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Case b �
Roots
in R+

Max. in
[c;∞)

Shape of P (·; z )

1 1 < b < 2 (−∞, λlim) 1 c or p∗(z) or

2 1 < b < 2 [λlim, 0) 1 p∗(z)

3 b = 2 (−∞, λlim) 0 c

4 b = 2 (−∞, λlim) 1 c or p∗(z) Same as in Case 1

5 b = 2 [λmin ≤ λ < λlim] 1 c or p∗(z) Same as in Case 1

6 b = 2 [λlim, 0) 1 p∗(z) Same as in Case 2

7 b > 2a (−∞, λlim) 2 c or p∗(z) or

8 b > 2 [λlim, 0) 2 p∗(z)

a In all cases where b > 2 it is assumed that there are two roots in R+, ∀z ∈ [A,B]

Table 4.4: Analysis of the optimality in [c,∞) of the objective function with respect to the
price for a given stock factor (risk-seeking cases)

function t that is unimodal; in such a case, it follows that the equation λ = t(z) will have

at most two solutions or, in other words, the function π∗(·) will have at most three pieces.

However, an important difficulty of this model is that t does not seem to have a predefined

shape, and therefore one cannot know a priori the number of pieces that π∗(·) will have.

For this reason, and even though we will continue to use the function π∗(·) for the sake

of generality, we will only tackle the optimization of cases for λ ≥ λlim. We restrict our

study to risk-averse and moderately risk-seeking cases and refer the reader to numerical

optimization for solving instances where λ < λlim.

Example 4.1. Let D(p, ε) = 106p−bε with ε ∼ U [0.001, 1.999]. Let c = 100. The first-order

condition (4.7) as a function of b and z is 2·106λ(b−1)σ2(z)p−(b−2)−(b−1)µ(z)p+100bz = 0,

with µ(z) = −0.2503z2 +1.0005z−2.503 ·10−7 and σ2(z) = −0.06263z4 +0.1671z3−5.009 ·

10−4 + 5.009 · 10−7z − 2.001 · 10−10.
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Figure 4.1: Piecewise continuous optimal price function

• b = 1.5: the first-order condition becomes 106λσ2(z)
√
p− 1

2µ(z)p+150z = 0. The lower

bound for λ, as shown in Lemma 4.3, can be obtained numerically. It turns out that

(4.8) attains its maximum at z = 1.7215 with a value of λlim = max(µ(z)−3z)5·10−6 =

−6.952 · 10−5. The only positive real root in this case is given by

p∗(z) =

(
106λσ2(z) +

√
(106λσ2(z))2 + 300µ(z)z

µ(z)

)2

.

Observe that b = 1.5 implies that b2 is even, which contradicts one of the assumptions

set earlier in Section 4.1. However, this example is fairly simple and it can be easily

seen that the first-order condition only yields one real positive root.

• b = 2: the first-order condition becomes 2 ·106λσ2(z)−µ(z)p+ 200z = 0. Since b = 2,

per the corollary from Lemma 4.3 we use (4.8) to set a lower bound for λ and thus

set λlim = max(µ(z)− 2z)5 · 10−5 = −4.085 · 10−4. The only positive real root is

p∗(z) = 2
106λσ2(z) + 100

µ(z)
.

• b = 3: the first-order condition becomes
4 · 106λσ2(z)

p
−2µ(z)p+ 300z = 0. λlim is set
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to maxz∈[A,B]
2µ(z)− 3z

400
= −0.02639 and the equation above has two roots:

p∗1(z) =
300z −

√
9 · 104z2 + 32 · 106µ(z)σ2(z)λ

4µ(z)
,

p∗2(z) =
300z +

√
9 · 104z2 + 32 · 106µ(z)σ2(z)λ

4µ(z)
.

These roots are real and positive if λ ≥ −(300z)2

32 · 106µ(z)σ2(z)
, the first being a mini-

mum and the second being the maximum we are interested in. In this case, λlim ≥

−(300z)232 · 106µ(z)σ2(z), ∀z ∈ [A,B] and therefore p∗2(z) is always real, positive,

and not smaller than c. Hence, the assumption p∗(z) ≥ c holds. As mentioned before,

when λ = λlim, c is a root of (4.7). Further analysis shows that this root occurs at

z = 1.6214. However, this point corresponds to a minimizer and π(·) is composed of

maximizers only. For this reason, the right-most graph in Figure 4.2 does not show

a curve that reaches c = 100 when λ = λlim. This can be seen in further detail in

Figure 4.3, where it is clear that c = 100 is only a root of (4.7) when λ = λlim (in this

case at z = 1.6214), but this root does not correspond to a maximizer.

Figure 4.2: Optimal price function under different risk scenarios
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Figure 4.3: Maximizing and minimizing prices for λ = λlim

4.3 Optimization with Respect to z

As commented in the introduction of this thesis, it is usual in the literature to find examples

based on different risk measures that guarantee the unimodality of the objective function

under more restrictions, usually related to the generalized failure rate of ε. For instance,

Xu, Cai, and Chen (2011); Wang, Jiang, and Shen (2004) show unimodality for the risk-

neutral case and multiplicative demand models if the random variable has an increasing

generalized failure rate. For risk-averse cases with CVaR considerations, Chen, Xu, and

Zhang (2009) show that a strictly increasing generalized failure rate in the risk distribution

is required to attain unimodality. In what follows, we proceed to attain different conditions

for unimodality depending on the risk-parameter in a mean-variace setting. We want to

give a managerial meaning to our results and, to that end, we use again the lost sales rate

(LSR) elasticity, as defined by (1.6):

κ̃(p, x) =
p(G(p, x))

′
p

1−G(p, x)
,
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where G(p, x) := Pr(D(p, ε) ≤ x) and (G(p, x))
′
p ≡

∂G(p, x)

∂p
. In particular, when the

demand is multiplicative, Pr(y(p)ε ≤ x) = Pr

(
ε ≤ x

y(p)

)
= F (z), and therefore we obtain

that

κ̃(p, x) =
p(G(p, x))

′
p

1−G(p, x)
=

bzf(z)

1− F (z)
=: ξ(z). (4.9)

Just like the price elasticity of demand in isoelastic demand curves, the LSR elasticity

is not a function of the price when the demand is multiplicative. In other words: the

price-isoelastic demand is also LSR-isoelastic because, given a stock factor, the change in

the level of service will be the same regardless of the price from which that increase takes

place.

In general, we can define the objective function P ∗(·) as a function of z as follows:

P ∗(z) := P (π∗(z), z) =


ap∗(z)−b

(
µ(z)p∗(z)− cz − λap∗(z)2−bσ2(z)

)
, if p∗(z) ≥ c,

ac−b+1
(
µ(z)− z − λac−b+1σ2(z)

)
, if p∗(z) < c.

(4.10)

Its first-order derivative, after using the relation between λ and p∗(z) as derived from (4.7),

is

P ∗
′
(z) =


ap∗(z)−bR(z), if p∗(z) ≥ c,

−ac−b+1
(
F (z) + λac−b+1σ2′(z)

)
, if p∗(z) < c,

(4.11)

where R(z) = (1− F (z))p∗(z)− c− λap∗(z)−(b−2)σ2′(z). (4.12)
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These piecewise expressions are only needed if the retailer is risk-seeking with λ < λmin,

for only in those cases it may happen that p∗(z) < c for some values of z. For any other value

of λ only the first piece, corresponding to the case where p∗(z) > c, will be needed.

4.3.1 Risk-Neutral Retailer

When λ = 0, P ∗(·) and its first-order derivative can be greatly simplified to

P ∗(z) = ap∗(z)−b (µ(z)p∗(z)− cz) ,

and

P ∗
′
(z) = ap∗(z)−bR(z),

where R(z) = (1 − F (z))p∗(z) − c. This is the same result obtained by Wang, Jiang, and

Shen (2004); Petruzzi and Dada (1999). It is thus clear that the optimal stock factors

z∗ of the risk-neutral, single-stage newsvendor problem with isoelastic demand satisfy the

equation F (z∗) = 1 − c/p∗(z∗). When the stock factor is the only decision variable, this

result particularizes for the classic, well-known result of the single-stage newsvendor problem

where the stock factor that maximizes the profit is unique and equal to the (1− c/p)-quantile

of z (sometimes called the newsvendor quantile). However, when the price is also a decision

variable it is not clear anymore whether this equation has one or multiple solutions. The

following theorems intend to shed some light on some conditions that guarantee local and

global optimality of the solutions to R(z) = 0:

Theorem 4.3. The following local and global optimality conditions hold for the risk-neutral

case:
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a) (Local optimality) Let z∗ be a solution to the equation F (z) = 1− c/p∗(z). Then the pair

(z∗, p∗(z∗)) is a strict local maximum of P (·, ·) in [A,B]× [c,∞) if and only if ξ(z∗) > 1.

If ξ(z∗) < 1, this pair is a saddle point of P (·, ·) in [A,B]× [c,∞).

b) (Global optimality) If ξ(z) > 1, ∀z ∈ [A,B], then P (·, ·) is unimodal in [A,B]× [c,∞).

In other words, there is only one stock factor z∗ that satisfies the equation F (z∗) = 1−

c/p∗(z∗) and therefore the pair (z∗, p∗(z∗)) solves the risk-neutral, single-stage newsven-

dor problem with isoelastic demand.

Proof. See Appendix C.

Example 4.2. Consider the demand function D(p, ε) = 106p−3ε. Let c = 50. The random

variable ε has a probability density function denoted by f(z) = 0.5f1(z) + 0.5f2(z), where

f1 and f2 are in turn the pdf’s of two normal random variables with means 0.4, 1.6 and

standard deviations 0.1, 0.2, respectively. We assume A = 0.001 and B = 3 because the

density of ε beyond those points is negligible. The optimal price for each value of z can be

calculated by using the third entry of Table 4.3. Solving the equation F (z) = 1 − c/p∗(z)

numerically yields the following solutions: z∗1 = 0.4831, z∗2 = 0.8, z∗3 = 1.392. Evaluating

these points in the expression ξ(z) = 3zf(z)/(1−F (z)) yields the following LSR elasticities:

ξ(z∗1) = 3.4026, ξ(z∗2) = 0.0048, ξ(z∗3) = 5.6998.

