
VERY EFFICIENT APPROXIMATION ALGORITHMS
TO EDIT DISTANCE PROBLEMS

BY TIMOTHY RYAN NAUMOVITZ

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Michael Saks

and approved by

New Brunswick, New Jersey

October, 2016



ABSTRACT OF THE DISSERTATION

Very Efficient Approximation Algorithms to Edit

Distance Problems

by Timothy Ryan Naumovitz

Dissertation Director: Michael Saks

This thesis deals with the question of approximating distance to monotonicity in the

streaming setting as well as the task of approximating the ulam distance between two

permutations. Both of these problems are variants of the edit distance problem which,

given two input sequences, is the minimum number of insertions and deletions (and in

some cases, substitutions) needed to transform one sequence into the other.

The distance to monotonicity of a sequence of n numbers is the minimum number

of entries whose deletion leaves an increasing sequence. We give the first deterministic

streaming algorithm that approximates the distance to monotonicity within a 1+ε fac-

tor for any fixed ε > 0 and runs in space polylogarithmic in the length of the sequence

and the range of the numbers. The best previous deterministic algorithm achieving the

same approximation factor required space Ω(
√
n) [13]. Previous polylogarithmic space

algorithms were either randomized [22], or had approximation factor no better than 2

[9]. We also give polylogarithmic space lower bounds for this problem: Any determin-

istic streaming algorithm that gets a 1 + ε approximation requires space Ω(1
ε log2(n))

and any randomized algorithm requires space Ω(1
ε

log2(n)
log log(n)).

The Ulam distance between two permutations of length n is the minimum number

of insertions and deletions needed to transform one sequence into the other. We provide

ii



an algorithm which, for any fixed ε > 0, gives a (1 + ε)-multiplicative approximation

for the Ulam distance d in Õε(n/d +
√
n) time, which has been shown to be optimal

up to polylogarithmic factors. This is the first sublinear time algorithm (provided that

d = (log n)ω(1)) that obtains arbitrarily good multiplicative approximations to the Ulam

distance. The previous best bound is an O(1)-approximation (with a large constant) by

Andoni and Nguyen [4] with the same running time bound (ignoring polylogarithmic

factors).

iii



Acknowledgements

Completing this thesis was a difficult task and, for better or for worse, could not have

been accomplished if it were not for many of the people around me and the things they

have done to help me throughout the process. I would like to recognize a small subset

of them. I have grouped them according to the way in which they have helped me.

Firstly, I would like to thank a number of the teachers I had before starting graduate

school, who layed the foundations for my development as a mathematician, most notably

Sue Allen, Frank Forte, Carol Skidmore, John Mackey, and Tom Bohman.

Secondly, I would like to thank several fellow graduate students at Rutgers for their

mathematical assistance at various points of my studies, most notably Justin Gilmer,

Matthew Russell, Pat Devlin, and Francis Seuffert.

Thirdly, I would like to thank my advisor, Michael Saks, who provided a large

number of insights without which I would not have been able to complete this work.

Additionally, I would like to thank our coauthor C. Seshadhri for his insights on one of

the projects in this thesis. I would also like to thank the entire Rutgers mathematics

faculty for creating an environment capable of allowing graduate students to succeed.

Finally, I would like to thank many friends and family members for being consis-

tently willing to offer their support whether it was asked for or not. In particular,

friends such as Jennifer Chu, Megan Cox, Daniel Naylor, and Mason and Becca Comp-

ton have provided assistance in my efforts to overcome various obstacles that I have

faced. My sisters Heather, Jennifer, and Stefanie have always been supportive, wishing

the best for me. My parents Joe and Elke have done everything in their power to make

it as easy as possible for me to succeed in many areas of my life. Without these people,

it is likely that my efforts would have fallen short.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. The Distance to Monotonicity Problem . . . . . . . . . . . . . . . . . . 2

1.1.1. Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2. Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. The Ulam Distance Problem . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1. Connections to Previous Work . . . . . . . . . . . . . . . . . . . 5

2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Geometric Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1. Input box, Input points, X-indices and Y -indices . . . . . . . . . 6

2.1.2. Intervals, boxes, height and width . . . . . . . . . . . . . . . . . 6

2.1.3. The relations P ∼ Q and P � Q . . . . . . . . . . . . . . . . . . 7

2.1.4. Increasing Point Sequences and the function lips . . . . . . . . 7

2.1.5. Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.6. Box sequences and box chains . . . . . . . . . . . . . . . . . . . . 8

2.1.7. Box Characterizations . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Natural number intervals, sequences and subsequences . . . . . . . . . . 9

2.3. LIS Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1. The input sequence and input points . . . . . . . . . . . . . . . . 9

2.3.2. Increasing subsequences and the function lis . . . . . . . . . . . 9

2.4. LCS Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1. The input sequences and input points . . . . . . . . . . . . . . . 10

v



2.4.2. Common subsequences and the function lcs . . . . . . . . . . . 10

2.5. Tail Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6. Parameter approximation and Gap tests . . . . . . . . . . . . . . . . . . 11

3. Approximation Algorithm for Distance to Monotonicity in the Stream-

ing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1. DM sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2. A Polylogarithmic Space Streaming Algorithm . . . . . . . . . . . . . . 16

3.3. Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4. Sequence Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5. Algorithm for unknown input length . . . . . . . . . . . . . . . . . . . . 29

4. Lower Bounds for Approximating Distance to Monotonicity in the

Streaming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1. Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5. Approximation Algorithm for Ulam Distance . . . . . . . . . . . . . . 36

5.1. Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1. Getting the speed-up routines . . . . . . . . . . . . . . . . . . . . 38

5.1.2. Getting a better slow gap test . . . . . . . . . . . . . . . . . . . . 40

5.1.3. The high level structure and main lemmas . . . . . . . . . . . . . 42

5.2. Constructing loss indicators from gap tests . . . . . . . . . . . . . . . . 46

5.3. Constructing gap tests from loss indicators . . . . . . . . . . . . . . . . 48

5.4. Designing BaseGapTest . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5. Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6. Reducing the Ulam Distance Problem . . . . . . . . . . . . . . . . . . . 53

6.1. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1. The function terr . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



6.2.2. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7. Implementing the LIS Algorithm . . . . . . . . . . . . . . . . . . . . . . 72

7.1. Improving the running time of the LIS algorithm . . . . . . . . . . . . . 72

7.1.1. Reducing additive error to multiplicative error . . . . . . . . . . 75

7.2. Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3. A Sampling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4. FindLCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.6. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.7. MakeGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.8. Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.8.1. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.9. Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



1

Chapter 1

Introduction

In this thesis, we discuss two problems which both fall under the category of what we’ll

call Longest Increasing Point Sequence (LIPS) problems. In an LIPS problem, we are

given a set of points inside a box, and the goal is to find the size of the largest subset

of these points which form an increasing sequence. It is intuitive what we mean by an

increasing sequence, but one can define it more formally by saying that a sequence of

points is an increasing sequence if there does not exist a pair of points P1, P2 in the

sequence such that P1 lies above and to the left of P2.

In both of the problems we consider, we will make use of various “divide and con-

quer” approaches. To illustrate a main idea, if we have a box B and we choose two

subboxes B1,B2 of B such that B1 lies entirely below and to the left of B2, then if S1

is an increasing point sequence in B1 and S2 is an increasing point sequence in B2, the

concatenation of S1 and S2 is an increasing point sequence in B. With this idea, our

approach in both problems is to break the input box up into a sequence of subboxes

where each subbox lies entirely below and to the left of its successor, and attempt to

find an increasing point sequence in each subbox. However, our goal is to ensure not

only that the sequence we find is increasing, but that its length is close to that of the

longest increasing point sequence of the input box. Satisfying this constraint is one of

the major difficulties that we need to overcome in both problems, and is the source of

the bulk of the technical subtleties that we introduce.

The other major constraint that we need to worry about is efficiency. In both

problems, a trivial approach can yield an exact result, but the point of our approach

is to show that significant efficiency gains can be obtained if we are willing to tolerate

a small amount of error in the output. This gives rise to two potential frontiers for



2

improvement over previous results: (1) improving the running time without significant

losses in the error of the output, and (2) decreasing the error of the output without

significant blowup of the running time. We will discuss the gains we make in both of

these respects in the following sections of the introduction, where we consider each of

the two problems we tackle.

The two problems we address are the Distance to Monotonicity problem, which

derives from the Longest Increasing Subsequence (LIS) problem, and the Ulam Distance

problem, which derives from the Longest Common Subsequence (LCS) problem. Both

the LIS and LCS problems can be viewed as LIPS problems. We will discuss each of

these in further detail in the following sections.

1.1 The Distance to Monotonicity Problem

In the Longest Increasing Subsequence (LIS) problem the input is a function (array)

f : [n] → [m] (where [n] = {1, . . . , n}) and the problem is to determine lisf , the size

of the largest I ⊆ [n] such that the restriction of f to I is an increasing function.

The distance to monotonicity of f , dmf is defined to be n − lisf , which is the

number of entries of f that must be changed to make f an increasing function. Clearly

the algorithmic problems of computing dmf and lisf are essentially equivalent as are the

problems of approximating these quantities within a specified additive error. However,

there is no such obvious correspondence between the problems of approximating dmf

and lisf to within a constant multiplicative factor. In fact we see from this paper that

there is a significant difference in the difficulty of approximating these two problems,

as least in some settings.

These problems, both the exact and approximate versions, have attracted attention

in several different computational models, such as sampling, streaming, and communi-

cation models. Following several recent papers, we study this problem in the streaming

model, where we are allowed one sequential pass over the input sequence, and our goal

is to minimize the amount of space used by the computation.



3

1.1.1 Previous Results

The exact computation of lisf and dmf can be done in O(n log(n)) time using a clever

implementation of dynamic programming [2, 11, 23], which is known to be optimal [20].

In the streaming setting, it is known that exact computation of lis and dm require Ω(n)

space even when randomization is used [13].

The most space efficient multiplicative approximation for lisf is the deterministic

O(
√
n) space algorithm [13] for computing a (1+ε)-multiplicative approximation. This

space is essentially optimal [9, 12] for deterministic algorithms. Whether randomization

helps significantly for this problem remains a very interesting open question.

In contrast, dmf has very space efficient approximations algorithms. A randomized

multiplicative (4+ε)-approximation using O(log2(n)) space was found by [13]. This was

improved upon by [22] with a (1 + ε)-multiplicative approximation using O(1
ε log2(n))

space. In the deterministic case, [9] gave a polylogarithmic space algorithm giving a

2 + o(1) factor approximation, but prior to the present paper the only deterministic

algorithm known that gave a (1 + ε)-factor approximation for arbitrary ε > 0 was an

O(
√
n)-space multiplicative approximation given by [13]. There have been no significant

previous results with regard to lower bounds for this problem in either the randomized

or deterministic case.

1.1.2 Our Contributions

We give the first deterministic streaming algorithm for approximating dmf to within an

1+ε factor using space polylogarithmic in n and m. More precisely, our algorithm uses

space O( 1
ε2

log5(n) log(m)).

The improvement in the approximation factor from 2 + o(1) to 1 + ε is qualitatively

significant because a factor 2 approximation algorithm to dmf can’t necessarily distin-

guish between the case that lisf = 1 and lisf = n/2, while a 1 +ε approximation can

approximate lisf to within an additive εn term.

Our algorithm works by maintaining a small number of small sketches at different

scales during the streaming process. The main technical challenge in the analysis is



4

to show that the size of the sketches can be controlled while maintaining the desired

approximation quality.

We also establish lower bounds for finding 1 + ε multiplicative approximations to

dm. Using standard communication complexity techniques we establish an Ω(1
ε log2(n))

space lower bound for deterministic algorithms and an Ω(1
ε

log2(n)
log log(n)) space lower bound

for randomized algorithms. The reduction maps the streaming problem to the one-way

communication complexity of the “Greater Than” function.

1.2 The Ulam Distance Problem

Computing the Longest Common Subsequence (LCS) between two strings x and y

is a fundamental algorithmic problem with numerous applications. Except for some

polylogarithmic improvements, the best known algorithm is still the textbook quadratic

time dynamic program. Recent results show that strongly subquadratic algorithms for

LCS would violate the Strong Exponential Time Hypothesis [5].

A notable special case of LCS is when the strings x and y have no repeated charac-

ters. Equivalently, it is convenient of think of both x and y as permutations of length

n. In this case, a simple reduction to the longest increasing subsequence yields an

O(n log n) algorithm. We give the first sublinear time algorithm that gives arbitrarily

good approximations to the LCS length.

Theorem 1.2.1 Assume random access to two strings x and y of length n that have

no repeated characters. Fix any δ > 0. There is an algorithm that, with probability

> 2/3, outputs an additive δn estimate to the LCS length in time Õδ(
√
n) time.

More generally, our techniques give multiplicative approximations to the Ulam dis-

tance between x and y. This is the minimum number of insertions or deletions required

to transform x to y. Alternately, the Ulam distance is n minus the LCS length [8, 2].

(We note that some later results allow substitution operations as well [7, 4]. These

authors were concerned with constant factor approximations, and this distinction was

unimportant for them.)



5

Theorem 1.2.2 Assume random access to two strings x and y of length n that have

no repeated characters. Fix any ε > 0 and let d be n minus the LCS length. There is

an algorithm that outputs, with probability > 2/3, a (1 + ε)-approximation to d in time

Õε(n/d+
√
n).

1.2.1 Connections to Previous Work

The previous best result for estimating d, as defined in Theorem 1.2.2, is the result of

Andoni-Nguyen [4] (henceforth AN). They get a (large) constant factor approximation

with the same running time as Theorem 1.2.2. Moreover, they prove that Õ(n/d+
√
n)

is optimal. These bounds were improvements over previous results [6, 3]. We note that

the improvement of the constant to 1+ε is essential for getting Theorem 1.2.1. Roughly

speaking, if one can get a c-approximation to the Ulam distance, that implies (at best)

an additive (1− 1/c)n approximation to the LCS.

A related result is that of Saks-Seshadhri (henceforth SS), on sublinear time algo-

rithms to approximate the length of the Longest Increasing Subsequence (LIS) of an

array [21]. This problem is (almost) equivalent to approximating the LCS length be-

tween an arbitrary input permutation and the identity permutation. In the language

of Theorem 1.2.2, they give a (1 + ε)-approximation to the Ulam distance d in time

Õε(poly(n/d)). At a high level, our algorithm is a combination of (suitably modified

and improved versions of) AN and SS.



6

Chapter 2

Preliminaries

As described in Chapter 1, the problems we consider can be viewed as Longest Increas-

ing Point Sequence (LIPS) problems. As a result, we can build a common geometric

framework with which we can discuss both problems. We introduce the definitions

necessary to build this framework in section 2.1 before introducing terminology specific

to each problem in sections 2.3 and 2.4.

2.1 Geometric Framework

2.1.1 Input box, Input points, X-indices and Y -indices

Throughout this thesis, U denotes the full input box; we will use other letters (B, T ,

etc.) to denote other boxes. In both the LIS and LCS problems, the input box will

be determined by the input sequences; we will discuss this in more detail in sections

2.3 and 2.4. We refer to one of the points given as input to the LIPS problem as an

input point. For an input point P ∈ U , we write x(P ) and y(P ), respectively, for its x

and y coordinates. We refer to the horizontal indices of the box U as X-indices, and

the vertical indices of U as Y -indices. Note that for any point P , x(P ) is an X-index

and y(P ) is a Y -index, but it is not necessarily the case that for every X-index x (resp

Y -index y), there is a point P with x(P ) = x (resp y(P ) = y).

2.1.2 Intervals, boxes, height and width

A subinterval of X-indices is an X-interval and a subinterval of Y -indices is a Y -

interval. The product of an X-interval IX and a Y -interval IY is a box B = IX × IY ; in

particular, we can think of U as the box given by IX × IY , where IX and IY denote the



7

sets of all X-indices and Y -indices, respectively. For a box B, X(B) and Y (B) denote

the X-interval and Y -interval such that B = X(B)×Y (B). P(B) denotes the set of input

points lying in B. A box B has width w(B) = |X(B)| and height h(B) = |Y (B)|. For

simplicity, we also use dmin(B) = min(w(B), h(B)) and dmax(B) = max(w(B), h(B)).

In the future we will want to refer to endpoints of intervals and corner points of

boxes. We borrow the following notation from [21].

• For an X-interval IX , we will want to refer to the left and right ends of IX . In

particular, if IX = (a, b], xL(IX) = a and xR(Ix) = b.

• For a Y -interval IY , we will want to refer to the bottom and top ends of IY . In

particular, if IY = [c, d], yB(IY ) = c and yT (IY ) = d.

• For a box B, we denote the bottom left and top right corners of B by PBL(B) and

PTR(B), respectively.

• For simplicity, we write xL(B) for xL(X(B)), xR(B) for xR(X(B)), yB(B) for

yB(y(B)) and yT (B) for yT (Y (B)).

2.1.3 The relations P ∼ Q and P � Q

For input points P,Q ∈ U , P < Q means x(P ) < x(Q) and y(P ) < y(Q). If either

P < Q or Q < P , then P is comparable to Q, denoted P ∼ Q. If neither hold, then P

is a violation with Q, denoted P � Q.

2.1.4 Increasing Point Sequences and the function lips

A sequence of input points P1, P2, . . . , Pk satisfying P1 < · · · < Pk is called an increasing

point sequence. If all points of an increasing point sequence lie in a box B, this is

an increasing point sequence in B. Define lips(B) to be the length of the longest

increasing point sequence in B. The goal of the LIPS problem is to output lips(U).

The LIPS problem will specialize to both the LIS problem and the LCS problem in

their respective settings. We will discuss the details of these specializations in sections

2.3 and 2.4, respectively.



8

2.1.5 Loss functions

A loss function assigns to each box a nonnegative integer that measures the number of

indices or input points that do not participate in the longest increasing point sequence.

We define four loss functions.

• din(B) = |P(B)| − lips(B). din(B) measures the number of input points in B

which do not lie on a fixed LIPS of B.

• Xloss(B) = w(B) − lips(B). Xloss(B) measures the number of X-indices of B

that are not the x coordinate of a point on a fixed LIPS of B.

• Yloss(B) = h(B) − lips(B). Yloss(B) measures the number of Y -indices of B

that are not the y coordinate of a point on a fixed LIPS of B. It turns out that we will

not need to use the loss function Yloss(B) directly, but it is convenient to define, and

we will use a modified version of it, which will be introduced in section 6.2.1.

• uloss(B) = w(B) + h(B) − 2 · lips(B). Alternatively, uloss(B) = Xloss(B) +

Yloss(B). uloss(B) measures the number of indices (X or Y ) of B that do not appear

as a coordinate of a point on a fixed LIPS of B. In the LCS setting, the observation

uloss(B) = 2 · Xloss(B) + h(B)− w(B) will be useful for us.

2.1.6 Box sequences and box chains

A box sequence is a list of boxes such that each successive box is entirely to the right

of the previous. We use the notation ~B to denote a box sequence. We write B ∈ ~B to

mean that the box B appears in ~B. A box chain ~T is a box sequence ~T = (T1, · · · , Tk)

such that (for all i), PTR(Ti) < PBL(Ti+1). We say that a box chain ~T spans B if B is

the smallest box containing ~T .

2.1.7 Box Characterizations

We define two characterizations of boxes. These characterizations will not be used

frequently, so we suggest that the reader not worry about them initially, and instead

refer back to them when necessary.

• For λ ∈ (0, 1), a box B is said to be λ-proportional if dmin(B) ≥ λdmax(B). A



9

box is λ-disproportional if it is not λ-proportional. Call it λ-skinny if w(B) < λh(B),

or λ-fat if h(B) > λw(B).

• For ω ∈ (0, 1), a box B is said to be ω-small if w(B) ≤ ω.

2.2 Natural number intervals, sequences and subsequences

N denotes the set of nonnegative integers and N+ is the set of positive integers. Interval

notation [a, b], (a, b], etc. is used both for intervals of nonnegative integers and real

numbers; the meaning will be clear from context. For a positive integer r, [r] denotes

the set {1, ...r}. A natural number sequence of length r is represented as a function

f : [r] −→ N. The sequence is nonrepeating if the function is 1-1. A subsequence of

f is specified by a subset I ⊆ [r] and is denoted f(I). Writing I as {i1, . . . , is} of [r],

with i1 < · · · < is, we think of f(I) as the subsequence f(i1), . . . , f(is). When I is an

interval [a, b] or (a, b], f(I) is a consecutive subsequence.

2.3 LIS Notation

2.3.1 The input sequence and input points

In the LIS setting, f denotes a fixed function from [n] to [m], which we refer to as

the input sequence. The domain (resp range) elements of f correspond to the X-

indices (resp Y -indices) in the geometric framework. In this setting, we refer to domain

elements of f as indices and range elements of f as values.

An input point is a pair (x, y) such that f(x) = y. Note that in this setting, each

index has exactly one value associated to it.

2.3.2 Increasing subsequences and the function lis

An increasing subsequence of the input sequence f is a list of indices x1 < · · · < xk

such that f(x1) < · · · < f(xk). Define lisf to be the length of the longest increasing

subsequence of f . Viewed in the geometric framework, the input points (xi, f(xi)) form

an increasing point sequence. Conversely, the list of X-indices of any increasing point

sequence of U = [n]× [m] is an increasing sequence of f . Therefore, lips(U) = lisf .



10

For a box B, we can also define lis(B) to be the length of the longest increasing

subsequence when we restrict to the set of input points lying in B. Alternatively, lis(B)

is the length of the longest list of indices x1 < · · · < xk such that f(x1) < · · · < f(xk),

and ∀i, (xi, f(xi)) ∈ B. Again, we have lips(B) = lis(B).

2.4 LCS Notation

2.4.1 The input sequences and input points

In the LCS setting, fX and fY denote nonrepeating sequences of lengths nX and nY ,

respectively, referred to as the horizontal sequence and the vertical sequence. These are

the input to the longest common subsequence problem. The domain elements of fX

(resp fY ) correspond to the X-indices (resp Y -indices) in the geometric framework, we

will maintain these names in this setting.

An input point is a pair (x, y) such that fX(x) = fY (y). Since the functions fX

and fY are nonrepeating, each X-index has at most one Y -index associated to it in this

way. In the LCS setting, we will refer to input points as matches.

2.4.2 Common subsequences and the function lcs

A common subsequence of the input sequence f is a list of matches (x1, y1), . . . (xk, yk)

such that x1 < · · · < xk and y1 < · · · < yk. Define lcsfX ,fY to be the length of the

longest common subsequence of fX , fY . As in the LIS setting, when viewed in the geo-

metric framework, the matches (xi, yi) form an increasing point sequence. Conversely,

any increasing point sequence of U = [nX ] × [nY ] is a common sequence of fX , fY .

Therefore, lips(U) = lcsfX ,fY .

As in the LIS setting, for a box B, we can define lcs(B) to be the length of the

longest common subsequence when we restrict to the set of input points lying in B.

Again, we have lips(B) = lcs(B).



11

2.5 Tail Bounds

We recall a version of the Chernoff-Hoeffding bound from [17] for binomial random

variables:

Theorem 2.5.1 (Chernoff-Hoeffding) Let X ∼ Bin(n, p). Then if µ = np, δ ∈ (0, 1),

• Pr[X < (1− δ)µ] ≤ e−δ2µ/2.

• Pr[X > (1 + δ)µ] ≤ e−δ2µ/3.

We also make use of the following version from [18]:

Theorem 2.5.2 (Chernoff Bound) Let X ∼ Bin(n, p). Then for δ > 0,

• If δ ≤ 2e− 1, then Pr[|X − pn| ≥ δpn] ≤ 2 ∗ e−δ2pn/4

• If δ ≥ 2e− 1, then Pr[|X − pn| ≥ δpn] ≤ 2−(1+δ)pn.

2.6 Parameter approximation and Gap tests

Fix a real valued parameter P . A real number P̃ is a (τ, δ)-approximation to P if

|P̃ − P | ≤ τP + δ. If P̃ is obtained by a randomized algorithm, then P̃ is a (τ, δ)-

approximation with failure at most κ if Pr[|P̃ − P | > τP + δ] ≤ κ. When δ = 0, we

simply call the approximation a τ -approximation to P .

A (τ, δ)-gap test for P takes as input two parameters, the lower threshold a and

the upper threshold b ≥ (1 + τ)a and outputs SMALL or BIG. The gap test is said to

fail if either P < a − δ and it outputs BIG or P > b and it outputs SMALL. We say

that the gap test operates with failure probability at most κ if on any input (a, b) with

b ≥ (1 + τ)a the probability of failure is at most κ. When δ = 0, we simply call the test

a τ -gap test. We refer to the pair (τ, δ) (or the parameter τ when δ = 0) as the quality

of the gap test. The following proposition is easily proven by a geometric search over

parameters to a gap test.

Proposition 2.6.1 Consider P whose range is {0, . . . , r}. Suppose there exists a (τ, δ)-

gap test for P that runs in time T with failure probability at most κ. Then, there exists



12

a (2τ +τ2, δ)-approximation algorithm for P that runs in time at most T (log1+τ (r)+2)

with failure at most κ(log1+τ (r) + 2).

Proof Construct an approximation algorithm A as follows. Run the (τ, δ)-gap test for

successive values of j starting from 0, where aj = r/(1 + τ)j+1 and bj = r/(1 + τ)j .

The first time the test says BIG output aj as the estimate. If j reaches the value

t = log1+τ r + 1 and the test returns SMALL with parameters at and bt, output 0 as

the estimate.

A consists of at most (log1+τ (r) + 2) calls to the gap test, so by a union bound, the

probability that none of these calls fail is at least 1 − κ(log1+τ (r) + 2). Therefore, we

will assume that none of the gap test calls fail. Additionally, this shows us that the

running time of A is within the stated bound.

First, suppose P = 0. In this case, the gap test is guaranteed to return small

whenever the value of aj is greater than δ. As a result, the output of A will either be

some value of aj which is at most δ, or 0 if every gap test call returns SMALL. In either

case, the output of A differs from the value of P by at most δ.

