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The newsvendor problem has been widely studied since it first appeared in the literature at

the end of the XIX century. It is still the subject of further research that addresses more

complex and realistic situations based on previous work. The amount of research work

done on this model and its applications is so vast that a simple search in Google Scholar

under the keyword “newsvendor” will return almost 8, 000 entries between 2010 and 2015.

The problem, in its basic formulation, aims at finding an optimal replenishment policy of a

perishable product in the face of uncertain, stochastic demand. Such a solution is selected

in a way that maximizes the expected profit, which is calculated as the difference between

the income and the purchase cost of the good in question.

This thesis elaborates on the conditions needed to guarantee the existence of a unique

maximum of the objective function in the price-setting newsvendor problem with price-

dependent demand. This function is presented as a mean-variance trade-off between the

expected profit and the variance of the profit, weighted with a risk parameter.

The main goal of this thesis is to simplify any instance of the risk-sensitive newsvendor

problem for the two most common price-dependent demand functions, namely, additive

and multiplicative functions. When possible, we will provide sufficient conditions for the
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unimodality of the problem. Unlike many other results previously published, we aim at

expressing such conditions by using a metric that captures managerial attention. To this

end, we use the lost sales rate elasticity as a measure of the level of service provided by the

seller and express these sufficient conditions as a function of this metric.
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Chapter 1

Introduction and Literature

Review

1.1 The Classic Newsvendor Problem

The newsvendor problem has been widely studied since it first appeared in the literature.

Albeit an equivalent problem applied to banking theory already appeared at the end of the

XIX century (Edgeworth, 1888) when Edgeworth tried to determine optimal cash reserves

to satisfy random withdrawals from depositors (see Figure 1.1), its modern formulation

is due to Arrow, Harris, and Marschak (1951). In their article, a policymaker wants to

maximize what they called the expected net utility. In the particular case of a company, this

measure is the expected monetary profit as defined by the difference between revenue and

cost. The net utility is expressed as a function of a set of controllable and uncontrollable

(random) variables. It is the goal of the policymaker to select the appropriate values of

these controllable variables so that, taking into account the probability distributions of the
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uncontrollable variables, the expected net utility is maximized.

Figure 1.1: 173 returns of Bank of England notes between 1826 and 1844 and their quanti-
ties, as shown in Edgeworth (1888)

An immediate application of this model is its use in inventory theory. Thus, in its

most basic formulation, the newsvendor problem utilizes only one controllable variable,

namely the stock quantity, and one uncontrollable variable, the demand of the product.

The newsvendor wants to know how many newspapers he should stock in order to maximize

his profit, given that the demand is random. The product is assumed to be bought at a

unit cost c and sold at a unit price p. The newsvendor has to make a decision on the stock

quantity x before observing a realization of the demand D. If this realization is greater than

the the stock quantity, the excess of demand is lost. On the contrary, if the stock quantity

is greater than the realization of the demand, the excess of stock cannot be returned. In

summary, the newsvendor seeks the maximization of the function below:

E (Π(x)) = E (p ·min{D,x})︸ ︷︷ ︸
Expected revenue

− cx︸︷︷︸
Expected cost

, (1.1)
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where Π(·) denotes the net utility function, in this case a profit function. The maximization

of the expected profit is straightforward. If we denote by f(·) the probability distribution

function of the demand, the expected minimum of the stock quantity x and the demand D

is clearly

E (min{D,x}) =

∫ x

0
udF (u) +

∫ ∞
x

xdF (u),

where dF (u) = f(u)du. Hence, equation (1.1) can now be written in term of the probability

distribution function of the demand f(·) and the cumulative density function of the demand

F (·):

E (Π(x)) = p

(∫ x

0
uf(u)du+ x (1− F (x))

)
− cx.

An application of Leibniz’s Rule to the first-order derivative of E (Π(·)) yields

d

dx
E (Π(x)) = p (1− F (x))− c,

whence it easily follows that

x∗ = F−1

(
1− c

p

)
, (1.2)

is the only critical point of E (Π(·)), and it represents a maximum, since
d2

dx2
E (Π(x)) =

−pf(x) ≤ 0. Therefore, the classic newsvendor problem uses the (1− c

p
)th quantile of F (·)

as the optimal ordering point that maximizes the expected profit (see Figure 1.2).
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Figure 1.2: Graphical interpretation of the solution to the classic newsvendor problem

1.2 Adding Complexity to the Newsvendor Problem

The model presented in §1.1 has been subject to many modifications throughout the years.

One of the reasons why the newsvendor problem has been continuously researched through-

out the last decades is its applicability to real-world problems and its flexibility. Some exam-

ples of this applicability can be found in very different industry sectors: from the straightfor-

ward application to inventory of perishable products (Van Donselaar, van Woensel, Broek-

meulen, and Fransoo, 2006), to scheduling the shifts of medical personnel in a hospital

(Olivares, Terwiesch, and Cassorla, 2008); from energy dispatch (Densing, 2013) to game

theory in economics (Cachon and Netessine, 2006), revenue management in the airline in-

dustry (Deshpande and Arikan, 2012), or other service systems (Green et al., 2006; Haugen

and Hill, 1999). In the area of inventory theory, the literature offers us a very diverse range

of approaches to different demand and inventory models. However, the global maxima of

the objective functions presented in those problems are in many cases not straightforward

to derive and the inclusion of several assumptions is often needed.
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Until the 1950’s there used to be a disconnection between businessmen and economists

in inventory problems. For example, the classic result of the economic lot size did not con-

sider a price-dependent demand. In other words, the demand was assumed to be given or, in

the best-case scenario, to be a realization of a random variable. It was not until the 1950’s

(Whitin, 1955) that the effect of price in the stochastic demand was introduced. This fact,

in turn added the price as a decision variable to the problem on top of the stocking quantity.

Petruzzi and Dada (1999) used this price-demand relationship in several ways while pre-

senting a single-period approach that maximized expected profit and established theorems

that indicated how to select the stocking policy based on the statistical distribution that

conferred the demand its stochastic nature. Moreover, they presented a closed, analytical

expression to determine the optimal price as a function of such stocking policy and compared

it to the so-called riskless price as defined in Mills (1959). Also, they showed how pricing

decisions affect demand uncertainty under various modeling assumptions. Federgruen and

Heching (1999) introduced a multi-period model for inventory control with backlogging

which included a price-dependent stochastic demand and analyzed the optimal pricing and

replenishment strategies to be set simultaneously in each period and how they compared

when prices can be set bi-directionally or when only markdowns are allowed.

Kocabıyıkoğlu and Popescu (2011) unified and introduced the concept of lost sales rate

(LSR) elasticity and explained the monotonicity of the optimal price and stock as a function

of this new concept. Moreover, they set the properties that the LSR elasticity must possess

for the profit to be jointly concave as a function of pricing and stocking decisions and for

the problem to have a unique, optimal solution.

For a general overview of the newsvendor model applied to inventory theory, there

are excellent literature reviews (Petruzzi and Dada, 1999; Khouja, 1999) that encompass
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results and findings of different versions of this problem: single-product, multi-product,

single-stage, multi-stage, infinitely-staged.

On the other hand, and as opposed to the norm in financial analysis, a tradeoff be-

tween expected return and risk in planning problems was absent for many years. All the

works mentioned above, plus some others (Xu, Cai, and Chen, 2011; Xu, Chen, and Xu,

2010; Wang, Jiang, and Shen, 2004; Federgruen and Heching, 1999; Mantrala and Raman,

1999), presented a profit-optimizer decision maker that is risk-neutral. This decision maker

seeks to maximize the expected profit by finding an appropriate balance between expected

income and expected costs. However, these models do not take into account the variance

of the income, and therefore it is likely to select an optimal policy that maximizes the

expected income but presents a variability that turns this decision into a risky bet. Some

research efforts have taken place with respect to this approach. However, albeit the de-

mand keeps its stochastic nature, in many cases it is not presented as a function of the price

and therefore the optimization is sought by means of only selecting an optimal quantity of

product to purchase, thus disregarding pricing decisions. To the best of our knowledge, it

was Lau (1980) who first considered a mean-standard deviation payoff criterion within the

newsvendor model, although he only gave the equation whose root provided the optimal

quantity. Chen and Federgruen (2000) presented this mean-variance analysis for different

planning problems, namely, the newsvendor problem, the base stock problem and the (R,

nQ) model. When dealing with the newsvendor problem, they applied a single-stage model

that optimized a utility function for risk-neutral, risk-averse and risk-seeking decision maker

over a feasible region given by an efficient frontier. Later on, Choi et al. (2008) introduced

stockout costs in the mean-variance analysis and presented results for various risk attitudes

under demands that followed well-known statistical distributions. Wu, Li, Wang, and Cheng



7

(2009) focused on the impact that stockout costs have on the optimal ordering decisions

when comparing classic models and mean-variance analysis models, showing via numerical

results that, for a given stockout price, a mean-variance analysis yields a lower optimal or-

der quantity and a lower optimal value of the problem. Özler, Tan, and Karaesmen (2009)

offered a one-stage, multi-product approach with value-at-risk considerations that included

mathematical programming results for the case of one and two products and an approxima-

tion to the N-product case. Wang and Webster (2009) introduced an alternative approach

by using a piecewise linear loss-averse utility function. In Wang, Webster, and Suresh

(2009); Eeckhoudt, Gollier, and Schlesinger (1995); Agrawal and Seshadri (2000); Gaur and

Seshadri (2005) the authors studied the newsvendor problem within the expected utility

framework and considered three different utilities, namely, constant absolute risk aversion

(CARA), decreasing absolute risk aversion (DARA), and increasing absolute risk aversion

(IARA), whereas Choi and Ruszczyński (2011) examined this model with an exponential

utility function used to model a risk-averse decision-maker with a constant risk coefficient

in the sense of the Arrow-Pratt measure. An exponential utility function was also used by

Bouakiz and Sobel (1992) to show that a base-stock policy is indeed optimal in a dynamic

version of the newsvendor problem.

In this thesis, our aim is to combine the two approaches introduced above. That is,

we present a mean-variance analysis of the newsvendor problem that includes a stochastic,

price-dependent demand. This problem was presented before in Agrawal and Seshadri

(2000), but it was approached from the perspective of the expected utility framework,

selecting concave utility functions to model risk-averse situations and finding the relation of

optimal pricing and stocking strategies with respect to the levels of risk aversion. There have

been other similar efforts; in particular, Choi and Ruszczyński (2008); Ahmed, Çakmak,
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and Shapiro (2007) proposed models based on a conditional value-at-risk decision criterion

(CVaR) for stock optimization, whereas Chen, Xu, and Zhang (2009) analyzed how both

the optimal price and stock quantity changed when varying the η− quantile of the function

they sought to maximize. Our work is focused on an alternative approach that penalizes

the variability of the profit in the objective function as done by Markowitz several decades

ago (Markowitz, 1952).

We propose a joint optimization approach whose goals can be summarized as fol-

lows:

• Find the conditions for the unimodality of the price-setting newsvendor problem with

price-dependent demand functions, either additive or multiplicative (isoelastic).

• Consider those conditions for risk-neutral, risk-averse, and risk-seeking individuals.

• Write those conditions in managerial terms so they can be better understood. This

poses an important difference with respect to previous works, where conditions are

given in much more technical terms involving failure rates and generalized failure

rates. Our results will be given in terms of the lost sales rate (LSR) elasticity, a

concept introduced by Kocabıyıkoğlu and Popescu (2011), which directly relates to

the level of service given to the customer, even though it depends implicitly on the

failure rate of the random term of the demand. These authors already gave conditions

for the concavity of the risk-neutral problem in terms of the LSR elasticity both price-

dependent demand functions. We aim at giving a complete framework for any instance

of the risk-sensitive problem.
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1.3 The Mean-Variance Trade-Off Model

Mean-variance models have been widely used in the literature for incorporating risk to

decision-making (Choi, Li, and Yan, 2008; Choi and Chiu, 2012; Chen and Federgruen,

2000; Wu, Li, Wang, and Cheng, 2009). This measure of risk does not fall within the cate-

gory of coherent measures of risk as defined in Artzner, Delbaen, Eber, and Heath (1999):

in particular the variance does not possess any of the four characteristics that characterize

such risk measures, namely, subadditivity, monotonicity, translation equivariance, and pos-

itive homogeneity. Other measures like VaR, also used for modeling risk-sensitivity, are not

subadditive and therefore not coherent either (Szegö, 2005). Other risk measures, denomi-

nated spectral risk measures (Acerbi, 2002) have been found to present a unique maximum

in inventory and pricing problems if a) the demand error has an increasing failure rate (IFR)

or is a positive random variable with increasing generalized failure rate (IGFR), b) the risk-

less demand has increasing price elasticity (IPE), and c) the risk-transformed distribution

preserves IFR or IGFR (Fichtinger, 2010). A spectral risk measure is defined as an average

of the quantiles of the distribution of the returns weighted with a non-increasing function,

referred to as the spectrum. While all spectral risk measures are coherent, not all coherent

risk measures are spectral. In this sense, the mean-CVaR is both spectral and coherent,

but fails to preserve IFR.

Consider a decision maker who sells a perishable product, and has the ability to de-

cide on the quantity to produce or buy and the price to set for the good he or she sells.

Moreover, such a decision must be based on the expected revenue for the upcoming period,

the production or procurement costs and the variability of the revenue. Assuming that

the demand for a period is random and a function of the price we introduce the following
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risk-sensitive performance measure, which we aim at maximizing:

P̃ (p, x) = pE(min{D(p, ε), x})− cx− λV ar(p ·min{D(p, ε), x}), (1.3)

where p is the price set for the good and ε is a continuous random variable. This random

variable has support [A,B], where the sign and magnitude of A and B depend on the

demand function being used. It also has a probability distribution given by the continuous

density function f(·) and the cumulative distribution function F (·). Furthermore, x is the

inventory level set for the good, c is the production or procurement cost per unit of finished

product, and D(p, ε) is the demand for a single period given the price p and the realization

of the random variable ε. Finally, λ is a risk parameter greater than 0 for risk-averse cases,

smaller than 0 for risk-seeking cases and equal to 0 in risk-neutral cases. Thus, the sign of

this parameter reveals the attitude of the newsvendor towards the variance of the profit: a

positive parameter penalizes volatility (risk-averse); a negative parameter favors volatility

(risk-seeking). The former is commonly found in the literature, that has historically relied

on Utility Theory. The latter is in general much scarcer and we do not know of many

papers that have studied this problem in risk-seeking situations, except for some earlier

attempts on simpler newsvendor models with one decision variable (Choi, Li, and Yan,

2008). However, risk-seeking behavior may arise in situations in which an individual that

has lost an important amount of money wants to recoup his losses in one lucky strike. In

other words, humans are usually loss-averse (not risk-averse) and make decisions in term

of losses, as explained by Prospect Theory (Kahneman and Tversky, 1979; Tversky and

Kahneman, 1992; Levy, 1992). An individual will show a risk-seeking behavior if he or she

is in a state of loss or if the riskier option offers the possibility of eliminating loss (Scholer,
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Zou, Fujita, Stroessner, and Higgins, 2010).

A common feature of the classic newsvendor model is the use of a salvage value at

which the excess of stock can be sold at the end of the period, This salvage value, s, is such

that p > c > s ≥ 0 and its effect can be included without loss of generality in the model

presented above by simply redefining a new cost c̄ = c − s > 1 and a new price p̄ = p − s

(Choi and Ruszczyński, 2008).

The problem that consists of the maximization of (1.3) is, of course, the unconstrained

version of the problem

max
p,x

pE [min{D(p, ε), x}]− cx

s.t. V ar [(p ·min{D(p, ε), x}] Q k,

after defining the corresponding Lagrangian. The constrained problem is solved for a par-

ticular value of k. The unconstrained problem, parametric programing formulation, in

turn, fixes the value λ∗ of the Lagrange multiplier and finds the duple (x∗, p∗) for which

(x∗, p∗, λ∗) is the optimal solution of the constrained problem for some k. The value of λ

for which an instance of the problem is solved is clearly related to the order of magnitude

of k. For example, usually the expected profit and the standard deviation of the profit have

similar orders of magnitude (∼ 10m). k has therefore an order of magnitude of ∼ 102m and

λ must be of order ∼ 10−m so the performance measure has an overall order of magnitude

of ∼ 10m. After an initial selection of the value of the risk parameter, λ∗, it is very likely

that the duple (x∗, p∗) yields a combination of the expected profit and the variance of the

profit that does not fit exactly with our risk preferences. We will need to adjust the value

of the risk parameter and for this reason it is very convenient to know, qualitatively, how
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the expected profit and the variance of the profit will change with λ. This relationship will

be studied in 3.4 and 4.4.

Although the risk-sensitive performance measure defined in equation (1.3) lacks eco-

nomic meaning, optimizing equation (1.3) must be understood as maximizing profit while

minimizing variance. Furthermore, the parameter λ can be considered as a scaling factor

that balances the expected profit and the variance of the profit. In addition, the expression

above contains several assumptions. First, it assumes the procurement costs increase lin-

early with the quantity bought. Implicitly, this means that batch production is not more

convenient economically than item-by-item production and the economies of scale do not

apply. The introduction of the variability of the revenue weighted with the parameter λ

is a different approach compared to that analyzed in Chen and Federgruen (2000). In this

paper, the authors presented the attitude towards risk modeled by an utility function that

was concave, convex and linear for risk-averse, risk-seeking and risk-neutral settings, re-

spectively. It is also different from CVaR-based models as studied in Chen, Xu, and Zhang

(2009).

Another important feature of this problem is the demand of the goods being considered.

Often, the demand is assumed to take on values according to a given statistical distribution.

In other cases, the stochasticity of the demand is only given by a random perturbation of

a function. This function usually depends on a very reduced number of variables. It is

common, for example, to consider that the demand can be represented as a function of the

price and modified according to a random variable. Thus, we introduce the demand D(p, ε)

in the same fashion as Young (1978):

D(p, ε) = g(p)ε+ y(p), (1.4)
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where both g(·) and y(·) model nonincreasing functions of p. If g(p) ≡ 1 and y(p) ≡ a− bp

with a, b > 0, the demand is said to be in additive form. On the other hand, if y(p) ≡ 0

and g(p) ≡ ap−b with a > 0, b > 1, the demand is said to be in multiplicative form.

For every context, it remains an open question if a given commodity exhibits a change

in its demand location, consequence of an additive demand model, or scale, consequence of

a multiplicative demand model. The same product may have different behavior in different

contexts. For instance, retailers that have in their geographical location its main competitive

advantage usually see a change in the scale of the demand of their products (Agrawal

and Seshadri, 2000). The additive demand has a clear advantage in its tractability and

simplicity of the estimation of its parameters via simple linear regression. In turn, the

multiplicative demand curve is particularly convenient because it assumes that the price

elasticity of the demand remains constant at every price, unlike the linear demand function,

that presents much more negative elasticities at very low prices (Li, Sethi, and Zhang,

2014). Moreover, when converted to a logarithmic scale it also allows an easy estimation

of the parameters via regression techniques (Shi and Guo, 2012; Monahan, Petruzzi, and

Zhao, 2004). The isoelastic demand is widely used for measuring supply and demand

in agricultural products: AGRISIM (Agricultural Simulations Model) uses demand and

supply models with constant elasticities to model multi-region multi-commodity flow of

agricultural goods. This model was used for assessing European Union’s agricultural policies

and bilateral trade liberalization between EU-member states and non-member states in the

Mediterranean basin within the frame of the MEDFROL project (Kavallari, Borresch, and

Schmitz, 2006; Britz and Heckelei, 2008), that includes the analysis of commodities such as

apples, rice, olive oil, wheat, and tomatoes among others. However, when it comes to using

this demand model in optimization, one of its main drawbacks is its lack of tractability,
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especially when compared to the much simpler linear demand model.

1.4 A Tale of Two Elasticities

Two recurrent concepts that will be used throughout this thesis are the price-elasticity of

demand and the lost sales rate (LSR) elasticity. We find it convenient to define both before

proceeding with the optimization of the two price-dependent functions.

Definition 1.1. Price elasticity of the demand. Given a price-dependent demand D(p), the

price elasticity of the demand is defined as

ep =
dD

dp

p

D
. (1.5)

This definition returns, for a given price p, the percentage change in the demand. As

mentioned before, one of the main differences between the additive and the multiplicative

demand functions is that the former has a price-dependent price elasticity whereas the latter

has a constant price elasticity, and hence it is also known as isoleastic demand function

(see Figure 1.3). Indeed, applying (1.5) to an additive demand function (D(p) = a − bp)

yields ep = −b p
D

. Conversely, applying this concept to a multiplicative demand function

(D(p) = ap−b) yields ep = −b. In other words, when the demand is multiplicative an

increase of 1% in the price of the good will produce a decrease of b% in its demand, regardless

the price of the product.

Definition 1.2. (Kocabıyıkoğlu and Popescu, 2011)The lost sales rate (LSR) elasticity for
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Figure 1.3: Price elasticity of the demand in additive and multiplicative demand functions

a given price p and inventory level x is defined as

κ̃(p, x) =
p(G(p, x))

′
p

1−G(p, x)
, (1.6)

where G(p, x) := Pr(D(p, ε) ≤ x) and (G(p, x))
′
p ≡

∂G(p, x)

∂p
.

By definition, the level of service is to the LSR elasticity what the demand is to the

price elasticity. That is, given that Pr(D(p, ε) ≤ x) shows the probability of servicing

the demand, the LSR elasticity tells us what is the change in this probability when we

increase the price of our product, for a given stock quantity. This is analogous to the price

elasticity of demand, which states the change in the demand when there is an increase in

the price.

The LSR elasticity will be the metric in terms of which we will write sufficient condi-

tions for the unimodality of the objective function. Even though it is very much dependent

on the failure rate of ε (defined as h(u) =
f(u)

1− F (u)
), it provides a better managerial insight

to our results, as it directly links the change in the level of service provided to the customer

to the unimodality of the problem.
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Chapter 2

Concavity with Additive

Demand

The first chapter of this thesis focuses on an analysis to find the conditions under which the

price-setting newsvendor problem with additive demand presents a concave mean-variance

criterion.

Consider the performance measure introduced in §1, which we aim at maximizing:

P̃ (p, x) = pE(min{D(p, ε), x})− cx− λV ar(p ·min{D(p, ε), x}), (2.1)

where p is the price set for the good and ε is a continuous random variable with expected

value E(ε) and finite variance V ar(ε). We will assume that this expected value can take

on any value, although without loss of generality we could also assume that it is equal to 0

and rescale the demand accordingly. This random variable has support [A,B], where A < 0

and B > 0, and has a probability distribution given by the continuous density function f(·)
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and the cumulative distribution function F (·). We assume that F (·) is twice differentiable

everywhere on its domain. Furthermore, x is the inventory level set for the good, c is the

production or procurement cost per unit of finished product, and D(p, ε) is the demand for

a single period given the price p and the realization of the random variable ε. Finally, λ is

a risk parameter greater than 0 for risk-averse cases, smaller than 0 for risk-seeking cases

and equal to 0 in risk-neutral cases.

The demand function D(·) is in additive form. This function is attained by letting

g(p) = 1 and y(p) = a− bp in (1.4), whence we obtain

D(p, ε) = a− bp+ ε. (2.2)

The non-random term, y(p) = a− bp, is usually referred to as riskless demand (Mills,

1959). Furthermore, this additive model implies that pricing decisions do not affect the

variability of the demand, as V ar[D(p, ε)] = V ar(ε) (Petruzzi and Dada, 1999).