These results show that the points (z∗1 , p
∗(z∗1)) = (0.4831, 83.1294) and (z∗3 , p

∗(z∗3)) =

(1.392, 117.5295) are strict local maxima of P (·, ·), whereas (z∗2 , p
∗(z∗2)) = (0.8, 100) is a

saddle point of P (·, ·). The pair (1.392, 117.5295) is also the global maximum of P (·, ·) in

[0.001, 3] × [50,∞) with a value of the objective function P (z∗3 , p
∗(z∗3)) = 21.4355. Figure

4.4 shows these three points as the solutions to P ∗
′
(z) = 0 (i.e. as the solutions to F (z) =

1 − c/p∗(z)) plotted on the curve P ∗(z) = P (z, p∗(z)) and then those three points plotted
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on the surface defined by P (z, p). Note that (0.8, 100) is a local minimum of P ∗(·) but it is

a saddle point of P (·, ·).

Figure 4.4: Illustration of local optimality conditions for the risk-neutral case

The theorem above gives conditions for a point to be either a local maximum or a

unique maximum of P (·, ·) in the risk-neutral, single-stage newsvendor problem with mul-

tiplicative demand. Some similar results that guaranteed the unimodality of this problem

were obtained in the past as a function of the failure rate of ε, h(z) = f(z)/ (1− F (z)), and

the generalized failure rate of ε, g(z) = zh(z). For instance, Petruzzi and Dada (1999) show

that if b ≥ 2 and 2h(z)2 + h′(z) > 0 this problem has a unique solution. Wang, Jiang, and

Shen (2004) claim that ε having an increasing generalized failure rate is sufficient, thus un-

coupling the economic parameters of the model from the uniqueness of the optimal solution.

Both conditions are the consequence of imposing the unimodality of equivalent formulations

of R(z) (see both papers for further details). In turn, we make the Hessian of P (·, ·) negative

definite in all the pairs (z∗, p∗(z)) for proving our local optimality condition and transform

the results to give them the more economic and managerial interpretation that the LSR elas-

ticity provides. This result also complements Theorem 2 from Kocabıyıkoğlu and Popescu
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(2011) that claims the concavity of the objective function in risk-neutral cases if ξ(x) > 1/2.

However, they assume that 2y′(p)+py′′(p) < 0, which implies that the good has an inelastic

demand (b < 1). In this chapter, we extend the concept of concavity to that of unimodality

and we consider products that have an elastic demand (b > 1).

The following lemma characterizes the changes in the optimal stock factor and the

optimal price in the risk-neutral case.

Lemma 4.4. Let λ = 0 and z∗ be a solution to the equation F (z) = 1 − c/p∗(z). If the

LSR elasticity at z∗ is greater than the price elasticity of the demand (i.e. ξ(z∗) > b) then

z∗ decreases in b and p∗ increases in c and decreases in b.

Proof. See Appendix C.

Corollary 4.3. This result matches what Wang, Jiang, and Shen (2004) propose under

the IGFR condition.

4.3.2 Risk-Sensitive Retailer

When λ ≥ λlim, P ∗(·) and its first-order derivative can be written as shown in equa-

tions (4.10) - (4.12) for the case p∗(z) ≥ c. There exist some conditions under which the

unimodality of the risk-sensitive problem, either risk-averse or moderately risk-seeking, is

guaranteed.

Theorem 4.4. (Global optimality) Let

η(z) = (1− F (z))p∗(z)− c,

Ψ(z) = (c+ (b− 1)η(z))2(1− F (z))(z − µ(z)),

Φ(z) = (b− 1)2σ2(z)η(z) + bcz(1− F (z))(z − µ(z)).
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The following sufficient conditions guarantee that the unimodality of the single-stage newsven-

dor problem with isoelastic demand (i.e. there is only one stock factor z∗ that satisfies the

equation R(z) = 0):

a) If λ ≥ λlim:

ξ(z) >

(
Ψ(z)

Φ(z)
− F (z)η(z)

z − µ(z)

)
bz

c
, ∀z ∈ [A,B],

b) If λ ≥ 0:

ξ(z) >

(
1 +

(b− 1)η(z)

c

)2

, ∀z ∈ [A,B], (4.13)

c) If λ ≥ 0 and b ≥ 2:

ξ(z) >

(
1 +

2λa(b− 1)(B − 1)

cb−1

)2

, ∀z ∈ [A,B], (4.14)

Proof. See Appendix C.

A very interesting remark to make here is that the global optimality condition from

Theorem 4.3 is a particularization of the global optimality condition from Theorem 4.4.

As a matter of fact, when λ = 0, it turns out that η(z)|R(z)=0 = 0 (because in this case

η(z) = R(z)). Applying this to (4.13) yields directly the expression ξ(z) > 1. On the

other hand, the bound provided for the risk-averse cases with b ≥ 2 is in general very close

to 1. This is because the order of magnitude of λ is generally very small: let m, k, and

r be constants; if the order of magnitude of the variance of the profit is ∼ 102m, then

the objective function P (·, ·) dictates that λ ∼ 10−m. The values of the price elasticity b
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and the upper bound B are usually of order ∼ 100. The parameter a has usually a larger

order of magnitude (∼ 10r); the denominator cb−1 ∼ 10k(b−1) (where 10k is the order of

magnitude of the cost). After all, the second term in the squared expression from (4.14) is

∼ 10r−k(b−1)−m <<∼ 100, as long as the order of magnitude of a is not comparatively very

high.

All the results in Theorem 4.4 require the evaluation of the LSR elasticity in all the

points in the compact interval [A,B]. Under some circumstances, we can reduce our opti-

mization problem to a smaller interval, which increases the applicability of our results.

Definition 4.1. Let z∗RSE be a solution to the equation (1−F (z))p∗(z)− c = 0 where p∗(z)

is the optimal price as derived from solving (4.7) for the risk-sensitive problem. Such a

solution is called risk-sensitive equivalent (RSE) solution.

An RSE solution is therefore a stock factor that satisfies the optimality condition for

the risk-neutral problem (i.e. R(z) = (1 − F (z))p∗(z) − c = 0) but uses a risk-sensitive

optimal price. It turns out that if the function (1−F (·))p∗(·)− c is decreasing, then we can

reduce our interval of optimization.

Lemma 4.5. If ξ(z) > bz
p∗
′
(z)

p∗(z)
, ∀z ∈ [A,B], then the risk-sensitive problem has a unique

RSE solution (RSE-optimal solution) and we can reduce our optimization problem as fol-

lows:

max
z∈[A,B]

P ∗(z) =


max

z∈[A,z∗RSE ]
P ∗(z), if λ > 0,

max
z∈[z∗RSE ,B]

P ∗(z), if λ < 0,

Proof. See Appendix C.

Corollary 4.4. P ∗(z∗RSE) is a lower bound of the optimal solution of the problem, P ∗(z∗).
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4.4 Sensitivity Analysis of the Optimal Price, the Expected

Profit, and the Variance of the Profit

4.4.1 Relationship between the Optimal Price and the Risk Parame-

ter

We can analyze how, for a given stock factor, the optimal price changes as a function of the

risk parameter λ. For a given stock factor ẑ, let λ 7→ p̃∗(λ) denote the optimal price as a

function of the risk parameter.

Lemma 4.6. Given stock factor ẑ, the optimal price is a nondecreasing, concave function

with respect to λ.

Proof. See Appendix C.

Corollary 4.5. In the risk-averse case, the optimal price p∗(λ, z) is always greater than or

equal to the cost c since it follows from Lemma 4.6 that p∗(λ, z) ≥ p∗(0, z) ≥ p̃∗(0)

∣∣∣∣
z=A

=

p̃∗(λ)

∣∣∣∣
z=A

=
bc

b− 1
> c.

The consequence of this lemma is that the optimal price for a given stock factor ẑ in-

creases with the level of risk-aversion, whereas it decreases with the level of risk-seekingness.

Although this result may seem counterintuitive at first sight, it is convenient to recall that

one important characteristic of the multiplicative demand is that the price affects the de-

mand uncertainty. More concisely, the variance of the demand is in this case decreasing with

respect to the price, for V ar(D(p, ε)) = V ar(ε)y(p)2 (Petruzzi and Dada, 1999). Therefore,

when increasing λ in the risk-averse case, a price increase will reduce the riskless demand

y(p), and this in turn will reduce the variance of the stochastic demand. Similarly, reducing

λ in the risk-seeking case will increase the riskless demand and induce an increment in the



86

variance of the stochastic demand.

4.4.2 Relationship between Profit and the Risk Parameter

Let Π̃∗(λ) be a random variable denoting the profit for a given stock factor ẑ and price

p̃∗(λ) as a function of the risk parameter λ.

Lemma 4.7. The variance of the profit for a given stock factor ẑ and price p̃∗(λ) decreases

as λ increases.

Proof. See Appendix C.

Corollary 4.6. As the newsvendor gets more risk-averse (risk-seeking), his optimal policy

induces a smaller (greater) variance of the profit.

Lemma 4.8. The expected profit for a given stock factor ẑ and price p̃∗(λ) decreases as λ

increases in the risk-averse case and decreases as λ decreases in the risk-seeking case.

Proof. See Appendix C.

For illustration purposes, we analyze Example 4.1 with b = 3 after embedding π∗(z) in

P (·, ·). Figure 4.5 shows the objective function P ∗(z), as well as E(Π∗(z)) and Std(Π∗(z)) =√
V ar(Π∗(z)), for different values of λ ranging from risk-seeking to risk-averse situations.

All the curves represent values of λ above λlim and therefore we should expect π∗(z) = p∗(z).

The behavior predicted by lemmas 4.7 and 4.8 can be observed in this figure: for a given

stock factor ẑ the variance of the profit decreases with the risk-aversion and increases with

the risk seekingnees; in turn, the expected profit decreases with both risk-aversion and

risk-seekingness. It is under the light of an example like this one where the power of a

mean-variance analysis25as a tool for decision-making can be seen: first we are able to
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come up with an array of optimal decisions as a function of our stance towards risk. The

optimal value of the objective function itself is not significant; instead, it reveals an optimal

stock factor and price that can be used for determining the best combination of expected

profit and standard deviation of the profit for a particular risk tolerance. These are the

true metrics when it comes to making a decision.