Suppose P > 0. Since bt < 1, the gap test will return BIG for some value of j. Let

k be the smallest value of j such that the gap test returns BIG. The output of A is

ak. By the guarantee of the gap test, the value of P must be at least ak − δ, which is

within an additive δ of the output of A. If k > 0, then the gap test returned SMALL

with parameters ak−1 and bk−1. Therefore, the value of P must be at most bk−1. Since

bk−1 = (1 + τ)2ak, the value of P is at most (1 + 2τ + τ2) times the output of A, so

these two quantities differ by at most a (2τ +τ2) multiplicative factor. If instead k = 0,

then since the value of P is at most r = bk, the same bound holds. �



13

Chapter 3

Approximation Algorithm for Distance to Monotonicity in

the Streaming Model

In this chapter, we provide an algorithm which efficiently approximates distance to

monotonicity in the streaming model. In the (one pass) streaming model, the input

elements are revealed to the algorithm sequentially, and the algorithm outputs an an-

swer when all input elements have been revealed. One can trivially simulate a dynamic

programming algorithm in the streaming setting using linear space by writing down

every input element as it appears and then doing all of the computation after all ele-

ments have been revealed. As a result, the goal is often to be able to design a streaming

algorithm which uses a sublinear amount of space.

In our case, the input sequence is revealed to us one element at a time, and our goal

is to approximate the distance to monotonicity of the input sequence using a polyloga-

rithmic amount of space. Our approach is a “divide and conquer” approach, where we

keep track of Xloss(B) for various subboxes B of the input box. The quantity Xloss(B)

implicitly represents an increasing sequence in B. Since we know that the concatenation

of increasing sequences of each box in a box chain is itself an increasing sequence, we

can mirror this concatenation by adding Xloss(B1) and Xloss(B2) whenever B1 lies

entirely below and to the left of B2. This idea allows us to piece together the estimates

we get for Xloss(B) for various subboxes B into an estimate for Xloss(U).

Building off this idea, for an X-interval I1, we will keep track of an estimate of

Xloss(I1 × J) for various Y -intervals J . If we then do the same for an X-interval

I2 lying entirely to the right of I1, then for J1 lying entirely below J2, Xloss(I1 ×

J1) + Xloss(I2 × J2) ≥ Xloss((xL(I1), xR(I2)) × (yB(J1), yT (J2))). The tightness of

this inequality will depend on the distribution of pairs of Y -intervals J1, J2 for which



14

we kept track of Xloss(I1×J1) and Xloss(I2×J2). As a result, for an X-interval I, we

will want to keep track of an estimate of Xloss(I × J) for each J in an appropriately

distributed set of Y -intervals. It will be convenient to store these estimates in a matrix

indexed by the left and right endpoints of each Y -interval J . These matrices, together

with their row and column index sets form what we will call DM-sketches. We will

define these sketches more formally in section 3.1. The main technical difficulties we

face will be ensuring that the estimates given by these sketches are sufficiently accurate,

and ensuring that these sketches don’t get too big. To handle these difficulties, we note

that since our goal is a multiplicative approximation to distance to monotonicity, we

can afford more error when we know that Xloss(U) is large. Our sketches can make use

of this fact by keeping track of fewer Y -intervals whose size differs significantly from

the current X-interval. It turns out that with this idea, we can keep track of enough

information to get an ε-approximation to Xloss(U) using only polylogarithmically many

Y -intervals in each sketch. Several technical subtleties do come up in the process of

verifying this fact, and these will be laid out in sections 3.3 and 3.4. We now proceed

to our formulation of DM-sketches

3.1 DM sketches

For a fixed I ⊆ [n], we will want to be able to talk about Xloss(I × J) for various

Y -intervals J . We define DMI to be the (m+ 1)× (m+ 1) matrix where DMI(l, r) =

Xloss(I × (l, r]). Observe that if l ≥ r, then DMI(l, r) = |I|.

Our streaming algorithm will try to approximate DM[n](0,m) (i.e. the distance to

monotonicity of the entire sequence). To do this, it will maintain a small set of small

matrices that each provide some approximate information about the matrices DMI for

various choices of I. This motivates the next definitions:

• A DM-sketch is a triple (L,R,D) where L,R ⊆ [m]∪ {0} and D is a nonnegative

matrix with rows indexed by L and columns indexed by R. We sometimes refer

to the matrix D as a DM-sketch, leaving L and R implicit.

• A DM-sketch (L,R,D) is well behaved if for any l, l′ ∈ L and r, r′ ∈ R with l ≤ l′



15

and r′ ≤ r, it holds that D(l, r) ≤ D(l′, r′).

• A DM-sketch is said to be valid for interval I if |I| ≥ D(l, r) ≥ DMI(l, r) for all

l ∈ L and r ∈ R.

• For i ∈ [n], the trivial sketch for i is the DM-sketch with L = {f(i) − 1}, R =

{f(i)}, and D = [0]. Note that the trivial sketch for i is trivially well behaved

and valid for i.

• The size of a DM sketch (L,R,D) is max(|L|, |R|).

Given a valid DM-sketch (L,R,D) for I, we want to obtain an estimate for the (m+1)×

(m + 1) matrix DMI . Observe that, for any I, ([0,m], [0,m], DMI) is a well behaved

and valid DM sketch for I. For l, r ∈ [m] ∪ {0} and l′ ∈ L and r′ ∈ R with l ≤ l′

and r′ ≤ r, we have DMI(l, r) ≤ DMI(l
′, r′) ≤ D(l′, r′). This motivates the following

definitions:

• For l, r ∈ [m] ∪ {0}, the L-ceiling of l, denoted by l̄L is the smallest element

l′ ∈ L ∪ {m} such that l ≤ l′. Similarly, the R-floor of r, denoted by rR is the

largest element r′ ∈ R ∪ {0} such that r ≥ r′.

• Given the DM-sketch (L,R,D) for I, the natural estimator of DMI induced by

D is the matrix D∗ given by:

D∗(l, r) = D(l̄L, rR)

Observe that ([m] ∪ {0}, [m] ∪ {0}, D∗) is a DM-sketch.

• (L,R,D) is (1 + δ)-accurate for interval I if for every l, r ∈ [m] ∪ {0}, D∗(l, r) ≤

(1 + δ)DMI(l, r).

Proposition 3.1.1 Let D be a DM-sketch, I an interval, and D∗ be the natural esti-

mator of DMI induced by D. If D is well behaved and valid for I, then so is D∗.

Proof First, note that the well-behavedness of D∗ follows from the fact that if l ≤ l′,

r′ ≤ r, then l̄L ≤ l̄′
L

and r′R ≤ rR. Let l, r ∈ [m] ∪ {0}. The fact that D∗(l, r) ≤ |I|



16

follows from the validity of (L,R,D), so it remains to show D∗(l, r) ≥ DMI(l, r). We

know that l̄L ≥ l and rR ≤ r by definition. As a result, any (l̄L, rR)-monotone subset

of I is an (l, r)-monotone subset of I, so we have DMI(l, r) ≤ DMI(l̄
L, rR). Since

D∗(l, r) = D(l̄L, rR) ≥ DMI(l̄
L, rR) by the validity of (L,R,D), we are done. �

3.2 A Polylogarithmic Space Streaming Algorithm

As mentioned in section 3.1, at each step j, our streaming algorithm will maintain a

small number of small sketches for various subintervals of [1, j]. Our algorithm involves

the repeated use of two main building blocks: an algorithm merge and an algorithm

shrink.

The algorithm merge takes as input an interval I of even size split into its two halves

I1 and I2 and DM-sketches (L1, R1, D1) for I1 and (L2, R2, D2) for I2 and outputs a

DM-sketch (L,R,D) for I. It does this in the following very simple way:

• L = L1 ∪ L2

• R = R1 ∪R2

• D is defined, for l ∈ L and r ∈ R by:

D(l, r) = min
l≤z≤r

D∗1(l, z) +D∗2(z, r),

where D∗1 is the natural estimator for DMI1(·, ·) induced by D1 and D∗2 is the

natural estimator for DMI2(·, ·) induced by D2.

The algorithm shrink takes as input a DM-sketch (L,R,D) and outputs a DM-sketch

(L′, R′, D′) where L′ ⊆ L, R′ ⊆ R and D′ is the restriction of D to L′ × R′. It takes a

parameter γ > 0.

The goal of the algorithm shrink is to choose (L′, R′, D′) as small as possible while

ensuring that, for any l, r ∈ [m] ∪ {0}, D′∗(l, r) is not too much bigger than D∗(l, r).

To find L′ ⊆ L and R′ ⊆ R, our algorithm greedily omits values from L and R without

destroying the property

∀l, r ∈ [m] ∪ {0}, D∗(l, r) ≤ D′∗(l, r) ≤ (1 + γ)2D∗(l, r).



17

The algorithm shrink first determines L′ and then determines R′. Let l1 < · · · < l|L|

be the values in L. We construct a sequence x1 ≤ x̂1 ≤ x2 ≤ x̂2 ≤ x3, ..., x̂s−1 ≤ xs

iteratively as follows. Let x1 = l1. For k ≥ 1, having defined x1, x̂1, ..., x̂k−1, xk, if

xk = l|L|, stop. Otherwise, let x̂k = li where i is the largest index less than |L| such

that

∀r ∈ R,D(li, r) ≤ (1 + γ)D(xk, r) (3.1)

and let xk+1 = li+1. Set L′ = {x1, x̂1, x2, x̂2, x3, ..., x̂s−1, xs}. Now let D′′ be the

submatrix of D induced by the rows of L′, giving us an intermediate sketch (L′, R,D′′).

Starting from D′′, we perform an analogous construction for R′, defining y1 to be the

largest value of R, and working our way downwards (so yt will be the smallest value

of R). We get R′ = {y1, ŷ1, y2, ŷ2, y3, ..., ŷt−1, yt}, and let D′ be the submatrix of D′′

induced by the columns labeled by R′. This yields another DM sketch (L′, R′, D′) for

I. The DM sketch (L′, R′, D′) will be the sketch that shrink outputs.

Armed with the procedures merge and shrink, we can now describe our deter-

ministic streaming algorithm dmapprox for approximating distance to monotonicity.

dmapprox requires a parameter γ > 0. (The choice of γ will be ln(1 + ε)/(2 log(n))

where ε is the desired approximation factor.)

We first describe a version of our algorithm that is not in the streaming model, and

then convert it into a streaming algorithm, which will be called dmapprox. Assume

without loss of generality that n = 2d for an integer d. Consider the rooted binary

tree whose nodes are subintervals of [n] with [n] at the root, and for each interval I of

length greater than 1, its left and right children will be the first and second halves of I,

respectively. This will yield a full binary tree of depth log(n), where the ith leaf (read

from left to right) is the singleton {i}.

Our algorithm assigns to every node I a DM sketch for I as follows. To each leaf {i}

we assign the trivial sketch for i. For a non-leaf I with children I1 and I2, we take the

DM-sketches (L1, R1, D1) and (L2, R2, D2) for I1 and I2 respectively, and apply merge

followed by shrink with parameter γ to these sketches to get a DM-sketch (L′, R′, D′)

for I. We assign these DM-sketches inductively until we reach the root, yielding a DM



18

sketch (L,R,D) for [n]. The output of the algorithm is D∗(0,m).

We now convert this bottom up procedure into a streaming algorithm. We say that

a node (interval) I is completed if we have reached the end of I in our stream, and we

call a node (interval) complemented if its parent’s other child is also completed. At any

point during the stream, we maintain a DM sketch for every completed uncomplemented

node I, creating a trivial DM sketch for each leaf as it is streamed. At step i, we look

at the ith value in the stream, and we find the largest interval in the binary tree for

which i is the right endpoint of that interval. Call this interval Ik, where k is such

that the size of this interval is 2k. Define a sequence of intervals Ik, Ik−1, ..., I0, where

Ij is the right child of Ij+1. Note that i is the right endpoint of each Ij , so each Ij

becomes completed at step i. As a result, our algorithm first creates the trivial sketch

for i (Note that I0 = {i}) and then performs a (possibly empty) sequence of merges

and shrinks as follows. For 0 ≤ j < k, given a DM sketch for Ij , the algorithm applies

merge to the sketch for Ij and the sketch stored for its sibling, and then applies shrink

with parameter γ to the output of merge to get a DM sketch for Ij+1 (at which point

it forgets the sketches for the children of Ij+1). The algorithm repeats this process k

times, obtaining a sketch for Ik which it stores, as Ik is not yet complemented at step

i. Once we reach the end of the stream, we will have our DM sketch for the root. We

will prove:

Theorem 3.2.1 (Main Theorem) Let ε > 0 and consider the algorithm dmapprox

with parameter γ = ln(1+ε)/(2 log(n)). On input a sequence f of n integers, dmapprox

outputs an approximation to the distance to monotonicity that is between dmf and (1 +

ε)dmf . The algorithm uses O( 1
ε2

log5(n) log(m)) space and runs in O( 1
ε3
n log6(n)) time.

When accounting for time, we assume that arithmetic operations (additions and com-

parisons) can be done in unit time.

3.3 Proof of the Main Theorem

In this section we state some basic properties about the procedures merge and shrink,

and use them to prove the main theorem. Some of these properties of merge and



19

shrink are proved in this section, and others are proved in the next section.

Lemma 3.3.1 (MERGE) Suppose merge is run on input I,I1,I2, D1,D2 as described

above and let (L,R,D) be the output DM-sketch.

1. The size of D is at most the sum of the sizes of D1 and D2.

2. If Di is well-behaved for i ∈ {1, 2} then so is D.

3. If Di is valid for Ii for i ∈ {1, 2} then D is valid for I.

4. If Di is (1 + δ)-accurate for i ∈ {1, 2} then D is (1 + δ)-accurate.

5. The algorithm merge runs in space O(log(m)|L||R|) and time O(|L||R|(|L| +

|R|)).

The proof of this lemma is routine and unsurprising.

Proof We prove each item of the claim sequentially.

First, we need to show that the size of D is at most the sum of the sizes of D1 and

D2. The size of (L,R,D) is given by

max(|L|, |R|) = max(|L1 ∪ L2|, |R1 ∪R2|)

≤ max(|L1|+ |L2|, |R1|+ |R2|)

≤ max(|L1|, |R1|) +max(|L2|, |R2|).

which is the sum of the sizes of (L1, R1, D1) and (L2, R2, D2).

Next, to show that D is well-behaved, we need to show that for l, l′ ∈ L and r, r′ ∈ R

with l ≤ l′ and r′ ≤ r, D(l, r) ≤ D(l′, r′). According to the definition of D, let z be

such that D(l′, r′) = D∗1(l′, z) + D∗2(z, r′). Since D1 and D2 are well-behaved, D∗1 and

D∗2 are well-behaved by Prop. 3.1.1. This gives:

D∗1(l′, z) +D∗2(z, r′) ≥ D∗1(l, z) +D∗2(z, r)

≥ D(l, r).

where the last inequality follows from the definition of D. This shows that D is well-

behaved.

Next, to show that (L,R,D) is valid, we need to show that for x ∈ L, y ∈ R,



20

(1) D(x, y) ≤ |I|

(2) D(x, y) ≥ DMI(x, y)

Let z be such that D(x, y) = D∗1(x, z) +D∗2(z, y). By Prop. 3.1.1,

|I| = |I1|+ |I2| ≥ D∗1(x, z) +D∗2(z, y) = D(x, y)

establishing (1).

For (2), let z be such that D(x, y) = D∗1(x, z) + D∗2(z, y). We have D∗1(x, z) =

D1(x̄L1 , zR1
) and D∗2(z, y) = D2(z̄L2 , y

R2
) (Note that zR1

≤ z ≤ z̄L2). By the validity

of (L1, R1, D1) and (L2, R2, D2),

D(x, y) = D1(x̄L1 , zR1
) +D2(z̄L2 , y

R2
)

≥ DMI1(x̄L1 , zR1
) +DMI2(z̄L2 , y

R2
)

≥ DMI(x, y)

the last inequality following from the definition of DM . This shows that (L,R,D) is

valid.

To prove the (1 + δ)-accuracy of D, let l, r ∈ I and let J be the set of indices of

an LIS of I × (l, r]. We need to show that D∗(l, r) ≤ (1 + δ)DMI(l, r). Let h be the

value associated to the largest index of J ∩ I1. We see that DMI1(l, h) +DMI2(h, r) =

DMI(l, r), so for the (L,R,D) sketch for I,

D∗(l, r) = minl≤k≤r(D
∗
1(l, k) +D∗2(k, r))

≤ D∗1(l, h) +D∗2(h, r)

≤ (1 + δ)(DMI1(l, h) +DMI2(h, r))

≤ (1 + δ)DMI(l, r).

by the (1 + δ)-accuracy of (L1, R1, D1) and (L2, R2, D2). This shows that (L,R,D) is

(1 + δ)-accurate.

We now analyze the amount of time that merge takes. Getting L and R from

(L1, R1, D1) and (L2, R2, D2) is trivial, and getting D(x, y) for each pair (x, y) ∈ L×R

requires taking a minimum over at most |L| + |R| choices of z (values of z outside of



21

L∪R will not be helpful). Since the D∗1 and D∗2 values here can be computed in constant

time (by looking at appropriate values in D1 and D2), each of these |L| + |R| choices

takes time O(1). This yields the desired time bound of O(|L||R|(|L|+ |R|)).

Finally, the amount of space that this algorithm uses is just the amount of space

required to store L, R, and D. Since each element uses log(m) bits, this yields the

desired space bound of O(log(m)|L||R|). This completes the proof of Lemma 3.3.1. �

Lemma 3.3.2 (SHRINK) On input an a sketch (L,R,D) that is valid for I and (1+δ)-

accurate, shrink with parameter γ outputs a sketch (L′, R′, D′) that is well behaved and

valid for I and is (1+γ)2(1+δ)-accurate. This algorithm runs in space O(log(m)|L||R|)

and time O(|L||R|).

Proof First, we see that shrink produces a matrix D′ which is a submatrix of D for

the same interval I, and as a result, the well behavedness and validity of (L′, R′, D′)

follows trivially from the definitions.

Next, we need to show that for l, r ∈ [m]∪{0}, D′∗(l, r) ≤ (1 +γ)2(1 + δ)DMI(l, r).

We do this by showing that D′′∗(l, r) ≤ (1 +γ)D∗(l, r), and D′∗(l, r) ≤ (1 +γ)D′′∗(l, r).

The two arguments are analogous, so we show the proof for the first case only. If l̄L
′

= m

(with m /∈ L′), then since the largest value of L is in L′ by construction of L′, l̄L = m

also, and D′′∗(l, r) = D∗(l, r) ≤ (1 + δ)DMI(l, r) by hypothesis. Otherwise, l̄L
′

= xk

or l̄L
′

= x̂k for some k. If l̄L
′

= xk, then for xk = li+1 as in the description of shrink,

l > li, so l̄L = li+1 = xk. This means that again, D′′∗(l, r) = D∗(l, r) ≤ (1+δ)DMI(l, r)

by hypothesis.

If instead, l̄L
′

= x̂k,

D′′∗(l, r) = D′′(x̂k, rR)

= D(x̂k, rR)

≤ (1 + γ)D(xk, rR)

≤ (1 + γ)D(l̄L, rR)

= (1 + γ)D∗(l, r)

≤ (1 + γ)(1 + δ)DMI(l, r)



22

where the third line follows from the definition of shrink, and the fourth line follows

from the well behavedness of D, as xk ≤ l ≤ l̄L. This shows that (L′, R,D′′) is

(1+γ)(1+δ)-accurate. As mentioned earlier, an analogous argument with the shrinking

of R shows that (L′, R′, D′) is within a (1 + γ) factor of (L′, R,D′′), so (L′, R′, D′) is

(1 + γ)2(1 + δ)-accurate.

To analyze the amount of time this algorithm takes, we see that our algorithm in-

volves constructing the sequence x1, x̂1, x2, x̂2, x3, ..., x̂s−1, xs. Recall that the elements

of L are enumerated as l1 < l2 < · · · < l|L|. To determine, xk+1 = li′ from xk = li, we

need to compute the difference between rows lj and li of D starting with j = i+ 1 and

continuing until we reach j = i′ for which some entry of the difference vector exceeds

(1 + γ) times the corresponding entry of row li (or lj reaches l|L|). When this happens

we set xk+1 = li′ and x̂k = li′−1. If xk+1 = l|L| we stop otherwise we continue to

determine xk+2 in the same way. Notice that throughout the algorithm, we consider

each row only once as lj so we compute the difference of at most |L| pairs of rows. Each

such difference is computed in O(|R|) arithmetic operations so the overall running time

is O(|L||R|).

Looking at the amount of space used, we see that since (L′, R′, D′) is not larger than

(L,R,D) and none of the intermediate computations require any significant amount of

space, we will need at most the space required to store the (L,R,D) sketch, which

will be at most O(log(m)|L||R|) for the D matrix, as it consists of |L||R| elements,

each using at most log(m) bits. Note that if (L,R,D) has size O(log1+γ(n)), then this

becomes space O( 1
γ2

log2(n) log(m)). �

We will also crucially need to control the size of the sketch that is output by shrink.

Without an additional hypothesis on the input sketch (L,R,D) we can’t bound the size

of the sketch (L′, R′, D′) (better than the trivial bound given by the size of (L,R,D)).

To obtain the desired bound we will impose a technical condition called coherence

on (L,R,D). We defer the definition of coherence until Section 5, but the reader can

understand the structure of the argument in this section without knowing this definition.

In section 5, we’ll prove two Lemmas:



23

Lemma 3.3.3 If (L,R,D) is coherent, then the output (L′, R′, D′) of shrink with

parameter γ is coherent and satisfies max(|L′|, |R′|) ≤ 2 log1+γ n+ 3.

In order to carry out the appropriate induction argument we’ll need:

Lemma 3.3.4 For i ∈ [n], the trivial sketch for i is coherent. Furthermore in merge

if (L1, R1, D1) and (L2, R2, D2) are both coherent then so is (L,R,D).

Using these pieces, we can now prove Theorem 3.2.1.

Proof First, we aim to show that dmapprox approximates dmf to within a 1+ε factor.

To do this, it suffices to show that the DM sketch for [n] computed by dmapprox is

valid and 1 + ε-accurate. Let γ = ln(1 + ε)/(2 log(n)). If we run dmapprox on f , we

have a binary tree of depth log(n), with a DM sketch for each node. Using Lemma 3.3.1

and Lemma 3.3.2, for a node I with children I1 and I2, if the DM sketches for I1 and I2

are (1+ δ)-accurate, then the DM sketch for I is (1+γ)2(1+ δ)-accurate. Furthermore,

it is trivial to see that the trivial sketch for i is 1-accurate. By a simple induction on

the depth of the tree, our final DM sketch (L,R,D) for [n] is (1 + γ)2 log(n)-accurate.

In addition, since the trivial sketch is valid and merge and shrink preserve validity,

the DM sketch for [n] is valid. We see that (1 + γ)2 log(n) ≤ (e2γ)log(n) = 1 + ε.

Next, we need to show that, at any point during the stream, the algorithm dmap-

prox uses O( 1
ε2

log5(n) log(m)) space. First, we note that the trivial sketch is coherent

by Lemma 3.3.4, and since merge and shrink preserve coherence by Lemma 3.3.4 and

Lemma 3.3.3, every sketch computed by dmapprox is coherent by induction. Now, it is

clear that the trivial sketch has size 1, and by Lemma 3.3.3, for any interval I, the DM

sketch for I has size O(log1+γ(n)). As a result, the intermediate sketches resulting from

applications of merge will also have size O(log1+γ(n)). Note also that for each of these

sketches, the constant out in front is uniformly bounded by a small, fixed constant. As

a result, it remains to show that the number of sketches stored by dmapprox at any

given time is sufficiently small.

According to our algorithm description, we maintain DM sketches only for nodes

which are both completed and uncomplemented. Since, for any given level of the



24

tree, the sketches for the nodes of this level are obtained sequentially from left to

right, at most one node from any level can be both completed and uncomplemented at

any point during the stream. As a result, our algorithm stores O(log(n)) sketches at

any point in time. This means that the total amount of space needed to store these

sketches is O( 1
γ2

log3(n) log(m)) = O( 1
ε2

log5(n) log(m)). Since none of the intermediate

computations require more space than this, the desired result is achieved.

Lastly, we need to show that dmapprox runs in time O( 1
ε3
n log6(n)). We start

with n intervals of size 1 and we finish with 1 interval of size n, so our procedure

performs n − 1 applications of merge and shrink, each of which take O( 1
γ3

log3(n))

time. Since our entire procedure consists of constructing our DM-sketches for the leaves

(each of which takes O(1) time), performing these applications of merge and shrink,

and outputting a value from our final D matrix, the entire procedure runs in time

O( 1
γ3
n log3(n)) = O( 1

ε3
n log6(n)). �

3.4 Sequence Matrices

In this section, we give the definition of the term coherence that appears in Lemma 3.3.3

and Lemma 3.3.4, and we prove the lemmas.

At a high level, the goal of this section is to show that our shrink procedure yields

a sketch which is sufficiently small. In order to do so, it will be necessary to keep track

of not only the lengths of the increasing sequences represented by our D matrices, but

also the sequences themselves. We have the following definitions:

• A sequence matrix S of an interval I is a matrix with rows and columns indexed

by values of f , whose entries are subsets of I which are index sets of increasing

subsequences.

• A sequence matrix is said to represent a DM sketch (L,R,D) if the rows of S are

indexed by L, the columns of S are indexed by R, and for each l ∈ L and r ∈ R

the entry S(l, r) is an index set of an increasing subsequence of I × (l, r] of length

|I| −D(l, r).



25

Looking at shrink, we see that an element is added to L′ each time condition (3.1)

in the shrinking procedure is violated. We would like to show that each violation of

this condition can be associated to a set of witnesses to the violation (which we call

irrelevant elements below) of sufficient size. To illustrate the idea, consider l1, l2 ∈ L,

r ∈ R such that D(l2, r) > (1 + γ)D(l1, r) (a violation of condition (3.1)). If we set

k = D(l2, r)−D(l1, r), then if S represents (L,R,D), S(l1, r) has k more elements than

S(l2, r), so it is clear that S(l1, r) contains at least k elements which do not appear in

S(l2, r). We need for our argument that none of these elements appear in any entry of

S in any row at or above l2, but unfortunately this is not true for an arbitrary sequence

matrix representative of (L,R,D). However, it will be possible for us to guarantee that

this condition (which we call coherence) is satisfied by the sequence matrices that we

consider. This motivates the following definitions.

