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ABSTRACT OF THE DISSERTATION

Non-linear Phenomena in Granular Materials

by Theodore Lordin Siu

Dissertation Director: Troy Shinbrot

Granular materials are quite common in our everyday lives in both nature and industry.

Yet much of the phenomena that they exhibit is not well understood and in fact quite

complex and non-linear. For example, it has been known since Faraday‘s time that

swirling sandstorms are able to generate electric charge that manifest as multi-million

volt lightning discharges. Poured glass beads have been demonstrated to also charge

electrically, causing random ejections of grains and creating interesting raised clump

structures known as razorbacks. Lastly, granular materials are known to exhibit self-

segregation based on size. An example of this phenomenon is the landscape observed

on the asteroid 25143/Itokawa, which has spatially separated boulder fields and sand

seas.

In this work, we discuss three projects that examine non-linear behavior in granu-

lar materials. In our first chapter, we discuss a computational electrostatic model of

vibrated identical granular particles. We show in our model that granular materials

are able to exponentially generate charge and polarization through 1/r2 electric field

interactions. By adding neutralization between neighboring particles, we find complex

phenomena such as charge and polarization waves that propagate through the particles.

In closing, we reproduce a polarized state experimentally using vibrated glass beads

which represents one of the phenomena that we observe in our model phase diagram;
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we also discuss our experimental efforts to image charge and polarization waves.

In the second chapter, we examine the dynamical behavior of charged granular par-

ticles. We find that by experimentally exposing grains to simple electric fields, a number

of novel behaviors appear including dust clouds, dust columns and tendrils. In addi-

tion, in our experiments and simulations we find evidence for non-linear electrostatic

interactions between particles including asymmetries and particle trajectories that do

not adhere to naive electric field lines.

In our final chapter, we deal with granular segregation found on the asteroid known

as 25143/Itokawa. On the asteroid there exists segregation between smaller sized dust

and rocks on the centimeter size, from large boulders with diameters on the order of

meters. While current explanations attribute the segregation to the phenomenon known

as the Brazil Nut Effect, we show that “ballistic segregation” or a difference of collision

types on the asteroid surface can be responsible for the separation between different

sized particles. We show that the surface area growth of particles can be modeled using

the non-linear Hill Equation, which shows that increasing amounts of dust accumulation

promotes further dust accumulation.
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Chapter 1

Introduction

Granular materials are known to exhibit phenomena that are non-linear and com-

plex [1–6]. Understanding non-linear granular phenomena may have many important

applications including spark and explosion hazard detection [7,8], volcano eruption pre-

diction [9–11], and more efficient and effective equipment for space travel [12,13]. This

dissertation presents three projects that utilize table top experiments and computa-

tional simulations to examine three different types of non-linear behavior in granular

materials: non-linear electrical polarization growth in granular materials, non-linear

dynamical behavior of granular particles that results from applying strong external

electric fields, and finally a model that we dub “ballistic segregation”, a collision model

that may explain particle size segregation of rocks and dust as is observed on the aster-

oid 25143/Itokawa. An additional project on the upstream contamination of granular

materials is included in the appendix.

In this first chapter, I give an introduction to key theories and models that my re-

search builds upon: electrical charging due to particle size differences, electrical charging

due to the presence of an external electric field, the non-linear three body gravitational

model and existing models of granular segregation such as the Brazil Nut Effect [14]

and the Reverse Brazil Nut Effect [15].

1.0.1 Large Scale Electrical Charging in Granular Systems

Dating back to Michael Faraday in 1850 [16], who mentioned the phenomenon of sand-

storm lightning, researchers have long been interested in electrical charging in particle

clouds. In addition to electrical charging in nature as seen in sandstorms [16, 17], vol-

canic ash [9–11], and dust plumes [8], dust charges in industry have been known to
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create sparks leading to dust explosions [7]. Finally, electrified dust in space has been

reported to cling to spacesuits, jamming up joints and limiting the duration of space

walks [12, 13]. Although there have been a number of proposed mechanisms that at-

tribute the electrification of chemically identical particles to non-uniform heating, or

differences in contact areas, we discuss two alternative theories that relate directly to

our exponential polarization model that we present in Chapter 2.

Two hypotheses for the cause of electrification of granular materials are the follow-

ing:

1. Lacks et al. [18–20] have attributed granular electrification to size differences

between colliding grains. Previous works by Shaw [21] as well as Lowell and Tr-

uscott [22, 23] have shown that when rubbing together two chemically identical

insulators, one with a smaller surface area on a larger surface area, the smaller

surface area appears to gain a negative charge. Lowell and Truscott [22,23] have

argued that electrons trapped in high energy states are responsible for charge

transfer between similar materials. When brought in contact with lower energy

states on adjacent particles during collisions, high energy state electrons can quan-

tum mechanically tunnel to those lower states. In Lack et al.‘s work, the authors

used simple geometric arguments in combination with electron tunneling to cre-

ate a simple collisional model of charge transfer. They found that in the case

of collisions with particles of unequal size, the smaller particles tended to charge

negatively while the larger particle charged positively. As a result, with repeated

random collisions, smaller sized particles should tend to charge more negatively

than their larger counterparts. Lacks et al. extended their derivations to multiple

collisions to come up with an expression for the net charge of a particle of a given

size as a function of time.

On a related note, recent thermoluminescence measurements on insulated grains

by Waitukaitis et al. [24] has shown that there are not enough high energy state

electrons to account for the scale of charge transferred in granular materials. In

their work, Waitukaitis and his colleagues performed two separate experiments.
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Their first experiment involved dropping electrically charged grains, allowing the

particles to fall freely via gravity, between two large copper plates held at a fixed

potential difference. Using high precision cameras, they measured the particles’

horizontal acceleration due to the electric field and were able to estimate the

charge and surface density σ of trapped electrons on the grains before electrifi-

cation. In the second experiment, they measured the photon emission rate of a

heated sample of grains using a photomultiplier tube. They calculated a resulting

charge density of trapped electrons in their sample that was 5 orders of magnitude

less than was observed in their free fall experiments.

2. Shinbrot et al. [25] have shown that with particles of a single size, given an external

electric field, granular materials can generate charge through polarization. In

considering two colliding particles exposed to an electric field, one would expect

that initially before any collision the two particles would polarize due to the

electric field. Upon collision, the particles may neutralize, yet when they separate

again, they repolarize leaving one of the particles to be net positive and the other

particle net negative. This phenomenon is illustrated in Fig 1.1.

The authors supported their model by performing simulations of initially neutral,

spherical particles that collided with one another under gravitation forces in a

vibrated bed. Utilizing a polarization, neutralization, and subsequent repolar-

ization mechanism, they found that particles exhibited an asymptotic mean net

charge per particle after ∼ 106 time steps. Additionally, the depth of the particle

bed appeared to affect the magnitude of mean charge. They compared their simu-

lations to an actual experiment of a spouted bed-glass beads fluidized by air blown

below. In the experiment, the container holding the glass beads was grounded on

the bottom using a metal plate. On the top was another metal plate connected to

a 30 kV Van De Graaf generator. They measured the number of levitated grains

as a function of depth of granular bed and compared it with a similar plot in their

simulations. They found strong agreement between experiment and simulation.

In our work, we present an alternative computational model where neither size
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Figure 1.1: Electrical charging mechanism in the presence of an external field.
In the presence of an electric field, two insulating particles will initially polarize. The
numbers represent the charges of each of the particles‘ hemispheres. Upon collision,

the touching hemispheres neutralize. When the particles separate and repolarize, they
end up with non-zero net charges. Picture credit to [25]

difference nor the presence of an external electric field is necessary to produce a large

magnitude of charge and polarization. We show that with identically sized particles

in a 1-d lattice, a small perturbation of net polarization typically grows exponentially.

When neutralization is introduced, we find the presence of travelling polarization and

charge waves. In our experiments, we reproduce a polarized state that agrees with our

simulations.

1.0.2 Complex Trajectories from Multibody 1
r2

fields

The three-body gravitational field problem has been studied for many years. Poincaré

[26] was the first to show that although deterministic, the solution of the three body

problem was not integrable and could not be expressed as function of the bodies‘ posi-

tions or velocities. In our simulations and experiments we study the behavior of grains

subjected to electrical fields proportional to 1/r2. The particles polarize under the elec-

tric fields, exert forces on one another and subject further electric fields on one another

causing repolarization. In our work, we find evidence of non-linear dynamical behavior

along with a myriad of different phenomena including asymmetries, dust clouds and

the formation of granular tendrils and columns.
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1.0.3 Granular Segregation

Granular materials are known to exhibit segregation based on size. This segregation has

typically been attributed to what is known as the Brazil Nut Effect [14]. In a vibrated

bed of polydisperse particles with vertical walls, the larger, more massive particles

tend to end up on the top. This effect has been subject to a number of parameters

such as vibration frequency, friction, air flow, and particle density. Additionally, it has

been attributed to several explanations including smaller particles more easily slipping

underneath the larger ones (termed as “percolation”), and larger particles convecting

up the center of the bed and getting trapped at the top- unable to fit into the narrow

downward flows. A Reverse Brazil Nut Effect [15] has also been discovered where light

large objects instead sink to the bottom of the bed.

While the Brazil Nut Effect has been known to explain granular segregation in closed

environments, it has also been used to explain segregation on the asteroid 25413/Itokawa

[27]. However, we argue that the asteroid surface does not have any vertical walls, has

low gravity that is anisotropic and lacks periodic shaking. We offer a new model for

granular segregation that is due to differences in collisional dissipation. We term the

phenomenon “ballistic segregation”. We show that dust collisions with larger sized

rocks and boulders cause the dust to bounce away. However dust collisions with other

dust particles promotes further dust accumulation. Thus we end up with boulders

segregated from sand seas.
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Chapter 2

Self Sustaining Charging Between Identical Colliding

Particles

2.1 Introduction

It has been known, at least since Faraday‘s time [16], that grains in desert sandstorms

spontaneously generate multimillion volt electrical discharges. This effect has been

attributed to differences in particle size or material [20]: Certainly a plausible explana-

tion. At the same time, however, work spanning several decades in different laboratories

and using different experimental systems has shown that even identical samples of a

material [11, 19, 22, 23, 28, 29]-including particles of the same size, shape, and composi-

tion [25] - can spontaneously break symmetry and transfer charge from one to another.

Moreover, once a charge has moved from one sample to another, further contacts will

transport additional charges of the same sign in the same direction, against Coulomb

forces, to produce monotonically increasing charges and fields [28,29].

In the present chapter, we probe these findings through the examination of a sim-

plified one-dimensional (1D) lattice of identical dielectric particles. We find that non-

linear feedback between a particle and its neighbors can cause a single infinitesimally

small dipole to grow exponentially rapidly in time. We confirm experimentally that

identical colliding particles do generate a self-sustaining dipole field. Additionally, if

adjacent particles in the lattice model are allowed to partially neutralize one another

as they might through collisional interactions, we find that new states appear in which

domains of like-polarization travel through the lattice. These results provide a mecha-

nism by which collisional flows of identical grains can generate electric fields that grow

and travel in complex ways.
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2.2 1D Dipole Lattice Simulation

We begin by considering a 1D lattice of 1000 identical particles of unit diameter, spaced

a fixed distance, also one unit, apart. The dynamics of this model consists of three

essential elements prescribing first, the polarization of each particle due to its neighbors,

second, partial neutralization of each adjacent particle pair meant to mimic effects of

collision, and third, boundary conditions applied to the top and bottom particles. We

define each element of the model here.

2.2.1 Polarization

Each particle i can host charges Qtop
i and Qbottom

i at a vertical distance 0.375 from

its center: In this manner, each particle can sustain a dipole moment Pi = 3
4(Qtop

i −

Qbottom
i ) Each particle feels an electric field Ei at its center due to the top and bottom

charges of all of its neighbors. We calculate Ei directly using Coulomb‘s law, i.e.,

Ei =
∑

j 6=iQj/r
2
ij , where rij is the distance from the center of the ith particle to the

top and bottom charges on each of the other j particles. We assume that all particles

are dielectric with the same susceptibility χe, so that the ith particle will attain an

induced dipole moment χe · Ei. This moment is added to whatever preexisting dipole

may be present so that

Pi →
3

4
(Qtop

i −Q
bottom
i ) + χe · Ei (2.1)

Explicitly, Eq. (2.1) combined with charge conservation implies that the top and bottom

charges become

Qbottom
i → Qbottom

i − 2

3
χe · Ei (2.2)

Qtop
i → Qtop

i +
2

3
χe · Ei (2.3)

Thus, the polarization of a particle consists of two parts: A permanent ferroelectric

polarization defined by its state following a collision and a transient paraelectric polar-

ization slaved to the external field. We emphasize that except at the boundaries (which

we discuss shortly), charge is conserved under all circumstances, however energy is not.

