set (n=83) given 

m=8 ....................................................................................................................... 78 

Table 15 Summary statistics for each t test on response comparisons (Eq. 26) ............... 84 



 

 

xiv 

 

Table 16 p value matrix for each t test .............................................................................. 85 

Table 17 Average performance of the elementary rules ................................................... 90 

Table 18 p values of paired t tests of Avg_dev of elementary rules (95% confidence level)

............................................................................................................................... 90 

Table 19 Average performance of the elementary rules with two principles ................... 92 

Table 20 p values of paired t tests of Avg_dev of elementary rules with and without two 

principles (95% confidence level) ........................................................................ 92 

Table 21 The scaled factor for the application of composite rules ................................... 93 

Table 22 Average performance of the best weighted combinations for each pairing of rules

............................................................................................................................... 94 

Table 23 The number of best solutions of each weighted pairing rules out of 34 cases as 

measured by Avg_dev........................................................................................... 94 

Table 24 Comparisons of performance between best PRBMs and PR_BDP ................. 100 

Table 25 Comparisons between the best NM reported and best NM generated by PR_BDP

............................................................................................................................. 100 

Table 26 Summary statistics for percent reduction in Avg_NM of 34 basic data instances

............................................................................................................................. 103 

Table 27 Summary statistics for percent reduction in Avg_I of 34 basic data instances 103 

Table 28 Summary of Algorithms .................................................................................. 108 

 



1 

 

 

 

1. Introduction 

1.1 Traditional flow assembly line 

Flow assembly line is an important process in the manufacturing ecosystem. It is 

commonly used to produce automobiles, transportation equipment, household appliances and 

electronic goods. The emergence of the assembly line can be traced back to the 19th century and 

the first flow assembly line was initiated to produce the steam engines at the factory of Richard 

Garrett & Sons in 1853. Henry Ford is mostly renowned for his contribution to the rise of mass 

production in the early 20th century. The assembly line developed for the Ford Model T began 

operation on December 1, 1913. It had immense influence on the world. In the 1950s, engineers 

started to experiment with robots in the assembly line as a means of industrial development.  

Robots have proved to be faster, more cost effective in high wage countries, and more accurate 

than humans.  From late 20th century to the present, with developments in computer science, the 

innovation of the assembly line reaches a new level where computer programs and algorithms 

intelligently automate the production process. It gives birth to some novel assembly line systems, 

such as assembly lines with supervisory control and learning.   

The assembly line designs that we address in this thesis can be categorized into the one 

sided line (OAL) and the two sided line (TAL). For OAL, the assembly line consists of a number 

of workstations arranged along a transportation device, i.e. conveyer belt, which moves the part 

(jobs) at same speed in order to pace the line. The speed is determined by a cycle time. The parts 

are consecutively launched from top to bottom of the line and assembled in workstations after 

certain operations (tasks) have been done in a certain amount of time. The total sojourn time for a 

part staying at a workstation should not exceed the cycle time of the assembly line.  In order to 

perform a particular task, machines and workers with certain skills are required in each  

https://en.wikipedia.org/wiki/Richard_Garrett_%26_Sons
https://en.wikipedia.org/wiki/Richard_Garrett_%26_Sons
https://en.wikipedia.org/wiki/Ford_Model_T


2 

 

 

 

workstation. Furthermore, tasks are dependent on each other and the relationships are  often 

characterized in a precedence graph.   

For TAL, as opposed to OAL, where workers can only access the tasks from one side of 

the line, workers can perform the tasks cooperatively from both sides of the line. The basic 

structure of TAL can be seen in Figure 1. Along the assembly line, there are several positions 

where parts are processed independently. In each position, there are two stations called mated-

stations which are located at different sides of the line. Each mated station is attended by a worker 

or a robot.  Thus, each mated station can work independently. The speed of the line is determined 

by the cycle time which is the sojourn time of the part in each position. As distinct from OAL, 

where tasks have two attributes (task times and precedence relations between tasks) the task in 

TAL has a third attribute which is the operational direction. An individual task can be assigned to 

either side of the line or only to one side of the line based on the operational direction (left, right 

or either). 

 

Figure 1 Basic structure of two-sided assembly line 

 



3 

 

 

 

The goal of designing an assembly line is to maximize its production efficiency (E) 

measured by the product of the cycle time and the number of stations (or positions for TAL) in the 

assembly line. Mathematically, the efficiency can be quantified by Eq. (1). The assembly line is 

balanced when the maximal efficiency is achieved. 

1
                                    (1)

:  the number of stations

:  cycle time of the line

E
m c

m

c




 

1.2 Automated Flexible Assembly Line 

A Highly automated and flexible assembly system brings with it its own set of particular 

characteristics.  Two emerging characteristics that are important to discuss in the context of this 

thesis are 1) machine learning or learning automata and 2) control architecture and collaborative 

learning. 

It has been shown that robots, as intelligent agents, are able to improve their performance 

on given tasks.  Such improvements result from encoding learning algorithms in the control 

programs of the agents.  For example, Nuttin and von Brussel (1999) have shown that a neural net 

controller with reinforcement learning can improve the task performance time.  They studied the 

classic “peg-in-a-hole” insertion problem and found that both the insertion time and the amount of 

contact force required for the insertion (referred to as force quality) improved over the number of 

executions of the task as shown in Figure 2.  The characteristic non-linear relationship between 

insertion time and the number of insertions attempted is typical of a learning curve function. 



4 

 

 

 

 

Figure 2 Learning the peg-into-hole assembly operation Left: evolution of the insertion 

time. Right: evolution of the average quality based on the contact forces (Source: Nuttin 

and Von Brussel, 1999) 

 

Lopes and Camarinha-Matos (1995) illustrated another aspect of learning in flexible 

assembly systems.  In their work they focus on the detection of errors in the robot assembly task 

and the design of recovery from error and prevention of reoccurrence of the same errors over time.  

The improvement comes as a result of building a knowledge base of models for monitoring, 

diagnosis and recovery through machine learning.  In their experiment they study the operation of 

a pick and place robot.  By introducing examples of abnormal conditions they study the sizes of 

the machine learning branching tree necessary to produce good results in diagnosing and reducing 

the error rates as shown in Figure 3. 

 



5 

 

 

 

 

 

Figure 3 Error rate per attribute value versus the number of examples [Source: Lopes and 

Camarinha-Matos(1995)] 

 

1.3 Motivation 

The two examples show the existence of non-constant task time for the robots when the 

supervisory control and learning automata are involved. The task time decreases at the beginning, 

and then approaches a constant (plateau) after producing a number of units, which is the production 

ramp-up period. In traditional assembly line balancing, for large size production, the line is 

balanced once based on standard time, which is the constant task time that is reached after the 

production ramp up period.  However, this is not applicable to small batch production where the 

production is still in the ramp-up period. This gives the motivation for considering rebalancing 

the station configurations as a means to reduce the cycle time in each production cycle, i.e. 

dynamic reassigning of the tasks to workstations. Task reassignment is very common in mixed-

model assembly lines in which a common task of different product models can be assigned to 

different workstations in different production cycles (Boysen et al., 2012). Cost related to task 

reassignment, e.g. station setup cost and training cost, has to be considered in the optimization 

 

Number of examples 



6 

 

 

 

process (Bukchin et al.,2006). However, such cost is negligible in the framework of an automated 

flexible assembly line when the robot in each station is assumed to be multifunctional, and 

knowledge regarding the task time improvement can be perfectly shared between robots and 

workstations.  Indeed, Angerer et al. (2010) have demonstrated self-reconfiguration of mobile 

robots in car manufacturing, including the transfer of skills among robots.  Therefore, it may be 

economic as well as efficient to rebalance the assembly line considering the non-constant task 

time. 

A fundamental difference exists in learning as between an automated assembly line and a 

worker assembly line.  If a task is reassigned among workers, the reduction in the task time is lost 

because the task skill achieved by one worker cannot be transferred to another worker.  In an 

automated system, such as that which we describe, the improvement is preserved by the 

supervisory controller that oversees the assembly line and the learned skill (information) can be 

transferred to other agents on the line. 

As such, there is a demand to revisit the classic problem with dynamic task time attribute 

incorporated. More importantly, fast and efficient algorithms must be provided in order to serve 

the purpose of rapid responses along the automated assembly system in small batch size 

production. We study two ways to satisfy the requirement: forward planning and real-time 

adjustment. As for forward planning, we assume that the pattern of the task time developing in 

batches is deterministic and assembly line balancing schedule is generated before the production 

process begins. Once the task times change, there is always an optimal solution at hand to adjust 

the task assignment as a means to rebalance the assembly line. As for real-time adjustment, the 

pattern of task time evolution is stochastic or random, which requires an instantaneous response 

after the changes of the task times are observed. In such a situation, an efficient algorithm is 



7 

 

 

 

necessary to rebalance the assembly line during production. Hence, the objective of this 

dissertation is to propose methods and algorithms to address the aforementioned problems from 

the perspectives of planning and real-time adjustment schemes.    

1.4 Notations 

The following notations are used throughout the paper. The definitions are as follows in 

Table. 1. Some variables are specific to TAL or OAL which are specified in the parenthesis after 

the variable definition, and the other variables are used in general. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

 

 

Table 1 Notations 

 

`  

 

 

Variable names

c

n

t v

m

m*

z

m i

m i *

P

t min , t max , t sum

t v
i
:

c*

c i

c i *

c i '*

c
temp

N

V

V*

V
k

V i

V i *

NM

NS

TdL v

TdS v

L v

El v

F v

S v

GLB (GUB )

LB (UB )

LBs (UBs )

Task time at production cycle i , v =1...n , i =1,...z

Descriptions

Cycle time of the line

Number of tasks

Task processing times, v =1…n 

Number of stations (OAL)

Optimal number of stations (OAL)

Batch size

Number of stations at production cycle, i =1....z (OAL)

Optimal number of stations at production cycle i , i =1...z  (OAL)

Precedence matrix, P(v,o)=1 iff task v  is the direct predecessor of task o .    

Minimum , maximum and total task times

Task v processing time divided by latest position 

Optimal cycle time of the line (OAL)

Cycle time of the line at production cycle i , i =1,...z (OAL)

Optimal cycle time of the line at production cycle i considering task reassignment, i =1,...z (OAL)

A feasible task sequence (OAL)

Optimal task sequence (OAL)

Optimal cycle time of the line at production cycle i without task reassignment, i =1,...z (OAL)

Total prodution quantities

Temporary upper bound of cycle time during the implementation of ENCORE

A feasible task assignment at station k , k =1,...m  (OAL)

A feasible task sequence at production cycle i , i =1,...z  (OAL)

Optimal task sequence at production cycle i , i =1,...z (OAL)

Total number of positions (TAL)

Total number of workstations (TAL)

Intermediate lower (upper) bound

Set of intermediate lower (upper) bounds of NM for all developing solutions

Task v processing time divided by slack 

Latest possible position to which task v can be assigned (TAL)

Earliest possible position to which task v can be assigned (TAL)

Total number of followers of task v

Priority score of task v

Global lower (upper) bound 

     
  
  

(2)

     
  

        
(3)



9 

 

 

 

1.5 Assembly Line Balancing Problem 

The assembly line balancing problem can be subdivided into simple assembly line 

balancing (SALBP) and two sided assembly line balancing (TALBP). They correspond to OAL 

and TAL respectively. 

There are two constraints in SALBP, precedence and station cycle time constraints. Firstly, 

the precedence constraints are always represented in a precedence graph, as shown in Figure 4. A 

task can only be assigned after all of its predecessors are assigned. For instance, in   Figure 4, task 

5 is available to assign when both task 1 and 4 have been assigned. Secondly, the total task time 

of one station cannot exceed the cycle time of the line. The following terms are useful to describe 

the task assignment in relation to constraints. 

 The task is available when all preceding tasks have been assigned 

 The task is assignable to a station when the total task time of that station does not exceed 

the cycle time c after the task is assigned. 

 The load of the station is maximal if no further assignable tasks exists. 

 The bottleneck station is the station whose total task time is the highest among all stations 

 

Figure 4 Precedence graph of SALBP 

 

 



10 

 

 

 

The traditional assembly line balancing problem is categorized into four types according 

to different inputs and objectives, as are shown in Table. 2. 

Table 2 Taxonomy of SALBP 

 number of station(m) 

cycle 

time(c) Given Minimize 

Given SALBPF SALBP1 

Minimize SALBP2 SALBPE 

Similar to SALBP, TALBP also has four types (TALBPF, TALBP1, TALBP2 and 

TALBPE). The precedence graph of TALBP for an example problem is shown in Figure 5. The 

task number is stored inside the node. There are two pieces of information stored in the parenthesis 

associated with each node. The first element is referred to the task time, and the second element 

designates the sides to which the task can be assigned. The precedence relations between tasks are 

described in the acyclic graph. For instance, task 3, which requires 1 unit of time to perform and 

can only be assigned to the right side of the line, has one predecessor (task 1) and one successor 

(task 5).  Each side of a position is attended by one worker or robot doing the tasks assigned to 

that position/side. 

Compared with SALBP, TALBP has an additional characteristic—Delay. We illustrate it 

with an example. A sample assignment of the problem described in Figure 5 is shown in Figure 6. 

As can be seen, there are two sources of idle time, namely, remaining capacity and delay. The first 

source is a common source which occurs in SALBP as well. It indicates that there is no room for 

the available task with the smallest task time to be assigned. So, if the target cycle time is 5, the 

example allows that only 4 time units of work can be assigned at position 1.  Therefore, there is 



11 

 

 

 

some unused capacity.  The second source is TALBP specific, it occurs as a task cannot be 

performed immediately after its previous task in the same station is finished. For instance, in Figure 

6, after task 2 is done, task 4 cannot be performed until his predecessor task 1 is finished on the 

other mated-station. In other words, task 1 creates a mirror image on the other mated-station, and 

a delay occurs as the end time of the mirror image is later than that of the previous task (task 2) 

within the station.  

 

Figure 5 Precedence graph of TALBP 

 

Figure 6 Sample assignment of the example problem 

 

The TALBP is subject to three constraints: cycle time, precedence and operational 

constraints. The cycle time constraint requires that the finish time of the last task in a station should 



12 

 

 

 

be smaller than the cycle time. In SALBP, the finish time of the last task is always equal to the 

total load of the station, which is the sum of the task times at that station. In TALBP, however, the 

finish time of the last task is always greater than or equal to the total load of the station because 

of the delay. The precedence constraint states that a task can be assigned only if all of its 

predecessors have been finished meaning that the beginning time of a task shall be later than the 

latest end time of its predecessors. In comparison to the precedence constraint, which only 

considers whether all predecessors are assigned, the precedence constraint in TALBP takes 

account of the end time of the predecessors at both mated-stations. The operational constraint 

guarantees that the task is performed on its designated side.  

 

1.5.1 SALBPF 

SALBP-F is a problem which is to establish whether or not a feasible line layout exists for 

a given combination of m and c. For the example of Figure 4, a feasible sequence of m=7 and c=10 

is V1={1}, V2={3,4}, V3={5,6}, V4={2,7}, V5={8}, V6={9}, V7={10}. This is a NP-complete 

problem which means no polynomial time solution is known. That is to say, the time required to 

solve the problem using any currently known algorithm increases very quickly as the size of the 

problem grows. Hence, whether the problem can be solved in polynomial time depends on the 

complexities of the problem structure, which will be discussed in the literature review of Chapter 

2.   

1.5.2 SALBP1 

SALBP1 is the most common problem among all versions of the assembly line balancing 

problem. The objective is to minimize the number of stations for a given cycle time. Equivalently, 

https://en.wikipedia.org/wiki/Algorithm


13 

 

 

 

the length of the assembly line and the amount of resources are minimized when the number of 

stations is minimized. Solving the problem is very sophisticated due to many possible station 

configurations. Indeed, it a NP-Hard problem meaning that solving it in polynomial time is 

impossible and the solution time is impractical as the size of the problem is relatively large. 

Mathematically, the SALBP1 line balancing problem can be formulated as follows (Otto and Otto, 

2014). 

1

1

 

 

1              if task v is assigned to station k

0             otherwise

. .

1  1...                                                (4)

,   if (

vk

m

vk

k

m

vk ok

k

Min m

Decision Variables

x

s t

x v n

k x k x P






 


  

  




1

1

v,o) 1 , 1...     (5)

         1....                                    (6)

m

k

n

vk v

v

v o n

x t c k m





  

  





 

Constraint (4) is the indivisible constraint, it ensures that a task can only be assigned to one 

workstation; constraint (5) is the precedence constraint, it ensures that a task is only available to a 

station if and only if all of its predecessors have been assigned; constraint (6) is the speed 

constraint, it ensures that the tasks at each station of the assembly line can be completed within the 

cycle time of the line, i.e. the line is paced.  It is worth noting that the constraints are identical 

regardless of the problem types.  

The optimal solution of the example in Figure 4 is m=6 given cycle time c= 10. The 

associated station configuration is V1={3,4}, V2={1,5}, V3={2,7}, V4={6,8}, V5={9}, V6={10}. 



14 

 

 

 

1.5.3 SALBP2 

SALBP2 is a problem that aims to minimize the cycle time of the assembly line for a given 

m. The cycle time serves as a bound for each workstation and guarantees the line is paced. 

Moreover, the cycle time is a measure of the productivity of the line. The smaller the cycle time 

is, the more productive the assembly line will be. It is a dual problem of SALBP1, because 

SALBP2 minimizes c given a fixed m, while SALBP1 minimizes m given c. Like the SALBP1, 

SALBP2 also falls into the category of NP-Hard problem. The problem can be formulated as 

follows. 

1

1

 

 

1              if task v is assigned to station k

0             otherwise

. .

1  1...                                                (7)

,   if (

vk

m

vk

k

m

vk ok

k

Min c

Decision Variables

x

s t

x v n

k x k x P






 


  

  




1

1

v,o) 1 , 1...     (8)

         1....                                    (9)

m

k

n

vk v

v

v o n

x t c k m





  

  





 

 

Given the number of stations m = 5, the optimal solution of the example in Figure 4 is 

c=11. The associated station configuration is V1={3,4}, V2={1,5}, V3={2,7}, V4={6,8}, V5={9,10}. 



15 

 

 

 

1.5.4 SALBPE 

SALBPE is a more general problem than previous three problems. It is to maximize the 

efficiency (cf. Section 1.1) of the assembly line by making tradeoffs between minimizing the 

number of stations and cycle time considering their interrelationships. However, this problem is 

not as popular as the SALBP1 and SALBP2 because adjusting two variables at the same time is 

not very practical and sometimes one variable is more attractive than another in industrial 

problems. Generally speaking, it could be solved by iteratively solving the SALBP1 or SALBP2.  

1.5.5 TALBP1 

TALBP1 is a more common problem than the other three problems of TALBP in the 

literature. It is to minimize the number of positions of the assembly line with a fixed cycle time. 

Because of the additional constraints and the impact of the delay time, it is a more complex 

problem than SALBP1. Hence, it is a NP-Hard problem as well. Because of its complexity, 

heuristics and meta-heuristics are always employed to find a good solution in a reasonable amount 

of time. These methods are introduced in the literature review section. Further, in this dissertation, 

priority rules- based methods (PRBMs) as well as a bounded dynamic programming (BDP) scheme 

are proposed to solve the TALBP1 by exploiting the problem specific knowledge. 

1.5.6 Forward Planning for SALBP1 under dynamic task attributes 

As mentioned before (cf. Section 1.3), there is an existing yet unsolved problem: Dynamic 

task reassignment under changing task performance times. Task time reduction could be achieved 

by improvement induced by human or technology in terms of the cumulative proficiency of skills 

or process innovation. Task reassignment becomes possible in modern assembly systems.  For 

example, the assembly line with supervisory control is capable of changing the production process 



16 

 

 

 

between production cycles (repetitions). The supervisory machine will dispatch orders (changes) 

to the machines in the workstations, and the adjustment will be made accordingly.  

A problem arises when the current task assignment may not be optimal given a change in 

the dynamic task time attribute and the number of workstations can be reduced while maintaining 

the desired cycle time. Otto and Otto (2014) provides the solution procedures considering the 

dynamic attributes of task time, when task reassignment is not allowed during the learning period. 

In this dissertation, we aim to optimize the configuration of the assembly line by considering 

reassigning the tasks in each production cycle as task times are reduced. Figure 7 illustrates the 

decision making process given a batch size of 30. At the beginning, an optimal solution consisting 

of the number of stations (m(1)) and the task arrangement (V(1)) are obtained for the first 

production cycle. Then, as production cycle increases and task time falls according to a learning 

function, the current solution is no longer optimal at the uth production cycle. A new solution set 

(m(u), V(u)) has to be searched. Hatched area implies the optimality of solution (m(1), V(1) is 

maintained from the first production cycle to the (u-1)th production cycle. The above procedure is 

repeated until the solution to last repetition is found (m(30), V(30)). Generally speaking, for the 

batch size z, the problem we are addressing for SALBP1 can be formulated as follows: 



17 

 

 

 

1

1

 

 

1              if task v is assigned to station k at the ith repetition

0             otherwise

. .

1  1...  , 1...z                                 (1

z

i

i

i

vk

m
i

vk

k

Min m

Decision Variables

x

s t

x v n i






 


   





1 1

1

0)

,   if (v,o) 1 , 1...     (11)

         1....  , 1...z                     (12)

m m
i i

vk ok

k k

n
i i

vk v

v

k x k x P v o n

x t c k m i

 



     

   

 



 

 

Figure 7 Task reassignment procedure 

 

 



18 

 

 

 

Our interest is to develop a smart algorithm that will tell us whether or not a new solution 

is required or whether the current solution is still valid.  If the problem could be reduced to 

determine whether the optimal solution to the current batch is still optimal, the computational effort 

can be reduced.  When a current configuration is no longer optimal, tasks will be dynamically 

reassigned to stations based on the new optimal design. In automated flexible assembly systems 

this simply means that the tasks are dynamically reassigned among fewer robots without loss of 

the information that has led to reduced assembly task times. Robots (agents) that are no longer 

required in the current assembly configuration can be released for work in other parts of the plant, 

or on other assemblies, thus maximizing the efficient use of machines.  To tackle this problem, a 

novel algorithm is proposed in this paper concerning task reassignment based on dynamic task 

assembly times where the learning rate is predetermined. As a result, a planning schedule for the 

design of the assembly line is generated upfront before production begins in order to better allocate 

the resources. Comparisons are made with the use of the standard algorithms currently in the 

literature in terms of the performance. 

 

1.5.7 Task reassignment for SALBP2 under non-constant task attributes 

The presence of non-constant task time attribute also provides opportunities for further 

reducing the cycle time in SALBP2. At times, it is more convenient to adjust the task assignment 

than to reduce the number of stations. Moreover, the pattern by which the task time progresses 

could be deterministic or uncertain. In the deterministic case, task time reduction is governed by a 

predetermined function; in the uncertain case, task time reduction can only be realized after a 

production cycle is finished. The problem can be formulated as follows. 



19 

 

 

 

1

1

 

 

1              if task v is assigned to station k at the ith repetition

0             otherwise

. .

1  1...  , 1...z                                 (1

z

i

u

i

vk

m
i

vk

k

Min c

Decision Variables

x

s t

x v n i






 


   





1 1

1

3)

,   if (v,o) 1 , 1...     (14)

         1....  , 1...z                     (15)

m m
i i

vk ok

k k

n
i i

vk v

v

k x k x P v o n

x t c k m i

 



     

   

 



 

 

Task reassignment requires rapid and accurate responses to changes in the task times. It is 

especially useful in practice when there is no knowledge about the future changes of the task time 

and time limit for making the line rebalancing decision. Compared with production when no 

rebalancing occurs, the benefit of rebalancing the task assignment among stations during 

production is the improvement of the cumulative production time. The dissertation provides an 

efficient algorithm to rebalance the assembly line in a fast manner as well as an implementation of 

the rebalancing procedure in chapter 4.  

 

1.6 Summary 

In this chapter, assembly line and assembly line balancing problem (ALBP) are introduced. 

Assembly line can be classified into traditional assembly line which is operated by human workers, 

and automated assembly line which is operated by robot. In comparison to traditional assembly 



20 

 

 

 

line, automated assembly is faster, accurate and more standardized in terms of production 

efficiency. ALBP,  which is to maximize the production efficiency by configuring the assembly 

line, is a classic optimality problem in the area of production and operations management. Four 

basic types of ALBP are explained and modeled.  

Collaborative learning and supervisory control architecture, which are embedded in 

automated assembly system, enable the assembly line to be reconfigured considering task times 

improvement in order to achieve overall optimality in production efficiency. Contingent upon the 

attribute of task time changes, the assembly line can be configured before production begins when 

the changes is dynamic, or after production begins when the changes is uncertain. These two 

production situations are investigated in the following chapters. 

 

 

  



21 

 

 

 

2. Literature review 

In this chapter a comprehensive literature review focusing on solution procedures is 

conducted.   Firstly, the data structure and types of complexity measures are introduced. In what 

follows, the existing algorithms for the SALBP and TALBP problem types are discussed. In 

addition, some examples are provided to elaborate on the solution procedures.  Lastly, the problem 

structure under non-constant task time attributes is introduced.    

2.1 Literature Review on data structure and complexity 

2.1.1 Data structure 

In this dissertation, the data sets related to OAL comes from Scholl (1993) and the data 

sets related to TAL comes from Khorasanian et al. (2013), which encompass almost all popular 

data sets in the existing literature.  The data sets are cataloged in Appendix A. They are used to 

test and compare the traditional algorithms and the novel algorithms proposed in this thesis. Most 

of the data sets are collected from industry while a small number are made up for the purpose of 

testing different facets of the algorithms. 

A typical data set is always represented by a precedence graph (Figure 4) which shows the 

number of tasks, task times and precedence relations among tasks. Following the work of Hoffman 

(1963), the precedence graph can be transformed into a precedence matrix which completely 

captures the precedence relationships between tasks.  In addition to the quantitative benefits, such 

transformation is also very handy when the algorithm is programmed and executed on a modern 

computer. A root node, which precedes all tasks, is always added to the precedence matrix. For 

instance, the precedence matrix for Figure 4 is shown in Table. 3. For the vth row, the value 1 

indicates the corresponding column (task) number directly follows task v. For the jth column, the 

value 1 indicates the corresponding row (task) number directly precedes task j. Zero means the 



22 

 

 

 

pair of tasks does not preserve any direct relationships. There are ten ones in the first rows meaning 

that the root node directly precedes all tasks. There are two ones in the seventh column meaning 

that task 6 directly succeeds the root task and task 5. 

Table 3 The precedence matrix for the example of Figure 4 

0 1 1 1 1 1 1 1 1 1 1 

0 0 1 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 

 

2.1.2 Complexity of data set 

The complexity of a data set or a problem is the computational effort of finding the optimal 

or near optimal solution by exhaustive enumeration. In the context of assembly line balancing 

problem, the complexity of a data set can be characterized by the following factors. 

Number of tasks (n): Given the number of tasks is n, if the precedence graph is ignored, it 

might be interesting to note there are totally n! feasible sequences to SALBP. Therefore, the 

complexity is expected to grow exponentially in the number of tasks.   

Task times and cycle time: The complexity of a data set is partially determined by the ratios 

between task time and the cycle time. If the task times are relatively large in relation to the cycle 



23 

 

 

 

time, it is easier to assign the tasks to a station because there are fewer choices of combining tasks. 

As a result, the optimum seeking procedure will be advantageous and the computational speed will 

be fast.   

Precedence constraints: The impact of the precedence constraint has two effects. On one 

hand, it reduces the number of feasible sequences, which may lower the level of complexity. On 

the other hand, it impedes the process of seeking an optimum because the availability of a task 

depends on its predecessor and a station configuration is subject to prior stations task assignments. 

Concretely, any change of task assignments at a station at one point may result in totally different 

solutions.  Therefore, the decision on the current station is more sensitive to the full solution than 

are the subsequent stations.  

Number of stations (m): The influence of the number of stations are twofold. There are 

more feasible combinations when the number of stations is small in which case the complexity is 

high. However, the number of stations dealt with is less when the number of stations is small which 

will lower the complexity. The case in which the number of station is equal to one or to the number 

of tasks is trivial.  

2.2 An overview of algorithms addressing SALBP 

 

Algorithms dealing with SALBP can be classified by different criteria. In terms of the types 

of solutions, the algorithms could be classified into exact procedures or heuristics. In terms of the 

optimum seeking procedure, the algorithms could be categorized into dynamic programming (DP) 

or the Branch and Bound (BnB) procedure. In terms of construction schemes, which defines the 

procedure of assigning tasks, the algorithms are classified into station-oriented or task-oriented 

assignment. The heuristics are more favorable than exact solution procedures in dealing with large 



24 

 

 

 

size, real-world problems and TALBP because they can find a good quality solution more quickly 

for complex problem and the programming is easier. The BnB turns out to be more effective than 

DP empirically (Scholl, 2006).  The definitions of station-oriented or task-oriented assignment are 

as follows. 

Station-oriented assignment: In any step of a station-oriented procedure a complete load of 

assignable tasks is built for a station k, before the next one k + 1 is considered. 

Task-oriented assignment: Procedures which are task-oriented iteratively select a single 

available task and assign it to a station, to which it is assignable. 

Either assignment method has its own merit. Compared to the task-oriented assignment, 

station oriented assignment will take more time to find a feasible solution, but the quality of the 

solution is better.  

2.3 Literature Review on Dynamic Programming 

Dynamic programing (DP) has played an important role in the history of TALBP. Jackson 

(1956) set forth a DP procedure to enumerate the solutions for TALBP. The DP solution approach 

is to form a graph G(V, A) where vertices V corresponds to the states of the problem  solution and 

arcs A are the decisions of transforming one  state to another. With DP, TALBP can be treated as 

a multistage decision process. Held (1963) extended Jackson’s pioneered work by subdividing the 

stages into stations. Stage refers to the station number to which DP advances. Each subproblem of 

TALBP is to search the solution space of task assignment of a station (Scholl and Becker, 2006). 

The optimal solution is searched in a forward recursion stage-by-stage, i.e., DP enumerates all first 

station assignments, then considers the loads of the second station for each task sequence of the 

first station, and so on (breadth-first search). Since the number of sub-solutions grows 

exponentially as the number of tasks increases, a solution space reduction method is necessary for 



25 

 

 

 

the maintenance of the good performance of DP to the large size problem. Two approaches are 

used to achieve the solution space reduction: 1) Search space reduction techniques, for example, 

dominance rules (Jackson, 1956) and upper and lower bound (Easton et al., 1989); and 2) 

Heuristics station enumeration approach. Hoffmann (1963) developed a search method that 

systematically finds all solutions of a subproblem but only selects the one with the minimum idle 

time to proceed to the next stage. Fleszar and Hindi (2003) extended his work by building solutions 

from both sides of the precedence graph as well as conjoining tasks and incrementing operation 

times. In our approach, we modify and improve both of the solution space reduction techniques 

and incorporate them into our algorithmic design. 

DP is an exact solution method based on breadth-first enumeration. However, as previously 

stated, its efficiency is dampened as the size of the problem increases. Although Hoffmann’s 

approach, in conjunction with solution techniques, can locate a solution quickly, the quality of the 

solution is not guaranteed. To enhance the solution quality and only sacrifice minimal 

computational efficiency (computer elapsed time), Bautista and Pereira (2009) developed a BDP 

and applied it to the SALBP. We highlight their method because it serves as a building block for 

the novel algorithm proposed in this dissertation optimizing TALBP1. It showed excellent 

capability of producing good quality solutions with much smaller computational time compared 

with the exact solution methods. We build on the basic logic behind their work and develop a BDP 

specifically for TALBP. The BDP can be considered as a modified Hoffmann heuristic with two 

additional parameters, window size and maximum transitions. They are both utilized to reduce the 

solution space relatively to DP, but to increase the solution space relatively to Hoffmann heuristic. 

Window size denotes the number of sub-solutions (states) a stage j can keep and uses it to 

enumerate the next stage j+1. Maximum transitions are referred to as the number of states at stage 



26 

 

 

 

j+1 that DP can generate from each state at stage j. Hoffmann heuristic is a BDP with window size 

and maximum transitions both equal to 1. Chapter 5 will show the novel contributions of present 

work related to BDP.  

 

2.4 Literature Review of the Branch and Bound procedure in Assembly Line Balancing 

BnB is a popular procedure to solve combinatorial optimization problems. It is a building 

block for the research in the dissertation. The solution procedure constructs a tree with nodes and 

arcs. In this context, the workstation is represented by the node and the tasks operated in the 

associated station are listed on the arcs. The station loads are shown in the oval. Figure 8 shows 

an example data set and a feasible solution. The solution is m=4 and c=9. The station configuration 

is V1={1,3}, V2={2,5},V3={4,6},V4={7}. The solution structure is also called a branch. A tree 

consists of many such branches. 

1

2

53

7

4

6

3

4

4

4

5

4

7

·

 

 

 

Figure 8 Simple solution to SALBP with cycle time 9 

 

As mentioned in previous sections (cf. 2.1.2), the complexity of the problem will grow 

exponentially in the number of tasks, indicating the development of the tree needs a lot of memory 

(1,3) (2,5) (4,6) (7)

7 8 9 7



27 

 

 

 

to store the branches. Hence, the predicament of the BnB in solving the SALBP is how to reduce 

the computational effort. There are two basic methods to achieve the effort reduction. 1) Choose a 

good starting point. 2) Avoid the inferior partial solutions (branches). Hence, one method targets 

on Bound discovery while the other one focuses on Branch development. 

 

2.4.1 Lower bounds 

The first step of the BnB procedure in SALBP is to find a feasible solution. Basically, the 

feasible solution is found by trying a number of possible solutions, and then verifying their 

feasibilities. If the trials are selected arbitrarily, it may be time-consuming to find a feasible 

solution, and the solution may be far away from the optimal solution.  This will complicate the 

subsequent branching process. This is undesirable, but a lower bound construction can provide a 

reasonable starting point. 

 

2.4.1.1 Lower bounds for SALBP1 

SALBP1 aims to minimize the number of stations (m) given the cycle time (c). Due to the 

integrality of m, only a relatively small number of objective values are possible. A lower bound 

(LB) close to or even equal to m* is helpful in solving SALBP1 instances provided that the bounds 

can be computed efficiently. Hence, if a feasible solution is equal to the LB, the BnB can be 

terminated and that solution is proven to be optimum. 