2.1 Risk-Averse Newsvendor

The decision maker seeks to maximize the performance measure (1.3). We set forth the

following assumptions:

(A1) p ∈ (c, pmax] where pmax ≤
a

b
, and y(p) = 0, ∀p /∈ (c, pmax],

(A2)
a+ E[ε]

b
− pmax ≤ pmax − c,

(A3) λ <
1

4(B − E(ε))pmax
,

(A4) A+ y(c) > 0.
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(A1) indicates that the price to be set has to be bigger than the unit cost of production

and smaller than pmax. The latter will never be greater than the price at which the riskless

demand for the product, y(p), equals 0. When y(·) is a linear function, this value turns out

to be
a

b
. (A2) imposes that pmax will always be at least as close to

a+ E[ε]

b
as it is to c. The

third assumption will become important in the subsequent analysis and the last assumption

imposes that regardless of how small A is, the lowest price that can be set guarantees that

the realization of the demand, D(p, ε) will still be positive.

Let us define z = x − y(p). We can transform P̃ in (1.3) into a function of (p, z) as

follows:

P̃ (p, x) = pE(min{ε, z}) + py(p)− c(z + y(p))− λV ar(pmin{ε, z})

= pµ(z)− λp2σ2(z) + py(p)− c(z + y(p)) =: P (p, z),

where

µ(z) = E(min{ε, z}) = E(ε) +

∫ B

z
(z − u)f(u) du, z ∈ [A,B],

σ2(z) = V ar(min{ε, z}) = V ar(ε) +

∫ B

z
(z2 − u2)f(u) du−

[∫ B

z
(z − u)f(u) du

]2

−2E(ε)

∫ B

z
(z − u)f(u) du, z ∈ [A,B].

As indicated in Petruzzi and Dada (1999), for a selected value of z we face shortages if

ε > z and leftovers if ε < z. A very immediate interpretation of z is that of a safety stock,

for it is defined as the difference between the actual stock level and expected demand.

Understanding the behavior of the functions above is crucial for the analysis that will be

shown later. On the one hand, µ(·) is always an increasing function of z in [A,B], for
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µ(A) = A < 0, µ(B) = E(ε) and
dµ(z)

dz
= 1 − F (z). On the other hand, σ2(·) is a

nonnegative, increasing function of z, with σ2(A) = 0, σ2(B) = V ar(ε) and
dσ2(z)

dz
=

2[1 − F (z)][z − µ(z)] ≥ 0. After further simplifications, the decision-maker’s problem can

be written as:

max
p,z

P (p, z) = max
p,z

(
−p2[λσ2(z) + b] + p[µ(z) + a+ cb]− c(z + a)

)
. (2.3)

2.1.1 Sequential Optimization

Sequential optimization seeks optimization of a function of several variables by sequentially

selecting the optimal values of each variable that will, at the end, produce the maximum

of the function that we need to maximize. Zabel (1970) proposes a method by which it

is possible to find the optimal price that maximizes the performance measure for a given

z. Then, this function can be expressed in terms of only one variable, z, and consequently

optimized. However, finding the optimal price requires concavity of p with respect to z. To

this end, we have

∂P (p, z)

∂p
= −2p(λσ2(z) + b) + (µ(z) + a+ cb), (2.4)

∂2P (p, z)

∂p2
= −2(λσ2(z) + b). (2.5)

The risk setting, λ > 0, and the nonnegativity of b and σ2(·) defines the performance

measure P (·) such that P (·, z) is concave, since
∂2P (p, z)

∂p2
< 0. Forcing (2.4) to be equal to

0 yields the price p that maximizes P (·, z) for a given z:

p∗(z) =
µ(z) + a+ cb

2[λσ2(z) + b]
. (2.6)
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Lemma 2.1. The optimal price p∗(·) is uniquely determined by (2.6) for any z ∈ [A,B] and

it is an increasing function. Moreover, p∗(z) ∈ (c, pmax], for any z ∈ [A,B].

Proof. The optimal price at z = A is greater than the cost c, for p∗(A) =
A+ a+ cb

2b
> c.

On the other hand, an upper bound of p∗(·) is given by

p∗(z) ≤ E(ε) + a+ cb

2b
≤ pmax,

which is guaranteed by assumption (A2). It remains to prove that p∗(·) is increasing.

Indeed:

dp∗(z)

dz
=

1− F (z)

2[λσ2(z) + b]
[1− 4λ(z − µ(z))p∗(z)]. (2.7)

The expression above is always positive (i.e. p∗(·) is increasing) provided that 1 −

4λ(z − µ(z))p∗(z) > 0. However, we know that

1− 4λ(z − µ(z))p∗(z) ≥ 1− 4λ(B − E(ε))pmax,

whence we obtain the condition that for the expression above to be positive we need:

λ <
1

4(B − E(ε))pmax
,

which was assumed by (A3). Therefore, pmax ≥ p∗(z) > c, ∀z ∈ [A,B].

Remark 2.1. The optimal price for a given z, p∗(z), is smaller in the risk-averse case (λ > 0)

than in the risk-neutral case (λ = 0). This conclusion is correct both mathematically and

intuitively, for a risk-averse individual will set lower prices to make sure that sales are as high
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as possible, and endorses the results obtained by Agrawal and Seshadri (2000). Under the

light of an additive demand, V ar[D(p, ε)] = V ar(ε) (Petruzzi and Dada, 1999) and therefore

changing the price will not affect the variance of the demand but will decrease the variance

of the income, as shown in (1.3). The price in the risk-neutral case is in turn smaller than or

equal to the optimal riskless price as observed in Petruzzi and Dada (1999). However, the

results in Agrawal and Seshadri (2000) claim that the optimal risk-neutral price equals the

optimal riskless price, whereas the model proposed in this chapter suggests that the optimal

risk-neutral price is in between the optimal risk-averse price and the optimal riskless price.

This difference occurs because the authors use an expected utility framework where they

assume that the utility function is increasing and concave.

Definition 2.1. The risk-sensitive performance measure under the best price function of

the safety stock z is defined as

P ∗(z) := P (p∗(z), z) =
1

4

(µ(z) + a+ cb)2

λσ2(z) + b
− c(z + a)

=
1

2
p∗(z)(µ(z) + a+ cb)− c(z + a). (2.8)

Its first derivative with respect to z is given by

dP ∗(z)

dz
= p∗(z)(1− F (z))[1− 2λ(z − µ(z))p∗(z)]− c. (2.9)

In order to write our first sufficient condition for the unimodality of the problem, we

refer to the LSR elasticity as defined in equation (1.6):

κ̃(p, x) =
p(G(p, x))

′
p

1−G(p, x)
,
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where G(p, x) := Pr(D(p, ε) ≤ x) and (G(p, x))
′
p ≡

∂G(p, x)

∂p
.

Furthermore, for the additive case we know that

Pr(y(p) + ε ≤ x) = Pr(ε ≤ x− y(p)) = F (z).

Hence, with a direct application of Leibniz’s Rule we can further simplify the expression

above and write it in terms of z as shown below:

κ̃(p, x) =
p(G(p, x))

′
p

1−G(p, x)
=

pbf(z)

1− F (z)
=: ξ(p, z).

Moreover, by means of Lemma 1, we can introduce the LSR elasticity at the optimal

price as ξ∗(z) := ξ(p∗(z), z).

Theorem 2.1. Assume that

ξ∗(z) :=
bp∗(z)f(z)

1− F (z)
≥ 1

2
.

Then, the single-period optimal stocking and pricing policy for the case of additive demand

is to stock x∗ = y(p∗)+z∗ units to sell at the unit price p∗, where p∗ is specified by Lemma 1

and z∗ is the unique root of the equation

p∗(z)(1− F (z))[1− 2λ(z − µ(z))p∗(z)]− c = 0.

Proof. See Appendix A.

Remark 2.2. The result shown by Theorem 2.1 matches that found in Kocabıyıkoğlu and

Popescu (2011) for a risk-neutral individual (λ = 0).
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Albeit we have analyzed the difference between the price p∗(z) that maximizes the

performance measure for a given value of z in risk-neutral and risk-averse environments,

it remains to see what happens to z∗(p), the value of z that maximizes this measure for a

given price p. The first and second partial derivatives of P (·) with respect to z as well as

the cross partial derivative yield

∂P (p, z)

∂z
= p(1− F (z))[1− 2λp(z − µ(z))]− c, (2.10)

∂2P (p, z)

∂z2
= pf(z)[2λp(z − µ(z))− 1]− 2λp2F (z)(1− F (z)),

∂2P (p, z)

∂p∂z
= [1− F (z)][1− 4λp(z − µ(z))]. (2.11)

A closer look to the formulae above reveals that in a risk-neutral setting P (p, ·) is

concave for a given price p and the maximum of the performance measure is obtained at

z = F−1(1 − c

p
), which is a well-known result. When λ > 0 this objective function is still

concave, for (A3) guarantees that 2λp(z − µ(z)) − 1 is negative. However, there is not a

closed form that yields the optimum value z∗, which solves the equation

(1− F (z))[1− 2λp(z − E(ε)−
∫ B

z
(z − u)f(u) du)]− c

p
= 0. (2.12)

Let us fix p ∈ (c, pmax]. In the following lemma we examine the dependence of z∗ on

λ. This dependence is expressed by z̃∗(λ) to indicate the value of z∗ at a given point p for

some λ.

Lemma 2.2. The function z̃∗(·) is decreasing in λ.

Proof. See Appendix A.

Remark 2.3. The result above endorses that obtained under CVaR considerations in Chen,



24

Xu, and Zhang (2009) and also that yielded by the use of the expected utility framework

in Agrawal and Seshadri (2000). In that sense, the model proposed here provides certainty

with respect to the behavior of the optimal order quantity in additive models of the form

a− bp+ ε in the face of risk-averse environments.

2.1.2 Simultaneous Optimization

Unlike we proceeded in §2.1.1, we focus now on giving conditions to jointly optimize price

and quantity decisions simultaneously, thus guaranteeing that (2.3) has a unique solu-

tion.

Theorem 2.2. If ξ(p, z) ≥ 1

2
, then P (·) is jointly concave in p and z and the problem

referenced by (2.3) has a unique price-quantity solution (p∗, z∗ + y(p∗)).

Proof. See Appendix A.

Remark 2.4. The result shown by Theorem 2 also matches that found in Kocabıyıkoğlu

and Popescu (2011) for a risk-neutral individual (λ = 0).

Notice that this condition for joint concavity is very restrictive as it requires the LSR

elasticity to be greater or equal than
1

2
in the whole domain of the function under study.

This condition is sufficient to guarantee that (p∗, z∗) is a maximum, but it is not necessary.

If the function was not jointly concave, the state of (p∗, z∗) as a critical point would not

be altered, for the only necessary and sufficient condition for criticality is that the Hessian

matrix is negative semidefinite at that precise point and this is guaranteed if ξ∗(z) ≥ 1

2
,

which is in turn a sufficient condition for the existence of a unique maximum in P (·) (Cachon

and Netessine, 2006).

Example 2.1. In order to illustrate the ideas previously exposed, we proceed with several
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numerical examples using different distribution functions for the random variable ε. In

particular, we present ε as a random variable uniformly distributed in [A,B], and a ran-

dom variable normally distributed with mean µ = 0 and standard deviation σ = 10, and

truncated below A and above B. For both cases, we use the following parameters to define

the problem: A = −10, B = 10, a = 35, b = 1, c = 10, and λmax <
1

4Bpmax
≤ 1

1400
.

In addition, we include the case of a uniform distribution with expectation different from

0 with A = −3, B = 40, a = 35, b = 1.5, c = 10, and λmax <
1

4(B − E(ε))pmax
. Per

Assumption (A2), pmax ≥ 22.5 in the first two cases and pmax ≥ 23.83 in the case of the

uniform distribution with expectation different from 0. Table 2.1 contains, for these three

distributions, the optimal values of p, z and P (p, z) for each value of λ that was put to the

test.

λ = 0 λ = 1/11200
Distribution p∗ z∗ P ∗ E[P ∗] SD[P ∗] p∗ z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(0, 100) 21.49 0.60 106.04 106.04 70.23 21.45 0.50 105.60 106.03 69.34
Uniform [−10, 10] 21.04 0.66 101.77 101.77 74.51 21.21 0.54 101.28 101.76 73.34
Uniform [−3, 40] 21.25 19.76 129.46 129.46 157.73 21.13 19.34 127.95 129.42 153.45

λ = 1/5600 λ = 1/2800
Distribution p∗ z∗ P ∗ E[P ∗] SD[P ∗] p∗ z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(0, 100) 21.41 0.41 105.18 106.02 68.46 21.33 0.23 104.36 105.96 66.78
Uniform [−10, 10] 21.31 0.42 100.81 101.74 72.19 21.36 0.19 99.91 101.66 70.00
Uniform [−3, 40] 21.02 18.93 126.52 129.30 149.39 20.83 18.17 123.88 128.90 141.86

λ = 1/1400
Distribution p∗ z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(0, 100) 21.19 -0.11 102.85 105.74 63.62
Uniform [−10, 10] 21.41 -0.24 98.26 101.37 65.97
Uniform [−3, 40] 20.49 16.84 119.32 127.61 128.93

Table 2.1: Optimum values of P (p, z) as a function of λ.

With respect to the uniform distribution centered at 0, Figure 2.1 shows the optimal

price p∗(·) and its first two derivatives for different values of λ that range from λmax, repre-

senting the highest risk-averse newsvendor for which p∗(·) is increasing, to 0, representing

a risk-neutral newsvendor. The impact of risk-aversion on the optimal price p∗(·) is not

very significant, being of 2.32% when z = 10 but it is interesting to verify that increasing
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risk-aversion leads to smaller optimal prices and how this price is concave in [A,B].

Figure 2.1: p∗(·) and its first two derivatives for a uniform distribution in [−10, 10]

Also, Figure 2.2 shows how the LSR elasticity ξ∗ is always greater than 1/2, which in

turn guarantees that P ∗(·) is concave. Note that since p∗(·) differs very little for different

values of λ, the curves of ξ∗(·) almost overlap. Also, the optimal value of the objective

function P ∗(·) is inversely proportional to the value of λ and its optimum value changes

only 3.45% between the most risk-averse situation and the risk neutral situation. It is worth

mentioning that in this case ξ(p, z) ≥ 1/2 and therefore the performance measure is jointly

concave.

In the case of a truncated normal distribution, when comparing the most risk-averse
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Figure 2.2: ξ∗(·), P ∗(·) and its first two derivatives for a uniform distribution in [−10, 10]

situation with the risk-neutral case, the optimal price p∗ reveals a difference of 2.44% at

z = 10, which is very similar to that is found in the previous numerical example. Again,

and endorsing the theoretical results, p∗(·) is concave and ξ∗(z) ≥ 1

2
, which guarantees the

existence of a unique optimum. Such optimum yields a gap of 3.02% between the most

risk-averse case and the risk-neutral scenario. This difference is as well very similar to that

is shown for the uniform distribution (3.02% vs. 3.45%). Unlike the uniform case, this

distribution does not provide P (·) with joint concavity, as there are some values of ξ(p, z)

under
1

2
.

Finally, the uniform distribution with mean different from 0 yields a bigger gap of the

optimal price at the right extreme of the interval, with this price at the risk-neutral case
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being 5.12% greater than in the most-risk averse case for z = B = 40. The optimal lost

sales rate elasticity remains greater than 1/2 at all times, which produces a concave curve

for P ∗(·) that has a more significant variation between the risk neutral case and the most

risk-averse situation (7.83%). Like in the case of the truncated normal distribution, ξ(p, z)

is smaller than 1/2 in some regions, which leads to a surface that is not jointly concave.

We also calculate the values of z̃∗(λ) for different λ and a given price p = 20, using

the same parameter values specified at the beginning of this section. The results can be

found on Table 2.2 and show, as claimed by Lemma 2.2, that the risk-aversion is inversely

proportional to the optimum value of z∗(20).

λ = 0 λ = 1/11200
Distribution z∗ P ∗ E[P ∗] SD[P ∗] z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(0, 100) 0.00 104.01 104.01 60.89 -0.07 103.69 104.01 60.36
Uniform [−10, 10] 0.00 100.00 100.00 64.55 -0.09 99.63 100.00 63.87
Uniform [−3, 40] 18.5 127.50 127.50 138.78 18.22 126.32 127.48 136.61

λ = 1/5600 λ = 1/2800
Distribution z∗ P ∗ E[P ∗] SD[P ∗] z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(0, 100) -0.14 103.36 104.00 59.83 -0.27 102.73 103.97 58.84
Uniform [−10, 10] -0.18 99.27 99.98 63.15 -0.34 98.57 99.94 61.91
Uniform [−3, 40] 17.94 125.18 127.43 134.43 17.41 122.99 127.22 130.30

λ = 1/1400
Distribution z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(0, 100) -0.53 101.54 103.85 56.87
Uniform [−10, 10] -0.66 97.26 99.78 59.40
Uniform [−3, 40] 16.44 119.01 126.51 122.70

Table 2.2: Behavior of z∗(20) as a function of λ.

In order to show the effect that risk aversion has on the profit, Table 2.1 and Table

2.2 also include the expected profit and the standard deviation of the profit for each case

considered. These can be calculated directly from (1.3). Intuitively, the expected profit and

the standard deviation of the profit should decrease as the level of risk aversion increases

(we will prove this mathematically in the more general case presented in §3). Indeed, this

is the case in all the different scenarios presented.
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2.2 Risk-Seeking Newsvendor

Whereas the expressions of all the partial derivatives previously obtained are still valid for

risk-seeking situations, the conditions under which the performance measure is concave are

greatly modified by the fact that λ < 0. We turn now our attention to this case in which,

again, we are seeking the maximization of

P (p, z) = pµ(z)− λp2σ2(z) + py(p)− c(z + y(p)).

Furthermore, we set forth the following assumptions, some of which were explained

formerly (we refer the reader to §2.1 for the justification of the first three of them). The

fourth assumption will become relevant in the next subsection. Note that in this case we

have not included any assumption on the value of λ; this condition will be addressed as

part of the analysis that will follow.

(B1) p ∈ (c, pmax] where pmax ≤
a

b
, and y(p) = 0 ∀p /∈ (c, pmax],

(B2)
a+ E(ε)

b
− pmax ≤ pmax − c,

(B3) A+ y(c) > 0,

(B4) E(ε) < y(c).

2.2.1 Sequential Optimization

Lemma 2.3. The risk-sensitive performance measure P (·, z) is concave for each z, if λ ≥

−b
V ar(ε)

.
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Proof. We proceed as in the risk-averse case. However, the inequality
∂2(p, z)

∂p2
= −2(λσ2(z)+

b) < 0 does not hold for every value of λ. Therefore, setting λ ≥ max
z

−b
σ2(z)

solves this

problem and, given that σ2(·) is an increasing function, it is enough to set λ ≥ −b
σ2(B)

=

−b
V ar(ε)

.

The result shown by Lemma 2.3 may not respect (B1). In fact, as shown analytically

in (2.6), for λ =
−b

V ar(ε)
the price p∗(z) goes to infinity and violates the assumption that

this quantity cannot be greater than pmax. For that reason, we need to further restrict the

possible selection of values for λ.

Lemma 2.4. For a fixed z and a value of λ in the interval

[
b(E(ε)− y(c))

2aV ar(ε)
, 0

)
the optimal

price is determined uniquely as a function of z as shown by (2.6) and its value is always

contained in (c, pmax].

Proof. See Appendix A.

Remark 2.5. In the risk-seeking case (λ < 0), the optimal price for a given z, p∗(z), is

greater than that is found for the risk-neutral case (λ = 0). This conclusion is correct both

mathematically and intuitively, for a risk-seeking individual will set higher prices in his

pursuit of greater profit, accepting the risk of selling less as a result of such decision.

Once the conditions for P (·, z) to be concave is established, analogous to what was

shown for the risk-averse case, we address the concavity of P ∗(·).

Theorem 2.3. Assume that for every z ∈ [A,B]

ξ∗(z) ≥ b
dp∗(z)

dz
−

2λp∗(z)b

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
1− 2λ(z − µ(z))p∗(z)

. (2.13)

Then the single-period optimal stocking and pricing policy for the case of additive demand is
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to stock x∗ = y(p∗) + z∗ units to sell at the unit price p∗, where p∗ is specified by Lemma 4

and z∗ is the unique root of equation (2.10).

Proof. See Appendix A.

Obviously this condition for concavity requires evaluating the function for any z ∈

[A,B]. There exist, however, more expeditive approaches to rule out concavity: given any

distribution, equation (2.13) shows that ξ∗(A) ≥ 1

2
and ξ∗(B) ≥ −2λbp∗

2
(B)

1− 2(B − E(ε))p∗(B)λ
.

This means that if we find the optimal LSR elasticity values at the extreme of the intervals

to be less than these quantities, P ∗(·) will not be concave. Also, by the definition of the

LSR elasticity in the case of additive demand, if the chosen distribution has an increasing

failure rate, so does its optimal elasticity. This means that if ξ∗(z) <
1

2
for any given z,

then its value at z = A will not be greater or equal to
1

2
and therefore P ∗(·) will not be

concave.

In an effort to come up with a friendlier condition for the concavity of P ∗(·), we can

estimate an upper bound of the right hand side of (2.13) and set

ξ∗(z) ≥ bK − 2λa
(a
b

+ (B − E(ε))K
)
, (2.14)

with K being the maximum value that
dp∗(z)

dz
attains in [A,B]. A priori, if the behavior of

the function z 7→ dp∗(z)

dz
is unknown, this maximum value can be large, with a rough upper

bound given by
1− 4λ(B − E(ε))

a

b
2(λV ar(ε) + b)

, and therefore this expression might not be effective. If,

like it was the case in risk-averse situations, this function is decreasing (i.e., p∗(·) is concave),
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then it attains a maximum value of
1

2b
at z = A and the bound above becomes

ξ∗(z) ≥ 1

2
− λa

b
(2a+B − E(ε)).

This is potentially a very useful result, but requires the concavity of p∗(·). In what

follows, we show the conditions that are needed for such a case to take place.

Lemma 2.5. If

λ ≥ max
z∈[A,B]

{
−f(z)b

4(a+B − E(ε)) + f(z)V ar(ε)

}
,

then the function z 7→ dp∗(z)

dz
is decreasing.

Proof. See Appendix A.

The previous result allows us to state the following theorem.

Theorem 2.4. Assume that

λ ≥ max
z

{
−f(z)b

4(a+B − E(ε)) + f(z)V ar(ε)

}
, z ∈ [A,B],

and

ξ∗(z) ≥ 1

2
− λa

b
[2a+B − E(ε)].

Then the single-period optimal stocking and pricing policy for the case of additive demand is

to stock x∗ = y(p∗) + z∗ units to sell at the unit price p∗, where p∗ is specified by Lemma 4

and z∗ is the unique root of equation (2.10).
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Proof. Since λ is contained in a range that guarantees that the function z 7→ dp∗(z)

dz
is

decreasing, then we have that K =
dp∗(z)

dz

∣∣∣∣
z=A

=
1

2b
and therefore (2.14), which establishes

a condition for the concavity of P ∗(·), can be written as

ξ∗(z) ≥ 1

2
− λa

b
[2a+B − E(ε)].

