
MODELING METHODS IN UNDERSTANDING AND

AMELIORATING CENTRAL NERVOUS SYSTEM INJURY

by

SAGAR SINGH

A dissertation submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

and

The Graduate School of Biomedical Sciences

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Biomedical Engineering

Written under the direction of

Dr. David I. Shreiber

And approved by

__________________________________________

__________________________________________

__________________________________________

__________________________________________

__________________________________________

New Brunswick, New Jersey

OCTOBER, 2016



© 2016

Sagar Singh

ALL RIGHTS RESERVED



ii

ABSTRACT OF THE DISSERTATION

Modeling Methods in Understanding and Ameliorating Central Nervous System Injury

By SAGAR SINGH

Dissertation Director:

David I. Shreiber, PhD

To improve the quality of life for victims of traumatic spinal cord and brain

injury, a better understanding of how microstructural mechanical behavior influences

bulk tissue and vice versa is necessary. Two aspects that warrant attention in this matter

are primary injury and neural electrode-tissue interactions. While their respective

biomechanics are measurable at the macroscopic level, it is difficult to measure

microscopic deformations during injury in situ and in vivo experimentally. To overcome

this limitation, we develop experimentally validated computational approaches to predict

the multiscale translations involved in white matter tissue injury, and probe-tissue

interfaces.

In the first part of this dissertation, we developed approaches to model primary

injury at the axon level. First we developed 3-D axon kinematic models to infer axonal

strain as a function of tissue-level stretch. Embryonic chick spinal cord tissue was

exposed to controlled stretch and axon tortuosity and kinematics were characterized in 3-

dimensions. We determined that greater proportions of axons are predicted to behave

with affine, composite-like kinematics. Next, we identified and evaluated contactin-

associated protein (Caspr) for use as a fiducial marker in estimating axonal strain and
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axonal failure thresholds. Spinal cord tissue was exposed to controlled stretch, and

displacements of immunostained Caspr proteins were measured. Changes in Caspr

displacements reflected the applied macroscopic stretch directly at earlier stages of

development but this trend deviated with further development. This shift in trend

correlated with observations of axon failure at later stages of development, and we

predicted axon failure thresholds to decrease with development.

In the second part of this dissertation, we developed approaches to model

multiscale mechanics in neural probe and tissue interactions. Finite element simulations

were developed and experimentally validated to determine insertion and buckling forces

for different coating and probe designs. Parameter sweeps of these features determined

that probe length and coating thickness had the biggest impact on insertion forces. Next,

we used the model to simulate the probe-tissue interface in order to correlate interfacial

stress and tissue strain to chronic injury. Stress and strain predictions were made for a

variety of probe designs and results were validated with parallel experiments using

agarose tissue phantoms. We correlated predictions to gliosis through an in vitro model

where astrocytes cultured in collagen gels were cast around a probe and exposed to

micromotion. We determined that probe stiffness has a greater effect on chronic injury

than size. We were also able to predict minimum strain thresholds for inducing astrocyte

activation.

The findings in this work help elucidate multiscale transfers in white matter injury

and probe-tissue interfaces. These results can be applied to the design of better

preventative measures for brain and spinal cord injury (sports and military equipment), as

well as neural probes for long-term signal acquisition/stimulation in brain-to-computer

interfaces.
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Chapter 1: Introduction 

Thesis Overview:  

This work utilizes computational modeling and experimental validation to develop 

augmented approaches to understand how macroscale effects in white matter injury and 

neural electrode implantation influence the microscale, or individual cellular effects. The 

findings from these models are then applied to estimate axonal injury thresholds, and 

provide insights for optimizing neural probe designs. 

Defining central nervous system injury:  

 Central nervous system (CNS) injuries are among the leading causes of morbidity 

and death in the United States, with over 1.7 million new incidences of a traumatic brain 

injury (TBI) or spinal cord injury (SCI) occurring annually (CDC.gov, 2012). Financial 

costs associated with the diagnosis and treatment of CNS injuries is over 90 billion USD 

per year. This is in addition to the personal costs and difficulties experienced by victims 

and their families. An intrinsic trait of CNS injuries is its difficulty in diagnosis, as 

detection capabilities are limited, and most deleterious effects do not occur until weeks or 

months following the initial event (LaPlaca et al., 2005; Smith and Meaney, 2000). The 

salient issue remains that complete functional and morphological recovery is limited by 

the inability for CNS tissue to regenerate fully following traumatic injury (Maikos et al., 

2008; Werner and Engelhard, 2007). 

 CNS injuries results from primary, followed by secondary events. The primary 

injury delineates the initial mechanical insult, caused by mechanical loading of the brain 
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or spinal cord (Hao and Shreiber, 2007; Smith and Meaney, 2000). Depending on the 

severity of loading, this can cause cellular, axonal, and/or blood-brain barrier (BBB) 

damage, or complete tissue damage and cell death (Johnson et al., 2013). Secondary 

injury refers to the subsequent damage resulting from inflammation, biochemical signal 

cascades, and cell death following the primary insult (Fitch and Silver, 2008). Unlike 

primary injury which occurs immediately during trauma at the millisecond level, 

secondary damage, and many of the functional deficits associated with CNS injuries may 

not manifest until hours, days, or weeks after the traumatic event (Hao and Shreiber, 

2007; LaPlaca et al., 2007; Werner and Engelhard, 2007). 

 In addition to the biochemical cascades that induce cell damage and death 

following traumatic CNS injury, restoration is hindered by the formation of lesion 

cavities and scar tissue (glial scar) at the injury site (Yiu and He, 2006). The glial scar is 

characterized by a localized region of stiffness, caused by astrocyte activation (Saxena et 

al., 2012; Siebert et al., 2014). Glial scarring is a double-edged sword. While scar 

formation is useful for sequestering inflammatory effects and preventing further damage 

to healthy neurons, scarring also serves to inhibit axonal regeneration following injury 

(Lu et al., 2011; Rolls et al., 2008; Wanner et al., 2013) through a combination of 

mechanical (Lu et al., 2011; Saxena et al., 2012) and chemical cues (Aurand et al., 2012; 

Lee et al., 2010; Rolls et al., 2008). Evidence has been put forward that the extent of 

scarring is correlated with the severity of primary injury (Fitch and Silver, 2008; Silver 

and Miller, 2004). By better understanding the mechanisms of primary injury, clinicians 

are better equipped to diagnose and treat CNS injury to prevent subsequent damage from 

secondary mechanisms (Wright and Ramesh, 2012). 
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Primary axonal injury:  

 Primary axonal injury via stretch is a proximal cause of functional deficits 

following CNS injury (Bain et al., 2000; Hao and Shreiber, 2007; Smith and Meaney, 

2000). Axonal stretch can occur when white matter tissue experiences deformation.  

Given enough stretch, axons can experience irrevocable damage and failure, which leads 

to further damage from subsequent secondary injury cascades (Fitch and Silver, 2008; 

Werner and Engelhard, 2007). A key metric used in predicting and assessing axonal 

injury is the strain individual axons can tolerate before experiencing injury (Wright and 

Ramesh, 2012). These strain thresholds have been characterized for in vitro preparations 

of axons (Johnson et al., 2013; Smith et al., 1999), and in vivo preparations in the guinea 

pig optic nerve (Bain et al., 2000). Depending on the type of preparation, injury 

thresholds can vary significantly from over 75% in in vitro preparations (Tang-Schomer 

et al., 2010), to 14% in in vivo conditions (Bain et al., 2000). This vast discrepancy in 

outcomes prevents clear definition in determining if and when axonal damage due to 

stretch has occurred. 

One hypothesis for the wide range of injury thresholds is the differences in 

microstructural properties in CNS tissue preparations studied in vivo, ex vivo, and in 

vitro. It is generally accepted that features at the microscale, such as how axons are 

arranged or degree of myelination, directly influence the bulk tissue mechanical 

properties (Cloots et al., 2013a; Meaney, 2003). For instance, axons in white matter tracts 

are oriented, and as a result, white matter displays anisotropic or direction-dependent 

material properties (Prange and Margulies, 2002). In studies of the chick embryonic 



4 

 

 

 

spinal cord, demyelinated spinal cords had significantly less stiffness and lower ultimate 

tensile strength than myelinated cords (Shreiber et al., 2009). It follows that 

microstructure can potentially influence how axons behave, and potentially fail, as a 

function of tissue-scale or macroscopic stretch (Bain et al., 2003). 

During trauma, the tissue-scale deformation is transferred to the cellular-scale 

constituents that make up the white matter tracts.  There is no clear translation between 

the stresses experienced by the tissue to those that are experienced by axons (Cloots et 

al., 2013a; Meaney, 2015). Properties of axons can influence this transfer (Arbogast and 

Margulies 1999; Bain, Shreiber, and Meaney 2003; Cloots et al. 2013; Hao and Shreiber 

2007; Shreiber, Hao, and Elias 2009), which can help explain region-dependent 

mechanics in brain and spinal cord deformation. These axonal features include 

components such as: axon morphology; axon orientation with respect to the white matter 

tract; degree of myelination; kinematic behavior; and connectivity to surrounding axons 

(Figure 1-1). Characterizing these attributes in different regions of white matter tissue 

allows inferences to be made regarding stresses and strains experienced by individual 

axons, and can potentially explain why such discrepancies regarding injury thresholds 

have been observed.  

One limitation to inferring axonal strain from characterizing microstructural features is 

that there are few methods of validation, due to no clear means of directly observing how 

much stress or strain is being applied to axons. In many cases, the strain criterion for 

ascertaining axonal injury is beyond the capability of many imaging methods (Carlsen 

and Daphalapurkar, 2015). Finite element simulations can provide some insight into 

axonal behavior and can help make predictions for axonal strains and their propensity for 
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injury (El Sayed et al., 2008; Karami et al., 2009; Pan et al., 2013), though these models 

are still difficult to experimentally validate.  It is imperative to understand this multi-

scale transfer to better predict axonal injury. Improved predictive measures can help 

improve quality of life; by addressing these approaches for victims who have already 

suffered CNS injury. 

 

Designing approaches to overcoming functional damage in CNS injury: 

 Following CNS injury, numerous approaches can be taken to ameliorate damage, 

and restore partial function. Ultimately they can be classified into regenerative and 

rehabilitative approaches.  Regenerative approaches seek to restore injured neurons or 

induce the growth and development of new neurons to replace and restore failed 

connections that were affected by trauma. This can be accomplished by introducing 

soluble factors to encourage recovery (Azari et al., 2010), introducing biomaterials that 

provide an amenable substrate for neurons to grow (Aurand et al., 2012; Zhu, 2010), or 

transplanting neural stem cells or precursor cells focally to the injury site (Fitch and 

Silver, 2008; Xu et al., 2011). 

The focus of this portion of the thesis is the other approach – rehabilitative techniques 

and technologies. In contrast to regeneration, rehabilitative methods make use of the post-

injury architecture in an attempt to extract and utilize signals from surviving neurons 

(Nicolas-Alonso and Gomez-Gil, 2012). This includes devices to measure neuronal 

activity from surviving neurons (Lo et al., 2015; Mak and Wolpaw, 2009), or 

conditioning and reprogramming intact connections to restore damaged functions (Patel 

et al., 2011; Tan and Waxman, 2012; Xu et al., 2011). One example of this approach is 
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brain-to-computer interface (BCI) devices. BCI devices can aid in re-establishing 

functional connections following axonal injury. BCIs work by acquiring a volition signal 

and translating the processed signal into a proportionate response in an extra-corporeal 

device. Volition signals can be obtained from different sources with varying degrees of 

accuracy and invasiveness. The ideal device provides long-term capability to rapidly 

acquire and translate signals with precision. 

Single-unit recordings (SURs) or neural electrodes provide the greatest accuracy and 

resolution in acquiring volition signal, as they can obtain signals from individual neurons 

(Hoogerwerf and Wise, 1994). SURs are also the most invasive, often requiring surgical 

implantation. Consequently these implants result in a foreign body response which serves 

to reduce performance and long-term efficacy (Aregueta-Robles et al., 2014; Biran et al., 

2005; Karumbaiah et al., 2013). In addition to the initial damage caused by implantation, 

chronic injury resulting from material mismatch between surrounding tissue and 

electrode serves to encapsulate the electrode, preventing signal acquisition (Aregueta-

Robles et al., 2014; Subbaroyan et al., 2005) in the long run.  

Approaches have been taken to understand how to modulate the chronic response. 

Current hypotheses for the direct cause of gliosis and subsequent electrode failure suggest 

a cause-effect relationship between localized strains experienced in the tissue adjacent to 

the electrode (Subbaroyan et al., 2005). Karumbaiah et al. (2012) demonstrated that glial 

cells exposed to low strain, cyclical loading lead to the overexpression of reactive 

markers GFAP and neurocan (Karumbaiah et al., 2012). Stiffer, larger probes have been 

posited to increase the localized strains in a number of models (Polanco et al., 2014; Shen 
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et al., 2015; Subbaroyan et al., 2005), supporting the idea that gliosis is related to 

stresses and strains at the probe-tissue interface. 

Smaller and flexible probes have been shown to reduce the chronic injury response, but 

are appreciably more difficult to insert into tissue than stiffer, larger probes (Cheung, 

2007; D. Lewitus et al., 2011; Lo et al., 2015). This leads to a balancing act between 

long-term efficacy and mechanical viability. An ideal probe is small and flexible enough 

to mitigate the chronic response, yet large enough to maximize signal acquisition, and 

mechanically stiff enough to implant successfully (Lo et al., 2015; Polikov et al., 2005) 

(Figure 1-2). Design parameters such as probe geometry, material properties, sacrificial 

coatings, and region-dependent tissue properties can vary considerably from design to 

design and implantation scenario, and can influence initial injury and the chronic 

response. Introducing more complex geometries or accounting for defects in fabrication 

serve to further complicate the problem. Given the wide variation in design parameters to 

consider, there is a need for a systematic approach to determining what features matter 

most in developing neural electrodes suited for long-term signal acquisition.  

 

Role and Significance of Modeling: 

 Biological systems, the CNS included, are exceptionally complex systems. Signal 

cascades, feedback loops, and interactivity with other physiological systems are issues to 

consider when understanding and developing clinical interventions. Considering the 

degree of complexity, it behooves us to deconstruct systems by focusing on the 

fundamental elements that interact. This can be achieved using computational models that 

incorporate accurate reproductions of the macroscopic and microscopic features. 
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 Models can be analytical, predictive, or a combination of both. Models are built on 

assumptions, based on fundamental principles and empirical observations. Ultimately, a 

model’s usefulness in predicting what occurs during injury or insertion is dependent on 

its veracity in reflecting what physically happens. As a result, models need to be refined 

and validated experimentally, before any predictions on the system can be analyzed and 

understood. Once a validated model has been generated, researchers can probe individual 

features and predict the effects on the system. 

 In addition to improving our understanding of how a system works, modeling is a 

cost-effective means of simulating experiments, which augments design-of-experiments, 

minimizes monetary and time costs, and potentially reduces numbers of experiments, or 

animals to be employed. This is especially useful for processes which are iterative, for 

instance, testing tolerance thresholds for a beam made of different materials. Another 

valuable use of modeling is in predicting outcomes for experimental conditions that 

cannot be easily replicated, or characterized in situ or in vivo. 

 

Applying modeling to predict primary and neural electrode induced 

injury in CNS tissue: 

 Primary CNS injury and optimal neural probe design are two distinct systems 

which feed into the overarching issue of understanding and treating TBI and SCI (Figure 

1-3). The overarching concern in each of these systems is the inability to experimentally 

characterize the effects that macroscopic mechanics have on the microscale. By utilizing 

experimentally validated models, we can obtain a clearer link between multiple scales in 

CNS primary injury and electrode-induced damage. Improving our understanding in both 
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these realms would improve diagnostic and treatment capabilities for the debilitating 

pathologies associated with these injuries.  

 In the case of primary injury, the inherent limitation in models is the inability to 

experimentally validate predictions being generated. A variety of modeling studies 

provide keen insight into this multiscale problem. Cloots et al. (2013) employed 

computational simulations to determine axonal strains as a function of mechanical load at 

the macroscopic head level by modeling critical volume elements (Cloots et al., 2013a). 

Pan et al. (2013) developed a similar treatment by modeling axons as representative 

volume elements, and introducing kinematic coupling between axons (Pan et al., 2013) to 

reflect previous observations of 2-dimensional (2-D) axon kinematic behavior in 

myelinated (Hao and Shreiber, 2007) and demyelinated tissue (Shreiber et al., 2009). 

Characterizing 2-D axon kinematic behavior provided a useful metric for modeling 

multiscale transfer as changes in kinematics reflected changes in features of the 

microstructure (Hao and Shreiber, 2007; Pan et al., 2013; Shreiber et al., 2009). 

Ultimately, knowledge in how axons physically behave as a function of tissue-level 

stretch is still incomplete, and the inability of current imaging modalities to probe these 

behaviors makes experimental validation difficult. 

 In probe-tissue mechanics, interfacial stresses and strains between the probe and 

brain tissue cannot be experimentally quantified (Subbaroyan et al., 2005). While models 

have predictive power in this regard, there is still an unclear quantitative relationship 

between mechanical stresses and strains generated by probes during and after insertion, 

and the biological effects at the cellular and tissue level. Computational modeling of 

neural electrode mechanical performance is not a novel concept on its own as groups 
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have modeled both insertion mechanics (Bjornsson et al., 2006), and the effects of 

material properties on interfacial stresses (N. Hamzavi et al., 2013; Subbaroyan et al., 

2005). There is still a need to develop a validated framework for predicting probe-tissue 

mechanical performance and to design an all-encompassing approach in correlating 

biomechanical metrics to biological response. Neural electrodes designers armed with 

this information can be made cognizant of design features that influence the chronic 

response caused by implanted electrodes, and can fabricate better electrodes to improve 

the long-term efficacy of neural probes. 

 

Dissertation Summary: 

 This research thesis focuses on further elucidating the multiscale biomechanics of 

primary CNS injury, and neural electrode-tissue interaction. We accomplish this by: 1) 

characterizing and modeling axon kinematics and axonal strains as a function of tissue-

level stretch and 2) computationally and experimentally correlating the mechanical 

performance of neural electrodes during and after insertion to tissue and cell damage for 

the purpose of optimizing BCI devices. In both scenarios, we build a model from basic 

principles, and validate model predictions through parallel experiments. We then use our 

models to predict axon failure thresholds, and probe mechanical performance and tissue 

behavior, respectively. 

The remainder of this thesis is organized as follows. Chapters 2 & 3 focus on modeling 

and improving understanding of primary white matter injury to help answer: “What 

causes axons in white matter tracts to fail and can we predict when failure happens 

based on deformations we apply to the tissue?” In chapter 2, we extend axon kinematic 
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models used in inferring the transfer of macroscopic to microscopic stretch from 2-

dimensions to 3-dimensions. In a chick embryo model, we excise spinal cords, 

characterize axon morphology and tortuosity, and demonstrate that kinematic trends 

exhibit the same trends in 3-D. In chapter 3, we develop a method to estimate axonal 

strain due to macroscopic stretch in situ by utilizing Caspr, an axo-glial protein expressed 

at the nodes of Ranvier, as a fiduciary marker. We characterize average axonal strain and 

proportions of broken axons in the spinal cord as a function of macroscopic stretch and 

developmental stage. We then adopt features from our kinematic model in chapter 2, and 

employ the model’s methodology to estimate strain thresholds for axonal failure.  

In chapters 4 & 5, we transition to modeling rehabilitative approaches, namely, designs of 

neural probes. Overall, we proceed to answer: “Can we model the mechanical 

performance of coated flexible neural electrodes during and after insertion, and can we 

use this model to optimize their design for long-term implantation?” Chapter 4 focuses on 

modeling the insertion mechanics of a variety of coated neural probe designs. We 

develop a finite element simulation that predicts insertion and buckling forces of coated 

neural probes penetrating brain tissue. The ratio of buckling force to insertion force is 

used as a metric and correlated to probability of insertion based on empirical data from 

validating insertion experiments for select probe designs. Chapter 5 extends this model to 

understanding how probe design affects the chronic response. Adapting our finite element 

simulation from Chapter 4, we predict interfacial stresses generated by micromotions and 

correlate stress magnitude to gliosis and astrocyte activation garnered from parallel in 

vitro and in vivo experiments. Ultimately, we utilize the information gleaned from 

chapters 4 & 5 to ascertain the most important requirements for neural electrode design. 
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Finally, we discuss overall results, and the implications of our findings in Chapter 6. A 

thorough treatment of how these two disparate models link to each other and their clinical 

significance is also addressed. Ultimately, the contribution of this thesis is an extension of 

the philosophies of biological and computational modeling and their utilization in 

elucidating the multi-scale phenomenon in primary axonal injury and probe-tissue 

mechanics to improve the quality of life of CNS injury victims. 
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Figures: 

 

 
Figure 1-1: A schematic describing multiscale modeling of the spinal cord. Spinal cord 

tissue (macroscopic level) undergoes tissue-level stretch which causes deformation to 

axons (microscopic elements). Evidence from previous studies (Bain et al., 2003; Hao 

and Shreiber, 2007) strongly imply that this translation is not 1:1 and is dictated by 

microstructural components. 
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Figure 1-2: Depiction of the ideal probe in design space for neural electrodes. Ideal 

probes would mitigate the long-term chronic response, while being large enough to 

maximize space for conductive tracings (for fidelity in signal acquisition), and stiff 

enough for successful insertion into tissue. Unfortunately, the latter two features are in 

direct opposition to the first: larger, stiffer probes exacerbate the chronic response. 
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Chapter 2: Characterizing the 3-dimensional kinematic 

behavior of axons as a function of macroscopic stretch 

and development in white matter tissue  

Major sections of this chapter have been excerpted from the following publication: Singh 

S., Pelegri A.A., Shreiber D.I., 2015. “Characterization of the three-dimensional 

kinematic behavior of axons in central nervous system white matter”, Biomech. Model. 

Mechanobiol.  

1303–1315. I have received permission from the publishers to utilize this and all the work 

presented herein is my own. 

Abstract:  

 Axonal injury via stretch is the proximal cause of functional damage in traumatic 

brain and spinal cord injury. During injury, the stresses and strains experienced by the 

tissue are transferred to the microscopic axons. How this transfer occurs and the 

constituents which direct this multiscale translation is unclear, though it is accepted that 

axon tortuosity and kinematics exhibited by the microstructure influence transfer. 

Previous studies have characterized axon tortuosity and kinematics in 2-dimensions (2-

D), where axons were modeled to exhibit non-affine (discrete), affine (composite-like), 

and switching behavior. In this chapter, I outline the studies performed and their results in 

characterizing axon tortuosity and kinematic behavior in 3-dimensions (3-D), as a means 

to infer the macroscopic to microscopic transfer of stretch. Embryonic chick spinal cords 

at various developmental stages were exposed to controlled levels of stretch. Cords were 

fixed, transversely sectioned, and imaged via epifluorescent confocal microscopy. 3-D 

axon trajectory was traced through image stacks using a custom-built MATLAB script. 2-
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D kinematic models previously described in Bain et al. (2003) were extended, re-derived, 

and validated for the 3-D case. Results showed 3-D tortuosity decreases with stretch, 

exhibiting similar trends with changes in development as observed in the 2-D case. 

Kinematic behavior followed similar trends, where axons are predicted to exhibit more 

affine behavior with development. In comparison to 2-D, capturing the additional plane 

decreases the proportion of axons predicted to display non-affine behavior. The data and 

kinematic models presented in this chapter can be incorporated into current multi-scale 

approaches to modeling CNS injury, which can advance the accuracy of predictions and 

assist in gleaning more accurate axonal injury thresholds. 
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Background & Significance: 

 Traumatic injury to axons in white matter of the brain and spinal cord is one of the 

major causes of functional damage following primary injury (Smith and Meaney, 2000). 

Injury is the often due to excessive tensile stretch experienced by CNS tissue (Bain and 

Meaney, 2000). During an injury event, strain is transferred from the tissue level to 

individual axons. Understandably, the properties of this transfer from macroscopic to 

microscopic levels are likely dictated by the features of the white matter microstructure 

(Meaney, 2003). In CNS white matter tissue, there is a heterogeneous population of 

components comprised of axons, myelin, oligodendrocytes, astrocytes, etc. Each of these 

components and their respective properties can contribute to the bulk material properties 

of the tissue as well microscopic strain experienced by individual components. For 

instance, while axons are predominantly oriented in CNS tissue, they are not perfectly 

straight, but instead follow an undulated, tortuous path. This tortuosity, which we have 

defined as the ratio of the axon’s pathlength to its end-to-end length can influence the 

transfer of strain from the macroscale to the microscale. 

 Axon tortuosity has been characterized in 2-dimensions (2-D) in the chick embryo 

spinal cord, as well as the guinea pig optic nerve, in control tissue as well as tissue 

exposed to quasistatic (non-rate dependent) stretch (Bain et al., 2003; Hao and Shreiber, 

2007). When excised white matter tissue is exposed to stretch, axons become 

progressively straighter and axon tortuosity decreases. However, the manner in which 

axons straighten and tortuosity changes is non-uniform, and dependent on the degree of 

macroscopic stretch, as well as developmental stage. Constituents of white matter, like 

other composite or composite-like materials, can demonstrate different degrees of 
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coupling with surrounding features, which serve to change kinematic behavior (Meaney, 

2015; Pan et al., 2011; Shreiber et al., 2009). In 2-D characterizations, it was 

demonstrated that axon kinematics varied with stretch and development. Axons were 

theorized to exhibit one of three types of kinematic behavior: non-affine, affine, and 

switching (Hao and Shreiber, 2007). 

 In non-affine kinematic models, axons are assumed to be completely uncoupled, 

and straighten independently of one another with a given macroscopic stretch, acting in a 

manner akin to discrete elements. A consequence of this behavior is that an axon does not 

experience physical stretch until it has fully straightened, where the inherent tortuosity 

provides the axon extra slack in resisting macroscopic stretch and delaying its onset. At 

the opposite end of the spectrum, axons can be fully coupled to each other, exhibiting 

affine kinematics. Under this kinematic mode, axons behave like a composite, and 

experience the same geometric transformation as the tissue. As a result, axons are 

exposed to stretch even whilst undulated. The third type of behavior: switching, models 

an axon as a dynamic entity. Each axon has a unique switching threshold of tortuosity 

which dictates when the axon switches from non-affine to affine kinematics. As the tissue 

experiences stretch and axons straighten, axons eventually reach their individual 

threshold that causes kinematic behavior to vary. Previous studies suggest the propensity 

of affine behavior is a function of myelination and development. This is corroborated by 

studies of 2-D axon kinematics in the developing chick embryonic spinal cord (Hao and 

Shreiber, 2007), and by characterizations of experimentally demyelinated chick 

embryonic spinal cords, in which more developed, and myelinated cords were predicted 

to have axons with affine behavior (Shreiber et al., 2009). 
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 Of course, axons traverse a 3-dimensions (3-D) trajectory. While we hypothesize 

that the kinematic trends observed for the 2-D case will carry forward in the 3-D case, it 

is likely that the degree of tortuosity and kinematic parameters for switching behavior 

will vary substantially, as information on the additional spatial plane would capture 

additional kinematic behavior which might have been disregarded in 2-D. Several studies 

have attempted to model the axon in 3-dimensions, either as a fascicle of hexagonally-

arranged straight cylinders (Bas and Erdogmus, 2010), or as a helical coil (Nilsson et al., 

2012), though neither study explored microstructure behavior due to stretch. Karami et al 

used finite element modeling to simulate axon kinematics due to tissue-level stretch 

(Karami et al., 2009). However, the study relied on 2-D tortuosity and kinematic data to 

generate 3-D predictions and assumed pure affine behavior. More recently, Pan et al. 

