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This dissertation is focused on the development of mathematical models to solve 

electricity generation expansion planning problems that minimize total system-wide 

costs, including human health externalities.  A generation expansion planning model is a 

mathematical optimization framework employed to determine the type of generation 

technology to invest in, and when and where these investments should be made in order 

to minimize market costs such as investment costs, fixed and variable operating & 

maintenance costs, and fuel costs over a long term planning horizon.  Fossil fuels (such 

as coal, oil, and natural gas), which are the primary sources of energy for electricity, are 

among the most economical sources of electricity.  However, burning fossil fuels creates 

by-products that contribute to ground-level ozone, particulates, and acid rain, which have 

harmful health effects.  Based on EPA research, exposure to these elements causes 

various respiratory-related illnesses leading to lost days at school or work on a daily 

basis.  In this research, a simulation-based approach is employed to quantify human 

health externalities by linking the outputs of expansion planning simulations with an EPA 
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screening tool that determines the human health externalities from the electricity sector.  

From this data set, a statistical prediction model is employed to approximate health costs 

as a function of electricity generation.  This explicit representation of the relationship 

between electricity generation and health externalities is then incorporated in the 

objective function of a generation expansion planning problem as a metamodel or 

surrogate curve.  This research is the first comprehensive attempt to dynamically quantify 

human health externalities in the context of generation expansion planning.  Additionally, 

this research leads contributions for developing generation expansion planning models 

considering human health externalities as costs in the objective function.  This research 

also leads contributions for developing large scale simulation-based optimization models, 

by applying a rigorous search algorithm to determine candidate solution points to 

enhance prediction capabilities of the metamodel, and thus yield more accurate and 

realistic optimization solutions. 
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1. Introduction 

Generation expansion planning (or GEP) is the process of analyzing, evaluating, 

and recommending which technologies should be added to the power grid in order to 

satisfy changing demand for electricity.  As part of this process, the typical objective-

function costs considered are investment (or capital costs), fixed operating and 

maintenance (O&M) costs, and variable O&M costs (including fuel costs).  However, 

this research presents the first comprehensive approach to solving the generation 

expansion planning problem that minimizes total system-wide costs including investment 

costs, fixed and variable O&M costs, fuel costs, the social cost of carbon and methane 

leakage, and human health externalities associated with air emissions from electricity 

generation.  

Per the U.S. Energy Information Administration, electricity generation has 

increased in since 2001, as shown in Figure 1.1.  Furthermore, uninterrupted access to 

electricity is critical for various global industries that are vital to economic growth.  As a 

result, decision-makers must decide on the best approach to expand the power grid.  Such 

decisions are made systematically and analyzed in depth to address demand and 

reliability concerns.  Robust mathematical models play an instrumental role in allowing 

stakeholders to make informed decisions in the expansion planning process. 
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Figure 1.1 – Net Electricity Generation in the United States from 2001 through 2014  

(U.S. Energy Information Administration, 2015) 

Table 1.1 – Net Electricity Generation by Energy Source (U.S. Energy Information 

Administration, 2015) 

Energy Source 
2014 U.S. Net 

Electricity 

Generation (GWh) 

% of 2014 U.S. Net 

Generation 

Coal 1,581,710 39% 

Natural Gas 1,126,609 28% 

Nuclear 797,166 19% 

Renewables 279,213 7% 

Conventional 

Hydroelectric 
259,367 6% 

Petroleum Liquids 18,276 0% 

All Others 13,461 0% 

Other Gases 12,022 0% 

Petroleum Coke 11,955 0% 
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As evidenced by Table 1.1, in 2014, nearly 4,100 million GWh of energy were 

generated in the United States.  Fossil fuels, mainly coal and natural gas, are the main 

sources of energy for electricity, and account for 67% of electricity generation in the 

United States.  Additionally, per the U.S. Environmental Protection Agency, the 

electricity sector generates the largest share of greenhouse gas emissions.  The most 

prevalent greenhouse gases are carbon dioxide (CO2) and methane (CH4) which are the 

result of burning fossil fuels (particularly coal and natural gas) (U.S. Environmental 

Protection Agency, 2016).  Greenhouse gases trap heat in the atmosphere, which 

ultimately leads to increasing temperatures across the globe.  This leads to the increased 

frequency and severity extreme weather events such as hurricanes and heat waves (U.S. 

Environmental Protection Agency, 2016).  Furthermore, burning fossil fuels creates 

pollutants and by-products that contribute to ground-level ozone, particulates, and acid 

rain, which have harmful health effects.  Exposure to these elements causes thousands of 

respiratory-related illnesses leading to lost days at school or work on a daily basis and 

death (U.S. Environmental Protection Agency, 2013).  In previous research, generation 

expansion planning models have attempted to account for these health effects by 

including emissions limits and renewable portfolio standards constraints in an 

optimization model.  Although these models are effective in obtaining reasonable 

solutions, they do not fully address the issue of human health externalities absorbed by 

consumers as a result of pollutants from electricity generation. 

In this work, we introduce a simulation-based method, which combines a 

generation expansion planning model with an EPA screening tool in order to develop an 

electricity generation expansion plan that minimizes total system-wide costs, including 
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human health externalities from the electricity sector.  Key parameters in the generation 

expansion planning model are modified based on a structured simulation approach, and 

the model is thus re-solved multiple times to obtain a diverse sample space of expansion 

plans as a function of these parameter changes.  The changes from a baseline expansion 

plan are then assessed in the EPA screening tool in order to quantify the human health 

externalities associated with a given expansion plan.  Based on the simulation output, a 

statistical interpolation method, kriging, is introduced and applied to predict and quantify 

human health externalities, as a function of power grid expansion decisions.  This 

metamodel is used as a surrogate objective function in a GEP optimization model to 

determine an expansion plan.  We then apply a sampling method to select points in the 

feasible region that maximize the fit of the metamodel.  We continue this iterative 

procedure until termination criteria have been met.   

1.1. Electric Power Systems Overview 

 The National Academy of Engineering refers to the U.S. electric power grid as the 

“supreme engineering achievement of the 20
th

 century”, as it serves over 143 million 

residential, commercial, and industrial customers through over 6 million miles of 

transmission and distribution lines (Massachusetts Institute of Technology, 2011).  The 

electric power grid is a real-time energy system, meaning that power is generated, 

transmitted, and delivered at the instant that demand (or load) occurs.  The distribution 

network is the means by which electrical energy is delivered from substations to the 

consumer.  Load is the amount of energy consumption by consumers.  The term “grid” 

refers to generation and transmission.  The relationship between the elements of the 

electric power grid is shown in Figure 1.2. 
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Figure 1.2 – Schematic Diagram of a Typical Electric Power System (U.S.-Canada 

Power System Outage Task Force, 2004) 

 

Figure 1.3 – North American Power Grid (Scientific American, 2016) 

Figure 1.3 shows a diagram, which breaks down the regions and interconnections 

within the North American grid.  The Eastern grid covers the eastern two-thirds of the 

U.S. and Canada, the Western grid covers the rest of the U.S. and Mexico, and the 

Electric Reliability Council of Texas (ERCOT) covers most of Texas.  The North 
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American grid operates on AC lines within each interconnect, and interconnects are 

joined together by DC links.  The North American Electric Reliability Corporation 

(NERC), a not-for-profit international organization, ensures the reliability of the bulk 

power system in North America. NERC develops and enforces reliability standards; 

monitors the bulk power system; assesses future adequacy; audits owners, operators, and 

users for preparedness and educates and trains industry personnel (North American 

Electric Reliability Corporation, 2016). 

1.2. Motivation of Research 

Electricity expansion decisions are informed by solving the generation expansion 

planning (GEP) problem, which is typically formulated as a least-cost stochastic 

optimization problem (Tekiner, 2010).  The most commonly considered costs in least-

cost GEP models are market costs such as investment costs, fixed O&M costs, and 

variable O&M costs (including fuel costs).  With the primary objective being cost 

minimization, the goal is to ensure that expansion decisions are made economically from 

the perspective of a utility company (Wood & Wollenberg, 1996).  However, traditional 

least-cost GEP models do not completely include the total societal costs associated with 

electricity generation.  Thus, it is necessary to investigate the human health externalities 

of electricity generation, as well as the societal health damages of greenhouse gases such 

as carbon dioxide air emissions and methane leakage, and include these costs in the 

objective function of the GEP. 

Since fossil fuels are well developed, cost-effective, and reliable sources of 

energy, the resulting expansion plans of traditional least-cost GEP models typically have 

significant investments in these fuel sources (Wood & Wollenberg, 1996).  However, as 
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mentioned previously, fossil fuel combustion produces harmful by-products and 

pollutants that ultimately lead to a wide range of health damages.  Upon experiencing any 

of these damages, additional costs are passed onto consumers or to society at large in the 

form of externalities (National Research Council of the National Academies, 2010).  

Human health externalities are difficult to quantify explicitly as a function of generation 

expansion planning decisions.  To compensate for this, researchers have extended 

traditional GEP models to include emissions limits and renewable portfolio standards as 

model constraints, and have even applied deterministic penalty functions for generating 

units emitting pollutants.  Additionally, to account for human health externalities, 

researchers have post-optimally assessed the outputs of traditional GEP models in EPA 

screening models.  Furthermore, researchers also employ deterministic estimates of 

human health externalities of electricity generation to be included in the objective 

function of GEP models.  However, since the electricity sector only makes up a portion 

all pollutant emissions, and due to the fact that pollutant emissions have a highly non-

linear relationship with air quality and thus human health effects, using deterministic 

estimates yields potentially misleading and inaccurate results.  To mitigate the health 

implications of fossil fuels moving forward, it is necessary to develop a method to 

quantify these externalities, so that they can be used as part of the expansion planning 

process.  Furthermore, quantifying these health externalities will allow the GEP problem 

to be extended so that the optimal expansion plan actually minimizes total system-wide 

costs, inclusive of societal health damages.   

Electricity demand has a strong correlation with NOX emissions from electric 

generating units, as well as atmospheric ozone concentration and National Ambient Air 
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Quality Standards (NAAQS) ozone exceedances in the Eastern U.S.   This is exemplified 

in Figure 1.4, which shows the number of violations of either the 8-hour or 1-hour ozone 

NAAQS.  NOX emissions react with atmospheric oxygen to produce elevated levels of 

ozone near the earth’s surface, which has various harmful health implications (Machol & 

Rizk, 2013).  Ozone exposure and the associated pollutants can irritate the respiratory 

system, and has been linked to heart attacks, asthma, bronchitis, and even potential risk of 

death from long-term exposure (Delucchi, Murphy, & McCubbin, 2002).   

 

Figure 1.4 – NAAQS Ozone Violations in the Eastern U.S. (U.S. Environmental 

Protection Agency, 2013) 
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Figure 1.5 – Air Quality in the United States (Goffman, 2010) 

The increasing number of Eastern US ozone violations shown in Figure 1.4 is 

indicative of the poor air quality in the US.  Based on the Figure 1.5, nearly 130 million 

people in the US are living in areas with at least one or more NAAQS violation per year 

and therefore are at risk of experience health damages.  

Mitigating human health externalities has large, quantifiable economic benefits.  

For example, the EPA’s Clean Power Plan, proposed in 2014, presents a plan to reduce 

carbon emissions from power plants by 30 percent by 2030 from 2005 levels.  Per their 

analyses, since power plants are the largest concentrated source of carbon dioxide 

emissions in the United States (accounting for approximately one-third of all domestic 

greenhouse gas emissions), this yields indirect climate and health benefits that outweigh 

the cost of the plan.  The EPA projects that the total costs of the EPA’s Clean Power Plan 

are between $7.3 billion and $8.8 billion in 2030, whereas the projected climate and 

health benefits range from $55 billion to $93 billion per year in 2030 (U.S. 

Environmental Protection Agency, 2016).   
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1.3. Objectives and Research Contributions 

In this research, a simulation-based optimization framework is applied to the GEP 

problem.  The numerical examples and test cases are based on the Northeastern US, 

which includes New York State, New York City, New England, and the PJM 

Interconnection.  The PJM Interconnection is the regional transmission organization 

(RTO) that manages wholesale electricity markets in Delaware, Illinois, Indiana, 

Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, 

Tennessee, Virginia, West Virginia, and the District of Columbia.  The scope of this work 

is to build generation expansion planning models that minimize investment costs, 

operational costs, variables costs, the social cost of carbon, and human health 

externalities associated with pollutant emissions from electricity generation.  There are 

two major objectives of this research, which are as follows: 

1. Establish a mathematical relationship to predict human health externalities 

associated with electricity generation and emissions; 

2. Develop a generation expansion planning (GEP) model that minimizes investment 

costs, fixed O&M costs, variable O&M costs (including fuel costs), the social cost 

of carbon and methane leakage, and human health externalities associated with air 

emissions from electricity generation.  

In order to achieve these objectives, we establish a direct link between electricity 

use with emissions, the resulting impact on air quality, and ultimately an estimate of 

human health externalities. From both a problem domain and industrial 

engineering/operations research perspective, there are 3 major research contributions, 

which are as follows: 
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1. Statistically linking generation expansion planning decisions and human health 

externalities via the utilization of metamodeling; 

2. Solving a large-scale, multi-period optimization model over an extended time 

horizon with a metamodel as a surrogate objective function; 

3. Developing a new iterative method to search the feasible region of solutions, 

resample, and refit the metamodel for human health externalities, to ensure a 

relationship between decision variables and the metamodel is accurate, and thus, 

the optimization method yields robust candidate solutions;  

The first research contribution stems from the linear linkages of inputs and 

outputs between a simulated GEP model and an EPA screening tool to estimate human 

health externalities.  In this research, we apply a kriging interpolation model to express 

the relationship between electricity expansion plans and human health externalities.  

Kriging is a geospatial estimation method that predicts the values of a random field at 

unobserved locations based on an interpolated function of observed samples.  This 

metamodel serves as a surrogate objective function and/or constraints in an optimization 

problem. 

The second research contribution arises from the nature the GEP problem.  In 

order to incorporate human health externalities into the total cost objective function, the 

kriging metamodel will be used as an approximation.  This allows us to solve a large-

scale, multi-period GEP problem over an extended time horizon with a metamodel as a 

surrogate objective function for human health externalities.  Typically, the incorporation 

of metamodels into optimization problems is used for smaller scale applications with few 

decision variables, such as aircraft design problems.  However, since a typical GEP 



12 
 

 

problem has thousands of decision variables, the application of metamodels in such 

problems is novel. 

The third research contribution applies analytical and statistical methods to ensure 

our metamodel closely mimics the relationship between generation expansion planning 

decisions and human health externalities.  Following our proposed iterative approach 

allows us to find optimal or near optimal solutions, given that a portion of the objective 

function is a surrogate curve serving as an approximation of human health externalities.  

Furthermore, applying such analytical methods in large-scale optimization problems, like 

the GEP problem, is a contribution to the operations research and industrial engineering 

fields.   
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2. Background and Literature Review  

This section of the dissertation is divided into four parts.  In the first part, key 

operational definitions and optimization formulations are presented for short-term 

planning problems for electric power systems.  The second part discusses the generation 

expansion planning (GEP) problem.  In this part, GEP problems are broken down into the 

most common formulations.  The third section presents a literature survey of the research 

related to GEP models including various GEP research extensions such as variations of 

the objective function and constraints, various solution methods used to solve GEP 

models, approaches to quantify health damages associated with air pollution from 

electricity dispatch, and the implications of methane leakage.  In the last part of this 

section, simulation based optimization approaches are discussed, and a literature survey 

of the research in this field is presented.    

2.1. Electrical Power Systems Planning 

 There are multiple types of generating units that are used to satisfy the demand for 

electricity.  These units can be categorized into three major categories: baseload units, 

peaking units, and intermediate load units (Wood & Wollenberg, 1996).  Baseload units 

are used to meet most of a region’s continuous energy demand, or base load.  These units 

produce energy at a constant rate at relatively lower direct costs in comparison to other 

available plants in the network.  Typically, nuclear, coal, natural gas, combined cycle gas 

turbines (CCGT), and geothermal are among the generation technologies to meet base 

load (Wood & Wollenberg, 1996).  Peaking units are dispatched only when demand is 

high, or at its peak.  Since these units are dispatched once less economical options have 

been exhausted, these are more expensive than baseload units.  Oil, diesel, natural gas, 
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and pumped storage are among the technologies used to satisfy peak demand.  

Intermediate units operate between the extremes of base and peak load.  Oil and 

combined-cycle gas turbine (CCGT) units are examples of technologies used to satisfy 

intermediate load.  Renewable units, such as wind, biomass, and solar units are also used 

to satisfy load within the network.  While these units are able to generate electricity 

without producing air emissions at the levels of fossil fuel powered units, the 

intermittency of these units, particularly wind and solar generation, hinders the 

availability of these units, and thus impacts the ability to balance supply and demand 

instantaneously (Marneris, Biskas, & Bakirtzis, 2016) 

Generating unit efficiency is a major driver of the tradeoff between low operating 

and capital costs versus increased operational flexibility (Wood & Wollenberg, 1996).  

Operating costs and flexibility are directly related to the startup time and the ramp rate.  

The startup time is the amount of time it takes to warm up a unit so that it is operational.  

The ramp rate is the rate at which a unit can change its output.  Furthermore, startup time 

and ramp rate are impacted by the heat rate (usually measured in BTU/kWh), which is an 

inverse measure of efficiency of a generating unit.  Units with higher heat rates have 

longer startup times and small ramp rates, thus making them less efficient.  For example, 

coal units generally have heat rates between 9,000 and 11,000 BTU/kWh, while natural 

gas units have between 6,000 and 8,000 BTU/kWh (Massachusetts Institute of 

Technology, 2011).  Peaking units have heat rates of over 12,000 BTU/kWh, thus making 

these units the least efficient, and the most expensive to operate on a daily basis 

(Massachusetts Institute of Technology, 2011). 
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Demand for electricity is described by a load duration curve (LDC).  In these 

diagrams, the chronological sequence of load is sorted in descending order.  Each 

location on the horizontal axis corresponds to the amount of time in the given time period 

where the electricity demand is greater than or equal to the corresponding load value on 

the vertical axis.  The area under the LDC represents the total electricity power demand 

in the period.  In general, peak demand in each day or peak demand in each hour are used 

to construct the LDC.  Figure 2.1 shows the chronological load as a function of time, and 

Figure 2.2 illustrates a typical LDC.  Lmax and Lmin are the respective maximum and 

minimum load in the given time period involved, and T is the total number of time units 

in the given time period. 

 

Figure 2.1 – Chronological Load Graph 
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Figure 2.2 – Typical Load Duration Curve 

This LDC is used in power systems planning and optimization models for long-term 

expansion planning and network reliability evaluation.  It can also be used to represent 

capacity utilization requirements for each increment of load.  The horizontal axis can be 

interpreted as a capacity utilization rate, and the vertical axis can be interpreted as the 

capacity requirement in MW.  Using this representation, a vertical section of the LDC can 

be extracted from the curve to compute the capacity utilization requirements for a 

specific load increment (Wood & Wollenberg, 1996). 

2.1.1 Economic Dispatch 

The economic dispatch model is a short-term planning model, which determines 

the optimal output of a number of electricity generation facilities, to meet the system 

load, at the lowest possible cost, subject to system constraints.  In such markets, 

dispatching cost functions are approximated by polynomial functions of power generation 

in each hour, as evidenced by Equation 2.1. 

𝑐𝑖 = 𝛼𝑖 + 𝛽𝑖𝑝𝑖 + 𝛾𝑖𝑝𝑖
2         (2.1) 
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In Equation 2.1, ci represents the cost of generating unit i, i, i, and i are 

polynomial constants, and pi is the power generated by unit i.  In a network with m 

generating units, this be formulated as an optimization problem.  The formulation is 

given as follows (Wood & Wollenberg, 1996). 

Minimize 

𝑐𝑇 = ∑ 𝑐𝑖 =𝑚
𝑖=1 ∑ 𝛼𝑖 +𝑚

𝑖=1 𝛽𝑖𝑝𝑖 + 𝛾𝑖𝑝𝑖
2      (2.2) 

Subject to 

∑ 𝑝𝑖 = 𝑝𝐷
𝑚
𝑖=1           (2.3) 

𝑝𝑖 > 0, ∀𝑖          (2.4) 

In the above optimization problem, ci and pi are defined in Equation 2.1, cT is the 

total cost of all generators, m is the total number of generators in the system, and pD is the 

total demand on the system.  Equation 2.3 ensures that the total amount of generation 

from all units in the system meets total system load.  The Lagrangian Relaxation Method 

can solve simple economic dispatching problems, like the one above, to optimality.   

There are many variations of this optimization problem, which are based on 

simple extensions.  The most common extensions include linear approximations of cost 

curves, indexed decision variables and model parameters for hourly dispatch, maximum 

and minimum generation limits, and forecasted transmission losses.  These extensions are 

presented in the formulation below (Wood & Wollenberg, 1996). 

Minimize 

𝑐𝑇 = ∑ ∑ 𝑐𝑖𝑗
𝑚
𝑖=1

24
𝑗=1 = ∑ ∑ 𝛼𝑖𝑗 + 𝛽𝑖𝑗𝑝𝑖𝑗

𝑚
𝑖=1

24
𝑗=1       (2.5) 

Subject to 

∑ 𝑝𝑖𝑗 = 𝑝𝐷𝑗
𝑚
𝑖=1 + 𝑝𝐿𝑗, ∀𝑗        (2.6) 
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𝑝𝑖𝑗 ≤ 𝑝𝑚𝑎𝑥,𝑖𝑗 , ∀𝑖, ∀𝑗         (2.7) 

𝑝𝑖𝑗 ≥ 𝑝𝑚𝑖𝑛,𝑖𝑗, ∀𝑖, ∀𝑗         (2.8) 

 The objective function shown in Equation 2.5 of the extended formulation now 

has an additional index j, which indicates the hour.  The cost curves submitted by the 

generators, denoted by cij, are now linear functions of the power, denoted by pij. Equation 

2.6 is analogous to Equation 2.3 in that it ensures total demand in the system is met.  

However, Equation 2.6 includes a loss term, pLj, to ensure that the total amount of 

generation accounts for the demand plus losses.  Equations 2.7 and 2.8 specify maximum 

and minimum values for each of the generating units in a given hour.  Simplex-derived 

algorithms can solve this problem since the constraints and the objective function are 

linear. 

2.1.2 Unit Commitment 

 Given a load profile and a set of available generating units in the network, the unit 

commitment model determines which units should be started-up and shutdown in each 

period at least cost, in order to satisfy the load on the system.  In comparison to the 

economic dispatch model, the unit commitment model only considers only start-up and 

shutdown decisions, which are binary decision variables.  Dispatching decisions are not 

determined these models.  The formulation for the unit commitment model is given as 

follows (Wood & Wollenberg, 1996). 

Minimize 

𝑧 = ∑ ∑ (𝑠𝑖𝑗𝑥𝑖𝑗 + 𝑞𝑖𝑗𝑢𝑖𝑗)
𝑚
𝑖=1

24
𝑗=1        (2.9) 

Subject to 

∑ 𝑝𝑖𝑗,𝑚𝑎𝑥𝑥𝑖𝑗 = 𝑝𝐷𝑗
𝑚
𝑖=1 + 𝑝𝐿𝑗, ∀𝑗                 (2.10) 
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𝑢𝑖𝑗 + 𝑥𝑖𝑗 = 1, ∀𝑖, ∀𝑗                   (2.11) 

𝑥𝑖𝑗 ∈ {0,1}, ∀𝑖, ∀𝑗                   (2.12) 

𝑢𝑖𝑗 ∈ {0,1}, ∀𝑖, ∀𝑗                   (2.13) 

 The objective function of this model, described in Equation 2.9, is the total start-

up and shutdown costs for the system.  The start-up costs and shutdown costs are given 

by sij and qij, respectively.  Start-up and shutdown decisions are given by xij and uij, 

respectively.  Equation 2.10 is analogous to Equations 2.3 and 2.6 from the economic 

dispatch models.  This equation states that total supply, must be equivalent to total 

demand plus losses.  The main difference in this equation is the inclusion of maximum 

generation.  The sum of the maximum generation values for the committed units must 

satisfy demand plus losses.  Equation 2.11 states that a unit cannot be started-up and 

shutdown in the same time period.  Equations 2.12 and 2.13 ensure that the start-up and 

shutdown decisions are binary. 

 Since the given formulation is an integer program, there are various metaheurtics 

that can be used to solve this problem to optimality (or near optimality).  The model can 

be further extended to multiple areas.  Additional constraints can be added as well, 

including transmission limits, emissions caps, and spinning reserve requirements (Wood 

& Wollenberg, 1996).  Furthermore, stochasticity can be incorporated into these problems 

by considering uncertainty in demand, costs, and other system parameters. 

2.1.3 Unit Commitment Dispatch 

 The unit commitment dispatch model is a combination of the economic dispatch 

model and the unit commitment model.  This model is a mixed integer nonlinear 

optimization problem that minimizes start-up costs, shutdown costs, and variable costs 
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from energy generation.  The decision variables in this problem include dispatching 

decisions as well as start-up and shutdown decisions.  The formulation is given as follows 

(Wood & Wollenberg, 1996). 

Minimize 

𝑧 = ∑ ∑ (𝑐𝑖𝑗(𝑝𝑖𝑗) + 𝑠𝑖𝑗𝑥𝑖𝑗 + 𝑞𝑖𝑗𝑢𝑖𝑗)
𝑚
𝑖=1

24
𝑗=1       (2.14) 

Subject to 

∑ 𝑥𝑖𝑗𝑝𝑖𝑗 + ∑ (1 − 𝑢𝑖𝑗)𝑝𝑖𝑗
𝑎(𝑗)
𝑖=1

𝑛(𝑗)
𝑖=1 = 𝑝𝐷𝑗 + 𝑝𝐿𝑗, ∀𝑗     (2.15) 

𝑝𝑖𝑗 ≤ 𝜑𝑖𝑝𝑖𝑗−1 + 𝛿𝑖, ∀𝑖, ∀𝑗        (2.16) 

𝑢𝑖𝑗 + 𝑥𝑖𝑗 = 1, ∀𝑖, ∀𝑗                    (2.17) 

𝑝𝑖𝑗 ≤ 𝑝𝑚𝑎𝑥,𝑖𝑗 , ∀𝑖, ∀𝑗         (2.18) 

𝑝𝑖𝑗 ≥ 𝑝𝑚𝑖𝑛,𝑖𝑗, ∀𝑖, ∀𝑗         (2.19) 

𝑥𝑖𝑗 ∈ {0,1}, ∀𝑖, ∀𝑗                    (2.20) 

𝑢𝑖𝑗 ∈ {0,1}, ∀𝑖, ∀𝑗                      (2.21) 

 The objective function in this model, given by Equation 2.14, is the total costs 

including start-up costs, shutdown costs, and variable costs.  Equation 2.15 is the supply 

and demand constraint, which states that the total generation from all units started-up in 

period j and all units operating in period j must satisfy demand plus losses in that period.  

Equation 2.16 is the ramp-up constraint, which states that the generation by a given unit 

in a given period cannot exceed some function of the generation by that unit in the 

previous period.  Equation 2.17 states that a unit cannot be started-up and shutdown in 

the same time period.  Equations 2.18 and 2.19 specify maximum and minimum values 

for each of the generating units in a given hour.  Equations 2.20 and 2.21 ensure that the 

start-up and shutdown decisions are binary. 
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2.2. Generation Expansion Planning Overview 

The generation expansion planning (GEP) problem is used to determine the 

optimal selection of power generation technologies to be added to the existing electrical 

grid, as well as determining when and where these generating units should be built in 

order to satisfy the increasing energy demand over a specified planning horizon.  The 

most commonly studied GEP problems are typically cost minimizing problems 

(Hemmati, Hooshmand, & Khodabakhshian, 2013).  However, since GEP is a 

complicated, multi-faceted problem, solutions that only consider cost are not necessarily 

indicative of the expansion planning decisions that are made.  Because of this, 

researchers have studied various mathematical formulations of GEP models to enhance 

decision making capabilities (Hemmati, Hooshmand, & Khodabakhshian, 2013). 

Furthermore, expansion plans rely on assumptions about the future.  These 

assumptions have an impact on forecasted energy demand, fuel prices, and other system-

related parameters.  Since the GEP problem is formulated based on these assumptions, 

there are a considerable amount of uncertainties in the system, which has an impact on 

the resulting expansion plan.   Thus, researchers have investigated the stochastic nature of 

GEP problems. 

In addition to considering different formulations of the GEP problem, researchers 

have also investigated the application of different solution techniques to finding the 

optimal expansion plan.  These solution methods include mathematical programming, 

meta-heuristic search algorithms, machine learning, and dynamic programming 

(Hemmati, Hooshmand, & Khodabakhshian, 2013).  Although many variations of the 

generation expansion planning problem have been studied in the academic community, a 
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GEP model that determines the optimal expansion plan that minimizes the human health 

externalities of pollutants from electricity generation using simulation-based methods has 

not been studied. 

 

Figure 2.3 – Typical GEP Problem Formulation 

Figure 2.3 outlines a typical GEP problem formulation.  The objective function 

often includes market costs such as investment costs, fixed and variable operating & 

maintenance costs, and fuel costs.  Investment costs are the capital costs required to build 

a new unit in a particular location.  In linear models, investment and maintenance costs 

are given in terms of $/MW (Hemmati, Hooshmand, & Khodabakhshian, 2013).  

However, for integer models with binary investment constraints, investment costs are 

given in $, as the investment decisions are associated with fixed capacities.  Similarly, in 

linear models, fixed maintenance costs are considered in terms of $/MW since they are 

assumed to be functions of capacity, inclusive of new investments.  These costs are 

incurred by all plants in the network on an annual basis.  Variable operating & 

maintenance costs, as well as fuel costs, are given in $/MWh as they are the cost per unit 

generation of electricity (Hemmati, Hooshmand, & Khodabakhshian, 2013). 
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As evidenced by Figure 2.3, all GEP problems have a constraint that states that 

total generation must be equivalent to the total load.  Often times generating units must 

operate at a minimum level, which can be considered as a constraint in the model as well.  

Reserve margins act as reliability constraints in GEP models, to ensure that there is 

sufficient capacity in the network to satisfy peak demand levels.  The transmission limit 

constraint imposes an upper limit on the amount of electricity that can be sent from one 

bus to another bus within the network.  Investment limits can be specified in terms of 

MW of capacity invested in a given unit or in terms of monetary values, which would 

function as a budget constraint.  Renewables requirements, also referred to renewable 

portfolio standards, can also be implemented in the GEP as a constraint.  This constraint 

specifies a minimum amount of generation from renewable energy sources every year.  

Another common constraint in GEP problems is emissions limits (or maximums). 

 

Figure 2.4 – Typical GEP Inputs and Outputs 

 Figure 2.4 provides the key inputs and outputs to a typical GEP model.  Market 

costs, such as investment costs, fixed and variable operating & maintenance costs, and 

fuel prices are used in the objective function of the optimization problem.  Generation 

characteristics include heat rates and emissions rates, as well as existing generating unit 
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capacities, which are used in formulating the constraints in the optimization problem.  

The available technologies are a pool of generating units that are available for investment 

and dispatching.  The load forecast is used in the supply and demand constraint.   

The main outputs are the total cost of the expansion plan at optimality, the 

investment plan, and the aggregate dispatch plan.  Dispatching decisions are aggregated 

in GEP models, because the hour-by-hour, unit-by-unit level of granularity is not 

necessary for long-term planning.   In addition to dispatching decisions, the resulting 

emissions are outputs as well.  Additionally, energy and capacity shadow prices are 

outputs to GEP problems, provided that the associated constraints in the GEP model do 

not have integer-constrained decision variables.  In general, a typical expansion plan will 

include large centralized generating units, including coal, nuclear, and natural gas.  This 

is due to the fact that most GEP models minimize market costs only. 

2.3. Literature Survey 

 In this section, we provide an overview of the current research as it relates to 

generation expansion planning and human health externalities and damages in the context 

of this research.  Specifically, we discuss various GEP model formulations that aim to 

reduce human health externalities associated with air pollution from the electricity sector, 

current research methods to assess health damages associated with air pollution from 

electricity generation, various GEP solution approaches and metaheuristics, as well 

approaches on how uncertainty or stochasticity is treated in the context of generation 

expansion planning models. 
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2.3.1. Health and Environmental Implications of Electricity Dispatch 

As mentioned previously, a large amount of our electricity is generated from 

fossil fuels – mainly coal and natural gas.  Fossil fuels are burned to produce steam, 

which is then used to power a steam turbine that drives an electrical generator.  From the 

perspective of generating companies, fossil fuels are the least expensive options to satisfy 

demand, since their market costs are often less expensive than alternative sources of 

energy.  However, burning fossil fuels produces emissions such as CO2, SOX, NO2, and 

particulate matter, which are potential health hazards.  These emissions contribute to 

smog, which causes heart conditions and chronic lung conditions such as asthma, 

bronchitis, and emphysema (National Research Council of the National Academies, 

2010).  Moreover, smog exposure can cause inflammation in breathing passages, 

decreased lung capacity, and shortness of breath (Union of Concerned Scientists, 2013).   