• Given a sequence matrix S, an index i is said to be left irrelevant (henceforth we

will refer to this simply as irrelevant) to l ∈ [m] ∪ {0} if for all l′ ∈ L, r ∈ R such

that l′ ≥ l, S(l′, r) does not contain i. Analogously, an index i is said to be right

irrelevant to r ∈ [m] ∪ {0} if for all r′ ∈ R, l ∈ L such that r′ ≤ r, S(l, r′) does

not contain i.

• A DM sketch (L,R,D) is said to be left-coherent for I if there exists a represen-

tative sequence matrix S for this sketch such that for any two values l1, l2 ∈ L,

r ∈ R, S(l1, r) contains at least D(l2, r)−D(l1, r) indices which are left irrelevant

(irrelevant) to l2. Analogously, a DM sketch is said to be right-coherent for I if

there exists a representative sequence matrix S for this sketch such that for any

two values r1, r2 ∈ R, l ∈ L, S(l, r2) contains at least D(l, r1) − D(l, r2) indices

which are right irrelevant to r1. Call (L,R,D) coherent if it is both left-coherent

and right-coherent.

• For S a sequence matrix which represents a DM sketch (L,R,D), the sequence

estimator induced by S is the (m+ 1)× (m+ 1) sequence matrix S∗ given by:

S∗(l, r) = S(l̄L, rR)



26

For the purposes of our analysis, we will build up these sequence matrices in the same

way we build up our distance matrices. For i ∈ [n], the trivial sequence matrix for i

is the 1× 1 matrix [{f(i)}]. Note that the trivial sequence matrix for i represents the

trivial sketch for i.

Let (L1, R1, D1) and (L2, R2, D2) be valid DM sketches for consecutive intervals

I1 and I2 respectively, and let (L,R,D) be the output sketch obtained by applying

merge to these two sketches. Given sequence matrices S1 and S2 which represent

(L1, R1, D1) and (L2, R2, D2) respectively, we construct a sequence matrix S which

represents (L,R,D) as follows. Recall that the matrix D constructed in our algorithm

had entries D(l, r), where D(l, r) = minl≤z≤r(D
∗
1(l, z)+D∗2(z, r)). Let z0 be the smallest

z value achieving this minimum. Now let S(l, r) = S∗1(l, z0) ∪ S∗2(z0, r). It is clear that

this union is an index set of an increasing subsequence of I × (l, r). Furthermore, its

size by the representativity of S1 and S2 is

(|I1| −D∗1(l, z0)) + (|I2| −D∗2(z0, r))

= |I| − (D∗1(l, z0) +D∗2(z0, r))

= |I| −D(l, r)

This shows that S is representative of (L,R,D). Call S the merged sequence matrix of

S1 and S2.

We now state and prove a proposition which will help us prove Lemma 3.3.4.

Proposition 3.4.1 Let I be an interval split into two halves I1 and I2, and let S1, S2

be sequence matrices which represent I1, I2 respectively. Let S be the merged sequence

matrix of S1 and S2. For l ∈ L and any index i ∈ I1, if i is irrelevant to l in S1, then i

is irrelevant to l in S. Similarly, for r ∈ R and any index i ∈ I2, if i is right irrelevant

to r in S2, then i is right irrelevant to r in S.

Proof We prove the first statement, the proof of the second part of the proposition is

analogous. Let l′ ∈ L such that l′ ≥ l, and let r ∈ R. We aim to show that S(l′, r) does



27

not contain i. We have that

S(l′, r) = S∗1(l′, z0) ∪ S∗2(z0, r)

= S1(l̄′
L1 , z0R1

) ∪ S2(z̄0
L2 , rR2

)

Since i is irrelevant to l in S1, S1(l̄′
L1 , z0R1

) does not contain i. Furthermore, S2(z̄0
L2 , rR2

)

does not contain i, as i lies in I1, and S2(z̄0
L2 , rR2

) ⊆ I2. This shows that S(l′, r) does

not contain i, proving the claim. �

Using this tool, we now prove Lemma 3.3.4.

Proof First, it is clear that the trivial sequence matrix for i exhibits the coherence of

the trivial sketch for i, as L and R both contain 1 element, making the condition for

coherence trivially satisfied.

It remains to show that the resultant sketch (L,R,D) from the algorithm merge

is coherent, given that the input sketches are coherent. We prove that (L,R,D) is

left-coherent, the proof that it is right-coherent is analogous and left to the reader. Let

I1, I2, I be as defined in Lemma 3.3.1, and let (L1, R1, D1) and (L2, R2, D2) be coherent

DM sketches for I1 and I2 respectively. Let S1 and S2 be the representative sequence

matrices for these sketches given by the left-coherent condition, and let S be the merged

sequence matrix of S1 and S2. Let l1 < l2 be values in L, and let r ∈ R (Note that

the statement is trivial if l1 = l2, so we only consider l1 6= l2). Our goal will be to find

D(l2, r)−D(l1, r) elements in S(l1, r) which are irrelevant to l2. Let z0 be the minimum

value such that

D(l1, r) = D∗1(l1, z0) +D∗2(z0, r)

We break the argument into two cases:

Case 1: z0 ≥ l2

In this case, we have

D(l2, r) = min
l2≤z≤r

(D∗1(l2, z) +D∗2(z, r))

≤ D∗1(l2, z0) +D∗2(z0, r)



28

so defining k = D∗1(l2, z0)−D∗1(l1, z0), we have

D(l2, r)−D(l1, r) ≤ D∗1(l2, z0)−D∗1(l1, z0) = k

Since (L1, R1, D1) is left-coherent, S∗1(l1, z0) contains at least k indices which are irrel-

evant to l2. These indices are in S(l1, r) by definition of the merged sequence matrix,

and they are irrelevant to l2 in S by Prop. 3.4.1. As such, we find k indices in S(l1, r)

which are irrelevant to l2 proving the claim in this case.

Case 2: z0 < l2

In this case, we have

D(l2, r) = min
l2≤z≤r

(D∗1(l2, z) +D∗2(z, r))

≤ D∗1(l2, l2) +D∗2(l2, r)

D(l2, r)−D(l1, r) ≤ D∗1(l2, l2)−D∗1(l1, z0)

+D∗2(l2, r)−D∗2(z0, r)

Let k1, k2 be such that

D∗1(l2, l2)−D∗1(l1, z0) = k1

D∗2(l2, r)−D∗2(z0, r) = k2

By definition ofD∗, we haveD∗1(l2, l2) = |I1| = D∗1(l2, z0), so k1 = D∗1(l2, z0)−D∗1(l1, z0).

Again, since (L1, R1, D1) is left-coherent, S∗1(l1, z0) contains at least k1 indices which

are irrelevant to l2. These indices are in S(l1, r) by definition of the merged sequence

matrix, and they are irrelevant to l2 in S by Prop. 3.4.1.

Furthermore, since (L2, R2, D2) is left-coherent, S∗2(z0, r) contains at least k2 indices

which are irrelevant to l2. These indices are in S(l1, r) by definition of the merged

sequence matrix, and they are irrelevant to l2 in S by Prop. 3.4.1. Lastly, note that

S∗1(l1, z0) ⊆ I1 and S∗2(z0, r) ⊆ I2, so these two sets of (k1 and k2) indices are disjoint.

As such, we find k1 + k2 indices in S(l1, r) which are irrelevant to l2 proving the claim

in this case as well.

This exhausts all cases, proving the lemma. �



29

We now prove Lemma 3.3.3.

Proof First, the reader should note that if (L,R,D) is a coherent sketch (with sequence

matrix S) and (L′, R′, D′) is any shrinking of (L,R,D) (i.e. L′ ⊆ L, R′ ⊆ R, and D′ is

the associated submatrix of D induced by L′ and R′), then it is clear that (L′, R′, D′) is

also coherent, as we can just take S′ to be the appropriate submatrix of S. As a result,

we have that shrink preserves coherence.

Consider the sequence x1, x2, x3, ..., xs = l|L| (without the x̂’s) described in the

shrink procedure. For each i, let ri be an element r ∈ R that maximizes D(xi+1, r)−

D(xi, r) and let ki = D(xi+1, ri) − D(xi, ri). Let S be a coherent sequence matrix

representative of (L,R,D). By the definition of left-coherent, for each i between 1

and s − 1 there are ki elements of S(xi, ri) that are irrelevant to xi+1 (and thus also

irrelevant to xi+2, . . . , xs). Thus these sets of irrelevant elements are disjoint and so

k1 + . . .+ ks−1 ≤ n.

We now prove by induction on j between 1 and s−1 that k1 + . . .+kj ≥ (1 +γ)j−1.

For the basis, k1 ≥ 1, and for the induction step suppose j > 1. There are k1+· · ·+kj−1

indices that are irrelevant to xj so all entries of row xj are at least this sum which is at

least (1+γ)j−2 by the inductive hypothesis. Since kj is at least γ times the smallest entry

of row xj by condition (3.1) in shrink, we have k1 + · · ·+kj ≥ (1+γ)(k1 + · · ·+kj−1) ≥

(1 + γ)j−1.

On the other hand, k1 + · · · + ks−1 ≤ n which implies s ≤ log1+γ(n) + 2 so |L′| ≤

2 log1+γ(n) + 3. Similarly |R′| is bounded above by the same quantity. �

3.5 Algorithm for unknown input length

In streaming algorithms, the question of what values are known to the algorithm is

frequently asked. The reader should note that, in our previous algorithm, m was not

needed, however the algorithm did require a priori knowledge of the value of n. A closer

look at the algorithm shows that, apart from the value of γ, knowledge of n was not

needed (note that the way we progress through the binary tree allows us to build to it

as we go, continuing the procedure in the same way regardless of the size of n).



30

Seeking this, we look at the role of γ in our approximation, and we see that one

property it had was that
∏log(n)
i=1 (1 + γ)2 ≤ 1 + ε. We replace γ with a quantity that

depends on the current level of the binary tree, call it a(i) (Here level is counted from

the bottom up, i.e. the leaves are at level 1, the parents of the leaves are at level 2, etc).

If n is not known beforehand then in principle it could be arbitrarily large, meaning

that if we replace γ with a(i), we require
∏∞
i=1(1 + a(i))2 ≤ 1 + ε. Taking a(i) = c

i1+β

for any fixed β > 0 we can choose c = c(β) so that this product is at most 1 + ε. This

will yield the desired accuracy of approximation, so it remains to determine the amount

of space that this modified algorithm would require.

This modification will result in DM sketches of size O(log1+a(i)(n)) after i merges.

We see that a(i) ≤ c
log1+β(n)

, since we have log(n) levels in our tree, so this yields

DM sketches of size at most O(1
ε log2+β(n)). As a result, our D matrices have at most

O( 1
ε2

log4+2β(n)) entries, resulting in an algorithm that runs in spaceO( 1
ε2

log5+2β(n) log(m)),

for any β > 0.



31

Chapter 4

Lower Bounds for Approximating Distance to

Monotonicity in the Streaming Model

In this chapter we use standard communication complexity arguments to prove lower

bounds for the space complexity of approximating distance to monotonicity for both

randomized and deterministic algorithms. We apply a reduction from an appropriate

one-way communication problem, a common technique which has been used frequently

to establish streaming lower bounds [24].

4.1 Reduction

Let A(n, ε) be the problem of approximating the distance to monotonicity of n integers

taking on values in [m] (where m = poly(n)) to within a factor of (1+ε). Now consider

the one-way communication problem where Alice is given a list of k r-bit integers

x1, x2, ..., xk, Bob is given an index i between 1 and k, as well as an r-bit integer y, and

the goal is to compute GT (xi, y), where GT is the “greater than” function (GT (x, y) = 1

iff x > y). Denoting this problem by B(k, r), we show that for appropriate choices of

parameters, B(k, r) can be reduced to A(n, ε).

Theorem 4.1.1 Let k = b1
2 log1+ε(

εn
2d1/εe)−

1
2c, r = dlog(n)e, and assume there exists

a protocol to solve A(n, ε) using S(n,m, ε) bits of space. Then there is a protocol for

B(k, r) using O(S(n,m, ε)) bits.

In order to prove this theorem, we will need the following proposition.

Proposition 4.1.2 Let ε > 0, n ∈ N, k = b1
2 log1+ε(

εn
2d1/εe) −

1
2c. There exists a

sequence of positive integers a1, a2, ..., ak satisfying the following properties:



32

1. ∀j < k, aj ≥ ε
k∑

i=j+1

ai

2.

k∑
i=1

ai ≤
n

2

Proof We construct such a sequence a1, a2, ..., ak as follows. Let ak = d1
εe. For j < k,

set aj = d(1 + ε)aj+1e. To establish property 1, we see inductively

aj ≥ (1 + ε)aj+1

= εaj+1 + aj+1

≥ εaj+1 + ε

k∑
i=j+2

ai

= ε

k∑
i=j+1

ai

For property 2, we first note trivially that for any real number x ≥ 1
ε , we have (1+ε)x ≥

x+ 1 ≥ dxe. As a result, for any j < k, aj = d(1 + ε)aj+1e ≤ (1 + ε)2aj+1. This yields

the following:

k∑
i=1

ai ≤ a1 +
k∑
i=2

ai

≤ a1 +
1

ε
a1

=
1 + ε

ε
a1

≤ 1 + ε

ε
(1 + ε)2kd1/εe

≤ n

2

�

Using this, we prove Theorem 4.1.1.

Proof Assume that we have a streaming protocol P for A(n, ε) using S(n,m, ε) bits,

and consider an instance of B(k, r) where Alice receives x1, x2, ..., xk as input, and Bob

receives i, y as input. Consider the sequence of integers T (x1, x2, ..., xk, i, y) defined as

follows. Let a1, a2, ..., ak be a sequence of integers satisfying Prop. 4.1.2, and for any



33

j let g(xj , l) = n2(l − 1) + nxj . T (x1, x2, ..., xk, i, y) will consist of k + 1 blocks, where

for j ≤ k, the jth block consists of aj consecutive integers ending at g(xj , j), and the

(k+ 1)th block will consist of n−
∑k

j=1 aj consecutive integers beginning at g(y, i) + 1.

Under this construction, if xi ≤ y, then the first i blocks along with the last block

form an increasing subsequence of length greater than n/2, and any increasing subse-

quence containing any element from blocks i+ 1 through k cannot contain any element

from the last block, so it will have length at most n/2. As a result, the increasing sub-

sequence of the first i blocks and the last block are a longest increasing subsequence, so

the distance to monotonicity of T (x1, x2, ..., xk, i, y) is
∑k

j=i+1 aj . On the other hand,

if xi > y, then the same is true for the first i − 1 blocks along with the last block, so

the distance to monotonicity of T (x1, x2, ..., xk, i, y) is
∑k

j=i aj in this case. By con-

dition 1 of Prop. 4.1.2, these values differ by a factor of at least (1 + ε), so P must

be able to separate these two cases. As a result, Alice can construct the first k blocks

of T (x1, x2, ..., xk, i, y) using her input and run P on this part of the sequence. She

can then communicate the current bits stored by P to Bob, at which point Bob can

construct the last block of T (x1, x2, ..., xk, i, y) using his input and run the remainder

of P to get its result. At this point, Bob can use the result of P to determine whether

or not xi > y, and output the result. This is a protocol for B(k, r) using O(S(n,m, ε))

bits, so B(k, r) requires O(S(n,m, ε)) bits. �

4.2 Results

Using the reduction from the previous section, any deterministic (resp. randomized)

lower bound for B(k, r) will translate to a deterministic (resp. randomized) lower bound

for A(n, ε).

Lemma 4.2.1 Given B(k, r) as defined above,

1. Any deterministic protocol for B(k, r) requires Ω(kr) bits.

2. Any randomized protocol for B(k, r) requires Ω( kr
log(r)) bits.



34

Before proving this lemma, we note that it along with Theorem 4.1.1 immediately im-

plies the following two results.

Theorem 4.2.2 Any deterministic streaming algorithm which approximates the dis-

tance to monotonicity of a sequence of n nonnegative integers to within a factor of 1+ε

requires space Ω(1
ε log2(n)).

Theorem 4.2.3 Any randomized streaming algorithm which approximates the distance

to monotonicity of a sequence of n nonnegative integers to within a factor of 1 + ε

requires space Ω(1
ε

log2(n)
log log(n)).

We now prove Lemma 4.2.1

Proof Starting with the first claim, it is a well known fact that the deterministic one-

way communication complexity of a function D(x, y) is just log(w), where w is the

number of distinct rows in the communication matrix for D. Since any two rows of

the matrix for B(k, r) corresponding to distinct k-tuples (x1, x2, ..., xk) are distinct, it

remains to count the number of such possible k-tuples. Each xi can take on any of 2r

values, giving us 2kr such k-tuples. The claim follows.

Before addressing the second claim, we first note that B(1, r) is just the “Greater

Than” function, GT (r). It has been shown that a lower bound for the one-way commu-

nication complexity of GT (r) is Ω(r) [16]. It seems plausible that this would translate

to a Ω(kr) lower bound for the one-way communication complexity of B(k, r), however

we are unable to adapt this argument. [15] gives a simpler argument achieving a lower

bound of Ω( r
log(r)) for the one-way communication complexity of GT (r), which we are

able to adapt to achieve a lower bound of Ω( kr
log(r)) for B(k, r). Applying this technique,

we show that running a randomized protocol for B(k, r) O(log(r)) times will yield a

randomized one way protocol capable of computing the indexing function where Alice

is given a kr bit string x1, x2, ..., xkr, Bob is given an index i ∈ [kr], and the goal is to

output xi, a problem that is known to require Ω(kr) bits [15].

Let P be a randomized protocol for B(k, r) achieving the optimal complexity. Fix

inputs x1, x2, ..., xk, i, y for Alice and Bob. If Alice and Bob run P on this input, they



35

will err with probability at most 1/3. If instead Alice and Bob run P c log(r) times

for some constant c and Bob outputs the majority result, this protocol will err with

probability at most r−Ω(1). Note that the message sent by this protocol does not depend

on Bob’s input, meaning Bob can compute the output for several different choices of

his input without any additional communication (though it will increase the probability

of error). This means that for the set {y1, y2, ..., yr}, Bob can use Alice’s message to

compute GT (xi, yj) for each j. Furthermore, since this set has only r elements, the

probability that all of these computations are correct is at least 1 − r−Ω(1). Choosing

the yj ’s accordingly, Bob can essentially run a binary search to determine xi exactly

with high probability. To see this, we first note that, given a fixed xi, running a binary

search to determine xi will use a fixed sequence y1, y2, ..., yr, assuming each output of

GT (xi, yj) is correct. Therefore, for any j, if GT (xi, yt) gave the correct output for each

t < j, then Bob’s choice of yj will be determined by xi (i.e. by the previous values of

GT (xi, yt)). Since the value of xi uniquely determines the sequence y1, y2, ..., yr that will

yield a correct binary search for xi, we can use a union bound to bound the probability

that GT (xi, yj) outputs the correct value for all indices j. Since for any fixed j, the

probability that the output for GT (xi, yj) is incorrect is at most r−Ω(1), the probability

that at least one of these is incorrect is at most r1−Ω(1) = r−Ω(1). This shows that the

probability that all of these outputs are correct (i.e. the probability that Bob correctly

computes xi) is at least 1− r−Ω(1).

As a result, this is a randomized protocol P ′ for the problem where Alice is given

x1, x2, ..., xk, Bob is given i, and the goal is to compute every bit of xi. This protocol

can be used as a protocol for the indexing problem mentioned earlier as follows. For

an instance of this aforementioned problem, Alice is given x′1, x
′
2, ..., x

′
kr, Bob is given

an index i ∈ [kr], and the goal is to output x′i. Alice can view her input as k strings

of length r and run P ′. Bob can run P ′ using b i−1
n + 1c, which will give him the value

of x′i (in addition to several other values x′j) with probability at least 2/3. This shows

that c log(r) iterations of P can be used to simulate a computation known to require

Ω(kr) bits [15]. The result follows. �



36

Chapter 5

Approximation Algorithm for Ulam Distance

In this chapter, we outline our algorithm for efficiently approximating ulam distance.

Here we are working in the random access model where we are allowed query access

to the input sequences, and our goal is to minimize the amount of time our algorithm

takes in the worst case. To do this, we again employ a “divide and conquer” approach,

making use of and building on ideas from [4] and [21]. The framework we start with

is similar to the framework of [4]. We first break the input box U up into a box chain

with the property that (with probability at least 2/3) the LCS’s of the boxes in the box

chain together form an LCS of the input box U . Again following the track of [4], we

approximate the ulam distance of each of these boxes by considering further subboxes

of them. However, the way in which we do this deviates somewhat from the approach

of [4]. Additionally, we modify the terminology of this approach, reformulating these

steps in terms of gap tests, as well as a class of procedures which we will define, called

loss indicators.

After all this, we end up with the problem of approximating Xloss(T ) for T a

subbox of B, which is itself a subbox of the input box U . In [4], this task was done

by standard inversion counting techniques. Our goal is a more accurate approximation

algorithm, for which such techniques will no longer suffice. As a result, we implement

the more subtle approach of approximating Xloss(B) outlined in [21]. Unfortunately,

the algorithm of [21] is an approximation algorithm for distance to monotonicity, where

everything is done in the LIS setting. Since we are working in the LCS setting, we need

to find ways to simulate the tasks of this algorithm in the LCS setting. In particular,

for an X-index x, the value f(x) can be queried in constant time in the LIS setting, but

it requires a linear amount of time to find a y with fX(x) = fY (y) in the LCS setting.



37

Since we desire a sublinear complexity for our algorithm, it is necessary for us to find

a more clever simulation of this task. We are able to do this, but it requires us delving

a little deeper into the nature of these samples, and also requires us to make several

other modifications of the algorithm of [21].

The remainder of this chapter addresses the task of providing a more detailed

overview of our approach. At the end of this chapter, we will outline the layout of

the chapters which deal with the details of this algorithm, providing references to the

sections which address the tasks employed by our algorithm.

5.1 Overview of the algorithm

Our results use ideas as well as the high level structure of the AN algorithm [4].

This algorithm runs in time Õ(nd +
√
n), and with high probability, provides a (C, 0)-

approximation to the Ulam distance for some large C. We carefully analyze AN to

identify the places that contribute significantly to the multiplicative loss. Along the

way we abstract and simplify the key ideas of the algorithm.

Prop. 2.6.1 allows us to focus on gap tests. We also need gap tests for the Ulam

distance within boxes. The AN algorithm can be viewed as constructing a hierarchy of

three gap tests, each with successively better run times.

• A slow gap test whose run time is Õ(w(B)3/2

b ).

• A medium gap test whose run time is Õ(w(B)
√
a

b ).

• A fast gap test whose run time is Õ(w(B)
b +

√
a).

The slow gap test is built using inversion/violation counting techniques, common

to property testing algorithms for LIS [10, 19, 1]. The medium gap test is built from

the slow gap test and the fast gap test is built from the medium gap test. (Both

are done through related, but different techniques.) We refer to the methods that do

this as the speed-up procedures. The drawback of their algorithm is the multiplicative

approximation guarantee (quality) of the gap test. The slow gap test has quality 36,

the medium gap test has quality 512, and the fast gap test has quality about 1400.

Our improvement has two components:



38

• Higher quality speed-up: By a careful analysis and modification of the AN

framework, we avoid the explosion of the quality factor from the slow test to the

medium, and from the medium to the fast. Thus, the fast gap test has quality only

slightly worse than the slow gap test.

• Higher quality slow gap test: The main bottleneck in the quality comes from

the slow test. Their slow test relies on a standard technique from monotonicity testing

called inversion counting and this method cannot yield approximation factors better

than 2. The SS algorithm [21] overcomes this limitation to get a polylogarithmic time

algorithm for approximating distance to monotonicity with an additive error δn.

We adapt the SS algorithm to get a slow gap test with quality (ε, 0). The SS

algorithm is an incredibly complex beast. Our main insight is that a gap test can be

constructed by a careful modification to SS that avoids getting into the intricacies of

SS.

We describe some of the key ideas behind these two components.

5.1.1 Getting the speed-up routines

Our speed-up routines are directly inspired by those in the AN algorithm, but differ in

several respects: firstly, we provide a conceptual simplification of AN for a cleaner expo-

sition; secondly, the requirement of a higher quality speed-up introduces new technical

ideas.

Switching between loss functions: We begin with the latter. Routine calcula-

tions give tighter bounds for many of the AN arguments. But the transformation from

the slow gap test to the medium test (at the very best) takes a β-gap test and produces

a (β+ 1)-gap test. (Note that the latter gives a (1 +β, 0)-approximation.) This suffices

for a constant factor approximation to the Ulam distance, but cannot yield an (overall)

(ε, 0)-approximation. Avoiding this requires getting into the subtlety of defining losses.

All the AN gap tests (and proofs) deal with Xloss(B) = w(B) − lcs(B). Note

that this is potentially smaller that the Ulam distance uloss(B), which is Xloss(B) +

h(B)− lcs(B) ≥ Xloss(B). Thus, the AN gap tests are dealing with a more stringent

loss function. Our slow gap test also yields an Xloss(·) bound, but our medium gap test



39

only yields a guarantee for uloss(B). Of course, this suffices for the final algorithm,

but it is crucial for avoiding the quality loss from a β-gap test to a (β + 1)-gap test.

Loss indicators: One key conceptual simplification we introduce in building the

medium and fast gap test is an indicator for a parameter P . Suppose we are trying to

estimate a nonnegative parameter P , which has an upper bound r. A (β0, β1)-quality

P -indicator is a 0-1 valued random variable ZP , satisfying Pr[ZP = 1] ∈ [Pr −β0,
P
r +β1].

In particular ZP is an estimator for P having bias at most max(β0, β1). We will consider

indicators for uloss(B) and Xloss(B), which we refer to as loss indicators. Here we

take the trivial upper bound for uloss(B) to be w(B) + h(B) and for Xloss(B) to be

w(B).

Given such an indicator, we can easily construct a gap test for P with thresholds a

and b, where b > a+ (β0 + β1)r.

Proposition 5.1.1 Suppose for a nonnegative parameter P with upper bound r, we

have a P -indicator with (β0, β1)-quality, then we can construct a (τ, (β0 +β1)r)-gap test

for P with error at most κ > 0 which, for any a, b with a ≥ (β0 + β1)r, b > (1 + τ)a,

runs in time O( (1+τ)r
bτ3

log( 1
κ)) times the running time of the P -indicator.

