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ABSTRACT OF THE DISSERTATION

Topics in MIMO Radars:

Sparse Sensing and Spectrum Sharing

By BO LI

Dissertation Director:

Professor Athina P. Petropulu

Recently, multiple-input multiple-output (MIMO) radars have received considerable atten-

tion due to their superior resolution. A MIMO radar system lends itself to a networked

implementation, which is very desirable in both military and civilian applications. In net-

worked radars, the transmit and receive antennas are placed on wireless connected nodes,

such as vehicles, ships, airplanes, or even backpacks. The transmit antennas transmit prob-

ing waveforms, which impinge on targets and are reflected back. A fusion center collects

the target echo measurements of all receive antennas and jointly processes the signals to

extract the desired target parameters. This dissertation proposes to address the following

two bottleneck issues associated with networked radars.

Reliable surveillance requires collection, communication and process of vast amounts of

data. This is a power and bandwidth consuming task, which can be especially taxing in

scenarios in which the antennas are on battery operated devices and are connected to the

fusion center via a wireless link. Sparse sensing techniques are used to substantially reduce

the amount of data that need to be communicated to a fusion center, while ensuring high

target detection and estimation performance. In the first part, this dissertation derives the
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theoretical requirements and performance guarantees for the application of compressive sens-

ing to both MIMO radar settings, namely, the collocated MIMO radars and the distributed

MIMO radars. Confirming previous simulations based observations, the theoretical results

of this thesis show that exploiting the sparsity of the target vector can reduce the amount

of measurements needed for successful target estimation. For compressive sensing based

distributed MIMO radars, we also propose two low-complexity signal recovery approaches.

With the increasing demand of radio spectrum, the operating frequency bands of com-

munication and radar systems often overlap, causing one system to exert interference to

the other. Uncoordinated interference from communication systems may significantly harm

the tactical radar functionality and vice versa. In the second part, this dissertation stud-

ies spectrum sharing between a MIMO communication system and a MIMO radar system

in various scenarios. First, a cooperative spectrum sharing framework is proposed for the

coexistence of MIMO radars and wireless communications. Radar transmit precoding and

adaptive communication transmission are adopted, and are jointly designed to maximize

signal-to-interference-plus-noise ratio (SINR) at the radar receiver subject to the communi-

cation system meeting certain rate and power constraints. Compared to the noncooperative

approaches in the literature, the proposed approach has the potential to improve the spec-

trum utilization because it introduces more degrees of freedom. In addition, the proposed

spectrum sharing framework considers several practical issues which are not addressed in

literature, e.g., the radar pulsed transmit pattern, targets falling in different range bins, and

radar systems operating in the presence of clutter. Second, we investigate spectrum shar-

ing between a MIMO communication system and a recently proposed sparse sensing based

radar, namely the matrix completion based MIMO radar (MIMO-MC). MIMO-MC radar

receivers take sub-Nyquist rate samples, and transfer them to a fusion center where the full

data matrix is completed with high accuracy. MIMO-MC radars, in addition to reducing

communication bandwidth and power as compared to MIMO radars, offer a significant ad-

vantage for spectrum sharing. The advantage stems from the way the sub-sampling scheme

at the radar receivers modulates the interference channel from the communication system

transmitters, rendering it symbol dependent and reducing its row space. This makes it eas-

ier for the communication system to design its waveforms in an adaptive fashion so that it
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minimizes the interference to the radar subject to meeting rate and power constraints. Two

methods are investigated to minimize the effective interference power to the radar receiv-

er: 1) design the communication transmit covariance matrix with fixed the radar sampling

scheme, and 2) jointly design the communication transmit covariance matrix and the MIMO-

MC radar sampling scheme. Furthermore, we investigate joint transmit precoding for the

co-existence of a MIMO-MC radar and a MIMO wireless communication system in the p-

resence of clutter. We show that the error performance of matrix completion in MIMO-MC

radars is theoretically guaranteed when precoding is employed. The radar transmit pre-

coder, the radar sub-sampling scheme, and the communication transmit covariance matrix

are jointly designed to maximize the radar SINR while meeting certain communication rate

and power constraints. Efficient optimization algorithms are provided along with insight on

the proposed design problem.
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Chapter 1

Introduction

In this chapter, we provide background and literature review on multi-input multi-output

(MIMO) radar, sparse sensing in MIMO radar based on compressed sensing and matrix

completion, as well as spectrum sharing between radar and communication systems.

Notation: The notations in this dissertation are summarized in Table 1.1.

1.1 Radar Basics

Radar is an active sensing system using radio frequencies to determine target parameters,

such as range, the direction of arrival and velocity [1, 2]. The radar transmit component

transmits modulated radio waves or waveforms, which are reflected by targets in the propa-

gation path. At the radar receive side, the target echoes are demodulated and processed to

determine the target information.

To illustrate the basic principles, let us consider a monostatic pulsed radar, which trans-

mits waveforms in short bursts or pulses [2]. The transmitted waveform is modeled as

x (t) = s (t) e−j2πft, t ∈ [0, TPRI]

= a (t) e−jϕ(t)e−j2πft
(1.1)

where f , s(t) and TPRI are the carrier frequency, the complex baseband waveform and the

pulse repetition interval, respectively. The term a(t) and ϕ(t) represent the amplitude and

phase of the waveform. The received signal can be written as

r (t) = βs

(
t− τ0 +

2vt

c

)
e−j2πf(t−τ0)−jν0t + n(t). (1.2)

where β, τ0, v, and ν0 denote the target reflection coefficient, round trip delay from the

radar to the target, the target velocity, and the Doppler shift, respectively. It holds that
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Table 1.1: Notations

CN (µ,Σ) the circularly symmetric complex Gaussian distribution with
mean µ and covariance matrix Σ

| · |, Tr(·) matrix determinant & trace
N+
L the set {1, . . . , L}

δij the Kronecker delta
x+ max(0, x)
bxc the largest integer smaller or equal to x
<(·) the real part of a complex variable
AT ,AH the transpose and Hermitian transpose of A
⊗ the Kronecker product
◦ the Hadamard product
‖A‖ the spectral norm of matrix A, i.e., the largest singular value
‖A‖∗ the nuclear norm of matrix A, i.e., the sum of singular values
‖A‖F the Frobenius norm of matrix A, i.e.,

√
Tr(AHA)

A·m the m-th column vector of A
Am· the m-th row vector of A.
[A]i,j the (i, j)-th element of matrix A
R(A) the range (column space) of matrix A

ν0 , 4πvf
c , where c is the speed of light. n(t) denotes the additive noise. The target range

from the radar is d = τ0c
2 .

Assuming a narrowband waveform is transmitted, we can ignore the time-delay of the

waveform introduced by target movements. The baseband signal can be simplified as follows

r (t) = βs (t− τ0) ej(2πfτ0−ν0t) + n(t), (1.3)

The received signal r (t) then goes through a matched filter s∗(t)ejνt, which maximizes

the output SNR at time delay instant τ and Doppler shift ν. The matched filter output is

given by

z (τ, ν) = β̃

∫ +∞

−∞
s (t− τ0) s∗ (t− τ) ej(ν−ν0)tdt+

∫ +∞

−∞
n (t) s∗ (t− τ) ejνtdt

, β̃A (τ − τ0, ν − ν0) + ñ(τ)

(1.4)

where β̃ absorbs the constant terms, and

A(τ, ν) ,
∫ ∞
−∞

s (t) s∗ (t− τ)ejνtdt,

ñ(τ) ,
∫ +∞

−∞
n (t) s∗ (t− τ) ejνtdt.

(1.5)



3

|A(τ, ν)| is known as the ambiguity function of the radar waveform [2]. If the matched filter

perfectly matched to the target echo, the filter output corresponds to the ambiguity function

evaluated at (τ, ν) = (0, 0). The ambiguity function has the property that |A(τ, ν)| ≤

|A(0, 0)|. Therefore, the target range and velocity can be extracted by locating the peak

of the matched filter output in the τ -ν plane. When there are multiple targets, multiple

peaks would present in the τ -ν plane. Ideally, |A(τ, ν)| should be a delta function, which

could achieve highly accurate range and Doppler estimation and distinguish closely located

multiple targets. Otherwise, a weak target can be masked by the sidelobe of a closely located

strong target.

Another important target parameter is angle or DOA. Let us consider a phased array

[1] with Mt transmit and Mr receive antennas as shown in Fig.1.1. Suppose that there are

K targets on the same plane with the antennas, each at direction of arrival {θk} and range

{dk} with respect to (w.r.t.) the radar phase center. During each pulse, the target echoes

received at the radar RX antennas are demodulated to baseband as follows:

y(t) =
K∑
k=1

βkvr(θk)v
T
t (θk)1s(t− τk) + n(t), t ∈ [0, TPRI ], (1.6)

where n(t) ∈ CMr is the additive nose; 1 denotes the ones vector of length Mt; τk , 2dk/c;

the time delays in the received waveform are approximated by τk for different radar TX-RX

pairs due to the narrowband assumption; βk is a complex amplitude contains contributions

from the radar cross section, the common carrier phase delay ej2πfcτk and the Doppler shift

if the k-th target is moving; the Swerling II target model is assumed, i.e., the βk’s vary from

pulse to pulse and have distribution CN (0, σ2
βk); and vr(θ) ∈ CMr is the receive steering

vector defined as

vr(θ) ,
[
ej2π〈d

r
1,u(θ)〉/λc , . . . , ej2π〈d

r
Mr

,u(θ)〉/λc
]T
, (1.7)

with dr1 , [xrm y
r
m]T denoting the two-dimensional coordinates of the m-th RX antenna,

u(θ) , [cos(θ) sin(θ)]T , λc denoting the carrier wavelength. vt(θ) ∈ CMt is the transmit

steering vector and is respectively defined. For the case of uniform linear array (ULA), the

receive steering vector is simplified as

vr(θ) ,
[
1, ejα, . . . , ej(Mr−1)α

]T
,
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Figure 1.1: Illustration of a phased array radar with Mt transmit and Mr receive antennas.
All transmit antennas transmit the same waveform s(t), possibly with different weights.

where α , 2πdr sin(θ)/λc is called the spatial frequency [3] and dr is the inter distance. The

spatial frequencies can be obtained by applying FFT on y(t), based on which the angles θk’s

can be obtained. Subspace methods, such as multiple signal classification (MUSIC), can be

used to achieve more accurate DOA information [4].

1.2 MIMO Radar

Multiple-input multiple-output (MIMO) radars [5–8] have received considerable attention in

recent years due to their improved performance over traditional phased array radars. Unlike

the phased array radars in which all antennas transmit an identical waveform with different

scalar weights [1], MIMO radars adopt independent waveforms for the transmit antennas.

The target information is extracted by a bank of matched filters at the receive side. MIMO

radar system can achieve high resolution with a relatively small number of transmit (TX)

and receive (RX) antennas [9–12]. Depending on the locations of antennas, MIMO radars

can be classified into collocated [5, 6] and widely separated [7, 8].

1.2.1 MIMO Radar with Collocated Antennas

In the collocated MIMO radars, the transmit and receive antennas are closely located and

thus the target radar cross section (RCS) experienced by different transmit and receive

pairs could be viewed as identical [5, 6]. Let us consider a collocated MIMO radar system



5

with Mt transmit and Mr receive antennas as shown in Fig.1.2. The MIMO radar employs

narrowband orthogonal waveforms sm(t),m = 1, . . . ,Mt, each of which contains L coded

sub-pulses:

sm(t) =
1

Tb

L∑
l=1

smlRect[t− (l − 1)Tb], t ∈ [0, Tp],

where Rect[t] equals 1 if t ∈ [0, Tb], otherwise 0; Tb and Tp denotes the sub-pulse and pulse

duration, respectively; sm , [sm1, . . . , smL]T denotes the orthogonal code vector. It holds

that

〈sm, sn〉 =

∫ Tp

0
sm(t)sn(t)dt = δmn.

Suppose that there are K targets on the same plane with the antennas, each at direction

of arrival {θk} in the same range bin w.r.t. the radar phase center. During each pulse, the

target echoes received at the radar RX antennas are demodulated to baseband as follows:

y(t) =

K∑
k=1

βkvr(θk)v
T
t (θk)s(t) + n(t), t ∈ [0, TPRI ], (1.8)

where s(t) , [s1(t), . . . , sMt(t)]
T and the other terms are defined similarly as in (1.6).

At each receive antenna, a matched filter bank composed of Mt transmit waveforms is

used to separate target echoes contributed by Mt transmission. As a result, Mr receive

antennas could obtain MtMr filter output in total:

r =

K∑
k=1

βkvr(θk)⊗ vt(θk) + ñ

Target estimation can be performed based on YR via standard array processing schemes

[4]. In particular, for the ULA transmit array with inter-distance dt and ULA receive array

with inter-distance dr = Mtdt, we have

vr(θ)⊗ vt(θ) ≡
[
1, ejα, . . . , ej(MtMr−1)α

]T
,

where α , 2πdt sin(θ)/λc. Therefore, the filter output r can be viewed as the signal received

by a virtual array of length MtMr elements. This suggests that the collocated MIMO radar

provides a much higher degree of freedom with only a small number of transmit and receive

antennas. Therefore, collocated MIMO radars achieve superior spatial resolution compared

with traditional radar systems [6, 12].
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Figure 1.2: Illustration of a collocated MIMO radar system equipped with Mt transmit
antennas and Mr receive antennas. Independent waveforms are used at different transmit
antennas. Both transmit and receive array are ULA.

1.2.2 MIMO Radar with Widely Separated Antennas

In distributed MIMO radars, the transmit and receive antennas are widely separated from

each other compared with their distance to the targets [7, 8]. For example, for an extended

target of dimension 10λ and at distance 10000λ, where λ denotes the carrier wavelength, it

is shown the signal propagation paths are independent if the separation between antennas of

the MIMO radar is of order 1000λ. In such scenario, the transmit antennas emit independent

waveforms, which propagate through independent paths from transmitters to receivers via

the targets. As a result, distributed MIMO radars enjoy spatial diversity to reduce the RCS

scintillation of the targets.

There are two modes to process the radar observations, namely, the non-coherent and

coherent methods [7, 8]. The non-coherent method only utilizes the signal amplitude, which

requires only time synchronization between transmit and receive antennas. The coherent

method utilizes both amplitude and phase information, which requires both time and phase

synchronization.

In summary, collocated MIMO radars exploit phase differences in target returns induced

by transmit and receive antennas, to effectively increase the array aperture and achieve high

resolution. Distributed MIMO radars enjoy spatial diversity, introduced by the multiple

independents paths between the targets and the transmit/receive antennas, and thus achieve

improved target estimation performance.
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1.3 MIMO Radar Based on Sparse Sensing

Reliable surveillance requires collection, communication and process of vast amounts of data.

This is a power and bandwidth consuming task, which can be especially taxing in scenarios

in which the antennas are on battery operated devices and are connected to the fusion center

via a wireless link. Sparse sensing techniques are used to substantially reduce the amount of

data that need to be communicated to a fusion center, while ensuring high target detection

and estimation performance.

1.3.1 Introduction to Compressed Sensing

Compressed sensing, or compressive sampling (CS) [13–16], is a relatively recent development

for finding sparse solutions to under-determined linear systems. The theory of CS states

that a sparse signal s can be recovered from measurements z = Ψs via `1-optimization as

follows

min‖s‖1, s.t. z = Ψs (1.9)

where s is a n dimensional sparse vector with K nonzero entries and zero elsewhere; Ψ is

the m×n dimensional measurement matrix with m� n. The recoverability of the recovery

algorithm is guaranteed by the restricted isometry property (RIP) of Ψ.

Definition 1. Matrix Ψ satisfies the RIP of order K with restricted isometry constant

(RIC) δK , shorted by RIP(K, δK), if δK is the smallest number such that for all K-sparse s

(1− δK)‖s‖22 ≤ ‖Ψs‖22 ≤ (1 + δK)‖s‖22.

If δK is small enough, s can be recovered exactly from (1.9). For sub-Gaussian random

matrix, its RIC satisfies δK ≤ δ with high probability provided that m ≥ cδ−2K log n where

c is a constant [15].

Recent works [17] show that block or group sparsity, when it exists in the signal, can be

used as a prior to further reduce the number of measurements required to recover the sparse

vector. Block sparsity in the sparse signal was investigated in [18–20], where the elements

in the sparse signal vector appear in blocks. Let us consider a block sparse vector s ∈ CMN

with at most K nonzero blocks out of N equal-sized blocks, i.e., M , |In|, ∀n ∈ N+
N , where
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In is the index set for the n-th block. Let us denote by AKB the space in which the block

sparse vectors lie.

Given the noisy measurement vector z = Ψs + n with Ψ ∈ CL×NM as the measurement

matrix and n ∈ CL as the additive noise vector, the recovery of s ∈ AKB is achieved via the

following convex optimization problem

min
s

N∑
n=1

‖s[In]‖2 s.t. ‖z−Ψs‖2 ≤ ε. (1.10)

which is referred to as mixed `2/`1-optimization program (L-OPT) [18]. The effectiveness of

using L-OPT relies on the RIP of Ψ w.r.t. vectors in A2K
B .

Definition 2 ([21]). For a union of certain subspaces denoted by A, Ψ is said to satisfy the

A-restricted isometry property with constant δ ∈ (0, 1), in short, A-RIP(K, δ), if δ is the

smallest value such that

(1− δ)‖s‖22 ≤ ‖Ψs‖22 ≤ (1 + δ)‖s‖22 (1.11)

holds for all s ∈ A.

The above definition is for general union of subspaces. If Ψ satisfies the RIP over A2K
B ,

or equivalently, if Ψ satisfies the AB-RIP(2K, δ2K), then the next lemma shows that the

solution of (1.10), i.e., ŝ, is a good approximation of s.

Lemma 1 (Theorem 2 in [18]). If Ψ satisfies the AB-RIP(2K, δ2K) with δ2K <
√

2 − 1,

then for the solution of (1.10), ŝ, it holds that

‖ŝ− s‖2 ≤
4
√

1 + δ2K

1− (1 +
√

2)δ2K

ε , g(ε). (1.12)

It is shown in [18] that Gaussian measurement matrices require fewer measurements to

satisfy the AB-RIP(2K, δ2K) as compared to the number of measurements needed to satisfy

the RIP(2K, δ2K). Therefore, exploiting block sparsity in s reduces the required number of

measurements for sparse recovery.

1.3.2 MIMO-CS: Compressed Sensing Based MIMO Radar

By exploiting the sparsity of targets in the radar scene, sparse sensing [13, 15, 16] has

been studied in the context of both collocated [22–29], and distributed MIMO radars [30,
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31]. MIMO-CS radar exploits the sparsity of targets in the target space and enables target

estimation based on a small number of samples obtained at the receive antennas.

Suppose that we are interested in target parameters including the time delay from the

transmitter to the receiver via the k-th target, i.e., τk , the target azimuth angle, θk, and

Doppler frequency, fk, for all k ∈ N+
K . To exploit the target space sparsity, the delay-angle-

Doppler space is discretized on the grid T ×Θ×D with |T | = Nτ , |Θ| = Nθ, and |D| = Nf .

All grid points are ordered and labeled by the index set I , {1, . . . , NτNθNf}. It is assumed

that the targets fall on grid points.

The transmit array emits probing pulses and each receiver obtains Nyquist rate samples

from the target returns during each pulse. The fusion center collects the samples from all

receivers and stacks them into vector z ∈ CLPMr . From the MIMO-CS radar literature, the

model obeys

z = Ψs + n, (1.13)

where n is the interference/noise vector, s ∈ CNτNθNf denotes the target space vector. s

is sparse whose elements are nonzero only if the corresponding grid points are occupied by

targets. Ψ ∈ C(LPMr)×(NτNθNf ) is the measurement matrix; its n-th column is associat-

ed with the n-th grid point. The recovery of s can be achieved by the `1 minimization

algorithms. The estimation of the target parameters can be identified by the grid points

associated with the dominant elements in recovered s. It is well-known that the RIP [14] of

the measurement matrix Ψ plays an important role on guaranteeing the recoverability and

estimation performance of s. In order to provide the performance of MIMO-CS radars, it is

essential to characterize the RIP of Ψ.

For collocated MIMO radars, compressed sensing has been considered and evaluated

thoroughly in [22–25, 28]. The work in [26] provided the first nonuniform recovery guar-

antee for range-angle-Doppler estimation and the corresponding bounds on the number of

transmit/receive antennas and measurements. However, the results only apply to MIMO-

MC radars with virtual uniform linear array (ULA) configuration. Spatial CS for MIMO

radars with random transmit/receive array was proposed in [27, 28] for angle estimation.

A nonuniform recovery guarantee was provided in [27, 28] based on the isotropy property

of the measurement matrix. The work in [28] also provided a uniform recovery guarantee
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based on the coherence analysis of the measurement matrix. However, the analysis cannot

be extended to the range-angle-Doppler estimation.

For distributed MIMO radars, the problem of target location and speed estimation was

investigated in [30, 31] as a block sparse signal recovery problem. The block sparsity in the

target vector arises by grouping together entries corresponding to paths between a given grid

point and all transmit/receive antenna pairs. Block matching pursuit (BMP) is applied in

[30] for signal support recovery. Block sparsity in distributed MIMO radars was also studied

in [31], where a group Lasso approach was used to exploit the block sparsity. Simulations

in [30, 31] show that exploiting block sparsity results in significant detection performance

gains over methods which just consider unstructured sparsity. To the best of our knowledge,

there are no theoretical works on the performance of distributed MIMO-CS radars.

1.3.3 MIMO-MC: Matrix Completion Based MIMO Radar

Reliable surveillance requires collection, communication and fusion of vast amounts of data

from various antennas. This is a power and bandwidth consuming task, which can be

especially taxing in scenarios in which the antennas are on battery operated devices and

are connected to the fusion center via a wireless link. Recently, MIMO radars using matrix

completion (MIMO-MC) [32–35] have been proposed to save power and bandwidth on the

link between the receivers and the fusion center, thus facilitating the network implementation

of MIMO radars.

Consider a collocated MIMO radar system with Mt TX antennas and Mr RX antennas.

The targets are in the far-field of the antennas and are assumed to fall in the same range

bin. Following the model of (1.8), the data matrix at the fusion center can be formulated as

Y = BΣATS + W, (1.14)

where the m-th row of Y ∈ CMr×L contains L samples forwarded by the m-th antenna; B =

[vr(θ1), . . . ,vr(θK)], A = [vt(θ1), . . . ,vt(θK)], Σ = diag(β1, . . . , βK); W denotes additive

noise; S = [s(1), · · · , s(L)], with s(l) = [s1(l), · · · , sMt(l)]
T being the l-th snapshot across

the transmit antennas. Let us denote the target response matrix BΣAT by D ∈ CMr×Mt .

If the number of targets is smaller than Mr and L, matrix DS is low-rank and can



11

be provably recovered based on a subset of its entries [33, 35]. This observation gave rise

to MIMO-MC radars [32–35], where each RX antenna sub-samples the target returns and

forwards the samples to the fusion center. The sampling scheme could be a pseudo-random

sequence of integers in [1, L], with the fusion center knowing the random seed of each RX

antenna.

In MIMO-MC radars, the partially filled data matrix at the fusion center can be math-

ematically expressed as follows (see [33] Scheme I)

Ω ◦Y = Ω ◦ (DS + W), (1.15)

where Ω is a matrix containing 0’s and 1’s; the 1’s in the m-th row correspond to the

sampled symbols of the m-th TX antenna. The sub-sampling rate, p, equals ‖Ω‖0/(LMr).

When p = 1, the Ω matrix is filled with 1’s, and the MIMO-MC radar is identical to the

traditional MIMO radar. At the fusion center, the completion of DS is formulated as the

following problem [36]

min
M
‖M‖∗ s.t. ‖Ω ◦M−Ω ◦Y‖F ≤ δ, (1.16)

where δ > 0 is a parameter related to the noise over the sampled noise matrix entries,

i.e., Ω ◦W. On denoting by M̂ the solution of (1.16), the recovery error ‖M̂ −DS‖F is

determined by the noise power in Ω ◦WR, i.e., the noise enters only through the sampled

entries of the data matrix. It is important to note that, assuming that the reconstruction

error is small, the reconstructed M̂ has the same received target echo power as DS of (1.14).

MIMO-MC radars maintain the high resolution of MIMO radars, while requiring signifi-

cantly fewer data to be communicated to the fusion center, thus enabling savings in sampling

power, communication power and bandwidth. These savings are especially important to net-

worked radar receivers which are battery operated and are connected to the fusion center via

a wireless link. Unlike MIMO-CS, MIMO-MC does not require discretization of the target

space, thus does not suffer from grid mismatch issues [37].

1.3.4 Limitations of the Existing Work on MIMO Radars with Sparse Sensing

In the literature, the effectiveness of collocated MIMO-CS radars has been studied mostly

via simulations. Although there exist some theoretical results for MIMO radars with linear
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Figure 1.3: Federal Communications Commission spectrum allocation (Figure from DARPA
Shared Spectrum Access for Radar and Communications (SSPARC)).

arrays [26] and for angle estimation [27, 28], those cannot be easily extended to arbitrary

array configurations and range-Doppler-angle estimation.

Although simulations confirmed that exploiting block sparsity results in significant detec-

tion performance, there are no theoretical works on the performance distributed MIMO-CS

radars. Existing theoretical works on collocated MIMO-CS radars [26–29] cannot be ex-

tended to the distributed MIMO radar scenario. On the other hand, sparse signal recovery

techniques in radar systems introduces significant computational complexity. In [31] a group

Lasso with proximal gradient algorithm (GLasso-PGA) was used, and in [38], a mixed `1/`2

norm optimization with interior point method (L-OPT-IPM) was used. GLasso-PGA and

L-OPT-IPM achieve better estimation performance than BMP but involve higher computa-

tional complexity and require careful tuning of manually chosen parameters. The computa-

tion becomes prohibitive as the dimension of the sparse target vector increases.

1.4 Spectrum Sharing Between the Radar and Wireless Communication

Systems

Spectrum congestion in commercial wireless communications is a growing problem as high-

data-rate applications become prevalent. On the other hand, recent government studies

have shown that huge chunks of spectrum held by federal agencies are underutilized in

urban areas [39]. However, proposals and research on radar and communication spectrum

sharing vastly emerge until recent years because of regulatory concerns. In an effort to relieve
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the problem, the Federal Communications Commission (FCC) and the National Telecom-

munications and Information Administration (NTIA) have proposed to make available 150

megahertz of spectrum in the 3.5 GHz band, which was primarily used by federal radar

systems for surveillance and air defense, to be shared by both radar and communication

applications [40, 41]. From the right part of Fig. 1.3, we can see that 3.4-3.7GHz bands are

shared by LTE bands and radar system. When communication and radar systems overlap

in the spectrum, they exert interference to each other. This motivates us to consider the

spectrum sharing between radar and communication systems. Spectrum sharing targets at

enabling radar and communication systems to share the spectrum efficiently by minimizing

interference effects [42–49].

The term “radar and wireless communication spectrum sharing”, or “radar communica-

tion co-existence”, is a rather broad concept. Generally speaking, any scenario that involves

both radar and communication functionalities initialized by one or more users falls in the

definition of radar and communication spectrum sharing. The key characteristic that dif-

ferentiates radar and communication spectrum sharing from general cognitive radios [50]

is the heterogeneousness in functionality, performance metric, and signaling for radar and

communication. Radars are used for target detection and estimation, and has wide appli-

cations in civilian, military and public security purposes. The associated target detection

and estimation performance is measured in terms of probability of detection, probability

of false alarm, ROC, signal-to-interference-plus-noise ratio (SINR), minimum mean squared

error (MMSE) and Cramer-Rao lower bound, et. al [2]. Meanwhile, wireless communication

systems aim at communicating information between the transmitters and receivers. The

majority of the demand for communication is from commercial and personal usage. Com-

mon performance metrics include bit error rate, channel capacity, throughout [51, 52]. The

signaling used by radar and wireless communication systems are rather different. Radar

waveforms can be either pulsed or continuous wave. There could also be phase or frequen-

cy modulation in radar waveforms. The choice of waveform determines fundamental radar

system performance, such as SNR, range/velocity resolution and ambiguity properties [2].

Quadrature amplitude modulation (QAM) is the most extensively used signaling scheme for

wireless communication systems [51, 52].
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1.4.1 Related Work

For the radar and communication co-existence, the spectrum may be shared by radar and

communication in time division, frequency division, space division.

Existing spectrum sharing approaches basically include three categories. The most in-

tuitive one is avoiding interference by large physical separation distances between radar

and communication systems [42, 53, 54]. The National Telecommunications and Informa-

tion Administration (NTIA) reported an investigation of interference to radars operating in

the band 2.7-2.9 GHz from WiMAX base stations [53]. The proposed interference mitigation

options include reduction in the heights of WiMAX base stations, down-tilting of WiMAX

base stations and establishing larger physical separation distances. The work in [54] studied

the effect between one radar and one communication system coexisting with each other as

their relative distance is varied. In [41], NTIA reported that large exclusion zones, which

cover a large portion of the U.S., are required to protect cellular communication systems

from high power radar signal, which essentially nulls the feasibility of the physical separation

approach.

The second category is dynamic spectrum access based on spectrum sensing. Either radar

or communication system is assigned as the primary or secondary user of the channel. The

secondary user employs spectrum sensing techniques to identify the spectrum opportunity

for nonintrusive spectrum access [55, 56][57–59]. The radar performance degradation due

to in-band OFDM communication systems was studied in [60, 61], where a notch filter

was used to mitigate the communication interference. Optimum joint design of OFDM

radar and OFDM communication systems for spectrum sharing and carrier allocation has

been considered in [62–64]. The works in [48, 49, 65] studied the synthesis of optimized

radar waveforms ensuring spectral compatibility with the overlayed wireless communication

systems based on a priori radio environmental map. These methods allow the radar and

communication systems share the same carrier in the shared band at the cost of allowing

certain amount of mutual interference. However, one can explore the spatial degree of

freedom to greatly reduce the mutual interference if multiple antennas are used at both

systems, as discussed in the next category.
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The third category is spatial multiplexing enabled by the multiple antennas at both the

radar and communication systems [43–47, 66, 67]. In [43–46, 66, 67], the radar interference

to the communication system is eliminated by projecting the radar waveforms onto the null

space of the interference channel from radar to communication systems. The resulted radar

target detection performance was evaluated in [68, 69]. However, projection-type techniques

might miss targets lying in the row space of the interference channel. In addition, the inter-

ference from the communication system to the radar was not considered. Spatial filtering at

the radar receiver is proposed in [47] to reduce interference from the communication systems.

This approach, however, works only if the target is not in the direction of the interference

coming from the communication system. The output SINR of the optimal receive filter

depends on the covariance matrix of the communication interference. Clearly, the output

SINR could be further improved if the communication signaling is jointly designed.

Dual-function systems, which integrate both radar and communication functionality into

one joint platform, are a special case of co-existence [70–72]. In particular, the embedding

of communication signals into radar emissions for dual-functionality was reported in [73–

77]. Interesting readers can refer to the review paper [78]. The radar and communication

co-existence performance bounds were provided in [79, 80], where the radar estimation infor-

mation rate and the communication data information rate were considered. The feasibility

of merging communication and radar functionality into one common platform using OFDM

signals has also been explored [81–85].

In parallel to the research on the coexistence of radar and communication systems, there

are a lot of works focusing on joint radar and communication system, a new architecture

which supports both the radar and communication functionality. Interesting readers can

referred to the work in [65, 79, 80, 85, 86].

1.4.2 Limitations of the Existing Work on Radar-Communication Co-existence

In general, the existing literature on MIMO radar-communication systems spectrum sharing

addresses interference mitigation for either solely the communication system [43–46, 66] or

solely the radar [47]. While joint design of traditional radar and communication systems

for spectrum sharing has been considered in [42, 62, 64], co-design of MIMO radar and
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MIMO communication systems for spectrum sharing has not been addressed before. A new

spectrum sharing framework can be proposed based on a higher level cooperation between

the two systems. As an example, radar precoding can be introduced for new degrees of

freedom of system design. The joint design of the radar precoding matrix and the communi-

cation codewords is expected to improve the overall performance. Unlike the radar waveform

projection based methods [43–46], the joint design approach could potentially align the tar-

get returns and the communication interference separately in different subspaces, and thus

suppress the interference without degrading the target returns.

The current work only considered the simplified scenario where multiple targets in the

same range bin. In practice, multiple targets may fall in different range bins, which in-

troduces target-dependent time variations in the radar received signal. In addition, pulsed

radar operates in a particular pattern, i.e., transmitting a short pulsed waveform and lis-

tening target echoes for a much longer period, which are two periods of a pulse repetition

interval. At the communication receiver, radar interference only present during the radar

transmit period. Furthermore,a clutter free scenario was assumed in [43–47]. However, un-

wanted echoes returned from ground, sea, and interfering targets, termed by clutter, can

cause serious performance loss in radar systems. Realistic radar systems have to properly

deal with clutter. By considering such radar operation conditions, the co-existence system

model could be very different compared with that in existing works.

1.5 Contributions of the Dissertation

1.5.1 Theoretical Analysis and Efficient Algorithms for MIMO-CS Radars

For collocated MIMO radars, Chapter 2 considers range-angle-Doppler estimation in

MIMO-CS radars with arbitrary array configuration. We analyze the restricted isometry

property (RIP) of the measurement matrix. The RIP conditions involve, among other

quantities, the number of transmit and receive antennas. A scheme is proposed that selects

the subset of receive antennas with the smallest cardinality that meet the RIP conditions.

For distributed MIMO radars, we address the theoretical and computational issues

for distributed MIMO radars using compressed sensing in Chapter 3. The contribution of
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Chapter 3 is two-fold:

• We provide uniform recovery guarantees by analyzing the A-RIP of the block diagonal

measurement matrix. The proposed theoretical results validate the simulations based

finding that the structure in the measurement matrix results in either reduction of the

number of measurements needed, or improved target estimation for the same number

of measurements.

• Two low-complexity approaches have been proposed to reduce the computation while

maintaining the estimation performance. The first approach was an ADMM-based

sparse signal recovery algorithm. The second approach decouples the location and

speed estimation into two separate stages. The location estimation obtained in the

first stage is used to prune the target location-speed space in the speed estimation

stage.

This work has been published in

• B. Li and A. Petropulu, “RIP analysis of the measurement matrix for compressive

sensing-based MIMO radars,” IEEE 8th Sensor Array and Multichannel Signal Pro-

cessing Workshop (SAM), Spain, 2014, pp. 497-500.

• B. Li and A. P. Petropulu, “Structured sampling of structured signals,” IEEE Global

Conference on Signal and Information Processing (GlobalSIP), Austin, TX, 2013, pp.

1009-1012.

• B. Li and A. P. Petropulu, “Efficient target estimation in distributed MIMO radar

via the ADMM,” the 48th Annual Conference on Information Sciences and Systems

(CISS), Princeton, NJ, 2014, pp. 1-5.

• B. Li and A. P. Petropulu, “Performance guarantees for distributed MIMO radar based

on sparse sensing,” IEEE Radar Conference, Cincinnati, OH, 2014, pp. 1369-1372.

• B. Li and A. P. Petropulu, “Distributed MIMO radar based on sparse sensing: Analy-

sis and efficient implementation,” in IEEE Transactions on Aerospace and Electronic

Systems, vol. 51, no. 4, pp. 3055-3070, Oct. 2015.
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1.5.2 A Joint Design Approach for Radar-Communication Co-existence under

Realistic Conditions

In Chapter 4, we propose a spectrum sharing framework for the coexistence of MIMO radars

and a communication system, for a scenario in which the targets fall in different range bins.

The coexistence model considers the radar operation pattern, i.e., transmitting a short

pulsed waveform and listening target echoes for a much longer period. Radar transmit (TX)

precoding and adaptive communication transmission are adopted and are jointly designed

to maximize the signal-to-interference-plus-noise ratio (SINR) at the MIMO radar receiver

while meeting certain rate and power constraints at the communication system. Analysis

on the obtained solution indicates that a two-level constant communication rate over the

radar TX period and the radar listening-only period could achieve the same radar SINR as

the adaptive transmission. Based on this fact, we propose a new design with a much lower

dimension which has reduced complexity without degrading the radar SINR.

In Chapter 5, we consider the co-design based spectrum sharing of a MIMO radar and a

communication system for a scenario in which the radar system operates in the presence of

clutter. Both the radar and the communication system use transmit precoding to maximize

the radar SINR subject to the communication system meeting certain rate and power con-

straints. Due to the dependence of the clutter on radar precoding matrix, the optimization

w.r.t. the radar precoder is a maximization of a nonconvex function over a nonconvex feasi-

ble set. Solving such problem is computationally intractable and demanding. As an efficient

alternative, we propose to maximize a lower bound of the SINR. In the resulting alternating

maximization problem, the alternating iteration of the communication covariance matrix

reduces to one SDP problem. We show that the radar precoder always has a rank one

solution. Based on this key observation, the alternating iteration of the radar precoder is

solved by a sequence of second order cone programming (SOCP) problems, which are more

efficient and tractable than SDP problems.

This work has been published in

• B. Li, H. Kumar and A. P. Petropulu, “A joint design approach for spectrum shar-

ing between radar and communication systems,” IEEE International Conference on
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Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp. 3306-3310.

• B. Li and A. Petropulu, “MIMO radar and communication spectrum sharing with

clutter mitigation,” IEEE Radar Conference (RadarConf), Philadelphia, PA, 2016,

pp. 1-6.

1.5.3 Spectrum Sharing Between Matrix Completion Based MIMO Radars and

MIMO Wireless Communications

By employing sparse sampling, MIMO-MC radars achieve the performance of MIMO radars

but with significantly fewer data samples. Spectrum sharing will be more and more popular

to enable the co-existence of radar and wireless communications sharing the scarce RF

spectrum. Sparse sensing and spectrum sharing seem to be unrelated with each other in

their applications to MIMO radars. The integration of these two directions has not been

considered in MIMO radar literature. This dissertation bring a new perspective by answering

the following key questions:

• Is it possible for MIMO radars to achieve BOTH savings in data samples and spectrum

sharing with wireless communications?