(2013) modeled axons in a “pseudo 3-D” representative volume element (RVEs) that 

incorporated 2-D coupling behavior (Pan et al., 2013). However, model predictions have 

not been validated in 3-D. Characterizing and modeling axon kinematics in 3-dimensions 

will improve the predictive capabilities of CNS primary injury models, particularly in 

predicting axonal injury strain thresholds. In this work, we experimentally characterize 

the axon tortuosity in 3-D in the embryonic chick spinal cord as a function of tissue-level 

stretch. We then extend the model developed by Bain (Bain et al., 2003) and fitting 

procedures used in our previous study (Hao and Shreiber, 2007) to describe axon 

kinematic behavior in 3-D. We hypothesize that axon tortuosity in 3-D will be greater 

than 2-D, but that kinematic changes with development will be similar. 
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Methods: 

Chick embryo spinal cord isolation: Fresh fertile chicken eggs (Charles River 

Laboratories, North Franklin CT) were incubated to specific development stages 

(Embryonic Day (E) – E12, E14, E16, and E18). The intact spinal cord was excised from 

the embryo by cutting along the length of the spinal column and removing the dorsal 

portion of the  vertebrae. The full length of the spinal cord from the first cervical 

vertebrae (C1) to the eleventh lumbar vertebrae was measured three times with digital 

calipers and averaged. This measurement was designated the in situ length of the spinal 

cord. Pieces of reflective plastic (or glitter) were carefully placed onto the cord at the C3, 

C8, T4 (fourth thoracic vertebrae), and L4 (fourth lumbar vertebrae) regions using the 

spinal column as a visual guide. The distance between glitter markers was measured in 

situ, and the ventral portions of the vertebrae were removed, freeing the spinal cord from 

the column. The spinal cord was then pinned on each end of a custom-built microstretch 

device composed of two rapid-prototype platforms, and a 75mm x 30mm well immersed 

in 37°C phosphate buffered saline (PBS) solution (Figure 2-1). Distances between the 

reflective plastic pieces on the spinal cord were measured three times and averaged. The 

spinal cord was then stretched back to its in situ length, prior to being quasistatically 

stretched to a stretch ratio (λ) of 1 (unstretched control), 1.05, 1.10, 1.15, 1.2, or 1.25 

defined as: 

 

𝜆 =
𝐹𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑝𝑖𝑛𝑎𝑙 𝑐𝑜𝑟𝑑

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑝𝑖𝑛𝑎𝑙 𝑐𝑜𝑟𝑑
   (Eq 2-1) 
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Following stretch, spinal cords were photographed, and distances between the reflective 

plastic pieces were measured in their stretched state to confirm that macroscopic stretch 

was uniformly applied. Saline in the well of the microstretch device was replaced with 

4% paraformaldehyde (Sigma-Aldrich, St. Louis MO) to fix tissue in its stretched state. 

Previous studies demonstrated that paraformaldehyde fixation does not affect the 

undulation or morphological appearance of axons in white matter tissue (Bain et al., 

2003). Spinal cords were fixed in their stretched state for 15 minutes, carefully removed 

from the microstretch device, and re-measured to ensure length did not change during 

fixation. Afterwards, spinal cords were transferred to a fresh solution of 4% 

paraformaldehyde and stored overnight at 4°C, before being transferred to a 

cryoprotectant 20% sucrose-saline solution for at least 24 hours before sectioning and 

staining. 

Immunohistochemistry: Spinal cords were removed from cryoprotectant solution and 

divided into cervical, thoracic, and lumbar regions with a razor blade. Each of these 

sections was divided again for coronal (Figure 2-2A) or transverse (Figure 2-2C) 

sectioning. Regions were embedded in Optimal Cutting Temperature (OCT) compound 

(Electron Microscopy Services). Frozen transverse or longitudinal sections (30µm thick) 

were cut on a cryostat (Thermo Electron) and placed on pre-treated glass slides (Fisher). 

Transverse sections were used for imaging in 3-D. Longitudinal sections were used to 

image the 2-D tortuosity for measuring by hand to validate our image processing 

algorithm (described below) and directly compare 2-D tortuosity measurements to our 

previous study (Hao and Shreiber, 2007). Sections were rinsed four times in 

immunobuffer (1% bovine serum albumin, and 0.5% Triton X-100 in phosphate buffered 
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saline) for 5 minutes each, and then incubated in a 10% goat serum blocking buffer for 1 

hour. Sections were incubated overnight at 4°C with a primary antibody mixture of a 

1:1000 dilution of mouse monoclonal α-Neurofilament-200 (Sigma) and a 1:500 dilution 

of rat monoclonal α-Myelin Basic Protein (MBP) (Invitrogen). Sections were again 

washed with immunobuffer four times for 15 minutes each and then incubated in a 1:400 

dilution of Alexa 568 goat-anti-mouse secondary antibody and a 1:400 dilution of Alexa 

488 goat-anti-rat secondary antibody for 1 hour. Sections were washed a final time with 

immunobuffer four more times for 15 minutes each and allowed to air-dry in the dark. 

Slides were then coverslipped with mounting solution (Vector Labs). 

Histology: To quantify the degree of myelination, three spinal cords from each stage of 

development were fixed and stained with osmium tetroxide (OsO4, Electron Microscopy 

Services). Stained spinal cords were embedded in epoxy resin, sectioned into 1-µm thick 

slices with a microtome, counter-stained with toluidine blue (Electron Microscopy 

Services, Hatfield PA), and coverslipped.  

Imaging: Confocal images of immunostained spinal cord sections were captured with an 

Olympus IX81 inverted epifluorescent microscope equipped with a spinning disk 

confocal unit and a Hamamatsu ImagEM digital camera (Middlesex NJ). Images were 

taken at 100x with filters at 488nm and at 568nm to visualize the different secondary 

antibody labeling. Images of 100 optical sections at increments of 0.3µm were captured 

through the thickness of each slice. Both the ventral funiculus and lateral funiculus were 

selected for imaging. Immunolabeling was observed to be qualitatively the most 

consistent in the ventral funiculus. The lateral funiculus was also imaged to provide side-

by-side comparison with our previous study (Hao and Shreiber, 2007). 
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For longitudinal sections, the paths of 20 to 40 axons per image were traced using 

ImageJ. Tortuosity in 2-D was calculated by dividing the path length of the tracing by the 

end-to-end length. To examine the degree of myelination, osmium tetroxide-stained 

cross-sections were imaged using a 100x oil immersion objective under bright-field. 

Myelination was quantified by counting the number of myelinated fibers in images of 

each region.  G-ratio was calculated for each myelinated axon, and was defined as the 

ratio of inner axonal diameter to outer diameter for each myelinated fiber (Chomiak and 

Hu, 2009). 

Image Processing for 3-D Tortuosity Extraction: Image stacks were processed using a 

custom MATLAB script (Figure 2-3). Localized thresholding within an image was 

accomplished by dividing each image into a grid of 64x64 pixel sub-regions and 

operating on each sub-region separately. The median intensity in each sub-region was 

selected as the threshold intensity, based on preliminary findings where the mean 

intensity, and Otsu’s method were used and found to be not as effective at cleaning 

images when compared to hand-based tracing results (Otsu, 1975). The processed regions 

were stitched back together to reconstruct the full image. Isolated, unconnected pixels 

were cleaned out so that the algorithm would not confuse these pixels for axons. The 

centroids of individual axons were identified in the first image of the stack. A 50x50 

pixel region around each axon was cropped. Using a nearest neighbors approach, the next 

image of the stack was processed within the same 50x50 pixel region, and the Euclidian 

distance of the axon’s centroid between the two images was calculated (Figure 2-3D). If 

more than one axon was present in the search area, the axon with the smallest distance 

was considered the correct one. This process was repeated for each image in the stack, 



30 

 

 

 

and the centerpoint displacements were stored and summed to determine the total path 

length that the axon has traveled. The tortuosity of the axon was then calculated. This 

process was repeated for each axon in the original image. Histograms of 3-D axon 

tortuosity were produced for each stretch level and development stage. Histograms for 2-

D axon tortuosity for x-z and y-z longitudinal planes were also produced. The automated 

tracking algorithm was validated against 2-D and 3-D tortuosities measured by hand from 

test I mages (Figure 2-4) and stained images of unstretched spinal cords (Figure 2-5). 

 

Mathematical Model: Axon kinematics were modeled with MATLAB scripts modified 

from our previous study (Hao and Shreiber, 2007) that predicted tortuosity distributions 

at various stretch levels in the pure affine or non-affine states. The experimental 

distributions were first compared to idealized non-affine and affine distributions. The 3-D 

tortuosity data for unstretched specimens was used as input for the scripts. Expressions 

for the dependence of tortuosity on tissue-level stretch ratio (λ) in 3-dimensions were 

derived for non-affine and affine states. These derivations are provided below:  

 

Non-affine model: In 2-dimensions, the microstructural transformation was calculated 

from the initial tortuosity, T0, and macroscopic stretch ratio, λ (Bain et al., 2003): 

  

𝑇2𝐷 =  
1

𝜆
𝑇0 for 𝜆 <  𝑇0  (Eq 2-2) 
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When the stretch ratio is equivalent to the initial tortuosity, the axon has completely 

straightened. If the stretch ratio continues to increase, the axon begins to stretch, but 

remains completely straight; mathematically this can be expressed as:  

 

𝑇2𝐷 =  1 for 𝜆 ≥  𝑇0  (Eq 2-3) 

 

In principle, this should apply to the tortuosity in 3-dimensions; axons when uncoupled 

will straighten according to the level of stretch, regardless of the additional plane of 

undulation. Additionally, once the axon has straightened, its tortuosity will remain at 1. 

Mathematically, this can be written as: 

𝑇3𝐷 =  
1

𝜆
𝑇0 for 𝜆 <  𝑇0  (Eq 2-4) 

𝑇3𝐷 =  1 for 𝜆 ≥  𝑇0  (Eq 2-5) 

 

Affine Model: The objective was to derive an analytical model for affine kinematics 

which predicted the axon’s new tortuosity based on initial tortuosity and stretch.  

In 2-dimensions, the undulated axon was modeled as a cosine wave with amplitude A0 

and period P0. There is no closed form solution for the pathlength. A solution was 

approximated using a simplification applicable for tortuosity values close to 1, producing 

the following transformation linking initial tortuosity and stretch ratio for 2-dimensional 

axons under an affine regime (Bain et al. 2003):  

 

𝑇2𝐷 =  𝑇0 [
1

𝜆3
+  

1

𝑇0
2 (1 −  

1

𝜆3
)]

1/2

 (Eq 2-6) 
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(Eq 2-7) 

(Eq 2-8) 

 

In adapting the kinematic model for 3-dimensional use, the 3-D axon is modeled as a 

helical coil, using two parametric periodic functions to describe the undeformed axon’s 

path in each plane: 

 

𝑦(𝑧) =  𝐴yz cos (
2𝜋𝑧

𝑃yz
)      

𝑑𝑦(𝑧)

𝑑𝑧
=  −

2𝜋𝐴yz

𝑃yz
sin (

2𝜋𝑧

𝑃yz
) 

 

 

𝑥(𝑧) =  𝐴xz sin (
2𝜋𝑧

𝑃xz
)      

𝑑𝑥(𝑧)

𝑑𝑧
=  

2𝜋𝐴xz

𝑃xz
cos (

2𝜋𝑧

𝑃xz
) 

By assuming incompressibility and isotropy, the axon’s new amplitude and periodicity 

for a given stretch ratio, can be described as: 

 

𝐴𝑛𝑒𝑤 =  𝐴0 (𝜆−
1

3)                     𝑃𝑛𝑒𝑤 =  𝑃0(𝜆) 

 

Applying the transformations described in (Eq 2-9) to equations (Eq 2-7) and (Eq 2-8) 

gives the following equations for the deformed axon: 

 

𝑦′(𝑧) =  
𝐴𝑦𝑧

√𝜆
3 cos (

2𝜋𝑧

𝜆𝑃𝑦𝑧
) 

(Eq 2-9) 

 
(Eq 2-10) 
 
 
(Eq 2-11) 
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𝑥′(𝑧) =  
𝐴𝑥𝑧

√𝜆
3 sin (

2𝜋𝑧

𝜆𝑃𝑥𝑧
) 

 

Differentiating equations (Eq 2-10) and (Eq 2-11) generates the following:  

 

𝑑𝑦′(𝑧)

𝑑𝑧
=  −

2𝜋𝐴𝑦𝑧

𝜆4/3𝑃𝑦𝑧
sin (

2𝜋𝑧

𝜆𝑃𝑦𝑧
) 

 

𝑑𝑥′(𝑧)

𝑑𝑧
=  

2𝜋𝐴𝑥𝑧

𝜆4/3𝑃𝑥𝑧
cos (

2𝜋𝑧

𝜆𝑃𝑥𝑧
) 

 

The pathlength can be found by using (Eq 2-12) and (Eq 2-13) and integrating along the 

incremental path of the axon. Thus, the tortuosity of the stretched axon can be described 

as: 

𝑇𝑡 =  
1

𝐿𝑒
∫ √1 + (−

2𝜋𝐴𝑦𝑧

𝜆4/3𝑃𝑦𝑧
sin (

2𝜋𝑧

𝜆𝑃𝑦𝑧
))

2

+ (
2𝜋𝐴𝑥𝑧

𝜆4/3𝑃𝑥𝑧
cos (

2𝜋𝑧

𝜆𝑃𝑥𝑧
))

2
𝑑𝑧

𝐿𝑒

0
 

 

There is no analytical solution to the integral above. However, it is possible to 

approximate the solution for tortuosity by using the formula for the arc length of a helical 

coil: 

𝑠 = 2𝜋√𝑟2 + 𝑃0 
2 

 

 
(Eq 2-12) 
 
 
(Eq 2-13) 

(Eq 2-14) 

(Eq 2-15) 
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where s is the arc length, r is the radius of the helix, and P0 is the helix periodicity. 

Experimental evidence from preliminary studies in unstretched chick embryo spinal cords 

and literature (Butt et al. 1994) supports the idea that the periodicity is the same in both  

x-z and y-z directions. This makes the equation above for arc length applicable, where the 

end-to-end length of a period of the helical axon is given by 2πPyzPxz.  Substituting (Eq 2-

4) and (Eq 2-5) into (Eq 2-15) and dividing by the end-to-end length provides the 

following equation for initial undulation of the 3-D helical axon: 

𝑇0 =  √1 + 
(𝐴𝑦𝑧

2 + 𝐴𝑥𝑧
2 )

4
+ 2𝜋 (

𝐴𝑦𝑧

𝑃𝑥𝑧
×

𝐴𝑥𝑧

𝑃𝑦𝑧
) 

 Rearranging the above gives us: 

𝑇0
2 − 1 − 2𝜋 (

𝐴𝑦𝑧

𝑃𝑥𝑧
×

𝐴𝑥𝑧

𝑃𝑦𝑧
) =  

(𝐴𝑦𝑧
2 + 𝐴𝑥𝑧

2 )

4
 

 

To simplify, we denote the product cross-ratio, (Ayz/Pxz * Axz/Pyz) as a single variable, k. 

Replacing instances of this product cross-ratio with k in (Eq 2-17), rearranging (Eq 2-17) 

in terms of T0
2
, and substituting equations (Eq 2-12) and (Eq 2-13) into the arc length 

equation (Eq 2-15) generates expressions for the pathlength of the deformed axon. 

Further rearranging gives an equation which links the transformed tortuosity to initial 

tortuosity and stretched ratio for axons in 3-D exhibiting affine behavior:  

𝑇3𝐷 =  𝑇0√{
1

𝜆8/3 +  
1

𝑇0
2 [1 −  

2𝜋

(2𝜋+ 𝑘2)𝜆8/3 (
1

𝑘2 +
1

2𝜋
)]} 

 

Switching Model: The switching model incorporates both modalities where axons 

initially begin by exhibiting non-affine kinematics, and as the axon straightens (and 

(Eq 2-16) 

(Eq 2-17) 

(Eq 2-18) 
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tortuosity decreases) there is a unique threshold after which the axon exhibits affine 

behavior. Mathematically, this is described by the following: 

Affine:  𝑇 < 𝑇1 

Non-affine:  𝑇 >  𝑇2 

     Switching:  𝑇1 ≤ 𝑇 ≤  𝑇2 

An axon with switching tortuosity, T, which falls in the purely affine regime 

demonstrates complete coupling with neighboring axons. Conversely, if T is sufficiently 

large (larger than T2), the axon follows non-affine behavior. In the switching 

circumstance, each axon has a unique transition point, T which falls between T1 and T2, 

where the axon switches from a non-affine to affine modality. At low levels of stretch, 

axons exhibit non-affine behavior. As tissue-level stretch increases, the axon straightens 

non-affinely and its tortuosity decreases until it reaches transition tortuosity, T, and its 

behavior switches to affine. The transition tortuosity is picked randomly from a uniform 

distribution for developmental stage with lower bound T1, and upper bound T2 of the 

corresponding uniform distribution. 

The computational model (presented in Bain et al. 2003) attempts to reconcile this 

mathematical framework with experimental results. Each axon in the distribution is 

assigned a unique tortuosity value at which it switches (based on the unstretched data). 

The unique switching value is picked from a uniform distribution. The distribution of 

axon tortuosities is then artificially stretched, and the new tortuosity values are calculated 

and compared to the conditions of the switching model. Axons with tortuosities above 

their switching value have their new tortuosity calculated via the non-affine modality. 

Once its tortuosity reaches the switching value, the new tortuosity is calculated using the 

(Eq 2-19) 
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affine modality. The resultant distribution of tortuosities is then compared to the 

experimental data for that particular stretch level, and goodness-of-fit tests measure the 

extent to which the model agrees with the experimental data. The model then picks new 

values for the upper (T2) and lower (T1) bounds and reiterates until a convergence is 

reached for T1 and T2. Using this scheme, the bounds of the uniform distribution that 

describes the transition tortuosity can be interpreted as a measure of the propensity for 

affine or non-affine behavior. The model was executed 100 times for each case, from 

which the mean values, standard deviation, and regression coefficients for each fit were 

determined. In our previous study, the fitting procedure uniformly resulted in the lower 

bound T1 <1 and the upper bound T2>1. With these conditions, a fraction of the transition 

tortuosities [(1-T1)/(T2-T1)] will be less than 1. For this fraction of axons, because the 

minimum value for actual tortuosity is 1, the transition tortuosity is never reached, and 

the axons will exhibit non-affine behavior permanently.  

Equation validation:  Finite element analysis (FEA) was used to validate the 3-D 

kinematic model equations. These models were developed using the ABAQUS software 

suite (Simulia). A population of seven axons (Stiffness, E = 0.29kPa,  Poisson’s Ratio, ν 

= 0.49, Density, ρ = 1250kg/m
3
) (Magdesian et al., 2012; Ouyang et al., 2013), with 

varying tortuosities were generated  (Figure 2-6). A MATLAB script was employed to 

extract the nodal positions and calculate the original and final tortuosities. Non affine 

axons were modeled as single helical coils and stretched either 10% or 20% of the 

original end-to-end.  Affine axons were modeled as the same helical coils embedded in a 

solid matrix. Tie constraints were incorporated between axons and the surrounding matrix 
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to simulate complete coupling. The 10% or 20% stretch was then applied to the solid 

matrix. 
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Results:  

Growth and morphological features of spinal cords: Figures 2-7A and 2-7B show 

representative images of stained transverse sections of spinal cords from E12 and E18 

respectively (Figure 2-7). Spinal cords at later stages of development showed the tell-tale 

‘butterfly’ profile when stained for myelin basic protein. The average in situ length of the 

spinal cord increased from 14.1±1.6mm at E12 (N = 22) to 24.2±2.8mm at E18 (N = 24), 

similar to results from our previous study. Lengths of the semi-major axis for spinal cord 

cross-sections increased from 884±122µm at E12 to 2290±274µm at E18. Following 

excision, spinal cords were observed to shrink about 4.8% in length compared to their in 

situ length. This was consistent across all developmental stages (Table 2-1, Pmin = 0.12).  

We determined the percentage of myelinated fibers at each development stage for both 

the lateral funiculus and ventral funiculus (Figure 2-8 and Figure 2-9C) using osmium 

tetroxide staining. More myelinated fibers were found in the ventral funiculus from E12-

E16. At E18, the percentages of myelinated fibers are equal in both regions. This trend is 

consistent with previous findings (Chung K, 1983). Myelination followed a sigmoidal 

relationship in both regions, where the largest increase was seen between E14-E16. We 

also examined the G-ratio, which is a measure of the amount of myelin around an axon. 

Differences in the G-ratio between the ventral and lateral funiculus for each stage of 

development were evaluated with a Kruskal-Wallis (K-W) non-parametric test and were 

not statistically significant (Pmin = 0.227). Average axon diameter also increased with 

development, increasing from 0.7±0.6µm at E12 to 1.2±0.7µm at E18. 

Distributions of axon tortuosity in the lateral and ventral funiculus were compared at 0% 

and at 10% stretch at each developmental stage. Histograms of 3-D axon tortuosity for 
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unstretched E12 and E18 specimens at each region are shown in Figures 2-5D to 2-5G 

(Figure 2-5). The only statistically significant difference between the two regions was 

observed in E14 spinal cords exposed to 10% stretch (P = 0.049). Tortuosity significantly 

decreased as stretch level increased.   

2-D and 3-D Tortuosity Measures:  Mean 3-D tortuosity decreased with increasing stretch 

for each developmental stage (Table 2-2). For example, in E18 specimens tortuosity 

decreased from 1.146 to 1.042 as stretch increased from 0% to 20%. The largest decrease 

in average tortuosity was observed in E12 samples (1.158 to 1.018). K-W tests were used 

to evaluate the differences between the x-z and y-z tortuosities extracted from confocal 

stacks of transverse sections and 2-D tortuosities measured by hand from longitudinal 

sections. No statistical significance was found in either x-z or y-z orientations (Pmin = 

0.094), and these data were subsequently combined for our microkinematic analyses.  

Mean 3-D tortuosity was consistently higher than 2-D tortuosity for all given 

development and stretch levels (Figure 2-10A). For both 2-D and 3-D, tortuosities in 

unstretched samples decreased with development, but increased with development at 

higher stretch levels. Tortuosity was also compared across the three regions of the spinal 

cord. Two-tailed K-W tests were done among the distributions generated for the cervical 

(C3-C8), thoracic (C8-T4), and lumbar regions (T5-L4) at each age and stretch level. No 

statistically significant differences were found (Pmin = 0.071), and the regional 

distributions were pooled into a single distribution per age group and stretch level.  

The distributions of tortuosity with stretch (Figure 2-10B) demonstrate some important 

trends. For example, in all age groups, axons are the straightest at the highest stretch 

level. However, the percentage of axons that can be classified as “perfectly straight” 
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(tortuosity of 1) decreased with increasing age, which indicates a shift to affine 

kinematics with development and myelination. In particular, a significant drop in straight 

axons was observed from E14 to E16, where the percentage of perfectly straight axons 

fell from 50% to 35%.  We compared distributions across development stages for a given 

stretch using pairwise two-tailed K-S tests (P < 0.01) and found significant changes in the 

tortuosity distribution in control samples (Pmax = 0.004), 10% stretch level  (Pmax = 

0.001), and 20% stretch level (Pmax < 0.001).   

As mentioned above, spinal cord ex vivo lengths were on average 4.7% less than the in 

situ lengths. We characterized tortuosities in spinal cords not exposed to pre-stretch to 

determine whether axons become more undulated with adjustments to their natural state. 

Mean tortuosity slightly increased in all cases (Figure 2-11). Distributions shifted slightly 

to the right for cords not exposed to pre-stretch when compared to cords stretched to their 

in situ length. This shift was statistically significant (Pmax = 0.04). These differences 

justified the application of pre-stretch in determining morphology changes with stretch. 

Microkinematic Behavior:  We extended previously developed models to characterize the 

3-D microkinematic behavior for axons. At each developmental stage, distributions for 

unstretched axons were used as the input data. The kinematic models were used to predict 

the response assuming pure affine and non-affine behaviors. The equations for these 

idealized models and predicted results for tortuosity as a function of macroscopic stretch 

were first validated against a finite element model. In the purely affine case, axons did 

not completely straighten. The kinematic model results and finite element simulations 

agreed to within 0.6% axon stretch (or 3.4% engineering strain) (Table 2-3).   
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To determine the switching behavior, the bounds of the transition tortuosity distribution, 

T1 and T2, were computationally iterated to allow an axon to move from non-affine to 

affine behavior until the predicted tortuosity distributions at the four different stretch 

levels converged against the experimental distributions. This was performed for all 

developmental stages, to determine how kinematics varied with morphological changes 

in the spinal cord.  

Using our unstretched tortuosity data as input, we calculated “idealized” distributions of 

tortuosity at different stretch levels when axons exhibit pure affine and non-affine 

behaviors. Neither the pure affine nor non-affine models matched the experimental data 

for a given tissue-level stretch at any developmental stage when we evaluated cumulative 

frequency distributions of experimental data and predicted results (Figure 2-12). 

Allowing axons to transition from non-affine to affine kinematics according to the 

switching model improved the agreement between the model results and experimental 

data, based on K-W test statistics (P < 0.001). Similar to the 2-D study, we found that 

more developed spinal cords showed more affine-like behavior. For example, there was 

an 11% decrease in the percentage of perfectly straight axons from E12 profile to E18 at 

10% stretch. As shown in Figure 2-13A, T1 increased with developmental stage, whereas 

T2 values remained relatively constant (Figure 2-13). This trend was also seen in 2-D 

distributions, though no statistically significant differences were found between 2-D and 

3-D lower bound (T1) transition parameters (Pmin = 0.114). These values were used to 

estimate the percentage of axons that follow purely non-affine kinematics. As shown in 

Figure 2-9C, the percentage of axons predicted to behave purely non-affinely decreased 

during development from ~50% at E12 to ~20% at E18. The predicted percentage of non-
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affine axons was also consistently lower from the 3-D data than from the 2-D data at all 

developmental stages (P < 0.005). 

Another set of tests were executed where one of the transition points (T1, T2) was held 

fixed while the second point was iteratively transformed. Mechanically speaking, as T1 

decreases below 1, holding T2 constant, a greater percentage of axons will demonstrate 

permanently non-affine behavior regardless of any macroscopic stretch these axons 

experience. Conversely, when T1 is held constant at the average value of 0.921 and T2 is 

increased, a smaller percentage of axons demonstrate non-affine behavior. In our 

simulations where T1 was held constant, we observed that there were statistically 

significant changes to the cumulative distribution functions when compared to their 

respective control cases. When T2 was held constant at 1.122, (average value across all 4 

developmental stages) the model predicted no significant difference in cumulative 

distribution functions for the non-affine and affine distributions when compared with the 

two-parameter model. These findings are similar to the predictions made by the 2-D 

model where changes to the lower-bound tortuosity caused the biggest variation in 

kinematic predictions.   
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Discussion:   

In this chapter, we present a quantitative characterization of CNS axon tortuosity in 3-

dimensions using a novel image processing algorithm to extract axon positions from 

confocal images of spinal cord cross-sections. Using a nearest-neighbors methodology, 

we tracked single axon trajectories through cross-sections of spinal cord slices. The 

algorithm finds axons and measures and sums the displacement of their center points to 

determine tortuosity. We also stained for myelin basic protein as an indicator of spinal 

cord myelination, as well as to ensure that our characterizations targeted white matter 

axons. There was excellent agreement between 2-D data extracted from the 3-D 

characterization of transverse cross-sections and the 2-D data previously acquired from 

longitudinal slices (Hao and Shreiber, 2007) and from longitudinal sections processed in 

parallel in this study, which validated our image processing algorithm.  

We then used tortuosity as a metric to evaluate axonal kinematics during controlled 

stretch of white matter. We found that our results in 3-D follow the same general 

kinematic trends as those found in 2-D with some consistent differences in the magnitude 

of the response. Previously, we estimated an 8.3% increase in tortuosity in unstretched 

axons by projecting 2-D results to 3-D by assuming that an axon resembles a coil with 

amplitude that is 10% of the axon’s periodicity (Hao and Shreiber, 2007). This predicted 

increase in the path length of the axon is consistent with our more direct comparison in 

this work, where the average tortuosity in unstretched samples was 5.3% greater when 

measured in 3-D vs. 2-D.The 3-D tortuosity of axons within unstretched tissue decreased 

with development stage for the chick spinal cord, with axons becoming straighter with 

age and growth, and also decreased after the tissue was exposed to quasistatic stretch. 
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When the 3-D tortuosity data across all developmental stages and stretch levels is 

considered, similar trends to our previous 2-D characterization were observed, where 

mean tortuosity demonstrates a downward trend with development stage at low stretch 

levels, which reverses at higher levels of stretch (Figure 2-10A) (Hao and Shreiber, 

2007).   

