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ABSTRACT OF THE DISSERTATION 

The Role of Cypin in Regulating Synaptic Content and Transmission 

by ANA R. RODRIGUEZ 

 

Dissertation Director: 

Bonnie L. Firestein, Ph.D. 

 

Proper synaptic transmission is essential for normal brain function and requires 

the precise spatial and functional assembly of molecular signal transduction machinery at 

synaptic sites and the correct morphology of dendrites and their branches. Defects in 

synaptogenesis and dendritogenesis are implicated in neurological and 

neurodevelopmental disorders. Cypin (cytosolic PSD-95 interactor) is a core regulator of 

dendrite branching and decreases the synaptic clustering of the scaffolding protein PSD-

95 in rat hippocampal neurons. This dissertation will explore the functional implications 

of altering cypin levels on PSD-95 protein and synaptic function. We show that 

overexpression of cypin decreases synaptic PSD-95 protein levels, increases total PSD-95 

protein levels, and increases the frequency of miniature excitatory postsynaptic currents 

(mEPSCs). We used microelectrode arrays to assess neuronal network dynamics after 

overexpression of cypin and uncovered changes in spiking variability that were not 

evident from the study of global network activity. The spike count variability of networks 

that overexpress cypin increases over time, and this variability is dependent on baseline 

activity levels. Moreover, attenuation of AMPAR-mediated synaptic transmission with the 

AMPAR antagonist CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) shows that cypin 

overexpression results in a decrease in functional AMPARs, potentially interfering with 
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synaptic upscaling.  Interestingly, we found that the alterations in synaptic transmission 

with overexpression of cypin are independent of cypin binding to PSD-95, whereas cypin-

mediated changes in PSD-95 expression depend on cypin binding to PSD-95. Finally, we 

show that cypin interacts with the β7 subunit of the proteasome and interferes with its 

chymotryptic-like activity. Cypin overexpression results in increased ubiquitination of 

PSD-95, consistent with the observed increase in total PSD-95 levels. Taken together, our 

results suggest a proteasome-mediated role for cypin in the redistribution of PSD-95, and 

potentially, remodeling of the postsynaptic density associated with synaptic plasticity.  
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Chapter 1: Introduction 

 

Communication between neurons occurs at highly specialized domains where 

information is processed, integrated, and propagated – the synapse. The majority of 

synapses occur at contacts between a presynaptic axon and a postsynaptic dendrite, most 

often at a dendritic spine. Axons and dendrites are highly specialized extensions and differ 

in morphology and function as well as in their cytoskeletal orientation. Axons transmit 

signals to other neurons, while dendrites have highly branched structures that are 

functionally specialized to receive and integrate inputs from presynaptic axons. Dendrite 

branching patterns and the extent of branching are directly associated with the amount 

and distribution of signals that a neurons receives and processes and depends upon 

intrinsic and extrinsic factors, such as neuronal activity (Kulkarni and Firestein 2012). 

Dendritic spines are membranous structures that protrude from dendrites, where they 

receive most of the excitatory synapses in the brain and allow individual synapses to be 

isolated from other synapses on the same neuron. Spines contain essential postsynaptic 

components, an actin cytoskeleton, and various organelles (Morgan Sheng and 

Hoogenraad 2007). They are highly heterogeneous structures, and their number, size, and 

shape change with connectivity between neurons and synaptic strength.   

Proper synaptic transmission is essential for normal brain function and requires 

the precise assembly of molecular signal transduction machinery on both sides of the 

synapse as well as correct establishment of dendrites and their branches (Vetter et al. 

2012). Defects in synaptogenesis and dendritogenesis lead to impaired synaptic 

transmission and are implicated in neurological and neurodevelopmental disorders, such 
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as schizophrenia, autism, and Alzheimer’s disease (reviewed in: Kulkarni and Firestein 

2012). For example, individuals with schizophrenia, a neuropsychiatric disorder 

characterized by cognitive impairment and significant altered perception, exhibit reduced 

dendrite branching and spine density in pyramidal neurons in the dorsolateral prefrontal 

cortex (Konopaske et al. 2014; Hernandez et al. 2016). This is thought to result in abnormal 

circuitry, disturbances in learning and memory, as well as a failure to use higher cognitive 

function to integrate experiences (Kulkarni and Firestein 2012).      

Modifying the strength of synaptic transmission, commonly referred to as synaptic 

plasticity, is a fundamental mechanism for the storage and processing of information in 

the brain. Therefore, synaptic plasticity is essential during development and in learning 

and memory. Synaptic plasticity can be activity-dependent (Malenka and Bear 2004) and 

is mediated by the modification of synaptic proteins and a structural remodeling of the 

postsynaptic density (PSD), a specialized electron-dense structure at the postsynaptic 

membrane where receptors, scaffold proteins, and signaling molecules are highly 

concentrated (M Sheng 2001). Many of the proteins that make up the PSD of excitatory 

synapses are known to contain PDZ (PSD-95/Dlg/ZO-1) domains, protein-protein 

interaction regions that interact with ligand proteins at their C-termini (Keith and El-

Husseini 2008). These PDZ-containing proteins bind various types of synaptic proteins 

and organize and regulate the proteins at the excitatory synapse.  

 

1.1 PSD-95 (postsynaptic density protein 95) 

Postsynaptic density protein 95 (PSD-95 or SAP-90) is a major scaffolding 

molecule found at the PSD of excitatory glutamatergic synapses. PSD-95 belongs to the 
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membrane-associated guanylate kinase (MAGUK) family of proteins and contains three N-

terminal PDZ domains, an SH3 (Src-homology-3) domain, and a guanylate kinase (GK) 

homology domain. Other MAGUKs found at excitatory synapses include PSD-93, synapse 

associated protein (SAP)102, and SAP97. The majority of excitatory synapses use 

glutamate as the neurotransmitter (Morgan Sheng and Hoogenraad 2007). PSD-95 is 

found in virtually every excitatory glutamatergic synapse and is associated with the 

trafficking and anchoring of glutamate receptors, particularly AMPA (alpha-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid), and NMDA (N-methyl-D-aspartate) 

receptors (Bredt and Nicholl 2003; Lin et al. 2004).  

NMDA receptors (NMDARs) are calcium-permeable and play a central role in 

synaptic plasticity (Malenka and Bear 2004). NMDAR activation triggers a signaling 

cascade that results in an increase in the number of AMPA receptors (AMPARs) in the 

postsynaptic membrane, leading to long-term potentiation (LTP) of synaptic strength 

(Chater and Goda 2014). In contrast, weak and prolonged activation of NMDARs results in 

a decrease in postsynaptic AMPARs and long-term depression (LTD; Malenka and Bear 

2004). PSD-95 interacts directly with NMDARs (Lin et al. 2004) and indirectly with 

AMPARs via the auxiliary protein stargazin (Schnell et al. 2002), and these interactions are 

important for proper receptor function. AMPARs are particularly mobile and diffuse 

rapidly between synaptic and extrasynaptic sites (Schnell et al. 2002). PSD-95 

overexpression increases the number of AMPARs at synapses (Schnell et al. 2002), and 

PSD-95 knockout mice exhibit impaired AMPAR function (Béïque et al. 2006). Moreover, 

PSD-95 expression increases surface expression ad channel opening rates of NMDARs (Lin 

et al. 2004). 
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PSD-95 overexpression in cultured hippocampal neurons drives the maturation of 

synapses through an increase in size and number of dendritic spines and enhanced 

postsynaptic clustering and activity of glutamate receptors (A. E. El-Husseini et al. 2000; 

Schnell et al. 2002). Moreover, PSD-95 required to sustain the molecular organization of 

the PSD. Electron microscopy tomography showed that reduced PSD-95 after RNA 

interference knockdown results in loss of patches of vertical filaments in the PSD of 

hippocampal neurons (X. Chen et al. 2011). In addition, 0ur laboratory showed that PSD-95 

also has a non-synaptic role and acts as a stop signal for dendrite branching in 

hippocampal neurons (Charych et al. 2006).     

 

1.2 Cypin 

Cypin (cytosolic PSD-95 interactor) was originally identified as a protein that 

interacts with PSD-95 in rat brain and decreases its synaptic localization in hippocampal 

neurons (Firestein et al. 1999). Cypin terminates in a canonical PDZ-interacting sequence, 

–SSSV, and binds to the PDZ1 and PDZ2 domains of PSD-95. Cypin is found in the neck of 

synaptic spines and the shafts of dendrites but is normally absent from the postsynaptic 

density and spine head (Firestein et al. 1999). Cypin expression is evident as early as 4 days 

in vitro (DIV) in cultured hippocampal neurons and increases as neurons mature (Akum et 

al. 2004).  
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Figure 1-1. Schematic of cypin and its protein domains. Cypin is a 454-amino acid 

(aa) protein that contains a 9 aa zinc-binding motif necessary for its guanine 

deaminase activity, a CRMP homology domain, and a C-terminal PDZ-binding 

motif that associates with PSD-95 and other MAGUKs. Amino acids 240 and 330 are 

also involved in binding zinc. 

Cypin is a guanine deaminase, and in addition to a C-terminal PDZ-binding motif, 

contains a zinc-binding motif and a CRMP (collapsin response mediator protein) 

homology domain, which mediates the binding of tubulin heterodimers to cypin (Fig. 1-1; 

Akum et al. 2004). Extensive research in our laboratory has identified cypin as a key 

regulator of dendrite branching in rat hippocampal neurons (Akum et al. 2004; Charych et 

al. 2006; M. Kwon et al. 2011; Tseng and Firestein 2011; O’Neill et al. 2015). Cypin binds 

tubulin heterodimers and promotes microtubule assembly, resulting in increased dendrite 

branching when cypin is overexpressed (Akum et al. 2004). Cypin knockdown decreases 

dendrite number. In addition, brain-derived neurotrophic factor (BDNF) and the small 

GTPase RhoA, two well-studied dendrite patterning regulators, act via cypin-dependent 

pathways (H. Chen and Firestein 2007; M. Kwon et al. 2011). BDNF increases proximal 

dendrite branching in rat hippocampal neurons via cAMP response element-binding 

protein (CREB)-dependent transcriptional regulation of cypin (M. Kwon et al. 2011). In 

contrast, activation of RhoA results in decreased dendrite branching by regulating 

translation of cypin (H. Chen and Firestein 2007).      
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1.3 Microelectrode arrays (MEAs) for the study of neuronal network dynamics 

In vitro neuronal networks are widely used as an experimental model system to 

study the mechanisms that govern neuronal circuitry dynamics and information 

processing. Microelectrode arrays (MEAs) have become a useful tool to study the electrical 

activity of neuronal networks and answer physiologically relevant questions at the 

network level. MEAs contain a large number of evenly spaced electrodes embedded in the 

bottom of the dish, where brain slices or monolayers of dissociated neuronal cultures are 

established and maintained (Hales, Rolston, and Potter 2010). These neuronal networks 

have been found to conserve many of the properties that distinguish neurons in vivo, such 

as connectivity, excitation/inhibition ratio, and plasticity (Eytan et al. 2004; Wagenaar, 

Pine, and Potter 2006). Moreover, cultures in MEAs respond to pharmacological 

treatments in similar concentration ranges to those used in in vivo studies (Gramowski, 

Schiffmann, and Gross 2000; Morefield et al. 2000; Gullo et al. 2014), making them 

valuable tools in the screening of pharmacological or toxicological compounds (Kutzing, 

Luo, and Firestein 2011; Kutzing, Luo, and Firestein 2012). 

Using MEA technology to examine changes in the electrical activity of neuronal 

networks also offers advantages over other more traditional electrophysiological 

techniques. MEA recordings are non-invasive, which allows the user to perform multiple 

and long-term recordings that shed light into the dynamic function of networks of 

neurons. Because the cultures are easy to monitor and can survive for extended periods of 

time, it is possible to obtain information from the same cells, or groups of cells, at distinct 

points in time (Gross et al. 1995). In addition, the multiple recording sites make it possible 
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to address interactions between neurons at multiple different locations within the 

network (Wagenaar, Pine, and Potter 2006).  

Perhaps the greatest advantage of MEA technology in recent years has been the 

wide variety of analyses that continue to be developed, improved, and shared to study 

multiple processes and paradigms of interest at the single unit and network level 

(Quiroga, Nadasdy, and Ben-Shaul 2004; Churchland et al. 2010; Fikret E Kapucu et al. 

2012; Harris et al. 2016). Combined measurements of neuronal spiking, bursting, and 

population-wide synchronization with parameters that describe the temporal dynamics 

and variability of neuronal activity have been used successfully to answer questions 

related to neuronal circuit establishment and maturation in different systems (Vogel 2005; 

Gullo et al. 2012). For example, MEAs were used to distinguish between inhibitory and 

excitatory neurons on the basis of the distinct variability in their spiking activity 

(Becchetti et al. 2012) and developmental changes in spike waveform properties (Weir et 

al. 2014). Hence, MEAs represent a valuable tool to obtain spatiotemporal information 

from neuronal circuits.    

 

1.4 Thesis overview 

Cypin is a major regulator of dendrite branching and influences the synaptic 

clustering of the scaffolding protein PSD-95. This dissertation will explore the functional 

implications of altering cypin levels on PSD-95 protein and synaptic function. In Chapters 

2 and 3, we use microelectrode array technology to investigate the changes in neuronal 

circuit dynamics that result from alteration in cypin levels. We use measurements that 

describe both the population-wide activity of the networks as well as changes in spike 
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waveforms and the temporal distribution of activity. In Chapter 4, we examine the effects 

of altering cypin levels on PSD-95 protein expression and synaptic transmission. In 

particular, we study changes in AMPAR-mediated activity using MEAs. Finally, in Chapter 

5 we investigate a new role for cypin as a proteasome interactor.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

 

Chapter 2: Evaluation of the effect of cypin overexpression on overall network 

activity parameters 

 

2.1 Introduction 

The structure and function of neuronal networks undergo constant modification 

and development (Tau and Peterson 2010). A wide range of cues determine the cellular 

and morphological characteristics of a neuron and the circuits they ultimately form. 

Regulation of dendrite formation, branching, and patterning is crucial for the 

establishment of proper neuronal circuitry (Vetter et al. 2012; Kulkarni and Firestein 2012). 

Our laboratory has identified cypin as a core regulator of dendritic arborization in 

hippocampal neurons and has shown that overexpression of cypin during the active 

dendrite branching period results in increased branching (Akum et al. 2004; Charych et al. 

2006; M. Kwon et al. 2011; O’Neill et al. 2015). In addition, cypin was originally identified as 

a protein that interacts with the scaffolding protein PSD-95 and decreases its clustering at 

synapses (Firestein et al. 1999). Cypin has a clear role in the development of dendrite 

branches and is known to bind to PSD-95 (Firestein et al. 1999), affecting PSD-95 

expression levels; however,  its role in regulating synaptic dynamics is currently unclear. 

Multi-site electrophysiological recordings have been used extensively to 

characterize neuronal networks physiologically. Currently, microelectrode arrays (MEAs) 

are the standard technology used to study spatiotemporal changes in neuronal network 

dynamics (reviewed in (Massobrio et al. 2015; Obien et al. 2015)). This is of particular 

benefit when studying the response of neuronal circuitry to toxicological or 

pharmacological compounds, as MEAs allow for monitoring activity before and after 
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treatments in the same neuronal culture (Chiappalone et al. 2007; Fikret Emre Kapucu et 

al. 2016). For example, our laboratory has used MEAs in an in vitro model of traumatic 

brain injury to study the effects of glutamate-mediated neurotoxicity that takes place as 

part of the chemical insult post-mechanical injury (Kutzing, Luo, and Firestein 2011; 

Kutzing, Luo, and Firestein 2012). The results of these studies suggest that exposing 

cortical neurons to different concentrations of excess glutamate results in functionally 

different injury profiles.  

Studying network dynamics using MEAs allows for the monitoring of specific 

parameters that characterize the spontaneous or evoked activity of neuronal networks. 

The activity pattern of a neuronal network typically involves isolated spikes accompanied 

by bursts – periods of high electrical activity when multiple locations within the circuit 

display numerous action potentials during a short period of time (Raichman and Ben-

Jacob 2008). An enhancement in burst strength and synchronization in a neuronal 

network can result as a response to learning stimulations (Chao and Chen 2005). Thus, 

these parameters and analysis tools allow us to study how changing molecular and cellular 

components of a network affect its functionality and dynamics. In addition, establishing 

MEA models of neurological diseases can be used to better understand how neuronal 

communication is altered in these disorders (Gullo et al. 2014). In one such study, 

Gambazzi and colleagues used lentiviral gene transfer to establish a cortical neuron model 

of Huntington’s disease and found that these neurons exhibited a deficit in spike and 

burst rates, while the duration of bursts remained unchanged (Gambazzi et al. 2010).          

The parameters used to describe network dynamics vary between studies, but 

there is a subset of measurements that are extensively employed in the field. For example, 
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the overall spike (G J Brewer et al. 2009; Biffi et al. 2013) and burst rates (Wagenaar, Pine, 

and Potter 2006; Fikret E Kapucu et al. 2012), as well as network synchronization 

(Eisenman et al. 2015; Selinger, Pancrazio, and Gross 2004; Chiappalone et al. 2007), are 

used in the majority of MEA studies that describe global network activity levels. In this 

chapter, we use these analyses to understand the functional consequence of cypin 

overexpression in networks of hippocampal neurons. MEA technology and widely-used 

analysis parameters that describe the overall activity of neuronal networks allow us to 

indirectly study whether changes in dendritic arborization and PSD-95 trafficking via 

cypin overexpression affect the dynamics of neuronal circuits.  

 

2.2 Materials and Methods 

2.2.1 Cell culture 

Neuronal cultures were prepared from hippocampi of Sprague-Dawley rat embryos 

at 18 days of gestation. The hippocampi were mechanically dissociated by pipetting slowly 

through the bore of a fire-polished Pasteur pipette. MEAs (Multi Channel Systems, 

Germany) were coated with 0.5 mg/ml poly-D-lysine (PDL; Sigma) for at least 1 hour, 

washed three times with sterile water, and then coated with 10 μg/ml laminin (Sigma) for 

at least 30 minutes, and cultures were established at a density of 1x106 cells/MEA. Cultures 

were maintained in NbActiv4 medium (BrainBits, LLC) at 37 °C and 5% CO2. Half medium 

changes were performed every other day. All animals were cared for ethically in 

accordance with Institutional Animal Care and Use Committee (IACUC) standards.        