• What role does sparse sensing play in the radar-communication spectrum sharing

framework?

• How can transmit beamforming and clutter mitigation be integrated into the MIMO-

MC radars which coexist with wireless communication systems?

Chapter 6 of this dissertation proposes ways via which a MIMO-MC radar and a MIMO

communication system, in a cooperative fashion, negotiate spectrum use in order to mitigate

mutual interference. The MIMO-MC radars, in addition to reducing communication band-

width and power as compared to MIMO radars, offer a significant advantage for spectrum

sharing. The advantage stems from the way the sampling scheme at the radar receivers

modulates the interference channel from the communication system transmitters, rendering

it symbol dependent and reducing its row space. This makes it easier for the communication
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system to design its waveforms in an adaptive fashion so that it minimizes the interference

to the radar subject to meeting rate and power constraints.

Chapter 7 of this dissertation proposes a design in which a MIMO radar system with

matrix completion (MIMO-MC) optimally co-exists with a MIMO wireless communication

system in the presence of clutter. To facilitate the co-existence, we employ transmit precod-

ing at the radar and the communication system. First, we show that the error performance

of matrix completion is theoretically guaranteed when precoding is employed. Second, the

radar transmit precoder, the radar sub-sampling scheme, and the communication transmit

covariance matrix are jointly designed to maximize the radar SINR while meeting certain

rate and power constraints for the communication system. Efficient optimization algorithms

are provided along with insight on the feasibility and properties of the proposed design.

This work has been submitted to /published in

• B. Li and A. P. Petropulu, “Spectrum sharing between matrix completion based MI-

MO radars and a MIMO communication system,” IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Austrilia, 2015, pp. 2444-2448.

• B. Li and A. P. Petropulu, “Radar precoding for spectrum sharing between matrix

completion based MIMO radars and a MIMO communication SYSTEM,” IEEE Global

Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, 2015, pp.

737-741.

• B. Li, A. P. Petropulu and W. Trappe, “Optimum Co-Design for Spectrum Sharing

between Matrix Completion Based MIMO Radars and a MIMO Communication Sys-

tem,” in IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4562-4575,

Sept.1, 2016.

• B. Li and A. P. Petropulu, “Joint Transmit Designs for Co-existence of MIMO Wire-

less Communications and Sparse Sensing Radars in Clutter,” IEEE Transactions on

Aerospace and Electronics Systems, submitted in 2016.
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1.6 Outline of the Dissertation

The dissertation is organized as follows.

In Chapter 2, we analyze the RIP of the measurement matrix in compressive sensing

based collocated MIMO radars. A scheme is proposed that selects the subset of receive

antennas with the smallest cardinality that meet the RIP conditions.

In Chapter 3, we confirm that exploiting block sparsity in compressive sensing based dis-

tributed MIMO radars results in significant detection performance by analyzing the A-RIP

of the block diagonal measurement matrix. Two low-complexity approaches are proposed to

reduce the computation while maintaining the estimation performance.

In Chapter 4, a flexible spectrum sharing framework is proposed for the coexistence of

MIMO radars and a communication system, for scenarios in which the targets fall in different

range bins.

In Chapter 5, we consider the co-design based spectrum sharing of a MIMO radar and

a communication system for a scenario in which the radar system operates in the presence

of clutter.

Chapter 6 proposes ways via which a MIMO-MC radar and a MIMO communication

system, in a cooperative fashion, negotiate spectrum use in order to mitigate mutual inter-

ference.

Chapter 7 further proposes a joint transmit design in which a MIMO radar system with

matrix completion (MIMO-MC) optimally co-exists with a MIMO wireless communication

system in the presence of clutter.

Finally, conclusions and possible future research directions are presented in Chapter 8 .
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Chapter 2

RIP Analysis for Compressive Sensing-Based Collocated
MIMO Radars

This chapter considers range-angle-Doppler estimation in collocated, compressive sensing-

based MIMO (MIMO-CS) radars with arbitrary array configuration. In the literature, the

effectiveness of MIMO-CS radars has been studied mostly via simulations. Although there

exist some theoretical results for MIMO radars with linear arrays, those cannot be easily

extended to arbitrary array configurations. This chapter analyzes the restricted isometry

property (RIP) of the measurement matrix. The RIP conditions involve, among other

quantities, the number of transmit and receive antennas. A scheme is proposed that selects

the subset of receive antennas with the smallest cardinality that meet the RIP conditions.

2.1 Introduction

Recently, compressive sensing (CS) [14] based MIMO radars were shown to achieve the

superior resolution of collocated MIMO radars with significantly fewer measurements [22,

24, 25]. If there is a small number of targets in the target space, target estimation can

be formulated as a sparse signal recovery problem. The work in [26] provided the first

nonuniform recovery guarantee for range-angle-Doppler estimation and the corresponding

bounds on the number of transmit/receive antennas and measurements. However, the results

only apply to MIMO-CS radars with virtual uniform linear array (ULA) configuration, i.e.,

Mr-element λ/2-spaced receive array and Mt-element Mrλ/2-spaced transmit array. Also,

in [26], the angular space has to be discretized on a uniform grid with spacing 2
MtMr

. The

extension of the results of [26] to general array configurations is nontrivial. Spatial CS

for MIMO radars with random transmit/receive array was proposed in [27, 87] for angle

estimation. A nonuniform recovery guarantee was provided in [27, 87] based on the isotropy
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property of the measurement matrix. The work in [87] also provided a uniform recovery

guarantee based on the coherence analysis of the measurement matrix. However, the analysis

cannot be extended to the range-angle-Doppler estimation.

In this chapter, we consider the range-angle-Doppler estimation using CS-based collo-

cated MIMO radars with arbitrary array configuration. Our goal is to provide the restricted

isometry property (RIP) of the measurement matrix, which can then be readily used to de-

rive uniform recovery guarantees. Towards this goal, we derive a unified upper bound on the

entries of the Gram of the measurement matrix. To relate this with the RIP, we adopt the

well-known scheme in [88] based on Geršgorin’s Disc Theorem, which was originally applied

for the RIP of Toeplitz matrices. The RIP conditions involve the number and positions of

the antennas. Based on this observation, we propose a scheme that selects the subset of

receive antennas with the smallest cardinality that meet the RIP conditions.

This chapter is organized as follows: Section 2.2 introduces the sparse model for collo-

cated MIMO radar system. In Section 2.3, we present the RIP analysis of the measurement

matrix. Also, we propose an optimization scheme to minimize the required number of receive

antennas, which is validated in Section 2.4. Conclusions are presented in Section 2.5.

2.2 Signal Model

Consider the collocated MIMO radar system of [Yao12] equipped with transmit and receive

arrays with Mt and Mr antennas, respectively. Let us assume that there are K moving

targets and that the environment is clutter free. We are interested in target parameters

including the time delay from the transmitter to the receiver via the k-th target, i.e., τk

, the target azimuth angle, θk, and Doppler frequency, fk, for all k ∈ N+
K . It holds that

τk = 2dk/vc and fk = 2vkfc/vc, where dk, vk, fc and vc denote target range, target radial

velocity, carrier frequency and speed of light, respectively. Without loss of generality, we

use delay instead of range. To exploit the target space sparsity, the delay-angle-Doppler

space is discretized on the grid T ×Θ×D with |T | = Nτ , |Θ| = Nθ, and |D| = Nf . All grid

points are ordered and labeled by the index set I , {1, . . . , NτNθNf}. It is assumed that

the targets fall on grid points.
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The transmit array emits P probing pulses with pulse repetition interval TPRI . Each

receiver obtains L Ts-spaced samples from the target returns during each pulse. The fusion

center collects the samples from all receivers and stacks them into vector z ∈ CLPMr . From

[Yao12], the model obeys

z = Ψs + n, (2.1)

where n is the interference/noise vector, s ∈ CNτNθNf denotes a sparse target vector whose

K nonzero entries correspond to the complex reflection coefficients of the targets, and Ψ ∈

C(LPMr)×(NτNθNf ) is the measurement matrix; its n-th column is associated with the n-th

grid point as follows

Ψn =vr(θn)⊗ {D(fn)⊗ [Xτnvt(θn)]} ,∀n ∈ I, (2.2)

where ⊗ is the Kronecker product, vr(θ) ∈ CMr is the receive steering vector defined as

vr(θ) ,
[
ej2π〈d

r
1,w(θ)〉/λ, . . . , ej2π〈d

r
Mr

,w(θ)〉/λ
]T
, (2.3)

(vt(θ) is the transmit steering vector and is respectively defined) with drm , [xrm y
r
m]T denot-

ing the two-dimensional coordinates of the m-th receive antenna, w(θ) , [cos(θ) sin(θ)]T ,

and
D(f) ,

[
1, ej2πfTPRI , . . . , ej2πfTPRI(P−1)

]T
,

Xτ , [x1,τ , . . . ,xMt,τ ] ,

xm,τ , [xm[τ ], . . . , xm[(L− 1)Ts + τ ]]T , m ∈ N+
Mt

(2.4)

with λ and xm[t] denote, respectively, the carrier wavelength and the sample of the m-th

transmit waveform at time index t. We assume that transmit waveforms are jointly Gaussian

with zero mean and variance σ2
0 = 1/L. We assume that the targets are moving slowly, thus

the Doppler effect can be approximated as constant during one pulse.

The estimation of the target parameters can be achieved by various sparse recovery

algorithms, including the `1 minimization algorithms, or greedy algorithms. It is well-

known that the restricted isometry property (RIP) [14] of the measurement matrix Ψ plays

an important role on guaranteeing the recoverability and estimation performance of s. In

order to provide the performance of MIMO-CS radars, it is essential to characterize the RIP

of Ψ.
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2.3 Main Results

In this section, we analyze the RIP of Ψ. Ahead of the RIP analysis, we provide some

observations on the Gram of matrix Ψ. Let us first state one lemma which will be used

later.

Lemma 2 (Lemma 5 in [88]). Let x ∈ CN and y ∈ CN be vectors with i.i.d complex

Gaussian entries with zero mean and variance σ2. Then for every t > 0 it holds that

Pr
(
‖x‖22 − E{‖x‖22} ≥ t

)
≤ e−

t2

16Nσ4 , (2.5a)

Pr
(∣∣‖x‖22 − E{‖x‖22}

∣∣ ≥ t) ≤ 2e−
t2

16Nσ4 , (2.5b)

Pr (|〈x,y〉| ≥ t) ≤ 2e
− t2

4σ2(Nσ2+t/2) . (2.5c)

where 〈x,y〉 , xHy, and (·)H denotes Hermitian transpose.

2.3.1 Observations on The Gram of The Normalized Ψ

Note that E{‖Ψn‖22} = MtMrP . Since in the compressive sensing literature measurement

matrices with normalized columns are typically considered, we will find bounds for the

diagonal and off-diagonal entries of G , ΨHΨ
MtMrP

, i.e., 〈Ψn,Ψl〉
MtMrP

for all n, l ∈ I, where the

inner product of two columns of Ψ is given by

〈Ψn,Ψl〉 =〈vr(θn),vr(θl)〉〈D(fn),D(fl)〉

× 〈Xτnvt(θn),Xτlvt(θl)〉.
(2.6)

When (τn, θn, fn) = (τl, θl, fl), the inner product becomes the square of the norm, i.e.,

‖Ψn‖22 = MrP‖Xτnvt(θn)‖22.

For all the entries, the following four cases are considered:

Case (i) n = l: In this case, we only need to consider ‖Ψn‖22 for any n ∈ I. Denote

by g ∈ CL the product Xτnvt(θn). The i-th entry of g is given by gi =
[
x1[(i − 1)Ts +

τn], . . . , xMt [(i − 1)Ts + τn]
]
vt(θn), which is a weighted sum of Mt i.i.d jointly Gaussian

random variables of variance 1/L. Therefore, the entries of g are independent identical
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distributed according to CN (0,Mt/L). Based on (2.5b) in Lemma 2, we get

Pr
(∣∣‖Ψn‖22 − E{‖Ψn‖22}

∣∣ ≥MrPt
)

= Pr
(∣∣‖g‖22 − E{‖g‖22}

∣∣ ≥ t) ≤ 2e
− Lt2

16M2
t .

(2.7)

Substituting E{‖g‖22} = Mt and t ≡Mtt into (2.7), we get

Pr
(∣∣∣∣ ‖Ψn‖22
MtMrP

− 1

∣∣∣∣ ≥ t) ≤ 2e−
Lt2

16 . (2.8)

Case (ii) τn 6= τl: We know that Xτnvt(θn) has i.i.d complex Gaussian entries with

zero mean and variance Mt/L; the same holds for Xτlvt(θl). However, the sum terms in

〈Xτnvt(θn),Xτlvt(θl)〉 are no longer mutually independent. Following the splitting trick

of [Li13, 26, 88], we can split the terms into two equal-sized groups, each of which only

contains mutually independent terms. Applying (2.5c) in Lemma 2 to both groups of sums

and using Boole’s inequality, we obtain

Pr (|〈Xτnvt(θn),Xτlvt(θl)〉| ≥ 2t) ≤ 4e
−L t2

2M2
t +2Mtt .

Combining with (2.6), we get

Pr (|〈Ψn,Ψl〉| ≥ 2MrPt)

≤ Pr (|〈Ψn,Ψl〉| ≥ 2tφθn,θl(Mr)φfn,fl(P ))

≤ 4e
−L t2

2M2
t +2Mtt ,

(2.9)

where
φθn,θl(Mr) , |〈vr(θn),vr(θl)〉| ∈ [0,Mr],

φfn,fl(P ) , |〈D(fn),D(fl)〉| ∈ [0, P ].

(2.10)

Substituting t in (2.9) by Mtt/2, we get

Pr
(∣∣∣∣〈Ψn,Ψl〉

MtMrP

∣∣∣∣ ≥ t) ≤ 4e−L
t2

4+4t . (2.11)

Case(iii) τn = τl, θn 6= θl : We need to find the bound on |〈Xτnvt(θn),Xτnvt(θl)〉|.

According to [26, Lemma 11], we have

Pr
(∣∣〈Xτnvt(θn),Xτnvt(θl)〉 − 〈vt(θn),vt(θl)〉︸ ︷︷ ︸

,χ

∣∣ ≥Mtt

)

, Pχ ≤ 2e−L
t2

C1+C2t ,

(2.12)
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where C1 ≈ 2.50 and C2 ≈ 7.69. It is also clear that

Pχ = Pr
(
MrP |χ|+ φθn,θl(Mr)φθn,θl(Mt)P︸ ︷︷ ︸

,A

≥ ζ
)

≥ Pr
(
|〈vr(θn),vr(θl)〉〈D(fn),D(fl)〉

(
χ+ 〈vt(θn),vt(θl)〉

)
|︸ ︷︷ ︸

,B

≥ ζ
)

= Pr (|〈Ψn,Ψl〉| ≥ ζ) ,

(2.13)

where ζ ,MtMrPt+ φθn,θl(Mr)φθn,θl(Mt)P and

φθn,θl(Mt) , |〈vt(θn),vt(θl)〉| ∈ [0,Mt] (2.14)

and the second inequality holds because

A ≥ |〈vr(θn),vr(θl)〉〈D(fn),D(fl)〉|

×
(
|χ|+ |〈vt(θn),vt(θl)〉|

)
≥ B.

IfMrMtt ≥ φθn,θl(Mr)φθn,θl(Mt), it holds that 2MtMrPt ≥ ζ. Now, the bound on the inner

product can be written as

Pr (|〈Ψn,Ψl〉| ≥ 2MtMrPt) ≤ Pχ (2.15)

or, equivalently, if t is substituted by t/2,

Pr
(∣∣∣∣〈Ψn,Ψl〉

MtMrP

∣∣∣∣ ≥ t) ≤ 2e
−L t2

4C1+2C2t (2.16)

which holds if

MtMr ≥ 2/tφθn,θl(Mr)φθn,θl(Mt). (2.17)

Case(iv) τn = τl, θn = θl, fn 6= fl : Consider the absolute value∣∣∣∣ 〈Ψn,Ψl〉
MtMrP

∣∣∣∣ =
φfn,fl(P )

MtP
‖Xτnvt(θn)‖22, (2.18)

where φfn,fl(P ) , |〈D(fn),D(fl)〉|. It can be viewed as the squared norm of random vector

x̃ ,
√

φfn,fl (P )

MtP
Xτnvt(θn). The entries in x̃ are i.i.d zero-mean Gaussian with variance

σ2
1 =

φfn,fl (P )

LP . Applying the unilateral bound (2.5a) in Lemma 2 gives

Pr
(∣∣∣∣ 〈Ψn,Ψl〉

MtMrP

∣∣∣∣ > t

)
≤ exp

(
− 1

L

(
t− Lσ2

1

4σ2
1

)2
)

= exp

(
− L

16

(
Pt

φfn,fl(P )
− 1

)2
)
≤ exp

(
−Lt

2

10

) (2.19)

where the last inequality holds if

P ≥
√

2(1/t+ 1)φfn,fl(P ). (2.20)
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2.3.2 The RIP of The Normalized Ψ

Equipped with the above observations, we are ready to prove the theorem regarding the RIP

of the measurement matrix.

Theorem 1. Let Ψ̃ be the normalized measurement matrix, i.e., Ψ̃ = Ψ/
√
MtMrP . Then,

for any δK ∈ (0, 1) there exist constant C0 , 3(4C1 + 2C2δK), such that Ψ̃ satisfies the RIP

of order K with parameter δK with probability exceeding (1− 4(NτnNθNf )−1), whenever

L ≥ C0δ
−2
K K2 log(NτNθNf ), (2.21a)

MtMr ≥ 2δ−1
K KβΘ(Mt,Mr), (2.21b)

P ≥
√

2
(
δ−1
K K + 1

)
βD(P ), (2.21c)

where βΘ(Mt,Mr) , supθn,θl∈Θ,n6=l φθn,θl(Mt)φθn,θl(Mr) and βD(P ) , supfn,fl∈D,n 6=l φfn,fl(P ).

Proof. The proof of the RIP mainly follows the spirit of the proof in [Li13]. We only focuss

on the bounds for the off-diagonal entries in the Gram of Ψ̃. Here we choose δd , δK/K

and δo , (K − 1)δK/K. The bound on the off-diagonal entries in Case (ii-iv) can be unified

using (2.16) based on the fact that (4C1 + 2C2t) in (2.16) is always larger than (4 + 4t) in

(2.11) and 10 in (2.19) for any t ≥ 0. Substituting t by δo/(K − 1), i.e., δK/K, gives

Pr
(∣∣∣∣ 〈Ψn,Ψl〉

MtMrP

∣∣∣∣ ≥ δK
K

)
≤ 4e

− Lδ2K
K2(4C1+2C2δK ) (2.22)

under conditions in (2.21b) and (2.21c), which are derived by substituting t = δK/K into

(2.17) and (2.20), respectively. The condition in (2.21a) implies that Lδ2
K

K2(4C1+2C2δK)
≥

3 log(NτNθNf ). Following the steps of the standard scheme [88] proves the RIP.

Remark 1. Theorem 1 characterizes the RIP of normalized Ψ under the conditions of

(2.21) for arbitrary array configuration and grid set T × Θ × D. The condition in (2.21a)

requires that the number of measurements scales quadratically with the number of targets and

logarithmically with the number of grid points. The conditions in (2.21b) and (2.21c) involve

the number of transmitters/receivers, the number of pulses, the number of the targets, the

geometry of the grid and the array configuration. This dependence will be explored in the

following subsection for minimizing the number of antennas involved.
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2.3.3 About βD and βΘ

In Theorem 1, the conditions of (2.21) are very general and can be applied on any array

configuration and grid. Next, we look closer at the quantities βD(P ) and βΘ(Mt,Mr), which

appear in (2.21).

The quantity βD(P ) is determined by the pulse repetition interval, the Doppler grid D,

and the number of pulses. From the definition in (2.10), it holds that

βD(P ) , sup
fn,fl∈D
n6=l

∣∣∣∣ sin (πP (fn − fl)TPRI)
sin (π(fn − fl)TPRI)

∣∣∣∣ .
Consider the special case where D is uniform with interval ∆f = 1

PTPRI
and cardinality

|D| ≤ P . In this case, βD(P ) = 0, which means that (2.21c) holds for any K (i.e., K

might be larger than P ). In order to increase the resolution of D, we can increase either the

number of pulses, or the pulse repetition interval.

The quantity βΘ(Mt,Mr) is determined by the array configuration, the angular grid, Θ,

and the number of transmitters /receivers. It is clear that a smaller βΘ(Mt,Mr) is preferable

since it requires a smaller MtMr. Thus, we seek to minimize βΘ(Mt,Mr), or bound it by a

small value. For arbitrary transmit/receive array and Θ, it is usually difficult to characterize

βΘ(Mt,Mr) analytically. In the MIMO-CS radar literature, some special arrays have been

considered. In particular, virtual ULA MIMO radars were considered in [26], where Θ is

uniform in the domain sin(θ) with |Θ| = MtMr and angular grid interval ∆sin(θ) = 2
MtMr

.

In this case, βΘ(Mt,Mr) equals 0, which implies that K can be larger than the product

MtMr. However, MtMr equals the cardinality of Θ. Random linear array MIMO radars

were considered for angle estimation in [87]; in that work, βΘ(Mt,Mr)
MtMr

is bound from above

by a small value. When the locations of transmit /receive nodes can be assumed to be i.i.d

random variables, it was shown in [87, Theorem 2] that MtMr ∝ K2 log2(Nθ), which is a

special case of Theorem 1 for the case of random array for angle estimation.

In the following, we propose a scheme to minimize the number of receive nodes w.r.t.

the nodes’ positions, under the condition of (2.21b). Given the Mt-element linear transmit

array with ytm,∀m ∈ N+
Mt

and Θ, we would like to solve the following optimization problem:

min
yr

Mr s.t. βΘ(Mt,Mr) ≤
MtMrδK

2K
(2.23)
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where yr = [yr1, . . . , y
r
Mr

]T denotes the position vector for the receive array. Since the yr

appears in the exponent of the receive steering vector, the optimization problem in (2.23)

is nonlinear, non-convex. To bypass the difficulty, we formulate the position optimization

problem as a relaxed sensor selection problem. Specifically, given a very dense array of

receive nodes at positions ỹ , [ỹ1, . . . , ỹM ]T , we assign a Boolean weight wm ∈ {0, 1} to

each sensor and select the minimum number of sensors by solving the following problem:

min
w

1Tw , [1, . . . , 1][w1, . . . , wM ]T

s.t. sup
θn,θl∈Θ,
n6=l

φθn,θl(Mt)f(w) ≤ MtδK
2K

1Tw

1Tw ≥ 4, wm ∈ {0, 1}, m ∈ N+
M ,

(2.24)

where f(w) , |〈w, ej2πỹ(sin θn−sin θl)/λ〉|, and constraint 1Tw ≥ 4 is imposed to prevent

a naive zero vector solution. To obtain a convex relaxation, we replace the non-convex

constraints wm ∈ {0, 1} by the convex constraints wm ∈ [0, 1]. Then, the relaxed sensor

selection problem turns to be

min
w

1Tw

s.t. sup
θn,θl∈Θ,
n6=l

φθn,θl(Mt)f(w) ≤ MtδK
2K

1Tw

1Tw ≥ 4, 0 ≤ wm ≤ 1,m ∈ N+
M ,

(2.25)

which is a SOCP problem and can be solved efficiently by standard packages. A suboptimal

sensor selection set can be generated from w∗, the optimal solution of (2.25), by taking its

first Mr largest entries.

Remark 2. The proposed optimization scheme in (2.25) selects the minimum number of

receive nodes for MIMO-CS radars satisfying condition (2.21b) in Theorem 1. It is similar

to optimize w.r.t. the transmit array given fixed receive array. Simulation example in Section

2.4 shows that the MIMO-CS radars generated by the proposed scheme requires much fewer

nodes than the ULA array and random array do.
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Figure 2.1: Positions of the 30 selected nodes by the proposed scheme.

2.4 A Simulation Example

In this section, we present one example to show the effectiveness of the optimization scheme

proposed in Section 2.3.3. We are particularly interested in K = 3 targets in the angular

region sin θ ∈ [0, 0.15] discretized uniformly with interval ∆sin θ = 0.001. The transmit

array is a ULA with Mt = 40 nodes and interval 25λ. The receive nodes are chosen from

0.1λ-spaced ULA with 250 nodes. The suboptimal receive array obtained from (2.25) is

nonuniform with Mr = 30 nodes. The positions of the nodes are shown in Fig. 2.1.

For comparison, we know that the virtual array setting in [26] requires a half-wavelength

linear receive array with Mr = 50 nodes. For random array considered in [87, Theorem 2],

MtMr ≥ 2121 is required. It is clear that our method produces MIMO-CS radars with the

fewest nodes. We conclude that our proposed optimization scheme relaxes the requirement

on MtMr in Theorem 1.

2.5 Conclusions

We have provided the RIP analysis for MIMO-CS radars with arbitrary array configuration.

The conditions involve the number of antennas, targets, transmited pulses and array geom-

etry. Based on these conditions we have also proposed an antenna selection scheme that

minimized the number of receive antennas.
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Chapter 3

Distributed MIMO Radar Based on Sparse Sensing: Analysis
and Efficient Implementation

In sparse sensing based distributed MIMO radars, the problem of target estimation is for-

mulated as a sparse vector recovery problem, where the vector to be recovered is block

sparse, or equivalently, the sensing matrix is block-diagonal and the sparse vector consists of

equal-length blocks that have the same sparsity profile. This chapter derives the theoretical

requirements and performance guarantees for the application of sparse recovery techniques

to this problem. The obtained theoretical results confirm previous, simulations based ob-

servations, that exploiting the block sparsity of the target vector can further reduce the

amount of measurements needed for successful target estimation. For signal recovery, two

low-complexity approaches are proposed. The first one is an ADMM-based sparse signal re-

covery algorithm, which in addition to significantly reducing computations is also amenable

to a parallel and semi-distributed implementation. The second approach decouples the lo-

cation and speed estimation into two separate stages, with each stage addressing a sparse

recovery problem of lower dimension while maintains high estimation accuracy.

3.1 Introduction

Multiple-input multiple-output (MIMO) radars [5–8] have received considerable attention

in recent years due to their improved performance over traditional phase arrays. Depending

on the placement of antennas, MIMO radars can be classified into collocated [5, 6] and

widely separated [7, 8]. Collocated MIMO radars exploit phase differences in target returns

induced by transmit and receive antennas, to effectively increase the array aperture and

achieve high resolution. Distributed MIMO radars enjoy spatial diversity, introduced by the

multiple independents paths between the targets and the transmit/receive antennas, and



33

thus achieve improved target estimation performance.

By exploiting the sparsity of targets in the radar scene, sparse sensing [13, 15, 16] has been

studied in the context of both collocated [24, 26, 27, 29, 87], and distributed MIMO radars

[30, 31]. In [30, 31], the problem of target location and speed estimation in distributed MIMO

radars is investigated as a block sparse signal recovery problem. The target vector contains

the attenuation coefficients for all paths between the grid points and the transmit/receive

antenna pairs. If there is no target present at a certain grid point, the corresponding entries

in the target vector are zero. Since the number of targets is much smaller than the number

of grid points, the target vector is sparse. The block sparsity in the target vector arises

by grouping together entries corresponding to paths between a given grid point and all

transmit/receive antenna pairs. Block matching pursuit (BMP) is applied in [30] for signal

support recovery. Simulations in [30] show that BMP outperforms the basis pursuit method,

which ignores the block sparsity. The advantage of block sparsity was also studied in [31],

where a group Lasso approach was used to exploit the block sparsity. Again, simulations in

[31] show that exploiting block sparsity results in significant detection performance gains over

methods which just consider unstructured sparsity. To the best of our knowledge, there are

no theoretical works on the performance of sparse sensing based distributed MIMO radars.

Although there are theoretical works on sparse sensing based collocated MIMO radars [26,

27, 29, 87], those results cannot be extended to the distributed MIMO radar scenario.

Employing sparse signal recovery techniques in radar systems, on one hand, relieves the

volume of data that needs top be collected, but on the other hand, introduces significant

computational complexity. In [31] a group Lasso with proximal gradient algorithm (GLasso-

PGA) was used, and in [38], a mixed `1/`2 norm optimization with interior point method

(L-OPT-IPM) was used. GLasso-PGA and L-OPT-IPM achieve better estimation perfor-

mance than BMP but involve higher computational complexity and require careful tuning of

manually chosen parameters. The computation becomes prohibitive as the dimension of the

sparse target vector increases. The approach of [31] exploited the block diagonal structure

of the sensing matrix to propose a decomposition of the original problem into smaller size

problems, thus reducing complexity. However, the scheme of [31] did not exploit all available

structural information, such as the identical sparsity profile of the sub-vectors in the target
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vector.

The contribution of this chapter is two-fold: (i) it provides performance guarantees for

the target location and speed estimation in sparse sensing based distributed MIMO radars,

and (ii) it proposes two low-complexity approaches for target estimation. Regarding the per-

formance guarantees, by permuting the columns of the measurement matrix we reformulate

the block-sparse signal recovery problem into a problem in which the measurement matrix,

Ψ, is block diagonal (BD) and the sparse target vector, s, contains equal-sized blocks that

have the same sparsity profile. This reformulation facilitates restricted isometry property

(RIP)-based performance analysis. Once the RIP of Ψ holds w.r.t. sparse signals with the

aforementioned structure, the vector s can be obtained as the solution to a mixed `2/`1-

optimization program (L-OPT) [18]. Our theoretical results confirm that the BD structure

in Ψ and the sparsity structure in s reduce the number of measurements needed for target

estimation. Further, our RIP-based analysis provides a uniform recovery guarantee, which

means that once Ψ satisfies the RIP, target estimation can be achieved with high probability

even in the worst case. In relation to the literature, the proposed RIP analysis is related

to that for a Toeplitz matrix, presented in [88], except that our BD measurement matrix

contains additional complex exponential factors introduced by the moving targets.

Regarding our low complexity contribution, we first propose a fast algorithm to solve the

L-OPT problem based on the alternating direction method of multipliers (ADMM). This

ADMM based approach is amenable to parallel implementation, which allows for reduc-

tion of running time. A semi-distributed implementation of the solution is also discussed, in

which the computations are distributed among all the receive nodes, thus obviating the need

of a powerful fusion center. Simulations validate the efficiency of the proposed algorithm

and show that the proposed algorithm is robust over a wide range of a manually chosen

parameter. Another approach to lower complexity is to reduce the dimension of the L-OPT

problem. The joint location-speed space is a Cartesian product of the location space and

the speed space, which produces a high dimensional sparse target vector s. A decoupled

two-stage model is proposed to lower the problem dimension. In the first stage, we derive

the sparse model for the location space by absorbing the unknown target Doppler effect into

the sparse target vector. The target locations are estimated via sparse recovery algorithms
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with much lower dimension. In the second stage, the location estimates are used to greatly

reduce the dimension of the sparse model for speed estimation. The ADMM based approach

can also be integrated into both stages of the decoupled estimation framework. It is shown

via simulation that the decoupled scheme reduces both the computation and the required

number of measurements, while it maintains good performance. A related decoupled scheme

was proposed in [25] for compressive sensing based step-frequency MIMO radar with collo-

cated antennas. The matched filtering method was used to provide an initial estimate to

reduce the space that needs to be discretized. However, while matched filtering requires

large amount of measurements for high resolution and reliable estimation, our decoupled

approach, provides a high resolution initial estimate with much fewer measurements.

This chapter is organized as follows. Section 3.2 provides some background and intro-

duces notation. The sparse model for distributed MIMO radar system is presented in Section

3.3. In Section 3.4, we derive the A-RIP of the measurement matrix, which is used to pro-

vide the performance of L-OPT in Section 3.5. In Section 3.6, an efficient algorithm based

on ADMM is proposed for the target estimation. Parallel and semi-decentralized implemen-

tation schemes are discussed in Section 3.6.2. Section 3.7 presents the decoupled location

and speed estimation together with discussions on the computation complexity and required

number of measurements. Simulation results are given in Section 3.8, and conclusions are

presented in Section 3.9.

3.2 Background on Block Sparsity

In the context of compressive sensing, the focus is to exploit the structure in the sparse signal

and the measurement matrix for improving the sparse signal recovery [17]. Block sparsity in

the sparse signal was investigated in [18–20], where the elements in the sparse signal vector

appear in blocks.

Let us consider a block sparse vector s ∈ CMN with at most K nonzero blocks out of

N equal-sized blocks, i.e., M , |In|,∀n ∈ N+
N , where In is the index set for the n-th block.

Let us denote by AKB the space in which the block sparse vectors lie.

Given the noisy measurement vector z = Ψs + n with Ψ ∈ CL×NM as the measurement
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matrix and n ∈ CL as the additive noise vector, the recovery of s ∈ AKB is achieved via the

following convex optimization problem

min
s

N∑
n=1

‖s[In]‖2 s.t. ‖z−Ψs‖2 ≤ ε. (3.1)

which is referred to as mixed `2/`1-optimization program (L-OPT) [18]. The effectiveness of

using L-OPT relies on the restricted isometry property (RIP) of Ψ w.r.t. vectors in A2K
B .

Definition 3 ([21]). For a union of certain subspaces denoted by A, Ψ is said to satisfy the

A-restricted isometry property with constant δ ∈ (0, 1), in short, A-RIP(K, δ), if δ is the

smallest value such that

(1− δ)‖s‖22 ≤ ‖Ψs‖22 ≤ (1 + δ)‖s‖22 (3.2)

holds for all s ∈ A.

The above definition is for general union of subspaces. If Ψ satisfies the RIP over A2K
B ,

or equivalently, if Ψ satisfies the AB-RIP(2K, δ2K), then the next lemma shows that the

solution of (3.1), i.e., ŝ, is a good approximation of s.

Lemma 3 (Theorem 2 in [18]). If Ψ satisfies the AB-RIP(2K, δ2K) with δ2K <
√

2 − 1,

then for the solution of (3.1), ŝ, it holds that

‖ŝ− s‖2 ≤
4
√

1 + δ2K

1− (1 +
√

2)δ2K

ε , g(ε). (3.3)

It is shown in [18] that Gaussian measurement matrices require fewer measurements to

satisfy the AB-RIP(2K, δ2K) as compared to the number of measurements needed to satisfy

the RIP(2K, δ2K). Therefore, exploiting block sparsity in s reduces the required number of

measurements for sparse recovery. In the following, we put the sparse sensing-based MIMO

radar problems into the framework of block-sparse signal recovery, and derive the AB-RIP

of the corresponding measurement matrix.

3.3 Distributed MIMO-CS Radar Signal Model

We consider a MIMO radar system with Mt transmit nodes (TX) and Mr receive nodes

(RX), which are widely separated. Let (xti, y
t
i) and (xri , y

r
i ) denote the locations of the i-th
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transmit and receive antenna in cartesian coordinates, respectively. The i-th TX antenna

transmits repeated pulses with pulse repetition interval T . Each pulse contains the modulat-

ed waveform wi(t)e
j2πfit, where fi is the carrier frequency, and wi(t) is the continuous-time

baseband waveform. We assume that transmit waveforms are jointly Gaussian with zero

mean and variance σ2
0. Let us assume that there are K moving targets present. For sim-

plicity, we consider a clutter-free environment [24–27, 29–31, 87]. In practice, preprocessing

techniques can be employed to suppress the clutter. For example, if the covariance matrix

of the clutter is known, beamforming can be used to suppress the clutter [89]. Also, if the

clutter is static while the target is moving, Doppler filters [2] and the technique of change

detection can be used to remove the clutter [90, 91].

The location-speed space is discretized on grid Θ , Θloc × Θspd, where the location

grid is Θloc , {(xn, yn), n = 1, . . . , N1}, N1 , Nx × Ny, and the speed grid is Θspd ,

{(vnx , vny ), n = 1, . . . , N2}, N2 , Nvx × Nvy. Denoting the cardinality of Θ as N , it holds

that N = N1 × N2. It is assumed that the targets fall on grid points. Let us denote by

Ξ the set of all different transmit and receive antenna pairs. It is clear that |Ξ| = MtMr.

In the sequel, the subscript (ij) ∈ Ξ with i ∈ N+
Mt

and j ∈ N+
Mr

denotes the pair of the

i-th transmit antenna and the j-th receive antenna. Suppose that the j-th receive antenna

obtains L Ts-spaced samples from each pulse transmitted by antenna i. On stacking the

samples from P pulses into vector zij it holds that [31]

zij = Ψijsij + nij , ∀(ij) ∈ Ξ, (3.4)

where sij =
[
s1
ij , . . . , s

N
ij

]T
, with snij being non-zero only if there is a target at the n-th grid

point (here n refers to a particular ordering of grid points of the 4-dimensional space into a

vector of length N); nij denotes the additive noise; Ψij is defined in term of its columns,

Ψn
ij , i.e.,

Ψn
ij = D(fnij)⊗wi,τnij

, ∀n ∈ N+
N , (3.5)

where ⊗ denotes Kronecker product,

D(fnij) ,
[
1, ej2πf

n
ijT , . . . , ej2πf

n
ijT (P−1)

]T
, (3.6a)

wi,τnij
,
[
wi[τ

n
ij ], . . . , wi[(L− 1)Ts + τnij ]

]T (3.6b)
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with wi[τnij ] denoting the sample of the i-th transmit waveform at time index τnij . τ
n
ij and f

n
ij

respectively denote the propagation time and Doppler frequency associated with the n-th

grid and the (ij)-th TX/RX antenna pair. It holds that

fnij =

〈
(vnx , v

n
y ),dtin

〉
λi‖dtin‖2

+

〈
(vnx , v

n
y ),drjn

〉
λi‖drjn‖2

, (3.7)

where d
t/r
in , ((x

t/r
i , y

t/r
i )−(xn, yn)) denotes the vector from the n-th grid to the i-th TX/RX

antenna, and λi is the carrier wavelength of the i-th transmitter. In the model based on

(3.5), we assume that the targets are moving relatively slowly so that the Doppler effect

can be approximated as constant during one pulse, i.e., fnijLTs � 1. In the literature, it is

common to make such an assumption for pulse Doppler processing [2, 22, 24, 30]. Actually,

we can show that our model works for wide range of target moving speeds by using different

system parameters. Substituting the expression of fnij in (3.7) into fnijLTs � 1 gives

〈
(vnx , v

n
y ),dtin

〉
‖dtin‖2

+

〈
(vnx , v

n
y ),drjn

〉
‖drjn‖2

� c

LTsfi
,

Via the Cauchy-Schwarz inequality, we have ‖vn‖2 ,
√

(vnx)2 + (vny )2 � c
2LTsfi

for all n ∈

N+
N . For carrier frequency fi = 5GHz, waveform bandwidth 10MHz, sampling frequency

fs = 1/Ts = 20MHz and L = 20, the model based on (3.5) is valid for target speed much

smaller than 3 × 104m/s, which could cover speeds as high as transonic. By increasing

the waveform bandwidth and the sampling frequency, the model would be valid even for

supersonically moving targets. In Section 3.8, we choose waveform bandwidth 25MHz and

sampling frequency fs = 50MHz, thus the model would be valid if the target speed is much

smaller than 7.5× 104m/s.