Bin packing bounds: The SALBP1 will be reduced to a bin packing problem when the 

precedence relations are ignored.  The equivalence of the two problems will make their lower 

bounds interchangeable.  The most obvious lower bound for SALBP1, LB1, is the total capacity 



28 

 

 

 

bound invented by Baybars (1986).  Based on the fact that the cycle time of the line must be greater 

than or equal to the station task times, LB1=⌈tsum/c⌉. Johnson (1988) obtains the simple counting 

bound considering the relationships between the task time and cycle time. Tasks satisfying tv>c/2 

could not share the same station, so those tasks can each be counted as one station. Furthermore, 

tasks with exactly c/2 amount of time are counted as 1/2 station. The lower bound LB2 is based 

on counting all of the aforementioned tasks. 

One-machine scheduling bound:  The SALBP1 problem can also be relaxed to a one-

machine scheduling problem (Johnson,1988). Tasks are interpreted as jobs v = 1,…,n with 

‘‘processing times” pv = tv/c which have to be successively performed on a single machine. After 

processing job v, a certain amount of time called tail jobs of v, tlv, is necessary before the job is 

finished. The tail of task v is the lower bound on the number of stations for the successors of task 

v. It shall be noted that tlv is not rounded up to the next integer unless it cannot share a station with 

the task v, i.e. tlv + pv >  ⌈tlv⌉. The objective of the one-machine problem is to find a sequence of 

jobs with which the makespan is minimized, i.e., the time interval from the start of the first job to 

the end of the last job. The optimum solution is achieved by choosing the maximal processing time 

because the lead time can be fully utilized. 

For the example of Figure 4 with c=10. The above LBs are calculated as follows. 

LB1: LB1= ⌈48/10⌉ = 5. 

LB2: There are three task whose task time is greater than 10/2=5 (task 1,2&9) and three 

tasks whose task time is exactly 10/2=5. Hence, LB2=3+⌈3/2⌉=5 

LB3: The calculations of processing time and tails are given in Table 4. LB3=Max⌈p1+tl1, 

p3+p1+tl3⌉=6 

 



29 

 

 

 

 Table 4 Processing time and tails of Figure 4 

v 0 1 2 3 4 5 6 7 8 9 10 

p(v) 0 0.6 0.6 0.5 0.5 0.4 0.5 0.4 0.2 0.9 0.2 

tl(v) 5.7 4.1 3 4 3.4 3 2.2 2.2 2 1 0 

 

2.4.1.2 Lower bounds for SALBP2 

SALBP2 aims to minimize cycle time c given the number of stations m. As in the case of 

SALBP1, the lower bound of SALBP2 is calculated by exploiting the relationship between the 

cycle time and the task time.  

LB1 (McNaughton, 1959): By analogy of LB1for SALBP1, a simple lower bound is 

calculated by the inequality mc≥tsum. The problem is simplified by assuming that tasks can be 

divisible. Moreover, for one particular station, the indivisibility of a task yields the inequality 

c≥tmax. Hence, LB1=max{tmax,⌈tsum/m⌉}. 

2.4.2 Dominance rules 

The dominance rules expedite the branching process by eliminating the dominated tasks 

from the assignable task set. In addition to shrinking the size of the assignable tasks set, it also 

rules out the incompetent partial solutions, i.e. a particular station configuration.  Empirical studies 

show that the dominance rules can greatly enhance the BnB's efficiency.  

Maximum load rule (Jackson, 1956): It excludes each partial solution P2 which contains 

one or more completed but non-maximal station loads, because there exists at least one other partial 

solution P1 with the same number of maximally loaded stations, where additional tasks are 

assigned. In such a case the completion of P1 does not require more stations than that of P2. In the 



30 

 

 

 

example of Figure 4, with cycle time c=10, the partial solution refers to the first station's 

configuration.  Given P1={1}, P2={3}, P3={3,4}, P2 is dominated by P3 because the station 

configuration under P2 is non-maximal. P1 is not dominated by any partial solution because the 

station configuration under P1 is maximal because there does not exist another task that can be 

added to P1 without exceeding c. 

Jackson’s dominance rule (Jackson,1956; Klein and Scholl, 1997): This rule is to eliminate 

the dominated tasks during the branching process. Prior to branching, a dominated matrix is 

generated by sorting out the dominated pairs of tasks.  Task v is dominated by task j if all of the 

following conditions are satisfied. 1) task v is not related to task j in terms of precedence. 2)  the 

set containing all followers of task v are a subset of or equal to a set containing the followers of 

task j, Fv⊆Fj
*. 3) tv≤tj. 4) The station time will not exceed the cycle time after assigning task j. 

Concretely, in the example of Figure 4, the dominance pair (j,v) are (1,4), (2,6), (3,7),(4,7),(5,7). 

2.4.3 Branch and Bound procedure on SALBP1 

In this section, the BnB procedure solving SALBP1 is discussed and examples regarding 

the commonly used algorithms are given for illustrative purposes. They can be perfectly 

complemented by the lower bounds and dominance rules. 

 Depth-first search (DFS): By implementing DFS, a feasible solution (developed branch) 

is found first, and then the output m is set to the current optimum as well as an upper bound 

for the optimization process. In what follows, the procedure traces back to the node where 

there are alternative selections of a single task (task-oriented) or a group of tasks (station-

oriented) available, and a new branch is started. The new branch is fathomed until the 

branch is proved to be inferior or renders the same solution, and then the procedure traces 



31 

 

 

 

back along the branch again. Otherwise, the current solution is updated to the number of 

stations underling the new branch. The procedure is repeated until it traces back to the root 

node. A classic algorithm which bases on DFS is FABLE (Johnson,1988). 

Examples:  The precedence relation and tasks times are given in Figure 9. Cycle 

time is 12. For ease of demonstration, only LB1 is applied, LB1=⌈31/12⌉=3. 

The DFS firstly develops a feasible branch consists of node 1,2,3,4 and 5 as is 

shown in Figure 10. The current optimum is m=4. Then, the DFS backtracks to node 2 and 

develops a new branch (1-2-6-7-8). There is no improvement, so the algorithm traces back 

to node 1. Instead of assigning task 1 and 3 to station 1, the algorithm tries another task 

assignment set which is {1,2,4}. Then, a new branch (1-9-10-11) is generated with solution 

equal to 3. Since the current solution is equal to LB1, the algorithm stops and the optimum 

is found.  

1

2

53

7

4

6

3

6

4

5

5

4

7

·

 

 

Figure 9 Example for BnB procedure for SALBP1 



32 

 

 

 

1

2 3 4 5

9 10 11

6 7 8

{1,3}

{2,4} {5,6} {7}

{7}{4,6}

{2,5}

{1,2,4}

{3,5} {6,7}

9

8 10 7

9

11

9 7

11 12

 

Figure 10 Tree structural solution for SALBP1 (DFS) 

 Bi-directional search method: At times, the problem is much easier to solve when the 

precedence graph is reversed.  Successive search in both directions, as done in EUREKA 

(Hoffman,1992), will reduce the size of the tree so that the enumeration effort is alleviated 

as well. Whether to choose the forward or backward search solely depends on the data.  

Usually, if the precedence relations are clustered on the right sides of the precedence graph, 

the forward direction is preferred. The reason is that the more precedence relations, the less 

available tasks for the stations. Furthermore, the configuration of subsequent stations is 

contingent upon the prior stations. Hence, it is beneficial to arrange fewer available tasks 

to the stations at the beginning.   

 Local Lower Bound Method (LLBM): LLBM is considered as the most efficient algorithm 

in many situations. It is a foundation for the novel algorithms developed for SALBP in this 

dissertation. In addition, local lower bound (LLB) will be compared with the novel 

algorithms when solving the SALBP with dynamic task attributes. LLBM has the 

advantage of bounding the partial solution before a branch is fully developed. In other 

words, a partial solution could be proved to be inferior or equal to the current optimal 

solution before it advances to a full solution. The local lower bound of a station is the 



33 

 

 

 

minimum number of stations required given the previous station configurations, i.e. LLB 

(k)=k+ (LB of the reduced problem). SALOME1 (Scholl and Klein,1997) is an algorithm 

which utilizes the local lower bounds at length.   

Examples: The problem in Figure 9 is revisited and SALOME1 is implemented to 

seek optimum. The solution tree is displayed in Figure 11. In comparison with DFS, it only 

takes 9 nodes to find the optimum by conducting SALOME1. The number above the node 

is the station's local lower bound.  Unlike DFS procedure which continues branching after 

node 6, the branch (1-2-6) is terminated because the LLB (3) (node 6) is equal to the current 

optimum which is 4. 

1

2 3 4 5

7 8 9

6

{1,3}

{2,4} {5,6} {7}

{2,5}

{1,2,4}

{3,5} {6,7}

9

8 10 7

9

11

11 12

3

3

3 3 3

4 4 4

4

 

Figure 11 Tree structural solution for SALBP1 (SALOME1) 

2.4.4 Branch and Bound procedure on SALBP2 

While there is a plethora of literature discussing the exact solutions for SALBP1, only a 

few algorithms exist to address the SALBP2 problem. Most researches are devoted to solving the 

SALBP2 by taking the advantage of duality between SALBP2 and SALBP1. 



34 

 

 

 

 Iterative search method:  SALBP2 can be solved by iteratively solving several SALBP1 

problems. The basic idea is simply to examine the optimal number of stations for different 

values of cycle time. The optimal c is obtained at the point the m* changes value. Therefore, 

several search methods have been proposed and tested [Dar-El and Rubinovitch (1979); 

Hackman et al. (1989)]. The most commonly used iterative method is binary search. The 

value of cycle time is chosen from an interval [LB, UB]. LB is a lower bound (cf. 2.4.1.2). 

UB is an upper bound. A simple upper bound for the cycle time is UB=max [tmax, ⌊tsum/m⌋] 

(Coffman et al.,1978). In binary search, the interval is subdivided into two subintervals by 

choosing the c1=(LB+UB)/2. If m* is equal to or lower than the number of stations required, 

the interval [LB, c1] (UB is set to c1) is selected for the next iteration. Otherwise, the 

interval [c1, UB] (LB is set to c1) is selected for the next iteration. Such procedure is 

repeated until the UB-LB=1. Then, examine both LB and UB to determine which one is 

the optimum. The iterative search method is an indirect method to solve SALBP2. 

 Local lower bound method: By analogy of SALBP1, the enumeration effort can be 

efficiently reduced by considering the local lower bound. In addition to benefitting internal 

BnB procedure, LLBM can also be used to directly locate the optimum. SALOME2 is an 

influential algorithm based on the LLBM [Klein and Scholl (1996)]. The essence of the 

algorithm is to keep track of the total idle time (TOIL) left while fathoming the branching 

process. The TOIL is an indicator for the feasibility of the current solution. For instance, 

given tsum=34, m=5, we would like to know the feasibility of a developing branch with c=7. 

The total idle time is equal to mc-tsum= (5)(7) – 34=1. If the first station is fully loaded (no 

idle time), the TOIL is 1 for station 2. However, after searching all of the possible 

combinations for station 2, there exists no assignment with which the idle time of station 2 



35 

 

 

 

is equal to or less than 1. In which case, the TOIL turns negative meaning that the current 

solution is no longer feasible for the current branch, and thereby increasing the cycle time 

is necessary to regain the feasibility for the current branch. 

Examples: For the data in Figure 9, given m=4, the solution tree structure is shown 

in Figure 12. Above each node, the number on the left side of the slash is the local lower 

bound, and the number on the right side of the slash is the TOIL. The algorithm starts off 

with a lower bound 9, and the total idle time is 9×4-34=2. It proceeds to node 2 after 

assigning task 1 and 2 to station 1. The TOIL for station 2 is zero because station 1 has an 

idle time of 2 (9-3-4=2). Hence, the rest of the stations have to be fully loaded; otherwise 

the cycle time 9 is no longer feasible.  After searching for all possible selections, there is 

no combination of tasks whose total task times are equal to 9. The cycle time is increased 

to 10, which is the minimal value to make the TOIL positive. The loop above a node means 

the cycle time is increased at the node. After the first branch (node 1-2-3-4-5), the cycle 

time 10 is the current optimum. Then, backtracking to node 2 which is the first local lower 

bound whose value is smaller than 10, the procedure assign task 3 and 4 to station 2, and 

thereby the cycle time is increased to 10.  The procedure then traces back to node 1 with a 

cycle time of 9 and assign task 1&3, 2&4 to station 1 and 2 respectively. However, there 

is no possible selection to station 3 that will not result in negative TOIL and the cycle time 

is increased to 10. As a result, the branching process returns to node 6 with a cycle time of 

9. The third branch (node 1-6-9-10-11) is fathomed because the best possible solution for 

the current branch is 10, which is equal to the upper bound. The optimal solution resides 

in the last branch (node 1-6-9-10-11) and is equal to 9.    

 



36 

 

 

 

 

 

7

10
10 7

9

8

9

10

9

7

1 2 3 4 5

6

9

7 8

{ 1 ,2 }

{ 1 ,3 }

{ 3 , 4 } { 5 , 6 } { 7 }

{ 2 ,5 }

{ 2 ,4 } { 5 , 6 }

10 11{ 7 }{ 4 , 6 }

9 / 0 10 / 3 10 / 3 10 / 0

9 / 2 9 / 1 10

9 / 2 9 / 2 9 / 0

10

 

Figure 12 Tree structural solution for SALBP2 (SALOME2) 

 

2.5 Literature Review on Priority-based methods 

Priority-based methods (PRBMs) have proved to be efficient and intuitive to obtain good 

solutions for practical problems in SALBP (Otto and Otto, 2014). PRBMs can be used as stand-

alone solution procedures or combined with other techniques, such as branch and bound.  When 

PRBMs are used independently, they are one of the fastest methods because of the low computer 

memory requirements. They provide a good starting point, deliver reasonable bounds (Otto et al., 

2011) and enhance the efficiency of local search (Storer et al., 1992) when used in conjunction 

with other solution methods (Vance et al. 1994). The first scientific study on using PRBMs to 

solve the assembly line balancing problem (ALBP) was conducted by Arcus (1966). He used 

PRBMs to develop a computerized software, COMSOAL, balancing practical problems in 

assembly lines. Talbot et al. (1986) carried out extensive experiments to evaluate the performance 

of heuristics and suggested a guideline to choose heuristics under different conditions. Scholl and 

Voβ (1996) improved their work by extending the heuristic rules as well as combining PRBMs 



37 

 

 

 

with Tabu search to overcome local optimality. Otto and Otto (2014) formulated a general design 

principle on how to apply PRBMs to SALBP. Technical reports of PRBMs can be found in Otto 

et al. (2011).   

Each task is assigned a priority score S according to the PRBMs. During the task 

assignment procedure, the task with the highest priority score is assigned first when all of the 

constraints are satisfied. In terms of the structure of the PRBMs, it can be distinguished between 

elementary rules and composite rules. Elementary rules are constructed by utilizing single 

attributes of the ALBP. Composite rules are the combination of elementary rules (Haupt, 1989). 

Elementary priority rules can also be classified according to the type of information they used to 

calculate the priority scores. When the task time is the variable, the rule is task-oriented. Otherwise, 

the rule is precedence-oriented (Otto et al., 2011). In this paper, we adopt 5 popular elementary 

rules, which encompass both precedence-oriented and time-oriented relations, as our building 

blocks for the algorithmic design. They are maximum task time (T), maximum TdL, maximum 

TdS, maximum F and minimum L (see notations in Table 1). Composite rules are a weighted linear 

sum of elementary rules. Elementary and composite rules can have single-pass or multi-pass 

attributes in terms of the number of solutions each individual rule generates. The application of 

PRBMs is to always assign the available task with the highest S. In case of a tie (two or more 

available tasks with the same priority score), another elementary rule or the task’s natural order 

can be used as tie breakers.  

Although PRBMs are widely used in the open literature, there is little attention paid to the 

PRBMs application in TALBP.  Lapierre and Ruiz (2004) examined the performance of PRBMs 

in an industrial assembly line with two-sided and two-heights attributes. The PRBMs are shown 

to be efficient in solving the practical complex problem. However, the number of priority rules 



38 

 

 

 

(only rules related to task time are used) and problem size (only 1 problem) are quite limited to 

uncover the potential advantages or functionalities of PRBMs, let alone algorithmic design. In 

chapter 4, more rules (5 elementary rules, 90 composite rules) and problem sizes (34 instances) 

are involved in the in-depth analysis of PRBMs.  

Examples: A 12 tasks example is described in Figure 13, c=7. TALBP1 is the problem to 

solve. Maximum F rule (choose the task with the maximum number of follower tasks) is used to 

assign tasks to stations. Initially, 3 tasks are available to assign, 1, 2 and 3. According to rule F, 

task 2 is assigned first to the right station of position 1 because it has the most number of followers 

(7).  Task 5 (F=6) is assigned to the right station of position 1. In what follows, task 3 (F=4), task 

1 (F=3), task 6 (F=3) and task 9 (F=2) are assigned to the left station of position 1. Task 8 is 

assigned to the right station of position 1. Two stations in position 1 are fully loaded, and position 

2 is open. We assign task 4 (F=2), task 7 (F=1) to the left station of position 2. Finally, task 11 

(F=1), task 10 (F=0) and task 12 (F=0) are assigned to the left station of position 2. As a result, 

the optimal number of positions is 2. 

 

Figure 13 12 Tasks two sided assembly line 

 

2.6 Literature Review on task attributes 

In real world applications, task times may not be constant values. Instead, it can follow a 

function (Dynamic attribute) or can be random (Uncertain attribute) during the production. Even 



39 

 

 

 

when task times follow a traditional learning curve there may be considerable variability around 

the function (Vigil and Sarper, 1994; Globerman and Gold, 1997; Goldberg and Touw, 2003; 

Boucher and Li, 2016).   In this research we consider two cases: 1) deterministic dynamic attribute 

and 2) random uncertain attribute change.  

2.6.1 Dynamic task attributes 

For this case, the task times always follow a predetermined function, namely, the learning 

curve. Such functions (Biskup, 1999; Yelle, 1979) are used especially for the formalization of 

learning and/or linear deterioration effects observed for workers (Boucher, 1987; Chakravarty, 

1988; Cohen and Dar-El, 1998; Digiesi et al., 2009; Toksarı et al., 2008). In this dissertation, only 

traditional learning curve is considered for assembly line balancing and, therefore, the task 

improvement process is continuous.  The traditional learning curve is formulated as follows.  

1i

v vt t i
                                                                                                       (16) 

tv
1is the initial task time of task v, v=1...n  

tv
i is the task time of task v at the ith repetition 

 is the learning exponent, 
(Learning Rate)

og(2)

Log

L
                                       (17) 

 

This model is the dominant one in the cost estimating literature (Ostwald, 2010) and in 

textbooks on engineering economy (Newman et al., 2009; Sullivan et al., 2015).  Therefore, it is 

the principal guide for practicing engineers to use in forecasting the path of task times when 

introducing new technology in production. 



40 

 

 

 

2.6.2 Uncertain task attributes 

At times, the pattern of the changes of task time is unknown at the point the decision has 

to be made. In manual lines, the effectiveness of operators varies with work rate, skill level, and 

motivation, which may affect processing times. In automated lines, the technology improvement, 

process innovation and error detection will lower the task time, but the magnitude may not follow 

a deterministic function and the timing of events may be stochastic. There exist several ways to 

model the uncertain task time. Unlike the dynamic case, which the learning is always a continuous 

process, task learning under uncertain task attributes is sometimes a discrete process.  

 Distribution based modeling: The task time is treated as a random variable with a given 

distribution. (Dolgui and Proth, 2010) 

 Fuzzy number based modeling: Task is modeled as a fussy number with known 

membership function. This approach is used by Hop (2006), Zacharia et al (2012). 

 Scenario based modeling: A possible set of scenarios of task time is given over a pre-

specified planning horizon. The value of task time can be found in each scenarios. 

(Battaia and Dolgui, 2012;) 

 Interval based modeling:  The task time falls into an interval defined by the minimal and 

maximal possible values of the corresponding task attribute. Its definite value can be 

known only at the moment of line exploitation. Such task processing times were 

considered by Gurevsky et al.(2012b). 

2.6.3 Recent research on ALBP considering non-constant task attribute 

The assembly line balancing problem considering learning effect has been studied in the 

recent literature. Cohen et al. (2006, 2008) considered a work allocation problem which aimed to 



41 

 

 

 

minimize the makespan of production under homogeneous and varying learning curves. However, 

for the purpose of circumventing the combinatorial features of the line balancing problem, the 

traditional constraints that tasks are indivisible and that precedence relations exist were relaxed. 

Toksari (2008) presented a simplistic solution procedure to SALBP1 considering the reliability of 

products. However, task learning only takes place once, which assumes that it is independent of 

the production quantity. Otto and Otto (2014) provided the solution procedures for a lexicographic 

problem in order to increase the assembly efficiency and reduce the production ramp-up period 

considering that the dynamic attribute of task time follows a learning curve.  Their optimization 

process first minimizes the number of stations, which outputs a set of solutions. From that solution 

set they select the optimal solution which renders the minimal cycle time among the set of 

solutions. However, task reassignment is not allowed during the production period.  Only one task 

assignment configuration is used throughout the period of production even though task times are 

changing. Sotskov et al. (2015) performed a stability analysis on the various benchmark data sets 

that exist in the literature as a means to test the optimality of a solution if task times are subject to 

small variations. He shows that there exists a lot of unstable optimal solutions, i.e., an optimal 

solution for a given set of task times is not optimal if task times have changed slightly. Those 

results shed light on reassigning tasks during the period of batch production when task time 

improvement occurs in order to obtain optimal conditions for the overall production batch. In the 

thesis, we take account of this issue, which has not been addressed by the aforementioned papers. 

We present a production planning algorithm based on finding the optimal number of stations at 

each production cycle and we address the real-time reassignment of tasks during batch production. 

We show that the production efficiency is greatly improved compared with the line balancing 

problem where task reassignment is not considered.    



42 

 

 

 

 

2.7 Summary 

In this chapter, a comprehensive literature review is provided. The characteristic of a 

standard data set and how it can be encoded in a computer program is introduced. The nature of 

the NP-hard problem structure requires fast and efficient algorithms. The algorithms solving the 

ALBP are presented and rules which can alleviate the computational burden of the algorithms are 

also discussed in details. Illustrative examples are given to show the solution procedure of 

algorithms. Finally, the prior work on ALBP considering non-constant task attribute are reviewed.    

  



43 

 

 

 

3. Simple Assembly Line Balancing Problem-1 with dynamic task time attribute 

In this chapter, an efficient algorithm using backward induction is proposed to address the 

problem defined in section 1.5.6 (Li and Boucher, 2016). The algorithm implements a backward 

strategy so as to be capable of solving the problem without invoking the conventional Branch and 

Bound (BnB) procedure in every cycle. Task time will change according to a predetermined 

function, so that the solution offers a planning schedule of task assignments to workstations before 

the production begins. In what follows, three benchmark data sets are tested for the purpose of 

comparing the backward induction and conventional BnB procedure. 

3.1 Conventional BnB procedure 

The problem defined in section 1.5.6 can be addressed by iteratively implementing the 

conventional BnB procedure (see 2.4.3). The problem can be divided into a number of 

subproblems with respect to production cycles (repetitions). In each cycle, the input of task time 

will change according to a traditional learning function while the precedence relations are 

maintained in every repetition. A traditional learning curve function is described by Eq. (16). 

Given that the plan is to produce a batch with total number of items z, the BnB algorithm 

for SALBP1 will be conducted starting from the first repetition and record the first optimal solution 

set (m1
*, V1

*). V* stands for the optimal branches associated with the optimal solution m*.  The 

conventional algorithm is repeated until the last optimal solution set (mN
*, VN

*) is logged. Hence, 

the planning schedule for producing N items are (m1
*, V1

*) .... (mN
*, VN

*).  

The formal steps of the conventional algorithm are as follows. 

Step 0: Load the data, cycle time c, precedence graph P, task times of the first repetition t1,         

             batch size z 

Loop from 1 to z (z is the batch size or the total number of repetitions of the task) 



44 

 

 

 

Step 1: In each loop i, update the task times, ti by Eq. (16) 

Step 2: Invoke any of the BnB procedures, store the optimal solutions mi
* and go back to step1. 

The conventional algorithm treats each repetition independently and the BnB procedure is 

conducted in every loop. Although the algorithm exploits the lower bounds rules, dominance rules 

and reduction rules (Scholl and Becker, 2006) at different degrees as a means to reduce the 

enumeration effort of BnB, the computational cost is rather expensive as the number of tasks goes 

beyond a certain number because the complexity of the problem is exponential in the number of 

tasks (cf. Section 2.1.2). Presumably, the performance also deteriorates in batch sizes. Hence, the 

conventional algorithm will yield exact solutions to the task reassignment problem but would be 

very time consuming in large batch size. The conventional algorithm neglects the interrelations 

between tasks generated by the learning effect in distinctive production cycles. The interrelations 

underlying the adjacent solution sets (mi
*, Vi

*) and (mi+1
*, Vi+1

*) can be utilized to avoid the 

repetitive BnB effort, which gives birth to the novel backward induction algorithm developed here.  

3.2 Line rebalancing schedule 

We propose a rebalancing schedule which considers reassigning the tasks in each repetition 

in order to reduce the number of workstations. We assume that task times follows a learning curve 

which is characterized by Eq. (16). When a new solution (task sequence) exists, which results in 

fewer number of stations (from m to m-x) after producing uth product, x workstations are closed 

as unit u to u+x leave the assembly line. An implementation example will be shown in Section 

3.5.    

3.3 Backward induction algorithm 

In this section the interrelations between the solutions in adjacent production cycles will 

be explored, and two versions of the backward induction algorithm regarding the learning curve 

with single and multiple learning rates will be proposed.  As opposed to the conventional 



45 

 

 

 

algorithm, the merit of the proposed algorithm is to loop through the production cycles in a 

backward fashion and avoid invoking the branch and bound. As a result, the solution to the (i+1)th 

repetition will induce the solution to the ith repetition. Prior to developing the algorithms, two 

propositions are stated in order to justify the algorithm. 

Proposition 1: If an optimal solution to ith repetition mi is a feasible solution to jth repetition given 

i>j, it is also an optimal solution to jth repetition, mj=mi 

Proof by contradiction:  If mj≠mi, it is either mj>mi or mj<mi.  

1) Contradiction of mj>mi 

Because mi is a feasible solution to jth repetition, mi is also the current upper bound of the solution. 

The scenario mj>mi implies mj could not be the optimal solution which violates the statement that 

it is an optimal solution to jth repetition. 

2) Contradiction of mj<mi 

Given i>j, because of learning effect, the total task time of the ith repetition is always less than the 

total task time of the jth repetition in each workstation,    1...
k k

i j

r r j

r V r V

t t c k m
 

     . Hence, 

the optimal solution to the jth repetition is a feasible solution to the ith solution. mj serves as an 

upper bound for the ith repetition, which means mi could not be an optimal solution to the ith 

repetition. The scenario mj<mi contradicts the statement mi is an optimal solution to the ith 

repetition. □ 

Corollary 1 (squeeze theorem): If an optimal solution to the (i+l)th repetition and the (i- l)th 

repetition is the same, mi+1=mi-1, then it is also an optimal solution to the ith repetition.  



46 

 

 

 

Proof: Because the total sum of task times of a station
k

i

r

r V

t


  is monotone decreasing in i, the 

optimal solution to the (i-1)th  repetition mi-1 is also a feasible solution to the ith repetition. Then, 

mi+1 is also a feasible solution to the ith repetition. From proposition 1, mi+1 is also an optimal 

solution to the ith repetition.      □ 

Proposition 2: The learning rate for all tasks is the same and mi is an optimal solution to the ith 

repetition. Let k denote the station whose idle time is the least among all of the stations, idle time= 

( )
k

i

r

r V

c t


 . k is called the bottleneck station. The fact station k is infeasible (idle time <0) in 

the jth repetition is sufficient and necessary condition to render the solution mi infeasible in the jth 

repetition given j<i. 

Proof of Sufficiency: When any station, including k, is infeasible, it will result in the fact the 

current task assignment is infeasible.  

Proof of Necessity: If mi is infeasible in jth repetition, there exists at least one station whose idle 

time is less than zero. It will be shown below that idle time of station k must be less than zero. 

1 1

Because the learning rate is the same for all tasks

( )   1...                                                        (18)
h h h

i

r r r

r V r V r V

t t i i t h m 

  

       



47 

 

 

 

Also, because station k's idle time is the least among all stations in ith repetition

1

1

  1... ,                                         (19)

  1... ,                                  (20)

  1... ,         

k l

k l

k l

i i

r r

r V r V

i

r r

r V r V

i

r r

r V r V

t t l m l k

i t i t l m l k

j j
i t i t l m l k

i i

 

 
 

 

 

 

 

   

   

     

 

 

 

1

          (21)

  1... ,                                (22)

  1... ,                                       (23)

  1... ,         

k l

k l

k l

i

r r

r V r V

j j

r r

r V r V

j j

r r

r V r V

j t j t l m l k

t t l m l k

c t c t l m l k

 

 

 

 

   

   

     

 

 

                     (24)

 

□ 

Hence, station k's idle time is also the least among all stations in the jth repetition. As a 

result, it goes negative earlier than other stations as the repetition descends from i to j backward. 

Proposition 1 implies that as the algorithm loops backward, pursuing optimality is a matter 

of proving feasibility and the process of checking feasibility is much less complicated compared 

to the process of searching for optimal solutions using the branch and bound at each cycle. 

Corollary 1 provides a different approach to solve SALBP1. The BnB procedure would be running 

very slowly under some task times combinations, i.e. it generates too many branches before the 

optimal solution is found. In this case, if the process of finding the optimal solution to the previous 

and next repetition is much quicker than directly pursuing the solution for the current repetition, 

the current solution should be obtained by corollary 1. Proposition 2 lays down the source of 

infeasibility and identifies the repetition number where the current solution first become infeasible 

when the learning rate is the same across all tasks. Since 1 '
k

r

r V

t j 



 is decreasing in j, we need to 



48 

 

 

 

find the biggest integer for which 1 '
k

r

r V

t j 



 is greater than c. Hence, 

according to Eq. (25), the biggest integer is j = ⌊j′⌋; ⌊ ⌋ is the floor sign. 

By solving 1 '
k

r

r V

t j c



  

1

1
' ( )

k

r

r V

c
j

t








, j=⌊ j'⌋                         (25) 

Therefore, starting from the ith repetition, the BnB procedure will not be conducted until 

the backward loop reaches the jth repetition. However, if the assumption that the learning rate for 

all tasks is the same does not hold, proposition 2 is no longer valid. Actually, evidence shows that 

the learning parameter, β, increases as the task time increases, i.e. workers learn more slowly on 

the longer tasks (Boucher,1988; Lyon,1914). Hence, learning rate of a task is affected by its task 

times. We consider both cases where the learning rates are various or homogeneous and, as a result, 

a weak (Proposition 2 holds) and a strong version of the backward induction algorithm are 

proposed to solve the rebalancing problem below respectively.  

Backward induction algorithm (Weak form) 

Step 0: Load the data, cycle time c, precedence graph P, task time of the first repetition t1,  

batch sizes z 

Step 1: At the last repetition z, update the tz and invoke BnB procedure. Store the value mz  

and the bottleneck station k. Calculate j using Eq. (12), set i=z. 

Step 2: Set mi = mi-1 ... =mj+1.Set i=j. At the ith repetition, update ti by Eq. (16) 

Step 3: Invoke BnB procedure and store the value mi. Update the bottleneck station k.  

Calculate j using Eq. (12). 

Step 4: If j=0, stop, all solutions are generated. Otherwise, go to step 2 



49 

 

 

 

 

Backward induction algorithm (Strong form) 

Step 0: Load the data, cycle time c, precedence graph P, task time of the first repetition t1, 

batch sizes z 

Step 1: At the last repetition z, update tz and invoke BnB procedure and store the value mb. 

Set i=z. 

Step 2: If i=1, stop, all solutions are generated.  Otherwise, i=i-1, update ti by Eq. (16). 

Step 3: Check the feasibility of each station. 

If 0    1....
l

i

r

r V

c t l m


    store mi  and go back to step 2. Otherwise, go to step 

4. 

Step 4: Invoke BnB procedure and store the value mi, go back to step 2 . 

 

In relation to the conventional algorithm, both strong and weak versions of the backward 

induction algorithm have the advantage of not having to apply the BnB procedure in every loop. 

Under the condition that the learning rate for all tasks is the same, the weak version outperforms 

the strong version in terms of procedures updating all task times and checking the feasibility of all 

stations in every loop. However, the weak version is not applicable when tasks have different 

leaning rates. Given that proposition 2 holds, after the initialization which yields the solutions for 

the last repetition, the complexity of worst case scenarios for three algorithms are the same which 

is O(|Etotal|) where |Etotal| is the total edges of the trees developed by BnB procedure in all 

repetitions. However, the best case performance, in which case the current solution to the last 

repetition is optimal for all repetition, are different for three algorithms. The complexity of the 



50 

 

 

 

conventional algorithm remains the same, O(|Etotal|). The best case performance of the strong form 

backward induction is z×(m+n), i.e. it is the sum of the number of tasks updates and stations 

evaluations in all repetitions. The best case performance of the weak form backward induction is 

m+1, i.e. it takes m steps to find the bottleneck station k and 1 step to calculate j by Eq. (25).  

3.4 Computational experiments 

In this section, the performance of the backward induction algorithm is examined by 

comparing against the conventional algorithm. The performance measures are the total computer 

elapsed time, total number of branches developed and total number of BnB procedure skipped. 

The forward directional SALOME with maximum load rule and Jackson's dominance rule 

(Jackson,1956) is the BnB procedure invoked in the algorithms. All experiments are conducted on 

a Dell computer with a 2.5GHz processor. Three computational tests are programmed in Matlab. 

The codes are available in Appendix C. 

3.4.1 Backward Induction (weak) and Conventional Algorithm 

The learning rates for all tasks are assumed to be the same in this experimental design, and 

therefore the weak version of the backward induction algorithm is adopted. The learning rates are 

chosen for three levels as 0.9, 0.95, and 0.99 respectively. The two algorithms are compared on 

different batch sizes z=10, 20, 30. The reason for choosing this range of batch size is that the 

learning curve becomes flat after a certain number of repetitions, in which case the tasks time are 

approximately stationary.  Hence, the optimal solution stays the same after a certain repetition. 