Figure 4.5: Objective function, expected profit, and standard deviation of the profit under
different risk scenarios with D(p, ε) = 106p−3ε, ε ∼ U [0.001, 1.999], c = 100

Secondly, the range of values for λ that are acceptable for every situation is given

by the results that these values yield and the results derived from the sensitivity analysis

previously shown: a risk-averse decision-maker does not know at first what his tolerance

to risk is in terms of λ but he knows that there is a maximum standard deviation that is

acceptable for him. Fine-tuning λ is thus a matter of finding the scenario that results in that
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maximum standard deviation. It follows from the sensitivity analysis that any λ greater

than the value found will generate optimal pairs that guarantee lower standard deviations

and this appreciation gives a range of values of λ. An analogous interpretation for risk-

seeking individuals can be made using similar arguments in view of the results that stem

from the sensitivity analysis. Finally, Table 4.5 shows several numerical results for different

values of λ ranging from risk-seeking cases to risk-averse cases. For these experiments we

used a demand function D(p, ε) = 106p−1.5ε with ε being distributed as three different

distributions, namely, uniform, normal, and triangular. The cost of the commodity is

assumed to be c = 100. For the range of values of λ used, λ > λlim and therefore p∗(z) > c.

Since b = 1.5, this optimal price can be calculated via the closed-form result shown in Table

4.3. Every scenario met condition a) from Theorem 4.4 and therefore the solution to the

optimization problem is given by a unique pair (z∗, p∗(z∗)). Note that some risk-seeking

scenarios even incur in expected loss profit in exchange for a higher standard deviation of

the profit.

λ = −2.1E − 04 λ = −1.2E − 04
Distribution p∗ z∗ E[Π∗] SD[Π∗] p∗ z∗ E[Π∗] SD[Π∗]
Uniform [0.6, 1.4] 143.49 1.36 4,321.12 16,220.60 219.26 1.34 25,982.03 15,392.70
Normal (1,0.252) 140.70 1.43 -1,607.21 16,962.52 218.21 1.38 24,309 16,014.08
Triangular (0.3, 1.6, 1.1) 115.53 1.42 -21.677.25 19,882.49 193.26 1.39 19,749.96 18,704.23

λ = −3E − 05 λ = 0
Distribution p∗ z∗ E[Π∗] SD[Π∗] p∗ z∗ E[Π∗] SD[Π∗]
Uniform [0.6, 1.4] 334,38 1.28 33,287.76 11,180.27 365.24 1.18 33,837.41 10,092.55
Normal (1,0.252) 330.45 1.25 33,067.93 11,902.05 359.59 1.15 33,646.23 10,137.24
Triangular (0.3, 1.6, 1.1) 325.86 1.28 32,672.02 13,530.66 367.91 1.18 33,432.89 11,484.84

λ = 3E − 05 λ = 3E − 04
Distribution p∗ z∗ E[Π∗] SD[Π∗] p∗ z∗ E[Π∗] SD[Π∗]
Uniform [0.6, 1.4] 366.83 1.04 33,220.21 7,626.22 333.95 0.77 28,622.65 3,525.68
Normal (1,0.252) 372.07 1.04 33,168.79 8,298.95 382.56 0.76 27,532.56 4,716.51
Triangular (0.3, 1.6, 1.1) 388.66 1.06 32,778.30 9,274.07 378.65 0.71 25,737.30 4,738.12

Table 4.5: Summary of results of the optimization problem for several random variables
(c = 100, y(p) = 106p−1.5).
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4.5 Conclusions

The results presented in this chapter are oriented not only towards presenting conditions for

the unimodality, but also towards giving those conditions a managerial appeal by including a

metric typically used in industry: the level of service. We show that in risk-averse instances

the optimal price is a unimodal function in z that is always greater than the cost. Neither

the unimodality nor the monotonicity of this function is guaranteed in risk-seeking instances,

but its shape and sign of its derivative can be known based on the price elasticity of the

demand and the risk-parameter. In turn, the objective function P ∗(·) is not necessarily

unimodal, although we attain optimality conditions that guarantee this unimodality under

some premises characterized by the LSR elasticity ξ(·), a measure of the change in the level

of service when increasing the price of the product. We also prove that the condition found

for the risk-neutral problem (ξ(z) > 1) is a particularization of one of our conditions for

the risk-sensitive problem and extends the results obtained by Kocabıyıkoğlu and Popescu

(2011) to the case of price-elastic goods. We also investigate the much less explored risk-

seeking case, and find interesting research questions that stem from the complexity that

arises in instances with very high risk-seeking behavior. In particular, the cases where

λ < λlim may result in a piecewise, nonlinear objective function which a priori complicates

the search for the optimal solution of the problem.

Finally, a sensitivity analysis performed on the main variables of the model reveals

some insights useful for decision-making: when compared to the risk-neutral case, the risk-

averse newsvendor sets higher optimal prices for a given stock factor and the risk-seeking

newsvendor prefers lower optimal prices. A risk-averse retailer should also anticipate smaller

expectation and variance in his profit in comparison to a risk-neutral individual, while a
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risk-seeking newsvendor should predict smaller expectation and higher variance in his profit.

These gaps between the results in risk-neutral and risk-sensitive cases are proportional to

the degree of risk-aversion or risk-seekingness.
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Chapter 5

Final Conclusions and Future

Research

The present thesis was completed aiming at achieving a well-defined goal: the unification

of all risk-sensitive instances of the price-setting newsvendor problem with price-dependent

demand and two decision variables (namely, price and stock quantity), as well as the char-

acterization of the conditions for the unimodality of each instance under a metric that

captures managerial attention.

We achieve the first goal by introducing a mean-variance trade-off. Such a performance

measure must be seen as a weighted combination of the expected profit and the variance

of the profit. The relative importance of the variance of the profit as well as the sign

of its contribution to such measure is given by a risk parameter λ. The sign of this risk

parameter denotes whether the decision maker is risk-averse or risk-seeking. The latter still

remains much less studied than the former, and for this reason we believe that our work

bridges efficiently a gap in the literature. One major characteristic of our model is that
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we do not make any assumption on the random component of the demand. While many

authors work with random variables that have an increasing failure rate or an increasing

generalized failure rate, our results also hold for random perturbations that do not have

those properties. We tackle the second goal by including the LSR elasticity, and hence the

level of service, as the main metric for assessing the unimodality of a given instance.

While §2 analyzes the concavity of the objective function with additive demand, §3

and §4 broadens the scope of our study and finds conditions for the unimodality of the

performance measure with additive demand and multiplicative demand, respectively. This

scope, besides being more general, does not use the assumptions that are needed in the

study of the concavity of the objective function.

There exist important similarities in the behavior of the performance measure when

the demand is additive and multiplicative. In particular, we showed that the expected

profit and the variance of the profit decrease with the level of risk-aversion, whereas they

decrease and increase respectively with the level of risk-seekingness. The importance of this

result lies in the need to calibrate the value of λ to adapt the instance of the model to the

risk sensitivity of the decision maker. It is much easier to calibrate this parameter if we

know beforehand what the impact on the performance measure will be after changing its

value.

However, finding the conditions for the unimodality of the objective function turned

out to be much simpler when the demand is additive. Albeit in both cases the optimal

price is not necessarily contained in the allowed range of prices, a major advantage of

the additive demand model is that it allows a very precise, closed-form description of this

function. Having knowledge about the characteristics of the optimal price is crucial to
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develop constant lower bounds in terms LSR elasticity because it allows to know exactly

how many pieces the nonlinear and piecewise performance measure will have. Conversely,

when the demand is isoelastic, and except for the risk-neutral case, the functional form of

the optional price remains unknown unless the value of the price-elasticity of the demand

is specified. Consequently, we do not know how many pieces the performance measure will

have. Its analysis is much more complex and so is finding constant bounds that guarantee

the unimodality of the objective function.

Future research directions point to how to deal with the opportunities provided by

the presence of massive amount of data. New trends in the research community are geared

towards big data analysis and the newsvendor problem can benefit greatly from the devel-

opment of new techniques. The concept of big data is spreading vastly among researchers

and is considered a hot topic nowadays. Although there does not seem to be consensus on

what big data really means, it deals with the use of advanced analysis techniques to extract

useful information from massive amounts of data. In many occasions in the past, lack of

data used to be a problem. Nevertheless, technological changes as well as the capacity to

acquire and storage an unprecedented amount of data is posing a problem that did not exist

before: how to extract the information we need from so much data.

There has been a very interesting attempt to incorporate the application of machine

learning techniques to the newsvendor problem (Rudin and Vahn, 2013). This work does

not imply any specific relationship between price and demand. On the contrary, the amount

of variables that determine the demand is the result of collecting exogenous and endogenous

information. All in all, the problem is to find an optimal stock function q(·) of those variables

(or features) such that the empirical risk with respect to the dataset Sn (Alpaydin, 2014)
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is minimized over the period in which the data were collected:

min
q∈Q:{f :X→R}

R̂(q(·);Sn) =
1

n

n∑
i=1

[
b(di − q(xi))

+ + h(q(xi)− di)+
]
,

where b and h are, respectively, the unit backordering and holding costs, di is the demand

observed in period i, and xi is a vector containing the features in period i. Once this is

done, we can observe the features for the period n + 1 and use q(·) to make an educated

decision on the ordering quantity that is more convenient. The function q(·) is selected

among those in a class Q which can be, for instance, the class of linear functions.

We believe this approach is an excellent starting point for more advanced models. For

example, we may want to include the price as a decision variable and maximize the average

profit over a set of n periods. The price can also be a function of the features selected

among a predefined class of functions. Moreover, we can add a mean-variance tradeoff to

the analysis and study this enhanced big data newsvendor problem in order to see how the

availability of large datasets improve the decision-making process and what is the impact

that different features have on price and stock policies for different risk profiles.
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Proofs of Selected Theorems and

Lemmas
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Appendix A

Concavity with Additive

Demand

Theorem 2.1

Proof. First, we show that p∗(·) is concave. Indeed, the second-order derivative of this

function yields

d2p∗(z)

dz2
=

(
−f(z)− λσ2′(z)(1− F (z))

λσ2(z) + b

)
1− 4λ(z − µ(z))p∗(z)

2(λσ2(z) + b)

−4λ
1− F (z)

2(λσ2(z) + b)

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
, (A.1)

which is clearly nonpositive, since z − µ(z) ≥ 0 for z ∈ [A,B] and the function p∗(·) is

increasing.
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Analyzing (2.9) at the extreme points of the interval [A,B] yields:

dP ∗(z)

dz

∣∣∣∣
z=A

=
A+ a+ cb

2b
− 2bc

2b
> 0, by assumption (A5), (A.2)

dP ∗(z)

dz

∣∣∣∣
z=B

= −c < 0. (A.3)

Therefore, there exists a point z∗ ∈ (A,B) at which the function P ∗(·) attains its

maximum. We claim that such a point is unique by showing that P ∗(·) is a concave function.