The fusion center collects the sample vectors from all TX/RX antenna pairs and stack

them into a column vector z of length LPMtMr, i.e.,

z =
[
(z11)T , . . . , (zMtMr)

T
]T

= Ψs + n, (3.8)

where s =
[
(s11)T , . . . , (sMtMr)

T
]T
, n = [(n11)T , . . . , (nMtMr)

T ]T , and Ψ = diag
(
Ψ11, . . . ,

ΨMtMr

)
.

Note that each vector sij contains zero entries except the entries corresponding to grid

points occupied by targets. Thus, the vector s is a concatenation of MtMr sub-vectors that
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share the same sparsity profile, and have exactly K nonzero entries each. We can see that

s lies in AK0 ⊂ CNMtMr , defined as

AK0 ,
{
y ∈ CNMtMr

∣∣y = [yT1 , . . . ,y
T
MtMr

]T ,

yj ∈ CN , supp(yi) = supp(yj),

|supp(yj)| ≤ K, ∀i, j ∈ N+
MtMr

}
,

(3.9)

where yj ’s are uniformly partitioned blocks of y, supp(·) denotes the index set of nonzero

entries of a vector, i.e., the support of a vector, and | · | denotes the cardinality of a set.

In the following section we provide the A-RIP analysis of the BD measurement matrix

Ψ.

3.4 The A-RIP of The Measurement Matrix

Let us first state two lemmas which will be used later.

Lemma 4. Let x ∈ CN and y ∈ CN be vectors with i.i.d complex Gaussian entries with

zero mean and variance σ2. Then for every 0 < t < 4σ2N , it holds that

Pr
(
‖x‖22 − E{‖x‖22} ≥ t

)
≤ e−

t2

16Nσ4 , (3.10a)

Pr
(∣∣‖x‖22 − E{‖x‖22}

∣∣ ≥ t) ≤ 2e−
t2

16Nσ4 . (3.10b)

For every t > 0 it holds that

Pr (|〈x,y〉| ≥ t) ≤ 2e
− t2

4σ2(Nσ2+t/2) . (3.11)

where 〈x,y〉 , xHy, and (·)H denotes Hermitian transpose.

Proof. Lemma 4 is derived based on Lemma 5 and 6 in [88]. By substituting k and t in [88,

Lemma 5] respectively by N and τ , we have Pr
(
‖x‖22 − E{‖x‖22} ≥ 2σ2

√
Nτ + 2σ2τ

)
≤

e−τ . If τ < N , then it holds that 4σ2
√
Nτ ≥ 2σ2

√
Nτ + 2σ2τ . We have

Pr
(
‖x‖22 − E{‖x‖22} ≥ 4σ2

√
Nτ
)

≤Pr
(
‖x‖22 − E{‖x‖22} ≥ 2σ2

√
Nτ + 2σ2τ

)
≤ e−τ .

Inequality (3.10a) is readily proved by denoting t , 4σ2
√
Nτ < 4σ2N . Similarly, we can

prove inequality (3.10b). Lastly, it is clear to see that (3.11) holds by directly substituting

k in [88, Lemma 6] by N .
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Lemma 5. Let {xi} and {yi}, i = 1, . . . , Q be sequences of identically distributed, zero-

mean, Gaussian variables with variance σ2. All variables are independent except that the

last I (I ∈ [1, Q)) variables of {xi} are the first I variables of {yi}, i.e., xi+Q−I = yi for

any i ∈ [1, I]. Then

Pr

(∣∣∣∣∣
Q∑
i=1

xiyi

∣∣∣∣∣ ≥ t
)
≤ 4 exp

(
− (Q− 1)t2

8Qσ2(Qσ2 + t/2)

)
.

We know that {xiyi}Qi=1 are not mutually independent. Lemma 5 can be proven by a

splitting trick, as in [88].

3.4.1 Observations on The Gram of The Normalized Ψ

Note that E{‖Ψn
ij‖22} = LPσ2

0. Since in the compressive sensing literature measurement

matrices with normalized columns are typically considered, we will provide observations

on the normalized measurement matrix Ψ̄ = Ψ/
√
LPσ2

0. The Gram of Ψ̄, denoted here

by G, is also block-diagonal, i.e., G = diag(G11, . . . ,GMtMr) where Gij = Ψ̄H
ij Ψ̄ij and

Ψ̄ij , Ψij/
√
LPσ2

0.

Consider the (n, l)-th entry in Gij . It holds that

Gij(n, l) ≡
1

LPσ2
0

〈Ψn
ij ,Ψ

l
ij〉

=
1

LPσ2
0

〈D(fnij),D(f lij)〉〈wi,τnij
,wi,τ lij

〉.
(3.12)

The following three cases are analyzed:

Case (i) For n = l, i.e., the diagonal entries, it holds that 〈D(fnij),D(fnij)〉 = P . Now,

Gij(n, n) = 1
Lσ2

0
wT
i,τnij

wi,τnij
, which is the sum of squares of i.i.d Gaussian variables with

E{Gij(n, n)} = 1. Applying (3.10b) in Lemma 4, it holds that

Pr(|Gij(n, n)− 1| > t) ≤ 2 exp
(
−Lt

2

16

)
. (3.13)

Case(ii) the n-th and l-th grid points have different propagation delay, i.e., τnij 6= τ lij .

From (3.12), it holds that E{Gij(n, l)} = 0 and

|Gij(n, l)| =
1

LPσ2
0

∣∣∣wT
i,τnij

wi,τ lij

∣∣∣φfnij ,f lij (P ), (3.14)

where

φfnij ,f lij (P ) , |〈D(fnij),D(f lij)〉| ∈ [0, P ]. (3.15)
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A probabilistic bound on |Gij(n, l)| can be found as

Pr
(
|Gij(n, l)| > t

)
≤ Pr

(
1

Lσ2
0

∣∣∣wT
i,τnij

wi,τ lij

∣∣∣ > t

)
. (3.16)

Now, we only need to provide the bound on the inner product of wi,τnij
and wi,τ lij

. Note that

wi,τnij
and wi,τ lij

are both sampled from the i-th waveform, and may share some common

entries. The general bound (3.11) in Lemma 4 referring to two distinct i.i.d random vectors

cannot be applied directly. Applying Lemma 5 for (3.16) gives

Pr
(
|Gij(n, l)| > t

)
≤ 4 exp

(
− (L− 1)t2

8(1 + t/2)

)
. (3.17)

Case(iii) the n-th and l-th grid points introduce the same propagation delay (τnij = τ lij)

but have different Doppler frequencies (fnij 6= f lij). Consider the absolute value

|Gij(n, l)| =
1

LPσ2
0

wT
i,τnij

wi,τnij
φfnij ,f lij

(P ), (3.18)

which can be viewed as the squared norm of random vector
√

1
LPσ2

0
φfnij ,f lij

(P )wi,τnij
with

i.i.d zero-mean Gaussian entries with variance σ2
1 = 1

LP φfnij ,f lij
(P ). Applying the unilateral

bound (3.10a) in Lemma 4 , we have

Pr (|Gij(n, l)| > t) ≤ exp

(
− 1

L

(
t− Lσ2

1

4σ2
1

)2
)

= exp

− L
16

(
Pt

φfnij ,f lij (P )
− 1

)2
 ≤ exp

(
−Lt

2

16

)
,

(3.19)

where the last inequality holds if

P ≥ (1/t+ 1)φfnij ,f lij
(P ). (3.20)

3.4.2 A-RIP of The Normalized Measurement Matrix

Equipped with the above observations, we will first establish the RIP of Ψ̄ w.r.t. sparse

vectors in AK1 ⊂ CNMtMr , which is defined as

AK1 ,
{
y ∈ CNMtMr

∣∣y = [yT1 , . . . ,y
T
MtMr

]T ,yj ∈ CN ,

|supp(yi)| = |supp(yj)| ≤ K, ∀i, j ∈ N+
MtMr

}
where yj ’s are uniformly partitioned blocks of y. It holds that AK0 ⊂ AK1 .
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Theorem 2. For any δK ∈ (0, 1), Ψ̄ satisfies A1-RIP(K, δK) with probability exceeding

(1− 4(N
√
MtMr)

−1) whenever

L ≥ 48δ−1
K K2 log(N

√
MtMr) + 1, (3.21a)

P ≥ (δ−1
K K + 1)β(P ), (3.21b)

where

β(P ) , sup
(ij)∈Ξ

φij(P ) , sup
fn
ij
6=fl
ij
,

(ij)∈Ξ

φfnij ,f lij
(P ). (3.22)

Proof. See Appendix 3.A

Note that the technique used to prove Theorem 1 can only exploit the structure charac-

terized by AK1 , and not the additional structure characterized by AK0 . Vectors in AK0 consist

of sub-vectors that have the same support. However, only the support cardinality of the

sub-vectors matters in the proof of A-RIP presented in Appendix 3.A. The positions of the

nonzero entries would introduce no difference to the bound for the off-diagonal entries in

(3.44). In the next section, the A1-RIP of Ψ̄ in Theorem 2 will be relaxed to the A0-RIP,

which is further used to guarantee the effectiveness of applying L-OPT.

Remark 3. In the proof of Theorem 2, the sparsity structures in Ψ̄ and s is exploited to

reduce the required number of measurements. To emphasize the advantage of the block-sparse

structure in our scenario, we compare to a scenario in which the block-structure is ignored,

and the recovery is based on a full Toeplitz matrix of size LMtMr × NMtMr and a sparse

vector with KMtMr nonzero entries at arbitrary locations. From [88], a full Toeplitz matrix

satisfies the RIP if L is of the order of O(K2MtMr log(N
√
MtMr)), which is MtMr times

larger than the bound in (3.21a). Comparing that to (3.21a) suggests that exploiting the

block sparsity reduces the number of samples needed. This validates previous simulation-

based observations [31] and results in Section 3.8.2 of this chapter, suggesting that exploiting

the structure in both Ψ and s allows for reduction of the number of samples, L, needed for

target estimation.

Remark 4. From (3.21b), we know that the number of required pulses is determined by

β(P ), which is the maximum of φfnij ,f lij (P ) over the Doppler grid set for all TX/RX pairs.
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From the definitions in (3.6a) and (3.15), it holds that

β(P ) , sup
fn
ij

6=fl
ij
,

(ij)∈Ξ

∣∣∣∣∣ sin
(
πP (fnij − f lij)T

)
sin
(
π(fnij − f lij)T

) ∣∣∣∣∣ .
The quantity β(P ) is determined by the pulse repetition interval T , the number of pulses, P ,

and the Doppler grid set. From the definition in (3.7), the Doppler grid set further depends

on the speed grid set Θ2, the antennas position and even the target location grid set Θ1.

Therefore, it is rather difficult to analytically characterize β(P ). Generally speaking, in order

to increase the speed resolution, we can increase either the number of pulses, or the pulse

repetition interval. For a given MIMO radar configuration and target space discretization,

we can use numerical methods to find the minimum P that satisfies (3.21b). In Section

3.8.1, we present an example to show how P is chosen.

3.5 Performance of Distributed MIMO Radars Using Sparse Sensing

To apply the L-OPT for the sparse model in (3.8), we permute the columns of Ψ and

correspondingly permute the entries of s to generate block sparsity in the target vector.

Then, s is recovered by solving the problem

min

N∑
n=1

‖s[In]‖2 s.t. ‖z− PM (Ψ)Pv(s)‖2 ≤ ε0. (3.23)

where PM is the column permutation matrix applied on Ψ and Pv : AK0 → AKB is the

corresponding permutation operator applied on s; In, ∀n ∈ N+
N , is the set with cardinality

MtMr containing the indices of the n-th entries from all sub-vectors sij ; ε0 is a manually

chosen parameter related to the norm of vector n. In the above, Pv(s) = [s[I1], . . . , s[IN ]]T

is block sparse.

The reconstructed target location-speed scene ŝ contains location and speed and target

complex Radar Cross Section (RCS) information on allK targets. Let us use as performance

metric the error ‖ŝ− s‖2. As shown in Lemma 3, the effectiveness of (3.23) is guaranteed if

PM (Ψ) satisfies the AB-RIP(2K, δ2K). Combining with the A-RIP analysis of Section 3.4,

the following proposition provides an error bound when applying L-OPT for the recovery of

s, along with the requirements on the number of measurements and pulses.
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Proposition 1. Consider the signal model in (3.8). For any δ2K <
√

2 − 1, if L and P

satisfy that

L ≥ 192δ−1
2KK

2 log(N
√
MtMr) + 1, (3.24a)

P ≥ (2δ−1
2KK + 1)β(P ), (3.24b)

then for any s ∈ AK0 , the error in the solution of the L-OPT problem of (3.23) is bounded

as

‖ŝ− s‖2 ≤ g

(
ε0√
LPσ2

0

)
(3.25)

with probability exceeding (1− 4(N
√
MtMr)

−1).

Proof. According to Theorem 2, Ψ̄ satisfies the A1-RIP(2K, δ2K) with probability exceeding

(1− 4(N
√
MtMr)

−1) under conditions:

L ≥ 48δ−1
2K(2K)2 log(N

√
MtMr) + 1,

P ≥ (δ−1
2K(2K) + 1)β(P ),

which are obtained by substituting K and δK in (3.21) respectively by 2K and δ2K . As we

can see, the above two conditions are equivalent to those in (3.24). Since A2K
0 ⊂ A2K

1 , we

know that Ψ̄ also satisfies the A0-RIP(2K, δ0
2K) with δ0

2K ≤ δ2K . In [92, Proposition 1],

we have shown that the AB-RIP of PM (Ψ̄) is equivalent to the A0-RIP of Ψ̄. Applying

Lemma 3 to (3.23) for the normalized measurement matrix Ψ̄ proves the claims of the

proposition.

Remark 5. The significance of Proposition 1 is that it guarantees theoretically that sparse

modeling and block sparse recovery algorithms can be effectively applied to distributed MIMO

radars. If there is no additive noise, i.e., ε0 = 0, based on (3.25), s can be recovered exactly.

When noise is present, the performance is stable in the sense that the estimation error is

bounded for any s ∈ AK0 . In the proof of Proposition 1, the AB-RIP of PM (Ψ̄) is established

via its equivalence to the A0-RIP of Ψ̄. The direct block-RIP analysis for PM (Ψ̄) is difficult,

because PM (Ψ̄) has a complicated structure. Also, the A0-RIP of Ψ̄ is established indirectly

via the A1-RIP analysis of Ψ̄. Since A2K
0 is only a small subset of A2K

1 , the A0-RIP of Ψ̄

may be satisfied with much weaker conditions on L and P which are required by the A1-RIP
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of Ψ̄. That is to say that the L-OPT in (3.23) may perform well with smaller L and P than

those in (3.24).

Remark 6. In the compressive sensing literature, there are two kinds of sparse recovery

guarantees: the uniform and non-uniform [93]. A uniform guarantee means that once Ψ

satisfies the A0-RIP, target estimation can be achieved with high probability for any s ∈

AK0 . A uniform recovery guarantee attracts a lot of research interest in the compressive

sensing literature [15, 18, 21, 88, 93] and applications in collocated MIMO radars [29, 87].

Proposition 1 provides bounds on L and P for the uniform recovery guarantee including the

worst case. On the other hand, the simulation gives the average performance for given L and

P . This explains why much smaller L and P perform well in the simulation in Section 3.8.

As one can see both in Theorem 1 and Preposition 1, the bound on L scales quadratically with

the sparsity level K. The quadratically scaled bound is the proved tightest bound for many

structured measurement matrices [29, 87, 88, 93]. To the best of our knowledge, Theorem 1

is the first result on the A-RIP of the measurement matrix Ψ with block diagonal structure

in sparse sensing based distributed MIMO radars, modeled via (8). Although there might be

the possibility to break the quadratic bottleneck on L, that would call for complete different

techniques and it is out of the scope of this chapter.

Remark 7. The L-OPT problem is convex and can be solved directly using the interior point

method with complexity of O((NMrMt)
3). This means that the computational cost may be

prohibitive if the dimension- NMtMr is large. In the following two sections, we tackle the

computation issue in two ways, namely, we propose an ADMM-based algorithm with lower

complexity (see Section 3.6), and we propose decoupling the location and speed estimation,

which effectively lowers the dimensionality of the problem (see Section 3.7).

3.6 Fast Signal Recovery based on ADMM

In this section, we present an ADMM-based approach for solving the L-OPT problem for the

general case of moving targets. Preliminary results of our work, for the case of stationary

targets can be found in [94].

Note that z,Ψ, s and n are all complex. The majority of ADMM literature deals with
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real variables. However, we can easily reformulate our problem with real variables as follows.

(z⊗Fv)︸ ︷︷ ︸
,z̃

= (Ψ⊗FM )︸ ︷︷ ︸
,Ψ̃

(s⊗Fv)︸ ︷︷ ︸
,s̃

+ (n⊗Fv)︸ ︷︷ ︸
,ñ

, (3.26)

where the operators Fv and FM are defined in terms of the real and imaginary parts of

z ∈ C, i.e., respectively, <{z} and ={z}, as follows.

Fv(z) , [<{z},={z}]T , FM (z) ,

<{z} −={z}
={z} <{z}]

 .
For any vector v, v ⊗ Fv applies the operator Fv on all the entries of v. Similarly, for any

matrix M, M ⊗ FM applies the operator FM on all the entries of M. It is clear that Ψ̃ is

still block diagonal with Ψ̃ij , (Ψij ⊗ FM ) ∈ R(2LP )×(2N) as is its (ij)-th diagonal block;

and s̃ is composed byMtMr sub-vectors s̃ij , (sij⊗Fv) ∈ R2N that share the same sparsity

profile and have exactly 2K nonzero real entries.

The L-OPT problem corresponding to (3.26) is given by

min
N∑
n=1

‖s̃[In]‖2 s.t. ‖z̃− Ψ̃s̃‖2 ≤ ε0, (3.27)

where the set In,∀n ∈ N+
N , with cardinality 2MtMr, contains the indices of the (2n −

1)-th and (2n)-th entries from all equal-length sub-vectors s̃ij ,∀(ij) ∈ Ξ. The equivalent

unconstrained problem, known as group Lasso, is as follows:

min
1

2
‖z̃− Ψ̃s̃‖22 + λ

N∑
n=1

‖s̃[In]‖2 (3.28)

where λ is the regularization parameter. The second term enforce the solution to be group

sparse. If prior information on the sparse target vector exists, it can be incorporated by

introducing constraints, i.e.,

min
1

2
‖z̃− Ψ̃s̃‖22 + λ

N∑
n=1

‖s̃[In]‖2

s.t. s̃ ∈ Ω2NMtMr ,

(3.29)

where Ω2NMtMr can be any general convex set, determined by the prior. In this chapter,

we consider complex attenuation factors with magnitude less than ω0, which means |snij | ∈

[0, ω0] , Ω. Such prior can be obtained, for example, based on the distance between the
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region of interest and the TX/RX pairs. Thus, the constraint s̃ ∈ Ω2NMtMr is satisfied if

‖
[
s̃[2i− 1], s̃[2i]

]
‖2 ∈ Ω, ∀i ∈ N+

NMtMr
, where s̃[i] denotes the i-th entry of s̃.

In the following, we use the alternating direction method of multipliers (ADMM) [95] to

solve the problem.

3.6.1 A Fast Algorithm Based on the ADMM

We introduce auxiliary variables y and x and rewrite (3.29) as

min
1

2
‖z̃− Ψ̃s̃‖22 +

N∑
n=1

λ‖yn‖2

s.t. yn = Dns̃, ∀n ∈ N+
N ,

x = s̃,x ∈ Ω2NMtMr ,

(3.30)

where Dn is the matrix of dimension (2MtMr) × (2NMtMr) that selects the entries in s̃

indexed by In; the vector y is defined as [yT1 , . . . ,y
T
N ]T . We have y = Ds̃ where D =

[DT
1 , . . . ,D

T
N ] permutates s̃ into y. The auxiliary variable y is to isolate s̃ from the group

sparsity-inducing term
∑
‖·‖2; the magnitude constraint is now imposed on x instead of s̃.

Let us now apply the ADMM after grouping the variables into two blocks, i.e., (y,x)

and s̃. The augmented Lagrangian of the above optimization problem can be written as

follows
L(s̃,y,x;µ, ν) =

1

2
‖z̃− Ψ̃s̃‖22 + νT (x− s̃) +

ρ2

2
‖x− s̃‖22

+

N∑
n=1

(
λ‖yn‖2 + µTn (yn −Dns̃) +

ρ1

2
‖yn −Dns̃‖22

)
,

(3.31)

where ρ1, ρ2 > 0 and µ , [µT1 , . . . , µ
T
N ]T ∈ R2NMtMr and ν ∈ R2NMtMr are the Lagrangian

multipliers.

Based on the framework of ADMM, we can solve (3.30) by alternatively iterating over

y,x and s̃. The y-subproblem is well studied in the literature [57] and its solution is given

explicitly by the shrinkage operator

yk+1
n = max

{
‖s̄kn‖2 −

λ

ρ1
, 0

}
s̄kn
‖s̄kn‖2

, ∀n ∈ N+
N , (3.32)

where s̄kn , Dns̃
k − µkn/ρ1. In total, the computation cost of (3.32) scales as O(NMtMr).

For the x-subproblem, we have

xk+1 = PΩ

(
s̃k+1 − νk

ρ2

)
, (3.33)
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where PΩ(x) projects
(
x[2i− 1],x[2i]

)
onto the region {(x, y)|x2 + y2 ≤ ω0}, ∀i ∈ N+

NMtMr
.

The overall computation of (3.33) involves O(NMtMr) operations.

The s̃-subproblem is a least squares problem. The minimizer is attained if

0 =
∂

∂s̃
L(s̃,yk+1,xk+1;µk, νk) = As̃− bk, (3.34)

where A = Ψ̃T Ψ̃ + (ρ1 + ρ2)I2NMtMr and bk = Ψ̃T z̃ + DTµk + ρ1D
Tyk+1 + νk + ρ2x

k+1,

and IN denotes the identity matrix of dimension N ×N . The solution can be obtained by

solving the following system of linear equations

As̃k+1 = bk. (3.35)

Given the signal model, A is fixed for all iterations. The computational effort for bk in each

iteration only involves permutation and addition of vectors; this is because Ψ̃T z̃ is also fixed.

In addition, A is block diagonal because Ψ̃T Ψ̃ is block diagonal. The system of (3.35) can

be written into a set of subsystems of linear equations as follows

Ams̃k+1
m = bkm, ∀m ∈ N+

MtMr
, (3.36)

where Am denotes the m-th diagonal block of matrix A; vm denotes the m-th uniformly

partitioned block of vector v. From the definition of A, we know that

Am = Ψ̃T
ijΨ̃ij + (ρ1 + ρ2)I2N , ∀m ∈ N+

MtMr
, (3.37)

where j = bm−1
Mt
c+ 1 and i = m− (j − 1)Mt. bac denotes the largest integer that is smaller

than a. From the definition of Am, it is easy to show that Am is symmetric and positive

definite for any ρ1, ρ2 > 0. Therefore, each system in (3.36) can be solved efficiently using

iterative methods, such as the Preconditioned Conjugate Gradient (PCG) method, with cost

about O(N2) operations. The total number of operations to solve (3.35) is of the order of

O(N2MtMr).

Finally, the update for multipliers µ and ν can be carried out as

νk+1 = νk + ρ2(xk+1 − s̃k+1), (3.38a)

µk+1 = µk + ρ1(yk+1 −Ds̃k+1), (3.38b)



49

with linear complexity O(NMtMr).

The convergence of the above iterations is guaranteed by results in the ADMM literature

[95]. The iterations stop when the decrease of the objective value in (3.29) drops below certain

threshold or the number of iterations exceeds certain value.

Remark 8. The bounds on L and P of Proposition 1 apply to (3.27) and (3.28) exactly

in the same way as to (3.23). The problems in (3.27) and (3.23) are identical because the

transformation only involves the separation of real and imaginary parts. Also, (3.28) is

equivalent to (3.27) because (3.28) and (3.27) are the dual problems of each other. It can

be shown using convex analysis techniques [96] that for any λ > 0 the solution of (3.28) is

a minimizer of (3.27) for certain ε0. The same bounds on L and P of Proposition 1 also

guarantee to solve (3.29), which result in a smaller recovery error than (3.23). The bounded

constraint in (3.29) reduces the feasible set in (3.23) by incorporating prior information on

s. This means that the solution of (3.29) is at least as accurate as that of (3.23) with the

same conditions on L and P of Proposition 1. As shown in the simulations, the additional

constraint indeed improves the accuracy of the solution over other methods that also use the

same L and P .

Remark 9. The advantages of the proposed algorithm can be summarized as follows. First,

the computational cost is low. As we know, solving (3.30) using an interior point method

would involve O((NMtMr)
3) operations [97]. For the proposed algorithm, the computational

cost in each iteration is dominated by solving the system of linear equations (3.35), which is

O(N2MtMr). The reduction of computations is more significant as the number of antennas

increases. Second, the estimation accuracy of s is improved by introducing the amplitude

constraints on the sparse target vector. Also, the performance is robust over wide range of

regularization parameter λ. This is validated via simulations in Section 3.8. Lastly, due to

the block diagonal structure in Ψ, the update of s̃k+1 in (3.35) can be achieved by updating

independent sub-vectors in s̃k+1. The good separability in the update of all variables affords

a parallel and decentralized implementation, as discussed in the next section.
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3.6.2 Parallel and Semi-distributed Implementation

Parallel Implementation

In the (k + 1)th iteration, it is clear that all pairs (xk[2i − 1],xk[2i]) in xk are updated

independent of the others, thus, the computations can be done in parallel. A similar parallel

scheme applies to µk and νk, and the update of ykn. The subsystems in (3.36) can also

be solved in parallel. Assuming that there are multiple computing units available at the

fusion center, the target estimation running time can be significantly reduced. The parallel

implementation here is different from the decoupled Lasso of [31], because here, the identical

sparsity profile in the sub-vectors of the target vector is utilized via the auxiliary variable

y.

Fusion Center Aided Semi-Distributed Implementation

The ADMM based approach described in Section 3.6.1 requires a fusion center to perform

all the computations. However, a semi-distributed implementation is also possible. For each

iteration, x (respectively for s and ν) can be divided into blocks, each of which can be

updated locally at the receive antenna. However, the update of y and µ cannot be done

locally. A fusion center performs the update of y and µ.

The fusion center aided semi-distributed scheme is summarized in Algorithm 1. In the

implementation of Algorithm 1, s̃k+1
m ∈ R2N (respectively for νk+1

m ,xk+1
m ), ∀m ∈ N+

MtMr
,

denotes the m-th block of uniformly partitioned s̃k+1. yk+1
m ∈ RN denotes the m-th block

of uniformly partitioned DTyk+1. The receive node j updates xk+1
m , νk+1

m and sk+1
m for

all m ∈ Tj , {(j − 1)Mt + i|i ∈ N+
Mt
}. The fusion center updates y and µ. Thus, the

computation cost is O(N2Mt) at each node and O(NMtMr) at the fusion center. One can

see that the computations are distributed among all receive nodes. The computation and

memory required by the fusion center is only linear in the dimension of sparse vector y,

which is significantly lower than that of the fusion center of Section 3.6.1. Thus, even one of

the receivers can be assigned to serve as the fusion center, and perform the update of y and

µ. In each iteration, each node communicates s̃k+1
m and yk+1

m to the fusion center. However,

the communication load decreases in a few iterations, because the nonzero entries in s̃k+1
m
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and yk+1
m would be on the order of O(K).

A fully distributed scheme would also be possible, but would require consensus. Howev-

er, consensus-based implementations converge slowly, which would be a problem in target

estimation and tracking applications.

Algorithm 1 Semi-Distributed Implementation
One peer receive node is chosen as the fusion center.
Input Ψ̃, z̃, λ, ρ1, ρ2

Initialization s̃(0) = x(0) = y(0) = 0, µ(0) = ν(0) = 0
Iteration
Fusion Center:

compute yk+1
n , ∀n ∈ N+

N by (3.32);
Node j ∈ N+

Mr
: for all m ∈ Tj

download yk+1
m from the fusion center;

compute xk+1
m = PΩ(s̃k+1

m − νkm/ρ2);
compute s̃k+1

m by solving (3.36);
compute νk+1

m = νkm + ρ2(xk+1
m − s̃k+1

m );
upload s̃k+1

m to the fusion center;
Fusion Center:

compute µk+1 by (3.38b);

3.7 Decoupled location and speed estimation

Instead of jointly estimating the target location-speed in the discretized location-speed space

Θ = Θloc × Θspd (dimension N = N1 × N2) we can decouple the estimation into target

location estimation and the speed estimation. As it will be shown, such decoupling lowers

complexity and required fewer measurements.

3.7.1 The Decoupled Signal Model

First, we describe the sparse model in the discretized target location space, Θloc, of di-

mension N1, where N1 � N . For target location estimation, it suffices to collect the

measurements from one pulse only. During the p-th pulse (for some fixed p), the sample

vector zpij ∈ CL, corresponding to the (ij)-th TX/RX antenna pair node pair, equals

zpij = Ψp
ijs

p
ij + npij , ∀(ij) ∈ Ξ, (3.39)
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where npij ∈ CL denotes the additive noise. The matrix Ψp
ij ∈ RL×N1 has wi,τnij

as its n-th

column. The vector spij ∈ CN1 is K-sparse and its n-th entry equals spij(n) = βkije
2πfkijT (p−1),

if there is a target at the n-th grid point (here βkij is the corresponding target reflectivity);

otherwise it equals 0. For slowly moving targets, the Doppler effect can be approximated as

constant during one pulse, thus, the Doppler effect here is absorbed into spij . At the fusion

center, the sample vector corresponding to the p-th pulse, formed based on all TX/RX pairs,

zp ∈ CLMtMr , equals

zp =
[
(zp11)T , . . . , (zpMtMr

)T
]T

= Ψpsp + np, (3.40)

where sp =
[
(sp11)T , . . . , (spMtMr

)T
]T
, np = [(np11)T , . . . , (npMtMr

)T ]T , and Ψp = diag(Ψp
11,

. . . ,Ψp
MtMr

).

The location vector sp can be recovered by applying the L-OPT method of Section 3.2.

The recovery performance is given in the following proposition.

Proposition 2. Consider the location estimation model in (3.40). For any δ2K <
√

2− 1,

if L is such that

L ≥ 192δ−1
2KK

2 log(N1

√
MtMr) + 1, (3.41)

then the error of the L-OPT solution, ŝp, is bounded as ‖ŝp − sp‖2 ≤ g
(
εp/
√
Lσ2

0

)
with

probability exceeding (1− 4(N1

√
MtMr)

−1).

The proof of Proposition 2 follows the same spirit as that of Proposition 1. The key is to

show that Ψp satisfies the A1-RIP(2K, δ2K) given the conditions on L, which can be proven

along the lines of Section 3.4.

Once we obtain the target locations from ŝp, we can use them to reduce the dimension

of the speed estimation problem. Let Θloc,I be the pruned target location space. If the

number of targets, K, is known, then Θloc,I consists of the grid points corresponding to the

K largest entries of the recovered spij . If K is unknown, we keep a slightly larger portion of

the location grid points in Θloc,I . The sparse model in (3.8) can be applied for Θloc,I×Θspd

instead of the entire space Θ. On denoting K̃ , |Θloc,I |, it holds that K̃ ∼ O(K) � N1.

The number of measurements can also be reduced due to the lower dimension of the location-

speed space Θloc,I ×Θspd. During each pulse, the (ij)-th TX/RX pair will only use L̃� L

measurements.
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Let us denote by Ir the index set that selects L̃P measurements during all P pulses,

and by Ic the index set that selects Θloc,I ×Θspd out of Θ. The sparse model for speed

estimation becomes

zIr = ΨIsIc + nIr , (3.42)

where zIr ∈ CL̃PMtMr consists of entries of {zij}(ij)∈Ξ indexed by Ir, and similarly for

sIc ∈ CK̃N2MtMr and nIr ∈ CL̃PMtMr ; ΨI ∈ CL̃PMtMr×K̃N2MtMr is the corresponding block

diagonal matrix. The diagonal blocks of ΨI consist of rows and columns of {Ψij}(ij)∈Ξ

respectively indexed by Ir and Ic. Note that sIc can be uniformly partitioned intoMtMr K-

sparse sub-vectors, which share the same sparse profile. The final location-speed estimation

can be achieved based on sIc , by solving an L-OPT problem (see (3.42)).

3.7.2 Complexity and Discussion

The decoupled location and speed estimation scheme needs to solve two sparse recovery

problems. If the interior point method is adopted to solve the L-OPT problems, the total

computation cost would be O((N1MtMr)
3 + (K̃N2MtMr)

3). Recall that solving (3.8) using

the interior point method requires cost of O((N1N2MtMr)
3). The computation saving comes

from the lower dimensions of the decoupled scheme than that of the original problem in

(3.8). Moreover, in (3.40), the measurement matrix Ψp is block diagonal, and the sparse

vector sp has group sparsity. Thus, the ADMM-based algorithm in Section 3.6 can be

used to recover sp. It is easy to show that the Gram matrix of Ψp is block diagonal,

symmetric and positive semidefinite. The computation of the ADMM-based algorithm will

be O(N2
1MtMr). Similarly for (3.42), the ADMM-based algorithm can also be used to

recover sIc with cost O(K̃2N2
2MtMr). The decoupled location and speed estimation using

the ADMM further reduces the computational complexity. The parallel technique (or semi-

distributed implementation) can also be applied here to distribute the computations among

multiple processors (or receiver nodes).

The decoupled scheme requires LMtMr measurements from the p-th pulse for location

estimation and (P − 1)L̃MtMr from the rest (P − 1) pulses for the final speed estimation.

Thus, the receivers can operate at sampling frequency 1/Ts during the first pulse, and reduce

the sampling frequency to L̃
LTs

thereafter. Compared to the joint estimation scheme, less
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measurements are needed.

Given fixed amount of measurements, the estimation performance is better for smaller

location-speed space Θloc,I × Θspd once it contains the location grid points possessed by

targets. Since the dimension of Θloc,I × Θspd is controlled by K̃, it is expected that the

estimation error achieves the minimum when K̃ = K if the locations of K targets are

estimated correctly in the first stage. We will show in the simulation that this happens even

for reasonable low SNRs. It is also shown that the estimation error of the decouple scheme

with partial measurements may even be lower than that of the joint scheme using all the

measurements.

3.8 Numerical Results

We consider a MIMO radar system withMt TX andMr RX antennas, distributed uniformly

on a circle of radius of 6, 000m and 3, 000m, respectively. Each TX radar transmits pulses

with pulse repetition interval 0.125 ms and 5GHz carrier frequency. The variance of Gaus-

sian waveform is σ2
0 = 1. Each RX radar works with sampling frequency of 50MHz on the

received baseband signal, which are corrupted by zero-mean Gaussian noise with variance

σ2
n. The signal-to-noise ratio (SNR) is defined as 10 log10(σ2

0/σ
2
n).

The probing space is discretized on a Nx ×Ny grid, starting from point [8000m, 8000m]

with grid spacing equal to 10m. The velocity space in default is fixed as a uniform 4 × 1

grid on vx ∈ [100, 130]m/s, vy = 100m/s i.e., Nvx = 4, Nvy = 1, unless otherwise is stated.

We randomly generate K targets on the grid. The magnitude of the complex reflection

coefficients for each target in each trial is randomly generated from uniform distribution in

the range of [0.1, 0.8].

All the simulations are carried out on a PC with Intel Core i7 CPU and 8GB memory.

The number of independent trials is 100 unless otherwise stated.

3.8.1 On The Number of Pulses P

We first illustrate the choice of the number of pulses P via the inequality β(P )/P ≤

δ2K/(2K + δ2K)|δ2K=
√

2−1 , γ0 when only a single target is considered, i.e., K = 1. We
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Figure 3.1: Results on the choice of the number of pulses, P .
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Figure 3.2: An illustration of target scene estimation. The MIMO radar system has Mt = 2
receive and Mr = 4 transmit antennas. We sample L = 50 samples per pulse from P = 6
pulses. There are K = 4 targets. The target space of interest is with parameters Nx =
25, Ny = 4, Nvx = 4 and Nvy = 4.

consider Mt = 2,Mr = 4. For the case of Nx = 25, Ny = 4, Fig. 3.1 shows values of

φij(P )/P for all TX/RX pairs under different values of P . We choose the smallest P such

that the maximum of φij(P )/P , ∀(ij) ∈ Ξ, is smaller than γ0, i.e., β(P )/P ≤ γ0. Based on

Proposition 1, this value guarantees the performance under the worst cases. In the following

simulation, we will show that even a smaller P works well.
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Figure 3.3: Performance for the Matched Filtering (MF), the BPDN and the L-OPT meth-
ods. (a) Results under different number of measurements and SNRs, K = 20, P = 3; (b)
Results under different number of pulses and SNRs, K = 20, L = 6.

