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ABSTRACT OF THE THESIS

Calculation of Collision Probability for Autonomous Vehicles

using Trajectory Prediction

By GAYATRI POWAR

Thesis Director:

Prof. Zoran Gajic

The aim of this thesis is to create a decision making algorithm. The goal would be to check the feasi-

bility of the current maneuver by finding the probability of collision between the subject and target

vehicles. These outputs can be used by other Advanced Driver Assistance System (ADAS) features

including path planner, lateral control, longitudinal control, etc. We make use of some sensors like

camera/radar (simulated data) and fuse these together for better estimation of measurements. With

earlier experience with cameras, they are really poor at giving longitudinal distances whereas radars

give more accurate measurements longitudinally. Using these measurements about targets ahead in

the environment, we predict the trajectories of the obstacles/targets as well as the subject vehicle

(autonomous vehicle). The algorithm predicts if it is safe to continue with the current maneuver in

the near future for several seconds ahead of time, and makes the decision if the maneuver is possible.

The results are obtained using probabilistic approach whether the future trajectories are going to

collide. The thesis primarily focuses on target tracking, efficient sensor data fusion and future colli-

sion estimation. With the lessons learnt using existing literature an efficient approach is employed.
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The simulation is performed in PreScan simulator and MATLAB. Enhancements in the sensor data

fusion using standby measurements and quasi-decentralized approach to combine measurements to

yield improved results and achieve better scalability are proposed and implemented.
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Chapter 1

Introduction

1.1 Overview

Active safety systems are a promising solution to reduce a number of road accidents. Some Advanced

Driver Assistance systems (ADAS) such as Adaptive Cruise Control, Collision Warning Systems and

Emergency Braking Systems that exist in vehicles are able to warn drivers and also interfere on the

state of the vehicle when a hazardous traffic situation is developed.

In this thesis, an algorithm is created, which decides the feasibility of a maneuver and provides

information to the driver about the probability of collision in future. For this purpose, the algorithm

has to first rely on accurate perception system that uses sensors, and data fusion techniques to track

obstacles in the surroundings of the subject vehicle. Secondly, it is required to predict the trajectory

of the detected vehicle in the surroundings of the subject vehicle and the trajectory of the subject

vehicle. Using this information, the probability of collision has to be calculated.

Predicting the trajectory of a vehicle is not a deterministic task. Hence a probabilistic approach

is used to account for the uncertainty of prediction. However, in many cases, trajectory prediction

is made by assuming a certain vehicle model. It appears that linear motion models like constant

velocity (CV) and constant acceleration (CA) have a major advantage of linearity of state transition

equations which allows an optimal propagation of state probability distribution. Fast and reliable

knowledge of moving objects and their trajectory prediction relative to subject vehicle is the main

contribution of the thesis. Along with the algorithm implementation, the thesis also offers two

enhancements to be applied to improve target tracking accuracy and optimal sensor data fusion.
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1.2 Motivation

Motor vehicle travel is the primary means of transportation, providing an unparalleled degree of

mobility. Yet for all its advantages, motor vehicle crashes in 2013 were the leading cause of death

among individuals. Traffic Safety Facts in [11] indicate that in 2013, there were 32,719 people killed

in the estimated 5,687,000 police-reported motor vehicle traffic crashes. An average of 90 people

died each day in motor vehicle crashes in 2013, one fatality every 16 minutes. Reports suggests that

majority of the crashes occur due to poor judgement and speeding.

Active safety systems can help drivers in preventing such collisions. They can provide the driver

with information as to where other traffic participants and obstacles are located and how they are

progressing. Different methods have been studied to tackle this problem. The two main strategies are

telematics and sensing. In telematics, neighbourhood vehicles and infrastructure send information

about their position, velocity or status (red light signal, turn status, etc.). This is better described

as V2X(Vehicle to Vehicle, Vehicle to Infrastructure) communication. The advantage of this method

is that the information is accurate. But a major disadvantage is that not all the objects on the road

are equipped with the necessary hardware. Also there are other issues like communication security,

data integrity that make them vulnerable to threats.

The other approach is to equip the subject vehicle with sensors like radar, camera, laser scanner,

for perception of the environment. These systems do not have to rely on neighbouring vehicles.

But the major challenge in this approach is that these systems have to deal with extracting reliable

information, cater to bad weather conditions like rain, fog. In this thesis, we try to detect and track

the neighboring vehicles using a monocular camera and a radar sensor and use this information to

find the motion prediction.

1.3 Related Work

Various threat assessment techniques have been studied previously by many researchers. Generally,

the problem is solved using the following steps: Estimation of current vehicle states, trajectory
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prediction and evaluation of risk of collision. Paper [2] calculates, based on location information,

whether collision will occur or not based on the closed point of approach (CPA). Time and distance

to CPA is calculated to assess risk of collision.

Recently, many researchers have focused on researching of new concepts of risk estimation by

considering uncertainties in prediction. The papers [3], [6] are based on this approach. The paper

[3] presents an approach to access the risk of collision of the subject vehicle by object trajectory

prediction collision. The author presents a method to propagate the uncertainty of the pose of the

vehicle along its predicted trajectory. This thesis also makes use of a similar approach.

Several methods of future trajectory prediction are studied over several years. Some research

works propose to use a polynomial representation of trajectories. In [12], first, third and fifth degree

polynomials are used to model the future trajectory. Some researchers make use of clothoids to model

the vehicle trajectory [13]. These methods lack to totally determine the behavior of the vehicle. The

papers [3], [6] assume a kinematic model to predict the trajectory of the vehicle. Different inputs can

be considered like acceleration, speed, brake, acceleration pressure, etc. The advantage of having a

vehicle model makes this method suitable for tracking problems.

Paper [10] deals with different vehicle models for vehicle tracking. The following models have been

described: Constant Velocity (CV), Constant Acceleration (CA), Constant Turn Rate and Velocity

(CTRV), Constant Turn Rate and Acceleration (CTRA) models. It is suggested that CTRA model

performs better in tracking applications. But the increased performance also comes with added

computation costs. In the thesis, the constant acceleration model is chosen because of its simplicity.

Paper [14] describes the necessity of multiple sensors in tracking applications. It describes the

basic information about the use of cameras and radars and emphasis is on sensor data fusion. In

[5], different techniques of sensor data fusion using multi sensors are introduced as follows:

1. Group Sensor Fusion Method: This method works similar to a single sensor Kalman filter.

The observation model is modelled using models of all the available sensors.

2. Sequential Sensor Model: In this method, each sensor is modelled separately. Realization is

made independently for each of them and then all estimations are combined in a sequential manner.
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3. Inverse Covariance Form: This method explicitly derives equations for integrating multiple

observations made at the same time into a common state estimate. Then, a set of recursive equations

is derived for integrating individual sensor observations.

The book [1] gives a more in depth details of each of the above methods. Further paper [4]

compares the above mentioned methods by comparing the computational complexity. Using MAT-

LAB, computational loads of these methods are compared while the number of sensors are increased.

The results show that the inverse covariance method has the best computational performance if the

number of sensors is above twenty. For a smaller number of sensors, the group sensor fusion model

is the most efficient and appropriate.