Smog can form in most climates where there is a large amount of air pollution, and it 

tends to be worse when the weather is warmer and sunnier when electricity demand is 

highest (Union of Concerned Scientists, 2013). 

Fossil fuel emissions also react with atmospheric water molecules to produce acid 

rain.  Acid rain refers to various forms of acidic precipitation and dry acidic deposition.  

It arises from the combustion of fossil fuels that produce sulfur dioxide and nitric oxides, 

which is converted to sulfuric acid and nitric acid upon reacting with atmospheric water 

(Union of Concerned Scientists, 2013).  While acid rain does not have any direct human 

health effects, fine acidic particulates in air contribute to heart and lung conditions, which 

results in health externalities or costs absorbed by consumers (Union of Concerned 

Scientists, 2013). 
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Nuclear energy, which is another major energy source for electricity, also has 

negative human health effects that can be quantified as externalities.  One of the major 

sources of nuclear health risks arises from radiation.  Nuclear power plants produce 

radioactive materials that may come into contact with people during routine operations, 

accidents, transportation, and waste management (National Research Council of the 

National Academies, 2010).  These radioactive materials are subatomic particles that can 

penetrate the human body, and can potentially damage cells.  This can ultimately lead to 

cancerous growths and genetic diseases (National Research Council of the National 

Academies, 2010). 

During peak periods of electricity demand, we rely on the most economical 

generating units available.  As mentioned previously, during such periods, the cheapest 

options are exhausted, and thus more expensive fossil fuels with higher emissions rates 

are dispatched (Farkas, et al., 2015).  During these periods, since we consume more 

energy from sources that produce emissions that are potential health hazards, and thus, 

the risk of the associated negative health implications is elevated. 

 Per the National Research Council of National Academies, NOX compounds and 

volatile organic compounds (VOCs) can result in particulate matter and ozone.  Both 

particulate matter and ozone, can lead to serious cardiovascular and respiratory issues, 

birth defects, as well as premature death (National Research Council of the National 

Academies, 2010).  Quantifying the human health externalities of such pollutants allows 

decision makers to fully understand the impact of electricity generation from fossil fuels 

on human health.  However, these costs absorbed by consumers are not able to be 

quantified effectively through deterministic methods.  This is mainly because human 
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health externalities have a highly non-linear relationship with electricity generation, 

emissions, and location, which cannot be expressed in a closed-form.  In order to capture 

this relationship appropriately, rigorous analytical methods are necessary for 

approximation purposes.  In the context of generation expansion planning models, due to 

the computational rigor associated with determining the location-based health effects of 

electricity generation, simple approximations, such as objective function penalties for 

emissions or deterministic cost multipliers, yields inaccurate results. 

Greenhouse gases (often abbreviated as GHGs) are gases in atmosphere that 

absorb and emit radiation within the thermal infrared range (U.S. Environmental 

Protection Agency, 2016).  This process is the fundamental cause of the greenhouse 

effect, which refers to the exchange of incoming and outgoing radiation that increases 

global temperatures, leading to climate change (U.S. Environmental Protection Agency, 

2016).  According to the EPA, the most prominent greenhouse gases in are CO2, which 

accounts for approximately 81% of the total greenhouse gas emissions in the United 

States as of 2014, and methane (CH4), accounting for roughly 11% of U.S. greenhouse 

gas emissions in 2014 (U.S. Environmental Protection Agency, 2016).  Furthermore, 

electricity generation accounted for nearly 30% of all U.S. greenhouse gas emissions in 

2014 – approximately two-thirds of which are from burning fossil fuels (U.S. 

Environmental Protection Agency, 2016). 

The health implications of greenhouse gas emissions are a result of increased 

global temperatures, which leads to changes in precipitation, increased frequencies and 

intensities of extreme weather events, as well as rising sea levels (U.S. Environmental 

Protection Agency, 2016).  These consequences impact human health by affecting our 
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sources of food and water, air quality, and exposure to extreme weather events (U.S. 

Environmental Protection Agency, 2016).   

In order to quantify the health damages associated with greenhouse gas emissions, 

the EPA targets the most prominent of the greenhouse gas, CO2, and conducted a 

comprehensive study to quantify the estimated economic health damages associated with 

its air emissions (U.S. Environmental Protection Agency, 2016).  These health damages 

are referred to as the social costs of carbon, and are represented in terms of $/metric ton 

of CO2 (U.S. Environmental Protection Agency, 2016). 

 Methane (CH4), is the second most prevalent greenhouse gas emitted in the 

United States, which is mainly due to leakage from the production, processing, storage, 

transmission, and distribution of natural gas, which occurs at a rate between 1% and 8% 

per MWh of electricity generated (U.S. Environmental Protection Agency, 2016), 

(Brandt, et al., 2014).  Not only does methane contribute to the greenhouse effect, which 

leads to the human health effects mentioned previously, according to the 

Intergovernmental Panel on Climate Change (IPCC), the 20 year global warming 

potential (or GWP) of methane is approximately 72 times that of CO2 (Intergovernmental 

Panel on Climate Change, 2016).  To elaborate, the GWP is a measure of how much heat 

a greenhouse gas traps in the atmosphere, relative to CO2.  Aside from the global 

warming potential of methane and its approximated leakage rate, the associated societal 

health damages have not been studied in sufficient detail. 
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Table 2.1 – Related Research Summary  

Authors 

Generation 

Expansion 

Planning 

Unit 

Commitment 

Market 

Costs 

Health Damages 

Climate 

Change 

Impacts 

Emissions 

Limits 

Renewable 

Portfolio 

Standards 

Response 

Surfaces 

Deterministic 

Cost 

Multipliers (or 

Penalties) 

Predictive 

Models 

Included 

Within 

Optimization 

Framework 

Post-

Optimal 

Assessment 

Application 

of EPA 

Models 

Schenk & Chan – 1981  -   - - - - -   - 

Nordlund et al. – 1987  -  - - - - - -   - 

Rowe et al. – 1996 - - - -  - -  - - - - 

Farghal & Aziz – 1998  -  - - - - - -   - 

Thanh & Lefevre – 2000 - - - -  - - - - - - - 

Kenfack et al. – 2001  -  - - - - - -   

Karaki et al. – 2002  -     - - - - - - 

Burtaw et al. - 2003 - - - -  - -  - - - - 

Chen & Hobbs – 2005  -   - - - - - -  - 

Nualhong et al. – 2005  -   - - - - - -  - 

Alnatheer – 2006  -   - - - - - - - - 

Alves & Uturbey – 2010  -   - - - - - - - - 

Becker et al. – 2011  -   - - - - - - - - 

Selcuklu et al. – 2013  -  - - - - -  - - - 

Farkas et al. – 2015 -  - - - -    - - - 

Kerl et al. – 2015 -   -   - - - - - - 
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 Table 2.1 summarizes the research that is closely related to our framework to 

solve the generation expansion planning problem considering human health externalities 

in the objective function by simulation-based optimization.  Per the literature presented in 

this section, the most popular approach to assessing and mitigating the human health 

externalities associated with electricity dispatch is by applying deterministic cost 

estimation methods.  As it relates to power systems planning and optimization models, 

other popular methods include implementing renewables requirements and emissions 

limits as constraints, and using multiple objective methods. 

Kerl et al. introduce the Air Pollutant Optimization Model (APOM), which solves 

the unit commitment model in the state of Georgia with the assistance of a reduced form 

air quality model (Kerl, et al., 2015).  The objective function of this model is to minimize 

electricity production costs and monetized health impact cost estimates.  Similar to our 

research, these researchers recognize that health impact costs have a highly non-linear 

relationship with electricity generation and the associated air emissions, thus making 

these costs difficult to quantify through deterministic methods.  The pollutants under 

investigation in this research are ozone, PM2.5, SO2 and NOX.  To estimate their health 

impact costs, a baseline unit commitment model along with the inputs and outputs of two 

EPA models are synchronized linearly to develop response surfaces, or regression curves, 

that predict health impact costs as a function of decision variables in the unit commitment 

model.  The first EPA model, the Community Multiscale Air Quality model (CMAQ), 

geospatially and temporally models air pollutant concentrations in the atmosphere.  The 

second EPA model, the Environmental Benefits Mapping and Analysis Program 

(BenMAP), determines the economic value of the subsequent air pollution-related 



31 
 

 

illnesses and deaths.  To assess the stochasticity of health impact costs, various sensitivity 

analyses are executed by varying key parameters in the unit commitment model, and 

assessing the results post-optimally in CMAQ and BenMAP. 

 In order to address health and environmental concerns in the context of generation 

expansion planning, the most popular approach is to consider these costs as deterministic 

penalties in the objective function.  In the single objective case, Alves and Uturbey 

applied a GEP model to study expansion planning decisions in Brazil.  However, in 

efforts to address environmental concerns, the researchers included aggregate damage 

estimates of environmental impact costs in the objective function along with the 

electricity generation costs (Alves & Uturbey, 2010).  Nguyen examines the impacts of 

including external costs such as environmental and health damages from power 

production on power generation expansion planning in Vietnam.  They consider these 

costs as deterministic penalties in the objective function of the model (Nguyen, 2008).  

Using a simple linear programming model over a 20-year period to 2025, the study shows 

that there are substantial changes in the resulting expansion plan in favor of renewable 

energy technologies and other low emitting technologies.  These changes lead to a 

reduction in fossil fuel requirements, and consequently, a reduction of CO2, NOX, SO2, 

and PM emissions, which could be expected to also reduce the associated environmental 

and human health impacts.  Similar research was done by Alnatheer in Saudi Arabia’s 

electricity sector; however, this work considered both generation and transmission 

expansion decisions, as well as the land and water impacts (Alnatheer, 2006). 

In the multiple objective case, Karaki et al. use dynamic programming to solve a 

weighted, bi-objective GEP problem, where the objectives are to minimize electricity 
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generation costs and minimize deterministic environmental impact costs (Karaki, 

Chaaban, Al-Nakhl, & Tarhini, 2002).  They utilize a method to simulate the cost of 

dispatching electricity, which is called the probabilistic production costing (PPC) 

simulation.  Additionally, a 2-state Markov model is used to model generating unit 

availability.  Because of the 2-state Markov model, the authors use dynamic 

programming to solve the GEP.  Becker et al. also apply multiple objective optimization 

methods to solve the GEP problem by minimizing the competing objectives of electricity 

generation costs and minimizing emissions costs, which are derived deterministically 

from literature (Becker, Soloveitchik, & Olshansky, 2011). 

A key extension of generation expansion planning considering human health and 

environmental implications is the consideration of climate change.  Selcuklu et al. solve a 

multiple objective GEP problem with one objective to minimize investment, 

maintenance, and variable costs, and the other objective to minimize air pollutant 

emissions, which would consequently minimize adverse human health effects (Selcuklu, 

Coit, Felder, & Rodgers, 2013).  In addition to the multiple objective aspect of this work, 

to understand the uncertainty associated with climate change assumptions, this research 

introduces a Pareto Uncertainty Index (PUI), which allows for the ranking of solutions on 

the pareto front based on dominance.   

One of the simplest ways to address environmental concerns, and consequently 

human health effects, in the context of generation expansion planning is the inclusion of 

renewables requirements and emissions limits as constraints in the model. Schenk and 

Chan leveraged renewables requirements in formulating the GEP problem as a least-cost, 

mixed integer linear program.  The goal of this work was to study the impact of 
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increasing wind dispatch on the optimal expansion plans. They consider the typical 

energy balance, and reliability constraints.  However, they include a minimum wind 

dispatching constraint as well (Schenk & Chan, 1981).  They probabilistically simulate 

the load duration curve, and solve the GEP over a 19 year time horizon.  Farghal and 

Aziz extended this research by limiting the available generation technologies for 

expansion to renewable sources, ultimately leading to significant emissions reductions, 

but increases in market costs (Farghal & Abdel Aziz, 1988).  

Nualhong et al. consider CO2 emissions by considering a carbon tax charge for 

excessive CO2 emissions, but also include a requirement for biomass to be included in the 

expansion plan (Nualhong, Chusanapiputt, Jantarang, & Pungprasert, 2005).  They solve 

the GEP by using a tabu search.  Chen et al. extended this work to not only consider 

expansion decisions, but also the trading of CO2 permits (Chen & Hobbs, 2005).  

Essentially the decision variables in this problem are the typical investment and 

dispatching decisions.  However, they also include the ability to buy and sell CO2 permits 

in a regulated environment.   Thus, this work studies how expansion planning is viewed 

in a low-carbon economy. 

Nordlund et al. solved the GEP in systems where there are large shares of hydro 

power (Nordlund, Sjelvgren, Pereira, & Bubenko, 1987).  This GEP model is a least-cost 

capacity expansion model that determines the optimal expansion plan subject to water 

balance, minimum and maximum water outflow, minimum and maximum water storage, 

and capacity limits.  Additionally, the load duration curve is simulated from a normal 

distribution.  The problem is formulated as a linear program.  Similar work was done by 

Kenfack et al. for hydro dominated systems.  However, the solution approach 
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decomposed the problem via the use of Benders Decomposition (Kenfack, Guinet, & 

Ngundam, 2001). 

 In one of the first attempts to quantify the human health externalities from the 

electricity sector using advanced statistical methods, Rowe et al. assessed the critical 

factors in computing externalities for electricity generation sources.  They utilize the New 

York State Environmental Externalities Cost Study and computerized externality model 

(EXMOD) to simulate and develop response surfaces to approximate the negative health 

externalities of electricity generation by varying 15 different factors, including the 

selection of generation type, location, and operating characteristics (Rowe, Lang, & 

Chestnut, 1996).  Additionally, they considered various air emissions and economic 

valuation scenarios in their analysis.  The output of this work was a multivariate 

probabilistic distribution of the externalities as a function of the aforementioned key 

factors.  The most significant factors are the selection and application of air dispersion 

models, selection of air pollution thresholds for health impacts, reduced life span risks 

associated with ozone exposure and with long-term exposure to particulate matter, values 

for CO2 damages, and the value to be applied to increased risks of reduced life span for 

individuals age 65 or older. 

 Thanh and Lefevre apply the impact pathway approach (IPA), which links the 

origin of the environmental burden with the ultimate impact on human health, to estimate 

health impacts and damage costs of sulfur dioxide and particulate matter emissions from 

four power units using different fuels (lignite, oil, natural gas, and coal) at four locations 

in Thailand.  Using response surfaces, the results show that damage costs related to health 

effects of electricity generation in Thailand are relatively small, but not negligible, 
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ranging from 0.006 U.S. cent to 0.05 U.S. cent per kilowatt-hour (in 1995 dollars) (Thanh 

& Lefevre, 2000).  Additionally, these damage costs to the public health depend strongly 

on power plant location, which implies that the assessment of adverse health impacts is 

very important for technology choice and siting of new power plants.   

 Burtaw et al. take a different but related route and quantify the economic benefits 

of reduced air pollution in the US as a result of greenhouse gas emissions mitigation 

policies in the electricity sector by using historical emissions data and an EPA screening 

tool to generate response surfaces of human health externalities.  Using a detailed hourly 

day-ahead electricity market model (Haiku) linked to an integrated assessment 

framework to value changes in human health, they found that a tax of $25 per metric ton 

of carbon emissions would yield NOX-related health benefits of about $8 per metric ton 

of carbon reduced in the year 2010 (1997 dollars) (Burtaw, et al., 2003). 

 In addition to analyzing the health externalities of electricity sector emissions, 

other researchers have worked to understand the impact of air quality on human health in 

a more general sense.  This is particularly important due to the fact that air quality is not 

only dependent upon emissions from the electricity sector.  Emissions from the 

transportation and agricultural sectors, amongst others also contribute to air quality 

conditions.  To investigate this further, Voorhees et al., conducted a sensitivity analysis 

in an industry standard air quality model, and analyzed the associated human health 

externalities.  The tool used, BenMAP (Environmental Benefits Mapping and Analysis 

Program), is an EPA economic model used for estimating health effects and the 

associated externalities associated with changes in air quality.   Furthermore, BenMAP is 

a geographic information system-based program that estimates population-level exposure 
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rates, changes in incidence of health outcomes associated with air quality, and the human 

health externalities (Abt Associates Inc., 2012).  ICF International also employed 

BenMAP as a resource to create a response surface, called a damage function, to evaluate 

changes in health endpoints as a result of the emissions reduction goals proposed in the 

Clean Power Plan (U.S. Environmental Protection Agency, 2015).  In the work done by 

Voorhees et al., various climate change scenarios within the air quality model govern 

scenarios in this work, and the output is then quantified in BenMAP (Voorhees, et al., 

2011). 

 As it relates to the electricity sector, Farkas et al., study the impact of electricity 

generation on air quality during high-energy demand days.  In this work, the researchers 

investigate the accuracy with which emissions from the electricity sector are represented 

in the Pennsylvania-New Jersey-Maryland (PJM) Interconnection, specifically PM2.5.  By 

analyzing the input parameters to the SMOKE model and testing 267 units from 91 

stationary sources in the PJM network, the researchers found that, due to inaccurate 

temporalization assumptions, emissions from this sector are over-predicted and under-

predicted at various snapshots in time and space.  

2.3.2. Stochastic GEP Models 

In the GEP problem, there are many elements that can be considered random 

variables due to their inherent uncertainty.  For instance, fuel prices and electricity 

demand are considered to be random variables, since there is no way that we can predict 

their values at times in the future.  Researchers have studied uncertainties in the GEP 

problem, by various methods.  Stochastic optimization is a powerful tool that is 
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commonly used.  Other methods involve scenario generation, fuzzy theory, and even 

dynamic programming. 

In early work, Mo et al. consider uncertainty in different variables in the least-

cost GEP such as energy demand, water inflow for hydropower, fuel prices, and 

investment costs (Mo, Hegge, & Wangensteen, 1991).  A discrete-time Markov chain is 

used  to model these variables in each year of the model.  Backwards stochastic 

dynamic programming is applied in order to find the optimal expansion plan. 

Gorenstin et al. solve the least-cost GEP problem by combining stochastic 

optimization with Benders’ decomposition.  They consider uncertainty in several factors 

such as demand growth, fuel cost, project completion, dates, and financial constraints.   

They split the GEP (via Benders cuts) into 2 sub-problems – an investment sub-problem, 

which determines the optimal investment plan and the operational sub-problem, which 

determines the optimal aggregate dispatch plan (Gorenstin, Campodonico, Costa, & 

Pereira, 1993).  Stochastic programming is used to obtain an optimal solution.  

Additionally, the authors also study the “regret”, which is the deviation from 

deterministic optimality due to the stochastic nature of the future.  Malcolm and Zenios 

did similar work; however, they approach the uncertainty by generating scenarios.  They 

use stochastic programming to determine the least-cost expansion plan across all 

scenarios (Malcolm & Zenios, 1994). 

Pokharel and Ponnambalam solve the least-cost stochastic GEP problem by 

generating multiple scenarios, where equipment, costs, and demand all take on different 

values in the model (Pokharel & Ponnambalam, 1997).  They use linear programming to 
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determine the optimal expansion plan in each individual scenario, and also combine all of 

the scenarios in one model that aims to find an optimal solutions across all scenarios. 

Su et al. apply fuzzy theory to parameters in the model in order to solve the least-

cost stochastic GEP problem.  Specifically, they use fuzzy sets to classify the "degree" to 

which each unit type produces different kinds of pollutants (Su, Lii, & Chen, 2000).  This 

allows them to determine different Markovian states of pollution for different generation 

units.  Dynamic programming is used to solve the optimization problem.  Liu et al. also 

apply fuzzy sets, but in a more general approach for constraints and constraint limits (Liu, 

Huang, & Li, 2008).  

Min and Subramanian study the stochastic GEP problem from a different 

perspective.  When a plant is forced to shut down or close, there is some economic value 

associated with that stranded cost.  The model uses stochastic programming to determine 

the optimal expansion plan, and also incorporates the mean-variance method in order to 

model the probability of a plant being stranded (Min & Subramanian, 2002).  This allows 

for estimation or quantification of stranded cost.  Lopez et al. also utilize mean-variance 

theory in a two-stage model, where risk is minimized in the first stage, and cost is 

minimized in the second stage (Lopez, Ponnambalam, & Quintana, 2007). 

Mazadi et al. solve the stochastic least-cost GEP problem via chanced-constrained 

programming, which is a variation of stochastic programming.  The authors add 

constraints in the form of density functions to describe the demand (Mazadi, Rosehart, 

Malik, & Aguado, 2009).  More specifically, they assign boundaries, and use a density 

function to determine the probability the demand falls within those bounds at any given 

time. 
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2.3.3. GEP Models Using Metaheursitics 

Due to the complexity of the generation expansion planning problem, typically 

nonlinear, mixed integer-programming methods are often used.  These solution 

approaches work very well when there are small systems, or if there aren’t many 

nonlinear constraints in the problem.  However, often times, researchers study large-scale 

systems with very complex constraints to make the problem more realistic.  Common 

nonlinear mixed integer programming methods take a long time to reach optimality in 

such conditions, and often encounter cycling and other challenges in finding an optimal 

solution.  For these reasons, researchers in this field have begun using meta-heuristics to 

find optimal or near optimal solutions to the GEP problem.  The most commonly used 

meta-heuristic to solve the GEP is the genetic algorithm (GA). 

Fukuyama and Chiang used a GA to solve the GEP problem.  Specifically, they 

apply a parallel genetic algorithm to optimal long-range generation expansion planning 

using multiple processors in parallel (Fukuyama & Chiang, 1996).  They formulate the 

problem as a combinatorial optimization problem, where binary and decimal coding for 

the string representation method is compared.  They apply this model to solve the least-

cost optimization problem on a system with four technologies and five planning intervals. 

Park et al. also used a GA to solve the GEP problem; however, they observed that 

a challenge of GA’s is local optimality.  In order to avoid local optimality, they 

developed a hybrid approach, which combines GA with dynamic programming (Park, 

Park, & Won, 1998).  Essentially, the hybrid algorithm uses dynamic programming to 

hone in on candidate populations obtained from the GA.  Additionally, they include 
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reliability constraints (LOLP and reserve margin), which adds further complexity to the 

model. 

Park et al. solved the GEP problem by combining a GA with a decomposition 

method similar to the Dantzig-Wolfe method (Park J.-B. , Park, Won, & Lee, 2000).  This 

translates the problem into several subproblems, one for each generating company.  Each 

generator’s subproblem is solved individually with a GA, and extreme directions are 

passed up to the master problem, which is again solved with a GA.  Firmo and Legey did 

similar work, by combining GA with Benders’ decomposition to split the least-cost GEP 

problem into 2 subproblems (an investment problem & operational problem), which are 

both solved by a GA (Firmo & Legey, 2002).  

Kannan et al. apply particle swarm optimization (PSO) to solve the least-cost 

GEP problem.  As previously mentioned, the GEP problem is a highly constrained, 

combinatorial optimization problem.  PSO is applied in this problem along with a ‘virtual 

mapping procedure’ (VMP) to enhance the effectiveness of the PSO meta-heuristic 

(Kannan, Baskar, McCalley, & Murugan, 2009).  In addition, the authors apply a penalty 

function approach (PFA) is used to reduce the size of the search space for subsequent 

iterations of the PSO algorithm.   Prior to this research, however, Kannan et al. applied 

the VMP and PFA to various meta-heuristic techniques, including GA, Evolutionary 

Programming, Ant Colony Optimization, Tabu Search, and Simulated Annealing among 

others (Kannan S. , Slochanal, Baskar, & Murugan, 2007). 

Yildirim et al. apply a method referred to as an adaptive simulated annealing 

genetic algorithm to solve the GEP problem for Turkey’s power system (Yildirim, Erkan, 

& Ozturk, 2006).   Since GA’s show some limitations in large-scale optimization 
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problems, the authors decided to use simulated annealing in place of the mutation 

operator to improve the GA’s convergence.  Along these lines, Chen et al. combined a 

tabu search with a GA in order to avoid local optimality (Chen, Kang, Xia, & Zhong, 

2010). 

2.4. Metamodeling Techniques 

 In optimization problems, metamodels can be used as surrogate functions to 

replace the objective function or constraints.  These metamodels are built from sampled 

data obtained from randomly searching the desing space.  Once the metamodel is built an 

optimization algorithm can be used to search the new design that is most likely to be 

optimal (or near-optimal).  Predictions with a metamodel are generally more efficient.  

Furthermore, the computational cost associated with the search based on the metamodel 

is usually negligible. 

 Metamodeling is referred to as a technique that utilizes the sampled data to build 

metamodels, which are sufficient to predict the output of an expensive computer code at 

unobserved locations in the design space.  Choosing sample points, building metamodels, 

and evaluating the accuracy of the metamodel are among the key issues in metamodeling. 

2.4.1. Experimental Design 

 Experimental design methods are usually used to determine the locations of 

sample points in the design space.  Experimental design (sometimes called “design of 

experiments” or “DoE”) is a procedure with the ultimate goal of maximizing the 

information obtained from a limited number of sample points.  DoE methods can be 

classified into two major categories - “classic” and “modern” (Han & Zhang, 2012).  

Traditional DoE methods include full-factorial design, central composite design (CCD), 
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Box-Behnken and D-Optimal Design (DOD), were development of laboratory 

experiments, with the consideration of reducing random error effects.  Oppositely, 

“modern” DoE methods such as Latin Hypercube Sample (LHS), Orthogonal Array 

Design (OAD) and Uniform Design (UD) were developed for deterministic computer 

experiments. 
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2.4.2. Metamodels 

 While there a many metamodels available in the literature, this discussion will be 

limited to three popular techniques – polynomial Response Surface Models (pRSM), 

Radial Basis Functions (RBF), and Kriging. 

 Consider an m-dimensional problem, where the goal is to predict the output of a 

high-fidelity, thus expensive computer code, which corresponds to an unknown function 

𝑦:ℝ𝑛 → ℝ.  By running the computer code, y is observed at n sites, which are determined 

by the DoE. 

𝑆 = [𝒙(𝟏), … , 𝒙(𝒏)]
𝑇

∈ ℝ𝑛×𝑚        (2.22) 

𝒙 = [𝑥1, … , 𝑥𝑚] ∈ ℝ𝑚        (2.23) 

𝒚𝒔 = [𝑦(1), … , 𝑦(𝑛)]
𝑇

= [𝑦(𝒙(𝟏)),… , 𝑦(𝒙(𝒏))]
𝑇

∈ ℝ𝑚    (2.24) 

 The vector x corresponds to the independent variables x1 through xm.  The matrix 

S corresponds to the n observations of the m independent variables. The vector yS 

corresponds to the n observed responses that are functions of the independent variables.  

The pair (S, yS) denotes the sampled data sets in the vector space.   Using the 

relationships defined in Equations 2.22 to 2.24, the objective is to build a metamodel to 

predict the output of the computer code for any unobserved location x based on sampled 

data sets (S, yS), in order to obtain accurate predictions with a minimal number of sample 

points (Han & Zhang, 2012). 

Quadratic Response Surface Method 

 Polynomial response surface models (pRSMs) denote a class of least-squares 

regression models that fit the data to a polynomial curve.  Quadratic pRSMs provide the 

best compromise between modeling accuracy and computational expense in comparison 
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to other linear or higher order polynomial models.  An advantage of pRSMs is that it can 

smooth out the various scales of numerical noise in the data while capturing the 

population variation (Han & Zhang, 2012).  This makes pRSM a very robust approach for 

optimization problems in engineering.  The true quadratic pRSM has the following form 

(Montgomery, Peck, & Vining, 2006). 

𝑦(𝒙) = �̂�(𝒙) + 휀, 𝒙 ∈ ℝ𝑚        (2.25) 

 is a quadratic polynomial approximation and  is the random error term, 

which is assumed to follow a normal distribution with mean zero and variance 2
.  The 

errors at each observed location, i, are assumed to be independent and identically 

distributed.  The quadratic pRSM predictor, , is defined as follows (Montgomery, 

Peck, & Vining, 2006). 

�̂�(𝒙) = �̂�0 + ∑ �̂�𝑖𝑥𝑖
𝑚
𝑖=1 + ∑ �̂�𝑖𝑖𝑥𝑖𝑖

2𝑚
𝑖=1 + ∑ ∑ �̂�𝑖𝑗

𝑚
𝑗≥𝑖 𝑥𝑖𝑥𝑗

𝑚
𝑖=1     (2.26) 

 In Equation 2.26, 0, i, ii, and ij are the unknown model parameters that are 

determined by least-squares (Montgomery, Peck, & Vining, 2006).  In this model, there 

are a total of p=(m+1)(m+2)/2 unknown coefficients.  Thus, in this case, a quadratic 

pRSM requires at least p sample points.  Letting be the column vector that 

corresponds to these p unknown coefficients, gives the following least-squares estimator 

of  which is given as follows. 

         (2.27) 

where 

 y(x)

 y(x)
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∈ ℝ𝑛×𝑝

 (2.28) 

X is called the design matrix.  The resulting model will be a hyperplane in ℝ 𝑝+1 

space (Montgomery, Peck, & Vining, 2006).  After the coefficients are found by 

Equation 2.27, the fitted model response at any unobserved location can be predicted at 

any unobserved location by Equation 2.26. 

Radial Basis Functions 

 Radial Basis Functions (RBFs) are interpolation models for metamodeling.  In 

RBFs, the approximation of an unknown function y(x) at an unobserved location x is 

defined as a linear combination of the radial basis functions and a global trend function 

(Han & Zhang, 2012). 

 �̂�(𝒙) = ∑ 𝜔𝑖𝜑(𝒙) + 𝑃(𝒙)𝑛
𝑖=1        (2.29) 

 In Equation 2.29, i is the i-th weight coefficient, (x)= (||x
(i)

-x||) are the basis 

functions that depend on the Euclidean distance between the observed location x
(i)

 and 

the unobserved location x, and P(x) is the global trend function, which is usually chosen 

to be linear or constant.  Also, to ensure that the prediction function reproduces the 

responses at observed locations, the following constraints need to be satisfied (Han & 

Zhang, 2012). 

         (2.30) 

 ∑ 𝜔𝑖 = 0𝑛
𝑖=1          (2.31) 

j j

 y(x
(i)) = y(i ),i =1,...,n
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In the case where P(x) is a constant (P(x)=0), solving the system of equations 

formed by Equations 2.30 and 2.31 for i and 0, and substituting into Equation 2.29 

gives the RBF predictor as follows. 

         (2.32) 

In Equation 2.32, 0=(1
T


-1
1)

-1
1

T


-1
yS , where and 𝜑(𝒙) are defined as 

follows. 

        (2.33) 

        (2.34) 

 In order to build RBF models, one needs to specify the appropriate basis 

functions, which depends on the Euclidean distance r=||x-x’|| between any two locations x 

and x’.  Common basis functions for RBF models are given in Table 2.1. 

Table 2.2 – Basis Functions for RBF Metamodels (Han & Zhang, 2012) 

 

2.4.2.1 Kriging Models 

 Kriging is an interpolation method that uses the observed data at all sample points 

to provide a statistical prediction of an unknown function by minimizing its’ Mean 

Squared Error (MSE) (Bohling G. , 2005).  To develop a kriging metamodel, the output 

of a deterministic computer experiment is treated as a realization from a stochastic 
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process, which is then defined as the sum of a global trend function f
T
(x) and a Gaussian 

stochastic process Z(x) as follows. 

        (2.35) 

In Equation 2.35, f(x)=[f0(x),…,fp-1(x)]
T∈ ℝ𝑝is defined with a set of regression 

basis functions and =[0,…, p-1]
T∈ ℝ𝑝is the vector of the corresponding coefficients.  

Typically, f
T
(x) is taken as a constant value or a low-order polynomial.  In practice, the 

constant trend function is sufficient for most problems.  Also, Z(x) represents a 

stationary, zero-mean, stochastic process with variance 2
 and nonzero covariance given 

as follows. 

        (2.36) 

 In Equation 2.36, R(x,x’) is the correlation function, which depends on the 

Euclidean distance between any two locations x and x’ in the design space (Bohling G. , 

2005).  The most commonly used correlation function is a Gaussian exponential function 

of the following form. 