As a result of physical growth of the spinal cord, the tortuosity of unstretched axons 

decreased with increasing development. The axial length of the spinal cord increased 

with development by almost 104% between  E12 and E18 specimens, with a large spurt 

in growth seen between E12-E14 and E14-E16 (~23% increase between each period), and 

the two-fold increase in cord diameter in the same timeframe. It is possible that due to 

this growth-induced tension, the proportion of axons with a tortuosity of 1 increased with 

development. With the two-fold increase in length between E12 and E18, we would 

expect mean tortuosity to decrease more dramatically, as those axons in E12 should 

completely straighten due to growth-induced tension. This was not the case and we 

hypothesize that the genesis of new axons, that are inherently tortuous, contribute to this 

finding. Alternatively, kinematic coupling could be occurring at earlier stages, which 

would explain why we observed a much smaller proportion of perfectly straight axons 

than expected.  

Results of the kinematic characterization in 3-dimensions were similar to those found in 

the 2-D characterization (Bain et al., 2003; Hao and Shreiber, 2007). These previous 

studies implied that the kinematic transition from non-affine to affine behavior is 

primarily driven by myelination, and not natural straightening of axons due to growth-

induced tension. Axons in 3-D followed a model that allows transition from non-affine to 
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affine kinematics. In general, the value of the lower (T1) and upper (T2) bounds of the 

transition tortuosity distribution were larger for the 3-D characterization than the 2-D 

(Figure 2-13A). However, these differences were consistently significant only for the 

upper bound across embryonic stages (Pmax = 0.037 for E16). Figure 2-13B provides a 

graphical interpretation of the transition tortuosity results. An axon initially behaves with 

non-affine kinematics as it is stretched until its tortuosity reaches T2. From this point, the 

probability that the axon switches to affine kinematics is based on a uniform distribution 

with lower bound T1 and upper bound T2. Thus, when a population of axons is 

considered, the intercept of the sloped line from this distribution with the line T=1 (red 

line in Figure 2-13B) represents the fraction of axons which are predicted to exhibit 

purely non-affine kinematics regardless of stretch because the actual tortuosity cannot 

decrease below 1. Lower values of T1 and of T2 will decrease the percentage of non-affine 

axons. Therefore, as development progresses from E12 to E18 and T1 increases in value 

while T2 remains constant, the intercept increases, which implies that a smaller proportion 

of axons will remain permanently non-affine. Figure 2-13B also demonstrates how the 

larger T2 value for 3-D vs. 2-D behavior indicates a propensity for more affine behavior. 

Figure 2-13C depicts the percentage of permanently non-affine axons as a function of 

development stage.  As with our previous 2-D study, this percentage decreased with 

development stage, falling about 31% from E12-E18 compared to 34% from our previous 

2-D results (Hao and Shreiber, 2007). Collectively, these results support the hypothesis 

that increased myelination and glial presence is linked to coupling behavior and that these 

features influence 3-D kinematic behavior in a similar fashion to 2-D. Furthermore, we 
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surmise a contributing cause for the larger T2 values predicted is the implicit capture of 

the extra plane in which myelination and coupling occurs. 

We characterized both the ventral and lateral funiculus regions of the spinal cord. In 

preliminary experiments, we observed the highest amount of immunofluorescence and 

best image quality in the ventral funiculus. We also examined the lateral funiculus to 

provide direct comparisons to our previous study (Hao and Shreiber, 2007). We found 

that tortuosity is similar in both regions (Figure 2-9 D-G), but the profile of myelination 

during development was different particularly at E14, where more myelinated fibers were 

present in the ventral funiculus. This generally agrees with previous studies that 

identified the ventral funiculus as one of the first to myelinate (Anderson et al., 2000).  

When the tortuosity data for the two regions was fit to our kinematic model, more affine-

like behavior was predicted for the ventral funiculus than the lateral funiculus, which 

supports the role myelin plays in inducing kinematic coupling behavior. By E18, 

myelination in the ventral and lateral funiculi was not significantly different (P = 0.21).  

We modeled axons using sinusoidal parametric equations, enabling us to construct an 

analytical solution for describing how axon tortuosity changes with stretch in the affine 

case. Morphologically, axons exhibit periodicity in their trajectory, which supports the 

use of these equations in modeling kinematic behavior. Our models used a product cross-

ratio of amplitude-to-periodicity (‘k’) of 1 in calculations. Our 2-D characterizations 

showed amplitude and periodicity was independent of axon orientation in the spinal cord, 

justifying our selection of k = 1. Varying our parameter, k, could theoretically allow us to 

model axon kinematics in different regions of white matter tissue. Black et al. 



47 

 

 

 

demonstrated axon morphology, including myelination and undulation, was 

heterogeneous and varied by region. 

To validate our kinematic equations, we used finite element modeling to simulate axons 

undergoing stretch in the two extremes of kinematics. The disagreement between the 

FEM and experimental results stems from the differences in axo-glial linkages that 

individual axons can have. Our finite element model generated axons which are assumed 

to be completely untied or 100% tied to the glial matrix. Previous studies hypothesize the 

differences in transition tortuosities between non-affine to affine behavior is likely to be 

dependent on the quantity of axo-glial linkages for that given segment of an axon. For 

instance, an axon segment populated with more axo-glial linkages would exhibit more 

affine behavior, and hence, have a lower value for T2, than that with fewer linkages. 

More accurate finite element simulation would generate axons with a random localization 

and degree of linkages to the surrounding matrix to reflect the unique transition points 

between non-affine to affine behaviors. Our FEM, however, did closely match and 

validate the predictions made by the derived equations for purely non-affine and affine 

behaviors.  

The rationale in characterizing and modeling axon kinematics is to provide a means of 

inferring axon-level strain as a function of tissue-level stretch. Our results here and in our 

previous study (Hao and Shreiber, 2007) imply that tortuosity and kinematic behavior can 

influence axonal injury thresholds. Under a non-affine framework, we assume that the 

microstructure does not experience strain until the axon has unfolded and fully 

straightened, contrasting with affine kinematics, in which strain is immediately 

transferred to axons with tissue-level stretch. The higher tortuosities observed in 3-D 
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versus 2-D suggest that axons exhibiting purely non-affine kinematics have a greater 

threshold of macroscopic stretch than axons that switch or are already behaving with 

affine kinematics. When we examine this in the context of switching kinematics, our T2 

parameter increases by 3.7% when comparing 2-D and 3-D, which is less than the 

increase in mean tortuosity, suggesting that macroscopic injury thresholds when the 3-D 

path is accounted for will be greater at earlier stages of development where a larger 

proportion of axons are non-affine. 

Although this characterization of axon kinematics is in 3-D, the consistency of the results 

and trends between 2-D and 3-D and between two different tissue types and species 

(developing chick spinal cord and adult guinea pig optic nerve) (Bain et al., 2003), 

especially for “fully myelinated” tissue,  suggests that the approach can be incorporated 

into computational models of traumatic brain injury and spinal cord injury, and white 

matter injury in general. This may be best accomplished using a multi-scale framework 

that employs representative volume elements of white matter (Cloots et al., 2011; Karami 

et al., 2009; Pan et al., 2013, 2011). Multi-scale models have the potential to capture the 

evolution of anisotropic tissue properties as the microstructure mechanically responds to 

applied loads. These models may also translate the macro-scale response to the micro-

scale, where individual entities can be explicitly defined, to predict injury to individual 

cellular or tissue components. For axonal injury, this latter aspect is particularly 

important, given the large discrepancy between strain injury thresholds determined from 

in vivo models at the tissue level (Bain and Meaney, 2000) and those found from in vitro 

preparations of individual axons (D. H. Smith et al. 1999; Tang-Schomer et al. 2010; 

Wright & Ramesh 2012).  
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We have previously developed RVEs based on the “switching” kinematic framework 

described herein that have accurately predicted the evolution of tortuosity with stretch 

and the resultant tissue-level mechanical properties for axial loading of spinal cord tissue 

(Pan et al., 2013). For this RVE approach to be adopted for models of brain injury, 

however, the tortuosity of different regions of white matter must be characterized, which 

is a burdensome and difficult chore. Rapid advances in imaging techniques may enable 

non-invasive determination of white matter microstructure (Meaney, 2003).  For 

example, diffusion tensor imaging (DTI) is a potential method for characterizing both the 

tortuosity and the myelination of axons. Nilsson et al. modeled water diffusion within 

undulated axons, and concluded that the tortuosity increases the diffusion time parameter 

to the equivalent of doubling axon diameter, confining the space in which water 

molecules can diffuse (Nilsson et al., 2012).  Their study also represented axons as 

helical coils. Although the axon path can be modeled as a persistent random walk (Katz, 

1985), which may more closely resemble the actual path, the regular geometry associated 

with the helical coil model enabled an analytical solution for the affine kinematic 

behavior and simplified modeling of diffusion as well. Stochasticity can then be 

introduced to a population of axons. Our models used a product cross-ratio of amplitude-

to-periodicity (‘k’) of 1 in calculations. The cross-ratio can be adjusted to account for 

differences in axon morphology in different regions of white matter. Axon orientation is 

another important feature that models should capture, as it varies in different regions of 

CNS, conferring isotropy in some regions, and anisotropy in others. It is clear that axon 

orientation influences strains experienced by these microstructural elements. Cloots et al. 

reported that maximum axonal strain relative to applied stress was modeled to occur 
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when the tissue-loading direction is 45° of the main axonal direction (Cloots et al., 2011), 

though the study omits the effects of undulation and kinematic behavior. Studies on 

randomly oriented collagen fiber networks showed that both orientation and kinematics 

influenced the strains experienced by individual fibers (Chandran and Barocas, 2006). 

Axon orientation would particularly influence straightening, and rotation of non-affine 

axons if, for example, the direction of tissue-level stretch was parallel to the axon’s main 

orientation. Other work highlights experimental differences in straight vs. undulated axon 

fibers (Assaf et al., 2000), and in myelinated vs. unmyelinated fibers (Kunz et al., 2014). 

Extracting such information would allow development of RVEs for many in vivo models 

of TBI as well as simulations of clinical cases of TBI. 
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Conclusions: 

 In this chapter, we characterized the 3-dimensional kinematic behavior of axons to 

better infer the transfer of macroscopic to microscopic stretch. Similar to Hao’s 2007 

study (Hao and Shreiber, 2007), chick embryonic spinal cords at various stages of 

development were excised and exposed to controlled stretch. Axon morphology was then 

characterized and tortuosity was used as a metric to predict how kinematic behavior 

varied as a function of stretch and development stage. From this, we extended 2-

dimensional models of axon kinematic behavior by re-deriving the characteristic 

equations used to calculate axon tortuosity as a function of macroscopic stretch 

 The rationale for characterizing kinematics is that it enabled simultaneous 

characterization of other microstructural features in white matter. As mentioned earlier, 

microstructural features are responsible for tissue-level stretch affecting axonal strain. In 

this chapter, we characterized 3-D axon tortuosity, axon diameter, and myelination. 

These properties were then examined to predict how axon kinematic behavior would 

change for given degrees of macroscopic, tissue-level stretch. 

 A limitation to this treatment is while our approach enables inferences to be made 

on the transfer of strain to the population of axons as a whole; we have little quantitative 

insight on the extent to which macroscopic stretch is being transferred to individual 

axons. The kinematic parameters we derived from our model for instance, can estimate 

proportions of axons expected to behave non-affinely and experience no strain until 

straightened, but these same parameters fail to indicate how individual axons behave with 

macroscopic stretch. To elucidate this behavior would require a means of measuring 

axonal strain in situ; the primary focus of the next chapter in this thesis. 
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Figures: 

 

Figure 2-1: (A) Schematic of microstretch device used to apply quasistatic stretch to 

spinal cord tissue specimens composed of 4 components: (1) Thin plastic pieces were cut 

to hold tissue in place; (2) Pinning needle to hold thin plastic (1) and fix it to rapid 

prototype pieces; (3) Tissue specimens were then glued on each end using a 

cyanoacrylate glue; (4) A crank allows for controlled application of stretch. 
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Figure 2-2: (A) Longitudinal sections of spinal cord tissue were stained for 

neurofilament-200kD to track 2-D tortuosity. These results were then compared with the 

x-z and y-z results from our custom-built image processing algorithm for validation 

(Scale Bar = 100μm). (B) Transverse sections were stained for neurofilament-200kD and 

MBP (Scale Bar = 200μm). The composite images showed the tell-tale “butterfly” 

signifying the location of white matter in spinal cords. (C) Zoomed-in white matter 

region of the cross-section. Images confocally taken with 100x oil-immersion objective 

were thresholded. Displacement of each axon’s centroid (Sn) from image, N, to image, 

N+1, was then summed through the image stack to calculate axon path length, and 

tortuosity. (Scale Bar = 2μm). 
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Figure 2-3: A visual schematic outlining the operations in the image processing 

algorithm. (A) A stack of 100 images are taken as an input. Each image in the stack (B) is 

segmented into a 64x64 pixel region that is separately thresholded. Processed segments 

are then combined to recreate the original image, albeit thresholded (C). Connected 

objects were then counted and each object was separated into a 50x50 pixel region (D), 

and the displacement of the centroid was measured through the stack of images.  
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Test 

Scenario 
Description Plot/Result 

1 x-z: No displacement 

y-z: No displacement 

No change in area/ 

 

2 
x-z: Small displacement 

(periodic) 

y-z: No displacement 

No change in area 

 

3 
x-z: Large displacement 

(periodic) 

y-z: No displacement 

No change in area 
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4 
x-z: No displacement 

y-z: Small displacement 

(periodic) 

No change in area 

 

5 
x-z: No displacement 

y-z: Small displacement 

(periodic) 

Random change in area 

 

6 
x-z: Small displacement 

(random) 

y-z: Small displacement 

(random) 

No change in area/shape 
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Figure 2-4: The custom-built MATLAB script for tracking was tested for accuracy 

through the following: a stack of 50 images, each image containing a single circle of 

constant or varying area was displaced from image to image. The script was executed to 

track the center point of the circle through the stack of images. Plots of displacement in 

the x-z and y-z direction were produced and compared to the known displacements in 

each image. Tracking was accurate, irrespective of changes to shape and area of the 

circle. 
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Figure 2-5: To test algorithm accuracy, distributions generated by the algorithm were 

compared to 2-D hand-traced distributions of tortuosity in unstretched (prestretched to in 

situ length) spinal cords. No statistically significant differences were found when tested 

using K-W tests (Pmin = 0.09)  

  



62 

 

 

 

 

Figure 2-6: Finite element analysis was performed to validate the 3-D kinematic 

equations we derived. (A) Instances of coiled coils meant to represent axons were 

simulated using finite element analyses. Node positions were used to calculate 

pathlengths, and initial and final tortuosities. (B) Purely affine (100% coupled axons) and 

non-affine (no coupling) behavior was modeled and tortuosities were calculated from 

simulations before being compared to analytically obtained results from our derived 

equations (Table 2-3).   
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Figure 2-7: Color images of transverse sections of chick embryonic spinal cords to 

distinguish neurofilament (red) from Myelin Basic Protein (blue) for (A) E12 (Scale Bar 

= 100µm), and (B) E18 (Scale Bar = 200µm). Signal from myelin basic protein was seen 

to progressively increase with development. 
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Figure 2-8: Representative images taken at 100x objective of spinal cords stained with 

Osmium Tetroxide (OsO4) and counterstained with Toludine Blue to characterize 

myelination and axon diameter in the lateral funiculus (LF) and ventral funiculus (VF). 

More myelination was found in the ventral funiculus at earlier stages, though by E18, 

there were equal proportions of myelinated axons in both regions. Myelination was 

characterized as a metric for coupling kinematic behavior. (Scale Bar = 20µm) 
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Figure 2-9: (A) Representative image of neurofilament and Myelin Basic Protein 

immunolabeled (A) E12, and (B) E18 spinal cord transverse section.  (Scale Bar = 

200μm). Axons were characterized in the ventral funiculus (VF) and lateral funiculus 

(LF). (C) Percentage of myelinated fibers in unstretched spinal cords at each 

development stage (N = 3 cords). Myelinated axons were counted in osmium tetroxide-

stained sections.  Error bars = standard error of the mean.  (D & E) Histograms for 3–D 

tortuosity for ventral funiculus (N = 887) and lateral funiculus (N = 775) for E12 

unstretched cords, and (F & G) E18 unstretched cords. No statistical significance was 

seen between ventral and lateral distributions at E12 (P = 0.087), E18 (P = 0.092), or for 

any other development stages (P
min

 = 0.081). 
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Figure 2-10: (A) Mean 3-D and 2-D tortuosity decreases with stretch level. 2-D 

tortuosity was extracted from tracings made from longitudinal slices of spinal cord. 
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Similar trends are observed in the 2-D and 3-D case: 1) Average tortuosity decreases with 

stretch; 2) In unstretched tissue, tortuosity decreases with development. However, as 

stretch increases, the trend reverses and tortuosity increases with development. Error bars 

= standard deviation. (B) Normalized frequency distributions for 3-D tortuosity for each 

chick embryo development stage. As the spinal cord embryo develops, there is a shift 

towards affine behavior, demonstrated by the decrease of perfectly straight axons from 

~55% at E12, to ~30% at E18 
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Figure 2-11: Histograms of tortuosity distributions for spinal cords that were not exposed 

to pre-stretch prior to deformation. When compared to the distributions in Figure 2-9B, 

distributions shifted significantly (Pmax = 0.04) to the right.  
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Figure 2-12: Cumulative Frequency Distribution plots of 3-D axon tortuosity for 

experimentally characterized distribution of axons (green), axons predicted to behave 

ideally non-affine (red), and axons predicted to behave ideally affine (blue) at different 

stretch levels and stages of development. There is a trend for the experimental 

distribution to move closer to the idealized affine curve with age for a given stretch level. 

In all cases, neither idealized distribution fit the experimental distribution perfectly. 

Average goodness-of-fit was 0.842. 
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Figure 2-13: Transition tortuosity results and interpretation. (A) Lower (T1, black) and 

upper (T2, red) bound transition tortuosity as a function of development stage. T1 

consistently increased with age. T2 remained roughly constant with development stage in 

both 2-D and 3-D. However, T2 values for 3-D distributions were consistently higher than 

2-D. (B) Graphical representation of non-affine (grey) and affine regimes (hashed) of 2-D 

and 3-D axons for E12 and E18. The bold dashed lines correspond to the transition 

parameters from Figure 4A. The diagonal line corresponds to the cumulative uniform 
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distribution on the interval [T1, T2] of switching tortuosities. The intersection of the 

uniform distribution and the line T=1 (red line) is marked with an X and represents the 

percentage of axons that are predicted to permanently exhibit non-affine kinematics. The 

values of T1 and T2 dictate this percentage. The increase in T1 from E12 to E18 shifts the 

intercept down, which corresponds to an increase in affine behavior. The increase in T2 

from the 2-D characterization to the 3-D characterization also shifts the intercept down 

and indicates more affine behavior. (C) Predicted percentage of purely non-affine axons 

as a function of development stage. Myelination also increases with development, with 

the biggest drop in non-affine axons coinciding with the greatest increase in myelination 

between E14 and E16 (Error bars = standard error of mean). 
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DAY 
In Situ Ex Vivo 

C3-T2 T3-L2 L2-L13 C3-T2 T3-L2 L2-L13 

E12 (N=10) 
4.29 

(1.12) 

4.79 

(0.99) 

5.04 

(1.32) 

4.07 

(0.98) 

4.54 

(1.05) 

4.75 

(1.18) 

E14 (N=10) 
5.12 

(1.14) 

5.69 

(1.22) 

4.23 

(0.85) 

4.82 

(1.05) 

5.44 

(1.31) 

4.04 

(1.15) 

E16 (N=10) 
6.88 

(2.02) 

6.41 

(1.75) 

6.32 

(2.13) 

6.53 

(1.87) 

6.21 

(1.55) 

5.95 

(1.63) 

E18 (N=10) 
7.84 

(2.35) 

7.79 

(2.78) 

7.81 

(2.54) 

7.48 

(2.15) 

7.40 

(2.45) 

7.57 

(2.10) 

 

Table 2-1: In situ lengths for spinal cord sections provided in mm. The ex vivo length for 

each segment of the cord, decreased by 4.77%, on average.  
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DAY 0% 5% 10% 15% 20% 

E12 1.156 ± 0.075 1.106 ± 0.051 1.087 ± 0.029 1.051 ± 0.028 1.018 ± 0.040 

E14 1.151 ± 0.086 1.109 ± 0.029 1.084 ± 0.033 1.056 ± 0.027 1.021 ± 0.020 

E16 1.149 ± 0.067 1.118 ± 0.052 1.091 ± 0.044 1.077 ± 0.039 1.034 ± 0.029 

E18 1.143 ± 0.071 1.113 ± 0.059 1.099 ± 0.060 1.073 ± 0.042 1.038 ± 0.031 

 

Table 2-2: Mean 3-D tortuosity decreases with stretch. Slight decreases in mean 

tortuosity were measured with increasing development, though these changes were not 

statistically significant. In all cases, 3-D tortuosity was greater than the respective 2-D 

tortuosity. 
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Stretch 

Level 

Initial 
Stretched 

Affine Non Affine 

Equation Model Equation Model Equation Model 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

10% 1.148 0.074 1.148 0.074 1.108 0.042 1.109 0.048 1.044 0.039 1.046 0.038 

15% 1.148 0.074 1.148 0.074 1.097 0.037 1.100 0.035 1.000 0.012 1.000 0.011 

20% 1.148 0.074 1.148 0.074 1.086 0.025 1.085 0.036 1.000 0.006 1.000 0.009 

 

Table 2-3: Results from FEM for axons (N=7) modeled with varying initial tortuosities. 

Axons were either completely tied (Affine) to surrounding matrix or untied (Non-affine). 

Equation and model values agreed within 0.6%, or 3.4% with regards to engineering 

strain. 

  



75 

 

 

 

Chapter 3: Estimating axonal strain as a function of 

tissue-level stretch using contactin-associated protein as 

a fiducial marker  

Abstract:  

 Axonal injury is a proximal cause of functional deficits following primary central 

nervous system injury. During the injury event, tissue-scale loads are transferred to 

individual axons, leading to varying degrees of functional and physical damage including 

physical failure. Computational models have been developed to understand this transfer 

and better predict the circumstances that cause injury. However, the value of these studies 

is often limited by a lack of validating experimental work examining the mechanics of 

axons in their natural, in situ state. In the previous chapter of this thesis, we modeled 3-D 

axon kinematics to infer the multi-scale transfer to axons. To further corroborate these 

findings, we use contactin-associated protein (Caspr) as a fiduciary marker of axonal 

stretch. Caspr is expressed on axons at nodes of Ranvier and is important in the formation 

and maintenance of myelin. We measured changes in the distance between immunolabled 

Caspr pairs along axons as a function of tissue-level stretch in chick embryo spinal cords 

harvested from different developmental periods. We then identified and characterized 

broken axons and adapted a kinematic model published previously by our group (Singh et 

al., 2015) to estimate average strain thresholds for axon mechanical failure. The distance 

between Caspr pairs, which defined the internodal length, increased with stretch, though 

not as much as predicted by simple continuum mechanics. For the same level of tissue 

stretch, greater numbers of broken axons were found at later stages of development. In 

adapting our kinematic model to predict a breaking threshold strain, we found that 
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breaking thresholds decrease with development stage, corresponding with the elevated 

numbers of broken axons we found. When thresholds were split and classified based on 

kinematic behavior, non-affine, uncoupled axons had much greater thresholds than affine, 

coupled axons, corroborating thresholds predicted in similar in vitro and in vivo 

preparations. The data provided herein along with the breaking parameters we glean 

provide useful information for generating more accurate multi-scale models in primary 

central nervous system injury. 
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Background & Significance:  

Primary axonal injury in white matter is the leading cause of functional deficits following 

trauma in brain and spinal cord injuries (Smith and Meaney, 2000). During a traumatic 

event, tissue-scale loads are transferred to the constituent cells and cellular processes at 

the microscale of the central nervous system (CNS) tissue. Tissue level deformation can 

be measured directly in vitro with imaging techniques, and can be quantitatively 

estimated with computational models, but a comprehensive understanding of the transfer 

of these strains to the cells in situ has been challenging. It is understood that the white 

matter microstructure in CNS tissue influences this transfer, and indeed inferences can be 

made by probing the individual microstructural elements (Arbogast and Margulies, 1999; 

Prange and Margulies, 2002).  

Unlike most soft tissues, where extracellular matrix proteins provide mechanical 

integrity, the constitutive elements that define the structure of the microscale in CNS 

white matter are primarily axons and oligodendrocytes (Prange and Margulies, 2002). 

Characteristics such as axon diameter (Chomiak and Hu, 2009; Nilsson et al., 2012), 

orientation (Cloots et al., 2011; Rutgers et al., 2008), tortuosity (Hao and Shreiber, 2007), 

and kinematics vary microscopically, but affect macroscopic behavior.  Oligodendrocytes 

myelinate axons resulting in the interconnections of these two structural elements at 

nodes of Ranvier through adhesion complexes (Hao and Shreiber, 2007). At paranodal 

junctions, the axonal cytoskeleton is anchored to the oligodendrocyte through interactions 

of contactin  and contactin-associated protein (on the axon side) with neurofascin 155 (on 

the oligodendrocyte side) in what has been described as the largest adhesion complex in 

vertebrate biology (Sherman and Brophy, 2005). 



78 

 

 

 

In previous work, axon kinematic behavior following tissue-level deformation of white 

matter was characterized, first in the adult, guinea pig optic nerve (Bain et al., 2000), and 

subsequently in the developing chick embryo spinal cord (Hao and Shreiber, 2007; Singh 

et al., 2015) during a period of rapid myelination from embryonic day (E) 12 to 18.  

Collectively, these studies demonstrated that axon-to-axon coupling is strongly correlated 

to the degree of myelination. In E12 chick embryos, before myelination, axons 

predominantly demonstrated non-affine, uncoupled behavior. With myelination, axons 

demonstrated increasingly affine, coupled behavior. When myelination was inhibited in 

ovo, the tensile stiffness of the E18 chick embryo spinal cord significantly decreased to 

levels comparable to tissue harvested early in the myelination process. Together, these 

results indicate that cellular coupling of axons by oligodendrocytes affects the kinematic 

behavior of axons as well as the tissue-level mechanical properties. This in turn would 

influence the strain transfer which occurs from the macroscopic to individual axons.   

Finite element models of the brain and spinal cord have been used extensively in 

predicting microstructural strains due to bulk tissue deformation. Cloots et al. (2010) 

employed computational simulations to determine the relation between tissue-scale and 

cellular-scale mechanical states, finding that axonal strains are higher than the applied 

tissue strain (Cloots et al., 2013a). Pan et al. (2011) included kinematic properties in their 

model, improving fidelity to experimentally observed changes in microkinematics with 

macroscopic stretch. Zhu et al. generated a finite element simulation to examine how 

strain distributions along the axon varied with changes in myelin composition (Zhu et al., 

2015).  Model predictions of strain have been validated using in vitro cultures of axons 

(Tang-Schomer et al., 2010). However, these preparations differ significantly from what 
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is observed in vivo or even in situ, using isolated axon cultures, or partial co-culture 

systems. 

In this study, we present a novel approach to experimentally determining axonal strains in 

situ by utilizing the regular incidence of Caspr at the axon paranode to measure changes 

in axon segment length following macroscopic stretch. We then use these measurements 

to estimate average strain as a function of tissue-level loading. Additionally, we 

determine the proportion of irrevocably damaged axons at a given developmental stage 

and stretch level. Finally, we use this data to make predictions of in situ strain thresholds 

for axonal injury in an adaptation of our phenomenological model from a previous study 

(Singh et al. 2015).  
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Methods:  

Chick embryo spinal cord isolation: Spinal cord tissue was prepared in a manner similar 

to our previous study (Singh et al. 2015). Briefly, chick embryonic spinal cords at 

different stages of development were carefully measured in situ, excised, pre-stretched to 

their in situ length, quasistatically stretched to a defined level, and fixed in their deformed 

state. Pieces of reflective plastic (glitter) were carefully placed on the unstretched spinal 

cord tissue, and their displacements measured following deformation to ensure stretch 

was uniformly applied. Following overnight fixation, cords were transferred to a 20% 

sucrose-saline cryoprotectant solution. 

Immunohistochemistry: Spinal cords were removed from cryoprotectant solution and 

divided into cervical, thoracic, and lumbar regions with a razor blade. Regions were 

embedded in O.C.T. compound (Electron Microscopy Services). Frozen longitudinal 

sections of 20µm or 40µm thickness were cut on a cryostat (Thermo Electron) and placed 

on pre-treated glass slides (Fisher). 