Proof Suppose that the probability that the P -indicator outputs 1 is q. If we take m

samples of the estimator, the sum of the outputs is a random variable Z ∼ Bin(m, q).

By Theorem 2.5.1, for δ > 0, Pr[Z < (1− δ)mq] ≤ e−δ2mq/2. Therefore, if m ≥ 2 log( 1
κ

)

δ2q
,

this is at most κ. Similarly, if m ≥ 3 log( 1
κ

)

δ2q
, then Pr[Z > (1 + δ)mq] is at most κ.

Our construction is simply to take m samples of the estimator and declare SMALL

iff the fraction of 1’s is less than (1 − τ
3 )( br − β0). If the value of P is at least b, then

q ≥ b
r − β0. Therefore, taking δ = τ

3 , if m ≥ 18 log( 1
κ

)

τ2( b
r
−β0)

, the probability that we declare

SMALL is at most κ.

If on the other hand, the value of P is at most a−(β0+β1)r, then q ≤ a−β0r ≤ b−β0r
1+τ .

Therefore, taking δ = τ
3 , if m ≥ 27 log( 1

κ
)

τ2( b
r
−β0)

, the probability that we declare BIG is at

most κ.

Since b > (1 + τ)a ≥ (1 + τ)(β0 +β1)r, β0 ≤ b
(1+τ)r . Therefore, b

r −β0 ≥ τ
1+τ

b
r , so in

either case, taking m = O( (1+τ)r
bτ3

log( 1
κ)) samples of the estimator suffices, establishing



40

the claim. �

The above procedure constructs a (τ, (β0 + β1)r)-gap test for P , however we will often

want to obtain a purely multiplicative gap test for P . It turns out that if β0, β1 are

(approximate) multiples of the parameter P , then we can treat these additive terms as

multiplicative terms, meaning that the gap test we have for P can be stated as a purely

multiplicative gap test.

Proposition 5.1.2 Suppose G is a (τ, ε(P + 1))-gap test for an integer parameter P .

Then for input thresholds a, b with a ≥ 1, G is a (τ + 2ε)-gap test for P .

Proof Let a, b be input thresholds with b ≥ (1 + τ + 2ε)a, a ≥ 1. We know that G is

a (τ, ε(P + 1))-gap test for P , so if we have input parameters a′, b′ with b′ ≥ (1 + τ)a′,

the test will return BIG if the value of P is at least b′ and SMALL if the value of P

is at most a′ − ε(P + 1). Set b′ = b, a′ = b
1+τ . If the value of P is at least b, the

test will return BIG. If the value of P is at most a ≤ a′ − 2εb, then if P is at least 1,

a′ − 2εb ≤ a′ − ε(2P ) ≤ a′ − ε(P + 1), so the test returns SMALL. If P is 0, then since

a ≥ 1 = P + 1 and 2b ≥ a, a′ − 2εb ≤ a′ − εa ≤ a′ − ε(P + 1), so the test again returns

SMALL. �

It turns out that we can frame most of AN in this language, reformulating it as

algorithms that generate indicators for various parameters and run in very fast expected

time. This allows for a cleaner description of AN, and also eases the way to plug in

better slow gap tests.

5.1.2 Getting a better slow gap test

Our improved slow gap test is obtained by adapting the fast LIS (longest increasing

subsequence) algorithm of SS. In the LIS problem, the input is a single sequence f and

the problem is to find the longest monotonically increasing subsequence of f . We can

represent the problem geometrically in the plane by the set of points P (x) = (x, f(x))

for x ∈ [n]. Just as with the LCS problem, the LIS problem is to find the longest

increasing chain of points. Let lossf denote the number of points not on the LIS.



41

The SS algorithm obtains an approximation having error εlossf that runs in time

Õ(( w(B)
lossf

)O(1)). We want to adapt the SS algorithm to get the base gap test. The first

step in the adaptation is to improve the running time of the SS algorithm to Õ( w(B)
lossf

).

We sketch that improvement at the end of this section.

Even though LCS and LIS have the same geometric representation, we cannot adapt

the LIS algorithm directly to LCS. The reason is that the LIS algorithm has the ability

to query the point P (x) associated to a particular X-index x at unit cost. The LCS

algorithm can’t do this because, given x, the algorithm can read the symbol fX(x), but

doesn’t know which Y -index it’s matched to in fY .

Examining the SS algorithm, one sees that the key primitive that it needs is, given

a box of width w and a time bound Õ(t), in time Õ(t) either generate a random point

in the box, or determine that there are at most w
t points in the box. This primitive is

implemented in the LIS algorithm by sampling Õ(t) random indices and returning the

first point in the box or if none, saying that there are at most w
t points. So to adapt

this algorithm to LCS, we just need to simulate that primitive.

To simulate this primitive, we select Õ(t
√
w(B)) random X-indices from X(B) and

Õ(t
√
w(B)) random Y -indices from Y (B) and select a random match from among them

if there is a match (The full details appear in section 7.3). Provided that h(B) and w(B)

are not too far apart, a ”birthday paradox“ calculation shows that if the number of

points is at least w(B)
t , then this procedure will almost certainly find a match. Thus, we

are able to simulate the primitive at a multiplicative cost of Õ(
√
w(B)). This simulation

fails on unbalanced boxes, but it turns out that these boxes are unimportant for getting

an accurate estimate. Therefore the overall running time of the resulting LCS algorithm

is Õ( w(B)
Xloss(B)

√
w(B)).

Now we describe our improvement to the LIS algorithm. While the run time

bound given by [21] for a multiplicative (1 + ε) approximation to LIS distance is

Õε(poly(w(B)/Xloss(B))), [21] also proves a Õδ(w(B)/Xloss(B)) bound for approxi-

mating LIS distance to within an additive δn term. We observe that though the full LIS

algorithm of [21] is iterative with potentially many levels of recursion, when Xloss(B)

is small, most runs of the algorithm end in just one level. At a high level, we can



42

combine a version of SS that runs for only one level of recursion with the additive δn

version, to get an overall improved running time. This requires some careful param-

eter settings, and yields an (ε, 0)-approximation algorithm for Xloss(B) that runs in

Õε(w(B)/Xloss(B)) time.

5.1.3 The high level structure and main lemmas

The construction consists of eight algorithms:

• XLI0 is a point classification procedure such that, when run on a uniformly

random X-index of the input box T , is an Xloss-indicator for T running in time

Õε3(
√
w(T )).

• BaseGapTest is the slow gap test for Xloss(T ), running in time Õ(w(T )
b

√
w(T )),

using XLI0 as a subroutine.

• XLI1 generates an Xloss-indicator for a box T in time Õ(
√
w(T )), using BaseGapTest

as a subroutine.

• XLI2 generates an Xloss-indicator for a box B in time Õ(
√
r) by running XLI1

on a box of width r.

• XGapTest is the medium gap test for uloss(B), using XLI2 as a subroutine.

• ULI1 generates a uloss-indicator for a box B that runs in time Õ(
√
uloss(B)+1),

using XGapTest as a subroutine.

• ULI2 generates a uloss-indicator for a box U that runs in time Õ( b√
n

+ 1) by

running ULI1 on a subbox of width Õ(b)

• UGapTest is the fast gap test for uloss(B), using ULI2 as a subroutine.

The reader should note that the medium gap test for uloss(B) uses an Xloss-

indicator rather than a uloss-indicator. This is one of the technical subtleties of the

algorithm and the proof. We state the eight main lemmas, corresponding to eight steps

listed above.

Tab. 5.1 lists each of the 8 procedures along with the running time, quality, failure

probability and any constraints on the input that are assumed in establishing the be-

havior. For each procedure there is a lemma that establishes the guarantees for that



43

Table 5.1: Procedure Guarantees

Procedures

XLI0(x, T ) BaseGapTest

(T , a, b)

XLI1(T ) XLI2(B, a′, r)

Running

Time

Õε3(
√
w(T )) Õε3(w(T )

b

√
w(T )) Õε3(

√
w(T )) Õε3(

√
r)

Quality (0, ε4
Xloss(T )
w(T ) +

(1 +

ε4
terrε3 (T )

w(T ) )

(ε3, terrε3(T )) ( 2ε3
1+2ε3

Xloss(T )
w(T ) ,

ε3
Xloss(T )+1/n

w(T ) +

(1 +

ε3)
terrε3 (T )

w(T ) )

(4ε3
Xloss(B)
w(B) ,

5ε3
Xloss(B)+1

w(B) +

2ε3
h(B)−w(B)

w(B) )

Failure

Probability

1/3 1/3 — —

Input

Constraints

h(T ) ≤

2w(T )

h(T ) ≤ 2w(T ) h(T ) ≤ 2w(T ) r ≥ d100a′

ε23
e

procedure, assuming the guarantees for the procedure listed immediately before it in

the table.



44

By adapting the SS algorithm, we obtain the following procedure XLI0. XLI0

has a multiplicative quality term ε4, as well as an additive term terrε3(T ), which (as

mentioned earlier) is a somewhat technical term whose definition we defer to section

6.2.

Lemma 5.1.3 Suppose T satisfies the input constraints for XLI0(x, T ) in Tab. 5.1.

Then for x chosen uniformly at random from X(T ), XLI0(x, T ) is an Xloss-indicator

for T achieving the guarantees listed in Tab. 5.1.

Lemma 5.1.4 Assume that for any T satisfying the input constraints for XLI0, run-

ning XLI0(x, T ) for x chosen uniformly at random from X(T ) is an Xloss-indicator

for T achieving the guarantees listed in Tab. 5.1. Then BaseGapTest(T , a, b) is a gap

test for Xloss(T ) achieving the guarantees listed in Tab. 5.1.

Lemma 5.1.5 Assume that for any box T satisfying the input constraints of BaseGapTest

in Tab. 5.1, BaseGapTest(T , a, b) is a gap test for Xloss(T ) achieving the guarantees

listed in Tab. 5.1. Then XLI1(T ) is an Xloss-indicator for T achieving the guarantees

listed in Tab. 5.1.

Lemma 5.1.6 Suppose that B, a′, r satisfy the input constraints for XLI2(B, a′, r) in

Tab. 5.1. Assume that for any box T satisfying the input constraints of XLI1 in

Tab. 5.1, XLI1(T ) is an Xloss-indicator achieving the guarantees in Tab. 5.1. Then

XLI2(B, a′, r) is an Xloss-indicator achieving the guarantees in Tab. 5.1.

Lemma 5.1.7 Assume that for B, a′, r satisfying the input constraints for XLI2 in

Tab. 5.1, XLI2(B, a′, r) is an Xloss-indicator achieving the guarantees in Tab. 5.1.

Then XGapTest(B, a, b) is a gap test for uloss(B) achieving the guarantees in Tab. 5.1.

Lemma 5.1.8 Suppose that for a box B, XGapTest(B, a, b) is a gap test for uloss(B)

achieving the guarantees Tab. 5.1. Then ULI1(B) is a uloss-indicator achieving the

guarantees Tab. 5.1.

Lemma 5.1.9 Suppose that U , a, b,B0, . . . ,Bk satisfy the input constraints for ULI2

in Tab. 5.1. Assume that for any box B, ULI1(B) is a uloss-indicator achieving the



45

Table 5.1: Continued

Procedures

XGapTest

(B, a, b)

ULI1(B) ULI2

(U , a, b,B0, . . . ,Bk)

UGapTest

(U , a, b)

Running

Time

Õε2(w(B)
b

√
a) Õε1(

√
uloss(B)

+1)

Õε1(

√
buloss(U)

n +

1)

Õε(
n
b +

√
n)

Quality ε2 ( ε1
1+ε1

uloss(B)
w(B)+h(B) ,

ε1
uloss(B)+1/n
w(B)+h(B) )

( ε1
1+ε1

uloss(U)
w(U)+h(U) ,

ε1
uloss(U)+1
w(U)+h(U) )

ε

Failure

Probability

1/3 — — 2/5

Input

Constraints

— — U is an n× n

box,

B0, . . . ,Bk is a

box chain

spanning U with
k∑
i=0

uloss(Bi) =

uloss(U) and

∀i ∈ [k] ∪ {0},

w(Bi), h(Bi) =

Õ(b)

uloss(U) ≤

(1 + ε)b



46

guarantees in Tab. 5.1. Then ULI2(U , a, b,B0, . . . ,Bk) is a uloss-indicator achieving

the guarantees in Tab. 5.1.

Lemma 5.1.10 Suppose that U , a, b satisfy the input constraints for UGap in Tab. 5.1.

Assume that, for U , a, b,B0, . . . ,Bk satisfying the input constraints for ULI2 in Tab. 5.1,

ULI2(U , a, b,B0, . . . ,Bk) is a uloss-indicator achieving the guarantees in Tab. 5.1. Then

UGapTest(U , a, b) is a gap test for uloss(U) achieving the guarantees in Tab. 5.1.

5.2 Constructing loss indicators from gap tests

We sketch the construction and proof for the loss indicator procedures XLI1 and ULI1

(Lemma 5.1.5 and Lemma 5.1.8). The full proofs are in section 6.2. In both procedures,

the loss indicator is built from a gap test. The procedures XLI2 and ULI2 are loss

indicators constructed from loss indicators as opposed to gap tests; we will discuss

them in the next section along with the procedures XGapTest and UGapTest. XLI2

and XGapTest together form a process which constructs a gap test from the loss

indicator given by XLI1; XLI2 both improves the running time of the indicator (so

that XGapTest will be more efficient than BaseGapTest) and alters the quality of

the indicator in a way that makes it compatible with the analysis of XGapTest. ULI2

and UGapTest have a similar relationship. For these reasons, we choose to group the

exposition of these four procedures together in the next section as opposed to grouping

any of them with XLI1 and ULI1 in this section.

The constructions of XLI1 and ULI1 are elementary and generic; they are appli-

cable to general parameter indicators and not just loss indicators. For convenience, we

will assume that all randomized procedures make no error. (In general, we can ensure

this with high probability and take union bounds.)

We begin with the setting of Lemma 5.1.5, but simplify parameters for this discus-

sion. Fix a box B. Let τ > 0 be an arbitrarily small, but fixed constant. We have

a procedure BaseGapTest for Xloss(B) that runs in time Õ((w(B)/b)
√
w(B)). This

means that given arbitrary a, δ > 0 and b > (1 + τ)a, BaseGapTest correctly deter-

mines if Xloss(B) ≥ b (BIG) or Xloss(B) ≤ a− δ (SMALL). More abstractly, we have



47

a (τ, δ)-gap test for the parameter P = Xloss(B), with a maximum value w(B). We

wish to construct a loss indicator for P with quality (Θ(τP/w(B)),Θ((τP + δ)/w(B))).

A direct approach would be to simply estimate P using the gap test, and finally flip

an appropriate biased coin. Define ci = w(B)/(1 + τ)i. For increasing values of i, we

can run the gap test with a = ci and b = ci−1, and stop when the test reports BIG. As

shown by Prop. 2.6.1, the corresponding value of a is a (2τ + τ2, δ)-approximation to

P . The run time of a gap test is inversely proportional to b, and thus the very last test

dominates the run time of the indicator. The last value of b is Θ(P ) = Θ(Xloss(B)).

Thus, the run time of the indicator is Õ((w(B)/Xloss(B))
√
w(B)).

Inspired by the analysis in [4], we can design a faster indicator whose run time is

only Õ(
√
w(B)). The procedure XLI1 is constructed using this indicator.

We use Gi,j (for i > j) to denote the gap test with a = ci and b = cj . The simple

indicator described above runs gap test G1,0, G2,1, G3,2, . . . until one of them returns

BIG. The indicator described below uses a probabilistic stopping rule to get a better

running time.

1. Initialize h to 0.

2. While ch > 1

(a) Perform Gh+1,h.

(b) If gap test returns BIG, output 1.

(c) Else (gap test returned SMALL):

i. With probability 1− 1/(1 + τ), output 0.

ii. (With remaining probability) Increment h.

For simplicity of exposition, let us suppose that P = ck = w(B)/(1 + τ)k. The

probability that Gh+1,h is run is exactly (1 + τ)−h. The only way the indicator outputs

1 is when Gk+1,k is run, which happens with probability (1+τ)−k = P/w(B). Thus, the

indicator has the right expectation. The expected running time is Õ(
∑

h≤log1+τ w(B)(1+

τ)−h(w(B)/ch)
√
w(B)). Plugging in ch = w(B)/(1 + τ)h, the expected running time is

Õ(
√
w(B)), as desired.

To design ULI1, we require an indicator that is even faster. Suppose we have a gap



48

test for a parameter P that runs in time Õ((w(B)/b)
√
a). Then, we can get an indicator

with an expected running time of Õ(
√
P ), significantly better than Õ(

√
w(B)). (This

is precisely the statement of Lemma 5.1.8.)

The key is to run tests of the form Gi,j where i > j + 1. Depending on whether

it outputs BIG or SMALL, we can modify the i, j to make the gap smaller. The

description of the indicator follows.

1. Initialize i to dlog1+τ w(B)e (maximum possible index value) and j to 0

2. While indicator is not assigned 0 or 1

(a) Perform Gi,j .

(b) If test returns BIG then:

i. If i = j + 1, output 1.

ii. Else (i > j + 1): decrement i.

(c) Else (test returns SMALL):

i. If i = j + 1, output 0.

ii. With prob. 1− 1/(1 + τ), output 0. With remaining prob., increment j.

It is not hard to show that this procedure outputs 1 with the correct probability

(The details of the proof appear in section 6.2). The only probabilistic operation is the

increment of j (just as in the previous indicator), and the analysis is almost identical.

The running time analysis crucially uses the improved gap test run time of Õ((w(B)/b)
√
a).

Observe that when b = Θ(w(B)), the gap test runs in time Õ(
√
a). The choice of a in

all the gap tests above is never larger than P . The observation together with the run

time analysis of the previous indicator yields an expected run time of Õ(
√
P ).

5.3 Constructing gap tests from loss indicators

Our method for constructing a gap test from a loss indicator involves first construct-

ing an improved loss indicator using the input loss indicator, and then converting this

improved loss indicator to a gap test. In each case, we break this process into two pro-

cedures implementing these two steps. We now sketch the construction and correctness

proof for the construction of the improved loss indicators XLI2 and ULI2 and gap test



49

procedures XGapTest and UGapTest. The full proofs are in section 6.2.

In both procedures, a gap test with thresholds a, b is built from a loss indicator. As

mentioned in section 5.1.1, we can naively construct a gap test from a loss indicator

by simply running the loss indicator on the input box a sufficient number of times

and using the average value of the loss indicator as an estimate for the value of the

parameter. However, this process would not yield any speed-up from the previous gap

test because the loss indicator run on the input box is too expensive. So instead, we

construct a loss indicator which consists of choosing a random subbox of width O(b)

(according to a carefully chosen distribution) and applying the initial loss indicator to

that subbox. This new loss indicator is much faster and can be used to build a gap test

(via Prop. 5.1.1) which runs in the desired time.

In the case of UGapTest, the approach is straightforward (Again, the full details

of the proofs appear in section 6.2). Part of the AN algorithm is a procedure Par-

tialAlign, which constructs a box chain T1, · · · TM for a box B with M = Õ(nb ) boxes

each of width Õ(b) such that if uloss(B) < b, then with high probability the ulam

distance of B is the sum of the ulam distances of the boxes in the box chain. The

running time of PartialAlign is Õ(nb +
√
n), which is within the cost we’re aiming at

for our gap test. Let Ij be a uloss-indicator for Tj . The procedure ULI2 constructs

a uloss-indicator for B by simply selecting one of the boxes in the chain so that Tj is

selected with probability
w(Tj)
w(B) . It is easy to check that ULI2 outputs a uloss-indicator

for B whose expected running time is the (weighted) average running time of Ij . The

running time of Ij is Õ(
√
uloss(Tj) + 1). By concavity, the weighted average (which

is the running time of ULI2) can be bounded by Õ(

√
b·uloss(B)

n + 1). Now applying

Prop. 5.1.1, we get a gap test for B by running this indicator Õ(nb ) times, so the cost of

the gap test is Õ(

√
n·uloss(B)

b + n
b ). By hypothesis of Lemma 5.1.10, b ≥ Ω(uloss(B)),

so the running time can be bounded by Õ(
√
n+ n

b ).

In the case of XGapTest, the argument is significantly more subtle. Again, we

would like to construct a loss indicator for B obtained by running a loss indicator on

a randomly chosen subbox of much narrower width. Unlike in UGapTest, in this

case we can’t afford the running time of PartialAlign. For some width parameter r,



50

consider boxes which are of the form [i, i + r] × [i − a, i + r + a]. Given access to an

Xloss-indicator for each of these boxes (which comes from XLI1), the procedure XLI2

constructs an Xloss-indicator by randomly sampling one of these boxes. (For technical

reasons, we actually work on an enlarged box obtained from B by extending B r units in

all directions and adding an increasing sequence of points of length r below and to the

left and also above and to the right.) By choosing r to be a sufficiently large multiple

of a, we ensure that this indicator can’t be much smaller than Xloss(B)
w(B) . Unfortunately,

when we use this indicator to get a gap test for Xloss(B) using Prop. 5.1.1, the additive

terrε(B) term introduces an unacceptable additive error for Xloss(B). Fortunately,

when we do the straightforward conversion of the Xloss(B) gap test into a uloss(B)

gap test, the additive error gets converted to an (acceptable) small multiplicative error

in uloss(B) (Again, the full details of this proof appear in section 6.2).

The running time analyses for XLI2 and XGapTest are trivial. The procedure

XLI2 consists of one call to XLI1 on a box of width Oε3(a). For input B, a, b, the

procedure XGapTest consists of Õε3(w(B)
b ) calls to XLI2. Using the bound on the

running time of XLI1 established previously, we get the desired running time bound

for XGapTest.

5.4 Designing BaseGapTest

We pick up the discussion from section 5.1.2. We delve a little deeper into the ideas

behind designing BaseGapTest. As mentioned earlier, we adapt the SS algorithm

by implementing the specific kind of box queries. Unfortunately, the queries are

approximate and we have to ensure that the SS guarantees are not affected (too

much). We remind the reader of the definitions dmin(B) = min(w(B), h(B)) and

dmax(B) = max(w(B), h(B)).

Given a box B and a budget t, we need to find t random points/matches inside this

box, or certify that the box has at most w(B)/t points in it. As mentioned earlier, we

can choose Õ(t
√
B) uniform random samples from x(B) and y(B), count the matches

among these, and scale up appropriately to estimate the actual number of matches.



51

A direct birthday paradox argument shows that if dmin(B) = Ω(dmax(B)), then this

succeeds with high probability. Thus, when the box is “square”, everything works with

an additional running time factor of
√
B.

We need to deal with the case when dmin(B) is significantly smaller than dmax(B),

so the box is “thin”. Since n is an upper bound on the dimensions of the box, we

can choose to sample
√
n samples from x(B) and y(B). By going through the birthday

paradox calculation in section 7.3, we show that if dmin(B) = Ω(
√
n), then the procedure

succeeds. If dmax(B) = O(
√
n), then both dimensions of the box are small. We can

exactly compute the number of matches in O(
√
n) time. (In terms of the input strings,

we are provided two substrings of size O(
√
n) and wish to find the number of matches.)

This leaves us with the main problematic case: dmin(B) = o(
√
n), dmax(B) =

ω(
√
n). To deal with these boxes, we observe that the number of matches can be

at most dmin(B). If dmax(B) = w(B), then we can use this trivial upper bound. If

t ≤ w(B)/h(B), we simply declare the box has few points in it. When t ≥ w(B)/h(B),

we explicitly enumerate y(B) and random sample x(B) to discover matches.

Thus, the hard case is when dmin = w(B). In an extreme case (w(B) = O(1),

h(B) = Ω(n)), all x-indices in B could correspond to matches, yet random sampling

cannot find a match. One may wonder why this is a problem, since the x and y axes

of the points are completely symmetric. The problem is in the accounting of SS: losses

can be measured with respect to w(B) or h(B), but it has to be done consistently for

all boxes. Thus, if we commit to performing the SS analysis with respect to Xloss, we

cannot “switch” the axes.

It requires some detailed understanding of SS to resolve this situation. We can

consider square subboxes B′ of B where Y (B′) starts either at the beginning of Y (B)

or ends at the end of Y (B) (as described in section 7.4). We can brute force within

these subboxes. If we do not find any matches here, it turns out that we can afford to

not find any matches in B. In some sense, we can assert that B cannot have too many

points on the final LCS, so erroneous answers for queries in B do not affect the final

answer.



52

But all these approximations lead to a further technical difficulty. The final guar-

antee of BaseGapTest has an additive error as well, instead of a purely multiplicative

error on the Ulam distance in B. This additive error must now percolate through the

entire speed-up process down to the final answer. This is why we define (τ, δ)-gap

tests as opposed to (purely multiplicative) τ -gap tests. This requires generalizing all

the speed-up analysis of AN to additive errors, introducing much extra notation and

complications.

5.5 Road Map

Since this algorithm for ulam distance is very lengthy and technical with many moving

parts, it may be helpful to the reader to have an outline of what pieces of the algorithm

are covered in which sections and how they all fit together. In section 6.1, we state

the “outer” procedures of the algorithm, consisting of the seven procedures in Tab. 5.1

(excluding XLI0) from section 5.1.3. These procedures are stated in the order in which

they are called, and are proved in the same order in section 6.2.

From here, we move on to the discussion of the procedure XLI0 and the subproce-

dures it calls. As described in section 5.4, XLI0 is a modification of the LIS algorithm

presented in [21]. Our first task is a modification of that LIS algorithm which improves

the running time: we cover this in section 7.1. We then describe the modifications to

this algorithm that we apply in order to efficiently simulate it in the LCS setting: this

is done in section 7.2. Two of these modifications involve constructing the procedures

BoxSample and FindLCS, which we address in sections 7.3 and 7.4, respectively.

We then take a brief detour to provide two motivating examples in section 7.5 before

analyzing the correctness and running time of XLI0 in section 7.6. Lastly, (in section

7.7) we provide the code for a less essential subprocedure mentioned in section 7.2, as

well as (in section 7.8) the code for XLI0 and the rest of its subprocedures (which is

similar to the code in [21]) before providing the proof of a straightforward running time

claim from section 7.6, which requires the statements of the procedures in section 7.8.