The results are tabulated for three data sets: Mansoor, 1964; Heskiaoff, 1968; Scholl, 1993. The 

performance measures are abbreviated as follows. 

# opt: the number of feasible or partial solutions (Branches developed) 

#diff.opt: the difference in the number of branches developed between two algorithms 



51 

 

 

 

cpt: elapsed computer time for which an optimal solution is found and proven 

#B: number of BnB procedures skipped 

As can be seen from Table 5,6&7, the backward induction algorithm clearly outperforms 

the conventional algorithm in all measures. The results show that the computational effort 

increases in the size of the data sets, echoing the statement that the complexity of SALBP1 is 

exponential in section 2.1. It is also noteworthy that differences between the performance of the 

two algorithms are increasing in batch size. The reason is that as the batch size increases, the tasks 

times will gradually approach constant values which results in no change in the optimal solution 

to a big portion of repetitions in the end, e.g. m30 = ... =m10=3 in section 2.3.  Therefore, the 

backward induction algorithm does not have to invoke the BnB during these latter cycles. 

Table 5 The performance of algorithms on Mansoor's data set (Mansoor,1964, cycle time is 

48) 

  Learning rate=0.99 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 10 3 20 4 30 4 

#diff.opt 7 16 26 

cpt(sec) 0.42 0.25 0.55 0.27 0.58 0.29 

#B 7 16 26 

  Learning rate=0.95 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 10 3 20 4 30 5 

#diff.opt 7 16 25 

cpt(sec) 0.41 0.32 0.56 0.33 0.79 0.38 

#B 7 16 25 

  Learning rate=0.90 



52 

 

 

 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 15 14 25 16 35 17 

#diff.opt 1 9 18 

cpt(sec) 0.54 0.54 0.72 0.59 0.73 0.61 

#B 1 9 18 

 

Table 6 The performance of algorithms on Heskiaoff's data set (Heskiaoff,1968, cycle time 

is168) 

  Learning rate=0.99 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 2307 1349 6669 2203 8459 2248 

#diff.opt 958 4466 6211 

cpt(sec) 800.20 424.60 4396.00 933.37 5815.00 922.74 

#B 4 12 21 

  Learning rate=0.95 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 54 54 68 67 78 74 

#diff.opt 0 1 4 

cpt(sec) 5.70 5.40 6.30 6.23 8.92 6.84 

#B 0 1 4 

  Learning rate=0.90 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 11 11 22 22 32 32 

#diff.opt 0 0 0 

cpt(sec) 1.32 1.34 2.50 2.44 3.20 2.94 

#B 0 0 0 



53 

 

 

 

 

Table 7 The performance of algorithms on Scholl's (Figure 4) data set (cycle time is 10). 

 

  Learning rate=0.99 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 40 8 80 8 120 8 

#diff.opt 32 72 112 

cpt(sec) 0.74 0.41 1.25 0.42 1.63 0.59 

#B 8 18 28 

  Learning rate=0.95 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 19 9 35 12 65 12 

#diff.opt 10 23 53 

cpt(sec) 0.62 0.46 0.79 0.46 1.13 0.62 

#B 7 16 26 

  Learning rate=0.90 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 17 10 27 10 53 13 

#diff.opt 7 17 40 

cpt(sec) 0.65 0.43 0.69 0.46 1.03 0.53 

#B 5 15 24 

 

 



54 

 

 

 

3.4.2 Backward Induction (Strong) and Conventional algorithm 

When the learning rates are different as among tasks, the strong version of the backward 

induction algorithm is adopted. The tasks are classified into three groups with regards to tasks 

time. Each group is given one of the three learning rates (0.9, 0.95, 0.99). The procedures in the 

experiment is the same as the procedures in section 3.1. The results are tabulated for the three 

experimental data sets.  

The results show that the backward induction algorithm is more efficient than the 

conventional algorithm in all measures. As can be seen from the Table 10, the largest difference 

of performance resides in the Scholl's data set. 

Table 8 The performance of algorithms on Mansoor's data set (cycle time is 48) 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 10 3 20 3 30 3 

#diff.opt 7 17 27 

cpt(sec) 0.28 0.25 0.35 0.31 0.37 0.33 

#B 7 17 27 

 

 

Table 9 The performance of algorithms on Heskiaoff's data set (cycle time is 168) 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 34 34 44 43 54 52 

#diff.opt 0 1 2 

cpt(sec) 3.2 3.20 3.72 3.63 4.77 4.77 

#B 0 1 2 

 

 



55 

 

 

 

Table 10 The performance of algorithms on Scholl's (Figure 4) data set (cycle time is 10) 

  z=10 z=20 z=30 

Algorithms Conv. Backward Conv. Backward Conv. Backward 

#opt 53 13 86 21 108 23 

#diff.opt 40 65 85 

cpt(sec) 0.82 0.40 1.23 0.45 1.77 0.57 

#B 7 15 25 

 

3.5 Case study  

  In order to demonstrate the industrial application of dynamic reconfiguration as well as 

the use of the backward induction algorithm, an example is presented in this section. There are 

many assembly line configurations that can be designed in order to implement the reallocation of 

agents along an assembly line when learning is taking place and the number of stations is being 

reduced.  In order to place our study within an industrial context, we suggest the configuration 

given in Figure 14.  Here, assembly robots can attend either of two assembly line conveyors and 

are assigned to work on the product assembly along one assembly line at a time.  This case study 

will assume that six stations are initially needed to make the assembly at the predetermined 

production rate, or cycle time, c.    As fewer stations are needed for the particular assembly due to 

task time improvement, agents can be reallocated to work on another product assembly along the 

other conveyor. 

      Instructions (commands) to robots concerning what assembly steps to perform as work 

assignment and station allocation changes is the responsibility of the supervisory controller, a 

control program located in the supervisory control and data acquisition (SCADA) node computer.  

The SCADA node is the repository of learned improvements in task execution and can download 

all updated task information.  The SCADA node is also the gateway to the factory information 



56 

 

 

 

system.  Such a configuration for the factory network is a common architecture for highly 

automated manufacturing systems (Boucher, 1996, 2006). 

    Robots signal when they have completed their set of tasks to the supervisor.  When all 

stations have reported completion, the supervisor signals the conveyor controller to index the line, 

moving assemblies to the next station and introducing the next assembly into the line.  If the next 

assembly to enter the line requires a reconfiguration of the tasks at each station, the supervisor 

commands the robot at station 1 to perform the new task set.  As this assembly moves along the 

line the supervisor updates each robot station with its new task set.   

 

 

Figure 14 Illustrative Case Study System Architecture 

With this physical configuration and industrial context in mind, in this section a simple 

case study is conducted to illustrate the improvement in production statistics as well as the function 



57 

 

 

 

of the backward induction rule (weak form) in reducing the number of optimization runs. The data 

set used here is from Scholl (2006) and displayed in Figure 14 with batch size b=30, cycle time 

c=10 and learning rate =0.85.  The solution procedure is as follows. 

In this section a simple case study is conducted to illustrate the improvement in production 

statistics as well as the function of the backward induction rule (weak form) in reducing the number 

of optimization runs. The data set used here is from Scholl (2006) and displayed in Figure 4 with 

batch size b=30, cycle time c=10 and learning rate =0.85.  The solution procedure is as follows. 

Step 1: It outputs t30=[2.7, 2.7, 2.25, 2.25, 1.8, 2.25, 1.8, 0.9, 4.05, 0.9], m30=3 with the  

           task assignment ({1,3,4},{2,5,6},{7,8,9,10}). The bottleneck station is 3, j=9. 

           

1

0.234

log(0.85)
0.234

log(2)

10
' 9.64

(4 2 9 2)

9

j

j





  

 
  



 

Step 2: m30 = ... =m10=3, update t9=[3.58, 3.58, 2.99, 2.99, 2.39, 2.99, 2.39, 1.19, 5.37,  

            1.19].  

Step 3: Optimization process begins and outputs m9=4 with task assignment  

             ({1,3,4},{2,5,6},{7,8,9},{10}). The bottleneck station is 1, j=7. 

Step 4:  m9 = m8=4, update t7=[3.8, 3.8, 3.17, 3.17, 2.53, 3.17, 2.53, 1.27, 5.7, 1.27]. 

Step 5:  Optimization process begins and outputs m7=4 with task assignment    

              ({1,3},{2,4},{5,6,7},{8,9,10}). The bottleneck station is 4, j=3. 

Step 6: m7= ...=m4=4, update t3=[4.64, 4.64, 3.86, 3.86, 3.09, 3.86, 3.09, 1.55, 6.96, 1.55].  

Step 7: Optimization process begins and outputs m3=5 with task assignment  

             ({1,3},{2,4},{5,6},{7,8},{9,10}). The bottleneck station is 1, j=1.  



58 

 

 

 

Step 8:m3 = m2=5, update t1=[6, 6, 5, 5, 4, 5, 4, 2, 9, 2].  

Step 9: Optimization process begins and outputs m1=6 with task assignment  

            ({3,4},{1,5},{2,7}, {6,8},{9} {10}) and j=0. Stop. 

The results state  that tasks should be reassigned as the 2nd, 4th and 10th units enter the 

line. The rebalancing process includes 6 actions as shown in Figure 15. In the first action, the first 

reassignment occurs when producing the 2nd unit because the task time reduction caused by the 

production of the 1st unit is big enough to reduce the number of station to 5. In the second action, 

the second reassignment occurs when producing the 4th unit.  In the third action, unit 1 and 2 leave 

the line simultaneously and the sixth station is closed thereafter. In the fourth action, station 5 is 

closed as unit 3 and 4 leave the line. Then, in the fourth action the third reassignment occurs when 

producing the 10th unit. Lastly, station 10 is closed as unit 9 and 10 leave the line.  In order to 

compare the improvement for the production statistics and the performance of the backward 

induction rule, the following terms are defined.  

 



59 

 

 

 

1 2 3 4 5 6

2 1
Unit

Worktation

1 2 3 4 5 6

4 3 2 1Unit

Workstation

First reassignment begins 
when producing the 2nd 

unit

Second reassignment 
begins when producing 

the 4th unit

1 2 3 4 5 6

6 5 4 3 2 1Unit

Workstation

Station 6 will be closed 
when unit 1 and 2 leave 

the line

1 2 3 4 5

7 6 5 4 3Unit

Workstation

Station 5 will be closed 
when unit 3 and 4 leave 

the line

1 2 3 4

12 11 10 9Unit

Workstation

Station 4 will be closed 
when unit 9 and 10 leave 

the line

Action 1

Action 2

Action 3

Action 4

Action 6

1 2 3 4

10 9 8 7Unit

Workstation

Third reassignment begins 
when producing the 10th 

unit
Action 5

 

Figure 15 Actions in the rebalancing process 

 



60 

 

 

 

In order to compare the improvement for the production statistics and the performance of 

the backward induction rule, the following terms are defined.  

 TI: The Total idle time. It measures the stations utilization. 

TM: The total number of operating stations. It measures the reductions of the length of the 

assembly line which indicates the operational costs. (When a station is closed, the corresponding 

robot can be switched off). TM=

30

1

(the  number of stations unit u has been through)
u

 .            # O: 

The number of optimization procedures omitted. 

The production statistics are shown in Table. 11. The improvements are very obvious.  The 

total idle time and total number of stations operated have been reduced by 31.96% and 42.78% 

respectively. The backward induction rule enhances the rebalancing procedure by omitting 25 out 

of 30 optimization processes.  The table is generated by Matlab program and codes are in Appendix 

D. 

 

Table 11 Production statistics 

  Total Idle Time, TI Total # of Operating Stations,TM 

Without rebalancing 348.12 180 

With rebalancing 236.87 103 

      

#O 25/30 

Percentage Reductions in TI 31.96% 

Percentage Reductions in TM 42.78% 

 

Furthermore, we graphically show the evolution of total task times along with the 

reassignment schedule as we increase the batch size to 1000 in Figure 16. As can be seen, there 



61 

 

 

 

are another two opportunities to further reduce m to 2 and 1 as 50th and 805th unit leave the line 

respectively. 

 

Figure 16 Task reassignment schedule for b=1000 

 

3.6 Summary 

In this section, we presented two backward induction algorithms which are capable of 

providing a production planning scheme by solving the task reassignment problem efficiently in  

assembly lines in which task times are reduced through learning and learning is conserved when 

tasks are reassigned amongst stations.  The algorithms developed for line balancing type 1 problem 

under dynamic task time is able to avoid enumeration of the branch and bound by exploiting the 

properties of the learning curve and the bounds theories of the assembly lines. Computational 

results show that the backward induction algorithms clearly outperform repetitive use of the 

conventional BnB algorithm which requires enumeration at all production cycles. Furthermore, 

the discrepancies between the backward induction algorithms and conventional algorithm are 

widened by the increasing batch sizes, as the changes in task times are smaller when batch size is 



62 

 

 

 

beyond a certain number.  A case study is presented to explain the context  in which dynamic 

assembly line reconfiguration would apply and a comparison without reconfiguring the line is 

made.  As research and application on flexible assembly systems with machine learning 

progresses, these methods will help support the efficient planning of the use of resources by taking 

into consideration optimal deployment over a range of task time reductions. 

 



63 

 

 

 

4. Simple Assembly Line Balancing Problem-2 with non-constant task time attribute 

In this section, Simple Assembly Line Balancing Problem-2 (SALBP2) with non-constant 

task time attribute is addressed. It focuses on an assembly line where significant reductions in task 

times occur intermittently and the amount of reduction is random.  In these cases, the system may 

respond by reassigning tasks among workstations if new combinations of tasks reduce the cycle 

time of the line.  Unlike SALBP1, SALBP2 treats the number of stations as given and adjusts the 

efficiency of the line by reassigning tasks among stations. An efficient algorithm—ENCORE, 

which leverages the traditional algorithm SALOME2, is proposed to address the problem of 

computing task reassignment in real time as task times change. The algorithm is designed to 

rebalance the assembly line during the production once the task time changes are observed. 

Therefore, the application is not in planning, but in real time response to changing task times. 

We assert that the efficiency of the assembly line and the cumulative production time are 

improved by dynamically reassigning tasks when appropriate. ENCORE is compared with 

SALOME2 for solving some small and medium data sets in order to demonstrate the improvement 

in computational efficiency. Then we design an experiment to empirically show the superiority of 

ENCORE over SALOME2 in different degrees of time limits on large sized benchmark data sets.  

 

4.1 Rebalancing schedule with non-constant task time attributes 

 

Modeling the improvement of the task time is important for creating the rebalancing 

schedule.  Assuming that the task time follows a conventional learning curve as is characterized 

by Eq. (16), it requires two data points to solve for the two parameters (and tv
1), and data points 

can be collected by running two cycles of production. After the task times for the first and second 

cycles have been obtained, the parameters can be solved and the task times for the following cycles 



64 

 

 

 

can be projected by Eq. (16) and the rebalancing scheme can be made thereafter. If task times for 

the first two units are used to estimate the learning parameters, the first task reassignment will 

begin when assembling the third unit. The subsequent task reassignment will begin, when 

appropriate, in every m cycle. The rebalancing process under dynamic task time attribute is 

described in Figure 17.  This is similar to the process described in Chapter 3 except that the 

reconfiguration involves the reassignment of tasks among stations, not the reduction in stations as 

was done in Chapter 3. 

 

 

Figure 17 Task reassignment under the dynamic task time attribute 

 

More realistically, the occurrence of task time improvements is uncertain and discrete 

meaning that the improvement does not always happen in every production cycle. The process of 

learning automata can result in improvements that are occasional and not consistent in magnitude. 

In that case, the decision on how to reassign tasks is going to be made right after the task time 

changes have been realized. We assume the assembly line is paused until a new solution is 

generated. The rebalancing process is described in Figure 18. When one or more task times change, 



65 

 

 

 

the supervisory controller computes the most efficient task assignments during the period of 

“Decision Making” in Fig. 18.  

Efficient solution methods for rebalancing the line must be developed in order to reduce 

the total production time for a given production quantity. In this research we introduce Efficient 

Non-COnstant task time REbalancing (ENCORE) which leverages the SALOME2 algorithm by 

utilizing the solution structure that was optimal immediately before the changes in task times 

occurred.  The ENCORE approach addresses this rebalancing problem under uncertain and 

discrete task time attribute changes. 

 

 

Figure 18 Task reassignment under uncertain and discrete task time improvements  

 

Task reassignment results in reduced assembly line cycle times, which leads to the 

improvement of the overall production time. Figure 19 illustrates the solution structures of  the 

problem we are addressing and its relationship to the traditional problem in which task times are 

constant and the cycle time is fixed throughout the production run.  As task times change over an 

assumed lot size of 30, the optimal solution at each cycle may change. In this illustration the 

optimal cycle time is 5 in all production cycles for the traditional problem based on using the initial 



66 

 

 

 

task times.  The optimal cycle time is changing as ENCORE uses improved task times to 

reconfigure the line, and the changes occur when producing 7th, 14th, 24th and 27th unit. The 

improvement in the solution is depicted in the hatched area.   

 

 

Figure 19 The solution structure to a simple SALBP2 problem with  non-constant task time 

and a lot size of to 30 

 

4.2 A BnB based exact solution procedure to solve SALBP2 with non-constant task time 

 

In this section, ENCORE is developed at length and is compared with the conventional 

algorithm which solves the SALBP2 problem by iteratively using SALOME2.  

4.2.1 A conventional algorithm 

From the structure of the new problem as described in Section 1.5.7, it is possible to treat 

the new problem as z independent traditional problems and use a conventional method to solve it.  

As has been stated in Section 2.4.4, the SALOME2 is the conventional method used to solve the 

traditional problem. Hence, we adopt it for the iterative solution to our new problem structure. 



67 

 

 

 

SALOME2 Conventional Algorithm: 

Step 0: Load the data, cycle time c, precedence graph P, task time of the first repetition t1, lot sizes 

z (total number of repetitions of the task) 

Loop i from 1 to z 

Step 1: In each loop i, collect the new task time tv
i 

Step 2: Invoke SALOME2 with the new set of task times, store the optimal solutions ci
* and go  

            back to step1. 

The complexity of the traditional assembly line balancing problem grows exponentially in 

the number of tasks (Scholl, 1993; Posypkin et al., 2006), which requires fast computational speed 

and a great amount of memory to generate the exact solution when the number of tasks is beyond 

a certain number. The exponential complexity of SALOME2 is going to further increase linearly 

when solving the new problem with the conventional algorithm. That is to say, if the time to 

solving a single SALBP2 problem is equal to T, the new problem needs approximately z×T time 

units to find a solution using the traditional algorithm. 

4.2.2 ENCORE 

The iterative use of the conventional algorithm simply considers the new problem as 

multiple independent subproblems, which ignores the link between subproblems. Actually, the 

structure of the precedence relations between tasks stays constant in every subproblem, so 

subproblems are not independent. Furthermore, if the task time follows a preordained learning 

curve, the changes of the task times in a pair of consecutive subproblems might be relatively small.   

As a result, the solutions for two adjacent subproblems may be similar, which suggests solving the 

current subproblem by dynamically adjusting the optimal solutions of former subproblems without 

invoking the SALOME2 algorithm over and over again. Hence, an Efficient Non-COnstant task 



68 

 

 

 

time REbalancing algorithm—ENCORE, which leverages SALOME2, is proposed to improve the 

solution time and effort of the conventional algorithm.  

Considering the optimal solution Vi
* is solved for the current cycle i and a new set of task 

times are observed, ENCORE will seek the new optimal cycle time for next production cycle i+1 

by exploiting the current solution in a real-time fashion. There are two phases of cycle time 

reduction in the optimization procedure of ENCORE: Line-oriented and Station-oriented cycle 

time adjustment. 

Line-oriented cycle time adjustment: In the line-oriented phase of ENCORE, the cycle time 

of the line is instantly reduced without reassigning tasks to workstations. Let c'*denote the optimal 

solution of SALBP2 when reassignment is not allowed. Let b denote the bottleneck station. c'* is 

always equal to the total task time of the bottleneck station b.                                                               

Therefore, as the current optimal solution Vi
*is applied to the new set of reduced task time 

data in production cycle i+1, the stations are always idling, and the cycle time ci
* can be reduced 

to *

1 '  
b

v i

v V

t c 



 which is the total task time of the bottleneck station.  The value of ci+1'
* serves as 

a current upper bound for (i+1)th production cycle.  

Station-oriented cycle time adjustment: After the computation of the reduced cycle time in 

the line-oriented phase, ENCORE will relocate tasks among stations in order to minimize the cycle 

time. In this phase, the BnB procedure is utilized to ultimately find the optimal ci+1
*.  Two essential 

terms are defined before we explain the BnB procedure.  

TOI and TOILk: TOI, total idle time of stations on the assembly line =mc-tsum. TOILk, total idle 

time left at station k=
1

1

( )
j

k

v

j v V

TOI c t


 

   . TOI is increasing in c. Hence, it is an indicator of the 

amount of idle or slack time of one solution over another solution. TOI also implies how much 



69 

 

 

 

idle time is remaining for the current feasible solution. TOIL serves the purpose of verifying the 

feasibility of a partial solution. If TOILk turns negative at some station when assigning tasks under 

the current cycle time, then the partial solution consumes more idle time than it should in order to 

maintain feasibility. As a result, current cycle time is no longer feasible and should be abandoned. 

Backtracking: There are two types of backtracking contingent upon the outcome of the 

branching process. The first type of backtracking starts from a developed branch which 

represents a full solution V and traces back to the very first bottleneck station. The second 

type of the backtracking starts from a partial solution which is proved to be inferior to the 

current optimal solution and traces back to the previous station j where TOIL is still 

positive. In what follows, all of the stations succeeding j (including j) are emptied, and the 

tasks belonging to them are available to be reassigned. 

Branching: In the branching process, a task v can only be assigned to a station k when all 

of the following conditions are satisfied: 1) All predecessors of v have already been 

assigned to the current or previous station, 2) The total station time must be strictly less 

than the current upper bound ci+1'
* after task v is assigned, and 3) If task v is the last task of 

a station k, TOILk+1 must be nonnegative after task v is assigned. Condition 1 insures that 

the precedence relation is not violated. Condition 2 guarantees the improvement of the 

current upper bound ci+1'
* while the new partial solution is being developed. Condition 3 

indicates the feasibility of the branching before a partial solution is evolved to a full 

solution and, therefore, saves some enumeration efforts. If there exist no task combinations 

because of the violation of condition 3 (condition 1&2 must hold), increasing cycle time 

should be considered in order to maintain the feasibility of the on-going branch. The trial 

cycle time is the smallest non-overlapping station load which makes the TOILk+1 



70 

 

 

 

nonnegative.  If the trial cycle time is less than the current upper bound ci+1'
*, the trial cycle 

time is termed the temporary upper bound ctemp, and TOI and TOILk+1 are updated 

accordingly. Otherwise, the branching process should be stopped, and the backtracking 

process will begin. 

Bounding: The branching process will be terminated and return to the backtracking process 

once the total station times are equal to or greater than the current upper bound. Otherwise, 

the ctemp, TOI, TOILk+1 are updated and the branching process continues to the next station. 

Finally, a new solution is formed, and the new optimum is set to ctemp, ci+1'
*=ctemp,  

 

The BnB procedure will continue until the algorithm traces back to the root node or the 

current upper bound, ci+1'
*,  is equal to the global lower bound LB. LB=max (tmax ,tsum/m) (Klein 

and Scholl, 1996). Then, ci+1
*=ci+1'

* is the optimum for the new subproblem. The line-oriented and 

station-oriented cycle time adjustment procedures are repeated until optimal solutions for all 

production cycles are found. The formal representation of ENCORE is given as follows. 

ENCORE: 

Step 0: Initialization. Load the data set and set the lot size equal to z. 

Step 1: Find the current optimal solution by the SALOME2.  

Loop i from 2 to z. 

Step 2: At the ith repetition, adjust all tasks times and set the current upper bound to the 

total station times of the bottleneck station. Calculate LB=max (tmax , tsum/m). Compare the 

current cycle time with the LB. If they are the same, go to step 7. Otherwise, go to step 3. 



71 

 

 

 

Step 3: Trace back to the first bottleneck station (type 1 backtracking), and start the 

branching process.  If a branch is fully developed, the new current upper bound is obtained, 

go to step 6. Otherwise, go to step 4.  

Step 4: Trace back to the previous station (type 2 backtracking). If it traces back to the root 

node, the current upper bound is the optimum, go to step 7. Otherwise, go to step 5. 

Step 5: Start branching process. If a branch is fully developed, the new current upper bound 

is obtained and go to step 6. Otherwise, go back to step 4. 

Step 6: Compare the current upper bound with LB. If they are the same, go to step 7. 

Otherwise, find the new bottleneck station, then go back to step 3. 

Step 7: If i=z, stop. Otherwise, i=i+1, return to step 2.   

 

The full course of SALOME2 has only been invoked once in the optimization process (Step 

1). Step 2 corresponds to the line-oriented cycle time adjustment. Step 3 includes the first type of 

backtracking process and the branching process. Step 4 is the second type of backtracking process. 

Step 5 is another branching process. In step 6, a branch is fully developed and a superior solution 

is generated. The algorithm utilizes the global lower bound twice (Step 2 and 6) which efficiently 

alleviates or even avoids the BnB procedure. The basic flowchart of the ENCORE is given in the 

Appendix B. 

4.2.3 An illustrative example 

An example is provided to demonstrate ENCORE. The data structure of the example is 

shown in Figure 20. The upper frame of Figure 20 shows the task times prior to improvement.  

Then, as can be seen in the lower frame of Figure 20, task 4 and 5's task times are adjusted to 3.5 



72 

 

 

 

and 3, respectively. It is assumed that those improvements occur on the assembly due to learning 

automata. The exact solution procedure is given as follows. 

Step1) Given m=4, by SALOME2, the optimal cycle time is 9 (step 1 in the algorithm). 

The optimal task assignment is given in Figure 21. The numbers in the parenthesis represent the 

tasks which are assigned to the designated station. The station loads (total station task times) are 

shown in the oval.  

Step 2) According to step 2 which is line-oriented cycle time adjustment, the bottleneck 

station as shown in Figure 22 is station 3 with total task time equal to 8.5. The current upper bound 

is 8.5. The lower bound is computed as follows: LB=max (7, 29.5/4)=7.375, Then, the algorithm 

goes to step 3.  

Steps 3) to 6) is to form a tree structure as shown in Figure 23. Besides the information of 

task assignment and station load, TOIL is computed and shown on the right side of the task 

assignment above the arc. 

Step 3) According to step 3, the first bottleneck station is station 3, hence the algorithm 

traces back to station 3 and empties stations 3 and 4. Since task combination 4&6 is the only choice 

based on precedence requirements and has already been considered in the tree structure, the 

algorithm goes to step 4.   

Step 4) According to step 4, the algorithm traces back to station 2. It is not the root node, 

so the algorithm goes to step 5. 

Step 5) According to step 5, tasks 2 and 4 are assigned to station 2, the bottleneck station 

is the second station with time 4+3.5=7.5, TOI=4×7.5-29.5=0.5, TOI3=0.5-(7.5-7)-(7.5-7.5)=0. 

Then, temporary upper bound is set to 7.5 and station 3 is to be assigned tasks. However, we cannot 

find any combination of tasks that comply with the three conditions, the increase of the temporary 



73 

 

 

 

upper bound shall be considered.  The temporary upper bound is increased to 8 by assigning task 

5 and 6 to station 3, which is the smallest station load that makes TOIL4 non-negative. Lastly, task 

7 is assigned to station 4. A new branch is successfully branched (node 1-2-6-7-8), the algorithm 

goes to step 6. 

Step 6) According to step 6, the bottleneck station is station 3 with total task time 8. The 

current optimum is set to 8. Since 8 is larger than the LB (7.375), the algorithm goes to step 3. 

Analogously, two other branches are developed. However, they are proven to be inferior to cycle 

time 8 during the branching process. In this simple example 4 branches are developed in order to 

find the optimum equal to 8. 

1

2

53

7

4

6

3

4

4

4

5

4

7

·

 

1

2

53

7

4

6

3

4

4

3

5

3.5

7

·

  

Figure 20 Simple example. Top: original problem. Bottom: new problem 

 

 
(1,3) (2,5) (4,6) (7)

7 8 9 7



74 

 

 

 

 

Figure 21 Solution of the original problem (optimal cycle time=9) 

 

 

 

Figure 22 Line-oriented cycle time adjustment procedure (current upper bound=8.5) 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 23 Station-oriented cycle time adjustment procedure (optimal cycle time=8) 

4.2.4 The comparison between the conventional solution and ENCORE 

The Conventional algorithm and ENCORE share some of the same characteristics. In some 

sense, ENCORE can be treated as an upgraded version of SALOME2 for solving the line 

rebalancing problem. The conventional algorithm will invoke the SALOME2 in every subproblem 

to generate the optimal solution, while SALOME2 will only be invoked once in ENCORE. In 

addition, they both use the same bounding condition to terminate and verify a solution in the BnB 

process. 

(1,3) (2,5) (4,6) (7)

7 7 8.5 7

1 2 3 4 5

(1,3)/3 (2,5)/1.5 (4,6)/1.5 (7)/0

(2,4)/0

6 7 8

(5,6)/1 (7)/0

10

1111

9

(1,2)/0

(3,4)/0

(3,5)/0

7 7 8.5 7

7.5

8 7
7

7.5

8



75 

 

 

 

The starting point of the two algorithms are different. The conventional algorithm starts 

from the root node and begins developing a feasible solution in the forward direction, while 

ENCORE starts from the leaf node and goes straight to the backtracking phase with a feasible 

solution which is close to optimal solution in most of the cases in our computational studies.  

Within the BnB process both algorithms verify the value of TOIL to determine the 

feasibility of a developing partial solution. However, SALOME2 is based on the idea of the local 

lower bound, which is the best theoretical value of the cycle time after the current branch has been 

developed (Klein and Scholl, 1996). The local lower bound is constructed during the branching 

process and is used as a locator in the backtracking process, i.e. the SALOME2 traces back to the 

station where its local lower bound is less than the current upper bound. Instead, ENCORE creates 

a concept of temporary upper bound, which is used to determine the superiority of a developing 

branch. The local lower bound in SALOME2 is constructed based on the task times and the 

dominance relationship between tasks. Once task times reduction has been realized, the 

construction scheme is likely to change. As a result, the original local lower bounds will lose their 

functionality in the BnB process because it no longer indicates the best theoretical cycle time for 

each station and, therefore, should be abandoned. The complexity of the two algorithms can be 

demonstrated by their best and worst case scenarios. After the initialization, which yields the 

solutions for the last repetition, the complexity of the worst case scenario for the two algorithms 

are the same, which is O(|Etotal|) where |Etotal| is the total edges of the trees developed by BnB 

procedure in all subproblems. However, the complexity of best case scenarios for ENCORE occurs 

in the cases where the current solution to the last repetition is optimal for all repetitions. The 

complexity of the conventional algorithm remains the same, Θ(|Etotal|). As for ENCORE, it only 

takes z×(m+n) steps to verify that the initial solution is the optimal solution, i.e. it is the sum of 



76 

 

 

 

the number of task updates and stations evaluations in all repetitions. In actual problems, the 

advantage of ENCORE should lie somewhere in between. It should be noted that ENCORE is an 

exponential time algorithm (O(an)) as well as is SALOME2, but the coefficient a of ENCORE is 

smaller than that of SALOME2, which reduces the computational time during its implementation. 

Therefore, ENCORE shall outperform the conventional algorithm in most cases. 

4.2.5 Computational experiment 

In this section, the performance of ENCORE is examined by comparing it to the 

conventional algorithm. The performance measures are the total computer elapsed time and the 

total number of branches developed. The conventional algorithm is the traditional SALOME2 used 

iteratively over cycles with maximal load rule and Jackson's dominance rule (Jackson,1956) 

embedded. All experiments are conducted on a Dell personal computer with 2.5GHz processor. 

The codes are available in Appendix E. 

The attribute of the uncertain task time is selected to test the real-time application of the 

algorithms. The original problem sets are selected from Scholl (1993). The deduction of task times 

consists of two parts, a fixed part and a random part. The fixed part is equal to 2% of the task times 

in the previous subproblems, and random part follows a uniform distribution [0.8,1]. Deduction of 

task times is equal to the product between the fixed part and the random part. The total number of 

subproblems is 10, 20 and 30, which are the lot sizes for each data set. The randomized reduction 

of task times is applied at each cycle for every task.  The results of comparing algorithm 

performance are shown in Tables 12, 13 and 14. The performance measures are abbreviated as 

follows. 

 



77 

 

 

 

# opt: the number of full or partial solutions (Branches developed before all optimums are found), 

which is an indicator of the consumption of computer storage. 

 

#diff.opt: the difference of #opt between algorithms 

 

cpt: elapsed computer time (seconds) for which all optimal solutions are found and proven, which 

is an indicator of computer speed. 

 

z: the lot size (the number of rebalancing executions) 

 

 

 

 

 

 

 

Table 12 Computational performance between algorithms in Heskiaoff's data set (n=28) 

given m=8 

  z=10 z=20 z=30 

  Conventional ENCORE Conventional ENCORE Conventional ENCORE 

#opt 248 63 563 156 843 235 

#dif.opt 185 407 608 

cpt(sec) 9.83 3.24 21.32 7.82 33.96 12.75 

 

Table 13 Computational performance between algorithms in Kilbrid's data set (n=45) 

given m=8 

  z=10 z=20 z=30 

  Conventional ENCORE Conventional ENCORE Conventional ENCORE 

#opt 194 34 437 69 641 102 

#dif.opt 160 368 539 

cpt(sec) 11.92 4.32 22.64 13.36 32.29 15.02 

 



78 

 

 

 

Table 14 Computational performance between algorithms in Arcus's data set (n=83) given 

m=8 

  z=10 z=20 z=30 

  Conventional ENCORE Conventional ENCORE Conventional ENCORE 

#opt 3024 150 5087 320 8019 527 

#dif.opt 2874 4767 7492 

cpt(sec) 874.26 202.43 1347.87 397.43 2210.43 578.22 

 

ENCORE outperforms the conventional algorithm in computational speed and the 

computer storage for all three data sets. The cumulative difference in performances are increased 

as the lot size increases for each data set. Furthermore, the advantage of ENCORE is more obvious 

in the instances with more tasks (Arcus, n=83).  