Sections were washed four times in immunobuffer (1% bovine serum albumin, and 0.5% 

Triton X-100 in phosphate buffered saline) (Sigma-Aldrich St. Louis, MO), then 

incubated in 10% goat serum blocking buffer for 1h. Sections were incubated overnight 

at 4°C with a primary antibody mixture of 1:500 mouse monoclonal α-neurofilament 

166kD (Sigma-Aldrich), and a 1:1000 dilution of rabbit polyclonal α-caspr (Abcam). 

Sections were rinsed again with immunobuffer six times for 10 minutes each and then 

incubated in a 1:250 dilution of Alexa 647 goat-anti-mouse secondary antibody and a 

1:1000 dilution of Alexa 488 goat-anti-rabbit secondary antibody for 1h at room 

temperature. Finally, sections were washed with immunobuffer six times for 10 minutes 
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each and allowed to air-dry in the dark. Slides were then coverslipped with mounting 

solution (Vector Labs Burlingame, CA). 

Imaging: Confocal images of immunostained spinal cord sections were captured with an 

Olympus IX81 inverted epifluorescent microscope equipped with a spinning disk 

confocal unit and a Hamamatsu ImagEM digital camera (Middlesex, NJ). Images were 

taken with an 100x objective with filters at 488nm, 568nm, and 647nm to visualize the 

different secondary antibody labels. Images of optical sections at increments of 0.2µm 

were captured through the thickness of the slices. Montages were taken across the length 

of the longitudinal section to determine lengths across multiple internodal segments.  

Measurements: End-to-end lengths were measured for internodal and paranodal 

segments. Pathlengths were measured for internodal segments. The internodal region was 

defined as the axon segment between two Caspr pairs while the paranodal region was 

defined as the segment between individual Caspr proteins in a single pair.  

Two criteria were used to maintain consistency and minimize ambiguity in 

measurements: 1) neurofilament staining was consistent through the slice, ensuring the 

trajectory of the axon was within the thickness of the section, and 2) at least 3 Caspr pairs 

were present along the same axon. The 3-D trajectory of an axon was traced using 

ImageJ. Starting at a Caspr pair, the nearest region of high neurofilament intensity in 

adjacent images in the stack was selected and its path measured until the next Caspr pair 

was found (Figure 3-1).  Lengths were compiled and averaged. Average lengths for 

stretched tissue were compared to the average length of unstretched tissue to determine 

the average percentage change in length as a function of macroscopic stretch. 
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In 20µm sections, axons frequently traversed outside of the thickness of an individual 

slice. In 40µm sections, the majority of axons could be followed continuously from one 

end of the slice to the other. In these sections, for axons where a discontinuity was 

observed through the thickness of the slice, the axon was recorded as broken. Length 

measurements were continued at the beginning of the next nearest pair of nodal proteins 

on a similarly “broken” axon. The proportion of broken axons was computed for each 

stage of development and stretch level and further split into non-affine and affine axons 

based on their measured tortuosity (Singh et al., 2015). Axon segments that had all slack 

removed and appeared perfectly straight with a tortuosity < 1.002 were classified as non-

affine. . The remaining, wavy, broken segments were classified as affine. 

Mathematical Model: An axon kinematic model from our previous study (Singh et al., 

2015) was adapted to predict strain thresholds. The model used a Levenberg-Marquardt 

multi-parameter, nonlinear regression scheme to predict transition parameters for axon 

kinematic behavior at each developmental stage (Singh et al., 2015). Modifications were 

made to use similar principles to predict strain thresholds. For this study, unstretched 

tortuosity, end-to-end internodal length, and internodal pathlength data were extracted 

and used as input data at each development stage. New tortuosities were then calculated 

for each axon at different stretch levels. Internodal end-to-end and pathlength were 

calculated at different stretch levels. The equations used to calculate an axon’s new 

length was dependent on predicted kinematic behavior and are described below: 

 

Kinematic Model: Full derivations for our axon kinematic model with regards to how 

tortuosity is calculated can be found in Singh et al. 2015.  
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Non-affine model: In non-affine kinematics, we postulate that stretch is initially applied 

to straighten the tortuous axon. Thus, the end-to-end length increases with stretch 

normally, but the pathlength remains constant until the axon is fully straight: 

𝐿𝐸−𝐸 = 𝜆𝑙𝐸−𝐸   (Eq 3-1) 

{
𝐿𝑃𝐿 = 𝑙𝑃𝐿, 𝑇0 > 𝜆

𝐿𝑃𝐿 = (𝜆 − 𝑇0)𝑙𝑃𝐿, 𝑇0 ≤ 𝜆
  (Eq 3-2) 

Affine Model: In affine behavior, axons are assumed to be interconnected with each other 

via the glial matrix, such that individual axons experience the same geometric 

transformations as the macroscopic tissue. Due to the continuum-like nature, pathlength 

increases even when the axon is tortuous. The change in end-to-end length varies along 

the undulated axon and integrating along the length gives us the following equations for 

internodal lengths: 

𝐿𝐸−𝐸 = [2√𝜆 − 1]𝑙𝐸−𝐸    (Eq 3-3) 

𝐿𝑃𝐿 = 𝜆𝑙𝑃𝐿   (Eq 3-4) 

Switching Model: In a similar fashion, the equations used to calculate the new internodal 

length with stretch vary with kinematics. When the axon’s current tortuosity is greater 

than the switching tortuosity, T, the non-affine equations (Eq 3-1) & (Eq 3-2) are used to 

calculate the new length. Otherwise, equations (Eq 3-3) & (Eq 3-4) are used. 

 

To predict the number of broken axons, each unstretched axon was individually assigned 

a strain threshold from a probability distribution. Strain was defined as the percentage 

change in pathlength of the axon. When the strain in the axon exceeded its strain 

threshold, the axon was recorded as broken. Three different probability distributions were 
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tested: normal, uniform, and gamma. A single value “constant” threshold was also tested. 

Parameters for each distribution were determined using the Levenberg-Marquardt multi-

parameter, nonlinear regression scheme, which attempted to fit the predicted proportion 

of broken axons to the experimentally-derived proportion of broken axons. The model 

was executed 100 times for each development stage, from which the mean values and 

standard deviations for the distribution parameters and regression coefficients for each fit 

were determined. Separate simulations were executed where two thresholds were 

identified – one for affine axons and one for non-affine axons.   

  



85 

 

 

 

Results:  

Spinal cord tissue and axon morphology: Average spinal cord length increased from 11.7 

± 2.1mm at E12 to 23.8 ± 3.4mm at E18. Mean 3-D tortuosity for unstretched spinal 

cords was observed to decrease slightly with development stage, decreasing from 1.161 ± 

0.093 to 1.141 ± 0.075 between E12 to E18. These data and statistics were similar to our 

findings in Singh et al. (2015) for spinal cord length and axon tortuosity (Singh et al., 

2015). 

Average internodal and paranodal lengths: Average internodal end-to-end length 

increased from 85.8 ± 9.4µm at E12 to 136.1 ± 8.7µm for E18 spinal cords (59% 

increase) (Figure 3-2). Internodal pathlength increased significantly as well from 99.2 ± 

8.3µm to 150.8 ± 10.2µm, increasing 52% with development. For both cases, the 

increases in internodal length were significantly smaller than the increase in tissue length 

with development (~103% increase from E12 to E18). Average paranodal length 

increased less dramatically than internodal length from 1.8 ± 0.6µm at E12 to 3.3 ± 

1.1µm at E18.  

Similar trends were observed for stretched spinal cords. Average end-to-end internodal 

and paranodal lengths increased with stretch for each developmental stage (Figures 3-3A 

and 3-3B respectively). Earlier development stages demonstrated a sharper increase 

compared to later stages. The percentage change in E12 and E14 internodal lengths were 

similar to the increase in tissue length due to macroscopic stretch (Figure 3-3A). At later 

stages of development (E16 and E18), we observed a deviation from this trend. 

Application of 20% macroscopic stretch resulted in an average end-to-end internodal 

length change of ~13% and ~8% for E16 and E18 spinal cords, respectively. Statistical 
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significance was found across all stretch levels in both internodal and paranodal length 

changes using Kolmogorov-Smirnov tests (Pmax < 0.01). 

In calculating the average change for internodal pathlength (Figure 3-3C), we observed 

that earlier stages of development showed little to no change in average pathlength with 

stretch until 15-20% macroscopic stretch. Later stages of development showed gradual 

increases in mean internodal pathlength with macroscopic stretch but changes were still 

significantly smaller than the changes observed for end-to-end length. No statistical 

significance was found in relative changes in pathlength. 

Characterization of broken axons: The unusual deviation in trends we observed regarding 

changes in end-to-end length in E16 and E18 samples provided impetus to better 

understand the root cause in this change in relationship between microscopic and 

macroscopic stretch. Internodal end-to-end lengths and tortuosity distributions were 

examined for E16 and E18 samples for any indications as to why trends diverge. 

Histograms for internodal end-to-end and pathlengths demonstrated increasing shifts to 

the right with macroscopic stretch. Figure 3-4 shows a representative histogram for E12 

and E18 samples (Figure 3-4). Interestingly, the number of observations for the bins 

corresponding to lower lengths in E16 and E18 histograms increased with greater 

macroscopic stretch. From this, it was surmised that broken axons were being included in 

tracings which provided impetus to examine thicker slices.  

Increasing our tissue slice thickness from 20 to 40μm allowed tracing and 

characterization of broken axons. Percentages of broken axons for each stretch level and 

development stage were calculated. To increase confidence in determining whether an 

axon was broken, we started 10µm into the thickness of the tissue slice in our confocal 



87 

 

 

 

images. Using that plane as a starting point, we continued to look into the depth of the 

tissue and recorded voids in neurofilament intensity as breaks, as the likelihood of the 

axon’s trajectory leaving the thickness of the tissue was minimal at our starting depth 

(Figure 3-5A). Consolidating all traced axons from all developmental stages and stretch 

levels, we observed the majority of breaks occurred at the internode region (96.1%).  

The proportion of broken axons increased with stretch and development stage (Figure 3-

8). More axons broke with increasing macroscopic stretch for a given development stage. 

About 11% of axons were broken when E12 spinal cords were stretched to 20% 

macroscopic stretch, which increased to 22.5% broken at E18 with the same macroscopic 

stretch. Axons were observed to break throughout the spinal cord. In general, no 

distinguishing patterns of breakages seemed to occur in the cervical, thoracic, or lumbar 

regions which supported observations made in a similar study (Tang-Schomer et al., 

2012). The exception to this was in the case of E12 and E18 developmental stages, where 

we noticed at 10% stretch there were greater numbers of break observed at the cervical 

and lumbar regions, which leveled out at the highest degree of macroscopic stretch. 

In E12 and E14 spinal cords, the majority of axons were perfectly straight prior to 

breaking, with tortuosities equal to or close to 1. We observed more tortuous broken 

axons at later development stages. Interestingly, the internodal length range for broken 

axons was smaller for axons at later versus earlier development stages. The highest 

internodal segment length for a broken axon was observed in E18 spinal cords (Le-e = 

230.4µm) in comparison to E12 spinal cords (Le-e = 141.4µm). Both these instances 

occurred in 20% stretched spinal cords, and in cases where the axon was close to 
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perfectly straight. While fewer broken axons were observed at earlier development 

stages, the axons that did break were closer to the mean internodal end-to-end lengths. 

Following our analysis of the thicker spinal cord slices, we omitted broken axons and 

proceeded to replot changes in end-to-end internodal length as a function of macroscopic 

stretch. Figure 3-5B shows a similar plot to Figure 3-3A where the percentage change in 

internodal end-to-end lengths were plotted when broken axons from 40μm thick slices 

were included or excluded from the calculation. While the results for E12 and E14 did 

not change significantly given that the small percentage of axons which broke at earlier 

stage cases were relatively close to the mean internodal end-to-end length, trends for E16 

and E18 improved somewhat, shifting closer to the 1:1 line that corresponds to equivalent 

macroscopic-microscopic transfer. 

Estimating in situ axon failure thresholds: The possession of quantitative data for 

proportions of broken axons allowed us to adapt kinematic models from our previous 

study to predict distribution parameters for injury thresholds. Each unstretched axon was 

assigned a strain threshold selected from a normal distribution, and the new end-to-end 

and pathlength was calculated for given macroscopic stretch. The proportion of broken 

axons predicted by the model was fit to the proportion of broken axons measured from 

stretch experiments, and the probability distribution parameters were adjusted 

accordingly until convergence was achieved. In general, the mean breaking threshold 

decreased with development stage from 1.24 at E12 to 1.17 at E18, suggesting axons are 

more susceptible to damage with increasing development. Standard deviation also 

decreased slightly from 0.12 to 0.08 (Table 3-1).  
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Comparisons between single thresholds and separate thresholds for non-affine and affine 

kinematic axons were made. The larger proportion of broken axons at later stages of 

development suggested that axons exhibiting affine behavior have a greater likelihood of 

breaking, and therefore a lower macroscopic stretch threshold than the single threshold. A 

broken axon was classified as non-affine if the tortuosity was 1 (perfectly straight), and 

affine if tortuosity was greater than 1. At all developmental stages, low levels of stretch 

resulted in primarily affine axons breaking (Figure 3-9). The proportion of broken non-

affine axons increased with higher levels of stretch. Predicted thresholds for non-affine 

and affine axons differed from the single threshold. In all cases, non-affine thresholds 

were greater than the single threshold, and affine thresholds were less than the single 

threshold (Table 3-2). While the non-affine thresholds remained relatively constant with 

development (Pmin = 0.14), we observed affine thresholds slightly decreased from 1.19 to 

1.14 in E12 and E18 specimens respectively. 
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Discussion:  

The goals of this study were to evaluate the efficacy of using Caspr as a fiducial marker 

for measuring axonal strain as a function of tissue stretch, and use these measurements to 

estimate axonal failure strain thresholds. By measuring how distances between Caspr 

expressed at the nodes of Ranvier changed with macroscopic stretch relative to 

unstretched tissue, we were able to quantitatively estimate the average strain individual 

axons experience: an elusive measure to obtain for axons in their natural state. In our 

measurements, we also recorded the number of broken axons and predicted the 

propensity for injury by adapting our kinematic models to calculate the proportion of 

broken axons based on predicted injury thresholds. These thresholds were determined by 

fitting the proportion of broken axons calculated by the model to the proportion 

experimentally measured at each stretch level. 

Expression of Caspr at the nodes of Ranvier occurs early in neural development, and 

primarily in CNS tissue (Einheber et al., 1997). Evidence has also been provided that 

Caspr expression is necessary for normal degrees of myelination (Anderson et al., 2000). 

The motivation to use Caspr came from our attempts to distinguish the role of myelin and 

axo-glial adhesions as the primary cause of coupling behavior predicted to occur in axon 

kinematics (Hao and Shreiber, 2007; Singh et al., 2015). When we observed changes in 

Caspr distances in stretched samples, our objective shifted to investigating the use of 

Caspr as a fiduciary marker for measuring axonal strains. 

Previous work suggests the transfer of macroscopic stretch to microscopic strain is not a 

straightforward one-to-one translation (Bain and Meaney, 2000; Karami et al., 2009; 

Smith and Meaney, 2000). This was verified by comparisons of internodal length changes 
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to macroscopic stretch. The greatest deviation in this trend occurred at later stages of 

development, during which spinal cord axons experience significant changes in their 

morphology and kinematic behavior (Hamburger and Hamilton, 1951; Keirstead et al., 

1997; Singh et al., 2015). In general, features of the microstructure dictate the macro-to-

microscopic transfer, and probing these characteristics can provide insight into the multi-

scale behavior of axons exposed to controlled tissue-level stretch. 

In the previous chapter, we inferred the macro-to-micro transfer by characterizing 3-D 

axon kinematic behavior. Axons were modeled to exhibit one of three types of behavior: 

non-affine, affine, or switching (Hao and Shreiber, 2007; Singh et al., 2015). Non-affine 

axons are predicted to be uncoupled to surrounding axons, and it is believed that 

macroscopic stretch is initially applied in straightening tortuous axons. Analogous to a 

string being unraveled, while the direct end-to-end distance increases, the pathlength 

remains constant, as under non-affine modes, the string would not experience true strain 

until it has completely straightened. In contrast, affine axons increase in both end-to-end 

length and pathlength as they experience the same geometric transformation as the tissue, 

experiencing strain even at low levels stretch. In this model, axons initially behave non-

affinely until they reach a unique transition tortuosity based on the level of physical 

connectivity to glia, after which they switch to affine behavior. Our observations 

concerning the change in internodal end-to-end and pathlength with macroscopic stretch 

seem to support this kinematic model. At earlier stages of development, pathlength was 

seen to increase much less dramatically at lower levels of stretch, while end-to-end length 

increased normally. Based on our fitted kinematic parameters for switching, 

approximately 50% of axons were predicted to behave with purely non-affine kinematics. 
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Furthermore, at lower macroscopic stretch, a very small proportion of axons would 

achieve their respective switching tortuosities that would cause them to exhibit affine 

behavior with stretch.  

There was strong agreement between tissue-level stretch and the change in end-to-end 

internodal length at earlier stages of development (E12 and E14, average R
2
 = 0.971). 

This trend shifted with increasing development where we observed spinal cord tissue 

roughly doubling in length from E12 to E18, while the average internodal end-to-end 

length only increased by 60%. For all development stages, tissue growth did not equate to 

end-to-end length increases, with tissue growth consistently being larger than the change 

in average internodal lengths (Figure 3-6). Interestingly we observed a linear relationship 

between tissue growth and increases in internodal length from E14 to E18. This suggests 

that effects of growth-induced stretch on axons are easier to predict at later stages, while 

the effects of artificially-induced stretch on axons are easier to predict at earlier stages.   

To elucidate reasons for these patterns, we examined distributions of internodal and 

paranodal lengths for different developmental stages and stretch levels. Histograms of 

end-to-end lengths at later stages of development (Figure 3-4) showed 

uncharacteristically high frequencies of internodal lengths at lower bins for stretched 

samples, and did not shift as much to the right as expected. We hypothesized three 

reasons for this: 1) new axons or new Caspr pairs were being expressed on existing 

axonal segments, which would decrease mean segment length; 2) broken axons were 

being captured in our analysis, which would decrease the mean length or; 3) non-uniform 

kinematic behavior along single axons that would vary trends. 
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First we re-examined internodal length distributions to determine the likelihood of new 

axons or newly expressed Caspr pairs artificially affecting length distributions. Nascent 

axons continue to form throughout the stages of development we studied, as evidenced by 

the continuous expression of neurofilament (Sherman and Brophy, 2005). Similar studies 

on the developing morphology have shown Caspr is expressed as early as E10 in the 

chick embryo (El-Eishi, 1967). Increased numbers of oligodendrocytes are also observed 

(Dobbing et al., 1957), correlating to the increased Caspr signal we observed in 

developed specimens. Based on these findings, it is likely a combination of both these 

factors that contribute to the decreasing changes in average internodal length. In 

comparing changes in length distributions against analytically calculated distributions 

(Figure 3-7), we inferred that regions of overlap between the analytically calculated 

distribution and empirical distribution to belong to the original population of sgments 

which increased in length due to tissue growth. This implies the remaining area 

corresponding to the proportion of newly formed segments (axons), or new segments due 

to new pairs.   

Possessing quantitative data on broken axons caused by macroscopic stretch enabled us 

to apply similar principles from our previous study to predict axonal failure thresholds in 

ex vivo preparations (Singh et al., 2015). Each axon was assigned a strain threshold from 

a probability distribution, and parameters were determined by fitting model and 

experimental proportions of broken axons. Thresholds selected from normal distributions 

resulted in the best fit, followed by gamma, uniform, and constant threshold distribution 

(Figure 3-9). Most biological phenomenological models exhibit statistics associated with 

normal or log-normal distributions, especially in large populations (Limpert et al., 2001), 
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which corroborated our findings. The poor fit associated with the constant threshold 

indicates that each axon likely has a unique injury threshold, which substantiates the idea 

of individual microstructural features influencing behavior. However, we emphasize the 

importance of testing a constant threshold as a self-check for the fitting scheme’s 

accuracy. Setting a constant threshold enabled us to confirm and validate algorithm 

performance. For instance, when we set a constant threshold of 1.10 (10% increase in 

pathlength), we can calculate the proportion of axons whose pathlength will increase by 

10% by hand. We then executed the program and ascertained that the model predicted 

proportion matched our calculation. 

Decreasing thresholds with further development suggested that injury thresholds were, at 

least partially dictated by kinematics and changes in morphology. The most significant 

change with development is the increase in myelination, and connectivity to surrounding 

glia which correlates to the greater propensity for switching behavior. By splitting our 

proportion of broken axons into those assumed to be exhibiting non-affine and affine 

kinematics, we could determine individual thresholds. Indeed, we consistently observed 

affine thresholds to be consistently lower than the values we obtained for single 

thresholds (Table 3-2). This is further reflected in the switching parameters for these data: 

when failed axons are omitted, we see a decrease in upper bound parameters, providing 

additional evidence that axons predicted to behave with affine kinematics are prone to 

failure (Figure 3-11). 

Even after omitting broken axons from our analysis, we still observed a deviation in trend 

between macroscopic and microscopic stretch at later stages of development. In E16 

specimens, there was still a significant deviation from the 1:1 line we plotted (Figure 3-
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5B). This was even more pronounced in E18 specimens, where 20% macroscopic stretch 

only resulted in an 8% increase in mean end-to-end internodal length, which increased to 

12% once broken axons were omitted. We believe that there are two possible 

explanations. In our kinematic model, we assumed that a single segment exclusively 

exhibited non-affine or affine kinematics at any given time. It is possible kinematics are 

non-uniform along the single segment. Depending on the axonal segment’s connectivity 

to surrounding glia, some regions may be prone to affine behavior, which would 

influence how the axon strains with macroscopic stretch. This is applicable for E16 and 

E18 specimens, where 55-70% of axonal segments are predicted to demonstrate affine or 

switching behavior (Singh et al., 2015), implying  connectivity between axons. Another 

possibility is that a single axon with multiple segments may have broken further along the 

spinal cord. For instance, an axon fiber which we observed intact in the cervical region 

(i.e. no segments were broken), may have broken further along the white matter tract, in 

the thoracic or lumbar regions. This could theoretically influence kinematic behavior of 

the intact segments, causing these segments to switch from affine to non-affine behavior, 

or retract and become tortuous. 

As described above, it is unclear what happens to axon morphology and kinematics 

following immediate breaking. To elucidate this, we executed the model undergoing one 

of two scenarios: 1) axons break at a random point in an internodal segment, and length 

and tortuosity remain fixed following injury, and 2) axons break at a random point in an 

internodal segment but continue to deform according to their kinematic mode prior to 

damage. We then evaluated the goodness-of-fit for each scenario to determine the most 

likely scenario. 
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When axons were modeled to retain their morphology following damage, we observed a 

slight shift in length distributions towards the left when compared to the scenario where 

the model predicted broken axons to continue to exhibit non-affine behavior. Overall, 

mean internodal end-to-end decreased slightly but there were no statistically significant 

changes when compared to experimental results. When axons were modeled to deform 

based on their kinematic behavior, mean end-to-end length decreased significantly, while 

pathlength increased significantly. This was unsurprising as we observed a larger 

proportion of broken axons exhibiting affine behavior, which would suggest that with 

increasing stretch, pathlength would increase even if the broken axon was still tortuous. 

Overall, we observed the strongest fit in the condition where axons retained their 

morphology following breaking (mean R
2
 = 0.79). 

To validate the results we predicted from our model, we characterized axonal segments 

along the full length of the white matter tract in the spinal cord. The biggest challenge we 

encountered was ensuring the same axon was traced through the different regions of the 

spinal cord. As described in the methods, excised spinal cords were divided into cervical, 

thoracic, and lumbar regions and sectioned in a serial manner. Each of these regions was 

sectioned individually, which resulted in cases where a fiber from one region could not 

be confidently connected to the fiber in the adjacent region. To this end, we analyzed 

axons where the calculated tortuosity was consistent with the axon between sections (i.e. 

if the segment tortuosities differed no more than 0.02). This increased confidence that the 

trajectories between two adjacent sections corresponded to each other. 

We examined full length white matter tracts of E12 and E18 specimens that were 

unstretched, or stretched 10% or 20% (Figure 3-14).To ensure axons we captured were 



97 

 

 

 

from the white matter tract, we stained for myelin. Unsurprisingly, examining the entire 

length of the cord increased the number of broken axons recorded when compared to 

those found in individual slices as we noted some segments along a single axon 

experienced breaks further along the fiber length. With this spatial information, we 

looked for patterns in broken axons. Axons broke primarily in the cervical and lumbar 

regions at 10% stretch in each development stage but broke equally in all three regions of 

the spinal cord at 20% stretch. Notably, in E18 10% and 20% cords we observed small 

“pockets” of broken axons. Our definition of a pocket was where more than 3 separate 

axons had broken within 30μm of each other. We observed no pockets in any of the E12 

cords examined. Figure 3-13B shows the profile of 328 axons measured across the full 

length of a single E18 20% spinal cord (Figure 3-13). While there were no discernable 

patterns or differences between the numbers of axons that broke in each region, we 

noticed that pockets occurred primarily in the cervical and lumbar regions of the cord. 

These pockets were confirmed with cluster analysis in MATLAB, where we observed the 

center point of the algorithmically designated cluster corresponded with the spatial 

position based on images (i,e. the cluster center calculated from the script matches where 

the pocket is in images). It is likely that there is an unequal stress concentration generated 

at the far edges of the cord close to where the cord was fixed during macroscopic stretch, 

which would explain the high concentration of breaks found in those regions. 

Tracing axons along the entirety of the white matter tract also enabled us to determine 

when multiple segments along a single axon broke. Again, this behavior was most 

prevalent in E18 cords, where some axons broken twice or three times along their 

segments. No axons broke in more than three segments along the entire length of spinal 
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cord. Additionally when we extended our dataset to include segments captured from our 

full-length analysis, thresholds decreased further in response to the greater proportions of 

broken axons we captured. For instance, the E18 composite failure threshold decreased 

from 1.17 to 1.14 when full-length measurements were included. The decrease in the 

affine threshold from 1.14 to 1.11 contributed most significantly to the fall in the 

composite threshold, as most of the broken axons captured were primarily affine. E12 

thresholds also decreased though not as significantly as what we observed in E18 

samples. This further corroborates our assessment that E12 axons primarily exhibit non-

affine kinematics. 

These variations in threshold introduce the question of what properties of axons 

influences the propensity to break. Previous studies from our group demonstrate that 

myelin and connectivity to glia not only directly influence kinematic behavior, but also 

indirectly affect the axon’s ability to resist tensile loading, where axon connectivity via 

these elements enables “sharing” of the macroscopic load and transmission of stress to 

surrounding axons. Other studies have established that axonal fibers are significantly 

stiffer (Ouyang et al., 2013) than the neuronal cell body (Spedden and Staii, 2013), 

myelin, and the surrounding glia (Shreiber et al., 2009). The occurrence of pockets also 

suggests that an axon’s propensity to break might be dependent on the behavior and 

resilience of nearby segments. We hypothesize that a single axon’s failure redistributes 

the stresses caused by tissue-level stretch to remaining intact axons, causing these axons 

to “take up the slack”.  

Direct measurements of axonal strain are possible in in vitro preparations. In these 

studies, axons are cultured and exposed to stretch injury both quasistatically and 
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dynamically. In in vitro preparations with unmyelinated axons, axons were able to be 

stretched 50-75% their original length without experiencing irrevocable damage (Smith et 

al., 1999). As this preparation would consist of axons behaving non-affinely, it lends 

support to the elevated thresholds we observed for axons predicted to exhibit non-affine 

kinematics. In vivo studies of the guinea pig optic nerve determined conservative strain 

thresholds of 14% for axonal injury (Bain and Meaney, 2000). The guinea pig optic nerve 

is highly myelinated which implies affine kinematics, and therefore supports the 

thresholds we predicted for affine behavior. We are still limited by the phenomenological 

nature of our model, where we rely on “snapshots” of fixed tissue at discrete levels of 

stretch. True validation cannot be achieved until methods have improved to trace these 

markers in real time, in vivo preparations undergoing continuous stretch. 