By virtue of (A.2) and (A.3) there exists a point z∗ ∈ (A,B) at which the function P ∗(·)

attains a maximum, and such a point is uniquely determined by the root of (2.10).

Remark 2.6. Given an appropriate range of values for λ, the LSR elasticity that is required

in risk-seeking cases is greater than that is required in risk-averse situations.

Lemma 2.6. Define

ε̂∗(p) = ξ(p, z∗(p)),

and let pA and pB be prices in the interval (c, pmax] which yield z∗(pA) = A and z∗(pB) = B,

respectively, and that may or may not exist. Then, if

ε̂∗(p) > bp
1

B − E(ε)
, c < p ≤ pmax,

the optimal safety stock z̃∗(·) is a decreasing function of λ, i.e., given a price p, the optimal

safety stock increases as we face more risk-seeking situations.

Proof. See Appendix A.

Example 2.2. We proceed now to present some examples for the risk-seeking case. As the

reader may have noticed, this case is more intrincate than the risk-averse case, with more
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conditions to be satisfied for obtaining a desirable behavior of the performance measure. Our

experience has been that selecting λ according to Theorem 2.3 induces a more significant

impact on the optimal value of the objective function. These examples gave way to a larger

range of values for the risk parameter, as we only require that λ ∈
[
b(E(ε)− y(c))

2aV ar(ε)
, 0

)
.

As far as the optimal elasticity, ξ∗(z) is concerned, Theorem 2.3 provides a more complex

expression than Theorem 2.4 that needs to be evaluated at any z ∈ [A,B]. Despite this

hindrance, it was not particularly difficult to find instances where this condition was satisfied

and allowed us to get significant results.

We present the case that ε is uniformly distributed in the range [−30, 200] with demand

given by D(p, ε) = 600− 60p+ ε. The purchase cost of the item we sell is c = 7. It can be

seen in Figure 2.3 how optimal price p∗(·) may not be concave for some values of λ but still

is an increasing function of z and its value is held between c = 7 and pmax = a/b = 10 as

expected whenever λ is greater than or equal to
b(E(ε)− y(c))

2aV ar(ε)
. The risk-neutral case yields

as well an optimal price which is 9.33% smaller than that of the most risk-seeking setting.

Figure 2.4 shows for the most risk-seeking case that ξ∗(·) is always above the necessary

and sufficient condition expressed by (2.13), thus conferring concavity to the performance

measure for this value of λ. For clarity, we omit similar curves for other tested scenarios but,

as the fourth chart in this figure shows, all cases satisfy (2.13). In this example, there is an

important gap in the optimal value of the objective function between a risk-neutral scenario

and the most risk seeking case, with the latter being 29.31% smaller than the former.

The last example introduces a normal distribution with mean 25 and variance 1600

truncated below by −30 and above by 100. The demand follows the expression D(p, ε) =

175−35p+ε where ε represents the random variable with the said distribution. The purchase

cost of the item that we sell is now c = 2.7. These parameters produce a noteworthy effect
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Figure 2.3: p∗(z) and its first two derivatives for a uniform distribution in [−30, 200]

on the objective function that is even more remarkable than that in the last example: the

risk-neutral case yields an optimum value which is 77.80% lower than that of the most

risk-seeking scenario. Likewise, the optimal price, is 17.81% lower when λ = 0 than when it

is at its minimum value. Albeit p∗(·) is not concave in this case either, the condition for the

concavity of P ∗(·), as established in Theorem 2.3, holds for all λ considered. Table 2.3, in

turn, displays the optimal pricing and safety stock decisions along with the optimum value

of the objective function, the expected profit, and the standard deviation of the profit that

they produce for the different values of λ that were attempted. Note that in both cases the

impact of risk-seekingness in the nature of the profit as a stochastic variable is remarkable,

to the point that, when λ = λmin, the decision-maker faces scenarios where he or she must
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expect a loss in exchange for a much greater variability in the profit.

Figure 2.4: Test of ξ∗(z), P ∗(z) and its first two derivatives for a uniform distribution in
[−30, 200]

λ = 0 λ = λmin/4.5
Distribution p∗ z∗ P ∗ E[P ∗] SD[P ∗] p∗ z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(25, 1600) 3.93 10.75 37.80 37.80 40.45 3.99 15.84 40.13 37.32 48.66
Uniform [−30, 200] 8.57 12.11 120.68 120.68 82.79 8.60 16.36 122.57 120.39 95.23

λ = λmin/3 λ = λmin/1.5
Distribution p∗ z∗ P ∗ E[P ∗] SD[P ∗] p∗ z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(25, 1600) 4.04 19.23 41.70 36.44 54.37 4.27 34.38 49.70 26.01 81.43
Uniform [−30, 200] 8.62 19.20 123.75 119.88 103.80 8.75 35.01 129.38 112.13 154.97

λ = λmin
Distribution p∗ z∗ P ∗ E[P ∗] SD[P ∗]
Trunc. N(25, 1600) 4.63 52.40 67.21 -3.48 115.05
Uniform [−30, 200] 9.37 103.74 156.05 -28.85 414.25

Table 2.3: Optimum values of P (p, z) as a function of λ.
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2.3 Conclusions

The approach that our model intends to give to the newsvendor problem aims at serving

as a comparison with previously used models based on CVaR measures and the expected

utility framework. In this chapter, as well as in the rest of this thesis, we introduce a simple

yet powerful variation of the single-period, price-dependent demand newsvendor problem

with two decision variables (namely, price and stock quantity) by including the variability

of the demand scaled by the attitude towards risk that the seller has. Such attitude can be

risk-averse or risk-seeking. The latter is much scarcer in the literature and can be taken as

a starting point for future research efforts. It also presents more difficult situations under

this model given the complexity of the conditions that have to hold for the performance

measure to behave appropriately. However, we show that when those conditions apply, the

impact of a risk-seeking newsvendor on the objective function can be remarkable.

We present results that back those found for risk-averse situations in other works with

different models, plus we add conclusions for risk-seeking cases along with other findings

that, despite of being intuitive, need mathematical endorsement. For instance, it was shown

that the optimal price for a given safety stock z, p∗(z), is smaller in risk-averse cases than in

risk-neutral cases. Conversely, in risk-seeking cases, this price is greater. In both scenarios,

however, it is an increasing function of z. This price is also concave in z for the risk-averse

case, whereas such concavity is guaranteed in a smaller range of λ for the risk-seeking

case.

Furthermore, it was found that the optimal safety stock as a function of the price, z∗(·),

always decreases as we face an increase in risk-aversion. Intuitively, one might think that the

opposite would happen in risk-seeking cases (i.e., z̃∗(·) always increases as we turn to be more
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risk-seeking). However, this result is true only provided that ε̂∗(p) ≥ bp 1

B − E(ε)
.

Finally, we comment on the values of λ. The restrictions that our models set on

the range of values that this parameter may take have to be considered as a scaling

measure of risk if we want to preserve the concavity of the performance measure. Out-

side of the proposed ranges for λ, the concavity of the objective function is not guar-

anteed, although it might occur. In particular, if we are concerned about a risk-averse

environment, it makes sense to set the most averse case to the maximum value that

λ can take (i.e.,
1

4pmax(B − E(ε))
) and scale our risk situations according to the range[

0,
1

4pmax(B − E(ε))

)
. Similarly, we can identify the most favorable risk-seeking case ac-

cording to the lower bounds described on Theorem 2.3 or Theorem 2.4, whatever suits us

best, and evaluate different risk measures according to this scale. Having such bounds on

the risk parameter is reasonable. It is seldom that the results hold for the entire range

of λ . Even in models with the exponential utility function (in which the decision maker

is equipped with a constant risk coefficient) or other measures of risk, the degree of risk

aversion is somewhat bounded to obtain certain results. On the other hand, in real life

problems, λ is usually small, or close to zero.
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Chapter 3

Unimodality with Additive

Demand

The scope of the first chapter was to analyze the conditions for the concavity of a perfor-

mance measure that uses a mean-variance criterion in the price-setting newsvendor problem

with additive demand. Concavity, however, can be a restrictive feature when it comes to

finding the global maximum of a function. A much ampler approach instead is that of

considering the unimodality of the function under study. The next two chapters approach

this problem in a similar way as done in §2, but with a focus on examining the conditions

that guarantee not the concavity, but the unimodality of the problem when the demand is

additive and multiplicative. It is thus a more comprehensive approach than that presented

in the previous chapter. Moreover, we aim at analyzing these conditions for two of the most

used price-dependent demand forms, as derived from (1.4): the additive demand and the

multiplicative demand.
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3.1 Problem Formulation

Consider a retailer that aims at maximizing her expected profit while keeping the variance

of the profit under control. This retailer sells a good over a single period. This product

may or may not be perishable. In the latter case, she may sell back the excess of stock at a

salvage value. Without loss of generality, we assume that the good is perishable and does

not have a salvage value. If there exists a salvage value, it can be incorporated by just a

change of variables (Choi and Ruszczyński, 2008). In any case, the decision maker decides

how much product to buy from the wholesaler at a given cost and sets a price that this

good will sell for. Since the demand is uncertain, so will be the profit, but she is interested

in setting both price and stock quantity in a way that satisfies her sensitivity to risk. This

sensitivity is modeled according to the following performance measure:

P̃ (p, x) = pE(min{D(p, ε), x})− cx︸ ︷︷ ︸
Expected profit

−λV ar(p ·min{D(p, ε), x})︸ ︷︷ ︸
V ariance of the profit

,

where the variables p and x are the retailer’s price set for the good and the stock quantity,

respectively. The replenishment cost cx is given by a constant cost of c monetary units

per unit of product. We assume that the unit cost is constant and does not depend on the

replenished quantity. The demand is random and price-dependent and has additive form

(Petruzzi and Dada, 1999):

D(p, ε) = a− bp+ ε,

where a, b > 0 (the demand is downward sloping with respect to the price) and ε is a

continuous random variable with finite variance V ar(ε). The term y(p) = a− bp is usually
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referred to as the riskless demand. In what follows, we will assume that E(ε) = 0. This

assumption can be made without loss of generality because if the expected value of ε is not

0, its value can be absorbed by a. Moreover, this random variable has convex and compact

support [A,B] (A < 0, B > 0), density function f(·) and a twice differentiable cumulative

distribution function F (·) with a continuous second derivative. The range of prices that the

retailer will consider is [c, pmax]: obviously, one will not retail a product at a lower price

than its wholesale price; on the other hand, the upper bound is given by the maximum

price at which the worst possible realization of the demand is nonnegative:

pmax = max
{p:y(p)+A≥0}

p =
A+ a

b
.

On the other hand, for each price selected the stock quantity x will not be smaller than

y(p) +A (the minimum demand attainable at price p) and will not be larger than y(p) +B

(the maximum demand attainable at price p). In our model, λ is a risk parameter that

decreases the value of the performance measure in risk-averse cases (λ > 0) and increases

its value in risk-seeking cases (λ < 0).

In order to simplify the derivations we will redefine the objective function in terms of

the safety stock z = x − y(p), that is, the difference between the replenished quantity and

the expected (or riskless) demand at a price p (Petruzzi and Dada, 1999; Thowsen, 1975).

This new variable is contained in the interval [A,B]. After this change of variables and

some algebraic calculations, we introduce our new performance measure:

P (p, z) = p (µ(z) + y(p))− c (z + y(p))− λp2σ2(z), (3.1)
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where

µ(z) = E (min{ε, z}) =

∫ B

z
(z − u)f(u) du, z ∈ [A,B],

σ2(z) = V ar (min{ε, z}) = V ar (ε) +

∫ B

z
(z2 − u2)f(u) du

−
[∫ B

z
(z − u)f(u) du

]2

, z ∈ [A,B].

These two functions of z and their characteristics will play a key part in the develop-

ment of the conditions that will follow. The function µ(·) is an increasing (µ′(z) = 1−F (z)),

concave (µ′′(z) = −f(z)) function between A and 0. Moreover, the function σ2(·) is an in-

creasing function (σ2′(z) = 2 (z − µ(z)) (1− F (z))) between 0 and V ar (ε). The proceeding

sections and subsections are dedicated to finding the conditions that guarantee that the

problem

max
p∈[c,pmax]
z∈[A,B]

P (p, z), (3.2)

has a unique solution. More specifically, we will look at the conditions for the quasicon-

cavity (i.e. unimodality) of P (·, ·). These conditions will be found by means of sequential

optimization (Zabel, 1970) and therefore we will follow the steps below:

1. Select a safety stock and find the price that maximizes P (·, ·) for that value of z, p∗(z).

2. Substitute this closed-form expression of the optimal price in the objective function

in order to come up with a function of only one variable, P (p∗(z), z) =: P ∗(z).

3. Find the safety stock z∗ that maximizes P ∗(·).

In this sequence of steps, we will proceed by finding the situations in which this maximizer
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(p∗(z∗), z∗) is unique. If such conditions do not hold, we also propose shortcuts to finding

the optimal solution of (3.2).

3.2 Risk-averse Newsvendor

In order to analyze the risk-averse newsvendor, we assume that y(c) + 2A ≥ 0. This is a

mild assumption that forces the riskless demand at face-value c to be, in the worst-case

scenario, at least as much as −2A. In general, perturbations or errors around the expected

demand at a given price should not be excessively large and therefore we do not consider

this to be a strong condition. The purpose of this assumption is to bound the optimal price

from above, as explained in the proof of Lemma 3.1, which simplifies greatly the shape of

the optimal price function and makes the optimization of P (·, ·) more accessible.

3.2.1 Characteristics of the Optimal Price

As introduced at the end of §3.1, the first step in our optimization process is to fix a safety

stock factor and find the price that maximizes the performance measure. For any z ∈ [A,B],

solving the first-order optimality condition of (3.1) as a function of p yields a closed form

for the optimal price:

∂P

∂p
= 0 =⇒ p∗(z) =

µ(z) + a+ cb

2(λσ2(z) + b)
. (3.3)

This critical point is a maximizer because ∂2P/∂p2 = −2(λσ2(z) + b) < 0 (i.e. P (·, z) is

concave). Also, clearly, p∗(z) ≤ p∗(z)|λ=0 =
µ(z) + a+ cb

2b
and therefore given a safety

stock z the optimal price decreases with the level of risk-aversion. It is of great importance
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to know whether this optimal price is hedged by the interval [c, pmax]. To that end, the

upcoming lemmas and results are intended to shed some light on the shape of this function

p∗ : [A,B]→ R, which is found to be any of the two shown in Figure 3.1.

Figure 3.1: Typical optimal price functions in risk-averse cases.

Lemma 3.1. The optimal price p∗(·) is a strictly positive function in [A,B] and p∗(z) ≤

pmax.

Proof. See Appendix B.

Lemma 3.2. The optimal price p∗(·) is either a nondecreasing or a unimodal function of

z.

Proof. See Appendix B.

Remark 3.1. Per (B.3), if the optimal price p∗(·) is increasing in a subinterval of [A,B],

then it is also concave in that subinterval.

In view of the lemmas above, we can guarantee that the optimal price is not greater

than pmax but we cannot guarantee that it is not smaller than c. This hindrance resolved
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in §2 by assuming that λ is bounded above by
1

4Bpmax
, which is the minimum value of the

right-hand side of (B.2). This assumption is enough to guarantee that p∗(·) is an increasing

function of z which, along with the fact that p∗(A) > c, is sufficient to conclude that the

optimal price is always greater than the replenishment cost. In this case, however, we do

not bound the value of the risk parameter and therefore it is possible that the optimal price

falls under c. Since we are only concerned about prices in [c, pmax], we define the hedged

optimal price function π∗ as the following piecewise function:

π∗(z) =


c, if p∗(z) < c,

p∗(z), if c ≤ p∗(z) ≤ pmax.

(3.4)

Clearly this function intends to bound the optimal price within the allowed range of prices

in those cases where the risk parameter λ is such that the optimal price eventually falls

under the replenishment cost. The performance measure P (·, ·) is a concave function with

respect to p and this means that π∗(z) = c maximizes P (·, ·) within the allowed interval

[c, pmax] whenever p∗(z) < c. In general we will use this function to further optimize the

performance measure P (π∗(z), z) = P ∗(z) with respect to z. Nevertheless, there exists a

range of nonnegative values for the risk parameter in which π∗(z) = p∗(z), ∀z ∈ [A,B].

This is shown in the next lemma.

Lemma 3.3. The optimal price p∗(z) is in [c, pmax], ∀z ∈ [A,B] if and only if λ ∈[
0,

y(c)

2cV ar(ε)

]
.

Proof. See Appendix B.
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3.2.2 Optimization of P ∗(·)

The next step in our optimization procedure is to redefine the objective function as a

function of only the stock factor z. This is achieved by substituting p for the hedged

optimal price function. Let us define the following functions of z:

P ∗1 (z) = P (c, z) = −c2(λσ2(z) + b) + c(µ(z) + cb− z),

P ∗2 (z) = P (p∗(z), z) =
1

2
p∗(z)(µ(z) + a+ cb)− c(z + a).

The performance measure at the hedged optimal price π∗(z) can be expressed in terms

of these two functions above as a piecewise nonlinear function:

P ∗(z) = P ∗(π∗(z), z) =


P ∗1 (z), if p∗(z) < c,

P ∗2 (z), if c ≤ p∗(z) ≤ pmax.

The derivative of this function is:

P ∗
′
(z) =


−c2λσ2′(z)− cF (z) ≤ 0, if p∗(z) < c,

(1− F (z))p∗(z)(1− 2λ(z − µ(z))p∗(z))− c, if c ≤ p∗(z) ≤ pmax.

(3.5)

By taking left and right derivatives at the point where p∗(z) = c, we can see that P ∗(·) is a

smooth function (i.e. its first derivative is continuous). Moreover, since p∗(·) is quasiconcave

with 0 < p∗(z) ≤ pmax, and p∗(A) > c, it turns out that π∗(·) will have at most two pieces.

Consequently, P ∗(·) will have at most two pieces: only P ∗2 (·) if λ ∈
[
0,

y(c)

2cV ar(ε)

]
(as

Lemma 3.3 dictates for moderately risk-averse situations) or P ∗2 (·) and P ∗1 (·) (in this order)
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if λ ∈
(

y(c)

2cV ar(ε)
,∞
)

.

Because we will use it in the subsequent sections, we include below the second derivative

of the performance measure at the hedged optimal price π∗(z) when π∗(z) = p∗(z):

P ∗
′′
(z)

∣∣∣∣
π∗(z)=p∗(z)

= P ∗
′′

2 (z) =
(
p∗
′
(z)(1− F (z))− f(z)p∗(z)

)
(1− 2λ(z − µ(z))p∗(z))

−2λp∗(z)(1− F (z))
(
F (z)p∗(z) + (z − µ(z))p∗

′
(z)
)
. (3.6)

As a function of λ, we find two different situations: if λ ∈
[
0,

y(c)

2cV ar(ε)

]
, we have that

c ≤ p∗(z) ≤ pmax for all z ∈ [A,B] and therefore P ∗(z) = P ∗2 (z). If λ >
y(c)

2cV ar(ε)
, there

is a point zc (and only one because of the quasiconcavity of p∗(·) and because p∗(A) > c)

that solves the equation p∗(z) = c. In this case, P ∗(·) will have two pieces, namely, P ∗2 (·)

and P ∗1 (·) (in this order). However, since P ∗(·) is a continuous, smooth function and P ∗1 (·)

is a nonincreasing function, it follows that

max
z∈[A,B]

P ∗(z) = max
z∈[A,zc]

P ∗2 (z). (3.7)

In other words, the optimal value of the performance measure at the hedged optimal

price π∗(z) can be found by analyzing only the subinterval in which π∗(z) = p∗(z). In

general, numerical optimization may help to find this global maximum. There are many

examples in the literature where complex newsvendor models are tackled with simulation or

optimization algorithms (Bisi et al., 2015; Kim, 2006; O’Neil et al., 2015; Sempolinski and

Chaudhary, 2010). Analytically, we will derive a sufficient condition for the unimodality

of the performance measure at the hedged price π∗(·). For this condition, and for some

more that will be derived later on, we build our analysis on the lost sales rate (LSR)
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elasticity, ξ(p, z), which we defined already in (1.6) and particularized for the additive case

in §2.1.1.

The following theorem presents a sufficient condition for the unimodality of P ∗(·):

Theorem 3.1. Let λ ≥ 0 and zc = min{z : p∗(z) = c,B}. If

ξ∗(z) b

(
p∗
′
(z)− 2λ(1− F (z))p∗(z)2

c
[(z − µ(z))p∗(z)]′

)
, (3.8)

∀z ∈ [A, zc], then the performance measure P ∗(·) is quasiconcave in [A, zc] and the price-

setting newsvendor problem with additive demand (3.2) has a unique optimal solution (z∗, p∗(z∗)),

where z∗ solves P ∗
′

2 (z) = 0 and p∗(z∗) is given by (3.3).

Proof. See Appendix B.

The condition above is very general but it requires the comparison of the LSR elasticity

with another function at every point in [A,B]. Ideally, we want to come up with a constant

value that we can compare ξ∗(·) to. Simpler conditions that guarantee the existence of a

unique maximum in P ∗(·) have been found in particular cases and have been illustrated

in previous publications. For instance, Kocabıyıkoğlu and Popescu (2011) show that in

the risk-neutral case, the LSR elasticity has to be at least 1/2 for the objective function

to be concave. Similarly, in §2 we extend this lower bound for moderate risk-averse cases:

when λ <
1

4Bpmax
, the objective function is still concave if the LSR elasticity is at least

1/2. By taking into account the shape of the optimal price function p∗(·) and Theorem

3.1, we can obtain these bounds as well. For example, in the risk neutral case, λ = 0 and

p∗(·) is an increasing and concave function. Therefore ξ∗(z) ≥ bp∗
′
(z) ≤ bp∗

′
(A) = 1/2.

In moderately risk-averse cases (0 < λ <
1

4Bp∗max
) the optimal price is still increasing
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and concave and the second term of (3.8) is nonnegative, which allows us to write again

ξ∗(z) ≥ bp∗′(z) ≤ bp∗′(A) = 1/2.

When the scenario becomes more risk-averse, the optimal price function turns uni-

modal. For values of λ greater than
1

4Bp∗max
, there exists now a point zψ such that

zψ = min{z : p∗
′
(z) = 0}. This point identifies the maximum of p∗(·) and divides the

optimal price function in two subintervals: in [A, zψ), p∗(·) is increasing and concave; in

[zψ, zc], p
∗(·) is nonincreasing and has exactly two critical points, located at the extremes of

this subinterval. This particular and predefined shape of this function allows us to propose

a constant lower bound for the LSR elasticity when λ ≥ 1

4Bp∗max
.

Theorem 3.2. Let λ ≥ 0, zc = min{z : p∗(z) = c,B} and zψ = min{z : p∗
′
(z) = 0}. If the

LSR elasticity ξ∗ is bounded below by

ξ∗(z) >
1

2
, ∀z ∈ [A, zψ], (3.9)

ξ∗(z) > −
2(1− F (zψ))λbp∗(zψ)2

c

·
(
F (zψ)p∗(zc)−

zc − µ(zc)

2 (λσ2(zψ) + b)

)
, ∀z ∈ (zψ, zc], (3.10)

then the performance measure P ∗(·) is quasiconcave in [A, zc] and the price-setting newsven-

dor problem with additive demand (3.2) has a unique optimal solution (z∗, p∗(z∗)), where

z∗ solves P ∗
′

2 (z) = 0 and p∗(z∗) is given by (3.3).