4.3 Design of Experiments 

Our interest is to confirm ENCORE’s advantage on production statistics over SALOME2 

on benchmark data sets. Here we are interested in the industrial merit of the computational 

efficiency can be transferred into production efficiency. To make the study more practical, the 

large sized data sets are selected for analysis (Arcus (111 tasks), Bartholdi (148 tasks) and Scholl 

(297 tasks)). Totally 80 problem instances are available from Scholl (1993). Considering the 

objective of efficient task reassignment during the production run, a time limit will be posed to 

both algorithms to restrict the runtime.  This constraint is imposed because the context of this 

problem is assembly line reconfiguration in real time once task time improvements are detected.  

The best solutions found during the time limit are used in the reassignments.  Therefore, given the 

same amount of time, the better algorithm will produce less cycle time, which should lead to better 

production statistics.  



79 

 

 

 

4.3.1 Components of an experiment 

We define the three main components of the experiments—Experimental units, Response 

and Variables. Each experimental unit is a single problem instance from the data sets, and instances 

are different from each other in at least one of following categories: precedence graph, task times 

and the number of stations. The intrinsic variance (within group variance) between instances may 

influence the design of the experiment and is inspected in a pretest to be described in a later section. 

The response is defined as the percentage production time (makespan) improvement in the trials 

employing ENCORE or SALOME2 to reassign tasks over the case with no reassignment. Eq. (26) 

shows the calculation of the response. The variables are selected algorithms (ENCORE or 

SALOME2), time limit for the algorithm to run (Rt), the number of learning episodes (Le) and the 

learning rates (Lr). The goal of this design of experiment is to determine whether the responses 

resulting from ENCORE are significantly different from the responses resulting from SALOME2 

in terms of production makespan performance.  

 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒  
𝑇𝑛𝑜 𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑇 𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝑇𝑛𝑜 𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
                    (26) 

Where      𝑛𝑜 𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛  is the total production time of producing z items without tasks             

                reassignment 

                   𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛  is the total production time of producing z items considering    

                tasks reassignment with ENCORE or SALOME2 

 



80 

 

 

 

The  𝑛𝑜 𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛  is equal to cycle time based on fixed task times multiplied by z. The 

cycle time can be found from Scholl (1993), so it is a fixed value as z is fixed.  𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛  is 

determined by all of the variables in the experiment, and it can be calculated in Eq. (27). To ensure 

a small and mass customized production process, we set z equal to 400 (Cohen, 2006). 

 

 𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛  ∑ 𝑐𝑖 × 𝑃𝐼𝑖
 𝑒  
𝑖=                      (27) 

Where PIi is the number of cycles with cycle time ci  and Le is the number of learning episodes. 

 

As Rt increases, the amount of time allowed for the algorithm to find the optimum solution 

increases, and the current best cycle time decreases. The  𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛  of either algorithm is an 

aggregation of different cycle times of different learning episodes, so it decreases as well. Le is 

the number of times that the learning occurs during the production. We assume the occurrence of 

task learning is evenly distributed throughout the production process (i.e., if Le is 2 and z is 400, 

the task time is improved twice after producing the 134th and 267th unit respectively). For each 

interval of the production process, there is a different cycle time. Cycle time decreases in Le, and 

so does the total production time. The learning rate, Lr, is defined as the percentage of 

improvement of task time. The more Lr is, the less remaining task time is after each learning 

episode, which leads to less cycle time. Hence, with a selected algorithm,   𝑟𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛  decreases 

in Rt, Lr and Le with other factors fixed. 

4.3.2 Pretest 

We aim to determine the structure of the experiment which is comprised of the types of the 

design and levels of each variable. In order to test the impact of the algorithm selection on 



81 

 

 

 

performance, the other variables shall be examined as to their effect on performance in a pretest. 

First, we choose SALOME2 as a control variable and treat all variables as factors. We randomly 

choose 30 out of 80 problem instances and ran three regressions that pertain to each factor. For the 

responses that violate the assumptions of a linear regression, transformation techniques are 

employed in order to make the responses comply with the assumptions. 

Time limit 

We set Le to 2. To incorporate the heterogeneity of learning, each task has a Lr around 

0.15. SALOME2 is used to generate the results. The levels of Rt are [1, 5, 10] seconds, because 

the real-time performance of the algorithms are our interests. The model results are shown below. 

As can be seen, Rt is not a significant factor at confidence level 0.05. The sum of squares error 

(SSE) is 0.1394 and sum of squares due to regression (SSR) is 0.0025. Fitting the data by a linear 

model is not appropriate because the intrinsic variance is too large relative to the explained 

variance (within group variance).  

 

Learning episodes 

 

Lr is chosen as it is in the pretest of time limit. Time limit is set to 1 second. SALOME2 is 

used to generate the results. The levels of Le are [1, 2, 3]. The model results are shown below. As 



82 

 

 

 

can be seen, Le is a significant factor at confidence level 0.05. The sum square of error (SSE) is 

0.1189 and sum square due to regression (SSR) is 0.0241.  

 

Learning rates 

Rt and Le are set to 1 and 2 apiece. SALOME2 is used to generate the results. The Lr for 

each task is around 0.05, 0.1 and 0.15 respectively. The model results are shown below. As can be 

seen, Lr is a significant factor at confidence level 0.05. The sum square of error (SSE) is 0.1066 

and sum square due to regression (SSR) is 0.1374.  

 

From the pretest, the variance introduced by the structural differences between data sets 

(unexplained variance) is so big in magnitude compared with the variance introduced by the factors 

(Lr, Le and Rt) which dampens the effectiveness of modelling the relationships between the 



83 

 

 

 

response and multiple factors. Hence, the linear model shall not be adopted in the formal design 

of experiment. Instead, the one sample pairwise t-test is chosen as we test the two algorithms on 

the same instance for all problems and control the other 3 variables at different levels. Considering 

the production and learning process, we assign 3 levels (low, medium and high) to Lr, Le and Rt. 

Lr is chosen from [0.05, 0.1, 0.15], Le is chosen from [1, 2, 3] and Rt is chosen from [1, 5, 10].   

4.3.3 One sample t test 

We specify the null hypothesis and alternative hypothesis as follows. 

H0: The difference in the percentage improvement in production time between the two 

algorithms are the same 

H1: The percentage improvement in production time of ENCORE is greater than the 

percentage improvement of SALOME2.  

 We use the power of statistical test to determine the sample size. In order to collect the 

information to infer the sample size, a preliminary experiment is conducted. 16 problem instances 

are selected with Rt, z, Le and Lr equal to 5, 400, 3 and 0.05 respectively. The mean improvement 

of SALOME2 is 0.0685 and the standard deviation is 0.039. The mean improvement of ENCORE 

is 0.0889. Under one sample and one sided t test, we conclude that the sample size should be 

greater than 25 when we require the power to be greater than 0.8 and confidence level to be 0.95. 

Therefore, 25 out of 80 instances are randomly chosen as experimental units. 

There are 27 separate t tests for all combinations of levels in Lr, Le and Rt. In each t test, 

two algorithms are examined on 25 instances respectively. Hence, a total of 1350 (27×2×25) runs 

are performed. We report the p value and summary statistics (mean, standard deviation and lower 

bounds of the 95% confidence interval) in Tables 15 and 16. As can be seen from Table 15, with 

Rt equal to 1 second, the mean percentage differences in response between ENCORE and 



84 

 

 

 

SALOME2 of almost all cases is above 1.5%. However, with Rt equal to 5 and 10 seconds, the 

improvements are not very obvious for all cases. Furthermore, from Table 16, the p value in bold 

means that the corresponding null hypothesis is rejected under confidence level 0.95. The null 

hypothesis is rejected 15 out of 27 times. The computer codes used in these experiments are 

documented in Appendix F. 

Table 15 Summary statistics for each t test on response comparisons (Eq. 26) 

Difference of 

improvements 

between 

algorithms  

                  

Time limit (s) 

1 5 10 

N Lr Le M SE CI M SE CI M SE CI 

400 

0.05 

1 0.0245 0.0087 0.0097 0.0076 0.0051 -0.0011 0.0083 0.0054 -0.0009 

2 0.0298 0.0103 0.0122 0.0084 0.0054 -0.0010 0.0088 0.0058 -0.0011 

3 0.0296 0.0095 0.0133 0.0119 0.0063 0.0011 0.0094 0.0059 -0.0006 

0.1 

1 0.0155 0.0060 0.0052 0.0045 0.0026 0.0000 0.0041 0.0028 -0.0008 

2 0.0183 0.0063 0.0074 0.0084 0.0038 0.0019 0.0073 0.0038 0.0009 

3 0.0179 0.0063 0.0071 0.0107 0.0044 0.0032 0.0107 0.0044 0.0031 

0.15 

1 0.0256 0.0092 0.0098 0.0061 0.0039 -0.0006 0.0031 0.0022 -0.0007 

2 0.0247 0.0087 0.0098 0.0053 0.0037 -0.0009 0.0041 0.0032 -0.0013 

3 0.0214 0.0073 0.0088 0.0065 0.0038 0.0000 0.0060 0.0036 -0.0002 

 

 

 

 

 

 

 



85 

 

 

 

Table 16 p value matrix for each t test 

pvalue Time limit (s) 

      1 5 10 

N Lr Le       

400 

0.05 

1 0.0047 0.0733 0.0672 

2 0.0040 0.0689 0.0703 

3 0.0023 0.0352 0.0610 

0.1 

1 0.0083 0.0491 0.0808 

2 0.0042 0.0189 0.0316 

3 0.0047 0.0114 0.0120 

0.15 

1 0.0053 0.0669 0.0850 

2 0.0045 0.0785 0.1008 

3 0.0038 0.0502 0.0557 

 

The pairwise experiments empirically show that ENCORE has an advantage over 

SALOME2 in production statistics at low run time level. Practically speaking, low run time or near 

real time response is desirable in automated systems. The SCADA node and computer network 

may be controlling different assembly lines and production equipment simultaneously, and there 

may not be much time allotted for each individual optimization process.  

The boundary (improvement difference or Rt) at which the null hypothesis is rejected can 

be explored by running several t test with different Rt while holding other parameters fixed. With 

the collected data points of p values and mean of improvements, the boundary can be interpolated. 

For instance, we choose z=400, Lr=0.1 and Le=1 for analysis. We run the experiment with Rt 

chosen from {1, 1.5, 2, 2.5, 3, 4, 5, 7, 8, 10}. The boundary for the improvement difference is 

0.45% and for Rt is 5.24 seconds. We show the relationship of p value against improvement 

difference in Figure 24. 



86 

 

 

 

 

Figure 24 Relationship between p value and improvement (Spline interpolation is used to 

find the boundary) 

 

4.4 Summary 

In this chapter we demonstrate the rebalancing of the assembly line during small production 

run when the task time attribute is non-constant. A novel algorithm—ENCORE is proposed, in 

order to address the typical SALBP2 with non-constant task time attributes. Computational studies 

show that ENCORE clearly outperforms the conventional algorithm which iteratively solves the 

problem, making it a better method for application in real time automated systems.    

The implementation of the rebalancing schedule is tested for assembly line problems under 

uncertain task time attribute. Pairwise t tests are conducted to show the significance of superiority 

of ENCORE over SALOME2 empirically at various computational time limits, appropriate for 

real time decisions in advanced automated systems. 

  



87 

 

 

 

5. Priority rules-based algorithmic design on two sided assembly line balancing 

 

In this section, we develop a priority rules-based algorithmic design for optimizing a two-

sided assembly line. Five elementary rules, ninety composite rules are tested on benchmark data 

sets and their performances are provided. Two enumerative principles which are specific to two-

sided assembly lines are proposed to enhance the performance of the rules. Statistical analysis is 

provided to complement the studies. Further, priority rules are embedded into a bounded dynamic 

programing framework to form a novel algorithm where the use of a bound can reduce the solution 

space as the algorithm is advanced stage-by-stage. A new optimal solution is found and contributed 

to the existing literature. Furthermore, with the task learning considered, the production statistics 

generated by each rule are reported. 

5.1  The investigation of PRBMs in TALBP 

In this section, we examine the performance of 5 elementary rules on benchmark data sets 

obtained from Khorasanian et al. (2013). Totally 34 problem instances are examined. Then, we 

design task assignment principles which are TALBP specific to improve the performance of the 

elementary rules. Statistical analysis is provided to compare the performance of the elementary 

rule set, as well as the performance enhancements, before and after the principles are incorporated. 

Five elementary rules are paired with each other with different weights to constitute 90 composite 

rules which are examined on the benchmark data set as well. We denote Avg_dev, which is the 

percentage average deviation of the results found by PRBMs from the current best results in 

Khorasanian et al. (2013), as the performance measure for PRBMs. 

 



88 

 

 

 

5.1.1 Application of elementary rules 

The elementary rules selected in this paper are maximum task time (T), maximum TdL, 

maximum TdS, maximum F and minimum L. The rules are self-explanatory or can be calculated 

from the Eq. (2) and (3) in section 1.4. Note, the calculations of the earliest (Eli) and latest (Lai) 

possible position to which task i can be assigned are shown in Eqs. (28) and (29). The enumerative 

procedure of elementary rules is depicted in the flow diagram (Figure 25). The assignable task is 

defined as the task which conforms to all constraints. In order to increase the efficiency of finding 

new assignable task sets, only the direct followers of the task just assigned to be added to the old 

assignable task set would be considered. Then, the old assignable task set can be updated by 

evaluating every task in the old set with regard to the cycle time constraints. When two assignable 

tasks have the same priority scores, their natural orderings are used to break the order. 

 

      𝐸𝑙𝑖

 

{
  
 

  
 ⌈
∑ 𝑡𝑟 + ∑ 𝑡 + ∈𝑃𝑟𝑒𝐿 ∑ 𝑡𝑒𝑒∈𝑃𝑟𝑒𝐸𝑟∈𝑃𝑟𝑒𝑅

2𝑐
⌉                𝑖𝑓 ∑ 𝑡𝑒

𝑒∈𝑃𝑟𝑒𝐸

> | ∑ 𝑡 − ∑ 𝑡𝑟
𝑟∈𝑃𝑟𝑒𝑅 ∈𝑃𝑟𝑒𝐿

 |

    

⌈
max(∑ 𝑡𝑟𝑟∈𝑃𝑟𝑒𝑅  , ∑ 𝑡  ∈𝑃𝑟𝑒𝐿 )

𝑐
 ⌉                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        

 (28) 

              𝑎𝑖  

{
 
 

 
 𝑈𝐵 + 1 − ⌈

∑  𝑟 ∑  𝑙 𝑙∈𝑆𝑢𝑐𝐿
∑  𝑒𝑒∈𝑆𝑢𝑐𝐸𝑟∈𝑆𝑢𝑐𝑅

2𝑐
⌉           𝑖𝑓 ∑ 𝑡𝑒𝑒∈𝑆𝑢𝑐𝐸 > |∑ 𝑡 − ∑ 𝑡𝑟𝑟∈𝑆𝑢𝑐𝑅 ∈𝑆𝑢𝑐𝐿  |
    

𝑈𝐵 + 1 − ⌈
max(∑  𝑟𝑟∈𝑆𝑢𝑐𝑅

 ,∑  𝑙𝑙∈𝑆𝑢𝑐𝐿
)

𝑐
 ⌉                                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        

   (29) 

Where  



89 

 

 

 

 SucR, SucL, SucE are the sets of task i‘s successors whose operational directions are right, left and 

either respectively.  

PreR, PreL, PreE are the sets of task i‘s predecessors whose operational directions are right, left 

and either respectively.  

 

 

 

 

Figure 25 The enumerative procedure of elementary PRBMs 

 

In Table 17 we present the average performance of the 5 elementary rules, where 

performance is defined as the average percent deviation from the best known solution. As can be 

seen, maximum F, though not obvious, is demonstrated to be the best elementary rule. Paired t 



90 

 

 

 

tests comparing the Avg_dev are conducted and p values are provided in Table 18. In line with the 

results in Table 17, among 10 paired comparisons, only the performance between rule F and L, 

where the most discrepancies occur, shows significant difference statistically. Hence, almost no 

rule has an obvious edge against others. Equivalently speaking, each rule has its own advantage. 

The Matlab codes to implement the elementary rules are in Appendix G. 

 Table 17 Average performance of the elementary rules 

Rule TDS TDL T L F 

Avg_dev (%) 17.43 16.65 16.55 20.84 12.15 

 

Table 18 p values of paired t tests of Avg_dev of elementary rules (95% confidence level) 

  TDS TDL T L F 

TDS 1 0.828 0.9759 0.2465 0.2186 

TDL   1 0.8028 0.3548 0.1585 

T     1 0.2288 0.2232 

L       1 0.0224 

F         1 

 

As previously stated, the amount of idle time is the determinant of the quality of solutions. 

We notice that there is a great amount of idle time from delay relative to the idle time from 

remaining capacity after analyzing the structure of the solutions reported by the elementary rules. 

Further, we infer that the major cause for the delay is the mated station imbalance where the station 

load from one mated station is always higher than the other during the enumerative process. A 

simple example is shown in Figure 26.  



91 

 

 

 

 

Figure 26 Top: 4 task data set; Middle: Solution 1; Bottom: Solution 2 

 

Two solutions are provided based on two different enumerative principles respectively, 

which are prior to the PRBMs on determining the order of tasks in the assignable task set. The first 

principle is to assign the task which will minimize delay after the task is assigned (delay-oriented). 

The second principle is to assign the task to the mated-station whose load is smaller than the other 

(load-oriented). At  first glance, the first rule seems superior to the second one because of its direct 

reduction in the amount of idle time. However, it shows contradictory results. According to the 

first rule, tasks 1, 2 and 3 are assigned in succession to left station and no delay occurs. When it 

comes to task 4, however, a new position has to be opened because there is no room for task 4 in 

position 1. As for the second solution, task 2 is assigned to the right station after task 1 because 

such action balances the load between mated-stations. 3 units of time is delayed in the right station. 

Then task 3 is assigned to left station because the load of station 1 (3 units of time) is smaller than 

that of right station (6 units of time). Finally, task 4 is assigned to the left station. Solution 2 results 

in less delay overall and, ultimately, generates less NM than solution 1 does. Hence, we adopt the 



92 

 

 

 

second principle prior to the first one. In other words, the assignable task set is sorted by the load-

oriented, delay-oriented and the task priority score in succession. The combinatorial structure of 

principles is implemented throughout later analysis. 

 Analogous to the previous analysis, we test the performance of PRBMs with the proposed 

principles (PRBMs_Plus) as shown in Table. 19. As can be seen, the performance of every 

elementary rule is improved. Moreover, it is of our interest to test the influence of the principles 

on the performance of the PRBMs. Table. 20 shows the p value of the paired t-test of Avg_dev 

before and after the principles are incorporated. As a result, the performance of rule TdS and TdL 

is significantly improved respectively and the improvement for the T is marginal. As for rule L and 

F, there is no significant difference statistically. The Matlab codes to implement the elementary 

rules with two principles are in Appendix H. 

Table 19 Average performance of the elementary rules with two principles 

  TdS_Plus TdL_Plus T_Plus L_Plus F_Plus 

Avg_dev (%) 9.88 8.45 9.68 15.00 7.03 

 

                

Table 20 p values of paired t tests of Avg_dev of elementary rules with and without two 

principles (95% confidence level) 

  Plus 

TdS 0.01608 

TdL 0.03404 

T 0.05262 

L 0.1122 

F 0.1491 



93 

 

 

 

5.1.2 Application of composite rules             

We adopt the construction scheme of composite rules in Otto and Otto (2014). Every pair 

of 5 elementary rules is linearly summed which results in 10 basic composite rules. For each 

composite rule, two weights are given to the 2 elementary rule respectively. The first weight is 

chosen from the set {100, 10, 5, 2, 1/2, 1/5, 1/10, 1/100}. The second weight is always equal to 1. 

Those configurations give a total of 90 composite rules. The enumerative procedure of composite 

rules is similar to that of the elementary rule. It should be noted that all rules should be scaled in 

order to be combined on equal footing. The scaled factor is given in Table. 21. The formula to 

calculate the priority score of task i given weight j is shown in Eq. (30).  

 𝑖_𝑐𝑜𝑚𝑝
𝑗

 
𝑊𝑒𝑖𝑔ℎ𝑡 (𝑗) ×  𝑖_𝑒 𝑒𝑚 
 𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖_𝑒 𝑒𝑚 

+
 𝑖_𝑒 𝑒𝑚2

 𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖_𝑒 𝑒𝑚2
             (30) 

 

Table 21 The scaled factor for the application of composite rules 

Rule TdS TdL T L F 

Scaled factor c for denominator and GUB for nominator  c GUB n 

 

In Table. 22, we report the results of the best weighted combination for each pairing of 

rules. For the ease of representation and comparison, the performance of the elementary rule (Table 

19) is stored on the diagonal in bold. From the table we see that in all cases composite rules 

outperform the elementary rule, indicating the combination of different rules provides synergy in 

solving the TALBP.  The performance of each weighted pairing rule in terms of the number of 

best solutions it generates out of all 34 cases is presented in Table 23. The best weighted pairing 

rules are {TdS; F; 0.01} and {Tdl; F; 0.1}, both of which outputs the 30 best results out of 34 

problem instances.  

 



94 

 

 

 

Table 22 Average performance of the best weighted combinations for each pairing of rules 

  TdS TdL T L F 

TdS 9.88 8.43 8.01 6.81 4.55 

TdL   8.45 7.03 5.98 4.64 

T     9.68 5.56 4.55 

L       15 4.74 

F         7.03 

      

Table 23 The number of best solutions of each weighted pairing rules out of 34 cases as 

measured by Avg_dev 

  Weight 

  100 10 5 2 1 0.5 0.2 0.1 0.01 

TdS_TdL 20 19 19 18 17 18 19 18 20 

TdS_T 20 18 19 15 15 17 19 19 21 

TdS_L 19 16 16 18 15 15 16 14 14 

TdS_F 20 20 19 20 22 23 25 26 30 

TdL_T 21 20 20 19 19 19 19 19 22 

TdL_L 22 19 19 16 19 17 17 16 16 

TdL_F 20 20 20 23 24 25 29 30 28 

T_L 22 16 17 17 19 18 16 16 16 

T_F 21 21 24 21 25 28 29 29 29 

L_F 18 18 19 20 19 19 21 24 27 

 

From Tables 17 and 19, we observe that the performance of rule F is superior to the other 

rules. We also notice, from Table 22, that the performance of the other 4 elementary rules are 

greatly improved when paired with rule F. Also, from Table 23, the performance of F-related rules 

improves as the weight that the F component receives also increases. Such relations are shown in 



95 

 

 

 

the panel plots in Figure 27. The Matlab codes to implement the composite rules are in Appendix 

I. 

 

Figure 27 Number of best solutions of composite rules in relation to the weight of F 

 

 

 

5.2 Algorithmic design with BDP 

In this section, the PRBMs are embedded into a bounded dynamic programming (BDP) 

aiming to further improve the solution quality of stand-alone PRBMs as well as proposing a design 

procedure. The novel algorithm (PR_BDP), which is comprised of two main components, 

enumeration of states and solution space reduction is tested on benchmark data sets in order to 

compare its performance against the best composite rules.  

 



96 

 

 

 

5.2.1 Enumeration of states 

The procedure of enumerating states (positions) is the building block of the BDP. PRBMs 

are applied to develop the states (partial solutions) at each stage. States which return small idle 

time are carried forward to develop states at the next stage. The basic idea to use the PRBMs in 

BDP is to take advantage of several good PRBMs in-stage performance and combine them 

between the stages. For instance, applying composite rule L_F will result the minimum idle time 

for position 1 and a relatively high idle time for position 2. As for rule T_F, the results are just the 

opposite. If we apply the two rules independently, we obtain two mediocre solutions. However, if 

we apply L_F to position 1 and T_F to position 2, we may get a solution that results in the minimum 

overall idle time. To apply the enumeration procedure effectively, several techniques are applied. 

These techniques are: 

The choices of PRBMs. Instead of choosing all possible rules, we only adopt a few excellent 

rules to develop the states at each stage for the sake of computational efficiency. Totally, 4 rules 

are selected. The {TdS; F; 0.01} and {TdL; F; 0.1} are selected according to Table 23. Moreover, 

{L; F; 0.01} and {T; L; 0.01} are added to the set of rules because they can provide better solutions 

than the first two rules for some problems.   

Assignable task set management. The running time during the enumeration procedure and 

the quality of a partial solution highly depend on the generation of the assignable task set and the 

order of the task in the set respectively. The assignable task set is updated and ordered based on 

the following rules.    

1) For a data set, the natural number of a task appears after all of its predecessor’s natural 

number. 



97 

 

 

 

2) After a task is assigned, its successors along with the rest of the tasks in the previous 

assignable task set are inspected on the cycle time constraint to constitute the new 

assignable task set, which largely reduces the effort of reexamining all remaining tasks 

on all constraints.  

3) Tasks in the assignable task set are ordered according to the load-oriented rule, delay-

oriented rule, one of the 4 selected PRBMs and their natural number in succession. 

5.2.2 Solution space reduction approaches 

The solution space shall be relaxed in order to allow for the resolution of a large sized 

problem as the PR_BDP advances in stages and between stages. For example, consider a problem 

that requires 10 positions to assign all tasks. The total number of task sequence without space 

reduction is 410=1,048,576 which greatly undermines the efficiency of the algorithm. Three 

approaches are developed to reduce the solution space. 1) Labeling dominance rule, 2) utilization 

of bounds, 3) window size.     

Labeling dominance method. The labeling scheme (Schrage and Baker, 1978) ensures each 

partial solution gets a unique value by assigning different labels to tasks. The states, developed by 

different PRBMs, with the same total number of labels are deleted as the algorithm advances to 

the next stage. As a consequence, the solution space is reduced, so is the computational speed. It 

is an in-state reduction approach. 

 

Utilization of bounds. The comparisons between different bounds (GLB, GUB, LB, UB) 

can be used to delete the partial solutions whose prospective outputs can be proven to be not 

superior to the existing best output. The global upper bound (GLB) can be calculated by ignoring 

the precedence and indivisible constraints prior to the optimization process (see Wu, 2008). The 



98 

 

 

 

lower bound (LB) for each partial solution is equal to the summation of the number of positions 

already finished and the global lower bound (GLB) for the remaining positions to which the rest 

of tasks are assigned. The upper bound (UB) for each partial solution is generated by assigning the 

first assignable task to the station without enumerating all tasks in the assignable task set. After all 

tasks are assigned, the UB is equal to NM. Such a station construction scheme is the fastest method 

to find a feasible solution meaning that the computational cost for UB is negligible. GUB is the 

minimum UB among all partial solutions. The following comparisons are conducted and the 

solution space is reduced accordingly. 

1) UB and GLB. If a UB of a partial solution is equal to GLB (UB=GLB), the PR_BDP is 

terminated and the optimum is GLB. 

2) LB and GUB. For a partial solution, if its LB is not smaller than GUB (LB≥GUB), the 

partial solution is proved to be dominated and can be deleted from the solution space.   

3) UB and GUB. For a partial solution, if its UB is smaller than GUB, GUB is set to UB. 

4) UB, LB and GUB. For a partial solution, if its LB is equal to UB but is less than GUB 

(LB=UB<GUB), the full solution which results in the UB is stored as the best current 

optimal solution, and then the partial solution is deleted from the solution space. 

   Comparisons 1 and 3 are conducted within stages during the enumerative process. 

Comparisons 2 and 4 are conducted between stages after each enumerative process is done. Note, 

the algorithm is terminated as the solution space is empty and the current best optimal solution is 

reported. 

Window size w. Window size, as defined in section 2.3, restricts a fixed number of states 

at each state. The states are sorted in a non-descending order regarding the sum of idle times of 

the assigned stations. Then, the first w states are reserved to develop states at next stage.    



99 

 

 

 

 

    These approaches are deployed in the following order. The Labeling dominance rule is 

first used to enumerate a state. Secondly, the comparison 1 is conducted to determine whether the 

global optimum is found and the algorithm can be terminated. Thirdly, the comparison 3 is 

assessed to update the GUB. Then, the comparisons 2 and 4 are conducted to eliminate the 

unnecessary states. Finally, if the number of states remaining is greater than w, it is downsized to 

w. 

5.2.3 The application of PR_BDP 

We formally develop the PR_BDP in the flow diagram below (Figure 28). It is graph-

based, deterministic and multi-pass solution generating process. It focuses on exploring the states 

of a stage by exploiting the solution relaxation techniques to reduce the computational effort.  

 

Figure 28 Structure of PR_BDP 

 



100 

 

 

 

We apply the PR_BDP with w equal to 5, which is an appropriate number to serve the 

purposes of maintaining the quality of states as well as computational efficiency. The Avg_dev is 

1.11%, as shown in Table 24 which is much improved from the performance of the best elementary 

and composite rules reported in section 3. In table 25, we present the optimum found by PR_BDP 

compared with the best NM reported in the literature. We also provide the computational times for 

each instance as a means to gauge the computational efficiency. The CPU time is much smaller 

than the cycle time of each instance which makes the algorithm applicable when task learning and 

rebalancing are considered. Furthermore, a new optimum (NM=8 for A65, c=326 in Khorasanian 

et al. (2013)) is found and proved. The Matlab codes to implement the PR_BDP are in Appendix 

J. 

    Table 24 Comparisons of performance between best PRBMs and PR_BDP 

Rule Best elementary rule Best composite rules PR_BDP 

Avg_dev (%) 12.15 4.55 1.11 

 

Table 25 Comparisons between the best NM reported and best NM generated by PR_BDP 

Data set c Best reported NM  NM (PR_BDP) 

Computational times 

(secs) 

A12 4 4 4 0.54 

5 3 3 0.11 

6 3 3 0.02 

7 2 2 0.05 

A16 15 4 4 0.17 

18 3 3 0.02 

20 3 3 0.03 

22 2 2 0.03 

A24 25 3 3 0.31 

30 3 3 0.06 

35 2 2 0.07 

40 2 2 0.09 

A65 326 9 8 16.59 

381 7 7 10.36 

435 6 6 14.83 



101 

 

 

 

490 6 6 1.53 

544 5 5 1.42 

A148 204 13 13 5.33 

255 11 11 5.87 

306 9 9 7.14 

357 8 8 3.91 

408 7 7 2.53 

459 6 6 2.48 

510 6 6 3.15 

A205 1133 11 11 5.80 

1322 9 10 13.32 

1510 8 9 7.56 

1699 7 8 5.92 

1888 7 7 3.25 

2077 6 6 4.04 

2266 6 6 3.07 

2454 5 5 4.25 

2643 5 5 2.19 

2832 5 5 0.59 

 

 

 

Computational experiments confirm the effectiveness of incorporating PRBMs into BDP. 

The PR_BDP takes advantage of the capability of different composite rules on solving different 

problems. The parameters need to be specified are the choice of PRBMs and the associated 

weights. There are no ubiquitous parameters for all problems in general indicating that the analysis 

in section 3 has to be performed in order to obtain the parameters. However, they can be found in 

a short period of time because the search for the performance of each composite rule is a single-

pass, forward process, i.e., no backtracking is involved and only the best solution NM and score S 

are stored in memory for each rule. Furthermore, the PR_BDP is terminated before enumerating 

even half of the number of states for most problems. Thereby the assignable task set generation 

and task allocation process are cut in half relatively to the elementary and composite rules which 



102 

 

 

 

require the assignment of all tasks. Such success of computational efficiency is attributed to the 

relaxation techniques. Finally, with regards to the computational efficiency, the PR_BDP can 

output the best solutions in a fast manner that it is appealing to deploy the PR_BDP in practice. It 

is also worth to mention that the computational times of meta-heuristics are also very competitive, 

e.g. Simulated annealing can output any individual solution within 5 seconds (Khorasanian et al. 

(2013)). However, the endeavors to tune the parameters for each problem instance, which are not 

always published in the literature, are a lot more time-consuming for the implementation of meta-

heuristics (Hooker, 1995).       

5.2.4 Design of Experiments 

In this section, some experiments, which are similar to the one in section 4.3, are performed 

to assess the merit of task reassignment under the regime of two sided assembly system when 

learning is taking place and it is desirable to reconfigure the assembly line in real time during a 

production run. Considering learning provides two advantages. For one thing, it generates more 

data instances with which our algorithm can be further tested. For another, production statistics 

can be enhanced during the production process if task learning is held accountable. Because it is a 

type 1 balancing problem, we adopt two performance measures—Average improvement of unit 

NM (Avg_NM) and Average improvement of unit idle time (Avg_I) to evaluate the production 

statistics of one problem.  Learning period (Le) and learning rates (Lr) are used as control variables 

as they are in section 4.3 representing the degree of learning. Equations (31) and (32) show the 

calculations of the two terms. 

𝐴𝑣𝑔_𝑁𝑀  
∑ 𝑁𝑀𝑖×𝑃𝐼𝑖
𝐿𝑒+1
𝑖=1

𝑁
        (31) 

𝐴𝑣𝑔_𝐼  
∑ 𝐼𝑖×𝑃𝐼𝑖
𝐿𝑒+1
𝑖=1

𝑁
                (32) 



103 

 

 

 

Where PIi is the interval of the production process in which the total positions of the line is     

            NMi.  

Given z=400, Le is selected from [1, 2, 3] and Lr is selected from [0.05, 0.1, 0.15]. The 

novel algorithm PR_BDP is selected to output the best NMi in each production interval PIi. All 

benchmark data instances (34) are selected for analysis.  The summary statistics for the percent 

improvement in Avg_NM and Avg_I are given below in Table. 26 and 27. The design of 

experiment are programmed in Matlab and the codes are in Appendix K. 