That is, increasing polarization involves no gain or loss in net charge, however it does
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require an input of energy. Thus we imagine that the lattice represents an agitated bed

of grains in which the energy required to polarize molecules in one grain is provided

by the mechanical energy needed to draw another polarized grain closer. In this way,

periodic mechanical input of energy causes grains to repeatedly approach one another,

generating an increase in polarization every time step. In a previous paper, we demon-

strated that identical particles can develop large charges in this way after repeated

contacts in the presence of a constant external electric field [8]. In the present calcu-

lations, we use precisely the same scheme without applying any external field. Since

the field is provided by feedback between nearby particles according to Eq. (2.1), in

principle a particles polarization could either increase or decrease, and indeed we will

see from our simulations that both can occur.

We remark that the feedback of Eq. (2.1) implies an ordering to events: If particle A

imparts a polarization on particle B and then particle B interacts with a third particle

C, then the B-C interaction will produce a different result than if the A-B interaction

had occurred later. This can be dealt with either by calculating all induced polarizations

and then adding polarizations to the preexisting values at the end of each time step or

by randomizing the order of interactions to eliminate systematic bias. We will compare

calculations with a vibrated bed of nearly randomly [30] colliding particles, so we adopt

the second alternative here.

2.2.2 Neutralization

To mimic a collisional granular flow, once per time step we allow each pair of adjacent

particles, chosen in randomized order, to collide once. During each collision, we permit

charges to partially neutralize with efficiency η. Explicitly,

Qbottom
i+1 → (1− η

2
)Qbottom

i+1 +
η

2
Qtop

i (2.4)

Qtop
i → (1− η

2
)Qtop

i +
η

2
Qbottom

i+1 (2.5)

so for η = 0, charges Qtop
i and Qbottom

i remain unchanged after a simulated collision,

and for η = 100%, both charges revert to their average.
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2.2.3 Boundary conditions

To close the description, we consider collisions on a grounded surface with a free upper

boundary-as occurs, for example, in sandstorms or industrial dust clouds. So we ground

the bottom of the bottom-most charge: Qbottom
1 ≡ 0, whereas the top of the topmost

particle is treated like every other charge, except that it never encounters a neighbor

above. As we have mentioned, charges are conserved in all collisions, except at the

bottom boundary where a charge is added or removed to maintain the boundary condi-

tion Qbottom
1 ≡ 0. A final embellishment to the model is that we include image charges

in the simplest possible way [31], as if the bottom surface were a perfect conductor.

Simulations without image charges also were performed and do not differ noticeably

from what we present here.

We make a technical clarification and then present results. Because we are ulti-

mately interested in practical applications, we constrain the polarization to always lie

within a maximum range, so |Pi| ≤ Pmax. This is realistic insofar as any real particle

can sustain only a finite maximum charge separation beyond which dielectric breakdown

will occur, but we will see momentarily that this is also computationally necessary to

prevent polarizations from diverging. We choose Pmax = 10, although other values have

been found to produce nearly identical results.

2.2.4 Simulation Results

As a first test of this model, we consider the simplest case without neutralization, so

η = 0, and we start with all but one of 1000 particles in the zero charge and polarization

state, Qtop
i = Qbottom

i = 0. We initialize the center particle with a tiny polarization

P500 = 1.5 × 10−9, so Qtop
i = −Qbottom

i = 10−9. As shown in Fig. 2.1(a), the central

particle‘s polarization grows along the solid curved line until it reaches Pmax. That

particle also recruits the polarizations of its neighbors, which similarly rapidly reach

Pmax. As shown in the semilogarithmic plot of Fig. 2.1(b), the cumulative sum of

the particles‘ polarizations grows exponentially with two regimes: First a steep growth

as the central particle‘s polarization escalates and then a more moderate, but still
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exponential, growth as further particle polarizations are recruited. Reasonably enough,

as the susceptibility increases, so does the rate at which polarization grows: This is

shown in Fig. 2.1(d).

Figure 2.1: 1-D Dipole Lattice Simulation Results.
(a) Time evolution of polarizations of 1000 dielectric particles in a 1D array. Initially,
the central particle is polarized by a small amount, 1.5× 10−9 computational units.

(b) The mean polarization of all particles, 〈P 〉, grows exponentially in time, at a
rapid, primary, rate until the maximum polarization, Pmax, is reached, then at a

lower, secondary, rate. (c) Alternatively, if every particle is initially randomly
polarized, multiple coarsening domains form: light regions have 〈P 〉 = Pmax; dark
regions have 〈P 〉 = −Pmax. (d) In the short term, 〈P 〉 grows exponentially with a

faster rate than for the single particle case of (a)-(b).

Apparently, in the simple case without neutralization, a small initial polarization

grows exponentially rapidly until the entire lattice becomes uniformly polarized. This

is not mysterious: The exponential growth is a predictable consequence of the non-

linear feedback produced by adding an induced polarization χe ·Ei due to neighboring

charges to every particle. Every particle obeys the same rule, so with each time step
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the polarization must grow by a constant factor: A well-established formula for expo-

nential growth. We emphasize that the η = 0 case produces an exponential growth in

polarization, but as prescribed by Eq. (2.4-2.5) no transfer in charge occurs. So every

particle remains charge neutral, whereas the polarizations of each particle in a stack

rapidly approach Pmax. We will return to this point at the conclusion of this article.

To examine a more general case, instead of beginning with a single polarized charge,

we investigate the lattice dynamics if we initialize the lattice by choosing each particle‘s

charges Qtop
i = −Qbottom

i randomly to be -1, 0, or 1. We then obtain a result as shown

in Fig. 2.1(c) in which polarizations again grow exponentially rapidly so that adjacent

regions almost immediately approach the maximum polarization±Pmax (shown as black

and beige in the figure). Thereafter, domains coarsen until a uniformly polarized state

is ultimately adopted: In our simulations of 1000 particles, this takes over 107 time

steps.

We turn next to the case of finite neutralization, η = 0, as defined by Eq. (2.4-

2.5). In this case, more complex behaviors appear, summarized in the phase diagram

of Fig. 2.2(a). In this diagram, we identify the dynamics observed at 10% increments

of susceptibility χe and neutralization η. For each pair of χe and η, the state is chosen

by majority vote from three trials performed using zero charge and randomized initial

polarizations for every particle as well as randomly chosen collision ordering events as

described previously. Criteria for establishing what pattern is present for these votes

follow: In each case, the criteria are applied after a transient period of time steps needed

to dissipate upward-moving waves (at least 500 time steps, in some cases up to 2000

time steps).

A uniformly polarized state is defined to have identical polarizations Pi = ±Pmax.

This is similar to the aligned state produced by long-range ferromagnetic interactions in

a 1D lattice, predicted in 1969 by Dyson [32]. In practice, as we have mentioned, we have

in mind applying our lattice model to agitated granular beds, which necessarily differs

from Dyson‘s system in several ways. First, granular beds are intrinsically nonequilib-

rium, so our system is not Hamiltonian. Second, dipole moments are continuous-valued
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Figure 2.2: 1-D Lattice Phase Diagram.
(a) Phase diagram showing distinct spatio-temporal patterns of polarization and

charge dynamics. Asterisks indicate parameter values at which spatio-temporal plots
beneath are taken. (b)-(d) Color-coded plots of the polarization and charge of the 1D
cellular automata (CA) lattice vs. time. Arrowheads in (b) identify upward motion of
charge waves; solid arrows in (c) identify upward transient waves, and open arrows in
(c) identify abrupt cooperative stopping of downward polarization waves discussed in

the text.

rather than discrete. Third, as described in Eq. (1) we use both paraelectric and fer-

roelectric moments. Finally, technically Dyson‘s long-range interactions go as 1
rα for

1 < α < 2, whereas our electric field ∼ 1
r2

is just outside of this range. Nevertheless, in

recognition of the parallel with Dyson‘s earlier predictions, in Fig. 2.2 we term η = 0

the Dyson state.

For nonzero but small neutralizations, nearly uniform downward-traveling waves of

polarization±Pmax appear, modulated by weak and nearly orthogonal upward-traveling
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waves of charge. In this uniform waves regime shown in Fig. 2.2(b), widths of polar-

ization waves vary by up to 50%, but fewer than five instances of merging of waves

(discussed next) are seen. All simulations are performed using 1000 particles over 4000

time steps, and again every particle pair collides once during each time step: This du-

ration was chosen because transient behaviors seen in the spatiotemporal plots of Fig.

2.2 appear to have dissipated by 4000 time steps.

As neutralization grows, increasingly irregular patterns are found. The weak mod-

ulation in downward waves [Fig. 2.2(b)] gives way at about η = 20% to waves with

widths that oscillate until they merge into a uniformly polarized region, and above

η = 20%, the merging behavior travels upward in time to produce large regions of

uniform polarization as shown in Fig. 2.2(c). Polarizations again reach ±Pmax, and

we term this a global merging state. We note that in the middle of a large lattice

of particles effects of boundaries are small, and so predictably waves travel as readily

upward as, downward as indicated by solid arrows in Fig. 2.2(c). Both waves die at

the boundaries, but the upward waves are replaced by downward waves at the free top

boundary, whereas the downward waves simply end at the grounded bottom boundary.

We discuss effects of boundaries shortly.

The speed of upward merging waves, identified by open arrows in Fig. 2.2(c),

is midway between the more rapid upward transient wave speed [solid arrows in Fig.

2.2(c)] and the slower upward net charge speed, identified by arrowheads in Fig. 2.2(b).

We discuss wave speeds shortly but emphasize that the root causes of these three

different speeds are not understood.

At still higher η, three additional states emerge. At low χe, the lattice rapidly

approaches zero charge and polarization irrespective of the initial condition: This is

logical since particles are weakly coupled together but strongly neutralize. We term

this state death. At η ≈ 1, sufficiently large χe‘s can sustain nonzero charges, but

these change rapidly and show no coherent motion: We call this noise. Finally, for

large χe‘s and moderate η‘s, a state emerges in which both downward-traveling waves

and upward-traveling merging events are seen, each traveling at different speeds. We

term this state, shown in Fig. 2.2(d), start-stop waves. The polarization here remains
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small, never approaching Pmax, but coherent traveling waves are readily identifiable.

We remark that the global merging state transitions gradually to start-stop waves as χe

grows. As we have described, the lines demarking this transition are obtained from a

majority vote of three trials, however, it is likely that another set of trials would result

in slightly different transition lines.

Evidently there is a rich variety of patterns in this simple system, and these patterns

exhibit several distinct traveling speeds. Despite its simplicity, the model involves

two coupled and nonlinear fields, one for the net charge on each particle and one for

its polarization, and from that perspective, perhaps the variety of behaviors is not

surprising. We begin an analysis of these complex states by focusing on the simplest

of the lattice dynamics, the uniform wave state. As shown in Fig. 2.2(b), polarization

waves tend to travel down the lattice rather than up. This asymmetry can only originate

from the boundaries, for within the lattice the rules for charge dynamics are entirely

symmetric-and for this reason, waves can travel both up and down until they hit the

boundaries [as in the example of the solid arrows of Fig. 2.2(c)]. At the boundaries,

symmetry is broken: As we have mentioned, the bottom boundary is grounded, whereas

the top boundary is free. Without this asymmetry, for example if both boundaries are

grounded, the model produces no net transport of charge or polarization.

Behavior at the bottom boundary can easily be understood. Consider the case in

which the bottom-most few particles are polarized up (with plus on top). The bottom-

most charge is always zero, so the bottom particle must be net positively charged to

conform with the polarized-up ansatz. This will tend to induce the next particle to be

more negative below and more positive above-thus, reinforcing the up-polarized state.

Consequently, the bottom boundary condition strengthens the existing polarization and

cannot cause the flip in polarization seen in Fig. 2.2(b).

Since the bottom-most charge never varies from zero, let us examine the topmost

charge, whose value can change as a result of induction from the field of particles

beneath. Again, consider the case of up-polarized particles. Since the topmost Nth

particle is induced to be polarized up, the topmost charge Qtop
N will be positive, and

after collision all contacting charges beneath will partially neutralize. But Qtop
N has no
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upper neighbor and so will grow monotonically due to the polarizations of particles

beneath. A positive Qtop
N will tend to induce particles beneath to be polarized down,

and since Qtop
N grows monotonically, at some point this topmost charge will grow until

it induces the N − 1st particle to flip signs: This occurs when the field due to Qtop
N

exceeds Pmax/χe. This begins a cascade: Once the N − 1st particle has flipped, the

particle beneath (the N − 2nd particle) will be sandwiched between particles with

opposite polarizations, and with Qtop
N positive, this too contributes to a flip of the N -

2nd particle. This, of course, is not inevitable, and as shown in Fig. 2.2, a number of

other outcomes are possible; nevertheless, this appears to be the mechanism by which

symmetry is broken to produce down-moving polarization waves.

We confirm that waves emanate from the top free surface of the lattice by perturbing

only the topmost charge with parameters in the uniform wave regime χe = 0.3, η = 0.2.

As shown in Figs. 2.3(a)-(c), artificially adding a positive charge to Qtop
N causes the

polarizations beneath to prematurely flip, whereas subtracting the same charge causes

the flip to be delayed. This effect is repeatable for charge injections at the top of the

stack, however trials (not shown) in which equivalent charges are added to or subtracted

from particles within the bed do not produce a change in polarization or charge waves.