3.8.2 The Advantage of Exploiting Group Sparsity

It can be seen from Theorem 2 that exploiting the sparsity in the target vector reduces

the required measurements, or equivalently, it improves the performance with the same

amount of measurements. In this simulation, we evaluate the advantage of exploiting the

sparsity structure in the target vector. We consider Mt = 2,Mr = 4, Nx = 25 and Ny = 4.

For the proposed L-OPT based method in (3.23), we use the interior point method with

ε0 = 2
√
LMtMrσn [38]. For comparison, we implement BPDN which just minimizes the

`1-norm of s and ignores the sparsity structure in s. The constraint in BPDN is exactly the

same as that for L-OPT method. The parameter ε0 for BPDN is chosen the same as that

for L-OPT. Also, the traditional matched filtering (MF) approach [2] is also implemented

for comparison. The MF method uses the same L and P as the sparsity-based methods.

The received signal is correlated with the transmitted signal distorted by different Doppler

shifts and time delays.

An illustration of target scene estimation is presented in Fig. 3.2. The MIMO radar

system has Mt = 2 receive and Mr = 4 transmit antennas. We sample L = 50 samples

per pulse from P = 6 pulses. There are K = 4 targets. The target space of interest is

with parameters Nx = 25, Ny = 4, Nvx = 4 and Nvy = 4. The traditional MF method has

complexity of O(LPNMtMr), which is much lower compared to that of the BPDN and the

L-OPT methods. However, the target scene estimate by the MF method is corrupted by
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lots of false peaks. The BPDN method achieves a relative cleaner target scene estimate, but

the strong false peaks may still degrade the target estimation results. The L-OPT method

utilizes the group sparsity in s, which helps to remove the false peaks in the estimate. It

can be seen from Fig. 3.2 that the L-OPT method indeed achieves the best target scene

estimation.

In Fig. 3.3(a), we plot the successful recovery rates by the MF, the BPDN and the L-

OPT methods under different number of measurements, L, and SNRs with K = 20, P = 3.

The recovery rate of the L-OPT method drops dramatically if L is smaller than 10. This

observation validates the claim in Proposition 1 that L should be larger than certain value

to maintain a high probability of target location and speed estimation. Based on (3.24a) in

Proposition 1, the bound on L is 5×105, which is much larger than the values of L here. As

discussed in Remark 5, the L-OPT method performs well with much smaller L and P than

those in (3.24). In Fig. 3.3(b), we plot the successful recovery rates under different number

of pulses, P , withK = 20, L = 6. Similar observations can be made for the number of pulses.

From both Fig. 3.3(a) and (b), the successful recovery rates of the L-OPT method are higher

than those of the BPDN method under all the settings. As implied by Theorem 2, L-OPT

outperforms BPDN because it exploits the sparsity structure in s. In addition, the sparsity

based methods, both the BPDN and the L-OPT methods, outperform the traditional MF

method in terms of the success rate of target estimation.

3.8.3 Efficient Algorithm Based on The ADMM

In this section, we evaluate the efficient algorithm based on the ADMM proposed in Section

3.6.1. We consider the same simulation setting in Section 3.8.2 except that the SNR is set to

be 5 dB. The dimension of the target vector in (3.26) is 6400×1 with 16×K nonzero entries.

The BOMP [30] method, the GLasso-PGA method [31] and the L-OPT method using the

interior point method (L-OPT-IPM) are implemented for comparison. For GLasso-PGA, we

choose λ = 0.02 for the best performance. For L-OPT-IPM, we set ε0 = 2
√
LPMtMrσn with

knowledge of σ2
n = σ2

01010/SNR. For the proposed ADMM based method, preconditioned

conjugate gradient is used to solve the system of (3.35). The estimation error ‖ŝ− s‖2 and

the CPU running time are used as the performance metrics. All results are averaged over
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100 independent trials.

We first fix K = 10, P = 3 and evaluate the root of total squared error ‖ŝ − s‖2 under

different number of measurements L. The results are plotted in Fig. 3.4. The proposed

algorithm, labeled as ADMM-based in the legend, achieves lower estimation errors with less

CPU run time as compared to GLasso-PGA and L-OPT-IPM under all L’s. The CPU run

time of the proposed algorithm remains less than 10s, while the run time of L-OPT-IPM

grows superlinearly with L. We should note that the L-OPT-IPM solves the problem of

(3.23), while the ADMM method solves the problem of (3.29). Compared to the problem of

(3.23), there is an additional bounded constraint in (3.29), which changes the optimization

problem. The additional constraint in (3.29) imposes a smaller feasible set, which may

introduce the denoising effect because the noise-corrupted candidates outside the feasible

set are excluded. In contrast, the solution of (3.23) obtained by the L-OPT-IPM method

may fall out of the feasible set in (3.29). As shown in Fig. 3.4, the additional constraint

in (29) improves the accuracy of the solution with the same L and P over the L-OPT-IPM

method.

Next, we consider the performance of the proposed scheme for different number of targets

and fixed number of measurements L = 20 and pulses P = 3. The results are plotted in Fig.

3.5. For all values of K, the proposed ADMM-based algorithm achieves lower estimation

errors than the GLasso-PGA method using around one quarter CPU running time.

Fig. 3.6 shows the performance of the proposed scheme for different number of pulses

and fixed number of measurements L = 10 and targets K = 10. The ADMM-based method

achieves the smallest estimation errors, and takes much less CPU runtime than the GLasso-

PGA method does.

It is noted that the MF method takes much less CPU runtime compared to the spar-

sity based methods because its complexity is O(LPNMtMr). However, the sparsity based

methods achieve lower estimation errors and higher success rates at the cost of complexity

increase.

In the above simulation, L-OPT-IPM requires knowledge of the noise variance σ2
n. The

regularization parameter λ in GLasso-PGA and the proposed algorithm also need to be



59

10 20 30 40
10

0

10
1

Number of measurements

E
si

tm
at

io
n 

E
rr

or

 

 

10 20 30 40

10
−1

10
0

10
1

Number of measurements

T
im

e 
pe

r 
tr

ia
l (

se
c.

)

 

 

MF
BOMP
GLasso−PGA
L−OPT−IPM
ADMM−based
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Figure 3.5: Performance under different number of targets with L = 20 and P = 3; for
GLasso-PGA λ = 0.02; and for the proposed ADMM-based method λ = 4, ρ1 = ρ2 = 1.

manually tuned. In fact, the choice of such parameters are critical for the estimation per-

formance. In Fig. 3.7, we plot the estimation errors for a wide range of λ. We observe that

the estimation error of the proposed ADMM-based algorithm remains very small for a wide

range of λ’s, while for GLasso-PGA, the range of good λ’s is very narrow. The robustness

to λ makes the proposed algorithm good candidate for real world applications.

3.8.4 The Performance of the Decoupled Scheme

In this section, we evaluate the performance of the decouple scheme proposed in Section 3.7

under different values of L̃ and K̃. Recall that K̃ is the number of location grid points kept

after the location estimation stage, and L̃ is the number of measurements used to achieve

final location and speed estimation in the second stage. We aim to illustrate the extent to
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which K̃ and L̃ can be reduced. For comparison, the joint location and speed estimation is

implemented using the ADMM-based algorithm in Section 3.6, which is referred to as the

joint scheme. We consider Mt = 2,Mr = 4, Nx = 25 and Ny = 4. The number of targets,

measurements and pulses are fixed as K = 10, L = 50, and P = 3. The performance metrics

used in this subsection are the successful recovery rate, root of the total squared error, and

the CPU running time.

Fig. 3.8 shows the performance under different values of L̃. The performance of the joint

scheme remains constant and serves as the reference because it is not affected by L̃. As for

the decoupled scheme, the successful recovery rate goes up if more number of measurements

are used. Also, the estimation accuracy of s increases when more measurements are used.

The success rate and the estimation error of the decoupled scheme become very close to that

of the joint scheme when only L̃ = 20 out of L = 50 measurements (40%) are used. The

location and speed estimation is correct with high probability even when we only keep 20%

the measurements. The running time of the decoupled scheme is less than one tenth of that

of the joint scheme. Note that the decoupled scheme estimation error becomes even smaller

than that of the joint scheme when L̃ is large enough. It is because that the dimension of

the location-speed space in the second stage of the decoupled scheme is much smaller than

that used in the joint scheme, i.e., K̃N2 � N1N2.

The performance results under different values of K̃ are plotted in Fig. 3.9. The success

rate results in Fig. 3.9(a) show that the success rate of the decouple scheme is 100% even

if K̃ = K. This means that the location estimation is accurate and stable in noise (5dB

and 0dB are shown in the figure). The estimation error results in Fig. 3.9(b) indicate that

the error is large if K̃ is smaller that K. If K̃ is set properly larger than K, the estimation

error of the decoupled scheme is lower than that of the joint scheme. Also, note that once

the correct location grid points are kept, the smaller the K̃ is, the smaller the dimension of

the pruned space in the decoupled scheme is, and thus the smaller the estimation error is.

Based on the simulations in the subsection, we conclude that the decoupled scheme can

reduce both the computation and the required number of measurements, while maintaining

high estimation accuracy in practice.
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Figure 3.8: Performance of the decoupled scheme under different values of L̃ with K̃ = 2K.
(a) the successful recovery rate, (b) the estimation error, and (c) the CPU running time per
trial in seconds.
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Figure 3.9: Performance of the decouple scheme under different values of K̃ with L̃ = 0.8L.
(a) the successful recovery rate, (b) the estimation error, and (c) the CPU running time per
trial in seconds.

3.8.5 Off-grid targets and grid refinement

In all the previous simulations, all targets are assumed to be on the grid. In this section,

we consider the case in which the targets may be between the grid points. For a certain

target space, a dense grid would generate a problem with large dimension, the solution of

which would demand high computational cost. On the other hand, a coarse grid would

introduce large estimation errors. One could use the grid refinement scheme [97] to reduce

the complexity while maintaining estimation performance. Let us consider the location and

velocity estimation of K = 4 moving targets. The true target parameters are given in the

second row of Table 3.1. The target space of interest is x ∈ [8000, 8200], y ∈ [8000, 8100], vx ∈

[100, 180] and vy ∈ [100, 140]. In a dense uniform grid Θd with Nx = 41, Ny = 21, Nvx = 9

and Nvy = 5, the location and velocity grid spacings would be 5m and 10m/s, respectively,

for which all targets fall on the grid. However, the corresponding total number of grid points
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Table 3.1: The estimated target locations and velocities by a three-level grid refinement
scheme. The results are given in the form of [x, y, vx, vy] with metricsm andm/s respectively
for location and velocity.

Target 1 Target 2 Target 3 Target 4
True [8025,8015,120,100 ] [8085,8035,140,120] [8125,8055,160,120] [8185,8075,180,140]

1st est. [8020,8020,120,100 ] [8080,8040,140,120] [8120,8060,160,120] [8180,8080,180,140]
2nd est. [8020,8020,120,100 ] [8080,8040,140,120] [8120,8060,160,120] [8180,8080,180,140]
3rd est. [8025,8015,120,100 ] [8085,8035,140,120] [8125,8055,160,120] [8185,8075,180,140]

and the dimension of the sparse target vector s are N = 38745 and NMtMr = 309960,

respectively. It is too time demanding to estimate targets using Θd. We instead use a three-

level grid refinement scheme. An initial coarse grid Θc with Nx = 11, Ny = 6, Nvx = 5 and

Nvy = 3 is used to discretize the target space, which reduces the total number of grid points

to 990. The location and velocity grid spacings are 20m and 20m/s, respectively. Note that

for this grid, all four targets fall between grid points. The first round estimate ŝ1 is obtained

from the reconstructed target vector using the L-OPT method and Θc. A refined grid Θr

is generated in the neighborhood of the dominant peaks in ŝ1 with location grid spacing

10m and velocity grid spacing 10m/s. The total number of grid points in the refined grid

is 2153, which is still very small compared to that of Θd. Note that all four targets still

fall off the refined grid. The second round estimate ŝ2 is obtained and the grid refinement

procedure is repeated for a second time. Finally, we obtain the third round estimate ŝ3

using a further refined grid Θr′ with 2924 grid points, 5m location grid spacing and 10m/s

velocity grid spacing. The true and estimated target scenes in the location space are shown

in Fig. 3.10, where the vectors ŝ1, ŝ2 and ŝ3 are mapped onto grid Θd by interpolating with

zeroes. The estimated target locations and velocities are given in Table 3.1. We observe

that the grid refinement scheme can effectively reduce the computational complexity and

achieve accurate target estimation. Also, in the first two rounds, the off-grid targets are

captured by the closest grid points. This indicates that the proposed methods are robust to

off-grid targets.

3.9 Conclusions

We have considered moving target estimation using distributed, sparsity based MIMO

radars. We have provided the uniform recovery guarantee by analyzing the A-RIP of the
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Figure 3.10: The estimated target scene in location space by a three-level grid refinement
scheme.

block diagonal measurement matrix. The proposed theoretical results validate that the

structures in both Ψ and s result in reduction of the number of measurements needed, or

result in improved target estimation for the same L.

Two low-complexity approaches have been proposed to reduce the computation while

maintaining the estimation performance. The first approach was an ADMM-based sparse

signal recovery algorithm. Simulation results have indicated that this approach significant-

ly lowers the computational complexity for target estimation with improved accuracy as

compared to the approaches using proximal gradient algorithm and interior point method.

The second approach decouples the location and speed estimation into two separate stages.

The location estimation obtained in the first stage is used to prune the target location-

speed space in the speed estimation stage. Simulations have indicated that the decoupled

scheme can reduce both the computation and the required number of measurements, while

maintaining high estimation accuracy.

3.A Proof of Theorem 2

Proof. Here we only focuss on the bounds for the off-diagonal entries in the Gram of Ψ̄,

G = Ψ̄HΨ̄. For the diagonal entries, i.e., n = l as in case (i), the union bound can be easily

obtained based on (3.13).

The off-diagonal entries may be from either case (ii) or case (iii). In order to arrive at a
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uniform union bound, we need to unify the bounds in (3.17) and (3.19) for these two cases.

Inequality (3.17) for case (ii) can be relaxed as

Pr (|Gij(n, l)| > t) ≤ 4 exp

(
−L− 1

16
t2
)
. (3.43)

Under condition (3.20), the probabilistic bound in (3.19) for case (iii) can be relaxed to the

same as that in (3.43) for case (ii).

Following the classical procedure of RIP analysis in [88], we need to evaluate the radii of

the Gergošin’s discs for the sub-matrix of G constructed based on the support of s. Recall

that Ψ̄ is block diagonal and there are only K nonzero entries in each sub-vector sij in s.

Therefore, there are only (K − 1) instead of (K − 1)MtMr off-diagonal entries contributing

to the radii of the Gergošin’s discs. This reduction comes from the BD structure of Ψ̃ and

the sparsity profile of s characterized by AK1 . Here we choose δd , δK
K and δo , (K−1)δK

K .

Substituting t with δo/(K − 1) in (3.43) gives the unified bound for any of the off-diagonal

entries, i.e.,

Pr
(
|Gij(n, l)| >

δK
K

)
≤ 4 exp

(
− (L− 1)δ2

K

16K2

)
. (3.44)

under the condition of (3.21b), which is derived by substituting t = δK/K into (3.20).

Following the steps of [88] the proof follows.
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Chapter 4

A Joint Design Approach for Spectrum Sharing between
Radar and Communication Systems

A joint design approach is proposed for the coexistence of MIMO radars and a communica-

tion system, for a scenario in which the targets fall in different range bins. Radar transmit

precoding and adaptive communication transmission are adopted, and are jointly designed

to maximize signal-to-interference-plus-noise ratio (SINR) at the radar receiver subject to

the communication system meeting certain rate and power constraints. We start with the

design of a system in which knowledge of the target information is used. Such design can be

used to benchmark the performance of schemes that do not use target information. Then, we

propose a design which does not require target information. In both cases, the optimization

problems are nonconvex w.r.t. the design variables and have high computational complexity.

Alternating optimization and sequential convex programming techniques are used to find

a local maximum. Based on the analysis of the obtained solution, we propose a reduced

dimensionality design, which has reduced complexity without degrading the radar SINR.

Simulation results validate the effectiveness of the proposed spectrum sharing framework.

4.1 Introduction

The operating frequency bands of communication and radar systems often overlap, causing

one system to exert interference to the other. For example, the high UHF radar systems

overlap with GSM communication systems, and the S-band radar systems partially overlap

with Long Term Evolution (LTE), and WiMax systems [42, 43, 53, 98]. Spectrum sharing is

a new line of work whose goal is to enable radar and communication systems to share the

spectrum efficiently by minimizing interference effects [42–49].
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Figure 4.1: A MIMO communication system sharing spectrum with a colocated MIMO
radar system.

Spectrum sharing between MIMO radar and communication systems has been consid-

ered in [43–46], where the radar interference to the communication system is eliminated by

projecting the radar waveforms onto the null space of the interference channel from radar

to communication systems. However, projection-type techniques might miss targets lying in

the row space of the interference channel. Spatial filtering at the radar receiver is proposed in

[47] to reject interference from the communication systems. This approach, however, works

only if the target is not in the direction of the interference coming from the communication

system.

Most of the existing radar-communication spectrum sharing literature addresses interfer-

ence mitigation either for the communication systems [43–46], or for the radar [47]. To the

best of our knowledge, co-design of radar and communication systems for spectrum sharing

was proposed in [99–101] for the first time. Compared to the radar design approaches of [43–

47], the joint design has the potential to improve the spectrum utilization due to increased

number of design degrees of freedom. However, the results of [99–101] were developed for a

scenario in which all targets fall in the same range bin, and the propagation delay is properly

compensated.

In this chapter, we propose a spectrum sharing framework for the coexistence of MIMO

radars and a communication system, for a scenario in which the targets fall in different

range bins. The coexistence model considers the radar operation pattern, i.e., transmitting

a short pulsed waveform and listening target echoes for a much longer period. Radar trans-

mit (TX) precoding and adaptive communication transmission are adopted and are jointly
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designed. Unlike the radar waveform projection based methods, the joint design approach

could potentially align the target returns and the communication interference separately in

different subspaces, and thus suppress the interference without degrading the target returns.

We formulate the design problem as maximization of SINR at the radar receiver subject to

the communication system meeting certain rate and power constraints. We start with the

design of a system in which knowledge of the target information (e.g., delays, reflectivities)

is used. Such design can be used to benchmark the performance of schemes that do not use

target information. Then, we propose a design which does not require target information.

In both cases, the optimization problems are nonconvex w.r.t. the design variables and

have high computational complexity. Alternating optimization and sequential convex pro-

gramming techniques are used to find a local maximum. Analysis on the obtained solution

indicates that a two-level constant communication rate over the radar TX period and the

radar listening-only period could achieve the same radar SINR as the adaptive transmission.

Based on this fact, we propose a new design with a much lower dimension which has reduced

complexity without degrading the radar SINR. Simulation results validate the effectiveness

of the proposed spectrum sharing methods over methods based on noncooperative spectrum

access.

This chapter is organized as follows. Section 4.2 introduces the coexistence model of a

MIMO radar system and a communication system. The proposed spectrum sharing method

is given in Section 4.3. Numerical results and conclusions are provided respectively in

Sections 4.4 and 4.5.

4.2 System Models

Consider a MIMO communication system which coexists with a MIMO radar system as

shown in Fig. 4.1, sharing the same carrier frequency. The MIMO radar system uses Mt,R

TX and Mr,R RX collocated antennas for target detection/estimation. The communication

transmitter and receiver are equipped with Mt,C and Mr,C antennas, respectively. The

communication channel is denoted as H ∈ CMr,C×Mt,C . The interference channel from the

radar TX antennas to the communication receiver is denoted as G1 ∈ CMr,C×Mt,R [43, 44,

46]; the interference channel from the communication transmitter to the radar RX antennas
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is denoted as G2 ∈ CMr,R×Mt,C . It is assumed that the channels H, G1 and G2 are block

fading [102] and perfectly known at the communication transmitter. In practice, the channel

state information can be obtained through the transmission of pilot signals [43, 103]. The

detailed signal models for the MIMO radar and communication systems are described in the

sequel. We do not assume perfect carrier phase synchronization between the two systems.

A graphical illustration of the received signal at the radar and communication receivers is

provided in Fig. 4.2.

The MIMO radar employs narrowband orthogonal waveforms, each of which contains

L coded sub-pulses, each of duration Tb. Let sm , [sm1, . . . , smL]T denote the orthogonal

code vector for the m-th TX antenna. It holds that 〈sm, sn〉 = δmn. The waveforms are

first precoded by matrix P ∈ CMt,R×Mt,R , and then transmitted over carrier fc periodically,

with pulse repetition interval TPRI . Suppose that there are K targets on the same plane

with the antennas, each at directions of arrival {θk} and range {dk} w.r.t. the radar phase

center. During each pulse, the target echoes and communication interference received at

the radar RX antennas are demodulated to baseband and sampled every Tb seconds. The

discrete time signal model for sampling time index l ∈ N+
L̃
is expressed as

yR(l) =

K∑
k=1

βkvr(θk)vTt (θk)Ps(l − lk) + G2x(l)ejα2(l) + wR(l), (4.1)

where L̃ = bTPRI/Tbc denotes the total number of samples in one PRI; yR(l) and x(l)

respectively denote the radar received signal and communication waveform symbol at time

lTb; s(l) = [s1l, . . . , sMt,Rl]
T ; wR(l) is noise distributed as CN (0, σ2

RI); lk = bτk/Tbc with

τk , 2dk/vc; βk denotes the complex radar cross section for the k-th target; the Swerling

II target model is assumed, i.e., the βk’s vary from pulse to pulse and have distribution

CN (0, σ2
βk); and vr(θ) ∈ CMr,R is the receive steering vector defined as

vr(θ) ,
[
ej2π〈d

r
1,u(θ)〉/λc , . . . , e

j2π〈drMr,R ,u(θ)〉/λc
]T
,

with dr1 , [xrm y
r
m]T denoting the two-dimensional coordinates of the m-th RX antenna,

u(θ) , [cos(θ) sin(θ)]T , and λc denoting the carrier wavelength. vt(θ) ∈ CMt,R is the

transmit steering vector and is respectively defined. The second term on the right hand

side of (4.1) denotes the interference due to the communication transmission x(l) ∈ CMt,C .

ejα2(l) is introduced to denote the random phase offset resulting from the random phase

jitter of the oscillators at the communication transmitter and the MIMO radar receiver
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Figure 4.2: An illustration of the received signal at radar and communication receivers. At the
radar receiver, echoes returned from three targets are present during periods Lk, k = 1, 2, 3 with
Lk , {lk, ..., lk+L−1}, while the interference from the communication system is present during the
whole PRI. Echoes from the second and third targets overlap with each other. At the communication
receiver, the radar interference is only present during the first L symbols.

Phase-Locked Loops [100]. In the literature [104–106], phase jitter is modeled as zero-mean

Gaussian process. Note that s(l) is nonzero only for l ∈ N+
L . The echo from the k-th target

appears starting from lk and lasts for L samples.

The MIMO communication system uses the same carrier frequency fc. The baseband

signal at the communication receiver is sampled according to the symbol rate Ts, which

could be different than the radar waveform symbol duration Tb. In this chapter, we only

consider the matched case, i.e., Ts = Tb; the extension of the proposed methods to the

mismatched case is straightforward [100]. The discrete time communication signal has the

following form

yC(l) = Hx(l) + G1Ps(l)ejα1(l) + wC(l), l ∈ N+
L̃
, (4.2)

where x(l) ∈ CMt,C denotes the transmit vector at the communication transmitter at time

index l; ejα1(l) denotes the random phase offset between the radar TX carrier and the com-

munication RX reference carrier [100]; the additive noise wC(l) has distribution CN (0, σ2
CI).

Note that the radar waveform s(l) equals zero when l > L, which means that the commu-

nication system is interference free during this period. The above model assumes that the

radar transmission is the only interference, while the target returns do not reach the com-

munication system.

4.3 Proposed Spectrum Sharing Framework

The figure of merit for the communication system is the achievable channel capacity. For the

communication receiver, there are two distinct periods: one containing l ∈ N+
L̃
\N+

L , during

which only additive noise is present, and another one containing l ∈ N+
L , during which both
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interference and noise are present. Let the interference covariance during the latter period

be RCil = G1PE{s(l)sH(l)}PHGH
1 . In this chapter, as in [101] we choose S as a random

orthonormal matrix. Note that the entries of S are not independent anymore. However,

based on [107, Theorem 3], if Mt,R = O(L/ lnL), the entries of S can be approximated by

i.i.d. Gaussian random variables with distribution N (0, 1/L). The communication system

is aware that S is orthonormal but has no access to the specific realization of S. Based on

the above, the radar interference covariance matrix equals RCil ≡ RCi , G1ΦGH
1 for any

l ∈ N+
L , where Φ , PPH/L is positive semidefinite.

The overall communication system capacity can be maximized using adaptive rate trans-

mission [52, 108]. For l ∈ N+
L , the instaneous capacity is unknown because the interference

plus noise is not necessarily Gaussian due to the random phase offset α1(l). In this chapter,

we are interested in a lower bound of the capacity. However, Gaussian noise with covariance

matrix equal to the actual noise covariance is the worst-case noise for additive noise channels

[109]. The lower bound of the capacity is given by C(Rxl,Φ) , log2

∣∣I + R−1
CinlHRxlH

H
∣∣ ,

which is achieved when the codeword x(l), l ∈ N+
L is distributed as CN (0,Rxl). Similar to

the definition of ergodic capacity [108], the overall communication capacity should be the

average over L̃ symbols, i.e.,

Cavg({Rxl},Φ) , 1/L̃
∑L̃

l=1
log2

∣∣I + R−1
CinlHRxlH

H
∣∣ , (4.3)

where {Rxl} denotes the set of all Rxl’s, and RCinl equals RCi + σ2
CI if l ∈ N+

L , otherwise

σ2
CI.

For the radar system, the SINR has been commonly used as figure of merit in the wave-

form design literature with the prior knowledge of targets and the surrounding environment

[110–113]. The covariance of the interference exerted at the radar RX antennas during the

l-th symbol equals E{G2x(l)ejα2(l)e−jα2(l)xH(l)GH
2 } = G2RxlG

H
2 . The echoes returned

from the k-th target are present during Lk , {lk, · · · , lk + L − 1}, and have covariance

DkΦDH
k for any l ∈ Lk, where Dk , σβkvr(θk)v

T
t (θk). The local SINR associated with the

k-th target is averaged over Lk [112]

SINRk = 1/L
∑

l∈Lk
Tr
(
R−1

RinlDkΦDH
k

)
, (4.4)
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where RRinl , G2RxlG
H
2 + σ2

RI. The overall SINR is defined as

SINR ,
1

K

K∑
k=1

SINRk({Rxl}Lk ,Φ).

In the following, we first present the formulation based on target prior information,

i.e., knowledge based spectrum sharing, and then the formulation for the worst case design

strategy, which does not rely on target information, i.e., robust spectrum sharing.

1) Knowledge-based spectrum sharing. In some cases, targets information can be main-

tained from the detection and tracking history [111, 114]. Since in most cases such informa-

tion does not exist, the design for this case will be used to benchmark other methods that

are more practical. Assuming that {σ2
βk}, {lk}, and {θk} are known, the design problem is

to maximize the radar SINR, subject to satisfying the communication rate and TX power

constraints:

(P1) max
{Rxl}�0,Φ�0

SINR, s.t. Cavg({Rxl},Φ) ≥ C, (4.5a)

∑L̃

l=1
Tr (Rxl) ≤ PC , LTr (Φ) ≤ PR, (4.5b)

The constraint of (4.5a) restricts the communication rate to be at least C, in order to avoid

service outage. The constraints of (4.5b) restrict the total communication and radar TX

power to be no larger than PC and PR, respectively.

2) Robust spectrum sharing with unknown {σ2
βk} and {lk}. Here we consider the scenario

where the radar searches in particular directions of interest given by set {θk} for targets with

unknown RCS variances and delays [3, 113]. The worst possible target RCS variances are

given by {σ2
βk} ≡ σ2

β , where σ
2
β is the smallest target RCS variance that could be detected by

the radar. Since Lk is unknown, the local SINRk associated with the k-th target is relaxed

to the whole PRI

SINR′k = 1/L̃
∑

l∈N+

L̃

Tr
(
R−1

RinlDkΦDH
k

)
, (4.6)

where Dk , σβvr(θk)v
T
t (θk). The overall SINR is given by SINR′ , 1/K

∑K
k=1 SINR

′
k.

Now, the spectrum sharing problem can be formulated as

(P2) max
{Rxl}�0,Φ�0

SINR′, s.t. same constraints as in (P1).

Both (P1) and (P2) are nonconvex w.r.t. variable pair ({Rxl},Φ). In the following, we

will focus on the algorithm that solves (P2), which could also be adapted to solve (P1).



73

4.3.1 Iterative algorithm for solving (P2)

A solution can be obtained via alternating optimization. Let ({Rn
xl},Φn) be the variable at

the n-th iteration. First, we solve {Rn
xl} while fixing Φ to be Φn−1:

(PR) max
{Rxl}�0

1/K
∑K

k=1
SINR′k({Rxl},Φn−1)

s.t. Cavg({Rxl},Φn−1) ≥ C,
∑L̃

l=1
Tr (Rxl) ≤ PC .

(4.7)

Let us rewrite the objective as
∑L̃

l=1 f(Rxl), with

f(Rxl) , Tr
((

G2RxlG
H
2 + σ2

RI
)−1Dn−1

)
, (4.8)

where Dn−1 =
∑K

k=1 DkΦ
n−1DH

k , and constant scale factors are omitted. It can be shown

that f(Rxl) is convex w.r.t Rxl. Problem (PR) is nonconvex w.r.t. Rxl, because it max-

imizes a convex function. The sequential convex programming technique is used to find a

local optimal solution [Boyd]. f(Rxl) can be approximated by the first order Taylor series

expansion at R̄xl as

f(Rxl) ≈f̃(Rxl) , f(R̄xl)

+ Tr

[(
∂f(Rxl)

∂<(Rxl)

)T
Rxl=R̄xl

(Rxl − R̄xl)

]
,

where ∂f(Rxl)
∂<(Rxl)

= −[GH
2 R−1

RinlD
n−1R−1

RinlG2]T .

We can see that f̃(Rxl) is now an affine function of Rxl. Problem (PR) can be approx-

imated by the following convex problem:

(P̃R) max
{Rxl}�0

∑L̃

l=1
f̃(Rxl)

s.t. Cavg({Rxl},Φn−1) ≥ C,
∑L̃

l=1
Tr (Rxl) ≤ PC .

(4.9)

which can be solved with available convex programming packages. The original problem

(PR) could be solved via several iterations of solving (P̃R). At each iteration, {R̄xl} is

updated with the optimal solution of the previous iteration. The iteration stops when the

increase of SINR is small. In addition, we observe that both the objective and constraints

are separable functions of {Rxl}. Dual decomposition technique could be used to solve (4.9)

with lower computation complexity.

Second, the obtained {Rn
xl} are used to solve the following problem for Φn:

(PΦ) max
Φ�0

Tr (QnΦ) s.t. Cavg({Rn
xl},Φ) ≥ C,LTr (Φ) ≤ PR,

where Qn ,
∑K

k=1 DH
k

[∑L̃
l=1

(
G2R

n
xlG

H
2 + σ2

RI
)−1
]

Dk.
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Let Cl(Rn
xl,Φ) , log2

∣∣I + R−1
CinlHRn

xlH
H
∣∣; this is function of Φ only if l ∈ N+

L . The

first constraint in (PΦ) can be rewritten as
∑L

l=1Cl(R
n
xl,Φ) ≥ L̃C−

∑L̃
l=L+1Cl(R

n
xl) , C̃n.

We could express Cl(Rn
xl,Φ), ∀l ∈ N+

L , as follows

Cl(R
n
xl,Φ) = log2

∣∣RCinl + HRn
xlH

H
∣∣− log2 |RCinl|

= log2 |G1ΦGH
1 + R̃n

xl| − log2 |G1ΦGH
1 + σ2

CI|,
(4.10)

where R̃n
xl , σ2

CI+HRn
xlH

H . We can see that Cl(Rn
xl,Φ) is in the form of a concave function

plus a convex function. It can be shown that Cl(Rn
xl,Φ) is actually a convex function of

Φ. Thus, (PΦ) is nonconvex because the above constraint imposes a nonconvex feasible set

on Φ. A similar problem is considered in [101, Eq. (5)]. As in [101], we introduce a slack

variable Ψ to overcome the non-convexity and apply alternating optimization again as an

inner iteration. Let (Φni,Ψni) be the variables at the i-th inner iteration corresponding to

the n-th outer alternating iteration. Φni is initialized as Φn−1 for i = 0. Given Φn(i−1),

Ψni is obtained as follows

Ψni =
(
G1Φ

n(i−1)GH
1 + σ2

CI
)−1

. (4.11)

Based on Ψni, Φni is obtained by solving the following problem

(P′Φ) max
Φ�0

Tr (QnΦ) , s.t. LTr (Φ) ≤ PR,∑
l∈N+

L

log2

∣∣∣I + GH
1 (R̃n

xl)
−1G1Φ

∣∣∣− LTr (GH
1 ΨniG1Φ

)
≥ C ′,

where C ′ , C̃n + L
{
σ2
CTr(Ψ

ni)− log2 |Ψni| −Mr,C

}
−
∑

l∈N+
L

log2 |R̃n
xl|. (P′Φ) is convex

w.r.t. Φ and thus can be solved using available software packages [Boyd].

The complete proposed spectrum sharing algorithm alternately solves (PR) and (PΦ) as

stated above. It is easy to show that the value of SINR is nondecreasing during the alter-

nating iterations. Also, the SINR has a upper bound. Therefore, the algorithm converges.

The iteration stops if the improvement of SINR is smaller than a certain threshold.

4.3.2 Discussion

The adaptive transmission technique adopted by the communication system greatly increases

the complexity of the spectrum sharing problem (P2). The following property can be used

to reduce the complexity of solving (P2) without any performance degradation.

Proposition 3. Suppose that {Rxl} is initialized by {Rxl} ≡ R0
x. Then, the optimal value

of (PR) in every iteration of the proposed algorithm could be achieved by {Rn
xl} such that

for any l, l′ ∈ N+
L (or l, l′ ∈ N+

L̃
\ N+

L), it holds that Rn
xl = Rn

xl′ .
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Figure 4.3: SINR performance vs different values of radar TX power.

The proof can be found in Section 4.A. The above proposition indicates that it suffices to

use only two matrix variables, Rx1 and Rx2, as the communication transmission covariance

matrices respectively for two periods, the one during which radar transmits and the one

during which radar only receives. The spectrum sharing problem can be reformulated as

following
(P′2) max

{Rxl}�0,Φ�0

1

K

2∑
l=1

Tr
(
ηlR

−1
Rinl

∑K

k=1
DkΦDH

k

)

s.t.
2∑
l=1

ηlCl(Rxl,Φ) ≥ C,
2∑
l=1

ηlL̃Tr (Rxl) ≤ PC , LTr (Φ) ≤ PR,

where η1 , L/L̃ is called the duty cycle and η2 = 1− η1. Again, alternating optimization

and sequential convex programming techniques used in Section 4.3.1 could be applied to

solve (P′2), which could achieve the same radar SINR objective as (P2). We can observe

that the robust communication transmission scheme for unknown target ranges is constant

rate transmission over two periods. This is reasonable in the sense that the achieved radar

SINR would be constant across different target ranges, and thus abrupt SINR degradation

for certain target ranges would be avoided.

4.4 Numerical Results

We next conduct some simulation results to quantify the comparative performance of the

designs based on solving (P1), (P2), (P′2), and also include results based the projection

method of [46].

We set the number of samples per PRI to L̃ = 32, the number of radar waveform

symbols to L = 8, the noise variance to σ2
C = σ2

R = 0.01, and the number of antennas
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to Mt,R = Mr,R = Mt,C = Mr,C = 4. The MIMO radar system consists of collocated

TX and RX antennas forming half-wavelength uniform linear arrays. The radar waveforms

are chosen from the rows of a random orthonormal matrix [99]. There are three stationary

targets at angles −60◦, 0◦ and 60◦ w.r.t. to the arrays, and the corresponding target

propagation delays are 6, 18 and 22. This corresponds to the scenario depicted in Fig.

4.2. For the communication capacity and power constraints, we take C = 24 bits/symbol

and PC = L̃Mt,C (the power is normalized by the power of the radar waveform). The

interference channels G1 and G2 are generated with entries which are independent and

distributed as CN (0, 0.01). The channel H has independent entries, distributed as CN (0, 1).

The communication covariance matrix and the radar precoding matrix are jointly optimized

according to (P1), (P2) and (P′2) in Section 4.3. For comparison, we implement methods

based on uniform precoding, i.e., P =
√
LPR/Mt,RI, and null space projection (NSP)

precoding, i.e., P =
√
LPR/Mt,RVVH , where V contains the basis of the null space of G1

[46]. In both of the aforementioned methods, selfish communication is considered, i.e., the

communication system minimizes the transmit power to achieve capacity C without any

concern about the interferences it exerts to the radar system.

Fig. 4.3 shows the SINR results for different values of the radar transmit power budget

(PR). The radar power budget per antenna ranges from 1 to 20 times of the communication

power budget per antenna. The highest SINR, as expected, corresponds to the case in which

pretty much everything is known about the targets, i.e., via the joint design of P and {Rxl}

resulting from (P1). Interestingly, the design of (P2), which uses no knowledge about the

targets incurs an SINR loss of 1 dB only. Also interestingly, the low complexity spectrum

sharing method of (P′2), which does not use any knowledge about the targets, achieves the

same SINR performance as (P2). For this particular example, as compared to (P2), in (P′2)

the number of matrix variables is reduced from 33 to 3.