Indeed,

d2P ∗(z)

dz2
=

(
dp∗(z)

dz
(1− F (z))− f(z)p∗(z)

)
[1− 2λ(z − µ(z))p∗(z)]

−2λp∗(z)(1− F (z))

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
. (A.4)

Note the similarity of the last term on the right-hand side to the right hand side

of equation (A.1); hence this term is also nonpositive. The first term of the right-hand

side,however, might take on a different sign. While (A3) guarantees that [1 − 2λ(z −

µ(z))p∗(z)] ≥ 0, it is unclear what happens with the first part of the term. If we force it to

be nonpositive, we have that

dp∗(z)

dz
(1− F (z))− f(z)p∗(z) ≤ 0.

However, since the function z 7→ dp∗(z)

dz
is decreasing, it attains its maximum at z = A:

dp∗(z)

dz

∣∣∣∣
z=A

=
1

2b
=⇒ dp∗(z)

dz
(1− F (z))− f(z)p∗(z) ≤ 1

2b
(1− F (z))− f(z)p∗(z) ≤ 0.
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The last inequality is equivalent to

bp∗(z)f(z)

1− F (z)
≥ 1

2
,

from which we conclude that P ∗(·) is concave if ξ∗(z) ≥ 1

2
,∀z ∈ [A,B].

Lemma 2.2

Proof. Given the complexity of equation (2.12), we proceed to see how z̃∗ varies with chang-

ing λ. Thus, if we rename the left-hand side of (2.12) as g(λ, z), the following holds

∂g(λ, z)

∂λ
= −2p(1− F (z)[z − µ(z)],

∂g(λ, z)

∂z
= f(z)[2λp(z − µ(z))− 1]− 2λpF (z)(1− F (z)).

By means of the Implicit Function Theorem (Stewart, 2011) it turns out that

dz̃∗(λ)

dλ
=

2p(1− F (z̃∗(λ))[z̃∗(λ)− µ(z̃∗(λ))]

f(z̃∗(λ))[2λp(z̃∗(λ)− µ(z̃∗(λ)))− 1]− 2λpF (z̃∗(λ))(1− F (z̃∗(λ)))
. (A.5)

The numerator in the formula above is always nonnegative. The second term of the

denominator is always nonnegative as well but it is subtracted. Then, if the first term in

the denominator is negative, the entire expression will become negative. This occurs, if:

2λp(z̃∗(λ)− µ(z̃∗(λ)))− 1 < 0,
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whence

λ <
1

2p(z̃∗(λ)− µ(z̃∗(λ)))
≤ 1

2pmax(B − E(ε))
,

but this is guaranteed by (A3). Therefore, z̃∗(·) is decreasing.

Theorem 2.2

Proof. We must show that the Hessian matrix of P (·) is negative semidefinite. This implies

that

∂2P (p, z)

∂z2
≤ 0 and ∆(p, z) =

∂2P (p, z)

∂p2

∂2P (p, z)

∂z2
−
(
∂2P (p, z)

∂p∂z

)2

≥ 0.

Note that the validity of the conditions above also implies that
∂2P (p, z)

∂p2
≤ 0. Equa-

tions (2.5) and (2.11) are negative and nonnegative respectively. Likewise, the second-order

partial derivative of z 7→ P (p, z) with respect to z is nonpositive as a consequence of a

straightforward application of (A3):

∂2P (p, z)

∂z2
= −2λp2F (z)[1− F (z)]− pf(z)[1− 2λp(z − µ(z))] ≤ 0.
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Finally, it remains to check that the determinant of the Hessian matrix is nonnegative:

∆(p, z) = 2[λσ2(z) + b][2λp2F (z)(1− F (z)) + pf(z)(1− 2λp(z − µ(z)))]

−[1− F (z)]2[1− 4λp(z − µ(z))]2]]

≥ (1− F (z))
{(

4λbp2F (z) + (1− 2λp(z − µ(z)))
)

+F (z)[1− 4λp(z − µ(z))]2 − [1− 4λp(z − µ(z))]2
}
≥ 0,

where the inequality follows from the fact that 2(λσ2(z) + b) ≥ 2b and from assuming that

ξ(p, z) ≥ 1

2
.

Lemma 2.4

Proof. Given (2.6), it only remains to prove that c < p∗(z) ≤ pmax. Indeed, if λ ∈(
−b

V ar(ε)
, 0

)
, the right-hand side of (2.7) is always positive and thus p∗(·) is increasing.

Besides, p∗(A) =
A+ a+ cb

2b
> c. Therefore, p∗(z) > c, ∀z ∈ [A,B].

Nonetheless, as shown before, p∗(z) may take values greater than pmax. Hence, if

we require p∗(B) ≤ pmax ≤
a

b
, then p∗(z) ≤ pmax for any z ∈ [A,B] (because p∗(·) is

increasing). Consequently,

p∗(B) =
E(ε) + a+ cb

2(λV ar(ε) + b)
≤ a

b
,

which holds whenever

λ ≥ b(E(ε)− y(c))

2aV ar(ε)
,
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with the right-hand side being negative, as guaranteed by (B4). Now, it remains to re-

quire the number
b(E(ε)− y(c))

2aV ar(ε)
being contained in the interval

(
−b

V ar(ε)
, 0

)
. This occurs,

whenever

b(E(ε)− y(c))

2aV ar(ε)
≥ −b

V ar(ε)
,

whence we obtain the necessary condition E(ε) ≥ −y(−c). This condition, however, is

always met by virtue of assumption (B3) and the fact that E(ε) > A:

−y(c) < A < E(ε) =⇒ −y(−c) < E(ε)− 2bc < E(ε).

Therefore, for λ ∈
[
b(E(ε)− y(c)

2aV ar(ε)
, 0

)
the function P (·, z) is concave for all z ∈ [A,B] and

p∗(z) ≤ pmax.

Theorem 2.3

Proof. The first-order derivative of P ∗(·) at the points A and B is given by (A.2) and (A.3),

respectively. Therefore, there exists a point z∗ ∈ (A,B) at which the function P ∗(·) attains

its maximum. Such maximum is unique if P ∗(·) is a concave function and we refer to

equation (A.4) in order to prove it. Imposing concavity requires that

[1− 2λ(z − µ(z))p∗(z)]
(
dp∗(z)
dz [1− F (z)]− f(z)p∗(z)

)
≤

2λp∗(z)[1− F (z)]

(
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

)
.
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This condition holds for z = B. For all other values of z, dividing both sides by

1− F (z) and multiplying by b gives an expression in terms of ξ∗(z):

ξ∗(z) ≥ b
dp∗(z)

dz
−

2λp∗(z)b

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
1− 2λ(z − µ(z))p∗(z)

, z ∈ [A,B],

which is a necessary and sufficient condition for P ∗(·) to be concave.

Lemma 2.5

Proof. A straightforward application of (A.1) gives a necessary condition for
dp∗(·)
dz

to be

decreasing:

−f(z)(λσ2(z) + b)− 2λ(z − µ(z))(1− F (z))2

λσ2(z) + b
[1− 4λ(z − µ(z))p∗(z)] ≤

4λ(1− F (z))

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
, z ∈ [A,B].

Bounding both sides of this equation yields a sufficient condition for the concavity

of p∗(·). The condition above always holds for z = A and z = B (the expression above

becomes −f(A) ≤ 0 and −f(B)[1− 4λ(B −E(ε))p∗(B)] ≤ 0 respectively). For A < z < B,

we establish that the largest value of the left-hand side has to be at most equal to the

smallest value of the right-hand side. The largest value of the left-hand side is represented

by the value that is closest to 0, which is
1

b
(−2λ(B−E(ε))−f(z)(λV ar(ε)+b)). Conversely,

the smallest value of the right-hand side is 2λ
2a+B − E(ε)

b
. Therefore, we obtain that

1

b
[−2λ(B − E(ε))− f(z)(λV ar(ε) + b)] ≤ 2λ

2a+B − E(ε)

b
,
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whence

λ ≥ −f(z)b

4(a+B − E(ε)) + f(z)V ar(ε)
.

Since we want this range to be valid for all z, we can rewrite this as

λ ≥ max
z∈[A,B]

{
−f(z)b

4(a+B − E(ε)) + f(z)V ar(ε)

}
.

Lemma 2.6

Proof. We analyze again (A.5) under the light of the implicit function theorem, but this

time with the condition λ < 0. The numerator in this equation is still nonnegative, but the

second term in the denominator is now nonpositive and is being subtracted. The first term

of the denominator is always nonpositive. Hence, if z̃∗(λ) is to decrease with λ we must

have that

f(z̃∗(λ))[2λp(z̃∗(λ)− µ(z̃∗(λ)))− 1]− 2λpF (z̃∗(λ))(1− F (z̃∗(λ))) < 0,

but we know that this surely occurs in p = pA and p = pB, for if there exists p = pA such

that z̃∗(λ) = A this condition simplifies to −f(A) ≤ 0, which always holds. Moreover, if

there exists p = pB such that z̃∗(λ) = B this condition requires 2λp(B − E(ε)) − 1 ≤ 0,

or equivalently λ ≤ 1

2p(B − E(ε)
, which also holds. For all other values of p we can assert
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that
dz̃∗(λ)

dλ
is nonpositive if

λ ≤ f(z̃∗(λ))

2p [f(z̃∗(λ))(z̃∗(λ)− µ(z̃∗(λ)))− F (z̃∗(λ))(1− F (z̃∗(λ)))]
,

where c < p ≤ pmax and p 6= pA, pB. If the right-hand side of this equation is positive, then

the condition above always holds and
dz̃∗(·)
dλ

≤ 0. This right-hand side is positive as long

as

f(z̃∗(λ))(z̃∗(λ)− µ(z̃∗(λ)))− F (z̃∗(λ))(1− F (z̃∗(λ))) > 0,

whence, after dividing by 1− F (z̃∗(λ)) and multiplying by bp we obtain that

ε̂∗(p) > bp
F (z̃∗(λ))

z̃∗(λ)− µ(z̃∗(λ))
, c < p ≤ pmax, p 6= pA, pB.