Apparently, the downward-moving polarization waves emanate from induced charges

at the top of the stack of particles and are passively absorbed by the grounded bottom

of the stack. Moreover, as identified by the circle in Fig. 2.3(b), pattern variations also

are convected downstream by disturbances near the top of the stack-so the topmost

particle affects dynamics significantly downstream as well. So the instability leading to

traveling waves appears to be convective and not absolute in this system.

Evidently, the simplest dynamics, the downward-traveling polarization waves, are to

some degree analytically tractable, so we continue exploiting these waves by evaluating

how their wavelength λ and speed v depend on system parameters. Technically, we

measure λ directly and obtain the speed using v = λ/T , where T is the measured wave

period, and we evaluate λ and v during a transient period starting from random initial

conditions. In this way, even if the state does not asymptotically become uniform, we

can determine λ and v. Uncertainties inevitably result over multiple measurements,
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Figure 2.3: Traveling Charge and Polarization Waves.
(a) Upper portion of polarization pattern from Fig. 2.2(b). Red arrow in enlargement
identifies time To = 1475. (b) The same pattern when a positive charge of +10 units
is added to topmost particle at To = 1475. Notice that this provokes a premature flip

from polarization up (light) to down (dark); also note that upstream perturbation
causes downstream termination of the stripe (indicated by circle). (c) The same

situation when a negative charge -10 is added at To = 1475, causing a broadening of
the light stripe. (d)Wavelength and speed for χe for η = 10%. Note that wavelength
more than doubles as χe is increased, while wave speed changes by about 60%. (e)
Growth in η increases the speed by more than an order of magnitude, but causes a
nonmonotonic change in wavelength as described in text. χe = 30% in this panel.

and error bars are shown in Figs. 2.3(d)-(e), although these are typically smaller than

the plot symbols.

Beginning with Fig. 2.3(d), we find that λ depends strongly on χe at fixed η, more

than doubling over the admissible range in χe . Wave speed changes less: by about

60%. So increasing the susceptibility or coupling between particle polarizations chiefly

extends the range of collective motion (λ) and modestly increases the traveling speed of

disturbances (v). Particle neutralization , on the other hand, strongly affects traveling

speed, increasing v by nearly an order of magnitude, as shown in Fig. 2.3(e). All of this

could have been anticipated: Coupling between electric fields (χe ) is bound to affect

the range of particles affected by local charges, and the only way in which charges can
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be transported from one location in the lattice to another is through charge transfer

from one particle to another-mediated by η.

The effect of η on the wavelength shown in Fig. 2.3(e) is, however, a surprise.

Apparently, λ grows rapidly at either low or high η. At low η, this could have been

anticipated since η = 0 must lead to the case shown in Fig. 2.1(c) in which the entire

lattice is uniformly polarized. At high η, something else occurs: This appears to be the

global merging state shown in Fig. 2.2(c). The cause of this and the start-stop waves

state remains to be clarified in future studies. Likewise, the multiple different wave

speeds identified by arrows in Figs. 2.2(b) and 2.2(c) are unexpected and merit further

investigation.

2.2.5 Experimental Confirmation

Vibrated Bed of Beads

To test whether the predicted growth in polarization occurs in real agitated beds of iden-

tical grains, we have performed experiments as follows. It is difficult to create a truly

1D experiment since agitating grains require boundaries of some kind and boundaries

unavoidably produce spurious influences such as tribocharging. To minimize potential

charging at boundaries, we glued 1530 ± 40µm diameter glass particles inside a tall

narrow (7 cm inside diameter) glass container [14], and we then filled the container to a

height of 12 cm with the same glass particles and vibrated the assembly. This arrange-

ment is not ideal-for example, the glued particles make contact only on a small area of

exposed glass, whereas the free particles can make contact anywhere on their surfaces.

In this context, we note that it has been known for many years that asymmetric con-

tact between similar materials [22,23] -for example, between a flat surface and a round

particle-can generate contact charging. Nevertheless, within the constraints of what

can realistically be achieved, this configuration permits us to test whether particles do

polarize as expected.

In these experiments, we first dried the particles by blowing near-zero humid air

(produced by a Dryex 80 air drier) for 2 minutes prior to each experimental trial.
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Separate trials show humidity measured using a digital psychrometer (Extech RH300)

drops to 5% relative humidity (RH) within 1 minute under these conditions. During

each trial, after drying the particles we vibrate the container in a mechanical shaker

at an amplitude of 2.5 ± 0.5mm and frequency of 17 ± 3Hz. The dry air is intro-

duced through a plastic tube, and to prevent triboelectrification against the tube from

generating spurious voltages, we removed the tube prior to each experimental trial.

We have performed experiments at other vibrating amplitudes and frequencies; ad-

ditionally we have turned the vibration on and off multiple times to establish whether

material relaxation, humidity changes, or other systematic changes occur over time. All

of these tests produce similar results.

Qualitatively, we find that, provided the humidity is below RH 45%, the particles

invariably stick to a grounded intruder inserted above the vibrating bed, such as a

metal rod or a finger as shown in the inset of Fig. 2.4 (see also http://link.aps.

org/supplemental/10.1103/PhysRevE.89.052208). Significantly, the grains stick to

an intruder only so long as it is kept close to the vibrating bed: As the intruder is

raised above the bed, the beads fall off. This indicates that the beads are kept in place

by the presence of a strong electric field from the vibrating bed and not because of a

persistent charge on the sticking beads themselves. Similarly, we have never observed

beads to stick to the surface of the vibrating container, which we would expect if the

beads became charged (cf. [25]). Since our experiment is at close to zero humidity, in a

glass container on a wooden platform with no grounded surface or potential source of

charge, it is not surprising that the particles do not acquire net charge. On the other

hand, the apparent lack of charge on particles indicates that, despite the unavoidable

nonideality of the experiment, tribocharging is not significant.

Quantitatively, we measure the voltage near of the vibrating bed as shown in the

main plot of Fig. 2.4 by fixing a voltage probe above the vibrated bed and monitoring

the voltage as the shaking is turned on. Measurements are taken using a Trek, Inc.

(Medina, NY) model 344 voltmeter equipped with a 6000B-7C noncontact probe se-

cured to a rod 11± 1 cm above the free surface of the stationary bed. At this distance,

beads that bounce when the bed is vibrated never reach closer than about 2 cm from
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the probe. We overlay expected results from the model described above for perfectly

insulating low susceptibility particles using fit parameters η = 0, χe = 0.025. These ex-

periments have been performed under a variety of conditions, including using different

size and shape containers with and without glued particles. The container shape change

consisted of using a convex glass vase, which has been reported to reverse or reduce

granular convection; similarly, experiments were performed without glued particles be-

cause smooth boundaries reduce the extent of convection [33]. We have also performed

experiments to more closely mimic our simulations in which the bottom boundary was

grounded by inserting a grounded plate into the bottom of the glass container,. The

data we show in Fig. 2.4 do not use a grounded bottom since a metal surface could tri-

bocharge the glass particles, however all of these experiments produced similar results

as those shown in Fig. 2.4.

Figure 2.4: Vibrated Glass Beads Graph.
Voltage vs time from five trials in which glass beads are shaken beneath a noncontact
voltage probe. The solid bold lines (red online) show running averages over 100 data

points. The thick translucent line (green online) shows comparative simulation results
beginning with random initial charges as in Fig. 2.2, here using η = 0, χe = 0.025.

We have also performed experiments using beads of different mean sizes. We find

that voltages similar to those shown in Fig. 2.4 are obtained in those experiments,

however beads significantly larger than the nominal 1530 µm diameter shown in Fig. 4
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(e.g., 1800 µm beads) do not stick to an intruder, and beads significantly smaller (e.g.,

630 µm beads) stick only in a monolayer. We have not evaluated charges on individual

beads as a function of size, but we interpret these results to mean that by virtue of their

increased mass m, larger beads have a prohibitively large Bond number Bo = mg
Fa

> 1,

where g is gravity and Fa is the cohesive electrostatic force. Smaller beads similarly

produce Bo > 1 because they can sustain only a small induced polarization by virtue

of their small diameters.

Charge Imaging with Polymer Disperse Liquid Crystals

An additional type of experiment that we attempted was the use of polymer dispersed

liquid crystal (PDLC‘s) to image the existence of charge and polarization waves. PDLC

samples consist of a mixture of liquid crystal droplets with polymers. When unpolarized

light is shone on PDLC it strongly scatters making the PDLC appear opaque; the liquid

crystal is in a randomly ordered state. However, when exposed to an external electric

field above a minimum magnitude, the liquid crystal dipole molecules twist to align

with the field allowing more transmission. As a result, the PDLC becomes less opaque.

This phenomenon is known as the Fréedericksz Transition [34].

Raffi Budakian and Seth Putterman [35] have demonstrated that the Fréedericksz

Transition can be used to image static charges on PDLC samples. By distributing

charge on a dielectric surface with a PDLC layer underneath, they showed that by

applying a sufficient bias voltage they were able to induce the Fréedericksz transition.

Since static external fields are easily screened by mobile charges in PDLC, Budakian

and Putterman hovered a grounded spinning blade to create a changing electric field.

The resulting change in opacity allowed the authors to image the existence of static

electrical charge.

In our experiments, we fabricated two main types of PDLC samples: 1. PDLC

sandwiched between two conducting indium tin oxide (ITO) glasses with spacers on

the 10µm range 2. PDLC sandwiched between a dielectric material (either 25µm thick

Kapton film or saran wrap) and a conducting ITO glass, also with ∼ 10µm spacers.

We provide more details on our PDLC fabrication methods in Appendix A.



21

Our PDLC samples were first observed and imaged under a microscope. We found

liquid crystal droplets with sizes ranging from 10‘s of um to 1 um sized droplets. The

majority of droplets were on the 1 um size range. The 10‘s of um droplets were found

to exist on boundaries of air pockets within our samples.

Our ITO/ITO sandwiches were hooked up to a voltage supply. We found that with

our samples, when applying about ∼ 50 V difference between the two ITO glasses, we

acheived a clear opacity change. This made sense as our spacers were also on the order

of about ∼ 10 um thick. Therefore we found that on the order of 1 V/um, we observed

a Fréedericksz transition..

Our ITO/Kapton and our ITO/Saran Wrap samples were found to respond to an

external electric field. We found that by applying voltage differences on the order

of hundreds to thousands of volts we observed opacity changes in our samples. The

ITO/Saran Wrap films with a lower dielectric constant were found to be more responsive

with a minimum threshold voltage of 300 volts while our ITO/Kapton films had a

minimum of 700 volts. Our snapshots from our videos illustrates these phenomena.

In the first set of snapshots (Figure 2.5), we demonstrate that by slapping on a

second ITO glass cover onto the saran wrap we acheive a fairly clear and consistent

opacity change in our PDLC with an applied voltage of about 1 kV.

Figure 2.5: Opacity Changes in PDLC.
Right picture: Off state where there was no opacity change. Left picture: Voltage

difference of 1.23 kV applied causing opacity changes.

In Figure 2.6, we show that without a second ITO glass cover we can simply touch
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an alligator clip with a voltage difference of ∼ 2.7 kV to get an opacity change. Ad-

ditionally, I turn off the voltage source to show that the opacity changes are indeed

from an electric field and not from applied pressure on the saran wrap. In Putterman‘s

paper [35], he discussed using a grounded nickel rod with a bias voltage of about 20

volts to get similar results. We have a 2 order of magnitude difference in bias voltage,

but we believe this is precisely the main phenomenon discussed in his paper.

Figure 2.6: Alligator Clip Experiment.
An alligator clip with a 2.7 kV voltage difference to the ITO with the saran wrap

cover. We find opacity changes corresponding to the rubbing.

Unfortunately, when placing the samples close to a static charge source in the pres-

ence of a grounded spinning blade we did not see any opacity changes. We believe that

this may be due to a number of factors including PDLC thickness, distance between the

grounded blade to the sample, the strength of the static charge, and also fine tuning in

the bias voltage.

2.2.6 Concluding remarks

In conclusion, a simplified 1D model for agitated insulating particles produces a rich

variety of polarized and charged states that we hope may shed light on more general

cases of charging of identical materials. At its simplest, when collisions are random

and insulation between agitated particles is perfect, particle polarizations grow expo-

nentially rapidly in time, resulting in a uniformly polarized state. A simple experiment

using insulating particles produces results consistent with both the uniformly polarized

state and its growth.
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We close by identifying several avenues for future investigation that seem to be

indicated by our results. First, the model predicts that if particles are permitted to

transfer charge by neutralization at their points of contact, then as described in Fig.