      (2.37) 

 In Equation 2.37, =[1,2,…,m]
T
 and p=[p1, p2,…, pm]

T
 define the vectors of 

the unknown model parameters to be tuned (also commonly referred to as hyper-

parameters) (Han & Zhang, 2012).  In the case where a constant global trend function is 

used, using the previous equations, the Kriging predictor, , for any unobserved 

location can be written as defined in Equations 2.38 and 2.39. 

       (2.38) 

 y(x)
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        (2.39) 

R and r are the correlation matrix and correlation vector respectively, and are 

given in Equations 2.40 and 2.41. 

𝑹 =

[
 
 
 
𝑅(𝒙(𝟏), 𝒙(𝟏)) 𝑅(𝒙(𝟏), 𝒙(𝟐)) ⋯ 𝑅(𝒙(𝟏), 𝒙(𝒏))

𝑅(𝒙(𝟐), 𝒙(𝟏)) 𝑅(𝒙(𝟐), 𝒙(𝟐)) ⋯ 𝑅(𝒙(𝟐), 𝒙(𝒏))
⋮ ⋮ ⋱ ⋮

𝑅(𝒙(𝒏), 𝒙(𝟏)) 𝑅(𝒙(𝒏), 𝒙(𝟐)) ⋯ 𝑅(𝒙(𝒏), 𝒙(𝒏))]
 
 
 

∈ ℝ𝑛×𝑛   (2.40) 

𝒓 =

[
 
 
 
𝑅(𝒙(𝟏), 𝒙)

𝑅(𝒙(𝟐), 𝒙)
⋮

𝑅(𝒙(𝒏), 𝒙)]
 
 
 

∈ ℝ𝑛        (2.41) 

R(x
(i)

,x
(j)

) is the correlation between any two observed locations x
(i)

 and x(j) and 

R(x(i),x) is the correlation between the i-th observed location x(i) and the unobserved 

location x (Bohling G. , 2005). 

The MSE for prediction using a Kriging metamodel is defined in Equation 2.42.  

The MSE, as mentioned in the previous section, provides an estimate of the prediction 

uncertainty. 

     (2.42) 

 Furthermore, in Kriging models, a major assumption is that the sampled data 

follows a normal distribution, and the responses at sampled locations are correlated 

random functions with a likelihood function given in Equation 2.43 (Bohling G. , 2005). 

   (2.43) 

The optimal estimates of 0 and the process variance are obtained by maximizing 

the likelihood function in Equation 2.43.  This can be achieved by various numerical 
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optimization algorithms such as GA or Newton-Raphson (Bohling G. , 2005).  These 

estimates are given in Equation 2.44 and 2.45. 

        (2.44) 

      (2.45) 

2.4.3. Evaluation of Metamodels 

 A critical aspect of metamodeling is estimating the prediction error of the model.  

Metamodels with sufficient accuracy and prediction capabilities allow for more reliable 

searches for optimality.  Two commonly used criteria for evaluating the prediction error 

are the average relative error (�̅�) and root mean squared error (e) (Montgomery, Peck, & 

Vining, 2006).  The average relative error is defined in Equation 2.46. 

�̅� =
1

𝑛𝑡
∑ ‖

�̂�𝑡
(𝑖)

−𝑦𝑡
(𝑖)

𝑦𝑡
(𝑖) ‖

𝑛𝑡
𝑖=1          (2.46) 

The number of test points is denoted by nt.  and , are the true and predicted 

values corresponding to the i-th test point , respectively.  The root mean squared error is 

defined in Equation 2.47. 

        (2.47) 

yt
(i )

 yt
(i )
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Figure 2.5 – Framework for Building Metamodels (Han & Zhang, 2012) 

 The framework of building a metamodel is presented in Figure 2.5.  The initial 

metamodel can be evaluated by Equations 2.46 and 2.47.  Additionally, upon evaluating 

the metamodel, the design space is then resampled and a new metamodel is fit, as 

evidenced by the arrow that circulates backward in the chain from “Evaluate Metamodel” 

to “DoE”. 

2.4.4. Metamodels for Optimization 

 A typical optimization problem has the following form given in Equations 2.48 to 

2.50. 

Minimize  

y(x)           (2.48) 

Subject to 

𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1, … , 𝑛𝑐        (2.49) 
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𝒙𝒍 ≤ 𝒙 ≤ 𝒙𝒖          (2.50) 

In this formulation, nc is the number of constraints (denoted by gi(x).  xl and xu are 

the lower and upper bounds of the decision variables, respectively.  The objective 

function is y(x).  In this formulation, the objective function and/or the constraints are 

evaluated by expensive analysis code.  Typically, such problems are solved by a gradient-

based algorithm or a metaheuristic.  However, problems with these characteristics are 

computationally expensive to reach an optimal or near-optimal solution.  To avoid this 

pitfall, metamodeling methods are utilized to improve the efficiency of optimization 

algorithms. 

  

Figure 2.6 – Simple Framework for Simulation-Based Optimization (Han & Zhang, 

2012) 

Figure 2.6 illustrates the simple framework for simulation-based optimization.  

The general concept of using metamodels in optimization is quite simple.  First, the 

metamodels for the objective function and constraints are built with sufficient accuracy.  

These metamodels serve as surrogates in an optimization problem.  Then, an approximate 

optimal solution is found by an optimization algorithm or a metaheuristic.   

In the remaining portion of this sub-section, the infill criterion for determining 

new sample locations by solving sub-optimization problems is presented.  Specifically, 

Searching Metamodels (SM) and Expected Improvement (EI) are discussed. 
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Searching Metamodels 

 Given that the initial metamodels have been built with sufficient accuracy, an 

optimization algorithm or metaheuristic can be used to find an approximate optimal 

solution.  This, in turn, can be used to refine the metamodels.  The mathematical 

formulation of the sub-optimization for determining the new sample location is given in 

Equations 2.51 to 2.53 (Gosavi, 2003). 

Minimize  

 y(x)
           (2.51) 

Subject to 

𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1, … , 𝑛𝑐        (2.52) 

𝒙𝒍 ≤ 𝒙 ≤ 𝒙𝒖          (2.53) 

 In this formulation, metamodels for the objective function and the constraints 

serve as surrogates for the true functions.  With optimal solution of this problem, x*, in 

hand, one needs to run the expensive analysis code to compute the true function value 

and compare it with that is predicted by the metamodels.  If this error is below a specified 

threshold, then the optimization process can be terminated.  Otherwise, a new sample 

location is augmented to the sampled data sets and the metamodels are then rebuilt.  This 

procedure is repeated until an approximate optimal solution is found. 

Expected Improvement 

 The expected improvement function is calculated to determine the improvement 

of an objective function that is expected to be achieved at any unobserved location x 

(Han & Zhang, 2012).  The mathematical representation is given in Equation 2.54. 
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  (2.54) 

Φ(∙) and  represent the cumulative distribution function and probability 

density function of a standard normal distribution respectively in Equation 2.54.  Also, 

ymin is the minimum response of the observed data thus far.  s, defined in Equation 2.42, 

is the square root of the MSE.  The point with the maximum EI is located by a global 

optimization algorithm or metaheuristic, and then observed by running the analysis code.  

In this case, the constraints are accounted for by introducing the probability that the 

constraints are satisfied into a sub-optimization problem (Gosavi, 2003). 

Maximize 

𝐸[𝐼(𝒙)] = ∏ 𝑃[𝐺𝑖(𝒙) ≤ 0]𝑛𝑐
𝑖=1        (2.55) 

Subject to 

𝒙𝒍 ≤ 𝒙 ≤ 𝒙𝒖          (2.56) 

P[Gi(x) < 0] in Equation 2.54 denotes the probability that the i-th constraint is 

satisfied.  Gi(x) is a random function corresponding to the i-th constraint, gi(x).  If the 

constraint is satisfied, P[Gi(x) < 0] will approach 1, but if the constraint is violated it 

approaches 0 (Han & Zhang, 2012).  P[Gi(x) < 0] is given in Equation 2.56. 

𝑃[𝐺𝑖(𝒙) ≤ 0] = Φ(
−�̂�𝑖(𝒙)

�̂�𝑖(𝒙)
)        (2.57) 

 The solution obtained from solving this sub-optimization problem, x*, is observed 

by running the analysis code, and the new sampling location is added to the sampled data 

sets.  Metamodels are then rebuilt and the whole process is repeated until an approximate 

global optimal solution is obtained. 
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2.4.5. Applications 

 In early works, Roux et al. researched techniques to find parts of the feasible 

region of an optimization problem with a surrogate objective function, which contain the 

optimal solution.  Additionally, they studied methods for finding more accurate 

regression models to approximate the value of the objective function.   They found that 

for problems with large feasible regions, the problem could be decomposed in to multiple 

sub-problems by partitioning the feasible region, similar to Dantzig-Wolfe decomposition 

(Roux, Stander, & Haftka, 1998).  They apply regression theory, experimental design, 

and feasible region partitioning approaches in various structural optimization examples. 

The results indicate that finding the true global optimum solution is extremely difficult. 

Accurate solutions could only be achieved by considering a smaller section of the 

feasible solution space. 

 Response surface methodology is a very common approach to solving chemical 

and biochemical process problems. Kalil et al. apply response surface techniques along 

with factorial design in an industrial bioprocess optimization problem.  They apply 

regression analysis to the output of a factorial designed experiment.  From the model, 

they determined that five of the ten total process parameters were statistically significant 

in predicting the responses (yield and productivity) (Kalil, Maugeri, & Rodrigues, 2000).  

These served as surrogate objective functions in an optimization model, which aimed to 

determine the optimal settings of these parameters that maximize yield and productivity 

subject to process constraints.  In similar work, Quanhong and Calil applied RSM 

methods to study the effect of liquid:solid ratio, NaCl concentration and reaction time on 

the production of protein from germinant pumpkin seeds.  They apply regression models 
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to study the shape of the surface and the statistical significance of key covariates 

(Quanhong & Caili, 2005).  They then use this regression model as a surrogate objective 

function in an optimization problem.  

 Often times, RSM is used in optimization problems where there are no 

constraints.  In this case, the response surface is analyzed to find a minimum (or 

maximum depending on the problem).  Chen et al. apply RSM to evaluate the effects of 

enzyme concentration, temperature, molar ratio of methanol to oil, and stirring rate on 

biodiesel production yields. Using a 5-factor experiment with 5-levels, they use a second 

order regression model to predict biodiesel production yield as a function of these 

parameters. From these results, they found that all model covariates were statistically 

significant.  Furthermore, by investigating the fitted surface, they determined the optimal 

solution.  By conducting further experiments, these results were validated.  

 RSM methods are commonly used in design problems.  Specifically, researchers 

have applied RSM methods to determine the best design specifications based on metrics 

of quality or some other relative scale, while considering budget constraints among 

others.  Youn and Choi developed a method to design a system based on an estimate of 

its’ reliability, which is called reliability-based design optimization (RBDO).  In previous 

works, RBDO involves evaluation of probabilistic constraints that may be exorbitantly 

expensive or may even diverge in some cases.  Because of this, they modify the 

commonly used RBDO approach by integrating this with response surface methodology 

(Youn & Choi, 2004).   

 Kriging metamodels are more accurate than regression models as predictors.  

When the cost of evaluating the response of a system by experiments is high, it is critical 
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to use the most accurate metamodel in predicting the response surface.  In comparison to 

other metamodeling methods used in optimization, kriging provides the best predictions, 

and serves as a more accurate and reliable surrogate objective function in comparison to 

pRSM and RBFs (Han & Zhang, 2012). 

Huang et al. developed a sequential kriging-optimization method, which can be 

applied to surrogate systems to reduce the total cost of response evaluation.  They utilize 

data from computer experiments to develop a kriging metamodel that provides a global 

prediction of the objective function and a measure of prediction uncertainty (Huang D. , 

Allen, Notz, & Miller, 2006).  The location and accuracy of subsequent evaluations are 

obtained by maximizing an expected improvement function, which is based on the cost of 

evaluation.  They apply this method to the metal-forming process design, which 

demonstrated the robustness and repeatability of this approach.  These researchers later 

extended this work to address black-box systems, where, in such systems, metamodel 

predictions have a measure of prediction uncertainty at every point (Huang, Allen, Notz, 

& Zeng, 2006).  Similar results were obtained when the procedure was applied to a 

production-inventory problem (Huang, Allen, Notz, & Miller, 2006).   Jakumeit et al. 

also applied kriging to the metal-forming process, by combining kriging with gradient 

and direct search optimization algorithms (Jakumeit, Herdy, & Nitsche, 2005).  

 In aerospace and aircraft design applications, determining the optimal design 

configuration requires metamodels with a high degree of accuracy.  Jeong and Murayama 

researched this subject, and developed a kriging-based genetic algorithm for aerodynamic 

design problems.  They found that kriging models drastically reduce computational time 

required for finding optimal (or near-optimal) solutions in comparison to regression-
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based methods (Jeong & Murayama, Efficient Optimization Design Method Using 

Kriging Model, 2005).  Additionally, by sequentially maximizing an expected 

improvement function, additional sample points are used to fit the kriging metamodel.  

Through an iterative procedure of metamodeling, optimization, and sampling, the 

researchers found that not only does the prediction accuracy of the metamodel improve, 

but the genetic algorithm’s ability to explore optimal solutions improves accordingly.  

Moreover, they were able to reduce the number of design variables by studying the 

results of a functional ANOVA study.  

 Sakata et al. applied kriging approximation and optimization in a structural 

optimization problem.  The response measured in the kriging model is a metric that 

measures the reinforcement properties of beams (Sakata, Ashida, & Zako, Structural 

optimization using Kriging approximation, 2003).  The optimization model determines 

the optimal layout.  Kriging estimation is compared with neural network approximation, 

and thus demonstrated that kriging is a better approach.  The obtained results clearly 

show the applicability of the method. They later extended this work to develop an 

algorithm to improve a computational cost for estimation using the kriging method with a 

large number of sampling data (Sakata, Ashida, & Zako, An efficient algorithm for 

Kriging approximation and optimization with large-scale sampling data, 2004). This 

improved algorithm computes the weighting coefficients for kriging by applying the 

Sherman–Morrison–Woodbury formula.  Ratle applied a similar method in a fitness 

landscape optimization problem by combining kriging with various evolutionary 

programming methods (Ratle, 2001).  
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 Li et al. combined simulation, kriging, and multi-objective optimization in their 

work.  They present a new multi-objective design optimization method where the 

kriging-based metamodel is embedded within a multi-objective genetic algorithm 

(MOGA) (Li, Li, & Azarm, 2008).  The proposed approach is called Kriging assisted 

MOGA (K-MOGA).  The key difference between K-MOGA and a conventional MOGA 

is that in K-MOGA some of the decision variables are evaluated on-line using kriging 

metamodeling.  To determine whether simulations are needed or a kriging metamodel 

should be used is based on evaluating a set of decision variables is determined by a 

metric that determines whether its “domination status” in the current generation can be 

changed. 
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3. Analytical Framework 

In this section, the analytical framework of simulation-based optimization in the 

context of solving the generation expansion-planning problem is presented.  Specifically, 

a conceptual and mathematical roadmap is presented which outlines the models used in 

the analyses and defines their respective relationships within the framework.  These 

models were identified and selected based on literature surveys and industry practices.  In 

assessing the inputs and outputs of these models, linear linkages between the chosen 

models are established.  This allows for the execution of controlled, simulated, computer 

experiments to observe the response in question, human health externalities, as a function 

of key variables that are parameters in our suite of models.  Applying a metamodel to the 

output of these experiments allows human health externalities to be quantified explicitly 

as a function of electricity generation.  This allows for the formulation of a generation 

expansion planning problem that not only minimizes investment, variable and fixed 

operating and maintenance costs, and fuel costs, but minimizes human health 

externalities and the social cost of carbon and methane leakage as well. 

3.1 Establishing Model Relationships 

Our primary objectives of this research are to: (i) establish a mathematical 

relationship to predict human health externalities associated with electricity generation 

and emissions; and (ii) develop a generation expansion planning (GEP) model that 

minimizes investment costs, fixed operating and maintenance costs, variable operating 

and maintenance costs (including fuel), the social cost of carbon and methane leakage, 

and human health externalities associated with pollutant emissions from electricity 

generation.  Conceptually, however, these goals present a major challenge.  From a health 
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perspective, current GEP research focuses on considering health and environmental 

impacts by considering human health externalities as deterministic multipliers in the 

objective function of an optimization model, minimizing the cost of purchasing emissions 

permits, or defining emissions limits and renewables requirements as constraints.  While 

these approaches indirectly account for human health externalities, there is a need for a 

more direct approach to solving this problem. 

As identified in the literature, there are various approaches to quantifying human 

health externalities.  Mainly, the research is saturated with less rigorous analyses of 

electricity market activity using air quality and economic models.  Research in this area 

can be advanced by explicitly including expansion planning decisions into such analyses. 

 

Figure 3.1 – GEP Simulation-Based Optimization Framework Considering Human 

Health Externalities 

Upon reviewing literature related to generation expansion planning models, the 

analytical framework presented in Figure 3.1 was developed.  The first step in this 

process is to generate expansion planning scenarios (also known as seed generation) to be 

evaluated in an EPA screening tool, COBRA, to quantify human health externalities.  A 

kriging metamodel is then applied to this data set, which predicts human health 
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externalities as a function of electricity dispatch decisions.  This metamodel then serves 

as a surrogate function for human health externalities in the objective function in a 

generation expansion planning model.  Criteria are then evaluated to determine when to 

terminate the algorithm or where to sample data points that better enhance the 

metamodel. 

3.2. Seed Generation via Generation Expansion Planning Simulations and 

Experimentation 

In order to create a metamodel of human health externalities as part of GEP, we 

must have a diverse sample space of data points from our expansion-planning model, 

which are then evaluated via an EPA screening tool – we call this process seed 

generation.  To execute the seed generation process, first we solve a baseline generation 

expansion planning model.  We then solve an experimental GEP model where key 

parameters are simulated from a normal distribution.  Next, for each experimental trial, 

we compare the expansion decisions and obtain a change in MWh for each unit available 

within the system.  Concurrently, for each trial we obtain the percent change in NOX and 

SO2 emissions from the baseline.  The emissions changes we obtain from our simulated 

expansion planning models are evaluated in the COBRA model.  Thus, at the end of this 

procedure, we obtain a dataset with the following structure outlined in Figure 3.2. 
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Figure 3.2 – GEP and COBRA Simulation Output Data Structure with Illustrative 

Data 

3.2.1. Generation Expansion Planning Mathematical Model for Simulation 

The electricity GEP problem determines the optimal investment schedule of 

generation technology options to be added to an existing grid.  Additionally, dispatching 

decisions determine how much energy is produced from each generation source.  In this 

model, there are three classes of decision variables, which are: 

1. Investment decisions, which determine the type of generation technology to be 

added to the system, and when and where the investment is made. 

2. Dispatching decisions, which determine how much energy each generation 

technology produces in aggregate to satisfy the demand in a particular region over 

a given time interval. 

3. Transmission decisions, which determines how much energy from each 

generation technology is transmitted between regions within the network. 

The problem studied is a least-cost generation expansion plan over a multi-period 

planning horizon starting with an existing centralized power system.  The goal is to 

Simulation Trial Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 NOX SO2

Human Health 

Externalities ($)

Trial 1 -155,875 -370,736 -94,619 279,400 -383,391 -254,012 -5% 38% ($4,679,291.00)

Trial 2 -376,755 248,947 -340,339 -163,159 124,657 208,962 -76% -13% ($1,673,385.00)

Trial 3 -285,236 323,306 437,813 282,549 444,718 302,453 -74% 42% ($3,286,246.00)

Trial 4 -285,920 -174,044 -316,507 -92,520 -314,648 -175,169 -62% -43% $3,556,307.00

Trial 5 189,508 455,590 270,230 -411,113 345,879 470,925 47% 45% $2,258,830.00

Trial 6 -199,258 -200,412 -327,419 318,627 486,077 212,394 22% -91% ($6,107,685.00)

Trial 7 481,059 214,521 407,007 80,895 -125,196 199,188 -93% 74% $8,664,379.00

Trial 8 -354,102 -482,033 110,901 346,963 -87,192 182,781 -36% -30% $6,555,750.00

Trial 9 -385,125 -391,491 279,862 -201,527 -478,628 482,235 -17% -17% ($8,549,241.00)

Trial 10 -185,611 484,510 313,342 -141,125 -281,002 372,838 -81% 27% $3,432,419.00

Trial 11 -166,328 245,148 -110,929 -260,372 -250,323 287,905 67% 37% ($3,427,381.00)

Trial 12 411,629 -463,315 84,026 -306,282 -352,023 -183,367 88% -89% $6,817,444.00

Trial 13 -223,595 -161,325 167,153 -477,120 -215,226 -433,026 -83% -29% ($5,368,394.00)

Trial 14 108,827 -416,463 210,351 74,420 417,860 78,222 -46% -21% ($4,106,579.00)

Trial 15 -363,222 167,212 -436,544 -112,195 -209,450 464,673 49% -32% ($2,497,533.00)

Trial 16 -182,308 -236,162 -445,906 129,127 474,508 -320,458 -24% 19% $3,006,855.00

MWh Change from Baseline
% Change from 

Baseline
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integrate generation expansion and dispatching decisions, while considering human 

health externalities and the social cost of carbon and methane leakage along with 

investment, fixed operating and maintenance, and variable operating and maintenance 

costs (including fuel) in the objective function.  

3.2.1.1. GEP Objective Function 

The goal of this model is to determine the optimal expansion plan that minimizes 

total system-wide costs including investment costs, fixed operating and maintenance 

costs, variable operating and maintenance costs (including fuel), the social cost of carbon 

and methane leakage, and human health externalities associated with pollutant emissions 

from electricity generation.  Also included in the objective function is revenue from 

steam generation.  All future costs are discounted to the present time using a discount rate 

r to yield a net present value (NPV). 

Investment Cost:    

𝑂𝐼 = ∑
1

(1+𝑟)𝑦
∑ ∑ 𝛼𝑦𝑖𝑖∈𝐼𝑟1∈𝑅𝑦∈𝑌 𝑦𝑦𝑟1𝑖       (3.1) 

 Investment costs are the capital costs associated with expansion decisions.  𝑦𝑦𝑟1𝑖 

is the continuous investment decision determining the capacity expansion values (in 

MW) by generation unit type 𝑖 in year 𝑦 in region 𝑟1.  𝛼𝑦𝑖 is investment cost ($/MW) of 

unit generation unit type 𝑖 in year 𝑦.  In this equation, 𝑟 is the interest rate, Y is the set of 

all years in the planning horizon, and 𝐼 is the set of all generating unit options. 

Fixed Operating and Maintenance Costs: 

𝑂𝑀 = ∑
1

(1+𝑟)𝑦
[∑ ∑ (∑ 𝛽𝑢𝑖𝑦𝑢𝑟1𝑖𝑢(∀𝑢≤𝑦)∈𝑌 ) +𝑖∈𝐼𝑟1∈𝑅 ∑ ∑ 𝛽𝑦𝑖𝑞𝑟1𝑖𝑖∈𝐼∗𝑟1∈𝑅 ]𝑦∈𝑌   (3.2) 

 Fixed operating and maintenance costs are the annual maintenance costs 

associated with each unit.  𝛽𝑦𝑖 is the maintenance and operational cost ($/MW) for unit 𝑖 
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in year 𝑦.  I* is the set of all existing generating unit options, and as mentioned 

previously, 𝐼 is the set of all available generating unit options.  𝑞𝑟1𝑖 is the initial capacity 

of unit i in region r1. 

Variable Operating and Maintenance Cost: 

𝑂𝐺 = ∑
1

(1+𝑟)𝑦
∑ ∑ ∑ 𝑣𝑦𝑡𝑖𝑥𝑦𝑡𝑟1𝑖𝑖∈𝐼𝑟1∈𝑅𝑡∈𝑇𝑦∈𝑌       (3.3) 

 Variable operating and maintenance costs (including fuel costs) are costs per 

MWh of generation for each unit.  𝑥𝑦𝑡𝑟1𝑖 is the amount of aggregate energy generation 

dispatched (MWh) from unit 𝑖 in region 𝑟1 period 𝑡 of year 𝑦.  𝑣𝑦𝑡𝑖 is the variable 

generation cost ($/MWh) associated with generation from unit 𝑖 during period 𝑡 of year 

𝑦.  The set of all periods in the model is given by T, and includes: spring/fall-offpeak, 

spring/fall-peak, summer-offpeak, summer-peak, winter-offpeak, winter-peak. 

Social Cost of Carbon: 

𝑂𝐶 = ∑
1

(1+𝑟)𝑦
∑ ∑ ∑ ∑ 𝑐𝑦𝑥𝑦𝑡𝑟1𝑖𝑒∈𝐸𝑐𝑖∈𝐼𝑟1∈𝑅𝑡∈𝑇𝑦∈𝑌 𝜌𝑖,𝑒     (3.4) 

 The social costs of carbon are the costs per ton of CO2 emissions from electricity 

generation.  These costs are given by 𝑐𝑦, and 𝜌𝑖𝑒 denotes the CO2 emissions rate of unit i.  

𝑥𝑦𝑡𝑟1𝑖 is the amount of aggregate energy generation dispatched (MWh) from unit 𝑖 in 

region 𝑟1 period 𝑡 of year 𝑦. 

Social Cost of Methane Leakage: 

𝑂𝐿 = ∑
1

(1+𝑟)𝑦
∑ ∑ ∑ ∑ 𝑐𝑦𝑥𝑦𝑡𝑟1𝑖𝑒∈𝐸𝑐𝑖∈𝐼𝐿𝑟1∈𝑅𝑡∈𝑇𝑦∈𝑌 𝜆𝑖,𝑒    (3.5) 

 The social costs of methane leakage are the costs associated with methane leakage 

from natural gas and combined-cycle units.  In this case, 𝜆𝑖𝑒 is the methane leakage rate, 

which is calculated using the following methodology: 
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 Natural gas leaks at a rate between 1% and 8% (Brandt, et al., 2014).  We consider 

this leakage rate as a random variable, uniformly distributed on this interval.  We call 

this value 𝐴. 

 Approximately 3,448.3 cubic feet of natural gas is used to generate 1 MWh of 

electricity from natural gas turbine, and approximately 2,664.6 cubic feet of natural 

gas is used to generate 1 MWh of electricity from combined-cycle gas turbines 

(United States Environmental Protection Agency, 2016).  We denote these values 

using 𝐵𝑖, where 𝑖 is the index of the units using natural gas as a fuel source. 

 Per the EPA, natural gas is approximately 90% methane by composition, which is 

denoted by 𝐶 (United States Environmental Protection Agency, 2016). 

 The 20 year global warming potential (or GWP) of methane is approximately 72 

times that of CO2 (United States Environmental Protection Agency, 2016).  To 

elaborate, the GWP is a measure of how much heat a greenhouse gas traps in the 

atmosphere, relative to CO2 .  We denote the GWP of methane by 𝐷. 

 Finally, per the ideal gas law, the density of methane is function of temperature.  

However, per  EPA projections, due to climate change, temperatures are expected to 

increase by 0.5F to 8.6F by the year 2100 (United States Environmental Protection 

Agency, 2016).  Assuming 1 atm of pressure, and prorating the temperature growth to 

the time-horizon considered in our GEP model, we simulate the density of methane 

by applying a uniform distribution to the temperature within the region of the 

prorated projected boundaries.  We denote the density of methane by Γ. 
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 The methane leakage rate, 𝜆𝑖𝑒, is the product of 𝐴, 𝐵𝑖,𝐶, 𝐷, and Γ.  Since 𝐴 and Γ are 

random variables, we take the average of 100 simulated trials to use as the methane 

leakage rate in our model. 

Multiplying this value by MWh of natural gas or combined-cycle unit generation 

computes the methane leakage from these units in CO2e tons.  Using the social cost of 

carbon multiplier (𝑐𝑦), the costs of methane leakage are determined. 

Human Health Externalities: 

𝑂𝐻 = ∑
1

(1+𝑟)𝑦
∑ ∑ ∑ 𝛾𝑦𝑡𝑖𝑥𝑦𝑡𝑟1𝑖𝑖∈𝐼𝑟1∈𝑅𝑡∈𝑇𝑦∈𝑌       (3.6) 

 Human health externalities costs are the costs per MWh of generation for each 

unit produced.  𝛾𝑦𝑡𝑖 is the human health cost ($/MWh) associated with generation from 

unit 𝑖 in period t of year 𝑦.  In a deterministic case, these values can be retrieved from 

less rigorous approximations from literature, as discussed in Chapter 2.  However, in this 

research we approximate these multipliers via simulation and metamodeling. 

Steam Generation Revenue: 

𝑂𝑅 = ∑
1

(1+𝑟)𝑦
∑ ∑ ∑ 𝜙𝑦𝑖𝑥𝑦𝑡𝑟1𝑖𝑖∈𝐼𝑅𝐸𝑉𝑟1∈𝑅𝑡∈𝑇𝑦∈𝑌      (3.7) 

 Steam generation revenue is generated from combined heat and power units (also 

known as co-generation).  𝜙𝑦𝑖 is the revenue from these units ($/MWh) and  𝑥𝑦𝑡𝑟1𝑖 is the 

amount of aggregate steam generation dispatched (MWh) from in region 𝑟1 period 𝑡 of 

year 𝑦.   

The total cost objective function (𝑧) is the sum of the NPV of these above costs 

and steam revenue, and is given by Equation 3.8. 

𝑧 = 𝑂𝐺 + 𝑂𝐻 + 𝑂𝐶 + 𝑂𝐿 + 𝑂𝐼 + 𝑂𝑀 − 𝑂𝑅      (3.8) 
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3.2.1.2. Problem Formulation 

The mathematical formulation for the GEP model is presented in this section.  As 

discussed previously, the objective is to minimize the total costs on the system subject to 

system constraints.  Model sets and parameters are given in Tables 3.1 and 3.2 

respectively. 
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Table 3.1 – GEP Model Set Definitions 

Y Years in the planning horizon (2015 through 2040) – indexed by 𝑦 (or 𝑢) 

T 
Periods in the planning horizon (summer – peak/offpeak, winter – 

peak/offpeak, spring/fall – peak/offpeak – indexed by 𝑡 

I 

All generating units (nuclear, combined-cycle gas turbine, natural gas 

turbine, wind (land and offshore), biomass, coal, combined heat and 

power, solar, petroleum, and hydro) 

I* All existing units within the network – indexed by 𝑖 
IR Renewable units (biomass, wind, and solar) – indexed by 𝑖  

IL 
Units with methane leak rates considered (only natural gas turbines) – 

indexed by 𝑖 
IMAX Units with construction limits – indexed by 𝑖 

IREV 
Units with steam revenue (combined heat and power only) – indexed by 

𝑖 
IND Non-dispatchable units (wind and solar) – indexed by 𝑖 

R 
Regions within the Northeastern US network (New England, NY, NYC, 

NJ, MD/DE, and Rest of PJM) – indexed by 𝑟1 (or 𝑟2) 

R* 
Regional Greenhouse Gas Initiative (RGGI) subregions within the 

Northeastern US network – indexed by 𝑟1 (or 𝑟2) 

E 
Emissions considered in the GEP model (NOX, SO2, CO2) – indexed by 

𝑒 

EC 
Emissions considered in the GEP model to compute the social cost of 

carbon (CO2) – indexed by 𝑒 

ET 
Emissions considered in the GEP model for specific time periods (SO2) 

– indexed by 𝑒 

ER 
Emissions considered in the GEP model for specific regions – indexed 

by 𝑒 

EMAX 
Emissions considered in the GEP model with maximum limits for all 

regions (NOX only) – indexed by 𝑒 

E* 
Emissions considered in the GEP model specific to RGGI regions  

(CO2) – indexed by 𝑒 

(t,e) Set of emissions considered by time period – indexed by (𝑡, 𝑒) 

Ω(𝑦,𝑟1,𝑟2) Set of transmission lines by year – indexed by (𝑦, 𝑟1, 𝑟2) 

Φ(𝑟1,𝑟2) Network of regions for renewable trading – indexed by (𝑟1, 𝑟2) 

Θ(𝑟1,𝑖) Set of all renewable units within each region – indexed by (𝑟1, 𝑖) 
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Table 3.2 – GEP Model Parameter Definitions 

𝜂𝑡𝑟1𝑖 Capacity factor for non-

dispatchable units 
𝜋𝑦𝑟1𝑖 

Emissions limits by region 

(regional limits only) 

𝜃𝑖 Capacity value by unit 𝜋𝑦𝑟1𝑖
∗  

Emissions limits by region 

(time dependent) 

𝜅𝑦,𝑖 
Construction limits for each 

unit by year 
𝜓𝑦𝑟1𝑖 

Minimum renewable 

requirement by region 

𝑑𝑦𝑡𝑟1 Demand by period and region 𝜓𝑦𝑟1
∗  

Total minimum renewable 

requirement 

𝛿𝑡𝑖 
Derating value by season and 

unit 
𝑑𝑦𝑖

∗  
Peak demand by region and 

year 

𝜌𝑖,𝑒 Emissions rate by unit 𝜙𝑦𝑖 Steam Revenue ($/MWh) 

𝜆𝑖,𝑒 Methane leak rate by unit 𝜅𝑖
∗ 

Total construction limits by 

unit 

𝛽𝑦𝑖 Fixed cost ($/MW) 𝜉𝑦𝑒
𝑅𝐺𝐺𝐼 

Emissions limits by year in 

RGGI 

ℎ𝑡 Hours in each period 𝜉𝑦𝑒 
Emissions limits by year in 

Northeastern US 

𝑞𝑟1𝑖 
Initial capacity by unit and 

region 
𝜒𝑦𝑟1𝑟2 

Transmission capacity by 

year 

𝛼𝑦𝑖 Investment costs ($/MW) 𝑣𝑦𝑡𝑖 Variable costs ($/MWh) 

𝑙𝑡 
Transmission losses by 

season 
𝛾𝑦𝑡𝑖 Health costs ($/MWh) 

𝑚𝑟1 Reserve margin by region 𝑐𝑦 Carbon costs ($/ton) 

r Interest rate (3%)   

 

The generation expansion planning formulation is given as follows: 
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min 𝑧 = 𝑂𝐺 + 𝑂𝐻 + 𝑂𝐶 + 𝑂𝐿 + 𝑂𝐼 + 𝑂𝑀 − 𝑂𝑅 

 

s.t. 