2.2.2 Lentiviral particle production and transduction 
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The lentiviral plasmids were constructed by subcloning cDNAs encoding wild type 

cypin and cypin lacking the PDZ binding motif (cypinΔPDZ) into the control EGFP-

expressing FG12 vector (gift from Dr. Chris Pröschel, University of Rochester School of 

Medicine). Lentiviral particles were generated by transfecting HEK293TN cells (ATCC) 

using the calcium phosphate precipitation method with one of the lentiviral plasmids, the 

packaging plasmid psPAX2, and the envelope plasmid pMD2.G (VSV-G). The medium was 

replaced 24 hours post-transfection and the medium containing viral particles was 

collected 48 hours later, concentrated using PEG-it virus precipitation solution (System 

Biosciences) according to the manufacturer’s instructions, and stored at -80 °C until use. 

HEK293TN cells were maintained and transfected in Dulbecco’s Modified Eagle Medium 

(DMEM; Life Technologies) containing 10% fetal bovine serum (Atlanta Biologicals). 

Neuronal cultures grown on MEAs were transduced on day in vitro (DIV) 10 with lentiviral 

supernatant and half of the culture medium was changed 36 hours later and every other 

day from then on. Successful transduction was confirmed through fluorescence 

microscopy.    

2.2.3 Microelectrode Array Recordings 

Standard MEAs containing 60 planar electrodes (59 recording electrodes and 1 

internal reference electrode), each with a 10 µm diameter and an inter-electrode spacing of 

200 µm (60MEA200/10iR-Ti-gr; Multi Channel Systems, Germany), were used for all 

experiments.  Baseline recordings were performed on DIV10 immediately before lentiviral 

transduction, on DIV17, and on DIV21. Prior to each recording, the culture medium was 

saved and replaced with recording solution (144 mM NaCl, 10 mM KCl, 1 mM MgCl2, 2 mM 

CaCl2, 10 mM HEPES, 2 mM Na-pyruvate, 10 mM glucose, pH 7.4), and the MEA  was 
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placed into the cell culture incubator for 5 minutes to allow it to reach equilibrium. After 

each recording, the cultures were washed twice with fresh culture medium before adding 

the saved conditioned medium. Each MEA was covered with a semipermeable lid (ALA 

MEA-MEM; ALA Scientific) during handling and recordings to prevent contamination 

from airborne pathogens. 

Spontaneous electrical signals were monitored and recorded for 5 minutes using 

the data acquisition commercial software MC_Rack (Multi Channel Systems) as described 

previously by our group (Kutzing, Luo, and Firestein 2011). The temperature of the 

cultures was maintained at 37 °C on a heat-controlled stage and the signals were sampled 

at 20 kHz with an MEA1060-Inv-BC amplifier (Multi Channel Systems).  

2.2.4 Signal Processing 

The raw data were imported into MATLAB (MathWorks, Inc.) using MEA-Tools, 

an open-source toolbox. The signals were filtered through a 4th order Butterworth filter 

(20-2,000 Hz) and a notch filter to remove 60 Hz electric hum. The electrodes that 

exhibited irregular activity or excessive noise were excluded from the analysis. The 

MATLAB routines used for signal processing and data analysis discussed in this section 

were developed by Kate O’Neill, in part based on previous work from our group (Kutzing, 

Luo, and Firestein 2011).  

  2.2.4.1 Spike Detection 

Spikes were detected using an adaptive threshold. Briefly, a spike was defined as a 

signal with voltage exceeding a positive or negative threshold, chosen to be 4.5 standard 

deviations times the background noise for a 10 second window for each recording channel. 



14 
 

 

To ensure that spikes were counted only once on an electrode, spikes were detected at 

their maximum absolute value and interspike intervals (ISIs) had to be longer than 2 ms. 

When spike rate is reported, it refers to the number of spikes divided by the recording 

time (300 seconds). Active electrodes were defined as those whose firing rate was ≥ the 

75th percentile of the distribution.  

2.2.4.2 Burst Detection 

Bursts were defined as an episode of densely packed spikes occurring in a channel. 

For a period of high activity to be classified as a burst, its core had to be composed of at 

least 4 spikes with a maximum ISI between two consecutive spikes of 100 ms (Chiappalone 

et al. 2007). Additional spikes within 200 ms of the burst core or 1/3 times the electrode 

firing rate were included as part of the burst train. When burst rate is reported, it refers to 

the number of bursts divided by the recording time (300 seconds).     

2.2.4.3 Synchrony of Firing  

We measured the synchrony of firing (SF) to assess how the bursting behavior of 

an electrode is correlated to that of the other bursting electrodes. Briefly, SF was defined 

as the number of times a pair of electrodes (x and y) fired together within the same burst 

(Bxy) normalized to the maximum number of times they could fire together (Bx|y; the 

number of bursts recorded from the higher bursting electrode of the two; Kutzing et al. 

2011). 

𝑆𝐹 =
𝐵𝑥𝑦

𝐵𝑥|𝑦
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 The mean synchrony of firing between all electrodes in a culture was calculated 

and reported. 

2.2.5 Statistics 

All data are presented as mean values ± standard error of the mean, with n 

indicating the number of MEAs. All statistical analyses were performed using Prism 7.0 

(GraphPad, La Jolla, CA) with p<0.05 representing statistical significance.   

 

2.3 Results 

2.3.1 Hippocampal neurons cultured on MEAs exhibit spontaneous electrical 

activity  

To study the consequence of altering cypin levels in neuronal network activity, we 

first cultured primary rat hippocampal neurons on MEAs (Fig. 2-1A, B). We chose to 

maintain these hippocampal cultures in NbActiv4 medium, a serum-free cell culture 

medium that promotes higher spike rates in neuronal networks by enhancing 

synaptogenesis, not solely by promoting the growth of astroglia (Gregory J. Brewer et al. 

2008). Our neuronal culture protocol was optimized to achieve healthy hippocampal 

cultures that remain electrically active for at least three weeks in culture.  

We monitored and recorded the spontaneous electrical activity of the networks 

starting at DIV10 using the data acquisition software MC_Rack. Since we previously 

reported that cypin alters distal dendrite branching at this timepoint (Akum et al. 2004; 

O’Neill et al. 2015), DIV10 represents an appropriate timepoint to begin our network 

activity experiments. We found that network-wide robust spiking and bursting behavior 
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was evident (Fig.  2-1C, D) at this point in functional development of the networks, and 

DIV10 was chosen as the baseline timepoint for all future experiments. 

 

Figure 2-1. Hippocampal neurons grown on MEAs exhibit spontaneous electrical 

activity. (A) Recording area of an MEA at DIV10 (4X). Hippocampal neurons were 

cultured on MEAs for up to three weeks. (B) Zoomed in image of hippocampal 

neurons on electrode contacts. There is an inter-electrode spacing of 200 µm. (C,D) 

Neuronal networks at DIV10 exhibit spontaneous activity consisting of isolated 
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spikes and organized bursting events, as displayed on MC_Rack software during a 

recording. 

To confirm that the recorded activity was transmitted synaptically, we recorded 

the electrical activity of the networks in the presence of a combination of synaptic 

blockers: 5 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 20 μM bicuculline, and 20 

μM (2R)-amino-5-phosphonovaleric acid (APV) (Fig. 2-2). The cocktail of synaptic 

blockers was added to the recording medium for the duration of the 5 minute 

equilibration prior to recording. This treatment resulted in a dramatic decrease in the 

overall spiking activity of the networks, confirming that the recorded activity resulted 

from action potentials induced by synaptic transmission.     

 

Figure 2-2. Recorded activity on MEAs is transmitted synaptically. (A) The cultures 

show a high level of activity prior to exposure to synaptic blockers at DIV14. Each 

dot represents a recorded spike. (B) Treatment with synaptic blockers almost 

completely abolishes the spontaneous electrical activity of the networks. 
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2.3.2 Lentiviral gene transfer in dense neuronal cultures on MEAs 

 The high cell density necessary to achieve robust network activity on MEAs 

represented a challenge when selecting a method to overexpress cypin in our cultures and 

assess the effects on neuronal network dynamics. We have extensive experience in 

transfection using a variety of methods, including nucleofection (Carrel et al. 2009), 

lipofection (Akum et al. 2004; Charych et al. 2006; M. Kwon et al. 2011; Sweet et al. 2011; 

O’Neill et al. 2015), and the calcium phosphate transfection method (Munjin Kwon and 

Firestein 2013; Tseng and Firestein 2011) in standard neuronal cultures. While these 

methods offer many advantages concerning ease of use, reproducibility, and cell survival, 

their inherent drawback lies in the fact that transfection efficiency in primary neurons is 

not high enough to study protein expression differences in a reliable manner. Lentiviruses 

are known to integrate stably into the host-cell genome of dividing and non-dividing cells 

(Karra and Dahm 2010; Geraerts et al. 2006). Therefore, they represent an attractive and 

efficient vehicle for stable gene transfer in neurons.  

 We constructed lentiviral vectors, produced lentiviral particles, and infected dense 

hippocampal cultures on MEAs at DIV10 immediately after baseline recording. 

Concentrated lentiviral particles were added to the culture medium, and the medium was 

replaced 36 hours later to avoid excessive toxicity. GFP expression was evident 4 days after 

transduction.  Figure 2-3 shows representative images of successfully transduced 

hippocampal cultures on MEAs. All transduced MEAs were visually inspected under a 

fluorescence microscope to confirm successful transduction based on GFP expression. 

When GFP expression was not extensive, the cultures were excluded from subsequent 

analyses.  
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Figure 2-3. Transduced cultures on MEAs exhibit a high proportion of GFP-positive 

neurons. (A) Brightfield and fluorescence images (100X) of transduced MEA 

cultures at DIV17. Scale bar is 100 µm. (B) Higher magnification (200X) confirms 

that a high fraction of the cultured neurons express GFP. Scale bar is 50 µm.   

Sister cultures were maintained in 6-well plates. We isolated protein from cell 

lysates of these cultures at DIV21 and subjected the samples to Western blot analysis to 

confirm transfection and expression efficiencies (see Chapter 4). Reproducible 

transduction efficiencies and protein expression confirmed that this method was the best 

gene transfer tool for the purposes of this project. 
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2.3.3 The effect of cypin overexpression on the spiking activity of neuronal 

networks 

Hippocampal neurons were cultured on MEAs and transduced with lentivirus on 

DIV10 to overexpress GFP-tagged cypin or cypin lacking the PDZ binding motif 

(cypinΔPDZ). Cultures overexpressing only GFP were used as controls. The electrical 

activity of the neuronal networks was monitored and recorded on DIVs 17 and 21. Our 

cultures exhibited extensive GFP expression by DIV17 (Fig. 2-3), a time at which MEA 

networks have been shown to have mature connections and a balance of inhibitory and 

excitatory synapses (Köller et al. 1990; Chiappalone et al. 2007). 

We found that the overall spiking activity of the cultures decreased by DIV17 and 

remained at this lower level until DIV21, regardless of condition; networks that 

overexpressed cypin demonstrated a significantly lower decrease in spike rate when 

compared to control networks (Fig. 2-4). This global decrease in activity is consistent with 

the notion that during the establishment and maturation of synapses within neural 

circuits, connections undergo continuous modification and refinement (Tau and Peterson 

2010; Biffi et al. 2013). Early synaptic connections tend to be brief and frequent and give 

way to the more stable connections characteristic of mature circuits. Spontaneous average 

firing rates are negatively correlated with the extent of clustering (i.e., connection) in a 

network (Litwin-Kumar and Doiron 2012). Elimination of the PDZ-binding motif does not 

eliminate the effect of cypin overexpression (Fig. 2-4). Therefore, it is plausible that cypin 

overexpression promotes decreased functional connectivity within the neurons in a 

network and that this is not dependent on PSD-95 or PSD-95 family members binding.   
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Figure 2-4. Spike Rate decreases over time for all conditions. We found that the 

rate of spiking activity decreased over time for control networks (**p < 0.01) with 

respect to its baseline. Networks that overexpress cypin show no decrease in spike 

rate at DIV21 (*p < 0.05 for DIV17 and p = 0.0774 at DIV21) when compared to its 

baseline. The spike rate of networks that overexpress cypinΔPDZ demonstrate no 

decrease in spike rate on both DIV 17 and 21. Statistics were calculated by two-way 

ANOVA followed by Tukey’s multiple comparisons test vs. baseline for each 

condition (n = 12 for control, 14 for cypin and 11 for cypinΔPDZ). Extreme outliers 

were removed when identified by Grubb’s test with α = 0.05.  

 We calculated the average number of active spiking electrodes to confirm that the 

reductions in detected activity were not due to a failure of our system to detect signals at 

later timepoints. Active electrodes were defined when spike rate was ≥ the 75th percentile 

of the distribution of spike rates for a particular culture. We found that the average 

number of active electrodes was similar for all timepoints and all conditions (Fig. 2-5), 

suggesting that the observed decrease in activity was due to developmental changes in the 

network and/or our experimental manipulations.       
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Figure 2-5. The number of active spiking electrodes is consistent between 

conditions. The average number of active electrodes was similar for all timepoints 

and experimental conditions. No statistical differences were observed as 

determined by two-way ANOVA followed by Tukey’s multiple comparisons test (n = 

12 for Control, 14 for Cypin and 11 for CypinΔPDZ). 

 Although the number of active electrodes proved to be a stable measurement, we 

observed high trial-to-trial variability associated with spiking data. This has been 

previously reported by others (Fikret E Kapucu et al. 2012; Litwin-Kumar and Doiron 2012; 

Fikret Emre Kapucu et al. 2016) and was visually evident when monitoring the activity 

during recordings as well as when displaying the spike rate distribution of individual 

cultures. To determine if the initial level of spiking activity dictates how active a culture 

remains over time, we classified the cultures depending on the initial average number of 

spikes detected: low baseline (<2,000 spikes),  intermediate baseline (2-10,000 spikes), and 

high baseline (>10,000 spikes) (Fig. 2-6). Since 2,000 spikes is a low activity threshold, we 

also analyzed intermediate and high baselines (>2,000 spikes) in combination to further 

elucidate if low baselines influence the observed global variability. 
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 Overall average spike rate of the networks decreased over time regardless of the 

condition (Fig. 2-6A, corresponding to Fig. 2-4 results). Spike rates decreased dramatically 

by DIV17 and stabilized until DIV21. Cultures with baselines under 2,000 spikes (Fig. 2-6B) 

exhibited little to no change in the average spike rates over time for all conditions with the 

exception of an increase in spiking for control networks on DIV17. Coincidentally, that 

specific timepoint displayed the highest level of variability between control cultures. 

When considering the group of cultures with baselines of >2,000 spikes (Fig. 2-6C), it 

becomes evident that these networks behave almost identically to the overall group 

including the low baseline cultures (ALL, Fig. 2-6A). These data imply that low baseline 

cultures do not make a large contribution to the overall spike rate reduction observed 

when considering the full distribution of spike rates. In contrast to data for all spikes and 

>2,000 spikes (Fig. 2-6A, C), the spike rate of networks with intermediate baselines that 

overexpress cypin remain relatively unchanged over time while networks overexpressing 

GFP and cypinΔPDZ show the observed trend towards a decrease in spike rate over time. 

Finally, cultures with initial high spike rates (Fig. 2-6E) show significant reductions in 

activity by DIV17 and DIV21 regardless of the condition.  
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Figure 2-6. Changes in spike rate based on baseline activity levels. The extent of 

spike rate decrease is dependent on initial level of activity. (A) Spike rates 

decreased dramatically by DIV17 and stabilize until DIV21 (n = 12 for Control, 14 for 

Cypin and 11 for CypinΔPDZ). (B) Spike rates exhibit little to no change for cultures 

with low baselines (n = 4 for Control, 3 for Cypin and 4 for CypinΔPDZ). (C) Low 

baseline cultures do not contribute to the overall spike rate reduction (n = 8 for 

Control, 11 for Cypin and 7 for CypinΔPDZ). (D) Network activity of cultures with 

intermediate baselines shows little to no change after cypin overexpression (n = 5 

for Control, 6 for Cypin and 3 for CypinΔPDZ). (E) Spike rates decrease for all 
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conditions in networks with high baselines (n = 3 for Control, 5 for Cypin and 4 for 

CypinΔPDZ). Statistics were calculated with respect to each group’s baseline by 

two-way ANOVA followed by Tukey’s multiple comparisons test (*p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001). Extreme outliers were removed when identified 

by Grubb’s test with α = 0.05.    

In summary, the spike rate of cultures with initially low baselines were not affected 

by network development or cypin overexpression. In contrast, cultures with high baselines 

show the greatest reductions in spike rates over time for all conditions. Our data suggest 

that when cypin is overexpressed in cultures with intermediate baselines, the spike rate, 

and potentially the functional connectivity, remain unchanged. Interestingly, the average 

spike rate of networks that overexpress cypinΔPDZ only changes at higher baselines. One 

possible explanation is that networks of neurons overexpressing cypin and cypinΔPDZ 

take longer to mature, hence demonstrating smaller decreases in firing. Our data suggest 

that cypin overexpression has different effects on network activity and that the effects are 

dependent on the initial spike rate.   

2.3.4 The effect of cypin overexpression on the bursting activity of neuronal 

networks 

Bursts, or periods of organized high frequency spiking, are characteristic of 

developing and mature neuronal networks (Wagenaar, Pine, and Potter 2006; Biffi et al. 

2013).  We measured the level of spontaneous bursting activity that occurred in our 

networks over time and found that burst rates did not decrease significantly over time 

(Fig. 2-7). It is important to note that the variability of the baseline responses renders the 
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results more difficult to interpret, although bursting levels do not depend on initial 

bursting (data not shown) as spiking levels do.  

 

Figure 2-7. Spontaneous bursting rate does not significantly change over time. 

Cypin or cypinΔPDZ overexpression results in no significant changes to bursting 

activity.   No statistical differences were observed as determined by two-way 

ANOVA followed by Tukey’s multiple comparisons test (n = 12 for Control, 14 for 

Cypin and 11 for CypinΔPDZ). Extreme outliers were removed when identified by 

Grubb’s test with α = 0.05. 