Table 26 Summary statistics for percent reduction in Avg_NM of 34 basic data instances 

Avg_NM         

Production quantity 

Learning 

rate 

# of task 

learning M SE 95% CI 

400 

0.05 

1 0.0207 0.0072 0.0081 

2 0.0455 0.0081 0.0313 

3 0.0673 0.0084 0.0526 

0.1 

1 0.0475 0.0076 0.0343 

2 0.0904 0.0062 0.0797 

3 0.1298 0.0064 0.1185 

0.15 

1 0.0738 0.0062 0.0629 

2 0.1323 0.0068 0.1205 

3 0.1787 0.0081 0.1645 

Table 27 Summary statistics for percent reduction in Avg_I of 34 basic data instances 

Avg_I         

Production quantity 

Learning 

rate 

# of task 

learning M SE 95% CI 

400 

0.05 

1 0.1412 0.0484 0.0567 

2 0.2874 0.0451 0.2087 

3 0.3858 0.0415 0.3135 

0.1 

1 0.3078 0.0447 0.2297 

2 0.4842 0.0279 0.4355 

3 0.5748 0.0231 0.5345 

0.15 

1 0.4397 0.0392 0.3713 

2 0.5794 0.0234 0.5386 

3 0.6379 0.0298 0.5858 

 



104 

 

 

 

From the Tables 27 and 28, we can infer that the mean of both performance measures 

increase in the Le and Lr. This means that, when comparing PR_BDP without dynamic 

reconfiguration of the line to changing the configuration of the line when learning takes place, 

Table 26 gives the percent reduction in Avg_NM and Table 27 gives the percent reduction in 

Avg_I.  Unlike the cases in section 4.3, where no obvious pattern can be observed, the positivity 

correlation between the performance measures and Le or Lr of the current experiment is due to the 

implementation procedure of algorithms. In the experiment of section 4.3, as for the large sized 

data sets, we set time limit to restrict the total computational time of algorithm implementation in 

order to control the cost of experiment because ENCORE and SALOME are exact solution 

procedures. As such, there are possibilities that some data instances with the same precedence 

relation but lower task times can produce higher output (cycle time). However, PR_BDP is a 

heuristics approach which does not require the time limit to manage the overall cost of experiment. 

In other words, outputs (NM and Idle time) are always smaller for higher degree of learning. In 

practice, because of the excellent computational efficiency as shown in Table 25, one can use the 

PR_BDP as an online algorithm to reassign tasks and reduce the number of positions as task 

learning progresses.  

 

5.3 Summary 

In this chapter, we test the effectiveness of several elementary rules on TALBP. Two 

principles (delay-oriented and load-oriented) are proposed, compared and utilized to minimize the 

idle time from delay, which is a major negative impact on the performance of PRBMs. The 

combinations of elementary rules (composite rules) provide synergetic advantage regarding the 

average quality of solutions. Rule F with higher weight is the best partner when combined with 



105 

 

 

 

other elementary rules on solving the TALBP. Ultimately, an algorithmic design procedure 

including selecting and incorporating PRBMs into BDP is proposed (PR_BDP), which is a 

deterministic and problem specific heuristic procedure. Several important techniques are provided 

to reduce the solution space significantly as the PR_BDP progresses. With the presence of task 

learning, the improvement of production statistics is gauged by comparing task reassignment by 

PR_BDP with the cases of no reassignment. Additionally, average computational times on test 

problems are a fraction of cycle times, making real time application possible. 

The design of algorithms provides distinct advantage over the traditional exact solution 

procedure and meta-heuristics. Compared with the exact solution procedure, the efficiency is 

greatly improved as the solution space is largely reduced and the quality of the developing solution 

is maintained intelligently. Compared with the meta-heuristics, it is a ''white box'', intuitive process 

which exploits the problem specific knowledge, e.g., the structure of the line, delay, time and 

precedence relationships. Furthermore, the optimization process is deterministic which guarantees 

the reproducibility of the results.  

  



106 

 

 

 

6. Summary 

The assembly rebalancing with non-constant task time attribute problem is introduced and 

solved in this dissertation. The rising problem is motivated by task learning effect during the 

production process along the assembly line, and is established in the context of automatic assembly 

line system, where assembly lines are operated by robots.  In such a system the task time 

improvement is preserved by the supervisory controller that oversees the assembly line and the 

learned skill (information) can be transferred to other agents (robots) on the line.  The collaborative 

learning and structure of the supervisory control enable the line to be rebalanced as task time 

improvements are realized in such a way that the overall efficiency of the line is optimized.   

A total of three problems, residing in one-sided or two-sided assembly line, are addressed 

by three different algorithms, either exact or heuristics solution procedure. To efficiently 

implement those algorithms and apply the optimal solutions generated by them to assembly lines, 

two rebalancing frameworks are proposed; 1) a planning framework, which is suitable for the 

situation where task time improvements can be well estimated by a learning curve. This framework 

relies on offline algorithms to generate the optimal solution for every production cycle; 2) a real 

time framework, which is designed for the situation where task learning is uncertain, employs 

online algorithms to obtain the optimal solution in real time.  

  A backward induction algorithm is capable of solving the task reassignment problem 

efficiently, in which task times are reduced through learning and learning is conserved when tasks 

are reassigned amongst stations so that the number of stations required in each production cycle is 

minimized. The advantage of using the backward induction algorithm, is to avoid repetitively using 

the tradition algorithm, e.g., SALOME, to produce the optimal solution in every production cycle 

and, therefore, the computational burden is alleviated. Computational experiments are conducted 



107 

 

 

 

to validate the superiority of the backward induction algorithm over the conventional algorithm. 

Furthermore, we demonstrate the industrial application of optimal solutions to the automated 

assembly line with collaborative learning and supervisory control. It shows that the assembly 

system is better off in production statistics considering rebalancing in each production cycle.  

ENCORE is an online algorithm designed for solving the rebalancing problem with 

uncertain task learning attribute. It leverages SALOME2 by using a near optimal starting point and 

utilizing a temporary upper bound instead of the local lower bound, such that the computational 

efficiency is improved.  Pairwise t tests are conducted on large sized data instances to show 

whether ENCORE is superior to SALOME2 empirically at various computational time limits, 

appropriate for real time decisions in advanced automated systems. We also show the boundary at 

which ENCORE has no advantage over SALOME2 statistically. 

PR_BDP is designed by hybridizing dynamic programming and the priority-based method. 

It takes its inspiration from the fact that the two-sided line balancing problem can be divided into 

several subproblems that can be solved more easily than the main problem computationally, in 

such a way that dynamic programming can be employed. In each subproblems, a solution can be 

quickly generated by PRBMs, which is based on tasks’ priority scores, load-oriented and delay-

oriented principles. By piecing solutions of the subproblems together, the solution for the main 

problem can be found. PR_BDP provides distinct advantage over the traditional exact solution 

procedure and meta-heuristics. Compared with the exact solution procedure, the efficiency is 

greatly improved as the solution space is largely reduced and the quality of the developing solution 

is maintained intelligently. Compared with the meta-heuristics, it is a ''white box'', intuitive process 

which exploits the problem specific knowledge. Furthermore, the optimization process is 

deterministic, which guarantees the reproducibility of the results.  



108 

 

 

 

The aforementioned three algorithms and their features and applications are summarized 

in table 28. 

Table 28 Summary of Algorithms 

Algorithm Attribute Application Features 

Backward 

induction Exact 

one-sided line (type 1), 

planning model 

Avoid repetitively invoking traditional 

method 

ENCORE Exact 

one-sided line (type 2), 

real-time model 

Use a near optimal starting point and a 

better upper bound to ease computational 

burden 

PR_BDP Heuristic 

two-sided line (type 1), 

real-time model 

Utilize both PRBMs and DP to divide the 

problem and produce fast and good 

solution 

 

With the fast and efficient algorithms proposed, learning effects can be considered during 

the course of production runs in practical production and operation management. In different 

production environments (one-sided or two-sided line) with different goals (type 1 or type 2), 

decision making processes depend on the optimal solutions resulting from different algorithms. 

Concretely, decision makers should answer the following questions sequentially, and optimal 

assembly line design and production schedule will be developed automatically.  

What is the product? 

By answering this question, we can decide which assembly line is suitable for production, 

one-sided or two sided. If the size of the product is very large and requires workers to access the 

unit from both sides of the part, two-sided lines shall be selected. 

 

 

What is the production quantity? 



109 

 

 

 

We would like to know whether the dynamic rebalancing is necessary during the 

production. As suggested in section 1.3, rebalancing during production is only meaningful when 

the batch size is small, in which case the optimal solution is changed frequently. Otherwise, one 

can rebalance the line once after the task learning reaches the plateau. 

What is the goal? 

The goal of designing an efficiently balanced line determines the problem types. If high 

production rate is to pursue, then it is a type 2 problem in which cycle time is minimized. If the 

amount of production capacity is the priority, then it is a type 1 problem where the number of 

stations/positions is minimized. 

How does task time behave? 

The task learning process can be continuous or discrete in time, certain or uncertain. If the 

learning process is continuous and almost certain, as in the insertion example of Figure 2. We can 

approximate the path of task learning by a learning curve and select the planning model to 

implement the rebalancing schedule. If the timing at which task learning occurs and/or the degree 

of task time improvement are both uncertain, and they cannot be accurately predicted as using a 

learning curve, we resort to the real-time rebalancing schedule. 

Is there any time constraint on rebalancing the line? 

At times there may be a time limit allowed for the algorithm to compute the optimal 

solution to ensure the continuity of the production. In a planning model, that is not a concern 

because it uses an offline algorithm. However, in real-time model, it becomes a factor that should 

be considered in the rebalancing schedule, especially for a complex, large sized problem. We have 

identified the boundary at which ENCORE is indifferent to SALOME2 in terms of the quality of 

solutions. Statistically speaking, SALOME2 would generate as good results (cycle time) as 



110 

 

 

 

ENCORE does if the time limit is beyond the boundary. Their difference in objective value will 

converge as the time limit increases, because they both are exact solutions. 

In conclusion, to our knowledge this is the first work that addresses the case for 

dynamically reconfiguring an assembly line during production under conditions where there is 

learning or task time improvement and the knowledge underlying the improvement is retained as 

tasks are redistributed among agents.  This provides the opportunity to optimize overall production 

efficiencies while maintaining constraints of the number of stations or the cycle time of the line.  

This is the first work to focus on algorithmic design for such cases and to demonstrate their value 

in industrial applications.  As research on the application of flexible assembly systems with 

machine learning progresses, these methods will help support the efficient planning of the use of 

resources by taking into consideration optimal deployment over a range of task time reductions. 

   The results of this research can be extended in future research.  One open issue includes 

the global allocation of resources as agents (robots) become available during line reconfiguration.  

At any time, there are multiple product assemblies to be schedules that will require resources 

during a day’s schedule.  Batches of different products are moved in and out of production and 

require resources.  Traditionally a line would be dedicated to one product at a time, though mixed 

product lines are possible.  As improvements take place in the assembly of one product and 

resources can be reallocated, for example in the configuration of Figure 14, it opens the question 

of how a full day’s production can be scheduled so as to maximize resource utilization overall.  

This is the question that will be addressed in future research. 

 

 

  



111 

 

 

 

References 

 

Arcus, A. L. (1965). A computer method of sequencing operations for assembly lines.  

International Journal of Production Research, 4(4), 259-277. 

 

Angerer, S., Pooley,R. and Aylett, R. (2010).  Self-reconfiguration of industrial mobile robots, 

Proceeding of Fourth IEEE International Conference on Self-Adaptive and Self-Organizing 

Systems (2010), 64 – 73. 

 

Babiceanu, R. and Chen, F. (2006). Development and application of holonic manufacturing 

systems: A survey, Journal of Intelligent manufacturing 17, 111 – 131. 

 

Bartholdi, J. J. (1993). Balancing two-sided assembly lines: A case study. International Journal 

of Production Research, 31(10), 2447–2461. 

 

Battaia, O., and Dolgui,A. (2012).Reduction approaches for a generalized line balancing problem. 

Computers&OperationsResearch39,2337–2345. 

 

Battaïa, O., and Dolgui,A. (2013). A taxonomy of line balancing problems and their solution 

approaches. International Journal of Production Economics,142(2), 259-277. 

 

Bautista, J., and Pereira, J. (2009). A dynamic programming based heuristic for the assembly line 

balancing problem. European Journal of Operational Research, 194(3), 787-794. 

 

Baybars, I (1986). A survey of exact algorithms for the simple assembly line balancing 

problem. Management science ,32.8 , 909-932. 

 

Baykasoglu, A., and Dereli, T. (2008). Two-sided assembly line balancing using an ant-colony-

based heuristic. The International Journal of Advanced Manufacturing Technology, 36(5-6), 

582-588. 

 

Biskup, D. (1999). Single-machine scheduling with learning considerations. European Journal of 

Operational Research, 115(1), 173-178.  

 

Boucher, T.O. (1996) Computer Automation in Manufacturing.  London:  Chapman & Hall. 

 

Boucher, T.O. (1987). Choice of assembly line design under task learning. International Journal 

of Production Research ,25.4 , 513-524. 

 

Boucher, T.O. and A. Yalcin (2006) Design of Industrial Information Systems.  Amsterdam:  

Elsevier, Academic Press. 

 

Boucher, T., & Li, Y. (2015). Technical note: systematic bias in stochastic learning. International 

Journal of Production Research, 1-12. 

 



112 

 

 

 

Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line balancing 

problems. European Journal of Operational Research, 183(2), 674-693. 

 

Boysen, N., Scholl, A., &Wopperer, N. (2012). Resequencing of mixed-model assembly lines: 

Survey and research agenda. European Journal of Operational Research, 216(3), 594-604. 

 

Bryton, B. (1954). Balancing of a Continuous Production Line, M.S. Thesis, Northwestern 

University, Evanston, IL 

 

Bukchin, J., & Rubinovitz, J. (2003). A weighted approach for assembly line design with station 

paralleling and equipment selection. IIE transactions,35(1), 73-85. 

 

Bukchin, Y., &Rabinowitch, I. (2006). A branch-and-bound based solution approach for the 

mixed-model assembly line-balancing problem for minimizing stations and task duplication 

costs. European Journal of Operational Research,174(1), 492-508. 

 

Cakir, B., Altiparmak, F., and Dengiz, B. (2011). Multi-objective optimization of a stochastic 

assembly line balancing: A hybrid simulated annealing algorithm. Computers& Industrial 

Engineering, 60(3), 376-384. 

 

Cavalcante, A., Peixoto,J and Pereira.C. (2012). When agents meet manufacturing: paradigms and 

implementations, Anais do XIX CongressoBrasileiro de Automatica, 957 – 964. 

 

Coffman, Jr, E. G., Garey, M. R., & Johnson, D. S. (1978). An application of bin-packing to 

multiprocessor scheduling. SIAM Journal on Computing, 7(1), 1-17. 

 

Cohen, Y., Dar-El, M. (1998) Optimizing the number of stations in assembly lines under learning 

for limited production, Production Planning and Control, 9 (3), 230–240. 

 

Cohen, Y., Vitner, G., & Sarin, S. C. (2006). Optimal allocation of work in assembly lines for lots 

with homogenous learning. European Journal of Operational Research, 168(3), 922-931. 

 

Cohen, Y., Vitner, G., & Sarin, S. (2008) Work allocation to stations with varying learning slopes 

and without buffers. European Journal of Operational Research, 184(2), 797-801. 

 

Digiesi, S., Kock, A., Mummolo, G., Rooda, J. (2009). The effect of dynamic worker behavior on 

flow line performance. International Journal of Production Economics, 120 (2), 368–377. 

 

Dar-El, E. M. (1975). Solving large single-model assembly line balancing problems—A 

comparative study. AIIE Transactions, 7(3), 302-310. 

 

Dar-El, E.M., Rubinovitch, Y. (1979). MUST––A multiple solutions technique for balancing 

single model assembly lines. Management Science 25, 1105–1114. 

 

Dolgui, A., Finel, B., Vernadat, F., Guschinsky, N., & Levin, G. (2005). A heuristic approach for 

transfer lines balancing. Journal of Intelligent Manufacturing, 16(2), 159-172. 



113 

 

 

 

 

Dolgui, A., Proth, J., (2010). Supply Chain Engineering: useful methods and techniques. Springer. 

 

Easton, F., Faaland, B., Klastorin, T.D., Schmitt, T., (1989). Improved network based algorithms 

for the assembly line balancing problem. International Journal of Production Research, 27, 1901–

1915. 

 

Fleszar, K., & Hindi, K. S. (2003). An enumerative heuristic and reduction methods for the 

assembly line balancing problem. European Journal of Operational Research, 145(3), 606-620. 

 

Globerson, S., & Gold, D. (1997). Statistical attributes of the power learning curve 

model. International journal of production research, 35(3), 699-711. 

 

Goldberg, M. S., & Touw, A. (2003). Statistical methods for learning curves and cost analysis (p. 

196). Institute for Operations Research and the Management Sciences (INFORMS). 

 

Gurevsky, E., Hazır, Ö., Battaïa, O., &Dolgui, A. (2012). Robust balancing of straight assembly 

lines with interval task times [star]. Journal of the Operational Research Society, 64(11), 1607-

1613. 

 

Hackman, S.T., Magazine, M.J., Wee, T.S. (1989). Fast, effective algorithms for simple assembly 

line balancing problems. Operations Research 37, 916–924. 

 

Haupt, R. (1989): A survey of priority rule-based scheduling. OR Spectrum, 11, 3–16. 

 

Held, M., Karp, R. M., &Shareshian, R. (1963). Assembly-line balancing-dynamic programming 

with precedence constraints. Operations Research,11(3), 442-459. 

 

Heskiaoff, H. (1968). A heuristic method for balancing assembly line. The western electric 

engineering ,12/3,9-13 

 

Hoffmann, T.R., (1963). Assembly line balancing with a precedence matrix. Management Science, 

9, 551–562 

 

Hoffmann, T.R. (1992). EUREKA: A hybrid system for assembly line balancing. Management 

Science, 38.1, 39-47. 

 

Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of heuristics, 1(1), 33-42. 

 

 

Hu, X., Wu, E., & Jin, Y. (2008). A station-oriented enumerative algorithm for two-sided assembly 

line balancing. European Journal of Operational Research, 186(1), 435-440. 

 

Hu, X., Wu, E., Bao, J., & Jin, Y. (2010) A branch-and-bound algorithm to minimize the line 

length of a two-sided assembly line. European Journal of Operational Research, 206(3), 703–707 

 



114 

 

 

 

 

Jackson, J. R. (1956). A computing procedure for a line balancing problem. Management 

Science, 2.3 , 261-271. 

 

Johnson, Roger V. (1988), Optimally balancing large assembly lines with "FABLE", Management 

Science, 34.2 , 240-253. 

 

Klein, R., Scholl, A. (1996). Maximizing the production rate in simple assembly line balancing––

A branch and bound procedure. European Journal of Operational Research 91, 367–385. 

 

 

Khorasanian, D., Hejazi, S. R., & Moslehi, G. (2013). Two-sided assembly line balancing 

considering the relationships between tasks. Computers & Industrial Engineering, 66(4), 1096-

1105. 

 

Kim, Y. K., Kim, Y., & Kim, Y. J. (2000). Two-sided assembly line balancing: a genetic algorithm 

approach. Production Planning & Control, 11(1), 44-53. 

 

Lapierre, S. D., Ruiz, A., & Soriano, P. (2006). Balancing assembly lines with tabu 

search. European Journal of Operational Research, 168(3), 826-837. 

 

Lapierre, S. D., & Ruiz, A. B. (2004). Balancing assembly lines: an industrial casestudy. Journal 

of the Operational Research Society, 589-597. 

 

Lee, T. O., Kim, Y., & Kim, Y. K. (2001). Two-sided assembly line balancing to maximize work 

relatedness and slackness. Computers & Industrial Engineering, 40(3), 273-292. 

 

Li, Y., & Boucher, T. O. (2016). Assembly line balancing problem with task learning and dynamic 

task reassignment. The International Journal of Advanced Manufacturing Technology, 1-9. 

 

Lopes, L. S., &Camarinha-Matos, L. M. (1995).A machine learning approach to error detection 

and recovery in assembly. IEEE  International Conference on Human Robot Interaction and 

Cooperative Robots ,3,197-203. 

 

McNaughton, R., 1959. Scheduling with deadlines and loss functions. Management Science 6, 1–

12. 

 

Mansoor, E.M. (1964), Assembly line balancing-an improvement on the ranked positional weight 

technique. Journal of Industrial Engineering ,15.2 , 73-77. 

 

Mastor, A. A. (1970), An experimental investigation and comparative evaluation of production 

line balancing techniques. Management Science ,16.11, 728-746. 

 

Miltenburg, J. (2001). U-shaped production lines: A review of theory and practice. International 

Journal of Production Economics, 70(3), 201-214. 

 



115 

 

 

 

Nearchou, A. C. (2011). Maximizing production rate and workload smoothing in assembly lines 

using particle swarm optimization. International Journal of Production Economics, 129(2), 242-

250. 

 

Newnan, D.G., J.P. Lavelle, and T.G. Eschenbach (2009) Engineering Economic Analysis, (10th 

ed.). New York: Oxford University press. 

 

Nuttin, M. and van Brussel.H. (1999). Learning sensor assisted assembly operations, Making 

Robots Smarter, K. Morik, M. Kaiser and V. Klingspor, eds.  Kluwer Academic Publishers,  45 – 

52. 

 

Onori, M., Barata, J. and Frei, R. (2006). Evolvable assembly systems: basic principles, 

Information Technology for Balanced Manufacturing Systems, International Feceration for 

Information Processing, 220, 317-328 

 

Ostwald, P.F. (1992) Engineering Cost Estimating, 3rd. Ed. Englewood Cliffs: Prentice Hall. 

 

Otto, A., Otto, C., & Scholl, A. (2011). How to design and analyze priority rules: Example of 

simple assembly line balancing. Working Papers in Supply Chain Management 3, Friedrich-

Schiller-University of Jena.  

 

Otto, A., & Otto, C. (2014). How to design effective priority rules: Example of simple assembly 

line balancing. Computers & Industrial Engineering, 69, 43-52. 

 

Otto, C., and Otto, A. (2014). Extending assembly line balancing problem by incorporating 

learning effects. International Journal of Production Research, 52(24), 7193-7208. 

 

Özbakır, L., & Tapkan, P. (2010). Balancing fuzzy multi-objective two-sided assembly lines via 

Bees Algorithm. Journal of Intelligent & Fuzzy Systems,21(5), 317-329. 

 

Posypkin, M. A.E and Sigal, I. K. (2006). Speedup estimates for some variants of the parallel 

implementations of the branch-and-bound method. Computational Mathematics and 

Mathematical Physics ,46.12,  2187-2202. 

 

Ribeiro, L., Barata, J. and Colombo, A. (2008). MAS and SOA: A case study exploring principles 

and technologies to support self-properties in assembly systems, Proceedings of Second IEEE 

Conference on Self-Adaptive and Self-Organizing Systems, 192-197. 

 

Rekiek, B., Dolgui, A., Delchambre, A., and Bratcu, A. (2002). State of art of optimization 

methods for assembly line design.  Annual Reviews in Control,26(2), 163-174. 

 

Rubinovitz, J., and Levitin, G. (1995). Genetic algorithm for assembly line balancing. 

International Journal of Production Economics, 41(1), 343-354. 

 

Sanders, D. and Gegovm, A. (2013) AI tools for use in assembly automation and some examples 

of recent applications, Assembly Automation, 33 (2), 184-194. 



116 

 

 

 

 

Salveson, M.E. (1955). The assembly line balancing problem. Journal of Industrial 

Engineering, 6.3, 18-25. 

 

Scholl,A.(1993), data of assembly line balancing problem,  

http://alb.mansci.de/index.php?content=classview&content=classview&content2=classview&co

ntent3=classviewdlfree&content4=classview&classID=44&type=dl 

 

Scholl, A., & Voß, S. (1997). Simple assembly line balancing—Heuristic approaches. Journal of 

Heuristics, 2(3), 217-244. 
 

Scholl, A, and Klein, R. (1997). SALOME: A bidirectional branch-and-bound procedure for 

assembly line balancing. INFORMS Journal on Computing, 9.4 ,319-334. 

 

Scholl, A., & Klein, R. (1999). ULINO: Optimally balancing U-shaped JIT assembly 

lines. International Journal of Production Research, 37(4), 721-736. 

 

Scholl, A, and Klein, R. (1999). Balancing assembly lines effectively–a computational comparison, 

European Journal of Operational Research, 114.1, 50-58. 

 

Scholl, A and Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple 

assembly line balancing. European Journal of Operational Research ,168.3 ,666-693. 

 

Schrage, L., & Baker, K. R. (1978). Dynamic programming solution of sequencing problems with 

precedence constraints. Operations research, 26(3), 444-449. 

 

Simaria, A. S., & Vilarinho, P. M. (2009). 2-ANTBAL: An ant colony optimisation algorithm for 

balancing two-sided assembly lines. Computers & Industrial Engineering, 56(2), 489-506. 

 

Sotskov, Y. N., Dolgui, A., Lai, T. C., & Zatsiupa, A. (2015) Enumerations and stability analysis 

of feasible and optimal line balances for simple assembly lines. Computers & Industrial 

Engineering, 90, 241-258. 

 

Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New search spaces for sequencing problems with 

application to job shop scheduling. Management science, 38(10), 1495-1509. 

 

Sullivan, W.G., E.M. Wicks, and C.P. Koelling (2015) Engineering Economy, 16th Ed. Upper 

Saddle River: Pearson Prentice Hall. 

 

Süer, G. A. (1998). Designing parallel assembly lines. Computers & industrial engineering, 35(3), 

467-470. 

 

Suresh, G., and Sahu, S. (1994). Stochastic assembly line balancing using simulated 

annealing. The International Journal of Production Research, 32(8), 1801-1810. 

 

http://alb.mansci.de/index.php?content=classview&content=classview&content2=classview&content3=classviewdlfree&content4=classview&classID=44&type=dl
http://alb.mansci.de/index.php?content=classview&content=classview&content2=classview&content3=classviewdlfree&content4=classview&classID=44&type=dl


117 

 

 

 

Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A comparative evaluation of heuristic 

line balancing techniques. Management science,32(4), 430-454. 

 

Toksarı, M. D., İşleyen, S. K., Güner, E., and Baykoç, Ö. F. (2008). Simple and U-type assembly 

line balancing problems with a learning effect. Applied Mathematical Modeling, 32(12), 2954-

2961. 

 

Terwiesch, C., and Bohn, R. E. (2001). Learning and process improvement during production 

ramp-up. International Journal of Production Economics ,70.1, 1-19. 

 

Tuncel, G., & Aydin, D. (2014). Two-sided assembly line balancing using teaching–learning based 

optimization algorithm. Computers & Industrial Engineering, 74, 291-299. 

 

Ueda, K. (2007). Emergent synthesis approaches to biological manufacturing systems, Digital 

Enterprise Technology, Springer, 25 – 34. 

 

Van Hop, N. (2006). A heuristic solution for fuzzy mixed-model line balancing 

problem. European Journal of Operational Research, 168(3), 798-810. 

 

Vance, P. H., Barnhart, C., Johnson, E. L., & Nemhauser, G. L. (1994). Solving binary cutting 

stock problems by column generation and branch-and-bound. Computational optimization and 

applications, 3(2), 111-130. 

 

Vigil, D. P., & Sarper, H. (1994). Estimating the effects of parameter variability on learning curve 

model predictions. International journal of production economics, 34(2), 187-200. 

 

Wang, B., Guan, Z., Li, D., Zhang, C., & Chen, L. (2014). Two-sided assembly line balancing 

with operator number and task constraints: a hybrid imperialist competitive algorithm. The 

International Journal of Advanced Manufacturing Technology, 74(5-8), 791-805. 

 

Whitney, D.E. (1982). Quasi-static assembly of compliantly supported rigid parts. Transactions of 

ASME, Journal of Dynamic Systems Measurement and Control, 104 (1), 65-77. 

 

Wu, E. F., Jin, Y., Bao, J. S., & Hu, X. F. (2008). A branch-and-bound algorithm for two-sided 

assembly line balancing. The International Journal of Advanced Manufacturing 

Technology, 39(9-10), 1009-1015. 

 

Yelle, L. E. (1979). The learning curve: Historical review and comprehensive survey. Decision 

Sciences, 10(2), 302-328. 

 

Yuan, B., Zhang, C., & Shao, X. (2015). A late acceptance hill-climbing algorithm for balancing 

two-sided assembly lines with multiple constraints. Journal of Intelligent Manufacturing, 26(1), 

159-168. 

 

Zacharia, P. T., & Nearchou, A. C. (2012). Multi-objective fuzzy assembly line balancing using 

genetic algorithms. Journal of Intelligent Manufacturing,23(3), 615-627. 



118 

 

 

 

Appendix A: Benchmark data sets 

 

 

Small sized data set are displayed in their precedence graph. Big sized data set in a table 

consisting two parts, task times (the first column) and direct precedence relations (the second 

column) 

 

 

Figure 29 Precedence graph of Mansoor's data set 

 

 

Figure 30 Precedence graph of Heskiaoff's data set 

  



119 

 

 

 

Large sized data sets 

Kilbrid Arcus (83) Arcus (111) Bartholdi Scholl 

45 1,3 83 1,2 111 1,2 148 1,5 297 1,2 

9 1,7 1673 2,3 1960 2,3 16 1,6 270 2,3 

9 2,4 985 2,4 1715 3,4 30 1,7 270 3,4 

10 2,8 1836 2,5 735 4,5 7 1,8 130 4,5 

10 3,5 973 3,6 1715 4,6 47 2,3 148 4,22 

17 4,6 1700 4,6 490 4,7 29 3,4 190 4,26 

17 5,9 2881 4,7 1225 4,8 8 3,5 293 4,27 

13 6,10 2231 5,8 169 4,9 39 3,6 348 4,40 

13 7,9 1040 6,9 2252 4,10 37 3,7 182 4,48 

20 7,14 1793 6,10 1225 5,39 32 4,8 490 4,56 

20 8,10 1250 7,11 2319 6,39 29 5,14 212 4,83 

10 8,14 700 8,77 1715 7,83 17 6,9 248 4,86 

11 9,41 464 8,78 980 8,71 11 7,14 248 4,94 

6 10,41 500 9,12 735 9,32 32 8,10 248 4,105 

22 11,13 1133 10,13 2281 10,11 15 9,14 248 4,109 

11 12,13 577 10,14 2750 10,12 53 10,14 248 4,111 

19 12,37 483 10,25 77 11,13 53 11,12 268 4,134 

12 13,14 880 11,15 89 11,14 8 12,13 268 4,221 

3 13,15 667 12,16 51 11,15 24 14,15 268 4,247 

7 14,17 600 13,17 364 11,16 24 14,16 288 4,259 

4 14,25 233 13,18 405 11,17 8 15,17 248 5,6 

55 14,29 408 13,20 3060 11,18 7 16,17 268 6,7 

14 14,30 847 14,19 125 11,19 8 17,18 60 6,8 

27 14,31 767 15,20 3429 11,20 14 17,19 268 6,9 

29 14,32 850 15,39 43 11,21 13 18,20 240 6,10 

26 15,16 780 16,77 3430 12,13 10 19,20 240 7,11 

6 15,18 912 16,78 1960 12,14 25 20,21 171 7,12 

5 15,23 748 17,21 29 12,15 11 20,22 490 7,13 

24 15,24 1863 17,22 27 12,16 25 20,23 182 7,14 

4 16,19 714 17,28 15 12,17 11 20,24 170 7,15 

5 17,26 1004 18,23 121 12,18 29 21,25 306 7,20 

7 17,27 713 19,24 1715 12,19 25 21,26 108 8,11 

4 18,19 642 20,26 2127 12,20 10 21,27 248 8,12 

15 19,20 629 21,27 1470 12,21 14 21,28 190 8,13 

3 19,33 1234 22,27 4037 13,71 41 22,25 240 8,14 

7 20,21 1143 23,74 68 14,22 42 22,26 339 8,15 

9 21,22 1266 24,28 62 14,23 47 22,27 288 8,20 

4 22,28 792 24,29 42 14,24 7 22,28 248 9,11 

7 23,33 1251 25,32 364 14,25 80 23,25 455 9,12 

5 24,33 1310 26,74 4998 15,26 7 23,26 268 9,13 

4 25,26 663 27,69 1470 16,27 41 23,27 270 9,14 



120 

 

 

 

21 26,38 494 28,32 2963 17,28 47 23,28 180 9,15 

12 27,28 1288 29,30 5689 18,29 16 24,25 121 9,20 

6 27,33 792 30,31 68 19,30 32 24,26 270 10,11 

5 28,38 578 31,39 18 20,91 66 24,27 440 10,12 

5 29,41 594 32,33 10 21,111 80 24,28 249 10,13 

 30,41 578 32,34 81 22,31 7 25,29 194 10,14 

 31,41 622 32,35 5200 22,83 41 26,29 162 10,15 

 32,41 578 32,36 39 23,32 13 27,29 130 10,20 

 33,34 564 33,37 67 23,33 47 28,29 388 11,16 

 33,35 578 34,77 27 24,69 33 29,31 90 12,17 

 33,36 578 34,78 15 24,70 34 31,36 212 13,18 

 34,38 578 35,77 121 25,34 11 32,34 246 14,19 

 35,40 578 35,78 58 26,82 18 33,35 188 15,21 

 36,38 578 36,38 1715 27,35 25 34,36 270 16,23 

 37,43 578 36,39 125 28,36 7 35,36 160 17,23 

 38,40 578 37,40 4010 29,37 28 36,37 79 18,23 

 39,41 578 38,41 1470 30,38 12 37,38 466 19,23 

 40,41 578 39,42 1470 31,39 52 37,45 240 20,23 

 41,42 578 39,43 2303 32,41 14 38,39 137 21,23 

 42,44 578 39,44 1960 33,111 3 39,40 184 22,24 

 42,45 578 39,75 2205 34,42 3 40,41 110 22,25 

  578 40,77 4018 35,43 8 40,48 275 23,28 

  578 40,78 2744 36,44 16 40,54 149 24,29 

  578 41,45 2999 36,91 33 42,43 280 25,29 

  578 42,77 735 37,45 8 43,44 119 26,30 

  578 42,78 735 37,91 18 45,46 184 27,31 

  578 43,77 735 38,46 10 46,47 140 28,32 

  578 43,78 735 38,91 14 47,48 150 28,37 

  467 44,46 545 39,40 28 47,49 190 29,33 

  887 45,47 3386 40,111 11 47,54 150 29,44 

  396 46,48 3234 41,69 18 50,51 150 29,121 

  1296 47,49 2205 41,70 25 51,53 284 30,34 

  1100 48,50 2206 42,47 40 51,69 192 30,297 

  2543 49,69 490 43,48 40 52,53 347 31,34 

  764 50,51 825 43,49 1 54,55 232 31,82 

  357 51,52 3528 44,50 5 54,72 140 31,172 

  701 52,53 3568 45,51 28 54,76 608 31,179 

  1164 53,54 1200 46,52 8 54,89 80 32,36 

  286 54,55 618 47,54 81 54,90 40 33,38 

  2100 55,56 1470 47,55 7 55,133 130 34,35 

  450 56,57 1715 47,56 26 56,73 110 35,42 

  1300 57,58 735 47,57 10 57,82 350 36,39 

  3691 58,59 1960 47,58 21 58,86 140 37,39 



121 

 