 

∑ 𝑙𝑡
𝑟1∈Ω(𝑦,𝑟1,𝑟2)

𝑤𝑦𝑡𝑟1𝑟2 − ∑ 𝑤𝑦𝑡𝑟2𝑟1

𝑟1∈Ω(𝑦,𝑟1,𝑟2)

+ ∑𝑥𝑦𝑡𝑟1𝑖

𝑖∈𝐼

= 𝑑𝑦𝑡𝑟1 

∀𝑦 ∈ 𝑌, 𝑡 ∈ 𝑇, 𝑟2 ∈ 𝑅 (3.9) 

𝑥𝑦𝑡𝑟1𝑖 ≤ (𝑞𝑟1𝑖 + ∑ 𝑦𝑢𝑟1𝑖

𝑢(∀𝑢≤𝑦)∈𝑌

)𝛿𝑡,𝑖ℎ𝑡 
∀𝑦 ∈ 𝑌, 𝑡 ∈ 𝑇, 𝑟1 ∈ 𝑅, 𝑖

∉ 𝐼𝑁𝐷 
(3.10) 

𝑥𝑦𝑡𝑟1𝑖 ≤ (𝑞𝑟1𝑖 + ∑ 𝑦𝑢𝑟1𝑖

𝑢(∀𝑢≤𝑦)∈𝑌

)𝛿𝑡𝑖ℎ𝑡𝜂𝑡𝑟1𝑖 
∀𝑦 ∈ 𝑌, 𝑡 ∈ 𝑇, 𝑟1 ∈ 𝑅, 𝑖

∈ 𝐼𝑁𝐷 
(3.11) 

𝑤𝑦𝑡𝑟1𝑟2 − 𝑤𝑦𝑡𝑟2𝑟1 ≤ 𝜒𝑦𝑟1𝑟2ℎ𝑡 
∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑡

∈ 𝑇, 𝑖 ∈ 𝐼 
(3.12) 

𝑤𝑦𝑡𝑟2𝑟1 − 𝑤𝑦𝑡𝑟1𝑟2 ≤ 𝜒𝑦𝑟2𝑟1ℎ𝑡 
∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑡

∈ 𝑇, 𝑖 ∈ 𝐼 
(3.13) 

∑ 𝑞𝑟1𝑖 + ∑ ∑ 𝑦𝑢𝑟1𝑖 + ∑ 𝑞𝑟1𝑖

𝑖∈𝐼𝑁𝐷𝑖∉𝐼𝑁𝐷𝑢(∀𝑢≤𝑦)∈𝑌𝑖∉𝐼𝑁𝐷

𝜃𝑖

+ ∑ ∑ 𝑦𝑢𝑟1𝑖𝜃𝑖 ≥

𝑖∈𝐼𝑁𝐷𝑢(∀𝑢≤𝑦)∈𝑌

𝑑𝑦𝑖
∗ 𝑚𝑟1 

∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅 (3.14) 

∑ ∑ 𝑥𝑦𝑡𝑟2𝑖 ≥

𝑟2∈Φ(𝑟1,𝑟2)𝑡∈𝑇

𝜓𝑦𝑟1𝑖 ∑𝑑𝑦𝑡𝑟1

𝑡∈𝑇

 ∀𝑦 ∈ 𝑌, (𝑟1,, 𝑖) ∈ Θ(𝑟1,𝑖) (3.15) 

∑ ∑ 𝑥𝑦𝑡𝑟2𝑖

(𝑟2)∈Θ(𝑟1,𝑖)

𝑟2∈Φ(𝑟1,𝑟2)

𝑡∈𝑇

≥ 𝜓𝑦𝑟1
∗ ∑𝑑𝑦𝑡𝑟1

𝑡∈𝑇

 
∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅 (3.16) 

∑ ∑ ∑𝑥𝑦𝑡𝑟1𝑖

𝑖∈𝐼𝑟1∈𝑅∗𝑡∈𝑇

𝜌𝑖,𝑒 ≤ 𝜉𝑦𝑒
𝑅𝐺𝐺𝐼 ∀𝑦 ∈ 𝑌, 𝑒 ∈ 𝐸∗ (3.17) 

∑ ∑𝑥𝑦𝑡𝑟1𝑖𝜌𝑖,𝑒

𝑖∈𝐼(𝑡,𝑒)∈Λ(𝑡,𝑒)

≤ 𝜋𝑦𝑟1𝑖
∗  ∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅, 𝑒 ∈ 𝐸𝑇 (3.18) 

∑∑ 𝑥𝑦𝑡𝑟1𝑖𝜌𝑖,𝑒

𝑖∈𝐼𝑡∈𝑇

≤ 𝜋𝑦𝑟1𝑖 ∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅, 𝑒 ∈ 𝐸𝑅 (3.19) 

∑ ∑ ∑𝑥𝑦𝑡𝑟1𝑖𝜌𝑖,𝑒

𝑖∈𝐼𝑟1∈𝑅𝑡∈𝑇

≤ 𝜉𝑦𝑒 ∀𝑦 ∈ 𝑌, 𝑒 ∈ 𝐸 (3.20) 

∑ 𝑦𝑦𝑟1𝑖

𝑟1∈𝑅

≤ 𝜅𝑦,𝑖 ∀𝑦 ∈ 𝑌, 𝑖 ∈ 𝐼𝑀𝐴𝑋 (3.21) 

∑ ∑ 𝑦𝑦𝑟1𝑖

𝑟1∈𝑅𝑦∈𝑌

≤ 𝜅𝑖
∗ 𝑖 ∈ 𝐼𝑀𝐴𝑋 (3.22) 
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𝑥𝑦𝑡𝑟1𝑖 ≥ 0,𝑤𝑦𝑡𝑟1𝑟2 ≥ 0, 𝑦𝑦𝑟1𝑖 ≥ 0 
∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑡

∈ 𝑇, 𝑖 ∈ 𝐼 
(3.23) 

   

Equation 3.9 is the demand (or energy balance) constraint.  For each of the 

periods in a given year, the total generation from both existing and new generating units 

should be at least as much as the corresponding demand in that region.  Equations 3.10 

and 3.11 are related to generating unit capacities for dispatchable and nondispatchable 

units.  Equations 3.12 and 3.13 are the transmission limit equations. Equation 3.14 is the 

reserve margin constraint.  Equations 3.15 and 3.16 specify minimum renewable levels 

for electricity dispatching.  Equations 3.17 through 3.20 are the emissions constraints.  

The set of all emissions considered includes NOX, SO2, and CO2.  Equation 3.21 and 3.22 

are investment limit constraints on an annual basis and throughout the time horizon of the 

model respectively.  Equation 3.23 specifies non-negativity for generation, transmission, 

and investment decision variables. 

3.2.2. COBRA Overview 

The Co-Benefits Risk Assessment (COBRA) tool is a EPA screening model that 

helps state and local governments approximate air quality, human health implications, 

and the economic benefits of clean energy policies and programs (United States 

Environmental Protection Agency, 2015).  The outcomes from this model are 

approximated based on changes in particulate matter (PM2.5), SO2, NOX, NH3, and 

volatile organic compounds (VOCs) at the county, state, regional, or national level. 

In practice, COBRA users generate scenarios by specifying changes in the 

emissions estimates for the analysis year at the appropriate regional level.  The model 

then quantifies the associated changes in changes in PM2.5 concentrations between a 

baseline scenario and an experimental (or control) scenario.  A source-receptor matrix 
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translates the air pollution emissions changes into changes in ambient PM2.5.  Using 

linear regression models, health impact functions, COBRA utilizes the ambient PM2.5 

changes to quantify changes in the incidence of human health effects.  Finally, COBRA 

assigns a dollar value to these health effects.  COBRA estimates the change in air 

pollution-related health impacts, and estimates the economic value of these impacts, 

using an approach that is consistent with EPA Regulatory Impact Analyses, and reflects 

the current state of the science regarding the relationship between particulate matter and 

adverse human health effects (United States Environmental Protection Agency, 2015). 

 The basic tools and data sources that the COBRA model employs to determine 

emissions reductions are given in Table 3.3. 
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Table 3.3 – COBRA Tools and Data Sources (United States Environmental 

Protection Agency, 2015) 

Online Tool Description 

EPA’s Emissions & Generation Resource 

Integrated Database (eGrid): 

http://www.epa.gov/cleanenergy/energyre

sources/egrid/index.html 

Provides data on the environmental 

characteristics of electric generation by 

power plants in the United 

States. 

EPA’s AVoided Emissions and 

geneRation Tool (AVERT): 

http://epa.gov/avert/ 

Estimates displaced emissions (at the 

county, state, and regional levels) at 

electric power plants due to renewable 

energy or energy efficiency policies and 

programs. 

eCalc: 

http://ecalc.tamu.edu/ 

Uses both energy and emissions 

modeling to determine emission 

reductions from energy efficiency and 

renewable energy programs in the 

Electric Reliability Council of Texas 

region. 

EPA’s Motor Vehicle Emission Simulator 

(MOVES): 

http://www.epa.gov/otaq/models/moves/in

dex.htm 

Estimates emissions from mobile 

sources, including emissions from cars, 

trucks, and motorcycles. 

National Emissions Inventory: 

http://www.epa.gov/ttnchie1/net/2008inve

ntory.html 

Allows users to view emissions by sector 

(for 60 emissions inventory sectors) for 

specific pollutants at varying levels of 

geographic aggregation. 

OTC Workbook: 

http://www.otcair.org 

Predicts emission reductions from energy 

portfolio policies and energy efficiency 

programs and other measures affecting 

renewable resources or multiple 

pollutants 

Power Profiler: 

http://www.epa.gov/powerprofiler/ 

Allows users to view the emissions that 

can be attributed to electricity use in 

homes or businesses 

The COBRA model can be adjusted to study the impact of pollutant emissions 

changes at the national level or for smaller geographic areas.  Based on the changes in 

ambient PM2.5 concentrations, COBRA predicts the associated changes in the number of 

cases of a variety of health endpoints including the following (United States 

Environmental Protection Agency, 2015):  
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 Adult and infant mortality;  

 Non-fatal heart attacks; 

 Respiratory-related and cardiovascular-related hospitalizations; 

 Acute bronchitis; 

 Upper and lower respiratory symptoms; 

 Asthma-related emergency room visits; 

 Asthma exacerbations; 

 Minor restricted activity days; and 

 Work days lost due to illness. 

 The economic impact of each of these health impacts is approximated by using 

industry standard response functions.  The response functions and assumptions for each 

health endpoint are given in Table 3.4.  These functions are the as follows: 

 Value of Statistical Life (VSL); 

 Cost of Illness (COI); 

 Opportunity Cost (OC); and 

 Willingness to Pay (WTP). 

Table 3.4 – Canned Response Functions (United States Environmental Protection 

Agency, 2015) 

Health Endpoint Canned Response Function 

Adult Mortality  Value of Statistical Life (VSL)  

Infant Mortality  Value of Statistical Life (VSL)  

Non-Fatal Heart 

Attacks  

 Cost of Illness (COI) = Direct Medical Costs 

 Opportunity Costs (OC)  

Hospital 

Admissions  

 COI = Hospital Charges 

 OC  
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Asthma ER Visits  COI = Hospital Costs 

Acute Bronchitis  
Willingness to Pay (WTP) = Coughing and chest 

tightness/restricted activity day  

Respiratory 

Symptoms  

WTP = Coughing, head/sinus congestion, eye irritation, chest 

tightness, coughing up phlegm, and/or wheezing  

Asthma 

Exacerbations  
WTP = Bad asthma day 

Minor Restricted 

Activity Days  

WTP = Combination of coughing, throat congestion, and 

sinusitis  

Work Loss Days  WTP = Median annual earnings ÷ # of working days (52 * 5)  

 COBRA is a very user-friendly tool that allows researchers the flexibility to study 

various emissions reduction (or increase) scenarios quickly and visualize the data.  

However, since COBRA is a screening tool based on external inputs and linear regression 

models, there is the potential for oversimplification (United States Environmental 

Protection Agency, 2015).  Furthermore, since the generation expansion planning 

problem assesses investment and dispatching decisions in aggregate over a long-term 

planning horizon, COBRA is the ideal screening tool for this application. 

3.2.3. Simulation and Experimentation Approach for Seed Generation  

 In order to create a metamodel approximating human health externalities in terms 

of electricity generation, we must have a diverse sample space of data points from our 

expansion-planning model, which are then evaluated in the COBRA tool.  This is 

accomplished via the development of structured experiments that are driven by 

generation expansion planning simulations.  The approach we follow in this research is 

outlined in Figure 3.3. 
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Figure 3.3 – Schematic Flow Diagram of GEP & COBRA Experiments 

 The first step in this process is to solve a baseline generation expansion planning 

model, as outlined in Section 3.2.1., that minimizes total costs, excluding human health 

externalities, the social cost of carbon, and the social cost of methane leakage.  The 

rationale behind excluding these costs in the baseline model is driven by obtaining a 

diverse set of data points (or dispatching decision) in the expansion plan. 

 Secondly, we solve experimental generation expansion planning models, similar 

to the baseline model, where we minimize total costs, excluding human health 

externalities, the social cost of carbon, and the cost of methane leakage.  However, the 

major difference here is that we vary several key parameters in the model by simulating 

from a normal distribution with a coefficient of variation following a uniform random 

variable on the interval [0,1].  The parameters in the GEP model we vary are as follows: 

 Demand; 

 Peak demand; 

 Reserve margin; 

 Minimum and maximum limits; 

 Minimum renewable generation levels; 

 Emissions rates; 
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 Emissions limits; 

 Costs (Investment, Fixed, and Variable); 

 Steam revenue; 

 Transmission capacity; 

 Capacity factors for non-dispatchable units; and 

 Derating values. 

For each experimental generation expansion planning trial, we compute three values for 

every year in the time horizon. 

Δ𝑥y,i = ∑(𝑥𝑦𝑡𝑟1𝑖,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
∗ − 𝑥𝑦𝑡𝑟1𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∗ )

t∈T

 (3.24) 

Δ𝑁𝑂Xy,r1
(%) =

𝑁𝑂𝑋𝑦,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑙
− 𝑁𝑂𝑋𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑁𝑂𝑋𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 (3.25) 

Δ𝑆𝑂2y,r1
(%) =

𝑆𝑂2𝑦,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑙
− 𝑆𝑂2𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑆𝑂2𝑦,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 (3.26) 

Equation 3.24 quantifies the deviation in electricity dispatch in comparing the optimal 

generation from an experimental trial to the baseline trial.  This value is determined on an 

annual basis for each generating unit and region in the network, and has units of MWh.  

Equations 3.25 and 3.26 quantify the percent deviation in NOX and SO2 respectively in 

comparing an experimental trial to the baseline trial.  These values are determined on an 

annual basis for each region, and are inputs to the COBRA model to determine the 

associated human health externalities.  Ultimately, the end deliverable of these simulated 

experiments is a data set that is used to develop a metamodel, which predicts human 

health externalities as a function of electricity dispatch decisions at unobserved locations.  
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The data set resembles Figure 3.2, and the resulting metamodel serves as a surrogate 

objective function in a generation expansion-planning model. 

3.3. Constructing a Metamodel of Human Health Externalities 

 As evidenced by Sections 3.1 and 3.2, quantifying human health externalities as a 

function of electricity dispatch decisions is a computationally expensive process.  In 

order to solve the generation expansion planning problem efficiently and effectively, we 

need to develop a model that explicitly quantifies human health externalities as a function 

of dispatching decisions, while capturing the highly nonlinear relationship between 

electricity generation, pollutant emissions, air quality, and human health externalities.  

This process is commonly referred to as metamodeling. 

 As summarized in Chapter 2 of this dissertation, there are various approaches that 

can be used in metamodeling.  The most common tools are response surfaces, radial basis 

functions, neural networks, and kriging.  The schematic diagram in Figure 3.4 

qualitatively compares each of these metamodeling approaches within the context of this 

research. 
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Figure 3.4 – Qualitative Comparison of Metamodeling Methods 

 We considered five key criteria to compare metamodeling methods: (i) the ability 

to accommodate nonlinear problems, (ii) the ability to return an exact response for an 

observed point, (iii) the treatment of clustered observations, (iv) training requirements, 

and (v) the computational burden. 

 In qualitatively assessing each of these methods, we determined that kriging is the 

most suitable approach for this application.  Since kriging is an optimal interpolation-

based method that is based on regression against observed responses and surrounding 

data points (which are weighted according to spatial covariance value), it accommodates 

nonlinearity and treats clustered observations effectively.  Furthermore, for an observed 

location, kriging models return the observed response.  Additionally, these models 

require no training, and are able to generate results quickly and efficiently with a high 

degree of accuracy. 

3.3.1. Kriging Metamodel 

 The kriging metamodel we utilize to quantify human health externalities as a 

function of electricity generation is given in equation 3.27. 

𝛾𝑦𝑖(𝚫𝒙𝐲) = 𝜇(𝚫𝒙𝐲) + ∑ 𝜔𝑘[𝛾𝑦𝑖(𝚫𝒙𝒚𝒌) − 𝜇(𝚫𝒙𝒚𝒌)]

𝑛(𝚫𝒙𝐲)

𝑘=1

 (3.27) 

In equation 3.27, 𝛾𝑦𝑖(𝚫𝒙𝐲) is the predicted value of human health externalities in year y 

for unit i, which is a function of a vector of unobserved dispatch values, 𝚫𝒙𝐲.  𝚫𝒙𝒚𝒌 is a 

vector of observed dispatch deviations obtained from the procedure outlined in Section 

3.2.3, indexed by k.  The observed value of 𝚫𝒙𝒚𝒌 is given by  𝛾𝑦𝑖(𝚫𝒙𝒚𝒌). 𝑛(𝚫𝒙𝐲) is the 

number of nearest neighbors to consider in the model, and 𝜔𝑘 is the kriging weight, 
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which is derived from the residuals (see Chapter 2, Section 2.4.2).  The means of the 

predicted response and observed response are given by 𝜇(𝚫𝒙𝐲) and 𝜇(𝚫𝒙𝒚𝒌) 

respectively. 

 Residuals, 𝑅(𝚫𝒙𝒚𝒌), in a kriging model have a stationary mean and stationary 

covariance.  That is, 𝑅(𝚫𝒙𝒚𝒌) = 𝛾𝑦𝑖(𝚫𝒙𝒚𝒌) − 𝜇(𝚫𝒙𝒚𝒌), with 𝐸[𝑅(𝚫𝒙𝒚𝒌)] = 0 and 

𝐶𝑜𝑣{𝑅(𝚫𝒙𝒚𝒌), 𝑅(𝚫𝒙𝒚𝒌 + ℎ)} = 𝐶(ℎ) for some lag h.  𝐶(ℎ) = 𝐶(0) + 𝑆𝑉(ℎ), where 

𝐶(0) is defined as the sill and 𝑆𝑉(ℎ) is defined as the semivariogram.  For this particular 

application, we employ the Gaussian semivariogram in Equation 3.28. 

𝑆𝑉(ℎ) = (𝑠𝑖𝑙𝑙 − 𝑛𝑢𝑔𝑔𝑒𝑡) × (1 − 𝑒𝑥𝑝 (
−3ℎ2

𝑟𝑎𝑛𝑔𝑒2
)) + 𝑛𝑢𝑔𝑔𝑒𝑡 (3.28) 

 

Figure 3.5 – Gaussian Semivariogram Example 

 The Gaussian semivariogram function has three parameters that the user can 

specify – sill, nugget, and range.  From the graphical representation in Figure 3.5, the sill 

is stationary value of the semivariogram, when the slopes of the tangent lines become 
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zero.  Similarly, the range is the lag value when the slope of the tangent lines becomes 

zero.  The nugget is the value of the semivariogram function with zero lag. 

3.4. Implementing a Metamodel in the Objective Function 

 Upon successful creation of a metamodel based on the process outlined in Section 

3.3, we can now proceed with solving the generation expansion planning problem with 

the inclusion of human health externalities.  In the optimization formulation we present in 

Section 3.2.1., the deterministic objective function is given by 𝑧 = 𝑂𝐺 + 𝑂𝐻 + 𝑂𝐶 +

𝑂𝐿 + 𝑂𝐼 + 𝑂𝑀 − 𝑂𝑅, where all of these costs are considered to be deterministic.  

However, with a fully constructed metamodel, we replace the human health externalities, 

𝑂𝐻, with a surrogate, �̂�𝐻, where �̂�𝐻 is given in Equation 3.29. 

�̂�𝐻 = ∑
1

(1+𝑟)𝑦
∑ ∑ ∑ 𝛾𝑦𝑖(𝚫𝒙𝐲) = 𝑥𝑦𝑡𝑟1𝑖𝑖∈𝐼𝑟1∈𝑅𝑡∈𝑇𝑦∈𝑌     (3.29) 

 Since a portion of the objective function in this generation expansion planning 

problem is given by a metamodel, we cannot apply solve this problem using traditional 

linear programming methods from the simplex algorithm family.  However, since our 

metamodel will yield a smooth surface, we can consider alternative heuristics like search 

algorithms or gradient-based approaches.  For this particular problem, we apply a 

multistart heuristic algorithm.  The steps in the algorithm are given below (GAMS 

Development Corporation, 2014). 

 Step 1: Apply a scatter search algorithm an initial set of candidate points from the 

population in the feasible region.  This search algorithm selects these candidate 

points from the population using a crossover operator – a feature that is used in 

evolutionary programming methods such as genetic algorithms. 
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 Step 2: The algorithm then calls a gradient-based nonlinear programming (NLP) 

solver, which takes the candidate points from Step 1, and executes optimization 

routines from each point. 

 Step 3: The NLP solver tracks all feasible solutions obtained in Step 2, and 

reports the best of these as its final solution. 

3.4.1. Design Criteria 

 Upon solving the generation expansion planning problem with the multistart 

heuristic algorithm, we now have a candidate expansion plan that minimizes human 

health externalities along with total system costs.  However, given that the surrogate for 

human health externalities is a metamodel, it is likely that our solution does not 

adequately account for metamodeling prediction error.  To address this deficiency, we 

solve an expected improvement problem, which determines candidate dispatch plans to 

compare against our baseline GEP model from Section 3.2.3., and evaluate in the 

COBRA tool.  Upon obtaining human health externalities from COBRA, this data set is 

then appended to the experimental data set used to create the metamodel.  Equation 3.30 

defines the expected improvement function, 𝐸[𝐼(𝒙)]. 

𝐸[𝐼(𝒙)] = {
(𝑂𝐻,𝑚𝑖𝑛 − �̂�𝐻(𝒙))Φ (

𝑂𝐻,𝑚𝑖𝑛 − �̂�𝐻(𝒙)

�̂�(𝒙)
) + �̂�(𝒙)𝜙 (

𝑂𝐻,𝑚𝑖𝑛 − �̂�𝐻(𝒙)

�̂�(𝒙)
)  𝑖𝑓 �̂� ≥ 0

0 𝑖𝑓 �̂� = 0

 (3.30) 

From Equation 3.30, 𝒙 is a vector of dispatching decisions, 𝑥𝑦𝑡𝑟1𝑖, as previously 

defined in Section 3.2.1.2. 𝑂𝐻,𝑚𝑖𝑛 is the minimum value of the total human health 

externalities from all GEP model trials. �̂�𝐻(𝒙) is the current metamodel that predicts 

human health externalities as a function of the dispatch vector. �̂� is the model error (see 
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Section 2.4.3).  The formulation for the expected improvement optimization problem is 

given as follows: 

max 𝑧 = 𝐸[𝐼(𝒙)] 
s.t. 

 

∑ 𝑙𝑡
𝑟1∈Ω(𝑦,𝑟1,𝑟2)

𝑤𝑦𝑡𝑟1𝑟2 − ∑ 𝑤𝑦𝑡𝑟2𝑟1

𝑟1∈Ω(𝑦,𝑟1,𝑟2)

+ ∑𝑥𝑦𝑡𝑟1𝑖

𝑖∈𝐼

= 𝑑𝑦𝑡𝑟1 

∀𝑦 ∈ 𝑌, 𝑡 ∈ 𝑇, 𝑟2 ∈ 𝑅 (3.31) 

𝑤𝑦𝑡𝑟1𝑟2 − 𝑤𝑦𝑡𝑟2𝑟1 ≤ 𝜒𝑦𝑟1𝑟2ℎ𝑡 
∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑡

∈ 𝑇, 𝑖 ∈ 𝐼 
(3.32) 

𝑤𝑦𝑡𝑟2𝑟1 − 𝑤𝑦𝑡𝑟1𝑟2 ≤ 𝜒𝑦𝑟2𝑟1ℎ𝑡 
∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑡

∈ 𝑇, 𝑖 ∈ 𝐼 
(3.32) 

𝑥𝑦𝑡𝑟1𝑖 ≥ 0,𝑤𝑦𝑡𝑟1𝑟2 ≥ 0 
∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑡

∈ 𝑇, 𝑖 ∈ 𝐼 
(3.33) 

  

 The goal is to determine the dispatch plan that maximizes the expected 

improvement of the metamodel.  From the presented formulation, Equation 3.31 is the 

energy balance constraint from our baseline GEP model.  Similarly, Equations 3.32 and 

3.33 are the transmission constraints from the baseline GEP model.  The decision 

variables in this model are 𝑥𝑦𝑡𝑟1𝑖 and 𝑤𝑦𝑡𝑟1𝑟2, which are the respective dispatching and 

transmission decision variables outlined in Section 3.3.1.2.  To solve this problem, we 

apply the previously defined multistart heuristic algorithm. 

3.4.2. Termination Criteria 

 The procedures outlined in this Chapter of the dissertation detail the analytical 

framework for solving the generation expansion planning problem with a metamodel 

serving as a surrogate function for human health externalities.  As discussed at the 

beginning of this chapter, we follow the algorithm outlined in this Chapter iteratively 

until we reach termination criteria.  We terminate our algorithm under two circumstances. 
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 Case 1: When the expected improvement model reaches zero, we terminate our 

model.  This occurs when the metamodel is error free, which is highly unlikely in 

this problem.  This typically occurs in smaller optimization problems with a 

limited feasible region. 

 Case 2:  From iteration to iteration, if the objective function changes within a pre-

specified tolerance range, we terminate our model.  This occurs when surface of 

the metamodel approaches the true surface, but has no or minimal impact on the 

outcome of the GEP optimization model. 
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4. Reduced-Form Model Evaluation 

In this section, we apply our modeling approach to a series of scenarios to 

evaluate (i) the impact of constraints on the solution, (ii) the impact of minimizing human 

health externalities and the social cost of carbon and methane leakage, and (iii) a full 

evaluation of the approach outlined in Chapter 3.  For the numerical examples presented 

in this Chapter, we consider the Northeastern U.S., as shown in the schematic 

representation in Figure 4.1. 

 

Figure 4.1 – Transmission Network of the Northeastern United States 

The network shown in Figure 4.1 has 6 regions, with the notation given as follows: 

 NE: New England (Maine, Vermont, New Hampshire, Massachusetts, 

Connecticut and Rhode Island); 

 NY: New York State (excluding New York City); 
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 NYC: New York City; 

 NJ: New Jersey; 

 MD & DE: Maryland, Delaware, and the District of Columbia; 

 Rest of PJM: Illinois, Indiana, Kentucky, Michigan, North Carolina, Ohio, 

Tennessee, Virginia, and West Virginia. 

Each region (or node) in the network is a source of demand, and also is capable of 

generating electricity.  Additionally, the configuration defines how electricity is 

generated and transmitted within the network.  Within each region, the generating unit 

technologies considered are combined cycle gas turbines, coal, natural gas turbines, 

hydro, nuclear, petroleum, solar, biomass, on-shore wind, and off-shore wind. 

 In order to evaluate the performance of our model, we solve multiple GEP model 

scenarios in the Northeastern U.S. region; however, for the numerical examples in this 

Chapter, we solve a reduced-form of the GEP model outlined in Chapter 3 by removing 

the seasonality element and reducing the time-horizon to 10-years (2015 through 2025).  

Full details of the reduced-form model are presented in Section 4.1 of this Chapter. 
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4.1. Reduced-Form Model Formulation 

The mathematical formulation for the reduced-form GEP model is presented in 

this section.  As discussed previously, the objective is to minimize the total costs on the 

system subject to system constraints.  For the reduced-form model, we modify the 

objective function by removing the seasonality index, t, from the formulation presented in 

Chapter 3.  All future costs are discounted to the present time using a discount rate r=3% 

to yield a net present value (NPV), and to also align with the United States Energy 

Information Association’s assumptions presented in the 2015 Annual Energy Outlook 

(U.S. Energy Information Administration, 2015).  Applying these assumptions, the costs 

in the objective function for the test model are now given as follows: 

𝑂𝐼 = ∑
1

(1 + 𝑟)𝑦
∑ ∑𝛼𝑦𝑖

𝑖∈𝐼𝑟1∈𝑅𝑦∈𝑌

𝑦𝑦𝑟1𝑖 (4.1) 

𝑂𝑀 = ∑
1

(1 + 𝑟)𝑦
[∑ ∑( ∑ 𝛽𝑢𝑖𝑦𝑢𝑟1𝑖

𝑢(∀𝑢≤𝑦)∈𝑌

) +

𝑖∈𝐼𝑟1∈𝑅

∑ ∑ 𝛽𝑦𝑖𝑞𝑟1𝑖

𝑖∈𝐼∗𝑟1∈𝑅

]

𝑦∈𝑌

 (4.2) 

𝑂𝐺 = ∑
1

(1 + 𝑟)𝑦
∑ ∑𝑣𝑦𝑖𝑥𝑦𝑟1𝑖

𝑖∈𝐼𝑟1∈𝑅𝑦∈𝑌

 (4.3) 

𝑂𝐶 = ∑
1

(1 + 𝑟)𝑦
∑ ∑ ∑ 𝑐𝑦𝑥𝑦𝑟1𝑖

𝑒∈𝐸𝑐

𝜌𝑖,𝑒

𝑖∈𝐼𝑟1∈𝑅𝑦∈𝑌

 (4.4) 

𝑂𝐿 = ∑
1

(1 + 𝑟)𝑦
∑ ∑ ∑ 𝑐𝑦𝑥𝑦𝑟1𝑖

𝑒∈𝐸𝑐𝑖∈𝐼𝐿

𝜆𝑖,𝑒

𝑟1∈𝑅𝑦∈𝑌

 (4.5) 

𝑂𝐻 = ∑
1

(1 + 𝑟)𝑦
∑ ∑𝛾𝑦𝑖𝑥𝑦𝑟1𝑖

𝑖∈𝐼𝑟1∈𝑅𝑦∈𝑌

 (4.6) 

𝑂𝑅 = ∑
1

(1 + 𝑟)𝑦
∑ ∑ 𝜙𝑦𝑖𝑥𝑦𝑟1𝑖

𝑖∈𝐼𝑅𝐸𝑉𝑟1∈𝑅𝑦∈𝑌

 (4.7) 

Equations 4.1 through 4.7 follow the same definitions as given in Chapter 3, with the 

exception that the seasonality index, t, is not considered in the test model.  The total cost 

objective function (𝑧) is the sum of the net present value (NPV) of these above costs and 
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steam revenue, and is given by Equation 4.8, which analogous to Equation 3.8 in Chapter 

3. 