Our analysis is further limited by the quasi-static approach we used to injure tissue 

samples. Understandably, almost all cases of CNS trauma occur due to dynamic injury, 

and plenty of evidence has been put forward that strain rate is correlated to injury severity 

(Smith and Meaney, 2000; Smith et al., 1999; Wright and Ramesh, 2012). We are 

currently investigating approaches to dynamically injure and snap-freeze tissue 

immediately after trauma, to better capture the primary injury response. Snap-freezing 

provides the advantage that it captures any immediate changes to cell morphology unlike 

fixation, which requires time for the fixative to diffuse through the tissue. Even in the 

small scales of time required for complete fixation, axon morphology undergoes visible 

changes following dynamic injury (Tang-Schomer et al., 2010). Preliminary results from 

our group suggest that axon morphology is not adversely affected by snap-freezing when 

compared to axons that are fixed via 4% paraformaldehyde. It will be interesting to 
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examine if changes in internodal lengths following dynamic injury differ when compared 

to quasistatic stretch injury. 

Our work presents predictions on thresholds for axonal injury in spinal cord tissue. It is 

very likely that functional and morphological damage thresholds are lower than breaking 

thresholds. Scenarios such as mild TBI and diffuse axonal injury suggest that failure can 

occur even if an axon is not completely broken (Kilinc et al., 2009; Smith and Meaney, 

2000), and so the parameters obtained in model predictions represent the worst-case 

scenario in a traumatic event. Still, the injury parameters we’ve gleaned, along with the 

kinematic parameters from our previous study can work towards improving finite 

element modeling of multi-scale white matter behavior. These models can be applied to 

improving the design of protective equipment, and better predicting instances of TBI and 

SCI following the initial injury event. Future studies would work towards examining this 

phenomenon in dynamic injuries. 
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Conclusions: 

 In this chapter we addressed two questions with regards to elucidating the 

translation from macroscopic to axonal level deformation: 1) is Caspr an effective 

fiducial marker for estimating strains at the axonal level, and 2) using this information 

and empirical data of broken axons, can we estimate in situ thresholds for axonal failure? 

 Caspr is an ideal candidate for use as a fiducial marker due to its regular 

expression at the nodes of Ranvier in axons. By measuring how individual Caspr proteins 

and Caspr pairs are displaced with macroscopic stretch, we can estimate the average 

strain populations of axons experience as a function of macroscopic stretch. We 

determined that the transfer of macroscopic stretch to axonal strain is close to 1:1 at 

earlier stages of development, and that these trends deviate significantly at later stages of 

development. We formulated two hypotheses for the shift in behavior: shifts in kinematic 

behavior between axonal segments; and the capture of broken axons which diminished 

the change in average internodal lengths. By examining thicker slices of tissue we could 

record proportions of broken axons and provide estimates of failure thresholds for 

different classifications of kinematic behavior. 

 Although the thresholds we predicted are based on a phenomenological model, the 

experimental results from changes in internodal lengths still provide estimates of strain at 

the individual axon level. In situ estimation of axon strain provides utility in validating 

computer simulations of multi-scale kinematics of white matter. Additionally, the failure 

thresholds we have gleaned could be used as parameters to further refine multi-scale 

simulations for understanding the mechanisms of white matter injury. Ultimately, 

information from models can be utilized to improve prevention methods for white matter 
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primary injury. In the next two chapters however, we shift focus to another area in the 

CNS injury and rehabilitation process. We now inquire on the role of different design 

parameters in neural electrodes that dictate its success in tissue insertion and long-term 

signal acquisition, with the hopes of improving patient outcomes following CNS injury. 
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Figures: 

 
Figure 3-1: Internodal and paranodal lengths were measured by hand from longitudinally 

sliced spinal cord tissue, stained for Caspr (green) and Neurofilament (red). (A) 

Illustrates a z-projected image stack of an E16 spinal cord taken at 100X. To measure 

lengths, a Caspr pair was selected and the image in the stack with the highest intensity of 

neurofilament was designated the starting point (Image 1). Images (2-8) in the stack were 

then examined to find the adjacent region of highest neurofilament staining and these 

regions were then marked to determine the trajectory of the axon. Upon marking the 

entire axon length, path and end-to-end lengths were measured between pairs. (B) 

Schematic delineating the definitions of internodal end-to-end, pathlength, and paranodal 

lengths. 
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Figure 3-2: Bar graphs of (A) average internodal end-to-end length, (B) average 

paranodal length, and (C) average internodal pathlength. The percentage changes in 

length depicted in Figure 3-3 are calculated by dividing the average length for a given 

stretch against the average unstretched length. 
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Figure 3-3:  Plots for mean percentage length changes in 20µm thick slices observed for 

(A) end-to-end internodal, (B) paranodal, and (C) internodal pathlength. Mean percentage 

length change was computed by: 100 *(Mean Stretched Length – Mean Unstretched 

Length)/Mean Unstretched Length. At earlier stages, there is almost a 1:1 transfer 

(represented by grey dashed line) of tissue-level to micro-level stretch for internodal end-

to-end and paranodal length changes. This trend deviates towards later stages. For 

pathlength changes, at earlier stages there is little change to distances, which is the true 

measure of strain applied to the axon. This is surmised to be due to a larger proportion of 

non-affine axons, which require the axon to unfold completely prior to straining. There is 

a small but gradual change experienced by axons at later stages of development. 
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Figure 3-4: Histograms for end-to-end internodal lengths for (A) E12, and (B) E18 at 

different stretch levels. The lower-end bins for E18 at all stretch levels (5-20%) stretch 

show a dramatic increase in frequency when compared to similar lower-end bins for 0%. 

This dramatic increase is also present in E12 specimens but only at 15% and 20% 

macroscopic stretch.  
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Figure 3-5: (A) Thicker (40µm) slices were taken to determine where axons had broken 

with greater certainty. Axons were labeled as broken when a void region was found in the 

z-projected image, and no continuous path could be found in the image stack, as shown in 

the E18 representative images above. (B) When lengths from broken axons were omitted, 

trends in end-to-end internodal length changes were observed to improve somewhat, 

moving closer to the dashed grey 1:1 line.  
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Figure 3-6: Percentage change in internodal length compared to percentage change in 

tissue length. 
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Figure 3-7: End-to-end length distributions were plotted for (A) E12 (blue) and (B) E16 

(blue). To determine what proportion of segment lengths were likely to be due to 

developmental-induced tissue growth in E18 results (red), the original E12 and E16 

distributions were multiplied by the percentage growth in tissue length (E12E18 = 

103.4% increase; E16E18 = 21.3%) to produce the predicted length distribution 

(black), and the overlapping area as a percentage of the area underneath the empirical 

data curve was calculated. This area corresponds to the proportion of segments that rise 

from the original population following growth-induced stretch. The remaining proportion 
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is likely to be new segments being formed via morphogenesis or newly expressed Caspr 

pairs. 

 

 

Figure 3-8: Proportion of broken segments from 40µm thick slices was tabulated for (A) 

E12, (B) E14, (C) E16, and (D) E18 spinal cords. More broken segments were observed 

at later stages of development, correlating with increased myelination and affine behavior 

(Singh et al. 2015). 
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Figure 3-9: Model predictions for E12 and E18 compared to experimental results where 

the strain threshold was picked from (A) normal distribution, gamma distribution, 

uniform distribution, and a constant value. The best fit was determined to be from strain 

thresholds picked from a normal distribution (see Table 2). When histograms of predicted 

internodal end-to-end lengths for (B) E12, and (C) E18 after unstretched and 20% stretch 

were plotted, deviations were observed at the later development stage, corresponding to 

the greater proportion of broken axons predicted for constant and uniform distributions. 
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Figure 3-10: Proportion of broken axons for different development stages split between 

non-affine and affine kinematics when thresholds were selected from a normal 

distribution. Model predictions for a single threshold for both non-affine/affine behavior 

(inclined), and individual thresholds for non-affine/affine behavior (hashed) using a 

normal distribution fitting are also plotted. There is greater agreement observed between 

experimental results and model results when individual thresholds for non-affine/affine 

fitting are used. At all developmental stages, the individual non-affine threshold was 

greater than the single threshold. Conversely, individual affine thresholds were always 

less than the single threshold.  
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Figure 3-11: Kinematic parameters derived from testing distributions consisting of the 

complete population of axons, and the population when broken axons were omitted. 

When broken axons are omitted from kinematic analysis, little change is seen in the 

lower bounds (T1) tortuosity parameter for switching behavior. More substantial change 

(but still statistically insignificant) is predicted for the upper bound tortuosity for 

switching behavior- which decreases relative to the bounds when all axons are counted. 

This decrease in (T2) suggests that it is indeed affine axons that are failing following 

macroscopic stretch. 
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Figure 3-12: Histograms for the predicted changes in internodal end-to-end lengths as 

determined by model executions. In this case, new lengths were calculated using the 

formulae presented in methods. If an axon was simulated to fail, it broke at a random 

position along the length of the axon, and no longer experienced any increase in length.  
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Figure 3-13: E18 20% spinal cords were partitioned into the cervical, thoracic, and 

lumbar regions and sectioned into 40μm slices. Starting at the cervical region, axons were 

traced through the length of the spinal cord. Broken axons were found through the section 

and their location along the cord was recorded. (A) shows the thoracic region of the cord 

where several pockets of broken axons (dashed circles) were found (Scale bar = 50μm). 

(B) Broken axons plotted by region. Dashed lines correspond to pockets of broken axons 

where 3-5 axons broken within a single pocket (defined as axons which broke within 

30μm of each other). Full lines correspond to 5 or more axons broken in a single point. 

(C) Axon tortuosity against internodal length was plotted for E18 20% to find patterns in 

broken axons.  
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Figure 3-14: (A) Representative images for full-lengths of spinal cords. Unstretched and 

stretched E12 and E18 specimens were reconstructed from tissue-sections and processed to 

identify broken axons. The images in the right show selected zoomed-in regions for cervical, 

thoracic, and lumbar regions to delineate differences in axon morphology, nodal distances 

and occurrences of breaks. (B) From full-length profiles, spatial positions of nodes (green) 

were extracted along with positions of breaks (red for internodal breaks, purple for paranodal 

breaks). Pockets of breaks were noticeably present in E18 20% samples. (C) Numbers of 

broken segments classified by region in 10% and 20% stretched spinal cords (N = 3). Broken 

segments were relatively prevalent in the cervical and lumbar regions of spinal cords in 10% 

samples, but relatively equal across all regions in 20% samples. 
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Distribution E12 E14 E16 E18 

Normal 
Mean SD R

2
 Mean SD R

2
 Mean SD R

2
 Mean SD R

2
 

1.25 0.12 0.87 1.23 0.11 0.85 1.20 0.09 0.90 1.17 0.08 0.92 

Gamma 
a b R

2
 a b R

2
 a b R

2
 a b R

2
 

1.21 0.35 0.81 1.20 0.33 0.75 1.14 0.28 0.78 1.12 0.29 0.82 

Uniform 
U1 U2 R

2
 U1 U2 R

2
 U1 U2 R

2
 U1 U2 R

2
 

1.07 1.44 0.79 1.10 1.39 0.82 1.06 1.38 0.74 1.09 1.32 0.76 

Constant 
ε R

2
 ε R

2
 ε R

2
 ε R

2
 

1.21 0.45 1.19 0.43 1.16 0.36 1.14 0.34 

 

 

Table 3-1: Predicted parameters for axonal failure strain probability distributions for the 

four distribution types tested. The modified model was executed through 100 iterations 

until parameter values converged. Normal distributions generated the best fit between 

experimental and model results, followed by gamma, uniform, and constant thresholds.  
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Development 

Stage 

Non-affine 

Thresholds 
Affine Threshold Single Threshold 

E12 1.29 ± 0.12 1.19 ± 0.13 1.25 ± 0.12 

E14 1.28 ± 0.13 1.18 ± 0.14 1.23 ± 0.11 

E16 1.27 ± 0.14 1.17 ± 0.09 1.20 ± 0.09 

E18 1.27 ± 0.15 1.14 ± 0.10 1.17 ± 0.08 

 

Table 3-2: Predicted parameters (mean ± standard deviation) for breaking strain 

classified by predicted kinematic behavior. In all cases, non-affine thresholds were higher 

than affine and single thresholds. 
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Chapter 4: Modeling the insertion mechanics of coated 

flexible neural probes for optimizing probe 

performance  

Major sections of this chapter have been excerpted from the following publication: Singh, 

S., Lo, M.-C., Damodaran, V.B., Kaplan, H.M., Kohn, J., Zahn, J.D., Shreiber, D.I., 

2016.  

 “Modeling the insertion mechanics of flexible neural probes coated with sacrificial 

polymers for optimizing probe design”, Sensors (Basel). 16, 1–18. I have received 

permission from the publishers to utilize this and all the work presented herein is my 

own. 

Abstract:  

Single-unit recording neural probes have significant advantages towards improving 

signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface 

devices. Long-term effectiveness is unfortunately limited by the chronic injury response, 

which has been linked to the mechanical mismatch between rigid probes and compliant 

brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion 

of these probes without buckling requires supporting elements such as a stiff coating with 

a biodegradable polymer. For these coated probes, there is a design trade-off between the 

potential for successful insertion into brain tissue and the degree of trauma generated by 

the insertion. In this chapter, I outline the process in developing and validating a finite 

element model (FEM) to simulate insertion of coated neural probes of varying 

dimensions and material properties into brain tissue. Simulations were performed to 

predict the buckling and insertion forces during insertion of coated probes into a tissue 
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phantom with material properties of brain. The simulations were validated with parallel 

experimental studies where probes were inserted into agarose tissue phantom, ex vivo 

chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed 

with uncoated copper wire, and both uncoated and coated SU-8 photoresist, and parylene 

C probes. Model predictions were found to strongly (<10%) agree with experimental 

results (<10% error). The ratio of the predicted buckling force-to-predicted insertion 

force, where a value greater than one would ideally be expected to result in successful 

insertion, was plotted against the actual success rate from experiments. A sigmoidal 

relationship was observed, with a ratio of 1.35 corresponding to equal probability of 

insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio 

was dubbed the “safety factor”, as it indicated the degree to which the coating should be 

over-designed to ensure successful insertion. Probability color maps were generated to 

visually compare the influence of design parameters. Statistical metrics derived from the 

color maps and multi-variable regression analysis confirmed that coating thickness and 

probe length were the most important features in influencing insertion potential. The 

model also revealed the effects of manufacturing flaws on insertion potential. 
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Background & Significance: 

Brain-to-Computer interface (BCI) devices have been gaining traction towards clinical 

usage (Mak and Wolpaw, 2009; Nicolas-Alonso and Gomez-Gil, 2012), particularly for 

rehabilitation  following central nervous system (CNS) injury. BCI devices generally 

operate by acquiring a volition signal, processing the acquired signal, and translating the 

processed signal into the operation of an extra-corporeal device. Successful operation of a 

BCI device is foremost dependent on accurate signal acquisition (Amiri et al., 2013). The 

three most common modalities of acquiring volition signal, in order of least-to-most 

invasive, accurate, and resolved are: (1) Electroencephalograms (EEGs), (2) 

Electrocorticographs (ECOGs), and (3) Single-Unit Recordings (SURs) from neural 

probes. Neural probes in particular have been widely used in research as evidenced by the 

popularity of the Utah Array (Maynard et al. 1997; Cheung 2007) and the Michigan 

Array (Hoogerwerf & Wise 1994; Bareket-Keren & Hanein 2012). 

However, current neural probes are limited by their inability to maintain signal fidelity 

for long-term acquisition of SURs. Probe insertion into brain tissue injures cells and the 

surrounding microvasculature. A wound healing response is initiated that includes 

microglia and astrocyte activation, which can hinder signal acquisition (Biran et al., 

2005; Polikov et al., 2005; Turner et al., 1999). Moreover, a chronic response to the 

implanted probe is also observed. Reactive astrocytosis persists long-term from shear 

stresses at the probe-tissue interface, which ultimately leads to glial scarring (Aregueta-

Robles et al., 2014; Rousche et al., 2001). Astrocytes comprising the glial scar 

encapsulate the recording electrode, which increases the local impedance and limits 

electrode contact with surrounding neurons. As a result, current probes, which are 

successful in obtaining accurate signals in the short-term, fail to maintain adequate 
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signal-to-noise ratio in long-term use (N. Hamzavi et al., 2013; Stice and Muthuswamy, 

2009; Subbaroyan et al., 2005).  

Among the many features believed to influence the magnitude of this foreign body 

response, two factors are particularly relevant from the perspective of probe design: 

probe geometry and probe material properties. Previous studies have shown that larger 

probes induce a greater magnitude of  primary injury and a greater degree of long-term 

gliosis (Szarowski et al., 2003; Zhu et al., 2011). Probe material properties have a more 

significant effect on the chronic response than the acute injury. Stiffer probes have been 

linked to larger chronic responses in comparison to probes that have mechanical 

properties similar to CNS tissue (Lind et al., 2013; Turner et al., 1999; Zhu et al., 2011). 

These observations suggest that a smaller, more flexible microelectrode will minimize 

primary trauma and the subsequent chronic response (Lind et al., 2010). 

However, small, flexible probes may be too weak to insert into brain tissue and must be 

assisted by a stiffer and/or larger device. For example, flexible probes have been inserted 

through insertion shuttles that confer temporary mechanical strength to the probe. Once 

the probe is successfully in place, the shuttle or coating is removed surgically. 

Unfortunately, these shuttles induce significant primary trauma (Felix et al., 2013). 

Another approach to providing temporary mechanical strength is coating or supporting a 

flexible probe with a sacrificial, protective polymer, which degrades following insertion. 

Previous groups have utilized polymer coatings made of nitrocellulose-based materials 

(Zhong and Bellamkonda, 2007), poly(DL-lactide-co-glycolide) (Foley et al., 2009), 

polyethylene glycol (PEG) (Chen C-H et al. 2010), and tyrosine-based compounds 

(Lewitus et al. 2011)  Each of these has shown promise as a temporary coating, and the 
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tyrosine-based compounds have the added benefit of ultrafast degradation, which 

removes the insulating coating layer within hours to allow for earlier neural recordings. 

Given the properties of the coating or supportive material and the properties of the probe, 

it is possible to design the probe to optimize mechanical performance. From a mechanical 

perspective, the ideal coating would have the minimum coating thickness necessary to 

allow successful insertion, which would minimize tissue trauma during insertion and 

leave a flexible probe that would reduce interfacial stresses. An ideal coating would also 

degrade rapidly into non-cytotoxic byproducts, and leave the intact probe exposed to 

nearby neurons for signal acquisition as early as possible after implantation. Given the 

wide range of probe and coating specifications, experimentally finding an acceptable 

range of designs which fit these criteria can be a costly and time-consuming task. 

In general, computational modeling can be an effective approach to evaluate the effects 

of different specifications on probe insertion and mechanical performance in soft tissue. 

Finite element models that simulate needle insertion into soft tissues have been employed 

in prosthesis design (Abolhassani & Patel 2006; Okamura & Simone 2004). Similar 

principles have been applied to neural microelectrodes, particularly to understand how 

probe geometry (Subbaroyan et al., 2005) and material properties (Polanco et al., 2014) 

influence probe-tissue interfacial stresses. Other groups have concentrated on modeling 

the mechanical trauma exerted on the brain during and post-insertion to ascertain the 

probe’s ‘neural kill zone’ (Hamzavi et al. 2013), but none have focused on design criteria 

for insertion mechanics.  

We have developed an approach for the reproducible manufacture of polymer-supported 

microprobes using microfabrication techniques (Lo et al., 2015). We have used our 
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approach to make microprobes from parylene C, a class VI polymer used in many 

medical devices, and from SU-8 photoresist. The probes are coated with an ultra-fast 

degrading tyrosine-based polymer that is rigid during insertion but is hydrolytically 

degraded within hours following insertion (Lewitus et al. 2011). The goal of this study 

was to develop and validate a finite element model that predicted coated probe 

performance during insertion into brain tissue. We first developed finite element 

simulations to model buckling and penetration into tissue, and validated predictions made 

by each model by testing varying sizes of copper wire. Next, we compared the model 

predictions to results from experimental tests of uncoated and coated SU-8 and parylene 

probes to validate the model for softer materials. Finally, we used the model to predict 

the performance of uncoated and coated parylene over a range of design specifications, 

employing a number of metrics to assess which features of the probe and coating design 

influence insertion and tissue damage, as well as the design regime of coated probes that 

will insert and minimize insertion trauma. 
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Materials and Methods: 

Buckling and Insertion Tests: Buckling and insertion testing was performed with an 

Enduratec ELF 3200 uniaxial mechanical testing device (Bose) (Figure 4-1). Probes or 

probe mimics were secured to an actuator, which lowered the probe into an agarose tissue 

phantom, chick embryonic brain tissue, or adult, rat brain tissue. These tissues or tissue 

phantoms were set on a rigid surface, which was connected to a 0.5 N cantilever-type 

load cell (Entran Sensors and Electronics, Fairfield NJ, USA). For tests with an agarose 

phantom, a 0.6% by weight solution of low-temperature melting agarose (Sigma-Aldrich, 

St Louis MO, USA) was prepared. This concentration of agarose has mechanical 

properties similar to brain tissue and has previously been used as a tissue surrogate 

(Lewitus et al. 2011, Chen et al. 2004). For tests with chick embryonic brain tissue, 

which provided an inexpensive and convenient source of model tissue, fresh fertilized 

chicken eggs (Charles River Labs, North Franklin CT, USA) were incubated for 18 days. 

The embryo was extracted from the egg, and brain tissue was excised. Finally, for tests 

with rat brain tissue, rat brains were extracted from female Sprague-Dawley rats (Charles 

River Labs, North Franklin CT, USA) following euthanasia via asphyxiation in 100% 

CO2 environment following an approved IUCAC protocol. Preliminary experiments 

showed that the presence of the dura layer had negligible effect on insertion force and 

thus was left intact. Brains were transferred to 37 °C saline and used immediately 

following removal. 

Probes or probe mimics were lowered at a rate of 0.1 mm/s into the agarose phantom or 

brain tissue. A humidifier was used to ensure tissue remained hydrated during testing. 

The probe either buckled after contact with the tissue/phantom, or it penetrated the 
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tissue/phantom, traveled through the entirety of the tissue or phantom, came in contact 

with the rigid surface underneath the tissue/phantom, and then buckled. No probes that 

penetrated the surface of the tissue or phantom failed to reach the rigid underlying 

surface. The insertion force was defined as the peak force in the recorded profile during 

penetration of the tissue but before contact with the rigid surface. Buckling force was 

defined as the peak force generated once the sample came in contact with the rigid 

surface. In general, forces for probes that buckled during penetration of the agarose 

phantom and/or brain tissue were below the limit of detection for the transducer (0.1 

mN). 

The insertion and buckling tests were performed with either uncoated copper wire, coated 

or uncoated SU-8 probes, or coated or uncoated parylene C probes. Initial tests were 

performed with copper wire with the sole intent of providing data to validate simulation 

results. Three different diameters (320, 750, and 875 μm) of copper wire were first tested 

with agarose phantoms. A number of SU-8 and parylene C probes (Table 4-1) were tested 

in embryonic chick brain tissue. Eight probes were tested in each cohort, and the number 

of successful insertions was recorded. Four probes were tested in each brain, with a 

minimum distance of ~1 mm between insertion locations to prevent the possibility of 

insertion in damaged tissue. 

Finally, select parylene C and SU-8 probe designs were tested in rat brain tissue (Table 4-

2). We purposely selected a range of probe and coating designs for insertion into rat 

tissue that were expected to all fail (all fabricated probes fail to insert), all succeed (all 

fabricated probes successfully insert), or demonstrate a mixture of failure and success 

(some but not all fabricated probes successfully insert). These expectations were based on 
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model predictions for insertion and buckling forces following model validation against 

the agarose and chick tissue experimental data. Twelve probes were tested in each cohort, 

and the number of successful insertions was recorded. All tests were completed within an 

hour post sacrifice to prevent any substantial change to the ex vivo brain’s material 

properties (Prange & Margulies, 2002). The minimum distance between insertion 

locations within the same brain was ~1 mm. 

Finite Element Analysis:  Probe mechanics were simulated in ABAQUS 6.10 (Simulia). 

Two models were developed: one to simulate buckling of uncoated and coated probes, 

and the other to simulate insertion into a tissue phantom. 

Probes and coatings with varying design parameters (see Table 4-3 for a full list) were 

generated and meshed with 8-node, reduced-integration (C3D8R) elements. Mesh size 

was uniform for the probe (10µm), and coating (5µm). The probes were completely 

coupled to the coating by specifying a tied constraint between contacting surfaces. To 

validate the model, probes were modeled as one of three different materials to match 

buckling and insertion experiments: copper, SU-8 photoresist, and parylene C. For each 

material, we used the flexural modulus. With the exception of the flexural moduli for SU-

8 and parylene C, values for material properties were obtained from the literature: copper 

(E = 110 GPa, ρ = 8960 kg/m
3
, ν = 0.36), SU-8 photoresist (E = 2.4 GPa, ρ = 1190 kg/m

3
, 

ν = 0.32), or parylene C (E = 5.6 MPa, ρ = 1289 kg/m
3
, ν = 0.45) (Spratley et al. 2007, 

Hopcroft et al. 2003, Rizzi et al. 2013, Chung & Allan 2005, Sim et al. 2005, Kalpakjian 

& Schmid 2006). The tyrosine polycarbonate coating was modeled using material 

properties from previous characterizations (E = 1.9 GPa, ρ = 1290 kg/m
3
, ν = 0.42) 

(Lewitus et al. 2011). 
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To determine the flexural modulus experimentally for SU-8 photoresist and parylene C, 

strips of varying dimensions for SU-8 (0.5–2 cm × 500 μm × 20 μm), and parylene C (1–

3 cm × 1 cm × 20 μm) were clamped at one end and allowed to deform under their own 

weight in cantilever bending. Digital microcalipers were used to measure the maximum 

deflection. Stiffness was calculated by using the beam deflection equation (Goldstein & 

Salcman 1973): 

𝐸 =
𝑞𝐿4

8𝐼𝛿𝑚𝑎𝑥
  

where q is the weight per unit length of the strip; L is the length of the strip; δmax is the 

maximum deflection of the strip; I is the area moment of inertia of the cross-section of 

the strip; and E is the flexural modulus. Images of the bending profile were captured and 

examined to ensure that appropriate bending behavior was observed (Figure 4-2). 

 

Buckling Model: A linear buckling analysis was performed in ABAQUS to identify the 

force required to initiate buckling. Contour maps were generated to evaluate force 

distributions along the probe and coating. The buckling force for each model execution 

was determined by calculating the mean maximum force of the nodes in the probe and 

coating. 

 

Insertion Model: Probe insertion into brain tissue was modeled with a dynamic, explicit 

analysis in ABAQUS. Agarose and brain tissue were modeled as hyperelastic materials 

using Ogden material parameters adapted from the literature (Normand et al. 2000, El 

Saeyd et al. 2008) with C3D8R elements and adaptive meshing. To emulate probe 

penetration, elements that exceeded a shear strain of 0.05 were deleted from the mesh 
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prior to the next increment in time. This value was selected based on preliminary results 

of insertion tests, where the threshold value for element deletion in our simulation was 

modified until predicted insertion forces matched experimental results in insertion tests 

with the agarose phantom and brain tissue. The influence of this value was evaluated with 

a sensitivity analysis (described below). Infinite elements were used at the edges of the 

tissue to simulate the significantly larger size of the tissue with respect to the size of the 

probe (Figure 4-3A). A convergence study was performed to determine the smallest 

element size for the region of insertion in the tissue (Figure 4-4). Coated probes were 

inserted at a rate of 0.1 mm/s into the substrate. The bottom of the tissue was fixed 

(Figure 4-3A). The top of the probe and coating was only permitted to move in the z-

direction. Similar to the buckling case, contour maps were generated to visualize force 

distributions along the probe and coating. An average insertion force was calculated as 

the average peak force for the nodes in the coating and probe identified from force vs. 

time plots. 

 

Sensitivity Analysis: In addition to varying probe geometry, a sensitivity analysis was 

performed to determine the influence of the parameters used to define material properties 

and failure thresholds of the hyperelastic brain tissue on the predicted insertion forces. 

Material properties were adjusted to a maximum of ±10% (Perrson et al. 2010), the 

coefficient of friction between tissue and coating/probe was varied from 0 to 0.5, and 

strain thresholds for element deletion were varied from 0.01 (extreme) to 0.25 

(conservative) based on information in the literature (Zhang et al. 2004, Cater et al. 2006, 

Bjornnson et al. 2006). A surface–surface contact algorithm was specified. 
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To assess sensitivity to coating flaws, a cylindrical void region was introduced in the 

coating. The radius of the void region was varied by proportion of the coating thickness, 

from 5% to 100% of the coating thickness. Four coating thicknesses were modeled (50, 

75, 100, and 200 µm). The percentage change in insertion and buckling forces relative to 

simulations with a non-defective coating was calculated. 