2.2, the uniform state should give way to traveling waves that become increasingly

complex as the neutralization efficiency grows. However, such dynamic states have

not yet been found experimentally. On the one hand, this may simply indicate that

the neutralization η is very low in our experiments: A notion confirmed by the fit

shown in Fig. 2.4 using η = 0. On the other hand, the wavelike states are a concrete

prediction of the model, and future experiments engineered to more closely approximate

1D motion may reveal these states. By the same token, the 1D simplification in our

model intrinsically neglects effects of particle rotation that are likely present in three-

dimensional (3D) experiments, so investigations to assess how the results found in 1D

change when particles rotate and interact in 3D are clearly called for.

Second, this model is restricted to the specific problem of charging of identical

particles in the absence of external fields. Yet field data taken during sandstorms

indicate that smaller particles tend to predominantly charge negatively [36] and that

sandstorm lightning tends to occur in the presence of fields from nearby thunderstorms

[8]. Expanding our model to include polydisperse particles and external fields similarly

seems worth pursuing.

Third, we note that a 1D lattice of N particles with small individual polarizations

pi will cumulatively generate a total polarization Ptotal =
∑N

i=1 pi, which obviously can

become quite large as N grows. This leads us to speculate that voltages in excess of the

Paschen breakdown limit may be achievable even in perfectly insulating particles that

never individually become charged. This possibility would turn the analysis of particle

charging on its head-that is, if polarization of neutral charges produces a breakdown, for

example, in dry desert environments, then a breakdown could be produced in neutral

grains, and charge transfer could actually follow as a result of this breakdown, rather

than the breakdown occurring from particle charging as is currently assumed. This

speculation seems to merit future investigation.

Finally, in all of our experiments the polarization measured is negative upwards,
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so that as shown in Fig. 2.4, shaking always produces a negative voltage above the

granular bed. Possibly a difference between electron states in freely moving beads at

the top of the bed and trapped beads beneath causes this symmetry breaking, however

precisely how this might occur also remains to be determined.
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Chapter 3

Non-Linear Dynamics

3.1 Introduction

A rite of passage for every physicist is a course intensively studying Maxwell‘s equations,

at the level of JD Jackson‘s graduate text, Classical Electrodynamics. The take home

lesson from this course is that because Maxwell‘s equations are linear, unique solutions

invariably exist, so the only constraint in finding solutions by one technique or another

is the doggedness of the student. Jackson mentions an important caveat, on p. 10

of his second edition [31] however, namely that once physical matter is introduced,

interactions can become non-linear, at which point things become much more complex

and interesting. This of course is not at all new in microscopic or quantum contexts-

Kerr cells, liquid crystals, lasers and many other examples of nonlinear interactions

between electromagnetic fields and matter have long been known. In this chapter, we

explore lesser known effects of non-linearities at more macroscopic scales, where granular

particles interact with one another-and in particular, we focus on effects of electrostatic

non-linearities on particle behaviors in dust clouds. To analyze the problem, let us

consider the simplest case, three particles in a line as sketched in Fig. 3.1(a). To make

things even simpler, we define a fixed charge at the origin, at the top of the figure.

A single uncharged test particle (Particle 1) produces no non-linearity: it becomes

polarized according to:

~P = χe
~E (3.1)

where χe is the electric susceptibility, and ~E is the electric field due to the fixed charge.

When a second particle is introduced (Particle 2 in Fig. 3.1(a)), however, the problem

becomes nonlinear. The effect of this non-linearity can be exactly calculated, leading
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to a revealing outcome, as follows.

Figure 3.1: A simple two particle example of non-linearity.
Depiction of electrostatic non-linearity in its simplest context. (a) Fixed charged

particle in line with two neutral test particles, each of unit diameter, separated by a
distance ∆X. Notice that each test particle polarizes, and so exerts a force on one

another. (b) This mutual force, added to the force due to the fixed particle, produces
a net force that causes both a quantitative change in the forces on each particle, and a

qualitative reversal in even the direction of the force acting on Particle 1. These
calculations use electric susceptibility χe = 0.1.

Particle 2 also becomes polarized according to Eq. (3.1). From the resulting po-

larizations, we can calculate Coulomb forces acting on each particle: We do this by

assigning fictitious positive and negative internal charges within each test particle at an

arbitrary distance of 3/4 of a radius from the particle centers. On real particles, com-

plex distributions of surface charges would develop [31]. We omit this realistic detail for

two reasons: First because in this work we are interested in generic features associated

with nonlinear interactions and not details that depend on material particulars, and

second because surface charges would produce a divergence when the particles come

into contact that we prefer to avoid.

Using these fictitious internal charges, we have a well defined problem: There is a

fixed charge at the origin, a positive and a negative charge at known locations within

Particle 1, and the same within Particle 2. Calculating net forces on the particles is

straightforward, and the result is shown in Fig. 3.1(b) as a function of ∆X (labeled
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linear), where the center of mass between the two test particles is fixed (at an arbitrary

distance of 4 particle diameters from the origin),and where a susceptibility of χe = 0.1

is used.

Careful examination of the force on Particle 1 reveals that at small ∆X this force

is negative (downward), while at large ∆X it is positive (upward). Thus the direction

of the force on this particle changes direction with its location: this is simply due to

the fact that Particle 1‘s dipole-dipole force very close to Particle 2 overwhelms its

attraction to the fixed charge.

This linear calculation, however, is incomplete, for in applying Eq. (1), we consid-

ered only the electric field due to the fixed charge, and neglected the electric field due

to Particle 1. Likewise we neglected the polarizing effect of Particle 1 on Particle 2 (the

so-called dipole-induced dipole effect [37]). If we use the induced charges that we have

calculated to revise these dipole moments, we can re-compute the forces, producing

the results identified as 1st NL term, in Fig. 3.1(b). These nonlinear corrections are

themselves not complete, for like a hall of mirrors, the new polarizations produce new

electric fields, which in turn induce new polarizations. It is not self-evident that this

series of perturbations will converge, but as shown in Fig. 3.1(b), successive calcula-

tions up to 1024 nonlinear terms do indeed converge: in fact above about 4 nonlinear

terms, the calculations reach an asymptotic value.

To confirm that this result is not geometry dependent, we have also examined a

different 3 body scenario, in which the bodies are perpendicular rather than co-linear.

In this case, two polarizable spheres are aligned horizontally and in contact with one

another beneath a fixed charged particle, and as in Fig. 3.1(b), we evaluate the force on

either dipole particle as the number of iterations of polarization calculation per timestep

is increased. Again, we find that above about 4 nonlinear terms calculations reach an

asymptotic value, for all heights of the fixed particle above the dipole-particles.

These calculations convey two messages that we will explore in this chapter. First,

non-linear electrostatic calculations must be included to correctly evaluate forces on

particles in the presence of an electric field. Indeed, when comparing the linear with

the nonlinear cases shown in Fig. 3.1(b), it is evident that forces computed using linear
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models can fail by more than an order of magnitude.

Second, not only can models that neglect nonlinear particle-particle electrostatic

interactions fail quantitatively, they can even fail qualitatively: forces can actually

reverse direction due to particle-particle interactions, and this reversal can become

much more pronounced when nonlinear corrections are included in calculations (as can

be seen from the 8th NL term case in Fig. 3.1(b)). Importantly, nonlinear corrections

have minor influence at low particle densities (i.e. at large ∆X), but can dominate, or

even reverse the directions of forces, at high densities.

In this chapter, we will explore experimental and computational implications of the

representative calculations performed in Fig. 3.1. In Sect. 3.2, we will discuss results

of a simple experiment in which dense particle clouds are exposed to electric fields, and

as we will see, non-unique and fundamentally nonlinear particle behaviors result. In

Sect. 3.3, we will compare these results with discrete element simulations that include

Coulomb forces due to induced polarizations, and in Sect. 3.4 we will discuss the results.

3.2 Experiments

We have seen that non-linear electrostatic interactions between grains can become dom-

inant at high particle densities; likewise to probe these effects it seems sensible to

construct an experimental configuration that exposes grains to strong electric field gra-

dients, so as to maximize the likelihood of encountering interesting effects. To this end,

we use the apparatus illustrated in Fig. 3.2(a), which has previously been studied as

a probe of dielectrophoretic effects (associated with strong field gradients) on powders

and grains [38].

The apparatus consists of a nominal 30 kV Van de Graaff generator fixed beneath a

grounded steel rod with a rounded end of radius 1.3 cm: this produces a concentrated

electric field that polarizes and attracts particles. Particles, typically fine glass beads

(details below) are placed in an insulating acrylic tray that sits on the generator. The

entire system is azimuthally symmetric, so that naive electric field lines converge on

the tip of the steel rod, as sketched in Fig. 3.2(a). Once agitated, particles can be
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Figure 3.2: Experimental setup and results.
Experiment demonstrating effects of nonlinear electrostatic particle interactions. (a)
Apparatus, consisting of grounded steel rod symmetrically placed above granular bed

that is held in insulating tray, which itself sits on a high voltage Van de Graaff
generator. This primarily exposes the particles to strong electric field gradients,

chiefly causing polarizations and only indirectly inducing net charging. (b) Typical
trajectories, in which particles (dyed red to facilitate visualization) take strongly

curved trajectories that do not follow naive electric field lines (also shown in
Supplemental videos 1 and 2 in Appendix B). (c) Fine glass beads that swirl around

steel rod in undulating “dust devil”, following trajectories that both bear no
resemblance to naive electric field lines and that vary temporally according to

dynamics prescribed internally by the grains themselves and not by the steady applied
field (also shown in Supplemental video 3 in Appendix B).

tribocharged or induction charged by contact with the steel rod or the acrylic tray,

however there is otherwise no source of external charge, so to first order we expect

particles to polarize and move radially inward toward the rod tip. Many particles do

so, however many, indeed under some conditions, most do not.

This is illustrated in Fig. 3.2 (b-c). Figure 3.2(b) shows two examples of particle

trajectories that are not collinear with the naive electric field, and so we infer they

must be influenced by nonlinear effects. Here the bed consists of glass beads 70-110 µm

in diameter, and for visualization a subset of particles are larger and have been dyed

using indelible ink. Particle trajectories over several seconds are superimposed from

video records, and as highlighted in the enlargements, some colored particle trajectories

travel radially along field lines as expected, but others follow very different trajectories
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showing no apparent relation to the field lines. The video record (see Supplemental

videos 1 and 2 in Appendix B) shows that these trajectories are substantially curved,

and although not evident from these snapshots, their motions do not appear to be

influenced by abrupt particle collisions or other ballistic effects rather, the motions

appear to be smooth and obey complex interactions with something other than the

simple field lines that we know to be present. We surmise that these motions must

be associated with nonlinear influences of the other polarized (or possibly net charged)

particles.

Similarly in Fig. 3.2(c), we show video frames from a cloud of similar glass beads

that form a swirling cloud that undulates energetically in time. We highlight the

approximate outer surface of the cloud as a broken line in Fig. 3.2(c) (visible also

in Supplementary video 3 in Appendix B). Since the applied field is both spatially

symmetric and temporally steady, again we surmise that the motion that we see must

be associated with particleparticle interactions that appear as an indirect effect of the

applied electric field.

3.2.1 Experimental Phase Diagram

Changing the sizes of the glass beads and varying the height of the grounded rod above

the nominal surface of the granular bed produces several distinct behaviors, which we

organize into a phase diagram as shown in Fig. 3.3. For each particle size and rod

height, the bed was prepared at a uniform depth of 5mm, and the experiments were

all conducted during a narrow period in the winter months during which the relative

humidity was measured to be between 5 and 20 % using a digital psychrometer (Extech

RH300). Three trials were performed for each parameter choice: typically the behavior

observed was unambiguous, however in cases where non-uniqueness (discussed later)

caused an ambiguity, the behavior that was observed for the majority of the three trials

was taken to be the primary characteristic phenomenon.

As shown in Fig. 3.3, the smallest particles tend to form dust devils, similar to the

behavior shown in Fig. 3.1(c), while the largest particles either remain stationary (in

the ‘Static bed’ region) or only a small fraction are incited to jump and jostle between
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Figure 3.3: Experimental phase diagram.
Experimental phase diagram. Dust clouds refers to swirling clouds as seen in Fig.

3.2(c); Columns and Tendrils are shown in Fig. 3.7(a), 3.7(g) respectively; the
Jumping state refers to particles bouncing energetically between bed and rod, and in

the Static bed state, particles remain motionless, unaffected by the electric field.

bed and rod (‘Jumping’ region: see Supplemental video 4 in Appendix B). In the Static

Bed and Jumping parameter regimes, electrical discharges from the rod to the tray

are also seen- likely resulting in confounding free charges whose study we defer to the

future.

The behaviors at extremes of particle sizes is predictable to the extent that they are

prescribed by the Bond number, Bo-the ratio between gravitational and electrical forces.

For large Bo, particles remain gravitationally bound and cannot leave the bed, while

for small Bo, they are dominated by electrical forces and scarcely settle gravitationally

at all. Clearly there is more to the matter than this, and we will analyze the problem

further, but dynamics at the extremes is considerably less interesting than at moderate

Bo, where gravitational and electrical forces are comparable.