𝑧 = 𝑂𝐺 + 𝑂𝐻 + 𝑂𝐶 + 𝑂𝐿 + 𝑂𝐼 + 𝑂𝑂𝑀 − 𝑂𝑅   (4.8) 

The full formulation of the generation expansion planning test problem is given as 

follows: 

min 𝑧 = 𝑂𝐺 + 𝑂𝐻 + 𝑂𝐶 + 𝑂𝐿 + 𝑂𝐼 + 𝑂𝐹 − 𝑂𝑅 

s.t. 

 

∑ 𝑙𝑡
𝑟1∈Ω(𝑦,𝑟1,𝑟2)

𝑤𝑦𝑟1𝑟2 − ∑ 𝑤𝑦𝑟2𝑟1

𝑟1∈Ω(𝑦,𝑟1,𝑟2)

+ ∑𝑥𝑦𝑡𝑟1𝑖

𝑖∈𝐼

= 𝑑𝑦𝑟1 

∀𝑦 ∈ 𝑌, 𝑟2 ∈ 𝑅 (4.9) 

𝑥𝑦𝑟1𝑖 ≤ (𝑞𝑟1𝑖 + ∑ 𝑦𝑢𝑟1𝑖

𝑢(∀𝑢≤𝑦)∈𝑌

)𝛿𝑖ℎ ∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅, 𝑖 ∉ 𝐼𝑁𝐷 (4.10) 

𝑥𝑦𝑟1𝑖 ≤ (𝑞𝑟1𝑖 + ∑ 𝑦𝑢𝑟1𝑖

𝑢(∀𝑢≤𝑦)∈𝑌

)𝛿𝑖ℎ𝜂𝑟1𝑖 ∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅, 𝑖 ∈ 𝐼𝑁𝐷 (4.11) 

𝑤𝑦𝑟1𝑟2 − 𝑤𝑦𝑟2𝑟1 ≤ 𝜒𝑦𝑟1𝑟2ℎ ∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑖 ∈ 𝐼 (4.12) 

𝑤𝑦𝑡𝑟2𝑟1 − 𝑤𝑦𝑡𝑟1𝑟2 ≤ 𝜒𝑦𝑟2𝑟1ℎ ∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑖 ∈ 𝐼 (4.13) 

∑ 𝑞𝑟1𝑖 + ∑ ∑ 𝑦𝑢𝑟1𝑖

𝑖∉𝐼𝑁𝐷𝑢(∀𝑢≤𝑦)∈𝑌𝑖∉𝐼𝑁𝐷

+ ∑ 𝑞𝑟1𝑖

𝑖∈𝐼𝑁𝐷

𝜃𝑖

+ ∑ ∑ 𝑦𝑢𝑟1𝑖𝜃𝑖

𝑖∈𝐼𝑁𝐷𝑢(∀𝑢≤𝑦)∈𝑌

≥𝑑𝑦𝑖
∗ 𝑚𝑟1 

∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅 (4.14) 

∑ 𝑥𝑦𝑟2𝑖 ≥

𝑟2∈Φ(𝑟1,𝑟2)

𝜓𝑦𝑟1𝑖 ∑𝑑𝑦𝑟1

𝑡∈𝑇

 ∀𝑦 ∈ 𝑌, (𝑟1,, 𝑖) ∈ Θ(𝑟1,𝑖) (4.15) 

∑ 𝑥𝑦𝑟2𝑖

(𝑟2)∈Θ(𝑟1,𝑖)

𝑟2∈Φ(𝑟1,𝑟2)

≥ 𝜓𝑦𝑟1
∗ ∑𝑑𝑦𝑟1

𝑡∈𝑇

 
∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅 (4.16) 

∑ ∑𝑥𝑦𝑟1𝑖

𝑖∈𝐼𝑟1∈𝑅∗

𝜌𝑖,𝑒 ≤ 𝜉𝑦𝑒
𝑅𝐺𝐺𝐼 ∀𝑦 ∈ 𝑌, 𝑒 ∈ 𝐸∗ (4.17) 
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∑𝑥𝑦𝑟1𝑖𝜌𝑖,𝑒

𝑖∈𝐼

≤ 𝜋𝑦𝑟1𝑖 ∀𝑦 ∈ 𝑌, 𝑟1 ∈ 𝑅, 𝑒 ∈ 𝐸𝑅 (4.18) 

∑ ∑𝑥𝑦𝑟1𝑖𝜌𝑖,𝑒

𝑖∈𝐼𝑟1∈𝑅

≤ 𝜉𝑦𝑒 ∀𝑦 ∈ 𝑌, 𝑒 ∈ 𝐸 (4.19) 

∑ 𝑦𝑦𝑟1𝑖

𝑟1∈𝑅

≤ 𝜅𝑦,𝑖 ∀𝑦 ∈ 𝑌, 𝑖 ∈ 𝐼𝑀𝐴𝑋 (4.20) 

∑ ∑ 𝑦𝑦𝑟1𝑖

𝑟1∈𝑅𝑦∈𝑌

≤ 𝜅𝑖
∗ 𝑖 ∈ 𝐼𝑀𝐴𝑋 (4.21) 

𝑥𝑦𝑟1𝑖 ≥ 0,𝑤𝑦𝑟1𝑟2 ≥ 0, 𝑦𝑦𝑟1𝑖 ≥ 0 
∀(𝑦, 𝑟1, 𝑟2) ∈ Ω(𝑦,𝑟1,𝑟2), 𝑌, 𝑡

∈ 𝑇, 𝑖 ∈ 𝐼 
(4.22) 

 

Equation 4.9 is the demand (or energy balance) constraint.  For each year in the 

test model, the total generation from both existing and new generating units should be at 

least as much as the corresponding demand in that region.  Equations 4.10 and 4.11 are 

related to generating unit capacities for dispatchable and nondispatchable units.  

Equations 4.12 and 4.13 are the transmission limit equations.  Equation 4.14 is the 

reserve margin constraint.  Equations 4.15 and 4.16 specify minimum renewable levels 

for electricity dispatching.  Equations 4.17 through 4.19 are the emissions constraints.  

The set of all emissions considered in the test model includes NOX, SO2, and CO2.  

Equation 4.20 and 4.21 are investment limit constraints on an annual basis and 

throughout the time horizon of the model respectively.  Equation 4.22 specifies non-

negativity for generation, transmission, and investment decision variables, given by 𝑥𝑦𝑟1𝑖, 

𝑤𝑦𝑟1𝑟2, and 𝑦𝑦𝑟1𝑖 respectively. 

4.2. Reduced-Form Test Case Definitions and Assumptions 

In this chapter, we evaluate six (6) test cases as presented in Table 4.3.  For Cases 

1.1 through 1.5, we apply a CPLEX linear programming (LP) solver to obtain an optimal 

solution. However, for Case 1.6, we apply the simulation-based optimization approach 

discussed in Chapter 3. Capacity, costs, and emissions rates for the reduced-form 
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generation expansion-planning model are given in Table 4.4.  We apply these 

assumptions to the network shown in Figure 4.1 in order to solve the test generation 

expansion-planning problem.   
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Table 4.1 – Reduced-Form Model Test Cases 

  Objective Function Costs 

Constraints  

 

Market Costs 
Health and Other 

Damages 

 

In
v

es
tm

en
t 

F
ix

ed
 O

&
M

 

V
a

ri
a

b
le

 O
&

M
 

(i
n

cl
u

d
in

g
 f

u
el

) 

S
o

ci
a

l 
C

o
st

 o
f 

C
O

2
 a

n
d

 

C
H

4
 L

ea
k

a
g

e
 

D
et

er
m

in
is

ti
c 

N
O

X
 a

n
d

 

S
O

2
 M

u
lt

ip
li

er
s 

S
im

u
la

te
d

  
H

u
m

a
n

 

H
ea

lt
h

 E
x

te
r
n

a
li

ti
es

 

(C
O

B
R

A
) 

E
n

er
g

y
 B

a
la

n
ce

 

C
a

p
a

ci
ty

 

C
o

n
st

ru
ct

io
n

 L
im

it
s 

R
es

er
v

e 
M

a
rg

in
 

E
m

is
si

o
n

s 
L

im
it

s 

R
en

ew
a

b
le

 P
o

rt
fo

li
o

 

S
ta

n
d

a
rd

s 
(R

P
S

) 

Case 

1.1 
Baseline             

Case 

1.2 
Reserve Margin             

Case 

1.3 

Emissions & RPS 

Constraints 
            

Case 

1.4 

Social Cost of 

CO2 and CH4 

Leakage 

            

Case 

1.5 

Deterministic 

Health Damages 
            

Case 

1.6 

Simulated Health 

Damages 
            



92 
 

 

Table 4.2 – Generating Units and Their Costs, Capacities, and Emissions Rates 

 

1
Aggregate 

Capacity 

(MW) 

2
Investment 

Costs 

($/MW)
 

2
Maintenance 

Costs ($/MW) 

2
Variable 

(including 

Fuel) Costs 

($/MWh) 

2
Fuel 

Costs 

($/MWh)
 

2
Steam 

Revenue 

($/MWh)
 

3
Human 

Health 

Externalities 

($/MWh) 

4
Social Cost 

of CO2 

($/MT of 

CO2 emitted) 

5
CO2 

(lbs/ 

MWh) 

5
NOX 

(lbs/ 

MWh) 

5
SO2 

(lbs/ 

MWh) 

Biomass 0 $4,359,382 $74,627 $30.29 $0.00 $0.00 $0.00 

$36 

0 4 10 

Combined 

Cycle 

Gas Turbine 

21,828 $1,096,358 $13,546 $69.37 $15.69 $0.00 $4.28 1,135 2 0 

Combined 

Heat & 

Power 

0 $1,744,772 $18,563 $75.86 $14.30 $56.63 $0.00 1,135 2 0 

Coal 59,968 $2,713,713 $38,327 $25.75 $12.91 $0.00 $44.58 2,249 6 13 

Natural Gas 

Turbine 
16,172 $733,926 $12,198 $50.07 $15.69 $0.00 $4.28 1,135 2 0 

Hydro 24,082 $2,909,653 $12,198 $0.00 $0.00 $0.00 $0.00 0 0 0 

Nuclear 27,799 $4,326,537 $104,245 $6.35 $5.21 $0.00 $2.54 0 0 0 

Petroleum 4,703 $1,114,480 $14,452 $99.31 $64.87 $0.00 $9.27 1,672 4 12 

Solar 446 $6,989,283 $13,523 $0.00 $0.00 $0.00 $1.50 0 0 0 

Off-Shore 

Wind 
0 $4,459,051 $98,446 $0.00 $0.00 $0.00 $0.00 0 0 0 

Wind On 

Land 
1,985 $2,226,694 $35,088 $0.00 $0.00 $0.00 $0.00 0 0 0 

Notes: 
1 

(Nuclear Energy Institute, 2012) 
2
 (U.S. Energy Information Administration, 2015) 

3
 (National Research Council of the National Academies, 2010) 

4 
(U.S. Environmental Protection Agency, 2016) 

5
 (U.S. Environmental Protection Agency, 2013) 
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In Case 1.6, where we apply our proposed simulation-based optimization 

framework to the network, we vary the key model parameters, as identified in Section 

3.2.3 in Chapter 3, by simulating from a normal distribution with a coefficient of 

variation uniformly distribution on the interval [0,1].  Next, we execute multiple trials of 

our experimental GEP model and compare the results to the baseline GEP model, Case 

1.1, to obtain changes in investment and dispatching decisions by unit and changes in 

NOX and SO2 emissions.  Upon obtain results from the simulations, we then input the 

changes in emissions into the COBRA model to quantify the associated human health 

externalities for each trial.  Once we generate the full data set, we now fit a kriging 

metamodel, as outlined in Section 3.3.1 of Chapter 3, that predicts human health 

externalities as a function of dispatching decisions for each unit in the network.  This 

metamodel serves as a surrogate curve for human health externalities in the objective 

function of our model. 

We test the validity and robustness of our metamodel by applying a modified K-

fold cross-validation procedure as follows: 

 Step 1: Randomly partition the data set obtained by simulation into eleven (11) equal 

subsets.  Designate one of these subsets to be a testing set, and the remaining ten sets 

(or validation sets) to fit our metamodels. 

 Step 2: Using the validation and test sets identified in Step 1, fit kriging metamodels 

with a Gaussian variogram.   

 Step 3: For each validation set, determine the model error against the test set.  The 

metric used for model error in this procedure is the mean absolute prediction error. 
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 Step 4: Aggregate the all of the validation sets into a single data set.  Use this set to 

build a full metamodel of the test set data, and calculate the model error as described 

in Step 3. 
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Table 4.3 – Mean Absolute Prediction Error Values from Cross Validation Procedure 

  
k = Sill/Nugget 

  
k = 1 k = 1.1 k = 1.2 k = 1.3 k = 1.4 k = 1.5 k = 1.6 k = 1.7 k = 1.8 k = 1.9 

M
A

P
E

 V
a
lu

es
 

Set 1 0.43 0.44 0.44 0.46 1.33 1.33 1.33 1.33 1.33 1.33 

Set 2 0.71 0.68 0.64 0.60 0.38 0.38 0.38 0.38 0.38 0.38 

Set 3 0.90 0.86 0.82 0.77 0.69 0.69 0.69 0.69 0.69 0.69 

Set 4 0.72 0.71 0.69 0.67 0.54 0.54 0.54 0.54 0.54 0.54 

Set 5 0.63 0.62 0.62 0.63 0.93 0.93 0.93 0.93 0.93 0.93 

Set 6 0.84 0.81 0.77 0.75 0.61 0.61 0.61 0.61 0.61 0.61 

Set 7 1.26 1.29 1.31 1.34 1.55 1.55 1.55 1.55 1.55 1.55 

Set 8 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 

Set 9 0.73 0.72 0.71 0.71 0.74 0.74 0.74 0.74 0.74 0.74 

Set 10 0.82 0.81 0.80 0.79 0.72 0.72 0.72 0.72 0.72 0.72 

10 Set 

Average 
0.78 0.77 0.76 0.75 0.83 0.83 0.83 0.83 0.83 0.83 

Full Set 0.26 0.24 0.22 0.20 0.11 0.11 0.11 0.11 0.11 0.11 
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Figure 4.2 – Mean Absolute Prediction Error Values from Cross Validation Procedure
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As evidenced by Table 4.3 and Figure 4.2, we execute our modified K-fold cross-

validation procedure for various sill and nugget parameters in the Gaussian variogram.  In 

this case, we denote the variable k as the ratio of the sill to the nugget parameters.  Based 

on the individual validation sets, on average, as we increase the k-ratio, the prediction 

error increases minimally.  Additionally, the error variability (or standard deviation) 

begins to increase nominally after k-ratios greater than 1.4.  Upon applying the full data 

set to fit our metamodel, however, we notice that the prediction error is significantly 

reduced.  In general, the more exhaustive and expansive the sample space, the model will 

exhibit correspondingly greater prediction properties.  From a qualitative perspective, our 

metamodel is robust for all values of k.  Thus, we select k=1.5 as our parameter to apply 

to the variogram.  Using this metamodel as a surrogate in the objective function of our 

GEP test model, we apply the full framework in Chapter 3 to determine an optimal (or 

near-optimal) expansion plan. 
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4.3. Dispatching Results 

 

Figure 4.3 – Annual Dispatch Summary Dashboard
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Figure 4.4 – Total Dispatch Percentage Dashboard 
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Table 4.4 – Regional Dispatch Summary 

  
Dispatch Summary by Region (10

6
 MWh) 

Case Region Nuclear CCGT GT Hydro Coal (Low) Coal (High) CHP Biomass 
Wind  

(On Land) 
Solar Petroleum Totals 

Baseline 

MDDE 515.0 - - 229.4 279.4 46.7 - - - 1.6 - 1,072.1 

NE 248.9 - 173.5 788.3 197.3 170.3 - - 0.0 3.6 - 1,581.9 

NJ 356.9 - 389.7 25.4 101.5 94.1 - - 0.1 0.2 - 967.8 

NY 457.7 - 24.0 144.9 364.8 4.5 - - 36.1 - - 1,032.1 

NYC - - 285.5 - 634.7 - - - - - - 920.2 

RoPJM 830.4 - 287.1 112.2 401.4 200.3 - - 17.7 0.0 - 1,849.1 

Totals 2,408.9 - 1,159.8 1,300.2 1,979.1 515.8 - - 54.0 5.4 - 7,423.2 

Reserve Margin 

MDDE 515.0 - 33.5 180.9 279.4 - 61.7 - - 1.6 - 1,072.2 

NE 248.9 - 173.5 788.3 197.3 165.0 - - 0.0 3.6 - 1,576.7 

NJ 356.9 - 422.3 25.6 101.5 38.7 61.7 - 0.1 0.2 - 1,007.0 

NY 457.7 - 8.9 156.1 364.8 - - - 36.1 - - 1,023.6 

NYC - - 238.2 - 634.7 - 61.7 - - - - 934.6 

RoPJM 830.4 - 282.4 149.2 401.4 120.9 - - 17.7 0.0 - 1,802.0 

Totals 2,408.9 - 1,158.8 1,300.2 1,979.1 324.6 185.1 - 54.0 5.4 - 7,416.1 

Emissions Limits & RPS 

MDDE 515.0 - 194.9 223.9 135.3 - - - - 1.6 - 1,070.7 

NE 248.9 - 133.4 788.3 148.0 2.8 - 119.4 110.7 4.7 - 1,556.3 

NJ 356.9 - 440.5 24.4 59.7 - - - 0.1 0.2 - 881.8 

NY 457.7 - 13.4 263.6 264.7 - - - 36.1 - - 1,035.5 

NYC - - 523.9 - 415.9 - - - - - - 939.8 

RoPJM 830.4 - 213.7 - 401.4 192.0 - 7.2 137.3 159.5 - 1,941.5 

Totals 2,408.9 - 1,519.8 1,300.2 1,425.1 194.8 - 126.6 284.3 166.0 - 7,425.6 

Social Cost of CO2 and CH4 Leakage 

MDDE 515.0 58.1 126.5 292.2 17.7 - 61.7 - - 1.6 - 1,072.9 

NE 248.9 16.4 386.6 788.3 41.6 9.0 - - 0.0 3.6 - 1,494.6 

NJ 356.9 143.0 530.5 1.0 - - 61.7 - 0.1 0.2 - 1,093.4 

NY 457.7 410.9 25.1 161.8 - - - - 36.1 - - 1,091.6 

NYC - 197.7 614.6 - 25.0 - 61.7 - - - - 899.0 

RoPJM 830.4 519.1 350.9 56.8 2.1 - - - 17.7 0.0 - 1,777.0 

Totals 2,408.9 1,345.2 2,034.1 1,300.2 86.5 9.0 185.1 - 54.0 5.4 - 7,428.4 

Deterministic Health Damages 

MDDE 515.0 44.2 126.5 227.5 - - 61.7 97.6 - 1.6 - 1,074.1 

NE 248.9 7.5 425.9 788.3 19.6 2.1 61.7 - 0.0 3.6 - 1,557.6 

NJ 356.9 79.7 530.5 5.9 - - 61.7 60.5 0.1 0.2 - 1,095.5 

NY 457.7 299.8 25.1 203.2 - - - - 36.1 - - 1,021.8 

NYC - 105.7 659.5 - 2.8 - 61.7 114.7 - - - 944.4 

RoPJM 830.4 464.3 350.9 75.2 - - - - 17.7 0.0 - 1,738.5 

Totals 2,408.9 1,001.2 2,118.3 1,300.2 22.4 2.1 246.8 272.8 54.0 5.4 - 7,432.0 

Simulated Health Damages 

MDDE 515.0 72.1 20.6 327.6 - - 61.7 64.1 - 1.6 1.8 1,064.5 

NE 248.9 147.5 131.5 951.6 - - 61.7 - 8.9 3.6 8.7 1,562.4 

NJ 356.9 513.2 68.8 11.6 - - 61.7 64.1 0.1 0.2 - 1,076.7 

NY 457.7 406.8 3.0 173.5 - - - - 36.1 - - 1,077.1 

NYC - 348.1 399.4 - 0.3 - 61.7 64.1 - - 2.7 876.3 

RoPJM 830.4 648.9 120.5 152.7 - - - - 17.7 0.0 - 1,770.2 

Totals 2,408.9 2,136.6 743.9 1,616.9 0.3 - 246.8 192.2 62.9 5.4 13.2 7,427.1 
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Figures 4.3 and 4.4 summarize the dispatching results on a case-by-case basis for 

each of the available unit type within the network.  In the Baseline case, over 80% of the 

generation is from nuclear, coal, and natural gas units, with additional generation from 

hydro units and incremental amounts of wind on land generation.  The Reserve Margin 

case shows similar results to the Baseline case; however, a small portion of coal 

generation is displaced by combined heat and power units.  As evidenced by Table 4.4, 

combined heat and power generation is concentrated in the Maryland/Delaware, New 

Jersey, and New York City regions.  This finding is also observed in the cases where 

health and other damages are minimized in the objective function along with market 

costs.   

As we expand the costs in the objective function to include health and other 

damages, we observe significant decreases in coal generation.  The inclusion of health 

and other damages in the objective function of the generation expansion planning model 

essentially behaves as a penalty for dispatching units that emit CO2, NOX, and SO2.  

Because of this behavior, in cases where these damages are minimized in the objective 

function, coal generation is largely displaced by natural gas turbines, combined-cycle gas 

turbines, combined heat and power, hydro, and renewable generation under our 

assumptions.  
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4.4. Investment Results 

Table 4.5 – Regional Investment Summary 

  
Investment Summary by Region (MW) 

Case Region CCGT GT Coal (High) CHP Petroleum 

Wind 

(On 

Land) 

Biomass Solar Totals 

Baseline 

MDDE - 775 277 971 1,774 - - - 3,796 

NJ - 513 443 1,032 1,281 - - - 3,268 

NYC - 812 364 709 2,015 - - - 3,900 

Totals - 2,099 1,084 2,712 5,070 - - - 10,964 

Reserve 

Margin 

MDDE 748 1,631 1,147 741 745 - - - 5,012 

NJ 745 1,749 1,820 753 752 - - - 5,818 

NYC 742 1,591 1,332 748 744 - - - 5,156 

Totals 2,235 4,971 4,298 2,242 2,241 - - - 15,987 

Emissions 

Limits & 

RPS 

MDDE - 5,084 - - - - - - 5,084 

NE - - - - - 3,782 1,799 105 5,687 

NJ - 5,888 - - - - - - 5,888 

NYC - 5,178 - - - - - - 5,178 

RoPJM - - - - - 4,841 107 14,796 19,745 

Totals - 16,150 - - - 8,624 1,906 14,901 41,581 

Social Cost 

of CO2 and 

CH4 Leakage 

MDDE 759 1,637 1,137 755 756 - - - 5,044 

NE - 2,988 - - - - - - 2,988 

NJ 756 1,740 1,793 746 758 - - - 5,792 

NYC 762 2,256 1,362 745 759 - - - 5,884 

RoPJM - 759 - - - - - - 759 

Totals 2,277 9,379 4,293 2,246 2,272 - - - 20,467 

Deterministic 

Health 

Damages 

MDDE 750 1,635 - 752 751 - 1,140 - 5,029 

NE - 3,749 - 757 - - - - 4,506 

NJ 750 1,754 1,090 751 758 - 702 - 5,806 

NYC 756 3,013 - 751 754 - 1,364 - 6,639 

RoPJM - 761 - - - - - - 761 

Totals 2,256 10,913 1,090 3,011 2,263 - 3,207 - 22,741 

Simulated 

Health 

Damages 

MDDE 922 1,451 - 735 1,148 - 743 - 4,998 

NE 2,232 2,456 - 747 - 317 - - 5,753 

NJ 756 1,745 - 747 1,816 - 744 - 5,808 

NYC 2,313 1,858 - 743 1,336 - 748 - 6,998 

Totals 6,223 7,511 - 2,973 4,300 317 2,234 - 23,558 
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Table 4.5 summarizes the technology investments selected by the generation 

expansion-planning model within our proposed network over for each of the cases 

studied.  The Baseline case results propose no new technology investments.  The 

Baseline case proposes investments in coal, natural gas turbines, combined heat and 

power, and petroleum units.  The inclusion of the reserve margin constraint introduces 

combined cycle gas turbines into the investment portfolio, as well as increases in natural 

gas, coal, and combined heat and power generation.  Furthermore, the inclusion of 

emissions limits and renewable portfolio standards proposes natural gas investments in 

the Maryland/Delaware, New Jersey, and New York City regions, which is consistent 

with the Baseline and Reserve Margin cases.  Additionally, emissions limits and 

renewable portfolio standards drive investments in wind (on land), biomass, and solar 

units in the New England and Rest of PJM regions. 

The inclusion of the social cost of CO2 and CH4 leakage into the objective 

function yields investments in combined cycle gas turbines, natural gas units, as well as 

investments in coal, combined heat and power, and petroleum at the similar levels 

observed in the reserve margin case.  Introducing deterministic health damages into the 

objective function decreases coal investments, but introduces biomass into the investment 

plan.  Replacing deterministic health damages with simulated health damages, via the 

framework presented in Chapter 3, eliminates coal from the investment plan, but 

significantly offsets these investments with combined cycle gas turbines.  Additional 

investments are made in natural gas, biomass, wind (on land), and petroleum units.  
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4.5. Emissions and Human Health Results 

Table 4.6 – CO2 Emissions Summary 

 
Regional CO2 Emissions (Short Tons, Millions) 

 
MDDE NE NJ NY NYC RoPJM Total 

Baseline 3,668 5,118 4,410 4,289 8,757 8,396 34,637 

Reserve Margin 3,682 5,059 4,322 4,153 8,839 7,476 33,532 

Emissions & RPS 

Constraints 
2,627 2,453 3,171 3,053 7,650 7,886 26,840 

Social Cost of CO2 and CH4 

Leakage 
1,597 2,857 4,172 2,474 5,241 4,961 21,303 

Deterministic Health 

Damages 
1,319 3,054 3,813 1,843 4,724 4,626 19,379 

Simulated Health Damages 892 2,006 3,653 2,326 4,618 4,366 17,861 

Table 4.7 – NOX Emissions Summary 

 
Regional NOX Emissions (Short Tons, Thousands) 

 
MDDE NE NJ NY NYC RoPJM Total 

Baseline 9,784 12,501 9,178 11,284 21,467 20,492 84,706 

Reserve Margin 9,192 12,344 8,317 11,021 21,590 18,070 80,534 

Emissions & RPS 

Constraints 
5,715 8,047 5,535 8,055 16,930 19,763 64,046 

Social Cost of CO2 and 

CH4 Leakage 
2,626 4,947 6,249 3,706 8,180 7,458 33,165 

Deterministic Health 

Damages 
3,927 4,860 6,921 2,761 9,408 6,929 34,805 

Simulated Health 

Damages 
2,630 3,070 6,753 3,483 8,223 6,539 30,700 

Table 4.8 – SO2 Emissions Summary 

 
Regional SO2 Emissions (Short Tons, Thousands) 

 
MDDE NE NJ NY NYC RoPJM Total 

Baseline 21,200 23,976 12,903 24,018 41,397 39,256 162,751 

Reserve Margin 18,211 23,637 9,350 23,718 41,405 34,093 150,413 

Emissions & RPS 

Constraints 
8,890 15,842 4,101 17,214 27,294 39,039 112,380 

Social Cost of CO2 and 

CH4 Leakage 
1,277 3,496 368 218 2,063 573 7,995 

Deterministic Health 

Damages 
4,994 1,659 3,361 162 6,333 408 16,917 

Simulated Health 

Damages 
3,390 692 3,526 205 3,790 385 11,988 
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Tables 4.6 through 4.8 display emissions results for CO2, NOX, and SO2 

respectively for each of the six cases studied in this chapter.   In comparing our emissions 

findings with the corresponding dispatching plans, as we include additional constraints in 

the cases where only market costs are minimized, we observed that coal generation is 

displaced by cleaner units.  Consequently, this reduces air emissions, mainly CO2, NOX, 

and SO2 relative to the Baseline case. decrease due to the displacement of fossil fuels in 

the dispatch plan.   

The inclusion of health and other damages into the objective function of the 

generation expansion planning model further reduces coal generation, displacing these 

units with natural gas, combined cycle gas turbines, combined heat and power, and hydro 

generation.  This is the main driver of the significant reductions in air emissions relative 

to the cases where only market costs are minimized.  However, in cases where human 

health externalities from NOX and SO2 are minimized, whether they are treated 

deterministically or simulated via the procedure outlined in Chapter 3, we notice slight 

increases in SO2 emissions, which is driven by biomass generation.  
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Table 4.9 – Expected Negative Health Outcomes Summary 

 
Expected Health Outcomes 

 

Baseline 
Reserve 

Margin 

Emissions 

Limits & RPS 

Social Cost of 

CO2 and CH4 

Leakage 

Deterministic 

Health 

Damages 

Simulated 

Health 

Damages 

Adult Mortality 48,165 43,528 35,124 21,208 19,551 17,006 

Infant Mortality 64 59 48 29 27 24 

Non-fatal Heart 

Attacks 
19,461 17,654 14,598 8,695 8,049 6,969 

Respiratory-Related 

Hospital Admissions 
8,295 7,738 6,288 3893 3,534 3,077 

Cardiovascular-

Related Hospital 

Admissions 

10,341 9,435 7,802 4716 4,380 3,852 

Acute Bronchitis 44,440 40,548 33,395 20,267 18,921 16,718 

Upper Respiratory 

Symptoms 
761,589 696,882 582,393 351,833 323,773 282,377 

Lower Respiratory 

Symptoms 
564,004 519,285 428,456 258,550 236,480 206,081 

Asthma ER Visits 15,343 14,358 11,484 6940 6,411 5,666 

Minor Restricted 

Activity Days 
21,001,716 19,423,414 15,989,868 9,487,067 8,810,074 7,669,236 

Work Loss Days 3,568,670 3,293,161 2,694,189 1,648,502 1,533,920 1,355,337 

Asthma 

Exacerbations 
800,580 737,471 605,492 364,626 330,542 282,428 
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 Table 4.9 displays the expected number of negative health outcomes as a result of 

NOX and SO2 emissions, as modeled in the COBRA tool for each of the cases studied.  

Generally speaking, negative health outcomes are reduced from the Baseline for all cases.  

However, in the cases where health damages are included in the objective function, we 

observe dramatic reductions in negative human health effects.  Again, this is driven by 

significant reductions in fossil fuel generation, which drives reductions in pollutant 

emissions. 

4.6. Cost and Pricing Results 

 

Figure 4.5 – Total Cost Summary (Including Simulated Health Damages) 
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Figure 4.6 – Total Cost Summary (Including Deterministic Health Damages) 

 Figures 4.5 and 4.6 displays the total objective function costs for each of the six 

cases presented in this chapter.  Market costs, specifically investment costs, fixed O&M 

costs, and variable O&M costs (including fuel) are minimized in the Baseline, Reserve 

Margin, and Emissions Limits & RPS cases.  Whereas, total societal costs, including 

health and other damages(specifically the social cost of CO2 and CH4 leakage and human 

health externalities from NOX and SO2 emissions) are minimized in the Social Cost of 

CO2 and CH4 Leakage, Deterministic Health Damages, and Simulated Health Damages 

cases.  In the Deterministic Health Damages case, human health externalities from NOX 

and SO2 emissions are obtained from the values shown in Table 4.4; however, human 

health externalities from NOX and SO2 emissions in the Simulated Health Damages case 

are obtained via the COBRA simulation procedure presented in Chapter 3.  In general, in 

cases where only market costs are optimized, health damages are significantly greater 

than in cases where total societal costs are optimized. 
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Figure 4.7 – Market Cost Summary 

 Figure 4.7 displays the market costs for each of the six cases presented in this 

chapter.  The Baseline and Reserve Margin models exhibit similar results as their 

expansion plans are nearly similar.  However, the inclusion of emissions limits and 

renewable portfolio standards significantly increases investment and fixed O&M costs 

relative to the Baseline model, which is due to significant investments in renewable units.  

Including health and other damages in the objective function of the model significantly 

increases variable O&M (including fuel) costs, which is primarily due to the fact that coal 

generation is displaced by combined cycle gas turbines and natural gas units.  
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Figure 4.8 – Simulated Health Damages Summary 

 

Figure 4.9 – Deterministic Health Damages Summary 

Figures 4.8 and 4.9 summarize the simulated and deterministic health damages 

associated with the expansion plan selected in each of the cases studied.  As noticed in 

these figures, in cases where only market costs are optimized, we observe that human 

health externalities are significantly greater than cases where total societal costs 

(including health damages) are minimized.  In cases where health damages are 
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minimized, this drives significant increases in hydro generation, which displaces fossil 

fuel generation.  Ultimately, this results in significant emissions reductions and 

reductions in health damages within the network. 