Paper [17] suggests that use of standby measurements in addition to actual measurements im-

proves the estimation accuracy and minimizes the covariance error. The paper [17] is based upon a

continuous time system. Based on the proposed findings a discrete time counterpart is implemented

in the thesis. Research suggests that the optimal solution for estimation problems with different

information sets requires an infinite dimensional Kalman filter which is not applicable from a prac-

tical point of view. Research in [20] demonstrates the solution approximately using constrained

estimators specifying in advance the estimator dimensions. An alternative method is proposed in

papers [21], [22] and [23] where the central idea is to rearrange the optimal centralized Kalman filter

to be implemented via a decentralized scheme. This method is known as quasi - decentralization.

The paper [19] presents a simplified method of quasi - decentralized estimation and control. Here,

local non optimal Kalman filters are used for generation of global estimates by simple addition of

local non-optimal estimates. In this thesis, we exploit this approach of quasi - decentralization to

obtain a better estimate of the position of the subject and target vehicle. A theoretical and practical

comparison of the Group Sensor Fusion (Centralized Sensor Data Fusion) and Quasi - Decentralized

Data Fusion is presented in the thesis.
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1.4 Thesis Objective

This thesis aims at estimation of risk related to collisions between subject vehicle and static and

dynamic objects in the surroundings. This estimation of risk is achieved using three sequential

actions: environment perception, trajectory prediction and collision estimation. This steps are

illustrated in the Figure 1.1.

Figure 1.1: System Block Diagram

The subject vehicle is equipped with radar and front camera. The data fusion module receives

data from sensors and estimates the states of the target vehicles. The knowledge of the vehicle is

limited quantitatively by the range of its sensors and qualitatively by the precision and the richness

of the delivered information. This module gives information of the current state of the environment.

Using the information about the current state of the subject vehicle, target vehicle and surrounding

static objects, a prediction of the future states is made using trajectory prediction module. Prediction
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of the future behavior of the driver is out of the scope of this thesis. In fact, any change in the

drivers behavior influences the inputs of the system and consequently the future trajectory of the

vehicle.

After prediction stage, the future trajectories of the subject vehicle and target vehicle are utilized

to compute the possible collision between each trajectories. This estimation can be used by other

ADAS systems to inform the driver about impending collision or other collision mitigation systems,

etc. The next sections describe the crux of the algorithm used.

In addition to the algorithm implementation, the thesis offers two enhancements using existing

research. Firstly, the usage of standby measurements to increase prediction accuracy and minimize

error covariance is recommended and implemented. Furthermore, combining the estimates of local

non optimal filter using quasi-decentralized approach to obtain global optimal Kalman filter for

sensor data fusion is applied to improve target tracking accuracy. Also the comparison of sensor

data fusion architectures is presented.

1.5 Organization of the Thesis

The overview and motivation of the thesis is described in the beginning of Chapter 1 followed

by the various research and related work. Chapter 2 highlights the technical background behind

the thesis. This includes the niceties about the theoretical concepts used in the implementation

of the algorithm. In depth details regarding various concepts that were chosen and explored like

Sensor Data Fusion, Trajectory Prediction, Propagation of Uncertainty and Collision Detection.

The subsequent Chapter 3 speaks about the implementation of the algorithm developed in PreScan

Simulator and MATLAB/Simulink. The entire concept is simulated over two scenarios and the

results are demonstrated in Chapter 4. This chapter also provides results of several other important

concepts that have been implemented. Finally, the Chapters 5 and 6 provides the thesis conclusion

and future research respectively. The list of references used during the research are provided at the

finish of the thesis document.
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Chapter 2

Technical Background

2.1 Sensor and Sensor Data

There are variety of sensors providing information about the subject vehicle. The subject vehicle is

considered to have following sensors:

• Vision Camera Sensor mounted on the windshield of the subject vehicle

• Radar sensor installed on the front grill

The advantages and disadvantages of both these sensors are summarized in Table 2.1

As seen in Table 2.1, both these sensors have orthogonal advantages and disadvantages which

makes them well suited for sensor fusion. Hence, combining data from both the sensors, we get a

solution that is more robust.

2.2 Vehicle Dynamic Models

It is difficult to realize continuous models because computer control algorithms work at discrete

time steps and measurements and are always available at certain frame rates. In the case of a target

Camera Radar
Range Poor Accurate
Range Rate Not Available Directly available
Angle Resolution Good Poor
Velocity Resolution Accurate Poor
Weather Sensitivity Sensitive to Weather Insensitive to weather
Lateral Resolution Accurate Poor

Table 2.1: Camera and Radar Comparison



8

tracking application the input is also unknown so there is no control input u(k). Hence we will be

concerned with the estimation (following) problem only. The discrete time system is represented as

follows:

x(k + 1) = Ax(k) + w(k)

y(k) = Cx(k) + v(k)

(2.1)

where,

x(k) is the state vector x(k) ∈ Rn

y(k) is the output vector y(k) ∈ Rq

A is the state or system matrix dim[(A(.)] = n x n

C is the output matrix dim[C (.)] = q x n

w(k) is the process noise which is assumed to be drawn from a zero mean multivariate normal dis-

tribution with covariance Q(k) w(k) ∼ N (0, Q(k))

v(k) is the observation noise which is assumed to be zero mean Gaussian white noise with covariance

R(k) v(k) ∼ N (0, R(k))

According to [1], “Tracking is the estimation of the state of a moving object based on remote

measurements. It maintains the objects state and identity despite detection errors and in presence

of other objects.” The target tracking cycle is represented in Figure 2.1

Different target motion models are used for target tracking like the Brownian model, constant

velocity model, constant acceleration model, etc.

2.2.1 Constant Velocity Model

. In this model the target velocity is assumed to be constant. This model is useful in cases when the

target motion is smooth. The system state vector and the system matrix are respectively given by

x =

[
x y Vx Vy

]ᵀ
(2.2)
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Figure 2.1: Target Tracking Cycle

A =



1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


(2.3)

where T is the sampling period.

2.2.2 Constant Acceleration Model - Ramachandras Model

This model consists of position, velocity and acceleration as the states of the system in 2D coordinate

system assuming constant acceleration. This is useful when target motion is smooth in position and
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velocity. The state vector is given by

x =

[
x y Vx Vy ax ay

]ᵀ
(2.4)

Each position coordinate of the moving vehicle is described as follows:

xk+1 = xk + Vxk
.T + axk

.
T

2

Vxk+1
= Vxk

+ axk
.T

axk+1
= axk

(2.5)

Similarly,

yk+1 = yk + Vyk .T + ayk .
T

2

Vyk+1
= Vyk + ayk .T

ayk+1
= ayk

(2.6)

The corresponding system matrix is given by

A =



1 0 T 0 T 22 0

0 1 0 T 0 T 22

0 0 1 0 T 0

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1



(2.7)

The quantities measured are positions and velocities in x and y directions. So the output matrix of

the model defined in 2.7 is given by

C =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


(2.8)
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2.3 Kalman Filter

This section presents a basic description of the Kalman filter algorithm. This is based on the book

[1]. The fundamental assumptions of the Kalman Filter are:

• Evolution of system state according to known linear plant dynamics driven by a known input

and an additive process noise with zero mean with known covariance Q(k).

• Measurement is a known linear function of the state with an additive measurement noise with

zero mean with known covariance R(k).