An upper bound of the right-hand side is given by bp
1

B − E(ε)
Therefore, we can con-

clude that if

ε̂∗(p) > bp
1

B − E(ε)
, c < p ≤ pmax,

then, given a price p, z̃∗(·) decreases. In other words, when λ decreases, i.e., as we focus on

more risk-seeking situations, z̃∗(·) increases.
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Appendix B

Unimodality with Additive

Demand

Lemma 3.1

Proof. The first claim is supported by the numerator of (3.3) being strictly positive since

µ(z) + a+ cb ≥ A+ a+ cb = A+ y(c) + 2cb > 0.

To prove that p∗(z) ≤ pmax, we focus first on the risk-neutral case. When λ = 0,

the optimal price p∗(·) is an increasing function in z. Indeed, in this case p∗(z)|λ=0 =

µ(z) + a+ cb

2b
and p∗

′
(z) =

1− F (z)

2b
> 0. Therefore, when λ = 0 the optimal price has a

maximum value p∗(B) =
a+ cb

2b
. This value is smaller than pmax because y(c) + 2A ≥ 0.

Hence, our only assumption serves the purpose of bounding the optimal price from above.

Given that, per (3.3), p∗(z) ≤ p∗(z)|λ=0, we conclude that in the risk-averse case

p∗(z) ≤ pmax.
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Lemma 3.2

Proof. The derivative of the optimal price with respect to the safety stock is

p∗
′
(z) =

1− F (z)

2(λσ2(z) + b)
(1− 4λ(z − µ(z))p∗(z)). (B.1)

It is not guaranteed that this is positive. As a matter of fact, we have that

p∗
′
(z) ≥ 0 ⇐⇒ λ <

1

4(z − µ(z))p∗(z)
. (B.2)

It is easy to see that p∗
′
(A) = 1/(2b) and p∗

′
(B) = 0. Also p∗

′
(z) = 0 in (A,B) if and only

if there are solutions to the equation p∗(z) =
1

4λ(z − µ(z))
. On the other hand, the second

derivative of the optimal price p∗(·) is

p∗
′′
(z) =

(
−f(z)− λσ2′(z)(1− F (z))

λσ2(z) + b

)
1− 4λ(z − µ(z))p∗(z)

2(λσ2(z) + b)

−4λ
1− F (z)

2(λσ2(z) + b)
(F (z)p∗(z) + (z − µ(z))p∗

′
(z)), (B.3)

which, particularized for the points where p∗
′
(z) = 0 is

p∗
′′
(z)

∣∣∣∣
p∗′ (z)=0

= −4λ
1− F (z)

2(λσ2(z) + b)
F (z)p∗(z) < 0. (B.4)

Therefore, any critical point that exists in (A,B) is a maximum. Since p∗
′
(A) > 0

and p∗
′
(B) = 0, the equation p∗(z) =

1

4λ(z − µ(z))
has at most one solution in (A,B) and

one of the following outcomes occur: if such a solution does not exist, the function p∗(·) is

increasing in [A,B) with a maximum at z = B; if such a solution exists at a point zψ, the
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function p∗(·) increases in [A, zψ), has a maximum at z = zψ, decreases in [zψ, B), and has

an inflection point at z = B. It is consequently quasiconcave (unimodal).

Lemma 3.3

Proof. By Lemma 3.1, when λ ≥ 0, p∗(z) ≤ pmax, ∀z ∈ [A,B]. It remains to validate the

conditions for the optimal price to be greater than the replenishment cost.

If we impose in (3.3) that the optimal price is at least as large as the replenishment

cost, it follows that p∗(z) ≥ c when λ ≤ µ(z) + y(c)

2cσ2(z)
. Therefore this holds ∀z ∈ [A,B] as

long as

λ ≤ min
z∈[A,B]

µ(z) + y(c)

2cσ2(z)
.

Let t(z) =
µ(z) + y(c)

2cσ2(z)
. We will prove that this function is decreasing. Its first deriva-

tive is t′(z) =
(1− F (z))σ2(z)− σ2′(z)(µ(z) + y(c))

2c (σ2(z))2 . While the denominator is always

nonnegative, we can also prove that the numerator is nonpositive. Using the equality

σ2′(z) = 2(1− F (z))(z − µ(z)) the numerator is nonpositive if

σ2(z) ≤ 2(z − µ(z))(µ(z) + y(c)).

Both sides of this equation are nonnegative in [A,B] and equal to 0 at z = A. Moreover,

[2(z − µ(z))(µ(z) + y(c))]′ = 2F (z)(µ(z)+y(c))+σ2′(z) ≥ σ2′(z). Therefore, it is clear that

σ2(z)− 2(z − µ(z))(µ(z) + y(c)) ≤ 0 and t is a decreasing function of z. This implies that
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p∗(z) ≥ c, ∀z ∈ [A,B] if and only if

λ ≤ min
z∈[A,B]

t(z) = t(B) =
y(c)

2cV ar(ε)
.

Theorem 3.1

Proof. We will analyze P ∗2 (·) in [A, zc]. P ∗2 (·) is a continuous function with P ∗
′

2 (A) =

p∗(A) − c > 0 and P ∗
′

2 (zc) < 0. The last inequality follows because in case that P ∗(·) is

a piecewise, nonlinear function, then it is also smooth (i.e. P ∗2 (zc)=P
∗
1 (zc)) and P ∗1 (·) is a

decreasing function in [zc, B]. Therefore, there must be at least one point in [A, zc] where

P ∗
′

2 (z) = 0. This point is unique and confers quasi-concavity to P ∗2 (·) if P ∗
′′

2 (z)|
P ∗
′

2 (z)=0
< 0.

Per (3.5), at the critical points 1− 2λ(z − µ(z))p∗(z) =
c

p∗(z)(1− F (z))
and we can write

(3.6) in terms of the failure rate h(z) as

cp∗
′
(z)

p∗(z)
− h(z)c− 2(1− F (z))λp∗(z)

(
F (z)p∗(z) + (z − µ(z))p∗

′
(z)
)

< 0.

By using the expression of the LSR elasticity at the optimal price p∗(z) in additive models,

ξ∗(z) = bp∗(z)h(z), and observing that F (z)p∗(z) + (z−µ(z))p∗
′
(z) = [(z − µ(z))p∗(z)]′ we

can rewrite the formula above as

ξ∗(z) > b

(
p∗
′
(z)− 2(1− F (z))λp∗(z)2

c
[(z − µ(z))p∗(z)]′

)
.
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Theorem 3.2

Proof. Assume that p∗(·) is a unimodal function and consider the two subintervals [A, zψ]

and (zψ, zc]. We will apply condition (3.8) to both subintervals. In [A, zψ] the optimal price

is nondecreasing and concave with only one critical point at z = zψ. It follows that the

unimodality is guaranteed as long as ξ∗(z) > 1/2,∀z ∈ [A, zψ]. In (zψ, zc] the optimal price

is nonincreasing with only one critical point at z = zc if z = B (otherwise the function

is strictly decreasing in (zψ, zc]). Therefore the first term in condition (3.8) is negative.

The second term in (3.8) takes the opposite sign of [(z − µ(z))p∗(z)]′ = F (z)p∗(z) + (z −

µ(z))p∗
′
(z). If (z−µ(z))p∗(z) is a nondecreasing function at the points that satisfy P ∗

′
2 (z) =

0, then the second term in (3.8) is negative as well and a valid lower bound is ξ∗(z) ≥ 0

which, by the definition of LSR elasticity, always holds. However, in general we do not

know the sign of the slope of (z − µ(z))p∗(z) at those points and we have to bound ξ∗ by

using the most restrictive condition, which is given by the case when (z − µ(z))p∗(z) is a

decreasing function and the second term of (3.8) is positive:

ξ∗(z) > b

(
p∗
′
(z)− 2(1− F (z))λp∗(z)2

c
[(z − µ(z))p∗(z)]′

)
≤ −2(1− F (z))λbp∗(z)2

c
[(z − µ(z))p∗(z)]′ . (B.5)

A lower bound for ξ∗(·) is given by the product of the factors of (B.5). In turn, a lower

bound of [(z − µ(z))p∗(z)]′ in (zψ, zc] is

F (z)p∗(z) + (z − µ(z))p∗
′
(z) ≥ F (zψ)p∗(zc) + (zc − µ(zc))p

∗′(z),

where we used the fact that [z−µ(z)]′ ≥ 0. In finding a good lower bound of [(z − µ(z))p∗(z)]′
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we need to find the lowest value that p∗
′
(·) may take in (zψ, zc], where this function is neg-

ative. Per (B.1) and (3.5), we have that

p∗
′
(z)

∣∣∣∣∣
P ∗′ (z)=0

=
1− F (z)

2 (λσ2(z) + b)
(1− 4λ(z − µ(z))p∗(z))

=
1− F (z)

2 (λσ2(z) + b)
(1− 2λ(z − µ(z))p∗(z))− 1− F (z)

2 (λσ2(z) + b)
2λ(z − µ(z))p∗(z)

=
c

2p (λσ2(z) + b)
− 1− F (z)

2 (λσ2(z) + b)
2λ(z − µ(z))p∗(z)

=
1

2 (λσ2(z) + b)

(
c

p
− (1− F (z))2λ(z − µ(z))p∗(z)

)
=

1

2 (λσ2(z) + b)

(
2c

p
− (1− F (z))

)
= − 1

2 (λσ2(z) + b)

(
1− 2c

p
− F (z)

)
≥ − 1

2 (λσ2(zψ) + b)
.