Furthermore, human health externalities calculated via the COBRA simulation 

procedure outlined in Chapter 3 are generally much larger in magnitude in comparison to 

the deterministic approach.  As mentioned previously, human health externalities are 

highly non-linear functions of various factors, such as temperature, location, and 

emissions from other sources.  Since COBRA is able to capture these relationships and 

approximate them statistically, the simulation procedure is able to monetize the health 

damages more effectively than simply applying deterministic multipliers to penalize 

pollutant-emitting units. 
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Table 4.10 – Expected Human Health Externalities Summary 

 
Expected Human Health Externalities ($ 2015, millions) 

 
Baseline 

Reserve 

Margin 

Emissions & 

RPS 

Social Cost of 

CO2 and CH4 

Leakage 

Deterministic 

Health 

Damages 

Simulated 

Health 

Damages 

Adult Mortality $581,343.7 $532,535.1 $435,422.8 $262,830.9 $243,384.0 $212,850.1 

Infant Mortality $572.7 $517.2 $419.0 $250.6 $235.1 $212.8 

Non-fatal Heart Attacks $6,444.9 $5,915.3 $4,806.0 $2,788.5 $2,618.5 $2,378.7 

Respiratory-Related Hospital 

Admissions 
$371.8 $337.9 $274.1 $165.5 $154.8 $141.8 

Cardiovascular-Related 

Hospital Admissions 
$255.9 $231.2 $184.9 $111.1 $102.0 $92.3 

Acute Bronchitis $18.5 $16.7 $13.9 $8.2 $7.7 $6.9 

Upper Respiratory Symptoms $4.8 $4.4 $3.6 $2.2 $2.0 $1.8 

Lower Respiratory Symptoms $22.5 $20.0 $16.6 $10.1 $9.3 $8.3 

Asthma ER Visits $9.4 $8.6 $6.9 $4.2 $3.9 $3.5 

Minor Restricted Activity 

Days 
$2,319.0 $2,057.1 $1,706.7 $1,011.7 $936.8 $839.3 

Work Loss Days $781.1 $718.0 $580.3 $341.1 $323.4 $288.7 

Asthma Exacerbations $62.6 $57.0 $46.9 $28.0 $26.1 $23.4 

Totals $592,207 $542,418 $443,482 $267,552 $247,804 $216,848 
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Corresponding to the expect number of negative health outcomes displayed in 

Table 4.9, Table 4.10 displays the associated monetized value of the human health 

externalities as a result of NOX and SO2 emissions, as modeled in the COBRA tool for 

each of the cases studied.  Again, negative health outcomes are reduced from the Baseline 

for all cases.  Again, in the cases where health damages are included in the objective 

function, we observe dramatic reductions in human health externalities driven by 

significant reductions in coal generation.  Across all cases, the major contributor to 

human health externalities is the number of adult lives lost (or mortality), which 

decreases significantly as health damages are reduced as part of the objective function. 

 

Figure 4.10 – Energy Comparison (U.S. Energy Information Administration, 2015) 

In the context of the generation expansion planning model, the dual variables 

associated with the energy balance constraint are interpreted as the energy shadow price.  

In the context of electricity markets, this is the analog of wholesale electricity prices, 

which are derived from day-ahead unit commitment models.  The results from the cases 

in this chapter are presented in Figure 4.10.  The ultimate take-away from our analysis is 
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that minimizing societal costs in the objective function could potentially lead to increased 

energy prices.  Extending this research to day-ahead markets would allow for further 

insight into this precursory finding. 

 

Figure 4.11 – Capacity Shadow Prices 

Similar to the interpretation of the dual variables associated with the energy 

balance constraints, we quantify the dual variables associated with the capacity 

constraints and refer to them as capacity shadow prices.  That is, for each MW of 

capacity invested, there is an incremental $/MW increase to the objective function value.  

To elaborate on this interpretation further, the decision variables on the left-hand side of 

this constraint are dispatching decisions by region, period, and year.  However, on the 

right-hand side of the capacity constraints, we also have capacity expansion decision 

variables.  Thus, the dual variables, in this case, suggest that as we expand capacity on 

the right-hand side of the capacity constraints, it ultimately penalizes the objective 

function over time.  The results shown in Figure 4.11 depict this concept for each of the 

cases studied.  In general, based on our findings, the costs of capacity expansion are 
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much greater in the early stages of the planning process, relative to the remainder of the 

time-horizon. 

 

Figure 4.12 – Simulation-Based Optimization Iteration Summary 

Case 1.6, alternatively referred to as the Simulated Health Damages case, applies the 

simulation-based optimization framework presented in Chapter 3 in order to solve the 

generation expansion-planning problem that minimizes total societal costs, inclusive of 

market costs and health damages.  Following our procedure in Chapter 3, as depicted in 

Figure 4.12, we are able to achieve a solution within 16 full iterations.  As we progress 

through each of the iterations, the expected improvement value decreases and eventually 

reaches zero upon termination of the algorithm.  The objective function, however, 

behaves rather erratically initially, but begins to level off beginning at iteration 10. 

  



116 
 

 

5. Full-Form Model Evaluation 

In this section, we apply our learnings from Chapters 3 and 4 to six (6) expanded 

cases using the network described in Figure 4.1.  The assumptions presented in Section 

4.2 of Chapter 4 are applied to all scenarios in this chapter.  In comparison to our 

reduced-form model, the cases in this chapter include seasonality indices, and extend the 

time-horizon to 25 years (2015 through 2040).  

Table 5.1 outlines the definitions of the six cases we consider in this section.  

Cases 2.1 through 2.6 are extensions of Cases 1.1 through 1.6 from Chapter 4.  Cases 2.1 

through 2.5 are deterministic models solved by a CPLEX linear programming tool, 

whereas Case 2.6 is solved via the simulation-based optimization framework presented in 

Chapter 3.   
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Table 5.1 – Full Model Test Cases 

  Objective Function Costs 
Constraints 
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Similar to Case 1.6 from Chapter 4, in Case 2.6, where we apply our proposed 

simulation-based optimization framework to the network, we vary the key model 

parameters, as identified in Section 3.2.3 in Chapter 3, by simulating from a normal 

distribution with a coefficient of variation uniformly distribution on the interval [0,1].  

Next, we execute multiple trials of our experimental GEP model and compare the results 

to the baseline GEP model, Case 2.1, to obtain changes in dispatching decisions by unit 

and changes in NOX and SO2 emissions.  Upon obtaining results from the simulations, we 

then input the changes in emissions into the COBRA model to quantify the associated 

human health externalities for each trial.  Once we generate the full data set, we fit a 

kriging metamodel, as outlined in Section 3.3.1 of Chapter 3, that predicts human health 

externalities as a function of dispatching decisions for each unit in the network.  This 

metamodel serves as a surrogate curve for human health externalities in the objective 

function of our model.  We test the validity and robustness of our metamodel by applying 

the same modified K-fold cross-validation procedure to the simulated data set, which 

generates the results in Table 5.2 and Figure 5.1. 
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Table 5.2 – Mean Absolute Prediction Error Values from Cross Validation Procedure 

  
k = Sill/Nugget 

  
k = 1 k = 1.1 k = 1.2 k = 1.3 k = 1.4 k = 1.5 k = 1.6 k = 1.7 k = 1.8 k = 1.9 

M
A

P
E

 V
a
lu

es
 

Set 1 0.19 0.18 0.16 0.16 0.15 0.15 0.15 0.16 0.14 0.13 

Set 2 0.20 0.19 0.17 0.16 0.15 0.15 0.14 0.14 0.14 0.16 

Set 3 0.15 0.15 0.16 0.14 0.13 0.14 0.15 0.15 0.14 0.14 

Set 4 0.15 0.15 0.15 0.14 0.13 0.14 0.14 0.15 0.15 0.14 

Set 5 0.21 0.22 0.22 0.24 0.23 0.22 0.21 0.21 0.20 0.18 

Set 6 0.20 0.20 0.20 0.18 0.17 0.17 0.16 0.15 0.16 0.16 

Set 7 0.22 0.21 0.20 0.19 0.19 0.17 0.17 0.18 0.18 0.18 

Set 8 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 

Set 9 0.18 0.17 0.18 0.17 0.18 0.17 0.18 0.17 0.17 0.16 

Set 10 0.17 0.16 0.16 0.16 0.15 0.14 0.15 0.15 0.15 0.15 

10 Set 

Average 
0.18 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.15 

Full Set 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
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Figure 5.1 – Mean Absolute Prediction Error Values from Cross Validation Procedure
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As evidenced by Table 5.2 and Figure 5.1, we execute the modified K-fold cross-

validation procedure for various sill and nugget parameters in the Gaussian variogram, as 

discussed in Chapter 4.  Based on the individual validation sets, on average, as we 

increase the k-ratio, the prediction error decreases.  Additionally, the error variability (or 

standard deviation) begins to decrease after k-ratios greater than 1.4.  Upon applying the 

full data set to fit our metamodel, however, we notice that the prediction error is 

significantly reduced, and remains relatively stable for all values of k.  In general, the 

more exhaustive and expansive the sample space, the greater the prediction properties 

exhibited by the model.  From a qualitative perspective, our metamodel is robust for all 

values of k.  Thus, we select k=1.5 as our parameter to apply to the variogram.  Using this 

metamodel as a surrogate in the objective function of our GEP test model, we apply the 

full framework in Chapter 3 to determine an optimal (or near-optimal) expansion plan for 

Case 2.6. 
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5.1 Dispatching Results 

 

Figure 5.2 – Annual Dispatch Summary Dashboard 
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Figure 5.3 – Total Dispatch Percentage Dashboard 
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Table 5.3 – Regional Dispatch Summary 

  
Dispatch Summary by Region (10

6
 MWh) 

Case Region Nuclear Coal (Low) GT Hydro Coal (High) CCGT CHP Biomass 
Wind 

(On Land) 

Wind 

(Off Shore) 
Solar Petroleum Totals 

Baseline 

MDDE 1,217.3 660.5 - 573.7 122.0 - - - - - 3.9 - 2,577.3 

NE 588.4 466.3 410.1 1,898.2 437.2 - - - 0.0 - 8.4 - 3,808.6 

NJ 843.6 239.8 928.6 59.7 246.1 - - - 0.3 - 0.4 - 2,318.6 

NY 1,081.8 862.3 58.2 355.9 45.5 - - - 85.4 - - - 2,489.1 

NYC - 1,500.2 712.8 - - 0.3 - - - - - - 2,213.3 

RoPJM 1,962.7 948.9 681.4 243.0 591.2 - - - 41.9 - 0.0 - 4,469.2 

Total 5,693.8 4,677.9 2,791.1 3,130.5 1,442.0 0.3 - - 127.7 - 12.8 - 17,876.1 

Reserve Margin 

MDDE 1,217.3 660.5 149.1 405.0 - - 145.8 - - - 3.9 - 2,581.5 

NE 588.4 466.3 410.1 1,898.2 424.9 - - - 0.0 - 8.4 - 3,796.3 

NJ 843.6 239.8 1,009.2 48.7 86.4 - 196.2 - 0.3 - 0.4 - 2,424.6 

NY 1,081.8 862.3 28.2 407.0 - - - - 85.4 - - - 2,464.7 

NYC - 1,500.2 561.9 - - - 188.2 - - - - - 2,250.3 

RoPJM 1,962.7 948.9 674.7 371.7 339.0 - - - 41.9 - 0.0 - 4,338.9 

Total 5,693.8 4,677.9 2,833.2 3,130.5 850.2 - 530.2 - 127.7 - 12.8 - 17,856.3 

Emissions Limits & RPS 

MDDE 1,217.3 134.2 67.2 349.4 - - 805.3 - - - 3.9 - 2,577.1 

NE 588.4 350.5 249.7 1,898.2 6.2 - - 122.6 522.3 1.0 11.4 - 3,750.2 

NJ 843.6 135.5 305.8 66.1 - - 1,019.9 - 0.3 - 0.4 - 2,371.6 

NY 1,081.8 520.7 25.6 790.8 - - - - 85.4 - - - 2,504.3 

NYC - 838.1 543.0 - - - 880.5 - - - - - 2,261.6 

RoPJM 1,962.7 948.9 502.0 26.0 190.6 - - 19.9 336.5 - 413.2 - 4,399.7 

Total 5,693.8 2,927.8 1,693.2 3,130.5 196.7 - 2,705.7 142.5 944.5 1.0 428.8 - 17,864.6 

Social Cost of CO2 and CH4 

Leakage 

MDDE 1,217.3 0.8 511.7 478.3 - 21.4 145.8 182.1 40.6 - 3.9 - 2,601.9 

NE 588.4 53.9 956.1 1,898.2 2.2 10.3 104.8 - 148.4 - 8.4 - 3,770.7 

NJ 843.6 - 1,282.1 16.4 - 95.6 145.8 364.7 0.3 - 0.4 - 2,749.0 

NY 1,081.8 - 724.6 442.2 - 54.5 - - 184.0 - - - 2,487.1 

NYC - 3.4 1,607.3 - - 132.9 145.8 271.1 - - - - 2,160.6 

RoPJM 1,962.7 - 1,536.5 295.5 - 246.5 41.0 - 41.9 - 0.0 - 4,124.2 

Total 5,693.8 58.1 6,618.4 3,130.5 2.2 561.3 583.3 817.9 415.2 - 12.8 - 17,893.4 

Deterministic Health 

Damages 

MDDE 1,217.3 - 438.9 453.2 - 7.6 145.8 318.4 - 40.6 3.9 - 2,625.5 

NE 588.4 10.5 994.5 1,898.2 1.2 8.0 145.8 - - 278.9 8.4 - 3,933.9 

NJ 843.6 - 1,282.7 17.8 - 93.0 145.8 364.7 - 0.3 0.4 - 2,748.4 

NY 1,081.8 - 479.9 438.9 - 57.8 - - - 317.4 - - 2,375.9 

NYC - 1.0 1,516.3 - - 102.9 145.8 422.6 - - - - 2,188.6 

RoPJM 1,962.7 - 1,423.7 322.4 - 235.9 - - - 86.7 0.0 - 4,031.4 

Total 5,693.8 11.5 6,135.9 3,130.5 1.2 505.3 583.3 1,105.6 - 723.9 12.8 - 17,903.8 

Simulated Health Damages 

MDDE 1,217.3 - 21.5 692.7 - 58.2 145.8 197.8 251.2 - 3.9 - 2,588.3 

NE 576.7 - 162.2 2,249.2 - 127.8 - 150.4 425.3 109.3 8.4 10.5 3,819.9 

NJ 843.6 - 89.4 70.1 - 873.3 145.8 422.2 99.3 - 0.4 - 2,544.1 

NY 1,081.8 - 0.6 443.3 - 315.0 - - 501.1 193.8 - - 2,535.6 

NYC - 0.3 649.2 - - 576.6 286.0 591.2 - - - 2.5 2,105.8 

RoPJM 1,962.7 - 130.0 395.9 - 1,354.1 - 95.2 351.5 - 0.0 - 4,289.5 

Total 5,682.1 0.3 1,052.9 3,851.2 - 3,304.9 577.7 1,456.7 1,628.4 303.1 12.8 13.0 17,883.2 
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Figures 5.2 and 5.3 summarize the dispatching results on a case-by-case basis for 

each of the available unit type within the network.  In the Baseline and Reserve Margin 

cases, we observe similar trends as observed in Chapter 4.  In these cases, approximately 

80% of total generation is from nuclear, coal, and natural gas sources.  In the Reserve 

Margin case, a small portion of coal generation is displaced by combined heat and power. 

Implementing emissions limits and renewable portfolio standards as constraints in the 

model reduces fossil fuel generation, and increases combined heat and power as well as 

renewable generation from wind on land, solar, and biomass units.   

In the cases where health damages are included in the objective function, 

particularly the Social Cost of CO2 and CH4 Leakage, Deterministic Health Damages, 

and Simulated Health Damages cases, we observe that coal dispatch is significantly 

displaced by other units.  In the Social Cost of CO2 and CH4 Leakage case, coal 

generation is displaced by natural gas and combined cycle gas turbines.  The inclusion of 

deterministic health damages in the objective function also exhibits similar behavior, and 

also results off-shore wind generation being constructed.  However, the inclusion of 

simulated health damages in the objective function of the model, via the framework 

presented in Chapter 3, further shows increased levels of combined cycle gas turbine 

generation, wind (on land and off-shore), biomass, and hydro generation.  Coal is no 

longer in the dispatch plan in this scenario. 
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5.2 Investment Results 

Table 5.4 – Regional Summary of New Investments 

  
Investment Summary by Region (MW) 

Case Region GT 
Wind 

(On Land) 
CHP Solar Petroleum Biomass CCGT Wind (Off Shore) Coal (High) Hydro Totals 

Baseline 

MDDE 864 - 927 - 1,981 - - - 258 - 4,030 

NJ 469 - 1,029 - 1,231 - - - 444 - 3,172 

NYC 704 - 612 - 1,907 - - - 311 - 3,534 

Total 2,037 - 2,568 - 5,119 - - - 1,013 - 10,736 

Reserve Margin 

MDDE 2,348 - 648 - 709 - 717 - 404 738 5,564 

NJ 2,379 - 892 - 698 - 649 - 1,446 - 6,065 

NYC 2,169 - 1,033 - 795 - 592 - 1,420 - 6,009 

Total 6,897 - 2,574 - 2,202 - 1,957 - 3,270 738 17,637 

Emissions Limits & 

RPS 

MDDE 1,638 - 3,880 - - - - - - - 5,518 

NE - 5,997 - 99 - 510 - 12 - - 6,617 

NJ 1,485 - 5,009 - - - - - - - 6,494 

NYC 1,397 - 4,315 - - - - - - - 5,713 

RoPJM - 4,306 - 14,696 - 107 - - - - 19,109 

Total 4,520 10,302 13,204 14,796 - 616 - 12 - - 43,450 

Social Cost of CO2 

and CH4 Leakage 

MDDE 2,907 697 758 - 720 930 744 - - - 6,757 

NE 2,900 2,336 513 - - - - - - - 5,749 

NJ 2,734 - 788 - 682 1,879 609 - - - 6,691 

NY 3,503 1,580 - - - - - - - - 5,084 

NYC 3,273 - 817 - 727 1,304 670 - - - 6,791 

RoPJM 4,833 - 239 - - - - - - - 5,071 

Total 20,150 4,613 3,114 - 2,129 4,113 2,022 - - - 36,143 

Deterministic Health 

Damages 

MDDE 2,362 791 742 - 70 - 750 1,558 - - 6,273 

NE 3,695 4,415 859 - - - - - - - 8,969 

NJ 3,025 - 700 - 778 - 774 1,688 - - 6,964 

NY 2,288 3,622 - - - - - - - - 5,909 

NYC 3,010 - 700 - - - 638 2,033 - - 6,381 

RoPJM 4,207 760 - - - - - - - - 4,967 

Total 18,585 9,588 3,001 - 848 - 2,161 5,279 - - 39,463 

Simulated Health 

Damages 

MDDE 865 5,153 739 - 1,105 992 729 - - - 9,584 

NE 1,355 7,655 - - - 651 901 911 - - 11,473 

NJ 803 2,284 748 - 1,434 2,227 777 - - - 8,273 

NY - 7,576 - - - - - 1,806 - - 9,382 

NYC 699 - 1,529 - 1,433 3,282 909 - - - 7,852 

RoPJM - 5,826 - - - 365 - - - - 6,191 

Total 3,722 28,495 3,016 - 3,972 7,518 3,317 2,717 - - 52,756 
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Table 5.4 summarizes the technology investments selected by the generation 

expansion planning model within our proposed network over for each of the cases 

studied.  In the Baseline and Reserve Margin cases, we observe a similar investment 

strategy as discussed in Chapter 4.  The Baseline case proposes investments in natural 

gas, coal, combined heat and power, and petroleum units.  The Reserve Margin case also 

includes these investments, along with additional investments in combined cycle gas 

turbines. 

In the cases where health damages are included in the objective function of the 

generation expansion planning model, we observe that coal is no longer included in the 

investment portfolio.  This is consistent with the dispatching findings, as coal generation 

is displaced by mostly natural gas and combined cycle gas turbines.  In the Social Cost of 

CO2 and CH4 Leakage scenario, investments are dominated by natural gas units.  A 

similar observation is found in the Deterministic Health Damages case; however, this 

scenario proposes increased investments in wind (on land and off-shore).  The Simulated 

Health Damages case proposes further increases in wind capacity by over 31 GW, with a 

reduction in natural gas generation relative to the Deterministic Health Damages case. 

The increase in wind capacity proposed by the Simulated Health Damages case 

would bring the total wind capacity of the network to over 33 GW by 2040, which is a 

significant increase over the initial network capacity of approximately 2 GW.  This 

translates to over 10% of the total electricity generation in this region.  However, in 2008, 

the United States Department of Energy conducted a study investigating a scenario where 

20% of the U.S. electricity needs are satisfied by wind energy by 2030.  This translates to 

nearly 300 GW of required growth in the U.S. to achieve this goal (U.S. Department of 
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Energy, 2008).  Relative to the modeling region, this translates to nearly 100 GW of wind 

capacity growth.  This is a much more aggressive wind technology investment strategy, 

relative to the investment strategy proposed by the Simulated Health Damages case.  

However, the U.S. Department of Energy’s research suggests that significant wind 

capacity expansions are feasible.  Further research is required to fully assess the 

challenges and feasibility of the wind capacity expansions proposed in the Simulated 

Health Damages case. 
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5.3 Emissions and Human Health Results 

Table 5.5 – CO2 Emissions Summary 

 
Regional CO2 Emissions (Short Tons, Millions) 

 
MDDE NE NJ NY NYC RoPJM Total 

Baseline 8,799 12,488 10,734 10,539 20,916 21,185 84,660 

Reserve Margin 9,101 12,349 10,508 9,857 21,126 18,311 81,252 

Emissions Limits & RPS 

Constraints 
6,460 5,428 9,047 6,000 17,503 15,662 60,100 

Social Cost of CO2 and CH4 

Leakage 
3,862 6,710 8,646 4,422 10,741 10,351 44,733 

Deterministic Health 

Damages 
3,361 6,648 8,635 3,052 10,028 9,418 41,142 

Simulated Health Damages 1,280 1,734 6,291 1,791 8,604 8,422 28,121 

Table 5.6 – NOX Emissions Summary 

 
Regional NOX Emissions (Short Tons, Thousands) 

 
MDDE NE NJ NY NYC RoPJM Total 

Baseline 23,474 30,592 22,470 27,729 51,066 51,995 207,326 

Reserve Margin 22,321 30,221 20,030 26,109 51,381 44,371 194,434 

Emissions Limits & RPS 

Constraints 
11,441 15,275 15,332 15,838 37,244 38,847 133,978 

Social Cost of CO2 and 

CH4 Leakage 
9,439 10,789 20,244 6,623 21,556 15,504 84,154 

Deterministic Health 

Damages 
11,402 10,112 20,226 4,571 23,485 14,107 83,903 

Simulated Health 

Damages 
5,873 5,683 17,866 2,683 24,733 14,518 71,357 

Table 5.7 – SO2 Emissions Summary 

 
Regional SO2 Emissions (Short Tons, Thousands) 

 
MDDE NE NJ NY NYC RoPJM Total 

Baseline 50,860 58,934 32,047 59,037 97,867 100,448 399,192 

Reserve Margin 43,079 58,132 21,803 56,064 97,886 84,047 361,011 

Emissions Limits & RPS 

Constraints 
9,158 29,440 9,468 33,858 55,190 75,307 212,420 

Social Cost of CO2 and 

CH4 Leakage 
9,501 4,183 18,994 390 14,721 912 48,700 

Deterministic Health 

Damages 
16,215 1,335 18,993 269 22,080 830 59,722 

Simulated Health 

Damages 
10,004 8,296 21,665 158 30,484 5,500 76,106 
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Tables 5.5 through 5.7 display emissions results for CO2, NOX, and SO2 

respectively for each of the six cases studied in this chapter.  In comparing our emissions 

findings with the corresponding dispatching plans, as coal generation is displaced with 

other technologies, this leads to corresponding reductions in emissions relative to the 

Baseline results.  Furthermore, as demonstrated by Case 2.3 (or the Emissions Limits and 

RPS case), the inclusion of emissions limits and renewable portfolio standards yields the 

largest emissions reductions in cases where only market costs are minimized in the 

objective function of the model.   

Furthermore, in cases where health and other damages are included in the 

objective function, we observe significant reductions in CO2, NOX, and SO2 emissions 

relative to the cases where only market costs are minimized.  As previously observed in 

Chapter 4, this is due to the near-elimination of coal from the dispatch plans in these 

cases. 



131 
 

 

Table 5.8 – Expected Negative Health Outcomes Summary 

 
Expected Health Outcomes 

 

Baseline 
Reserve 

Margin 

Emissions 

Limits & 

RPS 

Social Cost 

of CO2 and 

CH4 Leakage 

Deterministic 

Health 

Damages 

Simulated 

Health 

Damages 

Adult Mortality 114,848 94,430 52,118 40,105 36,572 30,362 

Infant Mortality 118 115 65 53 48 37 

Non-fatal Heart Attacks 50,575 54,980 36,343 28,436 30,021 23,976 

Respiratory-Related Hospital 

Admissions 
19,337 18,037 10,294 6,092 5,813 4,399 

Cardiovascular-Related Hospital 

Admissions 
23,682 22,838 16,802 9,890 8,586 6,103 

Acute Bronchitis 79,420 58,717 37,036 27,797 23,531 14,206 

Upper Respiratory Symptoms 1,778,084 1,498,650 818,666 599,061 627,854 453,905 

Lower Respiratory Symptoms 1,386,847 1,269,842 844,169 738,350 704,750 478,534 

Asthma ER Visits 35,740 34,728 23,935 16,048 14,974 10,939 

Minor Restricted Activity Days 49,269,726 46,317,472 28,288,326 19,485,734 17,744,378 14,285,267 

Work Loss Days 8,979,141 8,410,051 5,691,770 4,573,135 3,875,591 2,472,267 

Asthma Exacerbations 1,949,020 1,980,709 1,288,379 1,060,425 872,455 617,597 
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 Table 5.8 displays the expected number of negative health outcomes as a result of 

NOX and SO2 emissions, as modeled in the COBRA tool for each of the cases studied.  

Generally consistent with the findings in Chapter 4, negative health outcomes are reduced 

from the Baseline for all cases.  However, in the cases where health damages are included 

in the objective function, we observe dramatic reductions in negative human health 

effects, which is driven by significant reductions in fossil fuel generation yielding 

reductions in pollutant emissions. 

5.4 Cost and Pricing Results 

 

Figure 5.4 – Total Cost Summary (Including Simulated Health Damages) 
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Figure 5.5 – Total Cost Summary (Including Deterministic Health Damages) 

 Figures 5.4 and 5.5 display the total objective function costs for each of the six 

cases presented in this chapter.  Market costs, specifically investment costs, fixed O&M 

costs, and variable O&M costs (including fuel) are minimized in the Baseline, Reserve 

Margin, and Emissions Limits & RPS cases.  Whereas, Total societal costs, including 

health and other damages (specifically the social cost of CO2 and CH4 leakage and human 

health externalities from NOX and SO2 emissions) are minimized in the Social Cost of 

CO2 and CH4 Leakage, Deterministic Health Damages, and Simulated Health Damages 

cases.  Like the Chapter 4 cases, in the Deterministic Health Damages case, human health 

externalities from NOX and SO2 emissions are obtained from the values shown in Table 

4.4; however, human health externalities from NOX and SO2 emissions in the Simulated 

Health Damages case are obtained via the COBRA simulation procedure presented in 

Chapter 3.  As expected, in cases where only market costs are optimized, health damages 

are significantly greater than in cases where total societal costs are optimized. 
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Figure 5.6 – Market Cost Summary 

 Figure 5.6 breaks down the market costs for each of the six cases presented in this 

chapter.  As observed in the Chapter 4 examples, as we add more complexity to our 

generation expansion planning models, such as additional constraints or additional costs 

in the objective function, it drives increased investment and variable O&M costs 

(including fuel costs) relative to the baseline.  This is driven by the displacement of coal 

generation by natural gas and combined cycle gas turbine dispatch.  In general, 

minimizing total societal costs increases market costs, since the model selects investment 

and dispatching decisions that have the least impact from an emissions perspective, 

which consequently benefits society from a human health perspective.  
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Figure 5.7 – Simulated Health Damages Summary 

 

Figure 5.8 – Deterministic Health Damages Summary 

Figures 5.7 and 5.8 summarize the simulated and deterministic health damages 

associated with the expansion plan selected in each of the cases studied.  Similar to the 

observations in Chapter 4, in cases where only market costs are optimized, we observe 

that total health damages are greater than cases where total societal costs (including 
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health and other damages) are minimized in the objective function.  In cases where health 

damages are minimized, this drives significant reductions in coal generation, which 

results in emissions reductions and reductions in health and other damages within the 

network. 

Furthermore, human health externalities calculated via the COBRA simulation 

procedure outlined in Chapter 3 are generally much larger in magnitude in comparison to 

the deterministic approach.  This is consistent with our findings in Chapter 4, which are 

due to the fact that human health externalities are highly non-linear functions of various 

factors, such as temperature, location, and emissions from other sources.  Since COBRA 

is able to capture these relationships and approximate them statistically, the simulation 

procedure is able to monetize the health damages more effectively than simply applying 

deterministic multipliers to penalize pollutant emitting units. 
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Table 5.9 – Expected Human Health Externalities Summary 

 
Expected Human Health Externalities ($ 2015, millions) 

 
Baseline 

Reserve 

Margin 

Emissions 

& RPS 

Social Cost 

of CO2 and 

CH4 

Leakage 

Deterministic 

Health 

Damages 

Simulated 

Health 

Damages 

Adult Mortality $1,373,137 $1,232,899 $769,867 $566,167 $534,164 $387,921 

Infant Mortality $1,336 $1,103 $689 $545 $538 $408 

Non-fatal Heart Attacks $14,882 $12,469 $8,207 $5,852 $6,019 $4,595 

Respiratory-Related Hospital 

Admissions 
$854 $769 $446 $355 $339 $272 

Cardiovascular-Related Hospital 

Admissions 
$592 $522 $300 $219 $234 $193 

Acute Bronchitis $45 $39 $24 $19 $16 $13 

Upper Respiratory Symptoms $12 $9 $6 $4 $5 $4 

Lower Respiratory Symptoms $57 $44 $28 $20 $19 $13 

Asthma ER Visits $23 $18 $11 $10 $8 $7 

Minor Restricted Activity Days $5,670 $4,263 $2,909 $2,271 $2,061 $1,698 

Work Loss Days $1,834 $1,577 $878 $700 $724 $510 

Asthma Exacerbations $150 $130 $78 $60 $60 $47 

Totals $1,398,592 $1,253,843 $783,442 $576,222 $544,188 $395,681 
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Corresponding to the expect number of negative health outcomes displayed in 

Table 5.8, Table 5.9 displays the associated monetized value of the human health 

externalities as a result of NOX and SO2 emissions, as modeled in the COBRA tool for 

each of the cases studied.  As expected, negative health outcomes are reduced from the 

Baseline for all cases, and in the cases where health damages are included in the objective 

function; we observe dramatic reductions in human health externalities driven by 

significant reductions in fossil fuel generation.  Across all cases, the major contributor to 

human health externalities is the number of adult lives lost (or mortality), which 

decreases significantly as health damages are minimized as part of the objective function. 

 

Figure 5.9 – Energy Comparison (U.S. Energy Information Administration, 2015) 

As introduced in Chapter 4, the dual variables associated with the energy balance 

constraint are interpreted as the energy shadow price.  In the context of electricity 

markets, this is the analog of wholesale electricity prices, which are derived from day-

ahead unit commitment and real-time dispatch models.  The results from the cases in this 

chapter are presented in Figure 5.9.  The ultimate take-away from our analysis is that 
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minimizing societal costs in the objective function could potentially lead to increased 

energy prices.  Extending this research to day-ahead markets would allow for further 

insight into this preliminary finding. 

 

Figure 5.10 – Capacity Shadow Prices 

Similar to the interpretation of the dual variables associated with the energy 

balance constraints, we quantify the dual variables associated with the capacity 

constraints, and refer to them as capacity shadow prices.  That is, for each MW of 

capacity invested, there is an incremental $/MW-year cost to the objective function value.  