At intermediate Bo, seen at particle radii between about 100 and 500µm, agitated

beads tend to stick to the grounded rod, in one of two ways. For rod heights of 8 mm and

above, particles cling in isolated hair-like tendrils (shown in Fig. 3.8(b) of 3.8(j)), while

for smaller heights, the tendrils consolidate into growing columns that reach the particle

bed (shown in Fig. 3.8(g) or Fig 3.8(h)). These columns remain stable indefinitely, and

can be stretched to heights of 30 mm or greater. Typically as the column is stretched, it
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thins and ultimately breaks in the center, leaving a substantial chunk of grains adhered

to the rod (similar to Fig. 3.5(a)). We expect that the threshold between the jumping

state and a static bed would occur at a Bond number close to one. Experimentally,

this threshold occurs with beads between diameter 1000 and 1500µm, and using the

measured weight of our glass beads, we calculate the induced charge to be of order 10−2

Coul., and the external electric field to be 10−4 N/Coul.

3.3 Simulations

To confirm that these phenomena are associated with the non-linear particle-particle

interactions described in Fig. 3.1, we perform simulations as follows. In principle,

a comprehensive simulation of the experiments described might involve a meticulous

computational reconstruction of the geometry shown in Fig. 3.2(a), including the shapes

and material properties of the grounded rod, of the airborne as well as static grains

in the bed, of the insulating tray, and of the surface of the Van de Graaff generator.

While such a detailed simulation is surely possible, our goal here is modest: we seek to

confirm the underlying mechanisms that produce the phases shown in Fig. 3.3, and for

that purpose we use a comparatively simple simulation that captures the essential fields

and boundary conditions that particles are exposed to, crucially allowing particles to

interact nonlinearly as described in Fig. 3.1. Our philosophy in this simulation is to

expose generic features at the expense of specifics-thus for example we propose that the

precise shape of the Van de Graaff or tray surfaces may influence minutiae but should

not substantially affect the larger dynamical behaviors seen in Figs. 3.2 and 3.3.

With this philosophy in mind, our simulation is defined using the geometry shown in

Fig. 3.4(a). The Van de Graaff generator is electrically positive, and so induces negative

charges at the tip of the grounded steel rod yielding zero potential at its surface, as

indicated by the charges sketched in the figure. Both the surface of the generator and

the rod are conductive, so their boundary conditions require normal electric fields. This

makes the geometry very simple: the tip of the rod is approximately spherical. The

surface of the generator is also roughly spherical, but has a much larger radius and

is nearly flat on the scale of our experiment. So to a close approximation the field
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lines must be as portrayed, radiating outward from the rod, and nearly vertical at the

generator surface.

Figure 3.4: Experimental Setup vs Simulation.
(a) Sketch of experimental geometry, with positive voltage from Van de Graaff
generator and induced negative charge on tip of grounded rod indicated. (b)

Equivalent system produced by an image argument, valid within the white region
shown.

Geometrically, this is the same solution that one obtains from the two spherical

charges shown in Fig. 3.4(b), each equally spaced from the plane of symmetry indicated

by the dashed line in the figure. This result is merely a recapitulation of the argument

traditionally used in the method of images, applied here to our particular problem. As

always using image arguments, the solution only applies in a restricted region of space,

here above the plane of symmetry and below the plane of the tip of the steel rod-thus

the dark shaded region in Fig. 3.4(b) is excluded because it is within the generator

(and beneath the tray) and the light shaded region is excluded because the cylindrical

portion of the rod changes the field above the rod‘s tip. Within the white region of

Fig. 3.4(b), we expect the applied field to be represented by this image argument,

and as we will show, this does indeed produce results that substantially agree with

experiment. We then superimpose the applied field produced from Fig. 3.4(b) on fields

due to induced polarizations of all of the particles in the simulation. The particles are
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taken to be polydisperse spheres, with radii that are Gaussian distributed with standard

deviation of 15% of the mean radius, where we use fixed mean radius in each simulation

(described subsequently) of between 0.25 and 2 computational units.

The polarizations of the particles are defined iteratively, following the rubric gener-

alized from Fig. 3.1. That is, initially the polarizations are defined by Eq. (3.1), where

~E is the external field shown in Fig. 3.4(b). We use χe = 0.25 for all calculations, and

as in Fig. 3.1 we assign fictitious internal charges, q± , at a distance 80% of the mean

radius from each particle center, to produce the required polarization on each particle.

These fictitious charges define a new field,

~Ej =
∑
i 6=j

q±i ~rij
r3ij

(3.2)

at each particle, denoted, j, obtained by summing over all of the other particles, indexed

by i , at distances ~rij from the center of the j-th charge to the i-th + or - fictitious

polarized charge. Equation (3.2) is calculated for all particles and the result is added

to the prior calculation of the electric field to re-evaluate Eq. (3.1) at each particle

center. This process is then repeated. We discuss the number of iterations required

to reach an asymptotic state shortly: for the time being, we recall that the purpose of

calculating the polarizations and electric fields is to evaluate electrostatic forces on all

particles. To obtain this, we note that the force on a spherical dielectric particle in a

uniform electric field is zero, while the force in a non-uniform electric field, ~Etotal , is

given by the dielectrophoretic formula [39].

~FDep = Kd3∇ | Etotal |2 (3.3)

where K is a material constant and d is the particle diameter. We calculate the gradient

by evaluating the field at the fictitious charges, giving us finally the force on each

particle, due both to the applied external field and to the nonlinear interactions from

neighboring, polarized, particles.

This electrical force is added to mechanical forces in a standard soft-particle discrete

element method simulation described elsewhere [40], in which spheres weakly impinge
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on one another during collision, and restitution forces are calculated using Walton and

Braun‘s longstanding method [41] with a restitution coefficient of 1√
2
. Except where

otherwise noted, we use 500 particles in our simulations, and all particles are subjected

to a gravitational body force and are constrained within a computational volume of

50 × 50 × 200 computational units. Particles that leave the top of this volume are re-

injected into the simulation from below at random horizontal locations; particles that

leave from the bottom or sides are reflected specularly back into the volume.

We initialize the particles by placing them at random initial locations in the bottom

50 × 50 × 30 units of the computational domain, and allowing them to settle gravita-

tionally. In cases in which the rod tip impinges into this initial region, the height is

reduced to 50× 50× 10 units: this causes a transient excitation due to initial effective

compression of the grains, however this dissipates within the first few hundred timesteps

or so of the simulation.

Experimentally, we observe that isolated particles typically bounce erratically and

energetically off of the grounded rod (the Jumping state in Fig. 3.3), while groups of

particles can adhere (see Fig. 3.7(f), 3.7(g)). In prior work [4], it has been observed

that polarized particles vigorously recoil at odd angles from surfaces, and we speculate

that this occurs due to a divergence in the Coulomb force at the instant of discharge,

when the contact points of the particle and the surface share identical charge at zero

separation. Whatever the cause, we model this recoil by reassigning the velocity of any

particle that impinges on the rod tip to be in a random direction away from the tip

and at high amplitude (we use 1500 for this value; other choices yield similar results).

This recoil applies to our observations of bouncing between bed and rod of isolated

particles. We observe on the other hand that when particles near the rod are pre-

vented from escaping by collisions with their neighbors-i.e. when particles are crowded

rather than isolated-they tend to form consolidated columns, tendrils and other states

shown in Fig. 3.7. We model this by increasing the coefficient of restitution by 1/
√

2

for every particle within 2 mean particle diameters of the rod tip. Our rationale for

this modification to the code, which produces results in agreement with experimental

observations, is that crowded particles that recoil from the tip will collide repeatedly
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with neighbors, causing a net decrease in restitution coefficient in proportion to the

number of neighbors [30]. This decrease tends to be underestimated by soft particle

simulations, because the deformation of particles allows them to creep past one another

more readily than is seen in practice, and the modification described produces both

isolated jumping particles and consolidated groups of particles as seen in experiment.

We close this description with two final algorithmic details. First, since the particles

in our experiments can be quite small and are subject to air drag, we include viscous

damping in the simplest way, i.e. at every timestep (dt = 0.005) we define

~V = γ~V (3.4)

where γ is a constant (we use γ = 0.3) that causes velocities to decay exponentially

in time. This detail is not necessary to our results, nor is it intended to mimic effects

of air currents or particle-air flow interactions, it merely causes particles to slow in a

veridical manner.

Second, from Fig. 3.1 we expect to reach an asymptotic state in under 8 iterations

of re-computation of the electric field described in Eqs. (3.2, 3.3), so we require that

electric field is calculated 8 times without the particles moving appreciably. To achieve

this, without preventing the particles from moving altogether, we demand that the sim-

ulation timestep be small enough that particles moving with the mean velocity travel

no more than 10% of their diameter in 8 timesteps. This criterion is not perfect: it

discounts the effect of nonlinearity on fast-moving outlier particles, however since the

nonlinearity described in Fig. 3.1 is characterized by high particle density, and since

particles in higher density regions typically move with lower speed, we argue that the

criterion permits us to adequately model granular electrostatics in the nonlinear regime

of interest. We find that this criterion appears to reproduce qualitative behaviors seen

experimentally provided that the timestep is sufficiently small. For each parameter set,

we reduce the timestep until further reduction no longer modifies the behaviors pro-

duced in the simulations, indicating that the simulation has converged to an asymptotic

solution. Since this criterion results in quite slow effective particle motion (8 calcula-

tions of electric field and polarizations and solutions to Newton‘s equations of motion
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for every tenth of a particle diameter moved), we reduce computational complexity

slightly by using simple Euler integration to evolve particle motions. Some character-

istic snapshots from our simulations are shown in Fig. 3.5. In Fig. 3.5(a-c) we show

respectively an adhered cluster (a type of “tendril” state), a steady “column” and a

transient column in the process of collapsing.

Figure 3.5: Simulation Trajectories 1.
Sample patterns seen in simulations. Snapshots from 3D simulations of (a) stable
adhered cluster of particles, (b) stable column, and (c) column in the process of

collapsing. Particles in a-c are shaded only to aid visualization: there is no difference
between colors; a,b. are shown after 2000 timesteps, while c. is shown after 1070
timesteps: after 2000 timesteps, c produces a pendant cluster of particles as in a.

(d,e) Streak lines from 2D simulations of swirling, “dust-devil”-like, flow. d and e are
from the same simulation at different points in time. Blue lines indicate motion
toward red rod tip; red lines travel away from the tip. White lines identify flow

features described in text.

All of the simulations used to produce phases corresponding to experiment have been

performed in 3D. We have also performed simulations intended to reproduce rapidly
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swirling flows as in Fig. 3.2(c). In these simulations, larger numbers of particles were

used, however we were not able to approach the many hundreds of thousands of air-

borne particles that we estimate to be present in experiments. Instead, we performed

simulations of 1000 particles on 2D cross sections, as shown in Fig. 3.5(d), 3.5(e) and

in Supplemental video 5 (Appendix B). This spatial domain is 325× 215 units, the tip

radius is 50 units, and the mean particle diameter is 0.5 units; otherwise parameters

are identical to those in the 3D simulations.

To aid visualization, we identify approximate particle trajectories as well as some

notable features of the flow as white broken lines in Fig. 3.5(d), 3.5(e). Some artistic

license is used in drawing these lines, and we emphasize that these are trajectories of

particles and are not a smooth differential flow. Nevertheless, it is evident that the

trajectories undergo temporal fluctuations in their features-thus for example there is a

void at an earlier time, identified in Fig. 3.5(d), with few particles, most of which are

falling downward, that is absent at a later time, Fig. 3.5(e). Likewise there appears

to be a saddle point in Fig. 3.5(d) that is not evident later in Fig. 3.5(e). Thus our

nonlinear simulations reproduce an overall circulatory flow along with some undulations

that may be similar to those seen experimentally (cf. Fig. 3.2c and Supplemental video

3).

We note that a central tenet of our analysis is that particle motions are intrinsically

non-linear due to multi-body inverse squared interactions: we recall that this led to

experimental trajectories in Fig. 3.2(b) that deviate from naive field lines. We see

this effect in our simulations as well. In Fig. 3.6, we show two examples of such

trajectories, in which we allow 500 particles to develop into a steady state column

(using mean particle radius 1.5, initial rod height 75: see Fig. 3.7), and we then eject

one particle from the column by briefly delivering a large horizontal velocity to it. Such

large velocities appear experimentally [4] whenever two particles in contact discharge:

this causes both to instantaneously acquire identical charge at zero displacement, hence

formally producing infinite repulsive force. In our simulations we don‘t allow charge

exchange, hence we impose a large velocity instead. As shown in Fig. 3.6, both resulting

trajectories are concave up, while naive field lines (Fig. 3.4(a)) are concave down.
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Additionally, both trajectories break azimuthal symmetry, as shown at the tops of the

two exemplars, where we show horizontal projections of the two trajectories. These

projections manifestly exhibit azimuthal components of motion as indicated by black

arrows. Thus in addition to circulatory flow, our simulations also produce significant

deviations from naive field lines, as expected from nonlinear interactions due to nearby

particle charges.