 

 

   59,60 2889 47,59 26 58,88 240 38,41 

   60,61 618 47,60 20 59,75 240 39,43 

   61,62 490 48,53 21 59,89 90 40,44 

   62,63 735 49,91 47 61,62 54 40,84 

   63,64 490 50,111 23 62,63 294 40,97 

   64,65 921 51,111 13 63,67 203 41,45 

   65,66 326 52,111 19 64,65 150 42,46 

   66,67 5390 53,111 15 64,71 270 43,47 

   67,68 243 54,69 35 64,72 155 44,49 

   68,74 371 54,70 26 65,66 190 45,50 

   68,75 58 55,61 46 65,99 78 46,51 

   69,70 5059 55,62 20 66,67 140 46,138 

   69,71 1225 55,63 31 67,68 241 47,52 

   70,72 769 56,63 19 68,95 430 48,52 

   71,73 768 56,64 34 68,98 90 49,53 

   72,73 1670 57,65 51 69,79 110 50,54 

   73,74 1670 57,91 39 70,71 9 51,55 

   73,75 490 58,66 30 72,134 430 51,81 

   74,76 202 58,91 26 73,86 130 52,57 

   75,76 203 59,67 13 73,88 289 53,58 

   76,77 202 59,91 45 73,89 110 54,58 

   76,78 2744 60,68 58 73,90 160 54,296 

   77,79 162 60,91 28 73,96 442 55,59 

   78,79 324 61,69 8 74,75 159 56,60 

   79,80 162 61,70 83 75,90 250 56,61 

   79,81 121 62,71 40 75,97 190 57,62 

   80,82 162 63,111 34 76,77 184 57,63 

   81,83 91 64,72 23 77,78 690 57,71 

   82,83  65,111 62 78,82 72 57,76 

     66,111 11 79,85 190 58,64 

     67,111 19 79,80 190 59,64 

     68,111 14 79,143 90 59,99 

     69,77 31 79,146 889 59,100 

     69,78 32 80,81 170 60,68 

     70,73 26 81,82 155 61,65 

     71,91 55 82,83 190 62,66 

     72,74 31 83,84 130 63,67 

     73,75 32 84,106 390 64,72 

     74,76 26 86,87 301 65,69 

     75,77 19 90,111 54 66,69 

     75,78 14 91,105 227 67,70 

     75,79 19 92,135 142 68,73 

     76,80 48 95,101 184 69,74 



122 

 

 

 

     76,81 55 96,104 741 70,75 

     76,82 8 98,101 868 71,77 

     77,83 11 99,100 230 72,78 

     78,84 27 100,101 121 73,84 

     79,85 18 101,102 320 73,97 

     80,86 36 101,103 126 74,84 

     80,91 23 102,127 440 74,97 

     81,87 20 103,127 127 75,84 

     81,91 46 105,119 134 75,97 

     82,111 64 106,107 150 76,84 

     83,91 22 107,108 140 76,97 

     84,88 15 108,109 110 77,84 

     84,89 34 109,110 320 77,97 

     84,91 22 111,112 250 78,79 

     85,111 51 112,113 232 78,80 

     86,111 48 113,114 188 78,125 

     87,90 64 113,116 250 78,192 

     88,105 70 113,120 377 79,85 

     89,105 37 113,123 90 80,85 

     90,111 64 113,128 140 81,87 

     91,92 78 114,115 90 82,88 

     91,93 78 115,125 90 82,89 

     91,94  116,117 70 83,90 

     92,95  117,118 90 84,91 

     93,95  118,126 110 85,92 

     94,95  120,121 150 86,93 

     95,96  121,122 101 87,99 

     95,97  122,126 377 87,100 

     95,98  123,124 118 88,99 

     95,99  124,125 290 88,100 

     95,100  128,129 209 89,99 

     95,104  129,130 150 89,100 

     96,101  130,131 150 90,95 

     97,102  130,137 79 91,96 

     98,103  132,135 150 92,98 

     99,111  133,135 91 93,98 

     100,111  134,135 59 94,101 

     101,105  135,136 218 95,101 

     102,106  138,139 351 96,101 

     102,107  139,140 873 97,101 

     103,107  141,142 130 98,102 

     103,108  142,143 68 99,103 

     104,111  142,146 126 100,104 



123 

 

 

 

     105,111  142,147 120 101,106 

     106,109  142,148 227 102,107 

     107,111  144,145 198 103,108 

     108,110  145,147 132 104,108 

     109,111  145,148 121 105,110 

     110,111   150 106,112 

        100 107,113 

        38 108,114 

        70 108,115 

        355 108,292 

        284 109,119 

        122 109,120 

        75 110,119 

        160 110,120 

        140 110,162 

        520 111,116 

        99 112,117 

        182 113,118 

        80 114,119 

        514 115,120 

        96 116,122 

        50 117,123 

        272 117,124 

        226 117,257 

        194 118,126 

        164 119,127 

        96 120,127 

        107 120,150 

        108 121,128 

        167 122,129 

        98 123,130 

        82 123,145 

        482 123,146 

        72 123,147 

        50 123,148 

        130 123,149 

        230 124,130 

        50 125,130 

        240 126,130 

        190 127,130 

        190 127,157 

        240 128,130 

        74 129,130 



124 

 

 

 

        139 129,141 

        339 130,131 

        260 130,144 

        132 131,132 

        550 131,133 

        420 132,135 

        152 133,135 

        12 133,170 

        90 134,136 

        5 135,137 

        128 136,139 

        100 137,140 

        120 138,140 

        100 138,191 

        320 139,142 

        835 139,253 

        740 140,143 

        223 140,200 

        100 141,151 

        390 142,152 

        140 143,153 

        304 143,169 

        120 144,154 

        403 145,155 

        21 146,156 

        246 147,158 

        160 148,159 

        1019 149,160 

        34 150,161 

        120 151,163 

        68 152,164 

        910 153,165 

        302 154,166 

        778 155,166 

        101 156,166 

        1310 157,166 

        20 158,166 

        278 159,166 

        81 160,166 

        290 161,166 

        100 162,167 

        372 163,166 

        72 164,167 



125 

 

 

 

        28 165,168 

        90 165,176 

        250 166,170 

        144 167,171 

        303 168,173 

        220 169,174 

        58 170,174 

        224 171,174 

        211 172,175 

        99 173,177 

        44 174,178 

        120 174,287 

        70 174,288 

        421 175,180 

        231 176,181 

        214 177,181 

        196 178,181 

        280 179,181 

        398 180,181 

        72 180,252 

        280 181,182 

        356 181,183 

        193 181,184 

        140 181,185 

        130 181,186 

        300 181,187 

        456 181,188 

        7 181,189 

        170 181,196 

        252 181,197 

        210 181,295 

        308 182,190 

        308 183,193 

        121 184,194 

        52 185,195 

        426 186,195 

        104 187,195 

        1386 188,195 

        527 189,195 

        968 190,195 

        1047 191,200 

        538 192,201 

         193,198 



126 

 

 

 

         194,199 

         195,199 

         195,203 

         195,205 

         195,227 

         195,229 

         196,202 

         197,202 

         198,202 

         199,202 

         200,202 

         201,202 

         202,204 

         202,251 

         203,206 

         203,208 

         204,207 

         204,250 

         205,207 

         206,209 

         207,210 

         207,212 

         208,210 

         209,210 

         209,211 

         210,213 

         211,213 

         212,214 

         213,214 

         214,215 

         214,234 

         215,216 

         216,217 

         217,218 

         218,219 

         219,220 

         220,222 

         221,223 

         222,224 

         223,225 

         224,226 

         225,227 

         226,228 



127 

 

 

 

         227,230 

         228,231 

         229,235 

         229,236 

         230,232 

         230,271 

         230,289 

         231,233 

         232,236 

         233,237 

         234,238 

         234,256 

         235,237 

         236,239 

         237,240 

         238,240 

         238,285 

         239,240 

         239,279 

         240,241 

         240,243 

         241,242 

         242,244 

         243,245 

         243,246 

         244,245 

         244,246 

         244,255 

         245,248 

         246,248 

         247,278 

         248,249 

         249,254 

         249,284 

         250,256 

         251,256 

         252,258 

         253,260 

         254,261 

         255,261 

         255,262 

         256,263 

         257,264 



128 

 

 

 

         258,265 

         259,266 

         260,267 

         261,268 

         261,269 

         262,269 

         263,270 

         264,271 

         265,272 

         266,271 

         267,273 

         268,274 

         269,274 

         270,274 

         271,274 

         272,275 

         273,276 

         274,277 

         274,278 

         274,282 

         275,280 

         276,281 

         277,283 

         278,283 

         279,286 

         280,290 

         281,291 

         282,293 

         283,293 

         284,294 

         285,294 

         286,294 

         287,293 

         288,293 

         289,294 

         290,293 

         291,293 

         292,293 

 

A65 (Lee et al., 2001), E stands for either side, R and L stand for right and left side respectively. 

Task Side 

Task 

time Immediate successors 

1 E 49 3 



129 

 

 

 

2 E 49 3 

3 E 71 4,23 

4 E 26 5,6,7,9,11,12,25,26,27,41,45,49 

5 E 42 14 

6 E 30 14 

7 R 167 8 

8 R 91 14 

9 L 52 10 

10 L 153 14 

11 E 68 14 

12 E 52 14 

13 E 135 14 

14 E 54 15,18,20,22 

15 E 57 16 

16 L 151 17 

17 L 39 31 

18 R 194 19 

19 R 35 21 

20 E 119 21 

21 E 34 31 

22 E 38 31 

23 E 104 24 

24 E 84 31 

25 L 113 31 

26 R 72 31 

27 R 62 28 

28 R 272 50 

29 L 89 50 

30 L 49 50 

31 E 11 32,36,51,52,53,54,55,56,58,59,60,61,62 

32 E 45 33 

33 E 54 34 

34 E 106 35 

35 R 132 50 

36 E 52 37 

37 E 157 38 

38 E 109 39,40 

39 L 32 50 

40 R 32 50 

41 E 52 42 

42 E 193 43 

43 E 34 62 

44 R 34 46 

45 L 97 46 

46 E 37 47 



130 

 

 

 

47 L 25 48 

48 L 89 50 

49 E 27 50 

50 E 50 66 

51 R 46 65 

52 E 46 65 

53 L 55 65 

54 E 118 65 

55 R 47 65 

56 E 164 57 

57 E 113 65 

58 L 69 65 

59 R 30 65 

60 E 25 65 

61 R 106 65 

62 E 23 63 

63 L 118 64 

64 L 155 65 

65 E 65 - 

 

 New optimal solution. For each position, the first row indicates the mated station to which the 

task is assigned, 1 is the left station and 2 is the right station; the second row are the task sequences. 

Position 1 

1 2 1 2 1 1 2 1 1 2 2 1 

1 2 3 13 4 9 11 12 5 6 44 49 

Position 2 

1 2 1 1 2 2       

23 7 41 10 8 27       

Position 3 

1 2 1 2 1 2 1      

14 24 20 18 25 19 22      

Position 4 

1 2 1 2 2 1 1 1 2    

15 26 16 21 42 17 31 36 60    

Position 5 

1 2 1 1 2 1 2 1 2 2   

32 37 43 45 33 46 62 38 51 52   

Position 6 

1 2 1 2 1 1 2      

34 56 63 35 47 58 59      

Position 7 

2 1 1 1 2 1       

28 48 64 30 55 39       



131 

 

 

 

Position 8 

1 2 1 2 1 2 2 1     

57 54 29 61 53 40 50 65     

 

 

 

 



132 

 

 

 

Appendix B: The basic flow chart of ENCORE 

 

 



133 

 

 

 

Appendix C: Computational tests for backward induction algorithm 

Matlab codes for computational test in section 3.4.1&3.4.2 

Tables 5–10 are generated by SALOME and backward induction algorithm.  

The steps of execution are as follows. 

1) Open the test script 

2) Adjust the parameters (learning rate, data set, batch size) 

3) Run the script 

Sample test script (Backward induction algorithm (weak) ) 

clear all 

tic 

learning=0.95; 

alpha=log(learning)/log(2); 

c=168; 

n=30; 

load Heskiaoff 

[OS,Sq,m,Tsq,avg_dev,omitted_B]= Algo1_weak(c,P,t0,n,learning); 

elapsed_time=toc; 

 

Sample test script (Backward induction algorithm (strong) ) 

clear all 

tic 

learning=0.95; 

alpha=log(learning)/log(2); 

c=168; 

n=30; 

load Heskiaoff 

[OS,Sq,m,Tsq,avg_dev,omitted_B]= Algo1_strong(c,P,t0,n,learning); 

elapsed_time=toc; 

 

Sample test script (SALOME) 

clear all 

tic; 

learning=0.9; 

alpha=log(learning)/log(2); 

c=168; 

n=10; 

total_dev=[]; 

omitted_B=0; 

Tsq=0; 

load Heskiaoff 



134 

 

 

 

for i=1:n-1 

   t(:,i)=t0.*i^alpha; 

end 

 t(:,n)=t0.*n^alpha; 

answer=[]; 

for i=1:n 

    [OS,Sq,m,UM]=mainSALOME(c,P,t(:,i)); 

    Tsq=Tsq+size(Sq,1); 

    total_dev=[total_dev;(UM-min(UM))/(min(UM)-1)*100]; 

    answer=[answer,m]; 

end 

av_dev=mean(total_dev); 

  

elapsed_time=toc; 

 

 

The main function for SALOME: 

function [OS,Sq,m,UM]=mainSALOME(c,P,t) 

%Jackson dominance rule 

%find all followers&direct followers 

D_Mat=Jackson_Dominance(P,t); 

  

[S,Sq,UM,LM,cs,Idle]=FinFea(c,P,t); 

b=ones(length(t),1); 

d=Sq; 

Lt=length(d); 

OS=S; 

GLM=ceil(sum(t)/c)+1; 

if UM==GLM 

    m=UM; 

else 

    %whether or not the SALOME is finished 

    Fin=0; 

    while 1 

        

[S,b,cs,d,Lt,Idle,Fin]=Backtrack(S,b,cs,d,Lt,t,c,LM,Idle,Fin); 

        if Fin==1 

            break 

        end 

        %set the uniqueness equal to zero 

        Uni=0; 

        while 1 

            %store states for later retrieval 

            b1=b; 

            S1=S; 



135 

 

 

 

            d1=d; 

            d2=[]; 

            

[S,Sq,b,d,Lt,LM,cs,Idle,Uni,d2]=StationLoadsFinder(S,Sq,b,d,cs,L

M,UM,Lt,Idle,Uni,c,P,t,d2,D_Mat); 

            if Uni==0 

                b=b1; 

                S=S1; 

                d=d1; 

            end 

            if Uni==1 

                break 

            end 

            

[S,b,cs,d,Lt,LM,Idle,Fin]=Backtrack1(S,b,cs,d,LM,t,c,Idle,Fin); 

            if Fin==1 

                break 

            end 

        end 

        if Fin==1 

            break 

        end 

        

[OS,S,Sq,b,d,cs,Lt,LM,UM,Idle]=NewSeqGen(OS,S,Sq,b,d,cs,LM,UM,Lt

,Idle,c,P,t,D_Mat); 

        if UM==GLM 

            break 

        end 

    end 

    m=UM; 

     

end 

end 

 

The main function for backward induction algorithm (weak): 

function [OS,Sq,m,Tsq,avg_dev,omitted_B]= 

Algo1_weak(c,P,t0,n,learning) 

%calculate the task time of all repetitions. 

alpha=log(learning)/log(2); 

omitted_B=0; 

for i=1:n 

    t(:,i)=t0.*i^alpha; 

end 

%Initialize the Optimal solution set 

OS=zeros(length(t0),length(t0),n); 



136 

 

 

 

m=zeros(1,n); 

%find the first optimal solution 

total_dev=[]; 

[OS(:,:,n),Sq,m(n),UM]=mainSALOME(c,P,t(:,n)); 

total_dev=[total_dev;(UM-min(UM))/(min(UM)-1)*100]; 

Tsq=size(Sq,1); 

%start the explosion theory 

i=n; 

while 1 

     

    D=OS(:,:,i)*t0; 

    e=max(D); 

    j=floor((c/e)^(1/alpha)); 

    if i-j>=2 

        %in this case, the deviation to optimality is zero 

        total_dev=[total_dev;zeros(i-j-1,1)]; 

        %total BnB skipped 

        omitted_B=omitted_B+i-j-1; 

        m(j+1:i-1)=m(i); 

        for k=j+1:i-1 

            OS(:,:,k)=OS(:,:,i); 

        end 

    end 

    if j==0; 

        break 

    end 

    i=j; 

    [OS(:,:,i),Sq,m(i),UM]=mainSALOME(c,P,t(:,i)); 

    total_dev=[total_dev;(UM-min(UM))/(min(UM)-1)*100]; 

    Tsq=Tsq+size(Sq,1); 

    if i==1 

        break 

    end 

     

end 

avg_dev=mean(total_dev); 

  

end 

 

The main function for backward induction algorithm (strong): 

function [OS,Sq,m,Tsq,omitted_B]= Algo1_strong(c,P,t,n) 

  

%Initialize the Optimal solution set 

OS=zeros(size(t,1),size(t,1),n); 

m=zeros(1,n); 

%find the first optimal solution 



137 

 

 

 

[OS(:,:,n),Sq,m(n),UM]=mainSALOME(c,P,t(:,n)); 

Tsq=size(Sq,1); 

omitted_B=0; 

%start the explosion theroy 

for i=n-1:-1:1 

    %initialize the feasibiliy=1 

    fea=1; 

    OS(:,:,i)=OS(:,:,i+1); 

    m(i)=m(i+1); 

    for j=1:m(i) 

        if OS(j,:,i)*t(:,i)>c 

            fea=0; 

            break 

        end 

    end 

    if fea==1 

        OS(:,:,i)=OS(:,:,i+1); 

        m(i)=m(i+1); 

        omitted_B=omitted_B+1; 

    else 

        [OS(:,:,i),Sq,m(i),UM]=mainSALOME(c,P,t(:,i)); 

        Tsq=Tsq+size(Sq,1); 

    end 

end 

end 

         

         

         

         

         

     

 

 

 

         

The sub-functions called by the SALOME or backward induction algorithm are presented as 

follows. 

The function of finding a feasible solution 

function [S,Sq,UM,LM,cs,Idle]=FinFea(c,P,t) 

%find the lm for station 1 which is loaded by the first node 

LM(1)=ceil(sum(t)/c)+1; 

%find the available idle time 

Idle=(LM(1)-1)*c-sum(t); 

%b is the array storing all of the assigned tasks 

b=[1;zeros(length(t)-1,1)]; 



138 

 

 

 

%initialize station&current station put a dummy task(0) into a 

fake station 

S=zeros(length(t),length(t)); 

S(1,1)=1; 

cs=2; 

%initialize assignable task&sequence 

at=[]; 

Sq=[1 0]; 

%begin the loop 

while 1 

%find the assignable task 

for i=2:length(t) 

   %%three requirements:1 task has not been assigned 2 its 

predecessors 

   %%have been assigned 3 it could not exceed its cycle time 

if b(i)~=1 && b'*P(:,i)==sum(P(:,i)) && c-S(cs,:)*t-t(i)>=0 

    %i-1 is actually the task number! 

    at=[at,i]; 

end 

end 

%assign task 

%check if there is any room to assign any task 

if isempty(at) 

    %calculate the remaining idle time(definition: the remaining 

idle time  

    %of the station is calculated in absence of any assignment to 

that station) 

    Idle=Idle-(c-S(cs,:)*t); 

    if Idle>=0 

        LM(cs)=LM(cs-1); 

    else 

        LM(cs)=LM(cs-1)+1; 

        %one more station time to spare! 

        Idle=Idle+c; 

    end 

    cs=cs+1; 

    Sq=[Sq 0];    

else 

    %find max task time to assign 

[a,index]=max(t(at(1:end))); 

%retrieve the index of the task 

index=at(index); 

S(cs,index)=1; 

Sq=[Sq,index]; 

b(index)=1; 

end 



139 

 

 

 

if b==ones(length(t),1) 

    break 

end 

% reset assignable task array 

at=[]; 

  

end 

%put an artificial LM for root node, the last LM is the current UM 

LM=[LM(1),LM]; 

%find the current m which is the upper bound of the optimal 

solution 

for i=1:length(t) 

    if sum(S(i,:))==0 

    UM=i-1; 

    break 

    end 

end 

end 

 

 

 

Backtrack function 

function[S,b,cs,d,Lt,Idle,Fin]=Backtrack(S,b,cs,d,Lt,t,c,LM,Idle

,Fin) 

%station oriented backtrack 

%backtrack process follows the new sequence 

  

%find the last station whose LM is smaller than current station's 

LM 

k=find(LM==LM(cs)-1,1,'last'); 

%backtrack to k 

if isempty(k) 

    %current solution is the optimal solution 

    Fin=1; 

else 

    %empty the stations and sequences from k to current station 

    Index2=find(d==0,k-1); 

    d(Index2(end):end)=0; 

    %release the idle time of the station 

    Idle=Idle+((cs-k)*c-sum(S(k:(cs-1),:)*t)); 

    for j=k:cs 

        Index1= S(j,:)~=0; 

        b(Index1)=0; 

        S(j,:)=0; 

    end 



140 

 

 

 

    %reduce one full station time 

    Idle=Idle-c; 

    cs=k; 

    %set the last task: find the (k-1)th zero in the current 

sequence, the      last task is next to it. 

    E=find(d==0,k-1); 

    Lt=E(end)+1; 

end 

end 

 

 

Station enumeration function 

function 

[S,Sq,b,d,Lt,LM,cs,Idle,Uni,d2]=StationLoadsFinder(S,Sq,b,d,cs,L

M,UM,Lt,Idle,Uni,c,P,t,d2,D_Mat) 

at=[]; 

for i=find(b==0,1):length(t) 

    if b(i)~=1&&b'*P(:,i)==sum(P(:,i)) && c-S(cs,:)*t-t(i)>=0 

        at=[at,i]; 

    end 

end 

%downsize the assignable task by Jackson's dominance rule 

if  length(at)>=2 

    Dominated_task=[]; 

    for o=1:length(at) 

        for r=(o+1):length(at) 

            %is at(o) dominating at(r)? 

            if ismember(at(r),D_Mat(at(o),:)) 

                Dominated_task=[Dominated_task;r]; 

            elseif ismember(at(o),D_Mat(at(r),:)) 

                %is at(r) dominating at(o)? 

                Dominated_task=[Dominated_task;o]; 

            end 

        end 

    end 

at(Dominated_task)=[]; 

end 

if isempty(at) 

    OL=[]; 

    for k=1:size(Sq,1) 

        if isequal(Sq(k,1:Lt-1),d(1:Lt-1)) 

            OL=1; 

            break 

        end 

    end 



141 

 

 

 

    %if the new load is of the same local lower bound or branched 

before, 

    %give it up. 

    %TLM:temporary local lower bound 

    if Idle-(c-S(cs,:)*t)>=0 

        TLM=LM(cs); 

    else 

        TLM=LM(cs)+1; 

    end 

    if ~isempty(OL)||TLM>LM(cs+1)|| TLM>=UM 

        %give it up, empty the current task in the current station 

and sequence(revert to the last state ) 

        Lt=Lt-1; 

        b(d(Lt))=0; 

        S(cs,d(Lt))=0; 

        d(Lt)=0; 

    else 

        %calculate the local lower bound 

        LM(cs+1)=TLM; 

        Uni=1; 

        Idle=Idle-(c-S(cs,:)*t); 

        if LM(cs+1)>LM(cs) 

            Idle=Idle+c; 

        end 

        cs=cs+1; 

        E=find(d==0,cs-1); 

        Lt=E(end)+1; 

    end 

else 

    for j=1:length(at) 

        b(at(j))=1; 

        d(Lt)=at(j); 

        S(cs,at(j))=1; 

        Lt=Lt+1;  

[S,Sq,b,d,Lt,LM,cs,Idle,Uni,d2]=StationLoadsFinder(S,Sq,b,d,cs,L

M,UM,Lt,Idle,Uni,c,P,t,d2,D_Mat); 

        if Uni==1 

            %already find an unique solution, stop permuting 

            break 

        end 

        % if j is the last choice, but it is still not working, 

erase the previous selection when previous selection exists. 

        if j==length(at)&&d(Lt-1)~=0 

            Lt=Lt-1; 

            b(d(Lt))=0; 

            S(cs,d(Lt))=0; 



142 

 

 

 

            d(Lt)=0; 

        end 

    end     

end 

end 

         

 Superior solution generation function 

function 

[OS,S,Sq,b,d,cs,Lt,LM,UM,Idle]=NewSeqGen(OS,S,Sq,b,d,cs,LM,UM,Lt

,Idle,c,P,t,D_Mat) 

%station oriented BB 

at=[]; 

while 1 

%find the assignable task 

for i=2:length(t) 

   %%three requirements:1 task has not been assigned 2 its 

predecessors 

   %%have been assigned 3 it could not exceed its cycle time 

if b(i)~=1 && b'*P(:,i)==sum(P(:,i)) && c-S(cs,:)*t-t(i)>=0 

    %i-1 is actually the task number! 

    at=[at,i]; 

end 

if  length(at)>=2 

    Dominated_task=[]; 

    for o=1:length(at) 

        for r=(o+1):length(at) 

            %is at(o) dominating at(r)? 

            if ismember(at(r),D_Mat(at(o),:)) 

                Dominated_task=[Dominated_task;r]; 

            elseif ismember(at(o),D_Mat(at(r),:)) 

                %is at(r) dominating at(o)? 

                Dominated_task=[Dominated_task;o]; 

            end 

        end 

    end 

at(Dominated_task)=[]; 

end 

end 

%assign task 

%check if there is any room to assign any task 

if isempty(at) 

    %calculate the remaining idle time(definition: the remaining 

idle time  

    %of the station is calculated in absence of any assignment to 

that station) 

    Idle=Idle-(c-S(cs,:)*t); 



143 

 

 

 

    if Idle>=0 

        LM(cs+1)=LM(cs); 

    else 

        LM(cs+1:end)=LM(cs)+1; 

        %one more station time to spare! 

        Idle=Idle+c; 

    end 

    %Compare the local LM and the global UM 

    if LM(cs+1)>=UM 

        %done! stop generating the sequence, backtrack 

        Sq=[Sq;d]; 

        size(Sq,1) 

        cs=cs+1; 

        break 

    else 

    cs=cs+1; 

    d(Lt)=0; 

    Lt=Lt+1; 

    end 

else 

 %find max task time to assign 

[a,index]=max(t(at(1:end))); 

%retrieve the index of the task 

index=at(index); 

S(cs,index)=1; 

d(Lt)=index; 

b(index)=1; 

Lt=Lt+1; 

end 

if b==ones(length(t),1) 

     Sq=[Sq;d]; 

     Idle=Idle-(c-S(cs,:)*t); 

     %New UM 

     UM=LM(cs); 

     LM(cs+1)=LM(cs); 

     cs=cs+1; 

     OS=S; 

    break 

end 

% reset assignable task array 

at=[]; 

  

end 

end 

  



144 

 

 

 

Appendix D: Case study 

Matlab codes for the case study in section 3.5 

Table 11 is generated by the following script. 

t0=[6;6;5;5;4;5;4;2;9;2]; 

learning=0.85; 

c=10; 

n=30; 

t=zeros(10,n); 

P =[ 

  

     0     1     1     1     1     1     1     1     1     1     1 

     0     0     1     0     0     1     0     0     0     0     0 

     0     0     0     0     0     0     0     1     0     0     0 

     0     0     0     0     1     0     0     0     0     0     0 

     0     0     0     0     0     1     0     0     0     0     0 

     0     0     0     0     0     0     1     0     0     0     0 

     0     0     0     0     0     0     0     0     1     0     0 

     0     0     0     0     0     0     0     0     1     0     0 

     0     0     0     0     0     0     0     0     0     1     0 

     0     0     0     0     0     0     0     0     0     0     1 

     0     0     0     0     0     0     0     0     0     0     

0]; 

 alpha=log(learning)/log(2); 

for i=1:n 

    t(:,i)=t0.*i^alpha; 

end 

%without rebalancing %({3,4},{1,5},{2,7}, {6,8},{9} {10}) .  

TI_wo=0; 

for i=1:30 

    T1(1)=c-(t(3,i)+t(4,i)); 

    T1(2)=c-(t(1,i)+t(5,i)); 

    T1(3)=c-(t(2,i)+t(7,i)); 

    T1(4)=c-(t(6,i)+t(8,i)); 

    T1(5)=c-t(9,i); 

    T1(6)=c-t(10,i); 

    TI_wo=TI_wo+sum(T1); 

end 

%with rebalacning unit 1 %({3,4},{1,5},{2,7}, {6,8},{9} {10}) 

T1=[]; 

TI_w=0; 

T1(1)=c-(t(3,1)+t(4,1)); 

T1(2)=c-(t(1,1)+t(5,1)); 

T1(3)=c-(t(2,1)+t(7,1)); 

T1(4)=c-(t(6,1)+t(8,1)); 

T1(5)=c-t(9,1); 



145 

 

 

 

T1(6)=c-t(10,1); 

TI_w=TI_w+sum(T1); 

T1=[]; 

%unit 2,3, ({1,3},{2,4},{5,6},{7,8},{9,10} 

for i=2:3 

    T1(1)=c-(t(1,i)+t(3,i)); 

    T1(2)=c-(t(2,i)+t(4,i)); 

    T1(3)=c-(t(5,i)+t(6,i)); 

    T1(4)=c-(t(7,i)+t(8,i)); 

    T1(5)=c-t(9,i)-t(10,i); 

    TI_w=TI_w+sum(T1); 

end 

T1=[]; 

%unit 4-9, ({1,3},{2,4},{5,6,7},{8,9,10}).  

for i=4:9 

    T1(1)=c-(t(1,i)+t(3,i)); 

    T1(2)=c-(t(2,i)+t(4,i)); 

    T1(3)=c-(t(5,i)+t(6,i)+t(7,i)); 

    T1(4)=c-(t(8,i)+t(9,i)+t(10,i)); 

    TI_w=TI_w+sum(T1); 

end 

T1=[]; 

%unit 10-30, ({1,3,4},{2,5,6},{7,8,9,10}).  

for i=10:30 

    T1(1)=c-(t(1,i)+t(3,i)+t(4,i)); 

    T1(2)=c-(t(2,i)+t(5,i)+t(6,i)); 

    T1(3)=c-(t(7,i)+t(8,i)+t(9,i)+t(10,i)); 

    TI_w=TI_w+sum(T1); 

end 

TS_rebal=1*6+2*5+6*4+21*3 

  



146 

 

 

 

Appendix E: Computational tests for ENCORE 

Matlab codes for computational test in section 4.2.5 

Tables 12–14 are generated by SALOME2 and ENCORE.  

The steps of execution are as follows. 