53

Chapter 6

Reducing the Ulam Distance Problem

6.1 Algorithm

In this section, we state the seven procedures (excluding XLI0) referred to in section

5.1.3. Again, the procedure PartialAlign is restated from [4]. We first introduce the

following definition:

Box Extension The a-extension of box B, denoted by exta(B) is the box obtained

by concatenating two common subsequences of length a to the bottom left and top right

corners of B. Similarly, extLa(B) and extRa(B) are the boxes obtained by concatenating

one common subsequence of length a to the bottom left corner and top right corner

of B respectively. These boxes have the property uloss(B) = uloss(extLa(B)) =

uloss(extRa(B)) = uloss(exta(B)).

We also introduce the primitive Sample(S, p). The goal of Sample(S, p) is to

simulate choosing a subset of a set S by selecting each element independently with

probability p. It is known that this can be done in Õ(p|S|) time by choosing a value

k subject to the binomial distribution with parameters |S| and p and then selecting

a random subset of S of size k. We will make use of this primitive in the procedure

BaseGapTest.

For PartialAlign, β = C1 log3 n for some sufficiently large constant C1 > 0, and

γ = C2 log n for some sufficiently large constant C2 > 0.



54

Main(U , ε)

Output: Approximation to uloss(U).

1. Fix global parameters (unchanged throughout algorithm).

Symbol Value

ε1 ε/14

ε2 ε1/4

ε3 ε2/44

ε4 ε3/10

2. For i← 0 to log1+ε n− 1

(a) Run UGapTest(U , n
(1+ε)i+1 ,

n
(1+ε)i

) O(log n) times and take the majority an-

swer.

(b) If the majority answer is BIG, stop the i loop and return n
(1+ε)i

.

3. If the i loop never stopped (uloss(U) ≤ 1), return 0.

UGapTest(U , a, b)

Output: BIG or SMALL

1. B0, . . . ,Bk ←− PartialAlign(X(U), Y (U), (1 + ε)b).

2. Run ULI2(U , a, b,B0, . . . ,Bk) m = O(k log3 n) times. Let z be the sum of the

outputs.

3. If z(w(U) + h(U)) > (1− ε1
3 ) mb

(1+ε1) , return BIG. Otherwise, return SMALL.

ULI2(U , a, b,B0, . . . ,Bk)

Output: 0 or 1

1. Choose i ∈ [k] ∪ {0} at random with probability w(Bi)+h(Bi)
w(U)+h(U) .

2. Return ULI1(Bi).



55

PartialAlign(A,B, d)

Output: Boxes B0, . . . ,Bk

1. Split A and B into blocks of size βd. Set m0 = 0, k = d nβde.

2. For i← 1 to k

(a) For j ← 4 to log 4n

(1) Pick a random location p in [(i− 1) · βd+ 4d, i · βd− 4d] of the ith block.

(2) Pick γ · 2j/2 random positions from each of A[p, p+ 2j ] and B[p+mi−1− 2j , p+

mi−1 + 2 · 2j ].

(3) If there is at least one collision A[u] = B[v], then do the following.

(i) Choose any such collision ui, vi. Set mi ← vi − ui, ai ← ui, bi ← vi.

(ii) Stop the j loop and jump to the next i.

(b) If the j-loop did not stop, then fail.

3. Set a0 = b0 = 0, ak+1 = |A|, bk+1 = |B|.

4. Return the boxes B0, . . . ,Bk, where Bi = (ai, ai+1]× [bi + 1, bi+1].

ULI1(B)

Output: 0 or 1

1. Set a = max(|w(B)− h(B)|, 1), b = w(B) + h(B).

2. while b
a > 1 + ε2 do

(a) Run XGapTest(B, a, b) O(log n) times and take the majority answer.

(b) If the majority answer is BIG, set a = a(1 + ε2).

(c) Else with probability ε2
1+ε2

return 0 and halt, else set b = b
1+ε2

and continue.

3. If a > 1 or w(B) 6= h(B), return 1.

4. Else return 0.

XGapTest(B, a, b)

Output: BIG or SMALL

1. Set a′ = dae, r = d100a′

ε23
e.

2. Run XLI2(B, a′, r) k = Õ(w(B)
b ) times and let z be the sum of the outputs.

3. If z > (1− 4ε3) k
w(extLr(B))

b+w(B)−h(B)
2 , return BIG. Otherwise, return SMALL.



56

XLI2(B, a′, r)

Output: 0 or 1

1. Set x = 0.

2. Let p1 be a uniformly random element of X(extLr(B)), and let p2 = p1 + r.

3. Let T be the subbox of extr(B) given by (p1, p2]× [p1 − a′, p2 + a′].

4. Return XLI1(T ).

XLI1(T )

Output: 0 or 1

1. Set i = 0

2. While i ≤ log1+ε3(w(T )) + 1 do

(a) Run BaseGapTest(T , w(T )
(1+ε3)i+1 ,

w(T )
(1+ε3)i

) O(log n) times and take the majority.

(b) If the majority answer is BIG, return 1 and halt.

(c) Else with probability ε3
1+ε3

return 0 and halt. (Otherwise continue)

(d) Set i = i+ 1.

3. Return 0.



57

BaseGapTest(T , a, b)

Output: BIG or SMALL

1. Approximate the number of X-indices of T whose match lies outside T as follows:

(a) If b ≤ 16(2e−1)
ε24

√
w(T ) log n

• Let V be the number of characters in fX(X(T )) not contained in fY (Y (T )),

obtained by reading the intervals entirely.

(b) If b > 16(2e−1)
ε24

√
w(T ) log n

• Set p = min(O(

√
w(T ) logn

b ), 1).

• Set X̂ = Sample(X(T ), p), Ŷ = Sample(Y (T ), p)

• Let C be the number of collisions between X̂ and Ŷ .

• Let V = w(T )− C
p2

.

2. Set r = min(O( logn√
b

), 1). Run Sample(X(T ), r) and Sample(Y (T ), r) and find the

collisions.

3. Run XLI0(x, T ) O(log n) times on each point x and take the majority outcome. Let

D be the number of points classified as bad, and let W = D
r2

.

4. If V +W ≥ b(1− ε4), return BIG, else return SMALL.

6.2 Analysis

In this section, we provide proofs of seven of the eight lemmas stated in section 5.1.3

(Lemma 5.1.3 will be proved in section 7.6). We also state and prove several other

lemmas, most of which are tools that help us prove these seven lemmas. In order to do

so, we first formally define the function terr, as well as several other bits of necessary

notation.

6.2.1 The function terr

In section 2.1.5, we introduced two loss functions, uloss and Xloss. For the analysis,

we will need to extend the definition of Xloss to sequences, and define a third loss

indicator, Ylosstrim.

As stated in section 2.1.5, Xloss(B) = w(B) − lcs(B), which is the number of X-

indices of B that are not matched by the LCS. We extend this function to a sequence



58

S, where Xloss(S,B) = w(B)− |S|.

The function Ylosstrim. Let S be an increasing point sequence in a box B with

|S| = k. For P1, Pk the first and last points of S respectively, Ylosstrim(S,B) =

(y(Pk)− y(P1))− (k− 1). Intuitively, Ylosstrim(S,B) represents the minimum number

of Y -indices that can be missed by any increasing sequence formed by concatenating

S with other increasing sequences on the left or right. Note that if S is an LCS of B,

then Xloss(B) + Ylosstrim(S,B) ≤ uloss(B).

With these tools, we now provide the notion of an error function. An error function

for a sequence S and box B outputs a nonnegative real number. Error functions are

used to measure differences between loss functions of different common subsequences

in B. Intuitively, we use error functions to compare the length of the sequences our

algorithm finds with the length of the LCS. This is how we keep track of and control

the quality of our algorithm.

We will use the following error functions:

• The function herr. herr(S,B) = Xloss(S,B)− Xloss(B) = lcs(B)− |S|.

• The function serr. serrε(S,B) = min
S′⊆S

(herr(S′,B) + ε · Ylosstrim(S′,B)).

• The function terr. terrε(B) = max
S

(serrε(S,B)), where the max is taken over

common subsequences S of B with length at least lcs(B)− ε · Xloss(B).

It will also be helpful for us to be able to talk about the sequence S′ achieving the

minimum in serrε(S,B). We’ll denote this sequence by S̃ε(B).

6.2.2 Proofs

We begin with a lemma which establishes the desired properties of Main.

Lemma 6.2.1 Suppose that for U , a, b satisfying the input constraints of UGapTest

in Tab. 5.1, UGapTest(U , a, b) is a gap test for uloss(U) achieving the guarantees in

Tab. 5.1. Then with probability at least 2/3, Main(U , ε) outputs an (ε, 0) approximation

to uloss(U) and runs in time Õε(
n

uloss(U) +
√
n).



59

Proof First, we note that by the Chernoff Bound, since UGapTest is correct with

probability at least 3/5. the probability that the majority ofO(log n) runs of UGapTest

is wrong is bounded by 1
n6 . Since this task of taking the majority answer of O(log n)

runs of UGapTest is done at most O(1
ε log n) times, by the union bound all of these are

correct with probability at least 1− 1
εn5 . As a result, we may assume that all majority

answers are correct.

We continue by showing the correctness of Main. First suppose that uloss(U) > 1.

Let k be such that n
(1+ε)k+1 < uloss(U) ≤ n

(1+ε)k
. If uloss(U) = n

(1+ε)k
,

UGapTest (U , n
(1+ε)j+1 ,

n
(1+ε)j

) will return SMALL for j ≤ k−2 and BIG for j ≥ k+1.

As a result, the output will be between n
(1+ε)k+1 and n

(1+ε)k−1 . Therefore, the output is at

least uloss(U)
1+ε and at most (1+ε)uloss(U), which is an (ε, 0) approximation to uloss(U).

If instead, uloss(U) < n
(1+ε)k

, UGapTest(U , n
(1+ε)j+1 ,

n
(1+ε)j

) will return SMALL for

j ≤ k − 1 and BIG for j ≥ k + 1. As a result, the output will be between n
(1+ε)k+1 and

n
(1+ε)k

. Therefore, the output is again at least uloss(U)
1+ε and at most (1 + ε)uloss(U),

which is an (ε, 0) approximation to uloss(U).

If instead uloss(U) = 1, then if line 2a returns BIG for some value of i, n
(1+ε)i+1 ≤ 1,

so n
(1+ε)i

≤ 1 + ε, which is at most (1 + ε)uloss(U). Otherwise, the exact value of

uloss(U) will be returned by line 3. If uloss(U) = 0, then the test on line 2a will

always return SMALL, and the exact value of uloss(U) will again be returned by line

3. Therefore, in each case, the output of Main is an (ε, 0) approximation to uloss(U).

To analyze the running time, we simply see that each iteration of the loop involves

running UGapTest O(log n) times, which is in Õε(
n

n/(1+ε)i
+
√
n) time for each i. Since

the loop stops when n
(1+ε)i

= Õε(uloss(U)), the loop runs in time Õε(
n

uloss(U) +
√
n)

The greedy algorithm on line 3 runs in Õ(n) time, and since uloss(U) ≤ 1 if the

procedure reaches this line, it is in Õ( n
uloss(U)) time. Putting these terms together

yields the desired result. �

We restate the following lemma (Lemma 3.1) from [4], which establishes the necessary

properties of the procedure PartialAlign.

Lemma 6.2.2 Suppose U is an n × n box with uloss(U) ≤ d. Let B0, . . . ,Bk be



60

the output of PartialAlign(X(U), Y (U), d). Then with probability at least 2/3, the

following all hold.

1. The boxes B0, . . . ,Bk form a box chain spanning U with
k∑
i=0

uloss(Bi) = uloss(U).

2. For any i, w(Bi), h(Bi) = O(d log3 n).

3. The running time of PartialAlign(X(U), Y (U), d) is Õ(nd +
√
n).

Using Lemma 6.2.2, we prove Lemma 5.1.10.

Proof First, we note that Lemma 6.2.2 ensures that with probability at least 2/3,

B0, . . . ,Bk satisfy the input constraints for ULI2 in Tab. 5.1. Therefore by assumption,

ULI2(U , a, b,B0, . . . ,Bk) is a ( ε1
1+ε1

uloss(U)
w(U)+h(U) , ε1

uloss(U)+1
w(U)+h(U) )-quality uloss(U) indicator

for U . Applying Prop. 5.1.1, we use this to construct a (ε1, 2ε1(uloss(U) + 1))-gap

test, which by Prop. 5.1.2 is a 5ε1-gap test for uloss(U). If we choose κ = 1/15 in

Prop. 5.1.1, then this gap test has failure probability at most 1/15. Combining this via

a union bound with the probability that PartialAlign fails, UGapTest succeeds with

probability at least 3/5.

To analyze the running time, we see that UGapTest(U , a, b) consists of first running

PartialAlign and making Õε1(nb ) calls to ULI2. PartialAlign runs in time Õ(nb+
√
n),

and by assumption, ULI2 runs in time Õε1(

√
buloss(U)

n + 1). Since b = Ω(uloss(U)) by

assumption, this is at most Õε1( b√
n

+1). Therefore, the total running time of all Õε1(nb )

calls to ULI2 is Õε1(nb +
√
n). Combining this with the running time of PartialAlign

yields the running time guarantee for UGapTest stated in Tab. 5.1.

We now prove Lemma 5.1.9.

Proof Assume that U , a, b,B0, . . . ,Bk satisfy the input constraints for ULI2 in Tab. 5.1.

By assumption, for any Bi, the probability that ULI1(Bi) outputs 1 is at least

1
1+ε1

uloss(Bi)
w(Bi)+h(Bi) . Bi is chosen on line 1 of ULI2 with probability w(Bi)+h(Bi)

w(U)+h(U) . Therefore,

the probability that ULI2(U , a, b,B0, . . . ,Bk) outputs 1 is at least
k∑
i=0

1
1+ε1

uloss(Bi)
w(Bi)+h(Bi)

w(Bi)+h(Bi)
w(U)+h(U) = 1

1+ε1

uloss(U)
w(U)+h(U) .

On the other hand, the probability that ULI1(Bi) outputs 1 is at most (1 +

ε1) uloss(Bi)
w(Bi)+h(Bi) + ε1

n(w(Bi)+h(Bi)) . Therefore, the probability that ULI2(U , a, b,B0, . . . ,Bk)



61

outputs 1 is at most
k∑
i=0

((1+ε1) uloss(Bi)
w(Bi)+h(Bi) + ε1

n(w(Bi)+h(Bi)))w(Bi)+h(Bi)
w(U)+h(U) ≤ (1+ε1) uloss(U)

w(U)+h(U) + ε1
w(U)+h(U) . This

establishes the quality guarantee of ULI2 in Tab. 5.1.

The running time of ULI2 is given by the cost of running ULI1(Bi) on the chosen

input Bi. By assumption, this cost is Õε1(
√
uloss(Bi) + 1). Since each Bi is chosen

with probability w(Bi)+h(Bi)
w(U)+h(U) , the expected running time of ULI2 is

k∑
i=0

w(Bi)+h(Bi)
w(U)+h(U) Õε1(

√
uloss(Bi) + 1). By assumption, w(Bi) + h(Bi) = Õ(b), so this

quantity is at most 1
w(U)+h(U)

k∑
i=0

Õε1(b(
√
uloss(Bi) + 1)). Using the concavity of the

square root funtion and noting that the average value of uloss(Bi) is uloss(U)/k,

Õ(
∑k

i=0(
√
uloss(Bi)+1)) ≤ Õ(k(

√
uloss(U)/k+1)). Since k = Ω̃(nb ) , k

√
uloss(U)/k =√

kuloss(U) = Õ(

√
nuloss(U)

b ). Therefore,

1

w(U) + h(U)

k∑
i=0

Õε1(b(
√
uloss(Bi) + 1)) ≤ Õε1(

b

n

k∑
i=0

(
√
uloss(Bi) + 1))

≤ Õε1(
b

n
(

√
nuloss(U)

b
+
n

b
))

≤ Õε1(

√
buloss(U)

n
+ 1).

This establishes the running time guarantee of ULI2 in Tab. 5.1. �

We now prove Lemma 5.1.8.

Proof First, we note that by the Chernoff Bound, since XGapTest succeeds with prob-

ability at least 2/3. the probability that the majority of O(log n) runs of XGapTest

is wrong is bounded by 1
n6 . Since this task of taking the majority answer of O(log n)

runs of XGapTest is done at most O( 1
ε2

log n) times, by the union bound all of these

succeed with probability at least 1− 1
ε2n5 . For ε2 ≥ 1

n2 , this is at least 1− 1
n3 .

Now assume that all majority answers are correct. First suppose that uloss(B) > 1.

Let j be such that w(B)+h(B)
(1+ε2)j+1 ≤ uloss(T ) ≤ w(B)+h(B)

(1+ε2)j
. If b ≤ w(B)+h(B)

(1+ε2)j+1 , then the test

on line 2a will return BIG. If a ≥ w(B)+h(B)
(1+ε2)j

, then the test on line 2a will return SMALL.

Each time the test on line 2a returns SMALL. b decreases by a factor of (1 + ε2). If

this happens j + 1 times and each time the procedure does not return 0, the test on



62

line 2a will continue to return BIG until b
a ≤ 1+ε2, at which point it will return 1 from

line 3. If at some point a ≥ w(B)+h(B)
(1+ε2)j

, then the test on line 2a will continue to return

SMALL until it returns 0 or b reaches w(B)+h(B)
(1+ε2)j−1 , at which point the loop will stop

and the procedure will return 1 from line 3. Therefore, if uloss(B) > 1, ULI1(B) will

return 1 iff line 2c never returns 0, which happens with probability ε2
1+ε2

independently

each of k times, where k is between j − 1 and j + 1. Therefore, the probability that it

returns 1 (assuming all majority answers are correct) is between uloss(B)
(1+ε2)(w(B)+h(B)) and

(1+ε2)2uloss(B)
w(B)+h(B) .

If uloss(B) = 1, then if line 2c never returns 0, when the loops ends, a will be either

1 or 1 + ε2. In either case, the procedure will return 1 via either line 3 or line 4. This

will happen with probability between 1
w(B)+h(B) and (1+ε2)2

w(B)+h(B) (assuming all majority

answers are correct), which is again between uloss(B)
(1+ε2)(w(B)+h(B)) and (1+ε2)2uloss(B)

w(B)+h(B) .

Finally, if uloss(B) = 0, then, assuming all majority answers are correct, line 2a

will never return BIG, and the procedure will return 0, either on line 2c or on line 4,

meaning the probability it returns 1 is uloss(B)
w(B)+h(B) .

Combining these bounds with the chance of any majority answer being incorrect via

a union bound, the probability that ULI1(B) returns 1 is between uloss(B)
(1+ε2)(w(B)+h(B))−

1
n3

and (1+ε2)2uloss(B)
w(B)+h(B) + 1

n3 . If uloss(B) = 0, then since the probability of returning 1 is

at least 0, we can replace the lower bound with uloss(B)
(1+2ε2)(w(B)+h(B)) . If uloss(B) ≥ 1,

then since 1
n3 ≥ ε2

(w(B)+h(B))(1+ε2)(1+2ε2) , we can again replace the lower bound with

uloss(B)
(1+2ε2)(w(B)+h(B)) . For the upper bound, we know 1

n3 ≤ ε1
n(w(B)+h(B)) , and since (1 +

ε2)2 ≤ 1 + ε1, we can replace the upper bound with (1+ε1)uloss(B)+ε1/n
w(B)+h(B) . Therefore,

ULI1(B) is a ( ε1
1+ε1

uloss(B)
w(B)+h(B) , ε1

uloss(B)+1/n
w(B)+h(B) )-quality uloss-indicator for B.

To analyze the running time, we see that ULI1(B) consists of running

XGapTest(B, a, b) for different values of a, b until it outputs 0 or the loop stops. For

any iteration of the loop, a will be (1 + ε2)i for some i and b will be w(B)+h(B)
(1+ε2)j

for some

j. When b = w(B)+h(B)
(1+ε2)j

, the loop will have reached this step iff it has not returned 0 at

any previous point when the majority answer on line 2a was SMALL. This will have

happened with probability 1
(1+ε2)j

, and if it did happen, the cost of the iteration would



63

be Õε2(
w(B)
√

(1+ε2)i

w(B)+h(B)
(1+ε2)

j

). This yields a total of Õε2(
∑

i,j
1

(1+ε2)j
(w(B)+h(B))

√
(1+ε2)i

w(B)+h(B)
(1+ε2)

j

), where

the sum is taken over all iterations of the loop.

Looking more closely at the procedure, if a ever exceeds uloss(B), the calls to

XGapTest will continue to return SMALL, meaning that i will never increase beyond

log1+ε2(uloss(B)). Additionally, each run of the loop makes a and b closer by a factor

of 1 + ε2, so the number of iterations of the loop will be at most polylogarithmic in

w(B) + h(B). Furthermore, we note that if uloss(B) = 0, the loop will still run with

a = 1, so for this case, it is necessary to use 0 as the upper bound for the value of i

instead of log1+ε2(uloss(B)). Simplifying, we get that the expected running time is

Õ(
√
uloss(B)) in the case uloss(B) > 0 and Õ(1) in the case uloss(B) = 0. Therefore,

we can bound the running time of ULI1(B) by Õ(
√
uloss(B) + 1). �

In order to prove Lemma 5.1.7, we will need the following proposition.

Proposition 6.2.3 Let B be a box, and let 〈x, y〉 be a point on the LCS of B. Then

|(y − yB(B) + 1)− (x− xL(B))| ≤ uloss(B).

Proof Let B1 be the box (xL(B), x] × [yB(B), y], and let B2 be the box (x, xR(B)] ×

[y, yT (B)]. Since (x, y) is on the LCS of B, lcs(B1)+lcs(B2) = lcs(B), so uloss(B1)+

uloss(B2) = uloss(B), in particular, uloss(B1) ≤ uloss(B). Furthermore, lcs(B1) ≤

min(w(B1), h(B1)), so h(B1)− w(B1) ≤ w(B1) + h(B1)− 2 · lcs(B1) ≤ uloss(B). As a

result, (y− yB(B) + 1)− (x− xL(B)) ≤ uloss(B). Similarly, applying lcs(B1) ≤ h(B1)

yields (x− xL(B))− (y − yB(B) + 1) ≤ uloss(B). �

We now prove Lemma 5.1.7.

Proof First, note that B, a′, r satisfy the input constraints of XLI2(B, a′, r) in every

call to XLI2 made by XGapTest(B, a, b). Therefore, XLI2(B, a′, r) is a

(4ε3
Xloss(B)
w(B) , 5ε3

Xloss(B)+1
w(B) + 2ε3

h(B)−w(B)
w(B) )-quality Xloss indicator for B.

Applying Prop. 5.1.1 (with τ = ε3), we get a (ε3, 9ε3(Xloss(B) + 1) + 2ε3(h(B) −

w(B)))-gap test for Xloss(B) (which we’ll call G). We can choose κ so that the failure

probability of G is at most 1/3. Unfortunately, the 2ε3(h(B)−w(B)) term prevents us



64

from applying Prop. 5.1.2 directly to get a purely multiplicative gap test. As a result,

we aim to convert this to a gap test for uloss(B).

For parameters a, b with b > (1 + 44ε3)a, consider running G with parameters

b′ = b+w(B)−h(B)
2 , and a′ = (1 + 9ε3)a+w(B)−h(B)

2 + 11ε3a. If a ≥ w(B)− h(B), then

b > (1 + ε3)(1 + 42ε3)a

≥ (1 + ε3)(1 + 31ε3)a+ 11ε3a

≥ (1 + ε3)(1 + 31ε3)a+ 11ε3(w(B)− h(B))

so

b+ w(B)− h(B) > (1 + ε3)((1 + 9ε3)a+ 22ε3a+ 11ε3(w(B)− h(B))) + w(B)− h(B)

≥ (1 + ε3)((1 + 9ε3)(a+ w(B)− h(B)) + 22ε3a)

This yields, b+w(B)−h(B)
2 > (1 + ε3)((1 + 9ε3)a+w(B)−h(B)

2 + 11ε3a), so b′ > (1 + ε3)a′.

Therefore (with probability of failure at most κ), if Xloss(B) > b′, G will return BIG,

and if Xloss(B) < a′ − 9ε3(Xloss(B) + 1) + 2ε3(h(B)− w(B)), G will return SMALL.

Suppose that uloss(B) > b. Then Xloss(B) > b+w(B)−h(B)
2 = b′, so G will return BIG.

Suppose that uloss(B) < a. Then Xloss(B) < a+w(B)−h(B)
2 . Since

a+ w(B)− h(B)

2
+ 9ε3(Xloss(B) + 1) + 2ε3(h(B)− w(B))

≤ a+ w(B)− h(B)

2
+ 9ε3(

a+ w(B)− h(B)

2
+ 1) + 2ε3a

≤ (1 + 9ε3)
a+ w(B)− h(B)

2
+ 11ε3a

≤ a′

Xloss(B) is at most a′−9ε3(Xloss(B)+1)+2ε3(h(B)−w(B)), so G will return SMALL.

Therefore, for input thresholds a, b with a ≥ max(|w(B)− h(B)|, 1), we can apply G to

a′, b′ to get a 44ε3-gap test for uloss(B) with error at most 1/3.

To analyze the running time, XGapTest(B, a, b) makes Õ(w(B)
b ) calls to XLI2(B, a′, r)

with r = Õε2(a). By assumption, XLI2(B, a′, r) runs in time Õε3(
√
r). Therefore,

XGapTest(B, a, b) runs in time Õε2(w(B)
b

√
a). �

We now prove Lemma 5.1.6.



65

Proof Suppose that B, a′, r satisfy the input constraints of XLI1 in Tab. 5.1. Since

2a′ ≤ r, for any call XLI1(T ) made by XLI2(B, a′, r), T satisfies the input con-

straints of BaseGapTest. Therefore by assumption, XLI1(T ) is a ( 2ε3
1+2ε3

Xloss(T )
w(T ) ,

ε3
Xloss(T )+1/n

w(T ) + (1 + ε3)
terrε3 (T )

w(T ) )-quality Xloss indicator for T . We aim to show that

XLI2(B, a′, r) is a (4ε3
Xloss(B)
w(B) , 5ε3

Xloss(B)+1
w(B) + 2ε3

h(B)−w(B)
w(B) )-quality Xloss indicator

for B.