Figure 3.6: Simulation Trajectories 2.
Curved computational trajectories in which particles do not follow naive electric field

lines (cf. experimental trajectories, Fig. 3.2(b)). Note trajectories are concave up,
while field lines are concave down (shown in Fig. 3.2(a)), and azimuthal symmetry

breaking appears in horizontal projections (dotted trajectories).

3.3.1 Computational Phase Diagram

We use the 3D simulation that we have described to produce a computational companion

to the experimental phase diagram of Fig. 3.3. This is shown in Fig. 3.7(a), where

rod heights and particle radii are varied as before. Precisely the same procedures were

used as in experiment: three trials were performed for each parameter set, and the

behavior assigned was determined from the majority of the trials. It is conceivable that

the computational phase boundaries in Fig. 3.7(a) could depend on the convergence

criterion described in the previous section that particles move on average less than
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10% of their diameter in 8 timesteps. To discount this possibility and further confirm

the accuracy of our simulations, we performed additional tests in which we executed 8

iterative calculations of particle polarizations for each timestep. Although more time

consuming than our earlier method, this approach seems certain to generate accurate

results.

Figure 3.7: Computational Phase Diagram.
Computational phase diagram. (a) Behaviors are as described in Fig. 3.3, with the
exception that fewer particles are used computationally than in experiment, so dust
clouds here appear as diffusely scattering clouds of particles. (b) Asymptotic state of
grains after 2000 iterates at height and radius indicated by asterisk (top panel), and

under identical conditions but reducing the susceptibility as described in the text
(bottom panel)

We performed these tests in two regions of phase space. First, we examined all

rod heights at mean particle radii of 1 and 1.25: these radii were chosen because they

produce the highest particle density and hence the strongest nonlinearity. Second, we

sampled parameters in all of the five distinct states shown in Fig. 3.7(a). In all tests,

we reproduced the patterns reported in that figure using the more time-consuming

computational approach.

Because of the particle number limitation referred to, the patterns are not identical

in experiment and simulation. For example, the Dust clouds region refers to diffusely

scattering particles, rather than the clearly identifiable swirling dust devil-like behavior

seen in Fig. 3.2(c), involving very large numbers of particles, and the Tendrils state
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consists of pendant clumps of larger particles (also seen in experiment but not shown

here) as well as the finer projections shown in Fig. 3.8(j). Aside from details that we

attribute to smaller numbers of larger particles used in simulations than experiments,

the patterns seen computationally largely reproduce those seen experimentally.

Most obviously, the simulations confirm the Bond number expectation described

earlier for extremes of particle size, with small particles tending to become airborne

in clouds and large particles tending to be immobile, either in a static bed or in a

stationary column. We expect that simulations using even larger particles would only

produce a static bed, however we seek to perform all simulations under common geo-

metric conditions, and increasing the particle size further would require increasing the

simulation volume.

Additionally, the simulations qualitatively reproduce the formation of other states,

including columns, tendrils and jumping beads, as can be seen from a comparison

between the experimental phase portrait of Fig. 3.3 and the simulation portrait of

Fig. 3.7(a). The portraits exhibit similar tendencies, with columns degenerating into

tendrils as the rod height grows, and jumping states emerging as the radius and height

are increased.

Nevertheless, the portraits are not identical, which we ascribe to the fact remarked

upon earlier that our simulations neglect particulars such as shapes and material prop-

erties of the grounded rod, the insulating tray, the Van de Graaff generator, as well as

surface charges or asperities on the grains and net charges on particles. Indeed, changes

in these particulars can affect the detailed locations of the phase boundaries-for example

at Radius = 1, Height = 70 (asterisk in Fig. 3.8(a)) columns are reproducibly produced,

as shown in the top panel of Fig. 3.8(b), but reducing the susceptibility from χe = 0.25

to χe = 0.1 instead generates a pendant tendril, as shown in the bottom panel of that

figure. Thus phase boundaries depend on simulation particulars, but the relationship

between the distinct phases shown in our simulations appears to be generic and agrees

with experiment.
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3.4 Discussion

3.4.1 Non-uniqueness

Apparently in both experiment and simple theory, particles in electric fields produce

complex and fundamentally nonlinear responses. It is well recognized that nonlinearity

is a recipe for non-unique behaviors, and indeed we see multiple distinct patterns under

similar conditions. A partial sampling of some of these patterns is presented in Fig.

3.8.

Figure 3.8: Experimental Phenomena.
Partial library of patterns near grounded rod. (a) Broad wandering column; (b) thin
filament; (c) double filament; (d) dynamically dancing filaments; (e) striated ribbon

beneath flat ended rod, (f) broad growing column; (g-l) a time sequence of growth and
collapse of a column, (j) short tendril; (k) branched tendrils; (l) multiple steady

filaments. Panels a-e use 70-110 µm glass beads; Panels f and j use 300-425 µm glass
spheres. Panels g-i use 100-200 µm glass spheres. Panel k uses 500 µm zirconium
oxide spheres, and panel l uses 90 µm hollow glass spheres. Panel f is courtesy of

Pinaki Chakraborty.
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The examples using fine beads, Fig. 3.8(a-e), are presented roughly in order of

complexity: Figure 3.8(a) shows a broad, solid column that slowly wanders as the rod

is raised, this column becomes unstable, and before it disappears to produce a cloud

(as in Fig. 3.2(c)), transient patterns may appear, as shown in Fig. 3.8(b-d). Several

of these appear in Supplemental video 6 (Appendix B): Fig. 3.8(d) in particular shows

intriguing filaments that briefly dance around one another before vanishing.

Not surprisingly, the particular patterns depend on details of the experiment, al-

though the particulars themselves are not intuitive. For example, in Fig. 3.8(e), we

show patterns beneath a flat, rather than round, ended rod: these take the appearance

of ribbons rather than columns., and unlike the patterns shown elsewhere in which the

grounded rod was always kept at a fixed initial height above a uniform bed, in Fig.

3.8(a-d) the grounded rod was very slowly raised from being initially immersed in the

granular bed.

We have investigated various size and material grains as well; by and large we find

that if the rod is further than a couple of centimeters from the bed, grains smaller than

about 100 µm produce clouds as in Fig. 3.2(c), while larger grains tend to bounce

between the bed and the rod, as in Fig. 3.2(b). This bouncing (the Jumping state

referred to earlier) starts and stops in time for unexplained reasons (see Supplemental

video 4). For larger beads, more intricate and dynamic structures tend to give way

to more stable columns; thus 300-425 µm glass beads shown in Fig. 3.8(f) produce

simple columns of varying widths. As the rod is brought closer, stable filaments of

several varieties can form: these can take the form of single filaments, as shown in Fig.

3.8(j), 3.8(k) or multiple filaments, shown in Fig. 3.8(l) using hollow glass spheres(Q-

cell 6048, PQ Corp., Augusta, GA) with mean diameter 90 µm. These exploratory

investigations are not comprehensive, and we emphasize that even within the materials

and conditions studied we encountered many unexplained behaviors. For example under

similar conditions, sometimes we observed dancing columns (Fig. 3.8(d)), other times

we did not. Even the more mundane, steady, behaviors showed complexity: the static

column shown in Fig. 3.8(f) for example sometimes arises by slow and regular accretion,

sometimes is symmetric and sometimes is not (cf. Fig. 3.8(g)), and sometimes appears
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after multiple growth and collapse events (sequence 3.8(g)3.8(i); see also Supplemental

video 7 in Appendix B)

3.4.2 Outlook

It has been known at least since the time of Poincaré that only three bodies subject to

a 1/r2 gravitational field behave in complex and unpredictable ways [26,37]. One would

consequently expect that multi-body dynamics under gravity would be entirely erratic

and unpredictable, yet in fact large numbers of gravitating particles produce unmistak-

ably regular dynamical structures ranging from resonant planetary orbits (e.g. between

Pluto and Neptune) to Saturn‘s rings to intergalactic voids and super-structures involv-

ing many millions of galaxies. In retrospect, it should therefore not be surprising that

multiple bodies subject to a 1/r2 electrostatic field are similarly complex. The work

presented here demonstrates that even neutral particles exhibit a variety of intricate and

dynamic structures. It seems certain that more realistic simulations, incorporating for

example charge transfer [25] or surface charge variations, will produce further surprises.

It also seems likely that non-linear electrostatic interactions affect phenomena further

afield from the simple geometry studied here. For example, using linear analyses, com-

plex granular patterns both in industrial blenders [42] and on the Martian surface [4]]

have been proposed to be influenced by electrostatics, and granular stick-slip events

have been found to be associated with electrostatic fields [5,6,43]. It seems reasonable

to expect that nonlinear effects would alter these analyses. Similarly, it seems plausible

that electrostatics may substantially affect planetary dust physics, stick-slip dynamics,

and industrial powder adhesion. Future work in these areas will lead to a better under-

standing of the response to the electrical excitation of powders-an area of importance

in problems ranging from industrial dust explosions [7] to extra-terrestrial mining and

exploration [4, 12,13,44].
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Chapter 4

Size segregation in the rubble-pile asteroid Itokawa

In 2005, the asteroid 25143/Itokawa was visited by the spacecraft Hayabusa [45], and

was found to display strong segregation between small and large particle sizes, as shown

in Fig. 4.1(a). Raised areas [46] on Itokawa are populated by boulders ranging in

diameter [47, 48] from 5 to 40 m, while depressions are filled with smooth seas of

smaller particles [49] ranging from fine dust to centimeter-sized pebbles [50]. It is not

known how this size segregation came about, and understanding may shed light on the

processes asteroids [51–53] and perhaps other bodies [54,55] - undergo during formation

and development.

This segregation has been attributed [27, 49] to the Brazil nut effect (BNE) [14],

in which particles differing in size separate during sustained vertical shaking in the

presence of gravity [15,56]. In the BNE, repeated granular jamming during the upstroke

followed by friction against vertical [57] boundaries during the downstroke produce a

net downward flow of smaller grains with respect to their larger neighbors, leading to

larger particles above smaller.

While the BNE seems likely to affect geomorphology on asteroids and elsewhere, we

point out several limitations to using the BNE to explain the observed segregation on

Itokawa. First, the volume of boulders on Itokawa is somewhat larger than that of fine

pebbles [45,58]. In such a case, the BNE would cause the fines to percolate beneath the

boulders so that only boulders would be visible from above [59, 60]. Second, gravity is

weak on such small asteroids, yet simulations have shown that under weak gravity [61],

agitation velocities required to rearrange particles are very close to escape velocities [62].

Consequently under weak gravity, reliable BNE segregation will only occur if agitation

and material parameters are very carefully adjusted. Third, it has been argued [63] that
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the shaking that generates the BNE could be caused by collisions of the asteroid with

debris [64]. However debris collisions would produce agitation in all directions, with

successive collisions almost never repeating the same trajectory. Yet importantly it is

known that horizontal shaking can reverse the BNE [65–67], causing larger particles to

sink rather than rise. Fourth, on Itokawa there are no vertical boundaries to produce the

jamming required by the BNE, and it has been shown that non-vertical boundaries can

also reverse the BNE [33]. Finally, under any gravity and for any boundaries or means

of agitation, boulders roll into gravitational valleys [49, 68], yet on Itokawa boulders

are seen in highlands [46], while valleys are populated entirely by pebbles [48]. So if

the BNE does occur on Itokawa, it would not produce visible seas of pebbles, it would

occur only under narrow parametric conditions, it is unclear whether it would cause

boulders to rise or to sink, and it cannot account for the lack of boulders in gravitational

valleys [62].

In this chapter, we propose an alternative, and much simpler, mechanism of size

segregation on rubble pile asteroids such as Itokawa. These asteroids are believed to

form by self-gravitation of debris [51], and we observe that on Itokawa the volumes of

gravitated pebbles and boulders are comparable (it has been estimated that 20% of

Itokawa‘s surface area and a few percent of its volume consists of fine particles [45,58]).

This implies that there must be overwhelmingly more small particles than large, and

so most collisions that made up the asteroid must have been from small particles.

As a rough numerical estimate, if we take pebbles on Itokawa to be of order [49,50,69]

1 cm in diameter and boulders to be of order [47] 10 meters, the diameters would differ

by factor of a thousand. If there were equal volumes of pebbles and boulders, then there

would be a billion times more pebbles than boulders. This estimate can be made more

conservative by 1 or 2 orders of magnitude by taking into account the smaller total

volume of pebbles than boulders; nevertheless overwhelmingly more collisions with the

asteroid must have been by smaller particles than by larger.

The significance of this observation is that when a pebble hits a boulder, it rebounds

(as sketched in Fig. 4.1(b), whereas when it hits a sea of other pebbles, its momentum

dies (Fig. 4.1(c)). This well-known consequence of inelastic collisions [70] has been
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understood since Bagnold‘s foundational work on granular physics [71], and is caused

by the fact that every collision reduces the normal speed by a constant restitution

coefficient (typically ranging from 0.5 to 0.9 depending on material and conditions).