Finally the lower bound of [(z − µ(z))p∗(z)]′ is

F (z)p∗(z) + (z − µ(z))p∗
′
(z) ≥ F (zψ)p∗(zc)︸ ︷︷ ︸

smallest positive value of
F (z)p∗(z)

− zc − µ(zc)

2 (λσ2(zψ) + b)︸ ︷︷ ︸
largest negative value of

(z−µ(z)p∗
′
(z)

.

Inserting this expression in (B.5) yields our lower bound on the LSR elasticity:

ξ∗(z) > −
2(1− F (zψ))λbp∗(zψ)2

c

(
F (zψ)p∗(zc)−

zc − µ(zc)

2 (λσ2(zψ) + b)

)
.
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Lemma 3.4

Proof. We analyze this function in two subintervals, [A, z̃) and (z̃, B]. Consider equation

(B.1). Clearly, there is always a critical point at z = B. Also, per this equation, the function

p∗(·) is strictly increasing ∀z : p∗(z) > 0. When p∗(z) < 0 (i.e. z̃ < z ≤ B) the function

p∗(·) tends to −∞ as we approach z̃ from the right and therefore it is concave and increasing

at its right limit towards B, reaching a value at z = B of p∗(B) =
a+ cb

2(λV ar(ε) + b)
. Assume

it is decreasing in some region in (z̃, B). Then the function must present a local maximum

in such interval. However, this is not possible since, per (B.4), if there is a critical point

in (z̃, B) the function is convex at such point and should be a minimum. Therefore the

optimal price p∗(·) has only one critical point at z = B, which is also an inflection point.

We conclude that p∗(·) is strictly increasing in (z̃, B).

Lemma 3.5

Proof. The function P ∗3 (·) has at least one critical point because P ∗
′

3 (A) > 0 and P ∗
′

3 (B) < 0.

The first-order optimality condition solves the equation

λ =
pmax(1− F (z))− c

p2
maxσ

2′(z)
=

1− c

pmax(1− F (z))

2p2
max(z − µ(z))

.

The function in the right-hand side of this equation is decreasing because its denominator

is increases in z and its numerator decreases in z. Therefore, it attains the constant value λ

only once. Given the signs of P ∗
′

3 (A) and P ∗
′

3 (B), this unique critical point is a maximum.
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Lemma 3.6

Proof. This result follows easily because lim
λ→λ−zpmax

λt(λ) = −∞ (remember that zpmax(λ) =

B if λ ∈ [λzpmax , 0)) and because λt(λ) increases as λ decreases. The latter is easy to see

because zpmax decreases when λ decreases, which makes the numerator of λt(λ) increase

and the denominator decrease as λ decreases.

Lemma 3.7

Proof. For clarity of exposition, we will let λB = 0 and λA < λB, although this result is

straightforward to show for any relation λA < λB ≤ 0.

Let ẑ = min

{
z : F (z) = 1− c

p∗(z)|λ=0

}
be the first maximum of the risk-neutral

problem. To see that this point is indeed a maximum, consider the risk-neutral problem: in

this case zpmax = B. There is at least a critical point because P ∗
′

2 (A) > 0, and P ∗
′

2 (B) < 0.

Given the sign of P ∗
′

2 (A) this first critical point, ẑ, will be a maximum.

Compare the first-order optimality conditions of the risk-neutral problem and the risk-

seeking problems of the functions P ∗2 (·) and P ∗3 (·) under the light of the optimal price.

Taking into account that p∗(z) > 0 whenever P ∗2 (·) applies, in any risk-seeking instance and

for any safety stock we have that p∗(z)|λ=λA ≥ p∗(z)|λ=λB . Therefore

1− c

p∗(z)|λ=λA (1− 2λA(z − µ(z))p∗(z)|λ=λA)
≥ 1− c

p∗(z)|λ=λB

,

and

1− c

pmax
− λApmaxσ2′(z) ≥ 1− c

pmax
.
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Consequently both first-order conditions will have their first solution at a safety stock higher

than ẑ. This is illustrated in Figure B.1, where a risk-neutral condition and a risk-seeking

condition are shown.

Figure B.1: Illustration of Lemma 3.7

Lemma 3.8

Proof. The function P ∗
2 (·) has at least one solution in [A,B] because P ∗′

2 (A) > 0 and

P ∗′
2 (B) < 0. Using (3.11), consider the equation P ∗′

2 (z) = 0. This can be written as

λ =

1− c

p∗(z)(1− F (z))

2(z − µ(z))p∗(z)
.
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Compare both sides of this equation. The number of times that the function of the right-

hand side crosses the constant λ is the number of critical points of P ∗2 (·). Since

lim
z→A

1− c

p∗(z)(1− F (z))

2(z − µ(z))p∗(z)
= ∞,

if this function is always decreasing, it will cross λ exactly once. Taking into account

that the denominator 2(z − µ(z))p∗(z) is nondecreasing, it is enough that the numerator is

decreasing:

[
1− c

p∗(z)(1− F (z))

]′
=

p∗
′
(z)(1− F (z))− f(z)p∗(z)

p∗(z)2(1− F (z))2
,

which follows if p∗
′
(z)(1− F (z))− f(z)p∗(z) < 0 or, in terms of the LSR elasticity, if

ξ∗(z) > bp∗
′
(z).

An upper bound for p∗
′
(·) at the critical points can be obtained in the same fashion

as in Theorem 3.2, thus obtaining:

p∗
′
(z)

∣∣∣∣∣
P ∗′ (z)=0

= − 1

2 (λσ2(z) + b)

(
1− 2c

p
− F (z)

)
≤ c

p∗(z) (λσ2(z) + b)
=

2c

µ(z) + a+ cb

≤ 2c

A+ a+ cb
,

whence the condition ξ∗(z) >
c

p∗(A)
can be derived. A sharper bound can be obtained

if we consider the smallest maximum of a less risk-seeking instance, ζ2(λ̃), given that, per



115

Lemma 3.7, the first maximum will occur in the interval [ζ2(λ̃), B]:

ξ∗(z) >
2bc

µ(ζ2(λ̃)) + a+ cb
,

which only needs to hold in [ζ2(λ̃), B].

Theorem 3.3

Proof. When λ > λt(λ), P ∗
′
(zpmax) < 0. Because of Lemma 3.5, the function P ∗3 (·) is

decreasing in [zpmax , B]. Therefore, max
z∈[A,B]

P ∗(z) = max
z∈[A,zpmax ]

P ∗2 (z) = max
z∈[ζ2(λ̃),zpmax ]

P ∗2 (z).

The last equality is a consequence of Lemma 3.7.

If P ∗2 (·) is unimodal in [A,B], then its only maximum occurs in the interval [ζ2(λ̃), zpmax ]

and can be easily attained by solving P ∗
′

2 (z) = 0.

For the case λ = λt(λ), zpmax is the critical point of P ∗3 (·) and a critical point of P ∗2 (·).

As a result, equation (3.14) still holds, as well as the rest of the theorem.

Theorem 3.4

Proof. When λ < λt(λ), P ∗
′
(zpmax) > 0. Because of Lemma 3.5, the function P ∗3 (·) has its

only maximum in [zpmax , B]. In general, the function P ∗2 (·) may have several critical points

in [A, zpmax ]. Therefore, max
z∈[A,B]

P ∗(z) = max{P ∗(ζ3(λ)), max
z∈[ζ2(λ̃),zpmax ]

P ∗2 (z)}.

If P ∗2 (·) is unimodal in [A,B], then its only maximum occurs at in the interval [zpmax , B],

where P ∗(z) = P ∗3 (z). Hence, the maximum of P ∗(·) is attained at the only point that solves

P ∗
′

3 (z) = 0, which is ζ3(λ).
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Lemma 3.9

Proof. Let Π∗(z, λ) be the profit at the hedged price π∗(z, λ). Recall that the profit is a

random variable. From (3.1) we can we can redefine our performance measure at the hedged

price π∗(z, λ):

P (z, λ) = π∗(z, λ) (µ(z) + y(π∗(z, λ)))− c (z + y(π∗(z, λ)))︸ ︷︷ ︸
E(Π∗(z,λ))

−λπ∗(z, λ)2σ2(z)︸ ︷︷ ︸
V ar(Π∗(z,λ))

.

Consider first the risk-averse case. When λ > 0:

E (Π∗(z, λ)) =


c(µ(z)− z) if z > zc,

p∗(z, λ)(µ(z) + a− bp∗(z, λ))− c(z + a− bp∗(z, λ)) if z ≤ zc.

V ar (Π∗(z, λ)) =


c2σ2(z) if z > zc,

p∗(z, λ)2σ2(z) if z ≤ zc.

For any given stock factor z the derivative of these two functions are:

∂

∂λ
E (Π∗(z, λ)) =


0 if z > zc,

∂p∗(z, λ)

∂λ
(µ(z) + a+ b (c− 2p∗(z, λ))) if z ≤ zc.

∂

∂λ
V ar (Π∗(z, λ)) =


0 if z > zc,

−
2
(
σ2(z)

)2
λσ2(z) + b

p∗(z, λ)2 if z ≤ zc.

Given that
∂p∗(z, λ)

∂λ
= − σ2(z)

λσ2(z) + b
p∗(z, λ) ≤ 0 and that, per (3.3), µ(z) + a +
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b (c− 2p∗(z, λ)) > 0 in risk-averse cases, we conclude that the expected profit for a given

stock factor at the hedged optimal price does not increase with λ. Also,
∂

∂λ
V ar (Π∗(z, λ)) ≤

0 (i.e. as λ increases, the variance of the profit does not increase).

Now consider the risk-seeking case. When λ < 0:

E (Π∗(z, λ)) =


p∗(z, λ)(µ(z) + a− bp∗(z, λ)− c(z + a− bp∗(z, λ)) if z ≤ zpmax ,

pmax(µ(z) + a− bpmax)− c(z + a− bpmax) if z > zpmax .

V ar (Π∗(z, λ)) =


p∗(z, λ)2σ2(z) if z ≤ zpmax ,

p2
maxσ

2(z) if z > zpmax .

For any given stock factor z the derivative of these two functions are:

∂

∂λ
E (Π∗(z, λ)) =


∂p∗(z, λ)

∂λ
(µ(z) + a+ b (c− 2p∗(z, λ))) if z ≤ zpmax ,

0 if z > zpmax .