Proof. See Appendix B.

This new theorem tackles any risk-averse scenario given that if λ <
1

4Bpmax
only the

first bound applies because zψ = zc = B. The second bound can be useful for many more

risk-averse scenarios, as we will see in the following example. It requires to obtain the safety
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stock zψ at which the apex of the function p∗ occurs by solving the equation p∗
′
(z) = 0.

While we can think of −2λBp2
max

c
as a simpler lower bound for ξ∗ in the second subinterval,

our proposed bound is much sharper.

Example 3.1. In order to illustrate how Theorem 3.2 improves the results obtained in

§2, we will work on the basis of one of the examples in the previous chapter. We consider

again the demand function D(p, ε) = 35 − p + ε, where ε ∼ U [−10, 10]. The cost of the

commodity is c = 10. Under their assumptions made in §2, the most risk-averse case

under which the concavity of P ∗(·) can be guaranteed corresponds to a value of the risk

parameter λ =
1

4Bpmax
=

1

1400
. With our focus on unimodality, we are able to prove that

there is a unique maximum for values of λ beyond
1

1400
. In Table 3.1 we show this for

several instances by applying our constant bounds. However, these bounds do not work

for the cases λ = 0.02 and λ = 0.05 and therefore we cannot claim the unimodality of

P ∗(·) by using them. Still, it is possible to use the non-constant bound (3.8) to prove the

quasiconcavity of P ∗(·). Figure 3.2 displays how bound (3.8) from Theorem 3.1 can be

applied to those cases where our constant bounds (3.9) and (3.10) do not hold.

λ zψ zc Cond. (3.9) Cond. (3.10) Cond. met?

0 10 10 1/2 1/2 X
0.01 -2.85 10 1/2 -0.61 X
0.02 -4.88 10 1/2 1.47 ×
0.05 -6.71 4.91 1/2 1.24 ×
0.06 -6.99 3.39 1/2 -1.32 X

Table 3.1: Example of the conditions for the unimodality of the objective function for
risk-averse scenarios
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Figure 3.2: Condition (3.8) applied to cases where conditions (3.9) and (3.10) did not hold

3.3 Risk-seeking Newsvendor

3.3.1 Characteristics of the Optimal Price

When the retailer is risk-seeking, the optimal price p∗(·) presents very different characteris-

tics. From the first-order condition (3.3), it is easy to see that p∗(z) < 0 when λ < −b/σ2(z)

and presents a discontinuity when λ = −b/σ2(z). Since σ2(·) is an increasing function, as z

increases from A the optimal price presents three possible, well differentiated pieces, that

may appear in the following order: first the optimal price is positive and nondecreasing

with respect to z in the region where λ > −b/σ2(z); then this price tends to +∞ when

λ = −b/σ2(z); finally the optimal price surges from −∞ and attains finite negative values

when λ < −b/σ2(z).

While the first-order optimality condition is the same that was obtained for the risk-

averse case, the critical point p∗(z) is not always a maximizer. Indeed, the second partial
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derivative of P (·, ·) with respect to p

∂2P/∂p2 = −2(λσ2(z) + b),

indicates that the performance measure is concave with respect to p if λ > −b/σ2(z),

convex with respect to p if λ < −b/σ2(z) and linear in p if λ = −b/σ2(z). In other words,

positive values of p∗(·) correspond to a maximizer of P (·, ·), whereas negative values of p∗(·)

correspond to a minimizer of the performance measure. In the former case, the concavity

of P (·, ·) with respect to p when λ > −b/σ2(z) implies that the maximizer of P (·, ·) in the

interval [c, pmax] when p∗(z) > pmax is obtained at pmax. In the latter case, the convexity

of P (·, ·) with respect to p when λ < −b/σ2(z) implies that the positive maximizer of P (·, ·)

in the interval [c, pmax] is also obtained at pmax when p∗(z) < c. This idea is illustrated in

Figure 3.3, where we chose two different risk scenarios for the same problem and plotted

the objective function at z = 0. In one scenario, the objective function is concave in p for

z = 0 and the optimal price is outside of the interval [c, pmax] and it is greater than pmax.

In the other scenario, the objective function is convex in p for z = 0 and the optimal price

is outside of the interval [c, pmax] and it is smaller than c.

Figure 3.3: Obtention of the optimal hedged prices in risk-seeking cases.
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Let z̃ = {z : λ = −b/σ2(z)} if λ ≤ −b/V ar(ε) and z̃ = B if λ > −b/V ar(ε). Note that

when λ ≤ −b/V ar(ε) the function p(·)∗ is not defined at z = z̃.

Lemma 3.4. Let λ < 0. The optimal price p∗(·) is strictly increasing at all points in [A,B)

where it is defined and has a critical point at z = B.

Proof. See Appendix B.

The importance of Lemma 3.4 is that it gives us a good idea of what p∗(·) looks like.

In particular, we know that in many risk-seeking scenarios, the optimal price will go over

pmax. When that happens, the function will never return to the interval [c, pmax]. As a

matter of fact, only two options will occur at that point: either the function increases to a

point p∗(B) ≥ pmax or the function presents an asymptote at z = z̃ and p∗(z) < 0 in (z̃, B].

Hence, if we let zpmax = min{{z : p∗(z) = pmax}, B} be the safety stock that produces an

optimal price equal to pmax, or B (whichever is smaller), we can define the hedged optimal

price function π(·) in the same spirit as in the previous section:

π∗(z) =


p∗(z), if z ≤ zpmax ,

pmax, if z > zpmax .

Obtaining zpmax will play a central role in characterizing the properties of the objective

function P ∗(·). An illustration of a typical optimal price function and its corresponding

hedged optimal price function is presented in Figure 3.4.
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Figure 3.4: Typical optimal price and hedged optimal price functions in risk-seeking cases.

3.3.2 Optimization of P ∗(·)

Let us define the function z �→ P ∗
3 (z) = P (pmax, z) = −p2max(λσ

2(z) + b) + pmax(µ(z) +

a + cb) − c(z + a). The performance measure at the hedged optimal price π∗(z) in the

risk-seeking case can be expressed in terms of P ∗
2 (·) and P ∗

3 (·) as:

P ∗(z) = P ∗(π∗(z), z) =




P ∗
2 (z), if z ≤ zpmax ,

P ∗
3 (z), if z > zpmax .

The derivative of this piecewise, nonlinear function is shown below. Like in the risk-

averse case, the left and right derivatives of this function at z = zpmax are equal and the
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function is smooth.

P ∗
′
(z) =


(1− F (z))p∗(z)(1− 2λ(z − µ(z))p∗(z))− c, if z ≤ zpmax ,

−p2
maxλσ

2′(z) + pmax(1− F (z))− c, if z > zpmax .

Its critical points are attained where P ∗
′
(z) = 0:

P ∗
′
(z) = 0 =⇒


(1− F (z))(1− 2λ(z − µ(z))p∗(z)) =

c

p∗(z)
, if z ≤ zpmax ,

F (z) = 1− c

pmax
− λpmaxσ2′(z), if z > zpmax .

(3.11)

Like in the risk-averse case, where P ∗1 (·) was always monotonic, the second piece of P ∗(·),

P ∗3 (·), has a well predefined shape, as shown in the next lemma.

Lemma 3.5. The function P ∗3 (·) is unimodal in [A,B].

Proof. See Appendix B.

In analyzing the optimization of P ∗(·) we will break down the value of λ in two thresh-

olds. For this, we will use the following definitions:

• Let λzpmax be the risk parameter that gives way to a scenario where p∗(B) = pmax.

In other words, λzpmax represents the scenario with the lowest value of λ such that

zpmax = B. By using (3.3) we conclude that

λzpmax =
a+ b(c− 2pmax)

2pmaxV ar(ε)
.

• Let λt be the value of the risk parameter that would make P ∗
′

2 (zpmax) = 0. By using
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(3.11) we conclude that

λt(λ) =


−∞, if λ ≥ λzpmax ,

1− c

(1− F (zpmax(λ)))pmax
2(zpmax(λ)− µ(zpmax(λ))pmax

, if λ < λzpmax .

where we have made it clear that λt changes with the level of risk-seekingness λ

through the value of zpmax .

Clearly λ > λt(λ) implies P ∗
′

2 (zpmax) = P ∗
′

3 (zpmax) < 0. Conversely, λ ≤ λt(λ) implies

P ∗
′

2 (zpmax) = P ∗
′

3 (zpmax) ≥ 0. The sign of the derivative of P ∗(·) at z = zpmax is important

because it determines how P ∗2 (·) and P ∗3 (·) are joined at this breakpoint. The following

result helps to predict how this occurs for every instance of the problem.

Lemma 3.6. There is only one solution to the equation λ = λt(λ) in (−∞, 0).

Proof. See Appendix B.

This result is important because it means that P ∗
′
(zpmax) = 0 only once in [A,B].

Given that λt(0) = −∞ (because zpmax(0) = B), this means that P ∗
′
(zpmax) < 0 when λ ∈

(λt(λ), 0), P ∗
′
(zpmax) = 0 when λ = λt(λ), and P ∗

′
(zpmax) > 0 when λ ∈ (−∞, λt(λ)).

We can also have some insight about how the critical points of P ∗2 (·) and P ∗3 (·) change

with λ. To this end we will define, for a given risk parameter λ, the values

ζ2(λ) = min
{
z ∈ [A,B] : P ∗

′
2 (z) = 0

}
,

ζ3(λ) = min
{
z ∈ [A,B] : P ∗

′
3 (z) = 0)

}
.

In other words, ζ2(λ) and ζ3(λ) denote the minimum safety stock that produces a critical
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point in P ∗2 (·) and P ∗3 (·) respectively, within the interval [A,B] and for a given risk parameter

λ. Since P ∗
′

2 (A) > 0, ζ2(λ) always represents a maximum. Since, per Lemma 3.5 P ∗3 (·) is

unimodal, ζ3(λ) always represents the unique maximum of this function.

Lemma 3.7. Let λA < λB ≤ 0. Then ζ2(λA) > ζ2(λB) and ζ3(λA) > ζ3(λB). In other

words, the safety stock at which the first maximum in P ∗2 (·) and the only maximum in P ∗3 (·)

occur over the interval [A,B] increases as λ decreases.

Proof. See Appendix B.

We introduce now two sufficient conditions for P ∗2 to be unimodal.

Lemma 3.8. Let λ ≤ 0 and λ̃ ∈ (λ, 0]. If the LSR elasticity ξ∗ is bounded below by

ξ∗(z) >
2bc

µ(ζ2(λ̃)) + a+ cb
, ∀z ∈ [ζ2(λ̃), B], (3.12)

then the performance measure P ∗2 (·) is quasiconcave in [A,B].

Proof. See Appendix B.

Corollary 3.1. If condition (3.12) holds for λ, it also holds for any instance with risk

parameter in the interval (−∞, λ). This follows because if, after selecting a value of λ̃,

condition (3.12) holds for an instance of this problem, it will also hold for a more risk-

seeking instance due to ξ∗(·) increasing when we select a lower λ (p∗(·) increases as λ

decreases).

Corollary 3.2. A less sharp but easier lower bound for P ∗2 (·) to be unimodal in [A,B] is

ξ∗(z) >
2bc

A+ a+ cb
=

c

p∗(A)
. (3.13)
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Note that this bound is always less than 1. Again, if this condition holds for an instance

with risk parameter λ, it will hold for all more risk-seeking instances.

Condition (3.12) provides an auto-adaptative bound that decreases as λ̃ gets closer to

λ. This bound also reduces the interval over which it has to hold as we decrease λ̃ (i.e.

as we increase ζ2(λ̃)). An advantage of this auto-adaptative bound is that we are able to

reformulate it should a bound is not satisfied when we use the solution of the problem with

risk parameter λ̃ in order to determine the unimodality of the problem with risk parameter

λ. A good strategy to check if P ∗2 (·) is unimodal for all risk-seeking instances is to test

(3.13) for the risk-neutral case. If it holds, per Corollary 3.2 this function will be unimodal

for any λ < 0. If it does not hold, we can use condition (3.12) to see if an instance with

parameter λ, and per Corollary 3.1, if all instances with risk parameter less than λ, are

unimodal. It is a good idea to use λ̃ = 0 so ζ2(λ̃) is the first maximum of the risk-neutral

problem. If ξ∗(z) > 1/2, ζ2(0) is the only solution to first-order optimality condition of the

risk-neutral problem and it is easy to find.

We are now prepared to establish the theorems that tackle the unimodality of the

risk-seeking newsvendor problem.

Theorem 3.3. Let λ ∈ [λt(λ), 0) and λ̃ ∈ (λ, 0]. Then,

max
z∈[A,B]

P ∗(z) = max
z∈[A,zpmax ]

P ∗2 (z) = max
z∈[ζ2(λ̃),zpmax ]

P ∗2 (z). (3.14)

Moreover, if P ∗2 (·) is unimodal in [A,B], then the performance measure P ∗(·) is quasiconcave

and the price-setting newsvendor problem with additive demand (3.2) has a unique optimal

solution (ζ2(λ), p∗(ζ2(λ))), where ζ2(λ) solves P ∗
′

2 (z) = 0 and p∗(ζ2(λ)) is given by (3.3).
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Proof. See Appendix B.

Theorem 3.4. Let λ ∈ (−∞, λt(λ)) and λ̃ ∈ (λ, 0]. Then,

max
z∈[A,B]

P ∗(z) = max{P ∗(ζ3(λ)), max
z∈[ζ2(λ̃),zpmax ]

P ∗2 (z)}. (3.15)

Moreover, if P ∗2 (·) is unimodal in [A,B], then the performance measure P ∗(·) is quasiconcave

and the price-setting newsvendor problem with additive demand (3.2) has a unique optimal

solution (ζ3(λ), p∗(ζ3(λ))), where ζ3(λ) solves P ∗
′

3 (z) = 0 and π∗(ζ3(λ)) is given by (3.4).

Proof. See Appendix B.

Example 3.2. Consider the same demand function as in Example 3.1, D(p, ε) = 35−p+ ε,

where ε ∼ U [−10, 10]. The cost of the commodity is c = 10 and p∗(A) =
A+ a+ cb

2b
= 17.5.

Let us consider two risk-seeking instances: λ1 = −0.001 and λ2 = −0.01. A simple applica-

tion of equation (3.13) for the case of λ = 0 yields the condition ξ∗(z) > 0.57, which holds in

[A,B] because ξ∗(A) = 0.875 and the failure rate is increasing for a uniform distribution. Per

Corollary 3.2, P ∗2 (·) is unimodal in this interval for any risk-seeking instance. For these two

scenarios, we obtain that zpmax(−0.001) = 10 and zpmax(−0.01) = 1.28. These two values

yield λt(−0.001) = −∞ and λt(−0.01) = −5.2 ·10−4. Since λt(−0.001) < −0.001, by virtue

of Theorem 3.3, the only solution to P ∗
′

2 (z) = 0 provides the triple that solves the problem

(ζ2(−0.001) = 2.24, p∗(ζ2(−0.001)) = 22.11, P ∗(ζ2(−0.001)) = 108.5). Since λt(−0.01) >

−0.01, by virtue of Theorem 3.4, the only solution to P ∗
′

3 (z) = 0 provides the triple that

solves the problem (ζ3(−0.01) = 8.48, π∗(ζ3(−0.01)) = 33.19, P ∗(ζ3(−0.01)) = 265.58 (see

Figure 3.5).
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Figure 3.5: Example of a risk-seeking newsvendor problem (D(p, ε) = 35 − p + ε, ε ∼
U [−10, 10], c = 10, λ = −0.01).

3.4 Sensitivity Analysis of the Expected Profit and the Vari-

ance of the Profit

Managerially speaking, the ultimate goal of this analysis is to know the mean and the

second central moment (i.e. the variance) of the random variable profit. The selection of

an appropriate risk parameter λ is done according to these values and how acceptable they

are for the decision maker. It is important to know beforehand how these two measures

will change as a function of risk sensitivity λ. Desirably, increasing the value of λ (i.e.

becoming more risk-averse) will reduce the expected profit in exchange for a lower variance

of the profit. Likewise, decreasing the value of λ (i.e. becoming more risk-seeking) will

reduce the expected profit in exchange for a higher variance of the profit. Our results for

the additive, price-dependent demand confirm this behavior.

Lemma 3.9. In risk-averse cases, the expected profit and the variance of the profit at the

hedged optimal price π∗(z) decrease as λ increases. In risk-seeking cases, as λ decreases,

the expected profit decreases and the variance of the profit increases.
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Proof. See Appendix B.

Remark 3.2. Let λ1 > λ2 > 0. Then the optimal pair (z∗λ1
, π∗(z∗λ1

)) produces lower

expected profit and a higher variance of the profit than the optimal pair (z∗λ2
, π∗(z∗λ2

)).

Remark 3.3. Let λ1 < λ2 < 0. Then the optimal pair (z∗λ1
, π∗(z∗λ1

)) produces lower

expected profit and higher variance of the profit than the optimal pair (z∗λ2
, π∗(z∗λ2

)).

3.5 Conclusions

The present chapter seeks to find a general solution framework and a full characterization for

the mean-variance newsvendor with price-dependent, additive demand. The performance

measure must be seen as a weighted combination of the expected profit and the variance

of the profit. The relative importance of the variance of the profit as well as the sign of its

contribution to such measure is given by a risk parameter λ. The decision maker should see

this maximization problem as a method to attain optimal stocking and pricing policies in

view of his or her risk profile. For each value of λ the maximization problem (3.2) produces

a pair of policies that will in turn yield an expected profit and variance of the profit. These

two quantities are ultimately the basis of the decision maker’s actions. It is then when he

or she will have to resolve whether these levels of expectation and variance of the profit are

acceptable and fine-tune the value of λ accordingly. We showed that the expected profit and

the variance of the profit decrease with the level of risk-aversion, whereas they decrease and

increase respectively with the level of risk-seekingness. This fact makes tuning the value of

λ an easier task because we know beforehand what to expect when changing it.

We believe that the analysis of this problem must be done in a more managerial

fashion, and to this end we base our study on a recently introduced metric, the lost sales
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rate elasticity, and express our conditions for the unimodality of the objective function in

terms of this measure. One of the major difficulties that we encountered was that the

optimal price for a given safety stock is not necessarily contained in the allowed range

of prices. This produces a performance measure P ∗(·) that in general is piecewise and

nonlinear. However, the additive demand model allows a very precise description of the

optimal price function. Having knowledge about the characteristics of this function was

crucial to develop constant lower bounds for the LSR elasticity in order for the objective

function to be unimodal.

The optimal price function p∗(·) was found to be either nondecreasing or unimodal in

the risk-averse case, and nondecreasing in the risk-seeking case. This allowed us to define

a piecewise optimal hedged price function π∗(·) that capped the maximum value of the

optimal price to pmax.

The most important achievement of this chapter is that we are able to simplify the so-

lution of every single instance of the risk-sensitive newsvendor problem with mean-variance

trade-off and additive demand. Unlike other authors, we do not assume that the random

variable ε has any particular property like increasing failure rate or increasing generalized

failure rate, which makes our approach as general as possible. For the risk-averse case,

we use equations (3.9) and (3.10) to extend the bounds provided by Kocabıyıkoğlu and

Popescu (2011) (risk-neutral case) and those found in §2 (moderately risk-averse cases) and

create a unified framework for this type of problems. For risk-seeking scenarios, we follow

the thread of §2 and find two alternative simple conditions for any possible scenario of this

kind. Equation (3.12) is an auto-adaptative bound that can be used should the easier bound

(3.13) does not hold. Moreover, by taking advantage of the structure of the solutions in

risk-seeking cases, we can show that if any of these two conditions hold for a given value
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of λ, then the property of unimodality is extended to all more risk-seeking instances. Fi-

nally, regardless of the sensitivity to risk, we can simplify the original optimization problem

even if the conditions proposed do not hold (equation (3.7) in risk-neutral and risk-averse

situations and equations (3.14) and (3.15) in risk-seeking environments).
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Chapter 4

Unimodality with Multiplicative

Demand

4.1 Introduction and Problem Formulation

In this chapter we study the condition for the problem to be unimodal when the demand is

multiplicative. The price-setting newsvendor model with isoelastic, price-dependent demand

was studied by Choi and Chiu (2012); nevertheless, in this work the authors assume that

the pricing and stocking decisions can be taken in different stages, namely, first by deciding

on the stock quantity and, once the demand is observed, by setting the price. Although

we will follow the same sequential optimization approach that was presented in prevous

chapters, it is important to remark that such an approach is intended to make pricing and

stocking decisions simultaneously.

Consider the single-stage, single-product, newsvendor problem with two decision vari-

ables, namely stock quantity and price. A risk-neutral retailer would thus pursue the maxi-
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mization of his expected profit, E(Π(p, x)) = pE(min{D(p, ε), x})− cx, where c ∈ R+ is the

cost of the product and D(p, ε) is its demand. Note that c ≥ 1 can be assumed without loss

of generality, since any currency can be easily reconverted to a new scale. The first term

represents the income collected in a single-period, whereas the second term represents the

cost incurred when manufacturing or procuring x units of product. We assume that such

a cost increases linearly with the number of units procured or manufactured. The demand

is considered to be multiplicative (isoelastic), price-dependent, and stochastic, and can be

obtained by setting y(p) ≡ 0 and g(p) ≡ ap−b in (1.4). The demand function takes on the

form:

D(p, ε) = ap−bε, (4.1)

where ε is a random variable with finite variance V ar(ε) and compact and convex support

[A,B], 0 < A < 1 < B. We assume that ε has a probability distribution characterized

by a probability density function f and a cumulative density function F ∈ C2 (i.e. F is

twice differentiable with continuous second derivative). We also consider, without loss of

generality, that E(ε) = 1.

The term g(p) denoted as riskless price (Petruzzi and Dada, 1999) represents in this

case an isoelastic demand, i.e., g(p) = ap−b with a ∈ R+ and b ∈ Q+. We define b as the

quotient of two natural numbers, b = b1/b2, b1, b2 ∈ N+, b2 odd, such that b > 1. The

assumptions on the rationality of b and the odd parity of b2 will be discussed later on.

Since in general we use the term elasticity for referring to the price elasticity of demand,

b > 1 represents products that are commonly known to present a constant, elastic demand,

meaning that an increase of 1% in the price of the commodity in question will always
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produce a drop greater than 1% in its demand and equal to b. Examples of elastic goods are

usually products that are not critically needed by consumers or for which they can readily

find a substitute. The archetypal example is the elasticity of soft drinks like Coca-Cola

or Mountain Dew, that have elasticities of 3.8 and 4.4, respectively (Ayers and Collinge,

2003). On the contrary, goods that see a reduction of their demand by less than 1% after an

increase of their price are called inelastic (i.e. b < 1). Examples of such goods are alcoholic

beverages or cigarettes. These types of goods will not be covered in this chapter.

Again, the objective function is presented as a combination of the expected profit

and the variance of the profit weighted with a risk parameter. The sign of this parameter

determines whether the newsvendor is risk-averse or risk-seeking: λ > 0 for the former (i.e.

the variance of the profit decreases the objective function), λ < 0 for the latter (i.e. the

variance of the profit increases the objective function).

P̃ (p, x) = E(Π(p, x))− λV ar(Π(p, x))

= pE(min{D(p, ε), x})− cx− λV ar(p ·min{D(p, ε), x}).