Partition X(extLr(B)) into intervals of size r, and let Is be the set of intervals

obtained by shifting this partition s indices to the right for s ∈ [r] . Let ~Ts = {I ×

[xL(I)− a′, xR(I) + a′] : I ∈ Is}. We can think of the box T chosen by XGapTest as

chosen by picking s uniformly at random, and then picking an element of ~Ts uniformly

at random.

Fix s, and let J1, J2, · · · , Jm be the elements of Is. Let Ti be the box Ji× [xL(Ji)−

a′, xR(Ji)+a′] (as in XGapTest), and let Si be the sequence achieving the maximum in

terrε3,ε3(Ti). Let Ls =
⋃
Ti∈~Ts Si. Since yT (Ti) > yB(Ti+1), it is possible that Ls is not

monotone. Let L′s be the longest common subsequence of Ls, i.e. L′s is the resulting

sequence after deleting as few points as possible from Ls to make it monotone. Let

S′i = L′s ∩ Ti. Note that S′i ⊆ Si.

Let over(Ls) = |Ls| − |L′s|, i.e. over(Ls) is the number of points of Ls that must

be deleted in order to make Ls monotone. We have

over(Ls) +
∑
Ti∈~Ts

Xloss(Si) = over(Ls) + Xloss(Ls)

= Xloss(L′s)

≥ Xloss(B)

≥ uloss(B) + w(B)− h(B)

2

so we aim to bound over(Ls).

We see that any point on Si contributing to over(Ls) will be in violation with

some point on Si−1 or Si+1 (but not both). As a result, if we let overi(Ls) be the

number of points P contributing to over(Ls) with y(P ) ∈ Y (Ti) ∩ Y (Ti+1), we have

over(Ls) =
∑

i overi(Ls). We now form a partition of the boxes Ti with overi(Ls) 6= 0



66

into LONGs and SHORTs. Say that Ti ∈ LONGs if there are violating points P1, P2 on

Si, Si+1 respectively, with x(P2)− x(P1) ≥ 8a′

ε3
. Otherwise, Ti ∈ SHORTs.

First consider Ti ∈ LONGs. Let P1, P2 be violating points on Si, Si+1, respec-

tively with x(P2) − x(P1) ≥ 8a′

ε3
. Since |Y (Ti) ∩ Y (Ti+1)| = 2a′ + 1 and y(P1) >

yB(Ti+1), y(P2) < yT (Ti), at most 2a′− 1 of the at least 8a′

ε3
− 1 indices between P1 and

P2 can have matches on Ls. Therefore, Xloss(Si) + Xloss(Si+1) ≥ 8a′

ε3
− 2a′ ≥ 6a′

ε3
.

Furthermore, since again |Y (Ti) ∩ Y (Ti+1)| = 2a′ + 1, we can always delete at most

a′ points to remove all violations between Ti and Ti+1, so overi(Ls) ≤ a′. Sum-

ming over all Ti ∈ LONGs, the total contribution to over(Ls) by LONGs is at most

ε3
3

∑
i Xloss(Si) ≤ ε3

3 (1 + ε3)Xloss(B) ≤ 2ε3
3 Xloss(B).

Now consider Ti ∈ SHORTs. Let Ki be the smallest X-interval containing all indices

of violating pairs of points in Ti, Ti+1 on Ls. Since Ti ∈ SHORTs, |Ki| ≤ 8a′

ε3
. For a

choice of s′, say that an X-interval J is severed by s′ if ∃h ∈ Z : s′ + hr ∈ J . We

note that, if we choose s′ uniformly at random, the probability that this interval Ki

is severed by s′ is at most 8ε3
100 . Additionally, if Ki is not severed by s′, then since it

lies within some T ∈ ~Ts′ , its contribution to Xloss(T ) will be overi(Ls). Therefore, if

we look at the expected contribution of SHORTs to over(Ls) when choosing s uniformly

at random, by applying linearity of expectation over all Ki coming from each choice

of s, this expected contribution will be at most 8ε3
100Xloss(B). Therefore, by Markov’s

Inequality, with probability at least 3/4, this contribution is at most ε3
3 Xloss(B).

Putting this together with the contribution from LONGs, with probability at least

3/4 − n−Ω(logn), over(Ls) is at most ε3Xloss(B). Therefore, with probability at least

3/4 − n−Ω(logn),
∑
Ti∈~Ts Xloss(Si) ≥ (1 − ε3)Xloss(B). As a result, XLI2(B, a′, r)

returns 1 with probability at least 1−ε3
1+2ε3

Xloss(B)
w(B) ≥ (1− 4ε3)Xloss(B)

w(B) .

Next, we aim to upper bound the probability that XLI2 returns 1. Note that

X(B) ⊆
⋃
Ji. By Prop. 6.2.3, for any point P on the LCS of B, if x(P ) ∈ Ji, then

y(P ) ∈ Y (Ti). This means that lcs(B)∩ Ji|B ⊆ Ti, so the LCS of each Ti is at least as

long as the portion of lcs(B) lying in Ji|B. Since the points in T1, Tm which lie outside

of B form common subsequences outside the Y range of B, they do not contribute to



67

Xloss(T1), Xloss(Tm), respectively, so
m∑
i=1

Xloss(Ti) ≤ Xloss(B).

Next, we aim to bound
m∑
i=1

terrε3(Ti). Let Si, S
′
i be as defined above, so

terrε3(Ti) = serrε3(Si, Ti) ≤ herr(S′i) + ε3Ylosstrim(S
′
i)

Since L′s is monotone,
m∑
i=1

Ylosstrim(S
′
i) counts each Y -index not on L′s at most once,

so

ε3

m∑
i=1

Ylosstrim(S
′
i) ≤ ε3(

m∑
i=1

(Xloss(S′i)) + h(B)− w(B))

This gives us

m∑
i=1

herr(S′i) + ε3Ylosstrim(S
′
i)

≤
m∑
i=1

((1 + ε3)Xloss(S′i)− Xloss(Ti)) + ε3(h(B)− w(B))

We have

m∑
i=1

Xloss(S′i) = over(Ls) +

m∑
i=1

Xloss(Si)

≤ over(Ls) + (1 + ε3)

m∑
i=1

Xloss(Ti)

≤ over(Ls) + (1 + ε3)Xloss(B)

As shown above, with probability at least 3/4 − n−Ω(logn), over(Ls) ≤ ε3Xloss(B).

Therefore,

m∑
i=1

((1 + ε3)Xloss(S′i)− Xloss(Ti)) + ε3(h(B)− w(B))

≤ ε3(3 + 2ε3)Xloss(B) + ε3(h(B)− w(B))

Putting things together, the probability that XLI2(B, a′, r) outputs 1 is at most∑
T
w(T )
w(B) ((1+ε3)Xloss(T )

w(T ) +(1+ε3)
terrε3 (T )

w(T ) + ε3
nw(T )) ≤ (1+5ε3)Xloss(B)+1

w(B) +2ε3
h(B)−w(B)

w(B) .

Therefore, XLI2(B, a′, r) is a (4ε3
Xloss(B)
w(B) , 5ε3

Xloss(B)+1
w(B) + 2ε3

h(B)−w(B)
w(B) )-quality Xloss

indicator for B.

The running time claim follows trivially from the assumptions regarding XLI1, as

XLI2(B, a′, r) consists of running XLI1 on a box of size r. �



68

We now prove Lemma 5.1.5.

Proof First, we note that by the Chernoff Bound, since BaseGapTest succeeds

with probability at least 2/3. the probability that the majority of O(log n) runs of

BaseGapTest is wrong is bounded by 1
n6 . Since this task of taking the majority an-

swer of O(log n) runs of BaseGapTest is done at most O( 1
ε3

log n) times, by the union

bound all of these succeed with probability at least 1 − 1
ε3n5 . Since ε3 ≥ 1

n2 , this is at

least 1− 1
n3 .

Now assume that all majority answers are correct. Let j1, j2 be the largest and

smallest nonnegative integers respectively such that w(T )
(1+ε3)j2

≤ Xloss(T ) ≤ Xloss(T )+

terrε3(T ) ≤ w(T )
(1+ε3)j1

. In XLI1(T ), the test on line 2a will return SMALL for i ≤ j1−1,

and it will return BIG for i = j2. In order for XLI1(T ) to return 1, it has to not

return 0 via line 2b on each of the first j1 iterations of the loop. This happens with

probability 1
(1+ε3)j1

, so XLI1(T ) returns 1 with probability at most 1
(1+ε3)j1

≤ (1 +

ε3)
Xloss(T )+terrε3 (T )

w(T ) .

On the other hand, the test on line 2a will return BIG after at most j2 iterations

of the loop, meaning line 2b has a chance of returning 0 on at most j2 iterations. The

probability that it does not return 0 on any of these is at least 1
(1+ε3)j2

, so XLI1(T )

returns 1 with probability at least 1
(1+ε3)j2

≥ Xloss(T )
(1+ε3)w(T ) .

Combining this with the probability that any of the majority answers are incorrect

via a union bound, the probability that XLI1(T ) returns 1 is at least Xloss(T )
(1+ε3)w(T ) −

1
n3 and at most (1 + ε3)

Xloss(T )+terrε3 (T )

w(T ) + 1
n3 . Looking more closely at the lower

bound, if Xloss(T ) = 0, then since the probability of returing 1 is at least 0, it

must be at least Xloss(T )
(1+2ε3)w(T ) . If instead Xloss(T ) ≥ 1, then since n ≥ w(T ), 1

n2 ≤
ε3

(1+ε3)(1+2ε3) , Xloss(T )
(1+ε3)w(T ) −

1
n3 ≤ Xloss(T )

(1+2ε3)w(T ) . For the upper bound, since 1
n3 ≤ ε3

nw(T ) .

(1 + ε3)
Xloss(T )+terrε3 (T )

w(T ) + 1
n3 is at most (1 + ε3)

Xloss(T )+terrε3 (T )

w(T ) + ε3
nw(T ) . Therefore,

XLI1(T ) is a ( 2ε3
1+2ε3

Xloss(T )
w(T ) , ε3

Xloss(T )+1/n
w(T ) + (1 + ε3)

terrε3 (T )

w(T ) )-quality Xloss indicator

for T .

To analyze the running time, we see that XLI1(T ) consists of running

BaseGapTest(T , a, b) for different values of a, b with b = (1+ε3)a until it outputs 0 or



69

1. Once i exceeds the value of log1+ε3( w(T )
Xloss(T )), w(T )

(1+ε3)i
will be smaller than Xloss(T ),

meaning BaseGapTest(T , w(T )
(1+ε3)i+1 ,

w(T )
(1+ε3)i

) will return BIG and the loop will stop.

For i between 0 and log1+ε3( w(T )
Xloss(T )), the loop will reach the ith step if it has not

returned 0 in any previous step. This happens with probability 1
(1+ε3)i

, and if it does

happen, the cost of the ith step will be Õ((1 + ε3)i
√
w(T )). Summing over all i, the

total expected running time is Õ(
√
w(T )). �

We now prove Lemma 5.1.4. We will need the following claim, which is a minor

modification of Claim 4.1 in [4].

Claim 6.2.4 Consider a set S of n elements and a subset T of m elements. Pick a

random subset X of S by picking each element independently with probability p. Let

q = |X ∩T |. Picking X can be implemented in expected O(pn) time and Pr[|q/p−m| ≥

ε1m+ 16(2e−1) logn
ε21p

] ≤ 1
n3

Proof We pick X as follows. Divide S into blocks of size 1
p and use the binomial

distribution to compute the number of samples in each block. Finally, pick the samples

from each block according to the computed number of samples. The expected running

time is O(pn). Now consider two cases.

If m ≤ 16 logn
ε21p

, then by Theorem 2.5.2,

Pr[|q/p−m| ≥ m ∗ 16(2e−1) logn
ε21pm

] ≤ 2
−(1+

16(2e−1) logn

ε21pm
)pm
≤ 1

n3 .

If m > 16 logn
ε21p

, then by Theorem 2.5.2,

Pr[|q/p−m| ≥ ε1m] ≤ 2e−ε
2
1pm/4 ≤ 2e−4 logn ≤ 1

n3 . �

We use Claim 6.2.4 to prove Lemma 5.1.4.

Proof First, note that since XLI0 succeeds with probability 2/3, the majority taken

on line 3 succeeds with probability 1− n−Ω(logn).

Let dout(T ) be the number of indices in X(T ) whose match lies outside of T . Let

din(T ) be the number of indices in X(T ) whose match lies inside T , but not on the LCS

of T (Note that this definition is a rewording of the definition given in section 2.1.5).

We have dout(T ) + din(T ) = Xloss(T ). Our goal will be to show that V approximates

dout(T ) and W approximates din(T ).



70

We first show V approximates dout(T ). Let N be the number of matches in T .

When b ≤ 16(2e−1)
ε24

√
w(T ) log n, we get the exact value of N (and therefore dout(T )) by

reading the whole block. Now consider the case b > 16(2e−1)
ε24

√
w(T ) log n. As defined

in BaseGapTest, let C be the number of collisions which lie in T . Since each point

has its X-index and Y -index each selected independently with probability p, we have

E[C] = p2N . Consider two cases.

If N > 2ε4b
(2e−1) , then by Theorem 2.5.2,

Pr[|C
p2
−N | ≥ N 2ε4b

N
] ≤ 2e−(

2ε4b
N

)2p2N
4

≤ 2e−
ε24b

2

N
∗C
′w(T ) log2 n

b2

≤ 2e−C
′ε24 log2 n

≤ 1

n2
.

If N ≤ 2ε4b
(2e−1) , then by Theorem 2.5.2,

Pr[|C
p2
−N | ≥ N 2ε4b

N
] ≤ 2−(1+

2ε4b
N

)p2N

≤ 2−(1+
2ε4b
N

)∗C
′Nw(T ) log2 n

b2

≤ 2−2C′ε4
w(T )
b

log2 n

≤ 1

n2
.

Thus, with high probability, | C
p2
−N | < 2ε4b, so |V − dout(T )| < 2ε4b

Next, we show that W approximates din(T ). Let m be the number of matches in

T that would be classified as bad by XLI0. By assumption,

din(T ) ≤ m ≤ (1 + ε4)(Xloss(T ) + terrε3(T ))− dout(T )

By Claim 6.2.4, with high probability,

(1− ε4)m− 16(2e− 1) log n

ε2
4r

2
≤ D

r2
≤ (1 + ε4)m+

16(2e− 1) log n

ε2
4r

2

Thus, with high probability,

W − (Xloss(T ) + terrε3(T )− dout(T ))

≤ ε4((1 + ε4)(Xloss(T ) + terrε3(T ))− dout(T )) + ε4b



71

and

din(T )−W ≤ ε4din(T ) + ε4b

If Xloss(T ) + terrε3(T ) < a ≤ b
1+10ε4

, then

|(V +W )− (Xloss(T ) + terrε3(T ))|

≤ |V − dout(T )|+ |W − (Xloss(T ) + terrε3(T )− dout(T ))|

≤ 2ε4b+ ε4(1 + ε4)b+ ε4b

≤ 5ε4b

Therefore, V +W < (1− 4ε4)b.

On the other hand, if Xloss(T ) > b, then

V +W ≥ dout(T )− 2ε4b+ (1− ε4)din(T )− ε4b

> (1− ε4)b− 3ε4b

≥ (1− 4ε4)b

Thus, the test on line 4 successfully distinguishes between these two cases.

To analyze the running time, first note that if b = Õ(
√
w(T )), then

w(T )
√
w(T )

b =

Ω̃(w(T )), meaning that if the condition on line 1a is met, the linear amount of time it

takes to read each character in X(T ), Y (T ) is within this bound. The number of char-

acters read on lines 1b and 2 is also seen to be within this bound with high probability

by a standard Chernoff argument (for line 2 using the fact that b ≤ w(T ). Further-

more, another Chernoff argument gives us that, with high probability, the number of

collisions on line 2 is Õ(w(T )
b ). By assumption XLI0 runs in time Õ(

√
w(T )), so line 3

runs in time Õ(
w(T )
√
w(T )

b ). Therefore, all of these steps can be shown to run in time

Õ(w(T )
b

√
w(T )). �



72

Chapter 7

Implementing the LIS Algorithm

7.1 Improving the running time of the LIS algorithm

In this section, we present our improvement to the LIS algorithm of [21], as mentioned

in section 5.1.2. In the LIS setting, we will refer to X-indices as indices. We also borrow

the following notation from [21].

• lis(B) = lisf (B) is the size of a longest increasing (point) sequence (LIS) con-

tained in B.

• loss(B) is the smallest number of matches in B that must be deleted so that the

remaining matches in B form an increasing sequence.

• εf = lossf/n is the fraction of matches that must be deleted so that the remaining

points form an increasing sequence. In a slight abuse of notation, εI refers to εf

restricted to the index interval I, i.e. εI is the fraction of matches in the strip I|B that

must be deleted so that the remaining points in the strip form an increasing sequence.

We begin with the following definition:

Definition Let 0 < µ < 1/2. We say that i is µ-safe if for all index intervals [i, j], the

number of violations with i is at most µ|[i, j]| = µ(j− i+ 1). (A similar condition holds

for all [j, i].)

In [21], a similar definition ((µ,L)-safe) is defined. It is worth noting that this

characterization of being µ-safe is equivalent to the characterization of being (µ, 0)-

safe. Additionally, an index i is µ-unsafe if it is not µ-safe. In that case, there is a

witnessing interval where the safeness is violated.



73

Claim 7.1.1 Every µ-unsafe index has a witnessing interval that contains no µ-safe

index.

Proof Let i be µ-unsafe and [i, j] be the smallest witnessing interval. (The proof is

analogous if some [j, i] is the witnessing interval.) Suppose k ∈ [i, j] is µ-safe. We split

into two cases.

• i, k are violation: Then at least half the indices in [i, k] are violations with either

i or k. Since k is µ-safe, at least half of this interval is in violation with i. But then

[i, k] is a witnessing interval for i, which is smaller than [i, j]. Contradiction.

• i, k are comparable: The number of violations with k in [k, j] is at most µ(j−k+1).

This also upper bounds the number of violations with i in [k, j]. Hence, the number of

violations with i in [i, k) is at least µ(j − i + 1) − µ(j − k + 1) = µ(k − i) = µ|[i, k)|.

Thus, [i, k) is a witnessing interval. Contradiction.

�

We state a version of the key dichotomy lemma proved in [21], which was a gener-

alization of a lemma from [1].

Lemma 7.1.2 Let µ < 1/2. All µ-safe points form an increasing sequence. The num-

ber of µ-unsafe points is at most (1 + 1/µ)εfn.

The following is a corollary of the previous results.

Lemma 7.1.3 Consider two µ-safe indices i < j and let I = (i, j). Suppose the number

of µ-unsafe indices in I is at least |I|/6. Then εI ≥ µ/12.

Proof Consider any µ-unsafe point in I. By Claim 7.1.1, there exists a witnessing

interval lying completely in I (as i, j are µ-safe). Let us focus our attention completely

on I, and work with the function f |I . The number of µ-unsafe indices is still at least

5|I|/6. Combining with bound from Lemma 7.1.2, (1 + 1/µ)εI |I| ≥ |I|/6. Hence,

εI ≥ µ/12. �

In [21], there is a procedure FindSplitter which takes as input a box and essentially

attempts to find a µ-safe index in that box. Using this building block, [21] defines a



74

further procedure TerminalBox, which takes as input a box and an index i within the

horizontal range of the box, and attempts to find a subbox containing i with few µ-safe

indices. It does this by calling FindSplitter to find a µ-safe index j, and repeating

FindSplitter on a subbox containing i determined by the point at j. If FindSplitter

finds i itself as a µ-safe index, the singleton interval containing i is output.

Our improvement will use this procedure TerminalBox. To do so, we establish

some properties of TerminalBox. We first focus our attention on FindSplitter calls

made by TerminalBox.

Claim 7.1.4 Let B be a box given to a call of TerminalBox as input. Any Find-

Splitter call made by TerminalBox has the following properties (whp).

• If an index k is returned, then k ∈ X(B), k is 2µ-safe, and k is ρ-balanced in B.

• If no index is returned, then there are at most 5w(B)/6 µ-safe indices in X(B).

• The running time of this call to FindSplitter is at most (µ−1 log n)c.

Proof First, Proposition 5.8 of [21] establishes the validity of the running time claim.

Addressing the other two properties, this proposition also guarantees that the output

is reliable, as defined earlier in [21]. Unpacking this definition gives us the following.

First, let Bk,B be the number of violations with k in B, and let Gk,B be the number

of comparable points with k in B. Reliability says that if FindSplitter returns k,

then (1− µ)Bk,B − µGk,B ≤ Cγw(B). Moving things around, we get Bk,B ≤ µ(Bk,B +

Gk,B + Cγw(B) ≤ (µ + Cγ)w(B). Upon inspection, it is apparent that the setting of

the parameters in [21] ensures Cγ ≤ µ, meaning k is 2µ-safe. Reliability also ensures

that k ∈ X(B) and k is ρ-balanced in B, and that if no index is returned, then at most

ρw(B) indices are (µ,L)-safe. Since ρ ≤ 5/6 and any µ-safe index is (µ,L)-safe, the

second item in the claim is satisfied as well. �

We now have the following claim.

Claim 7.1.5 Consider the sequence 0 = s1 < s2 < . . . < sk = n+1 of all indices where

TerminalBox(s`,B) = s`.

• For all `, s` is µ-safe.



75

• Let I` = (s`, s`+1) be non-empty. Then εI` ≥ µ/24 and ∀i ∈ I`,

TerminalBox(i,B) = I`.

• All calls to TerminalBox(i,B) take (µ−1 log n)c+1 time.

Proof By the properties given by Claim 7.1.4, s` is 2µ-safe. It is also apparent that

∀i ∈ I`, TerminalBox(i) = I`. For any non-empty I`, FindSplitter failed to return

a point. By Claim 7.1.4, there are most 5|I`|/6 µ-safe indices in I`. By Lemma 7.1.2,

εI` ≥ µ/24. The runtime bound holds because in any recursive call, the size of the

argument I decreases by a constant fraction. Hence, O(log n) calls to FindSplitter

are made, where each call runs in (µ−1 log n)c. �

7.1.1 Reducing additive error to multiplicative error

In [21] a procedure Classify is used to label points as “good” or “bad”. Several

properties of Classify are proved in [21], we list 3 of these in the following theorem.

Theorem 7.1.6 Fix any δ < 1, and an input array g : [m] 7→ R. Let B be the box

given by g. There exists a procedure Classifytmax(i,B, δ) that outputs either “good” or

“bad” and has the following properties (whp over all possible calls).

• Each call takes (1/δ)1/δ logc n time.

• The good points form an increasing sequence.

• The number of bad points is in the range [εgm, (εg + δ)m].

Proof The first property is established by Theorem 1.1 in [21], which is proved by

setting δ = τ = δ/2 in Theorem 4.2 in [21]. The second property is established by

Proposition 8.3 in [21]. For the third property, we look at section 8.3 in [21]. Letting

Goodg be the set of good points, and Badg be the set of bad points, [21] defines ∆ =

lisg − |Goodg| − τlossg, and proceeds to show ∆ ≤ δm − |ζ1|, where ζ1 is an error



76

term. Using these facts and moving things around, we get

|Goodg| ≥ lisg − τlossg − δm+ |ζ1|

≥ m− εgm− δ/2m− δ/2lossg + |ζ1|

≥ m− εgm− δm

= m− (εg + δ)m

so |Badg| ≤ (εg + δ)m. This completes the proof of the third property, and the lower

bound on |Badg| follows from the second property. �

We will apply the procedure Classify on subintervals I of [n]. We will refer to this

invocations as ClassifyI . It basically means that the function g in Theorem 7.1.6 is set

to f |I . Later in the paper, µ is set to be a global parameter, but since this parameter

is being used here, we include it as an input. Additionally in Classify, we set the

multiplicative error parameter δ = µ2/24.

DMI1(i,B, µ)

Output: Label ACCEPT or REJECT.

1. Call TerminalBoxtmax(i,B, µ) and let I be the index interval of the output.

2. If I is the singleton interval i, ACCEPT.

3. Denote I = (s, s′). If i is in violation with either s or s′, REJECT.

4. Otherwise, call Classifytmax(i, I × Y (B), µ2/24). If this outputs “good”,

ACCEPT, else REJECT.

Lemma 7.1.7 Suppose I` = (s`, s`+1) is non-empty. The number of indices in I`

rejected by DMI1 is at most (1 + 3µ)εI |I|+ 4µ.

Proof Henceforth, we say that i is good/bad depending on the output of

Classifytmax(i, I` × Y (B), µ2/24). Index i ∈ I` is rejected for two reasons: either i is

in violation with the end indices s` or s`+1, or i is bad. Let x be the rightmost good

index in violation with s`, and y be the leftmost good index in violation with s`+1.

Any good index in (x, y) is consistent with s` and s`+1. Since the good indices form an

increasing sequence, the number of good indices in (s`, x] is at most (x−s`+1)µ, by the



77

µ-safeness of s`. Hence, the number of bad indices is at least (x− s`)−µ(x− s` + 1) =

(1−µ)(x− s`)−µ. Let G≤x and B≤x denote the number of good/bad indices in (s`, x].

By simple algebra,

G≤x ≤
µ

1− µ
(B≤x + µ) + µ ≤ 2µB≤x + 2µ

Applying an analogous argument to the interval [y, s`+1), we deduce that G≤x+G≥y ≤

2µ(B≤x + B≥y) + 4µ. By Theorem 7.1.6, the total number of bad indices is at most

εI |I| + µ2|I|/24. The total number of rejected indices is at most the number of bad

indices plus G≤x + G≥y. Thus, this is at most (1 + 2µ)εI |I| + µ2|I|/24 + 4µ. By

Claim 7.1.5, εI ≥ µ/24, so the number of rejected indices is at most (1 + 3µ)εI |I|+ 4µ.

�

Theorem 7.1.8 The total number of rejected indices is in the range [εfn, (1+5µ)εfn].

Proof The lower bound follows because the accepted indices form an increasing se-

quence. For the upper bound, we sum the bound of Lemma 7.1.7 over all non-empty

intervals Ii = (si, si+1). Let S be the set of these intervals. The total number of re-

jected indices is at most (1+3µ)
∑

I∈S εI |I|+2µ|S|. Since all intervals in S are disjoint,∑
I∈S εI |I| ≤ εfn. Any increasing sequence in F loses at least one index in each I ∈ S.