 We calculated the average number of active bursting electrodes with burst rates ≥ 

the 75th percentile of the distribution of bursting rates for a particular culture. We found 

that the average number of active electrodes was similar between conditions at DIVs 10 

and 21 (Fig. 2-8).  The average number of active electrodes remained unchanged for 

networks overexpressing cypin between DIV10 and DIV21.   
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Figure 2-8. The number of active bursting electrodes. The average number of active 

electrodes remained consistent for cypin networks over time. No statistical 

differences were observed as determined by two-way ANOVA followed by Tukey’s 

multiple comparisons test (n = 12 for Control, 14 for Cypin and 11 for CypinΔPDZ). 

 To further investigate the bursting behavior of the networks, we calculated the 

average burst duration (Fig. 2-9) and the average number of spikes that made up each 

burst (Fig. 2-10). It is interesting to note that although the baseline bursting behavior was 

highly variable between conditions, the temporal length of the bursts remained constant 

over time (Fig. 2-9). These data suggest that the burst duration is not dependent on the 

level of bursting in our cultures.  
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Figure 2-9. Average burst width. The temporal length of bursting events is constant 

over time. No statistical differences were observed as determined by two-way 

ANOVA followed by Tukey’s multiple comparisons test (n = 12 for Control, 14 for 

Cypin and 11 for CypinΔPDZ). 

Similarly, the average number of spikes per burst remained consistent between 

conditions (Fig. 2-10). There was a statistically significant increase observed by DIV21 in 

networks overexpressing cypin, corresponding with the trend observed for temporal 

duration of the bursts. Spike composition and burst duration do not appear to be directly 

related to burst rate; however, our data suggests that bursting behavior is more robust in 

networks that overexpress cypin than in other experimental conditions.      
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Figure 2-10. The average number of spikes per burst is consistent between 

conditions and timepoints; however, there is an increase (*p<0.05) in the average 

number of spikes that make up bursts in networks that overexpress cypin in DIV21 

when compared to its baseline. Statistics were calculated by two-way ANOVA 

followed by Tukey’s multiple comparisons test (n = 12 for Control, 14 for Cypin and 

11 for CypinΔPDZ). Extreme outliers were removed when identified by Grubb’s test 

with α = 0.05. 

2.3.5 Changes in synchrony of firing after cypin overexpression 

 To further understand whether the detected activity was organized, we calculated 

the synchrony of firing of bursting events. For this, we calculated the synchrony between 

every pair of electrodes and then calculated the mean between all the bursting pairs. As 

with bursting activity, we found that the initial synchrony of firing was highly variable 

between conditions (Fig. 2-11). The synchrony of firing in control and cypinΔPDZ 

networks demonstrated little to no change over time even though their respective 

baselines were n0t similar. It remains a possibility that this is a result of averaging small 

increases and decreases in synchronization. It is interesting to note that cypin networks 



30 
 

 

exhibited the highest baseline bursting levels of all conditions but are not necessarily the 

most synchronized at that timepoint. This suggests that synchronized firing is not directly 

related to the amount of bursts exhibited by our networks. 

 

Figure 2-11. The effect of cypin overexpression on synchronized firing. Networks 

overexpressing GFP, cypin and cypinΔPDZ display little to no change in synchrony. 

No statistical differences were observed as determined by two-way ANOVA 

followed by Tukey’s multiple comparisons test (n = 12 for Control, 14 for Cypin and 

11 for CypinΔPDZ). Extreme outliers were removed when identified by Grubb’s test 

with α = 0.05. 

 

2.4 Discussion 

 In this chapter, we used MEAs to examine the functional consequence of 

overexpressing cypin or the mutant cypinΔPDZ in hippocampal neuronal networks. We 

successfully established hippocampal cultures on MEAs and validated the analysis 

parameters previously used by our group to study functional changes in cortical networks 
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(Kutzing, Luo, and Firestein 2011). We found that hippocampal neurons exhibited robust 

spiking and bursting activity by DIV10, similar to what has been reported by others (Biffi 

et al. 2013). Since cypin promotes enhanced dendrite branching at this timepoint, we 

chose to transduce and alter cypin levels. Although lentiviral transduction has been shown 

to produce low toxicity in neuronal cultures (Geraerts et al. 2006), it is necessary to note 

that transduction may have produced a mild injury to our cultures and could have affected 

electrical activity. For the purposes of this analysis, we assume that since all cultures were 

transduced in the same manner, any adverse effects resulting from transduction affected 

all the cultures equally. Only cultures that were GFP-positive, visually healthy, and 

exhibited detectable spontaneous activity were used for further analysis. 

 We maintained sister cultures that were seeded and transduced in parallel to MEA 

cultures. Western blot analyses of protein lysates from these cultures confirmed cypin 

overexpression. Due to the high density of these cultures, we could not perform dendrite 

branching analysis. However, we have published extensively on the increased dendrite 

branching observed after cypin overexpression (Akum et al. 2004; M. Kwon et al. 2011; 

Charych et al. 2006; O’Neill et al. 2015) and infer that our cultures on MEAs also exhibited 

enhanced branching.  

 We measured the overall rate of spiking of the cultures immediately before 

transduction (baseline), 7 days later (DIV17), and 11 days later (DIV21). We observed that 

the overall rate of isolated spikes decreased by DIV17 for all conditions and stabilized until 

DIV21 and that this was not dependent on the number of electrodes that remained active. 

As networks mature, their firing rate is known to plateau (Tau and Peterson 2010; Biffi et 

al. 2013), which could explain the lack of change in activity from DIV17 to DIV21. The fact 
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that networks that overexpressed cypin and cypinΔPDZ demonstrated a lower degree of 

reduction in activity could be due to an enhanced ability to receive inputs due to 

increased dendrite branching (Charych et al. 2006). Moreover, a computational model of 

networks with clustered connections based on anatomical evidence showed that highly 

clustered networks demonstrate dynamic transitions between episodes of high and low 

firing rate (Litwin-Kumar and Doiron 2012). Due to the high cell density of our cultures, 

we hypothesize that this could occur in our system and that changes in activity that occur 

over short periods of time could be masked by averaging. We address these possibilities in 

in the next chapter.    

 A more detailed examination of the temporal change in spike rate revealed that 

cypin overexpression has slightly different effects on network activity and that this is 

dependent on the initial spike rate and independent of PSD-95 or PSD-95 family member 

binding. It is interesting to note that even when grouping the MEAs based on their 

average baseline activity, the inherent trial-to-trial variability is still evident (refer to 

baseline activity in Fig. 2-6E for example). 

 Bursting events are characteristic of neuronal networks and they represent periods 

of spatiotemporally organized activity. We found that the networks displayed no changes 

to bursting activity over time. We further characterized the bursting behavior of the 

networks by calculating the average burst width and the average number of spikes per 

burst. We found that the average temporal length of the bursts remained unchanged 

between conditions and over time, suggesting that burst length is not dependent on the 

rate of bursting. These data agree with a study by Gambazzi and colleagues showing that 
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the frequency of bursting events, and not the duration, is dependent on the overall activity 

of the network (Gambazzi et al. 2010).  

We observed an increase in the average number of spikes per burst over time for 

all conditions, with networks overexpressing cypin exhibiting the highest participation of 

spikes in bursts. Overall, our data suggest that bursting behavior is unchanged in 

networks that overexpress cypin. However, variability is quite high, potentially masking 

any effects of cypin overexpression. In fact, when we calculated the overall average 

synchrony of firing of bursting events, we observed a trend towards an average increased 

synchronized firing of cypin networks over time that was not observed in control or 

cypinΔPDZ networks. It is important to note that this synchrony of firing describes 

instances when any two electrodes exhibited a bursting event at the same time and is thus 

possible to mask or exaggerate subtle effects by averaging. 

Overall, the global network effects observed as a consequence of overexpressing 

cypin and cypinΔPDZ were subtle. We do not reject the possibility that, in addition to the 

high variability between trials, changes in our global parameters could be short-lived or 

not large since they include the full network. Given the high cell density and long time 

between transduction and recording, it is possible that compensatory mechanisms come 

into play and the network reaches homeostasis.  
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Chapter 3: Analysis of spiking variability after cypin overexpression 

 

3.1 Introduction 

One of the major goals of the neuroscience community is to understand the basic 

elements and functioning of neuronal network circuits. However, high variability in the 

spontaneous activity of neurons and in neuronal responses to stimuli represents a 

significant challenge for neuronal information processing (Moreno-Bote 2014). Numerical 

simulations have shown that spiking neurons emit chaotic and non-repetitive signals that 

are sensitive to small perturbations (Litwin-Kumar and Doiron 2012; Kuebler and 

Thivierge 2014). Analysis becomes increasingly challenging when simultaneously 

measuring the activity of many neurons, as is the case of microelectrode array recordings. 

Nevertheless, MEAs continue to be the gold standard to study how networks of neurons 

behave since MEAs allow for the recording of network activity without disrupting the 

natural functioning of the network, and various modifications that can be implemented to 

both the design and processing of MEAs and analysis of the obtained signals.          

Development of methods to quantify spiking variability has gained significant 

attention in the field as it is now understood that the mean rate of activity provides an 

incomplete, yet valuable, characterization of neuronal network responses (Ponce-Alvarez, 

Kilavik, and Riehle 2010; Churchland et al. 2010; Kuebler and Thivierge 2014). Studying 

spiking variability provides a fuller understanding of how activity changes over time and 

exposes activity patterns that arise and might be masked when averaging. This analysis 

has proven valuable in studies that range from in vitro networks (Gullo et al. 2012; 

Becchetti et al. 2012) to animal studies (Churchland et al. 2010; Lei et al. 2011; White, 
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Abbott, and Fiser 2012) to computational models (Christodoulou and Cleanthous 2011; 

Litwin-Kumar and Doiron 2012; Moreno-Bote 2014). For example, a study by Churchland 

and colleagues (Churchland et al. 2010) showed a decline in the firing rate variability of 

neuronal responses in various areas of the feline cortex after the presentation of stimuli. 

Interestingly, they found that this stimulus-driven variability decrease was not dependent 

on the level of mean firing rate.       

The most widely used statistics to measure spiking variability are the Fano factor 

(FF; Eden & Kramer 2010) and the coefficient of variation of interspike intervals (CV; 

Christodoulou & Bugmann 2001). The Fano factor measures the dispersion of the spike 

count distribution and is defined as the ratio of the variance to the mean of the number of 

spikes emitted in a fixed time interval. This statistic can be used to compare how the 

observed variability compares to that of a purely random, Poisson, process. For a Poisson 

process, the Fano factor is theoretically equal to 1 and Fano factors above 1 are said to 

denote higher variability in the firing rate (Eden and Kramer 2010; Kuebler and Thivierge 

2014). In an example of how the Fano factor has been a valuable tool, Becchetti and 

colleagues demonstrated that the Fano factor was a reliable measure to distinguish 

between excitatory and inhibitory neurons in an MEA study of neocortical cultures from 

mice expressing GFP in GABAergic cells (Becchetti et al. 2012).          

In contrast, the coefficient of variation (CV) of interspike intervals measures 

spiking variability in terms of precise spike timing. The CV is defined as the ratio of the 

standard deviation to the mean of the interspike intervals (William R Softky 1992). Similar 

to the Fano factor, neurons with spike trains that behave like a Poisson process are 

expected to have a CV equal to 1 and high CV values denote higher variability in spike 
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timing. In fact, cortical neurons have highly irregular interspike intervals (W R Softky and 

Koch 1993). Many factors have been proposed to be responsible for this high variability, 

with a balance of excitation and inhibition (Shadlen and Newsome 1994) and temporally-

modulated synaptic inputs (Knoblauch 2012) being among the most prominent ones. 

Finally, spike sorting algorithms allow us to uncover details about the individual 

signals that comprise the overall activity of a network. Each electrode in a microelectrode 

array will more than likely record activity from multiple neurons, especially in the case of 

high density cultures. Different neurons can fire in response to different stimuli, and thus, 

it is valuable to determine specific information about the spikes (Hernan Gonzalo Rey, 

Pedreira, and Quian Quiroga 2015). Each spike has a particular shape, and this is 

dependent on the morphology of the dendritic tree of the neuron, the distance from the 

neuron to the electrode, the coupling between the neuron and the electrode, and the 

properties of the recording medium (Gold et al. 2006; Fendyur et al. 2011; Hernan Gonzalo 

Rey, Pedreira, and Quian Quiroga 2015). The importance and value of spike sorting is best 

illustrated by a study where patients with epilepsy had electrodes implanted into the 

hippocampus and were presented with visual stimuli (Hernan G. Rey et al. 2015). Spike 

sorting based on waveform shape revealed that a subset of the neurons were selective to 

specific and individual stimuli regardless of an absence of firing rate changes.       

In this chapter, we use multiple parameters mentioned above to study spiking 

variability after cypin overexpression in neuronal circuits. We applied these tools at the 

network level and uncovered changes that were not possible to isolate when only 

considering the mean rates of firing and synchronized bursting.   
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3.2 Materials and Methods 

3.2.1 Cell culture 

Neuronal cultures were prepared from hippocampi of Sprague-Dawley rat embryos 

at 18 days of gestation. The hippocampi were mechanically dissociated by pipetting slowly 

through the bore of a fire-polished Pasteur pipette. MEAs (Multi Channel Systems, 

Germany) were coated with 0.5 mg/ml poly-D-lysine (PDL; Sigma) for at least 1 hour, 

washed three times with sterile water, and then coated with 10 μg/ml laminin (Sigma) for 

at least 30 minutes, and cultures were established at a density of 1x106 cells/MEA. Cultures 

were maintained in NbActiv4 medium (BrainBits, LLC) at 37 °C and 5% CO2. Half medium 

changes were performed every other day. All animals were cared for ethically in 

accordance with Institutional Animal Care and Use Committee (IACUC) standards.        

3.2.2 Lentiviral particle production and transduction 

The lentiviral plasmids were constructed by subcloning cDNA encoding wild type 

cypin or cypin lacking the PDZ binding motif (cypinΔPDZ) into the control FG12 vector 

containing EGFP for expression (gift from Dr. Chris Pröschel, University of Rochester 

School of Medicine). Lentiviral particles were generated by transfecting HEK293TN cells 

(ATCC) using the calcium phosphate precipitation method with one of the lentiviral 

plasmids, the packaging plasmid psPAX2, and the envelope plasmid pMD2.G (VSV-G). 

The medium was replaced 24 hours post-transfection, and the medium containing viral 

particles was collected 48 hours later, concentrated using PEG-it virus precipitation 

solution (System Biosciences) according to the manufacturer’s instructions, and stored at -

80 °C until use. HEK293TN cells were maintained and transfected in Dulbecco’s Modified 

Eagle Medium (DMEM; Life Technologies) containing 10% fetal bovine serum (Atlanta 
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Biologicals). Neuronal cultures grown on MEAs were transduced on day in vitro (DIV) 10 

with lentiviral supernatant, and half of the culture medium was changed 36 hours later 

and every other day from then on. Successful transduction was confirmed through 

fluorescence microscopy.    

3.2.3 Microelectrode Array Recordings 

Standard MEAs containing 60 planar electrodes (59 recording electrodes and 1 

internal reference electrode), each with a 10 µm diameter and an inter-electrode spacing of 

200 µm (60MEA200/10iR-Ti-gr; Multi Channel Systems, Germany), were used for all 

experiments.  Baseline recordings were performed on DIV10 immediately before lentiviral 

transduction, on DIV17, and on DIV21. Prior to each recording, the culture medium was 

saved and replaced with recording solution (144 mM NaCl, 10 mM KCl, 1 mM MgCl2, 2 mM 

CaCl2, 10 mM HEPES, 2 mM Na-pyruvate, 10 mM glucose, pH 7.4), and the MEA  was 

placed into the cell culture incubator for 5 minutes to allow it to reach equilibrium. After 

each recording, the cultures were washed twice with fresh culture medium before adding 

the saved conditioned medium. Each MEA was covered with a semipermeable lid (ALA 

MEA-MEM; ALA Scientific) during handling and recordings to prevent contamination 

from airborne pathogens. 

Spontaneous electrical signals were monitored and recorded for 5 minutes using 

the data acquisition commercial software MC_Rack (Multi Channel Systems) as described 

previously by our group (Kutzing, Luo, and Firestein 2011; Kutzing, Luo, and Firestein 

2012). The temperature of the cultures was maintained at 37 °C on a heat-controlled stage 

and the signals were sampled at 20 kHz with an MEA1060-Inv-BC amplifier (Multi 

Channel Systems).  
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3.2.4 Signal Processing 

The raw data were imported into MATLAB (MathWorks, Inc.) using MEA-Tools, 

an open-source toolbox. The signals were filtered through a 4th order Butterworth filter 

(20-2,000 Hz) and a notch filter to remove 60 Hz electric hum. The electrodes that 

exhibited irregular activity or excessive noise were excluded from the analysis. The 

MATLAB routines used for signal processing and data analysis discussed in this section 

were developed by Kate O’Neill, in part based on previous work from our group (Kutzing, 

Luo, and Firestein 2011).  

  3.2.4.1 Spike Detection 

Spikes were detected using an adaptive threshold. Briefly, a spike was defined as a 

signal with voltage exceeding a positive or negative threshold, chosen to be 4.5 standard 

deviations times the background noise for a 10 second window for each recording channel. 

To ensure that spikes were counted only once on an electrode, spikes were detected at 

their maximum absolute value and interspike intervals (ISIs) had to be longer than 2 ms. 

When spike rate is reported, it refers to the number of spikes divided by the recording 

time (300 seconds). Active electrodes were defined as those whose firing rate was ≥ the 

75th percentile of the distribution.  

3.2.5 Measurements of Spiking Variability 

 3.2.5.1 Fano Factor 

The spike count variability was measured by the Fano factor (FF). This parameter 

is used extensively (Churchland et al. 2010; White, Abbott, and Fiser 2012; Scaglione et al. 

2011; Gullo et al. 2012) to broaden the understanding of neuronal network activity patterns; 
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it is defined as the ratio of the variance to the mean of the spike count in a given time 

interval (Eden and Kramer 2010):  

𝐹𝐹 =  
𝜎2(𝑠𝑝𝑖𝑘𝑒 𝑐𝑜𝑢𝑛𝑡)

𝑚𝑒𝑎𝑛(𝑠𝑝𝑖𝑘𝑒 𝑐𝑜𝑢𝑛𝑡)
 

 For every 300 seconds recording, we calculated a FF every 10 seconds and averaged 

all FF to obtain the mean Fano factor of the entire network. We process our data 10 

seconds at a time, and this allowed us to incorporate the FF calculation into our analysis 

in a straightforward manner. For a random process with a Poisson distribution, the Fano 

factor is theoretically 1 (Eden and Kramer 2010; Gambazzi et al. 2010). In contrast, regular 

spike rates exhibit a FF equal to 0. High Fano factors are characteristic of irregular spiking 

(Churchland et al. 2010; Litwin-Kumar and Doiron 2012).      