Another characteristic that is usually added is the stockout cost. Although we do not

take this cost into account in our analysis, it would be interesting to see how it affects the

optimal decision as a function of the retailer’s risk attitude. It is known that when we

optimize only the stock quantity this optimal quantity need not be inversely proportional

to the risk aversion when this cost is present and a mean-variance tradeoff is implemented

(Wu, Li, Wang, and Cheng, 2009).

Following the procedure presented in Petruzzi and Dada (1999), we define the price-

sensitive stock factor z = x/g(p). Since x ∈ [g(p)A, g(p)B], it follows that z ∈ [A,B]. We
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can rewrite the objective function as a function of (p, z):

P̃ (p, x) = pE(min{D(p, ε), x})− cx− λV ar(p ·min{D(p, ε), x})

= g(p)pE(min{ε, z})− czg(p)− λV ar(pg(p) ·min{ε, z})

= pg(p)µ(z)− czg(p)− λ(g(p)p)2σ2(z)

= E(Π(p, z))− λV ar(Π(p, z)) =: P (p, z), (4.2)

where µ(z) = E(min{ε, z}) =

∫ B

z
(z−u)f(u)du+1 and, σ2(z) = V ar(min{ε, z}) = V ar(ε)+∫ B

z
(z2−u2)f(u)du−µ2(z) + 1, z ∈ [A,B]. Note that µ(·) is always an increasing, concave

function, for µ′(z) = 1 − F (z) and µ′′(z) = −f(z), z ∈ [A,B]. On the other hand, σ2(·)

is an increasing function with σ2′(z) = 2 (1− F (z)) (z − µ(z)), although not much can be

said about its second derivative σ2′′(z) = 2(1− F (z))F (z)− 2f(z)(z − µ(z)). Examples of

the analytical expressions of the integrals needed to calculate the functions µ(·) and σ(·)

are shown in tables (4.1) and (4.2), where it was always assumed that E(ε) = 1.

Distribution Support

∫ B

z
(z − u)f(u)du

Uniform [A,B]
(B−z)2
2(A−B)

Shifted expo.(θ)a [A,∞) − 1
θ
e−θ(z−A)

Gamma (α, β)b (0,∞)
zΓ̃(α,z/β)−βΓ̃(α+1,z/β)

Γ(α)
c

Normal (1, v)d (0,∞) − z−1
2

(
erf

(
z−1√

2v

)
− 1
)
− vf(z)e

LogNormal (m, v) (0,∞) z
2

(
1− erf

(
ln(z)−m√

2v

))
− 1

2

(
1 + erf

(
v+m−ln(z)√

2v

))
Triangular (A,B,m) [A,B]

−
(B−m)(B+2m−3z)

3(B−A)
− (m−z)2(2m−3A+z)

3(B−A)(m−a)
, if A ≤ z ≤ m

− (B−z)3
3(B−A)(B−m)

, if m < z ≤ B

a The shifted exponential has pdf f(u) = θe−θ(u−A). Its mean is given by A+ 1/θ and by
assumption it equals 1, whence θ = 1

1−A .
b The gamma distribution has pdf f(u) = βα/Γ(α)xα−1e−βx where α and β are the shape

and rate parameters respectively
c Γ(a) =

∫∞
0
ta−1e−tdt is the Gamma function and Γ̃(a, x) =

∫∞
x
ta−1e−tdt is the upper

incomplete Gamma function.
d Assume that the variance v of this distribution is such that F (A) ≈ 0 and thus we can

consider that all the mass of the distribution is in [A,∞).
e erf(x) = 2

π

∫ x
0
e−t

2

dt is the error function.

Table 4.1: Analytical results for some commonly used statistical distributions
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Distribution Support

∫ B

z
(z2 − u2)f(u)du

Uniform [A,B]
(B − z)2(B + 2z)

3(A−B)

Shifted expo.(θ) [A,∞) −
2

θ
e−θ(z−A)

(
z +

1

θ

)
Gamma (α, β) (0,∞)

z2Γ̃ (α, z/β)− β2Γ̃ (k + 2, z/β)

Γ(α)

Normal (1, v) (0,∞) 1
2

(1 + v − z2)
(
erf

(
z−1√

2v

)
− 1
)
−
√
v(z+1)e

− (z−1)2

2v√
2π

LogNormal (m, v) (0,∞) z2

2

(
1− erf

(
ln(z)−m√

2v

))
− 1

2
e(m+v)

(
1 + erf

(
2v+m−ln(z)√

2v

))

Triangular (A,B,m) [A,B]


− (B−m)(B2+2Bm+3m2−6z2)

6(B−A)

− (m−z)2(3m2+6mz+3z2−4Am−8Az)
6(B−A)(m−a)

, if A ≤ z ≤ m

− (B−z)3(B+3z)
6(B−A)(B−m)

, if m < z ≤ B

Table 4.2: Analytical results for some commonly used statistical distributions (ctd.)

Since they will be used frequently throughout this chapter, we next present some partial

derivatives of the objective function P (p, z) = ap−b
(
µ(z)p− cz − λap2−bσ2(z)

)
with respect

to (p, z):

∂P (p, z)

∂p
= ap−(b+1)

(
2λσ2(z)a(b− 1)p−(b−2) − (b− 1)µ(z)p+ bcz

)
, (4.3)

∂2P (p, z)

∂p2
= ap−(b+2)(−2(b− 1)λσ2(z)a(2b− 1)p−(b−2) + b(b− 1)µ(z)p (4.4)

−(b+ 1)bcz),

∂2P (p, z)

∂z2
= −λa2p2(1−b)σ2′′(z) + ap1−bµ′′(z), (4.5)

∂2P (p, z)

∂p∂z
= ap−(2b−1)

(
bcpb−2 − (b− 1)pb−1µ′(z) + 2(b− 1)aλσ2′(z)

)
. (4.6)

Following the same sequential optimization procedure that was introduced in §2, we de-

fine the performance measure at the optimal price as P ∗(z) := P (p∗(z), z) = ap∗(z)−b(µ(z)p∗(z)−

cz−λap∗(z)2−bσ2(z)). This function is subsequently maximized and hence the pair (z∗, p∗(z∗))

is optimal.
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4.2 Optimization with Respect to p

Given a stock factor z finding the function p∗(z) reduces to solving the condition ∂P/∂p = 0,

i.e.

2λσ2(z)a(b− 1)p∗(z)−(b−2) − (b− 1)µ(z)p∗(z) + bcz = 0. (4.7)

Clearly, for any given λ, finding a closed-form for p∗(z) requires knowledge of b as well.

An exception to this rule is the risk-neutral case (λ = 0), for which the optimal price is

always p∗(z) =
bcz

(b− 1)µ(z)
. We refer the reader to Petruzzi and Dada (1999) for a thorough

analysis of this case. However, when the newsvendor is risk-sensitive, we may find multiple

solutions to equation (4.7). Since the price elasticity of the demand b is a rational number,

this equation can be transformed into a polynomial after a suitable change of variables. The

roots of this resulting polynomial can be real or imaginary and this gives way to questioning

whether we can have better information about the solution of (4.7). Our goal is to be able

to identify a positive real solution, greater than c, that maximizes the performance measure

P (·, z). In the subsections that follow we study how to identify such a solution, but in the

meantime we include in Table 4.3 below some closed-form solutions of the optimal price for

specific values of the demand elasticity. Note that for b = 2 and b = 3 there are some values

of λ for which p∗(z) is a negative real number or an imaginary number. We will see later

on under which circumstances and for which values of the risk parameter this occurs. The

proofs of all the results that follow in this chapter are provided in Appendix C.
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b p∗(z)

1.5

aλσ2(z) +

√
(aλσ2(z))2 + 3µ(z)cz

µ(z)

2

2
2cz + 2λaσ2(z)

µ(z)

3
3cz +

√
(3cz)2 + 32λaσ2(z)µ(z)

4µ(z)
.

Table 4.3: Closed-form solutions of some optimal prices

4.2.1 Risk-Averse Retailer

When the retailer is risk-averse (λ > 0) equation (4.7) will only have one real positive

solution, and such a solution will always be greater than the cost c and will also represent

a maximizer of P (·, z). This is a remarkable result because it allows us to have certainty

about the behavior of the performance measure P ∗(·) that we will use later on and shows

that there is no need to evaluate P (·, z) at each of those different solutions in order to find

the price that maximizes this function for a given z.

Lemma 4.1. Let λ > 0. Given a stock factor there is exactly one positive real solution to

equation (4.7), p∗(z), for each z ∈ [A,B].

Theorem 4.1. Let λ > 0. The objective function P (·, z) is unimodal with respect to p in

(0,∞) and the optimal price p∗(z) is a maximizer.

Proof. See Appendix C.

Note that, since σ2(A) = 0, the optimal price at z = A is independent of the level of

risk aversion and equals
cb

b− 1
. This price depends only on the elasticity of the demand

of the product and its cost, thus matching the results by Wang, Jiang, and Shen (2004);

Petruzzi and Dada (1999).
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4.2.2 Risk-Seeking Retailer

When the newsvendor is risk-seeking (λ < 0) the number of positive real roots depends

on the value of b. The results yielded for this case are more complicated, but we can still

predict the number of positive real roots, whether they maximize the performance measure

P (·, z), and whether they are contained in the range [c,∞). We introduce the threshold

value λmin as

λmin = max
z∈[A,B]

−bcz
(2a(b− 1)σ2(z))

,

and propose the following statements:

Lemma 4.2. Let λ < 0. Then, for each stock factor z:

• If 1 < b < 2, there is exactly one positive real solution to equation (4.7), p∗(z).

• If b = 2, there is a unique solution to equation (4.7).

• If b > 2, there are either two positive real solutions to equation (4.7), or there are

none.

Proof. See Appendix C.

Theorem 4.2. Let λ < 0. The objective function P (·, z) is unimodal with respect to p

in (0,∞) ∀z ∈ [A,B] if and only if 1 < b < 2, or b = 2 and λ ≥ λmin, and p∗(z) is a

maximizer. If b > 2 and (4.7) has two positive real solutions ∀z ∈ [A,B], then P (·, z) is

bimodal with respect to p in (0,∞).

Proof. See Appendix C.
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Corollary 4.1. Consider the case b > 2 in which (4.3) has two positive real roots. Let

those roots be p1(z) and p2(z) such that 0 < p1(z) < p2(z). Given the limits of ∂P/∂p at

0+ and ∞, p∗(z) refers to p2(z), since it is clear that p1(z) is a minimum.

Because we want a function of maximizers, p∗, that is continuous in z, we will not

consider the cases in which, for b > 2, positive real roots for some stock factors and imaginary

roots for others may arise. If this happens, p∗ will have discontinuities. Hence, we assume

in what follows that, when b > 2, P (·, z) has two positive real roots ∀z ∈ [A,B].

Although we know in any case that p∗(A) =
bc

b− 1
> c, neither Lemma 4.2 nor Theorem

4.2 guarantee that the roots of (4.3) are contained in [c,∞). Let π∗ : R+ → R+ be the

hedged optimal price function. We define this function in the range of prices where the

economic activity of the retailer is meaningful, [c,∞). Our goal is to define this function

such that it is continuous in its domain for a given b and λ. The newsvendor is interested in

selling a product at a price no less than its cost and therefore it is mandatory that π∗(z) ≥ c,

∀z ∈ [A,B]. The hedged optimal price function π∗(·) is thus constructed as

π∗(z) =


c, if p∗(z) < c,

p∗(z), if p∗(z) ≥ c.

It is important to remark that this construction method yields a function π∗(·) that is indeed

piecewise continuous, although not differentiable at those points where p∗(z) = c.

In order to continue with our analysis, we define the function t : [A,B]→ R− as

t(z) =
(b− 1)µ(z)− bz
2a(b− 1)σ2(z)

cb−1,
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and another threshold value of the risk parameter, λlim, as the value of λ needed for c to

be a solution to (4.7) for some stock factor z, that is:

λ ≥ max
z∈[A,B]

t(z) = λlim. (4.8)

Lemma 4.3. Let λ < 0 and let (4.7) have one or two real positive roots ∀z ∈ [A,B] as stated

in Lemma 4.2. These roots are always greater than or equal to c if and only if λ ≥ λlim.

Proof. See Appendix C.

Corollary 4.2. Let b = 2. Since

((b− 1)µ(z)− bz) cb−1

2a(b− 1)σ2(z)
>

−bcz
2a(b− 1)σ2(z)

, ∀z ∈ [A,B],

it follows that λlim > λmin. Hence, from Theorem 4.2 and Lemma 4.3 we conclude that

given a stock factor, P (·, z) is unimodal with respect to p in (0,∞) and p∗(z) ≥ c ∀z ∈ [A,B]

if and only if λ ≥ λlim.

Note that when λ = λlim there will always be a root that is equal to c. However, this

root might not represent the optimal price that maximizes the profit for a given safety stock.

For example, when P (·, z) has two positive real roots p1(z) and p2(z), 0 < p1(z) < p2(z), it is

possible that it is p1(z) that is equal to c and not p2(z). In view of the results from Theorem

4.2 and Lemma 4.3, we can summarize all the different possibilities in the optimization of

P (·, z) in [c,∞) for a given stock factor. This is shown in Table 4.4.

Lemma 4.3 shows that given for a stock factor z, p∗(z) > c provided that λ > t(z)

(see Figure 4.1 below, where we have denoted by zi the ith point where λ = t(z)). It is

then clear that π∗(z) = p∗(z), ∀z ∈ [A,B] whenever λ ≥ λlim. In Figure 4.1 we represent a
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Case b λ
Roots
in R+

Max. in
[c,∞)

Shape of P (·, z)

1 1 < b < 2 (−∞, λlim) 1 c or p∗(z) or

2 1 < b < 2 [λlim, 0) 1 p∗(z)

3 b = 2 (−∞, λlim) 0 c

4 b = 2 (−∞, λlim) 1 c or p∗(z) Same as in Case 1

5 b = 2 [λmin ≤ λ < λlim] 1 c or p∗(z) Same as in Case 1

6 b = 2 [λlim, 0) 1 p∗(z) Same as in Case 2

7 b > 2a (−∞, λlim) 2 c or p∗(z) or

8 b > 2 [λlim, 0) 2 p∗(z)

a In all cases where b > 2 it is assumed that there are two roots in R+, ∀z ∈ [A,B]

Table 4.4: Analysis of the optimality in [c,∞) of the objective function with respect to the
price for a given stock factor (risk-seeking cases)

function t that is unimodal; in such a case, it follows that the equation λ = t(z) will have

at most two solutions or, in other words, the function π∗(·) will have at most three pieces.

However, an important difficulty of this model is that t does not seem to have a predefined

shape, and therefore one cannot know a priori the number of pieces that π∗(·) will have.

For this reason, and even though we will continue to use the function π∗(·) for the sake

of generality, we will only tackle the optimization of cases for λ ≥ λlim. We restrict our

study to risk-averse and moderately risk-seeking cases and refer the reader to numerical

optimization for solving instances where λ < λlim.

Example 4.1. Let D(p, ε) = 106p−bε with ε ∼ U [0.001, 1.999]. Let c = 100. The first-order

condition (4.7) as a function of b and z is 2·106λ(b−1)σ2(z)p−(b−2)−(b−1)µ(z)p+100bz = 0,

with µ(z) = −0.2503z2 +1.0005z−2.503 ·10−7 and σ2(z) = −0.06263z4 +0.1671z3−5.009 ·

10−4 + 5.009 · 10−7z − 2.001 · 10−10.
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Figure 4.1: Piecewise continuous optimal price function

• b = 1.5: the first-order condition becomes 106λσ2(z)
√
p− 1

2µ(z)p+150z = 0. The lower

bound for λ, as shown in Lemma 4.3, can be obtained numerically. It turns out that

(4.8) attains its maximum at z = 1.7215 with a value of λlim = max(µ(z)−3z)5·10−6 =

−6.952 · 10−5. The only positive real root in this case is given by

p∗(z) =

(
106λσ2(z) +

√
(106λσ2(z))2 + 300µ(z)z

µ(z)

)2

.

Observe that b = 1.5 implies that b2 is even, which contradicts one of the assumptions

set earlier in Section 4.1. However, this example is fairly simple and it can be easily

seen that the first-order condition only yields one real positive root.

• b = 2: the first-order condition becomes 2 ·106λσ2(z)−µ(z)p+ 200z = 0. Since b = 2,

per the corollary from Lemma 4.3 we use (4.8) to set a lower bound for λ and thus

set λlim = max(µ(z)− 2z)5 · 10−5 = −4.085 · 10−4. The only positive real root is

p∗(z) = 2
106λσ2(z) + 100

µ(z)
.

• b = 3: the first-order condition becomes
4 · 106λσ2(z)

p
−2µ(z)p+ 300z = 0. λlim is set
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to maxz∈[A,B]
2µ(z)− 3z

400
= −0.02639 and the equation above has two roots:

p∗1(z) =
300z −

√
9 · 104z2 + 32 · 106µ(z)σ2(z)λ

4µ(z)
,

p∗2(z) =
300z +

√
9 · 104z2 + 32 · 106µ(z)σ2(z)λ

4µ(z)
.

These roots are real and positive if λ ≥ −(300z)2

32 · 106µ(z)σ2(z)
, the first being a mini-

mum and the second being the maximum we are interested in. In this case, λlim ≥

−(300z)232 · 106µ(z)σ2(z), ∀z ∈ [A,B] and therefore p∗2(z) is always real, positive,

and not smaller than c. Hence, the assumption p∗(z) ≥ c holds. As mentioned before,

when λ = λlim, c is a root of (4.7). Further analysis shows that this root occurs at

z = 1.6214. However, this point corresponds to a minimizer and π(·) is composed of

maximizers only. For this reason, the right-most graph in Figure 4.2 does not show

a curve that reaches c = 100 when λ = λlim. This can be seen in further detail in

Figure 4.3, where it is clear that c = 100 is only a root of (4.7) when λ = λlim (in this

case at z = 1.6214), but this root does not correspond to a maximizer.

Figure 4.2: Optimal price function under different risk scenarios
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Figure 4.3: Maximizing and minimizing prices for λ = λlim

4.3 Optimization with Respect to z

As commented in the introduction of this thesis, it is usual in the literature to find examples

based on different risk measures that guarantee the unimodality of the objective function

under more restrictions, usually related to the generalized failure rate of ε. For instance,

Xu, Cai, and Chen (2011); Wang, Jiang, and Shen (2004) show unimodality for the risk-

neutral case and multiplicative demand models if the random variable has an increasing

generalized failure rate. For risk-averse cases with CVaR considerations, Chen, Xu, and

Zhang (2009) show that a strictly increasing generalized failure rate in the risk distribution

is required to attain unimodality. In what follows, we proceed to attain different conditions

for unimodality depending on the risk-parameter in a mean-variace setting. We want to

give a managerial meaning to our results and, to that end, we use again the lost sales rate

(LSR) elasticity, as defined by (1.6):

κ̃(p, x) =
p(G(p, x))

′
p

1−G(p, x)
,
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where G(p, x) := Pr(D(p, ε) ≤ x) and (G(p, x))
′
p ≡

∂G(p, x)

∂p
. In particular, when the

demand is multiplicative, Pr(y(p)ε ≤ x) = Pr

(
ε ≤ x

y(p)

)
= F (z), and therefore we obtain

that

κ̃(p, x) =
p(G(p, x))

′
p

1−G(p, x)
=

bzf(z)

1− F (z)
=: ξ(z). (4.9)

Just like the price elasticity of demand in isoelastic demand curves, the LSR elasticity

is not a function of the price when the demand is multiplicative. In other words: the

price-isoelastic demand is also LSR-isoelastic because, given a stock factor, the change in

the level of service will be the same regardless of the price from which that increase takes

place.

In general, we can define the objective function P ∗(·) as a function of z as follows:

P ∗(z) := P (π∗(z), z) =


ap∗(z)−b

(
µ(z)p∗(z)− cz − λap∗(z)2−bσ2(z)

)
, if p∗(z) ≥ c,

ac−b+1
(
µ(z)− z − λac−b+1σ2(z)

)
, if p∗(z) < c.

(4.10)

Its first-order derivative, after using the relation between λ and p∗(z) as derived from (4.7),

is

P ∗
′
(z) =


ap∗(z)−bR(z), if p∗(z) ≥ c,

−ac−b+1
(
F (z) + λac−b+1σ2′(z)

)
, if p∗(z) < c,

(4.11)

where R(z) = (1− F (z))p∗(z)− c− λap∗(z)−(b−2)σ2′(z). (4.12)
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These piecewise expressions are only needed if the retailer is risk-seeking with λ < λmin,

for only in those cases it may happen that p∗(z) < c for some values of z. For any other value

of λ only the first piece, corresponding to the case where p∗(z) > c, will be needed.

4.3.1 Risk-Neutral Retailer

When λ = 0, P ∗(·) and its first-order derivative can be greatly simplified to

P ∗(z) = ap∗(z)−b (µ(z)p∗(z)− cz) ,

and

P ∗
′
(z) = ap∗(z)−bR(z),

where R(z) = (1 − F (z))p∗(z) − c. This is the same result obtained by Wang, Jiang, and

Shen (2004); Petruzzi and Dada (1999). It is thus clear that the optimal stock factors

z∗ of the risk-neutral, single-stage newsvendor problem with isoelastic demand satisfy the

equation F (z∗) = 1 − c/p∗(z∗). When the stock factor is the only decision variable, this

result particularizes for the classic, well-known result of the single-stage newsvendor problem

where the stock factor that maximizes the profit is unique and equal to the (1− c/p)-quantile

of z (sometimes called the newsvendor quantile). However, when the price is also a decision

variable it is not clear anymore whether this equation has one or multiple solutions. The

following theorems intend to shed some light on some conditions that guarantee local and

global optimality of the solutions to R(z) = 0:

Theorem 4.3. The following local and global optimality conditions hold for the risk-neutral

case:
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a) (Local optimality) Let z∗ be a solution to the equation F (z) = 1− c/p∗(z). Then the pair

(z∗, p∗(z∗)) is a strict local maximum of P (·, ·) in [A,B]× [c,∞) if and only if ξ(z∗) > 1.

If ξ(z∗) < 1, this pair is a saddle point of P (·, ·) in [A,B]× [c,∞).

b) (Global optimality) If ξ(z) > 1, ∀z ∈ [A,B], then P (·, ·) is unimodal in [A,B]× [c,∞).

In other words, there is only one stock factor z∗ that satisfies the equation F (z∗) = 1−

c/p∗(z∗) and therefore the pair (z∗, p∗(z∗)) solves the risk-neutral, single-stage newsven-

dor problem with isoelastic demand.

Proof. See Appendix C.

Example 4.2. Consider the demand function D(p, ε) = 106p−3ε. Let c = 50. The random

variable ε has a probability density function denoted by f(z) = 0.5f1(z) + 0.5f2(z), where

f1 and f2 are in turn the pdf’s of two normal random variables with means 0.4, 1.6 and

standard deviations 0.1, 0.2, respectively. We assume A = 0.001 and B = 3 because the

density of ε beyond those points is negligible. The optimal price for each value of z can be

calculated by using the third entry of Table 4.3. Solving the equation F (z) = 1 − c/p∗(z)

numerically yields the following solutions: z∗1 = 0.4831, z∗2 = 0.8, z∗3 = 1.392. Evaluating

these points in the expression ξ(z) = 3zf(z)/(1−F (z)) yields the following LSR elasticities:

ξ(z∗1) = 3.4026, ξ(z∗2) = 0.0048, ξ(z∗3) = 5.6998.