The results shown in Figure 5.10 depict this concept for each of the cases studied.  In 

general, based on our findings, the incremental cost of capacity expansion are much 

greater in the early stages of the planning process, relative to the remainder of the time-

horizon. 
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Figure 5.11 – Simulation-Based Optimization Iteration Summary 

Case 2.6, the Simulated Health Damages case, applies the simulation-based 

optimization framework presented in Chapter 3 in order to solve the generation expansion 

planning problem that minimizes total societal costs, inclusive of market costs and health 

damages.  Following our procedure in Chapter 3, as depicted in Figure 5.11, we are able 

to achieve a solution within 21 full iterations.  In comparison to the reduced-form 

analogous case in Chapter 4, this example requires more iterations due to the increased 

complexity of the model stemming from the inclusion of seasonality and the extension of 

the time horizon to 25 years.  As we progress through each of the iterations, the expected 

improvement value decreases and eventually reaches zero upon termination of the 

algorithm.  The objective function, however, behaves rather erratically initially, but 

reaches an expected improvement value of zero at iteration 21, satisfying termination 

criteria. 
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5.5 Regional Details – Simulated Health Damages Case 

 

Figure 5.12 – Total Costs by Region 

 

Figure 5.13 – Total Market Costs by Region 
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Figure 5.14 – Health & Other Damages by Region 

Figures 5.12 through 5.14 display the cost summaries at the regional level for the 

Simulated Health Damages case.  As observed by these figures, the Rest of PJM region, 

which is the largest geographical region in the model, is where most of the market costs 

and health damages are concentrated.  Market costs in this region are driven by 

significant investments in wind technology.  Additionally, significant combined heat and 

power technology investments drive revenue in the MDDE, NJ, and NYC regions.  The 

social cost of CO2 and CH4 leakage is primarily driven by natural gas generation in the 

NYC and Rest of PJM regions. 
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Figure 5.15 – Energy Shadow Prices by Region 

 Figure 5.15 displays the energy shadow prices for each of the regions considered 

in the network.  In general, shadow prices in the NYC region tend to be slightly more 

expensive in comparison to the other regions.  On average, energy shadow prices follow a 

slightly decreasing trend over the model duration.  This is driven by investments made in 

the early stages of the model timeframe, where most of the capacity expansion 

investments are made. 
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Figure 5.16 – Capacity Shadow Prices by Region 

 Figure 5.16 displays the capacity shadow prices for each of the regions considered 

in the network.  As noted in Section 5.4, capacity shadow prices tend to be more 

expensive, on average, in the early years of the model timeframe.  This is driven by 

capacity expansion investments in the NY and NYC regions in 2015. 
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Table 5.10 – Expected Health Outcomes 

 
Expected Health Outcomes (25 - Year Model) 

 
MDDE NE NJ NY NYC RoPJM Totals 

Adult Mortality 3,881 2,491 4,883 3,870 4,188 11,049 30,362 

Infant Mortality 4 3 6 5 5 13 37 

Non-fatal Heart 

Attacks 
3,476 2,084 4,455 3,157 3,092 7,712 23,976 

Respiratory-Related 

Hospital Admissions 
554 440 736 622 586 1,461 4,399 

Cardiovascular-

Related Hospital 

Admissions 

818 578 1,210 767 821 1,910 6,103 

Acute Bronchitis 1,840 1,525 2,583 1,811 2,119 4,327 14,206 

Upper Respiratory 

Symptoms 
53,350 32,807 82,936 64,550 62,868 157,394 453,905 

Lower Respiratory 

Symptoms 
58,513 46,019 87,649 64,751 61,143 160,459 478,534 

Asthma ER Visits 1,347 959 2,005 1,826 1,402 3,400 10,939 

Minor Restricted 

Activity Days 
2,074,357 1,374,869 2,185,917 2,139,288 2,011,177 4,499,660 14,285,267 

Work Loss Days 292,272 291,009 447,670 345,864 328,832 766,621 2,472,267 

Asthma 

Exacerbations 
86,014 55,945 102,590 80,289 75,708 217,051 617,597 
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Table 5.11 – Expected Human Health Externalities 

 
Expected Health Outcomes (25 - Year Model) 

 
MDDE NE NJ NY NYC RoPJM Totals 

Adult Mortality $51,080.0 $35,543.5 $67,359.4 $53,719.4 $50,477.7 $129,741.0 $387,921.0 

Infant Mortality $53.7 $37.4 $70.8 $56.5 $53.0 $136.3 $407.6 

Non-fatal Heart 

Attacks 
$605.1 $421.1 $798.0 $636.4 $598.0 $1,536.9 $4,595.4 

Respiratory-Related 

Hospital 

Admissions 

$35.8 $24.9 $47.3 $37.7 $35.4 $91.0 $272.2 

Cardiovascular-

Related Hospital 

Admissions 

$25.4 $17.7 $33.5 $26.7 $25.1 $64.5 $192.9 

Acute Bronchitis $1.7 $1.2 $2.2 $1.7 $1.6 $4.2 $12.6 

Upper Respiratory 

Symptoms 
$0.5 $0.3 $0.6 $0.5 $0.5 $1.2 $3.6 

Lower Respiratory 

Symptoms 
$1.8 $1.2 $2.3 $1.9 $1.7 $4.5 $13.4 

Asthma ER Visits $0.9 $0.6 $1.2 $0.9 $0.9 $2.3 $6.8 

Minor Restricted 

Activity Days 
$223.6 $155.6 $294.9 $235.2 $221.0 $568.1 $1,698.5 

Work Loss Days $67.2 $46.8 $88.6 $70.7 $66.4 $170.7 $510.4 

Asthma 

Exacerbations 
$6.2 $4.3 $8.2 $6.5 $6.1 $15.7 $47.0 

Totals $52,101.8 $36,254.6 $68,706.9 $54,794.0 $51,487.5 $132,336.5 $395,681.3 

 Tables 5.10 and 5.11 display the expected regional health outcomes and the 

associated externalities as a result of the expansion plans proposed in the Simulated 

Health Damages case.  The major driver of human health externalities in the network is 

Adult Mortality in the Rest of PJM region, which accounts for nearly one-third of the 

total human health externalities in the network.  This is primarily due to the fact that most 

of the proposed dispatch of combined cycle gas turbine technology is concentrated in this 

region. 
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5.5.1 Maryland/Delaware (MDDE) Regional Summary 

 
 

Figure 5.17 – Annual Dispatch Summary – MDDE Region 

 

Figure 5.18 – Summary of New Investments – MDDE Region 
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Figure 5.19 – Annual Capacity Summary – MDDE Region 

 

Figure 5.20 – Annual Emissions Summary – MDDE Region 

 Figures 5.17 through 5.20 display the dispatching, investment, capacity, and 

emissions results for the MDDE region.  In this region, the dispatch plan is heavily 

dominated with nuclear and hydro generation, with wind (on land) and biomass 
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generation satisfying an increasing portion of the load over time.  The model proposes a 

diversity of investments in biomass, combined cycle gas turbines, natural gas, petroleum, 

and combined heat and power, but the investment plan is mainly dominated by wind (on 

land) investments.  From an emissions perspective, CO2 emissions tend to decrease 

throughout the model, whereas NOX and SO2 emissions are relatively constant in this 

region. 

5.5.2 New England (NE) Regional Summary 

 
 

Figure 5.21 – Annual Dispatch Summary – NE Region 
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Figure 5.22 – Summary of New Investments – NE Region 

 
 

Figure 5.23 – Annual Capacity Summary – NE Region 
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Figure 5.24 – Annual Emissions Summary – NE Region 

 Figures 5.21 through 5.24 display the dispatching, investment, capacity, and 

emissions results for the NE region.  In this region, the dispatch plan is heavily 

dominated with hydro and nuclear generation, with increasing amounts of wind (on land) 

generation satisfying a portion of the load over time.  The increase in wind (on land) 

generation coincides with corresponding capacity expansion investments.  From an 

emissions perspective, CO2, NOX and SO2 emissions tend to decrease throughout the 

model, with a slight increase toward the end of the time horizon. 
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5.5.3 New Jersey (NJ) Regional Summary 

 
 

Figure 5.25 – Annual Dispatch Summary – NJ Region 

 

Figure 5.26 – Summary of New Investments – NJ Region 
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Figure 5.27 – Annual Capacity Summary – NJ Region 

 

Figure 5.28 – Annual Emissions Summary – NJ Region 

 Figures 5.25 through 5.28 display the dispatching, investment, capacity, and 

emissions results for the NJ region.  In this region, the dispatch plan is heavily dominated 
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with combined cycle gas turbine and nuclear generation, with increasing amounts of 

biomass generation satisfying a portion of the load over time.  The increase in biomass 

generation coincides with corresponding capacity expansion investments.  Significant 

investments are also made in wind (on land) capacity expansions.  From an emissions 

perspective, CO2 emissions tend to decrease throughout the model, whereas NOX and 

SO2 emissions are relatively constant in this region. 

5.5.4 New York (NY) Regional Summary 

 
 

Figure 5.29 – Annual Dispatch Summary – NY Region 
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Figure 5.30 – Summary of New Investments – NY Region 

 

Figure 5.31 – Annual Capacity Summary – NY Region 
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Figure 5.32 – Annual Emissions Summary – NY Region 

 Figures 5.29 through 5.32 display the dispatching, investment, capacity, and 

emissions results for the NY region.  In this region, the dispatch plan is heavily 

dominated with nuclear and hydro, with increasing amounts of wind (on land) generation 

satisfying a portion of the load over time.  The increase in wind (on land) generation 

coincides with corresponding capacity expansion investments.  Significant investments 

are also made in wind (off shore) capacity expansions.  From an emissions perspective, 

CO2, NOX and SO2 emissions tend to decrease throughout the model, with a slight 

increase toward the end of the time horizon. 
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5.5.5 New York City (NYC) Regional Summary 

 
 

Figure 5.33 – Annual Dispatch Summary – NYC Region 

 

Figure 5.34 – Summary of New Investments – NYC Region 
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Figure 5.35 – Annual Capacity Summary – NYC Region 

 

Figure 5.36 – Annual Emissions Summary – NYC Region 
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dominated with natural gas and combined cycle gas turbines, with increasing amounts of 

biomass generation satisfying a portion of the load over time.  The increase in biomass 

generation coincides with corresponding capacity expansion investments.  Additional 

investments are made in combined heat and power, petroleum, natural gas, and combined 

cycle gas turbines.  From an emissions perspective, CO2 emissions tend to decrease 

throughout the model, whereas NOX and SO2 emissions are relatively constant in this 

region. 

5.5.6 Rest of PJM (RoPJM) Regional Summary 

 
 

Figure 5.37 – Annual Dispatch Summary – RoPJM Region 
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Figure 5.38 – Summary of New Investments – RoPJM Region 

 

Figure 5.39 – Annual Capacity Summary – RoPJM Region 
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Figure 5.40 – Annual Emissions Summary – RoPJM Region 

 Figures 5.37 through 5.40 display the dispatching, investment, capacity, and 

emissions results for the RoPJM region.  In this region, the dispatch plan is heavily 

dominated with nuclear and combined cycle gas turbines, with increasing amounts of 

wind (on land) generation satisfying a portion of the load over time.  The increase in 

wind (on land) generation coincides with corresponding capacity expansion investments.  

Additional investments are made in biomass capacity as well.  From an emissions 

perspective, CO2, NOX, and SO2 emissions are relatively constant in this region. 
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6. Conclusions and Research Extensions 

This dissertation presents a modeling framework to solve the generation 

expansion planning problem that minimizes total costs, inclusive of market costs 

(including investment costs, fixed and variable operating & maintenance costs, and fuel 

costs) and health damages (including the social cost of carbon and methane leakage and 

human health externalities) associated with pollutant emissions from electricity 

generation via simulation-based optimization methods.  Additionally, the proposed 

expansion plans presented in Chapters 4 and 5 yield better results, from a human health 

perspective, than traditional generation expansion planning models.  Specifically, 

traditional approaches, such as implementing emissions limits and renewable portfolio 

standards as constraints (see Cases 1.3 and 2.3 from Chapters 4 and 5 respectively) or 

applying deterministic multipliers as penalties in the objective function (see Cases 1.5 

and 2.5 from Chapters 4 and 5 respectively) are not as effective at reducing the health 

effects from electricity generation in comparison to the analytical framework presented in 

this research. 

This is the first comprehensive attempt at using advanced statistical and 

simulation methods to quantify the human health externalities as a function of generation 

expansion planning decision variables.  Furthermore, it is also the first application of a 

simulation-based optimization in the context of the problem domain.  Ultimately, the 

framework presented in this dissertation allows policy makers to make more informed 

decisions on expanding power grid capacity.  Since existing generation expansion 

planning models do not include health damages in the objective function, the resulting 

expansion plans include fossil fuels.  While these energy sources can economically (in 
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terms of market costs) and reliably satisfy the load on the system, they also produce 

emissions that are potential health hazards.  In the context of generation expansion 

planning, these health hazards are not modeled insufficient detail to address their highly 

stochastic, non-linear behavior.  Because of this issue, these costs, in the form of 

externalities, are absorbed by residents.  This research addresses this concern from an 

analytical perspective.  

As previously mentioned, this work is the first step in addressing the deficiency in 

electric power systems planning research of including health damages in the generation 

expansion planning problem via simulation-based optimization methods.  With that said, 

in order to advance this research further, we must consider extending this work to 

contribute to the field of power systems planning.  Based on our framework, we can 

assess the impact of additions to our model such as: 

 Intermittency of renewable sources of energy; 

 Systems reliability; 

 Assessments of expansion plans using sophisticated air quality models. 

The first research extension addresses the variability of the output of renewable 

sources of energy, such as wind and solar technologies.  In order to fully assess the 

intermittency of renewable generation, we may consider the following optimization 

approaches: (i) assuming the capacity factors of these units to be random variables and 

applying stochastic optimization approaches to obtain a solution, (ii) applying a 

simulation procedure to estimate the capacity factors of renewable units and using these 

values as surrogate capacity factors in a deterministic optimization model, or (iii) 

assuming that capacity factors are seasonal and deterministically incorporating this curve 
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in an optimization model.  This extension is particularly critical to this research since the 

expansion plan presented in Chapter 5 proposes significant wind capacity expansions 

within the network.  Addressing the intermittency of wind, as well as other renewables, 

would enable the subsequent dispatching plan to be implemented. 

The second research extension is addresses the networks ability to satisfy demand 

reliably.  The reliability of electric power systems is primarily defined by the 

interruptions to electricity service or the inability to maintain the appropriate reserve 

margin levels.  While there are many approaches to quantifying and evaluating system 

reliability, across the nation, the utility industry has often used probabilistic metrics.  

Generally, these metrics rely on the use of Monte Carlo simulation to estimate future 

system performance under uncertainty in system parameters (such as fuel prices, load, 

and unit availability).  In the literature, the most commonly used reliability metrics are 

Loss of Load Probability (LOLP), Loss of Load Expectation (LOLE), and Expected 

Unserved Energy (EUE).  Incorporating these metrics as constraints in the generation 

expansion planning model ensures that reliability requirements are satisfied by a given 

expansion plan. 

Loss of Load Probability (LOLP) quantifies the probability that there is at least 

one instance where load is not met over the specified time horizon.  Since a probability 

must assume values between 0 and 1, the LOLP can be estimated by taking ratio of the 

number of simulations in which a shortfall occurs to the total number of simulations.  

Such an analysis is typically performed at the hourly level over the course of an entire 

year.  A generalization of how LOLP is estimated is given in Equation 6.1, 

𝐿𝑂𝐿𝑃 =
∑ 𝑠𝑖

𝑁
𝑖=1

𝑁
         (6.1) 
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where 𝑠𝑖 is a simulation trial with at least one  simulation in which there is at least 

one shortfall in the system, and 𝑁 is the number of Monte Carlo simulations in the time 

period  (Wood & Wollenberg, 1996). 

Loss of Load Expectation (LOLE) is defined as the expected number of time units 

in a given time horizon, where the load exceeds the available system capacity.  This 

metric is not a measure of frequency of individual events, since it’s possible for multiple 

events to occur during a day, and also, a single event can last longer than a day.  Similar 

to the LOLP metric, LOLE can be limited to counting shortfall events that exceed a 

minimum capacity, as well as energy or duration thresholds. Generally, LOLE is 

calculated as the number of days in which a shortfall occurs divided by the total number 

of years simulated.    A typical formula for LOLE is given in Equation (6.2), 

𝐿𝑂𝐿𝐸 =
𝑁×𝑌×∑ 𝑑𝑖

𝐷
𝑖=1

𝑁𝑦
        (6.2) 

where, 𝑑𝑖𝑗𝑘 is a day in which at least one significant shortfall event occurs, 𝑁 is 

the number of simulation trials for the time period (usually at 1 year at the hourly level), 

𝑌 is the number of years in the study, 𝑁𝑦 is the total number of years in the study, and 𝐷 

is the number of days in each year that are simulated  (Wood & Wollenberg, 1996). 

While LOLP and LOLE are closely associated with the frequency aspect of 

reliability, neither metric provides any information about the magnitude of shortfalls.  

Thus, the Expected Unserved Energy (EUE) metric provides a measure of the unserved 

energy demand in a given time horizon, which quantifies the magnitude of shortfall 

events.  EUE is calculated by summing all unserved energy demand over all hours of the 

simulation divided by the total number of hours simulated.  This calculation is given in 

Equation (6.3), 
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𝐸𝑈𝐸 =
𝑁×𝑌×𝐷∑ 𝑒𝑖

𝐻
𝑖=1

𝑁ℎ
        (6.3) 

where, 𝑒𝑖 the amount of unserved energy in a given hour, 𝐻 is the number of 

hours in each day being simulated, 𝐷 is the number of days in each year that are 

simulated, 𝑌 is the number of years in the study, 𝑁 is the number of simulation trials for 

the time period (usually at 1 year at the hourly level), and 𝑁ℎ is the total number of hours 

in the study (Wood & Wollenberg, 1996). 

The third research extension allows for an assessment of air quality and human 

health externalities by systematically linking sophisticated air quality and economic 

models used by the EPA to our generation expansion planning model.  Specifically, in 

place of the COBRA model, which is a screening tool used by the EPA, utilizing the 

EPA’s SMOKE (Sparse Matrix Operator Kernel Emissions) model, which is an 

emissions processing system that allocates emissions both spatially and temporally, and 

linking the output of this model to the CMAQ (Community Multi-scale Air Quality) 

model, computes the pollutant concentrations by using the continuity equations (The 

Institute for the Environment - The University of North Carolina at Chapel Hill, 2012).  

The economic health implications of the associated pollutant concentrations can be 

assessed in the EPA’s BenMAP (Environmental Benefits Mapping and Analysis 

Program) tool, which is used to quantify the human health externalities as a function of 

air quality effects (Abt Associates Inc., 2012).  Systematically linking these EPA models 

to our generation expansion planning model via the framework presented in Chapter 3 

not only gives decision makers a more detailed perspective of the health implications of 

expansion plans, but could further improve optimization results from a human health 

perspective. 
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As demonstrated by the results in this dissertation, the inclusion of health 

damages have a significant impact on the resulting expansion plans.  Our proposed 

framework allows can help decision makers assess the impacts of their power grid 

expansion decisions based on their system constraints.  Furthermore, under the 

circumstances presented in our framework, including these costs in the objective function 

proposes significant increases in wind capacity investments within the network.  

Although, research from the U.S. Department of Energy suggest that such expansion are 

feasible, additional investigation and research in the context of generation expansion 

planning would be required to fully address feasibility concerns along other challenges 

associated with wind capacity expansions.   

In conclusion, this research makes research contributions from both an energy 

systems perspective and an industrial engineering perspective.  Firstly, we have 

developed a method to apply statistical interpolation techniques to express the 

relationship between generation expansion planning decisions and human health 

externalities via the utilization of kriging metamodels.  Secondly, we solve a large-scale, 

multi-period optimization model over an extended time horizon with this metamodel as a 

surrogate objective function.  Finally, we develop a new iterative method to search the 

feasible region of solutions, resample, and refit the metamodel of human health 

externalities, to ensure the true relationship between decision variables and the 

metamodel is accurate, and thus, the optimization method yields robust candidate 

solutions. 

 

 

  



168 
 

 

References 

Abt Associates Inc. (2012, October 1). Environmental Benefits Mapping and Analysis 

Program User's Manual. Retrieved March 1, 2013, from Environmental Benefits 

Mapping and Analysis Program (BenMAP): 

http://www.epa.gov/airquality/benmap/models/BenMAPManualOct2012.pdf 

Alnatheer, O. (2006). Environmental benefits of energy efficiency and renewable energy 

in Saudi Arabia's electric sector. Energy Policy, 2-10. 

Alves, A. A., & Uturbey, W. (2010). Environmental degradation costs in electricity 

generation: The case of the Brazilian electrical matrix. Energy Policy, 6204-6214. 

Antunesa, C. H., Martinsa, A. G., & Britob, I. S. (2004). A multiple objective mixed 

integer linear programming model for power generation expansion planning. 

Energy, 29, 613–627. 

Arsham, H. (1995, February 11). Systems Simulation: The Shortest Route to Applications. 

Retrieved July 9, 2012, from 

http://home.ubalt.edu/ntsbarsh/simulation/sim.htm#rrgoalopti 

Banzhaf, H. S., Desvoisges, W. H., & Johnson, F. R. (1996). Assessing the externalities 

of electricity generation in the Midwest. Resource and Energy Economics, 18, 

395-421. 

Bas, D., & Boyaci, I. H. (2007). Modeling and optimization I: Usability of response 

surface methodology. Journal of Food Engineering, 78(3), 836-845. 

Becerra-Lopez, H. R., & Golding, P. (2008). Multi-objective optimization for capacity 

expansion of regional power-generation systems: Case study of far west Texas. 

Energy Conversion and Management, 49, 1433-1445. 

Becker, N., Soloveitchik, D., & Olshansky, M. (2011). Incorporating environmental 

externalities into the capacity expansion planning:. Energy Conversion and 

Management, 2489-2494. 

Begovic, M., Novosel, D., & Milisavljevic, M. (2001). Trends in power system 

protection and control. Decision Support Systems, 30, 269-278. 

Bezerra, M. A., Santelli, R. E., Olivera, E. P., Villar, L. S., & Escaleira, L. A. (2008). 

Response surface methodology (RSM) as a tool for optimization in analytical 

chemistry. Talanta, 76(5), 965-977. 

Bloom, J. A., Caramanis, M., & Charny, L. (1984). Long-Range Generation Planning 

Using Generalized Benders' Decomposition: Implementation and Experience. 

Operations Research, 32(2), 290-313. 

Blume, S. W. (2007). Electric Power System Basics. Piscataway, NJ: IEEE Press. 



169 
 

 

Bohling, G. (2005, October 19). Kriging. Retrieved June 22, 2012, from 

http://people.ku.edu/~gbohling/cpe940/Kriging.pdf 

Botterud, A., Ilic, M. D., & Wangensteen, I. (2005). Optimal Investments in Power 

Generation Under Centralized and Decentralized Decision Making. IEEE 

Transactions on Power Systems, 20(1), 254-263. 

Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Petron, G., Jordaan, S. M., . . . 

Harriss, R. (2014). Methane Leaks from North American Natural Gas Systems. 

Energy and Environment, 733-735. 

Burtaw, D., Krupnick, A., Palmer, K., Paul, A., Toman, M., & Bloyd, C. (2003). 

Ancillary benefits of reduced air pollution in the US from moderate greenhouse 

gas mitigation policies in the electricity sector. Journal of Environmental 

Economics and Management, 45(3), 650-673. 

Cambridge Energy Solutions. (2011). DAYZER Day-Ahead Market Analyzer. Retrieved 

March 1, 2013, from Cambridge Energy Solutions: http://www.ces-

us.com/download/DAYZER_v125_brochure.pdf 

Chen, Q., Kang, C., Xia, Q., & Zhong, J. (2010). Power Generation Expansion Planning 

Model Towards Low-Carbon Economy and Its Application in China. IEEE 

Transactions on Power Systems, 25(2), 1117-1125. 

Chen, S.-L., Zhan, T.-S., & Tsay, M.-T. (2006). Generation expansion planning of the 

utility with refined immune algorithm. Electric Power Systems Research, 76(4), 

251-258. 

Chen, X., Du, W., & Liu, D. (2008). Response surface optimization of biocatalytic 

biodiesel production with acid oil. Biochemical Engineering Journal, 40(3), 423-

429. 

Chen, Y.-H., & Hobbs, B. (2005). An Oligopolistic Electricity Market Model with 

Tradable NOx Permits. IEEE Transactions on Power Systems, 20(1), 119-129. 

Chung, A. S., Wu, F., & Varaiya, P. (2001). A Game-Theoretic Model for Generation 

Expansion Planning: Problem Formulation and Numerical Comparisons. IEEE 

Transactions on Power Systems, 16(4), 885-891. 

ConvertUnits.com. (2016). Conversion of Measurement Units. Retrieved February 11, 

2016, from 

http://www.convertunits.com/from/hundred+cubic+foot+of+natural+gas/to/MWh 

Cressie, N. (1990). The Origins of Kriging. Mathematical Geology, 22(3), 239-252. 

Day, C. J. (2002). Oligopolistic Competition in Power Networks: A Conjectured Supply 

Function Approach. IEEE Transactions on Power Systems, 17(3), 597-607. 



170 
 

 

De Jonghe, C., & Hobbs, B. (2012). Optimal Generation Mix With Short-Term Demand 

Response and Wind Penetration. IEEE Transactions on Power Systems, 27(2), 

830-839. 

Delucchi, M. A., Murphy, J. J., & McCubbin, D. R. (2002). The health and visibility cost 

of air pollution: a comparison of estimation methods. Journal of Environmental 

Management, 64(2), 139–152. 

Elsayed, E. A. (2012). Reliability Engineering. Hoboken: John Wiley & Sons, Inc. 

Farghal, S. A., & Abdel Aziz, M. R. (1988). Generation expansion planning including the 

renewable energy sources. IEEE Transactions on Power Systems, 3(3), 816-822. 

Farkas, C. M., Moeller, M. D., Felder, F. A., Baker, K. R., Rodgers, M. D., & Carlton, A. 

G. (2015). Temporalization of Peak Electric Generation Particulate Matter 

Emissions during High Energy Demand Days. Environ. Sci. Technol., 49(7), 

4696–4704. 

Felder, F. A. (2012). In Depth Introduction to Electricity Markets. Denver: EUCI. 

Firmo, H. T., & Legey, L. F. (2002). Generation Expansion Planning: An Iterative 

Genetic Algorithm Approach. IEEE Transactions on Power Systems, 17(3), 901-

906. 

Fukuyama, Y., & Chiang, H.-D. (1996). A parallel genetic algorithm for generation 

expansion planning. IEEE Transactions on Power Systems, 11(2), 955-961. 

GAMS Development Corporation. (2014). MSNLP and OQNLP. Retrieved February 12, 

2016, from GAMS Documentation Center: 

http://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fsolvers%2Findex.

html 

Gano, S. E. (2005). Simulation-Based Design Using Variable Fidelity Optimization. 

Notre Dame: University of Notre Dame. 

General Electric International. (2014). PJM Renewable Integration Study. Schenectady: 

PJM Interconnection, LLC. 

Gilmore, E. A., Apt, J., Walawalkar, R., Adams, P. J., & Lave, L. B. (2010). The air 

quality and human health effects of integrating utility-scale batteries into the New 

York State electricity grid. Journal of Power Sources, 195(8), 2405-2413. 

Gnansounou, E., Jun, D., Pierre, S., & Quintero, A. (2004). Market Oriented Planning of 

Power Generation Expansion using Agent-based Model. Power Systems 

Conference and Exposition, 2004. IEEE PES. New York. 

Goffman, J. (2010). Reducing Pollution from Power Plants. U.S. EPA Office of Air and 

Radiation. U.S. EPA. 



171 
 

 

Gorenstin, B. G., Campodonico, N. M., Costa, J. P., & Pereira, M. V. (1993). Power 

system expansion planning under uncertainty. IEEE Transactions on Power 

Systems, 8(1), 129-136. 

Gosavi, A. (2003). Simulation Based Optimization: Parametric Optimization Techniques 

and Reinforcement Learning (1st ed.). Norwell: Kluwer Academic Publishers. 

Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalan, C. (2006). Climate 

change and human health: impacts, vulnerability, and mitigation. Lancet, 367, 

2101-2109. 

Haines, A., McMichael, A. J., Smith, K. R., Roberts, I., Woodcock, J., Markandya, A., . . 

. Wilkinson, P. (2009). Public health benefi ts of strategies to reduce greenhouse-

gas emissions: overview and implications for policy makers. Lancet, 374, 2104-

2114. 

Han, Z.-H., & Zhang, K.-S. (2012). Surrogate-Based Optimization. Real-World 

Applications of Genertic Algorithms. (D. O. Roeva, Ed.) InTech. 

Hausfather, Z., & Muller, R. (2014). Retrieved February 11, 2016, from 

http://static.berkeleyearth.org/memos/epa-report-reveals-lower-methane-leakage-

from-natural-gas.pdf 

He, K., Lei, Y., Pan, X., Zhang, Y., & Chen, D. (2010). Co-benefits from energy policies 

in China. Energy, 35(11), 4265-4272. 

He, Y. Q., & David, A. K. (1997). Time-of-use Electricity Pricing Based on Global 

Optimization for Generation Expansion Planning. 4th International Conference 

on Advances in Power System Control, Operation and Management, APSCOM-

97. New York. 

Hemmati, R., Hooshmand, R.-A., & Khodabakhshian, A. (2013). Comprehensive review 

of generation and transmission expansion planning. IET Generation, 

Transmission & Distribution, 955-964. 

Henshaw, D. L. (2002). Does our electricity distribution system pose a serious risk to 

public health? Medical Hypotheses, 59(1), 39-51. 

Hobbs, B. (2001). Linear Complementarity Models of Nash–Cournot Competition in 

Bilateral POOLCO Power Markets. IEEE Transactions on Power Systems, 16(2), 

194-202. 

Huang, D., Allen, T. T., Notz, W. I., & Miller, R. A. (2006). Sequential kriging 

optimization using multiple-fidelity evaluations. Struct Multidisc Optim, 32(5), 

369-382. 



172 
 

 

Huang, D., Allen, T. T., Notz, W. I., & Zeng, N. (2006). Global Optimization of 

Stochastic Black-Box Systems via Sequential Kriging Meta-Models. Journal of 

Global Optimization, 34(3), 441-466. 

Humphrey, D. G., & Wilson, J. R. (2000). A Revised Simplex Search Procedure for 

Stochastic Simulation Response Surface Optimization. INFORMS Journal on 

Computing, 12(4), 272-283. 

Idaho Governor's Office of Energy Resources. (2013). Baseload Power. Retrieved March 

1, 2013, from Idaho Governor's Office of Energy Resources: 

http://www.energy.idaho.gov/baseload.htm 

Inhaber, H. (1979). Risk with Energy from Conventional and Nonconventional Sources. 

Science, 203(23), 718-723. 

Institute for the Environment, University of North Carolina at Chapel Hill. (2010, 

February 1). Operational Guidance for the Community Multiscale Air Quality 

(CMAQ) Modeling System. Retrieved March 1, 2013, from Community 

Multiscale Air Quality: 

http://www.airqualitymodeling.org/cmaqwiki/index.php?title=CMAQ_version_5.

0_(February_2010_release)_OGD 

Intergovernmental Panel on Climate Change. (2016, April). Climate Change 2007: 

Working Group III: Mitigation of Climate Change. Retrieved from 

http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch3s3-5-3-3.html 

Jakumeit, J., Herdy, M., & Nitsche, M. (2005). Parameter optimization of the sheet metal 

forming process using an iterative parallel Kriging algorithm. Struct Multidisc 

Optim, 29(6), 498-507. 

Jeong, S., Murayama, M., & Yamamoto, K. (2005). Efficient Optimization Design 

Method Using Kriging Model. Journal of Aircraft, 42(2), 413-420. 

Jones, D. R. (2001). A Taxonomy of Global Optimization Methods Based on Response 

Surfaces. Journal of Global Optimization, 21, 345-383. 

Jung, J. Y., Blau, G., Pekny, J. F., Reklatis, G. V., & Eversdyk, D. (2004). A simulation 

based optimization approach to supply chain management under demand 

uncertainty. Computers and Chemical Engineering, 28, 2087–2106. 

Kagiannis, A. G., Askounis, D. T., & Psarras, J. (2004). Power generation planning: a 

survey from monopoly to competition. Electrical Power & Energy Systems, 

26(6), 413-421. 

Kalil, S. J., Maugeri, F., & Rodrigues, M. I. (2000). Response surface analysis and 

simulation as a tool for bioprocess design and optimization. Process 

Biochemistry, 35(6), 539-550. 