2.3.1 Algorithm Flow

At each step, the entire past is summarized by the state estimate x(̂k|k) and the associated covariance

P (k|k). The state estimation cycle consists of two parts:

1. State and measurement prediction (also called time update)

2. State update (also called measurement update)

In Figure 2.2 One cycle in the state estimation of a linear system is explained.

2.4 Coordinate Conversion in Target Tracking

2.4.1 The Conversion Problem

In case of sensors like radar or sonar the measurements that are available from target are in polar

coordinates ie. range and azimuth or bearing. The range that is measured is the slant range.

In most tracking problems the measurements are modelled as Cartesian coordinates. In order to

perform the conversion the standard Kalman Filter is modified. The linear Kalman Filter with

measurements converted to a Cartesian frame of reference is known as the Converted Measurement

Kalman Filter (CMKF). In this filter the converted measurement covariance is recalculated at each

sampling interval.
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Figure 2.2: One cycle in the state estimation of a linear system

2.4.2 Errors in Conversion

Let rm and θm be the measured range and measured azimuth respectively defined with respect to

the true range r and true azimuth θ given as

rm = r + r̃

θm = θ + θ̃

(2.9)

where the errors r̃, θ̃ are assumed to be independent with zero mean and standard deviation σr and

σθ respectively.

2.4.3 The Standard Conversion

The polar measurements are transformed to Cartesian by the standard coordinate conversion as

follows
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xm = rm cos θm

ym = rm sin θm

(2.10)

2.4.4 Converted Measurements for Kalman Filter

Denoting by (x,y) the true Cartesian position and taking the first order terms of the Taylor series

expansion of equation 2.10, which is linearization yields the Cartesian coordinate errors

xm − x ≈ r̃ cos θm − θ̃rm sin θm , x̃L

ym − y ≈ r̃ sin θm + θ̃rm cos θm , ỹL

(2.11)

The mean of the errors is zero and given as

µ ,

E
[
x̃L]

E
[
ỹL]

 = 0 (2.12)

The elements of the covariance matrix for the Kalman filter are given as

R11
L , var

(
x̃L) = r2mσ

2
θ sin2 θm + σ2

r cos2 θm

R22
L , var

(
ỹL) = r2mσ

2
θ cos2 θm + σ2

r sin2 θm

R12
L , cov

(
x̃L, ỹL) =

(
σ2
r − r2mσ2

θ) sin θm cos θm

(2.13)

With the help of this conversion the consistency of measurements is obtained in the measured values.

This modified Kalman filter has better estimation accuracy than the standard conversion when used

in target tracking application

2.5 Sensor Data Fusion

Sensor data fusion is the process of combing information from a number of different sensors to provide

a robust and complete description of an environment or the process of interest. Sensor data fusion is

of special significance in any application where a large amounts of data from different sensors must

be combined, fused and distilled to obtain information about appropriate quality and integrity on

which decisions can be made. It is concerned with the fusion of information from sensors to arrive
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at an estimate of location and identify objects in an environment. In this thesis we assume that

the data received from the sensors is synchronous i.e. at a given sampling time there is only one

measurement coming from each sensor.

Data Fusion techniques can be classified into two main types depending upon the data fusion

architecture as centralized and decentralized data fusion. This is mainly based on how the sensor

data is processed and the state estimation is carried out. A theoretical and practical comparison of

both the types is evaluated in this thesis.

• Centralized Data Fusion : In the centralized data fusion system, the raw sensor data is

communicated to a central processor. This central processor fuses the data to form the estimate

of the states. Every sensor has its own observation model but the process model is identical.

All the observations are sent in unprocessed form to the central fusion center that combines

the observations to provide an estimate of the state. The estimation is carried out in the same

way as single sensor system. Based on the research in Paper [4] and Book [1], for smaller

number of sensors the Group Sensor Fusion Model is efficient and appropriate. This method

is chosen in our comparison of the data fusion techniques.

• Decentralized Data Fusion : In the decentralized data fusion system, each sensor has its

own local sensor filter which processes the raw sensor data and calculates the local estimates

that are sent to the central processor. In this case thus less information is communicated to

the central processor. These types of fusion techniques have the advantage of modularity but

the algorithms are quite complex.

• Quasi-Decentralized Data Fusion : Based on research discussed earlier, the result of

combining data from local optimal filters may not be optimal. An infinite dimensional filter

would be required in order to achieve an optimal estimate. As proposed in Papers [21], [22] and

[23], the central idea is to rearrange the optimal centralized Kalman filter to be implemented

via a decentralized scheme. This method is known as quasi - decentralization.
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2.5.1 Centralized Sensor Data Fusion (The Group-Sensor Method)

The single most important problem in sensor data fusion is estimation. Essentially, an estimator is

a function which takes as an argument a sequence of observations and whose action is to find an

estimate for a parameter or state of interest. Almost all data fusion methods involve the estimation

process: we obtain a number of observations from a group of sensors and using these observations we

wish to find an estimate of the true state of the environment state variables that we are observing.

The Kalman filter serves as the basis for most multi-sensor estimation problems. Sensor models

are required to understand what information is provided, environment models are required to relate

observations made to the parameters and states to be estimated, and some concept of information

value is needed to judge the performance of the estimator. Defining and solving an estimation

problem is almost always the key to a successful data fusion system.

The simplest way of dealing with a multi-sensor estimation problem is to combine all observations

and observation models in a single composite group sensor and then to deal with the estimation prob-

lem using an identical Kalman filter algorithm to that employed in single-sensor systems. Defining

the composite observation vector by

y(k) =

[
yᵀ1 (k) yᵀ2 (k) yᵀ3 (k) ... ... yᵀn(k)

]ᵀ
(2.14)

and the composite observation model vector as

C(k) =

[
Cᵀ

1 (k) Cᵀ
2 (k) Cᵀ

3 (k) ... ... Cᵀ
n(k)

]ᵀ
(2.15)

with the noise vector

v(k) =

[
vᵀ1 (k) vᵀ2 (k) vᵀ3 (k) ... ... vᵀn(k)

]ᵀ
(2.16)

It is assumed that the observation noise covariance is block diagonal with the blocks equal to the

individual sensor observation noise covariance matrices. This set of observations defined is written

as a single observation model as

y(k) = C(k)x(k) + v(k) (2.17)

R(k) = E{v(k)vᵀ(k)} = blokdiag{R1(k), R2(k), ......., Rn(k)} (2.18)
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The prediction phase of the multi-sensor Kalman filter algorithm makes no reference to the observa-

tions that are made and so is identical in every respect to the prediction phase of the single-sensor

filter. However, the update phase of the cycle, which incorporates measurement information from

sensors, will clearly be affected by an increase in the number of sensors. As per [4], the group sensor

is the best suited model for a few number of sensors since the output is accurate and computationally

less efficient.

2.5.2 Quasi - Decentralized Estimation

Consider a discrete time, linear time invariant (LTI) system without any exogenous input, described

by state space model given in (2.1), which for the reason of convenience is repeated here

x(k + 1) = Ax(k) + w(k)

where x(k) ∈ Rn is the state vector and yi(k) ∈ Rli, i = 1, 2 are the measured outputs, defined by:

y1(k) = C1x(k) + v1(k)

y2(k) = C2x(k) + v2(k)

w(k) ∈ Rr and vi(k) ∈ Rri , i = 1, 2 are zero mean stationary mutually uncorrelated white Gaussian

noise with intensities W > 0 and Vi > 0 i = 1, 2. Using the results established in paper [19] we

develop here a discrete time counterpart as

x̂(k) = ẑ1(k) + ẑ2(k) (2.19)

whereẑ1(k) and ẑ2(k) are obtained from non optimal local filter.