1) Open the test script 

2) Adjust the parameters (data set, batch size) 

3) Run the script 

Sample test function (ENCORE) 

clear all; 

m=8; 

load Arcus83 

%generate random task time matrix 

n=30; 

t1=zeros(length(t),n); 

Q=t; 

for i=1:n 

    for j=2:length(t) 

    t1(j,i)=ceil(Q(j)-random('uni',0.8,1)*t(j)*0.02); 

    end 

    Q=t1(:,i); 

end 

tic 

[OptiC1,Sq1,OS1]=MainSALOME2(m,P,t); 

Tsq3=0; 

Tsq=0; 

TB=0; 

aa=1; 

for i=1:n 

  

[OptiC,Sq1,OS1,B]=Algorithm3(Sq1,OS1,m,P,t1(:,i)); 

Tsq3=Tsq3+size(Sq1,1); 

TB=TB+B; 

aa=aa+1 

end 

a=toc; 

bb=0; 

Tsq=0; 

%optimum is not found in current solution 

UNF=0; 

 for i=1:n 

  

[OptiC,Sq,OS]=MainSALOME2(m,P,t1(:,i)); 



147 

 

 

 

  

if size(Sq,1)>=1000 

    UNF=UNF+1; 

end 

  

Tsq=Tsq+size(Sq,1); 

bb=bb+1 

end 

b=toc; 

c=b-a; 

 

Main function for SALOME2 

function [OptiC,Sq,OS]=MainSALOME2(D_Mat,m,P,t,ct) 

%ct computational time requirement 

[S,Sq,UB,LM,TOI,TOIL]=FinFea(m,P,t); 

if UB==max(ceil(sum(t)/m),max(t)) 

    OptiC=UB; 

    OS=S; 

else 

    %backtrack 

    OS=S; 

    d=Sq; 

    Lt=length(d); 

    b=ones(length(t),1); 

    cs=m+1; 

    Fin=0; 

    %start recording computational time 

    tic; 

    while 1 

        %%enter the first backtrack 

        

[S,d,cs,Lt,b,TOI,TOIL,Fin]=Backtrack(S,b,cs,d,Lt,t,m,LM,TOI,TOIL

,Fin); 

         

        if Fin==1 

            break 

        end 

        %set the uniqueness equal to zero 

        Uni=0; 

        while 1 

            

[S,b,d,Lt,LM,cs,TOI,TOIL,Uni]=StationLoadsFinder(S,Sq,b,d,cs,LM,

UB,Lt,TOI,TOIL,Uni,m,P,t,D_Mat); 

            if Uni==1 

                break 



148 

 

 

 

            end 

            while 1 

                %enter the second backtrack(one station per time) 

                

[S,d,cs,Lt,b,TOI,TOIL,Fin]=Backtrack1(S,b,cs,d,Lt,t,m,LM,TOI,TOI

L,Fin); 

                if Fin==1 

                    break 

                end 

                

[S,b,d,Lt,LM,cs,TOI,TOIL,Uni]=StationLoadsFinder(S,Sq,b,d,cs,LM,

UB,Lt,TOI,TOIL,Uni,m,P,t,D_Mat); 

                if Uni==1 

                    break 

                end 

            end 

            if Uni==1 

                break 

            end 

            if Fin==1 

                break 

            end 

        end 

        if Fin==1 

            break 

        end 

        

[OS,S,Sq,b,d,cs,Lt,LM,UB,TOI,TOIL,Fin]=NewSeqGen(OS,S,Sq,b,d,cs,

LM,UB,Lt,TOI,TOIL,m,P,t,D_Mat); 

        TOC=toc; 

        %exit the problem when toc>ct 

        if TOC>ct 

            OptiC=UB; 

        break 

        end 

    end 

     

end 

OptiC=UB; 

end 

  

 

The function of finding a feasible solution 

function [S,Sq,UB,LM,TOI,TOIL]=FinFea(m,P,t) 

%Starting from a lower bound 

LB=ceil(sum(t)/m); 



149 

 

 

 

%find the lm for station 1 which is loaded by the first node 

LM(1)=ceil(sum(t)/m); 

TOI=m*LB-sum(t); 

TOIL(1)=TOI; 

%b is the array storing all of the assigned tasks 

b=[1;zeros(length(t)-1,1)]; 

at=[]; 

at1=[]; 

%current station 

cs=2; 

%initialize station&current station put a dummy task(0) into a 

fake station 

S=zeros(length(t),length(t)); 

S(1,1)=1; 

Sq=[1 0]; 

while 1 

     

    for i=2:length(t) 

        %%three requirements:1 task has not been assigned 2 its 

predecessors 

        %%have been assigned 3 it could not exceed its cycle time 

        if b(i)~=1 && b'*P(:,i)==sum(P(:,i)) && LB-S(cs,:)*t-

t(i)>=0 

            %i-1 is actually the task number! 

            at=[at,i]; 

        end 

    end 

    if isempty(at) 

        %calculate the total idle time left 

        if TOIL(cs-1)-(LB-S(cs,:)*t)<0 

            %find the lowest available task to assign 

            for i=2:length(t) 

                %%two requirements:1 task has not been assigned 2 

its     

                predecessors %%have been assigned  

                if b(i)~=1 && b'*P(:,i)==sum(P(:,i)) 

                    %i-1 is actually the task number! 

                    at1=[at1,i]; 

                end 

            end 

            [a,index1]=min(t(at1(1:end))); 

            %retrieve the index of the task 

            index1=at1(index1); 

            S(cs,index1)=1; 

            Sq=[Sq,index1]; 

            b(index1)=1; 



150 

 

 

 

            %increase the local lower bound 

            LM(cs)=S(cs,:)*t; 

            LB=LM(cs); 

            %update the TOI&TOIL 

            TOI=m*LM(cs)-sum(t); 

            tempTOIL=TOI; 

            for j=2:cs 

                tempTOIL=tempTOIL-(LB-S(j,:)*t); 

            end 

            TOIL(cs)=tempTOIL; 

            at1=[]; 

        else 

            TOIL(cs)=TOIL(cs-1)-(LB-S(cs,:)*t); 

            LM(cs)=LM(cs-1); 

        end 

        cs=cs+1; 

        Sq=[Sq 0];  

    else 

        %find max task time to assign 

        [a,index]=max(t(at(1:end))); 

        %retrieve the index of the task 

        index=at(index); 

        S(cs,index)=1; 

        Sq=[Sq,index]; 

        b(index)=1; 

    end 

    if b==ones(length(t),1) 

        %at times, there may be one or more station vacant when 

the 

        %assignment is done! 

        if cs==m+1 

        TOIL(cs)=TOIL(cs-1)-(LB-S(cs,:)*t); 

        LM(cs)=LM(cs-1); 

           break 

        else 

           %take out the last tasks from the last station and fill 

them the into to the vacant station. 

           for k=1:(m+1-cs) 

               cc(k)=Sq(end-k+1); 

               Sq(end-k+1)=0; 

           end 

           S(cs,cc(1:end))=0; 

           cc=fliplr(cc); 

           l=length(cc); 

           for k=1:length(cc) 

               Sq(end-l+2)=cc(k); 



151 

 

 

 

               Sq(end-l+3)=0; 

               l=l-1; 

               TOIL(cs)=TOIL(cs-1)-(LB-S(cs,:)*t); 

               LM(cs)=LM(cs-1); 

               cs=cs+1; 

               S(cs,cc(k))=1; 

               TOIL(cs)=TOIL(cs-1)-(LB-S(cs,:)*t); 

               LM(cs)=LM(cs-1); 

           end 

           Sq(length(t)+m+1:end)=[]; 

           break 

        end 

    end 

    % reset assignable task array 

    at=[]; 

end 

  

UB=LM(end); 

  

end 

 

Backtrack function (SALOME2) 

function 

[S,d,cs,Lt,b,TOI,TOIL,Fin]=Backtrack(S,b,cs,d,Lt,t,m,LM,TOI,TOIL

,Fin) 

%station oriented backtrack 

%backtrack process follows the new sequence 

  

aa=sum(t); 

%find the last station whose LM is Equal to current station's 

LM,empty it 

%out 

k=find(LM==LM(cs),1); 

if k==1 || cs==1 

    %current solution is the optimal solution 

    Fin=1; 

else 

    %empty the stations and sequences from k to current station 

    Index2=find(d==0,k-1); 

    d(Index2(end):end)=0; 

    %recalculate the TOI and TOIL 

    TOI=LM(k-1)*m-aa; 

    TOIL(1)=TOI; 

    for j=2:(k-1) 

        TOIL(j)=TOIL(j-1)-(LM(k-1)-S(j,:)*t); 



152 

 

 

 

    end 

    for j=k:cs 

        Index1= S(j,:)~=0; 

        b(Index1)=0; 

        S(j,:)=0; 

    end 

    cs=k; 

    %set the last task:find the (k-1)th zero in the current 

sequence, the last task 

    %is next to it. 

    E=find(d==0,k-1); 

    Lt=E(end)+1; 

end 

end 

  

Station enumeration function (SALOME2) 

function 

[S,b,d,Lt,LM,cs,TOI,TOIL,Uni]=StationLoadsFinder(S,Sq,b,d,cs,LM,

UB,Lt,TOI,TOIL,Uni,m,P,t,D_Mat) 

%%ONLY ONE chance of keep on going to generate new sequence 1)the 

%%lower bound is not increasing at next station 

at=[]; 

at1=[]; 

  

if d(Lt-1)==0 

    for i=find(b==0,1):length(t) 

        if b(i)~=1&&b'*P(:,i)==sum(P(:,i)) && UB-S(cs,:)*t-t(i)>0 

            at=[at,i]; 

        end 

    end 

else 

    for i=d(Lt-1)+1:length(t) 

        if b(i)~=1&&b'*P(:,i)==sum(P(:,i)) && UB-S(cs,:)*t-t(i)>0 

            at=[at,i]; 

        end 

    end 

end 

%%downsize the assignable task by Jackson's dominance rule 

if  length(at)>=2 

    Dominated_task=[]; 

    for o=1:length(at) 

        for r=(o+1):length(at) 

            %is at(o) dominating at(r)? 

            if ismember(at(r),D_Mat(at(o),:)) 

                Dominated_task=[Dominated_task;r]; 

            elseif ismember(at(o),D_Mat(at(r),:)) 



153 

 

 

 

                %is at(r) dominating at(o)? 

                Dominated_task=[Dominated_task;o]; 

            end 

        end 

    end 

at(Dominated_task)=[]; 

end 

if isempty(at) 

    %check the overlapping first 1) if overlap, forfeit the 

solution 2)if 

    %not, check the feasibility by TOIL 

    %if the station is empty now, consider increase 

        OL=[]; 

        for k=1:size(Sq,1) 

            if isequal(Sq(k,1:Lt),d(1:Lt)) 

                OL=1; 

                break 

            end 

        end 

        %if the new load is of the same local lower bound or 

branched before, 

        %give it up. 

        if isempty(OL)  

            AA=max(LM(cs-1),S(cs,:)*t); 

            %check whether the TOIL is less than zero 

            tempTOIL=AA*m-sum(t); 

            for j=2:cs 

                tempTOIL=tempTOIL-(AA-S(j,:)*t); 

                if tempTOIL<0 

                    break 

                end 

            end 

            if tempTOIL>=0 

                %the solution is good 

                LM(cs)=AA; 

                Uni=1; 

                TOI=m*LM(cs)-sum(t); 

                tempTOIL=TOI; 

                for j=2:cs 

                    tempTOIL=tempTOIL-(LM(cs)-S(j,:)*t); 

                end 

                TOIL(cs)=tempTOIL; 

                cs=cs+1; 

                E=find(d==0,cs-1); 

                Lt=E(end)+1; 

            else 



154 

 

 

 

                %forfeit the solution 

                Lt=Lt-1; 

                b(d(Lt))=0; 

                S(cs,d(Lt))=0; 

                d(Lt)=0; 

            end 

        else 

            %forfeit the solution 

            Lt=Lt-1; 

            b(d(Lt))=0; 

            S(cs,d(Lt))=0; 

            d(Lt)=0; 

        end 

else 

    for j=1:length(at) 

        b(at(j))=1; 

        d(Lt)=at(j); 

        S(cs,at(j))=1; 

        Lt=Lt+1; 

        

[S,b,d,Lt,LM,cs,TOI,TOIL,Uni]=StationLoadsFinder(S,Sq,b,d,cs,LM,

UB,Lt,TOI,TOIL,Uni,m,P,t,D_Mat); 

        if Uni==1 

            %already find an unique solution, stop permuting 

            break 

        end 

        % if j is the last and only choice , but it is still not 

working, erase the previous selection(j) when previous selection 

exists(has not been erased in the ifempty(at) part). 

        if j==length(at)&&d(Lt-1)~=0 

            Lt=Lt-1; 

            b(d(Lt))=0; 

            S(cs,d(Lt))=0; 

            d(Lt)=0; 

        end 

    end 

     

end 

end 

 

Superior solution generation function (SALOME2) 

function 

[OS,S,Sq,b,d,cs,Lt,LM,UB,TOI,TOIL,Fin]=NewSeqGen(OS,S,Sq,b,d,cs,

LM,UB,Lt,TOI,TOIL,m,P,t,D_Mat) 

%station oriented BB 



155 

 

 

 

at=[]; 

at1=[]; 

Fin=0; 

while 1 

     

%if there is no task left, but it has not reached the last station 

%relocate last few tasks to last few stations and recalculate the 

UB 

if sum(b)==length(t)&&cs<=m 

    %the station is full, but cs did not increase by i, which it 

should 

    cs=cs+1; 

    k=m+2-cs; 

    %withdraw the tasks 

    v=find(d~=0,1,'last'); 

    aa=d(v-k+1:v); 

    %set the S(v) to zero 

    for o=1:length(aa) 

    S(cs-1,aa(o))=0; 

    S(cs+o-1,aa(o))=1; 

    end 

    %set the d(v)to zero 

    d(v-k+1:end)=0; 

    j=length(d); 

    for l=1:k 

        d(j)=aa(k-l+1); 

        j=j-2; 

    end 

    [LL,I]=max(S*t); 

    LM(I+1:end)=LL; 

    UB=LL; 

    OS=S; 

    Sq=[Sq;d]; 

    if UB==max(ceil(sum(t)/m),max(t)) 

                OptiC=UB; 

                Fin=1; 

    end 

    break 

end     

%check whether it is the LAST STATION 

  

if cs==(m+1) 

    %last station no need to assign 

    a1=find(b==0,length(t)); 

    d(Lt:end)=a1; 

    for i=1:length(a1) 



156 

 

 

 

    S(cs,a1(i))=1; 

    end 

    OS=S; 

    Sq=[Sq;d]; 

    LM(cs)=LM(cs-1); 

    b=ones(1,length(t))'; 

    UB=LM(cs) 

    if UB==max(ceil(sum(t)/m),max(t)) 

                OptiC=UB; 

                Fin=1; 

    end 

    break 

end 

    %find the assignable task 

    for i=find(b==0,1):length(t) 

        %%three requirements:1 task has not been assigned 2 its 

predecessors 

        %%have been assigned 3 it could not exceed its cycle time 

        if b(i)~=1 && b'*P(:,i)==sum(P(:,i)) && UB-S(cs,:)*t-

t(i)>0 

            %i-1 is actually the task number! 

            %choose the first number! 

            at=i; 

            break 

        end 

    end 

    if isempty(at) 

            %locate the bottleneck station 

            AA=max(S(cs,:)*t,LM(cs-1)); 

            %calculate the total idle time left 

            if TOIL(cs-1)-(AA-S(cs,:)*t)<0&&AA==LM(cs-1) 

                %solution is counterfeited 

                Sq=[Sq;d]; 

                size(Sq,1); 

                LM 

                %backtrack 

                break 

            else 

                Lt=Lt+1; 

                LM(cs)=AA; 

                %update the TOI&TOIL 

                TOI=m*LM(cs)-sum(t); 

                tempTOIL=TOI; 

                for j=2:cs 

                    tempTOIL=tempTOIL-(LM(cs)-S(j,:)*t); 

                end 



157 

 

 

 

                TOIL(cs)=tempTOIL; 

                at1=[]; 

                cs=cs+1; 

                d(Lt)=0; 

            end 

    else 

        S(cs,at)=1; 

        d(Lt)=at; 

        Lt=Lt+1; 

        b(at)=1; 

    end 

    at=[]; 

end 

end 

 

Main function for ENCORE  

function [OptiC,Sq,OS,B]=Algorithm3(Sq1,OS1,m,P,t1) 

D_Mat=Jackson_Dominance(P,t1); 

%update the critical station 

T=OS1*t1; 

a=max(T); 

%set the optimal solution to the critical station 

OptiC=a; 

%retrieve the optimal sequence 

Tot=(1+size(t1,1))*size(t1,1)/2; 

SS=sum(Sq1,2); 

index=find(SS==Tot,1,'last'); 

OSq=Sq1(index,:); 

B=0; 

if OptiC==max(ceil(sum(t1)/m),max(t1)) 

    OptiC=max(ceil(sum(t1)/m),max(t1)); 

    Sq=Sq1; 

    OS=OS1; 

    B=1; 

else 

    % update TOI and TOIL 

    UB=OptiC; 

    S=OS1; 

    OS=OS1; 

    Sq=OSq; 

    d=Sq; 

    Lt=length(d); 

    b=ones(length(t1),1); 

    Fin=0; 

    TOI=m*UB-sum(t1); 

    TOIL(1)=TOI; 



158 

 

 

 

    cs=m+1; 

    for i=2:m+1 

        TOIL(i)=TOIL(i-1)-(UB-S(i,:)*t1); 

    end 

    %backtrack 

    while 1 

        

[S,d,cs,Lt,b,TOI,TOIL,Fin]=Backtrack3(S,b,cs,d,Lt,t1,TOI,TOIL,UB

,Fin); 

        if Fin==1 

            break 

        end 

        Uni=0; 

        while 1 

            

[S,b,d,Lt,cs,TOI,TOIL,Uni,tempUB]=StationLoadsFinder3(S,Sq,b,d,c

s,UB,Lt,TOI,TOIL,Uni,m,P,t1,D_Mat); 

            if Uni==1 

                break 

            end 

            while 1 

                %enter the second backtrack(one station per time) 

                

[S,d,cs,Lt,b,TOI,TOIL,Fin]=Backtrack1_3(S,b,cs,d,Lt,t1,m,TOI,TOI

L,UB,Fin); 

                if Fin==1 

                    break 

                end 

                

[S,b,d,Lt,cs,TOI,TOIL,Uni,tempUB]=StationLoadsFinder3(S,Sq,b,d,c

s,UB,Lt,TOI,TOIL,Uni,m,P,t1,D_Mat); 

                if Uni==1 

                    break 

                end 

            end 

            if Uni==1 

                break 

            end 

            if Fin==1 

                break 

            end 

        end 

        if Fin==1 

            break 

        end 



159 

 

 

 

        

[OS,S,Sq,b,d,cs,Lt,UB,TOI,TOIL,Fin]=NewSeqGen3(OS,S,Sq,b,d,cs,UB

,tempUB,Lt,TOI,TOIL,m,P,t1,D_Mat); 

    end 

    OptiC=UB; 

end 

end 

  

Backtrack function (ENCORE) 

function 

[S,d,cs,Lt,b,TOI,TOIL,Fin]=Backtrack3(S,b,cs,d,Lt,t1,TOI,TOIL,UB

,Fin) 

%station oriented backtrack 

%backtrack process follows the new sequence 

Fin=0; 

aa=sum(t1); 

%find the first critical station 

bb=max(S*t1); 

k=find(S*t1==bb,1); 

%empty the stations and sequences from k to current station 

Index2=find(d==0,k-1); 

d(Index2(end):end)=0; 

for j=k:cs 

    Index1= S(j,:)~=0; 

    b(Index1)=0; 

    S(j,:)=0; 

end 

cs=k; 

%set the last task:find the (k-1)th zero in the current sequence, 

the last task 

%is next to it. 

E=find(d==0,k-1); 

Lt=E(end)+1; 

end 

  

Station enumeration (ENCORE)  

function 

[S,b,d,Lt,cs,TOI,TOIL,Uni,tempUB]=StationLoadsFinder3(S,Sq,b,d,c

s,UB,Lt,TOI,TOIL,Uni,m,P,t1,D_Mat) 

%%the improving cycle time can guarantee uniqueness in the first 

backtrack, we do not have to check 

%%the uniqueness by comparing with previous branches. 

  

%%ONLY ONE chance of keep on going to generate new sequence 1)the 

%%new station time is less than the current upper bound 



160 

 

 

 

at=[]; 

tempUB=UB; 

if d(Lt-1)==0 

    for i=find(b==0,1):length(t1) 

        %new cycle time has to be less than the critical station 

        if b(i)~=1&&b'*P(:,i)==sum(P(:,i)) && S(cs,:)*t1+t1(i)<UB 

            at=[at,i]; 

        end 

    end 

else 

    for i=d(Lt-1)+1:length(t1) 

         if b(i)~=1&&b'*P(:,i)==sum(P(:,i)) && 

S(cs,:)*t1+t1(i)<UB 

            at=[at,i]; 

        end 

    end 

end 

%%downsize the assignable task by Jackson's dominance rule 

if  length(at)>=2 

    Dominated_task=[]; 

    for o=1:length(at) 

        for r=(o+1):length(at) 

            %is at(o) dominating at(r)? 

            if ismember(at(r),D_Mat(at(o),:)) 

                Dominated_task=[Dominated_task;r]; 

            elseif ismember(at(o),D_Mat(at(r),:)) 

                %is at(r) dominating at(o)? 

                Dominated_task=[Dominated_task;o]; 

            end 

        end 

    end 

at(Dominated_task)=[]; 

end 

if isempty(at) 

        OL=[]; 

        for k=1:size(Sq,1) 

            if isequal(Sq(k,1:Lt-1),d(1:Lt-1)) 

                OL=1; 

                break 

            end 

        end 

        if isempty(OL) 

            %%!!find the cycle time!! 

            tempUB=max(S*t1); 

            %check whether the TOIL is less than zero 

            tempTOIL=m*tempUB-sum(t1); 



161 

 

 

 

            for j=2:cs 

                tempTOIL=tempTOIL-(tempUB-S(j,:)*t1); 

                if tempTOIL<0 

                    break 

                end 

            end 

            if tempTOIL>=0 

                %the solution is good 

                Uni=1; 

                TOI=m*tempUB-sum(t1); 

                TOIL(1)=TOI; 

                for j=2:cs 

                    TOIL(j)=TOIL(j-1)-(tempUB-S(j,:)*t1); 

                end 

                cs=cs+1; 

                E=find(d==0,cs-1); 

                Lt=E(end)+1; 

            else 

                %forfeit the solution 

                Lt=Lt-1; 

                b(d(Lt))=0; 

                S(cs,d(Lt))=0; 

                d(Lt)=0; 

            end 

        else 

            %forfeit the solution 

            Lt=Lt-1; 

            b(d(Lt))=0; 

            S(cs,d(Lt))=0; 

            d(Lt)=0; 

        end 

else 

    for j=1:length(at) 

        b(at(j))=1; 

        d(Lt)=at(j); 

        S(cs,at(j))=1; 

        Lt=Lt+1; 

        

[S,b,d,Lt,cs,TOI,TOIL,Uni,tempUB]=StationLoadsFinder3(S,Sq,b,d,c

s,UB,Lt,TOI,TOIL,Uni,m,P,t1,D_Mat); 

        if Uni==1 

            %already find an unique solution, stop permuting 

            break 

        end 

        %         if j is the last and only choice , but it is 

still not working, erase the 



162 

 

 

 

        %         previous selection(j) when previous selection 

exists(has not been erased in the ifempty(at) part). 

        if j==length(at)&&d(Lt-1)~=0 

            Lt=Lt-1; 

            b(d(Lt))=0; 

            S(cs,d(Lt))=0; 

            d(Lt)=0; 

        end 

    end 

     

end 

  

end 

 

Superior solution generation (ENCORE) 

function 

[OS,S,Sq,b,d,cs,Lt,UB,TOI,TOIL,Fin]=NewSeqGen3(OS,S,Sq,b,d,cs,UB

,tempUB,Lt,TOI,TOIL,m,P,t1,D_Mat) 

%station oriented BB 

at=[]; 

at1=[]; 

Fin=0; 

while 1 

%check whether it is the LAST STATION 

if cs==(m+1) 

    %last station no need to assign 

    a1=find(b==0,length(t1)); 

    d(Lt:end)=a1; 

    for i=1:length(a1) 

    S(cs,a1(i))=1; 

    end 

    OS=S; 

    Sq=[Sq;d]; 

    b=ones(1,length(t1))'; 

    UB=tempUB; 

    if UB==max(ceil(sum(t1)/m),max(t1)) 

                OptiC=UB; 

                Fin=1; 

    end  

    break 

else 

    %find the assignable task 

    for i=find(b==0,1):length(t1) 

        %new cycle time has to be less than the critical station 

        if b(i)~=1&&b'*P(:,i)==sum(P(:,i)) && S(cs,:)*t1+t1(i)<UB 

            at=i; 



163 

 

 

 

            break 

        end 

    end 

    if isempty(at) 

           %locate the bottleneck station 

            AA=max(S(cs,:)*t1,tempUB); 

            %calculate the total idle time left 

            if TOIL(cs-1)-(AA-S(cs,:)*t1)<0&&AA==tempUB 

                %solution is conterfeited 

                Sq=[Sq;d]; 

                size(Sq,1); 

                %backtrack 

                break 

            else 

                Lt=Lt+1; 

                tempUB=AA; 

                %update the TOI&TOIL 

                TOI=m*tempUB-sum(t1); 

                tempTOIL=TOI; 

                for j=2:cs 

                    tempTOIL=tempTOIL-(tempUB-S(j,:)*t1); 

                end 

                TOIL(cs)=tempTOIL; 

                at1=[]; 

                cs=cs+1; 

                d(Lt)=0; 

            end 

    else 

        S(cs,at)=1; 

        d(Lt)=at; 

        Lt=Lt+1; 

        b(at)=1; 

    end      

    at=[]; 

end 

end 

 

  



164 

 

 

 

Appendix F: Design of Experiments (ENCORE) 

The matlab codes which generate the results in section 4.3.3 (Table 15 and 16) are shown as 

follows.  

The steps of execution 

1) Open the script 

2) Adjust the learning rate and run time to the specific values (the number of learning epochs is 

already embedded) 

3) Run the script 

Some functions which are invoked during the execution are documented in Appendix B 

clear all; 

load learning_rates 

x1=x1-0.05;x2=x2-0.05;x3=x3-0.05; 

ct=1; 

m1=[3 5 8 12 17 20 22 25]; 

%production quanity  

N=400; 

%#of learning  

ks=[1,2,3]; 

CI=zeros(3,2); 

p1=zeros(3,1);h1=zeros(3,1);M=zeros(3,1);SE=zeros(3,1); 

for kk=1:length(ks) 

    k=ks(kk); 

load Arcus111 

%generate random task time matrix 

D_Mat=Jackson_Dominance(P,t); 

t1=t.*x1'; 

OptiC_No=[]; 

%total production time 

TP_No=[];AA3=[]; 

OptiC_Encore=[]; 

OptiC_old=[]; 

reassign_status=[]; 

%total production time 

TP_Encore=[];TP_Old=[];AA1=[];AA2=[]; 

for i=1:size(m1,2) 

    [OptiC1,Sq1,OS1]=MainSALOME2(D_Mat,m1(i),P,t,ct); 

    t1=t.*x1'; 

    for j=1:k 

        

[OptiC,Sq1,OS1,B]=Algorithm3(D_Mat,Sq1,OS1,m1(i),P,t1,ct); 

        OptiC_Encore(j,i)=OptiC; 



165 

 

 

 

        [OptiC2,Sq,OS]=MainSALOME2(D_Mat,m1(i),P,t1,ct); 

        t1=t1.*x1'; 

        OptiC_old(j,i)=OptiC2; 

    end 

    A1=[OptiC1;OptiC_Encore(:,i)]; 

    A2=[OptiC1;OptiC_old(:,i)]; 

    %calculate the point at which the learning takes place 

    pp=round((N-k*m1(i))/(k+1))+m1(i); 

    %learning period 0-pp,pp-2pp,2pp-3pp,3pp-80 

    p=zeros(1,k+1); 

    p(1:end-1)=pp; 

    p(end)=N-k*pp; 

%     TP_Encore(i)=p*A1; 

%     TP_Old(i)=p*A2; 

    TP_Old(i)=p*A2; 

    TP_Encore(i)=p*A1; 

end 

for i=1:size(m1,2) 

    [OptiC1,Sq1,OS1]=MainSALOME2(D_Mat,m1(i),P,t,ct); 

    TP_No(i)=N*OptiC1; 

end 

AA3=[AA3,TP_No]; 

AA2=[AA2,TP_Old]; 

AA1=[AA1,TP_Encore]; 

  

%barthodi 

m2=[28 32 34 37 41 44 46 48 51]; 

load Barthodi 

%generate random task time matrix 

D_Mat=Jackson_Dominance(P,t); 

t1=t.*x2'; 

OptiC_Encore=[]; 

OptiC_old=[]; 

reassign_status=[]; 

%total production time 

TP_Encore=[];TP_Old=[]; 

for i=1:size(m2,2) 

    [OptiC1,Sq1,OS1]=MainSALOME2(D_Mat,m2(i),P,t,ct); 

    t1=t.*x2'; 

    for j=1:k 

        

[OptiC,Sq1,OS1,B]=Algorithm3(D_Mat,Sq1,OS1,m2(i),P,t1,ct); 

        OptiC_Encore(j,i)=OptiC; 

        [OptiC2,Sq,OS]=MainSALOME2(D_Mat,m2(i),P,t1,ct); 

        t1=t1.*x2'; 

        OptiC_old(j,i)=OptiC2; 



166 

 

 

 

    end 

    A1=[OptiC1;OptiC_Encore(:,i)]; 

    A2=[OptiC1;OptiC_old(:,i)]; 

    %calculate the point at which the learning takes place 

    pp=round((N-k*m2(i))/(k+1))+m2(i); 

    %learning period 0-pp,pp-2pp,2pp-3pp,3pp-80 

    p=zeros(1,k+1); 

    p(1:end-1)=pp; 

    p(end)=N-k*pp; 

%     TP_Encore(i)=p*A1; 

%     TP_Old(i)=p*A2; 

    TP_Old(i)=p*A2; 

    TP_Encore(i)=p*A1; 

end 

OptiC_No=[]; 

%total production time 

TP_No=[]; 

for i=1:size(m2,2) 

    [OptiC1,Sq1,OS1]=MainSALOME2(D_Mat,m2(i),P,t,ct); 

    TP_No(i)=N*OptiC1; 

end 

AA3=[AA3,TP_No]; 

AA2=[AA2,TP_Old]; 

AA1=[AA1,TP_Encore]; 

  

  

%Scholl 

m3=[25 28 30 33 35 38 42 45]; 

load Scholl 

%generate random task time matrix 

D_Mat=Jackson_Dominance(P,t); 

t1=t.*x3'; 

OptiC_Encore=[]; 

OptiC_old=[]; 

reassign_status=[]; 

%total production time 

TP_Encore=[];TP_Old=[]; 

for i=1:size(m3,2) 

    [OptiC1,Sq1,OS1]=MainSALOME2(D_Mat,m3(i),P,t,ct); 

    t1=t.*x3'; 

    for j=1:k 

        

[OptiC,Sq1,OS1,B]=Algorithm3(D_Mat,Sq1,OS1,m3(i),P,t1,ct); 

        OptiC_Encore(j,i)=OptiC; 

        [OptiC2,Sq,OS]=MainSALOME2(D_Mat,m3(i),P,t1,ct); 

        t1=t1.*x3'; 



167 

 

 

 

        OptiC_old(j,i)=OptiC2; 

    end 

    A1=[OptiC1;OptiC_Encore(:,i)]; 

    A2=[OptiC1;OptiC_old(:,i)]; 

    %calculate the point at which the learning takes place 

    pp=round((N-k*m3(i))/(k+1))+m3(i); 

    %learning period 0-pp,pp-2pp,2pp-3pp,3pp-80 

    p=zeros(1,k+1); 

    p(1:end-1)=pp; 

    p(end)=N-k*pp; 

%     TP_Encore(i)=p*A1; 

%     TP_Old(i)=p*A2; 

    TP_Old(i)=p*A2; 

    TP_Encore(i)=p*A1; 

end 

OptiC_No=[]; 

%total production time 

TP_No=[]; 

for i=1:size(m3,2) 

    [OptiC1,Sq1,OS1]=MainSALOME2(D_Mat,m3(i),P,t,ct); 

    TP_No(i)=N*OptiC1; 

end 

AA3=[AA3,TP_No]; 

AA2=[AA2,TP_Old]; 

AA1=[AA1,TP_Encore]; 

%calculate the difference of improvement 

ImP_Old=(AA3-AA2)./AA3; 

ImP_Encore=(AA3-AA1)./AA3; 

%summary statistics 

Diff=ImP_Encore-ImP_Old; 

M(kk)=mean(Diff); 

ts = tinv(0.95,length(Diff)-1); 

SE(kk) = std(Diff)/sqrt(length(Diff));   

CI(kk,:) = [M(kk) - ts*SE(kk), M(kk) + ts*SE(kk)] ; 

%significance test 

[h1(kk), p1(kk)]= ttest(ImP_Encore,ImP_Old,'Tail','Right') ; 

end 

  

  

 

  



168 

 

 

 

Appendix G: Performance of elementary rules 

Table 17 and 18 show the average deviation for different elementary rules 

Steps of execution 

1) Open test script 

2) Load the data  

3) Run the test script 

 

Test script 

load('P148.mat') 

c=[204,255,306,357,408,459,510]; 

% w=1; 

% max_t=1; 

% [D_Mat]=Jackson_Dominance(P,t,D); 

% L=Label(t,P); 

ms148=[]; 

for i=1:length(c) 

[~,m1]=findOne_TdS(c(i),P,t,D,E148(i,:),L148(i,:)); 

[~,m2]=findOne_TdL(c(i),P,t,D,E148(i,:),L148(i,:)); 

[~,m3]=findOne_T(c(i),P,t,D); 

[~,m4]=findOne_Latest(c(i),P,t,D,L148(i,:)); 

[~,m5]=findOne_F(c(i),P,t,D); 

ms148(:,i)=[m1;m2;m3;m4;m5];  

end 

 

Sample elementary rule (Main function) 

function [Sq,m]=findOne_T(c,P,t,D) 

%d(1,Lt)=right or left station 

%d(2,lt)=corresponding task number 

  

%one pass, no backtrack 

Et=zeros(1,length(t)); 

b=zeros(1,length(t)); 

b(1)=1; 

d=zeros(2,length(t)+30); 

d(1:2,1)=1; 

Lt=3; 

Sl=[0 0]; 

cs=1; 

while 1 

    at=findat_T(b,D,d,P,c,t,Et,Sl,cs); 



169 

 

 

 

    % at first row is the station number to which the task is 

assigned, second row is the task number 

    if isempty(at) 

        %no task availabe to either station, close the position, 

release the 

        %previously assigned 

        %compare the LB and UB of the remaining problem, if equal, 

stop the 

        %algorithm 

         

        [Sq,UB]= NaturalGen(d,c,P,t,D,cs,b,Et); 

        [LB]=LB_UB_Gen(d,c,t,D,cs); 

        if UB==LB  

            m=LB; 

            break 

        elseif sum(b)==length(b) 

            m=cs; 

            break 

        end 

        Sl=zeros(1,2); 

        Sq(:,Lt)=0; 

        cs=cs+1; 

        Lt=Lt+1; 

    else 

        %only assign the first one in the list 

        b(at(2,1))=1; 

        d(1,Lt)=at(1,1); 

        d(2,Lt)=at(2,1); 

        Lt=Lt+1; 

        %task time plus the upfront idle time 

        aa=find(P(:,at(2,1))~=0); 

        if ~isempty(aa) 

            %filter out the predecessors are within the same 

            %position 

            for kk=1:length(aa) 

                pos_in_d=find(d(2,:)==aa(kk)); 

                Which_Pos(kk)=sum(d(2,1:pos_in_d)==0); 

            end 

            aa=aa(Which_Pos==cs); 

            Which_Pos=[]; 

            if isempty(aa) 

                Et(at(2,1))=Sl(at(1,1))+t(at(2,1)); 

                Sl(at(1,1))=Et(at(2,1)); 

            else 

                

Et(at(2,1))=max(Sl(at(1,1)),max(Et(aa)))+t(at(2,1)); 



170 

 

 

 

                Sl(at(1,1))=Et(at(2,1)); 

            end 

        else 

            Et(at(2,1))=Sl(at(1,1))+t(at(2,1)); 

            Sl(at(1,1))=Et(at(2,1)); 

        end 

    end 

end 

end 

 

 Sample position enumeration rule (rule L) 

function at=findat_Latest(b,D,d,P,c,t,Et,Sl,cs,L) 