173 
 

 

Kannan, S., Baskar, S., McCalley, J. D., & Murugan, P. (2009). Application of NSGA-II 

Algorithm to Generation Expansion Planning. IEEE Transactions on Power 

Systems, 24(1), 454-461. 

Kannan, S., Slochanal, S. M., & Padhy, N. P. (2005). Application and comparison of 

metaheuristic techniques to generation expansion planning problem. IEEE 

Transactions of Power Systems, 20(1), 466-475. 

Kannan, S., Slochanal, S. M., Baskar, S., & Murugan, P. (2007). Application and 

comparison of metaheuristic techniques to generation expansion planning in the 

partially deregulated environment. IET Generation, Transmission, & Distribution, 

1(1), 111-118. 

Kannan, S., Slochanal, S. M., Subbaraj, P., & Padhy, N. P. (2004). Application of particle 

swarm optimization technique and its variants to generation expansion 

planning problem. Electric Power Systems Research, 70, 203-210. 

Karaki, S. H., Chaaban, F. B., Al-Nakhl, N., & Tarhini, K. A. (2002). Power generation 

expansion planning with environmental consideration for Lebanon. Electrical 

Power & Energy Systems, 24(8), 611-619. 

Kaymaz, P., Valenzuela, J., & Park, C. S. (2007). Transmission Congestion and 

Competition on Power Generation Expansion. IEEE Transactions on Power 

Systems, 22(1), 156-163. 

Kenfack, F., Guinet, A., & Ngundam, J. M. (2001). Investment planning for electricity 

generation expansion in a hydro dominated environment. International Journal of 

Energy Research, 25(10), 927-937. 

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE 

International Conference on Neural Networks. Perth, Western Australia. 

Kerl, P. Y., Zhang, W., Moreno-Cruz, J. B., Nenes, A., Realff, M. J., Russell, A. G., . . . 

Thomas, V. M. (2015). New approach for optimal electricity planning and 

dispatching with hourly time-scale air quality and health considerations. 

Proceedings of the National Academy of Sciences of the United States of America 

(pp. 10884-10889). Washington D.C.: National Academy of Sciences of the 

United States of America. 

Kim, J.-H., Park, J.-B., & Park, J.-K. (2005). A market-based analysis on the generation 

expansion planning strategies. Intelligent Systems Application to Power Systems, 

2005. Washington D.C. 

Klaassen, G., & Riahi, K. (2007). Internalizing externalities of electricity generation: An 

analysis with MESSAGE-MACRO. Energy Policy, 35(2), 815-827. 



174 
 

 

Kleijnen, J. P. (2005). An overview of the design and analysis of simulation experiments 

for sensitivity analysis. European Journal of Operational Research, 164(2), 287-

300. 

Kleijnen, J. P. (2009). Kriging metamodeling in simulation: A review. European Journal 

of Operational Research, 192(3), 707-716. 

Koop, G., & Tole, L. (2004). Measuring the health effects of air pollution: to what extent 

can we really say that people are dying from bad air? Journal of Environmental 

Economics and Management, 47, 30-54. 

Koop, G., & Tole, L. (2004). Measuring the health effects of air pollution: to what extent 

can we really say that people are dying from bad air? Journal of Environmental 

Economics and Management, 47(1), 30-54. 

Kougea, E., & Koundouri, P. (n.d.). Air Quality Degradation: Can Economics Help in 

Measuring its Welfare Effects? A Review of Economic Valuation Studies. DEOS 

Working Papers from Athens University of Economics and Business, 1129. 

Krewitt, W., Hurley, F., Trukenmuller, A., & Friedrich, R. (1998). Health Risks of 

Energy Systems. Risk Analysis, 18(4), 377-383. 

Kumar, E. S., & Sarkar, B. (2012). Proportional Hazards Modeling of Environmental 

Impacts on Reliability of Photovoltaic Modules . International Journal of 

Engineering and Advanced Technology (IJEAT) , 2(2), 110-115. 

Lang, L., & Xu, K. (2002). A Unified Response for Dual Response Surface Optimization. 

Journal of Quality Technology, 34(4), 437-447. 

Lee, E. T., & Wang, J. W. (2003). Statistical Methods for Survival Data Analysis. 

Hoboken: John Wiley & Sons, Inc. 

Lee, K.-H., & Park, G.-J. (2006). A Global Robust Optimization Using Kriging Based 

Approximation Model. JSME International Journal, 49(3), 779-788. 

Leou, R.-C. (2011). A multi-year transmission planning under a deregulated market. 

Electrical Power & Energy Systems, 33(3), 708-714. 

Li, M., Li, G., & Azarm, S. (2008). A Kriging Metamodel Assisted Multi-Objective 

Genetic Algorithm for Design Optimization. Journal of Mechanical Design, 

130(3). 

Lin, D. K., & Tu, W. (1997). Dual Response Surface Optimization. Journal of Quality 

Technology, 27(1), 34-39. 

Linares, P., Santos, F. J., Ventosa, M., & Lapierda, L. (2008). Incorporating oligopoly, 

CO2 emissions trading and green certificates into a power generation expansion 

model. Journal of IFAC, 44(6), 1608-1620. 



175 
 

 

Liu, Z. F., Huang, G. H., & Li, N. (2008). A Dynamic Optimization Approach for Power 

Generation Planning under Uncertainty. Energy Sources, Part A: Recovery, 

Utilization, and Environmental Effects, 30(14-15), 1413-1431. 

Longo, A., Markandya, A., & Petrucci, M. (2008). The internalization of externalities in 

the production of electricity: Willingness to pay for the attributes of a policy for 

renewable energy. Ecological Economics, 67(1), 140-152. 

Lopez, J. A., Ponnambalam, K., & Quintana, V. H. (2007). Generation and Transmission 

Expansion Under Risk Using Stochastic Programming. IEEE Transactions on 

Power Systems, 22(3), 1369-1378. 

Machol, B., & Rizk, S. (2013). Economic value of U.S. fossil fuel electricity health 

impacts. Environmental International, 52, 75-80. 

Maghouli, P., Hosseini, S. H., Buygi, M. O., & Shahidehpour, M. (2011). A Scenario-

Based Multi-Objective Model for Multi-Stage Transmission Expansion Planning. 

IEEE Transactions on Power Systems, 26(1), 470-478. 

Malcolm, S. A., & Zenios, S. A. (1994). Robust optimization for power systems capacity 

expansion under uncertainty. The Journal of the Operational Research Society, 

45(9), 1040-1049. 

Markandya, M., & Wilkinson, P. (2007). Electricity generation and health. Lancet, 370, 

979-990. 

Marneris, I. G., Biskas, P. N., & Bakirtzis, E. A. (2016). An Integrated Scheduling 

Approach to Underpin Flexibility in European Power Systems. IEEE 

Transactions on Sustainable Energy, 647-657. 

Massachusetts Institute of Technology. (2011). The Future of the Electric Grid: An 

Interdisciplinary MIT Study. Massachusetts Institute of Technology. 

Mazadi, M., Rosehart, W. D., Malik, O. P., & Aguado, J. A. (2009). Modified Chance-

Constrained Optimization Applied to the Generation Expansion Problem. IEEE 

Transactions on Power Systems, 24(3), 1635-1636. 

Mazumdar, M., & Kapoor, A. (1995). Stochastic models for power generation system 

production costs. Electric Power Systems Research, 35, 93-100. 

Meza, J. L., Yildirim, M. B., & Masud, A. S. (2007). A Model for the Multiperiod 

Multiobjective Power Generation Expansion Problem. IEEE Transactions on 

Power Systems, 22(2), 871-878. 

Meza, J. L., Yildirim, M. B., & Masud, A. S. (2009). A Multiobjective Evolutionary 

Programming Algorithm and Its Applications to Power Generation Expansion 

Planning. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems 

and Humans, 39(5), 1086-1096. 



176 
 

 

Min, K. J., & Subramanian, P. S. (2002). A generation expansion model for electric 

utilities with stochastic stranded cost. Electrical Power and Energy Systems, 24, 

875-885. 

Mo, B., Hegge, J., & Wangensteen, I. (1991). Stochastic generation expansion planning 

by means of stochastic dynamic programming. IEEE Transactions on Power 

Systems, 6(2), 662-668. 

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006). Introduction to Linear 

Regression Analysis (4th ed.). Hoboken: John Wiley & Sons, Inc. 

Moura, J. (2016, April 29). Reliability and the Future of the Electricity Grid: A North 

American Bulk Power System Perspective. North American Electric Reliability 

Corportation. 

Murphy, F. H., & Smeers, Y. (2005). Generation Capacity Expansion in Imperfectly 

Competitive Restructured Electricity Markets. Operations Research, 53(4), 646-

661. 

Nanduri, V., Das, T. K., & Rocha, P. (2009). Generation Capacity Expansion in Energy 

Markets using a Two-Level Game-Theoretic Model. IEEE Transactions on Power 

Systems, 24(3), 1165-1172. 

National Research Council. (2010). Hidden Costs of Energy: Unpriced Consequences of 

Energy Production and Use. Washington, DC: National Academies Press. 

National Research Council of the National Academies. (2010). Hidden Costs of Energy: 

Unpriced Consequences of Energy Production and Use. Washington, DC: The 

National Academies Press. 

Nguyen, K. Q. (2008). Internalizing externalities into capacity expansion planning: The 

case of electricity in Vietnam. Energy, 33(5), 740-746. 

Nordlund, P., Sjelvgren, D., Pereira, M. V., & Bubenko, J. A. (1987). Generation 

expansion planning for systems with a high share of hydro power. IEEE 

Transactions on Power Systems, 2(1), 161-167. 

North American Electric Reliability Corporation. (2016). About NERC. Retrieved from 

NERC: North American Electric Reliability Corporation: 

http://www.nerc.com/AboutNERC/Pages/default.aspx 

Northwest Power and Conservation Council. (2011). A Probabilistic Method to Assess 

Power Supply Adequacy for the Pacific Northwest. Northwest Power and 

Conservation Council. 

Nualhong, D., Chusanapiputt, S., Jantarang, S., & Pungprasert, V. (2005). Generation 

Expansion Planning Including Biomass Energy Sources with Global 



177 
 

 

Environmental Consideration Using Improved Tabu Search. TENCON 2005 IEEE 

Region 10. Melbourne, Australia. 

Nuclear Energy Institute. (2012, June). nei.org. Retrieved 2013, from U.S. Capacity 

Factors by Fuel Type: 

http://www.nei.org/resourcesandstats/documentlibrary/reliableandaffordableenerg

y/graphicsandcharts/uscapacityfactorsbyfueltype/ 

Park, J.-B., Kim, J.-H., & Lee, K. Y. (2002). Generation Expansion Planning in a 

Competitive Environment Using a Genetic Algorithm. Chicago: IEEE Power 

Engineering Society. 

Park, J.-B., Park, Y.-M., Won, J.-R., & Lee, K. Y. (2000). An Improved Genetic 

Algorithm for Generation Expansion Planning. IEEE Transactions on Power 

Systems, 15(3), 916-922. 

Park, Y. M., Park, J. B., & Won, J. R. (1998). A hybrid genetic algorithm/dynamic 

programming approach to optimal long-term generation expansion planning. 

Electrical Power & Energy Systems, 20(4), 295-303. 

Pereira, A. J., & Saraiva, J. T. (2010). A decision support system for generation 

expansion planning in competitive electricity markets. Electric Power Systems 

Research, 80(7), 778-787. 

Pervin, T., Gerdtham, U.-G., & Lyttkens, C. H. (2008). Societal costs of air pollution-

related health hazards: A review of methods and results. Cost Effectiveness and 

Resource Allocation, 6(19), 1-22. 

Pokharel, S., & Ponnambalam, K. (1997). Investment planning for electricity generation 

expansion. International Journal of Energy Research, 21(2), 185-194. 

Poulin, A., Dostie, A., Fournier, M., & Sansregret, S. (2008). Load duration curve: A tool 

for technico-economic analysis of energy solutions. Energy and Buildings, 40, 29-

35. 

Quanhong, L., & Caili, F. (2005). Application of response surface methodology for 

extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 

92(4), 701-706. 

Rashad, S. M., & Hammad, F. H. (2000). Nuclear power and the environment: 

comparative assessment of environmental and health impacts of electricity-

generating systems. Applied Energy, 65, 211-229. 

Rasmussen, C. E. (2004). Gaussian Processes in Machine Learning. Lecture Notes in 

Computer Science, 3176. 



178 
 

 

Ratle, A. (2001). Kriging as a surrogate fitness landscape in evolutionary optimization. 

Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 

15(1), 37-49. 

Roux, W. J., Stander, N., & Haftka, R. T. (1998). Response Surface Approximations for 

Structural Optimization. International Journal for Numerical Methods in 

Engineering, 42(3), 517-534. 

Rowe, R. D., Lang, C. M., & Chestnut, L. G. (1996). Critical factors in computing 

externalities for electricity resources. Resource and Energy Economics, 18(4), 

363-394. 

Sadegheih, A., & Drake, P. R. (2008). System network planning expansion using 

mathematical programming, genetic algorithms and tabu search. Energy 

Conversion and Management, 49, 1557-1566. 

Sakata, S., Ashida, F., & Zako, M. (2003). Structural optimization using Kriging 

approximation. Computer Methods in Applied Mechanics and Engineering, 

192(7-8), 923-939. 

Sakata, S., Ashida, F., & Zako, M. (2004). An efficient algorithm for Kriging 

approximation and optimization with large-scale sampling data. Computer 

Methods in Applied Mechanics and Engineering, 193(3-5), 385-404. 

Sallaberrya, C., Helton, J., & Hora, S. (2008). Extension of Latin hypercube samples with 

correlated variables. Reliability Engineering and System Safety, 93(7), 1047-1059. 

Schenk, K. F., & Chan, S. (1981). Incorporation and impact of a wind energy conversion 

system in generation expansion planning. IEEE Transactions on Power Apparatus 

and Systems, 100(12), 4710-4718. 

Scientific American. (2016). Scientific American. Retrieved from How is electricity from 

different generators synchronized so that it can be combined to service the same 

grid?: http://www.scientificamerican.com/article/how-is-electricity-from-d/ 

Selcuklu, S. B., Coit, D. W., Felder, F., & Rodgers, M. (2013). A new methodology for 

solving multi-objective stochastic optimization problems with independent 

objective functions. 2013 IEEE International Conference on Industrial 

Engineering and Engineering Management (pp. 101-105). Bangkok: IEEE. 

Shayanfar, H. A., Lahiji, A. S., Aghaei, J., & Rabiee, A. (2009). Generation Expansion 

Planning in pool market- A hybrid modified game theory and improved genetic 

algorithm. Energy Conversion and Management, 50(5), 1149-1156. 

Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging Models for 

Global Approximation in Simulation-Based Multidisciplinary Design 

Optimization. AIAA Journal, 39(12), 2233-2241. 



179 
 

 

Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003). Evolutionary Programming 

Techniques for Economic Load Dispatch. IEEE Transactions on Evolutionary 

Computation, 7(1), 83-94. 

Sirikum, J., & Techanitisawad, A. (2007). Power generation expansion planning with 

emission control: a nonlinear model and a GA‐based heuristic approach. 

International Journal of Energy Research, 30(2), 81-99. 

Sirikum, J., Techanitisawad, A., & Kachitvichyanukul, V. (2007). A New Efficient GA-

Benders’ Decomposition Method: For Power Generation Expansion Planning 

With Emission Controls. IEEE Transactions on Power Systems, 22(3). 

Slochanal, S. M., Kannan, S., & Rengaraj, R. (2004). Generation Expansion Planning in 

the Competitive Environment. 2004 International Conference on Power System 

Technology - POWERCON 2004. Singapore. 

Su, C.-T., Lii, G.-R., & Chen, J.-J. (2000). Long-term generation expansion planning 

employing dynamic programming and fuzzy techniques. Proceedings of IEEE 

International Conference on Industrial Technology. Goa, India. 

Tekiner, H. (2010). Multi-Objective Stochastic Models for Electricity Generation 

Expansion Planning Problems Considering Risk. Ann Arbor: ProQuest LLC. 

Tekiner, H., Coit, D. W., & Felder, F. A. (2009). Effects of Smart Grid Technologies on 

Generation Expansion Plans. 3rd Annual Trans-Atlantic Infraday Conference on 

Applied Infrastructure Modeling and Policy Analysis. Washington, DC. 

Tekiner, H., Coit, D. W., & Felder, F. A. (2012). Multi-period multi-objective electricity 

generation expansion planning problem with Monte-Carlo simulation. Electric 

Power Systems Research, 80(12), 1394-1405. 

Thanh, B. D., & Lefevre, T. (2000). Assessing health impacts of air pollution from 

electricity generation: the case of Thailand. Environmental Impact Assessment 

Review, 20(2), 137-158. 

The Institute for the Environment - The University of North Carolina at Chapel Hill. 

(2012, August 3). SMOKE v3.1 User’s Manual. Retrieved March 1, 2013, from 

SMOKE-Model.org: http://www.smoke-model.org/version3.1/html/ 

The White House. (2015, November 23). whitehouse.gov. Retrieved from Obama 

Administration Announces 2016 Greenhouse Gas Targets and Sustainability 

Plans; Highlights Federal Leadership on Climate Action: 

https://www.whitehouse.gov/the-press-office/2015/11/23/obama-administration-

announces-2016-greenhouse-gas-targets-and 

Truong, T. H., & Azadivar, F. (2003). Simulation Based Optimization for Supply Chain 

Configuration Design. Proceedings of the 2003 Winter Simulation Conference. 

New Orleans. 



180 
 

 

U.S. Department of Energy. (2008). 20% Wind Energy by 2030: Increasing Wind 

Energy's Contribution to U.S. Electricity Supply. Oak Ridge: U.S. Department of 

Energy. 

U.S. Energy Information Administration. (2012, June). www.eia.gov. Retrieved 2013, 

from Assumptions to the Annual Energy Outlook 2012: 

http://www.eia.gov/forecasts/aeo/assumptions/pdf/0554(2012).pdf 

U.S. Energy Information Administration. (2015). Electricity Data Browser. Retrieved 

January 6, 2016, from http://www.eia.gov/electricity/data/browser/ 

U.S. Environmental Protection Agency. (2013, July). www.epa.gov. Retrieved 2013, from 

Clean Energy: http://www.epa.gov/cleanenergy/energy-and-you/affect/air-

emissions.html 

U.S. Environmental Protection Agency. (2015). Regulatory Impact Analysis for the Clean 

Power Plan Final Rule. Washington, D.C.: U.S. Environmental Protection 

Agency. 

U.S. Environmental Protection Agency. (2016). FACT SHEET: Clean Power Plan 

Benefits. Retrieved from U.S. Environmental Protection Agency: 

https://www.epa.gov/cleanpowerplan/fact-sheet-clean-power-plan-

benefits#benefits 

U.S. Environmental Protection Agency. (2016, April). Sources of Greenhouse Gas 

Emissions. Retrieved from United States Environmental Protection Agency: 

https://www3.epa.gov/climatechange/ghgemissions/sources.html 

U.S. Environmental Protection Agency. (2016). The Social Cost of Carbon. Retrieved 

January 17, 2016, from 

https://www3.epa.gov/climatechange/EPAactivities/economics/scc.html 

U.S.-Canada Power System Outage Task Force. (2004, April). Final Report on the 

August 14, 2003 Blackout in the United States and Canada: Causes and 

Recommendations. Retrieved from Energy.gov: 

http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal-

Web.pdf 

Union of Concerned Scientists. (2013). The Hidden Cost of Fossil Fuels. Retrieved from 

Union of Concerned Scientists: http://www.ucsusa.org/clean_energy/our-energy-

choices/coal-and-other-fossil-fuels/the-hidden-cost-of-

fossil.html#.VzkEo5GDGko 

United States Department of Energy. (2012, April 17). Energy.gov. Retrieved from 

Powering Up America's Waterways: http://energy.gov/articles/powering-america-

s-waterways 



181 
 

 

United States Environmental Protection Agency. (2015). User's Manual for the Co-

Benefits Risk Assessment (COBRA) Screening Model - Version 2.7. Washington, 

DC: United States Environmental Protection Agency. 

United States Environmental Protection Agency. (2016, April). Future Climate Change. 

Retrieved from United States Environmental Protection Agency: 

https://www3.epa.gov/climatechange/science/future.html#Temperature 

Unsihuay-Vila, C., Marangon-Lima, J. W., Zambroni de Souza, A. C., & Perez-Arriaga, 

I. J. (2011). Multistage expansion planning of generation and interconnections 

with sustainable energy development criteria: A multiobjective model. Electrical 

Power and Energy Systems, 33, 258-270. 

UW Electrical Engineering. (2010). IEEE Power Systems Test Case Archive. Retrieved 

2013, from UW Electrical Engineering: U.S. Energy Information Administration 

Valenzuela, J., & Mazumdar, M. (2005). A Probability Model for the Electricity Price 

Duration Curve Under an Oligopoly Market. IEEE Transactions on Power 

Systems, 20(3), 1250-1256. 

Valenzuela, J., & Mazumdar, M. (2005). A Probability Model for the Electricity Price 

Duration Curve Under an Oligopoly Market. IEEE Transactions on Power 

Systems, 20(3), 1250-1256. 

von Winterfeldt, D., Eppel, T., Adams, J., Neutra, R., & DelPizzo, V. (2004). Managing 

Potential Health Risks from Electric Powerlines: A Decision Analysis Caught in 

Controversy. Risk Analysis, 24(6), 1487-1502. 

Voorhees, A. S., Fann, N., Fulcher, C., Dolwick, P., Hubbell, B., Bierwagen, B., & 

Morefield, P. (2011). Climate Change-Related Temperature Impacts on Warm 

Season Heat Mortality: A Proof-of-Concept Methodology Using BenMAP. 

Environmental Science and Technology, 45(4), 1450-1457. 

Voropai, N. I., & Ivanova, E. Y. (2003). Hierarchical Game Theoretical Problem of 

Electric Power System Expansion Planning. Proceedings, 2003 IEEE Bologna 

PowerTech Conference. Bologna. 

Voropai, N. I., & Ivanova, E. Y. (2006). Shapley Game for Expansion Planning of 

Generating Companies at Many Non-Coincident Criteria. IEEE Transactions on 

Power Systems, 21(4), 1630-1637. 

Winston, W. L., & Venkataramanan, M. (2003). Operations Research: Volume One - 

Introduction to Mathematical Programming. Pacific Grove: Brooks/Cole - 

Thomson Learning. 

Wong, E. (2013, July 8). Pollution Leads to Drop in Life Span in Northern China, 

Research Finds. The New York Times, p. A6. 



182 
 

 

Wood, A., & Wollenberg, B. (1996). Power Generation, Operation, and Control (Second 

Edition ed.). New York: John Wiley & Sons, Inc. 

Xija, N., Yokoyama, R., Zhou, Y. C., & Kozu, A. (2000). An effective DP solution for 

optimal generation expansion planning under new environment. Perth, Australia: 

IEEE Power System Technology. 

Xjia, N., Yokoyama, R., Zhou, Y. C., & Kozu, A. (2000). An effective DP solution for 

optimal generation expansion planning under new environment. Proceedings 

PowerCon 2000. Perth, Australia. 

Yildirim, M., Erkan, K., & Ozturk, S. (2006). Power generation expansion planning with 

adaptive simulated annealing genetic algorithm. International Journal of Energy 

Research, 30(14), 1188-1199. 

Youn, B. D., & Choi, K. K. (2004). A new response surface methodology for reliability-

based design optimization. Computers & Structures, 82(2-3), 241-256. 

Yu, Y., Gan, D., Wu, H., & Han, Z. (2010). Frequency induced risk assessment for a 

power system accounting uncertainties in operation of protective equipments. 

Electrical Power and Energy Systems, 32(6), 688-696. 

Zhu, J., & Chow, M.-y. (1997). A Review of Emerging Techniques on Generation 

Expansion Planning. IEEE Transactions on Power Systems, 12(4), 1722-1728. 

 

  



183 
 

 

Appendix A: Additional Model Assumptions 

 

Figure A.1 – Load Profile by Region (U.S. Energy Information Administration, 

2015) 

Table A.1 – Initial Capacity by Region (in MW) (Cambridge Energy Solutions, 

2011) 

 
Nuclear 

Combined 

Cycle Gas 

Turbines 

Coal 

(Low) 

Coal 

(High) 

Gas 

Turbines 

Wind 

(On 

Land) 

Petroleum Hydro Solar 

NE 2,873 203 2,414 12,447 2,110 0 3,656 10,342 303 

NY 5,282 5,313 4,463 2,763 305 1,274 99 5,705 - 

NYC - 2,216 7,765 - 5,426 - 107 - - 

NJ 4,119 6,055 1,241 2,063 4,816 8 47 406 13 

MDDE 5,943 - 3,419 1,340 - - 590 5,348 128 

RoPJM 9,583 8,041 4,911 17,143 3,515 704 204 2,281 2 

Totals 27,799 21,828 24,212 35,756 16,172 1,985 4,703 24,082 446 
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Table A.2 – Transmission Limits by Region (in MWh) (Cambridge Energy 

Solutions, 2011) 

  Receiving Region 

  
NE NY NYC NJ MDDE RoPJM 

T
ra

n
sm

it
ti

n
g
 R

eg
io

n
 NE - 1,420 - - - - 

NY - - - 950 - - 

NYC 430 - - 1,685 - - 

NJ - - - - - - 

MDDE - - - - - 5,150 

RoPJM - 2,000 
 

9,268 - - 

Table A.3 – Unit Derating and Capacity Value Percentages (Cambridge Energy 

Solutions, 2011; U.S. Energy Information Administration, 2015) 

 
Derating Factor 

(%) 

Capacity Value 

(%) 

Nuclear 91% 100% 

Combined Cycle Gas 

Turbines 
84% 100% 

Gas Turbines 86% 100% 

Wind (On Land) 97% 32% 

Gas Turbines 97% 100% 

Combined Heat & Power 86% 100% 

Biomass 89% 100% 

Coal (High) 86% 100% 

Coal (Low) 86% 100% 

Solar 95% 14% 

Petroleum 86% 100% 

Hydro 95% 100% 
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Table A.4 – Unit Capacity Factors by Region (Cambridge Energy Solutions, 2011; 

U.S. Energy Information Administration, 2015) 

 
Wind 

(On Land) 

Wind 

(Off Shore) 
Solar 

NE 31% 59% 13% 

NY 31% 57% 12% 

NYC 31% 57% 14% 

NJ 21% 39% 14% 

MDDE 25% 39% 14% 

RoPJM 27% 43% 13% 

Table A.5 – Reserve Margin Percentages 

 

Reserve Margin 

Capacity 

(% of Peak Demand) 

NE 116% 

NY 117% 

NYC 117% 

NJ 115% 

MDDE 115% 

RoPJM 115% 

Table A.6 – RGGI CO2 Emissions Limits  

 

Total Annual CO2 Emissions 

Limits in RGGI Regions 

(in lbs, Billions) 

2015 366.6 

2016 357.4 

2017 348.5 

2018 through 

2040 annually 
339.8 

Table A.7 – Regional Emissions Limits (U.S. Environmental Protection Agency, 

2013) 

 
NOX Emissions Limits 

(in lbs, Millions) 

SO2 Emissions Limits 

(in lbs, Millions) 

NE 120.00 0.54 

NY 120.00 0.26 

NYC 120.00 0.26 

NJ 120.00 0.13 

MDDE 120.00 0.36 

RoPJM 120.00 1.07 
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Table A.8 – Annual Emissions Limits (U.S. Environmental Protection Agency, 2013) 

 

Total Annual SO2 

Emissions Limits 

(in lbs, Billions) 

2015 through 

2040 annually 
17.9 

Table A.9 – Transmission Losses 

 
Transmission Losses 

by Period (%) 

Summer-Peak 91% 

Summer-Off-Peak 91% 

Winter-Peak 95% 

Winter-off-Peak 95% 

Spring/Fall-Peak 93% 

Spring/Fall-Off-Peak 93% 

Table A.10 – Renewables Trading Network (General Electric International, 2014) 

  

Receiving 

Region 

T
ra

n
sm

it
ti

n
g
 R

eg
io

n
 

NE NE 

NY 

NY 

NJ 

MDDE 

RoPJM 

NYC 
NYC 

NE 

NJ 
NJ 

RoPJM 

MDDE 

MDDE 

NJ 

NY 

RoPJM 

RoPJM RoPJM 
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Table A.11 – Available Renewables by Region (General Electric International, 2014) 

 
Renewables Available 

by Region 

MDDE 

Solar 

Biomass 

Wind (On Land) 

Wind (Off Shore) 

NE 

Biomass 

Wind (On Land) 

Wind (Off Shore) 

Solar 

NJ 

Biomass 

Wind (On Land) 

Wind (Off Shore) 

Solar 

NY 

Wind (On Land) 

Wind (Off Shore) 

Biomass 

Solar 

NYC 

Biomass 

Wind (Off Shore) 

Solar 

RoPJM 

Biomass 

Wind (On Land) 

Solar 
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Table A.12 – Minimum Percentage of Total Annual Dispatch from Renewables by 

Region (General Electric International, 2014) 

 
NE NY NYC NJ MDDE RoPJM 

2015 11% 6% 6% 12% 12% 11% 

2016 12% 6% 6% 13% 14% 14% 

2017 13% 6% 6% 14% 15% 14% 

2018 14% 6% 6% 16% 17% 15% 

2019 15% 6% 6% 18% 18% 15% 

2020 16% 6% 6% 20% 19% 16% 

2021 16% 6% 6% 23% 19% 18% 

2022 16% 6% 6% 23% 20% 18% 

2023 16% 6% 6% 23% 20% 18% 

2024 17% 6% 6% 23% 20% 18% 

2025 17% 6% 6% 23% 20% 18% 

2026 17% 6% 6% 23% 20% 18% 

2027 17% 6% 6% 23% 20% 18% 

2028 17% 6% 6% 23% 20% 18% 

2029 17% 6% 6% 23% 20% 18% 

2030 17% 6% 6% 23% 20% 18% 

2031 17% 6% 6% 23% 20% 18% 

2032 17% 6% 6% 23% 20% 18% 

2033 17% 6% 6% 23% 20% 18% 

2034 17% 6% 6% 23% 20% 18% 

2035 17% 6% 6% 23% 20% 18% 

2036 17% 6% 6% 23% 20% 18% 

2037 17% 6% 6% 23% 20% 18% 

2038 17% 6% 6% 23% 20% 18% 

2039 17% 6% 6% 23% 20% 18% 

2040 17% 6% 6% 23% 20% 18% 

Table A.13 – Minimum Percentage of Total Regional Dispatch from Renewable 

Energy Sources (General Electric International, 2014) 

 
Biomass 

Wind 

(On Land) 
Solar 

MDDE - - 2% 

NE - - - 

NJ - - 2% 

NY - - - 

NYC - - - 

RoPJM 1% 8% 10% 
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Table A.14 – Annual Construction Limits by Unit (in MW per Region) 

 

Wind 

(On 

Land) 

Combined 

Heat & 

Power 

Nuclear 

Wind 

(Off 

Shore) 

Solar 
Gas 

Turbines 

Combined 

Cycle Gas 

Turbines 

Petroleum 

2015 10,000 10,000 0 0 10,000 10,000 10,000 10,000 

2016 10,000 10,000 0 0 10,000 10,000 10,000 10,000 

2017 10,000 10,000 0 0 10,000 10,000 10,000 10,000 

2018 10,000 10,000 0 0 10,000 10,000 10,000 10,000 

2019 10,000 10,000 0 0 10,000 10,000 10,000 10,000 

2020 10,000 10,000 0 0 10,000 10,000 10,000 10,000 

2021 10,000 10,000 0 10,000 10,000 10,000 10,000 10,000 

2022 10,000 10,000 0 10,000 10,000 10,000 10,000 10,000 

2023 10,000 10,000 0 10,000 10,000 10,000 10,000 10,000 

2024 10,000 10,000 0 10,000 10,000 10,000 10,000 10,000 

2025 10,000 10,000 0 10,000 10,000 10,000 10,000 10,000 

2026 10,000 10,000 0 10,000 10,000 10,000 10,000 10,000 

2027 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2028 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2029 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2030 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2031 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2032 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2033 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2034 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2035 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2036 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2037 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2038 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2039 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 

2040 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
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Table A.15 –Overall Construction Limits by Unit 

 

Maximum Construction 

Limit (MW) 

Wind (On Land) 150,000 

Combined Heat & Power 150,000 

Nuclear 150,000 

Wind (Off Shore) 150,000 

Solar 150,000 

Petroleum 150,000 

 

 