ẑi(k + 1) = (A− P (Cᵀ
1 V
−1
1 C1 + Cᵀ

2 V
−1
2 )C2))ẑi(k) + PCᵀ

i V
−1
i yi(k) i = 1, 2 (2.20)

ẑ1(k + 1) = (A− PCᵀ
1 V
−1
1 C1 − PCᵀ

2 V
−1
2 C2)ẑ1(k) + PCᵀ

1 V
−1
1 y1(k) (2.21)

ẑ2(k + 1) = (A− PCᵀ
1 V
−1
1 C1 − PCᵀ

2 V
−1
2 C2)ẑ2(k) + PCᵀ

2 V
−1
2 y2(k) (2.22)

ẑ1(k + 1) = (A−K1C1 −K2C2)ẑ1(k) +K1y1(k) (2.23)
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ẑ2(k + 1) = (A−K1C1 −K2C2)ẑ2(k) +K2y2(k) (2.24)

The equations (2.23) and (2.24) are equations of non-optimal local filter. The optimal global esti-

mates are obtained by simple addition of non-optimal local estimates

x̂(k) = ẑ1(k) + ẑ2(k) (2.25)

x̂(k + 1) = (A−K1C1 −K2C2)x̂(k) +K1y1(k) +K1y2(k) (2.26)

x̂(k + 1) =

(
A−

[
K1 K2

]C1

C2


)
x̂(k) +

[
K1 K2

]y1(k)

y2(k)

 (2.27)

x̂(k + 1) = (A−KC)x̂(k) +K

y1(k)

y2(k)

 (2.28)

where K =

[
K1 K2

]
and C =

C1

C2

 (2.29)

Thus globally optimal centralized Kalman filter(quasi decentralized) estimates are obtained and

implemented in the thesis. The simulation and results are demonstrated in Chapter 4. This can be

generalized to n sensors(n sources of data).

2.5.3 Comparison of Centralized and Quasi-Decentralized Sensor Fusion Techniques

• Group Sensor Method (Centralized Sensor Data Fusion)

Pros :

– Simple Implementation : The implementation is simple and similar to that of a single

Kalman Filter.

– Single Central Filter : Only one central Kalman filter is required for central processing

of sensor data.

Cons :
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– Large Bandwidth Utilization : Since large amount of sensor data is sent to the central

processor, large bandwidth is utilized.

– Less Scalable : The large bandwidth becomes a bottleneck for this architecture and

hence the system becomes less scalable.

– Fault Intolerant : The breakdown of the central processor can be catastrophic. This

system is not fault tolerant.

• Quasi- Decentralized Sensor Data Fusion

Pros :

– Less Bandwidth : The load on the central processor is reduced since data of minimum

dimension is sent to the central processor thus reducing the bandwidth utilization.

– Scalable : This architecture is easily scalable to increase in number of sensors.

– Fault tolerant : The objective of this design is that if any sensor node fails, the degra-

dation of the system is gradual and non - catastrophic.

– Easy to detect fault : Given that each node influences the fusion performance in a

similar way, if any nodes fails the failures are easily detected.

Cons :

– Large number of local filters : Every sensor node has a local filter. Therefore increase

in number of sensors requires large number of local filters.

2.6 Use of Standby Measurements

In critical applications most of the times standby sensor systems are available. These systems provide

measurements when actual measurement systems fail. But these standby measurement systems are

operating most of the times but remain idle. In paper [17] it is proved that the steady state

estimation error of the linear optimal Kalman Filter can be considerably reduced if the standby

measurements are used in addition to actual system measurements. Thus, instead of letting the
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standby measurements to be idle they may be used in the estimation as well to improve the estimation

accuracy and minimize the error covariance. The paper [17] is based upon a continuous time system.

In this thesis we implement and prove the results for a discrete time system.

Consider a linear dynamic discrete time system with state space variables x(k) ∈ Rn and corre-

sponding system measurements y(k) ∈ Rr given as

x(k + 1) = Ax(k) +Gw(k), E
{
w(k)wT (k)} = Wδ

(
k −m), E

{
x(k0)} = x0, var

{
x(k0)} = P0

y(k) = Cx(k) + v(k), E
{
v(k)vT (k)} = V δ

(
k −m)

where w(k) ∈ Rm and v(k) ∈ Rr are zero mean stationary Gaussian white noise processes. The

optimal estimate of x(k) can be obtained by using the Kalman Filter as

x̂(k + 1) = Ax̂(k) +K(y(k)− ŷ(k))

ŷ(k) = Cx̂(k)

(2.30)

where matrix K is chosen such that the estimation error e(k) = x(k) − x̂(k) is minimised in the

mean square sense. We assume for simplicity that w(k), v(k) and x(k0) are mutually uncorrelated.

The optimal Kalman filter gain at steady state is given by K = PCᵀV −1 where P is a positive semi

definite stabilizing solution of the algebraic Ricatti equation.

P = APAᵀ +GWGᵀ −
(
APC)

(
V + CᵀPC)−1CᵀPAᵀ (2.31)

The equation 2.31 is the discrete time filter algebraic Ricatti equation. The minimum value of the

estimation error variance is equal to σmin = σopt = tr(P ). The optimal solution to the steady state

estimation problem is obtained in an r - dimensional measurement space namely y(k) ∈ Rr. If

additional standby measurements are also available in the operational mode, that is,

ys(k) = Csx(k) + vs(k) E
{
vs(k)vᵀs (k)} = Vsδ

(
k −m)

The overall system measurements are now represented as

Ys(k) =

 y(k)

ys(k)

 =

C
Cs

x(k) +

 v(k)

vs(k)

 (2.32)



20

In (2.32) v(k) and vs(k) are uncorrelated since they come from separate channels. The optimal

solution is now given as

Kopt
s = P̃

C
Cs


ᵀ V −1 0

0 V −1s

 (2.33)

= P̃
(
CᵀV −1 + Cᵀ

s V
−1
s ) (2.34)

and satisfies the Ricatti equation

V + CPCᵀ ≥ Ṽ + CP̃Cᵀ ≥ 0 (2.35)

Substituting in discrete Ricatti equation

P̃ = AP̃Aᵀ +GWGᵀ −AP̃ C̃
(
Ṽ + C̃P̃ C̃ᵀ)−1C̃ᵀP̃Aᵀ (2.36)

The corresponding minimum value of estimation error is ˜σopt = tr(P̃ ) . Expanding equation (2.36)

we get,

P̃ = AP̃Aᵀ +GWGᵀ −AP̃

C
Cs


(V 0

0 Vs

+

C
Cs

 P̃
C
Cs


ᵀ)−1 C

Cs


ᵀ

P̃Aᵀ (2.37)

P̃ = AP̃Aᵀ +GWGᵀ −AP

C
Cs


(V 0

0 Vs

+

[
CP̃Cᵀ CP̃Cᵀ

s

CsP̃C
ᵀ CsP̃C

ᵀ
s

])−1 C
Cs


ᵀ

P̃Aᵀ (2.38)

Based on research in Paper [18] if 2.35 holds then

∴ P ≥ P̃ ≥ 0

σ̃opt ≤ σopt
(2.39)

Thus standby measurements reduces the estimation error in Kalman filter. The above observations

can be generalized to several standby measurements. The simulation results are demonstrated in

Section 4.2

2.7 Trajectory Prediction

A spacial temporal representation of the displacement of the vehicle is known as a trajectory. It

defines the dynamic representation of its path. The aim of the trajectory prediction is to predict at
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t0, the future displacement of the vehicle during the time slice [t0, t0 + h] where h is the prediction

period.