These results show that the points (z∗1 , p
∗(z∗1)) = (0.4831, 83.1294) and (z∗3 , p

∗(z∗3)) =

(1.392, 117.5295) are strict local maxima of P (·, ·), whereas (z∗2 , p
∗(z∗2)) = (0.8, 100) is a

saddle point of P (·, ·). The pair (1.392, 117.5295) is also the global maximum of P (·, ·) in

[0.001, 3] × [50,∞) with a value of the objective function P (z∗3 , p
∗(z∗3)) = 21.4355. Figure

4.4 shows these three points as the solutions to P ∗
′
(z) = 0 (i.e. as the solutions to F (z) =

1 − c/p∗(z)) plotted on the curve P ∗(z) = P (z, p∗(z)) and then those three points plotted
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on the surface defined by P (z, p). Note that (0.8, 100) is a local minimum of P ∗(·) but it is

a saddle point of P (·, ·).

Figure 4.4: Illustration of local optimality conditions for the risk-neutral case

The theorem above gives conditions for a point to be either a local maximum or a

unique maximum of P (·, ·) in the risk-neutral, single-stage newsvendor problem with mul-

tiplicative demand. Some similar results that guaranteed the unimodality of this problem

were obtained in the past as a function of the failure rate of ε, h(z) = f(z)/ (1− F (z)), and

the generalized failure rate of ε, g(z) = zh(z). For instance, Petruzzi and Dada (1999) show

that if b ≥ 2 and 2h(z)2 + h′(z) > 0 this problem has a unique solution. Wang, Jiang, and

Shen (2004) claim that ε having an increasing generalized failure rate is sufficient, thus un-

coupling the economic parameters of the model from the uniqueness of the optimal solution.

Both conditions are the consequence of imposing the unimodality of equivalent formulations

of R(z) (see both papers for further details). In turn, we make the Hessian of P (·, ·) negative

definite in all the pairs (z∗, p∗(z)) for proving our local optimality condition and transform

the results to give them the more economic and managerial interpretation that the LSR elas-

ticity provides. This result also complements Theorem 2 from Kocabıyıkoğlu and Popescu
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(2011) that claims the concavity of the objective function in risk-neutral cases if ξ(x) > 1/2.

However, they assume that 2y′(p)+py′′(p) < 0, which implies that the good has an inelastic

demand (b < 1). In this chapter, we extend the concept of concavity to that of unimodality

and we consider products that have an elastic demand (b > 1).

The following lemma characterizes the changes in the optimal stock factor and the

optimal price in the risk-neutral case.

Lemma 4.4. Let λ = 0 and z∗ be a solution to the equation F (z) = 1 − c/p∗(z). If the

LSR elasticity at z∗ is greater than the price elasticity of the demand (i.e. ξ(z∗) > b) then

z∗ decreases in b and p∗ increases in c and decreases in b.

Proof. See Appendix C.

Corollary 4.3. This result matches what Wang, Jiang, and Shen (2004) propose under

the IGFR condition.

4.3.2 Risk-Sensitive Retailer

When λ ≥ λlim, P ∗(·) and its first-order derivative can be written as shown in equa-

tions (4.10) - (4.12) for the case p∗(z) ≥ c. There exist some conditions under which the

unimodality of the risk-sensitive problem, either risk-averse or moderately risk-seeking, is

guaranteed.

Theorem 4.4. (Global optimality) Let

η(z) = (1− F (z))p∗(z)− c,

Ψ(z) = (c+ (b− 1)η(z))2(1− F (z))(z − µ(z)),

Φ(z) = (b− 1)2σ2(z)η(z) + bcz(1− F (z))(z − µ(z)).
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The following sufficient conditions guarantee that the unimodality of the single-stage newsven-

dor problem with isoelastic demand (i.e. there is only one stock factor z∗ that satisfies the

equation R(z) = 0):

a) If λ ≥ λlim:

ξ(z) >

(
Ψ(z)

Φ(z)
− F (z)η(z)

z − µ(z)

)
bz

c
, ∀z ∈ [A,B],

b) If λ ≥ 0:

ξ(z) >

(
1 +

(b− 1)η(z)

c

)2

, ∀z ∈ [A,B], (4.13)

c) If λ ≥ 0 and b ≥ 2:

ξ(z) >

(
1 +

2λa(b− 1)(B − 1)

cb−1

)2

, ∀z ∈ [A,B], (4.14)

Proof. See Appendix C.

A very interesting remark to make here is that the global optimality condition from

Theorem 4.3 is a particularization of the global optimality condition from Theorem 4.4.

As a matter of fact, when λ = 0, it turns out that η(z)|R(z)=0 = 0 (because in this case

η(z) = R(z)). Applying this to (4.13) yields directly the expression ξ(z) > 1. On the

other hand, the bound provided for the risk-averse cases with b ≥ 2 is in general very close

to 1. This is because the order of magnitude of λ is generally very small: let m, k, and

r be constants; if the order of magnitude of the variance of the profit is ∼ 102m, then

the objective function P (·, ·) dictates that λ ∼ 10−m. The values of the price elasticity b
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and the upper bound B are usually of order ∼ 100. The parameter a has usually a larger

order of magnitude (∼ 10r); the denominator cb−1 ∼ 10k(b−1) (where 10k is the order of

magnitude of the cost). After all, the second term in the squared expression from (4.14) is

∼ 10r−k(b−1)−m <<∼ 100, as long as the order of magnitude of a is not comparatively very

high.

All the results in Theorem 4.4 require the evaluation of the LSR elasticity in all the

points in the compact interval [A,B]. Under some circumstances, we can reduce our opti-

mization problem to a smaller interval, which increases the applicability of our results.

Definition 4.1. Let z∗RSE be a solution to the equation (1−F (z))p∗(z)− c = 0 where p∗(z)

is the optimal price as derived from solving (4.7) for the risk-sensitive problem. Such a

solution is called risk-sensitive equivalent (RSE) solution.

An RSE solution is therefore a stock factor that satisfies the optimality condition for

the risk-neutral problem (i.e. R(z) = (1 − F (z))p∗(z) − c = 0) but uses a risk-sensitive

optimal price. It turns out that if the function (1−F (·))p∗(·)− c is decreasing, then we can

reduce our interval of optimization.

Lemma 4.5. If ξ(z) > bz
p∗
′
(z)

p∗(z)
, ∀z ∈ [A,B], then the risk-sensitive problem has a unique

RSE solution (RSE-optimal solution) and we can reduce our optimization problem as fol-

lows:

max
z∈[A,B]

P ∗(z) =


max

z∈[A,z∗RSE ]
P ∗(z), if λ > 0,

max
z∈[z∗RSE ,B]

P ∗(z), if λ < 0,

Proof. See Appendix C.

Corollary 4.4. P ∗(z∗RSE) is a lower bound of the optimal solution of the problem, P ∗(z∗).
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4.4 Sensitivity Analysis of the Optimal Price, the Expected

Profit, and the Variance of the Profit

4.4.1 Relationship between the Optimal Price and the Risk Parame-

ter

We can analyze how, for a given stock factor, the optimal price changes as a function of the

risk parameter λ. For a given stock factor ẑ, let λ 7→ p̃∗(λ) denote the optimal price as a

function of the risk parameter.

Lemma 4.6. Given stock factor ẑ, the optimal price is a nondecreasing, concave function

with respect to λ.

Proof. See Appendix C.

Corollary 4.5. In the risk-averse case, the optimal price p∗(λ, z) is always greater than or

equal to the cost c since it follows from Lemma 4.6 that p∗(λ, z) ≥ p∗(0, z) ≥ p̃∗(0)

∣∣∣∣
z=A

=

p̃∗(λ)

∣∣∣∣
z=A

=
bc

b− 1
> c.

The consequence of this lemma is that the optimal price for a given stock factor ẑ in-

creases with the level of risk-aversion, whereas it decreases with the level of risk-seekingness.

Although this result may seem counterintuitive at first sight, it is convenient to recall that

one important characteristic of the multiplicative demand is that the price affects the de-

mand uncertainty. More concisely, the variance of the demand is in this case decreasing with

respect to the price, for V ar(D(p, ε)) = V ar(ε)y(p)2 (Petruzzi and Dada, 1999). Therefore,

when increasing λ in the risk-averse case, a price increase will reduce the riskless demand

y(p), and this in turn will reduce the variance of the stochastic demand. Similarly, reducing

λ in the risk-seeking case will increase the riskless demand and induce an increment in the
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variance of the stochastic demand.

4.4.2 Relationship between Profit and the Risk Parameter

Let Π̃∗(λ) be a random variable denoting the profit for a given stock factor ẑ and price

p̃∗(λ) as a function of the risk parameter λ.

Lemma 4.7. The variance of the profit for a given stock factor ẑ and price p̃∗(λ) decreases

as λ increases.

Proof. See Appendix C.

Corollary 4.6. As the newsvendor gets more risk-averse (risk-seeking), his optimal policy

induces a smaller (greater) variance of the profit.

Lemma 4.8. The expected profit for a given stock factor ẑ and price p̃∗(λ) decreases as λ

increases in the risk-averse case and decreases as λ decreases in the risk-seeking case.

Proof. See Appendix C.

For illustration purposes, we analyze Example 4.1 with b = 3 after embedding π∗(z) in

P (·, ·). Figure 4.5 shows the objective function P ∗(z), as well as E(Π∗(z)) and Std(Π∗(z)) =√
V ar(Π∗(z)), for different values of λ ranging from risk-seeking to risk-averse situations.

All the curves represent values of λ above λlim and therefore we should expect π∗(z) = p∗(z).

The behavior predicted by lemmas 4.7 and 4.8 can be observed in this figure: for a given

stock factor ẑ the variance of the profit decreases with the risk-aversion and increases with

the risk seekingnees; in turn, the expected profit decreases with both risk-aversion and

risk-seekingness. It is under the light of an example like this one where the power of a

mean-variance analysis25as a tool for decision-making can be seen: first we are able to
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come up with an array of optimal decisions as a function of our stance towards risk. The

optimal value of the objective function itself is not significant; instead, it reveals an optimal

stock factor and price that can be used for determining the best combination of expected

profit and standard deviation of the profit for a particular risk tolerance. These are the

true metrics when it comes to making a decision.

Figure 4.5: Objective function, expected profit, and standard deviation of the profit under
different risk scenarios with D(p, ε) = 106p−3ε, ε ∼ U [0.001, 1.999], c = 100

Secondly, the range of values for λ that are acceptable for every situation is given

by the results that these values yield and the results derived from the sensitivity analysis

previously shown: a risk-averse decision-maker does not know at first what his tolerance

to risk is in terms of λ but he knows that there is a maximum standard deviation that is

acceptable for him. Fine-tuning λ is thus a matter of finding the scenario that results in that
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maximum standard deviation. It follows from the sensitivity analysis that any λ greater

than the value found will generate optimal pairs that guarantee lower standard deviations

and this appreciation gives a range of values of λ. An analogous interpretation for risk-

seeking individuals can be made using similar arguments in view of the results that stem

from the sensitivity analysis. Finally, Table 4.5 shows several numerical results for different

values of λ ranging from risk-seeking cases to risk-averse cases. For these experiments we

used a demand function D(p, ε) = 106p−1.5ε with ε being distributed as three different

distributions, namely, uniform, normal, and triangular. The cost of the commodity is

assumed to be c = 100. For the range of values of λ used, λ > λlim and therefore p∗(z) > c.

Since b = 1.5, this optimal price can be calculated via the closed-form result shown in Table

4.3. Every scenario met condition a) from Theorem 4.4 and therefore the solution to the

optimization problem is given by a unique pair (z∗, p∗(z∗)). Note that some risk-seeking

scenarios even incur in expected loss profit in exchange for a higher standard deviation of

the profit.

λ = −2.1E − 04 λ = −1.2E − 04
Distribution p∗ z∗ E[Π∗] SD[Π∗] p∗ z∗ E[Π∗] SD[Π∗]
Uniform [0.6, 1.4] 143.49 1.36 4,321.12 16,220.60 219.26 1.34 25,982.03 15,392.70
Normal (1,0.252) 140.70 1.43 -1,607.21 16,962.52 218.21 1.38 24,309 16,014.08
Triangular (0.3, 1.6, 1.1) 115.53 1.42 -21.677.25 19,882.49 193.26 1.39 19,749.96 18,704.23

λ = −3E − 05 λ = 0
Distribution p∗ z∗ E[Π∗] SD[Π∗] p∗ z∗ E[Π∗] SD[Π∗]
Uniform [0.6, 1.4] 334,38 1.28 33,287.76 11,180.27 365.24 1.18 33,837.41 10,092.55
Normal (1,0.252) 330.45 1.25 33,067.93 11,902.05 359.59 1.15 33,646.23 10,137.24
Triangular (0.3, 1.6, 1.1) 325.86 1.28 32,672.02 13,530.66 367.91 1.18 33,432.89 11,484.84

λ = 3E − 05 λ = 3E − 04
Distribution p∗ z∗ E[Π∗] SD[Π∗] p∗ z∗ E[Π∗] SD[Π∗]
Uniform [0.6, 1.4] 366.83 1.04 33,220.21 7,626.22 333.95 0.77 28,622.65 3,525.68
Normal (1,0.252) 372.07 1.04 33,168.79 8,298.95 382.56 0.76 27,532.56 4,716.51
Triangular (0.3, 1.6, 1.1) 388.66 1.06 32,778.30 9,274.07 378.65 0.71 25,737.30 4,738.12

Table 4.5: Summary of results of the optimization problem for several random variables
(c = 100, y(p) = 106p−1.5).
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4.5 Conclusions

The results presented in this chapter are oriented not only towards presenting conditions for

the unimodality, but also towards giving those conditions a managerial appeal by including a

metric typically used in industry: the level of service. We show that in risk-averse instances

the optimal price is a unimodal function in z that is always greater than the cost. Neither

the unimodality nor the monotonicity of this function is guaranteed in risk-seeking instances,

but its shape and sign of its derivative can be known based on the price elasticity of the

demand and the risk-parameter. In turn, the objective function P ∗(·) is not necessarily

unimodal, although we attain optimality conditions that guarantee this unimodality under

some premises characterized by the LSR elasticity ξ(·), a measure of the change in the level

of service when increasing the price of the product. We also prove that the condition found

for the risk-neutral problem (ξ(z) > 1) is a particularization of one of our conditions for

the risk-sensitive problem and extends the results obtained by Kocabıyıkoğlu and Popescu

(2011) to the case of price-elastic goods. We also investigate the much less explored risk-

seeking case, and find interesting research questions that stem from the complexity that

arises in instances with very high risk-seeking behavior. In particular, the cases where

λ < λlim may result in a piecewise, nonlinear objective function which a priori complicates

the search for the optimal solution of the problem.

Finally, a sensitivity analysis performed on the main variables of the model reveals

some insights useful for decision-making: when compared to the risk-neutral case, the risk-

averse newsvendor sets higher optimal prices for a given stock factor and the risk-seeking

newsvendor prefers lower optimal prices. A risk-averse retailer should also anticipate smaller

expectation and variance in his profit in comparison to a risk-neutral individual, while a
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risk-seeking newsvendor should predict smaller expectation and higher variance in his profit.

These gaps between the results in risk-neutral and risk-sensitive cases are proportional to

the degree of risk-aversion or risk-seekingness.



91

Chapter 5

Final Conclusions and Future

Research

The present thesis was completed aiming at achieving a well-defined goal: the unification

of all risk-sensitive instances of the price-setting newsvendor problem with price-dependent

demand and two decision variables (namely, price and stock quantity), as well as the char-

acterization of the conditions for the unimodality of each instance under a metric that

captures managerial attention.

We achieve the first goal by introducing a mean-variance trade-off. Such a performance

measure must be seen as a weighted combination of the expected profit and the variance

of the profit. The relative importance of the variance of the profit as well as the sign

of its contribution to such measure is given by a risk parameter λ. The sign of this risk

parameter denotes whether the decision maker is risk-averse or risk-seeking. The latter still

remains much less studied than the former, and for this reason we believe that our work

bridges efficiently a gap in the literature. One major characteristic of our model is that
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we do not make any assumption on the random component of the demand. While many

authors work with random variables that have an increasing failure rate or an increasing

generalized failure rate, our results also hold for random perturbations that do not have

those properties. We tackle the second goal by including the LSR elasticity, and hence the

level of service, as the main metric for assessing the unimodality of a given instance.

While §2 analyzes the concavity of the objective function with additive demand, §3

and §4 broadens the scope of our study and finds conditions for the unimodality of the

performance measure with additive demand and multiplicative demand, respectively. This

scope, besides being more general, does not use the assumptions that are needed in the

study of the concavity of the objective function.

There exist important similarities in the behavior of the performance measure when

the demand is additive and multiplicative. In particular, we showed that the expected

profit and the variance of the profit decrease with the level of risk-aversion, whereas they

decrease and increase respectively with the level of risk-seekingness. The importance of this

result lies in the need to calibrate the value of λ to adapt the instance of the model to the

risk sensitivity of the decision maker. It is much easier to calibrate this parameter if we

know beforehand what the impact on the performance measure will be after changing its

value.

However, finding the conditions for the unimodality of the objective function turned

out to be much simpler when the demand is additive. Albeit in both cases the optimal

price is not necessarily contained in the allowed range of prices, a major advantage of

the additive demand model is that it allows a very precise, closed-form description of this

function. Having knowledge about the characteristics of the optimal price is crucial to
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develop constant lower bounds in terms LSR elasticity because it allows to know exactly

how many pieces the nonlinear and piecewise performance measure will have. Conversely,

when the demand is isoelastic, and except for the risk-neutral case, the functional form of

the optional price remains unknown unless the value of the price-elasticity of the demand

is specified. Consequently, we do not know how many pieces the performance measure will

have. Its analysis is much more complex and so is finding constant bounds that guarantee

the unimodality of the objective function.

Future research directions point to how to deal with the opportunities provided by

the presence of massive amount of data. New trends in the research community are geared

towards big data analysis and the newsvendor problem can benefit greatly from the devel-

opment of new techniques. The concept of big data is spreading vastly among researchers

and is considered a hot topic nowadays. Although there does not seem to be consensus on

what big data really means, it deals with the use of advanced analysis techniques to extract

useful information from massive amounts of data. In many occasions in the past, lack of

data used to be a problem. Nevertheless, technological changes as well as the capacity to

acquire and storage an unprecedented amount of data is posing a problem that did not exist

before: how to extract the information we need from so much data.

There has been a very interesting attempt to incorporate the application of machine

learning techniques to the newsvendor problem (Rudin and Vahn, 2013). This work does

not imply any specific relationship between price and demand. On the contrary, the amount

of variables that determine the demand is the result of collecting exogenous and endogenous

information. All in all, the problem is to find an optimal stock function q(·) of those variables

(or features) such that the empirical risk with respect to the dataset Sn (Alpaydin, 2014)
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is minimized over the period in which the data were collected:

min
q∈Q:{f :X→R}

R̂(q(·);Sn) =
1

n

n∑
i=1

[
b(di − q(xi))

+ + h(q(xi)− di)+
]
,

where b and h are, respectively, the unit backordering and holding costs, di is the demand

observed in period i, and xi is a vector containing the features in period i. Once this is

done, we can observe the features for the period n + 1 and use q(·) to make an educated

decision on the ordering quantity that is more convenient. The function q(·) is selected

among those in a class Q which can be, for instance, the class of linear functions.

We believe this approach is an excellent starting point for more advanced models. For

example, we may want to include the price as a decision variable and maximize the average

profit over a set of n periods. The price can also be a function of the features selected

among a predefined class of functions. Moreover, we can add a mean-variance tradeoff to

the analysis and study this enhanced big data newsvendor problem in order to see how the

availability of large datasets improve the decision-making process and what is the impact

that different features have on price and stock policies for different risk profiles.
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Appendix

Proofs of Selected Theorems and

Lemmas
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Appendix A

Concavity with Additive

Demand

Theorem 2.1

Proof. First, we show that p∗(·) is concave. Indeed, the second-order derivative of this

function yields

d2p∗(z)

dz2
=

(
−f(z)− λσ2′(z)(1− F (z))

λσ2(z) + b

)
1− 4λ(z − µ(z))p∗(z)

2(λσ2(z) + b)

−4λ
1− F (z)

2(λσ2(z) + b)

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
, (A.1)

which is clearly nonpositive, since z − µ(z) ≥ 0 for z ∈ [A,B] and the function p∗(·) is

increasing.
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Analyzing (2.9) at the extreme points of the interval [A,B] yields:

dP ∗(z)

dz

∣∣∣∣
z=A

=
A+ a+ cb

2b
− 2bc

2b
> 0, by assumption (A5), (A.2)

dP ∗(z)

dz

∣∣∣∣
z=B

= −c < 0. (A.3)

Therefore, there exists a point z∗ ∈ (A,B) at which the function P ∗(·) attains its

maximum. We claim that such a point is unique by showing that P ∗(·) is a concave function.

Indeed,

d2P ∗(z)

dz2
=

(
dp∗(z)

dz
(1− F (z))− f(z)p∗(z)

)
[1− 2λ(z − µ(z))p∗(z)]

−2λp∗(z)(1− F (z))

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
. (A.4)

Note the similarity of the last term on the right-hand side to the right hand side

of equation (A.1); hence this term is also nonpositive. The first term of the right-hand

side,however, might take on a different sign. While (A3) guarantees that [1 − 2λ(z −

µ(z))p∗(z)] ≥ 0, it is unclear what happens with the first part of the term. If we force it to

be nonpositive, we have that

dp∗(z)

dz
(1− F (z))− f(z)p∗(z) ≤ 0.

However, since the function z 7→ dp∗(z)

dz
is decreasing, it attains its maximum at z = A:

dp∗(z)

dz

∣∣∣∣
z=A

=
1

2b
=⇒ dp∗(z)

dz
(1− F (z))− f(z)p∗(z) ≤ 1

2b
(1− F (z))− f(z)p∗(z) ≤ 0.
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The last inequality is equivalent to

bp∗(z)f(z)

1− F (z)
≥ 1

2
,

from which we conclude that P ∗(·) is concave if ξ∗(z) ≥ 1

2
,∀z ∈ [A,B].

Lemma 2.2

Proof. Given the complexity of equation (2.12), we proceed to see how z̃∗ varies with chang-

ing λ. Thus, if we rename the left-hand side of (2.12) as g(λ, z), the following holds

∂g(λ, z)

∂λ
= −2p(1− F (z)[z − µ(z)],

∂g(λ, z)

∂z
= f(z)[2λp(z − µ(z))− 1]− 2λpF (z)(1− F (z)).

By means of the Implicit Function Theorem (Stewart, 2011) it turns out that

dz̃∗(λ)

dλ
=

2p(1− F (z̃∗(λ))[z̃∗(λ)− µ(z̃∗(λ))]

f(z̃∗(λ))[2λp(z̃∗(λ)− µ(z̃∗(λ)))− 1]− 2λpF (z̃∗(λ))(1− F (z̃∗(λ)))
. (A.5)

The numerator in the formula above is always nonnegative. The second term of the

denominator is always nonnegative as well but it is subtracted. Then, if the first term in

the denominator is negative, the entire expression will become negative. This occurs, if:

2λp(z̃∗(λ)− µ(z̃∗(λ)))− 1 < 0,
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whence

λ <
1

2p(z̃∗(λ)− µ(z̃∗(λ)))
≤ 1

2pmax(B − E(ε))
,

but this is guaranteed by (A3). Therefore, z̃∗(·) is decreasing.