This is because (by Claim 7.1.5), εI = Ω(µ) > 0. Thus, |S| ≤ εfn. The proof is

completed by plugging in these bounds. �

Theorem 7.1.9 There is an algorithm with running time (1/µ)O(1/µ2)ε−1
f logc

′
n that

given any µ outputs a value ε ∈ [(1− µ)εf , (1 + µ)εf ]

Proof By Theorem 7.1.8, it suffices to estimate the number of rejected indices. For

any index, the time required to run DMI1 is (1/µ)O(1/µ2) logc n. By a standard multi-

plicative Chernoff bound, it suffices to determine the labels on Θ(µ−2ε−1 log n) uniform

random indices to estimate the number of rejected indices with multiplicative (1 ± µ)

error. We rescale µ to get the final bound. �



78

7.2 Modifications

In this section, we describe the modifications that we make to the LIS algorithm given

in section 7.1 (as mentioned in section 5.4), and show that these modifications do not

increase the error of the algorithm.

We begin with the following proposition.

Proposition 7.2.1 Suppose fX and fY are permutations and f = f−1
Y ◦ fX . Then the

common subsequences of fX and fY correspond to increasing sequences in f and vice

versa. In particular, lcsfX ,fY = lisf .

Proof If we look at a common subsequence of fX and fY , we can view it as a map

from a subset of X-indices to a subset of Y -indices. In particular, an X-index x in

a common subsequence is mapped to the Y -index f(x). Furthermore, if we define

x1 < x2 < ... < xk to be the X-indices of such a common subsequence, then f(x1) <

f(x2) < . . . < f(xk), i.e. these X-indices form an increasing subsequence in f . On the

other hand, if we let x1 < x2 < . . . < xk be the indices of an increasing subsequence

of f , then f(x1) < f(x2) < . . . < f(xk), so if we let yi be the Y -index given by f(xi),

y1 < y2 < . . . < yk, i.e. the pairs (xi, yi) for i ∈ [k] form a common subsequence of fX

and fY . From this, the statement lcsfX ,fY = lisf follows trivially. �

As this proposition shows, for a box B, any common subsequence of fX and fY in

B corresponds to an increasing sequence of f lying in the corresponding box (which

we will also refer to as B as the intervals X(B) and Y (B) are identical in the two

cases). Therefore, in order to find the number of points lying on the longest common

subsequence of B, we can instead find the length of the longest increasing sequence of

f lying in B. As shown in section 7.1, we have an algorithm (DMI1) which, given an

index x, an input function f and a box B, attempts to classify x depending on whether

or not it lies on the LIS of B. We can simulate this algorithm in the LCS setting as

follows: Given input sequences fX and fY with input box B, run DMI1 on index x and

box B with the function f = f−1
Y ◦ fX . Whenever DMI1 attempts to query f(x′) for

any index x′, simulate this query by querying fX(x′) as well as fY (y) for each y ∈ Y (B),



79

and returning the value y such that fY (y) = fX(x′). This simulation of DMI1 will

approximate lis(B) and therefore lcs(B) to within the same level of accuracy as in

the LIS setting, and its running time is h(B) times the running time of DMI1 in the

LIS setting, since each query which could be done in unit time in the LIS setting now

takes O(h(B)) time in the LCS setting.

Our goal is to reduce the h(B) blowup in cost incurred by simulating queries in the

LCS setting. Looking more closely at the queries made by DMI1, we observe that

whenever such queries are made, the indices x′ for which f(x′) is queried are obtained

randomly from the X-interval of a specified box (call this box T ). As a result, in order

to simulate this query, it suffices to generate a match uniformly at random from the

matches of the elements of X(T ). Another way of saying this is that we would like to

find a random point in the box X(T )×Y (B) (B being the input box). To do so, we can

sample O(
√
h(B)) Y -indices from Y (B) and O(

√
h(B)) X-indices from X(T ), querying

the values of fY and fX for the indices in these two sets respectively. By a birthday

paradox argument, with high probability, ∃y ∈ Y (B), x ∈ X(T ) s.t. fY (y) = fX(x),

provided that w(T ) = Ω(
√
h(B)).

Our goal now is to ensure that any box from which we would like to query random

points has width at least
√
h(B). To do this, we look more closely at the DMI1

algorithm. The DMI1 algorithm is a modification of the [21] algorithm, which is fairly

complicated, so we will introduce only the aspects of the algorithm that will be necessary

for us to analyze. The approach of DMI1 is to construct a rooted tree of boxes. In

actuality, a call to DMI1 for an index x and a box B only traverses one root to leaf

path in such a tree, however from an analytical standpoint, for a fixed setting of the

random bits, if we consider calls DMI1(x,B) for each x ∈ X(B), the boxes encountered

by these calls form a rooted tree of boxes. This tree has the full box B at the root, and

for any box T in the tree, its children form a box chain spanning T . The leaves of this

tree consist of two types of boxes:

(1) Boxes T on which the algorithm attempts to find an LIS of T .

(2) Boxes T on which the algorithm “gives up”, i.e. classifies all indices in X(T )

as BAD.



80

We will refer to boxes of type (1) as green boxes and boxes of type (2) as red boxes. In

the case of the algorithm DMI1, all green boxes have width 1. As a result, for DMI1,

the task of finding an LIS of a green box is trivial, as it consists solely of determining

whether or not the match of the X-index lies in the Y -interval of the box.

Since the leaves of any such tree form a box chain, the concatenation of the LIS’s

of the green leaves is itself an increasing sequence in B, so its length is at most lis(B)

(this holds even when the green leaves do not necessarily have width 1). As a result,

the accuracy of such an estimation procedure is determined by the guarantee we can

prove for the length of this concatenation (the longer the better).

For such a tree G, define the ω-truncation of G to be the tree obtained by removing

the children of every node T with w(T ) ≤ ω and coloring T green. If G is the tree given

by DMI1, let DMI2 be the algorithm that simulates DMI1 with the modification that,

whenever it reaches a leaf T in the ω-truncation of G (for a fixed value of ω which we

will choose later), it computes lis(T ) exactly, labeling an index of X(T ) GOOD iff it

lies on this LIS. Since the union of the LIS’s of all green leaves of G which are subboxes

of T is an increasing sequence of T , replacing this union with an LIS of T can only

increase the number of indices labeled GOOD. Therefore, regardless of the choice of

ω, DMI2 will classify at least as many points GOOD as DMI1, so the estimate given

by DMI2 is at least as accurate as the estimate given by DMI1. We state this in the

following Lemma:

Lemma 7.2.2 Suppose that, for a box B and δ > 0, the number of indices x ∈ X(B)

classified as BAD by DMI1 is at most (1 + δ)Xloss(B) with high probability. Then the

number of indices x ∈ X(B) classified as BAD by DMI2 is at most (1 + δ)Xloss(B)

with high probability.

Next, we attempt to simulate the task of querying values of f(x) for randomly chosen

X-indices x ∈ X(B). Now it may be the case that f(x) /∈ Y (B), in which case DMI2

ignores the query. As a result, we can simulate such queries by finding random matches

in B. The full primitive of DMI2 that we simulate consists of obtaining a list of such

queries. This primitive in DMI2 is carried out by repeating the task of querying a



81

random X-index in X(B) m times, with repetitions. We do the same, finding a random

match m times with repetitions. The only issue we run into with this is that, since we

do not know the number of points in B a priori, we cannot be certain how many of

these m queries will successfully find a match in DMI2. As a result, we construct a

simulation which (with high probability) is guaranteed to find at least as many matches

in B.

In section 7.3, we build a procedure BoxSample, which achieves these properties.

We will prove the following lemma (For simplicity, we let h = h(B), w = w(B), dm =

dmin(B), dM = dmax(B)):

Lemma 7.2.3 Let B be a box such that h ≥ 4, w ≥ 2
√
h. Suppose B contains δw

matches. The following statements hold:

1. If δ ≥ 1/4, then with probability at least 1 − e−Ω(m), BoxSample(m,B) returns

a sample of size at least m.

2. If δ < 1/4, then the number of points returned by BoxSample(m,B) is bounded

below by a random variable Z ∼ Bin(m, δ).

3. With probability at least 1− eO(logm)−Ω(
√
h), BoxSample(m,B) makes O(m

√
h)

queries.

We say that, for random variables Z1 and Z2, Z2 dominates Z1 with failure κ if ∀k ≥ 0,

Pr[Z2 ≥ k] ≥ Pr[Z1 ≥ k]− κ. As this lemma shows, the random variable representing

the number of points returned by BoxSample(m,B) dominates the random variable

representing the number of points returned by the sampling procedure of DMI2 (with

parameters m,B) with failure e−Ω(m). Since every call to this sampling procedure has

m = Ω(log2 n), this failure is at most n−Ω(logn). Therefore, since the entire algorithm

makes at most polylogarithmic calls to this sampling procedure, by a union bound

the probability of failure of any of these sampling calls is at most n−Ω(logn). As a

result, in order to show that we can replace the sampling procedure of DMI2 with

BoxSample without incurring additional error (with high probability), it remains to

show that increasing the number of points returned by the sampling procedure does



82

not increase the error of the algorithm. To show this, we will unfortunately have to

look more closely at some of the details of the algorithm DMI2 (which are identical to

the corresponding details of the [21] algorithm).

First, we look at the parts of the [21] algorithm which use random sampling of

indices. We find that random sampling is used in the following subprocedures:

1. ApproxLIS, which takes a random sample of points and uses the fraction of bad

points in the sample as an approximation of the total number of bad points.

2. FindSplitter, which attempts to find a good splitter in a random sample of

points, or declares that few good splitters exist if it fails to find one.

3. BuildGrid, which uses the random sample to be able to build an α-fine B-grid.

4. approxZ, which given a candidate splitter P and a box B uses a random sample

of points in B to estimate the fraction of points in B which are in violation with

P .

When analyzing ApproxLIS, [21] shows that the random sample obtained gives a good

approximation to the fraction of bad points using the following Chernoff Bound:

Proposition 7.2.4 Let I be an X-interval and γ ∈ [0, 1] and s ∈ N+. Let A ⊆ I be

fixed. For a random sample x1, . . . , xs from I, let r denote the fraction of points that

belong to A. Then Pr[|r − |A||I| | ≥ γ] ≤ 2e−2γ2s.

The number of sample points is given by s in this lemma. If we increase s, 2e−2γ2s

decreases, meaning the probability that our estimate is not a good approximation de-

creases as we increase the size of the sample. Therefore, such an increase in the size of

the sample does not increase the error incurred from ApproxLIS.

When analyzing FindSplitter, [21] starts by supposing that, for the given box B

and a parameter 0 ≤ ρ ≤ 1, ρw(B) of the X-indices in B are the X-indices of good

splitters in B. From this, [21] argues that the probability that a random sample of size

m fails to find any such good splitter is (1− ρ)m. m is chosen so that this quantity is

sufficiently small. As in the ApproxLIS case, increasing m will not increase the value



83

of this quantity (since 0 ≤ (1 − ρ) ≤ 1), so increasing the size of the sample does not

increase the error incurred from FindSplitter.

For the case of BuildGrid, a similar argument could be used to show that our

sampling procedure will suffice, however as we will mention later, it is simpler to replace

BuildGrid with a procedure that does not require random sampling in our setting.

As a result, we do not have to worry about the random sampling in the procedure

BuildGrid.

Lastly, we look at the procedure approxZ. In [21], the probability of error of ap-

proxZ is bounded using a Hoeffding bound. When the Hoeffding bound is applied,

the expression for the probability of error is exp(−Ω(L2m/w(B)2)), where L is an er-

ror threshold parameter and m represents the size of the sample. Again, we see that

increasing m (while holding L constant) will decrease the probability of error.

As the above discussion shows, in every instance in DMI2 where the sampling

primitive is used, increasing the size of the sample does not increase the probability of

error. Therefore, if we let DMI3 be the modification of DMI2 obtained by replacing

this sampling primitive with BoxSample, DMI3 will achieve at least the same level

of accuracy as DMI2. We state this in the following lemma, adopting the convention

that any X-index x with f(x) /∈ Y (B) is automatically classified as BAD by DMI3

(since DMI3 only takes as input points in B).

Lemma 7.2.5 Suppose that, for a box B and δ > 0, the number of indices x ∈ X(B)

classified as BAD by DMI2 is at most (1 + δ)Xloss(B) with high probability. Then the

number of indices x ∈ X(B) classified as BAD by DMI3 is at most (1 + δ)Xloss(B)

with high probability.

As mentioned above, the procedure BuildGrid in DMI1 also uses queries f(x) for

random indices x ∈ X(B), but it is easier to simulate without random sampling in the

LCS setting. It is not necessary for us to implement this procedure without random

sampling, but given how simple the modified procedure is, we choose to implement this

modification. Since this simplification is not strictly necessary, we will defer the details

to section 7.7. The procedure MakeGrid which we define achieves the same properties



84

as BuildGrid, so if DMI4 is the procedure obtained by replacing BuildGrid with

MakeGrid in DMI3, DMI4 achieves the same accuracy guarantees as DMI3.

Lemma 7.2.6 Suppose that, for a box B and δ > 0, the number of indices x ∈ X(B)

classified as BAD by DMI3 is at most (1 + δ)Xloss(B) with high probability. Then the

number of indices x ∈ X(B) classified as BAD by DMI4 is at most (1 + δ)Xloss(B)

with high probability.

7.3 A Sampling Procedure

In this section, we state the procedure BoxSample described in section 7.2, and prove

the associated lemma given in that same section.

Given a box B and a parameter m, we will want to simulate the process of choosing

m random indices from B and finding all matches of chosen indices which lie in B. As

mentioned earlier, we do this using a birthday paradox technique. (For simplicity, we

let h = h(B), w = w(B), dm = dmin(B), dM = dmax(B)).

We define the procedure BoxSample(m,B), which takes as input a box B and a

parameter m, and makes m calls to PointSample(B). PointSample(B) attempts

to generate a match in B uniformly at random among all matches in B, and has the

property that, if B contains δw matches, then PointSample(B) successfully finds a

match with sufficiently high probability as a function of δ (assuming B is not too

unbalanced).

BoxSample(m,B)

Output: A list of matches in B.

1. Run PointSample(B) 3m times.

2. Output the list of matches returned by the calls to PointSample(B).



85

PointSample(B)

Output: A match in B or FAIL.

1. Set p =
√

4h
w2 , q =

√
4
h . If p > 1 or q > 1, output FAIL.

2. Otherwise, let Sx = Sample(X(B), p), Sy = Sample(Y (B), q).

3. Set S = {(x, y) : x ∈ Sx, y ∈ Sy, y = f(x)}.

4. If S is nonempty, return a uniformly random element of S, else return FAIL.

The following lemma states the guarantees that we’ll need for PointSample.

Lemma 7.3.1 Let B be a box such that h ≥ 4, w ≥ 2
√
h. Suppose B contains δw

matches. For a call PointSample(B), the following statements hold:

1. Each match in B is equally likely to be the output.

2. PointSample(B) returns a match with probability at least min(2δ, 1
2).

3. With probability at least 1−e−Ω(
√
h), PointSample(m,B) makes O(

√
h) queries.

To prove Lemma 7.3.1, we will use the following claim.

Claim 7.3.2 For nonnegative real numbers k, n with n ≥ 2, nk ≤ 1, (1 − k)n ≤

(1− nk + n(n−1)
2 k2)

Proof By the generalized binomial theorem, (1 − k)n = (1 − nk +
(
n
2

)
k2 −

(
n
3

)
k3 +

· · · ). Each successive term is at most nk times the previous term. Since nk ≤ 1, this

alternating series telescopes, meaning it can be bounded by its partial sums (bounded

above when the final term is positive, or below when the final term is negative). Using

the definition of the generalized binomial coefficient
(
n
2

)
, the result follows. �

We now prove Lemma 7.3.1.

Proof For the first item, a given match is in Sx × Sy iff its X-index is in Sx (which

happens with probability p) and its Y -index is in Sy (which happens with probability

q), independently of the other matches. Therefore, each match of B is in Sx × Sy

independently with probability pq. Since the output of PointSample(B) is a uniformly

chosen match in Sx × Sy, the statement follows.



86

For the second item, suppose first that δ ≤ 1/4. As stated above, each match is in

Sx × Sy independently with probability pq = 4
w . Therefore, the probability that none

of the δw matches in B lie in Sx×Sy is (1− 4
w )δw. Since δ ≤ 1/4, δw 4

w ≤ 1. Therefore,

by Claim 7.3.2,

(1− 4

w
)δw ≤ 1− 4δ +

δw(δw − 1)

2
(

4

w
)2

≤ 1− 4δ +
1

2
(δw)2(

4

w
)2

≤ 1− 4δ +
1

2
(4δ)2

≤ 1− 4δ +
1

2
(4δ)

≤ 1− 2δ

Since no matches are found with probability at most 1− 2δ, the statement follows.

Suppose instead that δ ≥ 1/4. In this case, note that the above bound holds when

using δ = 1
4 . Since (1− 4

w )δw only gets smaller as δw increases, the bound of 1−21
4 = 1/2

holds for δ ≥ 1/4, so again the statement follows.

For the third item, let Z be a random variable representing the size of Sx. We have

Z ∼ Bin(w,
√

4h
w2 ). Note that µ =

√
4h. We have

Pr[Z > 3/2
√

4h] = Pr[Z > (1 + 1/2)
√

4h]

≤ exp(−(1/2)2
√

4h

3
)

≤ exp(−
√

4h

12
).

An analogous argument achieves the same bound on the size of Sy, establishing the

claim. �

The reader should note that in every call to PointSample in our procedure, h ≥

Ω(log2(n)), so the probability that the third item fails is at most n−Ω(log(n)).

We now prove Lemma 7.2.3, which states guarantees for the output and running

time of BoxSample(m,B), provided h ≥ 4, w ≥ 2
√
h.

Proof For the first item, assume δ ≥ 1/4. By Lemma 7.3.1, PointSample(B) returns

a match with probability at least 1/2. Therefore, the number of matches returned by



87

BoxSample(m,B) is bounded below by a random variable W ∼ Bin(3m, 1/2). By the

Chernoff Bound,

Pr[W < m] ≤ Pr[W < (1− 1/3)
3m

2
]

≤ exp(−
(1/3)2 3m

2

2
)

≤ exp(−m
12

)

For the second item, suppose δ < 1/4. By Lemma 7.3.1, PointSample(B) returns

a match with probability at least 2δ. Therefore, the number of matches returned by

BoxSample(m,B) is bounded below by a random variable W ∼ Bin(3m, 2δ), which

in turn is bounded below by the random variable Bin(m, δ).

For the third item, by Lemma 7.3.1, each call to PointSample(B) makes O(
√
h)

queries independently with probability 1− e−Ω(
√
h). By a union bound, the probability

that all of these calls make O(
√
h) queries is at least 1 − 3me−Ω(

√
h). Since the total

number of queries made by BoxSample(m,B) is just the sum of the number of queries

made by each call to PointSample(B), the result follows. �

7.4 FindLCS

In section 7.2, several modifications to DMI1 were introduced, yielding the procedure

DMI4. The first modification involved stopping the procedure once it reached a box of

width at most ω and computing the LIS of the box exactly. As shown earlier, there is

a correspondence between increasing sequences and common subsequences. (Here we

can revert back to the LCS setting, using an algorithm which computes the LCS of a

box so that we can use it as a black box without having to worry about simulating

LIS queries in the LCS setting.) In most cases, the algorithm of [14] can do this in

time O(ω logω), which is acceptable for us. However, if the input box T has height

significantly larger than ω, the algorithm of [14] will not have the same guarantee. As

a result, we use the algorithm of [14] to construct an algorithm whose running time can

be bounded by O(ω logω), which gives us an acceptable approximation to lis(T ). We

call our procedure FindLCS, which is described in the following paragraph.



88

For a box T and a parameter λ, let BOTλ(T ) = X(T )× [yB(T ),min(yT (T ), yB(T )+

w(T )/λ)]) and TOPλ(T ) = X(T ) × [max(yB(T ), yT (T ) − w(T )/λ), yT (T )]). Find-

LCS(λ, T ) runs the algorithm of [14] on BOTλ(T ) and TOPλ(T ), and returns the longer

of the two output sequences (if they are the same length, it chooses the first one). Note

that, if T is λ-proportional, T = BOTλ(T ) = TOPλ(T ), so FindLCS(T , λ) just returns

the output of the algorithm of [14] run on T .

It is routine to show that this procedure runs in the desired time bound; we state

and prove this here.

Proposition 7.4.1 Given an input of two nonrepeating sequences and a subbox T of

the input box with w(T ) ≤ ω, FindLCS(λ, T ) runs in time O(k log k), where k = ω/λ.

Proof Note that FindLCS consists of two calls to the LCS algorithm of [14], which

are run on ω-small, λ-proportional boxes. These two properties imply dmax(T ) ≤ k.

As a result, by Theorem 1 of [14], the given LCS algorithm runs in time O(k log k).

(Note that since the input sequences were nonrepeating, T contains at most k character

matches.) �

It will also be necessary to prove an accuracy guarantee for FindLCS. We defer

this to a later section, as the argument and guarantee are both fairly technical. First,

we will discuss two example input instances which we hope will provide some intuition

as to why FindLCS, as well as the algorithm as a whole, works.

7.5 Examples

In this section, we give two examples which aim to provide some intuition as to how

our algorithm handles certain potential difficulties.

For the first example, suppose the input consists of two identical permutations,

so the point-box representation of the input is an increasing sequence of points along

the main diagonal of the input box B (see Fig. 7.1). When our algorithm reaches

the procedure XLI2, it chooses a random box T , on which the procedure XLI0 will

ultimately be run. As described in section 6.2, we can think of this random choice of T



89

Figure 7.1: Input 1 Figure 7.2: Input 2

as chosen by choosing a random partition of X-intervals of size r, and then randomly

choosing one of these X-intervals (along with the appropriate Y -interval). As viewed

this way, we get a sequence of boxes T0, T1, . . . , Tk. Let Tj−1, Tj be two consecutive

boxes in this sequence (as shown in Fig. 7.1). Suppose box Tj is chosen by XLI2. When

XLI0 is run on this box, any such call will eventually reach a box of width O(
√
r), at

which point FindLCS will be called. In most cases, FindLCS will easily find the

LCS of the box. However, the leftmost and rightmost of these boxes will have height

O(
√
r + a′) = O(r) (box C in Fig. 7.1). This box is too unbalanced for the algorithm

of [14] to be efficiently run on C. In particular, such a call would not necessarily run

in o(r) time. The algorithm FindLCS instead calls this algorithm on the (balanced)

top and bottom ends of C. In this case, FindLCS will find the entire LCS of C in the

top end, successfully classifying all indices as GOOD. Note that for this input, since

the ulam distance is 0, our algorithm cannot afford to make any errors, so it would not

have been acceptable to just throw out this box.

The reader might now ask what would happen if the LCS did not lie entirely in the

top of C. In this case, FindLCS may not necessarily find an LCS of C. However, the

fact that the LCS contains points outside the top of C means that the Y range of the

LCS is much larger than the X range of the LCS, meaning that there must be many



90

Y -indices between the bottom point of this LCS and the top point of this LCS that are

unmatched in C. If the LCS of the input box does in fact contain this sequence, then

it must miss all of these Y -indices, whose number is large enough that the entire width

of C is small compared to it, meaning FindLCS could output a value as small as 0 for

C. On the other hand, if the LCS of the input box does not contain the LCS of C, then

we merely have to look at the intersection of the LCS of the input box with C. If this

intersection contains points outside the top of C, then this same argument applies. If

not, then FindLCS will find all the points in this intersection.

This first example illustrates how our algorithm might be able to find most of the

points on the LCS of the input box, but it should not be clear that our algorithm

does not classify too many points as GOOD. In other words, the points classified as

GOOD by our algorithm may not form a common subsequence (and in fact in some

cases they are not). To illustrate, consider the input shown by Fig. 7.2. Here, the ulam

distance is 2 ·min(w(C), w(C′)). However, since our algorithm looks at the LCS of each

subbox individually, in this case it appears to successfully find a perfect LCS in every

box, thus returning 0 as in the first example. Obviously this is unacceptable, so the

reader may be puzzled why this does not invalidate the correctness of our algorithm.

The key here is that, while we do return 0 when the picture looks like Fig. 7.2, for

the given input it is unlikely that this will be the case. Recall that the procedure

XLI2 chose the left endpoint of the box Tj uniformly at random. It turns out that the

width of this random box was chosen to be big enough so that, most of the time, if the

input is as in Fig. 7.2, the points in C and C′ will all lie in the same Tj . If this does

happen, the algorithm will correctly classify one of these two sets of points as BAD

and correctly output 2 ·min(w(C), w(C′)). Averaging over this random choice, we get

that the expected output of the algorithm is close to 2 · min(w(C), w(C′)), and more

importantly, we show that with sufficiently high probability, our algorithm does return

a value which is within a (1 + ε) factor of this value.

Obviously one could construct a more complicated input with these potential issues

occuring in several different places for several possible choices of randomness, but the

same arguments can still be applied. We now conclude this discussion in the hope that



91

these two examples provided enough insight for the reader to be more comfortable with

the correctness of our algorithm.

7.6 Analysis

In this section, we analyze the LIS algorithm outlined in section 5.4, whose code appears

in section 7.8. Note that we have already provided the code for some subprocedures of

this algorithm, namely BoxSample (section 7.3) and FindLCS (section 7.4).

First, we analyze the accuracy of the procedure FindLCS. It turns out that, if a

final box T is sufficiently unbalanced, then the procedure of [14] is not guaranteed to

be able to efficiently find an LCS of T . As a result, we formulate FindLCS so that this

algorithm is run on subboxes of T which are adequately balanced. This formulation

potentially introduces some error, but we show that this error is manageable, proving

a bound on the amount of error introduced by FindLCS in Lemma 7.6.1. We remind

the reader of the following parameter settings: λ = ε4
1+ε4

, ε4 = ε3
10 . We also recall the

following definitions:

• herr(S,B) = Xloss(S,B)− Xloss(B) = lcs(B)− |S|.

• serrε(S,B) = min
S′⊆S

(herr(S′,B) + ε · Ylosstrim(S′,B)).

• terrε(B) = max
S

(serrε(S,B)), where the max is taken over common subsequences

S of B with length at least lcs(B)− ε · Xloss(B).