As expected, the selfish communication schemes with no precoding involves no cooper-

ation between the radar and communication systems, and thus achieves the worst perfor-

mance. The projection-type method of [46] performs even worse, because targets may fall

in the row space of G1.
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4.5 Conclusion

We have considered a general spectrum sharing framework between a MIMO radar and a

MIMO communication system. Depending on the availability of target range information,

a knowledge-based and a robust spectrum sharing approach were proposed to maximize

the radar SINR while satisfying the communication requirements. The resulting nonconvex

problems were solved by using alternating optimization and sequential convex programming.

Simulation results have validated the effectiveness of the proposed spectrum sharing meth-

ods. We would like to point out that radar and communication coexistence is a new line of

work with limitations and challenges. It calls for not only more research efforts on system

modeling and design, but also cooperation across public and private sectors on regulation

and policy revision.

4.A Proof of Proposition 3

Proof. The proposition can be proved using induction. We focus on the proof for l, l′ ∈ N+
L

in the following. The proof for l, l′ ∈ N+
L̃
\ N+

L is similar.

From the proposition, we know that {Rxl} is initialized such that R0
xl = R0

xl′ = R0
x,

∀l, l′ ∈ N+
L . We need to show that the optimal value of (PR) in the n-th iteration is also

achieved by {Rn
xl} such that Rn

xl = Rn
xl′ , ∀l, l′ ∈ N+

L . Because {Rn
xl} is obtained via several

inner iterations of solving (P̃R), it suffices to show that the above property could be passed

on between the iterations of solving (P̃R).

Suppose that, in the (i− 1)-th inner iteration, the optimal value of (P̃R) is achieved by

{Rn(i−1)
xl } such that R

n(i−1)
xl = R

n(i−1)
xl′ , ∀l, l′ ∈ N+

L . During the i-th iteration, {Rni∗
xl } is ob-

tained by solving (P̃R) with {R̄xl} = {Rn(i−1)
xl }. We will show that Rni

xl ≡ 1/L
∑L

l=1 Rni∗
xl ,

Rni
x , ∀l ∈ N+

L is also feasible and achieves the same radar SINR as {Rni∗
xl }l∈N+

L
does. Based

on the concavity of Cl(Rxl, ·), we have

L∑
l=1

Cl(R
ni∗
xl , ·) ≤ LCl

(
Rni
x , ·
)
.

For the communication transmission power, it trivially holds that
∑L

l=1 Tr(R
ni∗
xl ) = LTr(Rni

x ).

Therefore, {Rni
x } is also feasible. The objective f̃(Rxl) of (P̃R) in the i-th iteration is affine



78

w.r.t. Rxl with coefficient depending on R̄xl = R
n(i−1)
xl . Given that R

n(i−1)
xl = R

n(i−1)
xl′ ,

∀l, l′ ∈ N+
L , the affine functions f̃(·) for are identical for any l ∈ N+

L . Therefore, {Rni
x }

achieves the same objective value as {Rni∗
xl }l∈N+

L
does.

Proposition 3 is proved.
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Chapter 5

MIMO Radar and Communication Spectrum Sharing with
Clutter Mitigation

We address the co-existence of MIMO radars and a MIMO communication system. Unlike

previous works, we consider a scenario in which the radar system operates in the presence

of clutter. Both the radar and the communication system use transmit precoding. Initially,

spectrum sharing is formulated as a problem that maximizes the radar SINR subject to the

communication system meeting certain rate and power constraints. Due to the dependence

of the clutter on the radar precoding matrix, the optimization w.r.t. the radar precoder

is a maximization of a nonconvex function over a nonconvex feasible set. Since solving

such problem is computationally intractable, we propose to maximize a lower bound of the

SINR. In the resulting alternating maximization problem, the alternating iteration of the

communication TX covariance matrix reduces to one SDP problem, while the iteration of

the radar precoder is solved by a sequence of SOCP problems, which are more efficient and

tractable than SDP. Simulation results validate the effectiveness of the proposed spectrum

sharing method for scenarios with clutter.

5.1 Introduction

Spectrum sharing targets at enabling radar and communication systems to share the spec-

trum efficiently by minimizing interference effects [42–49, 63]. The existing radar and com-

munication spectrum sharing literature addresses interference mitigation either for the com-

munication systems [43–46], or for the radar [47]. To the best of our knowledge, co-design

of radar and communication systems for spectrum sharing was proposed in [99–101, 115]

for the first time. Compared to radar design approaches of [43–47], the joint design has the

potential to improve the spectrum utilization due to increased number of design degrees of
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freedom. However, a clutter free scenario was assumed in [43–47].

In this chapter, we consider the co-design based spectrum sharing of a MIMO radar and

a communication system for a scenario in which the radar system operates in the presence

of clutter. Both the radar and the communication system use transmit precoding. Initially,

spectrum sharing is formulated as a problem that maximizes the radar SINR subject to the

communication system meeting certain rate and power constraints. Usually, the joint design

problem can be solved using alternating optimization. Due to the dependence of the clutter

on radar precoding matrix, the optimization w.r.t. the radar precoder is a maximization of a

nonconvex function over a nonconvex feasible set. Solving such problem is computationally

intractable and demanding. In addition, the objective is also nonlinear and nonconvex

w.r.t. the communication covariance matrix. The joint design problem requires to solve a

sequence of semidefinte programming (SDP) problems in every alternating iteration of either

design variable; as such it has high computational complexity. As an efficient alternative, we

propose to maximize a lower bound of the SINR. In the resulting alternating maximization

problem, the alternating iteration of the communication covariance matrix reduces to one

SDP problem. We show that the radar precoder always has a rank one solution. Based on

this key observation, the alternating iteration of the radar precoder is solved by a sequence

of second order cone programming (SOCP) problems, which are more efficient and tractable

than SDP problems. Simulation results validate the effectiveness of the proposed spectrum

sharing method for scenarios with clutter.

The chapter is organized as follows. Section 5.2 introduces the coexistence model of a

MIMO radar system and a communication system. The proposed spectrum sharing method

is given in Section 5.3. Numerical results and conclusions are provided respectively in

Sections 5.4 and 5.5.

5.2 System Models

Consider a MIMO communication system which coexists with a MIMO radar system as

shown in Fig. 4.1, sharing the same carrier frequency. The MIMO radar system uses Mt,R

TX and Mr,R RX collocated antennas for target detection/estimation. The communication
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transmitter and receiver are equipped with Mt,C and Mr,C antennas, respectively. The

communication channel is denoted as H ∈ CMr,C×Mt,C . The interference channel from the

radar TX antennas to the communication receiver is denoted as G1 ∈ CMr,C×Mt,R [43, 44,

46]; the interference channel from the communication transmitter to the radar RX antennas

is denoted as G2 ∈ CMr,R×Mt,C . It is assumed that the channels H, G1 and G2 are block

fading [102] and perfectly known at the communication transmitter. In practice, the channel

state information can be obtained through the transmission of pilot signals [43, 103]. The

detailed signal models for the MIMO radar and communication systems are described in the

sequel. We do not assume perfect carrier phase synchronization between the two systems.

The MIMO radar employs narrowband orthogonal waveforms, each of which contains

L coded sub-pulses, each of duration Tb. Let sm , [sm1, . . . , smL]T denote the orthogonal

code vector for the m-th TX antenna. It holds that 〈sm, sn〉 = δmn. In this chapter, we

choose S as a random orthonormal matrix [101], which is obtained through performing

the Gram-Schmidt orthogonalization on a matrix whose entries are i.i.d. Gaussian random

variables. Note that the entries of S are not independent anymore. However, based on [107,

Theorem 3], if Mt,R = O(L/ lnL), the entries of S can be approximated by i.i.d. Gaussian

random variables with distribution N (0, 1/L). The waveforms are first precoded by matrix

P ∈ CMt,R×Mt,R , and then transmitted over carrier fc periodically, with pulse repetition

interval TPRI . Suppose that there are one target and K point clutters in the same range

bin w.r.t. the radar phase center. During each pulse, the target echoes and communication

interference received at the radar RX antennas are demodulated to baseband and sampled

every Tb seconds. The discrete time signal model for sampling time index l ∈ N+
L̃
is expressed

as
yR(l) = β0vr(θ0)vTt (θ0)Ps(l − l0) + G2x(l)ejα2(l)

+
K∑
k=1

βkvr(θk)v
T
t (θk)Ps(l − l0) + wR(l),

(5.1)

where L̃ = bTPRI/Tbc denotes the total number of samples in one PRI; yR(l) and x(l)

respectively denote the radar received signal and communication waveform symbol at time

lTb; s(l) = [s1l, . . . , sMt,Rl]
T ; wR(l) is noise distributed as CN (0, σ2

RI); l0 = bτ0/Tbc with

τ0 , 2d0/vc, d0 being the range of the target and vc being the speed of light; β0 and βk,
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∀k ∈ N+
K , denote the complex radar cross sections for the target and the k-th point clutter,

respectively; the Swerling II target model is assumed, i.e., the β0 varies from pulse to pulse

and has distribution CN (0, σ2
β0); and vr(θ) ∈ CMr,R is the receive steering vector defined as

vr(θ) ,
[
ej2π〈d

r
1,u(θ)〉/λc , . . . , e

j2π〈drMr,R ,u(θ)〉/λc
]T
,

with drm , [xrm y
r
m]T denoting the two-dimensional coordinates of the m-th RX antenna,

u(θ) , [cos(θ) sin(θ)]T , and λc denoting the carrier wavelength. vt(θ) ∈ CMt,R is the

transmit steering vector and is respectively defined. The second term on the right hand side

of (5.1) denotes the interference due to the communication transmission x(l) ∈ CMt,C . ejα2(l)

is introduced to denote the random phase offset resulted from the random phase jitters of the

oscillators at the communication transmitter and the MIMO radar receiver Phase-Locked

Loops [100]. In the literature [104–106], phase jitters are modeled as zero-mean Gaussian

processes.

The MIMO communication system uses the same carrier frequency fc. The baseband

signal at the communication receiver is sampled according to the symbol rate Ts, which

could be different that the radar waveform symbol duration Tb. In this chapter, we only

consider the matched case, i.e., Ts = Tb; the extension of the proposed methods to the

mismatched case is straightforward [100]. The discrete time communication signal has the

following form

yC(l) = Hx(l) + G1Ps(l)ejα1(l) + wC(l), l ∈ N+
L̃
, (5.2)

where x(l) ∈ CMt,C denotes the transmit vector at the communication transmitter at time

index l; ejα1(l) denotes the random phase offset between the radar TX carrier and the com-

munication RX reference carrier [100]; the additive noise wC(l) has distribution CN (0, σ2
CI).

Note that the radar waveform s(l) equals zero when l > L, which means that the commu-

nication system is interference free during this period. The above model assumes that the

radar transmission is the only interference, while the target and clutter returns do not reach

the communication system.
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5.3 Spectrum Sharing with Clutter Mitigation

We first derive the communication rate and radar SINR in terms of communication and

radar waveforms.

For the communication system, the covariance of interference plus noise is given by

RCinl =


G1ΦGH

1 + σ2
CI l ∈ N+

L

σ2
CI l ∈ N+

L̃
\ N+

L

(5.3)

where Φ , PPH/L is positive semidefinite. For l ∈ N+
L , the instaneous information rate is

unknown because the interference plus noise is not necessarily Gaussian due to the random

phase offset α1(l). Instead, we are interested in a lower bound of the rate, which is given by

[109]

C(Rx,Φ) , log2

∣∣I + R−1
CinlHRxH

H
∣∣ ,

which is achieved when the codeword x(l), l ∈ N+
L is distributed as CN (0,Rx). The average

communication rate over L̃ symbols is as follows

Cavg(Rx,Φ) , ηC(Rx,Φ) + (1− η)C(Rx,0), (5.4)

where η , L/L̃ is called the radar duty cycle.

For the radar system, the covariance of the communication interference exerted at the

radar RX antennas equals E{G2x(l)ejα2(l)e−jα2(l)xH(l)GH
2 } = G2RxG

H
2 . Suppose that

each of the clutter amplitude βk is an independent complex Gaussian variable with zero

mean and variance σ2
βk. The above clutter model is widely considered in the literature

[113, 116, 117]. The clutter covariance matrix is given as Rc =
∑K

k=1 CkΦCH
k with Ck =

σβkvr(θk)v
T
t (θk). Incorporating the additive noise and interference from both clutter and

the communication system, the radar SINR is given as

SINR(Rx,Φ) = Tr
(

(RRin + Rc)
−1 D0ΦDH

0

)
, (5.5)

where RRin , G2RxG
H
2 + σ2

RI and D0 = σβ0vr(θ0)vTt (θ0).

Here we consider the scenario where the radar searches in particular directions of interest

given by set {θk} for targets with unknown RCS variances and delays [3, 113]. The worst

possible target RCS variance is given by {σ2
0}, which is the smallest target RCS variance
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that could be detected by the radar. We assume that {σ2
βk} and {θk} are known. In practice,

these clutter parameters could be estimated when target is absent [116].

The spectrum sharing problem when clutter is present can be formulated as follows

(P1) max
Rx�0,Φ�0

SINR, s.t. Cavg(Rx,Φ) ≥ C, (5.6a)

L̃Tr (Rx) ≤ PC , LTr (Φ) ≤ PR. (5.6b)

Note that the objective in (P1) is not affine w.r.t. Φ because the clutter covariance in SINR

depends on Φ. One natural solution is the sequential convex programming using the first or-

der Taylor expansion of the SINR. Solving the sequence of approximated problems increases

the computational complexity. It is even worse when the sequential convex programming is

embedded in every alternating iterations w.r.t. Rx and Ψ.

In this chapter, we propose a more efficient alternative where we maximize a lower bound

of the SINR. To tackle the nonconvexity in the objective function, we propose to maximize

a lower bound of the objective function

SINR ≥
σ2
β0M

2
r,RTr(ΦDt)

Tr(ΦC) + Tr(RxB) + σ2
RMr,R

, (5.7)

where Dt , v∗t (θ0)vTt (θ0), C ,
∑K

k=1 CH
k vr(θ0)vHr (θ0)Ck and B , GH

2 vr(θ0)vHr (θ0)G2.

The lower bound is derived based on Cauchy-Schwarz inequality and is tight if the clutter

plus interference is spectrally white, i.e., (RRin +Rc) ∝ I. The approximate problem is now

given as

(P′1) max
Rx�0,Φ�0

σ2
β0M

2
r,RTr(ΦDt)

Tr(ΦC) + Tr(RxB) + σ2
RMr,R

,

s.t. same constraints as(P1).

(5.8)

Alternate optimization is applied to solve (P′1). The alternating iterations w.r.t. Rx and

Φ are discussed in the following two subsections.

5.3.1 The Alternating Iteration w.r.t. Rx

With fixed Φ, the optimization w.r.t. Rx can be formulated as the following equivalent

convex problem

min
Rx�0

Tr(RxB) s.t. Cavg(Rx,Φ) ≥ C, L̃Tr (Rx) ≤ PC . (5.9)

Problem (5.9) can be solved using available SDP solvers [118].
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A , −
(
∂Cavg(Rx,Φ)

∂<(Φ)

)T
Φ=Φ̄

= GH
1 [(G1ΦGH

1 + σ2
CI)−1 − (G1ΦGH

1 + σ2
CI + HRxH

H)−1]G1

∣∣
Φ=Φ̄

.

(5.10)

5.3.2 The Alternating Iteration w.r.t. Φ

For the optimization of Φ with fixed Rx, the constraint in (5.6a) is nonconvex w.r.t. Φ.

The first order Taylor expansion of Cavg(Rx,Φ) at Φ̄ is given as

Cavg(Rx,Φ) ≈ Cavg(Rx, Φ̄)− Tr
[
A(Φ− Φ̄)

]
,

where A is given in (5.10) on the top of next page.

The sequential convex programming technique is applied to solve Φ by repeatedly solve

the following approximate optimization problem

max
Φ�0

Tr(ΦDt)

Tr(ΦC) + ρ
, s.t. Tr (ΦA) ≤ C̃/L,Tr (Φ) ≤ PR/L. (5.11)

where C̃ = L[C(Rx, Φ̄) + Tr(Φ̄A)] + (L̃ − L)C(Rx,0) − L̃C, ρ = Tr(RxB) + σ2
RMr,R are

real positive constants w.r.t. Φ, and Φ̄ is updated as the solution of the previous repeated

problem. Problem (5.11) could be formulated as a semidefinite programming problem (SDP)

via Charnes-Cooper Transformation [116, 119]. However, in each alternating iteration w.r.t.

Φ, it is required to solve several iterations of SDP due to the sequential convex programming,

which could be computational demanding if Φ has large dimensions. In the following, we

will show that (5.11) always has rank one solution, and thus it could be further solved using

more efficient second order conic programming (SOCP). To do so, we introduce the following

SDP problem

min
Φ�0

Tr (Φ) s.t. Tr (ΦA) ≤ C̃/L, Tr(ΦDt)

Tr(ΦC) + ρ
≥ γ, (5.12)

where γ is a real positive constant. The following proposition relates the optimal solutions

of problems (5.11) and (5.12).

Proposition 4. If γ in (5.12) is chosen to be the maximum achievable SINR of (5.11),

denoted as SINRmax, the optimal Φ of (5.12) is also optimal for (5.11).

Proof. Denote Φ∗1 and Φ∗2 the optimal solutions of (5.11) and (5.12), respectively. It is clear

that Φ∗1 is feasible point of (5.12). This means that Tr(Φ∗2) ≤ Tr(Φ∗1) ≤ PR/L. Therefore,
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Φ∗2 is a feasible point of (5.11). It holds that

SINRmax ≡
Tr(Φ∗1Dt)

Tr(Φ∗1C) + ρ
≥ Tr(Φ∗2Dt)

Tr(Φ∗2C) + ρ
≥ SINRmax.

It is only possible when all the equalities hold. In other words, Φ∗2 is optimal for (5.11).

The claim is proved.

Based on the above proposition, the optimal solution of (5.11) can be obtained by solving

(5.12) using a bisection search for γ. Given an interval [l, u] which contains SINRmax, we

start from solving (5.12) with γ = l+u
2 . If the optimal solution of (5.12) is feasible for (5.11),

this means that SINRmax is larger than l+u
2 , and the interval is updated by its upper half;

otherwise, the interval is updated by its lower half. The above procedure is repeated until

the interval is sufficient small. The remaining issue is to find an algorithm that solves (5.12)

more efficiently than SDP does.

In order to characterize the optimal solution of (5.12), we need the following key lemma:

Lemma 6. Matrix A defined in (5.10) is positive semidefinite.

Proof. For simplicity of notation, we denote that X , G1ΦGH
1 + σ2

CI � 0 and Y ,

HRxH
H � 0. It is easy to see that A is Hermitian because both X−1 and (X + Y)−1 are

Hermitian. It is sufficient to show that M , X−1 − (X + Y)−1 is positive semidefinite. We

have that

X−1 − (X + Y)−1 = X−1Y(X + Y)−1,

which could be shown by right multiplying (X + Y) on both sides of the equality. Since X,

Y and M are Hermitian, we have

M = X−1Y(X + Y)−1 = (X + Y)−1YX−1.

Since (X + Y)−1 is invertible, there exists a unique positive definite matrix V, such that

(X + Y)−1 = V2. Simple algebra manipulation shows that

V−1MV−1 = (V−1X−1V−1)(VYV)

= (VYV)(V−1X−1V−1),

i.e., V−1MV−1 is a product of two commutable positive semidefinite matrices V−1X−1V−1

and VYV. Therefore, V−1MV−1 and thus M is positive semidefinite.



87

Based on Lemma 6, we prove the following result by following the approach in [119]:

Proposition 5. Suppose that (5.12) is feasible. Then, the optimal solution of (5.12) must

be rank one and unique. Moreover, (5.11) always has rank one solution.

Proof. Problem (5.12) is an SDP, whose Karush-Kuhn-Tucker (KKT) conditions are given

as

Ψ + λ2Dt = I + λ1A + λ2γC (5.13a)

ΨΦ = 0 (5.13b)

Ψ � 0,Φ � 0, λ1 ≥ 0, λ2 ≥ 0 (5.13c)

Tr(ΦDt) ≥ γTr(ΦC) + γρ (5.13d)

where Ψ � 0, λ1 ≥ 0, λ2 ≥ 0 are dual variables. From (5.13a), we have

rank(Ψ) + rank(λ2Dt) ≥ rank(I + λ1A + λ2γC).

Recall that rank(Dt) = 1. Since A and C are PSD, the matrix on right hand side of (5.13a)

has full rank. Therefore, rank(Ψ) is not smaller than Mt,R − 1. From (5.13b) and (5.13d)

we conclude that the optimal Φ must be a rank one matrix.

The uniqueness of optimal solution could be proved via contradiction. The second claim

on the solution of (5.11) follows from Proposition 4.

Proposition 5 implies that when there is only one target, the transmit beamforming is

the optimal radar precoding strategy for the spectrum sharing between the MIMO radar

and the communication systems along with clutter mitigation for radar, as formulated in

(P′1). Based on Proposition 5, we denote that Φ = uuH , where u is a vector of dimension

Mt,R. Problem (5.12) can be reformulated as

min
u
‖u‖2 s.t. ‖A1/2u‖2 ≤ C̃/L,

γuHCu + γρ ≤
(
uHv∗t (θ0)

)2
.

(5.14)

Note that if u is a solution of (5.14), so is ejwu for any real w. Without loss of generality,

we restrict uHv∗t (θ0) is real and nonnegative. Problem (5.14) is equivalent to the following
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SOCP
min
u,t

t s.t. ‖u‖2 ≤ t,
∥∥∥A1/2u

∥∥∥
2
≤
√
C̃/L,∥∥∥∥∥∥∥

γC

γρ

1/2 [
u

1

]∥∥∥∥∥∥∥
2

≤ uHv∗t (θ0).

(5.15)

The proposed efficient spectrum sharing algorithm in presence of clutter using a lower

bound of the radar SINR is outlined in Algorithm 2.

Algorithm 2 The proposed algorithm for spectrum sharing with clutter mitigation (P′1).

1: Input: D0,Cn,H,G1,G2, PC/R, C, σ
2
C/R, δ1

2: Initialization: Φ = PR
LMt,R

I, Rx = PC
L̃Mt,C

I;
3: repeat
4: Update Rx by solving (5.9) with fixed Φ;
5: Update Φ by solving a sequence of approximated problem (5.11), which is in turn

achieved by bisection search and repeatedly solving (5.15) using SOCP solvers;
6: until |SINRn − SINRn−1| < δ1

7: Output: Rx,P = u

5.4 Simulation Results

In this section, we provide two simulation examples to quantify the performance of the pro-

posed spectrum sharing method with clutter mitigation. We set the number of samples per

PRI to L̃ = 32, the number of radar waveform symbols to L = 8, the noise variance to

σ2
C = σ2

R = 0.01, and the number of antennas to Mt,R = Mr,R = 16,Mt,C = 8,Mr,C = 4.

The MIMO radar system consists of collocated TX and RX antennas forming half-wavelength

uniform linear arrays. The radar waveforms are chosen from the rows of a random orthonor-

mal matrix [99]. There are one stationary targets with RCS variance σ2
β0 = 5 × 10−5 and

eight point clutters. All clutter RCS variances are set to be identical and are denoted by

σ2
β , which is decided by the prescribed clutter to noise ratio (CNR) 10 log σ2

β/σ
2
R. The

target angle θ0 w.r.t. the array is randomly generated; clutter scatters are with angles in

[θ0 − 20◦, θ0 − 10◦] and [θ0 + 10◦, θ0 + 20◦]. For the communication capacity and power

constraints, we take C = 24 bits/symbol and PC = L̃Mt,C (the power is normalized by the

power of the radar waveform). The interference channels G1 and G2 are generated with
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entries which are independent and distributed as CN (0, 0.1). The channel H has indepen-

dent entries, distributed as CN (0, 1). The proposed spectrum sharing method with clutter

mitigation jointly designs the communication covariance matrix and the radar precoder

according to the algorithm presented in Section 5.3. For comparison, we also implement

the method based on the Charnes-Cooper transformation of (5.11) and SDP. The afore-

mentioned spectrum sharing algorithms are respectively labeled by “precoding with clutter

mitigation (SOCP)" and “precoding with clutter mitigation (SDP)" in the figures. We also

implement the spectrum sharing method without the consideration of clutter mitigation,

labeled by “precoding without clutter mitigation", and method based on uniform precoding,

i.e., P =
√
LPR/Mt,RI.

Radar TX Power Budget PR ×106
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Figure 5.1: SINR performance under different values of radar TX power.

CNR in dB

-10 0 10 20 30 40

S
IN

R
 in

 d
B

20

25

30

35

40

Precoding w/ clutter mitigation (SOCP)
Precoding w/ clutter mitigation (SDP)
Precoding w/o clutter mitigation
Uniform precoding

Figure 5.2: SINR performance under different clutter to noise ratios (CNR).

Fig. 5.1 shows the SINR results for different values of the radar transmit power budget

PR. The CNR is fixed as 20 dB. The radar power budget per antenna ranges from 100



90

to 20, 000 times of the communication power budget per antenna. Fig. 5.2 shows the

SINR results under different clutter to noise ratios. The radar power budget is fixed as

PR = 2.56 × 105. We can observe that the proposed method achieves the highest SINR

while the uniform precoding based method achieves the lowest SINR. The method “precoding

without clutter mitigation" improves the SINR over uniform precoding because it focuses

more power on the target. Our proposed method achieves higher SINR than the method

without clutter mitigation because our method can effectively reduce the power transmitted

on the clutter. Note that the performance of the SDP based method degrades greatly as the

CNR increases, even worse than the spectrum sharing method without considering clutter

mitigation. This indicates that the SDP based method is very sensitive to CNR. A rigorous

treatment on this phenomenon will be considered in the future work.

Comparing with the spectrum sharing method using SDP based precoding design, our

proposed SOCP based precoding design is more tractable and computationally efficient.

From Fig. 5.1 and Fig. 5.2, we can see that the proposed method outperforms the SDP

based method when CNR is larger than 10 dB. The CPU time required by the SDP method

increase dramatically with Mt,R, while the proposed SOCP based method increase mildly

with Mt,R.

5.5 Conclusion

We have proposed an efficient spectrum sharing method for a MIMO radar and a commu-

nication system operating in a scenario with clutter. The radar and communication system

signals were optimally designed by minimizing a lower bound for the SINR at the radar

receive antennas. We have shown that the radar precoder always has a rank one solution.

Based on this key observation, the alternating iteration of the radar precoder has been solved

by a sequence of SOCP problems, which are more efficient and tractable than applying SDP

directly. Simulation results have shown that the proposed spectrum sharing method can

effectively increase the radar SINR for various scenarios with clutter.
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Chapter 6

Optimum Co-Design for Spectrum Sharing Between Matrix
Completion Based MIMO Radars and a MIMO

Communication System

Spectrum sharing enables radar and communication systems to share the spectrum efficiently

by minimizing mutual interference. Recently proposed multiple input multiple output radars

based on sparse sensing and matrix completion (MIMO-MC), in addition to reducing com-

munication bandwidth and power as compared to MIMO radars, offer a significant advantage

for spectrum sharing. The advantage stems from the way the sampling scheme at the radar

receivers modulates the interference channel from the communication system transmitters,

rendering it symbol dependent and reducing its row space. This makes it easier for the

communication system to design its waveforms in an adaptive fashion so that it minimizes

the interference to the radar subject to meeting rate and power constraints. Two methods

are proposed. First, based on the knowledge of the radar sampling scheme, the communi-

cation system transmit covariance matrix is designed to minimize the effective interference

power (EIP) to the radar receiver, while maintaining certain average capacity and transmit

power for the communication system. Second, a joint design of the communication transmit

covariance matrix and the MIMO-MC radar sampling scheme is proposed, which achieves

even further EIP reduction.

6.1 Introduction

Spectrum sharing is an emerging technology that can be applied to enable radar and commu-

nication systems to share the spectrum efficiently by minimizing mutual interference [42–49,

62, 64, 66].

In this chapter we study spectrum sharing between a special class of collocated MIMO
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radars and a MIMO communication system. The rationale behind considering a MIMO-

type radar system is the high resolution which such systems can achieve with a relatively

small number of transmit (TX) and receive (RX) antennas [9–12]. A MIMO radar system

lends itself to a networked implementation, which is very desirable in both military and

civilian applications. A networked radar is a configuration of TX and RX antennas. The

TX antennas transmit probing waveforms, and target information is extracted by jointly

processing the measurements of all RX antennas. This processing can be done at a fusion

center, i.e., a network node endowed with more computational power than the rest of the

nodes. Reliable surveillance requires collection, communication and fusion of vast amounts

of data from various antennas. This is a power and bandwidth consuming task, which can be

especially taxing in scenarios in which the antennas are on battery operated devices and are

connected to the fusion center via a wireless link. Recently, MIMO radars using compressive

sensing (MIMO-CS) [22–24, 28], and MIMO radars via matrix completion (MIMO-MC) [32–

35] have been proposed to save power and bandwidth on the link between the receivers and

the fusion center, thus facilitating the network implementation of MIMO radars. MIMO-

MC radars transmit orthogonal waveforms from their multiple TX antennas. Each RX

antenna samples the target returns in a pseudo-random sub-Nyquist fashion and forwards

the samples to the fusion center, along with the seed of the random sampling sequence.

By collecting the samples of all RX antennas, and based on knowledge of each antenna’s

sampling scheme, the fusion center constructs a matrix, refereed to as the data matrix (see

[33] Scheme I), in which only the entries corresponding to sampled times contain non-zero

values. Subsequently, the missing entries, corresponding to non-sampled times, are provably

recovered via MC techniques. In MIMO-MC radars the interference is confined to the

sampled entries of the data matrix, while after matrix completion the target echo power is

preserved. Unlike MIMO-CS, MIMO-MC does not require discretization of the target space,

thus does not suffer from grid mismatch issues [37].

Spectrum sharing between a MIMO radar and a communication system has been consid-

ered in [43–46, 66], where the radar interference is eliminated by projecting the radar wave-

forms onto the null space of the interference channel between the MIMO radar transmitters

and the communication system. In [47], a radar receive filter was proposed to mitigate the
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interference from the communication systems. However, null space projection-type or spa-

tial filtering-type techniques might miss targets aligned with the the interference channel.

In general, the existing literature on MIMO radar-communication systems spectrum sharing

addresses interference mitigation for either solely the communication system [43–46, 66] or

solely the radar [47]. While joint design of traditional radar and communication systems

for spectrum sharing has been considered in [42, 62, 64], co-design of MIMO radar and MI-

MO communication systems for spectrum sharing has not been addressed before, with the

exception of our preliminary results in [99, 101]. In practice, however, the two systems are

often aware of the existence of each other, and they could share information, which could be

exploited for co-design. Recent developments in cognitive radios [120] and cognitive radars

[121] could provide the tools for information sharing and channel feedback, thus facilitating

the cooperation between radar and communication systems.

Motivated by the cooperative methods in cognitive radio networks [102, 122, 123], we

propose ways via which a MIMO-MC radar and a MIMO communication system, in a coop-

erative fashion, negotiate spectrum use in order to mitigate mutual interference. In addition

to reducing communication bandwidth and power, MIMO-MC radars offer a significant ad-

vantage for spectrum sharing. The advantage stems from the way the sampling scheme

at the radar receivers modulates the interference channel from the communication system

transmitters, rendering it symbol dependent and reducing its row space. This makes it eas-

ier for the communication system to design its waveforms in an adaptive fashion so that it

minimizes the interference to the radar subject to meeting rate and power constraints. Two

methods are proposed. The first method is a cooperative design; for a fixed radar sampling

scheme, which is known to the communication system, the communication system optimally

selects its precoding matrix to minimize the interference to the radar. The second method

is a joint design, whereby the radar sampling scheme as well as the communication system

precoding matrix are optimally selected to minimize the interference to the radar. For the

first method, an efficient algorithm for solving the corresponding optimization problem is

proposed based on the Lagrangian dual decomposition (see Algorithm 3). For the second

method, alternating optimization is employed to solve the corresponding optimization prob-

lem. The candidate sampling scheme needs to be such that the resulting data matrix can
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be completed. Recent work [124] showed that for matrix completion, the sampling locations

should correspond to a binary matrix with large spectral gap. Since the spectral gap of a

matrix is not affected by column and row permutations, we propose to search for the opti-

mum sampling matrix among matrices which are row and column permutations of an initial

sampling matrix with large spectral gap.

This chapter is organized as follows. Section 6.3 introduces the signal model when the

MIMO-MC radar and communication systems coexist. The problem of a MIMO communi-

cation system sharing the spectrum with a MIMO-MC radar system is studied in Section

6.4. Numerical results, discussions and conclusions are provided in Section 6.5-6.7.

6.2 Background on MIMO-MC Radars

Consider a collocated MIMO radar system with Mt,R TX antennas and Mr,R RX antennas.

The targets are in the far-field of the antennas and are assumed to fall in the same range bin.

The radar operates in two phases; in the first phase the TX antennas transmit waveforms

and the RX antennas receive target returns, while in the second phase, the RX antennas

forward their measurements to a fusion center. In each pulse, the m-th, m ∈ N+
Mt,R

, antenna

transmits a coded waveform containing L symbols {sm(1), · · · , sm(L)} of duration TR each.

Each RX antenna samples the target returns every TR seconds, i.e., samples each symbol

exactly once. Following the model of [32–34], the data matrix at the fusion center can be

formulated as

YR = γρDS + WR, (6.1)

where the m-th row of YR ∈ CMr,R×L contains the L samples forwarded by the m-th

antenna; γ and ρ respectively denote the path loss corresponding to the range bin of interest,

and the radar transmit power; D ∈ CMr,R×Mt,R denotes the target response matrix, which

depends on the target reflectivity, angle of arrival and target speed (details can be found in

[33]); S = [s(1), · · · , s(L)], with s(l) = [s1(l), · · · , sMt,R
(l)]T being the l-th snapshot across

the transmit antennas. The transmit waveforms are assumed to be orthogonal, i.e., it holds

that SSH = I [33]; WR denotes additive noise. After matched filtering at the fusion center,
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target estimation can be performed based on YR via standard array processing schemes [4].

If the number of targets is smaller than Mr,R and L, matrix DS is low-rank and can

be provably recovered based on a subset of its entries [33, 35]. This observation gave rise

to MIMO-MC radars [32–35], where each RX antenna sub-samples the target returns and

forwards the samples to the fusion center. The sampling scheme could be a pseudo-random

sequence of integers in [1, L], with the fusion center knowing the random seed of each RX

antenna. In MIMO-MC radars, the partially filled data matrix at the fusion center can be

mathematically expressed as follows (see [33] Scheme I)

Ω ◦YR = Ω ◦ (γρDS + WR), (6.2)

where ◦ denotes Hadamard product and Ω is a matrix containing 0’s and 1’s; the 1’s in the

m-th row correspond to the sampled symbols of the m-th TR antenna. The sub-sampling

rate, p, equals ‖Ω‖0/(LMr,R). When p = 1, the Ω matrix is filled with 1’s, and the MIMO-

MC radar is identical to the traditional MIMO radar. At the fusion center, the completion

of γρDS is formulated as the following problem [36]

min
M
‖M‖∗ s.t. ‖Ω ◦M−Ω ◦YR‖F ≤ δ, (6.3)

where δ > 0 is a parameter related to the noise over the sampled noise matrix entries, i.e.,

Ω ◦WR. On denoting by M̂ the solution of (6.3), the recovery error ‖M̂ − γρDS‖F is

determined by the noise power in Ω ◦WR, i.e., the noise enters only through the sampled

entries of the data matrix. It is important to note that, assuming that the reconstruction

error is small, the reconstructed M̂ has the same received target echo power as γρDS of

(6.1).

Early studies on matrix completion theory suggested that the low-rank matrix recon-

struction requires that the entries are sampled uniformly at random. However, recent works

[124] showed that non-uniform sampling would still work, as long as the sampling matrix has

large spectral gap (i.e., large gap between the largest and second largest singular values).

6.3 System Model

Consider a MIMO communication system which coexists with a MIMO-MC radar system

as shown in Fig. 4.1, sharing the same carrier frequency. The MIMO-MC radar operates
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in two phases, i.e., in Phase 1 the RX antennas obtain measurements of the target returns,

and in Phase 2, the RX antennas forward the obtained samples to a fusion center. The

communication system interferes with the radar system during both phases. In the follow-

ing, we will address spectrum sharing during the first phase only. The interference during

the second phase can be viewed as the interference between two communication systems;

addressing this problem has been covered in the literature [102, 122].

Suppose that the two systems have the same symbol rate and are synchronized in terms of

sampling times (see Section 6.5 for the mismatched case). We do not assume perfect carrier

phase synchronization between the two systems. The data matrix at the radar fusion center,

and the received matrix at the communication RX antennas during L symbol durations can

be respectively expressed as

Radar fusion center:

Ω ◦YR = Ω ◦ (γρDS)︸ ︷︷ ︸
signal

+ Ω ◦ (G2XΛ2)︸ ︷︷ ︸
interference

+ Ω ◦WR︸ ︷︷ ︸
noise

, (6.4a)

Communication receiver:

YC = HX︸︷︷︸
signal

+ ρG1SΛ1︸ ︷︷ ︸
interference

+ WC︸︷︷︸
noise

, (6.4b)

where

• YR, ρ,D, S, WR, and Ω are defined in Section 6.2.

• X , [x(1), . . . ,x(L)]; x(l) ∈ CMt,C×1 denotes the transmit vector by the communi-

cation TX antennas during the l-th symbol duration. The rows of X are codewords

from the code-book of the communication system.

• WC and WR denote the additive noise; their elements are assumed to be independent

identically distributed as CN (0, σ2
C) and CN (0, σ2

R), respectively.

• H ∈ CMr,C×Mt,C denotes the communication channel, where Mr,C and Mt,C de-

note respectively the number of RX and TX antennas of the communication system;

G1 ∈ CMr,C×Mt,R denotes the interference channel from the radar TX antennas to

the communication system RX antennas; G2 ∈ CMr,R×Mt,C denotes the interference

channel from the communication TX antennas to the radar RX antennas. All channels
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are assumed to be flat fading and remain the same over L symbol intervals [43, 44, 46,

102].