Delay=[];at=[];Mated_Difference=[]; 

%if either direction, assign the task to the station whose load is 

%smaller (small_I) 

for i=find(b==0,1):length(t) 

    %check the operational direction 

    if D(i)~=3 &&b(i)~=1 

        %left or right 

        %find its predecessors' ending times 

        j=find(P(:,i)~=0); 

        if D(i)==1 

            cm=2; 

        else 

            cm=1; 

        end 

        if isempty(j) 

            %no predecessor exists or all predecessors are 

assigned 

            if Sl(D(i))+t(i)<=c 

                %cycle time constraint 

                at=[at,[D(i);i]]; 

                %record its delay time,0 

                Delay=[Delay,0]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(D(i))+t(i)-Sl(cm))]; 

            end 

        elseif sum(Et(j)>0)==length(j) 

            %find out j within the same position 

            for kk=1:length(j) 

                pos_in_d=find(d(2,:)==j(kk)); 

                Which_Pos(kk)=sum(d(2,1:pos_in_d)==0); 

            end 

            j=j(Which_Pos==cs); 

            Which_Pos=[]; 

            if isempty(j) && Sl(D(i))+t(i)<=c 



171 

 

 

 

                %cycle time constraint 

                at=[at,[D(i);i]]; 

                %record its delay time 

                Delay=[Delay,0]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(D(i))+t(i)-Sl(cm))]; 

            elseif ~isempty(j) && 

max(max(Et(j)),Sl(D(i)))+t(i)<=c 

                at=[at,[D(i);i]]; 

                aa=max(max(Et(j))-Sl(D(i)),0); 

                Delay=[Delay,aa]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(D(i))+t(i)-Sl(cm))]; 

            end 

        end 

    elseif b(i)~=1 

        %either direction, assign the task to the station whose 

load is 

        %smaller (small_I) 

        j=find(P(:,i)~=0); 

        if isempty(j) 

            %no predecessor exists or all predecessors are 

assigned 

            if Sl(1)+t(i)<=c 

                %cycle time constraint 

                at=[at,[1;i]]; 

                Delay=[Delay,0]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(1)+t(i)-Sl(2))]; 

            end 

            if Sl(2)+t(i)<=c 

                %cycle time constraint 

                at=[at,[2;i]]; 

                Delay=[Delay,0]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(2)+t(i)-Sl(1))]; 

            end 

        elseif sum(Et(j)>0)==length(j) 

            %find out j within the same position 

            for kk=1:length(j) 

                pos_in_d=find(d(2,:)==j(kk)); 

                Which_Pos(kk)=sum(d(2,1:pos_in_d)==0); 

            end 

            j=j(Which_Pos==cs); 

            Which_Pos=[]; 

            if isempty(j) 



172 

 

 

 

                if Sl(1)+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[1;i]]; 

                    %record its delay time 

                    Delay=[Delay,0]; 

                    

Mated_Difference=[Mated_Difference,abs(Sl(1)+t(i)-Sl(2))]; 

                end 

                if Sl(2)+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[2;i]]; 

                    %record its delay time 

                    Delay=[Delay,0]; 

                    

Mated_Difference=[Mated_Difference,abs(Sl(2)+t(i)-Sl(1))]; 

                end 

            else 

                if max(max(Et(j)),Sl(1))+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[1;i]]; 

                    aa=max(max(Et(j))-Sl(1),0); 

                    Delay=[Delay,aa]; 

                    

Mated_Difference=[Mated_Difference,abs(Sl(1)+t(i)-Sl(2))]; 

                end 

                if max(max(Et(j)),Sl(2))+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[2;i]]; 

                    aa=max(max(Et(j))-Sl(2),0); 

                    Delay=[Delay,aa]; 

                    

Mated_Difference=[Mated_Difference,abs(Sl(2)+t(i)-Sl(1))]; 

                end 

            end 

        end 

    end 

end 

    %sort the at in an ascending order of L 

        if ~isempty(at) 

            Z=L(at(2,:)); 

            Data_Frame=[at',Delay',Z']; 

            Data_Frame=sortrows(Data_Frame,[3,4]); 

            at=Data_Frame(:,1:2)'; 

        end 

end 

  



173 

 

 

 

 

Upper bound generation function 

function [Sq,UB]= NaturalGen(Sq,c,P,t,D,cs,b,Et) 

cs=cs+1; 

%Delete zero 

B=Sq(2,:); 

Lt=find(B~=0,1,'last')+2; 

%station load 

Sl=zeros(1,2); 

while 1 

    %if either direction, assign the task to the station whose 

load is 

    %smaller (small_I) 

    [~,small_I]=sort(Sl); 

    at=[]; 

    if length(b)==sum(b) 

        UB=cs; 

        break 

    end 

    for i=find(b==0,1):length(t) 

        %check the operational direction 

        if D(i)~=3 &&b(i)~=1 

            %left or right 

            %find its predecessors' ending times 

            j=find(P(:,i)~=0); 

            if isempty(j) 

                %no predecessor exists or all predecessors are 

assigned 

                if Sl(D(i))+t(i)<=c 

                    %cycle time constraint 

                    at=[D(i);i]; 

                    %record its delay time,0 

                    I=0; 

                    break; 

                end 

            elseif sum(Et(j)>0)==length(j) 

                %find out j within the same position 

                for kk=1:length(j) 

                    pos_in_d=find(Sq(2,:)==j(kk)); 

                    Which_Pos(kk)=sum(Sq(2,1:pos_in_d)==0); 

                end 

                j=j(Which_Pos==cs); 

                Which_Pos=[]; 

                if isempty(j) && Sl(D(i))+t(i)<=c 

                    %cycle time constraint 

                    at=[D(i);i]; 



174 

 

 

 

                    %record its delay time 

                    I=0; 

                    break 

                elseif ~isempty(j) && 

max(max(Et(j)),Sl(D(i)))+t(i)<=c 

                    at=[D(i);i]; 

                    I=max(max(Et(j))-Sl(D(i)),0); 

                    break 

                end 

            end 

        elseif b(i)~=1 

            %either direction, assign the task to the station 

whose load is 

            %smaller (small_I) 

            j=find(P(:,i)~=0); 

            if isempty(j) 

                %no predecessor exists or all predecessors are 

assigned 

                if Sl(small_I(1))+t(i)<=c 

                    %cycle time constraint 

                    at=[small_I(1);i]; 

                    I=0; 

                    break 

                end 

                if Sl(small_I(2))+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[small_I(2);i]]; 

                    I=0; 

                    break 

                end 

            elseif sum(Et(j)>0)==length(j) 

                %find out j within the same position 

                for kk=1:length(j) 

                    pos_in_d=find(Sq(2,:)==j(kk)); 

                    Which_Pos(kk)=sum(Sq(2,1:pos_in_d)==0); 

                end 

                j=j(Which_Pos==cs); 

                Which_Pos=[]; 

                if isempty(j) 

                    if Sl(small_I(1))+t(i)<=c 

                        %cycle time constraint 

                        at=[small_I(1);i]; 

                        %record its delay time 

                        I=0; 

                        break 

                    end 



175 

 

 

 

                    if Sl(small_I(2))+t(i)<=c 

                        %cycle time constraint 

                        at=[small_I(2);i]; 

                        %record its delay time 

                        I=0; 

                        break 

                    end 

                else 

                    if max(max(Et(j)),Sl(small_I(1)))+t(i)<=c 

                        %cycle time constraint 

                        at=[small_I(1);i]; 

                        I=max(max(Et(j))-Sl(small_I(1)),0); 

                        break 

                    end 

                    if max(max(Et(j)),Sl(small_I(2)))+t(i)<=c 

                        %cycle time constraint 

                        at=[small_I(2);i]; 

                        I=max(max(Et(j))-Sl(small_I(2)),0); 

                        break 

                    end 

                end 

            end 

        end 

    end 

    if isempty(at) 

        Sl=zeros(1,2); 

        Sq(:,Lt)=0; 

        cs=cs+1; 

        Lt=Lt+1; 

    else 

        %symmetric rule does not apply! 

        %assign task to the left or right station 

        b(at(2))=1; 

        Sq(1,Lt)=at(1); 

        Sq(2,Lt)=at(2); 

        Lt=Lt+1; 

        %task time plus the upfront idle time 

        t1(at(2))=I+t(at(2)); 

        Et(at(2))=Sl(at(1))+t1(at(2)); 

        Sl(at(1))= Et(at(2)); 

    end 

end 

end 

 

Lower bound generation function 



176 

 

 

 

function [LB]=LB_UB_Gen(Sq,c,t,D,cs) 

A=Sq(2,:); 

A=A(A~=0); 

r=ones(1,length(t)); 

r(A(1:end))=0; 

t1=r.*t; 

T1=sum(t1(D(1,:)==1)); 

lb1=ceil(T1/c); 

%total right task time 

T2=sum(t1(D(1,:)==2)); 

lb2=ceil(T2/c); 

%total lateral task time 

T3=sum(t1(D(1,:)==3)); 

lb3=ceil(max(T3-((lb1+lb2)*c-T1-T2),0)/c); 

LB=max(lb1,lb2)+ceil(max(lb3-abs(lb1-lb2),0)/2)+cs; 

end 

  



177 

 

 

 

Appendix H: Performance of enhanced elementary rules 

 

Table 19 and 20 show the average deviation for different elementary rules prioritizing the load-

oriented rule 

Steps of execution 

1) Open test script 

2) Load the data  

3) Run the test script 

Test script 

load('P16.mat') 

c=[15,18,20,22]; 

% w=1; 

% max_t=1; 

% [D_Mat]=Jackson_Dominance(P,t,D); 

% L=Label(t,P); 

ms16=[]; 

for i=1:length(c) 

[~,m1]=findOne_TdS(c(i),P,t,D,E16(i,:),L16(i,:)); 

[~,m2]=findOne_TdL(c(i),P,t,D,E16(i,:),L16(i,:)); 

[~,m3]=findOne_T(c(i),P,t,D); 

[~,m4]=findOne_Latest(c(i),P,t,D,L16(i,:)); 

[~,m5]=findOne_F(c(i),P,t,D); 

ms16(:,i)=[m1;m2;m3;m4;m5];  

end 

 

Sample elementary rule embodying the load-oriented rule 

function [Sq,m]=findOne_TdL(c,P,t,D,E,L) 

%d(1,Lt)=right or left station 

%d(2,lt)=corresponding task number 

  

%one pass, no backtrack 

%time divided by latest task 

TdL=t./L; 

Et=zeros(1,length(t)); 

b=zeros(1,length(t)); 

b(1)=1; 

d=zeros(2,length(t)+30); 

d(1:2,1)=1; 

Lt=3; 

Sl=[0 0]; 



178 

 

 

 

cs=1; 

while 1 

    at=findat_TdL(b,D,d,P,c,t,Et,Sl,cs,TdL); 

    % at first row is the station number to which the task is 

assigned, second row is the task number 

    if isempty(at) 

        %no task availabe to either station, close the position, 

release the 

        %previously assigned 

        %compare the LB and UB of the remaining problem, if equal, 

stop the 

        %algorithm 

         

        [Sq,UB]= NaturalGen(d,c,P,t,D,cs,b,Et); 

        [LB]=LB_UB_Gen(d,c,t,D,cs); 

        if UB==LB 

            m=LB; 

            break 

        elseif sum(b)==length(b) 

            m=cs; 

            break 

        end 

        Sl=zeros(1,2); 

        Sq(:,Lt)=0; 

        cs=cs+1; 

        Lt=Lt+1; 

    else 

        %only assign the first one in the list 

        b(at(2,1))=1; 

        d(1,Lt)=at(1,1); 

        d(2,Lt)=at(2,1); 

        Lt=Lt+1; 

        %task time plus the upfront idle time 

        aa=find(P(:,at(2,1))~=0); 

        if ~isempty(aa) 

            %filter out the predecessors are within the same 

            %position 

            for kk=1:length(aa) 

                pos_in_d=find(d(2,:)==aa(kk)); 

                Which_Pos(kk)=sum(d(2,1:pos_in_d)==0); 

            end 

            aa=aa(Which_Pos==cs); 

            Which_Pos=[]; 

            if isempty(aa) 

                Et(at(2,1))=Sl(at(1,1))+t(at(2,1)); 

                Sl(at(1,1))=Et(at(2,1)); 



179 

 

 

 

            else 

                

Et(at(2,1))=max(Sl(at(1,1)),max(Et(aa)))+t(at(2,1)); 

                Sl(at(1,1))=Et(at(2,1)); 

            end 

        else 

            Et(at(2,1))=Sl(at(1,1))+t(at(2,1)); 

            Sl(at(1,1))=Et(at(2,1)); 

        end 

    end 

end 

end 

 

 

Position generation function 

function at=findat_TdL(b,D,d,P,c,t,Et,Sl,cs,TdL) 

Delay=[];at=[];Mated_Difference=[]; 

%if either direction, assign the task to the station whose load is 

%smaller (small_I) 

for i=find(b==0,1):length(t) 

    %check the operational direction 

    if D(i)~=3 &&b(i)~=1 

        %left or right 

        %find its predecessors' ending times 

        j=find(P(:,i)~=0); 

        if D(i)==1 

            cm=2; 

        else 

            cm=1; 

        end 

        if isempty(j) 

            %no predecessor exists or all predecessors are 

assigned 

            if Sl(D(i))+t(i)<=c 

                %cycle time constraint 

                at=[at,[D(i);i]]; 

                %record its delay time,0 

                Delay=[Delay,0]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(D(i))+t(i)-Sl(cm))]; 

            end 

        elseif sum(Et(j)>0)==length(j) 

            %find out j within the same position 

            for kk=1:length(j) 

                pos_in_d=find(d(2,:)==j(kk)); 



180 

 

 

 

                Which_Pos(kk)=sum(d(2,1:pos_in_d)==0); 

            end 

            j=j(Which_Pos==cs); 

            Which_Pos=[]; 

            if isempty(j) && Sl(D(i))+t(i)<=c 

                %cycle time constraint 

                at=[at,[D(i);i]]; 

                %record its delay time 

                Delay=[Delay,0]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(D(i))+t(i)-Sl(cm))]; 

            elseif ~isempty(j) && 

max(max(Et(j)),Sl(D(i)))+t(i)<=c 

                at=[at,[D(i);i]]; 

                aa=max(max(Et(j))-Sl(D(i)),0); 

                Delay=[Delay,aa]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(D(i))+t(i)-Sl(cm))]; 

            end 

        end 

    elseif b(i)~=1 

        %either direction, assign the task to the station whose 

load is 

        %smaller (small_I) 

        j=find(P(:,i)~=0); 

        if isempty(j) 

            %no predecessor exists or all predecessors are 

assigned 

            if Sl(1)+t(i)<=c 

                %cycle time constraint 

                at=[at,[1;i]]; 

                Delay=[Delay,0]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(1)+t(i)-Sl(2))]; 

            end 

            if Sl(2)+t(i)<=c 

                %cycle time constraint 

                at=[at,[2;i]]; 

                Delay=[Delay,0]; 

                

Mated_Difference=[Mated_Difference,abs(Sl(2)+t(i)-Sl(1))]; 

            end 

        elseif sum(Et(j)>0)==length(j) 

            %find out j within the same position 

            for kk=1:length(j) 

                pos_in_d=find(d(2,:)==j(kk)); 



181 

 

 

 

                Which_Pos(kk)=sum(d(2,1:pos_in_d)==0); 

            end 

            j=j(Which_Pos==cs); 

            Which_Pos=[]; 

            if isempty(j) 

                if Sl(1)+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[1;i]]; 

                    %record its delay time 

                    Delay=[Delay,0]; 

Mated_Difference=[Mated_Difference,abs(Sl(1)+t(i)-Sl(2))]; 

                end 

                if Sl(2)+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[2;i]]; 

                    %record its delay time 

                    Delay=[Delay,0]; 

                    

Mated_Difference=[Mated_Difference,abs(Sl(2)+t(i)-Sl(1))]; 

                end 

            else 

                if max(max(Et(j)),Sl(1))+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[1;i]]; 

                    aa=max(max(Et(j))-Sl(1),0); 

                    Delay=[Delay,aa]; 

                    

Mated_Difference=[Mated_Difference,abs(Sl(1)+t(i)-Sl(2))]; 

                end 

                if max(max(Et(j)),Sl(2))+t(i)<=c 

                    %cycle time constraint 

                    at=[at,[2;i]]; 

                    aa=max(max(Et(j))-Sl(2),0); 

                    Delay=[Delay,aa]; 

                    

Mated_Difference=[Mated_Difference,abs(Sl(2)+t(i)-Sl(1))]; 

                end 

            end 

        end 

    end 

end 

    %sort the at in an descending order of TdL 

        if ~isempty(at) 

            Z=TdL(at(2,:)); 

            Y=Sl(at(1,:)); 

            Data_Frame=[at',Delay',Y',Z']; 



182 

 

 

 

            Data_Frame=sortrows(Data_Frame,[3,4,-5]); 

            at=Data_Frame(:,1:2)'; 

        end 

end 

  



183 

 

 

 

Appendix I: Performance of the composite rules 

 

 

Table 22 and 23 are generated by the following functions 

Test function (All data sets) 

%record the score 

%10 composite ,9 weights 

Score=zeros(10,9); 

Unique=zeros(10,9); 

R=[100,10,5,2,1,1/2,1/5,1/10,1/100]; 

[MS16, Score]=P16test(Score,R); 

[MS12, Score]=P12test(Score,R); 

[MS24, Score]=P24test(Score,R); 

[MS65, Score]=P65test(Score,R); 

[MS148, Score]=P148test(Score,R); 

[MS205, Score]=P205test(Score,R); 

mss=[MS12, MS16, MS24, MS65, MS148, MS205]; 

minm=[4 3   3   2   4   3   3   2   3   3   2   2   9   7   6   6   

5   13  11  9   8   7   6   6   11  9   8   7   7   6   6   5   5   

5]; 

u = repmat(minm,10,1); 

dev=(mss-u)./u*100; 

average_dev=sum(dev,2)/34; 

 

Sample test function (P16) 

function [MS16, Score]=P16test(Score,R) 

load('P16.mat') 

c=[15,18,20,22]; 

% w=1; 

% max_t=1; 

% [D_Mat]=Jackson_Dominance(P,t,D); 

% L=Label(t,P); 

ms16=[]; 

MS16=[]; 

[~,All_Follwers,Dir_Follwers]=Jackson_Dominance(P,t,D); 

All_Follwers=sort(All_Follwers,2,'descend'); 

total_follwers=zeros(1,length(t)); 

for i=1:length(t) 

total_follwers(i)=find(All_Follwers(i,:)==0,1)-1; 

end 

  

  

for i=1:length(c) 

    for j=1:length(R) 



184 

 

 

 

        W=[R(j),1]; 

        [~,m1]=findOne_TdS_TdL(c(i),P,t,D,E16(i,:),L16(i,:),W); 

        [~,m2]=findOne_TdS_T(c(i),P,t,D,E16(i,:),L16(i,:),W); 

        

[~,m3]=findOne_TdS_Latest(c(i),P,t,D,E16(i,:),L16(i,:),W); 

        

[~,m4]=findOne_TdS_F(c(i),P,t,D,E16(i,:),L16(i,:),W,total_follwe

rs); 

        [~,m5]=findOne_TdL_T(c(i),P,t,D,E16(i,:),L16(i,:),W); 

        

[~,m6]=findOne_TdL_Latest(c(i),P,t,D,E16(i,:),L16(i,:),W); 

        

[~,m7]=findOne_TdL_F(c(i),P,t,D,E16(i,:),L16(i,:),W,total_follwe

rs); 

        [~,m8]=findOne_T_Latest(c(i),P,t,D,E16(i,:),L16(i,:),W); 

        

[~,m9]=findOne_T_F(c(i),P,t,D,E16(i,:),L16(i,:),W,total_follwers

); 

        

[~,m10]=findOne_Latest_F(c(i),P,t,D,E16(i,:),L16(i,:),W,total_fo

llwers); 

        ms16(:,j)=[m1;m2;m3;m4;m5;m6;m7;m8;m9;m10]; 

    end 

    a=min(ms16(:)); 

    for k=1:10 

        I=find(ms16(k,:)==a); 

        if ~isempty(I) 

        Score(k,I)=Score(k,I)+1; 

        end 

    end 

    MS16(:,i)=min(ms16,[],2); 

end 

end 

 

Sample composite rule (TDS and TDL) 

function [Sq,m]=findOne_TdS_TdL(c,P,t,D,E,L,W) 

%W:weight of each rule 

%d(1,Lt)=right or left station 

%d(2,lt)=corresponding task number 

  

%one pass, no backtrack 

%time divided by slack 

TdS=t./(L-E+1); 

TdL=t./L; 

%normalize 



185 

 

 

 

GUB=max(L); 

  

Composite=W(1)*TdS*GUB/c+W(2)*TdL*GUB/c; 

  

Et=zeros(1,length(t)); 

b=zeros(1,length(t)); 

b(1)=1; 

d=zeros(2,length(t)+30); 

d(1:2,1)=1; 

Lt=3; 

Sl=[0 0]; 

cs=1; 

while 1 

    at=findat_TdS_TdL(b,D,d,P,c,t,Et,Sl,cs,Composite); 

    % at first row is the station number to which the task is 

assigned, second row is the task number 

    if isempty(at) 

        %no task available to either station, close the position, 

release the 

        %previously assigned 

        %compare the LB and UB of the remaining problem, if equal, 

stop the 

        %algorithm 

         

        [Sq,UB]= NaturalGen(d,c,P,t,D,cs,b,Et); 

        [LB]=LB_UB_Gen(d,c,t,D,cs); 

        if UB==LB 

            m=LB; 

            break 

        elseif sum(b)==length(b) 

            m=cs; 

            break 

        end 

        Sl=zeros(1,2); 

        Sq(:,Lt)=0; 

        cs=cs+1; 

        Lt=Lt+1; 

    else 

        %only assign the first one in the list 

        b(at(2,1))=1; 

        d(1,Lt)=at(1,1); 

        d(2,Lt)=at(2,1); 

        Lt=Lt+1; 

        %task time plus the upfront idle time 

        aa=find(P(:,at(2,1))~=0); 

        if ~isempty(aa) 



186 

 

 

 

            %filter out the predecessors are within the same 

            %position 

            for kk=1:length(aa) 

                pos_in_d=find(d(2,:)==aa(kk)); 

                Which_Pos(kk)=sum(d(2,1:pos_in_d)==0); 

            end 

            aa=aa(Which_Pos==cs); 

            Which_Pos=[]; 

            if isempty(aa) 

                Et(at(2,1))=Sl(at(1,1))+t(at(2,1)); 

                Sl(at(1,1))=Et(at(2,1)); 

            else 

                

Et(at(2,1))=max(Sl(at(1,1)),max(Et(aa)))+t(at(2,1)); 

                Sl(at(1,1))=Et(at(2,1)); 

            end 

        else 

            Et(at(2,1))=Sl(at(1,1))+t(at(2,1)); 

            Sl(at(1,1))=Et(at(2,1)); 

        end 

    end 

end 

end 

 

  



187 

 

 

 

Appendix J: Performance of the priority-based bounded dynamic programing 

 

 

Priority-based bounded dynamic programming 

Test function (All data sets) 

%record the score 

%10 composite ,9 weights 

Score=zeros(10,9); 

P12test; 

P16test; 

P24test; 

P65test; 

P148test; 

P205test; 

mss=[MS12, MS16, MS24, MS65, MS148, MS205]; 

minm=[4 3   3   2   4   3   3   2   3   3   2   2   9   7   6   6   

5   13  11  9   8   7   6   6   11  9   8   7   7   6   6   5   5   

5]; 

u = repmat(minm,10,1); 

dev=(mss-u)./u*100; 

average_dev=sum(dev,2)/34; 

 

 

Sample test function (P16) 

load('P16.mat') 

c=[15,18,20,22]; 

% w=1; 

% max_t=1; 

% [D_Mat]=Jackson_Dominance(P,t,D); 

% L=Label(t,P); 

[~,All_Follwers,Dir_Follwers]=Jackson_Dominance(P,t,D); 

All_Follwers=sort(All_Follwers,2,'descend'); 

total_follwers=zeros(1,length(t)); 

for i=1:length(t) 

total_follwers(i)=find(All_Follwers(i,:)==0,1)-1; 

end 

W=[0.01,0.1,0.01,0.01]; 

window_size=5; 

ms=[]; 

a=1; 

for i=1:length(c) 

[Sq,m]=findOne_BDP(c(i),P,t,D,E16(i,:),L16(i,:),W,total_follwers

,window_size); 



188 

 

 

 

ms=[ms m]; 

end 

  

PR_BDP main function    

 

function 

[Sq,m]=findOne_BDP(c,P,t,D,E,L,W,total_follwers,window_size) 

  

%initialization 

  

Et=zeros(1,length(t)); 

b=zeros(1,length(t)); 

b(1)=1; 

d=zeros(2,length(t)+30); 

d(1:2,1)=1; 

Lt=3; 

Sl=[0 0]; 

cs=1; 

%calculate GLB 

%total left task time 

T1=sum(t(D(1,:)==1)); 

lb1=ceil(T1/c); 

%total right task time 

T2=sum(t(D(1,:)==2)); 

lb2=ceil(T2/c); 

%total lateral task time 

T3=sum(t(D(1,:)==3)); 

lb3=ceil(max(T3-((lb1+lb2)*c-T1-T2),0)/c); 

GLB=max(lb1,lb2)+ceil(max(lb3-abs(lb1-lb2),0)/2); 

%multi pass, no backtrack 

  

TdS=t./(L-E+1); 

TdL=t./L; 

%normalize 

GUB=max(L); 

if length(W(1)*TdS*GUB/c)~=length(total_follwers/length(t)) 

    aaa=1 

end 

Composite1=W(1)*TdS*GUB/c+total_follwers/length(t); 

Composite2=W(2)*TdL*GUB/c+total_follwers/length(t); 

Composite3=-W(3)*L/GUB+total_follwers/length(t); 

Composite4=W(4)*t/c-L/GUB; 

  

  

%first station 

LBs=[];UBs=[];Idles=[];Sqs=[]; 



189 

 

 

 

EnumerateFirstStation; 

  

while 1 

    LBs=[];UBs=[];Idles=[]; 

    cs=cs+1; 

    Sq1=Sqs;Sqs=[]; 

    for i=1:2:size(Sq1,1) 

        %retrieve Et,b,d 

        Retrieve; 

        

[Sq,LB,UB,Idle]=findOne_TdS_F(d,b,Et,Lt,c,P,t,D,cs,Composite1); 

        

LBs=[LBs,LB];UBs=[UBs,UB];Sqs=[Sqs;Sq];Idles=[Idles,Idle]; 

        

[Sq,LB,UB,Idle]=findOne_TdL_F(d,b,Et,Lt,c,P,t,D,cs,Composite2); 

        

LBs=[LBs,LB];UBs=[UBs,UB];Sqs=[Sqs;Sq];Idles=[Idles,Idle]; 

        

[Sq,LB,UB,Idle]=findOne_Latest_F(d,b,Et,Lt,c,P,t,D,cs,Composite3

); 

        

LBs=[LBs,LB];UBs=[UBs,UB];Sqs=[Sqs;Sq];Idles=[Idles,Idle]; 

        

[Sq,LB,UB,Idle]=findOne_T_Latest(d,b,Et,Lt,c,P,t,D,cs,Composite4

); 

        

LBs=[LBs,LB];UBs=[UBs,UB];Sqs=[Sqs;Sq];Idles=[Idles,Idle]; 

         

         

    end 

    if sum(LBs==UBs)==length(LBs) 

        [m,I]=min(UBs); 

        Sq=Sqs(2*I(1)-1:2*I(1),:); 

        break 

    end 

    if min(UBs)==cs || min(UBs)==GLB 

        [m,I]=min(UBs); 

        Sq=Sqs(2*I(1)-1:2*I(1),:); 

        break 

    end 

     

    %using window size to downsize the solution space 

    aa=[]; 

    if size(Sqs,1)/2>window_size 

        [~,II]=sort(Idles); 

        Idles=Idles(II);LBs=LBs(II);LBs=LBs(II); 



190 

 

 

 

        LBs=LBs(1:window_size); UBs=UBs(1:window_size); 

        %take the first w sequences 

        II=2*II; 

        for jj=1:window_size 

            aa=[aa;Sqs(II(jj)-1:II(jj),:)]; 

        end 

        Sqs=aa; 

    end 

    %delete sequenes where UB=LB; 

    A=UBs-LBs; 

    Index=find(A==0); 

    Index1=[]; 

    for q=1:length(Index) 

        Index1=[Index1,2*Index(q)-1,2*Index(q)]; 

    end 

    Sqs(Index1,:)=[]; 

    if isempty(Sqs) 

        m=min(UBs); 

        break 

    end 

     

     

end 

end 

 

 

 

  



191 

 

 

 

Appendix K: Design of Experiments (PR_BDP) 

The following codes are used to assess the improvement of the production statistics considering 

task learning. 

 

TEST function 

load('learning rates.mat') 

x1=x1-0.1;x2=x2-0.1; 

AA2=[13 11  9   8   7   6   6   11  10  9   8   7   6   6   5   5   

5]; 

  

%learning episodes 

ks=[1,2,3]; 

N=400; 

CI=zeros(3,2); 

M=zeros(3,1);SE=zeros(3,1); 

CI_I=zeros(3,2); 

M_I=zeros(3,1);SE_I=zeros(3,1); 

% w=1; 

% max_t=1; 

% [D_Mat]=Jackson_Dominance(P,t,D); 

% L=Label(t,P); 

W=[0.01,0.1,0.01,0.01]; 

window_size=5; 

Avg_m=[];AA=[];Avg_Is1=[];Avg_Is2=[];AAI1=[];AAI2=[]; 

for kk=1:length(ks) 

    load('P148.mat') 

    [~,All_Follwers,Dir_Follwers]=Jackson_Dominance(P,t,D); 

    All_Follwers=sort(All_Follwers,2,'descend'); 

    total_follwers=zeros(1,length(t)); 

    for i=1:length(t) 

        total_follwers(i)=find(All_Follwers(i,:)==0,1)-1; 

    end 

    c=[204,255,306,357,408,459,510]; 

    k=ks(kk); 

for i=1:length(c) 

    ms=[];Is1=[];Is2=[]; 

    

[Sq,m]=findOne_BDP(c(i),P,t,D,E148(i,:),L148(i,:),W,total_follwe

rs,window_size); 

    I1=2*m*c(i)-sum(t); 

    %m1 is the old solution without reassignment 

    m1=m; 

    Is1=[Is1;I1]; 

    Is2=[Is2;I1]; 



192 

 

 

 

    ms=[ms; m]; 

    pp=round((N-k*m)/(k+1))+m; 

    p=zeros(1,k+1); 

    p(1:end-1)=pp; 

    p(end)=N-k*pp; 

    t1=t; 

    for j=1:k 

        t1=t1.*x1; 

        

[Sq,m]=findOne_BDP(c(i),P,t1,D,E148(i,:),L148(i,:),W,total_follw

ers,window_size); 

        ms=[ms; m]; 

        Is1=[Is1;2*m1*c(i)-sum(t1)]; 

        Is2=[Is2;2*m*c(i)-sum(t1)]; 

    end 

    %average position utilization 

    Avg_m(i)=p*ms/N; 

    %average Idle time 

    Avg_Is1(i)=p*Is1/N; 

    Avg_Is2(i)=p*Is2/N; 

end 

AA=[AA Avg_m]; 

AAI1=[AAI1 Avg_Is1];AAI2=[AAI2 Avg_Is2]; 

Avg_m=[];Avg_Is1=[];Avg_Is2=[]; 

load('P205.mat') 

c=[1133,1322,1510,1699,1888,2077,2266,2454,2643,2832]; 

[~,All_Follwers,Dir_Follwers]=Jackson_Dominance(P,t,D); 

All_Follwers=sort(All_Follwers,2,'descend'); 

total_follwers=zeros(1,length(t)); 

for i=1:length(t) 

total_follwers(i)=find(All_Follwers(i,:)==0,1)-1; 

end 

for i=1:length(c) 

    ms=[];Is1=[];Is2=[]; 

    

[Sq,m]=findOne_BDP(c(i),P,t,D,E205(i,:),L205(i,:),W,total_follwe

rs,window_size); 

    ms=[ms; m]; 

    I1=2*m*c(i)-sum(t); 

    %m1 is the old solution without reassignment 

    m1=m; 

    Is1=[Is1;I1]; 

    Is2=[Is2;I1]; 

    pp=round((N-k*m)/(k+1))+m; 

    p=zeros(1,k+1); 

    p(1:end-1)=pp; 



193 

 

 

 

    p(end)=N-k*pp; 

    t1=t; 

    for j=1:k 

        t1=t1.*x2; 

        

[Sq,m]=findOne_BDP(c(i),P,t1,D,E205(i,:),L205(i,:),W,total_follw

ers,window_size); 

        ms=[ms; m]; 

        Is1=[Is1;2*m1*c(i)-sum(t1)]; 

        Is2=[Is2;2*m*c(i)-sum(t1)]; 

    end 

    %average position utilization 

    Avg_m(i)=p*ms/N; 

    %average Idle time 

    Avg_Is1(i)=p*Is1/N; 

    Avg_Is2(i)=p*Is2/N; 

end 

AA=[AA Avg_m]; 

AAI1=[AAI1 Avg_Is1];AAI2=[AAI2 Avg_Is2]; 

AA=(AA2-AA)./AA2; 

M(kk)=mean(AA); 

ts = tinv(0.95,length(AA)-1); 

SE(kk) = std(AA)/sqrt(length(AA)); 

CI(kk,:) = [M(kk) - ts*SE(kk), M(kk) + ts*SE(kk)]; 

%calculate Idle time improvement 

I=(AAI1-AAI2)./AAI1; 

M_I(kk)=mean(I); 

ts = tinv(0.95,length(I)-1); 

SE_I(kk) = std(I)/sqrt(length(I)); 

CI_I(kk,:) = [M_I(kk) - ts*SE_I(kk), M_I(kk) + ts*SE_I(kk)]; 

AA=[];AAI1=[];AAI2=[];Avg_m=[];Avg_Is1=[];Avg_Is2=[]; 

end 

  

  

  

  

  

  

  

 

 