∂

∂λ
V ar (Π∗(z, λ)) =


−

2
(
σ2(z)

)2
λσ2(z) + b

p∗(z, λ)2 if z ≤ zpmax ,

0 if z > zpmax .

When z ≤ zpmax , λσ2(z) + b ≥ 0 and p∗(z, λ) > c. Therefore

∂p∗(z, λ)

∂λ
= − σ2(z)

λσ2(z) + b
p∗(z, λ) ≤ 0.

Per (3.3), µ(z) + a + b (c− 2p∗(z, λ)) < 0 in risk-seeking cases, and we conclude that the
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expected profit for a given stock factor at the hedged optimal price does not decrease with

λ (i.e. as λ decreases, the expected profit does not increase). Also,
∂

∂λ
V ar (Π∗(z, λ)) ≤ 0

(i.e. as λ decreases, the variance of the profit increases).
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Appendix C

Unimodality with Multiplicative

Demand

Lemma 4.1

Proof. Let us define α = 2λσ2(z)a(b − 1) ≥ 0, β = (b − 1)µ(z) > 0, and γ = bcz > 0. We

can rewrite (4.7) as follows:

αp∗(z)
2b2−b1
b2 − βp∗(z) + γ = 0. (C.1)

Let us consider the following cases:

1. 1 < b < 2: let q∗(z) = p∗(z)1/b2 . Since b1 > b2 and 2b2− b1 < b2, (C.1) can be written

as the following polynomial in descending order of powers from left to right:

−βq∗(z)b2 + αq∗(z)2b2−b1 + γ = 0. (C.2)
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2. b = 2: in this case (C.1) has the following unique solution: p∗(z) =
α+ γ

β
.

3. b > 2: let q∗(z) = p∗(z)1/b2 . Since b1 > 2b2 and b1 − 2b2 < b1 − b2, we can rewrite

(C.1) as the following polynomial in descending order of powers from left to right:

βq∗(z)b1−b2 − γq∗(z)b1−2b2 − α = 0. (C.3)

Per Descartes’ Rule of Signs, polynomials (C.2) and (C.3) only have one positive real

root. Undoing the change of variables to recover p∗(z) will yield a single positive real root in

(C.1). It is at this point where the assumptions made on the elasticity of the demand make

sense. Accepting b as a rational number allows a change of variables that helps us write

(C.1) as a polynomial. It is easier to handle these equations because there are well-known

theorems that state their number and sign of the roots, as it is the case with Descartes’

Rule of Signs. A positive real root of any of the transformed polynomials will correspond

to a positive real root of (C.1). Nevertheless, this one-to-one correspondence between the

positive real roots of the polynomials and the positive real roots of (C.1) does not exist in

the other direction (i.e. a positive real root in (C.1) may not come from a positive real

root of any of the polynomials). A straightforward example can be found when b2 = 4

and the polynomial (C.3) has the pair of conjugate imaginary roots ±i or any negative

real root. Undoing the change of variables would yield a positive real root of (C.1). It is

for this reason that we presume b2 with odd parity, for in this case conjugated imaginary

roots and negative real roots will never be transformed into positive real roots. Hence,

the one-to-one correspondence between the positive real roots of the polynomials and the

positive real roots of (C.1) is attained and we can assert that (C.1) has only one positive

real root. This assumption greatly simplifies the problem and has a negligible impact on
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its accuracy: any irrational number can be well approximated by a rational number and

any rational number expressed as a quotient can also be slightly modified if needed so the

parity of the denominator is odd.

Theorem 4.1

Proof. For a given stock factor z we have that

lim
p→0+

∂P (p, z)

∂p
= lim

p→0+

(
2a2(b− 1)σ2(z)λ

p2b−1
− a(b− 1)µ(z)

pb
+
abcz

pb+1

)
=∞,

lim
p→∞

∂P (p, z)

∂p
= lim

p→∞

(
2a2(b− 1)σ2(z)λ

p2b−1
− a(b− 1)µ(z)

pb
+
abcz

pb+1

)
= 0−.

The sign of the partial derivatives above and Lemma 4.1, guarantee that P (·, z)

is unimodal with respect to p in (0,∞) and that the optimal price p∗(z) is indeed a

maximizer. �

Lemma 4.2

Proof. Let us define α = 2λσ2(z)a(b − 1) ≤ 0, β = (b − 1)µ(z) > 0 and γ = bcz > 0. As

shown in Lemma 4.1, we can analyze the different cases as a function of the price elasticity

of the demand b.

• 1 < b < 2: with a suitable change of variable, equation (C.1) can be rewritten again

as (C.2) and, per Descartes’ Rule of Signs, this equation has only one positive real

root.

• b=2: in this case (C.1) has the following unique solution: p∗(z) =
α+ γ

β
, which is
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nonnegative for ∀z ∈ [A, B] if and only if λ ≥ λmin. If λ < λmin there will be some

values of z for which p∗(z) < 0 and others for which p∗(z) ≥ 0.

• b > 2: as done in Lemma 4.1, equation (C.1) can be transformed into the polynomial

(C.3) and, per Descartes’ Rule of Signs, it has either two positive real roots or no

positive real roots at all.

Theorem 4.2

Proof. Let 1 < b < 2 or b = 2 and λ ≥ λmin so that (4.3) has only one positive real root.

For a given stock factor z we have that

lim
p→0+

∂P (p, z)

∂p
= lim

p→0+

(
2a2(b− 1)σ2(z)λ

p2b−1
− a(b− 1)µ(z)

pb
+
abcz

pb+1

)
=∞,

lim
p→∞

∂P (p, z)

∂p
= lim

p→∞

(
2a2(b− 1)σ2(z)λ

p2b−1
− a(b− 1)µ(z)

pb
+
abcz

pb+1

)
= 0−.

It follows that P (·, z) is unimodal with respect to p in (0,∞) in these circumstances, and

that p∗(z) is a maximizer. We can prove that, when b > 2, P (·, z) is bimodal with respect

to p in (0,∞) by calculating again these limits. In this case, lim
p→0+

∂P (p, z)

∂p
= ∞ and

lim
p→∞

∂P (p, z)

∂p
= 0+. The result follows as, per Lemma 4.2, equation (4.3) has two real

positive roots.
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Lemma 4.3

Proof. We prove first the condition for the optimal price to be strictly greater than c. Face

value is never an optimal price if c is never a root of (4.7), i.e. 2a(b − 1)λσ2(z)c−(b−2) −

(b − 1)µ(z)c + bcz 6= 0. Since the function above is continuous in z, this condition holds

as long as the left-hand side is always below 0 or above 0. If it is below 0, then it follows

that λ <
((b− 1)µ(z)− bz) cb−1

2a(b− 1)σ2(z)
. However, this is not possible, for this implies λ < −∞

for z = A. If it is above 0, then λ >
((b− 1)µ(z)− bz) cb−1

2a(b− 1)σ2(z)
. Taking into account that the

numerator of this expression is always negative, a lower bound for λ is thus given by the

maximum of the right-hand side of this inequality, whence the strict inequality of our result

follows. The possibility of the optimal price being equal to c is allowed by introducing the

equality in this lower bound.

Theorem 4.3

Proof. We prove first the local optimality condition. If the Hessian matrix of P is negative

definite at (z∗, p∗(z∗)), then this point is a strict local maximum of P (·, ·) in [A,B]× [c,∞).

Given that
∂2P

∂z2
= −ap−(b−1)f(z) < 0, per the second derivative test such a Hessian is

negative definite as long as ∆(z∗, p∗(z∗)) > 0, where ∆(z, p) =
∂2P

∂p2

∂2P

∂z2
−
(
∂2P

∂p∂z

)2

.

Using equations (4.5)-(4.6) with λ = 0, we can rewrite the equation ∆(z, p) > 0 as

−pf(z) (b(b− 1)µ(z)p− (b+ 1)bcz) − (bc− (b− 1)p (1− F (z)))2 > 0. If we particular-

ize for the set of prices that are optimal, p∗(z), this condition can be written now as

∆(z, p∗(z)) = p∗(z)bczf(z)− (bc− (b− 1)p∗(z) (1− F (z)))2 > 0, where we used the closed-

form solution of the optimal price in the risk-neutral case, p∗(z) = bcz/ ((b− 1)µ(z)),

to simplify the first term of the previous equation. Moreover, z∗ satisfies the equation
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F (z) = 1 − c/p∗(z) and thus we obtain ∆(z∗, p∗(z∗)) = bz∗f(z∗) > 1 − F (z∗), whence the

condition ξ(z∗) > 1 follows from the definition of LSR elasticity for isolastic demand as

shown in equation (4.9). Proving that (z∗, p∗(z∗)) is a saddle point of P in [A,B]× [c,∞)

can be done analogously by imposing that ∆(z∗, p∗(z∗)) < 0.

Next, we prove the global optimality condition by reductio ad absurdum. The problem

has at least a local maximum because P ∗
′
(A) > 0 and P ∗

′
(B) < 0. This maximum will

occur at a point z∗ such that, per our local optimality condition, ξ(z∗) > 1. Assume that

ξ(z) > 1 for any stock factor z. If there is a second critical point, such a point will be a

minimum and it will occur at z∗∗. Per our local optimality condition, ξ(z∗∗) < 1; however,

we assumed that ξ(z) > 1 and therefore such a point cannot exist. We conclude then that

if ξ(z) > 1, then the equation R(z) = 0 has only one solution, and this solution is a global

maximum of P ∗(·).

Lemma 4.4

Proof. Using the formula for p∗(z) in the risk-neutral case, let us redefine the optimality

condition for z∗ as R̃(z∗, b) = (1 − F (z∗))bcz∗/ ((b− 1)µ(z∗)) − c = 0. By the Implicit

Function Theorem,
dz∗

db
= −

∂R̃

∂b
∂R̃

∂z∗

=
z∗µ(z∗)

b(b− 1) (µ(z∗) (1− z∗h(z∗))− z∗(1− F (z∗)))
, where

h(z∗) is the failure rate of ε evaluated at z = z∗. The denominator (and the expression

above) is negative if 1− z∗h(z∗) < 0 or, equivalently, if ξ(z∗) > b. As for the optimal price,

simple applications of the chain rule yield
dp∗

db
=
∂p∗

∂z∗
dz∗

db
+
∂p∗

∂b
and

dp∗

dc
=
∂p∗

∂c
. In the first

case we obtain
dp∗

db
=

bc

(b− 1)µ(z∗)2

(∫ z∗

A
uf(u)du

)
dz∗

db
− cz∗

µ(z∗)(b− 1)2
, which is negative

if ξ(z∗) > b. In the second case we have that
dp∗

dc
=

bz∗

(b− 1)µ(z∗)
> 0 (i.e. p∗ is linear in
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c).