• Λ1 and Λ2 are diagonal matrices. The l-th diagonal entry of Λ1, i.e., ejα1l , denotes

the random phase offset between the MIMO-MC radar carrier and the communication

receiver reference carrier at the l-th sampling time. The l-th diagonal entry of Λ2,

i.e., ejα2l , denotes the random phase offset between the communication transmitter

carrier and the MIMO-MC radar reference carrier at the l-th sampling time. The

phase offsets arise due to random phase jitter of the radar oscillator and the oscillator

at the communication receiver Phase-Locked Loops. In the literature [104–106], the

phase jitter of oscillator α(t) is modeled as a zero-mean Gaussian process. In this

chapter, we model {α1l}Ll=1 as a sequence of zero-mean Gaussian random variables

with variance σ2
α. Modern CMOS oscillators exhibit very low phase noise, e.g., −94

dB below the carrier power per Hz (i.e., −94dBc/Hz) at an offset of 2π × 1 MHz,

which yields phase jitter variance σ2
α ≈ 2.5× 10−3 [125].

The following assumptions are made:

• About the synchronization of sampling times- In the above model, we assume that the

radar receivers and the communication system sample in a time synchronous manner.

Although this assumption is later relaxed in Section 6.5, we next provide an example

of radar and communication parameter settings suggesting that the aforementioned

assumption is applicable in real world systems. The typical range resolution for an

S-band search and acquisition radar is between 100m and 600m [126, 127]. Thus, for

range resolution of cTb/2 = 300m, where c = 3 × 108m/s denotes the speed of light,

the radar sub-pulse duration is Tb = 2µs. In order to have identical symbol rate for

two systems, the communication symbol duration should be 2µs, which corresponds

to signal bandwidth of 0.5 MHz. This symbol interval value falls in the typical range

of symbol interval values in LTE systems [128].

• About channel fading- We assume that H, G1 and G2 are flat fading, which is valid

when the channel coherence bandwidth is larger than the signal bandwidth [51, 52,
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129], i.e., when the transmitted signals are narrowband. Consider the symbol inter-

val value 2µs and signal bandwidth 0.5 MHz given above. In a LTE macro-cell, the

coherence bandwidth is in the order of 1 MHz [128, 130]. The typical values of LTE

channel coherence bandwidth are much larger than the signal bandwidth of 0.5 MHz,

thus making the flat fading channel assumption valid. Since the radar and communica-

tion systems use the same carrier and signal bandwidth, the flat fading assumption is

valid for all H, G1 and G2. In the radar-communication system coexistence literature

[43–46, 66], the flat fading assumption is quite typical. If the narrowband assumption

is not valid then perhaps one could consider an OFDM scenario, where the flat fading

model would apply on each carrier [62, 64].

• About channel information feedback- The channels H and G2 are also assumed to

be perfectly known at the communication TX antennas. In practice, such channel

information can be obtained at the radar RX antennas through the transmission of

pilot signals [43, 103]. Viewing the radar system as the primary user of a cognitive

radio system and the MIMO communication system as the secondary user, techniques

similar to those of [102, 122, 123],[131] can be used to estimate and feed back the

channel information between the primary and secondary systems.

Let Sobs , ρG1S be the radar interference as viewed by the communication system.

This can be obtained during times that the communication system does not transmit. Since

the radar transmission power ρ is very high, ρG1S can be estimated with high accuracy.

Based on Sobs, the communication receivers can eliminate some of the interference via direct

subtraction. However, due to the high power of the radar [53] and the unknown phase offset,

there will always be residual interference, i.e.,

ρG1S(Λ1 − I) ≈ ρG1SΛα ≡ SobsΛα, (6.5)

where Λα = diag(jα11, · · · , jα1L), and the approximation is based on the fact that {α1l}Ll=1

are small. In the above, we assume that the radar waveforms have not changed between

the time the interference is estimated and used in (6.5). The signal at the communication

receiver after interference cancellation equals

ỸC = HX + SobsΛα + WC . (6.6)
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This residual interference is not circularly symmetric, and thus the communication channel

capacity is achieved by non-circularly symmetric Gaussian codewords, whose covariance and

complementary covariance matrix would need to be designed simultaneously [132]. Here,

we consider circularly symmetric complex Gaussian codewords x(l) ∼ CN (0,Rxl), which

achieve a lower bound of the channel capacity [109, 132]. This reduces the complexity of the

design since we only need to design the transmit covariance matrix Rxl.

Unless special measures are taken, the interference from the radar transmissions, i.e.,

SobsΛα, will reduce the communication system capacity, and the interference from the com-

munication system transmission, i.e., Ω ◦ (G2XΛ2) will degrade the completion of the data

matrix and as a result the target detection/estimation. The application of traditional spatial

filtering on Ω◦YR for eliminating the communication system interference is not straightfor-

ward and to the best of our knowledge has not been previously addressed. For the case with

complete samples, the optimal detector to maximize the SINR is matched filtering following

a whitening filter. However, in the case of partially sampled YR, i.e., Ω ◦ YR, S cannot

be fully matched due to the sub-sampling operator. Also, the interference plus noise at the

whitening filter output would not be white anymore. Further, note that the recovery of

γρDS via matrix completion in (6.3) is based on (Ω ◦YR). Even if we somehow find the

spatial filter W that maximizes the SINR, the filter output W(Ω ◦YR) cannot be used by

the matrix completion formulation in (6.3), which follows the formulation in the MIMO-MC

radar [32–35] and general matrix completion literature [36]. The extension of the matrix

completion working with the additional filtering matrix is out the scope of this chapter.

Of course, one could apply filtering on the recovered data matrix DS as post processing.

However, such post-filtering would first need the matrix completion to be successful.

The approach that we propose here for addressing the radar and comm systems inter-

ference is a design for the communication TX signals, or a co-design of the communication

TX signals and the radar sub-sampling scheme, so that we minimize the interference at the

radar RX antennas for successful matrix completion, while satisfying certain communication

system rate requirements.
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6.4 Spectrum Sharing Between MIMO-MC Radar and a MIMO Com-

munication System

First, let us provide expressions for the communication TX power and channel capacity, and

the interference power at the MIMO-MC radar receiver. The total transmit power of the

communication TX antennas equals

E{Tr(XXH)} = E

{
Tr

(
L∑
l=1

x(l)xH(l)

)}
=

L∑
l=1

Tr(Rxl),

where Rxl , E{x(l)xH(l)}.

Due to the sampling performed at the MIMO-MC radar receiver, the effective interference

power (EIP) at the radar RX nodes can be expressed as:

EIP , E
{
Tr
(
Ω ◦ (G2XΛ2) (Ω ◦ (G2XΛ2))

H
)}

=E
{
Tr
(
[G21x(1) . . .G2Lx(L)]Λ2Λ

H
2 [G21x(1) . . .G2Lx(L)]H

)}
=E

{
Tr

(
L∑
l=1

G2lx(l)xH(l)GH
2l ]

)}

=

L∑
l=1

Tr
(
G2lRxlG

H
2l

)
=

L∑
l=1

Tr
(
∆lG2RxlG

H
2

)
,

(6.7)

where G2l , ∆lG2, with ∆l = diag(Ω·l). We note that the EIP at sampling time l contains

the interference corresponding only to 1’s in Ω·l. Thus, the effective interference channel

during the l-th symbol duration is G2l. In the following, the EIP is used as the figure of

merit for MIMO-MC radars as it affects the performance of matrix completion and further

target estimation (see simulation results in Section 6.6.1). Before matrix completion and

any target estimation, the EIP should be minimized. From another perspective, the EIP

is a reasonable surrogate of the radar SINR, which is widely used as figure of merit in the

literature [111, 113], as in this chapter we do not assume any prior information on target

parameters.

In the coexistence model of (6.4a) and (6.6), both the effective interference channel

G2l, and the interference covariance matrix at the communication receiver, i.e., Rintl ,

σ2
αSobs(l)S

H
obs(l), vary between sampling times. Thus, the optimum scheme for the com-

munication transmitter would be adaptive/dynamic transmission. A symbol dependent

covariance matrix, i.e., Rxl, would need to be designed for each symbol duration in order
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to match the variation of G2l and Rintl.

The channel G2l can be equivalently viewed as a fast fading channel with perfect channel

state information at both the transmitter and receiver [52, 108]. Similar to the definition of

ergodic capacity [108], the achieved capacity is the average over L symbols, i.e.,

Cavg({Rxl}) ,
1

L

∑L

l=1
log2

∣∣I + R−1
wl HRxlH

H
∣∣ , (6.8)

where {Rxl} denotes the set of all Rxl’s and Rwl , Rintl + σ2
CI for all l ∈ N+

L .

The adaptive transmission could be implemented using the V-BLAST transmitter archi-

tecture [52, Chapter 7], where the precoding matrix for symbol index l is set to R
1/2
xl . This

idea is also used in the transceiver architecture for achieving the capacity of a fast fading

MIMO channel with full channel state information [52, Chapter 8.2.3], and is also discussed

in [129, Chapter 9]. The adaptive transmission in response to highly mobile, fast fading

channels requires the transmitter to vary the rate, power and even the coding strategy. The

main bottleneck of the system is not due to the complexity of designing and implementing

the variable transmission parameters, but rather due to the feedback delay of the fast fading

channel. In our case, the latter issue is not relevant because the channel variations are intro-

duced by the MC technique and radar waveforms, which are available at the communication

transmitter.

In this section, spectrum sharing between the communication system and the MIMO-MC

radar is achieved by minimizing the interference power at the MIMO-MC radar RX node,

while satisfying the communication rate and TX power constraints of the communication

system. The design variables are the communication TX covariance matrices and/or the

radar sub-sampling scheme. In the following we will consider two approaches, namely, a

cooperative and a joint design approach.
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6.4.1 Cooperative Spectrum Sharing

In the cooperative approach, the MIMO-MC radar shares its sampling scheme Ω with the

communication system. The spectrum sharing problem can be formulated as

(P1) min
{Rxl}�0

EIP({Rxl}) s.t.
∑L

l=1
Tr (Rxl) ≤ Pt (6.9a)

Cavg({Rxl}) ≥ C, (6.9b)

where the constraint of (6.9a) restricts the total transmit power at the communication TX

antennas to be no larger than Pt. The constraint of (6.9b) restricts the communication

average capacity during L symbol durations to be at least C, in order to provide reliable

communication and avoid service outage. {Rxl} � 0 imposes the positive semi-definiteness

on the solution.

Problem (P1) is convex and involves multiple matrix variables, the joint optimization

w.r.t. which requires high computational complexity. Fortunately, we observe that both the

objective and constraints are separable functions of {Rxl}. An efficient algorithm for solving

the above problem can be implemented based on the Lagrangian dual decomposition [118]

as follows.

An Efficient Algorithm Based on Dual Decomposition

The Lagrangian of (P1) can be written as

L({Rxl}, λ1, λ2) = EIP({Rxl}) + λ2 (C − Cavg({Rxl})) + λ1

(∑L

l=1
Tr (Rxl)− Pt

)
,

where λ1 ≥ 0 is the dual variable associated with the transmit power constraint, and λ2 ≥ 0

is the dual variable associated with the average capacity constraint. The dual problem of

(P1) is

(P1-D) max
λ1,λ2≥0

g(λ1, λ2),

where g(λ1, λ2) is the dual function defined as

g(λ1, λ2) = inf
{Rxl}�0

L({Rxl}, λ1, λ2).

The domain of the dual function, i.e., dom g, is λ1, λ2 ≥ 0 such that g(λ1, λ2) > −∞. It is

also called dual feasible if (λ1, λ2) ∈ dom g. It is interesting to note that g(λ1, λ2) can be
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obtained by solving L independent subproblems, each of which can be written as follows

(P1-sub) min
Rxl�0

Tr
((

GH
2 ∆lG2 + λ1I

)
Rxl

)
− λ2 log2

∣∣I + R−1
wl HRxlH

H
∣∣ . (6.10)

Before giving the solution of (P1-sub), let us first state some observations.

Observation 1) The average capacity constraint should be active at the optimal point. This

means that the achieved capacity is always C and λ2 > 0. To show this, let us assume that

the optimal point {R∗xl} achieves Cavg({R∗xl}) > C. Then we can always shrink {R∗xl} until

the average capacity reduces to C, which would also reduce the objective. Thus, we end

up with a contradiction. By complementary slackness, the corresponding dual variable is

positive, i.e., λ2 > 0.

Observation 2)
(
GH

2 ∆lG2 + λ1I
)
is positive definite for all l ∈ N+

L . This can be shown by

contradiction. Suppose that there exists l such that GH
2 ∆lG2 + λ1I is singular. Then it

must hold that GH
2 ∆lG2 is singular and λ1 = 0. Therefore, we can always find a nonzero

vector v lying in the null space of GH
2 ∆lG2. At the same time, it holds that R

−1/2
wl Hv 6= 0

with very high probability, because H is a realization of the random channel. If we choose

Rxl = αvvH and α → ∞, the Lagrangian L({Rxl}, 0, λ2) will be unbounded from below,

which indicates that λ1 = 0 is not dual feasible. This means that λ1 is strictly larger than

0 if GH
2 ∆lG2 is singular for any l. Thus, the claim is proven.

Based on the above observations, we have the following lemma.

Lemma 7 ([122, 123]). For given feasible dual variables λ1, λ2 ≥ 0, the optimal solution of

(P1-sub) is given by

R∗xl(λ1, λ2) = Φ
−1/2
l UlΣlU

H
l Φ

−1/2
l , (6.11)

where Φl , GH
2 ∆lG2 + λ1I; Ul is the right singular matrix of H̃l , R

−1/2
wl HΦ

−1/2
l ; Σl =

diag(βl1, . . . , βlr) with βli = (λ2− 1/σ2
li)

+, r and σli, i = 1, . . . , r, respectively being the rank

and the positive singular vales of H̃l. It also holds that

log2

∣∣I + R−1
wl HR∗xlH

H
∣∣ =

∑r

i=1

(
log(λ2σ

2
li)
)+
. (6.12)

Based on Lemma 7, the solution of (P1) can be obtained by finding the optimal dual

variables λ∗1, λ∗2. The cooperative spectrum sharing problem (P1) can be solved via the
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procedure outlined in Algorithm 3. The convergence of Algorithm 3 is guaranteed by the

convergence of the ellipsoid method [133].

Algorithm 3 Cooperative Spectrum Sharing (P1)

1: Input: H,G1,G2,Ω, Pt, C, σ
2
C

2: Initialization: λ1 ≥ 0, λ2 ≥ 0
3: repeat
4: Calculate R∗xl(λ1, λ2) according to (6.11) with the given λ1 and λ2;
5: Compute the subgradient of g(λ1, λ2) as

∑L
l=1 Tr (R∗xl(λ1, λ2))− Pt and

C − Cavg({R∗xl(λ1, λ2)}) respectively for λ1 and λ2;
6: Update λ1 and λ2 accordingly based on the ellipsoid method [133];
7: until λ1 and λ2 converge to a prescribed accuracy.
8: Output: R∗xl = R∗xl(λ1, λ2)

Based on Lemma 7, the coexistence model can be equivalently viewed as a fast fading MI-

MO channel H̃l. The covariance of the waveforms transmitted on H̃l is R̃xl , Φ
1/2
l RxlΦ

1/2
l .

It is well-known that the optimum R̃xl equals UlΣlU
H
l with power allocation obtained by

the water-filling algorithm [108]. The achieved capacity is the average over all realization of

the channel, i.e., {H̃l}Ll=1. This justifies the definition of average capacity in (6.8). Lemma 7

shows that the communication transmitter will allocate more power to directions determined

by the left singular vectors of H corresponding to larger eigenvalues and by the eigenvectors

of Φl corresponding to smaller eigenvalues. In other words, the communication will trans-

mit more power in directions that convey larger signal at the communication receivers and

smaller interferences to the MIMO-MC radars.

Spectrum Sharing without knowledge of the radar’s sampling scheme

If the MIMO-MC radar does not share Ω with the communication system, the expression

of EIP of (6.7) is also not available at the communication system. In this case, the commu-

nication system can design its covariance assuming that Ω is full of 1’s, i.e., for the worst

case of interference

(P0) min
{Rxl}�0

L∑
l=1

Tr
(
G2RxlG

H
2

)
s.t.

L∑
l=1

Tr (Rxl) ≤ Pt,Cavg({Rxl}) ≥ C.

(6.13)
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The same design would hold for the case in which a traditional MIMO radar is used instead

of a MIMO-MC radar. Problem (P0) is also convex and has exactly the same constraints

as (P1). The efficient algorithm based on the dual decomposition technique in Algorithm 3

could also be applied to solve (P0).

The following theorem compares the minimum EIP achieved by the cooperative ap-

proaches of (P0) and (P1) under the same communication constraints.

Theorem 3. For any Pt and C, the EIP achieved by the cooperative approaches of (P1) is

less or equal than that achieved by the approach of (P0).

Proof. Let {R∗0xl } and {R∗1xl } denote the solution of (P0) and (P1), respectively. We know

that {R∗0xl } satisfies the constraints in (P1), which means that {R∗0xl } is a feasible point

of (P1). The optimal {R∗1xl } achieves an objective value no larger than any feasible point,

including {R∗0xl }. It holds that EIP({R∗1xl }) ≤ EIP({R∗0xl }), which proves the claim.

There are certain scenarios in which (P1) outperforms (P0) significantly in terms of

EIP. Let us denote by φ1 the intersection of null space N (G2l) and range space R(R
1/2
wl H),

and by φ2 the intersection of null space N (G2) and range space R(R
1/2
wl H). It holds that

φ2 ⊆ φ1. Consider the case where φ1 is nonempty while φ2 is empty. This happens with high

probability when Mr,R ≥ Mt,C but pMr,R is much smaller than Mt,C . Problem (P1) will

guide the communication system to focus its transmission power along the directions in φ1

to satisfy both communication system constraints, while introducing zero EIP to the radar

system. On the other hand, since φ2 is empty, Problem (P0) will guide the communication

system transmit power along directions that introduce nonzero EIP. In other words, the sub-

sampling procedure in the MIMO-MC radar essentially modulates the interference channel

from the communication transmitter to the radar receiver by multiplying {∆l}. Compared

to the original interference channel G2, the dimension of the row space of modulated channel

G2l may be greatly reduced. The cooperative approach allows the communication system

to optimally design the communication precoding matrices w.r.t. the effective interference

channel G2l. Therefore, it is expected that the cooperative approach based on the knowledge

of Ω, i.e., (P1), introduces smaller EIP than its counterpart approach without knowledge

of Ω, i.e., (P0), does under the same the communication constraints.
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6.4.2 Joint Communication and Radar System Design for Spectrum Sharing

In the above described spectrum sharing strategies, the MIMO-MC radar operates with a

predetermined pseudo random sampling scheme. In this section, we consider a joint design of

the communication system transmit covariance matrices and the MIMO-MC radar random

sampling scheme, i.e., Ω. The candidate sampling scheme needs to ensure that the resulting

data matrix can be completed. This means that Ω is either a uniformly random sub-sampling

matrix [36], or a matrix with a large spectral gap [124].

Recall that EIP =
∑L

l=1 Tr
(
∆lG2RxlG

H
2

)
. The joint design scheme is formulated as

(P2) min
{Rxl}�0,Ω

∑L

l=1
Tr
(
∆lG2RxlG

H
2

)
s.t.

L∑
l=1

Tr (Rxl) ≤ Pt,Cavg({Rxl}) ≥ C,

∆l = diag(Ω·l),Ω is proper.

The above problem is not convex. A solution can be obtained via alternating optimization.

Let ({Rn
xl},Ωn) be the variables at the n-th iteration. We alternatively solve the following

two problems:

{Rn
xl} = arg min

{Rxl}�0

∑L

l=1
Tr
(
∆n−1
l G2RxlG

H
2

)
, (6.14a)

s.t.
L∑
l=1

Tr (Rxl) ≤ Pt,Cavg({Rxl}) ≥ C,

Ωn = arg min
Ω

∑L

l=1
Tr
(
∆lG2R

n
xlG

H
2

)
, (6.14b)

s.t. ∆l = diag(Ω·l),Ω is proper.

The problem of (6.14a) is convex and can be solved efficiently. By simple algebraic ma-

nipulation, the EIP can be reformulated as EIP = Tr(ΩTQ), where the l-th column of Q

contains the diagonal entries of G2RxlG
H
2 . Based on the above reformulation of EIP, we

can rewrite (6.14b) as

Ωn = arg min
Ω

Tr(ΩTQn) s.t. Ω is proper, (6.15)

where the l-th column of Qn contains the diagonal entries of G2R
n
xlG

H
2 . Therefore, the

EIP can be reduced by carefully choosing Ω. Recall that the sampling matrix Ω is proper
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either if it is a uniformly random sampling matrix, or it has large spectral gap. However, it

is difficult to incorporate such conditions in the above optimization problem.

Noticing that row and column permutation of the sampling matrix would not affect its

singular values and thus the spectral gap, we propose to optimize the sampling scheme by

permuting the rows and columns of an initial sampling matrix Ω0, i.e.,

Ωn = arg min
Ω

Tr(ΩTQn) s.t. Ω ∈ ℘(Ω0), (6.16)

where ℘(Ω0) denotes the set of matrices obtained by arbitrary row and/or column permuta-

tions. The Ω0 is generated with binary entries and bpLMr,Rc ones. One good candidate for

Ω0 would be a uniformly random sampling matrix, as such matrix exhibit large spectral gap

with high probability [124]. Brute-force search can be used to find the optimal Ω. However,

the complexity is very high since |℘(Ω0)| = Θ(Mr,R!L!). By alternately optimizing w.r.t.

row permutation and column permutation on Ω0, we can solve (6.16) using a sequence of

linear assignment problems [134].

To optimize w.r.t. column permutation, we need to find the best one-to-one match

between the columns of Ω0 and the columns of Qn. We construct a cost matrix Cc ∈ RL×L

with [Cc]ml , (Ω0
·m)TQn

·l. The problem turns out to be a linear assignment problem with

cost matrix Cc, which can be solved in polynomial time using the Hungarian algorithm

[134]. Let Ωc denote the column-permutated sampling matrix after the above step. Then,

we permute the rows of Ωc to optimally match the rows of Qn. Similarly, we construct a

cost matrix Cr ∈ RMr,R×Mr,R with [Cr]ml , Ωc
m·(Q

n
l·)
T . Again, the Hungarian algorithm

can be used to solve the row assignment problem. The above column and row permutation

steps are alternately repeated until Tr(ΩTQn) becomes smaller than a certain predefined

threshold δ1.

The complete joint-design spectrum sharing algorithm is summarized in Algorithm 4.

The proposed algorithm stops when the value of EIP changes between two iterations drops

below a certain threshold δ2. It is easy to show that the objective function, i.e., EIP, is

nonincreasing during the alternating iterations between (6.14a) and (6.14b), and is lower

bounded by zero. According to the monotone convergence theorem [135], the alternating

optimization is guaranteed to converge. The proposed joint-design spectrum sharing strategy
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is expected to further reduce the EIP at the MIMO-MC radar RX node compared to the

cooperative methods in Section 6.4.1. However, (P2) has higher computational complexity

than (P1) and (P0) (see detailed complexity analysis in Section 6.4.3). (P1) and (P0) could

be preferable in cases of limited computing resources.

Algorithm 4 Joint design based spectrum sharing between MIMO-MC radar and a MIMO
comm. system

1: Input: H,G1,G2, Pt, C, σ
2
C , δ1, δ2

2: Initialization: Ω0 is a uniformly random sampling matrix
3: repeat
4: {Rn

xl} ← Solve problem (6.14a) using Algorithm 3 while fixing Ωn−1

5: Ωprev ← Ωn−1

6: loop
7: Ωc ← Find the best column permutation of Ωprev by solving the linear assignment

problem with cost matrix Cc

8: Ωr ← Find the best row permutation of Ωc by solving the linear assignment problem
with cost matrix Cr

9: if |Tr((Ωr)TQn)− Tr((Ωprev)TQn)| < δ1 then
10: Break
11: end if
12: Ωprev ← Ωr

13: end loop
14: Ωn ← Ωr; n← n+ 1
15: until |EIPn − EIPn−1| < δ2

16: Output: {Rxl} = {Rn
xl},Ω = Ωn

6.4.3 Complexity

The adaptive communication transmission in the proposed spectrum sharing methods in-

volves high complexity. A natural question would be how much would one lose by using a

sub-optimal transmission approach of constant rate, i.e., Rxl = · · · = RxL ≡ Rx, which has

lower implementation complexity. In such case, the spectrum sharing problem (P1) can be

reformulated as

(P′1) min
Rx�0

EIP(Rx) s.t. LTr (Rx) ≤ Pt,Cavg(Rx) ≥ C, (6.17)

where EIP(Rx) , Tr
(
∆G2RxG

H
2

)
and ∆ is diagonal and with each entry equal to the sum

of the entries in the corresponding row of Ω. We can see that (P′1) is much easier to solve

because there is only one matrix variable. However, as it will be seen in the simulations of
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Section 6.6.2, the constant rate transmission based on solving (6.9) is inferior to the adaptive

transmission based on solving (6.17).

It is clear that (P0) and (P1) have the same computational complexity, because the ob-

jectives and the constraints are similar. If an interior-point method [118] is used directly to

the problems, the complexity is polynomial (cubic or slightly higher orders) in the number

of real variables in each problem. For both (P0) and (P1), the semidefinite matrix vari-

ables {Rxl} have LM2
t,C real scalar variables. For the sub-optimal (P′1), there is only one

semidefinite matrix variable Rx, which results in M2
t,C real scalar variables. Therefore, the

computational costs of (P0) and (P1) are at least L3 times of that of (P′1), which are pro-

hibitive if L is large. Fortunately, when (P0) and (P1) are solved using Algorithm 3 based

on dual decomposition, the computation complexity is greatly reduced and scales linearly

with L. Furthermore, the overall computation time of (P0) and (P1) using dual decompo-

sition even becomes independent of L and thus equal to that of (P′1) if all L sub-problems

(P1-sub) are solved simultaneously in parallel using the same computational routine [102].

To solve (P2), several iterations of solving problems in (6.14a) and (6.14b) are required.

The computational complexity of (6.14a) is identical to that of (P1), which has been consid-

ered previously. Problem (6.14b) is in turn solved via several iterations of linear assignment

problem, whose complexity cubically scales with L. Simulations show that the number-

s of both inner and outer iterations in Algorithm 4 are relative small. In summary, the

computational complexity of (P2) is the sum of L times of a polynomial ofM2
t,C and O(L3).

6.5 Mismatched Systems

In Section 6.3, the waveform symbol duration of the radar system is assumed to match that

of the communication system. In this section, we consider the mismatched case, and show

that the proposed techniques presented in the previous sections can still be applied. Let

fRs = 1/TR and fCs denote the radar waveform symbol rate and the communication symbol

rate, respectively. Also, let the length of radar waveforms be denoted by LR. The number

of communication symbols transmitted in the duration of LR/fRs is LC , dLRfCs fRs e. The

communication average capacity and transmit power can be expressed in terms of {Rxl}LCl=1



110

as in Section 6.4. In the following, we will only focus on the effective interference to the

MIMO-MC radar receiver.

If fRs < fCs , the interference arrived at the radar receiver will be down-sampled. Let

I1 ⊂ N+
LC

be the set of indices of communication symbols that are sampled by the radar in

ascending order. It holds that |I1| = LR. Following the derivation in previous sections, we

have the following interference power expression:

EIP =
∑

l∈I1
Tr
(
∆l′G2RxlG

H
2

)
,

where l′ ∈ N+
LR

is the index of l in ordered set I1. We observe that the communication

symbols indexed by N+
LC
\ I1, which are not sampled by the radar receiver, would introduce

zero interference power to the radar system.

If fRs > fCs , the interference at the radar receiver will be over-sampled. One individual

communication symbol will introduce interference to the radar system in bfRs /fCs c consecu-

tive symbol durations. Let Ĩl be the set of radar sampling time instances during the period

of the l-th communication symbol. Note that Ĩl is with cardinality bfRs /fCs c, and the col-

lection of sets Ĩ1, . . . , ĨLC is a partition of N+
LR

. The effective interference power for both

schemes of MIMO-MC radar is respectively

EIP =
∑LC

l=1
Tr
(
∆̃lG2RxlG

H
2

)
,

where ∆̃l =
∑

l′∈Ĩl ∆l′ . We observe that each individual communication transmit covariance

matrix will be weighted by the sum of interference channels for bfRs /fCs c radar symbol

durations instead of one single interference channel.

We conclude that in the above mismatched cases, the EIP expressions have the same form

as those in the matched case except the diagonal matrix ∆l. To calculate the corresponding

diagonal matrices, the communication system only needs to know the sampling time of the

radar system. Therefore, the spectrum sharing problems in such cases can still be solved

using the proposed algorithms of Section 6.4.
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6.6 Numerical Results

For the simulations, we set the number of symbols to L = 32 and the noise variance to

σ2
C = 0.01. The MIMO radar system consists of colocated TX and RX antennas forming

half-wavelength uniform linear arrays, and transmitting Gaussian orthogonal waveforms

[32]. The channel H is taken to have independent entries, distributed as CN (0, 1). The

interference channels G1 and G2 are generated with independent entries, distributed as

CN (0, σ2
1) and CN (0, σ2

2), respectively. The channels are Rayleigh fading and are consistent

with a flat fading model assumption [43–46, 51, 52, 66, 102, 122]. We fix σ2
1 = σ2

2 = 0.01

unless otherwise stated. The maximum communication transmit power is set to Pt = L

(the power is normalized w.r.t. the power of radar waveforms). The propagation path from

the radar TX antennas to the radar RX antennas via the far-field target introduces a much

more severe loss of power, γ2, which is set to −30dB in the simulations. The transmit power

of the radar antennas is fixed to ρ2 = ρ0 , 1000L/Mt,R unless otherwise stated, and noise

in the received signal is added at SNR= 25dB. The phase jitter variance is taken to be

σ2
α = 10−3. The same uniformly random sampling scheme Ω0 is adopted by the radar in

both the cooperative spectrum sharing (SS) methods of (P0) and (P1). The joint-design

spectrum sharing method uses the same sampling matrix as its initial sampling matrix.

Recall that (P0) is the cooperative spectrum sharing method when Ω is not shared with

the communication system. In (P0), the communication system designs its waveforms by

assuming Ω as the all 1’s matrix. Based on the obtained communication waveforms, an EIP

value is calculated for (P0) using the true Ω for the ease of comparison. In the following

figures, we denote the cooperative spectrum sharing method of (P0) without knowledge of Ω

by “cooperative SS w/ Ω unknown". We denote the cooperative spectrum sharing method

of (P1) by “cooperative SS"; and denote the joint-design spectrum sharing method of (P2)

by “joint-design SS". The TFOCUS package [136] is used for low-rank matrix completion

at the radar fusion center. The communication covariance matrix is optimized according to

the criteria of Section 6.4. The obtained Rxl is used to generate x(l) = R
1/2
xl randn(Mt,C , 1).

We use the EIP and MC relative recovery error as the performance metrics. The relative

recovery error is defined as ‖DS − D̂S‖F /‖DS‖F , where D̂S is the completed result of
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Figure 6.1: MC relative recovery errors and target angle estimation success rates under
different levels of EIP for the MIMO-MC radar. Mt,R = 16,Mr,R = 32,Mt,C = 4,Mr,C = 4.

DS. For comparison, we also implement a “selfish communication" scenario, where the

communication system minimizes the transmit power to achieve certain average capacity

without any concern about the interferences it exerts to the radar system.

6.6.1 The Impact of EIP on Matrix Completion and Target Angle Estimation

In the following we provide simulation results in support of the use of EIP as a design

objective. We take Mt,R = 16,Mr,R = 32,Mt,C = 4,Mr,C = 4. We consider two far-field

targets at angle 30◦ and 32.5◦ w.r.t. the radar arrays, with target reflection coefficients

equal to 0.2 + 0.1j. The sub-sampling rate of MIMO-MC radar is fixed to 0.5. We simulate

different levels of EIP by setting the communication TX covariance matrices equal to identity

matrix and varying a scaling parameter. In Fig. 6.1, we show the MC relative recovery errors

and target angle estimation success rates under different levels of EIP. The angle estimation

is achieved by the MUSIC method based on 5 pulses [33]. A success occurs if the angle

estimation error is smaller than 0.25◦. The results are calculated based on 200 independent

trials. One can see that the EIP indeed greatly affects the matrix completion accuracy and

further the target angle estimation. In particular, a 0.5 unit increase of EIP causes a sharp

30% drop of the target angle estimation success rate. Therefore, in order to guarantee the

function of the MIMO-MC radar, the EIP has to be maintained at a small level.
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Figure 6.2: Spectrum sharing based on adaptive transmission and constant rate transmission
for the MIMO-MC radar. Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4.

6.6.2 Spectrum Sharing Based on Adaptive Transmission and Constant Rate

Transmission

In this simulation, we compare the performance of the cooperative scheme of (P1) based on

adaptive transmission and the constant rate transmission scheme of (P′1). We also im-

plement the selfish communication scenario using constant rate transmission. We take

Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4, and one far-field stationary target at angle 30◦

w.r.t. the radar arrays, with target reflection coefficient equal to 0.2+0.1j. For the commu-

nication capacity constraint, we consider C = 12 bits/symbol. Fig. 6.2 shows the EIP and

MC relative recovery error as functions of the sub-sampling rate at the MIMO-MC radar.

We observe that the cooperative scheme of (P1) (labeled as “Cooperative SS + Adaptive")

achieves much smaller EIP and MC errors than the constant rate transmission scheme of

(P′1) (labeled as “Cooperative SS + Const. Rate") does. It can also be seen that the con-

stant rate transmission scheme is inferior even to the adaptive transmission based selfish

communication scheme. This implies that the adaptive transmission technique plays an

important role in reducing the EIP and MC errors. In the following, the performance of

adaptive transmission based schemes is evaluated in more detail. As we already mentioned

in Section 6.2, when the sub-sampling rate p equals 1, the MIMO-MC radar becomes the

traditional MIMO radar. Therefore, the above comparison between the adaptive and the

constant rate transmission scheme for MIMO-MC radars also holds for traditional MIMO

radars.
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Figure 6.3: CPU time comparison for various spectrum sharing algorithms under different
values of waveform length L.

To get an idea of the complexity involved in the aforementioned simulations, we recorded

the CPU times for the various spectrum sharing algorithms executed on a laptop with Intel

Core i7 CPU and 8GB memory. Fig. 6.3 shows the CPU times under different values of

waveform length. One can observe that 1) the constant rate algorithms are the fastest and

their running times are independent of L; 2) the running times of the adaptive rate algo-

rithms, both selfish and cooperative ones, scale linearly with L; 3) the joint-design spectrum

sharing method takes about 2-3 times of the cooperative spectrum sharing methods’ running

time. These observations match our complexity analysis in Section 6.4.3.

6.6.3 Spectrum Sharing between a MIMO-MC radar and a MIMO Communi-

cation System

Performance under different sub-sampling rates

There is a far-field stationary target at angle 30◦ w.r.t. the radar arrays, with target reflec-

tion coefficient equal to 0.2 + 0.1j. For the communication capacity constraint, we consider

C = 12 bits/symbol. The sub-sampling rate of MIMO-MC radar varies from 0.2 to 1. The

following two scenarios are considered.

In the first scenario, we takeMt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4. In Fig. 6.4(a) we plot

the EIP results for 4 different realizations of Ω0. For better visualization, Fig. 6.4(b) shows

the relative recovery errors averaged over all 4 realizations of Ω0. The cooperative scheme
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Figure 6.4: Spectrum sharing with the MIMO-MC radar under different sub-sampling rates.
Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4. Dashed curves correspond to EIP results using
different realization of Ω0.
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Figure 6.5: Spectrum sharing with the MIMO-MC radar under different sub-sampling rates.
Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4. Dashed curves correspond to EIP results using
different realization of Ω0.

(see P1) outperforms its counterpart without knowledge of Ω (see P0) in terms of both the

EIP and the MC relative recovery error. As discussed in Section 6.4, the EIP is significantly

reduced by the cooperative method when p < 0.6, i.e., when pMr,R is much smaller than

Mt,C . The joint-design scheme in this scenario performs the same as the cooperative scheme,

possibly because the row dimension of Ω is too small to generate sufficient difference in EIP

among the various permutations of Ω.

In the second scenario, we take Mt,R = 16,Mr,R = 32,Mt,C = 4,Mr,C = 4. In Fig.

6.5(a), we plot the EIP corresponding to 4 different realizations of Ω0, taken as uniformly

random sampling matrices. Again, Fig. 6.5(b) shows the relative recovery errors averaged

over all 4 realizations of Ω0. The cooperative scheme outperforms the cooperative scheme
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without knowledge of Ω only marginally. This is due to the fact that both G2 and G2l are

full rank. The joint-design scheme (see Section 6.4.2) optimizes Ω starting from the same

sampling matrix used by the other three methods. In this case, the joint-design scheme

achieves smaller EIP and relative recovery errors than the other three methods.

In the above scenarios, we would like p ≥ 0.5 for a small relative recovery error during

matrix completion. However, values of p > 0.7 require more samples while achieving little or

even no improvement on the recovery accuracy. Therefore, the optimal range of p is [0.5, 0.7],

where the proposed joint-design scheme significantly outperforms the “selfish communication

method" and the “SS method w/o knowledge of Ω". We conclude that the proposed co-design

based spectrum sharing methods utilize the sub-sampling procedure in the MIMO-MC radar

to achieve small EIP and high matrix recovery accuracy.