Since a pebble sea contains numerous pebbles, an incoming debris particle correspond-

ingly causes numerous collisions, which makes granular beds excellent absorbers of

impact [72, 73]. Thus simply by counting particles we can conclude that the collisions

that made up Itokawa were overwhelmingly by pebbles, and since pebbles bounce off of

boulders and sink into pebble seas, it is inevitable that these seas will grow. Moreover

as we will show, this mechanism leads to smooth seas of pebbles in valleys and remnant

pebble-free boulders on highlands.

We term the mechanism by which pebbles are repelled by boulders and absorbed by

other pebbles “ballistic segregation”, to recognize prior work on ballistic aggregation

[74], while distinguishing the present model from inelastic segregation models describing

segregation due to velocity gradients [75], or particle properties [63].

We test this model in several ways in this chapter. As a first, qualitative, test, in

Fig‘s 4.1d, 4.1f we demonstrate that isolated collisions between pebbles and a large

boulder rebound, leaving essentially no residual pebbles on the boulder, while multiple

collisions between pebbles lead to aggregation of pebbles. In Fig. 4.1(d), we sprinkle

500 ml of 1 mm glass beads (pebbles) onto a ceramic plate (boulder - see video in

Appendix C.1). We perform the sprinkling by tapping a sieve placed 50 cm above the

plate. We measure that each tap releases about 1250 pebbles from an area of 150cm2,

producing about one pebble per 10mm2. We have confirmed in separate experiments

that this mechanism sprinkles pebbles according to a random and spatially uncorrelated

distribution (see Appendix C.2). Fig. 4.1(d) shows the end of the experiment, when

almost every pebble has left the plate. If instead we pour the pebbles from a beaker-

again 50 cm above the plate-so that the pebbles collide with one another, we produce

a growing mound as shown in Fig. 4.1(e) (see video in Appendix C.1): this snapshot is

taken just before the beaker is empty so as to show the pouring, but the mound remains

after pouring has stopped.

Similarly we initially place 100 ml of pebbles on the plate, shown on the left of
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Figure 4.1: Segregation of large and small grains.
(a) Asteroid 25143/Itokawa is shown in inset;enlargement highlights size segregation,

especially in the Muses sea. Credit: http://global/JAXA.jp. (b) Illustration of
ballistic segregation: a small pebble rebounds from a larger boulder, but (c) is

absorbed into a cluster of pebbles. (d) Demonstration of effect in simple experiments:
small particles dropped independently onto a ceramic plate rebound leaving few

residual particles, but (e) the same number of particles made to interact with one
another by pouring them from the same height leave a substantial residue on the

plate. (f) Similarly, if a small pile is initially placed on the plate (left), then particles
sprinkled from above exactly as in panel (d) accumulate into a growing mound (right).

Fig. 4.1(f), and then sprinkle the remaining 400 ml of pebbles exactly as in panel (d),

to produce a growing mound, shown to the right of panel (f) (shown also as video in

Appendix C.1). So individual collisions between pebbles and a fixed boulder produce

essentially no residual pebbles (Fig. 4.1(d)), while collective collisions either due to

depositional conditions (Fig. 4.1(e)) or to the initial state (Fig. 4.1(f)) result in growing

accumulations of pebbles.

To quantify this behavior, we reiterate that the ballistic segregation mechanism

causes an incident pebble that hits an area occupied by pre-existing pebbles to accu-

mulate. Thus existing accumulations of pebbles promote further accumulation. This
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behavior is known as cooperativity [76], and is described by a Hill equation, written for

our problem as:

F (T ) =
100

1 + (k/T )n
+ fo (4.1)

where F defines the fraction of coverage by pebbles, T is a timescale, and k is a holding

capacity. In our problem, T is the number of sieves filled with pebbles that have

been deposited, and k is a timescale at which rapid filling of small interstices between

boulders gives way to slow filling of large surface area seas.

Critically, the exponent n defines the cooperativity: for n < 1, pre-existing pebbles

reinforce accumulation, and for n > 1, they inhibit it. We include a constant minimal

coverage, fo, to account for the observation that an initial accumulation of pebbles a

seed for the pebble sea is needed to initiate cooperative behavior (shown in Fig 4.1(d)

and 4.1(f)) that is, although a cluster of pebbles will absorb an incoming pebble, a

monolayer of pebbles will simply be scattered by it.

To evaluate whether pebble seas grow according to the cooperative law, we perform

trials in which we randomly arrange river stones, mean volume 140 ± 110cm3 on the

bottom of a 45cm×45cm box, and uniformly sprinkle 1 mm glass beads from a height of

50 cm as described in Appendix C.2 . We take high-resolution snapshots of the surface

after depositing successive 1000 ml sieve-loads of these pebbles. We correct for camera

perspective of each snapshot, also described in Appendix C.2, and use a vector path

drawing tool from digital photo editing software (Intaglio) to manually circumscribe all

surface areas that are occupied by more than a monolayer of pebbles. In Fig. 4.2(a),

we show typical snapshots, in which the circumscribed pebble areas are false-colored.

The actual pebbles are clear, which both minimizes adhesion and electrostatics [77] due

to surface dyes and permits the ready exclusion of monolayers during photo editing,

since monolayers of clear pebbles glitter visibly. Finally, the containing box has vertical

side walls and is not of interest to us, so we measure the fraction of area occupied by

pebbles divided by the total area of the largest inscribed rectangle that excludes the

box.

Results of this process for 3 trials, where river stones are initially placed in different
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random arrangements for each trial, are shown in Fig. 4.2(b). Data at each time

(i.e. successive sieve-loads) are averaged and fit to Eq. [4.1] with correlation coefficient

r2 = 0.9994, and exponent n = 2.15± 0.05. Since n is significantly above 1, depositing

pebbles under gravity produces substantial cooperativity. This implies that existing

pebbles promote further accumulation of pebbles.

Figure 4.2: Evaluation of cooperativity in deposition of small grains.
(a) Typical snapshots after sprinkling of 5, 8 and 15 sieve-loads (photos from Trial 3);

small grains are false-colored to aid visualization. (b) Several trials using different
initial substrates of river stones along with fit to their average from Eq. [4.1]

(fo = 5± 1, k = 8.0± 0.2, n = 2.15± 0.06, r2 = 0.9994). (c) In the presence of
preexisting topography with a central valley, a nearly unbroken sand sea forms

between higher peaks. Note that occasionally a stone may settle during an
experiment, producing minor discrepancies between initial and final stone locations.

We note that surface topography i.e. substrates with substantial peaks and valleys

is the rule on small asteroids, and as we have mentioned, on Itokawa pebble seas tend to

form in valleys [49] . It is straightforward to repeat our experiments using a topographic

substrate, with stones arranged into peaks and valleys. We have done this several
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times and invariably find as shown in Fig. 4.2(c) that the valleys fill up to form nearly

unbroken and flat pebble seas, leaving pebble-free stones in raised areas.

So first we calculate the surface area by setting the rate of change of volume of

accumulated pebbles equal to the volume flux of added pebbles:

dV

dt
= N · v (4.2)

where V is the volume of the filled valley at time t, N is the number of pebbles added

per unit time, and v is the volume of a single pebble. The simplest model for a 3D

valley is a hemisphere of radius R. In this case the radius, r, of the valley at height h

can be written as r =
√

2Rh− h2. During the initial filling of a valley, h << R, so

r =
√

2Rh, and V =
∫
πr2dh ≈ πr4/(4R). After integrating over time, Eq. [2] gives

r2 =
√

4NRv/π · t1/2.

Thus the surface area of a hemispheric valley initially grows as t1/2. By comparison,

the Hill Eq. [4.1] for short times (i.e. small T/k) gives a fraction fill of [F (T ) − fo] =

100 · tn, where t=T/k. We have repeated this calculation for a hemicylindric valley,

a V-shaped valley, and a valley surrounding a hemispheric mound by simply changing

the formula for V in Eq. [4.2], and we obtain surface areas that grow as, t1/3, t1/2, and

t2/3 respectively. In all cases, for early growth of a valley we obtain exponents less than

one, which are inconsistent with the positive cooperation (area ∼ t2.15) that we see

experimentally. We conclude that our pebble seas do not grow by downhill flow into

valleys.

Second, to confirm that the cooperative growth shown in Fig. 4.2(b) occurs explicitly

because pebbles bounce away from larger stones and inelastically collapse into pebble

seas, we perform simulations that permit us to track trajectories, pebble by pebble, so

as to quantify the extent to which pebbles bounce or collapse after each collision. The

simulations also allow us to evaluate the effect of gravity on the segregation observed.

Details are provided below, but in summary we perform the simulations in two steps.

First, we form an initial accumulation by dropping particles, consisting either of 1 mm

pebbles or larger stones, from a fixed height onto an irregular substrate. Equal masses
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of pebbles and stones are dropped over time to produce accumulations such as shown

in Fig. 4.3(a) after 296,888 pebbles and 36 stones have fallen. Second, we drop pebbles

onto the initial accumulation and track each pebble trajectory.

In detail, the pebbles are uniformly distributed in diameter from 0.95 to 1.05 mm

and have the density of glass or granite (2.7 g/cc). Material parameters are: elastic

modulus = 108Pa, Poisson‘s ratio = 0.17, and coefficients of restitution and friction

= 0.5. Larger stones are produced by forming an ellipsoid of 2278 pebbles and flattening

two perpendicular sides to make the stone irregularly shaped (shown in Appendix C).

The particles that make up the stones are identical in size to the pebbles in the bed, and

are computationally “glued” together and are not permitted to move with respect to

one another, although the stone itself can move freely (see Appendix C.3). To maximize

the size of the stones while minimizing the computational burden, we remove internal

particles, retaining only a rigid outer shell that interacts with other particles. We

compensate for hollowing out the stones by increasing the density of the shell particles

to make the density of the entire stone the same as that of the individual pebbles (so

the density of each particle in the shell of a stone = 9.5 g/cc).

We use Earth‘s gravity, g, to form an initial accumulation of particles on this sub-

strate, as shown in Fig. 4.3(a). We use Earth‘s gravity to establish this initial accu-

mulation because Itokawa‘s gravity is very small ( g/105), and using this gravity would

take our simulations impractically long to accumulate particles. Once the accumulation

shown has been established, we vary gravity and quantify the ballistic segregation effect

as follows. First, we reduce gravity to a desired level under conditions of artificially

high viscosity: viscosity is necessary purely as a numerical stratagem to prevent com-

pressed aggregates from exploding when gravity is reduced. Second, after the initial

accumulation has come to rest, we remove the artificial viscosity and deploy a number,

N, of stationary pebbles at a fixed height, 160 mm above the top of the pebble bed.

This is shown in Fig. 4.3(b, left) for one of the four quadrants of our simulation. We

release these pebbles simultaneously under the desired gravity and track every pebble‘s

trajectory: typical trajectories are shown in the video of Appendix C.1. We allow the

pebbles to come to rest, as shown in Fig. 4.3(b,right), and evaluate lengths of the
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trajectories from initial to final contact with the aggregate. As seen from this panel,

the pebbles invariably come to rest in gravitational valleys, and we plot the trajectory

lengths in Fig. 4.3(c).

In the main plot of Fig. 4.3(c), we show trajectory lengths of pebbles that ini-

tially strike larger stones (pebble-to-stone) alongside distances of pebbles that initially

strike other pebbles (pebble-to-pebble). The ballistic segregation hypothesis holds that

pebble-to-stone particles should travel much greater distances than pebble-to-pebble

particles, and that both types of particles should ultimately be deposited in pebble

seas. Qualitatively, this is shown in the video of Appendix C.1 and in Fig. 4.3(b,

right), which displays no residual pebbles on stones. Quantitatively, our simulations

confirm that pebble-to-stone particles travel about a factor of 5 further than pebble-

to-pebble particles: this is shown in the main plot of Fig. 4.3(c) for Earth‘s gravity, g,

using N=702 pebbles, and in the inset at g/105 (approximately Itokawa‘s gravity) using

N=693 pebbles. Simulations performed using gravity between g and g/105, not shown

here, produce similar results. Thus our simulations appear to confirm that pebble seas

grow because incoming pebbles rebound from stones but collide inelastically with other

pebbles, and this finding does not appear to depend on gravity. Additionally, in both

experiments and simulations we find that ballistic segregation leads to the formation of

flat pebble seas in gravitational valleys.

As a final note, we emphasize that the ballistic segregation hypothesis only considers

nondestructive collisions. This is appropriate for small rubble-pile asteroids that form

through self-gravitation of debris and present a small cross section to high-speed projec-

tiles that could fracture or generate large-scale rearrangements of previously deposited

materials. Beyond the formation of the asteroid, our consideration of the relevant ve-

locity scale being the escape velocity also pertains to regolith generated by the impact

of micro-meteorites on boulders. Here only the ejected debris with velocity less than

the escape velocity land back on the asteroid.