Theorem 4.4

Proof. The behavior of P ∗
′

is clearly given by that of R. At the limits of [A,B] we have

R(A) = c/ (b− 1) > 0, R(B) = −c < 0. This fact, along with the continuity of R, implies

that there is at least one solution to the equation P ∗
′
(z) = 0 (i.e. R(z) = 0 at least once).

In fact, P ∗
′

has only one root if and only if R′(z)|R(z)=0 < 0. If this occurs, this root

represents also a maximum of P ∗, since P ∗
′
(A) > 0 and P ∗

′
(B) < 0. Note that,

R′(z) = −f(z)p∗(z) + (1− F (z))p∗
′
(z) (C.4)

−λap∗(z)−(b−1)
(
p∗(z)σ2′′(z)− (b− 2)p∗

′
(z)σ2′(z)

)
.

In general, at the critical points of P we have that

R(z) = 0 =⇒ λap∗(z)−(b−2)σ2′(z) = (1− F (z))p∗(z)− c. (C.5)

Substituting (C.5) in (C.5) and reordering terms, we obtainR′(z)|R(z)=0 = −f(z)p∗(z)+

(b− 1)(1− F (z))p∗
′
(z)− (b− 2)cp∗

′
(z)/p∗(z)− λap∗(z)−(b−2)σ2′′(z). Dividing by 1− F (z)

and using the equality σ2′′(z) = 2(1− F (z))F (z)− 2f(z)(z − µ(z)) gives

R′(z)

1− F (z)

∣∣∣∣
R(z)=0

=
p∗
′
(z)

p∗(z)

(
(b− 1)p∗(z)− (b− 2)c

1− F (z)

)
︸ ︷︷ ︸

B○

+h(z)p∗(z)
(

(z − µ(z))2λap∗(z)−(b−1) − 1
)

︸ ︷︷ ︸
A○

−2λaF (z)p∗(z)−(b−2).
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A○ can be further particularized forR(z) = 0 using (C.5) to get (z−µ(z))2λap∗(z)−(b−1)−

1 =
−c

p∗(z)(1− F (z))
< 0. Furthermore, B○ can be rewritten as

c+ (b− 1)((1− F (z))p∗(z)− c)
(1− F (z))

.

Now, let η(z) = (1−F (z))p∗(z)−c. All in all, our condition for the negativity of R′(z)|R(z)=0

results in
p∗
′
(z)

p∗(z)
((b− 1)η(z) + c)− F (z)

z − µ(z)
η(z)− h(z)c < 0, whence we obtain:

h(z) >

(
p∗
′
(z)

p∗(z)
+

(
(b− 1)

p∗
′
(z)

p∗(z)
− F (z)

z − µ(z)

)
η(z)

c

)
. (C.6)

It follows from (4.7) that

p∗
′
(z) =

2λa(b− 1)σ2′(z)p∗(z)−(b−2) + bc− (b− 1)µ′(z)p∗(z)

2λa(b− 1)(b− 2)σ2(z)p∗(z)−(b−1) + (b− 1)µ(z)
,

and

p∗
′
(z) = p∗(z)

bc+
σ2′(z)

σ2(z)
((b− 1)µ(z)p∗(z)− bcz)− (b− 1)µ′(z)p∗(z)

(b− 1)2µ(z)p∗(z)− (b− 2)bcz
, (C.7)

after removing the explicit dependence on λ. Note that, because of (4.7), (b−1)µ(z)p∗(z)−

bcz is positive in risk-averse cases (λ > 0), negative in risk-seeking cases (λ < 0), and 0 in

risk-neutral cases (λ = 0). We can find p∗
′
(z)/p∗(z) at those points where R(z) = 0. To

see this, use p∗
′
(z) as shown in (C.7) and particularize for those points by means of (C.5).

The result can be manipulated to get
p∗
′
(z)

p∗(z)

∣∣∣∣
R(z)=0

=
c+ (b− 1)((1− F (z))p∗(z)− c)
(b− 1)2µ(z)p∗(z)− (b− 2)bcz

=

c+ (b− 1)η(z)

(b− 1)2µ(z)p∗(z)− (b− 2)bcz
. This result, in conjunction with (C.6), yields our first con-
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dition:

h(z) >

(
(c+ (b− 1)η(z))2(1− F (z))(z − µ(z))

(b− 1)2σ2(z)η(z) + bcz(1− F (z))(z − µ(z))
− F (z)

z − µ(z)
η(z)

)
1

c
. (C.8)

Per (C.5), η(z)|R(z)=0 ≥ 0 when λ ≥ 0, and therefore we can bound (C.8) to get our

second condition:

h(z) >

(
(c+ (b− 1)η(z))2(1− F (z))(z − µ(z))

(b− 1)2σ2(z)η(z) + bcz(1− F (z))(z − µ(z))
− F (z)

z − µ(z)
η(z)

)
1

c

≤ (c+ (b− 1)η(z))2(1− F (z))(z − µ(z))

(b− 1)2σ2(z)η(z) + bcz(1− F (z))(z − µ(z))

1

c

≤ (c+ (b− 1)η(z))2(1− F (z))(z − µ(z))

bcz(1− F (z))(z − µ(z))

1

c
=

(c+ (b− 1)η(z))2

bc2z

=
((b− 1)η(z) + c)2

bc2z
=⇒ g(z) >

1

b

(
(b− 1)η(z) + c

c

)2

. (C.9)

Using the equality ξ = bzh(z) = bg(z) we can write equations (C.8) and (C.9) as a function

of the LSR elasticity, as shown in this theorem. For the last condition, assume that b ≥ 2

and remember that the equation R(z) = 0 is equivalent to η(z) =
2λa(1− F (z))(z − µ(z))

p∗(z)b−2
.

Our second condition can thus be written as

ξ(z) >

(
1 +

(b− 1)η(z)

c

)2

≤

1 +
(b− 1)

2λa(B − 1)

cb−2

c


2

,

and therefore we arrive to the our last lower bound:

ξ(z) >

(
1 +

2λa(b− 1)(B − 1)

cb−1

)2

.
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Lemma 4.5

Proof. Per its definition, the risk sensitive problem is solved by finding the solution to the

equation (1 − F (z))p∗(z) − c = 0. The left-hand side of this equation is positive at z = A

and negative at z = B. It is also decreasing if ξ(z) > bz
p∗
′
(z)

p∗(z)
. If this condition holds, then

the equation in question has only one solution.

Let us focus know on the first-order optimality condition of the risk-sensitive problem:

R(z) = (1− F (z))p∗(z)− c︸ ︷︷ ︸
A○

−λap∗(z)−(b−2)σ2′(z)︸ ︷︷ ︸
B○

= 0.

First, this equation will never be solved at z = A (z = B), since at those points A○ > 0

( A○ < 0), whereas B○ = 0. For all other points in the interval [A,B], part B○ of the

equation bears the sign of the risk parameter λ. In risk-averse cases, this part is negative

and therefore R(z∗RSE) < 0. Since part A○ is decreasing, it follows that the solutions to

R(z) = 0 take place for stock factors that are smaller than z∗RSE , i.e., z∗ ∈ (A, z∗RSE).

Likewise, in risk-seeking cases, part B○ is positive and therefore R(z∗RSE) > 0. Since

part A○ is decreasing, it follows that the solutions to R(z) = 0 take place for stock factors

that are greater than z∗RSE , i.e., z∗ ∈ (z∗RSE , B).

Lemma 4.6

Proof. Let g(λ, p) = ∂P (λ, p, ẑ)/∂p. Per the Implicit Function Theorem we have that

dp̃∗(λ)

dλ
= −

∂g(λ, p)

∂λ
∂g(λ, p)

∂p∗(ẑ)

= −2a2(b− 1)σ2(ẑ)p∗(ẑ)−2b+1

∂2P (λ, p, z)

∂p2

∣∣∣∣
p=p∗(ẑ)

≥ 0,
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since P is concave when p = p∗(ẑ). Moreover, differentiating again with respect to λ yields

p̃∗
′′
(λ) = −(2a(b− 1)σ2(ẑ))2(2b− 1)p∗(ẑ)−4b+1∂2P (λ, p, z)

∂p2

∣∣∣∣∣
p=p∗(ẑ)


2 ≤ 0.

Lemma 4.7

Proof. From (4.2) and per Lemma 4.6 it follows that

d

dλ
V ar(Π̃∗(λ)) = −a2σ2(ẑ)p̃∗

′
(λ)

2b− 2

p̃∗(λ)2b−1
≤ 0.

Lemma 4.8

Proof. From (4.2) it follows that E(Π̃∗(λ)) = aµ(ẑ)p̃∗(λ)−b+1 − cẑap̃∗(λ)−b. Therefore

d

dλ
E(Π̃∗(λ)) = ap̃∗

′
(λ)p̃∗(λ)−b−1 (cẑb− µ(ẑ)(b− 1)p̃∗(λ)) .

Since the first factor is nonnegative, the sign of this derivative is given by that of the

second factor shown above, which is nonpositive if and only if p̃∗(λ) ≥ cbẑ

(b− 1)µ(ẑ)
. Since,

per (4.7), p̃∗(0) =
cbẑ

(b− 1)µ(ẑ)
and given Lemma 4.6, we conclude that this factor is indeed

nonpositive for λ > 0 and nonnegative for λ < 0.



130

Bibliography

Acerbi, Carlo. 2002. Spectral measures of risk: a coherent representation of subjective risk
aversion. Journal of Banking & Finance 26(7) 1505–1518.

Agrawal, Vipul, Sridhar Seshadri. 2000. Impact of uncertainty and risk aversion on price
and order quantity in the newsvendor problem. Manufacturing & Service Operations
Management 2(4) 410–423.
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