Interestingly, for the joint-design based spectrum sharing method, the relative recovery

error achieved by the sub-sampling rate p ∈ [0.5, 0.9] is even smaller than that by full

sampling p = 1. This indicates that due to the achieved small EIP, the full signal matrix

is accurately completed. The completion process smoothes out the noise, and as result,

the completed matrix enjoys higher SIR that the initial full signal matrix. Therefore, the

sub-sampling procedure in MIMO-MC radar is beneficial for radar-communication spectrum

sharing in terms of improving radar SINR as well as reducing the amount of data to be sent

to the fusion center.

In addition, simulations indicate that the communication average capacity constraint

holds with equality in both scenarios, confirming observation (1) of Section 6.4.1.

Performance under different capacity constraints

In this simulation, the constant C in the communication capacity constraint of (6.9b) varies

from 6 to 14 bits/symbol, while the sub-sampling rate p is fixed to 0.5. Four different re-

alizations of Ω0 are considered. Fig. 6.6 shows the results for Mt,R = 4,Mr,R = Mt,C =

8,Mr,C = 4. For the “selfish communication" scheme and the cooperative scheme without

knowledge of Ω, the EIP and relative recovery errors increase as the communication ca-

pacity increases. In contrast, the cooperative and joint-design schemes achieve significantly

smaller EIP and relative recovery errors under all values of C. This indicates that the latter
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Figure 6.6: Spectrum sharing with the MIMO-MC radar under different capacity constraints
C. Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4. Dashed curves correspond to EIP results using
different realization of Ω0.
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Figure 6.7: Spectrum sharing with the MIMO-MC radar under different capacity constraints
C. Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4. Dashed curves correspond to EIP results using
different realization of Ω0.

two spectrum sharing methods successfully allocate the communication transmit power in

directions that result in high communication rate, but small EIP to the MIMO-MC radar.

The results for Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4 are shown in Fig. 6.7. Since

Mr,R is much larger thanMt,C , the cooperative scheme with the knowledge of Ω outperforms

its counterpart without knowledge of Ω only marginally. Meanwhile, the joint-design scheme

can effectively further reduce the EIP and relative recovery errors.
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Figure 6.8: Spectrum sharing with the MIMO-MC radar when multiple targets present.
Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4, p = 0.5 and C = 12 bits/symbol.

Performance under different number of targets

In this simulation, we fix p = 0.5 and C = 12 and evaluate the performance when multiple

targets are present. The target reflection coefficients are designed such that the target

returns have fixed power, independent of the number of targets. We observe that the EIPs

of different methods remain constant for different number of targets. This is because the

design of the communication waveforms is not affected by the target number. Fig. 6.8

shows the results of the relative recovery error, which increases as the number of targets

increases. All methods have large recovery error for large number of targets, because the

retained samples are not sufficient for reliable matrix completion under any level of noise.

The proposed joint-design scheme can work effectively for the MIMO-MC radar when a

moderate number of targets are present.

Performance under different levels of radar TX power

In this simulation, we evaluate the effect of radar TX power ρ2, while fixing p = 0.5, C = 12

and the target number to be 1. Fig. 6.9 shows the results of EIP and relative recovery

errors for Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4. Again, we see that the joint-design

scheme performs the best, followed by the cooperative scheme with the knowledge of Ω and

then the cooperative scheme without knowledge of Ω. When the radar TX power increases,

the EIP increases but with a much slower rate. Therefore, increasing the radar TX power
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Figure 6.9: Spectrum sharing with the MIMO-MC radar under different levels of radar TX
power. Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4.

improves the relative recovery errors.
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Figure 6.10: Spectrum sharing with the MIMO-MC radar under different channel variance
σ2

1 for the interference channel G1. Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4.

Performance under different interference channel strength

In this simulation, we evaluate the effect the interference channel G1 with different σ2
1, while

fixing p = 0.5, C = 12 and the target number to be 1. As the communication RX gets closer

to the radar TX antennas, σ2
1 gets larger. Fig. 6.10 shows the results of EIP and relative

recovery errors for Mt,R = 16,Mr,R = 32,Mt,C = Mr,C = 4. For all the spectrum sharing

methods, when the interference channel G1 gets stronger, the communication TX increases

its transmit power in order to satisfy the capacity constraint. Therefore, the EIP and the

relative recovery errors increases with the variance σ2
1. We also observe that the joint-design
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scheme performs the best, followed by the cooperative scheme with the knowledge of Ω and

then the cooperative scheme without knowledge of Ω.

6.7 Conclusions

This chapter has considered spectrum sharing between a MIMO communication system

and a MIMO-MC radar system. In order to reduce the effective interference power (EIP)

at radar RX antennas, we have first considered the cooperative spectrum sharing method,

which designs the communication transmit covariance matrix based on the knowledge of

the radar sampling scheme. We have also formulated the spectrum sharing method for the

case where the radar sampling scheme is not shared with the communication system. Our

theoretical results guarantee that the cooperative approach can effectively reduce the EIP

to a larger extent as compared to the spectrum sharing method without the knowledge of

the radar sampling scheme. Second, we have proposed a joint design of the communication

transmit covariance matrix and the radar sampling scheme to further reduce the EIP. The

EIP reduction and the matrix completion recovery errors have been evaluated under various

system parameters. We have shown that the MIMO-MC radars enjoy reduced interference

by the communication system when the proposed spectrum sharing methods are consid-

ered. In particular, the sparse sampling at the radar RX antennas can reduce the rank of

the interference channel. Our simulations have confirmed that significant EIP reduction is

achieved by the cooperative approach; this is because in that approach, the communication

power is allocated to directions in the null space of the effective interference channel. Our

simulations have suggested that the joint-design scheme can achieve much smaller EIP and

relative recovery errors than other methods when the number of radar TX and RX antennas

is moderately large.

The adaptive communication transmission has been shown to be the optimal scheme for

the considered spectrum sharing scenario. Compared to the constant rate transmission, the

adaptive transmission requires higher computational and implementation complexity. To

reduce the computation complexity, efficient algorithms have been provided based on the

Lagrangian dual decomposition. As more and more powerful digital signal processors are

used in modern communication terminals, advanced adaptive transmission approaches ought
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to weigh heavily due to the increasing demand on high spectral efficiency. Nevertheless,

the adaptive transmission approach considered in this chapter provides useful insights on

the optimal design of the MIMO communication system coexisting with MIMO-MC radars,

which deserves research attention despite the computational and implementation complexity.
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Chapter 7

Joint Transmit Designs for Co-existence of MIMO Wireless
Communications and Sparse Sensing Radars in Clutter

In this chapter, we design a scenario in which a MIMO radar system with matrix completion

(MIMO-MC) optimally co-exists with a MIMO wireless communication system in the pres-

ence of clutter. By employing sparse sampling, MIMO-MC radars achieve the performance

of MIMO radars but with significantly fewer data samples. To facilitate the co-existence,

we employ transmit precoding at the radar and the communication system. First, we show

that the error performance of matrix completion is theoretically guaranteed when precoding

is employed. Second, the radar transmit precoder, the radar sub-sampling scheme, and the

communication transmit covariance matrix are jointly designed to maximize the radar SINR

while meeting certain rate and power constraints for the communication system. Efficient

optimization algorithms are provided along with insight on the feasibility and properties

of the proposed design. Simulation results show that the proposed scheme significantly

improves the spectrum sharing performance in various scenarios.

7.1 Introduction

Spectrum congestion in commercial wireless communications is a growing problem as high-

data-rate applications become prevalent. On the other hand, recent government studies have

shown that huge chunks of spectrum held by federal agencies are underutilized in urban areas

[39]. In an effort to relieve the problem, the Federal Communications Commission (FCC) and

the National Telecommunications and Information Administration (NTIA) have proposed

to make available 150 megahertz of spectrum in the 3.5 GHz band, which was primarily used

by federal radar systems for surveillance and air defense, to be shared by both radar and

communication applications [40, 41]. When communication and radar systems overlap in the
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spectrum, they exert interference to each other. Spectrum sharing targets at enabling radar

and communication systems to share the spectrum efficiently by minimizing interference

effects.

The literature on spectrum sharing can be classified into three main classes. The first

class comprises approaches which use large physical separation distances between radar

and communication systems [42, 53, 54] to control interference. The second class includes

approaches which optimally schedule dynamic access to spectrum [55–59], by using OFD-

M signals and optimally allocating subcarriers [62–64], or synthesize radar waveforms in

frequency domain with controlled interference to the spectrally overlayed wireless commu-

nication systems [48, 49, 65]. The third class includes methods, which by using multiple

antennas at both the radar and communication systems, allow radar and communication

systems to co-exist on the same carrier frequency [43–47, 66, 67]. This greatly improves

spectral efficiency as compared to the other two classes. Since our proposed method falls in

this category, we will discuss this class in more detail.

Most of the existing multiple-input-multiple-output (MIMO) radar-communication spec-

trum sharing literature addresses interference mitigation either only for the communication

system [43–46], or for the radar [47]. Spectrum sharing between traditional MIMO radars

and communication systems was initially considered in [43–46, 66, 67], where the radar in-

terference to the communication system was eliminated by projecting the radar waveforms

onto the null space of the interference channel from radar to communication systems. How-

ever, projection-type techniques might miss targets lying in the row space of the interference

channel. In addition, the interference from the communication system to the radar was not

considered in [43–46, 66, 67]. Spatial filtering at the radar receiver was proposed in [47] to

reduce interference from the communication systems. Since the output SINR of the optimal

receive filter depends on the covariance matrix of the communication interference, the SINR

performance could be further improved if the communication signaling was jointly designed

with the radar waveforms. To the best of our knowledge, co-design of radar and communica-

tion systems for spectrum sharing was proposed in [99–101, 115] for the first time. Compared

to radar design approaches of [43–47, 66, 67], the joint design has the potential to improve

the spectrum utilization due to increased number of design degrees of freedom.
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This chapter investigates spectrum sharing of a MIMO communication system and a ma-

trix completion (MC) based, collocated MIMO radar (MIMO-MC) system [32–34]. MIMO

radars transmit different waveforms from their transmit (TX) antennas, and their receive

(RX) antennas forward their measurements to a fusion center for further processing. Based

on the forwarded data, the fusion center populates a matrix, referred to as the “data ma-

trix", which is then used by standard array processing schemes for target estimation. For

a relatively small number of targets, the data matrix is low-rank [32], thus allowing one to

fully reconstruct it (under certain conditions) based on a small, uniformly sampled set of its

entries. This observation is the basis of MIMO-MC radars; the RX antennas forward to the

fusion center a small number of pseudo-randomly sub-Nyquist sampled values of the target

returns, along with their sampling scheme, each RX antenna partially filling a column of

the data matrix. The full data matrix, corresponding to Nyquist sampling at the antennas,

is provably recovered via MC techniques and can subsequently be used for target detection

via standard array processing methods. The subsampling at the antennas avoids the need

for high rate analog-to-digital converters, and the reduced amount of samples translates into

power and bandwidth savings in the antenna-fusion center link. Further, the interference is

confined only to the sampled entries of the data matrix, while after matrix completion the

target echo power is preserved [32–34]. Compared to the compressive sensing (CS) based

MIMO radars, MIMO-MC radars achieve data reduction while avoiding the basis mismatch

issues inherent in CS-based approaches [24].

Spectrum sharing between a MIMO MC radar and a MIMO communication system was

considered in [99] and [100], where the radar interference at the communication receiver

was estimated and then subtracted from the received signal at the communication receiver.

However, this approach might not work when the radar power is so high that saturates

the communication receiver. Further, due to the random phase offset between the radar

transmitter and the communication receiver, following the subtraction there will always

be residual interference, which can degrade the communication system performance. The

coexistence of traditional MIMO radars and a MIMO communication system was studied

in [101, 115], where precoding was used both at the radar and the communication system,

and the precoders were jointly designed to maximize the SINR at the radar receiver while
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meeting certain communication system rate and power constraints. It was shown that radar

TX precoding can effectively reduce the interference towards the communication receiver

and maximize the radar SINR.

In this chapter, we propose a new spectrum sharing method for the MIMO-MC radars

and MIMO communication systems by extending the work in [101, 137] with the following

major contributions:

• We prove the feasibility of transmit precoding for MIMO-MC radars using random

unitary waveforms. In particular, we show that the coherence of the data matrix of a

transmit precoding based MIMO-MC radar is upper bounded by a small constant (see

Theorem 6), a key condition for the applicability of matrix completion. Furthermore,

the derived bound is independent of the transmit precoder as long as the resulted

data matrix has rank equal to the number of targets. This means that we can design

the precoder without affecting the incoherence property of the data matrix, for the

purpose of transmit beamforming, interference suppression, et al.

• We propose a cooperative spectrum sharing algorithm for the coexistence of MIMO-

MC radars and communication systems. The communication transmit covariance ma-

trices, the radar precoding matrix, and the radar sub-sampling scheme are jointly

designed in order to maximize the radar signal-to-interference-plus-noise ratio (SINR)

subject to constraints on communication rate and power. The alternating optimiza-

tion technique is leveraged to solve the joint design problem. We also provide insights

on the problem feasibility and the rank of the solution of the radar precoding matrix.

To the best of our knowledge, the joint design of transmit precoders and the radar

clutter mitigation have not been considered in radar and communication coexistence

literature.

Relation to literature: Our results on MIMO-MC radars using precoding extend the

work in [33, 35], where transmit precoding was not considered, and the radar waveforms

were required to be deterministically optimized. In contrast, in this chapter we derived

a coherence bound for any radar waveform that is a random unitary matrix. This allows

the radar waveform to be changed periodically, which would be good for security reasons,
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without affecting the matrix completion performance.

This chapter is organized as follows. Section 7.2 starts with the background on MIMO-

MC radars. We then provide the incoherence property for the MIMO-MC radars using

random unitary waveforms and nontrivial precoders. Section 7.3 introduces the signal model

when the MIMO-MC radar and communication systems are coexisted. The problem of

MIMO communication sharing spectrum with MIMO-MC radar is studied in Sections 7.4.

Numerical results and conclusions are provided in Sections 7.5-7.6.

7.2 MIMO-MC Radar Revisited

7.2.1 Background on MIMO-MC Radar

Consider a collocated MIMO radar system with Mt,R TX antennas and Mr,R RX antennas

arranged as uniform linear arrays (ULA) with inter-element spacing dt and dr, respectively.

The radar is pulse based with pulse repetition interval TPRI and carrier wavelength λc.

The K far-field targets are with distinct angles {θk}, target reflection coefficients {βk} and

Doppler shifts {νk} and are assumed to fall in the same range bin. Following the clutter-free

model of [33–35], the data matrix at the fusion center can be formulated as

YR = VrΣVT
t PS + WR, (7.1)

where the m-th row of YR ∈ CMr,R×L contains the L samples forwarded by the m-th

antenna; the waveforms are given in S = [s(1), · · · , s(L)], with s(l) = [s1(l), · · · , sMt,R
(l)]T

being the l-th snapshot across the transmit antennas; the transmit waveforms are assumed

to be orthogonal, i.e., it holds that SSH = IMt,R
[33]; WR denotes additive noise; and

P ∈ CMt,R×Mt,R denotes the transmit precoding matrix. Vt , [vt(θ1), . . . ,vt(θK)] and

Vr , [vr(θ1), . . . ,vr(θK)] respectively denote the transmit and receive steering matrix and

vr(θ) ∈ CMr,R is the receive steering vector defined as

vr(θ) ,
[
e−j2π0ϑr , . . . , e−j2π(Mr,R−1)ϑr

]T
, (7.2)

where ϑr = dr sin(θ)/λc denotes the spatial frequency w.r.t. the receive array. vt(θ) ∈

CMt,R is the transmit steering vector and is respectively defined. Matrix Σ is defined as

Σ , diag([β1e
j2πν1 , . . . , βKe

j2πνK ]). D , VrΣVT
t is also called the target response matrix.
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After matched filtering at the fusion center, target estimation can be performed based on

YR via standard array processing schemes [4].

When K is smaller than Mr,R and L, the noise-free data matrix M , DPS is low-rank

and can be provably recovered based on a subset of its entries. This observation gave rise

to MIMO-MC radars [33–35], where each RX antenna sub-samples the target returns and

forwards the samples to the fusion center. The partially filled data matrix at the fusion

center can be mathematically expressed as follows (see [33] Scheme I)

Ω ◦YR = Ω ◦ (M + WR), (7.3)

where ◦ denotes the Hadamard product; Ω is the sub-sampling matrix containing 0’s and

1’s. The sub-sampling rate p equals ‖Ω‖0/(LMr,R). When p = 1, the Ω matrix is filled with

1’s, and the MIMO-MC radar is identical to the traditional MIMO radar. At the fusion

center, the completion of M can be achieved by the following nuclear norm minimization

problem [36]

min
M
‖M‖∗ s.t. ‖Ω ◦M−Ω ◦YR‖F ≤ δ, (7.4)

where δ > 0 is a parameter determined by the sampled entries of the noise matrix, i.e.,

Ω◦WR. The recovery error of M is bounded with high probability, given that the following

conditions hold [36]

• M is incoherennt with parameters (µ0, µ1),

• Ω corresponds to uniformly at random sub-sampling operation with m , Mr,RLp ≥

CKn log n, where n , max{Mr,R, L}.

It is important to note that the data matrix M can be stably reconstructed with high

accuracy and retaining all the received target echo power under the above conditions.

The incoherence parameters (µ0, µ1) are given by µ0 ≥ max(µ(U), µ(V )), µ1

√
K

Mr,RL
≥

‖
∑K

k=1 U·kV
H
·k‖∞, where U ∈ CMr,R×K and V ∈ CL×K contain the left and right singular

vectors of M; the coherence of subspace V spanned by basis matrix V is defined as

µ(V ) ,
L

K
max

1≤l≤L
‖Vl·‖2 ∈

[
1,
L

K

]
.

The upper bounds on the incoherence parameters of M are given in the following theorem

[34, 35].
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Theorem 4. ([35, Theorem 2] Coherence of M when P = IMt,R
) Let the minimum spatial

frequency separation of the K targets be ξt and ξr w.r.t. the transmit and receive arrays. On

denoting the Fejér kernel by Fn(x), and for dt = dr = λc/2 and

K ≤ min
{√

Mr,R/FMr,R
(ξr),

√
Mt,R/FMt,R

(ξt)
}
,

it holds that

µ(U) ≤
√
Mr,R√

Mr,R − (K − 1)
√
FMr,R

(ξr)
, µr0.

Further, if every snapshot of the waveforms satisfies that

|ST·lvt(θ)|2 =
Mt,R

L
, ∀l ∈ N+

L , θ ∈
[
−π

2
,
π

2

]
, (7.5)

then µ(V) is upper bounded by

µ(V ) ≤
√
Mt,R√

Mt,R − (K − 1)
√
FMt,R

(ξt)
, µt0.

Consequently, the matrix M is incoherent with parameters µ0 , max{µr0, µt0} and µ1 ,
√
Kµ0.

In the following we discuss two points that motivate the contribution of this chapter.

1. In [35], the condition in (7.5) and the orthogonality property was used to design

waveforms with good incoherence properties. However, radar waveforms need to be

updates frequently as security against adversaries, which subsequently bring us the

issue of computational complexity. The work of [35] involves numerical optimization

on the complex Stiefel manifold [35], which has high computational complexity.

2. In radar system design, the adaptability of transmit waveforms and/or precoder is

critical for the suppression of interference, including noise, clutter and jamming. In

particular for MIMO-MC radars, the matrix completion performance will degrade

severely when the SINR drops to as low as 10dB [33], which in turn emphasizes the

importance of waveform and/or precoder design for MIMO-MC radar noise and inter-

ference mitigation. However, the results in Theorem 4 cannot be easily extended for

a nontrivial transmit precoding.
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To address the above two issues, we propose to use a random unitary matrix [138] as the

waveform matrix S. This choice is motivated by the simulations in [35] which show that the

random unitary matrix performs almost the same as the optimally designed waveform.

7.2.2 MIMO-MC Radar Using Random Unitary Matrix

A random unitary matrix [138] can be obtained through performing the Gram-Schmidt or-

thogonalization on a random matrix with entries distributed as i.i.d Gaussian. This means

that we can generate waveform candidates easily. The following theorem provides upper

bounds on the incoherence parameter µ(U) and µ(V ) of M when the random unitary wave-

form is used.

Theorem 5. (Bounding µ(U) and µ(V )) Consider the MIMO-MC radar presented in Sec-

tion 7.2.1 with S being random unitary. For any transmit precoder P such that the rank of

M is K0 ≤ K, and arbitrary transmit array geometry and target angles, the coherence of

subspace V obeys the following:

µ(V ) ≤ K0 + 2
√

3K0 lnL+ 6 lnL

K0
, µ̃t0

with probability 1− L−2, and the coherence of subspace U obeys µ(U) ≤ K
K0
µr0, where µ

r
0 is

defined in Theorems 4.

Proof. The proof can be found in Appendix 7.A.

Based on Theorem 5, we have the following theorem for the incoherence parameters of

M.

Theorem 6. (Coherence of M with random unitary waveform matrix) Consider the MIMO-

MC radar presented in Section 7.2.1 with S being random unitary. For dr = λc/2, arbitrary

transmit array geometry, and

K ≤
√
Mr,R/FMr,R

(ξr),

the matrix M is incoherent with parameters µ0 , max{ KK0
µr0, µ̃

t
0} and µ1 ,

√
Kµ0 with

probability 1 − L−2, where µr0 and µ̃t0 are defined in Theorems 4 and 5, respectively. The

incoherence property of M holds for any precoding matrix P such that the rank of M is K0.
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Proof. The theorem can be proven by combining the bounds on µ(U) and µ(V ) in Theorems

4 and 5, respectively.

Remark 10. Some comments are in order. First, if K0 is O(lnL), the upper bound µ̃t0 > 1

is a small constant. Therefore, M has a good incoherent property. A similar bound was

provided on the coherence of the subspaces spanned by random orthogonal basis in [139].

Second, unlike the results in Theorem 4, the probabilistic bound on µ(V ) is independent of

the target angles and array geometry. Third, the above results hold for any random unitary

matrix S. The radar waveform can be changed periodically, which would be good for security

reason, without affecting the matrix completion performance. Finally, the probabilistic

bound on µ(V ) in Theorem 5 is independent of P. This means that we can design P,

without affecting the incoherence property of M, for the purpose of transmit beamforming

and interference suppression. This key observation validates the feasibility of radar precoding

based spectrum sharing approaches for MIMO-MC radar and communication systems in the

sequel.

7.3 System Model and Problem Formulation

We consider the coexistence scenario in [100], as shown in Fig. 4.1, where a MIMO-MC radar

system and a MIMO communication system operate using the same carrier frequency. Note

that the coexistence model is general, because when full sampling is adopted the MIMO-MC

radar turns to be a traditional MIMO radar.

Suppose that the two systems use narrowband waveforms with the same symbol rate

and are synchronized in sampling time (see [100] for the case of mismatched symbol rates).

Consider the same target scene in a particular range bin as in Section 7.2.1 but with clutter.

The signal received by the radar and communication RX antennas during L symbol durations
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can be respectively expressed as

Radar fusion center:

Ω ◦YR = Ω ◦
(
DPS︸ ︷︷ ︸
signal

+ CPS + G2XΛ2︸ ︷︷ ︸
interference

+ WR︸︷︷︸
noise

)
, (7.6a)

Communication receiver:

YC = HX︸︷︷︸
signal

+ G1PSΛ1︸ ︷︷ ︸
interference

+ WC︸︷︷︸
noise

, (7.6b)

where YR, D, P, S, WR, and Ω are defined in Section 7.2.1. The waveform-dependent in-

terference CPS contains interferences from point scatterers (clutter or interfering objects).

Suppose that there are Kc point clutters with angles {θck}, reflection coefficients {βck} in the

same range bin as the targets. C ,
∑Kc

k=1 β
c
kvr(θ

c
k)v

T
t (θck) is the clutter response matrix. YC

and WC denote the received signal and additive noise at the communication RX antennas,

respectively. The columns of X , [x(1), . . . ,x(L)] are codewords from the code-book of the

communication system. We assume that WR/C contains i.i.d random entries distributed

as CN (0, σ2
R/C). H ∈ CMr,C×Mt,C denotes the communication channel, where Mr,C and

Mt,C denote respectively the number of RX and TX antennas of the communication system;

G1 ∈ CMr,C×Mt,R and G2 ∈ CMr,R×Mt,C denote the interference channels between the com-

munication and radar systems. All channels are assumed to be flat fading and remain the

same over L symbol intervals [43, 44, 46, 102]. The flat fading assumption might be not valid

for the communication and interference channels as the communication signal bandwidth

increases. If the model needs to be treated as frequency selective, then one could consider

OFDM type of radar transmissions and communication signals. In that scenario, the for-

mulation discussed above, would apply on each carrier. Phase synchronization is assumed

for the radar and communication systems separately. However, the random phase jitters of

the oscillators at the transmitter and the receiver PLLs may result in time-varying phase

offsets between the MIMO-MC radar and the communication system [100]. We model such

phase offsets in the diagonal matrix Λi, i ∈ {1, 2}, where its diagonal contains the random

phase offset ejαil between the MIMO-MC radar and the communication system at the l-th

symbol.

In the following we present a joint design of the communication TX signals and the
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radar precoding matrix and sub-sampling scheme, so that we minimize the interference at the

radar RX antennas for successful matrix completion, while satisfying certain communication

system rate requirements.

Note that the application of traditional spatial filtering on Ω ◦YR for eliminating the

interferences is not as straightforward as for the case where the entire YR matrix is available.

Even if we somehow find the spatial filter W that maximizes the SINR, the filter output

W(Ω ◦YR) cannot be used by the matrix completion formulation in (7.4) because of the

presentence of W. The extension of the matrix completion working with the additional

filtering matrix has not been considered in the MIMO-MC radar formulation [33–35] and

general matrix completion literature [36], and is out the scope of this dissertation. Of course,

one could apply filtering on the recovered data matrix DS as post processing. However, such

post-filtering would first need the matrix completion to be successful.

7.4 The Proposed Spectrum Sharing Method

In this section, we first derive the communication rate and radar SINR in terms of communi-

cation and radar waveforms and formulate the MIMO-MC radar and MIMO communication

spectrum sharing problem. In Section 7.4.1, an optimization algorithm is proposed using

alternating optimization. Insight on the feasibility and properties of the proposed problem

is provided in 7.4.2. We briefly discuss the spectrum sharing formulations for constant-rate

communication transmission and traditional MIMO radars respectively in Section 7.4.3 and

7.4.4.

For the communication system, the covariance of interference plus noise is given by

RCin = G1ΦGH
1 + σ2

CI (7.7)

where Φ , PPH/L is positive semidefinite. For l ∈ N+
L , the instaneous information rate is

unknown because the interference plus noise is not necessarily Gaussian due to the random

phase offset α1(l). Instead, we are interested in a lower bound of the rate, which is given by

[109]

C(Rxl,Φ) , log2

∣∣I + R−1
CinHRxlH

H
∣∣ ,
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which is achieved when the codeword x(l), l ∈ N+
L is distributed as CN (0,Rxl). The average

communication rate over L symbols is as follows

Cavg({Rxl},Φ) ,
1

L

L∑
l=1

C(Rxl,Φ), (7.8)

where {Rxl} denotes the set of all Rxl’s.

The MIMO-MC radar only partially samples YR. Therefore, only the sampled target

signal and sampled interference determine the matrix completion performance. Based on

this observation, we define the effective signal power (ESP) and effective interference power

(EIP) at the radar RX node as follows

ESP , E
{
Tr
(
Ω ◦ (DPS)

(
Ω ◦ (DPS)H

))}
= pLMr,RTr (ΦDt) ,

(7.9)

EIP , E
{
Tr
(
Ω ◦ (CPS) (Ω ◦ (CPS))

H
)}

+ E
{
Tr
(
Ω ◦ (G2XΛ2) (Ω ◦ (G2XΛ2))

H
)}

= pLMr,RTr (ΦCt) +
∑L

l=1
Tr
(
G2lRxlG

H
2l

)
,

(7.10)

where Dt =
∑K

k=1 σ
2
βk

v∗t (θk)v
T
t (θk), Ct =

∑Kc
k=1 σ

2
βck

v∗t (θ
c
k)v

T
t (θck), σβk and σβck denote the

standard deviation of βk and βck, respectively; G2l , ∆lG2 and ∆l = diag(Ω·l). The

derivation can be found in Appendix 7.B, which assumes that each of the target and clutter

reflection coefficient is an independent complex Gaussian variable with zero mean, which is

widely considered in the literature [113, 116, 117].

Remark 11. The sub-sampling at the radar receiver effectively modulates the interference

channel G2 from the communication transmitter to the radar receiver. At sampling time l,

only the interferences at radar RX antennas corresponding to 1’s in Ω·l are sampled. Equiv-

alently, the effective interference channel during the l-th symbol duration is G2l. Therefore,

adaptive communication transmission with symbol dependent covariance matrix Rxl is used

in order to match the variation of the effective interference channel G2l [100]. The disadvan-

tage is high computational cost. A sub-optimal alternative is constant rate communication

transmission, i.e., Rxl ≡ Rx,∀l ∈ N+
L , outlined in Section 7.4.3

Note that the effective target signal power and clutter interference power only depend on

the scalar sub-sampling rate p instead of the complete sub-sampling matrix Ω. The effective
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power of the sub-sampled target and clutter echoes is just the power of the full target and

clutter echoes scaled by p. This simplification stems from the fact the covariance of the

radar transmission Φ is constant for any l ∈ N+
L .

Incorporating the expressions for effective target signal, interference and additive noise,

the effective radar SINR is given as

ESINR =
Tr (ΦDt)

Tr (ΦCt) +
∑L
l=1 Tr

(
G2lRxlGH

2l

)
/(pLMr,R) + σ2

R

.

In this chapter, we consider the scenario where the radar searches in particular directions

of interest given by set {θk} for targets with unknown RCS variances [3, 113]. For the

unknown {σ2
βk
}, we instead use the worst possible target RCS variance {σ2

0}, which is the

smallest target RCS variance that could be detected by the radar. In practice, the prior on

{θk} could be obtained in various ways. For example, in tracking applications, the target

parameters obtained from previous tracking cycles are provided to focus the transmit power

onto directions of interest. We assume that {σ2
βck
} and {θck} are known. In practice, these

clutter parameters could be estimated when target is absent [116].

In a cooperative fashion, the radar and the communication system will jointly design

the communication TX covariance matrices {Rxl}, the radar precoder P (embedded in Φ),

and the radar sub-sampling scheme Ω. Based on Theorem 6, the radar precoder P can be

designed without affecting the incoherence property of M. The sub-sampling scheme also

needs to be designed to ensure that the data matrix can be completed from partial samples.

In matrix completion literature, Ω is either a uniformly random sub-sampling matrix [36],

or a matrix with a large spectral gap1 [124]. We will design Ω with fixed sub-sampling rate

p and a large spectral gap.

1The spectral gap of a matrix is defined as the difference between the largest singular value and the
second largest singular value.
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The above stated spectrum sharing problem can be formulated as follows

(P1) max
{Rxl}�0,Φ�0,Ω

ESINR ({Rx},Ω,Φ) ,

s.t. Cavg({Rxl},Φ) ≥ C, (7.11a)
L∑
l=1

Tr (Rxl) ≤ PC , LTr (Φ) ≤ PR, (7.11b)

Tr (ΦVk) ≥ ξTr(Φ), ∀k ∈ N+
K , (7.11c)

Ω is proper, (7.11d)

where Vk , v∗t (θk)v
T
t (θk). The constraint of (7.11a) restricts the communication rate to

be at least C, in order to support reliable communication and avoid service outage. The

constraints of (7.11b) restrict the total communication and radar transmit power to be no

larger than PC and PR, respectively. The constraints of (7.11c) restrict that the power of

the radar probing signal at interested directions must be not smaller than that achieved by

the uniform precoding matrix Tr(Φ)
Mt,R

I, i.e., vTt (θk)Φv∗t (θk) ≥ ξvTt (θk)
Tr(Φ)
Mt,R

Iv∗t (θk) = ξTr(Φ).

ξ ≥ 1 is a parameter used to control the beampattern at the interested target angles.

Problem (P1) is non-convex w.r.t. optimization variable triple ({Rx},Ω,Φ). We propose

an algorithm to find a local solution via alternating optimization in Subsection 7.4.1. In

Subsection 7.4.2, we provide some insights on the feasibility and solution properties for (P1).

7.4.1 Solution to (P1) Using Alternating Optimization

The alternating iterations w.r.t. {Rxl}, Ω, and Φ are discussed in the following three

subsections.

The Alternating Iteration w.r.t. {Rxl}

We first solve {Rxl} while fixing Ω and Φ to be the solution from the previous iteration:

(PR) min
{Rxl}�0

L∑
l=1

Tr
(
G2lRxlG

H
2l

)
s.t. Cavg({Rxl},Φ) ≥ C,

L∑
l=1

Tr (Rxl) ≤ PC .

(7.12)
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Problem (PR) is convex and involves multiple matrix variables, the joint optimization w.r.t.

which requires high computational complexity. The semidefinite matrix variables {Rxl}

have LM2
t,C real scalar variables, which will results in a complexity of O((LM2

t,C)3.5) if an

interior-point method [118] is used. An efficient algorithm for solving the above problem

can be implemented based on the Lagrangian dual decomposition [118]. The Lagrangian of

(PR) can be written as

L({Rxl}, λ1, λ2) =
L∑
l=1

Tr
(
G2lRxlG

H
2l

)
+ λ1

(
L∑
l=1

Tr (Rxl)− PC

)
+ λ2 (C − Cavg({Rxl})) ,

where λ1 ≥ 0 and λ2 ≥ 0 are the dual variables associated with the transmit power and the

communication rate constraints, respectively. The dual problem of (PR) is

(PR-D) max
λ1,λ2≥0

g(λ1, λ2),

where g(λ1, λ2) is the dual function defined as

g(λ1, λ2) = inf
{Rxl}�0

L({Rxl}, λ1, λ2).

The dual function g(λ1, λ2) can be obtained by solving L independent subproblems, each of

which can be written as follows

(PR-sub) min
Rxl�0

Tr
((

GH
2 ∆lG2 + λ1I

)
Rxl

)
− λ2 log2

∣∣I + R−1
wl HRxlH

H
∣∣ . (7.13)

Given λ1 and λ2, (PR-sub) admits a closed-form solution, which can be used to solve the dual

problem (PR-D) via the ellipsoid method [133], and thus solve (PR). Please refer to [100,

Algorithm 1] for the detailed solution. The overall complexity of the dual decomposition

based algorithm is only linearly dependent on L.

The Alternating Iteration w.r.t. Ω

By simple algebraic manipulation, the EIP from the communication transmission can be

reformulated as
L∑
l=1

Tr
(
G2lRxlG

H
2l

)
≡ Tr(ΩTQ),
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where the l-th column of Q contains the diagonal entries of G2RxlG
H
2 . With fixed {Rxl}

and Φ, we can solve Ω via

min
Ω

Tr(ΩTQ) s.t. Ω is proper, (7.14)

Recall that the sampling matrix Ω is required to have large spectral gap. However, it is

difficult to incorporate such conditions in the above optimization problem. Based on the

fact that row and column permutation of the sampling matrix would not affect its singular

values and thus the spectral gap, our prior work [100] proposed a suboptimal approach to

search the best sampling scheme by permuting rows and columns of an initial sampling

matrix Ω0, i.e.,

min
Ω

Tr(ΩTQ) s.t. Ω ∈ ℘(Ω0), (7.15)

where ℘(Ω0) denotes the set of matrices obtained by arbitrary row and/or column permuta-

tions. The Ω0 is generated with binary entries and bpLMr,Rc ones. One good candidate for

Ω0 would be a uniformly random sampling matrix, as such matrix exhibit large spectral gap

with high probability [124]. Multiple trials with different Ω0’s can be used to further improve

the choice of Ω. However, the search space is very large since |℘(Ω0)| = Θ(Mr,R!L!). In

[100], we iteratively solved (7.15) w.r.t. row and column permutation on Ω0 by using two

linear assignment problems [134]. The complexity of each iteration is O(M3
r,R +L3). In this

chapter, we propose to reduce the search space as follows

min
Ω

Tr(ΩTQ) s.t. Ω ∈ ℘r(Ω0), (7.16)

where ℘r(Ω0) denotes the set of matrices obtained by arbitrary row permutations. The

search space in (7.16) |℘r(Ω0)| = Θ(Mr,R!) is greatly reduced compared to that in (7.15).

Furthermore, the following proposition shows that such reduction of search space comes

without any performance loss.

Proposition 6. For any Ω0, searching for an Ω in ℘r(Ω
0) can achieve the same EIP as

searching in ℘(Ω0).

Proof. We can prove the proposition by showing that the EIP achieved by any Ω1 ∈ ℘(Ω0)

can also be achieved by a certain Ω2 ∈ ℘r(Ω0). For the pair (Ω1, {Rxl}), the same EIP can

be achieved by the pair (Ω2, {R̃xl}), where
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• Ω2 is constructed by performing on Ω0 the row permutations performed from Ω0 to

Ω1, and

• {R̃xl} is a permutation of {Rxl} according to the column permutations performed

from Ω0 to Ω1.

In other words, the column permutations on Ω is unnecessary because {Rxl} will be auto-

matically optimized to match the column pattern of Ω. The claim is proven.

To formulate (7.16) as a linear assignment problem, we construct a cost matrix Cr ∈

RMr,R×Mr,R with [Cr]ml , Ωm·(Ql·)
T . The optimal solution of (7.16) can obtained efficiently

in polynomial time O(M3
r,R) using the Hungarian algorithm [134].

The Alternating Iteration w.r.t. Φ

For the optimization of Φ with fixed {Rxl} and Ω, the constraint in (7.11a) is nonconvex

w.r.t. Φ. The first order Taylor expansion of C(Rxl,Φ) at Φ̄ is given as

C(Rxl,Φ) ≈ C(Rxl, Φ̄)− Tr
[
Al(Φ− Φ̄)

]
,

where Al is given by

Al , −
(
∂C(Rxl,Φ)

∂<(Φ)

)T
Φ=Φ̄

= GH
1 [(G1ΦGH

1 + σ2
CI)−1 − (G1ΦGH

1 + σ2
CI + HRxlH

H)−1]G1

∣∣
Φ=Φ̄

.