The quality of prediction depends upon the errors measured between the estimated value and

the real value. There are various approaches for trajectory prediction.

• Geometric Approach

In the geometric approach it is believed that since roads are designed with specific geometric

models, the trajectory of the vehicle can be modelled with geometric features. Some related

works like Paper [12] use polynomials representation of the trajectory like first, third or fifth

order polynomial representation. Some other research works like Paper [13] make use of cloth-

iods to model the trajectory. This approach does not make use of any model of the vehicle.

This is the drawback for this type of approach.

• Dynamic Approach

This approach has a major advantage that it tends to reproduce the dynamic behavior of the

vehicle. The trajectory prediction is based on this model. The Kalman filter is used for future

trajectory prediction.

In this thesis, the Kalman recursive filter is used for following purposes:

1. Sensor fusion for combining readings from a radar and a camera.

2. Trajectory prediction of vehicles.

2.7.1 The Kalman Predictor

The Kalman filter is a recursive estimator. There are two phases of the Kalman filter that alternate,

the prediction state advances the state until the next observation and the update state, incorporates

observations. The Kalman prediction involves skipping the updates and predicting multiple steps.



22

2.7.2 Multi-Step Kalman Predictor

Consider a discrete time, linear time invariant (LTI) system without any exogenous input, described

by state space model given in equation 2.1, which for the reason of convenience is repeated here

x(k + 1) = Ax(k) + w(k)

y(k) = Cx(k) + v(k)

Prediction involves estimating the state x(n+r), r > 1 and n measurements are given.

The optimal estimate for the state x(n+r) based on n measurements is obtained as follows:

x̂(N + r|N) = E[x(N + r)|yN ]

= E[Ax(N + r − 1) + v1(N + r − 1)|yN ]

= E[Ax(N + r − 1)|yN ] + E[v1(N + r − 1)|yN ]

= AE[x(N + r − 1)|yN ] + E[v1(N + r − 1)]

= Ax̂(N + r − 1|N)

(2.40)

Since, v1(N + r − 1) is independent of yN ∀r >1

E[v1(N + r − 1)|yN ] = E[v1(N + r − 1)] = 0 (2.41)

By iterating the above equations, we get

x̂(N + r|N) = Ar−1x̂(N + 1)|N) (2.42)

The output y(N + r) based on data yN is given as :

ŷ(N + r|N) = E[y(N + r)|yN ]

= E[Cx(N + r) + v2(N + r)|yN ]

= E[Cx(N + r)|yN ] + E[v2(N + r)|yN ]

= Cx̂(N + r|N)

= CAr−1x̂(N + 1)|N)

(2.43)
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Since, v2(N + r) is independent of yN∀r>1

E[v2(N + r)|yN ] = E[v2(N + r)] = 0 (2.44)

By iterating the above equations, we get

ŷ(N + r|N) = CAr−1x̂(N + 1)|N) (2.45)

2.8 Propagation of Uncertainty

We obtain XN = [X1, X2, .., Xn] as predicted poses from the Kalman filter with the sampling time

denoted by T. The error covariance matrix of Xk+1 is given by

Pk+1 = APkA
ᵀ +Q (2.46)

The initial state X0 and P0 are known from the Kalman filter tracking. In the first prediction

P0 is modelled as

P0 =



σ2
x 0 0 0

0 σ2
y 0 0

0 0 σẋ2 0

0 0 0 σẏ2


(2.47)

To account for the uncertainty, the position of the target vehicle is modelled as a Gaussian variable

with normal distribution.

2.8.1 Normal Distribution

In probability theory, Gaussian / normal distribution is commonly used. Physical quantities which

are affected by measurements errors are assumed to have distributions that are normal. This is

used for propagation of uncertainty in trajectory prediction. In our case, the normal distribution is

extended to higher dimensions to get a multivariate normal distribution.
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2.8.2 Bi-variate Normal Distribution

The probability density function of [X, Y] is

p(x, y) =
1

2π.σx.σy.
√

1− σ2
.exp

{
−1

2(1− σ2)

[(
x− µx
σx

)2

+

(
y − µy
σy

)2

− 2(x− µx)(x− µy)

σx.σy

]}
(2.48)

σ is the correlation between x and y

σx , σy are the standard deviation of x and y

µx and µy are expected values of x and y position

This value is available at each prediction step in the Kalman filter. Since, correlation between x

andy σ is 0

p(x, y) =
1

2π.σx.σy
.exp

{
−1

2

[(
x− µx
σx

)2

+

(
y − µy
σy

)2]}
(2.49)

The 95 % confidence in Gaussian bi-variate distribution is represented as an ellipse. The ellipse

defines the region that contains 95% of all samples that can be derived from the Gaussian distribu-

tion. The angle of the ellipse is determined by the covariance of the data. The magnitude of the

ellipse axes depends on the variance of the variables. The general equation of the ellipse with major

axis 2a and minor axis 2b, is given as

(
x

a

)2

+

(
y

b

)2

= 1 (2.50)

In our case, for 95 % confidence length of the axes is defined in terms of standard deviation σx

and σy , the error ellipse equation would be as follows:

(
x

σx

)2

+

(
y

σy

)2

= s (2.51)

s is chosen depending upon the confidence level. For 95 % confidence level s is chosen as s = 5.991

using the Chi - Square distribution table shown in Figure 2.3
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Figure 2.3: Chi Square Distribution Table

2.8.2.1 Chi Square Distribution

The Chi square distribution presented in Figure 2.3 is defined in terms of the degree of freedom.

For our case , we consider two degrees of freedom. The probability is available from the probability

table for two degree of freedom. s from the Chi-Square distribution table is 5.991. The standard

deviation is derived from the matrix P. The increasing size of the standard deviation accounts for

the increase in ellipse size.

2.9 Collision Detection

The probability of collision between a subject vehicle(s) and a target vehicle(t) having uncertain

configurations is defined as:

Pcoll =

∫∫
Ps(x, y).Pt(x, y)dx.dy (2.52)

The integral can be analytically computed as follows:

Pd(x;m,Σ) ≈
exp
(
−1
2 (x−m)′Σ(x−m)

)
√

(2π)
d
.det(Σ)

(2.53)

with m ∈ Rd, and Σ a symmetric, positive semi-definite square matrix of dimension d.