• S̃ε(B) denotes the sequence S′ achieving the minimum in serrε(S,B).

Lemma 7.6.1 Let T be a box, and let S be a common subsequence of matches in T . Let

~C be a box chain spanning T with S ⊆ ~C. Suppose that |{C ∈ ~C : S̃ε3(T )∩C 6= ∅}| > 1.

Then
∑
C∈~C

Xloss(FindLCS(λ, C), C) ≤ (1 + ε4)(Xloss(T ) + serrε3(S, T )).

Proof First, consider Ylosstrim(S̃ε3(T ), T ). Ylosstrim(S̃ε3(T ), T ) counts the number

of Y -indices between the ends of S̃ε3(T ) that do not have a match on S̃ε3(T ). For a

subbox C, we can count the number of such indices which lie in Y (C). Let VT (S̃ε3(T ), C)



92

denote this value. Note that for ~C a box chain spanning T ,
∑
C∈~C VT (S̃ε3(T ), C) =

Ylosstrim(S̃ε3(T ), T ).

Let C ∈ ~C. Suppose that C is λ-proportional. In this case, FindLCS(λ, C) outputs

an LCS of C, so Xloss(FindLCS(λ, C), C) = Xloss(C).

Now suppose that C is λ-fat. In this case,

lcs(C) ≤ h(C) ≤ λw(C) ≤ ε4
1+ε4

(Xloss(C) + lcs(C)), so lcs(C) ≤ ε4Xloss(C) and

Xloss(FindLCS(λ, C), C) ≤ w(C) ≤ (1 + ε4)Xloss(C).

Lastly, suppose that C is λ-skinny. If |S̃ε3(T ) ∩ C| ≤ |FindLCS(λ, C)|, then

Xloss(FindLCS(λ, C), C) ≤ Xloss(S̃ε3(T ) ∩ C, C). Now suppose

|S̃ε3(T ) ∩ C| > |FindLCS(λ, C)|. Recall BOTλ(C) = X(C) × [yB(C), yB(C) + w(C)/λ])

and TOPλ(C) = X(C) × [yT (C) − w(C)/λ, yT (C)]). Since FindLCS(λ, C) outputs the

longest common subsequence found in either BOT(C) or TOP(C), ∃s1, s2 ∈ S̃ε3(T ) ∩ C

such that s1 /∈ BOT(C), s2 /∈ TOP(C). By assumption, ∃C′ 6= C such that S̃ε3(T )∩C′ 6= ∅.

If C′ lies below C, then all unmatched Y -indices between yB(C) and s1 contribute to

Ylosstrim(S̃ε3(T ), T ). If C′ lies above C, then all unmatched Y -indices between yT (C)

and s2 contribute to Ylosstrim(S̃ε3(T ), T ). In either case, there are at least w(C)
λ Y -

indices in Y (C) between two points on S̃ε3(T ), of which at most w(C) of them can have

matches on S̃ε3(T ). Therefore, there are at least w(C)
λ −w(C) = w(C)

ε4
Y -indices in Y (C)

which contribute to Ylosstrim(S̃ε3(T ), T ). Since |S̃ε3(T )∩C|−|FindLCS(λ, C)| ≤ w(C),

this is at most ε4VT (S̃ε3(T ), C) ≤ ε3VT (S̃ε3(T ), C).

Putting all of these cases together,

∑
C∈~C

Xloss(FindLCS(λ, C), C) ≤
∑
C∈~C

(1 + ε4)Xloss(S̃ε3(T ) ∩ C, C) + ε3VT (S̃ε3(T ), C)

≤ (1 + ε4)(Xloss(S̃ε3(T ), T ) + ε3Ylosstrim(S̃ε3(T ), T ))

≤ (1 + ε4)(Xloss(T ) + serrε3(S, T ))

�

In section 7.8, we will give the code for the subprocedures of XLI0, which is the pro-

cedure obtained by replacing the exact computation of LIS with FindLCS in DMI4.



93

Since XLI0 is a modified version of DMI1, many of these subprocedures are simi-

lar or identical to those found in [21]. We will refer to these procedures (Classifyt,

CriticalBoxt, TerminalBoxt, GridChaint, ApproxLISt) by name in the remainder

of this section.

In section 7.9, we will prove the following theorem, which gives running time bounds

for ApproxLISt and Classifyt. Here, Atmax and Ctmax represent the running of

ApproxLIStmax and Classifytmax on boxes of size n, respectively.

Theorem 7.6.2 For the input parameter ε given in XLI0, both Atmax and Ctmax are

in time (1/ε)O(1/ε2)(log n)O(1)√n.

Using this theorem, we now state and prove the following theorem. From this

theorem, Lemma 5.1.3 follows trivially, completing the proof of Theorem 1.2.2. We first

introduce the following terminology.

Consider a call to XLI0(x,B). For a fixed choice of the random bits, this call to

XLI0(x,B) may eventually result in a call to FindLCS(x, T ) for T ⊂ B. Call this box

T the final box for x. Note that (as described above) if x′ is the X-index of another

match in T , then the final box of x′ is also T . If we look at the set of all final boxes of

X-indices in X(B), these form a box chain in B, called the final chain of B. Note that

the final boxes correspond to the green leaves of the tree described in 7.2.

Theorem 7.6.3 Let B be a box with h(B) ≤ 2w(B), define n = dmax(B), and let S be

the set of matches (x, y) ∈ B such that XLI0(x,B) returns GOOD (for a fixed setting

of the random seed). With probability at least 2/3 over the choices of the random seed,

XLI0(x,B) has the following properties.

• Each call takes (1/ε)O(1/ε2)(log n)O(1)√n time.

• The good points form an increasing sequence.

• The number of bad points is at most (1 + ε4)(Xloss(B) + terrε3(B))− dout(B).

Proof For the first item, the running time of XLI0 comes from the calls to the proce-

dures TerminalBox−1 and Classifytmax . As noted in the proof of Theorem 7.6.2, the

running time of TerminalBox−1 is dominated by its calls to FindSplitter, of which



94

there are at most log n/ρ0. By Claim 7.1.4, the cost of FindSplitter in the LIS setting

is (ψ log n)O(1). Any call to FindSplitter is made on a box of width
√
n(log n)O(1).

Therefore, by Lemma 7.2.3, any call to BoxSample(m, T ) made by FindSplitter runs

in time
√
n(log n)O(1) (In any such call, logm = o(

√
h(T ))). As a result, replacing the

primitive of obtaining a random sample of points with the procedure BoxSample mul-

tiplies the running time of FindSplitter by
√
n(log n)O(1), so the cost of FindSplitter,

and subsequently TerminalBox−1 is
√
n(ψ log n)O(1). By Theorem 7.6.2, the cost of

Classifytmax is (1/ε)O(1/ε2)(log n)O(1)√n, which gives us the desired running time.

For the second item, we first note that points are only classified as good as a result

of a call to FindLCS. Thus, the good points are just the union over all final boxes

S of the output of FindLCS(λ,S). Since the final boxes form a box chain and the

output of FindLCS(λ,S) is a common subsequence, the good points form a common

subsequence.

For the third item, suppose that S is the sequence formed by concatenating the

LCS’s of each box in the final chain of B. By Theorem 7.1.8, the number of X-indices

of B classified as BAD by DMI1 is at most (1+ε3)Xloss(B) (for the parameters chosen

in XLI0). By Lemma 7.2.2, Lemma 7.2.5, and Lemma 7.2.6, this same bound holds for

the number of X-indices of B classified as BAD by DMI4. Since this quantity is given

by Xloss(S,B), Xloss(S,B) ≤ (1 + ε3)Xloss(B). Moving things around, we get that

the length of S is at least lcs(B)− ε3Xloss(B).

Recall that S̃ε3(B) is the sequence achieving the minimum in serrε3(S,B). Suppose

that S̃ε3(B) is contained in one box in the final chain (call it C). Looking at XLI0

and the procedures it calls, FindLCS is only called when w(C) = Õ(
√
dmax(B)).

Therefore, |S̃ε3(B)| ≤ w(C) = Õ(
√
dmax(B)). If dmax(B) = w(B), then w(B) ≤

(1 + ε4)Xloss(S̃ε3(B),B) ≤ (1 + ε4)(Xloss(B) + serrε3(S,B)) ≤ (1 + ε4)(Xloss(B) +

terrε3(B)), so the number of bad points is at most (1 + ε4)(Xloss(B) + terrε3(B))−

dout(B). If dmax(B) = h(B), then since h(B) = O(w(B)), the same bound follows.

Now suppose that S̃ε3(B) intersects more than one box in the final chain. The total

number of X-indices classified as bad is
∑
C∈~C

Xloss(FindLCS(λ, C), C). By Lemma 7.6.1,



95

∑
C∈~C

Xloss(FindLCS(λ, C), C) ≤ (1+ε4)(Xloss(B)+serrε3(S,B)) ≤ (1+ε4)(Xloss(B)+

terrε3(B)), since the length of S is at least lcs(B)−ε3Xloss(B). Therefore, the number

of bad points in B is at most (1 + ε4)(Xloss(B) + terrε3(B))− dout(B). �

7.7 MakeGrid

In this section, we state the procedure MakeGrid and prove that it satifies the prop-

erties guaranteed by BuildGrid in [21]. We borrow the notion of a grid and a grid

digraph from [21]:

Grids A grid Γ is any Cartesian product I × J where I is a set of X-indices and

J is a set of Y -indices. Thus Γ is a grid if and only if Γ = X(Γ)× Y (Γ). A box is the

special case of a grid in which both X(Γ) and Y (Γ) are intervals. We refer to the sets

of the form {x} × Y (Γ) for x ∈ X(Γ) as columns of Γ and sets of the form X(Γ)× {y}

for y ∈ Y (Γ) as rows of Γ.

Grid digraph D(Γ): This is associated with a grid Γ defined on a box B. The vertex

set is Γ ∪ {PBL(B), PTR(B)}. The arc sets consists of pairs (PBL(B), Q) where Q lies

in the leftmost columnn of Γ, (Q,PTR(B)) where Q belongs to the rightmost column

of Γ, and (P,Q) where x(P ) < x(Q), y(P ) ≤ y(Q), and P and Q are in adjacent

columns of Γ. D(Γ) is acyclic and has unique source PBL(B) and unique sink PTR(B).

A D(Γ)-path is a source-to-sink path in D(Γ). Every arc (P,Q) of D(Γ) corresponds to

a box with bottom left corner P and top right corner Q, and a D(Γ)-path corresponds

to a box chain spanning B. A box chain arising in this way is a Γ-chain. Each box

correponding to an arc is called a grid box.

In [21], the procedure BuildGrid was used to construct an α-fine B-grid, given a

box B and α > 0. It turns out that in our setting, constructing such a grid is far simpler,

as the set of Y -indices is known in advance. As a result, we construct an α-fine B-grid

using the procedure MakeGrid. We remind the reader of the relevant definitions from

[21] before describing this procedure.

B-strips and B-strip decompositions If B is a box, a B-strip is a subbox S of

B such that Y (S) = Y (B). Thus a B-strip has the same vertical extent as B and is



96

specified relative to B by its X-index set X(S). If I ⊆ X(B) is an X-interval then

I|B denotes the B-strip with X-index set I. Similarly if T is a subbox of B then T |B

denotes the strip X(T )|B. A B-strip decomposition is a partition of B into strips. A

B-strip decomposition into r strips is specified by a sequence x0 = xL(B) < x1 < · · · <

xr = xR(B), where the jth strip is (xj−1, xj ]|B. We use the sequence notation ~S to

denote a B-strip decomposition in the natural left-to-right order. In particular if Γ ⊂ B

is a grid then Γ naturally defines a strip decomposition of B obtained by taking the

strips that end at successive columns of Γ with the final strip ending at xR(B).

Given a box, we want to select a suitably representative set of Y -indices from the

box. Let us say that a Y -interval J is α-popular for box B if there are at least αw(B)

X-indices x ∈ X(B) such that f(x) ∈ J . If B is a box and α ∈ (0, 1), a α-value net for

B is a subset V of Y (B) such that:

• yT (B) ∈ V .

• For all subintervals J of Y (B) that are α-popular for B, V ∩ J = ∅.

A grid Γ is a B-grid if X(Γ) ⊆ X(B)−{xL(B), xR(B)} and Y (B) is a value net for B.

If x1 < · · · < xk are the X-indices of X(Γ), then they define a B-strip decomposition of

X(B) whose associated X-index partition is (xL(B), x1], (x1, x2], · · · , (xk, xR(B)]. We

call this the strip decomposition of B induced by Γ.

Definition For a box B and α > 0, a grid Γ is an α-fine B-grid if:

• X(Γ) contains an X-index from every subinterval I of X(B) having size exceeding

αw(B).

• Y (Γ) is a α
|X(Γ)| -value net.

We now describe the procedure MakeGrid. The reader should note that this

procedure does not require any queries to the input.



97

MakeGrid(B, α)

Output: A B-grid Γ.

1. Let sa = b 1
αc, sb = b sa(h(B)−1)

αw(B) c

2. Set X(Γ) = {xL(B) + kαw(B) : 1 ≤ k ≤ sa}, Y (Γ) = {yT (B)− kαw(B)
sa

: 0 ≤ k ≤ sb}

3. Output X(Γ)× Y (Γ).

Proposition 7.7.1 The grid that MakeGrid(B, α) outputs is α-fine.

Proof The first condition of α-fine is easily satisfied, as any interval of size exceeding

αw(B) will contain an X-index of the form xL(B) + kαw(B) for some integer k. For

the second condition, we need to verify that Y (Γ) is a α
|X(Γ)| -value net. It is clear that

yT (B) ∈ Y (Γ), and if J is a subinterval of Y (B) that is α
|X(Γ)| -popular for B, then J

contains a Y -index of the form yT (B)− kαw(B)
sa

for some integer k. �

By lemma 5.15 in [21], it is possible to construct a box chain spanning B using this grid

which misses at most αw(B) points from any common subsequence of B.

7.8 Label

In this section, we state the procedure XLI0 and many of the procedures called by it.

Again, these procedures are similar to the corresponding procedures in [21].



98

7.8.1 Procedures

XLI0(i,B)

Output: ACCEPT or REJECT.

1. Set n = dmax(B)

2. Fix global parameters (unchanged throughout algorithm, j, r nonnegative integers,

C2 a sufficiently large constant).

Name Symbol Value

Multiplicative parameter τ ε2
3/1200

Additive parameter δ ε2
3/1200

Maximum level tmax d4/τe

Error controller ψ max(C2, tmax/δ)

Sample size parameter σ 100ψ3

Grid precision parameter α 1
(C2ψ)4

Width threshold ω 4C2ψ
√
n log2 n

Tainting parameter η 1/10ψ

Primary splitter parameter µr
2
r+3

Secondary splitter parameter γj 16jα/(log n)4

Splitter balance parameter ρj (γj)
1/4 = 2jα1/4/ log n

Initial splitter parameter µ−1 ε3/5

Proportion threshold λ ε4
1+ε4

3. Call TerminalBox−1(i,B) and let T be the output box.

4. If T is 10 logn
ρ

√
n-small, run FindLCS(λ, T ). If i is on the LCS, ACCEPT, else

REJECT.

5. Otherwise, call Classifytmax(i, T ). If this outputs “good”, ACCEPT, else REJECT.



99

Classifyt(x,B)

Output: good or bad

1. If t = 0, return bad.

2. Otherwise (t ≥ 1): C ←− CriticalBoxt(x,B)

3. If C is ω-small, run FindLCS(λ, T ). If x is on the LCS, return good, else return bad.

4. Otherwise, run Classifyt−1(x, C) and return its output.

CriticalBoxt(x,B)

Output: Subbox C of B such that x ∈ X(C)

1. T ←− TerminalBoxt(x,B).

2. Call GridChaint(T ) and let ~C(T ) be the chain of boxes returned.

3. Return ~C(T )[x] (the box C ∈ ~C(T ) with x ∈ X(C)).

TerminalBoxt(x,B)

Output: Subbox T of B such that x ∈ X(T )

1. Initialize: T ←− B; j ←− 0; θ ←− ω; γ ←− γ0; ρ←− ρ0.

2. Repeat until dmin(T ) ≤ θ:

(a) Run FindSplitter(T ,B, µt, γw(T ), ρ): returns boolean splitter found and index

splitter.

(b) If splitter found = TRUE then

(i) If x ≤ splitter then replace T by the box Box (PBL(T ), F (splitter)).

(ii) If x > splitter then replace T by the box Box (F (splitter), PTR(T )).

(c) else (so splitter found = FALSE and new phase starts)

(i) θ ←− max(θ, γw(T )/α)

(ii) j ←− j + 1; γ ←− γj ; ρ←− ρj .

3. Return T .



100

GridChaint(T , α)

Output: Box chain ~C(T ) spanning T .

1. Call MakeGrid(T , α) which returns a grid Γ.

2. Construct the associated digraph D(Γ)

3. For each grid box D of D(Γ). recursively evaluate ApproxLISt−1(D).

4. Compute the longest path in D(Γ) from PBL(T ) to PTR(T ) according to the length

function ApproxLISt−1(D).

5. Return the Γ-chain ~C(T ) associated to the longest path.

ApproxLISt(B)

Output: Approximation to lis(B)

1. If B is ω-small, run FindLCS(B)

2. Otherwise (dmin(B) ≥ ω): Run BoxSample(σ,B).

3. If BoxSample(σ,B) returns fewer than σ points, return 0.

4. Otherwise, run Classifyt(x,B) on each sample point. Let g be the number of points

classified as good and return gw(B)/σ.

7.9 Running Time

In this section, we state and prove a claim which allows us to prove the stated running

time of XLI0 in Theorem 7.6.3. We first analyze the running time of Classify. Our

argument closely mirrors the argument in [21]. Let Ct = Ct(n) be the running time of

Classifyt on boxes of width at most n. Similarly, let At = At(n) be the running time

of ApproxLCSt on boxes of width at most n.

As in [21] we use Pi = Pi(n) to denote functions of the form ai(log n)bi , where

ai, bi are constants that are independent of n and t. We also use Qi = Qi(ψ) to denote

functions of ψ of the form ci(ψ)di where ci, di are constants.

Claim 7.9.1 For all t ≥ 1,

At ≤ P1Q1

√
n+Q2Ct.

Ct ≤ Ct−1 +Q3At−1 + P2Q4

√
n.



101

Proof For the first recurrence, the P1Q1
√
n term comes from the cost of FindLCS as

well as the cost of BoxSample. FindLCS is seen to be in time P1Q1
√
n by Prop. 7.4.1,

plugging in the values given in XLI0 for ω and λ. BoxSample is seen to be in time

P1Q1
√
n by Lemma 7.2.3, noting the value of σ given by XLI0, as well as the lower

bound of ω for the dimensions of B. The Q2Ct term comes from running Classifyt on

σ sample points.

For the second recurrence, the final recursive call to Classifyt−1 gives the Ct−1

term. The call to FindLCS again can be factored into the P2Q4
√
n term. The rest

of the cost comes from CriticalBoxt which invokes TerminalBoxt, which involves

several iterations where the cost of each iterations is dominated by the cost of Find-

Splitter. Each iteration reduces the size of the box T by at least a (1 − ρ0) factor

so the number of iterations is at most log n/ρ0. By Claim 7.1.4, the cost of Find-

Splitter in the LIS setting is (ψ log n)O(1). Any call to FindSplitter is made on a

box of width
√
n(log n)O(1). Therefore, by Lemma 7.2.3, any call to BoxSample made

by FindSplitter runs in time
√
n(log n)O(1) (In any such call, logm = o(

√
h(T ))).

As a result, replacing the primitive of obtaining a random sample of points with the

procedure BoxSample multiplies the running time of FindSplitter by
√
n(log n)O(1),

so the cost of FindSplitter, and subsequently TerminalBoxt is
√
n(ψ log n)O(1), and

thus is included in the term P2Q4
√
n.

CriticalBoxt then calls GridChaint. This involves taking the grid given by

MakeGrid and making one call to ApproxLCSt for each grid box. Since the number

of grid boxes is O(αc), this can be accounted for by the Q3At−1 term. GridChaint

finds a longest path in the grid digraph, which can be absorbed into the P2Q4
√
n term.

�

Using this claim, we prove Theorem 7.6.2.

Proof Using the recurrence for At−1 to eliminate At−1 from the recurrence for Ct

gives a linear recurrence for Ct in terms of Ct−1 whose solution has the form Ct ≤

P5Q5
√
n(Q2Q3 + 1)t. This leads also to At ≤ P6Q6

√
n(Q2Q3 + 1)t, which are both

√
n(log n)O(1)(ψ)O(t). Since t = O(1/ε2) and ψ = O(1/ε4), the bound follows. �



102

Bibliography

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a

monotone function. Random Structures and Algorithms, 31(3):371–383, 2007. 37,

73

[2] D. Aldous and P. Diaconis. Longest increasing subsequences: from patience sorting

to the Baik-Deift-Johannson theorem. Bulletin of the American Mathematical

Society, 36:413–432, 1999. 3, 4

[3] A. Andoni, P. Indyk, and R. Krauthgamer. Overcoming the `1 non-embeddability

barrier: algorithms for product matrices. In Proceedings of the 20th Symposium

on Discrete Algorithms (SODA), pages 865–874, 2009. 5

[4] A. Andoni and H. L. Nguyen. Near-optimal sublinear time algorithms for ulam

distance. In Proceedings of the 21st Symposium on Discrete Algorithms (SODA),

2010. iii, 4, 5, 36, 37, 47, 53, 59, 69

[5] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly

subquadratic time (unless SETH is false). CoRR, abs/1412.0348, 2014. 4

[6] Tugkan Batu, Funda Ergun, Joe Kilian, Avner Magen, Sofya Raskhodnikova,

Ronitt Rubinfeld, and Rahul Sami. A sublinear algorithm for weakly approximat-

ing edit distance. In Proceedings of Symposium of Theory of Computing (STOC),

pages 316–324, 2003. 5

[7] M. Charikar and R. Krauthgamer. Embedding the ulam metric in `1. Theory of

Computing, 2:207–224, 2006. 4

[8] D. Critchlow. Ulam’s metric. Encyclopedia of Statistical Sciences, 9:379–380, 1988.

4



103

[9] F. Ergun and H. Jowhari. On distance to monotonicity and longest increasing

subsequence of a data stream. In Proceedings of the 19th Symposium on Discrete

Algorithms (SODA), pages 730–736, 2008. ii, 3

[10] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-

checkers. Journal of Computer Systems and Sciences (JCSS), 60(3):717–751, 2000.

37

[11] M. Fredman. On computing the length of the longest increasing subsequences.

Discrete Mathematics, 11:29–35, 1975. 3

[12] A. Gal and P. Gopalan. Lower bounds on streaming algorithms for approximat-

ing the length of the longest increasing subsequence. In Proceedings of the 48th

Symposium on Foundations of Computer Science (FOCS), pages 294–304, 2007. 3

[13] P. Gopalan, T. S. Jayram, R. Krauthgamer, and R. Kumar. Estimating the sorted-

ness of a data stream. In Proceedings of the 18th Symposium on Discrete Algorithms

(SODA), pages 318–327, 2007. ii, 3

[14] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common

subsequences. Commun. ACM, 20(5):350–353, 1977. 87, 88, 89, 91

[15] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communi-

cation complexity. Computational Complexity, 8:596–605, 1995. 34, 35

[16] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data

structures and asymmetric communication complexity. J. Comput. Syst. Sci.,

57(1):37–49, August 1998. 34

[17] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized

Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. 11

[18] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge

University Press, 1995. 11



104

[19] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance

approximation. Journal of Computer and System Sciences, 6(72):1012–1042, 2006.

37

[20] P. Ramanan. Tight Ω(n lg n) lower bound for finding a longest increasing subse-

quence. International Journal of Computer Mathematics, 65(3 & 4):161–164, 1997.

3

[21] M. Saks and C. Seshadhri. Estimating the longest increasing sequence in polyloga-

rithmic time. In Proceedings of the 51st Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pages 458–467, 2010. 5, 7, 36, 37, 38, 41, 52, 72, 73,

74, 75, 79, 82, 83, 92, 95, 97, 100

[22] M. Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to

monotonicity and asymmetric edit distance. In Proceedings of the 24th Symposium

on Discrete Algorithms (SODA), 2013. ii, 3

[23] C. Schensted. Longest increasing and decreasing subsequences. Canadian Journal

of Mathematics, 13:179–191, 1961. 3

[24] X. Sun and D. P. Woodruff. The communication and streaming complexity of

computing the longest common and increasing subsequences. In Proceedings of the

18th Symposium on Discrete Algorithms (SODA), pages 336–345, 2007. 31


	Abstract
	Acknowledgements
	Introduction
	The Distance to Monotonicity Problem
	Previous Results
	Our Contributions

	The Ulam Distance Problem
	Connections to Previous Work


	Preliminaries
	Geometric Framework
	Input box, Input points, X-indices and Y-indices
	Intervals, boxes, height and width
	The relations P Q and P Q
	Increasing Point Sequences and the function lips
	Loss functions
	Box sequences and box chains
	Box Characterizations

	Natural number intervals, sequences and subsequences
	LIS Notation
	The input sequence and input points
	Increasing subsequences and the function lis

	LCS Notation
	The input sequences and input points
	Common subsequences and the function lcs

	Tail Bounds
	Parameter approximation and Gap tests

	Approximation Algorithm for Distance to Monotonicity in the Streaming Model
	DM sketches
	A Polylogarithmic Space Streaming Algorithm
	Proof of the Main Theorem
	Sequence Matrices
	Algorithm for unknown input length

	Lower Bounds for Approximating Distance to Monotonicity in the Streaming Model
	Reduction
	Results

	Approximation Algorithm for Ulam Distance
	Overview of the algorithm
	Getting the speed-up routines
	Getting a better slow gap test
	The high level structure and main lemmas

	Constructing loss indicators from gap tests
	Constructing gap tests from loss indicators
	Designing BaseGapTest 
	Road Map

	Reducing the Ulam Distance Problem
	Algorithm
	Analysis
	The function terr
	Proofs


	Implementing the LIS Algorithm
	Improving the running time of the LIS algorithm
	Reducing additive error to multiplicative error

	Modifications
	A Sampling Procedure
	FindLCS
	Examples
	Analysis
	MakeGrid
	Label
	Procedures

	Running Time