(7.17)

The sequential convex programming technique is applied to solve Φ by repeatedly solve the

following approximate optimization problem

(PΦ) max
Φ�0

Tr(ΦDt)

Tr(ΦCt) + ρ
,

s.t. Tr (Φ) ≤ PR/L,Tr (ΦA) ≤ C̃,

Tr (ΦVk) ≥ ξTr (Φ) ,∀k ∈ N+
K ,

(7.18)

where C̃ =
∑L

l=1(C(Rxl, Φ̄) + Tr(Φ̄Al) − C), A =
∑L

l=1 Al, ρ =
∑L

l=1 Tr
(
RxlG

H
2 ∆lG2

)
/(pLMr,R) + σ2

R are real positive constants w.r.t. Φ, and Φ̄ is updated as the solution

of the previous repeated problem. Problem (7.18) could be equivalently formulated as a
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semidefinite programming problem (SDP) via Charnes-Cooper Transformation [116, 119].

max
Φ̃�0,φ>0

Tr(Φ̃Dt),

s.t. Tr(Φ̃Ct) = 1− φρ

Tr
(
Φ̃
)
≤ φPR/L,Tr

(
Φ̃A

)
≤ φC̃,

Tr
(
Φ̃(Vk − ξI)

)
≥ 0,∀k ∈ N+

K .

(7.19)

The optimal solution of (7.19), denoted by (Φ̃∗, φ∗), can be obtained by using any standard

interior-point method based SDP solver with a complexity of O((M2
t,R)3.5). The solution

of (7.18) is given by Φ̃∗/φ∗. In each alternating iteration w.r.t. Φ, it is required to solve

several iterations of SDP due to the sequential convex programming.

It is easy to show that the objective function, i.e., ESINR, is nondecreasing during the

alternating iterations of {Rxl}, Ω and Φ, and is upper bounded. According to the monotone

convergence theorem [135], the alternating optimization is guaranteed to converge. The

proposed efficient spectrum sharing algorithm in presence of clutter using a lower bound of

the radar SINR is summarized in Algorithm 5.

Algorithm 5 Spectrum sharing algorithm for (P1).

1: Input: Dt,Ct,H,G1,G2, PC/R, C, σ
2
C/R, δ1

2: Initialization: Φ = PR
LMt,R

I, Ω = Ω0;
3: repeat
4: Update {Rxl} by solving (PR) with fixed Ω and Φ;
5: Update Ω by solving (7.16) with fixed {Rxl} and Φ;
6: Update Φ by solving a sequence of approximated SDP problem (7.18) with fixed {Rxl}

and Ω;
7: until ESINR increases by amount smaller than δ1

8: Output: {Rxl},Ω,P =
√
LΦ1/2

7.4.2 Insights on the Feasibility and Solutions of (P1)

In this subsection, we provide some key insights on the feasibility of (P1) and the rank of

the solutions Φ obtained by Algorithm 5.
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Feasibility

A necessary condition on C for the feasibility of (P1) w.r.t. {Rxl} is C ≤ Cmax(PC) where

Cmax(PC) , max
{Rxl}�0

1

L

L∑
l=1

log2

∣∣I + σ−2
C HRxlH

H
∣∣ ,

s.t.
L∑
l=1

Tr (Rxl) ≤ PC

The above optimization problem is convex and has a closed-form solution [52] based on

water-filling. The optimal solution is given by Rx1 = · · · = RxL =
∑Mmin

i=1 P ∗i vHiv
H
Hi, where

Mmin , min(Mt,C ,Mr,C) and vHi is the right singular vector of the communication channel

matrix H, i.e., H =
∑Mmin

i=1 λiuHiv
H
Hi and

P ∗i = max

(
0, µ−

σ2
C

λ2
i

)
,

with µ be chosen such that
∑Mmin

i=1 P ∗i = PC . It can be shown that

Cmax(PC) =

Mmin∑
i=1

log2

(
1 +

P ∗i λ
2
i

σ2
C

)
bits/s/Hz,

which is a monotone increasing function of PC . Cmax(PC) is essentially the largest achievable

communication rate when there is no interference from radar transmitters to the communi-

cation receivers. Note that C = Cmax(PC) will generate a nonempty feasible set for {Rxl}

only if G1ΦGH
1 = 0, i.e., the radar transmits in the null space of the interference channel

G1 to the communication receivers2.

A necessary condition on ξ for the feasibility of (P1) w.r.t. Φ is ξ ≤ ξmax where

ξmax , max
Φ�0,ξ≥0

ξ, s.t. Tr(ΦVk) ≥ ξTr(Φ), ∀k ∈ N+
K .

Note that the above optimization problem is independent of Tr(Φ). Without loss of gen-

erality, we assume that Tr(Φ) = 1, based on which we have the following equivalent SDP

formulation
ξmax , max

Φ�0,ξ≥0
ξ, s.t. Tr(Φ) = 1,

Tr(ΦVk) ≥ ξ,∀k ∈ N+
K .

It is easy to check that ξmax ≥ 1, which can be achieved by set (Φ, ξ) to be (I/Mt,R, 1).

The following proposition provides a sufficient condition for the feasibility of (P1).

2We omit the trivial case Φ = 0.
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Proposition 7. If C, ξ, PC > 0, PR > 0 are chosen such that C < Cmax(PC) and ξ ≤ ξmax,

then (P1) is feasible.

Proof. If C < Cmax(PC), the feasible set for {Rxl} determined by constraints in (7.11a) and

(7.11b) F{Rxl} is nonempty as long as Tr(Φ) is sufficiently small. If ξ ≤ ξmax, the feasible

set for Φ determined by constraints in (7.11c) FΦ1 is nonempty and has no restriction on

Tr(Φ). If Φ ∈ FΦ1, then αΦ ∈ FΦ1, ∀α > 0. The overall feasible set for Φ, FΦ, is the

intersection of feasible sets determined by (7.11a), (7.11b) and (7.11c). FΦ is nonempty as

long as FΦ1 and F{Rxl} are nonempty because we can choose any Φ ∈ FΦ1 and scale it

down to make (P1) feasible. The claim is proven.

The Rank of the Solutions Φ

We are also particularly interested in the rank of Φ obtained using Algorithm 5. Since the

sequential convex programming technique is used for solving Φ, it suffices to focus on the

rank of the solution of (PΦ). To achieve this goal, we first introduce the following SDP

problem

min
Φ�0

Tr (Φ) s.t. Tr (ΦA) ≤ C̃, Tr(ΦDt)

Tr(ΦCt) + ρ
≥ γ,

Tr (ΦVk) ≥ 0, ∀k ∈ N+
K .

(7.20)

where γ is a real positive constant. The following proposition relates the optimal solutions

of problems (7.18) and (7.20).

Proposition 8. If γ in (7.20) is chosen to be the maximum achievable SINR of (7.18),

denoted as SINRmax, the optimal Φ of (7.20) is also optimal for (7.18).

Proof. Denote Φ∗1 and Φ∗2 the optimal solutions of (7.18) and (7.20), respectively. It is clear

that Φ∗1 is feasible point of (7.20). This means that Tr(Φ∗2) ≤ Tr(Φ∗1) ≤ PR. Therefore, Φ∗2

is a feasible point of (7.18). It holds that

SINRmax ≡
Tr(Φ∗1Dt)

Tr(Φ∗1Ct) + ρ
≥ Tr(Φ∗2Dt)

Tr(Φ∗2Ct) + ρ
≥ SINRmax.

It is only possible when all the equalities hold. In other words, Φ∗2 is optimal for (7.18).

The claim is proved.
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In order to characterize the optimal solution of (7.20), we need the following key lemma:

Lemma 8. Matrix Al defined in (7.17) and thus A are positive semidefinite.

Proof. Based on Lemma 6, we prove that Al is semidefinite. Further, A is also semidefinte

because it is the sum of L semidefinite matrices.

Based on Lemma 8, we prove the following result by following the approach in [119]:

Proposition 9. Suppose that (7.20) is feasible when γ is set to SINRmax. Then, any

optimal solution of (7.20) has rank at most K. All rank-K solutions Φ∗K of (7.20) have

the same range space. Any solution Φ∗K− with rank less than K has range space such that

R(Φ∗K−) ⊂ R(Φ∗K). Moreover, (7.18) and (7.19) always have solutions with rank at most

K and with the same range space properties as that for (7.20).

Proof. The proof can be found in Appendix 7.C.

7.4.3 Constant-Rate Communication Transmission

The adaptive communication transmission in the proposed spectrum sharing methods in-

volves high complexity. A sub-optimal transmission approach of constant rate, i.e., Rxl ≡

Rx, ∀l ∈ N+
L , has a lower implementation complexity. In such case, the spectrum sharing

problem can be reformulated as

(P′1) max
Rx�0,Φ�0

ESINR′(Rx,Ω,Φ),

s.t. C(Rx,Φ) ≥ C,

LTr (Rx) ≤ PC , LTr (Φ) ≤ PR,

Tr (ΦVk) ≥ 0,∀k ∈ N+
K ,

where

ESINR′ =
Tr (ΦDt)

Tr (ΦCt) + Tr
(
∆G2RxGH

2

)
/(pLMr,R) + σ2

R

and ∆ =
∑L

l=1 ∆l is diagonal and with each entry equal to the number of 1’s in the

corresponding row of Ω. Similar techniques in Algorithm 5 can be used to solve (P′1).
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We can see that (P′1) has much lower complexity because there is only one matrix

variable for the communication transmission. However, the drawback of the constant-rate

communication is that Rx cannot adapt to the variation of the effective interference channel

G2l. On the other hand, the adaptive communication transmission considered in (P1) can

fully exploit the channel diversity introduced by the radar sub-sampling procedure. It will

be seen in the simulations of Section 7.5.3, the constant-rate transmission from the solution

of (7.21) is inferior to the adaptive transmission from the solution of (7.11).

Another consequence is that the ESINR′ depends on Ω only through ∆. Since Ω is

searched among the row permutations of a uniformly random sampling matrix, the number

of 1’s in each row of Ω is close to pL, or equivalently, ∆ will be very close to the scaled

identity matrix pLI. To further reduce the complexity, the optimization w.r.t. Ω in (P′1)

is omitted because all row permutations of Ω will result in a very similar ESINR′. From a

different perspective, if the radar sub-sampling matrix Ω is not available for the radar and

communication cooperation, we can safely replace ∆ with pLI in the ESINR′. The above

discussion asserts that, for the case of constant-rate communication transmission almost no

performance degradation occurs due to the absent of the knowledge of Ω.

7.4.4 Traditional MIMO Radars

The traditional MIMO radars without sub-sampling can be considered as special with p =

1, and thus there is no need for the matrix completion. In such case, the constant-rate

communication transmission becomes optimal scheme because the interference channel G2

stays as a constant for the period of L symbol time due to the block fading assumption. The

spectrum sharing problem has the same form as (P′1) with the objective function being

SINR =
Tr (ΦDt)

Tr (ΦCt) + Tr
(
G2RxGH

2

)
/Mr,R + σ2

R

.

Note that SINR ≈ ESINR′ because ∆ ≈ pLI. Therefore, traditional MIMO radars can

achieve approximately the same spectrum sharing performance as MIMO-MC radars when

the communication system transmits at a constant rate. However, for MIMO-MC radars, the

adaptive communication transmission and the radar sub-sampling matrix can be designed
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to achieve significant radar SINR reduction over the traditional MIMO radars. This ad-

vantageous flexibility is introduced by the sparse sensing (i.e. sub-sampling) in MIMO-MC

radars.

7.5 Numerical Results

In this section, we provide simulation examples to quantify the performance of the proposed

spectrum sharing method for the coexistence of the MIMO-MC radars and communication

systems.

Unless otherwise stated, we use the following default values for the system parameters.

The MIMO radar system consists of collocated Mt,R = 16 TX and Mr,R = 16 RX antennas,

respectively forming transmit and receive half-wavelength uniform linear arrays. The radar

waveforms are chosen from the rows of a random orthonormal matrix [99]. We set the length

of the radar waveforms to L = 16. The wireless communication system consists of collocated

Mt,C = 4 TX and Mr,C = 4 RX antennas, respectively forming transmit and receive half-

wavelength uniform linear arrays. For the communication capacity and power constraints,

we take C = 16 bits/symbol and PC = 64 (the power is normalized by the power of the

radar waveform). The radar transmit power budget PR = 1000 × PC , which is typical in

radar systems. The additive white Gaussian noise variances are σ2
C = σ2

R = 0.01. There are

three stationary targets with RCS variance σ2
β0 = 0.5, located in the far-field with pathloss

10−3, and clutter is generated by four point scatterers. All scatterers RCS variances are set

to be identical and are denoted by σ2
β , which is decided by the prescribed clutter to noise

ratio (CNR) 10 log σ2
β/σ

2
R. The channel H is modeled as Rayleigh fading, i.e., contains

independent entries, distributed as CN (0, 1). The interference channels G1 and G2 are

modeled as Rician fading. The power in the direct path is 0.1, and the variance of Gaussian

components contributed by the scattered paths is 10−3.

The performance metrics considered in this chapter include the following:

• The radar effective SINR, i.e., the objective of the spectrum sharing problem;

• The matrix completion relative recovery error, defined as ‖M − M̂‖F /‖M‖F , where

M̂ is the completed data matrix at the radar fusion center;
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Figure 7.1: The radar transmit beampattern and the MUSIC spatial pseudo-spectrum for
MIMO-MC radar and communication spectrum sharing. Mt,R = Mr,R = 16,Mt,C = Mr,C =
4. The true positions of the targets and clutters are labeled using solid and dashed vertical
lines, respectively. CNR=30 dB.

• The radar transmit beampattern, i.e., the transmit power for different azimuth angles

vTt (θ)Pv∗t (θ);

• The MUSIC pseudo-spectrum and the relative target RCS estimation RMSE obtained

using the least squares estimation on the completed data matrix M̂.

Monte Carlo simulations with 100 independent trials are carried out to get an average

performance.

7.5.1 The Radar Transmit Beampattern and MUSIC Spectrum

In this subsection, we present an example to show the advantages of the proposed radar

precoding scheme as compared to the trivial uniform precoding, i.e., P =
√
LPR/Mt,RI,

and null space projection (NSP) precoding, i.e., P =
√
LPR/Mt,RVVH , where V contains

the basis of the null space of G1 [46]. For the proposed joint-design based scheme in (7.11),

we choose ξ = bξmaxc. The target angles w.r.t. the array are respectively −10◦, 15◦, and

30◦; the four point scatterers are at angles −45◦, −30◦, 10◦, and 45◦. The CNR is 30 dB.

In this simulation, the direct path in G1 is generated as
√

0.1vt(φ)vHt (φ), where φ = 15◦,

with vt(φ) is defined in (7.2). In other words, the communication receiver is taken at the

same azimuth angle as the second target.

The radar transmit beampattern and the spatial pseudo-spectrum obtained using the
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MC Relative Relative RCS
Precoding schemes ESINR Recovery Errors Est. RMSE
Joint-design precoding 31.3dB 0.038 0.028
Uniform precoding -44.3dB 1.00 1.000
NSP based precoding -46.3dB 1.00 0.995

Table 7.1: The radar ESINR, MC relative recovery errors, and the relative target RCS esti-
mation RMSE for MIMO-MC radar and communication spectrum sharing. The simulation
setting is the same as that for Fig. 7.1.

MUSIC algorithm are shown in Fig. 7.1. The correspondingly achieved ESINR, MC relative

recovery error, and relative target RCS estimation RMSE are listed in Table 7.1. From

Fig. 7.1, we observe that the proposed joint-design based precoding scheme successfully

focuses the transmit power towards the three targets and nullifies the power towards the

point scatterers. The three targets can be accurately estimated from the pseudo-spectrum

obtained by the proposed scheme. As expected, the uniform precoding scheme just spreads

the transmit power uniformly in all directions. The NSP precoding scheme results in a

similar beampattern as the uniform precoding scheme except the deep null at the direction

of the communication receiver. This means that the transmit power towards the second

target is severely attenuated by the NSP precoding scheme. It is highly possible that the

second target will be missed. In addition, both the uniform and NSP precoding schemes

have no capability of clutter mitigation. As shown in Fig. 7.1 and Table 7.1, the proposed

joint-design based precoding scheme achieves significant improvement in ESINR, MC relative

recovery error, and target RCS estimation accuracy.

7.5.2 Comparison of Different Levels of Cooperation

In this subsection, we compare several algorithms with different levels of radar and commu-

nication cooperation. The compared algorithms include

• Uniform radar precoding and selfish communication: the radar transmit antennas

use the trivial precoding, i.e., P =
√
LPR/Mt,RI; and the communication system

minimizes the transmit power to achieve certain average capacity without any concern

about the interference it exerts to the radar system. This algorithm involves no radar

and communication cooperation.
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Figure 7.2: Comparison of spectrum sharing with different levels of cooperation between
the MIMO-MC radar and the communication system under different PR. Mt,R = Mr,R =
16,Mt,C = Mr,C = 4.

• NSP based radar precoding and selfish communication: the radar transmit antennas

use the fixed precoding, i.e., P =
√
LPR/Mt,RVVH , while the selfish communication

scheme is the same with the previous case.

• Uniform radar precoding and designing Rxl & Ω: only Rxl & Ω are jointly designed

to minimize the effective interference the radar receiver.

• Designing P and selfish communication: only the radar precoding matrix P is designed

to maximize the radar ESINR.

• The proposed joint-design of P, Rxl, and Ω in (7.11).

We use the same values for all parameters as in the previous simulation except that the radar

transmit power budget PR changes from 51, 200 to 2.56× 106. Fig. 7.2 shows the achieved

ESINR, the MC relative recovery error, and the relative target RCS estimation RMSE. The

algorithms that use trivial uniform and NSP based radar precoding perform bad because the

point scatterers are not properly mitigated. The scheme designing P only could mitigate

the scatterers but the interference from the communication transmission is not controlled.

The proposed joint design of P, Rxl, and Ω simultaneously addresses the clutter and the

mutual interference between the radar and the communication systems, and thus achieves

the best performance amongst all the algorithms. The performance gains come from high

level cooperation between the two systems.
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Figure 7.3: Comparison of spectrum sharing with adaptive and constant-rate communication
transmissions under different levels of interference channel G2 from the communication
transmitter to the radar receiver. Mt,R = 16,Mr,R = Mt,C = 8,Mr,C = 2.

7.5.3 Adaptive and Constant-rate Communication Transmissions

In this subsection, we evaluate the performance of two communication transmission schemes,

namely, adaptive transmission with different Rxl’s for all l ∈ N+
L , and constant-rate transmis-

sion with only one identical Rx. We use the following parameter setting: Mt,R = 16,Mr,R =

Mt,C = 8,Mr,C = 2, C = 10 bits/symbol, PC = 64 and PR = 1000 × PC . For the G1 and

G2, Rayleigh fading is used with fixed σ2
G1

and varying σ2
G2

. The results of ESINR, MC

relative recovery error and the relative target RCS estimation RMSE for different values

of σ2
G2

are shown in Fig. 7.3. The value of σ2
G2

varies from 0.05 to 0.5, which effectively

simulates different distances between the communication transmitter and the radar receiv-

er. It is clear that the adaptive communication transmission outperforms the constant-rate

counterpart under various values of interference channel strength. As discussed in Section

7.4.3, the adaptive communication transmission can fully exploit the channel diversity of G2l

introduced by the radar sub-sampling procedure. The price for the performance advantages

is high complexity. The average running times for the adaptive and constant-rate commu-

nication transmissions are respectively 15.6 and 4.8 seconds. The choice between these two

transmission schemes can be made depending on the available computing resources.

7.5.4 MIMO-MC Radars and Traditional MIMO Radars

In this subsection, we present a simulation to show the advantages of MIMO-MC radars

compared to the traditional full-sampled MIMO radars. The parameters are the same as

those in the previous simulation but with fixed σ2
G1

= 0.3 and σ2
G2

= 1, which indicates
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Figure 7.4: Comparison of spectrum sharing with traditional MIMO radars and the MIMO-
MC radars with different subsampling rates p. Mt,R = 16,Mr,R = Mt,C = 8,Mr,C = 2.

strong mutual interference, especially the interference from the communication transmitter

to the radar receiver. The radar transmit power budget PR is taken to be equal to 10×PC .

We consider two targets; one is randomly located and the other is taken to be 25◦ away.

We also consider 4 randomly located point scatterers. Fig. 7.4 shows the results under

different MIMO-MC sub-sampling rates p. Note that full sampling is used for the traditional

MIMO radar. The MC relative recover error for the traditional radar is actually the output

distortion to signal ratio. A smaller distortion to signal ratio corresponds to a larger output

SNR. For ease of comparison, a black dashed line is used for the traditional MIMO radar.

We observe that the MIMO-MC radar achieves better performance in ESINR than the

traditional radar. This is due to the fact that the communication system can effectively

prevent its transmission from interfering the radar system when the number of actively

sampled radar RX antennas is small, i.e., sub-sampling is small. In addition, the larger

ESINR of the MIMO-MC radar results in a larger output SNR than that of the traditional

radar. Furthermore, the MIMO-MC radar achieves better target RCS estimation accuracy

than the traditional radar if its sub-sampling rate is between 0.4 and 0.7. For p larger than

0.7, the target RCS estimation accuracy achieved by the MIMO-MC radar is worse than

that achieved by the traditional radar because small ESINRs for p ≥ 0.7 introduce high

distortion in the completed data matrix. The results in Fig. 7.4 could be used to help

the selection of radar sub-sampling rate p. For the best target RCS estimation accuracy,

p = 0.6 is the best choice, while for the biggest savings in terms of samples and similar

performance as traditional radars, p = 0.4 is the best choice. We conclude that MIMO-MC

radars can coexist with communication systems and achieve better target RCS estimation



150

than traditional radars while saving up to 60% data samples. Such significant advantage is

introduced by the sparse sensing (i.e. sub-sampling) in MIMO-MC radars as discussed in

Section 7.4.4.

7.6 Conclusions

In this chapter, we have considered the co-existence of a MIMO-MC radar and a wireless

MIMO communication system by sharing a common carrier frequency. The radar trans-

mit precoder, the radar sub-sampling scheme, and the communication transmit covariance

matrix have been jointly designed to maximize the radar SINR while meeting certain rate

and power constraints for the communication system. The proposed joint design based

spectrum sharing algorithm has been evaluated via extensive simulations. Specifically, we

have shown the superiority introduced by radar and communication cooperation in the pro-

posed algorithm compared to noncooperative counterparts. The proposed joint-design based

spectrum sharing scheme successfully focuses the transmit power towards the targets and

nullifies the power towards the clutter. The proposed method achieves significant improve-

ment in ESINR, MC relative recovery error, and target RCS estimation accuracy. We have

also compared the performance and complexity of the adaptive and the constant-rate com-

munication transmission schemes for radar-communication spectrum sharing. Finally, we

have provided a simulation on the comparison of MIMO-MC radars and traditional MIMO

radars co-existing with communication systems. We have observed that the MIMO-MC

radar achieves better performance in ESINR and output SNR than the traditional radar.

MIMO-MC radars can coexist with communication systems and achieve better target RCS

estimation than traditional radars while saving up to 60% in data samples. The cost for

these advantages is the additional computation for matrix completion.

7.A Proof of Theorem 5

Proof. The following proof extends the results in [34, 35] for the cases where the radar

employs transmit precoder P and random unitary waveform matrix S, i.e., M = VrΣVT
t PS.

The following lemma is used.
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Lemma 9 ([140]). Let SN be a χ2 random variable with N degrees of freedom. Then for

each t > 0

Pr
(
SN −N ≥ t

√
2N + t2

)
≤ e−t2/2.

Denoting the rank of M by K0, it is clear that K0 is not larger than K. Recall that M

has a compact SVD given as

M = UΓVH

where U ∈ CMr,R×K0 and V ∈ CL×K0 contain the left and right singular vectors of M;

Γ ∈ RK0×K0 is diagonal containing the singular values. Consider the QR decomposition of

Vr and STPTVt:

Vr = QrRr,

STPTVt = QtRt,

where Qr ∈ CMr,R×K and Qt ∈ CL×K0 are with orthonormal columns, Rr ∈ CK×K is

upper triangular, and Rt ∈ CK0×K has an upper staircase form. The matrix RrΣRT
t ∈

CK×K0 is full column rank with a compact SVD given by U1Γ1V
H
1 , where U1 ∈ CK×K0 ,

V1 ∈ CK0×K0 , UH
1 U1 = VH

1 V1 = IK0 , and Γ1 is diagonal, containing the singular values

of RrΣRT
t . Therefore, we have

M = QrU1Γ1V
H
1 QT

t = QrU1Γ1(Q∗tV1)H ,

which is a valid SVD of M. The uniqueness of singular value of a matrix indicates that

Γ ≡ Γ1. Therefore, we can choose U = QrU1 and V = Q∗tV1. We have

µ(U) =
Mr,R

K0
sup

m∈N+
Mr,R

‖(Qr)m·U1‖22

≤
Mr,R

K0
sup

m∈N+
Mr,R

‖(Qr)m·‖
2
2 =

K

K0
µr0,

(7.22)

where µr0 is defined in Theorem 4. We also have

µ(V ) =
L

K0
sup
l∈N+

L

‖(Q∗t )l·V1‖22 =
L

K0
sup
l∈N+

L

‖(Qt)l·‖
2
2.

IfK0 is strictly smaller thanK, we can not represent Qt in terms of STPTVt and Rt because

of the singularity of Rt. To conquer this, we apply column permutations F on Rt to bring

forward the first non-zero elements in each row RtF =
(
R1 R2

)
such that R1 ∈ CK0×K0 is
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square, upper triangular and invertible. The QR decomposition STPTVt can be re-written

as

STPTVtF = Qt

(
R1 R2

)
.

We can represent Qt as

Qt = STPTVtFK0R
−1
1 ,

where FK0 denotes the first K0 columns of F. Substituting Qt into µ(V ), we obtain

µ(V ) =
L

K0
sup
l∈N+

L

‖
(
ST
)
l·P

TVtFK0R
−1
1 ‖

2
2

=
L

K0
sup
l∈N+

L

(
ST
)
l·P

TVtFK0R
−1
1

(
R−1

1

)H
FH
K0

VH
t P∗ (S∗)·l

(7.23)

We can show that

R−1
1

(
R−1

1

)H
=
(
RH

1 R1

)−1
=
(
RH

1 QH
t QtR1

)−1

=
(
FH
K0

VH
t P∗S∗STPTVtFK0

)−1

=
(
FH
K0

VH
t P∗PTVtFK0

)−1

(7.24)

where the last equality holds because SSH = IMt,R
. Consider the QR decomposition of

PTVtFK0 given by

PTVtFK0 = QaRa, (7.25)

where Qa ∈ CMt,R×K0 contains orthonormal columns, and Ra ∈ CK0×K0 is upper triangular

and full rank. Substituting (7.24) and (7.25) into (7.23), we have

µ(V ) =
L

K0
sup
l∈N+

L

sTl Ra

(
RH
a Ra

)−1
RH
a s∗l

=
L

K
sup
l∈N+

L

sTl s∗l =
L

K
sup
l∈N+

L

‖sl‖22
(7.26)

where sl , QT
a S·l, and the second equality holds because Ra is invertible. Based on [107,

Theorem 3], if Mt,R = O(L/ lnL), the entries of S can be approximated by i.i.d Gaussian

random variables with distribution CN (0, 1/L). Since Qa has orthonormal columns, sl ∈

CK0 , ∀l ∈ N+
L also contains i.i.d Gaussian random variable with distribution CN (0, 1/L),

and L‖sl‖22 is distributed according to χ2
K0

. Based on Lemma 9 setting t =
√

6 lnL, it holds

that

Pr
(
L‖sl‖22 ≥ K0 + 2

√
3K0 lnL+ 6 lnL

)
≤ L−3. (7.27)
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Applying the union bound, we have

Pr

(
sup
l∈N+

L

‖sl‖22 ≥
K0 + 2

√
3K0 lnL+ 6 lnL

L

)
≤ L−2. (7.28)

Combining (7.26) and (7.28) gives

Pr

(
µ(V ) ≥ K0 + 2

√
3K lnL+ 6 lnL

K0

)
≤ L−2. (7.29)

From the derivation, the bound on µ(V ) holds for any target angles, array geometry, and

precoding matrix P as long as PTVtFK0 is with full column rank K0. Theorem 5 is proved.

7.B Derivation of ESP and EIP in (7.9) and (7.10)

The derivation of ESP is shown as bellow

ESP , E
{
Tr
(
Ω ◦ (DPS)

(
Ω ◦ (DPS)H

))}
= E

{
Tr
{[∑

k
βkΩ ◦ (DkPS)

] [∑
k
βkΩ ◦ (DkPS)H

]}}
= E

{
Tr
{∑

k

∑
j
βkβjΩ ◦ (DkPS)

[
Ω ◦ (DjPS)H

]}}
= Tr

{∑
k

∑
j
E{βkβj}

[∑
l
∆lDkPE{slsHl }PHDH

j ∆l

]}
(a)
=Tr

{∑
k
σ2
βk

[∑
l
∆lDkΦDH

k ∆l

]}
(b)
=Tr

(∑
k
σ2
βk

∆DkΦDH
k

)
= Tr

(
Φ
∑

k
σ2
βk

DH
k ∆Dk

)
= Tr

(
Φ
∑

k
σ2
βk

v∗t (θk)vHr (θk)∆vr(θk)vTt (θk)
)

(c)
=pLMr,RTr

(
Φ
∑

k
σ2
βk

v∗t (θk)vTt (θk)
)

= pLMr,RTr (ΦDt)

where Dk , vr(θk)v
T
t (θk), sl , s(l). (a) follows from the fact that E{βkβj} = δjkσ

2
βk
; (b)

follows from the fact that ∆l = ∆l∆l and ∆ =
∑L

l=1 ∆l; (c) follows from the fact that

vHr (θk)∆vr(θk) = ‖∆‖1 = pLMr,R. The derivation for EIP is similar and is omitted for

brevity.
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7.C Proof of Proposition 9

Proof. Problem (7.20) is an SDP, whose Karush-Kuhn-Tucker (KKT) conditions are given

as

Ψ + λ2Dt +

K∑
k=1

νkVk = I + λ1A + λ2γCt +

K∑
k=1

νkξI (7.30a)

ΨΦ = 0 (7.30b)

Ψ � 0,Φ � 0, λ1 ≥ 0,λ2 ≥ 0, {νk} ≥ 0 (7.30c)

Tr(ΦDt) ≥ γTr(ΦC) + γρ (7.30d)

Tr(ΦVk) ≥ 0,∀k ∈ N+
K (7.30e)

where Ψ � 0, λ1 ≥ 0, λ2 ≥ 0, and {νk} ≥ 0 are dual variables. We can rewrite (7.30a) as

follows

rank(Ψ) + rank

(
λ2Dt +

K∑
k=1

νkv
∗
t (θk)v

T
t (θk)

)

≥ rank

(
I + λ1A + λ2γCt +

K∑
k=1

νkξI

)
.

(7.31)

Recall that Dt =
∑

k σ
2
βk

v∗t (θk)v
T
t (θk). It is clear to see that λ2Dt +

∑K
k=1 νkv

∗
t (θk)v

T
t (θk)

has rank at most K. Since A and C are positive semidefinite, the matrix on right hand side

of (7.31) has full rank. Therefore, rank(Ψ) is not smaller than Mt,R−K. From (7.30b) and

(7.30d) we conclude that any optimal solution Φ must have rank at most K.

The second claim asserts that if there are multiple solutions with rank K, they have

the same range space. This can be proved using contradiction. Suppose that Φ∗1 and Φ∗2

are rank-K solutions of (7.20) and R(Φ∗1) 6= R(Φ∗2). Based on convex theory, any convex

combination of Φ∗1 and Φ∗2, saying Φ∗3 , αΦ∗1 + (1− α)Φ∗2, ∀α ∈ (0, 1), is also a solution of

(7.20). However, Φ∗3 is with rank at least K+1, which contradicts the fact that any solution

must have rank at most K. The third claim could also be proved using contradiction.

Suppose that Φ∗1 and Φ∗2 are respectively rank-K solution and solution with rank smaller

than K, and R(Φ∗2) \ R(Φ∗1) is nonempty. Then any convex combination of Φ∗1 and Φ∗2,

saying Φ∗3 , αΦ∗1 + (1−α)Φ∗2,∀α ∈ (0, 1), is also a solution of (7.20). However, Φ∗3 is again

with rank at least K + 1, which contradicts the fact that any solution must have rank at

most K.
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The last claim on the solutions of (7.18) and (7.19) follows from Proposition 8.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In Chapter 2 and 3, we have considered moving target estimation using sparsity based MIMO

radars with collocated and widely distributed antennas, respectively. We have provided

the uniform recovery guarantee by analyzing the RIP of the measurement matrices. For

distributed MIMO radars using compressive sensing, two low-complexity approaches have

been proposed to reduce the computation while maintaining the estimation performance.

The first approach was an ADMM-based sparse signal recovery algorithm. Simulation results

have indicated that this approach significantly lowers the computational complexity for

target estimation with improved accuracy as compared to the approaches using proximal

gradient algorithm and interior point method. The second approach decouples the location

and speed estimation into two separate stages. The location estimation obtained in the

first stage is used to prune the target location-speed space in the speed estimation stage.

Simulations have indicated that the decoupled scheme can reduce both the computation and

the required number of measurements, while maintaining high estimation accuracy.

In Chapter 4, we have considered a general spectrum sharing framework between a MIMO

radar and a MIMO communication system. Depending on the availability of target range

information, a knowledge-based and a robust spectrum sharing approach were proposed to

maximize the radar SINR while satisfying the communication requirements. The resulting

nonconvex problems were solved by using alternating optimization and sequential convex

programming. Simulation results have validated the effectiveness of the proposed spectrum

sharing methods. In Chapter 5, we have proposed the co-design based spectrum sharing

of a MIMO radar and a communication system for a scenario in which the radar system

operates in the presence of clutter.
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In Chapter 6, we have considered spectrum sharing between a MIMO communication

system and a MIMO-MC radar system. In order to reduce the effective interference power

(EIP) at radar RX antennas, we have first considered the cooperative spectrum sharing

method, which designs the communication transmit covariance matrix based on the knowl-

edge of the radar sampling scheme. We have also formulated the spectrum sharing method

for the case where the radar sampling scheme is not shared with the communication system.

Our theoretical results guarantee that the cooperative approach can effectively reduce the

EIP to a larger extent as compared to the spectrum sharing method without the knowledge

of the radar sampling scheme. Second, we have proposed a joint design of the communica-

tion transmit covariance matrix and the radar sampling scheme to further reduce the EIP.

The EIP reduction and the matrix completion recovery errors have been evaluated under

various system parameters. Our simulations have suggested that the joint-design scheme

can achieve much smaller EIP and relative recovery errors than other methods when the

number of radar TX and RX antennas is moderately large.

In Chapter 7, we have extended spectrum sharing between a MIMO communication sys-

tem and a MIMO-MC radar system by jointly designing the radar transmit precoder, the

radar sub-sampling scheme, and the communication transmit covariance matrix to maximize

the radar SINR while meeting certain rate and power constraints for the communication sys-

tem. The proposed joint design based spectrum sharing algorithm has been evaluated via

extensive simulations. Specifically, we have shown the superiority introduced by radar and

communication cooperation in the proposed algorithm compared to noncooperative coun-

terparts. The proposed joint-design based spectrum sharing scheme successfully focuses the

transmit power towards the targets and nullifies the power towards the clutter. The pro-

posed method achieves significant improvement in ESINR, MC relative recovery error, and

target RCS estimation accuracy. We have also compared the performance and complex-

ity of the adaptive and the constant-rate communication transmission schemes for radar-

communication spectrum sharing. Finally, we have provided a simulation on the comparison

of MIMO-MC radars and traditional MIMO radars co-existing with communication system-

s. We have observed that the MIMO-MC radar achieves better performance in ESINR and

output SNR than the traditional radar. MIMO-MC radars can coexist with communication
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systems and achieve better target RCS estimation than traditional radars while saving up

to 60% in data samples. The cost for these advantages is the additional computation for

matrix completion.

8.2 Future Work

MIMO radars and wireless MIMO communication coexistence is a new line of work with

many interesting challenges. We highlight several potential directions for future work.

• Spectrum sharing between MIMO radars and multiple MIMO communication systems.

The current work considered a MIMO radar system coexisting with a single MIMO

communication system. It would be very interesting to extend current work to the

scenario under which MIMO radars coexist with multiple pairs of MIMO transmitters

and receivers. A centralized fusion center can be introduced to collect all the chan-

nel state information from all the co-existing systems and be responsible for the joint

design based spectrum sharing algorithm. Distributed implementation for the central-

ized spectrum sharing algorithm in such case would be important for distributing the

computation to local systems and thus reducing the need of a powerful fusion center.

• The flat fading assumption might fail for the communication and interference channels

as the communication signal bandwidth increases. If the model needs to be treated as

frequency selective, then one could consider OFDM type of radar transmissions and

communication signals. OFDM has been used to turn the frequency selective fad-

ing into parallel flat fading channels. It is already the basis for many communication

standards, such as LTE, WiFi andWiMax [52]. Motivated by results from wireless com-

munications, OFDM-like signals have been increasingly used in radar system [81, 141,

142]. For the co-existence of OFDM radar and communication systems, the authors

of [63] proposed a greedy based carrier allocation method. Based on a given carrier

allocation, [64] proposed to jointly design the radar and communication waveforms’

power spectrum. As future work, we will investigate the coexistence of MIMO-OFDM

radars and MIMO-OFDM communication systems. It is possible to formulate an op-

timization problem which optimally allocates the radar and communication resources
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to multiple antennas and multiple sub-carriers simultaneously. Compared to spectrum

sharing in spatial and spectral domain separately, the increased degrees of freedom in

the joint spatial-spectral domain are expected to greatly boost the spectral efficiency.
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