Theorem 2.2

Proof. We must show that the Hessian matrix of P (·) is negative semidefinite. This implies

that

∂2P (p, z)

∂z2
≤ 0 and ∆(p, z) =

∂2P (p, z)

∂p2

∂2P (p, z)

∂z2
−
(
∂2P (p, z)

∂p∂z

)2

≥ 0.

Note that the validity of the conditions above also implies that
∂2P (p, z)

∂p2
≤ 0. Equa-

tions (2.5) and (2.11) are negative and nonnegative respectively. Likewise, the second-order

partial derivative of z 7→ P (p, z) with respect to z is nonpositive as a consequence of a

straightforward application of (A3):

∂2P (p, z)

∂z2
= −2λp2F (z)[1− F (z)]− pf(z)[1− 2λp(z − µ(z))] ≤ 0.
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Finally, it remains to check that the determinant of the Hessian matrix is nonnegative:

∆(p, z) = 2[λσ2(z) + b][2λp2F (z)(1− F (z)) + pf(z)(1− 2λp(z − µ(z)))]

−[1− F (z)]2[1− 4λp(z − µ(z))]2]]

≥ (1− F (z))
{(

4λbp2F (z) + (1− 2λp(z − µ(z)))
)

+F (z)[1− 4λp(z − µ(z))]2 − [1− 4λp(z − µ(z))]2
}
≥ 0,

where the inequality follows from the fact that 2(λσ2(z) + b) ≥ 2b and from assuming that

ξ(p, z) ≥ 1

2
.

Lemma 2.4

Proof. Given (2.6), it only remains to prove that c < p∗(z) ≤ pmax. Indeed, if λ ∈(
−b

V ar(ε)
, 0

)
, the right-hand side of (2.7) is always positive and thus p∗(·) is increasing.

Besides, p∗(A) =
A+ a+ cb

2b
> c. Therefore, p∗(z) > c, ∀z ∈ [A,B].

Nonetheless, as shown before, p∗(z) may take values greater than pmax. Hence, if

we require p∗(B) ≤ pmax ≤
a

b
, then p∗(z) ≤ pmax for any z ∈ [A,B] (because p∗(·) is

increasing). Consequently,

p∗(B) =
E(ε) + a+ cb

2(λV ar(ε) + b)
≤ a

b
,

which holds whenever

λ ≥ b(E(ε)− y(c))

2aV ar(ε)
,
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with the right-hand side being negative, as guaranteed by (B4). Now, it remains to re-

quire the number
b(E(ε)− y(c))

2aV ar(ε)
being contained in the interval

(
−b

V ar(ε)
, 0

)
. This occurs,

whenever

b(E(ε)− y(c))

2aV ar(ε)
≥ −b

V ar(ε)
,

whence we obtain the necessary condition E(ε) ≥ −y(−c). This condition, however, is

always met by virtue of assumption (B3) and the fact that E(ε) > A:

−y(c) < A < E(ε) =⇒ −y(−c) < E(ε)− 2bc < E(ε).

Therefore, for λ ∈
[
b(E(ε)− y(c)

2aV ar(ε)
, 0

)
the function P (·, z) is concave for all z ∈ [A,B] and

p∗(z) ≤ pmax.

Theorem 2.3

Proof. The first-order derivative of P ∗(·) at the points A and B is given by (A.2) and (A.3),

respectively. Therefore, there exists a point z∗ ∈ (A,B) at which the function P ∗(·) attains

its maximum. Such maximum is unique if P ∗(·) is a concave function and we refer to

equation (A.4) in order to prove it. Imposing concavity requires that

[1− 2λ(z − µ(z))p∗(z)]
(
dp∗(z)
dz [1− F (z)]− f(z)p∗(z)

)
≤

2λp∗(z)[1− F (z)]

(
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

)
.
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This condition holds for z = B. For all other values of z, dividing both sides by

1− F (z) and multiplying by b gives an expression in terms of ξ∗(z):

ξ∗(z) ≥ b
dp∗(z)

dz
−

2λp∗(z)b

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
1− 2λ(z − µ(z))p∗(z)

, z ∈ [A,B],

which is a necessary and sufficient condition for P ∗(·) to be concave.

Lemma 2.5

Proof. A straightforward application of (A.1) gives a necessary condition for
dp∗(·)
dz

to be

decreasing:

−f(z)(λσ2(z) + b)− 2λ(z − µ(z))(1− F (z))2

λσ2(z) + b
[1− 4λ(z − µ(z))p∗(z)] ≤

4λ(1− F (z))

[
F (z)p∗(z) + (z − µ(z))

dp∗(z)

dz

]
, z ∈ [A,B].

Bounding both sides of this equation yields a sufficient condition for the concavity

of p∗(·). The condition above always holds for z = A and z = B (the expression above

becomes −f(A) ≤ 0 and −f(B)[1− 4λ(B −E(ε))p∗(B)] ≤ 0 respectively). For A < z < B,

we establish that the largest value of the left-hand side has to be at most equal to the

smallest value of the right-hand side. The largest value of the left-hand side is represented

by the value that is closest to 0, which is
1

b
(−2λ(B−E(ε))−f(z)(λV ar(ε)+b)). Conversely,

the smallest value of the right-hand side is 2λ
2a+B − E(ε)

b
. Therefore, we obtain that

1

b
[−2λ(B − E(ε))− f(z)(λV ar(ε) + b)] ≤ 2λ

2a+B − E(ε)

b
,
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whence

λ ≥ −f(z)b

4(a+B − E(ε)) + f(z)V ar(ε)
.

Since we want this range to be valid for all z, we can rewrite this as

λ ≥ max
z∈[A,B]

{
−f(z)b

4(a+B − E(ε)) + f(z)V ar(ε)

}
.

Lemma 2.6

Proof. We analyze again (A.5) under the light of the implicit function theorem, but this

time with the condition λ < 0. The numerator in this equation is still nonnegative, but the

second term in the denominator is now nonpositive and is being subtracted. The first term

of the denominator is always nonpositive. Hence, if z̃∗(λ) is to decrease with λ we must

have that

f(z̃∗(λ))[2λp(z̃∗(λ)− µ(z̃∗(λ)))− 1]− 2λpF (z̃∗(λ))(1− F (z̃∗(λ))) < 0,

but we know that this surely occurs in p = pA and p = pB, for if there exists p = pA such

that z̃∗(λ) = A this condition simplifies to −f(A) ≤ 0, which always holds. Moreover, if

there exists p = pB such that z̃∗(λ) = B this condition requires 2λp(B − E(ε)) − 1 ≤ 0,

or equivalently λ ≤ 1

2p(B − E(ε)
, which also holds. For all other values of p we can assert
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that
dz̃∗(λ)

dλ
is nonpositive if

λ ≤ f(z̃∗(λ))

2p [f(z̃∗(λ))(z̃∗(λ)− µ(z̃∗(λ)))− F (z̃∗(λ))(1− F (z̃∗(λ)))]
,

where c < p ≤ pmax and p 6= pA, pB. If the right-hand side of this equation is positive, then

the condition above always holds and
dz̃∗(·)
dλ

≤ 0. This right-hand side is positive as long

as

f(z̃∗(λ))(z̃∗(λ)− µ(z̃∗(λ)))− F (z̃∗(λ))(1− F (z̃∗(λ))) > 0,

whence, after dividing by 1− F (z̃∗(λ)) and multiplying by bp we obtain that

ε̂∗(p) > bp
F (z̃∗(λ))

z̃∗(λ)− µ(z̃∗(λ))
, c < p ≤ pmax, p 6= pA, pB.

An upper bound of the right-hand side is given by bp
1

B − E(ε)
Therefore, we can con-

clude that if

ε̂∗(p) > bp
1

B − E(ε)
, c < p ≤ pmax,

then, given a price p, z̃∗(·) decreases. In other words, when λ decreases, i.e., as we focus on

more risk-seeking situations, z̃∗(·) increases.
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Appendix B

Unimodality with Additive

Demand

Lemma 3.1

Proof. The first claim is supported by the numerator of (3.3) being strictly positive since

µ(z) + a+ cb ≥ A+ a+ cb = A+ y(c) + 2cb > 0.

To prove that p∗(z) ≤ pmax, we focus first on the risk-neutral case. When λ = 0,

the optimal price p∗(·) is an increasing function in z. Indeed, in this case p∗(z)|λ=0 =

µ(z) + a+ cb

2b
and p∗

′
(z) =

1− F (z)

2b
> 0. Therefore, when λ = 0 the optimal price has a

maximum value p∗(B) =
a+ cb

2b
. This value is smaller than pmax because y(c) + 2A ≥ 0.

Hence, our only assumption serves the purpose of bounding the optimal price from above.

Given that, per (3.3), p∗(z) ≤ p∗(z)|λ=0, we conclude that in the risk-averse case

p∗(z) ≤ pmax.
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Lemma 3.2

Proof. The derivative of the optimal price with respect to the safety stock is

p∗
′
(z) =

1− F (z)

2(λσ2(z) + b)
(1− 4λ(z − µ(z))p∗(z)). (B.1)

It is not guaranteed that this is positive. As a matter of fact, we have that

p∗
′
(z) ≥ 0 ⇐⇒ λ <

1

4(z − µ(z))p∗(z)
. (B.2)

It is easy to see that p∗
′
(A) = 1/(2b) and p∗

′
(B) = 0. Also p∗

′
(z) = 0 in (A,B) if and only

if there are solutions to the equation p∗(z) =
1

4λ(z − µ(z))
. On the other hand, the second

derivative of the optimal price p∗(·) is

p∗
′′
(z) =

(
−f(z)− λσ2′(z)(1− F (z))

λσ2(z) + b

)
1− 4λ(z − µ(z))p∗(z)

2(λσ2(z) + b)

−4λ
1− F (z)

2(λσ2(z) + b)
(F (z)p∗(z) + (z − µ(z))p∗

′
(z)), (B.3)

which, particularized for the points where p∗
′
(z) = 0 is

p∗
′′
(z)

∣∣∣∣
p∗′ (z)=0

= −4λ
1− F (z)

2(λσ2(z) + b)
F (z)p∗(z) < 0. (B.4)

Therefore, any critical point that exists in (A,B) is a maximum. Since p∗
′
(A) > 0

and p∗
′
(B) = 0, the equation p∗(z) =

1

4λ(z − µ(z))
has at most one solution in (A,B) and

one of the following outcomes occur: if such a solution does not exist, the function p∗(·) is

increasing in [A,B) with a maximum at z = B; if such a solution exists at a point zψ, the
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function p∗(·) increases in [A, zψ), has a maximum at z = zψ, decreases in [zψ, B), and has

an inflection point at z = B. It is consequently quasiconcave (unimodal).

Lemma 3.3

Proof. By Lemma 3.1, when λ ≥ 0, p∗(z) ≤ pmax, ∀z ∈ [A,B]. It remains to validate the

conditions for the optimal price to be greater than the replenishment cost.

If we impose in (3.3) that the optimal price is at least as large as the replenishment

cost, it follows that p∗(z) ≥ c when λ ≤ µ(z) + y(c)

2cσ2(z)
. Therefore this holds ∀z ∈ [A,B] as

long as

λ ≤ min
z∈[A,B]

µ(z) + y(c)

2cσ2(z)
.

Let t(z) =
µ(z) + y(c)

2cσ2(z)
. We will prove that this function is decreasing. Its first deriva-

tive is t′(z) =
(1− F (z))σ2(z)− σ2′(z)(µ(z) + y(c))

2c (σ2(z))2 . While the denominator is always

nonnegative, we can also prove that the numerator is nonpositive. Using the equality

σ2′(z) = 2(1− F (z))(z − µ(z)) the numerator is nonpositive if

σ2(z) ≤ 2(z − µ(z))(µ(z) + y(c)).

Both sides of this equation are nonnegative in [A,B] and equal to 0 at z = A. Moreover,

[2(z − µ(z))(µ(z) + y(c))]′ = 2F (z)(µ(z)+y(c))+σ2′(z) ≥ σ2′(z). Therefore, it is clear that

σ2(z)− 2(z − µ(z))(µ(z) + y(c)) ≤ 0 and t is a decreasing function of z. This implies that
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p∗(z) ≥ c, ∀z ∈ [A,B] if and only if

λ ≤ min
z∈[A,B]

t(z) = t(B) =
y(c)

2cV ar(ε)
.

Theorem 3.1

Proof. We will analyze P ∗2 (·) in [A, zc]. P ∗2 (·) is a continuous function with P ∗
′

2 (A) =

p∗(A) − c > 0 and P ∗
′

2 (zc) < 0. The last inequality follows because in case that P ∗(·) is

a piecewise, nonlinear function, then it is also smooth (i.e. P ∗2 (zc)=P
∗
1 (zc)) and P ∗1 (·) is a

decreasing function in [zc, B]. Therefore, there must be at least one point in [A, zc] where

P ∗
′

2 (z) = 0. This point is unique and confers quasi-concavity to P ∗2 (·) if P ∗
′′

2 (z)|
P ∗
′

2 (z)=0
< 0.

Per (3.5), at the critical points 1− 2λ(z − µ(z))p∗(z) =
c

p∗(z)(1− F (z))
and we can write

(3.6) in terms of the failure rate h(z) as

cp∗
′
(z)

p∗(z)
− h(z)c− 2(1− F (z))λp∗(z)

(
F (z)p∗(z) + (z − µ(z))p∗

′
(z)
)

< 0.

By using the expression of the LSR elasticity at the optimal price p∗(z) in additive models,

ξ∗(z) = bp∗(z)h(z), and observing that F (z)p∗(z) + (z−µ(z))p∗
′
(z) = [(z − µ(z))p∗(z)]′ we

can rewrite the formula above as

ξ∗(z) > b

(
p∗
′
(z)− 2(1− F (z))λp∗(z)2

c
[(z − µ(z))p∗(z)]′

)
.
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Theorem 3.2

Proof. Assume that p∗(·) is a unimodal function and consider the two subintervals [A, zψ]

and (zψ, zc]. We will apply condition (3.8) to both subintervals. In [A, zψ] the optimal price

is nondecreasing and concave with only one critical point at z = zψ. It follows that the

unimodality is guaranteed as long as ξ∗(z) > 1/2,∀z ∈ [A, zψ]. In (zψ, zc] the optimal price

is nonincreasing with only one critical point at z = zc if z = B (otherwise the function

is strictly decreasing in (zψ, zc]). Therefore the first term in condition (3.8) is negative.

The second term in (3.8) takes the opposite sign of [(z − µ(z))p∗(z)]′ = F (z)p∗(z) + (z −

µ(z))p∗
′
(z). If (z−µ(z))p∗(z) is a nondecreasing function at the points that satisfy P ∗

′
2 (z) =

0, then the second term in (3.8) is negative as well and a valid lower bound is ξ∗(z) ≥ 0

which, by the definition of LSR elasticity, always holds. However, in general we do not

know the sign of the slope of (z − µ(z))p∗(z) at those points and we have to bound ξ∗ by

using the most restrictive condition, which is given by the case when (z − µ(z))p∗(z) is a

decreasing function and the second term of (3.8) is positive:

ξ∗(z) > b

(
p∗
′
(z)− 2(1− F (z))λp∗(z)2

c
[(z − µ(z))p∗(z)]′

)
≤ −2(1− F (z))λbp∗(z)2

c
[(z − µ(z))p∗(z)]′ . (B.5)

A lower bound for ξ∗(·) is given by the product of the factors of (B.5). In turn, a lower

bound of [(z − µ(z))p∗(z)]′ in (zψ, zc] is

F (z)p∗(z) + (z − µ(z))p∗
′
(z) ≥ F (zψ)p∗(zc) + (zc − µ(zc))p

∗′(z),

where we used the fact that [z−µ(z)]′ ≥ 0. In finding a good lower bound of [(z − µ(z))p∗(z)]′
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we need to find the lowest value that p∗
′
(·) may take in (zψ, zc], where this function is neg-

ative. Per (B.1) and (3.5), we have that

p∗
′
(z)

∣∣∣∣∣
P ∗′ (z)=0

=
1− F (z)

2 (λσ2(z) + b)
(1− 4λ(z − µ(z))p∗(z))

=
1− F (z)

2 (λσ2(z) + b)
(1− 2λ(z − µ(z))p∗(z))− 1− F (z)

2 (λσ2(z) + b)
2λ(z − µ(z))p∗(z)

=
c

2p (λσ2(z) + b)
− 1− F (z)

2 (λσ2(z) + b)
2λ(z − µ(z))p∗(z)

=
1

2 (λσ2(z) + b)

(
c

p
− (1− F (z))2λ(z − µ(z))p∗(z)

)
=

1

2 (λσ2(z) + b)

(
2c

p
− (1− F (z))

)
= − 1

2 (λσ2(z) + b)

(
1− 2c

p
− F (z)

)
≥ − 1

2 (λσ2(zψ) + b)
.

Finally the lower bound of [(z − µ(z))p∗(z)]′ is

F (z)p∗(z) + (z − µ(z))p∗
′
(z) ≥ F (zψ)p∗(zc)︸ ︷︷ ︸

smallest positive value of
F (z)p∗(z)

− zc − µ(zc)

2 (λσ2(zψ) + b)︸ ︷︷ ︸
largest negative value of

(z−µ(z)p∗
′
(z)

.

Inserting this expression in (B.5) yields our lower bound on the LSR elasticity:

ξ∗(z) > −
2(1− F (zψ))λbp∗(zψ)2

c

(
F (zψ)p∗(zc)−

zc − µ(zc)

2 (λσ2(zψ) + b)

)
.
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Lemma 3.4

Proof. We analyze this function in two subintervals, [A, z̃) and (z̃, B]. Consider equation

(B.1). Clearly, there is always a critical point at z = B. Also, per this equation, the function

p∗(·) is strictly increasing ∀z : p∗(z) > 0. When p∗(z) < 0 (i.e. z̃ < z ≤ B) the function

p∗(·) tends to −∞ as we approach z̃ from the right and therefore it is concave and increasing

at its right limit towards B, reaching a value at z = B of p∗(B) =
a+ cb

2(λV ar(ε) + b)
. Assume

it is decreasing in some region in (z̃, B). Then the function must present a local maximum

in such interval. However, this is not possible since, per (B.4), if there is a critical point

in (z̃, B) the function is convex at such point and should be a minimum. Therefore the

optimal price p∗(·) has only one critical point at z = B, which is also an inflection point.

We conclude that p∗(·) is strictly increasing in (z̃, B).

Lemma 3.5

Proof. The function P ∗3 (·) has at least one critical point because P ∗
′

3 (A) > 0 and P ∗
′

3 (B) < 0.

The first-order optimality condition solves the equation

λ =
pmax(1− F (z))− c

p2
maxσ

2′(z)
=

1− c

pmax(1− F (z))

2p2
max(z − µ(z))

.

The function in the right-hand side of this equation is decreasing because its denominator

is increases in z and its numerator decreases in z. Therefore, it attains the constant value λ

only once. Given the signs of P ∗
′

3 (A) and P ∗
′

3 (B), this unique critical point is a maximum.
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Lemma 3.6

Proof. This result follows easily because lim
λ→λ−zpmax

λt(λ) = −∞ (remember that zpmax(λ) =

B if λ ∈ [λzpmax , 0)) and because λt(λ) increases as λ decreases. The latter is easy to see

because zpmax decreases when λ decreases, which makes the numerator of λt(λ) increase

and the denominator decrease as λ decreases.

Lemma 3.7

Proof. For clarity of exposition, we will let λB = 0 and λA < λB, although this result is

straightforward to show for any relation λA < λB ≤ 0.

Let ẑ = min

{
z : F (z) = 1− c

p∗(z)|λ=0

}
be the first maximum of the risk-neutral

problem. To see that this point is indeed a maximum, consider the risk-neutral problem: in

this case zpmax = B. There is at least a critical point because P ∗
′

2 (A) > 0, and P ∗
′

2 (B) < 0.

Given the sign of P ∗
′

2 (A) this first critical point, ẑ, will be a maximum.

Compare the first-order optimality conditions of the risk-neutral problem and the risk-

seeking problems of the functions P ∗2 (·) and P ∗3 (·) under the light of the optimal price.

Taking into account that p∗(z) > 0 whenever P ∗2 (·) applies, in any risk-seeking instance and

for any safety stock we have that p∗(z)|λ=λA ≥ p∗(z)|λ=λB . Therefore

1− c

p∗(z)|λ=λA (1− 2λA(z − µ(z))p∗(z)|λ=λA)
≥ 1− c

p∗(z)|λ=λB

,

and

1− c

pmax
− λApmaxσ2′(z) ≥ 1− c

pmax
.
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Consequently both first-order conditions will have their first solution at a safety stock higher

than ẑ. This is illustrated in Figure B.1, where a risk-neutral condition and a risk-seeking

condition are shown.

Figure B.1: Illustration of Lemma 3.7

Lemma 3.8

Proof. The function P ∗
2 (·) has at least one solution in [A,B] because P ∗′

2 (A) > 0 and

P ∗′
2 (B) < 0. Using (3.11), consider the equation P ∗′

2 (z) = 0. This can be written as

λ =

1− c

p∗(z)(1− F (z))

2(z − µ(z))p∗(z)
.
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Compare both sides of this equation. The number of times that the function of the right-

hand side crosses the constant λ is the number of critical points of P ∗2 (·). Since

lim
z→A

1− c

p∗(z)(1− F (z))

2(z − µ(z))p∗(z)
= ∞,

if this function is always decreasing, it will cross λ exactly once. Taking into account

that the denominator 2(z − µ(z))p∗(z) is nondecreasing, it is enough that the numerator is

decreasing:

[
1− c

p∗(z)(1− F (z))

]′
=

p∗
′
(z)(1− F (z))− f(z)p∗(z)

p∗(z)2(1− F (z))2
,

which follows if p∗
′
(z)(1− F (z))− f(z)p∗(z) < 0 or, in terms of the LSR elasticity, if

ξ∗(z) > bp∗
′
(z).

An upper bound for p∗
′
(·) at the critical points can be obtained in the same fashion

as in Theorem 3.2, thus obtaining:

p∗
′
(z)

∣∣∣∣∣
P ∗′ (z)=0

= − 1

2 (λσ2(z) + b)

(
1− 2c

p
− F (z)

)
≤ c

p∗(z) (λσ2(z) + b)
=

2c

µ(z) + a+ cb

≤ 2c

A+ a+ cb
,

whence the condition ξ∗(z) >
c

p∗(A)
can be derived. A sharper bound can be obtained

if we consider the smallest maximum of a less risk-seeking instance, ζ2(λ̃), given that, per
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Lemma 3.7, the first maximum will occur in the interval [ζ2(λ̃), B]:

ξ∗(z) >
2bc

µ(ζ2(λ̃)) + a+ cb
,

which only needs to hold in [ζ2(λ̃), B].

Theorem 3.3

Proof. When λ > λt(λ), P ∗
′
(zpmax) < 0. Because of Lemma 3.5, the function P ∗3 (·) is

decreasing in [zpmax , B]. Therefore, max
z∈[A,B]

P ∗(z) = max
z∈[A,zpmax ]

P ∗2 (z) = max
z∈[ζ2(λ̃),zpmax ]

P ∗2 (z).

The last equality is a consequence of Lemma 3.7.