3.2.5.2 Interspike Interval 

The interspike interval (ISI) is a measurement of the period of time between two 

consecutive spikes (W R Softky and Koch 1993; Kuebler and Thivierge 2014). ISI 

distributions provide valuable information about the temporal spiking patterns produced 

by neuronal networks. We calculated ISIs for every spike (minus one) per electrode to 

generate the distribution of ISIs for each of the 59 recording electrodes. We computed the 

average of the ISIs of all electrodes and obtained the mean ISI for each entire network.  

3.2.5.3 Coefficient of Variation  

The coefficient of variation (CV) is a standard measurement of the ISI variability 

(Vogel 2005). It is defined as the ratio of the standard deviation to the mean of the ISI (W 

R Softky and Koch 1993; Kuebler and Thivierge 2014): 
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𝐶𝑉 =  
𝜎(𝐼𝑆𝐼)

𝑚𝑒𝑎𝑛(𝐼𝑆𝐼)
 

We calculated CVs for every electrode to generate the distribution of CVs for each of the 

59 recording electrodes. We computed the average of all CVs to obtain the mean CV for 

each entire network. For a random process with a Poisson distribution, the CV is 1. CV 

tends to 0 for regular spike trains and is larger than 1 for irregular firing (W R Softky and 

Koch 1993).  

3.2.6 Spike Sorting 

 We applied Wave clus, a spike sorting algorithm (Quiroga, Nadasdy, and Ben-

Shaul 2004), to obtain information about individual neurons within our networks. Spike 

sorting extracts features from each spike and clusters them in classes that best reflect their 

shape. To do so, Wave clus calculates the wavelet transform for each spike and uses a set 

of the obtained wavelet coefficients as input for a clustering algorithm based on k-nearest 

neighbor interactions (Blatt, Wiseman, and Domany 1996). Using the wavelet transform 

instead of principal component analysis (PCA) to extract the shape information is 

advantageous because it allows for more specific discerning of spike features (Quiroga, 

Nadasdy, and Ben-Shaul 2004; Hernan Gonzalo Rey, Pedreira, and Quian Quiroga 2015).  

 We first detected individual spikes as described above. For each detected spike, we 

collected a spike time stamp and a waveform cutout spanning 1 ms before and 2.2 ms after 

the spike absolute maxima (Fig. 3-1). The obtained waveform cutouts were sorted using 

the unsupervised Wave clus algorithm. After automatic clustering, we performed the 

suggested minor manual tuning (Quian Quiroga 2004) to improve the sorting accuracy. 
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All detected spikes for each condition and timepoints were included in the spike sorting 

analysis. 

 

Figure 3-1. Spike cutout schematic. Spike waveform cutouts spanning 1 ms (19 data 

points) prior and 2.2 ms (44 data points) after the absolute maximum value of the 

spike (represented by *) were stored and sorted. All spikes were aligned by setting 

their maximum at data point 20.    

3.2.7 Statistics 

All data are presented as mean values ± standard error of the mean (s.e.m.), with n 

indicating the number of MEAs. All statistical analyses were performed using Prism 7.0 

(GraphPad, La Jolla, CA) with p<0.05 representing statistical significance.   

 

3.3 Results 

3.3.1 Cypin overexpression increases spike count variability 

 We calculated the Fano factor as a measure of the variability in the spike count 

over periods of 10 seconds. We found that networks exhibited steady average Fano factors 

of 3.03 – 3.10 at baseline, suggesting that the firing rate of the networks is inherently 

irregular at this timepoint (Fig. 3-2). Cypin overexpression significantly increased the 
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Fano factor by DIV21. These data suggest that although the mean spike rate of networks 

that overexpress cypin decreases over time, as shown in Chapter X, mean variability in 

firing rate increases.  

High Fano factors have been observed in other systems (Churchland et al. 2010), 

and it is not uncommon for an MEA study to report this level of spike count variability 

(Weir et al. 2014). Highly clustered networks exhibit high Fano factors, raising the 

possibility that overexpression of cypin causes subsets of connected neurons in a network 

to become better connected functionally (Litwin-Kumar and Doiron 2012). This introduces 

slow fluctuations in firing rate accompanied by high spiking variability. Fano factors can 

be calculated for any given time window at the discretion of the researcher and 

determined based on the system under study. It is important to note that Fano factors 

increase as a function of time window length (Vogel 2005; White, Abbott, and Fiser 2012; 

Litwin-Kumar and Doiron 2012), and 10 seconds is considered a large time window for this 

measurement.  

 

Figure 3-2. Spike count variability increases over time in networks that overexpress 

cypin. The FF increases after cypin overexpression (*p < 0.05 for DIV21), and this 
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increase is not dependent on PSD-95 binding. Statistics were calculated by two-way 

ANOVA followed by Tukey’s multiple comparisons test (n = 12 for control, 14 for 

cypin and 11 for cypinΔPDZ). Extreme outliers were removed when identified by 

Grubb’s test with α = 0.05.  

3.3.2 Influence of spike rate on variability  

 We sought to determine whether variability in spike count is dependent on the 

spike rate. The relationship between spike rate and spike count variability for each 

network is summarized in Fig. 3-3. For each culture, the Fano factor is plotted versus the 

spike rate. Hence, each line represents data from a single culture over time with one data 

point each for baseline, DIV17, and DIV21. High variability occurs in this relationship 

within each condition over time and between conditions (Fig. 3-3). In fact, we found that 

the distribution of Fano factors is significantly different in the control condition between 

baseline and DIV21 (Mann-Whitney U test, p < 0.05) and for the cypin condition between 

baseline and DIV17 (Mann-Whitney U test, p < 0.01). The remaining Fano factor 

distributions did not show significant differences over time. We calculated the average 

non-parametric Spearman’s rank correlation coefficients (Spearman’s rho) for each 

condition and found no significant correlations between FF and spike rate. The high trial-

to-trial variability renders this relationship difficult to interpret, yet differences in spike 

rate have been shown to influence spike count variability (Vogel 2005).      
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Figure 3-3. The Fano factor dependence on spike rate is highly variable. Networks 

overexpressing (A) GFP (Control; Spearman’s rho = -0.1818 ± 0.2053; n = 12), (B) 

cypin (Spearman’s rho = 0.07692 ± 0.2107; n = 14) and (C) cypinΔPDZ (Spearman’s 

rho = 0.05556 ± 0.2693; n = 11) exhibited high trial-to-trial variability in the 

relationship between spike count variability and spike rate.  

We then studied the relationship between these two parameters at different levels 

of initial spiking rate to determine if the baseline activity level influences Fano factor over 

time (Fig. 3-4). Because of the wide spread of data points along both axes, the mean ± 

s.e.m. is displayed. We classified the cultures depending on the initial average number of 

spikes detected – low baseline (<2,000 spikes), intermediate baseline (2-10,000 spikes), 

and high baseline (>10,000 spikes) – and studied how the average Fano factor is influenced 

by level of firing over time. We also analyzed intermediate and high baselines (>2,000 

spikes) in combination to further elucidate if low baselines influence the observed global 

variability in spike count. For each condition, the average Fano factor is plotted versus the 

average spike rate across the three timepoints; therefore, each line represents the average 

data of all the cultures in a particular condition over time. Note that each line has 3 data 

points: a circle (baseline), a square (DIV17), and a triangle (DIV21). 
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To quantify the dependence of the spike count variability on the mean spike rate, 

we calculated the Spearman’s correlation coefficients for each condition at each timepoint 

and compared them using Fisher’s Z-transformation (Myers and Sirois 2006).  We found 

that the coefficient of correlation of networks that overexpress cypin changed significantly 

(p < 0.01, n = 6) from baseline (Spearman’s rho = -0.4286) to DIV21 (Spearman’s rho = 

0.6571) for intermediate baselines (Fig. 3-4D). This suggests that for intermediate 

baselines, there is a negative relationship between variability and rate that significantly 

evolves into a positive relationship by DIV21 when cypin is overexpressed. Moreover, we 

found that the coefficient of correlation of networks that overexpress cypin changed 

significantly (p < 0.01, n = 5) from baseline (Spearman’s rho = 0.5) to DIV17 (Spearman’s 

rho = 1.0) for high baselines (Fig. 3-4E). This is accompanied by a strong trend (p = 0.0561, 

n = 5) towards a decrease between DIV17 and DIV21 (Spearman’s rho = 0.8). These data 

suggest that at high baselines, there is a positive relationship between Fano factor and 

spike rate that gets stronger by DIV17, before it becomes negative by DIV21. We found no 

significant changes in coefficients of correlation for networks overexpressing GFP or 

cypinΔPDZ for any initial spike rate level, suggesting that cypin mediates its effects, at 

least in part, by binding to PSD-95 or PSD-95 family members.  
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Figure 3-4. Dependence of the FF on the initial average spike rate. The average 

Fano factor is plotted versus the average spike rate for (A) all networks analyzed (n 

= 12 for control, 14 for cypin and 11 for cypinΔPDZ), (B) networks with low initial 

spike rates (n = 4 for control, 3 for cypin and 4 for cypinΔPDZ) (C) networks with 

intermediate and high initial spike rates (n = 8 for control, 11 for cypin and 7 for 

cypinΔPDZ) (D) networks with intermediate initial spike rates  (n = 5 for control, 6 

for cypin and 3 for cypinΔPDZ), and (E) networks with high initial spike rates (n = 3 

for control, 5 for cypin and 4 for cypinΔPDZ). Each line has 3 data points: a circle 

(baseline), a square (DIV17), and a triangle (DIV21).  
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3.3.3 The average interspike interval increases after cypin overexpression 

We calculated the average latency between consecutive spikes (interspike interval, 

ISI) across the entire networks and found that cypin overexpression significantly increases 

this latency by DIV21 (Fig. 3-5). This increase in ISI occurs at the same timepoint as the 

increase in mean FF, suggesting that at DIV21, networks that overexpress cypin have 

higher spike count variability and that the spikes happen further apart in time from each 

other. There is also a decrease at DIV21 in average spike rate for networks overexpressing 

cypin (Fig. 2-4). This raises the possibility that a prolonged refractory period between 

spikes is responsible for the reduced spike rate at DIV21 (Vogel 2005).     

    

 

Figure 3-5. The mean ISI increases when cypin is overexpressed. Statistics were 

calculated by two-way ANOVA followed by Tukey’s multiple comparisons test (n = 

12 for control, 14 for cypin and 11 for cypinΔPDZ).  
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3.3.4 Variability of Interspike Intervals 

 We calculated the coefficient of variation (CV) of the interspike intervals as a 

measure of the variability of the ISI distribution. We found that the CV does not change 

significantly for any of the conditions over time (Fig. 3-6). Similar to the mean Fano 

factor, we observed that the mean CV at baseline (ranging from 1.56 to 1.88) describes 

inherently irregular spike trains (Christodoulou and Bugmann 2001) that remain irregular 

over time. Taken together, our results show that cypin overexpression increases the 

variability in the spike count while not affecting the variability in latency between spikes.  

 

Figure 3-6. Coefficient of variation is constant over time. No statistical differences 

were observed as determined by by two-way ANOVA followed by Tukey’s multiple 

comparisons test (n = 12 for control, 14 for cypin and 11 for cypinΔPDZ). Extreme 

outliers were removed when identified by Grubb’s test with α = 0.05. 

3.3.5 Changes in spike waveforms 

 We used the spike sorting algorithm Wave clus to determine whether waveform 

shape differences are observed in networks after cypin overexpression. Spike sorting is 
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important when studying multisite recordings because it allows us to decipher 

information of the individual neurons that make up the signals detected by each recording 

site (Harris et al. 2016). To gain insight into more detailed differences present in these 

networks, we compared the shapes of the spontaneous potentials detected by our 

networks over time (Fig. 3-7). 

Our results show that field potentials generated by spontaneous activity of the 

networks are composed of spikes of different shapes after cypin is overexpressed and that 

this change may be dependent on binding to PSD-95 or PSD-95 family members (Fig. 3-7). 

At baseline, networks exhibit field potentials are comprised of mostly of negative peaks, as 

shown previously in the literature for recordings from planar MEAs (Fendyur et al. 2011). 

Networks in all conditions appear to gain new spike waveforms by DIV17, with networks 

overexpressing cypin showing the most dramatic change. For more mature networks 

(DIV21), networks that overexpressed GFP or cypinΔPDZ show distributions that resemble 

their corresponding baseline distributions. However, networks overexpressing cypin 

retained waveforms present at DIV17 and exhibited a proportion of negative triphasic 

spikes that was not observed in either GFP-expressing or cypinΔPDZ-expressing networks. 

Negative spike shapes have been previously associated with axonal recordings (Fendyur et 

al. 2011), making it plausible that overexpression of cypin increases the amount of 

recordable spikes from axons and excitable soma.       
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Figure 3-7. Categorization of the spike waveforms detected before and after 

transduction. (A) Representative average spike waveforms observed.  Spike 

waveform distribution at (B) baseline, (C) DIV17, and (D) DIV21 was determined 
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using Wave_clus. The waveform data for all spikes for a given condition were 

pooled at each timepoint.    

 

3.4 Discussion 

 In this chapter, we used Fano factor as a measure of the spiking variability in 

neuronal networks after cypin overexpression. We found that networks that overexpress 

cypin exhibit higher spike count variability by DIV21. In contrast, the spike count 

variability of networks overexpressing GFP or cypinΔPDZ did not change significantly over 

time. Our networks displayed high Fano factors even at baseline, which could be a result 

of the chosen time window at which the Fano factor was calculated (White, Abbott, and 

Fiser 2012) and the high cell density of our cultures. Computational models have 

correlated an increase in spike count variability with higher clustering between neurons in 

a network (Litwin-Kumar and Doiron 2012). In addition, Churchland and colleagues 

showed that the Fano factor decreases as the mean firing rate increases in a multiunit 

recording and confirmed that this reflects an underlying variance in the firing rate since at 

higher spiking rates, refractory periods regularize spiking (Churchland et al. 2010). We 

hypothesize that at DIV21, networks that overexpress cypin undergo more dramatic firing 

fluctuations as some clusters within the network transition to and from low to high 

activity levels, causing the overall spike count variability to increase. 

 We further investigated the relationship between Fano factor and spike rate in our 

system. As with other parameters, we found high trial-to-trial variability when looking at 

how the Fano factor for each culture changes over time. However, when we classified the 

cultures based on their initial spike rate, we found that only networks that overexpress 
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cypin show significant changes in the correlation between spike count variability and 

spike rate for intermediate (baseline to DIV21) and high baselines (baseline to DIV17). 

These results support our previously stated hypothesis that networks that overexpress 

cypin exhibit more dramatic fluctuations in firing as changes in variability appear to 

depend on spike rate, whereas no dependence on spike rate was found for variability in 

networks overexpressing GFP or cypinΔPDZ.  

Similar to what has been reported in dissociated cortical cultures (W R Softky and 

Koch 1993), we found that our hippocampal networks exhibited high coefficients of 

variation (CV > 1), even at baseline. Although we observed a significant increase in the 

interspike interval from baseline to DIV21 in networks overexpressing cypin, no changes 

were observed in network coefficient of variation. Since our analysis includes all detected 

spikes, one explanation for this is that the presence of bursting spikes masks effects in the 

variability of interspike intervals. In addition, the presence of bursts is linked to high 

coefficients of variation (Knoblauch 2012), suggesting that networks with higher bursting 

rates potentially exhibit lower mean ISIs and higher mean CVs.  

We sought to uncover differences in our networks at the individual spike level. To 

do so, we performed spike sorting based on the shapes of the waveforms detected. 

Neuronal networks coupled to planar electrodes on MEAs are known to fire mostly 

negative spikes, accompanied by a lower proportion of positive spikes (Fendyur et al. 2011). 

Our results are consistent with this throughout the 21 days in culture. We found that by 

DIV17, networks in all conditions gained one new type of spike waveform, with cypin-

overexpressing networks showing the greatest shift in distribution. By DIV21, networks 

that overexpress cypin exhibit a new type of spike waveform, the negative triphasic spike, 
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which is not present in any of the other conditions. In fact, networks that overexpress GFP 

or cypinΔPDZ show a distribution of spikes that resembles their respective baselines, and 

GFP-overexpressing networks show a decrease in spike waveform distribution complexity. 

Thus, the changes in spike waveforms observed after cypin overexpression are dependent 

on PSD-95 family member binding.  

The polarity and shape of spike waveforms are dependent on many factors, such as 

morphology of the dendritic tree, the distance between the spiking neuron and the 

recording electrode, the coupling between neurons and electrodes, and the properties of 

the recording medium (Gold et al. 2006). Hence, we assume that the observed changes in 

spike waveforms in our networks are not random and resulted from a combination of 

overexpression of our proteins of interest and regular network development. Neuron-

electrode coupling and distance as well as recording medium composition are factors that 

would affect all conditions equally. It is plausible that the enhanced dendritic arbor 

present in cypin-overexpressing networks is responsible for some or all of the spike 

waveform changes observed. In fact, negative triphasic spikes have been shown to be 

characteristic of recordings from dendritic segments of interneurons (Csicsvari et al. 

1999).    

Overall, studying spike variability after cypin overexpression as a complement to 

our studies of mean activity rates uncovered specific network changes that are often 

masked by averaging. We find that cypin overexpression increases the spike count 

variability, the mean network interspike interval, and the complexity of the spike 

waveforms fired, and it does so in a PSD-95 family member-binding dependent manner.  
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Chapter 4: Effect of altering cypin levels on PSD-95 protein levels and synaptic 

function    

 

4.1 Introduction 

Proper synaptic transmission is essential for normal brain function and requires 

the precise spatial and functional assembly of molecular signal transduction machinery at 

synaptic sites and the correct morphology of dendrites and their branches (Vetter et al. 