Each model was executed on a Lenovo Z580 (Intel
®
 Core™ i5-3210M CPU @ 2.50 GHz; 

6 GB RAM) or a Lenovo Y510 (Intel
®
 Dual Core™ 2.81 GHz; 4 GB RAM). A single 

design simulation took approximately 7–12 min to execute depending on the size of 

probe/coating. Simulations were run in parallel. A total of about 28,000 simulations were 

executed. 

 

Data Interpretation: To provide a performance metric for the simulation results, the 

ratio of the predicted buckling force to the predicted insertion force was determined for 

each simulation. We termed this ratio the “safety factor” for that particular design. A 

probe design would have a safety factor of 1 if the predicted buckling force equaled the 

predicted insertion force. To assess the influence of each parameter on performance, we 

designed a graphical user interface in MATLAB to generate safety factor probability 

maps. Model results for varying parameters (outlined in Table 4-3, column: “Range 

modeled”) were tabulated and read by the script. Interpolation methods were used to 

compute gaps in values, and color maps that plotted two parameters against each other 

were generated. 

In addition to providing a visual assessment of performance, the color maps were also 

quantitatively assessed using three statistical measures—kurtosis, variance, and 
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skewness—to draw numerical comparisons between pairs of parameters. Kurtosis 

indicates the “peakedness”, or sharpness of the peak in the distribution. Color maps with 

high kurtosis indicate that there is a small optimal design region for successful insertion 

that falls rapidly when deviated from in either direction. Lower values of kurtosis suggest 

that the peak is more spread, and there is no clear delineation between failure and 

guaranteed insertion. Variance provides a measure of how quickly the likelihood of 

insertion increases or decreases along changes in a design parameter, which loosely 

allows comparisons of the importance between the two parameters from the map on 

insertion potential. Skewness measures whether a parameter positively or negatively 

influences insertion potential. Distributions with a positive skew (right-tailed) suggest 

that increasing the design parameter negatively influences insertion potential. 

Conversely, a negative skew (left-tailed) implies increasing the value of the parameter 

improves insertion capability. In addition, multi-variable regression analysis was used to 

quantitatively assess the influence of each parameter on the safety factor. 
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Results 

Model and Fabrication Comparisons: Figure 4-3B, and Figure 4-3C shows a side-by-

side comparison of the simulated coated probe and a scanning electron microscope image 

of a representative coated probe. Mechanical similarities between simulated and 

fabricated coated probes were corroborated by the comparable insertion profiles we 

observed, as indicated in Figure 4-5A. Convergence studies shown in Figure 4-4 

demonstrated that a minimum element size of 10µm was necessary for insertion force 

values to converge.   

 

Insertion and Buckling Tests: Insertion tests with copper wire in agarose were used to 

validate the FE models of buckling and insertion. Figures 4-6A and 4-6B demonstrates 

the correlations between measured and model-predicted forces for the insertion and 

buckling cases, respectively. There was strong agreement between model and 

experimental results (R
2

insertion = 0.975, R
2

buckling = 0.878). 

The next sets of tests were conducted with a selection of coated and uncoated SU-8 and 

parylene C probes in embryonic chick brain tissue. Figures 4-6C, and 4-6D shows similar 

plots of measured force against model predicted forces, demonstrating strong agreement 

between model and experimental results (R
2

insertion = 0.967, R
2

buckling = 0.883). Uncoated 

SU-8 probes successfully inserted for both of the dimensions tested (320 µm × 5 µm and 

320 µm × 20 µm). None of the uncoated parylene C probes successfully inserted. When 

parylene C probes were coated, there was a significant reduction in the failure rates. For 

example, a 50 µm × 50 μm coating on the 20 µm × 5 μm parylene C probe reduced the 



136 

 

 

 

failure rate by 50%, and a larger, 50 µm × 100 μm coating reduced it by another 37.5%. 

Every coated SU-8 probe inserted successfully without buckling. 

Following tests on embryonic chick brain tissue, we selected probe designs for insertion 

tests in ex vivo rat brain based on their likelihood of failure as predicted by simulation 

results. Figure 4-6B shows a plot of buckling force vs. insertion force for the selection of 

coated and uncoated probes tested. Similar to the chick brain tests, all of the uncoated 

parylene C probes buckled during insertion. A 100 µm × 100 μm coating was the 

minimum needed to ensure a 100% successful insertion rate, with varying degrees of 

success with smaller coatings. A 50 µm × 100 μm, which was the smallest coating tested 

for the parylene C probes, amounted to a 62.5% success rate. 

 

Model Results: Figure 4-5 displays a representative plot of force during insertion for a 

75 µm × 100 µm coated SU-8 probe from experiment and simulation. Overall, predicted 

values for insertion forces were within 10.4% of experimental values. Simulated force 

profiles strongly matched experimental results for insertion tests. Force distributions for 

each of the models showed that the coating experienced the majority of the load during 

insertion. Force was primarily distributed on the bottom of the probe and coating once the 

sample penetrated the tissue. Based on contour plots, the sides of the coating in contact 

with the tissue experienced frictional forces about an order of magnitude smaller than that 

experienced at the bottom of the probe and coating. To assess the effect of friction on 

insertion forces, we adjusted the coefficient of friction from 0 to 0.5 (Wu et al 2004). 

While there was no appreciable effect on the insertion force (∆Fmax = +6.2%), frictional 

force experienced by the sides of the coating increased by 36%. In all cases, the 
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maximum frictional force was still an order of magnitude below the measured insertion 

force (Frictional force = ~10
−4

 N). 

We performed a sensitivity analysis on the hyperelastic parameters that defined the 

mechanical properties of the tissue in our model by measuring the change in insertion 

force with each varied parameter. A 10% change in the bulk modulus, κ, resulted in the 

most drastic change to predicted insertion force (from 1.19 mN to 5.54 mN for the 75 µm 

× 100 μm coating). We also evaluated the influence of our shear strain threshold for 

element deletion by varying the threshold from 0.01 to 0.25. Our default threshold value 

was 0.05. With this range of strain threshold values, the insertion forces varied from −4% 

to +12% of the insertion force from simulations with the default threshold value (Figure 

4-5C). 

 

Model Predictions for Probe Performance: Model predictions for insertion and 

buckling force were tabulated and processed. Maximum buckling force predicted was 

1140N when coating dimensions of 2mm x 350μm were modeled. Minimum predicted 

buckling force was  

1.66 x 10
-7

N for the uncoated parylene C probes (20 x 5μm). Buckling force was 

consistently lowest for uncoated probes. Largest insertion force predicted was 0.198N for 

a 350x350μm coated probe. Insertion force was consistently lowest for uncoated probes. 

Our model predicted little change in insertion force when angle of insertion and length of 

the probe/coating combination was changed 

Parallel examination of the insertion and buckling forces from the parametric simulations 

allowed predictions of probe performance for various conditions. In ideal circumstances, 
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a safety factor above one—i.e., the predicted force required for insertion is less than that 

required for buckling—would correspond to successful insertion experimentally. 

As shown in Figure 4-7A, we found a strong sigmoidal relationship between probe 

success rate and the safety factor. We fit a logistic equation to estimate the expected 

success rate as a function of safety factor, which allowed us to directly link model 

predictions to the probe performance in an experimental setting.  

 

 

Using this relationship, we assessed the impact of each of the probe specifications on 

insertion potential with parametric simulations. The range of values for each parameter 

was based on design constraints of the physical probe and coating procedure: probes 

could be fabricated with lengths from 0.5 mm to 5 mm, and coated with polymer to a 

thickness of 0 µm (uncoated) to 350 µm on each side, defining this range as our design 

space with respect to length and coating thickness, respectively. The safety factor for 

individual pairs of parameters (defined as ρ1 and ρ2) was then plotted against each other 

to map out how the insertion probability changes with design. Figures 4-8, 4-9, and 4-10 

depict probability color maps of how changing coating thickness, probe thickness, and 

cross-sectional profile with other geometric and material parameters affect insertion 

potential respectively. 

The color maps provided a visual representation of insertion probability. To evaluate the 

importance of the different design parameters and other variables, we calculated the 

bivariate kurtosis, variance, and skewness of each probability distribution map. Each 
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color map generated a three-dimensional array of values, which prevented the calculation 

of a single statistic per color map. To determine a single value for each statistic for a 

given color map, we calculated the kurtosis, variance, and skewness for each 2-D 

distribution generated along ρ1, for a fixed value of ρ2. This was repeated for all the 

values of ρ2, and the results were averaged to give a single statistic for a given pair of 

design parameters. For the regime of coated probes, our comparison of coating aspect 

ratio vs. coating thickness generated the highest kurtosis (βkurt = 8.73), and skewness 

(αskew = −2.71). The color map for this pair of parameters is shown in Figure 4-7E. 

Visually, the high kurtosis is represented by the marked delineation between probe failure 

and successful insertion, which occurs at approximately 20 µm coating thickness. The 

relatively large value for skewness is represented by the 100% probable insertion 

predicted in the regions to the right of the narrow transition region. The highest variance 

calculated was for the comparison of probe length and coating size (σ
2
 = 0.1089). 

When we included uncoated probes in our analysis, the highest kurtosis and skewness 

were found to be exhibited with uncoated probe width vs. probe length (βkurt = 38.9, αskew 

= 7.13). The minimum length for an uncoated parylene C probe to reach a reasonable 

probability of successful insertion was 200μm, which would not penetrate deep enough 

into tissue to obtain useful signal. Similar results were seen for other pairs of parameters 

we plotted, as seen in Figure 7, demonstrating that uncoated probe designs that were 

predicted to insert into tissue were either outside of the fabrication limits, or surmised to 

be too big to mitigate the chronic response. 

Multi-variable linear regression was used to quantitatively determine the individual effect 

of each parameter on the safety factor. Results are provided in Table 4-4 with the design 
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parameters listed in descending order of significance based on the p value calculated in 

our regression model. The safety factor was most dependent on probe length and coating 

thickness. 
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Discussion 

We developed and validated a finite element model to design and evaluate the 

mechanical performance of flexible neural probes that are coated with a polymer to 

enable insertion into brain tissue without buckling. For a given probe design under ideal, 

theoretical conditions, when the insertion force exceeds the buckling force, we expect 

that design to fail. By correlating actual failure rates to the ratio of buckling-to-insertion 

force, we defined a safety factor that was related to the probability of successful insertion. 

We are using this design tool to assist in our development of smaller, ultra-flexible 

probes to minimize trauma but maximize recording area (Lo et al. 2015). 

Experimentally, we used three materials that provided a wide range of mechanical 

properties and insertion potential to assist in model design: copper, SU-8 photoresist, and 

parylene C. Copper is 100 times stiffer than SU-8 and SU-8 is about 1000 times stiffer 

than parylene C. Copper specimens inserted successfully at all diameters tested. 

Uncoated SU-8 probes inserted successfully for sizes as small as 320 μm × 5 μm. 

Uncoated parylene C probes failed to insert at the lengths we experimentally tested. 

When a stiff coating was added to the flexible parylene C probe, the coating effectively 

shielded the probe and, if thick enough, allowed insertion before buckling. We observed 

that a minimum of 75μm was necessary for 100% successful insertion for the probe 

lengths and geometries we were targeting. Varying coating stiffness in our model resulted 

in changes to the buckling force, but little change to insertion force. As our polymer 

coating is water-resorbable, there is potential for the polymer stiffness to decrease during 

insertion. We examined a smaller range of stiffnesses (0.5-2GPa) to account for this 

possible degradation during insertion. The polymer stiffness under dry conditions is about 



142 

 

 

 

1.8GPa. With exposure to a high moisture environment, stiffness decreases 20%, and 

coating thickness decreases, eventually being completely degraded in 8 hours (D. 

Lewitus et al., 2011) Model results suggested that while a 75μm thick coating would 

allow successful insertion given that the probe is immediately inserted, a wiser course of 

action would be to employ a slightly thicker coating to account for possible degradation 

during the insertion process.  

 The peak force experienced by the probe occurred immediately before penetrating 

the brain or brain surrogate, assuming that the probe did not buckle, which was captured 

in our FEM of penetration into brain tissue. Modeling tissue mechanics due to penetration 

is inherently complex due to soft tissue’s non-linear, anisotropic nature, and the initiation 

of failure within the tissue, which often results in non-convergent solutions (Abolhassani 

et al. 2007). To model probe penetration into brain tissue, we used element deletion, 

which removes elements after a user-specified stress or strain threshold is reached. To 

estimate this threshold, we used results from our experimental validation in the agarose 

phantom and chick embryo brain tissue to define a preliminary strain threshold. We then 

adjusted the threshold strain in our simulations until the predicted insertion force 

generally agreed with experimental values. Our final threshold value fell with the range 

of failure strains reported in the literature (Zhang et al. 2004, Cater et al. 2006), including 

strains measured during insertion of neural electrodes (Bjornsson et al. 2006). 

The insertion force is thus directly dependent on this element deletion criterion, and 

consequently, so is the safety factor. Using our criterion for element deletion, we found 

that a safety factor of 3–3.5 corresponded to a probe design which inserted successfully 

100% of the time. Lower safety factors corresponded to a lower success rate, and a safety 
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factor of 1.35 indicated a 50/50 ratio of success and failure. Failure properties for CNS 

tissue vary across the literature (Zhang et al. 2004, Bain et al. 2000, LaPlaca et al. 2007), 

and our adoption of a threshold of 0.05 should not be viewed as a prediction of the failure 

properties, but rather a means to an end. If we used a different value for element deletion, 

the shape of the relationship between the computationally derived safety factor and the 

experimentally determined probability of successful insertion would not change 

significantly, although the value for an appropriate safety factor would change. 

Our model results were validated against experimental results, with the predicted 

insertion and buckling forces within 10% of their experimental values for the designs we 

tested. Values for insertion force from our experiments were in the same order of 

magnitude as those seen in the Sridharan study (Sridharan et al. 2015), which used probes 

of similar dimensions. The dependence of the buckling on probe properties and 

dimensions were consistent with Euler’s equation for buckling. As such, for simple 

geometries under ideal conditions, the insertion force could potentially be estimated 

analytically by, for instance, modeling a point force on an elastic half space, and then 

incorporating a stress or strain threshold based on experimental data. 

However, the likelihood of probe insertion success can be influenced by stress 

concentrations, positioning errors, and non-uniform geometries. These features can all be 

easily implemented into the FEM to assess their role in influencing insertion likelihood. 

For example, we examined the influence of bevel angle on insertion and buckling. The 

model predicted that a bevel angle of at least 60° is required to appreciably reduce the 

insertion force. The FEM also allows investigations of design and manufacturing 

concerns. During testing, some of the coated parylene C probes that were predicted to 
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succeed based on our model failed to insert. Among the possibilities for this failure 

include defects in the probe, non-uniform coating distribution, or swelling in the coating 

due to water resorption. Using our model, we introduced a cylindrical void into the 

coating to simulate a coating defect and determined the changes to safety factor as a 

result. Simulation results showed that with a void diameter of 50 μm, the maximum 

decrease in safety factor was about 15% (Figure 4-11) when the defect occurred at the 

beveled tip of the coating. We observed a clear trend where the change in safety factor 

increased with growing void size. The variation in safety factor with defect size indicates 

that even at a safety factor of 1.35, where the logistic curve between insertion likelihood 

and safety factor is steepest, the probability of insertion changes at most ~5%. 

Ultimately, we believe that the safety factor provides a useful metric driving design 

decisions especially in light of other variables. For example, increasing the stiffness of 

the tissue increased the insertion force required to reach the strain threshold for 

penetration. From a designer standpoint, a thicker coating or smaller length would be 

necessary to meet the necessary safety factor.  

Probability color maps, which denoted how the likelihood of insertion varied with 

changes in pairs of parameters, allowed us to qualitatively assess the influence of each 

device feature on insertion success. We analyzed eight design parameters in this study, 

which corresponded to 56 pairs, or 28 color maps. Figure 4-8 shows probability color 

maps for a number of parameters compared with coating thickness. Including features 

such as coating non-uniformity, or different probe geometries would serve to 

exponentially increase the number of color maps electrode designers would need to 

review. This provided the rationale to determine how to quantitatively rank the role of 
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each design parameter on safety factor. To quantitatively make this assessment, we used 

two sets of measures: (1) pair-wise statistical comparisons between parameters; and (2) 

multi-variable regression. We compared pairs of parameters by calculating the bivariate 

kurtosis, variance, and skewness of our generated probability surface maps. Designers 

can use the values from each statistic to rank which design features to focus on, as well as 

which pair of features generates the greatest “tradeoff” in insertion capability.  

We consistently observed that kurtosis was highest for pairs of parameters in uncoated 

probes compared to coated probes. Figure 4-9 shows color maps and respective statistics 

for uncoated probe width plotted against various design parameters. Uncoated and coated 

probes, which had a high kurtosis, delineated a more sudden transition from a region of 

failure to success. For instance, in the case of probe length vs. uncoated probe width 

(Figure 4-9A), there is a clear boundary between 0.2 and 0.8 mm where insertion 

potential quickly dropped as length increased. This ‘threshold’ length remained through 

the range of probe widths that were modeled (up to 350µm).  In contrast, a low kurtosis, 

such as Figure 4-9C (probe stiffness vs. coating thickness), indicates a broader “peak”, 

where the transition from failure to success was gradual. Variance measured how quickly 

insertion potential increased (or decreased) with parameter change. Coating thickness vs. 

probe length was calculated to produce the highest variance (Figure 4-8A for color map). 

This matched expectations as both these variables directly influenced buckling force, and 

coating thickness in particular, directly influenced insertion force as suggested by 

theoretical calculations and previous indentation studies (Sharp et al. 2011). This is 

reflected in the color map by the wide variation in insertion potential, where the upper 

left quadrant of the color map is primarily red (failure), and the remainder of the map is 
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blue (success). Skewness measured whether the potential for insertion increased or 

decreased with changes in the pair of parameters. We found skewness was most negative 

for probe width vs. probe length (Figure 4-9A), suggesting increasing width increased 

insertion potential. 

Individually, each statistic does not reflect the general shape of the color probability map. 

The high kurtosis we observed for probe length vs. probe width, for example, does not 

indicate whether increasing probe width would increase or decrease insertion capability, 

nor does it indicate how quickly it would change. When these statistics are taken 

collectively, however, we can quantify the influence between the pair of parameters on 

each other, as well as whether the pair has a positive or negative impact on each other, 

offering the means to rank pairs of design parameters. High kurtosis values calculated for 

coating aspect ratio vs. coating thickness tell designers that past a coating thickness of 30 

µm, any increases in aspect ratio will marginally increase the probability of insertion 

(until it reaches a probability of 1 after which it remains there). The corresponding 

variance, which was calculated to be lowest in the cohort of coated probes, informs 

designers that there are no sudden rises or drops in probability, and the strongly negative 

skew suggests that increasing thickness favors insertion potential. 

In contrast to the statistical measures above, which can only be used for pairs of 

parameters, multi-variable regressions provide a method to assess the role of each design 

parameter individually against all other parameters. Multi-variable regressions confirmed 

that probe length and coating thickness have the most significant effects on safety factor 

(Table 4-3), and thus should be the first features to consider in design. This was 

confirmed by color maps where probe length was modified against coating geometry and 
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coating material properties (Figure 4-10). It is important to note that these regressions and 

color map analyses are limited to the range of the parameters we examined. We selected 

the range based on both the limits of the fabrication process for our coated ultra-flexible 

probes (Lo et al. 2015), as well as the feasibility of their use. Although an uncoated 

parylene C probe 200 µm in length is predicted to insert successfully, it will not be 

effective in recording because it will not be able to reach target tissues. Increasing the 

range of values our parameters can take would inevitably change the values predicted by 

our regression, though we expect trends to be similar (e.g., probe length and coating 

thickness would still impact safety factor the most). 

Although our model successfully simulates and captures insertion potential for different 

designs of coated probes, it does not predict the specific effects on the chronic response. 

We are extending our model to predict the interfacial stresses between the already-

inserted probe and tissue and how that changes with probe geometry and material, in 

order to equate stress values with astrocyte activation. With that said, there is good 

evidence that smaller, flexible neural implants mitigate the acute and chronic injury, and 

thus, are able to record signals for an extended period of time. Smaller probes reduce the 

insertion force generated, which theory and our model confirms, and smaller probes have 

been equated to less tissue damage, and less acute reactive tissue (Szarowski et al. 2003). 

Flexible probes are predicted to reduce strains experienced by surrounding brain tissue 

due to micromotions, which have been implicated in the long-term chronic response (Zhu 

et al. 2011). Decreasing probe size and stiffness increases the likelihood of probe 

mechanical failure. However, clinicians may accept the increased chance of failure if it 

improves the probe’s long-term recording capability. As a hypothetical example, it may 
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be prudent to accept an 80% success rate if it enables the probe to maintain recording 

fidelity for twice the length of time as the 100% success rate probe. Neural probe 

designers can utilize our model to design and fabricate probes that fit the criteria, 

eliminating the guesswork and lengthy fabrication time required to pinpoint those designs 

which would achieve the necessary result. 
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Figures: 

 
Figure 4-1: (A) Mechanical testing setup to experimentally characterize probe and 

coating behavior. Probes were fixed on a glass slide and clamped to a rapid-prototype 

piece, which was clamped to an actuator on a Bose ELF 3200. A 0.5 N load cell was 

threaded onto a rapid-prototyped piece, which was clamped to the reaction plate of the 

testing device. A third piece containing a well for the sample (agarose or brain tissue) 

was pinned to the load cell. (B) Zoomed-in image of the fixed probe and sample of 

embryonic chick brain tissue. 
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Figure 4-2: (A-C) Representative images of deflection profiles of parylene C and SU-8. 

(D&E) Deflection profiles for (D) parylene C and (E) SU-8. Curve fitting was used to fit 

the image-acquired data to the complete beam deflection equation to extract the flexural 

Young’s modulus. The red curve is the resultant fit when the maximum deflection and 

corresponding flexural modulus (EParylene = 5.6 MPa, ESU-8 = 2.4 GPa) were used. 
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Figure 4-3: (A) Screenshot of Finite Element (FE) model. Stiffness, dimensions, and 

geometries were varied for the probe (red), beveled coating (light blue), and brain tissue 

(grey/yellow). The model was executed to simulate insertion of the coated probe into 

brain tissue. Infinite elements (CIN3D8—yellow) were defined around the edges of the 
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brain instance to reflect the significantly larger size of the brain relative to the coated 

probe. The bottom of the instance was fixed with a zero-displacement and zero-rotation 

constraint. (B) A close up of the simulated coated probe before and after meshing; (C) a 

scanning electron microscope image of the coated probe; and (D) a screenshot of the 

inserted probe shortly after penetration. Nodes that experienced force at this step had 

their maximum force averaged to determine insertion force. The zoomed-in region 

depicted in the red box shows the contour map of strains experienced on the surface of 

the brain instance. Elements in grey have reached the failure threshold (0.05) and are 

deleted in the next step. (E) Cut-away of the coated probe one second later than shown in 

(D) insertion, showing that only the coating experiences force during insertion. 
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Figure 4-4: Convergence studies were conducted to determine the ideal mesh size that 

would maintain accuracy while minimizing computational time. An element size of 

10µm was determined to reflect these criteria.  
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Figure 4-5: Force profile for insertion phase from (A) a representative experiment, and a 

simulation for a 20 µm × 5 µm SU-8 probe with a 75 µm × 100 µm coating inserted in 

agarose phantom. Profiles showed the characteristic peak when the probe first penetrates 

the tissue phantom. (B) Changing the strain threshold criterion for element deletion 

changed the resultant predicted insertion force by up to 10% from the chosen value of 

0.05. 
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Figure 4-6: Model accuracy was verified by comparing experimental results to model 

predictions in same conditions for (A) copper wire insertion into 0.6% agarose gel 

(R
2

insertion = 0.967); (B) copper wire buckling (R
2

buckling = 0.883); (C) probe insertion into 

E18 embryonic chick brain tissue (R
2

insertion = 0.975); and (D) probe buckling (R
2

buckling = 

0.878). 
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Figure 4-7: (A) Empirical probability of successful insertion vs. the “Safety Factor”. 

Each data point represents the number of successfully inserted probes divided by the total 

number of probes tested in that particular cohort. The data were fit with a sigmoidal 

function. A safety factor of ~1.35 corresponds to a 50% likelihood of insertion. A safety 

factor of ~3.5 corresponds to 100% success rate. (B) Buckling force vs. insertion force 

for experiments with rat brain tissue. Filled data points correspond to coated probes that 

inserted successfully, while empty points correspond to probes that failed (lengths in 

legend in µm). 
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Figure 4-8: Color maps of the probability of successful insertion of coated probes 

(Coating Width = 50μm) for six different parameters with respect to coating thickness 

(0–200 µm): (A) probe length; (B) polymer stiffness; (C) probe stiffness; (D) bevel angle 

of coating tip; (E) coating aspect ratio; and (F) brain stiffness. To quantitatively assess 

and compare pairs of parameters in each color map, we calculated the kurtosis, variance, 

and skewness of each distribution. The largest variance was calculated for probe length 

vs. coating thickness. The largest kurtosis and skewness were calculated for aspect ratio 

vs. coating thickness. 
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Figure 4-9: Color maps of the probability of successful insertion of uncoated probes for 

four different parameters with respect to probe width (0–350 µm): (A) probe length; (B) 

probe stiffness; (C) probe aspect ratio; and (D) probe insertion angle. Color maps 

demonstrated that the regime of successful insertion fell within unfeasible or ineffectual 

design ranges, confirming the necessity of the coating for probe insertion into brain 

tissue. Generally, values for kurtosis and skewness calculated from color maps were 

greater for uncoated probes than coated probes. 

 

  



162 

 

 

 

 

Figure 4-10: Color maps of the probability of successful insertion of (A&B) uncoated 

and (C&D) coated probes for four different parameters with respect to probe length (0–5 

mm): (A) insertion angle for uncoated probes; (B) probe stiffness for uncoated probes; 

(C) tissue stiffness for coated probes; and (D) coating stiffness for coated probes. In the 

case of uncoated probes 
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Figure 4-11: (A) Scanning electron microscope (SEM) images of a flawed probe with 

non-uniform coating. The red box highlights the presence of a divot in the coating. In 

general, most of these defects occurred at the tip of the probe. (B) The FE simulation was 

modified to mimic the defect we observed in SEM images. The position and size of the 

defect was varied to determine changes to safety factor. In general, changes in defect size 

had a greater impact on safety factor than defect position. (C,D) The percentage 

difference in safety factor from the ideal (no defect) case with changes in parameter and 

defect size. The percentage difference in safety factor was plotted against the size of the 

defect relative to coating size (e.g., 0.25 = 50 μm/200 μm). 
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Coho

rt 

Probe 

Materi

al 

Probe 

Dimensio

ns (μm) 

Coating 

Dimensio

ns (μm) 

Tota

l 

Pass Fail % Success 

Rate 

1 SU-8 320 × 5 × 

3500 

- 8 8 0 100.0 

2 SU-8 320 × 20 × 
3500 

- 8 8 0 100.0 

3 SU-8 320 × 20 × 

3500 

50 × 50 × 

4000 

8 8 0 100.0 

4 SU-8 320 × 20 × 
3500 

75 × 100 × 
4000 

8 8 0 100.0 

5 SU-8 320 × 20 × 

3500 

100 × 100 

× 4000 

8 8 0 100.0 

6 Parylen

e C 

20 × 5 × 

3500 

- 8 0 8 0.0 

7 Parylen

e C 

100 × 5 × 

3500 

- 8 0 8 0.0 

8 Parylen

e C 

320 × 5 × 

3500 

- 8 0 8 0.0 

9 Parylen

e C 

320 × 20 × 

3500 

- 8 0 8 0.0 

10 Parylen

e C 

20 × 5 × 

3500 

50 × 50 × 

4000 

8 4 4 50.0 

11 Parylen

e C 

20 × 5 × 

3500 

50 × 100 × 

4000 

8 7 1 87.5 

12 Parylen

e C 

20 × 5 × 

3500 

75 × 100 × 

4000 

8 8 0 100.0 

13 Parylen

e C 

20 × 5 × 

3500 

100 × 100 

× 4000 

8 8 0 100.0 

14 Parylen

e C 

20 × 5 × 

3500 

250 × 100 

× 4000 

8 8 0 100.0 

15 Parylen

e C 

20 × 5 × 

3500 

350 × 100 

× 4000 

8 8 0 100.0 

 

Table 4-1: Cohorts of probes tested in ex vivo chick embryonic brain tissue. 
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Cohort Probe Material 
Probe Dimensions 

(μm) 

Coating 

Dimensions (μm) 
Total Pass Fail 

% Success 

Rate 

1 SU-8 40 × 10 × 3500 - 11 6 5 54.5 
2 SU-8 40 × 10 × 3500 100 × 100 × 4000 12 12 0 100.0 

3 Parylene C 40 × 2.5 × 3500 - 8 0 8 0.0 

4 Parylene C 40 × 2.5 × 3500 50 × 100 × 4000 8 5 3 62.5 

5 Parylene C 40 × 2.5 × 3500 75 × 100 × 4000 8 7 1 87.5 

6 Parylene C 40 × 2.5 × 3500 100 × 100 × 4000 12 12 0 100.0 

7 Polymer Shank - 100 × 100 × 4000 8 8 0 100.0 

 

Table 4-2: Cohorts of probes tested in ex vivo rat brain tissue. 