Let Ps ∼ Pd(m1,Σ1) and Pt ∼ Pd(m2,Σ2), where Pd(m,Σ) denotes the d - dimensional Gaussian

distribution with mean m and covariance Σ , with density Pd(x;m,Σ).
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∫
Ps(x;m1,Σ1)Pt(x;m2,Σ2)dx =

∫ exp
(
− 1

2

[
α1 + α2

])
(
2π
)2√

det(Σ1)
√
det(Σ2)

dx (2.54)

with,

α1 = (x−m1)′Σ1(x−m1)

α2 = (x−m2)′Σ2(x−m2)

(2.55)

Let

A = (x−m1)′Σ1(x−m1) + (x−m2)′Σ2(x−m2)

Solving we get,

A−B = m′1Σ1
−1m1 +m′2Σ2

−1m2 − (Σ1
−1m1 + Σ2

−1m2)′(Σ1
−1 + Σ2

−1)
−1

(Σ1
−1m1 + Σ2

−1m2)

(2.56)

B = [x−m]′Σ−1[x−m]

Therefore,

∫ exp
(
− 1

2A
)

(
2π
)2√

det(Σ1)
√
det(Σ2)

dx =
exp
[
− 1

2

(
A−B)

)]
(
2π
)2√

det(Σ1)
√
det(Σ2)

×
∫
exp

(
− 1

2
B

)
dx (2.57)

with, ∫
exp

(
− 1

2
B

)
dx =

√
(2π)2

√
det(Σ (2.58)

Σ−1 = (Σ−11 + Σ−12 )

Solving equation 2.57 the probability of collision is computed. This probability takes into ac-

count the uncertainties during future position prediction for both subject and target vehicles. The

probability of collision computed can be used further for decision making by other ADAS systems.

A decision could be made if the current maneuver is safe or not. This approach thus provides a

larger perspective of the scene and solves our aim of collision risk assessment.
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Chapter 3

Implementation

3.1 PreScan Simulation Software

PreScan software from TASS international is used in order to create simulation environment . This

software is specially designed to provide a development environment of intelligent vehicles. It has

been used for developing and debugging of control software. Software in loop simulation feature

of PreScan is exploited in this thesis. The software has an integrated Simulink interface which is

used to create control software. This chapter discusses the basics of PreScan software. The software

consists of three parts : GUI, Simulink compilation sheet and the VisViewer. The PreScan Help

Manual [16] provides a detailed description about the software.

3.1.1 Graphical User Interface (GUI)

The Figure 3.1 shows the PreScan GUI. Here all the infrastructure is constructed, the sensors and

actors are added. The scenarios to be tested are created. GUI is further divided into three sections

Library Elements, the Build Area and the Property editor.

3.1.2 Infrastructure

The road environment is known as the infrastructure. Pieces of road sections are available like

straight road, bent road, roundabouts, intersections etc.

3.1.3 Actors

Different cars, trucks, motorcycle are available to be used in simulation. An actor has to be configured

before it is used. The configurations available are vehicle dynamics, driver model, trajectories and
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Credit: PreScan Simulation Software

Figure 3.1: Graphical User Interface

others.

3.1.3.1 Vehicle Dynamics

Four options for vehicle dynamics are available for choice as shown in Figure 3.2:

1. None : No dynamics

2. 2D Simple : A simple bicycle model with roll dynamics is available. In the customize tab the

user can modify parameters for dynamics, driveline and engine. For a full list of descriptions

for all parameters please see the PreScan manual.

3. 3D Simple : This model is similar to 2D model with added suspension.

4. User Specified : User can create his own Simulink model.

3.1.3.2 Driver Model

The driver Model decides how the vehicle is going to be controlled. Different setting available for

the user as shown in Figure 3.3 are
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Credit: PreScan Simulation Software

Figure 3.2: VehicleDynamics

Credit: PreScan Simulation Software

Figure 3.3: Driver Model

1. Man In Loop - This is used when hardware has to be interfaced.

2. Software in Loop ( Path Follower) - Here PreScan calculates the steer angle required to mini-

mize the lateral error been the vehicle and the user trajectory.

3.1.3.3 Trajectories

Trajectory is defined as a path and speed profile to be followed. The path can be defined using

inherited path or manually. The Figure 3.4 shows how an inherited path can be created. Once a

path is created the speed profile has to be created for the specific actor.



30

Figure 3.4: Trajectory

Signal Name Description
Object ID Numerical ID of the detected object
RangeX[m] X component of the Range, in sensor coordinates
RangeY [m] Y component of the Range, in sensor coordinates
RangeZ [m] Z component of the Range, in sensor coordinates
DopplerVelocityX/Y/Z [m/s] Velocity of target point, relative to the sensor, along the line of-

sight between sensor and target point, decomposed into X, Y, Z
of the sensor’s coordinate system.

Theta [deg] Azimuth angle in the sensor’s coordinate system at which the
target is detected.

Table 3.1: Camera Sensor Outputs

3.1.3.4 Sensors

Sensors can be added to a vehicle. Three categories of sensors are available: Idealized, detailed and

ground truth. We used camera and radar sensor in our simulation. The outputs of camera and radar

are listed in Table 3.1 and 3.2

Refer Figure 3.5 and 3.6 for simulink models of camera and radar sensors:

Signal Name Description
Object ID Numerical ID of the detected object
Range[m] Range of the object in sensor coordinates
DopplerVelocityX/Y/Z [m/s] Velocity of target point, relative to the sensor, along the line of-

sight between sensor and target point, decomposed into X, Y, Z
of the sensor’s coordinate system.

Theta [deg] Azimuth angle in the sensor’s coordinate system at which the
target is detected.

Table 3.2: Radar Sensor Outputs
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Credit: PreScan Simulation Software

Figure 3.5: Camera Simulink Model

Credit: PreScan Simulation Software

Figure 3.6: Radar Simulink Model

3.1.4 Simulink Compilation Sheet

Once the experiment is built, a Simulink compilation sheet is created. All the coding of control

algorithms goes here. A subject vehicle with other target vehicles and sensors is shown in Figure

3.7

3.1.5 VisViewer

When an experiment is built in GUI and all the coding is done using the compilation sheet , the

simulation is viewed in the VisViewer.

PreScans VisViewer also comes with the option to record simulations. This is set up through

the Video capture option in the toolbar. Here the user can choose which view to capture as well as

the quality and format of the video.

The Figure 3.8 shows how simulation is seen in the VisViewer.
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.

Credit: PreScan Simulation Software

Figure 3.7: Compilation Sheet

Credit: PreScan Simulation Software

Figure 3.8: VisViewer
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3.2 Implementation of the Concept

3.2.1 System Overview

The basic blocks of the autonomous vehicle guidance function developed is shown in Figure 3.9. The

Collision Probability Detection module holds the implementation of the algorithm proposed in the

thesis. This module receives measurement data from camera and radar Simulink blocks and vehicle

data from vehicle sensors. The outputs of the Collision Probability Detection namely uncertainty

Ellipses and Collision Probability could be used by other subsystems in the automated vehicle for

example lateral/longitudinal control, motion planning, etc.

The remaining blocks including Path Follower, Vehicle Dynamics, Visualization are generated

by PreScan based on the simulated environment data received from the software.