2012). The postsynaptic density (PSD), an electron-dense region that characterizes the 

membranes of postsynaptic neurons, is a dynamic and complex structure. The 

composition of the PSD has been widely studied, and it has been proposed that the PSD 

serves as a network composed of scaffolding and cytoskeletal proteins that localize 

signaling molecules, receptors, and ion channels at the synapse (M Sheng 2001). 

Therefore, the organization of these proteins is critical for the regulation of synaptic 

transmission and synaptic plasticity. Defects in dendritogenesis and synaptogenesis 

contribute to neurological and neurodevelopmental disorders (Kulkarni and Firestein 

2012).  

PSD-95 is a member of the membrane-associated guanylate kinase (MAGUK) 

family of proteins and is found at the PSD of excitatory glutamatergic synapses (A. E. El-

Husseini et al. 2000), where it has been associated with the trafficking and anchoring of all 

three classes of glutamate receptors – kainate, alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA), and N-methyl-D-aspartate (NMDA) type glutamate 

receptors. Cypin (cytosolic PSD-95 interactor) was originally identified as a highly 

abundant PSD-95-binding protein in brain extracts (Firestein et al. 1999). Overexpression 
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of cypin in rat hippocampal cultures disturbs postsynaptic localization of PSD-95 and 

SAP102 (synapse associated protein 102), a related neuronal MAGUK protein (Firestein et 

al. 1999). In mature hippocampal cultures, both PSD-95 and SAP102 are targeted and 

clustered in dendrites at discrete spots that are likely to reflect postsynaptic sites. When 

cypin is overexpressed in culture, a significant reduction of PSD-95 and SAP102 clusters is 

observed. Immunostaining for the presynaptic marker synaptophysin demonstrated that 

the total number of synaptic sites is not altered and that cypin specifically regulates the 

synaptic targeting of associated MAGUK proteins. 

Numerous studies show that changes in PSD-95 expression drive the maturation of 

dendritic spines and influence synaptic targeting and trafficking of glutamate receptors, 

resulting in alterations in the electrical activity of glutamatergic synapses (A. E. El-

Husseini et al. 2000; Migaud et al. 1998; Bredt and Nicholl 2003; Béïque et al. 2006; Keith 

and El-Husseini 2008; Yudowski et al. 2013). Overexpression of PSD-95 in hippocampal 

slice cultures specifically recruits AMPA receptors (AMPARs) to synapses and enhances 

AMPAR-mediated excitatory postsynaptic currents (EPSCs) with no change in NMDAR-

mediated EPSCs (Schnell et al. 2002). Moreover, impaired AMPAR function occurs in PSD-

95 knockout mice (Béïque et al. 2006). This disruption in activity is specifically due to the 

fact that a significant proportion of synapses lack functional AMPARs, independent of 

spine morphology, supporting the need to understand both the structural and functional 

implications of altering levels of PSD-95 and its interactors in hippocampal neurons. 

In this chapter, we investigate the effect of altering cypin levels on dendrite 

branching, PSD-95 protein levels, and synaptic function. We examine the result of 

overexpression of cypin or a cypin mutant that cannot bind to PSD-95 or its family 
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members (cypinΔPDZ), on dendrite branching at a developmental timepoint that our 

group has not studied before. We knocked down cypin and overexpressed cypin or 

cypinΔPDZ and measured the effect on total and subcellular PSD-95 protein levels. We 

further study the functional consequence of this alteration by recording miniature 

excitatory postsynaptic currents (mEPSCs) from hippocampal neurons after 

overexpression and knockdown of cypin. Finally, we use microelectrode array technology 

to assess whether cypin overexpression affects AMPAR-mediated activity in neuronal 

networks by recording the spontaneous activity of neuronal circuits in the presence of the 

AMPAR antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX).  

 

4.2 Materials and Methods 

4.2.1 Cell culture 

Neuronal cultures were prepared from hippocampi of Sprague-Dawley rat embryos 

at 18 days of gestation as described previously (M. Kwon et al. 2011). The hippocampi were 

mechanically dissociated by pipetting slowly through the bore of a fire-polished Pasteur 

pipette. Cells were plated on 12 mm glass coverslips or 6-well plates coated with 0.5 mg/ml 

poly-D-lysine (PDL; Sigma). Cultures were maintained in Neurobasal medium (Gibco) 

supplemented with B27 (Gibco) and GlutaMAX (Gibco) at 37 °C and 5% CO2. All animals 

were cared for ethically in accordance with Institutional Animal Care and Use Committee 

(IACUC) standards.        
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4.2.2 Lentiviral particle production and transduction 

The lentiviral plasmids were constructed by subcloning cDNA encoding wild type 

cypin or cypin lacking the PDZ binding motif (cypinΔPDZ) into the control FG12 vector 

containing EGFP for expression. For knockdown, shRNAs against cypin were subcloned 

into the pHUUG vector (vectors were gift from Dr. Chris Pröschel, University of Rochester 

School of Medicine). Lentivirus containing shRNAs against glutathione S-transferase 

(GST) were used as control. Lentiviral particles were generated by transfecting HEK293TN 

cells (ATCC) using the calcium phosphate precipitation method with one of the lentiviral 

plasmids, the packaging plasmid psPAX2, and the envelope plasmid pMD2.G (VSV-G). 

The medium was replaced 24 hours post-transfection, and the medium containing viral 

particles was collected 48 hours later, concentrated using PEG-it virus precipitation 

solution (System Biosciences) according to the manufacturer’s instructions, and stored at -

80 °C until use. HEK293TN cells were maintained and transfected in Dulbecco’s Modified 

Eagle Medium (DMEM; Life Technologies) containing 10% fetal bovine serum (Atlanta 

Biologicals). Neuronal cultures were transduced with lentiviral supernatant on day in vitro 

(DIV) 10 when grown on MEAs and 6-well plates or on DIV14 when grown on glass 

coverslips. Half of the culture medium was changed 36 hours later and every other day 

from then on. Successful transduction was confirmed through fluorescence microscopy.    

4.2.3 Western Blotting 

Neurons were scrape-harvested on DIV21 into RIPA buffer (50 mM Tris-HCl pH 

7.4, 150 mM NaCl, 1 mM EGTA, 1% NP-40, 0.25% sodium deoxycholate, 0.1% SDS, 1 mM 

PMSF). Cells were lysed by passing them through a 25½-gauge needle approximately 10 

times. The lysates were placed on a nutator for 30 minutes at 4 °C, followed by a 15 minute 
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spin at 13,000×g to pellet insoluble material. Proteins were resolved on a 10% SDS-

polyacrylamide gel and transferred to a PVDF membrane. The blot was probed with the 

indicated antibodies. Blots were scanned, and the intensities of the bands of interest were 

quantified using ImageJ software (NIH).  

4.2.4 Cell culture on MEAs 

MEAs (Multi Channel Systems, Germany) were coated with 0.5 mg/ml poly-D-

lysine (PDL; Sigma) for at least 1 hour, washed three times with sterile water, and then 

coated with 10 μg/ml laminin (Sigma) for at least 30 minutes. Cultures were established at 

a density of 1x106 cells/MEA and maintained in NbActiv4 medium (BrainBits, LLC) at 37 °C 

and 5% CO2. Half medium changes were performed every other day.  

4.2.5 CNQX treatment 

Increasing amounts of the competitive AMPAR antagonist CNQX, ranging 

between 1 – 10 µM and diluted in recording solution, were added to the cultures, and 

activity was recorded for 5 minutes after equilibration was reached. After each recording, 

the cultures were washed twice with fresh culture medium. The networks recovered for at 

least 15 minutes between each CNQX treatment.  

4.2.6 Subcellular Fractionation 

On DIV21, neurons from two wells of a 6-well plate for each condition were scrape-

harvested into 150 μl of homogenization buffer (HB; 320 mM sucrose, 4 mM HEPES, 1 mM 

EGTA, 1 mM PMSF). Subcellular structures were fractionated as we previously described 

(Firestein et al. 1999; M. Chen et al. 2005). The cell membranes were disrupted by passing 

cells through a 25½-gauge needle approximately 10 times. The homogenate was 
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centrifuged at 1,000×g for 10 minutes at 4 °C. The supernatant (S1) was collected and 

centrifuged at 12,000×g for 15 minutes at 4 °C. The pellet (P2) was resuspended and 

washed in 100 μl of HB and centrifuged at 13,000×g for 15 minutes at 4 °C. The resulting 

pellet (P2’), representing a crude synaptosomal fraction, was lysed by osmotic shock and 

homogenized by pipetting up and down multiple times. The homogenate was spun at 

33,000×g for 20 minutes at 4 °C to yield supernatant LS1 and pellet LP1 (heavy 

membranes). LS1 was spun at 251,000×g for 2 hours at 4 °C. The resulting supernatant 

(LS2) contained soluble proteins, while the pellet (LP2) contained synaptic vesicle 

proteins. Each fraction was stored at -20 °C in protein loading buffer. 

4.2.7 Assessment of Dendritic Spine Number  

Cultured hippocampal neurons were co-transfected with plasmids encoding RFP 

(to visualize spines) and GFP, GFP-cypin, or GFP-cypinΔPDZ on DIV14 using the calcium 

phosphate method. Neurons were fixed on DIV 17 and immunostained for GFP and RFP. 

Images of dendritic segments were taken with a 60x plan apochromat oil immersion 

objective (NA 1.4) using a Yokogawa CSU-10 spinning disk confocal head attached to an 

inverted fluorescence microscope (Olympus IX50). X-, Y-, and Z-resolution was set 

as 0.067 μm, 0.067 μm and 0.1 μm, respectively, to define dendritic spines. Spines were 

counted along dendritic segments starting from 20 μm to 80 μm from the soma. For each 

cell, segments were quantified and averaged. Spines were manually counted from at 

least 12 neurons for each experimental condition, and analysis was performed with the 

experimenter blinded to the condition. 

4.2.8 Assessment of Dendrite Number  
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 Cultured hippocampal neurons were transfected on DIV7 using Lipofectamine 

LTX with Plus reagent (Invitrogen) according to the manufacturer’s instructions. Neurons 

were fixed on DIV12 with 4% paraformaldehyde in PBS for 15 minutes, washed 3 times with 

PBS, and then incubated in blocking solution (2% normal goat serum, 0.1% Triton X-100, 

and 0.02% sodium azide in PBS) for 1 hour. All antibodies used were diluted in blocking 

solution. Neurons were incubated for 1 hour at room temperature or overnight at 4 °C 

with primary antibodies: GFP (DSHB-12A6) to identify transfected cells and MAP2 (BD 

Biosciences) to identify neurons. They were then washed with PBS 3 times and incubated 

for 1 hour at room temperature with appropriate secondary antibodies. Coverslips were 

mounted onto glass slides with Fluoromount-G (Southern Biotechnology). Transfected 

cells were visualized by immunofluorescence on an EVOS FL microscope at 20X (Thermo 

Fisher Scientific).  

 Semi-automated Sholl analysis was performed as described previously 

(Langhammer et al. 2010; Kutzing et al. 2010; O’Neill et al. 2015). Briefly, images of 

hippocampal neurons were traced using the NeuronJ plugin for ImageJ (NIH). The tracing 

files were converted to SWC files using MATLAB (Mathworks) for further manipulation. 

NeuronStudio was then used to define the connectivity pattern between the segments and 

the morphological data were exported to Excel using MATLAB. The experimenter was 

blinded to the condition when performing dendrite analysis. The axon was excluded based 

on MAP2 immunostaining absence.  

4.2.9 Electrophysiology 

Whole cell patch-clamp recordings were obtained from the soma of hippocampal 

neurons as described previously (Hernandez et al. 2016). Recordings were performed on 
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DIV21. The external solution contained (in mM): 140 NaCl, 5 KCl, 2 CaCl2, 2 MgCl2, 10 

HEPES, and 10 glucose (pH 7.4 adjusted with NaOH; 290–310 mOsmol). Recording 

electrodes (3–5 MΩ) contained a K+-based internal solution composed of (in mM): 126 K-

gluconate, 4 KCl, 10 HEPES, 4 ATP-Mg, 0.3 GTP-Na2, 10 phosphocreatine, and 10 QX-314 

bromide (pH 7.2; 280–300 mOsmol). Action potentials were blocked with 1 μM 

tetrodotoxin (TTX; Tocris, R & D Systems) to record miniature excitatory postsynaptic 

currents (mEPSCs). The membrane potential was held at –70 mV throughout all 

experiments. Data were amplified and filtered at 2 kHz by a patch-clamp amplifier 

(Multiclamp 700B), digitalized (DIGIDATA 1440A), stored, and analyzed by pCLAMP 

(Molecular Devices). Data were discarded when the input resistance changed >20% during 

recording. Recordings were performed by Przemyslaw Swiatkowski. 

 

4.2.10 Microelectrode Array Recordings 

Standard MEAs containing 60 planar electrodes (59 recording electrodes and 1 

internal reference electrode), each with a 10 µm diameter and an inter-electrode spacing of 

200 µm (60MEA200/10iR-Ti-gr; Multi Channel Systems, Germany), were used for all 

experiments.  Baseline recordings were performed on cultures on DIV10 immediately 

before lentiviral transduction and on DIV14. Prior to each recording, the culture medium 

was saved and replaced with recording solution (144 mM NaCl, 10 mM KCl, 1 mM MgCl2, 2 

mM CaCl2, 10 mM HEPES, 2 mM Na-pyruvate, 10 mM glucose, pH 7.4), and the MEA  was 

placed into the cell culture incubator for 5 minutes to allow it to reach equilibrium. After 

each recording, the cultures were washed twice with fresh culture medium before adding 

saved conditioned medium. Each MEA was covered with a semipermeable lid (ALA MEA-
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MEM; ALA Scientific) during handling and recordings to prevent contamination from 

airborne pathogens. 

Spontaneous electrical signals were monitored and recorded for 5 minutes using 

the data acquisition commercial software MC_Rack (Multi Channel Systems) as described 

previously by our group (Kutzing, Luo, and Firestein 2011; Kutzing, Luo, and Firestein 

2012). The temperature of the cultures was maintained at 37 °C on a heat-controlled stage 

and the signals were sampled at 20 kHz with an MEA1060-Inv-BC amplifier (Multi 

Channel Systems).  

4.2.11 Signal Processing 

The raw data were imported into Matlab (MathWorks, Inc.) using MEA-Tools, an 

open-source toolbox. The signals were filtered through a 4th order Butterworth filter (20-

2,000 Hz) and a notch filter to remove 60 Hz electric hum. The electrodes that exhibited 

irregular activity or excessive noise were excluded from the analysis. The Matlab routines 

used for signal processing and data analysis discussed in this section were developed by 

Kate O’Neill, in part based on previous work from our group (Kutzing, Luo, and Firestein 

2011).  

  4.2.11.1 Spike Detection 

Spikes were detected using an adaptive threshold. Briefly, a spike was defined as a 

signal with voltage exceeding a positive or negative threshold, chosen to be 4.5 standard 

deviations times the background noise for a 10 second window for each recording channel. 

To ensure that spikes were counted only once on an electrode, spikes were detected at 

their maximum absolute value and interspike intervals (ISIs) had to be longer than 2 ms. 
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When spike rate is reported, it refers to the number of spikes divided by the recording 

time (300 seconds). Active electrodes were defined as those whose firing rate was ≥ the 

75th percentile of the distribution.  

4.2.12 Spike Sorting 

 We applied Wave clus, a spike sorting algorithm (Quiroga, Nadasdy, and Ben-

Shaul 2004), to obtain information about individual neurons within our networks. Spike 

sorting extracts features from each spike and clusters them in classes that best reflect their 

shape. To do so, Wave clus calculates the wavelet transform for each spike and uses a set 

of the obtained wavelet coefficients as input for a clustering algorithm based on k-nearest 

neighbor interactions (Blatt, Wiseman, and Domany 1996). Using the wavelet transform 

instead of principal component analysis (PCA) to extract the shape information is 

advantageous because it allows for more specific discerning of spike features (Quiroga, 

Nadasdy, and Ben-Shaul 2004; Hernan Gonzalo Rey, Pedreira, and Quian Quiroga 2015).  

 We first detected individual spikes as described above. For each detected spike, we 

collected a spike time stamp and a waveform cutout spanning 1 ms before and 2.2 ms after 

the spike absolute maxima. The obtained waveform cutouts were sorted using the 

unsupervised Wave clus algorithm. After automatic clustering, we performed the 

suggested minor manual tuning (Quian Quiroga 2004) to improve the sorting accuracy. 

All detected spikes for each condition and timepoints were included in the spike sorting 

analysis. 
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Figure 4-1. Spike cutout schematic. Spike waveform cutouts spanning 1 ms (19 data 

points) prior and 2.2 ms (44 data points) after the absolute maximum value of the 

spike (represented by *) were stored and sorted. All spikes were aligned by setting 

their maximum at data point 20.    

 

4.2.13 Statistics 

All data are presented as mean values ± standard error of the mean (s.e.m.), with n 

indicating the number of MEAs. All statistical analyses were performed using Prism 7.0 

(GraphPad, La Jolla, CA) with p<0.05 representing statistical significance.   

 

4.3 Results 

4.3.1 Cypin increases proximal and distal dendrite branching 

 We overexpressed cypin or cypin lacking the PDZ-binding motif (cypinΔPDZ) in 

rat hippocampal neurons from DIV 7-12, a period of active proximal and distal branching 

(Dotti, Sullivan, and Banker 1988; Charych et al. 2006), and assessed their effect on 

dendrite branching. Total Sholl analysis suggests that overexpression of either cypin or 

cypinΔPDZ promotes proximal and distal dendrite branching during this developmental 
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timepoint (Fig. 4-2A). Cypin overexpression resulted in a significant increase in dendritic 

branches at 0-54 µm from the soma, while cypinΔPDZ significantly increased branching at 

0-48 µm from the soma (Fig. 4-2B). As a result, the total number of dendrites was 

significantly increased by DIV12 (Fig. 4-2C) in both conditions. Interestingly, we observed 

that this increase observed in Total Sholl analysis is dendrite order-specific. 