 

  



166 

 

 

 

 

 

 

 

 

 

 

 

Parameter Range Modeled Coefficient Value 
95% Confidence 

Interval 
p Value 

Coating Thickness 0–200 µm 15,513 µm−1 [11928, 19113] <0.0001 

Probe Length 0.01–10 mm −33,037 mm−1 [−41029, −26755] <0.0001 

Coating Stiffness 0.001–100 GPa 1857 (GPa)−1 [1322, 2274] <0.0001 

Coating Aspect Ratio 0.1–10 5480 [3922, 7034] <0.0001 

Probe Width 5–350 µm 62 µm−1 [54, 69] <0.0001 

Beveled Angle 0–75° 1398 [515, 2236] 0.0043 

Probe Stiffness 1–5000 MPa 434 (MPa)−1 [131, 768] 0.0056 

Brain Stiffness 0.5–5 kPa −25 (kPa)−1 [−39, −11] 0.0114 

 

Table 4-3: Multi-variable regression results for the different parameters modeled in 

probe designs versus safety factor sorted in order of ascending p Value. Ranges modeled 

were selected based on limits of the fabrication process (for geometries), and potential 

selection of probe materials. 
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Chapter 5: An in vitro approach to correlating in silico 

predictions regarding the long term performance of 

flexible neural implants 

Abstract: 

Single-unit recording neural probes have significant advantages in signal-to-noise ratio 

and specificity for signal acquisition in Brain-to-Computer interface devices. Following 

insertion, micromotions in the brain lead to deformation at the probe-tissue interface, 

frequently leading to chronic gliosis, which results in encapsulation of the probe and 

limits long-term signal acquisition. To assess the features of the inserted probe that 

influence this chronic response, simulations were designed and executed in ABAQUS 

6.10 FEA software (Simulia) to model probe displacement in brain tissue. Interfacial 

stress and tissue strain contour maps were generated, and average stress and strain was 

calculated by averaging the non-zero maximum stresses and strains for the probe and 

tissue elements, respectively. To validate model predictions, a polydimethylsiloxane 

(PDMS) well was fabricated and bonded to a glass slide. The displacements of 14µm 

diameter fluorescent polystyrene beads entrapped in a 0.6% agarose gel resulting from 

the lateral movement of a microprobe within the gel were measured. A MATLAB script 

was employed to track bead displacements and plot strain maps. To link strain predictions 

to gliosis, rat-derived primary astrocytes were cultured in collagen gels that were cast 

around a fixed probe in a 12 well-plate. Micromotion was then simulated by exposing the 

12 well-plate to controlled motion via orbital shaker. Experimental values for average 

maximum strain agreed within 13.6% with model predictions for tungsten microwires. 

Simulations predicted average tissue strains of 6.7 x 10
-3

 for parylene probes, 0.048 for 
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polymer shanks, and 0.13 for tungsten microwires. Correlations between the average 

maximum principal strain along the tissue and GFAP intensities were found, enabling us 

to estimate maximum strain values allowed to avoid astrocyte activation. Future studies 

will employ the model to predict how probe geometry affects these measures and their 

correlations to the degree of gliosis induced. Ultimately, this model can be used as a tool 

to improve neural electrode design and to provide insight into the micromechanical 

features that contribute to inducing the inflammatory response. 
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Introduction:  

Brain-to-computer interface devices provide a means for rehabilitation following 

functional injury to central nervous system tissue (Aregueta-Robles et al., 2014; Cheung, 

2007; Grill et al., 2009; Hoogerwerf and Wise, 1994). Of most value is the ability to 

acquire accurate signals from firing neurons and translate these signals into a 

proportionate physical output from an extracorporeal device. Among acquisition 

approaches, single-unit recording neural probes have significant advantages in signal-to-

noise ratio and specificity for signal acquisition (Nicolas-Alonso and Gomez-Gil, 2012). 

Unlike less invasive approaches such as electroencephalography and electrocorticograms 

(Cheung, 2007; Mak and Wolpaw, 2009; Nicolas-Alonso and Gomez-Gil, 2012), neural 

probes can obtain signal from single neurons. While most neural probes can acquire 

signals with high fidelity in the short term, their long term efficacy is hindered by a 

foreign body response. 

Following insertion, a series of events occur at the probe implantation site that ultimately 

limits signal acquisition. These can be distinguished by their time scale of effect: 

immediate, acute responses, and the longer-term, chronic response. The acute injury is 

caused by mechanical trauma to the tissue due to insertion. The electrode damages 

extracellular matrix, capillaries, and glial and neuronal cells, inciting migration and 

inflammation of nearby microglia. Within the next few days, astrocytes increase their 

expression of glial fibrillary acidic protein (GFAP), corresponding to activation and the 

first steps in glial scarring (Lind et al., 2013; Yiu and He, 2006). Previous studies have 

demonstrated that magnitude of the acute response is a function of probe size (Retterer et 

al., 2004). For instance, silicon-machined probes with greater surface area resulted in 



170 

 

 

 

greater microglia activation than probes with less surface area (Polikov et al., 2005; 

Thelin et al., 2011). Probe geometry and methods of probe fixation also have an impact 

on the acute and chronic responses (Karumbaiah et al., 2013). 

The chronic response that takes place weeks following insertion is initiated by 

surrounding astrocytes, resulting in formation of a glial scar. The scar sequesters the 

probe from surrounding neurons, limiting recording capability.  Material mismatch 

between the probe and brain tissue has been demonstrated to be largely responsible for 

the chronic response (Aregueta-Robles et al., 2014; Cheung, 2007; Polanco et al., 2014). 

Probe displacement induced by tissue pulsation from cerebrospinal fluid (CSF) or blood 

flow and rotational accelerations due to head movement can cause differential movement 

of the probe and surrounding tissue, which produces  shear and disrupts tissue. Probes 

made of metals or semi-conductor materials have stiffnesses hundreds of thousands times 

greater than brain tissue (Hamzavi et al., 2013). These stiffer probes result in greater 

interfacial stresses between the substrate and surrounding tissue, which exacerbates the 

chronic response (Subbaroyan et al., 2005). 

To overcome these constraints, our approach was to fabricate flexible neural micro-

electrodes made from parylene C (Lo et al., 2015). Parylene C has a flexural stiffness 

about 1000 times less than silicon, suggesting that chronic inflammation would be 

reduced compared to silicon-machined probes. However, parylene’s flexibility makes it 

particularly vulnerable to buckling forces, and probes on their own fail to penetrate brain 

tissue to reach target neurons. In light of this, we coated parylene C probes with an ultra-

fast degrading polymer which conferred temporary stiffness to inserted probes (D. 

Lewitus et al., 2011). With sufficient coating, the probe is able to successfully penetrate 
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brain tissue. However, there is a balance between the size of the coating and probe, and 

the conditions necessary for insertion. A larger coating thickness increases the 

mechanical trauma to tissue (Felix et al., 2013; Lo et al., 2015). Given the vast number of 

permutations of coating and probe features, designing, fabricating, and testing so many 

probes becomes a daunting, and expensive task. 

Computational models provide a non-destructive means of analyzing probe performance 

under various conditions, including insertion into soft tissue. It is important to note that 

modeling as a means for understanding probe performance is not on its own a novel 

concept. Subbaroyan et al. developed a finite element simulation of probe-tissue 

mechanics and assessed the effects of material properties, tethering, and tip geometry on 

tissue strain (Subbaroyan et al., 2005). Hamzavi et al. extended this treatment to examine 

localized strains in a non-linear elastic model of brain tissue (Hamzavi et al., 2013). 

Although these models examine changes in interfacial stress and strain as a function of 

probe geometry and material properties, they are limited by a lack of experimental 

validation for strains being predicted by models, and no clear quantitative correlation 

between the interfacial stresses and strains and the cellular effects observed in the chronic 

response. The intersection between the mechanical and biological effects would provide 

useful information to neural electrode designers in evaluating the chronic effects 

expected following insertion. 

In this chapter, we design and validate a finite element simulation to predict the 

interfacial stresses and tissue strains generated by implanted probes due to micromotion. 

We then develop and assess the efficacy of an in vitro probe-gel-astrocyte system to 

relate the inflammatory response to the quantitative predictions made by the 
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aforementioned simulations. Taken with the results from our previous study on modeling 

probe and tissue insertion mechanics, we use the results herein to determine the 

parameters that can be optimized for ideal probe performance.  

Methods:  

To assess the effects of probe material and geometry on chronic damage, we used a 

combination of modeling and in vitro studies. First we developed an in silico model of 

probe micromotion in tissue. Next we performed validating experiments by measuring 

the displacements of fluorescent beads in agarose and collagen gels and subjected to 

controlled motion. Finally we developed and characterized an in vitro culture system of 

collagen gels seeded with astrocytes, cast our gels around different probe designs, and 

measured the degree of glial activity to correlate micromotion mechanics to biological 

outcomes. Details of each approach are described below.  

Finite element simulations: Probe mechanics were simulated with ABAQUS 6.10 

(Simulia). Probes with varying geometries and material properties were generated and 

meshed with 8-node, reduced integration (C3D8R) elements (Figure 5-1). Agarose and 

brain tissue were modeled as hyperelastic materials using Ogden material parameters 

adapted from the literature with C3D8R elements and adaptive meshing (El Sayed et al., 

2008; Singh et al., 2016; Zhang et al., 2004). To mimic previous studies’ observations of 

brain micromotion (Gilletti and Muthuswamy, 2006), the tissue was moved 10µm in a 

single direction,. Stress and strain fields for each model were extracted, and the following 

metrics were obtained: average nodal strain, average nodal stress, maximum principal 

strain, element von Mises stress, and radius of effect, which we defined as the distance 

from the probe to the last element that had a strain above 1 x 10
-6

. 
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Separate simulations were performed that mimicked the experimental model of tissue 

displacement (see Strain measurement validation below). The tissue block was displaced 

similarly to the motion experienced by the gel when placed on a digital microtiter shaker 

(Ika ™, Wilmington NC), set to rotate at 150rpm. This was achieved by moving the 

tissue and probe instance by 50µm to the right, followed by a deceleration step, and 

movement 50µm perpendicular to the previous direction followed by another 

deceleration. This range of motion was repeated until the tissue-probe returned to its 

initial position. Two conditions were tested, one where the top of the probe was affixed to 

the top surface and coupled to the surrounding tissue, and a second condition where the 

probe was unfixed and coupled to the surrounding tissue.  

Strain measurement validation: To validate model predictions, 0.4mg of 14µm diameter 

Fluoro-Max Green Fluorescent Polymer Microspheres (Thermo Scientific) were mixed in 

1mL of 0.6% agarose, or 3.75mg/mL collagen to measure their displacements following 

simulated micromotion. The gel mixture was cast around a polydimethylsiloxane 

(PDMS) well bonded to a glass slide. Using a marker, several dots were made under the 

slide to act as fiduciary markers. A probe or probe mimic was either fixed to the PDMS 

well or was allowed to float freely in the liquid agarose or collagen until the gel had fully 

cast around the probe. Prior to gelling, the glass slide was carefully moved to the stage of 

an IX81 inverted epifluorescence microscope (Figure 5-2A for schematic), and a stack of 

images was taken to determine initial position of the beads. The stage holding the glass 

slide was then moved 10µm at a rate of 250µm/s before being shifted back to its original 

position at the same rate. The slide was imaged once more to ensure the fiduciary 
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markers were aligned to their initial positions, before images of the new bead positions 

were taken.  

Images of the bead positions before and after motion were then overlaid and processed 

through an in-house built MATLAB script to generate strain contour maps as a function 

of bead displacement (Figure 5-2 B-C). Briefly, the script determined the center points of 

beads in both images. Using Delaunay triangulation, a strain mapping function was 

generated based on displacements of triangle sides. From the mapping function, strain 

tensors were calculated and assigned to the center point of each triangle, and the 

maximum principal strain was extracted for each triangle. A mesh grid of 512 x 512 

pixels with 1 pixel resolution was generated and strain magnitudes were interpolated. 

Color maps were generated to visualize strain in bead images and determine the 

maximum value of 2-D strain and the average 2-D strain for use as metrics to compare to 

the in silico results. 

In vitro model development: PDMS rings with an outer diameter of 22mm and an inner 

diameter of 9.5mm were punched out using a hollow punch kit (Mayhew Tools, Turners 

Fall MA). Rings were fitted with one of the following: 1) 50-500µm diameter tungsten 

microwires; 2) parylene strips 50-500 x 20µm in cross-sectional area or; 3) nothing 

(control). Rings with probe or probe mimic inserts were placed into 12 well plates and 

plates were sterilized with 95% ethanol, followed by 10 minute treatment in a UV-

microwave. This was followed by oxygen-plasma treatment at 100W power, 250cm
3
 O2 

at 700mTorr for 60 seconds to ensure rings remained bound to the bottom surface of each 

well. 
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Culture preparation: Primary astrocytes were obtained from dissociated brain tissue from 

P8 rats. Cells were cultured in T-75 Falcon flasks for 7 days, reaching ~90% confluence. 

Cells were then trypsinized until detachment, and cold astrocyte culture media comprised 

of 10% fetal calf serum (CO), 1% L-Glutamine, 1% Penicillin-Streptomycin, in 

Dulbesco’s Minimal Essential Media (Sigma-Aldrich, St Louis MO), was added to 

quench the reaction. Cells and media were centrifuged at 2000rpm for two minutes. 

Media supernatant was removed and the resultant pellet of cells was dissolved in 1mL 

astrocyte media warmed to 37°C. A small (45µL) volume was aliquoted and placed on a 

glass slide to determine the total number of cells, as well as stain for GFAP (1:500) and 

DAPI (1:5000) to visually assess the purity of astrocyte cultures.  Only cultures with 80% 

or greater purity were used.  

Collagen gels were prepared by mixing 20µL HEPES buffer, 140µL 0.1N NaOH, 100µL 

Minimum Essential Media (MEM), 52µL M199 Supplemental Media, 10µL L-

Glutamine, 10µL Penicillin-Streptomycin, and 677µL reconstituted bovine collagen at 

3.75mg/mL per 1mL of collagen gel. The collagen mixture was then supplemented with a 

volume of astrocyte media containing cells (31,250 cells/mL), and mixed thoroughly to 

ensure cells were distributed evenly. 400mL (12,500 cells/well) of the cell-collagen 

mixture were placed in each well. Preliminary studies demonstrated this concentration of 

cells was found to minimize gel compaction. The well plate was placed in a 37°C, 5% 

CO2 incubator for 45 minutes to allow gels to form. Once gelled, 400mL of warm 

astrocyte culture media was added to each well. 

Inducing micromotion: In each experiment, two plates were prepared. Control plates 

were not exposed to motion and stored in a 37°C, 5% CO2 incubator. Plates for the injury 
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condition were also stored in a stored in a 37°C, 5% CO2 incubator and placed on one 

end of a digital microtiter shaker (Ika ™, Wilmington NC); set to rotate at 150rpm. We 

calculated this setting to equate to an angular acceleration of 0.26rad/s. Literature studies 

on micromotion as well as model executions with these parameters suggested the relative 

motion between gel and substrate would be equivalent to the lateral translation 

experienced by a stationary probe in tissue (Salek et al., 2011; Subbaroyan et al., 2005). 

At days 1, 3, and 5, 200µL of supernatant from each well was extracted and stored in 

0.5mL microcentrifuge tubes at -20°C for further processing. 

Immunohistochemistry and supernatant analysis: After 5 days, plates were removed from 

the incubator, and cells were fixed in 4% paraformaldehyde for 45 minutes. 

Paraformaldehyde was removed and replaced with an immunobuffer solution comprised 

of 1% Bovine Serum Albumin (Sigma-Aldrich, St Louis MO), and 0.5% Triton X-100 

(Sigma-Aldrich, St Louis MO) in Phosphate Buffered Saline. A series of 4 washes with 

immunobuffer were performed before blocking buffer of 10% goat serum in 

immunobuffer was added and allowed to remain for 1 hour. Following this blocking step, 

blocking buffer was replaced with a cocktail of  1:500 dilution of polyclonal rabbit 

primary antibody of GFAP (Dako Pharmaceuticals), and a 1:1000 dilution of a 

monoclonal mouse primary antibody of Iba1 (Millipore). Plates were allowed to incubate 

overnight at 4°C.  The primary antibody cocktail was then removed and four more 

washing steps were performed before a cocktail of secondary antibodies was introduced. 

This secondary cocktail was comprised of a 1:500 dilution of goat-anti-rabbit Alexa Fluor 

488 (Invitrogen), a 1:500 dilution of goat-anti-mouse Alexa Fluor 647 (Invitrogen), and 

1:1000 DAPI (Fisher Scientific). 
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Following immunostaining, plates were imaged on an IX81inverted epifluorescent 

microscope, using filters (410nm, 488nm, and 647nm) to capture all three sets of stains 

used. A spinning disc unit attached to a Hamamatsu ImagEM digital camera (Middlesex 

NJ) was used to capture images through the depth of the collagen gel. Image stacks were 

processed, and GFAP and Iba1 intensity and shape were analyzed for each of the 

different conditions. Ramified (branching) astrocytes were characterized and their GFAP 

staining intensities were recorded as an additional indicator of activation. Astrocytes were 

considered activated if more than two extensions could be seen (Burda and Sofroniew, 

2014). 

To assess the acute response and as a metric to indicate the capability of the in vitro 

assay, supernatant samples from days 1, 3, and 5 were assayed for Tumor Necrosis Factor 

alpha (TNF-α) produced by cell-collagen mixtures, through use of a rat-specific TNF-α 

sandwich enzyme-linked immunosorbent assay (ELISA) (Biolegend) to quantitatively 

assess cytokine production. Cultures stimulated with lipopolysaccharide (LPS) (1µg/mL) 

were used as a positive control.  
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Results 

Model predictions: We modified two features of probes in the model: probe geometry 

and probe material properties. The geometric features we changed were the shape and 

dimensions of the probe. Figure 5-3 shows a representative set of contour maps for 

probes made of three different materials with the same dimensions (320µm x 20µm x 

3.5mm & 100µm x 20µm x 3.5mm). Von mises stress (stress), and the principal 

maximum strains were plotted using contour maps. Generally, we observed that larger 

probes resulted in a substantially larger radius of non-trivial  

(ε > 1 x 10
-6

) strains, and consequently stress, which we termed “radius of effect”. The 

material properties of the simulated probe influenced the magnitude of stress and strain, 

and had a marginal impact on radius of effect. 

 When probe width was increased, we observed non-linear increases in radius of 

effect (Figure 5-4). Average principal strains, and radius of effect both increased with 

probe width similarly to a power law (Figure 5-5).  Maximum stress occurred at the top 

of the probe, which was fixed at the boundary. A second stress concentration occurred at 

the bottom end of the probe. When probes with beveled tips were simulated, the 

magnitude of stress at the elements at the bottom of the tip roughly tripled in comparison 

to smooth probes.  

350µm tungsten (270GPa) microwires generated a maximum Von Mises stress of 

14.72kPa. This was significantly higher than similarly sized parylene C (5.6MPa, σmax = 

0.11kPa), and SU-8 photoresist (2.1GPa, σmax = 3.3kPa). Qualitatively speaking, stiffer 

materials resulted in larger maximum Von Mises stress. No quantitative relationship 

could be discerned between the probe stiffness and the maximum stress and strain. The 
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magnitude of stress decreased inversely with the square root of distance (1/√distance), 

which was consistent with a previous study by Subbaroyan et al. (Subbaroyan et al., 

2005). Simulations also predicted average tissue strains (calculated from the maximum 

principal strains of non-trivial elements) of from 6.7 x 10
-3

 for parylene probes, 0.048 for 

photoresist, and 0.13 for tungsten microwires. Representative strain profiles can be seen 

in Figure 5-6. 

Model Validation: In validating experiments, we compared strain maps from bead 

experiments to simulations that replicate the same geometries and material properties 

used for the tested probe design. Figure 5-7 shows representative comparisons between 

simulations and bead movement experiments for agarose phantoms. Overall, there was 

strong agreement between strain magnitudes predicted by simulations and those 

calculated in bead experiments (difference in average maximum principal strain = 

13.6%).  Agreement was strongest in stiffer probes, where bead movement was more 

noticeable, and strain could be calculated with greater certainty. 

 Next we performed validating experiments with the goal of replicating the 

conditions used in the in vitro assay. 24 well plates containing collagen gels and 

fluorescent beads were cast around protruding probes in a PDMS ring as described in the 

methods. Samples without probes showed no bead movement which matched model 

predictions of average strains of 2 x 10
-6

 (implying movement was present but negligible) 

(Figure 5-8). When probe specimens were included with the PDMS ring, simulation 

average strains matched experimental strains to a maximum of 21%. This gave us 

confidence that our simulation predictions reflect the deformations experienced by the 

tissue surrogate. 
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Assessing efficacy of in vitro model: We employed three metrics to assess the utility of 

our astrocyte-collagen in vitro system in modeling the effects of micromotion on chronic 

injury: 1) live-dead assays to ensure cell death did not occur and to normalize ELISA 

results; 2) TNF-α ELISAs to demonstrate the acute response matches the expectations of 

what is observed in in vivo studies; and 3) intensity of GFAP staining over 5 days to 

assess astrocyte activity. TNF-α was selected as a primary marker as its expression is 

characteristic of a pro-inflammatory response (Biran et al., 2005). Concurrently, live-

dead staining analysis was conducted and concentrations of TNF-α were normalized by 

the average number of living cells measured in each of the time points. 

 Live-dead staining confirmed astrocytes were viable. Viability was above 85% for 

all conditions (Figure 5-9). In all conditions, TNF-α expression was highest following 

one day after plating. In almost all conditions, concentrations dropped off in day 3, 

followed by day 5 (Figure 5-10). The exception to this was the samples that were 

stimulated with LPS, which remained constant at about 1000pg/mL. For comparisons, 

cohorts were broken down by materials, followed by size. Astrocytes cultured with 

microwires generated the greatest concentrations of TNF-α, followed by parylene C and 

control cases (no probe). Larger probes generated more TNF-α than smaller probes in all 

cases, though statistical significance was only found in some cases (Table 5-1). Finally, 

probe-gel conditions subjected to motion generated more TNF-α than their stationary 

counterparts, where statistical significance was seen in all cases (P < 0.02). 

 Comparing GFAP intensities between conditions showed similar patterns to that of 

the TNF-α expression (Figure 5-11). Stiffer probes generated higher intensities of GFAP 

staining as well as more ramified astrocytes. Larger probes generated higher intensities as 
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well, though the differences were not as profound as material differences. In all cases, 

motion resulted in greater GFAP intensities compared to equivalent conditions without 

motion. These results correspond strongly with the TNF-α data we obtained from ELISA 

analyses, where higher TNF-α expression corresponds with higher GFAP intensities. 

Direct comparisons between in silico and in vitro results: For selections of designs, we 

overlayed the strain profiles predicted by simulation results with GFAP intensity profiles 

from stained samples of astrocyte-collagen gels cast around probe samples. Figure 5-12 

and 5-13 shows representative sets of profiles for parylene probes and tungsten 

microwires undergoing no motion (Figure 5-12A, 5-13A) and motion (Figure 5-12B, 5-

13B), respectively. GFAP intensity decreased with distance from the probe as does 

predicted stress. For each condition, the intensities from GFAP signal were averaged. 

This composite signal was compared against the predicted strain. 

 We determined correlation coefficients between the images of immunostained 

astrocytes and the model predictions for replicate conditions as a measure of the model’s 

means of reflecting strains on the cell-gel mixture. Two metrics were used to assess the 

minimal conditions to induce astrocytosis: element strain, and normalized GFAP 

intensity, relative to the negative control (no probe, no movement). We compared each 

metric and assessed its relative ability to predict the likelihood of astrocyte activation. 

 Correlations were strong between the stress/strain predictions and the averaged 

GFAP intensity. These correlations were higher in stiffer probes, followed by SU-8 

probes, and finally parylene probes. We plotted contour maps of von Mises stress and 

maximum principal strain, and determined strong correlation between stress (strain) and 

GFAP intensity (R
2

avg = 0.83).  To normalize intensities across conditions, we divided the 
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GFAP intensities for each condition against the average intensity of the control case 

where cell-collagen gels that were not cast around probes nor exposed to motion. This 

negative control condition generated the lowest average intensities of GFAP expression, 

as well as the lowest concentrations of TNF-α determined through ELISA analysis. 

 Next, we estimated a strain threshold for astrocyte activation. To accomplish this, 

we plotted strain predictions from simulations against the corresponding average 

intensities of GFAP expression from in vitro results. Next, data points were classified by 

whether the cell at the location exhibited ramified morphology. The 50
th

 percentile of 

intensities of ramified astrocytes was determined, and this value for the intensity was 

used to indicate “activation”. Using this activation value, we applied this threshold to our 

GFAP-predicted strain profiles to determine the strain threshold associated with 

activation, and averaged the result from all data sets. The average strain threshold was 

found to be 0.098, with a conservative estimate of 0.026 and a more tolerant estimate of 

0.133 (Figure 5-14).   
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Discussion 

 The goals of the work in this chapter were to: 1) develop and validate a finite 

element model to predict the interfacial stresses and strains generated with probe 

micromotion; 2) develop and validate a simple in vitro model of astrocytes in collagen 

gel subjected to similar conditions as a probe in brain tissue; and 3) quantitatively 

correlate simulation predictions to the effects seen in the in vitro model, and determine 

the likelihood of astrocyte activation as a function of interfacial stress and tissue strain. 

Combined, these results would provide a means of quantitatively assessing how 

variations in probe design affect the chronic response, and provide insight on steps that 

can be taken to mitigate probe-induced chronic injury. 

 Micromotion has been implicated as a likely cause of chronic reactivity following 

neural probe implantation (Felix et al., 2013; Gilletti and Muthuswamy, 2006; 

Karumbaiah et al., 2012; Polanco et al., 2014). Normal physiological activity such as 

pulsatile flow in vasculature, flow of cerebrospinal fluid (CSF), and breathing causes 

tissue to move and experience additional deformation upon interacting with the implanted 

electrode. Functional imaging studies suggest that this motion generates the equivalent of 

lateral translation of the probe (Gilletti and Muthuswamy, 2006), supporting our model 

methodology of translating tissue in a single direction in simulations. The magnitude of 

this motion can vary in different animal species. For instance, in mouse studies, 

micromotion of the brain tissue during normal physiological conditions varies by about 

30-40µm. In experimental setups, the probe is commonly fixed to the skull, resulting in a 

large interfacial stress between the probe and surrounding tissue, which exacerbates the 

chronic response (Cheung, 2007).   
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The salient concern in the design of neural implants is their long-term efficacy given the 

occurrence of gliosis. Previous work implicates probe geometry and probe stiffness as 

features that modulate the degree of scarring (Polikov et al., 2005; Potter et al., 2012; 

Stice and Muthuswamy, 2009). By utilizing parylene as our probe substrate, probes 

would be flexible enough to minimize interfacial stresses between electrode and tissue, 

and therefore minimize scarring (Lo et al., 2015). To distinguish the design properties 

that drive this response, a model was required to quantify the stresses and strains caused 

by the implant. To this end, we adapted the model from Singh et al. to quantify the 

interfacial stresses and strains generated between probe and tissue following brain 

micromotion (Singh et al., 2016). In contrast to our previous study, the coating was 

omitted from analysis, as the time scale for chronic damage is days and weeks following 

insertion; which is well after the hours need to degrade the ultrafast degrading polymer 

utilized to coat neural electrodes (D. Y. Lewitus et al., 2011).  