3.2.2 Collision Probability Detection Subsystem

This forms the core algorithm module for robust prediction. It consists of the sensor correction

module, current environment state, Trajectory Prediction Module and Collision Detection Module

which will be explained in depth in subsequent subsections. The Simulink block diagram of this

subsystem is shown in Figure 3.10. The inputs and outputs of this block are described in Table 3.3
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I/O Signal Name Signal Description

Inputs State Measurement Data From Vehicle Sensors

Perf Param Velocity Data of subject Vehicle

Radar Data Measurement data from radar sensor(Range, Velocity X,Velocity
Y, Azimuth Angle)

Camera Data Measurement data from camera sensor(RangeX, RangeY, Velocity
X,Velocity Y, Azimuth Angle)

Outputs Uncertainty Ellipse Ellipses accounting the uncertainty in trajectory prediction

Collision Probability Probability of Collsion 0≤ P ≤ 1

Table 3.3: Collision Probability Detection Subsystem

3.2.2.1 Sensor Correction Module

This module is responsible for signal conditioning. It receives the raw data from sensors and converts

into appropriate data useful for further calculations. This includes finding the absolute velocities

of targets, object validation, longitudinal and lateral range calculation in case of radar sensor, etc.

The input and outputs of this block are described in Table 3.4.

3.2.2.2 Current Environment State

This subsystem block is responsible for the estimation of current environment. This includes the

current state of the target vehicle and subject vehicle. It is further divided into two subsections

vehicle current state and target vehicle sensor fusion modules. They are explained in further details

in subsequent text. The simulink block of this module is shown in Figure 3.11. The inputs and

outputs of this block are shown in Table 3.5.

The Kalman Filter forms the heart of this subsystem. The Kalman filter is used two functions

as a state estimator and for sensor fusion.

Vehicle Current State

The Kalman Filter receives measurement data from vehicle sensors like longitudinal and lateral

velocity and acceleration and estimates the states of the subject vehicle. The simulink model of the

Kalman filter is shown in Figure 3.12.
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I/O Signal Name Signal Description

Inputs Perf Params Velocity Data of subject Vehicle

Radar Data Measurement data from radar sensor(Range, Veloc-
ity X,Velocity Y, Azimuth Angle)

Camera Data Measurement data from camera sensor(RangeX,
RangeY, Velocity X,Velocity Y, Azimuth Angle)

Outputs Camera Data Object1 Conditioned Camera Data

Radar Data Object1 Conditioned Radar Data

Table 3.4: Sensor Correction Module

I/O Signal Name Signal Description

Inputs Camera Data Conditioned Camera Data

Radar Data Conditioned Radar Data

Outputs Subject Vehicle Current State Current State Estimate of Subject Vehicle

Subject Vehicle Covariance Current Covariance Matrix of Subject Vehicle

Target Vehicle Current State Current State Estimate of Target Vehicle

Target Vehicle Covariance Current Covariance Matrix of Target Vehicle

Table 3.5: Current Environment State Module



38

Figure 3.11: Current Environment State

Target Sensor Fusion

A practical evaluation of both centralized and quasi-decentralized sensor data fusion is conducted.

The Group Sensor Fusion as discussed in previous sections is developed as shown in Figure 3.13. The

data from camera and radar are fused together to accurately estimate the state of the target vehicles.

As proposed earlier the standby measurements is used to improve the performance of estimation by

reducing the covariance error. Also the quasi decentralized sensor data fusion is implemented. Here,

local non optimal Kalman filters process the camera and radar data at each node and the estimates

from both the filters are combined to get an optimal estimate. The implementation of the quasi-

decentralized process is shown in Figure 3.14.

3.2.2.3 Trajectory Prediction Module

The trajectory prediction module performs the trajectory prediction of the subject and target vehicle

for a future time interval, for example 4 sec ahead of time. The Kalman Predictor is used for

trajectory prediction which uses the current state of the environment to create future trajectories of

the target and subject vehicle. This module also calculates the covariance error of the estimate at

each time step of prediction. It is to be noted that since measurements are not available for updating
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Figure 3.12: Kalman Filter

Figure 3.13: Group Sensor Data Fusion
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Figure 3.14: Quasi-Decentralized Data Fusion

that the covariance error keeps increasing at each future time step. The inputs and outputs of the

trajectory prediction module are described in Table 3.6.

3.2.2.4 Collision Detection Module

This is the decision making subsystem. It uses the predicted trajectory and the uncertainty ellipses

of the subject and target vehicle to predict the probability of collision. The algorithm for the

calculation is discussed in earlier sections. The inputs and outputs of the collision detection module

are described in Table 3.7.
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I/O Signal Name Signal Description

Inputs Subject Vehicle Current State Current State Estimate of Subject Vehicle

Subject Vehicle Covariance Current Covariance Matrix of Subject Vehicle

Target Vehicle Current State Current State Estimate of Target Vehicle

Target Vehicle Covariance Current Covariance Matrix of Target Vehicle

Outputs Subject Vehicle Trajectory Future Trajectory of Subject Vehicle

Subject Vehicle Uncertainty Future Uncertainty of Subject Vehicle

Target Vehicle Trajectory Future Trajectory of Target Vehicle

Target Vehicle Uncertainty Future Uncertainty of Target Vehicle

Table 3.6: Current Environment State Module

I/O Signal Name Signal Description

Inputs Subject Vehicle Trajectory Future Trajectory of Subject Vehicle

Subject Vehicle Uncertainty Future Uncertainty of Subject Vehicle

Target Vehicle Trajectory Future Trajectory of Target Vehicle

Target Vehicle Uncertainty Future Uncertainty of Target Vehicle

Outputs Uncertainty Ellipses Ellipses accounting the uncertainty in trajectory pre-
diction

Collision Probability Probability of Collision 0≤ P ≤ 1

Table 3.7: Current Environment State Module
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Chapter 4

Simulation and Results

4.1 Probability of Collision

The approach to find the probability of collision using the method of trajectory prediction has been

tested in simulation. Two different use cases were studied with the aim of evaluating the collision

probability of the subject vehicle with a static and dynamic obstacle. The subject vehicle is equipped

with a camera and a radar sensor. The simulation is carried out on a straight road of length of 200 m

with a lane width of 3.5 m. Three figures are presented to demonstrate the simulation results. The

first figure denoted by (a) represents a bird eye view of the scenario at the mentioned time instant.

The other two graphs depict the predicted trajectory for 4 seconds and the probability of collision

over the entire future time considered. Both scenarios occur on a straight road with 4 lanes, each

3.5 m wide. The PreScan simulator provides simulated outputs for the subject and target vehicle at

the rate of 20 Hz. At each sample time, a 4 seconds trajectory prediction is made for each object.

The camera, radar and the predicted trajectories logic samples at 20 Hz.

4.1.1 Scenario Evaluation

Two different scenarios are considered as discussed below:

4.1.1.1 Scenario 1: Collision with static obstacle

The subject vehicle is travelling at a speed of 25 mps. Figure 4.1(a) represents the position of

the subject vehicle over time. Figure 4.1(b) represents the probability of collision and the future

trajectory is depicted in Figure 4.1(c). The static object is located at a distance of 175 m. At 3
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seconds, no collision is predicted and the probability of collision is zero. At time instant of 5 seconds,

a very low probability of collision is observed. As the subject vehicle gets closer to the obstacle, the

probability of collision increases as the trajectory of subject vehicle intersects the position of the

obstacle. The probability increases to around 0.1 at time 7 seconds and finally at 8 second and 8.5

seconds, there is a high risk of collision with the static obstacle.
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4.1.1.2 Scenario 2: Collision with dynamic obstacles

In this scenario, the target vehicle is travelling on lane 2 with velocity of 7 mps; whereas subject

vehicle is travelling with velocity of 12 mps. The observations at different times are explained below.