Overexpression of cypin significantly increased the number of tertiary (Fig. 4-2F), but not 

primary or secondary dendrites (Fig. 4-2D, E). In contrast, neurons that overexpress 

cypinΔPDZ show a trend towards an increase in primary and tertiary dendrites. In a recent 

study, our group (O’Neill et al. 2015) showed the cypin overexpression between DIV 6-10 

results in an increase in both primary and tertiary dendrites. Our data suggest that the 

observed increase in primary dendrites is transient and that the primary dendrites 

promoted by cypin are pruned by DIV12. In addition, the changes in the dendritic arbor 

promoted by cypin at this timepoint do not appear to be dependent on binding to PSD-95 

or PSD-95 family members, as both have very similar effects on arborization.          
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Figure 4-2. Cypin overexpression from DIV7-12 increases proximal and distal 

dendrite branching. (A) Total Sholl analysis shows increased dendrite branching 

when cypin or cypinΔPDZ are overexpressed. (B) Sholl analysis within 60 µm of the 

soma shows that cypin overexpression increases branching at 0-54 µm from the 

soma (**p < 0.01), while cypinΔPDZ increases branching at 0-48 µm from the soma 

(*p < 0.05). (C) Overexpression of cypin or cypinΔPDZ increase the total number of 

dendrites. Overexpression of cypin or cypinΔPDZ does not result in significant 

increased (D) primary or (E) secondary dendrites. (F) Cypin overexpression 

increases the number of tertiary dendrites. Statistics were calculated by (A-B) two-

way ANOVA followed by Tukey's multiple comparisons test (C-F) one-way ANOVA 
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followed by Dunnett's multiple comparison test (n = 40 for control, 42 for cypin 

and 34 for cypinΔPDZ). 

4.3.2 Cypin alters total PSD-95 protein levels 

We examined whether alterations in cypin protein levels affect total PSD-95 

protein levels in culture. Hippocampal neurons were transduced at DIV10 with lentiviral 

particles to overexpress GFP-tagged cypin or cypinΔPDZ. Cypin overexpression resulted in 

increased total PSD-95 protein levels at DIV21 (Fig. 4-3). When cypin is unable to bind to 

the PDZ domains of PSD-95, total protein levels of PSD-95 are not significantly altered 

(Fig. 4-3), indicating that the interaction between cypin and PSD-95 mediates the change 

in PSD-95 expression. This result is surprising since we have shown that cypin decreases 

clustering of synaptic PSD-95 (Firestein et al. 1999). Hence, cypin alters synaptic and total 

PSD-95 protein levels in an opposite manner but both are dependent on PSD-95 binding.  

Figure 4-3. Cypin overexpression increases total PSD-95 levels. (A) Neurons were 

transduced at DIV10, and Western blotting was performed at DIV21. Representative 

blots show successful transduction as determined by probing with an antibody 
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against GFP. Black arrow indicates predicted size of GFP-tagged cypin protein (~78 

kDa) and red arrow indicates predicted size of GFP (~28 kDa). The bands above 

GFP are due to a previous probing with an antibody against GAPDH (~37 kDa). (B) 

Densitometry analysis of PSD-95 protein levels normalized to GAPDH protein 

expression. Statistics were calculated by two-way ANOVA followed by Tukey's 

multiple comparisons test (n = 4 for all conditions; *p < 0.05). 

 Three different shRNA lentiviruses were developed to target cypin segments 

starting at base pairs 352, 404, and 941. Primary hippocampal neurons were transduced, 

and cypin knockdown was assessed by Western blot analysis. Transduction efficiency and 

cypin knockdown were consistently successful when targeting base pair 941 (labeled Cypin 

shRNA), and this shRNA was chosen for all future knockdown experiments. Hippocampal 

neurons were transduced on DIV10, and Western blot analysis performed on DIV21 lysates 

(Fig. 4-4A). We observed a ~40% decrease in cypin protein levels after transduction (Fig. 

4-4B). We found a trend (p = 0.06) towards a decrease in total PSD-95 protein levels after 

cypin knockdown (Fig. 4-4C).  
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Figure 4-4. PSD-95 levels trend towards a decrease after cypin knockdown. (A) 

Neurons were transduced with shRNA lentiviral plasmids at DIV10 and Western 

blots performed at DIV21 to determine effect on cypin and PSD-95 levels. (B) 

Densitometric analysis of cypin protein normalized to GAPDH protein expression 

shows ~40% reduction in cypin protein levels (n=6, ****p < 0.0001 determined by 

paired t test. (C) Densitometric analysis of PSD-95 protein levels normalized to 

GAPDH shows that PSD-95 protein levels decrease after cypin knockdown (n=4, p = 

0.06 determined by paired t test). 
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4.3.3 Cypin alters the subcellular distribution of PSD-95 

 Since cypin overexpression alters total PSD-95 protein levels, and we previously 

reported that cypin decreases the number of PSD-95 clusters (Firestein et al. 1999), we 

investigated whether synaptic PSD-95 protein levels change after cypin overexpression. 

We overexpressed cypin in cultures of hippocampal neurons at DIV10 and performed 

synaptosomal fractionation (Firestein et al. 1999; M. Chen et al. 2005) at DIV21. This 

technique allows us to isolate enriched fractions and analyze their composition. We found 

that when cypin was overexpressed, there was a significant decrease in PSD-95 present in 

synaptosomes and the postsynaptic density (PSD) fractions, where PSD-95 is typically 

enriched (Pak et al. 2001; Fig. 4-5). Synaptosomes are composed of the presynaptic 

terminal as well as the postsynaptic membrane and postsynaptic density (Bai and 

Witzmann 2007). Our findings are in agreement with our previous report (Firestein et al. 

1999) and unpublished data from our group that show that cypin regulates synaptic 

clustering of PSD-95 and that the PDZ-binding motif of cypin is necessary for this effect. 

Interestingly, overexpression of cypin lacking the PDZ-binding motif results in an increase 

in PSD-95 levels in the PSD (Fig. 4-5B).  
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Figure 4-5. Cypin overexpression alters the subcellular distribution of PSD-95.  (A) 

Representative blots show decreased levels of PSD-95 in synaptosomes and PSD of 

cultures overexpressing cypin when compared to control cultures. (B) 

Densitometric analysis of PSD-95 protein relative to the control condition shows 

decreased PSD-95 in synaptosomes and PSD after cypin overexpression (*p < 0.05). 

Statistics were calculated by two-way ANOVA followed by Dunnett's multiple 

comparison test (n = 5 for control, 5 for cypin and 3 for cypinΔPDZ). 

 We further investigated the effect of altering cypin levels on PSD-95 localization 

and performed synaptosomal fractionation after cypin knockdown. We found that there 

were no changes in PSD-95 localization after cypin knockdown when compared to the 

control knockdown (Fig. 4-6). Since we only achieve a partial knockdown with this 

method, it is possible that the endogenous cypin that remains is sufficient to allow for 

correct PSD-95 localization, and hence, knockdown does not have a substantial effect on 

PSD-95 localization.   
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Figure 4-6. Cypin knockdown does not affect the subcellular distribution of PSD-

95. (A) Representative blots and (B) densitometric analysis of PSD-95 protein levels 

in subcellular fractions after cypin knockdown. No statistical significance was 

found as calculated by two-way ANOVA followed by Sidak’s multiple comparison 

test (n = 6 for all conditions). 

4.3.4 Cypin overexpression decreases the number of dendritic spines 

Dendritic spines are small protrusions in the membrane of dendrites that receive 

most of the excitatory synapses in the brain. The presence and absence of PSD-95 puncta 

are likely to correlate with spine and synapse formation and pruning (Cane et al. 2014). 

Since cypin overexpression results in a decrease in PSD-95 puncta and protein expression, 

we investigated the effect of altering cypin levels on the density and maturity of dendritic 

spines. We found that when cypin is overexpressed, the number of dendritic spines is 

reduced significantly when compared to the control condition (Fig. 4-7). Moreover, when 

cypinΔPDZ is overexpressed, there is a trend towards a decrease in dendritic spines (p = 

0.06), but this is not statistically different from the spine density found after cypin 

overexpression (Fig. 4-7B). Hence, our results suggest that the PDZ-binding motif is only 
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partially necessary for the observed reduction in dendritic spines after cypin 

overexpression.    

 

Figure 4-7. Cypin overexpression results in reduced spine density. (A) 

Representative mRFP images of dendritic segments from hippocampal neurons at 

DIV17. Scale bar is 2 µm. (B) Cypin overexpression results in a significant decrease 

in the density of dendritic spines. CypinΔPDZ overexpression results in a trend 

towards decreased spine density that is not statistically different from the spine 

density observed after cypin overexpression. Statistics calculated by one-way 

ANOVA followed by Tukey’s multiple comparisons test (**p < 0.01).   

4.3.5 Cypin overexpression increases synaptic transmission 

 We performed whole-cell patch-clamp recordings of miniature excitatory 

postsynaptic currents (mEPSCs) in hippocampal neurons. We transduced neurons with 

lentivirus to either overexpress or knockdown cypin on DIV14 and recorded mEPSCs at 

DIV21. Overexpression of cypin or cypinΔPDZ resulted in an increase in the frequency of 

mEPSCs (Fig. 4-8B) while their amplitude remained unchanged (Fig. 4-8C). Interestingly, 

this suggests that this effect is independent of cypin binding to PSD-95 or PSD-95 family 
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members.  This result is surprising given our findings regarding the PDZ-binding-

dependent observed decrease in synaptic PSD-95 protein levels with cypin overexpression. 

A study by Béïque and colleagues showed that in PSD-95-/- (KO) mice, PSD-95 exhibits 

synapse specificity and the functional defects that result from its deletion can be restricted 

to only a subset of synapses (Béïque et al. 2006). We believe that it is possible that the 

synaptic defect that results from knocking down synaptic PSD-95 via cypin overexpression 

may affect a small population of synapses and that other members of the MAGUK family 

of proteins may compensate for decreases in synaptic PSD-95 localization.   

 

Figure 4-8. Overexpresion of cypin or cypinΔPDZ results in increased frequency of 

mEPSCs. (A) Representative traces of mEPSCs. (B) Overexpressing cypin (*p < 0.05) 

and cypinΔPDZ (***p < 0.001) increases the frequency of mEPSCs (C) The amplitude 
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of mEPSCs remains unchanged after overexpression. Statistics calculated by one-

way ANOVA followed by Tukey’s multiple comparisons test (n = 12 for control, 15 

for cypin and 15 for cypinΔPDZ). 

 

 When we knocked down cypin and recorded mEPSCs, we found that neither the 

frequency nor amplitude of mEPSCs changes (Fig. 4-8). As with the changes in synaptic 

PSD-95 protein levels in subcellular fractions, it is possible that a partial cypin knockdown 

in dissociated hippocampal cultures is not sufficient to significantly change synaptic 

transmission.  

 

Figure 4-8. Cypin knockdown does not change the frequency or amplitude of 

mEPSCs. (A) Representative traces of mEPSCs. (B, C) The frequency and amplitude 

of mEPSCs remains unchanged after knockdown. No statistical significance as 

calculated by t test (n = 15 for control shRNA and n = 17 for cypin shRNA). 
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4.3.5 Cypin overexpression alters AMPAR function in neuronal circuits 

 To investigate whether cypin-promoted changes to PSD-95 protein levels and 

synaptic function affect AMPAR-mediated synaptic transmission, we cultured 

hippocampal neurons on MEAs and treated them with increasing amounts of the AMPAR 

antagonist CNQX on DIV15.  Changing PSD-95 expression is known to influence the 

synaptic targeting and trafficking of glutamate receptors, resulting in alterations in the 

electrical activity of glutamatergic synapses (A. E. El-Husseini et al. 2000; Béïque et al. 

2006; Keith and El-Husseini 2008; Yudowski et al. 2013). PSD-95 indirectly interacts with 

AMPAR subunits through stargazin and influences the efficiency of AMPAR trafficking 

(Bredt and Nicholl 2003; Vandenberghe, Nicoll, and Bredt 2005).  

 We found that networks that overexpress GFP (control) do not exhibit significant 

changes in the rate of spiking regardless of concentration of CNQX treatment (Fig. 4-9A). 

This lack of dose-dependent response might be due to compensatory mechanisms within 

the network and the effect of NMDAR-mediated synaptic transmission. However, in 

networks that overexpress cypin, all CNQX concentrations significantly reduce the overall 

spike rate. Interestingly, this effect is not dependent on cypin binding to PSD-95 or its 

family members as overexpressing cypinΔPDZ results in a similar decrease in spike rate. 

These results suggest that there is a deficit in synaptic AMPAR expression and function in 

neuronal networks when cypin is overexpressed. Moreover, we found that the number of 

active electrodes was practically unchanged across conditions and treatments (Fig. 4-9B), 

implying that these observed effects are due to deficits in synaptic transmission.  



79 
 

 

 

Figure 4-9. Networks overexpressing cypin exhibit a reduction in functional 

AMPARs. (A) Cypin or cypinΔPDZ overexpression decreases the amount of CNQX 

needed to block synaptic transmission in neuronal networks. (B) The number of 

active electrodes was consistent across all conditions. Statistics were calculated by 

two-way ANOVA followed by Tukey's multiple comparisons test (n = 2 for all 

conditions; ***p < 0.001 and ****p < 0.0001). 
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 We measured the spiking variability in these networks after CNQX treatment. We 

used the Fano factor (FF) as a measure of the dispersion of the spike count distribution 

and found that it is significantly decreased after cypin or cypinΔPDZ overexpression 

regardless of the CNQX concentration the networks were treated with (Fig. 4-10A). 

Interestingly, networks that overexpress GFP also exhibit a decrease in spike count 

variability after treatment with 3 µM and 5 µM CNQX, suggesting that the Fano factor 

decreases although spike rate remains unchanged. This underlies the value of studying 

variability in network responses as well as their overall activity to uncover differences that 

might be ignored otherwise. 

 In addition, we found that networks that overexpress cypin or cypinΔPDZ display 

a significant increase in the average interspike interval (ISI; Fig. 4-10B) that is 

accompanied by a significant decrease in the coefficient of variation (CV; Fig. 4-10C). 

Hence, with a decrease in spike rate after CNQX treatment, cultures overexpressing  cypin 

or cypinΔPDZ exhibit spikes that are temporally further apart, but the variability in this 

timing decreases and becomes more regular. In fact, when we look at the raw values of 

CV, we see that their CV at baseline is between 2.2 – 3.3, and decreases to near Poisson 

values (~1) after CNQX exposure.  
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Figure 4-10. Spike variability is affected by CNQX treatment. (A) Spike count 

variability decreases after CNQX treatment in networks that overexpress cypin or 

cypinΔPDZ and in control networks after treatment with 3 or 5 µM CNQX. (B) 

Cypin or cypinΔPDZ overexpression result in a significant increase in ISI and (C) 

CV, regardless of CNQX concentration. Statistics were calculated by two-way 



82 
 

 

ANOVA followed by Dunnett’s multiple comparisons test (n = 2 for all conditions; 

**p < 0.01, ***p < 0.001, and ****p < 0.0001). 

 We performed sorting based on spike waveforms to determine whether CNQX 

treatment affects the shapes of detected spikes. We first investigated the spike shapes at 

DIV15 before CNQX treatment (Fig. 4-11). Our results show that the networks of all 

conditions exhibit a majority of negative spike shapes. In agreement with our results in 

Chapter 3, we observed that networks that overexpress cypin display spike shapes that are 

not found in the control condition with an overall larger proportion of non-negative peaks 

(Fig. 4-11B).     

 

 

Figure 4-11. (A) Representative average spike waveforms observed. (B) Cypin 

overexpression results in more complex spike waveform distributions. Spike 

sorting was performed on DIV15 recordings prior to CNQX treatment.  
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We assessed the effect of blocking AMPAR function with CNQX on spike shapes. 

We found that networks that overexpress GFP (Fig. 4-12A) exhibit subtle changes in the 

distribution of spike shapes after CNQX treatment. At baseline, they exhibit a small 

proportion of negative biphasic spikes that then changes to a positive biphasic subset of 

spikes for the remainder of the experiment. Networks that overexpress cypinΔPDZ (Fig. 4-

12C) display a complete loss of the subset of biphasic spikes observed before CNQX 

exposure and only exhibit a combination of negative and positive spikes that remains 

unchanged with CNQX treatment. Interestingly, networks that overexpress cypin (Fig. 4-

12B) maintain the subset of negative biphasic spikes during the course of CNQX 

treatment, with the exception of treatment with 1 µM CNQX. These data suggest that 

although CNQX treatment results in a dramatic spike rate reduction and variability after 

cypin overexpression, the types of spikes that are produced and detected are largely 

unaffected by CNQX treatment.         

 

Figure 4-12. Spike waveforms after CNQX exposure. We assessed the distributions 

of spike shapes during the course of CNQX dosage for networks that overexpress 

(A) GFP, (B) cypin, and (C) cypinΔPDZ. 
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4.4 Discussion 

 In this chapter, we used biochemical and electrophysiological techniques to 

investigate the consequence of altering cypin levels on dendrite branching, PSD-95 

protein levels, and synaptic function. Our group has published extensively on the role of 

cypin in dendrite branching at different developmental timepoints (Akum et al. 2004; 

Charych et al. 2006; M. Kwon et al. 2011; O’Neill et al. 2015). In the present work, we 

overexpressed cypin or cypinΔPDZ on DIV7 and measured changes to the dendritic arbor 

on DIV12. We found that overexpression of cypin increases the total number of dendrites 

by DIV12 and that this effect is not completely dependent on its ability to interact with 

PDZ domain-containing proteins. In addition, we found that cypin overexpression results 

in a significant increase in tertiary dendrites.  

A recent study by our group (O’Neill et al. 2015) demonstrated that cypin 

overexpression increases primary and tertiary dendrites by DIV10, leading us to 

hypothesize that primary dendrites are pruned between DIV10-12. Moreover, we also 

previously reported that PSD-95 has a nonsynaptic and activity-independent function in 

hippocampal dendrites as it acts as a stop signal for proximal dendrite branching early in 

development (Charych et al. 2006). It is plausible that the interaction between cypin and 

PSD-95 influences dendrite branching between DIV10-12, causing the likely pruning of 

primary dendrites. This underlines the specificity and sometimes transient nature of these 

changes as well as the interplay between cypin and PSD-95 at different times in 

development.  