If P ∗2 (·) is unimodal in [A,B], then its only maximum occurs in the interval [ζ2(λ̃), zpmax ]

and can be easily attained by solving P ∗
′

2 (z) = 0.

For the case λ = λt(λ), zpmax is the critical point of P ∗3 (·) and a critical point of P ∗2 (·).

As a result, equation (3.14) still holds, as well as the rest of the theorem.

Theorem 3.4

Proof. When λ < λt(λ), P ∗
′
(zpmax) > 0. Because of Lemma 3.5, the function P ∗3 (·) has its

only maximum in [zpmax , B]. In general, the function P ∗2 (·) may have several critical points

in [A, zpmax ]. Therefore, max
z∈[A,B]

P ∗(z) = max{P ∗(ζ3(λ)), max
z∈[ζ2(λ̃),zpmax ]

P ∗2 (z)}.

If P ∗2 (·) is unimodal in [A,B], then its only maximum occurs at in the interval [zpmax , B],

where P ∗(z) = P ∗3 (z). Hence, the maximum of P ∗(·) is attained at the only point that solves

P ∗
′

3 (z) = 0, which is ζ3(λ).
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Lemma 3.9

Proof. Let Π∗(z, λ) be the profit at the hedged price π∗(z, λ). Recall that the profit is a

random variable. From (3.1) we can we can redefine our performance measure at the hedged

price π∗(z, λ):

P (z, λ) = π∗(z, λ) (µ(z) + y(π∗(z, λ)))− c (z + y(π∗(z, λ)))︸ ︷︷ ︸
E(Π∗(z,λ))

−λπ∗(z, λ)2σ2(z)︸ ︷︷ ︸
V ar(Π∗(z,λ))

.

Consider first the risk-averse case. When λ > 0:

E (Π∗(z, λ)) =


c(µ(z)− z) if z > zc,

p∗(z, λ)(µ(z) + a− bp∗(z, λ))− c(z + a− bp∗(z, λ)) if z ≤ zc.

V ar (Π∗(z, λ)) =


c2σ2(z) if z > zc,

p∗(z, λ)2σ2(z) if z ≤ zc.

For any given stock factor z the derivative of these two functions are:

∂

∂λ
E (Π∗(z, λ)) =


0 if z > zc,

∂p∗(z, λ)

∂λ
(µ(z) + a+ b (c− 2p∗(z, λ))) if z ≤ zc.

∂

∂λ
V ar (Π∗(z, λ)) =


0 if z > zc,

−
2
(
σ2(z)

)2
λσ2(z) + b

p∗(z, λ)2 if z ≤ zc.

Given that
∂p∗(z, λ)

∂λ
= − σ2(z)

λσ2(z) + b
p∗(z, λ) ≤ 0 and that, per (3.3), µ(z) + a +
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b (c− 2p∗(z, λ)) > 0 in risk-averse cases, we conclude that the expected profit for a given

stock factor at the hedged optimal price does not increase with λ. Also,
∂

∂λ
V ar (Π∗(z, λ)) ≤

0 (i.e. as λ increases, the variance of the profit does not increase).

Now consider the risk-seeking case. When λ < 0:

E (Π∗(z, λ)) =


p∗(z, λ)(µ(z) + a− bp∗(z, λ)− c(z + a− bp∗(z, λ)) if z ≤ zpmax ,

pmax(µ(z) + a− bpmax)− c(z + a− bpmax) if z > zpmax .

V ar (Π∗(z, λ)) =


p∗(z, λ)2σ2(z) if z ≤ zpmax ,

p2
maxσ

2(z) if z > zpmax .

For any given stock factor z the derivative of these two functions are:

∂

∂λ
E (Π∗(z, λ)) =


∂p∗(z, λ)

∂λ
(µ(z) + a+ b (c− 2p∗(z, λ))) if z ≤ zpmax ,

0 if z > zpmax .

∂

∂λ
V ar (Π∗(z, λ)) =


−

2
(
σ2(z)

)2
λσ2(z) + b

p∗(z, λ)2 if z ≤ zpmax ,

0 if z > zpmax .

When z ≤ zpmax , λσ2(z) + b ≥ 0 and p∗(z, λ) > c. Therefore

∂p∗(z, λ)

∂λ
= − σ2(z)

λσ2(z) + b
p∗(z, λ) ≤ 0.

Per (3.3), µ(z) + a + b (c− 2p∗(z, λ)) < 0 in risk-seeking cases, and we conclude that the
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expected profit for a given stock factor at the hedged optimal price does not decrease with

λ (i.e. as λ decreases, the expected profit does not increase). Also,
∂

∂λ
V ar (Π∗(z, λ)) ≤ 0

(i.e. as λ decreases, the variance of the profit increases).
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Appendix C

Unimodality with Multiplicative

Demand

Lemma 4.1

Proof. Let us define α = 2λσ2(z)a(b − 1) ≥ 0, β = (b − 1)µ(z) > 0, and γ = bcz > 0. We

can rewrite (4.7) as follows:

αp∗(z)
2b2−b1
b2 − βp∗(z) + γ = 0. (C.1)

Let us consider the following cases:

1. 1 < b < 2: let q∗(z) = p∗(z)1/b2 . Since b1 > b2 and 2b2− b1 < b2, (C.1) can be written

as the following polynomial in descending order of powers from left to right:

−βq∗(z)b2 + αq∗(z)2b2−b1 + γ = 0. (C.2)
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2. b = 2: in this case (C.1) has the following unique solution: p∗(z) =
α+ γ

β
.

3. b > 2: let q∗(z) = p∗(z)1/b2 . Since b1 > 2b2 and b1 − 2b2 < b1 − b2, we can rewrite

(C.1) as the following polynomial in descending order of powers from left to right:

βq∗(z)b1−b2 − γq∗(z)b1−2b2 − α = 0. (C.3)

Per Descartes’ Rule of Signs, polynomials (C.2) and (C.3) only have one positive real

root. Undoing the change of variables to recover p∗(z) will yield a single positive real root in

(C.1). It is at this point where the assumptions made on the elasticity of the demand make

sense. Accepting b as a rational number allows a change of variables that helps us write

(C.1) as a polynomial. It is easier to handle these equations because there are well-known

theorems that state their number and sign of the roots, as it is the case with Descartes’

Rule of Signs. A positive real root of any of the transformed polynomials will correspond

to a positive real root of (C.1). Nevertheless, this one-to-one correspondence between the

positive real roots of the polynomials and the positive real roots of (C.1) does not exist in

the other direction (i.e. a positive real root in (C.1) may not come from a positive real

root of any of the polynomials). A straightforward example can be found when b2 = 4

and the polynomial (C.3) has the pair of conjugate imaginary roots ±i or any negative

real root. Undoing the change of variables would yield a positive real root of (C.1). It is

for this reason that we presume b2 with odd parity, for in this case conjugated imaginary

roots and negative real roots will never be transformed into positive real roots. Hence,

the one-to-one correspondence between the positive real roots of the polynomials and the

positive real roots of (C.1) is attained and we can assert that (C.1) has only one positive

real root. This assumption greatly simplifies the problem and has a negligible impact on
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its accuracy: any irrational number can be well approximated by a rational number and

any rational number expressed as a quotient can also be slightly modified if needed so the

parity of the denominator is odd.

Theorem 4.1

Proof. For a given stock factor z we have that

lim
p→0+

∂P (p, z)

∂p
= lim

p→0+

(
2a2(b− 1)σ2(z)λ

p2b−1
− a(b− 1)µ(z)

pb
+
abcz

pb+1

)
=∞,

lim
p→∞

∂P (p, z)

∂p
= lim

p→∞

(
2a2(b− 1)σ2(z)λ

p2b−1
− a(b− 1)µ(z)

pb
+
abcz

pb+1

)
= 0−.

The sign of the partial derivatives above and Lemma 4.1, guarantee that P (·, z)

is unimodal with respect to p in (0,∞) and that the optimal price p∗(z) is indeed a

maximizer. �

Lemma 4.2

Proof. Let us define α = 2λσ2(z)a(b − 1) ≤ 0, β = (b − 1)µ(z) > 0 and γ = bcz > 0. As

shown in Lemma 4.1, we can analyze the different cases as a function of the price elasticity

of the demand b.

• 1 < b < 2: with a suitable change of variable, equation (C.1) can be rewritten again

as (C.2) and, per Descartes’ Rule of Signs, this equation has only one positive real

root.

• b=2: in this case (C.1) has the following unique solution: p∗(z) =
α+ γ

β
, which is
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nonnegative for ∀z ∈ [A, B] if and only if λ ≥ λmin. If λ < λmin there will be some

values of z for which p∗(z) < 0 and others for which p∗(z) ≥ 0.

• b > 2: as done in Lemma 4.1, equation (C.1) can be transformed into the polynomial

(C.3) and, per Descartes’ Rule of Signs, it has either two positive real roots or no

positive real roots at all.

Theorem 4.2

Proof. Let 1 < b < 2 or b = 2 and λ ≥ λmin so that (4.3) has only one positive real root.

For a given stock factor z we have that

lim
p→0+

∂P (p, z)

∂p
= lim

p→0+

(
2a2(b− 1)σ2(z)λ

p2b−1
− a(b− 1)µ(z)

pb
+
abcz

pb+1

)
=∞,

lim
p→∞

∂P (p, z)

∂p
= lim

p→∞

(
2a2(b− 1)σ2(z)λ

p2b−1
− a(b− 1)µ(z)

pb
+
abcz

pb+1

)
= 0−.

It follows that P (·, z) is unimodal with respect to p in (0,∞) in these circumstances, and

that p∗(z) is a maximizer. We can prove that, when b > 2, P (·, z) is bimodal with respect

to p in (0,∞) by calculating again these limits. In this case, lim
p→0+

∂P (p, z)

∂p
= ∞ and

lim
p→∞

∂P (p, z)

∂p
= 0+. The result follows as, per Lemma 4.2, equation (4.3) has two real

positive roots.
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Lemma 4.3

Proof. We prove first the condition for the optimal price to be strictly greater than c. Face

value is never an optimal price if c is never a root of (4.7), i.e. 2a(b − 1)λσ2(z)c−(b−2) −

(b − 1)µ(z)c + bcz 6= 0. Since the function above is continuous in z, this condition holds

as long as the left-hand side is always below 0 or above 0. If it is below 0, then it follows

that λ <
((b− 1)µ(z)− bz) cb−1

2a(b− 1)σ2(z)
. However, this is not possible, for this implies λ < −∞

for z = A. If it is above 0, then λ >
((b− 1)µ(z)− bz) cb−1

2a(b− 1)σ2(z)
. Taking into account that the

numerator of this expression is always negative, a lower bound for λ is thus given by the

maximum of the right-hand side of this inequality, whence the strict inequality of our result

follows. The possibility of the optimal price being equal to c is allowed by introducing the

equality in this lower bound.

Theorem 4.3

Proof. We prove first the local optimality condition. If the Hessian matrix of P is negative

definite at (z∗, p∗(z∗)), then this point is a strict local maximum of P (·, ·) in [A,B]× [c,∞).

Given that
∂2P

∂z2
= −ap−(b−1)f(z) < 0, per the second derivative test such a Hessian is

negative definite as long as ∆(z∗, p∗(z∗)) > 0, where ∆(z, p) =
∂2P

∂p2

∂2P

∂z2
−
(
∂2P

∂p∂z

)2

.

Using equations (4.5)-(4.6) with λ = 0, we can rewrite the equation ∆(z, p) > 0 as

−pf(z) (b(b− 1)µ(z)p− (b+ 1)bcz) − (bc− (b− 1)p (1− F (z)))2 > 0. If we particular-

ize for the set of prices that are optimal, p∗(z), this condition can be written now as

∆(z, p∗(z)) = p∗(z)bczf(z)− (bc− (b− 1)p∗(z) (1− F (z)))2 > 0, where we used the closed-

form solution of the optimal price in the risk-neutral case, p∗(z) = bcz/ ((b− 1)µ(z)),

to simplify the first term of the previous equation. Moreover, z∗ satisfies the equation
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F (z) = 1 − c/p∗(z) and thus we obtain ∆(z∗, p∗(z∗)) = bz∗f(z∗) > 1 − F (z∗), whence the

condition ξ(z∗) > 1 follows from the definition of LSR elasticity for isolastic demand as

shown in equation (4.9). Proving that (z∗, p∗(z∗)) is a saddle point of P in [A,B]× [c,∞)

can be done analogously by imposing that ∆(z∗, p∗(z∗)) < 0.

Next, we prove the global optimality condition by reductio ad absurdum. The problem

has at least a local maximum because P ∗
′
(A) > 0 and P ∗

′
(B) < 0. This maximum will

occur at a point z∗ such that, per our local optimality condition, ξ(z∗) > 1. Assume that

ξ(z) > 1 for any stock factor z. If there is a second critical point, such a point will be a

minimum and it will occur at z∗∗. Per our local optimality condition, ξ(z∗∗) < 1; however,

we assumed that ξ(z) > 1 and therefore such a point cannot exist. We conclude then that

if ξ(z) > 1, then the equation R(z) = 0 has only one solution, and this solution is a global

maximum of P ∗(·).

Lemma 4.4

Proof. Using the formula for p∗(z) in the risk-neutral case, let us redefine the optimality

condition for z∗ as R̃(z∗, b) = (1 − F (z∗))bcz∗/ ((b− 1)µ(z∗)) − c = 0. By the Implicit

Function Theorem,
dz∗

db
= −

∂R̃

∂b
∂R̃

∂z∗

=
z∗µ(z∗)

b(b− 1) (µ(z∗) (1− z∗h(z∗))− z∗(1− F (z∗)))
, where

h(z∗) is the failure rate of ε evaluated at z = z∗. The denominator (and the expression

above) is negative if 1− z∗h(z∗) < 0 or, equivalently, if ξ(z∗) > b. As for the optimal price,

simple applications of the chain rule yield
dp∗

db
=
∂p∗

∂z∗
dz∗

db
+
∂p∗

∂b
and

dp∗

dc
=
∂p∗

∂c
. In the first

case we obtain
dp∗

db
=

bc

(b− 1)µ(z∗)2

(∫ z∗

A
uf(u)du

)
dz∗

db
− cz∗

µ(z∗)(b− 1)2
, which is negative

if ξ(z∗) > b. In the second case we have that
dp∗

dc
=

bz∗

(b− 1)µ(z∗)
> 0 (i.e. p∗ is linear in
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c).

Theorem 4.4

Proof. The behavior of P ∗
′

is clearly given by that of R. At the limits of [A,B] we have

R(A) = c/ (b− 1) > 0, R(B) = −c < 0. This fact, along with the continuity of R, implies

that there is at least one solution to the equation P ∗
′
(z) = 0 (i.e. R(z) = 0 at least once).

In fact, P ∗
′

has only one root if and only if R′(z)|R(z)=0 < 0. If this occurs, this root

represents also a maximum of P ∗, since P ∗
′
(A) > 0 and P ∗

′
(B) < 0. Note that,

R′(z) = −f(z)p∗(z) + (1− F (z))p∗
′
(z) (C.4)

−λap∗(z)−(b−1)
(
p∗(z)σ2′′(z)− (b− 2)p∗

′
(z)σ2′(z)

)
.

In general, at the critical points of P we have that

R(z) = 0 =⇒ λap∗(z)−(b−2)σ2′(z) = (1− F (z))p∗(z)− c. (C.5)

Substituting (C.5) in (C.5) and reordering terms, we obtainR′(z)|R(z)=0 = −f(z)p∗(z)+

(b− 1)(1− F (z))p∗
′
(z)− (b− 2)cp∗

′
(z)/p∗(z)− λap∗(z)−(b−2)σ2′′(z). Dividing by 1− F (z)

and using the equality σ2′′(z) = 2(1− F (z))F (z)− 2f(z)(z − µ(z)) gives

R′(z)

1− F (z)

∣∣∣∣
R(z)=0

=
p∗
′
(z)

p∗(z)

(
(b− 1)p∗(z)− (b− 2)c

1− F (z)

)
︸ ︷︷ ︸

B○

+h(z)p∗(z)
(

(z − µ(z))2λap∗(z)−(b−1) − 1
)

︸ ︷︷ ︸
A○

−2λaF (z)p∗(z)−(b−2).
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A○ can be further particularized forR(z) = 0 using (C.5) to get (z−µ(z))2λap∗(z)−(b−1)−

1 =
−c

p∗(z)(1− F (z))
< 0. Furthermore, B○ can be rewritten as

c+ (b− 1)((1− F (z))p∗(z)− c)
(1− F (z))

.

Now, let η(z) = (1−F (z))p∗(z)−c. All in all, our condition for the negativity of R′(z)|R(z)=0

results in
p∗
′
(z)

p∗(z)
((b− 1)η(z) + c)− F (z)

z − µ(z)
η(z)− h(z)c < 0, whence we obtain:

h(z) >

(
p∗
′
(z)

p∗(z)
+

(
(b− 1)

p∗
′
(z)

p∗(z)
− F (z)

z − µ(z)

)
η(z)

c

)
. (C.6)

It follows from (4.7) that

p∗
′
(z) =

2λa(b− 1)σ2′(z)p∗(z)−(b−2) + bc− (b− 1)µ′(z)p∗(z)

2λa(b− 1)(b− 2)σ2(z)p∗(z)−(b−1) + (b− 1)µ(z)
,

and

p∗
′
(z) = p∗(z)

bc+
σ2′(z)

σ2(z)
((b− 1)µ(z)p∗(z)− bcz)− (b− 1)µ′(z)p∗(z)

(b− 1)2µ(z)p∗(z)− (b− 2)bcz
, (C.7)

after removing the explicit dependence on λ. Note that, because of (4.7), (b−1)µ(z)p∗(z)−

bcz is positive in risk-averse cases (λ > 0), negative in risk-seeking cases (λ < 0), and 0 in

risk-neutral cases (λ = 0). We can find p∗
′
(z)/p∗(z) at those points where R(z) = 0. To

see this, use p∗
′
(z) as shown in (C.7) and particularize for those points by means of (C.5).

The result can be manipulated to get
p∗
′
(z)

p∗(z)

∣∣∣∣
R(z)=0

=
c+ (b− 1)((1− F (z))p∗(z)− c)
(b− 1)2µ(z)p∗(z)− (b− 2)bcz

=

c+ (b− 1)η(z)

(b− 1)2µ(z)p∗(z)− (b− 2)bcz
. This result, in conjunction with (C.6), yields our first con-



127

dition:

h(z) >

(
(c+ (b− 1)η(z))2(1− F (z))(z − µ(z))

(b− 1)2σ2(z)η(z) + bcz(1− F (z))(z − µ(z))
− F (z)

z − µ(z)
η(z)

)
1

c
. (C.8)

Per (C.5), η(z)|R(z)=0 ≥ 0 when λ ≥ 0, and therefore we can bound (C.8) to get our

second condition:

h(z) >

(
(c+ (b− 1)η(z))2(1− F (z))(z − µ(z))

(b− 1)2σ2(z)η(z) + bcz(1− F (z))(z − µ(z))
− F (z)

z − µ(z)
η(z)

)
1

c

≤ (c+ (b− 1)η(z))2(1− F (z))(z − µ(z))

(b− 1)2σ2(z)η(z) + bcz(1− F (z))(z − µ(z))

1

c

≤ (c+ (b− 1)η(z))2(1− F (z))(z − µ(z))

bcz(1− F (z))(z − µ(z))

1

c
=

(c+ (b− 1)η(z))2

bc2z

=
((b− 1)η(z) + c)2

bc2z
=⇒ g(z) >

1

b

(
(b− 1)η(z) + c

c

)2

. (C.9)

Using the equality ξ = bzh(z) = bg(z) we can write equations (C.8) and (C.9) as a function

of the LSR elasticity, as shown in this theorem. For the last condition, assume that b ≥ 2

and remember that the equation R(z) = 0 is equivalent to η(z) =
2λa(1− F (z))(z − µ(z))

p∗(z)b−2
.

Our second condition can thus be written as

ξ(z) >

(
1 +

(b− 1)η(z)

c

)2

≤

1 +
(b− 1)

2λa(B − 1)

cb−2

c


2

,

and therefore we arrive to the our last lower bound:

ξ(z) >

(
1 +

2λa(b− 1)(B − 1)

cb−1

)2

.
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Lemma 4.5

Proof. Per its definition, the risk sensitive problem is solved by finding the solution to the

equation (1 − F (z))p∗(z) − c = 0. The left-hand side of this equation is positive at z = A

and negative at z = B. It is also decreasing if ξ(z) > bz
p∗
′
(z)

p∗(z)
. If this condition holds, then

the equation in question has only one solution.

Let us focus know on the first-order optimality condition of the risk-sensitive problem:

R(z) = (1− F (z))p∗(z)− c︸ ︷︷ ︸
A○

−λap∗(z)−(b−2)σ2′(z)︸ ︷︷ ︸
B○

= 0.

First, this equation will never be solved at z = A (z = B), since at those points A○ > 0

( A○ < 0), whereas B○ = 0. For all other points in the interval [A,B], part B○ of the

equation bears the sign of the risk parameter λ. In risk-averse cases, this part is negative

and therefore R(z∗RSE) < 0. Since part A○ is decreasing, it follows that the solutions to

R(z) = 0 take place for stock factors that are smaller than z∗RSE , i.e., z∗ ∈ (A, z∗RSE).

Likewise, in risk-seeking cases, part B○ is positive and therefore R(z∗RSE) > 0. Since

part A○ is decreasing, it follows that the solutions to R(z) = 0 take place for stock factors

that are greater than z∗RSE , i.e., z∗ ∈ (z∗RSE , B).

Lemma 4.6

Proof. Let g(λ, p) = ∂P (λ, p, ẑ)/∂p. Per the Implicit Function Theorem we have that

dp̃∗(λ)

dλ
= −

∂g(λ, p)

∂λ
∂g(λ, p)

∂p∗(ẑ)

= −2a2(b− 1)σ2(ẑ)p∗(ẑ)−2b+1

∂2P (λ, p, z)

∂p2

∣∣∣∣
p=p∗(ẑ)

≥ 0,
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since P is concave when p = p∗(ẑ). Moreover, differentiating again with respect to λ yields

p̃∗
′′
(λ) = −(2a(b− 1)σ2(ẑ))2(2b− 1)p∗(ẑ)−4b+1∂2P (λ, p, z)

∂p2

∣∣∣∣∣
p=p∗(ẑ)


2 ≤ 0.

Lemma 4.7

Proof. From (4.2) and per Lemma 4.6 it follows that

d

dλ
V ar(Π̃∗(λ)) = −a2σ2(ẑ)p̃∗

′
(λ)

2b− 2

p̃∗(λ)2b−1
≤ 0.

Lemma 4.8

Proof. From (4.2) it follows that E(Π̃∗(λ)) = aµ(ẑ)p̃∗(λ)−b+1 − cẑap̃∗(λ)−b. Therefore

d

dλ
E(Π̃∗(λ)) = ap̃∗

′
(λ)p̃∗(λ)−b−1 (cẑb− µ(ẑ)(b− 1)p̃∗(λ)) .

Since the first factor is nonnegative, the sign of this derivative is given by that of the

second factor shown above, which is nonpositive if and only if p̃∗(λ) ≥ cbẑ

(b− 1)µ(ẑ)
. Since,

per (4.7), p̃∗(0) =
cbẑ

(b− 1)µ(ẑ)
and given Lemma 4.6, we conclude that this factor is indeed

nonpositive for λ > 0 and nonnegative for λ < 0.
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