At time = 3 second

As it can be observed from Figure 4.2(a), the two vehicles are far away from each other. Their

predicted trajectories do not overlap at any future time step as shown in Figure 4.2(c) and hence

the probability of collision is zero as shown in Figure 4.2(b).

At time = 6 seconds

At this time, the target vehicle is making a lane change and enters into the lane as shown in Figure

4.3(a). There is a negligible probability of collision as show in Figure 4.3(b) and 4.3(c).

At time = 7 seconds

As seen in Figure 4.4(a), the target vehicle has entered the new lane. It can observed that the

trajectories of the subject and target vehicle show some overlap 2.5 seconds ahead as seen in Figure

4.4(c) and hence showing a probability of collision of around 0.1 in Figure 4.4.

At time = 8 seconds

The final velocity of the subject vehicle is 20 mps. As the target vehicle gets closer to the subject

vehicle, its speed increases as seen from Figure 4.5(a). Figure 4.5 depicts that the trajectories of

both the vehicles show overlapping 1 to 2 seconds in future resulting in the increase of collision

probability to around 0.25 as shown in Figure 4.5.

At time = 8.5 seconds

At this time, the subject vehicle is at 20 mps and over-speeding. The future trajectories of both

vehicles indicate that the risk of collision has increased since there are high percentage of overlapping

ellipses as seen from Figure 4.6(c). This increases the probability of collision to 0.4 as shown in Figure

4.6(b).

At time = 9 seconds

With further over-speeding, the subject vehicle gets much more closer to the target vehicle as seen

from the bird eye view in Figure 4.7(a). The future trajectories of both vehicles overlaps and very
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high possibility of collision after 0.5 seconds is predicted as indicated in Figure 4.7(b).
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4.2 Evaluation of the Use of Standby Measurements

The system considered is a constant acceleration model for the target vehicle. The measurements

of the target vehicle are captured using two cameras, namely main and standby, mounted on the

windshield. The effect of using standby measurements for discrete time system is studied in this

simulation. For the linear dynamic time system, initialization of parameters for Kalman filter and

covariance matrices are shown in Figure 4.8. The augmented system denotes the consideration

of standby measurements. On solving for the discrete algebraic Ricati equation using ”DARE”

function, the error covariance (P) for the system without standby measurements is greater than

error covariance with standby measurements Paug.

%Kalman I n i t i a l i z a t i o n f o r Eva lua t ing Use o f Standby Measurements

T = 0 . 0 5 ; % Sampling Time

% System Matrix

ASys = [ 1 0 T 0 Tˆ2/2 0 ;

0 1 0 T 0 Tˆ2/2 ;

0 0 1 0 T 0 ;

0 0 0 1 0 T;

0 0 0 0 1 0 ;

0 0 0 0 0 1 ] ;

BSys = [ 0 0 0 0 0 0 ] ’ ;

% Output Matrix

CSys = [ 1 0 0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0 0 ] ;
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% Output Matrix Augmented

CSys Aug = [ 1 0 0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0 0 ;

1 0 0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0 0 ] ;

DSys = [ ] ;

% Covariance Matrices

QSys = [ 0 . 0 0 5 0 0 0 0 0 ;

0 0 .001 0 0 0 0 ;

0 0 0 .009 0 0 0 ;

0 0 0 0 .005 0 0 ;

0 0 0 0 0 .001 0 ;

0 0 0 0 0 0 . 0 0 9 ] ;

RSys = 0.05∗eye ( 4 ) ;

RSys Aug = 0.05∗eye ( 8 ) ;

xoSys= [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;

PoSys = eye ( 6 ) ;

uoSys = 0 ;
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Figure 4.8: Evaluation of the Use of Standby Measurements at Steady State

% S o l u t i o n o f D i s c r e t e Time A l g e b r a i c R i c a t t i Equation

P = dare (ASys ’ , CSys ’ , QSys , RSys ) ;

Paug = dare (ASys ’ , CSys Aug ’ , QSys , RSys Aug ) ;

traceP = trace (P)

tracePaug = trace (Paug )

This is also studied in simulation over a time of 12 seconds. Figure 4.9 shows a graph of steady

state error covariance with and without standby measurements. The results confirm the theoretical

observations as stated in an earlier section.

4.3 Evaluation of the Sensor Data Fusion Techniques

This section presents the practical comparison of the centralized and decentralized sensor data fusion

techniques. The data coming from camera and radar was captured for a target vehicle. The data

consisted of relative position in X and Y direction. This data was provided to both Group Sensor

Fusion and Quasi-Decentralized Data Fusion. The graphs for Relative X and Relative Y Position

estimate computed by both methods is shown in Figures 4.10 and 4.11. From the graphs we see

that both the techniques produce almost similar results and both are optimal filter implementations.
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Figure 4.9: Evaluation of the Use of Standby Measurement using sensor data

Thus depending upon the application, one can decide which technique is appropriate.
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Chapter 5

Conclusion

Driving safety is one of the key topics of research in the automotive industry, which is making

an exponential progress towards autonomy. In this thesis document, an approach for tracking of

moving and stationary obstacles and evaluating the probability of collision is proposed, discussed

and implemented.

The thesis aims at providing information or Pre-Warning of a future collision. The proposed

method is capable to track the target vehicles using a camera and a radar sensor and predict

the future trajectories of both subject and target vehicles. The uncertainty in prediction is also

considered and accounted for using statistical approach and the probability of collision is evaluated

over the entire prediction time frame. This approach provides a larger view of evolution of the

dynamic scene and is better for estimating the collision probability.

The three tasks of environment perception, trajectory prediction and collision estimation have

been implemented using best suggested approaches through extensive related research. Kalman

filter forms the heart of the algorithm. Kalman filter is used in noise filtering, sensor data fusion

and trajectory prediction. Enhancements to the algorithm by making use of existing research are

proposed and verified using simulation. The use of standby measurements, whenever available, to

reduce the covariance error in the estimation process is demonstrated with the help of the discrete

time linear time-invariant system. It is also suggested that a global optimal solution for sensor data

fusion is obtained by a quasi-decentralized estimation using non-optimal local Kalman filters.

The overall approach is tested in two different scenarios and successful simulation results are

presented. This algorithm can be used by other ADAS features in robust decision making based on

the probability of collision that is output.
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Chapter 6

Future Work

The thesis recommends a methodology to estimate the probability of collision of a future risk of

collision. In this case the subject and the target vehicles were modelled in a linear model for

simplicity and ease of implementation. This could be enhanced further by making use of complex

vehicle models like Constant Turn Rate Velocity or Constant Turn Rate Acceleration, etc.

Currently the subject vehicle is mounted with a camera and radar sensor. It would be fasci-

nating to mount other sensors like LIDAR, use Vehicle to Vehicle Communication for getting more

information about the environment and better risk estimation. Also currently the approach is not

tested for target vehicles taking turns or traffic at intersection which could be a future addition in

the research. It would also be interesting to estimate driver intent along with trajectory prediction

using techniques like driver behavior modelling.

Also, the scope of the thesis is limited to the environment as perceived by the sensors mounted

on the front grill and windshield. This could be widened using rear and side facing sensors to get a

pseudo 360 degree understanding of the environment and thus improve the prediction accuracy.

Since there is a lot of research going on in the field of automated driving and ADAS, the future

scope of the application considered is boundless and as future advancements happen the research

can be strengthened further.
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