 The majority of this chapter focused on the effect of cypin overexpression or 

knockdown on PSD-95 protein levels and the functional consequence of this action. We 
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found that overexpressing cypin in hippocampal neurons results in an increase in total 

PSD-95 protein levels and that this increase is dependent on the PDZ-binding motif of 

cypin. Conversely, cypin knockdown resulted in a trend towards a decrease in total PSD-

95 levels. Interestingly, total SAP102 protein levels are unaffected with either cypin or 

cypinΔPDZ overexpression (data not shown), suggesting that cypin influences PSD-95 

protein levels specifically as opposed to generally affecting levels of any PDZ domain-

containing protein. We performed synaptosomal fractionation and showed that cypin 

overexpression results in a decrease of PSD-95 protein levels in the synaptosomes and PSD 

fraction, in agreement with the finding of reduced PSD-95 synaptic clusters after cypin 

overexpression (Firestein et al. 1999). This suggests that cypin has a distinct effect on 

synaptic and nonsynaptic PSD-95 protein expression and redistribution. 

The PSD exhibits constant remodeling and the dynamic recruitment of its 

constituents to the synapse and has been shown to be regulated by changes in synaptic 

activity (Ehlers 2003), post-translational modifications (Colledge et al. 2003; Catarino et al. 

2013; Fukata et al. 2004; Perez de Arce et al. 2010), and local protein translation (Schuman, 

Dynes, and Steward 2006). Constitutive NMDAR hypofunction and hyperfunction results 

in altered protein expression of  NMDAR and AMPAR subunits at the synapse (Balu and 

Coyle 2011). In addition, palmitoylation of PSD-95 controls its recruitment and removal at 

the synapse and influences retention of AMPARs (A. E. D. El-Husseini et al. 2002). 

Furthermore, activity-dependent degradation and ubiquitination have been reported for 

several constituents of the PSD, including PSD-95 (Colledge et al. 2003), and proteasomes 

can translocate to postsynaptic sites in response to synaptic activity (Bingol and Schuman 

2006).  Cypin interacts with a proteasome subunit, and hence, it may act to regulate the 

synaptic localization of PSD-95 via the proteasome. It is possible that cypin also inhibits 
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the proteasome-dependent degradation of nonsynaptic PSD-95, resulting in its increased 

expression. We explore this hypothesis in more detail in the next chapter.  

We recorded miniature excitatory postsynaptic currents (mEPSCs) to determine if 

the cypin-promoted decrease in synaptic PSD-95 levels leads to alterations in synaptic 

transmission. We found that cypin overexpression increases the frequency but not the 

amplitude of mEPSCs and that this is independent of PSD-95-binding. This result was 

counterintuitive since others have shown that PSD-95 overexpression results in increased 

frequency of mEPSCs (A. E. El-Husseini et al. 2000; Béïque and Andrade 2003). 

Interestingly, it has been reported that knocking out PSD-95 results in a disruption of 

AMPAR function in only a subset of synapses (Béïque et al. 2006) and that acute 

inactivation of PSD-95 in culture results in an abrupt disruption of endogenous GluR2 

subunits of AMPARs with no observed differences in NMDARs levels (Yudowski et al. 

2013). These data suggest that compensation occurs and that NMDARs may be stabilized 

by a scaffolding protein other than PSD-95 at the synapse. A potential limitation of our 

study is that individual hippocampal neurons have varying levels of endogenous cypin, 

and hence, overexpression and knockdown of cypin may result in a range of effects in 

different populations. Our data suggest that the decrease in synaptic PSD-95 levels 

promoted by cypin overexpression may only affect a subset of synapses and that 

homeostatic mechanisms (Turrigiano and Nelson 2012) may result in increased synaptic 

transmission in a subset of neurons.    

Finally, we assessed whether cypin overexpression affects AMPAR-mediated 

synaptic transmission in neuronal networks. We found that the overall spike rate of 

networks that overexpress cypin is dramatically decreased with addition of the AMPAR 
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antagonist CNQX, regardless of concentration. This suggests that cypin overexpression 

causes a reduction in functional AMPARs in these networks, in agreement with reports on 

AMPAR-mediated activity disruption as a result of decreasing PSD-95 levels (Yudowski et 

al. 2013; Béïque et al. 2006). This effect was not dependent on PSD-95 binding. In contrast, 

networks that overexpress GFP did not exhibit this change to activity with CNQX 

treatment. One explanation is that AMPAergic synaptic upscaling is triggered in the 

networks overexpressing GFP in the presence of CNQX. Reduced AMPAergic transmission 

through CNQX is sufficient to trigger upscaling directly as a compensatory response in 

cortical networks (Fong et al. 2015). Our results suggest that overexpression of cypin 

reduces the amount of functional AMPARs, further preventing homeostatic upscaling 

from being triggered. We did not study bursting or synchronization behavior in these 

networks because at this level of suppression of activity, the rates of bursting events were 

extremely low, and many times bursting was not present.    

We found that the spike count variability (Fano factor) and variability of the 

interspike intervals (CV) of networks that overexpress cypin or cypinΔPDZ decrease as a 

function of their spike rate, suggesting that regularity of the firing patterns of these 

networks increases in the presence of CNQX. Interestingly, CNQX exposure between 3-5 

µM decreases the variability of the spike count of networks that overexpress GFP but not 

the temporal distribution of the emitted spikes. It is important to note that it remains a 

possibility that at high levels of suppression of activity, the Fano factor is not a completely 

reliable measure when measured over a long window of time, as was done in this study. It 

is possible that by using a long window of time, subtle effects in spike count variability are 

missed.  
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Overall, the results shown in this chapter demonstrate that cypin-mediated 

alterations in PSD-95 protein levels result in changes to synaptic transmission that are 

independent of PSD-95 binding. Moreover, our data support previous evidence that cypin 

acts to redistribute PSD-95 and that this is dependent on the PDZ-binding motif of cypin. 

We believe that cypin and PSD-95 have balancing influences in the morphological and 

functional establishment of neuronal circuits.    
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Chapter 5: The interaction of cypin with the proteasome  

5.1 Introduction 

The continuous modification of synapses by activity and experience is believed to 

be essential for information storage in the brain (Lüscher et al. 2000; Yuste and 

Bonhoeffer 2001). Much of this remodeling takes place at the postsynaptic density (PSD) 

of excitatory synapses, a compartment containing glutamate receptors and signaling 

proteins assembled by a various scaffolding molecules (Morgan Sheng and Hoogenraad 

2007). Changes in the molecular composition of the PSD are thought to mediate and 

accompany structural changes in response to activity and during synapse establishment 

and maturation (Lüscher et al. 2000; Ehlers 2003). These molecular changes can occur 

through the addition of new synaptic proteins (Schuman, Dynes, and Steward 2006), as 

well as by changes in stabilization or the removal of existing proteins (Ehlers 2003; 

Colledge et al. 2003).  

PSD-95 (postsynaptic density protein 95) is a major scaffolding protein at 

excitatory synapses, where it interacts with transmembrane receptors and channels, as 

well as signaling proteins. PSD-95 binds directly to NMDARs (Lin et al. 2004) and 

indirectly to AMPARs, through the transmembrane regulatory protein stargazin (Schnell 

et al. 2002; Vandenberghe, Nicoll, and Bredt 2005). Through interactions with these and 

other synaptic proteins, PSD-95 strongly influences receptor recruitment (Lin et al. 2004; 

X. Chen et al. 2011; Yudowski et al. 2013), dendritic spine maturation (A. E. El-Husseini et 

al. 2000; Pak et al. 2001), and synaptic transmission and scaling (Sun and Turrigiano 2011).  

Cypin is a known cytosolic interactor of PSD-95 in the brain (Firestein et al. 1999). 

We have shown that cypin overexpression results in a decrease in PSD-95 synaptic 
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clustering (Firestein et al. 1999) and protein expression in rat hippocampal neurons. We 

now know that this is accompanied by an increase in total PSD-95 protein levels. A yeast 

two hybrid screen with cypin lacking the last four amino acids as bait identified the β7 

subunit of the proteasome as a potential interactor of cypin, leading us to hypothesize that 

cypin regulates PSD-95 levels via the proteasome. Synaptic protein turnover is essential 

for the correct establishment and function of synapses (Ehlers 2003), and proteasome 

dysfunction has been implicated in the pathogenesis of many disease states (Um et al. 

2010), including Alzheimer’s disease, where proteasome inhibition is predicted to be 

involved in the synaptic defects that characterize it (Haynes et al. 2015; Gong, Radulovic, 

and Figueiredo-pereira 2016). 

The ubiquitin-proteasome pathway is a major mechanism that controls protein 

abundance via exquisitely regulated protein degradation. It is involved and essential in 

many cellular processes, including cell cycle progression, signal transduction, metabolism, 

and protein quality control. In eukaryotic cells, proteins are tagged with polyubiquitin 

chains for degradation by the proteasome. The process of ubiquitination involves multiple 

steps and uses three classes of enzymes – E1, E2, and E3 – to active ubiquitin (E1), 

conjugate it (E2), and catalyze the transfer (E3) of ubiquitin to a recognized substrate.  

The 26S proteasome is an ATP-dependent complex comprised of a catalytic (20S) 

particle and two regulatory (19S) particles, both of which are composed of sets of distinct 

subunits (Baumeister et al. 1998). The structure and function of the proteasome is highly 

conserved. The 20S proteasome is a cylindrical particle formed by four stacked heptameric 

rings: two inner rings composed of seven β subunits and two outer rings composed of 

seven α subunits. These subunits are expressed from distinct, yet related genes (Johnston 
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and Madura 2004). The 20S particle has three distinct peptidase activities that are 

produced by three different β subunits – β1, β2, and β5 – in the interior of the cylinder (M 

Groll et al. 1997). In contrast, the 19S regulatory particle consists of two distinct multiunit 

subcomplexes, the base and the lid, that are linked by the subunit Rpn10 (Glickman et al. 

1999). The 19S proteasome is involved in the recognition, binding, deubiquitination, 

unfolding, and translocation of substrates to the proteolytic chamber of the 20S 

proteasome for degradation.  

It is now generally accepted that PSD-95 is ubiquitinated and a target of the 

proteasome (Colledge et al. 2003; Bingol and Schuman 2004; Bianchetta et al. 2011; Tsai et 

al. 2012). Upon NMDAR stimulation, synaptic PSD-95 is ubiquitinated and degraded by 

the proteasome, resulting in a loss of synaptic AMPARs and long-term depression 

induction (Colledge et al. 2003). In addition, AMPAR stimulation leads to proteasome-

dependent degradation of dendritic PSD-95 (Bingol and Schuman 2004). These studies 

have provided evidence that the ubiquitin-proteasome pathway plays an important role in 

synaptic remodeling and response. Here, we investigate the effects of the interaction 

between cypin and the β7 subunit of the proteasome, as a potential mechanism by which 

cypin regulates PSD-95 protein levels.   

 

5.2 Materials and Methods 

5.2.1 Co-immunoprecipitation 

HEK293T cells were transfected with plasmids encoding RFP or RFP-tagged cypin 

using the calcium phosphate precipitation method (Munjin Kwon and Firestein 2013). 
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Cells were harvested 48 hours post-transfection in RIPA buffer (10 mM Tris-HCl pH 8.0, 1 

mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM 

NaCl, and 1 mM PMSF). Cell lysates were cleared for 1 hour and incubated with anti-β7 

(Enzo Life Sciences) overnight at 4°C. Antibody-protein complexes were precipitated with 

Protein G Sepharose beads (GE Life Sciences) for 1 hour at 4 °C. Protein samples were 

resolved by SDS-PAGE, transferred to a PVDF membrane and probed for β7 and RFP to 

confirm the specific interaction. 

5.2.2 ZsGreen transfection and fluorescence measurement 

COS-7 cells were co-transfected with a ZsGreen-expressing proteasome sensor 

vector (pZsProSensor-1; Clontech Laboratories) and plasmids encoding either RFP or RFP-

tagged cypin and cypin mutants using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions. The proteasome sensor vector encodes a destabilized form of 

green fluorescent protein (ZsGreen) that is rapidly degraded by healthy proteasomes. Cells 

were fixed and immunostained 48 hours post-transfection, images were obtained at 600X 

with oil immersion, and ZsGreen fluorescence intensity was measured using ImageJ 

software (NIH).  

5.2.3 UbG76VGFP transfection and fluorescence measurement 

HEK293T cells were co-transfected with UbG76VGFP plasmid (Addgene) and 

plasmids encoding either RFP or RFP-tagged cypin using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s instructions. GFP fluorescence was measured 48 hours 

post-transfection at room temperature using a fluorescence plate reader at λEX = 485 and 

λEM = 530. A subset of cells were treated with 5 uM of the proteasome inhibitor 
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epoxomicin to validate the assay. All measurements were taken in PBS to prevent the cell 

culture medium from interfering with the fluorescence signal.  

5.2.4 Western blotting 

COS-7 cells were co-transfected with HA-tagged ubiquitin and plasmids encoding 

RFP or RFP-tagged cypin. Cells were harvested in RIPA buffer (10 mM Tris-HCl pH 8.0, 1 

mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM 

NaCl, and 1 mM PMSF) using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions. Samples were spun at 7,500xg and 4 °C for 10 minutes, and 

supernatants were snap frozen in liquid nitrogen. Protein extracts (20 μg) were resolved 

by SDS-PAGE, transferred to a PVDF membrane, and probed for HA tag to identify 

ubiquitinated proteins. The membrane was also probed for actin as a protein loading 

control.     

5.2.5 Measurement of proteasome activity  

Extracts were prepared from COS-7 cells 48 hours after transfection with plasmids 

encoding RFP or RFP-tagged cypin. The chymotryptic-like activity of the proteasome in 20 

μg of cell extracts was measured in the presence of the fluorogenic substrate Suc-Leu-Leu-

Val-Tyr-AMC (Boston Biochem). The release of fluorescent AMC was measured at room 

temperature at an excitation wavelength of 360 nm and an emission wavelength of 425 nm 

for 60 minutes at 5-minute intervals. Proteasome-specific activity was calculated by 

subtracting values obtained in the presence of the proteasome inhibitor epoxomicin. All 

measurements were performed in duplicate.   
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5.2.6 Native gel analysis 

 Non-denaturing polyacrylamide gel electrophoresis (PAGE) was performed as 

described (Chandra et al. 2010) with some modifications. Briefly, protein lysates (70 µg) 

from HEK293T cells transfected with plasmids encoding either RFP or RFP-tagged cypin 

were separated and resolved for 3 hours (125V for 30 minutes and 150V for the remaining 

2.5 hours) in steps of 3, 4, and 5% polyacrylamide. The gel was incubated with buffer 

containing Suc-LLVY-AMC for 20 minutes at 37 °C, and the fluorescence signal was 

visualized upon exposure to UV light. The enzymatic activity of the 20S core was 

stimulated by addition of 0.05% SDS.  

 

5.3 Results 

5.3.1 Cypin interacts with the β7 proteasome subunit in HEK293T cells 

 A yeast two hybrid screen with cypin lacking the last four amino acids as bait 

identified the β7 subunit of the proteasome as a potential interactor of cypin. To confirm 

this interaction in a mammalian cell line, we transfected HEK293T cells with a plasmid 

encoding RFP or RFP-tagged cypin and performed co-immunoprecipitation assays with an 

antibody against β7. HEK293T cells do not express endogenous cypin. We found that RFP-

tagged cypin co-immunoprecipitates with the β7 subunit while RFP does not (Fig. 5-1). 

We previously showed that cypin interacts with the β7 subunit in rat brain (Previtera and 

Firestein, unpublished results); hence, our results confirm that the interaction between 

cypin and the β7 subunit of the proteasome can take place in different cell types. 

Moreover, RFP-tagged cypin does not co-immunoprecipitate with the Rpt6 subunit of the 
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19S proteasome (data not shown), suggesting that its interaction with β7 is specific and it 

does not bind to all proteasome subunits.     

 

Figure 5-1. Cypin co-immunoprecipitates with the β7 subunit of the proteasome in 

HEK293T cells. We transfected cells with plasmids encoding RFP or RFP-tagged 

cypin and performed co-immunoprecipitation assay with a β7 antibody. RFP-

tagged cypin, but not RFP, co-immunoprecipitates with the β7 subunit.    

5.3.2 Cypin interferes with the degradation of ZsGreen  

 We used a reporter assay to investigate whether the interaction of cypin with a 

subunit of the proteasome results in the modulation of proteasome activity. We co-

transfected COS-7 cells with a proteasome sensor plasmid and either RFP or RFP-tagged 

cypin, cypinΔPDZ or cypinΔ76-84 (amino acids 76-84 are necessary for zinc binding and 

guanine deaminase activity). The proteasome sensor plasmid encodes a form of ZsGreen, a 

green fluorescent protein, which is unstable and rapidly degraded by the proteasome. The 

ZsGreen C-terminus is fused to a degradation motif that targets it for removal by the 26S 

proteasome independent of its ubiquitination state. We measured ZsGreen fluorescence 

after co-transfection and found that overexpression of cypin or either cypin mutant 
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resulted in higher ZsGreen fluorescence levels when compared to levels in cells co-

transfected with RFP (Fig. 5-2). These data suggest that cypin interferes with the 

degradation of ZsGreen by the proteasome and that this effect is not dependent on its 

PDZ- or zinc-binding motifs. 

 

Figure 5-2. Cypin interferes with ZsGreen degradation. (A) COS-7 cells expressing 

cypin exhibit higher levels of ZsGreen fluorescence when compared to the control 

condition. Cells were fixed and immunostained 48 hours post-transfection, images 

were obtained at 600X with oil immersion, and (B) ZsGreen fluorescence intensity 

was measured. Statistics were calculated by one-way ANOVA followed by Dunnett’s 
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multiple comparisons test (Data pooled from 3 independent experiments; **p<0.01 

vs. control). 

5.3.3 Cypin interferes with the degradation of UbG76VGFP 

To further investigate whether cypin interferes with protein degradation, we 

employed a reporter plasmid that encodes a GFP-based substrate fused to ubiquitin, 

which is therefore targeted for degradation by the ubiquitin-proteasome system (Dantuma 

et al. 2000; Um et al. 2010). A ubiquitin monomer is covalently attached to GFP, avoiding 

its removal by deubiquitination machinery. Thus, the level of UbG76VGFP protein is 

inversely proportional to the activity of the 26S proteasome. Accordingly, we found that 

UbG76VGFP fluorescence was increased in the presence of the proteasome inhibitor 

epoxomicin to a degree similar to what has been reported (Um et al. 2010).  