 More importantly, finite element simulations allowed us to quantitatively predict 

the strains being generated at the probe-tissue interface for conditions where 

experimental observations are infeasible. This is important for two reasons. As described 

in previous chapters, measuring microscopic strains in situ is still a challenge. Equally 

important, whereas stiffer probes generated relatively large magnitude stains that allowed 

for measurement of bead displacements in our validation experiments, the softer parylene 

probes did not produce appreciable movement in beads, making it impossible to reliably 

quantify strain in parylene probes. Simulations of parylene probes predicted strains that 

were two orders of magnitude smaller than stiffer probes of similar dimensions. We were 

unable to capture bead displacements with certainty when we imaged agarose gels cast 
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around parylene probes, which was commensurate with the very small strains we 

predicted were being generated by the more flexible probes. 

 The relationship between probe width and tissue strain and probe width and radius 

of effect could be fit with a power law. However, the relationship between probe stiffness 

and tissue strain and radius of effect is more difficult to discern. We did observe that both 

strain and radius of effect increased with stiffness in a non-linear fashion. For instance, 

when parylene probes were compared to tungsten microwire, strain increased 500%, and 

radius of effect increased 67%, implying that probe stiffness has a more substantial effect 

on tissue strain than geometry. These findings justify the emphasis our group had on 

selecting a flexible material over minimizing size, as even by using a substantially large 

probe (>500µm in width), the strains in the expanded radius of effect may be too small to 

elicit the chronic injury response (Grill et al., 2009). Furthermore, larger probes can 

accommodate more recording traces, improving recording resolution. 

 After developing and validating the finite element simulation, our next step was to 

develop an in vitro model to assess design impacts on gliosis. The in vitro model served 

as a surrogate to in vivo studies and organotypic cultures. Organotypic models are 

inherently more biomimetic than the cell-gel culture system we utilized, but also more 

complex, comprising cell-cell interactions, architecture, etc (Cater et al., 2006). The 

advantage to our approach is the ability to isolate the components that are implicated in 

chronic injury. Brain tissue is comprised of a complex network of astrocytes, microglia, 

oligodendrocytes, neurons, and epithelial cells that interact with one another during 

injury and inflammatory cascades (Burda and Sofroniew, 2014; Uno et al., 1997; Werner 

and Engelhard, 2007). As astrocytes are responsible for glial scarring that limits the 
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electrode’s long-term ability to measure signal, we found it prudent to quantify their 

expression of pro-inflammatory markers as a function of probe material and geometry 

(Lind et al., 2013; Polikov et al., 2005). Thus, our in vitro model sought to isolate 

astrocytes in cell cultures. Iba1 staining for microglia demonstrated the presence of no 

microglia in our cultures, confirming that the downstream inflammatory effects we 

observed were primarily due to astrocytes. 

 ELISA was used to evaluate the in vitro model’s authenticity to similar 

organotypic and in vivo models. TNF-α is a cytokine and its expression is a hallmark of 

inflammation. ELISA results showed similar trends across all probe conditions. We were 

surprised at the steady decline in concentration over days 1 to 5. To elucidate reasons for 

this change, we first tested whether cell viability was severely impacted by the probe 

material or the rotational motion using a live-dead staining. If cell death increased, this 

would explain the decrease in TNF-α expression. Cell viability was not adversely 

affected by probe material or motion, being between 85-98% across samples. Cell count 

did not change considerably in the period as well (Pmin = 0.22). As cell count and viability 

did not change in this time period, it followed that TNF-α expression per cell was 

decreasing, and that TNF-α is a representative marker of the acute response, but not as 

effective a metric for assessing chronic damage. Evaluation of brain tissue in a parallel in 

vivo study performed by our group, where electrodes made of copper and parylene C 

were inserted for 1, 4 and 12 weeks, support this finding (Lo et al. 2016, in preparation). 

 We used GFAP expression as an indicator for astrocyte activation. Along with 

TNF-α, GFAP is a component in the inflammatory cascade (Chung and Benveniste, 

1990). Unlike GFAP which is specifically expressed by astrocytes, TNF-α is expressed 
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by astrocytes, microglia, activated macrophages, and oligodendrocytes (Uno et al., 1997). 

The same parallel in vivo studies our group has performed demonstrated elevated levels 

of GFAP with stiffer probes, further supporting the observations we made in our in vitro 

study (Lo et al. 2016, in preparation).  

 Finally, we explored the link between the stress and strain predictions and the 

corresponding astrocyte markers in our in vitro model. Profiles of astrocyte activation 

reflect the stress and strain predictions from simulations. We correlated predictions to the 

GFAP intensities in prepared gels and found strong agreement between the two metrics 

(R
2
 > 0.72). We then determined an element strain threshold that corresponds to astrocyte 

activation. Our conservative estimate for astrocyte activation was a strain of 2.6%. 

Thresholds near this value were most prevalent in parylene C GFAP profiles. The only 

other study we encountered that performed a similar assessment of strain-induced gliosis 

was by Karumbaiah et al., where they reported a cyclic strain of 3% induces upregulation 

of IL-6 and IL-36Ra (Karumbaiah et al., 2012). Admittedly, the method we used to 

define “activated” astrocytes as the upper 50% of normalized intensity of ramified 

(branching) astrocytes is somewhat crude. These criteria could be further refined by 

selecting a more discerning intensity threshold, or correlating these results to qPCR 

results (Brahmachari et al., 2006). 

 Our results confirm the general wisdom that larger, stiffer probes result in a greater 

magnitude of gliosis. These same properties also improve the likelihood of insertion. Our 

group has fabricated small, flexible probes made of parylene and coated these probes 

with a tyrosine-based polymer that confers temporary stiffness to the probe. In the 

previous chapter, we developed an approach to model insertion of coated probes into soft 
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tissue. Combining the metrics we elucidate with the safety factor values we extracted for 

our designs allow for the design of optimized probes that minimize both the acute and 

chronic injury response, while still inserting successfully. 
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Conclusions: 

 In this chapter, we sought to quantitatively link the interfacial stresses between 

probes and surrounding tissue with degree of chronic damage using an in vitro model. 

We first developed an extension to the model in chapter 4 to predict interfacial stresses 

between the probe and tissue interface and validated these predictions with corresponding 

strain mapping experiments. Next, to assess chronic damage, we developed a culture 

system of astrocytes seeded in 3-dimensions in collagen gels, cast the hydrogel-cell 

mixture in liquid form around different probe specimens, and exposed the gel-cell-probe 

system to controlled motion meant to mimic probe micromotion experienced by in vivo 

brain tissue. Finally, we compared stress and strain predictions from our finite element 

simulations to GFAP expression, an astrocyte marker that corresponds to increased 

chronic damage. 

 Taken with the simulation we developed and validated in chapter 4, we have a 

fully encompassing model to assess probe designs and their expected mechanical 

outcomes during and following insertion. As expected, there is a balancing act between 

minimizing the acute damage (minimizing insertion force), maximizing the recording 

space for probes (increased size), and minimizing the chronic response for continual 

measurements. Depending on the probe’s features, it is possible to optimize design or 

materials in such a way to ensure ideal recording potential.  

 Equally importantly, we developed a methodology to link stress and strain on 

astrocytes in collagen gels, to the likelihood of astrocyte activation. Similar to the work in 

chapter 3 where we elucidated strain thresholds for axonal failure, the strains predicted by 

our finite element simulations reflect regions of astrocyte activation and chronic damage.  
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Figures: 

 

Figure 5-1: Schematic of Finite Element (FE) model for the embedded probe. Stiffness, 

dimensions, and geometries were varied for the probe. To simulate the micromotion 

experienced by the probe due to the brain’s resting conditions, the probe was moved 10 to 

60µm while the tissue remained stationary. 
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Figure 5-2: Images of the experimental setup used to validate strain predictions from FE 

simulations. (A) Agarose (or collagen) gels were cast around a fixed probe. A PDMS 

well was bound to a glass slide and placed on an inverted epifluorescent microscope. The 

slide was imaged, moved a certain distance, moved back to its original position, and 

imaged again. (B) shows the initial position of beads (red) prior to motion, and final 

position (green) following motion. (C) shows post-processed images and the outcome of 

Delaunay triangulation to calculate the strain mapping function. (D) is a schematic of the 

in vitro approach used to evaluate astrocytosis in probe designs. 
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Figure 5-3: Representative screenshots of model executions and contour maps (von 

Mises stress) for the three materials tested as viewed following a view cut through the z-

axis.  
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Figure 5-4: Representative contour plots for a (A) microwire and (A) parylene probe 

model execution with the view cut through the x-axis. Each had dimensions of 100µm x 

20µm x 4mm. The differences in contour maps are noticeable when results are visualized 

under the same scale.   
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Figure 5-5: Plots of predicted strain and radius of effect as a function of probe width. 

Curve fitting analysis was used to fit power laws to the simulation data. (A) and (C) 

compare the highest principal strain obtained for parylene and tungsten microwire 

respectively. (B) and (D) perform the same material comparisons in the context of radius 

of effect. We note that material properties make a difference to the maximum strain but 

not to the radius of effect. 
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Figure 5-6: Representative output of 2-D normalized strain profiles of copper wire, 

parylene probes, and SU-8 probes (350µm x 20µm x 4mm) for micromotion simulations. 

Tissue was displaced 10µm while the probe was fixed at the top. 

 



199 

 

 

 

 

Figure 5-7: Representative images of microwires: (A) is a beveled tungsten microwire 

with diameter of 500µm; (B) and diameter of 200µm. Smaller microwires (Figures 5-3B 

and 5-3D) cause smaller bead movement, resulting in lower magnitude strain density. 

While parylene probes were also tested for strain mapping, beads did not move 

appreciably for the mapping to produce results (Scale bar = 200µm). (E & F) show the 

corresponding model results for the probes shown in (A) and (B). 
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Figure 5-8: Simulations of beads embedded in the agarose system when experiencing 

motion similar to the orbital shaker used to mimic micromotion resulted in negligible 

element strains (ε < 10
-5

). 
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Figure 5-9: Cell viability results from live-dead stains performed on (A) 1 day, (B) 3 

day, and (C) 5 day samples experiencing motion via orbital shaker. Viability was used to 

normalize the TNF-α concentration extracted from ELISAs to confirm that the 

concentration changes with time were not due to cell death. 
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Figure 5-10: (A) Composite plots of TNF-α concentrations (given in pg/mL, y-axis) over 

5 days (x-axis) as determined by ELISA run in triplicate (N = 4) for varieties of 

microwires and parylene probes exposed to movement (marked with *) or no movement. 

(B-E) are isolated plots of TNF-α concentrations for (B) negative controls; (C) parylene 

probes; (D) microwires; and (E) LPS positive control. 

 

 



203 

 

 

 

 

Figure 5-11: Representative images of DAPI (blue), Phalloidin (red), and GFAP (green) 

staining for cell-gel samples left stationary. GFAP intensity was noticeably higher in the 

stiffer tungsten microwire samples than the flexible parylene samples 

 

  



204 

 

 

 

 
Figure 5-12: GFAP images and probe profiles for 500µm diameter (A) microwires, and 

(B) parylene sections for cell-probe-hydrogel conditions that were stationary.  
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Figure 5-13: Representative profiles for (A) tungsten microwires (diameter = 500µm) 

and (B) parylene (diameter = 500µm) sections that were exposed to motion via orbital 

shaker. Under the immunostained images are the GFAP staining intensity profiles and 
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normalized element strains predicted by simulations that replicate the experimental 

conditions imaged above. 

  



207 

 

 

 

 

Figure 5-14: GFAP intensities for astrocyte cultures for 100 x 20µm parylene probes 

(blue), 350 x 20µm parylene probes (green), 500 x 20µm parylene probes (purple), 

150µm diameter microwire (cyan), and 750µm diameter microwire (black) as a function 

of predicted element strain. Ramified astrocytes (two or more extensions) are recorded in 

red. A horizontal line was drawn representing the 50
th

 percentile of ramified astrocytes to 

estimate an intensity threshold corresponding to activation. The x-axis intercept for each 

intensity-strain profile was determined and used to estimate strain thresholds for 

activation.   
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Condition Day 1 Day 3 Day 5 

Negative Control 157.15 ± 68.16 130.05 ± 57.89 39.45 ± 6.39 

Negative 

Control** 
213.09 ± 24.97 138.13± 20.03 22.88 ± 0.75 

Microwire (D = 

200µm) 
322.50 ± 171.50 154.02 ± 33.10 53.72 ± 49.02 

Microwire (D = 

200µm)** 
389.28 ± 49.00 158.52 ± 10.67 37.34 ± 5.41 

Microwire (D = 

500µm) 
355.98 ± 16.77 182.75 ± 63.22 57.91 ± 6.04 

Microwire (D = 

500µm)** 
456.60 ± 35.25 202.16 ± 32.12 48.23 ± 5.77 

Parylene (W = 

200µm) 
171.36 ± 26.42 128.09 ± 34.13 60.05 ± 11.39 

Parylene (W = 

200µm)** 
389.28 ± 108.10 182.67 ± 38.45 47.18 ± 5.52 

Parylene (W = 

500µm) 
190.37 ± 34.70 125.10 ± 15.33 70.01 ± 10.86 

Parylene (W = 

500µm)** 
293.22 ± 64.23 106.46 ± 25.15 35.16 ± 7.8 

Parylene (W = 

1000µm) 
256.06 ± 45.05 165.22 ± 38.29 79.16 ± 36.20 

Parylene (W = 

1000µm)** 
317.96 ± 82.88 133.81 ± 54.71 32.57 ± 26.42 

Positive Control 

(LPS) 
992.56 ± 112.03 1025.29 ± 87.75 908.44 ± 162.23 

 

Table 5-1: Mean concentrations of TNF-α determined by ELISA analysis. Statistical 

significance was found between samples exposed to movement when compared to 

stationary samples in almost all cases in Day 1 and Day 3 timepoints. 
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Chapter 6: Thesis Discussion and Concluding Remarks:  

Thesis Summary: 

 In this thesis, we assessed several ways in which microscale features affect the 

bulk tissue-level response and vice versa, in the context of injury and flexible neural 

electrodes. We examined two facets of central nervous system injury and rehabilitation: 

approaches to better understand and model how tissue-scale deformations are translated 

to the cellular scale; and how neural probe stiffness and geometry can be modulated to 

mitigate acute and chronic trauma. We investigated both of these disparate elements by 

using a methodology that combined computational methods with experimental validation. 

The validated models were then probed to make predictions of scenarios that could not be 

experimentally measured or analyzed, in order to study the two aspects above.  

To better understand how macroscale deformations in white matter tissue translate to 

axonal strain, we modeled axon kinematic behavior as it changes with development and 

stretch in chick embryonic spinal cords. We first extended the 2-D kinematic models 

presented by Bain et al. and Hao & Shreiber to 3-D (Bain et al., 2003; Hao and Shreiber, 

2007). We characterized 3-dimensional tortuosity in axons and determined how tortuosity 

changed with stretch as a means of predicting kinematic behavior and inferring the strain 

populations of axons experience. Our findings suggested that accounting for the 

additional dimension would predict a smaller proportion of axons to exhibit discrete, or 

non-affine kinematics when compared to 2-D (Singh et al., 2015). This implied that 

greater proportions of axons exhibit affine or switching kinematics, which means greater 

proportions of axons are experiencing strain at lower levels of stretch than previously 

thought in the 2-D case.  
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To verify these inferences, we then explored methods of determining strain at the axonal 

level. Traditional measurements of strain are performed with fiducial markers, which 

provided the motivation to search for an analogous marker present in axons. We 

determined contactin-associated protein or Caspr as an ideal candidate for use as a 

fiducial marker. Caspr displacements were measured for different levels of tissue-scale 

stretch and the results demonstrated that while there is an equivalent transfer of 

macroscopic to microscopic stretch at earlier stages of development, this trend deviated at 

later stages. Through analyzing length distributions, we determined one possible cause 

for this discrepancy was axon failure. Examining thicker tissue sections confirmed this 

hypothesis, and we captured the proportion of broken segments. Adapting the kinematic 

models we developed in chapter 2, we were able to computationally estimate failure 

thresholds for axons in situ. Thresholds were predicted to decrease with development 

stage, in concert with increasing affine behavior. Moreover, when thresholds were 

categorized by kinematic behavior, we determined that non-affine axons have higher 

thresholds and are more resilient to stretch. 

We then examined the next facet of the CNS injury and rehabilitation system: probe 

design and performance. We split the problem into two parts: insertion, and post-insertion 

mechanics. To model insertion mechanics, we developed a finite element simulation that 

utilized element deletion methods to simulate probe insertion. The model predicted three 

metrics: insertion force, buckling force, and safety factor of the design. Safety factor was 

defined as the ratio of buckling to insertion force. These predictions were validated with 

parallel insertion and buckling tests on probes and coatings of varying dimensions and 

material properties. Experimental results demonstrated a logistic relationship between 
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safety factor and likelihood of insertion. We conducted a parameter sweep of design 

features and constructed probability heat maps to ascertain the range of acceptable 

designs. Analyzing heat maps and utilizing nonlinear regression methods: we determined 

that coating thickness, and probe length were the biggest determinants to successful 

insertion. Furthermore, there is a tradeoff between ensuring successful insertion and 

minimizing acute damage, which is correlated to the magnitude of insertion force (Sharp 

et al., 2009). 

Next, we sought to understand the probe features that affect the chronic response, and 

correlate probe-induced microstrains with gliosis with the goal of predicting the 

necessary strain to activate astrocytes. By simulating  probe micromotion as a proximal 

cause of chronic injury (Polanco et al., 2014), we predicted tissue strain as a function of 

probe geometry and stiffness in a modified form of our probe insertion model. The model 

was validated by measuring bead displacements in an agarose tissue phantom subjected 

to conditions being modeled. We then developed an in vitro model to correlate the 

predicted strains to gliosis comprised of astrocyte-collagen-gels cast around probe 

specimens. Through simulations, it was determined that stiffness contributes most to 

micromotion-induced strains. We also determined strain thresholds for astrocyte 

activation vary between 2.6-13%. 

The necessity of modeling: 

 One common thread between the questions we sought to answer in this thesis was 

the use of computational and experimental approaches to gain a greater understanding of 

each system (injury and effects of probe design). At the start of this work, we first 

addressed the reasons as to why we could not employ experimental methods on their own 
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to answer these questions. What were the obstacles associated with characterizing CNS 

injury, and designing neural probes, that made modeling a necessary approach? 

The mechanisms of primary injury are inherently complex. Brain and spinal cord tissue 

demonstrates regional-dependent material properties that are defined by the 

microstructure. Moreover, CNS tissue is a complex environment of cellular components 

comprised of neurons, glia, oligodendrocytes, astrocytes, and myelin, which interact with 

one another upon experiencing mechanical stimulation (Burda and Sofroniew, 2014). 

These two features combined ensure that during primary trauma, axonal injury occurs 

non-uniformly, and that certain regions will be more prone to injury than others. The lack 

of a consistent, accurate animal model for studying white matter injury, as well as the 

difficulties in scaling the model to reflect what happens in humans with fidelity is one 

issue (Goldstein et al., 2014). Porcine models have made progress with regards to the 

latter, but biological variability is still a problem (Gefen and Margulies, 2004). Imaging 

capabilities are also limited in distinguishing the occurrence of injury (Carlsen and 

Daphalapurkar, 2015). We are hampered by the fact that axons are so small, and imaging 

cannot be performed in real-time during the injury event, which takes place at the 

millisecond level (Meaney, 2015). Thus, much of our understanding of primary injury 

mechanisms is through analysis of post mortem tissue (Tang-Schomer et al., 2012). We 

are also limited by the inability to measure strain at the microscopic level. Micromotion 

induced strains in probe studies cannot be visualized or directly measured in brain tissue. 

Even when we utilized tissue phantoms made of agarose and collagen, the flexible 

parylene probes did not produce measurable strain.  
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In response to the experimental limitations we encountered in characterizing axonal and 

chronic injury, we developed models that used measurable metrics as inputs (e.g. 

macroscopic stretch, probe size), and predicted immeasurable outcomes. Axonal strain 

and failure in situ cannot be observed in real time. However, we can devise a 

methodology of how axons experience strains based on the way axon undulation changes 

with tissue-level stretch. By examining features at the microscale, we could also 

standardize across species differences. Similarly, we can experimentally obtain 

information on proportions of axons that fail for given levels of macroscopic stretch, and 

then use models to predict what occurs in the timespan between no deformation and 

failure.  

Novelty: 

 The contributions of this thesis are the new approaches in connecting macroscopic-

scale events to microscopic effects in the context of CNS primary injury and neural probe 

biomechanics. In this work we offered an additional perspective to understanding axonal 

injury by characterizing 3-D kinematic behavior, extending the framework introduced by 

Bain et al. and Hao & Shreiber. As a means to validate some of these findings, we 

demonstrated that contactin-associated protein (Caspr) can be utilized as a fiducial 

marker for means of estimating axonal level strains in the spinal cord. To our knowledge, 

this is the first time Caspr has been used in this manner, and the first time that axonal 

strain has been estimated in situ. Moreover, this work is the first to classify and predict 

axonal failure thresholds by kinematic properties. 

 In our discussions of the neural probe model, we mention that the concept of 

modeling mechanical performance is not novel on its own. Indeed, computational models 
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for predicting probe-tissue interfacial stresses as a function of design (Polanco et al., 

2014; Subbaroyan et al., 2005), as well as in vitro organotypic culture systems for 

assessing probe performance have been developed and utilized (Polikov et al., 2005). The 

innovative nature of our work can be described in four ways: 1) we presented a model 

that simulated probe insertion through hyperelastic tissue by way of element deletion; 2) 

we validated this model with experimental evidence and demonstrated a direct link 

between the probability of successful insertion, and the probe’s mechanical features; 3) 

we developed and validated a separate simulation of probe micromotion that predicts 

local tissue strain; and 4) we quantitatively assessed and correlated the predicted strains 

to gliosis and estimated a range of strain values required for astrocyte activation. Taken 

collectively, our model for probe mechanical performance is an invaluable design tool for 

neural electrode fabrication as it addresses the concern of mitigating injury in both the 

acute and chronic timescales in a quantitative manner. 

Philosophy of Engineering: 

 Distinguishing this work as an engineering thesis was difficult but necessary. The 

question of “how to understand the multiscale transfer” in white matter primary injury is 

nebulous with an equally nebulous outcome. Similarly, in the goal of “optimizing neural 

probes”, there is no pre-defined or objective definition of when the optimal state is 

achieved. Bulleit et al. defines engineering as the reconceptualization of a complex 

system into an analytical problem with a definable solution (Bulleit et al., 2015). With 

that definition in mind, we were able to formulate the right questions and ensure this 

thesis fits these criteria as an engineering study. 
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 We examined the open ended problems of understanding CNS trauma, and 

designing improved rehabilitative devices and pinpointed two areas to focus on: the 

multiscale transfer of tissue-level stresses to axons, and the design of a tool to model 

flexible neural probe mechanics. The rationale in examining the context of multiscale 

injury is that axonal injury is a proximal cause of functional damage in CNS injuries. By 

better understanding this transfer, we could devise better ways of preventing axonal 

injury. The problem is conceptualized when we consider this transfer cannot be observed 

directly for the reasons described earlier in this chapter. Thus, we were able to transform 

our initial problem statement into an engineering problem by focusing on asking what 

approaches can we develop to predict what is happening at the axonal scale. From that 

point forward, there is a clearly defined question that facilitates an analytical approach, 

and a measurable outcome. 

 The questions addressed in the neural probe work of the thesis are easier to 

conceptualize as an engineering problem. Ultimately, the goal was to determine the best 

design of a coated, flexible neural probe that would mitigate insertion trauma, and long-

term injury, which in essence is an optimization problem. There were two approaches 

available in formulating an acceptable problem statement to fit Bulleit et al.’s definitions 

of an engineering problem: 1) design the model to predict insertion force/tissue strain and 

arbitrarily define a threshold or critical value for insertion force/tissue strain that 

corresponds to success, or 2) design the model to predict the same features and 

thoroughly assess its efficacy as a design tool for designers and clinicians to use. We 

opted for the latter as the design space for the end user of these flexible electrodes can 
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vary depending on target tissue (probe length), acceptable insertion rate, or period of 

implantation. 

 Evaluating this work from the broader scale of biomedical engineering, the 

findings of this thesis contribute significantly to the areas of tissue and cellular 

biomechanics (axon kinematics and white matter tissue behavior due to stretch), tissue 

engineering (development of an in vitro approach for evaluating gliosis due to probe 

micromotion), image processing (axon tracing through transverse sections), neural 

engineering (design of flexible neural electrodes), and continuum mechanics. The multi-

disciplinary approach presented in this work provides a suitable paradigm for engineering 

studies.   

Future Work: 

 The work in this thesis has provided greater insight into the biomechanics of CNS 

injury and axonal strain as a function of macroscopic stretch. In our studies, we utilized 

the chick embryonic spinal cord as a model for stretch injury. Future work can focus on 

characterizing kinematics in other regions of white matter. Although, our 

characterizations of kinematics and failure thresholds are at the constituent (axon) level, 

different regional properties and other features such as axon orientation, axon diameter, 

and coupling potential can lead to differences in this multiscale transfer. 

 Furthermore, this work has generated useful data regarding kinematics and failure 

thresholds at the axon level. These features can be implemented into finite element 

models such as those developed by Cloots et al. and Pan et al., where axons are modeled 

as representative volume elements (Cloots et al., 2013b; Pan et al., 2013). Each axon is 

assigned their individual definitions of tortuosity, kinematic behavior, and connectivity to 
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surrounding glia. Groups of representative volume elements are initialized and arranged 

in a manner similar to white matter tissue, and the entire construct is deformed to predict 

stresses and strains on individual axons. Failure strain would be an additional parameter 

assigned to each volume element, and from that, we can predict certain outcomes, such as 

mild TBI, with greater accuracy (Johnson et al., 2013; Wright and Ramesh, 2012). 

 One area for future studies is in probing the influence that Caspr has on coupling 

behavior. In chapter 3, we described the role of Caspr as a protein component of axo-glial 

linkages that connect axons to the surrounding glia by means of contactin and 

neurofascin 155. Bain et al. and Hao & Shreiber also demonstrated a correlation between 

myelin and predicted affine behavior (Bain et al., 2003; Hao and Shreiber, 2007). The 

next step would be to distinguish the role Caspr has in coupling as opposed to 

myelination. Some possible approaches of determining the roles of Caspr are using a 

transgenic knockout models, or through antibody attenuation (Asano et al., 2000). 

Similarly to the kinematic features we gleaned, we can implement  

 Additionally, we developed a design tool that can be used to predict the 

mechanical performance, and effects on gliosis of neural probes coated with an ultrafast 

degrading polymer (D. Y. Lewitus et al., 2011). There are three avenues of future work 

we identified. One area of further study is refining the model, especially with regards to 

the material properties and behavior of the brain tissue. We modeled brain tissue as a 

homogeneous, isotropic, hyperelastic material, as these properties were suitable for 

obtaining a reasonable estimate for the insertion force (El Sayed et al., 2008). As 

discussed earlier, brain tissue properties are highly region dependent and some of the 

assumptions, in particular our assumption of isotropy, do not reflect the microstructure of 
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the tissue at all (Meaney, 2015, 2003). The model could be refined further, and perhaps 

even be combined with the representative volume element methodology used by Pan et 

al. to simulate the bulk tissue at the resolution of individual axons (Pan et al., 2013). 

 Another area of future studies is in further assessment of the role of probe design 

using our model. As a proof of concept, we demonstrated the effect that beveled 

geometries, and coating defects have on the insertion and buckling forces. We simulated 

these features as they directly influenced our group’s fabrication and decision making 

process, as simulation results were used in a parallel in vivo study. Other features could 

be investigated, such as the influence of adjacent probes in multi-electrode arrays; 

heterogeneous coating schemes; or the effects of insertion rate. 

 This work also introduced a new system for assessing probe design on gliosis. By 

isolating astrocytes in our system, we could quickly and cost-effectively correlate 

micromotion-induced strains to astrocyte activation. One idea we have discussed is 

developing a co-culture system of astrocytes, and neurons that would enable both 

mechanical and functional testing. It is important to note that while introducing additional 

cell types makes the system more biomimetic, we would still want to distinguish it from 

an organotypic model, and adding components such as microglia, oligodendrocytes, etc. 

would introduce the complexities and difficulties associated with an organotypic or in 

vivo model 
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