We co-transfected HEK293T cells with either RFP or RFP-tagged cypin together 

with UbG76VGFP and found that the level of UbG76VGFP fluorescence was higher in cells 

that were expressing both RFP-cypin and UbG76VGFP than in those expressing RFP and 

UbG76VGFP (Fig. 5-3). Although the covalently attached monoubiquitin cannot be removed 

from the substrate, it can be further polyubiquitinated and deubiquitinated. We 

performed Western blot analysis and confirmed that the increase in GFP fluorescence is a 

result of accumulated mono and polyubiquitinated substrate and not free GFP (data not 

shown). Our results suggest that cypin impairs the activity of the proteasome in cultured 

mammalian cells and that this is the case in the presence or absence of ubiquitination.  
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Figure 5-3. Cypin inhibits the degradation of UbG76VGFP. HEK293T cells were co-

transfected with UbG76VGFP and either RFP or RFP-tagged cypin. (A) Higher levels 

of UbG76VGFP fluorescence were observed in the presence of epoxomicin and in the 

presence of cypin. (B) Fluorescence was measured using a fluorescence microplate 

reader. Statistics were calculated by one-way ANOVA followed by Dunnett’s 

multiple comparisons test (Data pooled from 2 independent experiments; *p<0.05 

vs. control). 

5.3.4 Cypin overexpression increases accumulation of ubiquitinated proteins and 

decreases activity of the proteasome in mammalian cell lines 

 Next, we examined the effects of cypin overexpression on the peptidase activity of 

the proteasome in mammalian cell lines. We measured the chymotrypsin-like activity of 
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the proteasome using the widely used fluorogenic substrate Suc-LLVY-AMC and measured 

its hydrolysis in our cell lysates. We found that cypin overexpression resulted in a ~50% 

reduction in proteasome activity in COS-7 cells (Fig. 5-4B). In addition, we co-transfected 

COS-7 cells with HA-tagged ubiquitin and RFP or RFP-tagged cypin and found that cypin 

overexpression results in an accumulation of ubiquitinated proteins in cell lysates (Fig. 5-

4A). Interestingly, when we examined this in HEK293T cells, we found that this 

accumulation of endogenous ubiquitinated proteins is not dependent on the PDZ- or zinc-

binding motifs of cypin (Fig. 5-4C). Together, our data suggest that cypin negatively 

modulates the peptidase activity of the proteasome, resulting in an accumulation of 

ubiquitin-tagged proteins, and that this effect is not specific to only one cell type.      
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Figure 5-4. Cypin overexpression modulates proteasome activity. (A) Cypin 

overexpression results in an accumulation of ubiquitinated proteins in COS-7 cells 

and a (B) decrease in chymotrypsin-like activity of the proteasome (Data pooled 

from 2 independent experiments; ****p < 0.0001 calculated by Student’s t test). (C) 

In HEK293T cells, overexpression of cypin or its mutants results in an 

accumulation of ubiquitinated proteins.  

5.3.5 Proteasome assembly in the presence of cypin 

 To examine if the modulation of proteasome activity by cypin is a consequence of a 

defect in proteasome assembly or activity of intact proteasomes, we prepared lysates of 
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HEK293T cells overexpressing cypin and resolved lysate proteins in native polyacrylamide 

gels. In-gel hydrolysis of Suc-LLVY-AMC showed two bands corresponding to double-

capped (19S + 20S + 19S) and single-capped (19S + 20S) proteasomes in lysates from cells 

overexpressing either RFP or cypin (Fig. 5-5A).  Free 20S particle was also detected but at 

a considerably lower level. These data suggest that cypin overexpression does not result in 

a significant decrease in intact functional proteasomes.  After in-gel analysis, we 

transferred the proteins to PVDF membranes and subjected them to immunoblotting. We 

probed the membranes with antibodies against 20S (β7) and 19S (Rpt6) subunits and 

detected high amounts of these subunits at the level of single- and double-capped 

proteasomes (Fig. 5-5B). Thus, cypin overexpression does not result in a significant 

increase in the proportion of free 20S particle, suggesting that cypin does not interfere 

with proteasome activity by affecting its integrity.     

 

Figure 5-5. In-gel proteasome activity assay. (A) Lysate proteins were separated and 

resolved via non-denaturing PAGE, and the hydrolysis of Suc-LLVY-AMC was 

measured. (B) Proteins in the native gel were transferred to a PVDF membrane and 

probed with antibodies against 19S and 20S subunits.  
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5.3.6 Cypin overexpression increases PSD-95 ubiquitination 

 Cypin was originally identified as an interactor of the scaffolding protein PSD-95. 

In Chapter 4, we demonstrated that cypin overexpression results in an increase in total 

PSD-95 levels and a decrease in synaptic PSD-95 expression in hippocampal neurons. We 

now investigate if alterations in PSD-95 protein levels are a consequence of the interaction 

between cypin and resulting inhibition of the proteasome and its peptidase activity. We 

co-transfected HEK293T cells with plasmids encoding GFP-tagged PSD-95, HA-tagged 

ubiquitin, and RFP or RFP-tagged cypin or cypinΔPDZ. We then immunoprecipitated 

PSD-95 and assayed ubiquitination levels using Western blot analysis. We found that 

cypin overexpression resulted in an increase in PSD-95 ubiquitination (Fig. 5-6). 

Interestingly, overexpression of cypinΔPDZ does not affect PSD-95 ubiquitination levels. 

Taken together with data from Chapter 4, our result suggests that cypin modulates PSD-

95 levels via the proteasome and that this is dependent on interaction between cypin and 

PSD-95.       
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Figure 5-6. Cypin overexpression results in increased PSD-95 ubiquitination. 

HEK293 cells were co-transfected with plasmids encoding PSD-95-GFP, HA-

Ubiquitin, and either RFP or RFP-tagged cypin or cypinΔPDZ. Cells lysates were 

subjected to immunoprecipitation, and immunoprecipitated proteins were 

resolved by SDS-PAGE and transferred to PVDF membrane. An increase in HA tag 

levels was observed exclusively when cypin is overexpressed. The membrane was 

probed for actin as a protein loading control.     

 

5.4 Discussion 

Cypin plays a role in the establishment and development of dendritic arbors 

(Akum et al. 2004; Charych et al. 2006; M. Kwon et al. 2011; O’Neill et al. 2015) and is an 

interactor of the scaffolding protein PSD-95 (Firestein et al. 1999). In the present study, we 
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propose a new role for cypin as a regulator of proteasome activity. We showed that cypin 

interacts with the β7 subunit of the proteasome. In addition, cypin overexpression 

decreases the chymotryptic-like activity of the proteasome and interferes with the 

degradation of two proteasome sensors. The degradation of the ZsGreen-expressing sensor 

is not dependent on ubiquitination. This is in line with the idea that cypin may act directly 

on the proteasome to inhibit its peptidase activity and not merely affect the ubiquitination 

level of proteasome targets.  

Although the mechanism by which cypin interferes with proteasome activity was 

not elucidated, one possibility is that cypin disrupts correct proteasome assembly or 

stabilization through its interaction with β7. Proteasome activity can be modulated 

through interactions with subunits (Snyder et al. 2003; Lee, Lee, and Park 2012). For 

example, parkin, a widely studied protein implicated in Parkinson’s disease, interacts with 

subunits in the 19S regulatory particle and promotes the activity and accelerates the 

assembly of the 26S proteasome (Um et al. 2010).  

Assembly of the 26S proteasome is a highly orchestrated process that involves 

multiple steps and dedicated assembly chaperones (reviewed in: Murata, Yashiroda, and 

Tanaka 2009; Kunjappu, Hochstrasser, and Wolf 2014; Livneh et al. 2016). Assembly of the 

20S proteasome begins with the formation of an α-ring, which the β–ring then uses as a 

scaffold for assembly. The β subunits are incorporated one by one, with β7 being 

incorporated last and completing the formation of a half 20S proteasome. The β7 subunit 

induces dimerization of two half proteasomes by inserting its C-terminal extension 

between the β1 and β2 subunits in the opposite β-ring. Thus, β7 has a stabilizing role in 

the formation of the catalytic proteasome, and truncation of its C-terminal extension 
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results in impaired proteasome activity and unstable proteasomes (Marques et al. 2007). 

Furthermore, most β subunits, including β7, are synthesized as precursors with N-

terminal propeptides (Michael Groll et al. 1999), and upon complete proteasome 

assembly, the propeptides undergo autocatalytic cleavage (P. Chen and Hochstrasser 

1996).  

We do not know if cypin binds to the β7 propeptide. If it does, cypin could prevent 

its cleavage and interfere with the exposure of the catalytic site of the β subunits, thus 

resulting in decreased proteasome activity. Likewise, we do not know if cypin binds to 

other subunits in the 20S or 19S proteasome. β1 and β2 are two of the subunits that 

contain peptidase activity, and given their direct proximity to β7 in both rings, it is 

plausible that cypin may interfere with their proper assembly and function (Michael Groll 

et al. 1999). Although our preliminary results (Fig. 5-6) show that proteasome assembly is 

not disrupted in HEK293T cells upon cypin overexpression, further investigation is needed 

to confirm this, as well as to determine whether cypin interacts with other proteasome 

subunits or the β7 propeptide. 

In line with our finding that cypin decreases proteasome activity, we further 

showed that cypin overexpression results in an accumulation of endogenous ubiquitinated 

proteins and that this accumulation is independent of the PDZ- and zinc-binding motifs 

of cypin. In addition, cypin overexpression increases the ubiquitination of PSD-95. This is 

in agreement with our finding that cypin overexpression results in an increase in total 

PSD-95 levels. PSD-95 is ubiquitinated by the E3 ligase Mdm2 (Bianchetta et al. 2011). 

Increased interaction between Mdm2 and PSD-95 enhances ubiquitination of PSD-95 but 

does not affect PSD-95 levels in vivo in mice with reduced cyclin-dependent kinase 5 



106 
 

 

(Cdk5) activity (Bianchetta et al. 2011). It has been proposed that Cdk5 regulates the 

distribution of Mdm2 in neurons and increases its levels at the postsynaptic density, 

where it ubiquitinates PSD-95 and promotes synapse elimination (Tsai et al. 2012).  

We showed in Chapter 4 that the increase in total PSD-95 levels promoted by 

cypin overexpression is accompanied by a decrease in synaptic PSD-95 expression. It is 

plausible that Mdm2 or another E3 ligase ubiquitinates PSD-95 at the synapse, decreasing 

its expression in the PSD, while nonsynaptic PSD-95 is ubiquitinated but not degraded. 

We hypothesize that cypin alters proteasome activity and PSD-95 levels with the help of 

additional proteins since the proteasome activity of purified 20S does not change in the 

presence of GST-tagged cypin in a cell-free system (data not shown).  

 We have shown evidence to support the fact that cypin interferes with proteasome 

activity and mediates changes in PSD-95 levels via the proteasome. Additional studies will 

focus on identifying the mechanism by which cypin decreases the activity of the 

proteasome and how it relates to changes in synaptic dynamics.  PSD-95 is an important 

component of the PSD and understanding the mechanism by which its expression and 

activity is regulated will give insight into the rearrangement and remodeling of the PSD.  

 

5.5 Acknowledgements  

I would like to thank Madeline Porter for her work with the ZsGreen proteasome sensor in 

COS-7 cells. 

 

 



107 
 

 

Chapter 6: Summary and Future Directions  

 Proper establishment and development of neuronal circuits is essential for healthy 

brain function and necessitates precise neuronal patterning and synaptic machinery. Our 

group identified cypin as a core regulator of dendrite branching in hippocampal neurons 

and an interactor of the scaffolding protein PSD-95. The goal of this dissertation is to 

enhance our understanding of the functional implications of altering cypin levels on PSD-

95 protein and synaptic function.  

In Chapters 2 and 3, we used microelectrode arrays to investigate neuronal 

network dynamics after overexpression of cypin or a mutant of cypin that cannot bind to 

PSD-95 or its family members (cypinΔPDZ). We established hippocampal cultures on 

MEAs and used lentiviral transduction to alter cypin levels. Specifically, in Chapter 2, we 

measured parameters that describe the global activity of the network, including spiking, 

bursting, and synchronized firing. We found that the trial-to-trial variability was high, and 

mean changes in these parameters were subtle, potentially due to averaging of small 

positive and negative changes. However, the overall spiking activity of our networks 

decreased over time, consistent with maturation of the networks. 

 In Chapter 3, we extended our analysis of network activity to the evaluation of 

spiking variability. Spiking variability is thought to be related to the clustered state of a 

network. Synaptic connections between excitatory neurons are thought to be clustered in 

functional subnetworks, rather than being uniform (Litwin-Kumar and Doiron 2012), and 

alterations in spiking variability can be related to activity level and underlie changes in the 

wiring of a network. We found that networks that overexpress cypin exhibit higher spike 

count variability than do control networks, as measured by the Fano factor, and that this 
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increase is dependent on initial level of activity. These data suggest that networks that 

overexpress cypin contain functional subnetworks that exhibit more fluctuations in firing 

rate over time.  

We calculated the Fano factor for windows of 10 seconds; future studies should 

investigate changes in Fano factor using shorter windows of time, as longer windows 

might uncover variability patterns that takes place over short timescales. Moreover, we 

suggest the computation of the mean-matched Fano factor (Churchland et al. 2010), as it 

avoids artifacts related to large changes in mean spike rate and low trial counts. We 

calculated changes in temporal spike variability, as measured by the interspike interval 

(ISI) and the coefficient of variation. We found that cypin overexpression results in an 

increase in the ISI by DIV21. Overall, only networks that overexpress cypin exhibit 

significant changes in spiking variability. Thus, we were able to detect changes that were 

not detected using traditional global activity parameters.  

We performed spike sorting based on waveform shapes and found that networks 

that overexpress cypin display a wider distribution of spike shapes over time. Interestingly, 

we found that networks that overexpress cypin exhibit a proportion of negative triphasic 

spikes, which is not found for any of the other conditions on DIV21. Recordings from 

planar MEAs typically exhibit field potentials dominated by negative peaks, which are 

thought to reflect inward currents recorded mainly from axons and excitable soma. In 

contrast, positive field potentials are associated with outward currents from dendrites 

(Fendyur et al. 2011). Negative spikes that are characterized by positive components have 

been associated with electrodes that are in close vicinity to dendritic segments (Csicsvari 

et al. 1999). Hence, it is conceivable to assume that the enhanced dendritic arbor 
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promoted by cypin overexpression influences the distribution of spike shapes observed. 

For this analysis, we pooled the spike waveform data for all spikes in a given condition at a 

given timepoint. Future studies should investigate changes in spike waveforms for 

individual electrodes to determine specific changes in spike shape over time, as they relate 

to the spatial arrangement of the network.  

In Chapter 4, we examined the effect of altering cypin expression on total and 

synaptic PSD-95 levels and synaptic transmission. We found that cypin overexpression 

results in an increase of total PSD-95 levels and a decrease in synaptic PSD-95 levels and 

that this effect is dependent on cypin binding to PSD-95 family members. Moreover, cypin 

overexpression results in decreased dendritic spine density that is only partially 

dependent on PSD-95 family member binding to cypin. Cypin overexpression also results 

in increased frequency of miniature excitatory postsynaptic currents (mEPSCs), with no 

changes in amplitude. Interestingly, this increase in frequency is independent of binding 

to PSD-95 family members.  

Other MAGUKs, such as SAP102 and PSD-93, are also highly enriched in the PSD. 

RNAi-mediated knockdown of PSD-93 or PSD-95 results in reduced number of AMPAR-

containing synapses with no reduction in the number of AMPAR in the remaining 

synapses. Moreover, simultaneous knockdown of PSD-95, PSD-93, and SAP102 results in 

large decreases in AMPAR- and NMDAR-mediated synaptic transmission due to a 

reduction in synapses containing glutamate receptors with no change to number of 

dendritic spines or the strength of the remaining functional synapses (Levy et al. 2015). 

PSD-95 is necessary, but not sufficient, for synaptic scaling in cortical neurons, and PSD-

93 supports scaling up and down of activity (Sun and Turrigiano 2011). These studies 
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support the role of homeostatic regulation after loss of PSD-95 via cypin overexpression 

and present the possibility that other MAGUKs compensate for the loss of PSD-95. We 

have shown that cypin overexpression does not change SAP102 levels, but future studies 

should elucidate whether expression of other MAGUKs is affected by changes in cypin 

protein levels.   

We complemented this finding with an evaluation of changes in AMPAR-mediated 

synaptic transmission in neuronal networks. We found that the activity of the networks 

that overexpress cypin is silenced at much lower concentrations of the AMPAR antagonist 

CNQX when compared to networks that overexpress GFP. This reduction in activity is not 

dependent on binding to PSD-95 or its family members.  Our data suggest that global 

overexpression of cypin in neuronal networks decreases the amount of functional 

AMPARs and may prevent synaptic upscaling from being triggered. Upward synaptic 

scaling can be triggered by reduced spiking and by chronically blocking AMPARs (Fong et 

al. 2015). Future studies should focus on investigating whether NMDAR-mediated synaptic 

transmission is affected after cypin overexpression. However, we found the present 

experiments to be technically challenging since the health of the cultures deteriorates due 

to viral transduction followed by multiple recordings to assess activity at different 

concentrations of the antagonist.     

In Chapter 5, we propose a new role for cypin as a regulator of the proteasome. We 

show that cypin interacts with the β7 subunit of the proteasome in HEK293T cells and 

inhibits the chymotryptic-like activity of the proteasome. Moreover, cypin interferes with 

the degradation of two proteasome sensors. Cypin overexpression results in an 

accumulation of endogenous ubiquitinated proteins and an increase in ubiquitination of 
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PSD-95. We hypothesize that cypin acts via the proteasome to promote the degradation of 

synaptic PSD-95 while nonsynaptic PSD-95 is ubiquitinated but not degraded. Future 

studies should focus on elucidating the mechanism by which cypin interferes with 

proteasome activity and investigating the effect of cypin on proteasome activity and 

assembly in hippocampal neurons.    

The correct establishment of neuronal networks requires proper spatiotemporal 

regulation of dendrite branching and synaptic protein turnover. Proteasome-dependent 

protein degradation has been implicated as a key process in synaptic plasticity (Ehlers 

2003). We have shown evidence to support the fact that cypin alters PSD-95 levels in a 

proteasome-dependent manner. Moreover, we show that cypin overexpression affects 

spiking variability and AMPAR-mediated synaptic transmission. The next logical step is to 

extend this work and investigate how cypin affects neuronal circuitry and proteasome-

mediated processes in vivo.   
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