To estimate effects of collisions through self-gravitation, we note that Itokawa‘s es-

cape velocity is only about 0.2 m/s, and at this re-entrant speed, debris would not

fracture or substantially rearrange regolith. We predict then that small rubble piles
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should be subject to ballistic segregation and should generically exhibit strong segrega-

tion between small and large debris deposits. Indeed, analysis of spectroscopic [78] and

thermal imaging [79] data indicate that the comparably-sized asteroid 101955 Bennu

(selected for visitation in 2021 by the NASA explorer OSIRIS-REx) also exhibits size

segregation, with fines smaller than 1 cm and a 10-20 m boulder on its surface.

Larger rubble piles may also undergo ballistic segregation, however their increased

cross sections and re-entrant debris speeds can be expected to give rise to fracture and

other complicating effects [80]. We can estimate the asteroid size at which ballistic

segregation will lose its influence by observing that the specific impact energy at which

chondrite [80] and similar rocks [52] fracture is above 2 · 106erg/g. This implies that

the speed that will fracture a projectile must exceed 2000 cm/sec, which is close to

the escape velocities of the asteroids 253 Mathilde or 243 Ida. We therefore predict

that sand seas will grow on rubble piles smaller than these asteroids, but that ballistic

segregation will give way to other effects on larger asteroids. Larger asteroids may ex-

perience ballistic segregation during their evolutions, but they will also suffer significant

fracture and rearrangement, minimizing the effects of segregation over their histories.

Beyond small rubble-pile asteroids, it is enticing to note that even the large and con-

solidated asteroids Vesta [81] and Eros [82] possess flat ponds believed to be composed

of fine particles. These deposits have been proposed to be created by a number of mech-

anisms including electrostatic levitation and micrometeorite abrasion. Irrespective of

how the deposited particles arise, all existing models appeal to a secondary mechanism

such as seismic shaking to impose flatness on the ponds [83]. Yet as we have mentioned,

both experiments and simulations of ballistic segregation lead to flat deposits, and so

we speculate that this effect may play a minor role in large asteroids as well.

In conclusion, we have hypothesized that rubble-pile asteroids such as Itokawa may

be size segregated simply because they have accumulated debris by collisions that were

predominantly, by number, by smaller particles. We have argued that the predominance

of small particle collisions leads to a growth of pebble seas caused by inelasticity of

collisions. We have also shown that this mechanism accounts for the formation of

pebble seas in valleys and an absence of pebbles in highlands. We have performed
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experiments and simulations to assess each part of this hypothesis. Experimentally,

we have found that isolated pebbles that strike a large object rebound to end up far

away from the object (Fig. 4.1(d)), while collisions between multiple pebbles lead to

growing aggregates (Fig‘s 4.1(e)-(f)). We have further determined that this growth is

well described by a cooperative Hill equation (Fig. 4.2). Computationally, we have

evaluated distances traveled following an initial collision with either a large stone or a

pebble sea, under gravities ranging from Earth‘s down to Itokawa‘s gravity, and we have

confirmed that pebbles consistently rebound much larger distances from larger stones

than from pebble seas. While it remains to be seen how broadly this phenomenon may

be applied, we propose that the underlying mechanism is simple and general enough to

be included as a process that may play a significant role in asteroid geomorphology.
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Figure 4.3: Discrete element simulations using LIGGGHTS of 1 mm diameter pebbles
and larger stones dropped from fixed height but random horizontal positions onto fixed
substrate.

(a) Typical result after 296,888 smaller pebbles and 36 larger stones have been
dropped. The simulation is periodic in horizontal dimensions x and y, with underlying
topography defined in the vertical, z, direction so as to generate a somewhat irregular
substrate: zsubstrate = 10 cos(πx/80) + 5 sin(πx/80) + 10 cos(πy/80) + 2.5 sin(3πy/80).
(b) Semi-transparent plane identifying height from which pebbles are dropped (upper
image), and final locations of a large number of pebbles (lower image). (c) Lengths of
trajectories, obtained from tracking a large number of pebbles (see text). Main plot
shows result using Earth‘s gravity, g; inset shows result using g/105: in both cases,

pebble-to-pebble collisions are transported much shorter distances than
pebble-to-stone collisions.
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Chapter 5

Conclusion

The three projects discussed in the previous chapters provide cases of complex non-

linear behavior found in granular materials along with possible theories for the mecha-

nism behind the phenomena. The 1-d dipole lattice model with 1
r2

interactions between

dipoles in Chapter 2 finds that large scale exponential polarization can occur given a

small perturbation of polarization within a lattice of dipoles. This provides a mecha-

nism for electrical charging in large systems of identical granular particles or insulators

without any requirement for an external electric field or a size difference between par-

ticles. In Chapter 3 we show that by simply applying strong electric fields to granular

materials, non-linear dynamical phenomena can be observed in experimental data. We

consider a system of particles under the influence of two oppositely charged external

particles creating the simple field lines found in our experiment. By calculating the re-

sulting polarization, electric fields and dielectrophoretic forces that the particles exert

on one another, we are able to qualitatively recreate much of the phenomena observed

in our experiments. A comparison of computational and experimental phase diagrams,

with particle radii and external field distance used as parameters, finds agreement.

Finally, our study of ballistic segregation provides an alternative explanation for why

particle segregation exists on the asteroid 25143/Itokawa; smaller sized particles which

hit a particle bed are more likely to remain while particles which hit boulders and larger

rocks are more likely to bounce away. This phenomenon leaves growing sand seas and

segregation based on particle size. We show simple table top experiments which demon-

strate the effect of pre-existing glass bead accumulations in particle deposition. We fit

our data with a non-linear Hill equation revealing that existing accumulations of glass
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beads promote further accumulation. To further support our idea of ballistic segrega-

tion, we present histograms produced by simulations. The results show that pebbles

colliding with boulders have a larger mean distance traveled post collision in comparison

with pebble with pebble collisions.

In Chapter 2, we present a computational 1-D Ising model as a representation of

vibrated beads. By considering feedback polarization between dipoles within the lattice

induced by each dipole‘s electric field (which have interactions proportional to 1
r2

) we

find that a single weakly polarized particle within the lattice can lead to exponential

polarization growth in the whole system. In addition, when considering neutralization

between neighboring dipoles, we find distinct spatiotemporal patterns including polar-

ization and charge waves which at times start and stop sporadically, noisy states and

also states classified as ”death” where dipole magnitudes rapidly approach zero. We

support our simulations with a tabletop experiment with a vibrated vase full of glass

beads. We find that by vibrating the granular bed, we produce a voltage vs time graph

with a decreasing voltage potential over time; the experimental results show agreement

with our polarization state in our simulations. Our model shows that particle size dif-

ferences as well as an external electric field are not necessary requirements for large

scale electrical activity in granular materials.

After studying the origins of electrical charging and polarization of granular mate-

rials in Chapter 2, we examine the resulting non-linear dynamical behavior of granular

materials under the effects of strong electric fields in Chapter 3. Our experimental

results show that by exposing glass beads to a simple electric field, we get complex

dynamical behaviors. In particular, we find particle trajectories breaking azimuthal

symmetry despite having initial naive azimuthally symmetric electric field lines. In ad-

dition we find a host of different phenomena resulting from the electric field application

including the formation of tendrils, dust clouds and also sporadically jumping beads.

Our simulations that consider not only the initial electric field but also the resulting

polarizations of the glass beads report behavior similar behavior and we find qualitative

agreement with the experiment.
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In Chapter 4, we consider a different complex phenomenon involving granular materials-

the segregation of larger sized boulders (on the order of 10 m) from pebbles (∼ 1 cm)

found on the asteroid known as 25143/Itokawa. While this phenomenon has been typ-

ically attributed to the granular phenomenon known as the Brazil Nut Effect we argue

that there is no known periodic shaking or vertical walls on asteroids and gravity and

collisions are also isotropic. By scaling our experiments down to 1mm sized glass beads

(pebbles) we find that collision differences may be responsible for granular segregation

causing a non-linear fractional surface area accumulation as modeled by the Hill Equa-

tion. Further simulations confirm that pebble with pebble collisions produce distances

travelled to be significantly smaller than pebble with boulder collisions. Overall this

phenomenon leads to a growth of accumulations of pebbles.

We close by discussing further work that can be done to expand on the projects

presented in this work. We note that our computational dipole model in chapter 2

is 1-D. We mentioned the need for 2-D and 3-D models [84] in order to get a more

accurate prediction of what can be observed in experiments. Additionally, we discussed

charge imaging using PDLC‘s that were found to be unsuccessful. Previous work has

been done using charged printer toners [28] to denote the locations of positive and

negative electric charge on balloons. Also, there have existed a number of different

voltage sensitive chemicals [85, 86] which may allow for charge imaging. In Chapter 3,

we mentioned that further work could be done in considering charge transfer between

particles within our simulations. In Chapter 4, we discussed that further work should

be done in considering high speed velocities of incoming dust which may cause fracture

and rearrangement on asteroid surfaces.

We conclude by emphasizing the importance of each one these non-linear phenom-

ena. Not only do the phenomena touch upon a broad range of topics including astro-

physics, geophysics, engineering and meteorology, by understanding non-linear granular

effects, we deepen our knowledge on industrial granular effects such as dust jamming

and granular segregation. We also better understand how dust and sand particles are

possibly able to build up electrical charge.
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Appendix A

Polymer Disperse Liquid Crystal (PDLC)

A.1 PDLC Fabrication Methods

A.1.1 Solvent Induced Phase Separation PDLC

Nematic liquid crystal E7 was mixed with PMMA and dissolved in methylene chloride

with a 3 to 1 to 10 ratio [87]. The solution was mixed for an hour with a stir rod

rotating at 400 rpm. After stirring, the solution is deposited onto a conducting indium

tin oxide covered glass with spacers of a thickness of about 20 to 50 microns. The

methylene chloride solvent was allowed to evaporate off and once it did, the remaining

contents was heated up to 100 degrees Celsius and allowed to melt. A top layer (either

another ITO glass or 25 um thick Kapton film) was then placed on top of the PDLC and

pressed down to remove any air bubbles. The sample was ready once it has hardened

Polymer Induced Phase Separation PDLC

Nematic Liquid crystal was mixed with a monomer (Norland Optical Adhesive 65)

with a 4 to 1 ratio using a stir rod rotating at 400 rpm [87]. The mixture was then

deposited into an ITO/ITO sandwich, ITO/Kapton film sandwich or an ITO/saran

wrap sandwich via capillary action. For spacers, we used single or double layers of

saran wrap, which is known to have a thickness of 12 um, or we used 25 um thick

Kapton film. The mixture was then polymerized with a black light with long wave

ultraviolet wavelengths (320-400nm).
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Charge Imaging

Static charge was deposited on the dielectric using a few different objects. Following

from Putterman‘s paper [35], a graphite tip was rubbed on the dielectric film to deposit

positive charge. Negative charge was deposited on the dielectric film using an acrylic

rod rubbed with faux fur or a latex balloon rubbed on one‘s hair. A bias voltage was

then applied to the ITO glass layer to create an electric field.

In order to create a changing external electric field, a grounded spinning blade was

fabricated by covering the blades of a handheld fan with aluminum foil. A wire held at

ground was then touched to the axle of the fan. The fan was hovered above the PDLC

sample with a distance of 1 mm or less.
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Appendix B

Chapter 3 Supplementary Videos

Note that titles in video may show alternate numbering

• Supplementary Video 1- http://www.edge-cdn.net/video_886375?playerskin=

37016

• Supplementary Video 2- http://www.edge-cdn.net/video_886373?playerskin=

37016

• Supplementary Video 3- http://www.edge-cdn.net/video_886377?playerskin=

37016

• Supplementary Video 4- http://www.edge-cdn.net/video_804751?playerskin=

37016

• Supplementary Video 5- http://www.edge-cdn.net/video_804755?playerskin=

37016

• Supplementary Video 6- http://www.edge-cdn.net/video_886389?playerskin=

37016

• Supplementary Video 7- http://www.edge-cdn.net/video_804753?playerskin=

37016
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Appendix C

Chapter 4 Supplementary Materials

C.1 Supplementary Videos

• Sprinkling of beads from Fig. 4.1(d). Notice that beads rebound from ceramic

plate, leaving no residue.

https://drive.google.com/open?id=0B2sr0ZnGmkCSc3JqU3JkclR4Ym8

• Pouring of beads from Fig. 4.1(e). Notice that beads collide with one another,

leaving a mound on the plate.

https://drive.google.com/open?id=0B2sr0ZnGmkCSMDV2QjhmRjUwaWM

• Sprinkling of beads from Fig. 4.1(f). Notice that beads collide with pre-existing

beads, leading to a growing mound.

https://drive.google.com/open?id=0B2sr0ZnGmkCSZGRzZ0xvYlEyLXc

• Simulations of pebble trajectories. Notice that pebbles colliding with pebbles

do not travel far, while pebbles colliding with stones rebound greater distances.

https://drive.google.com/open?id=0B2sr0ZnGmkCSRzFZQUV4YTlOdVE
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C.2 Uniformity of Bead Deposition

We evaluate the spatial distribution of deposited beads as follows. We sprinkle grains

onto a substrate that is divided by a plastic grid into 1.5cm × 1.5cm boxes. The

substrate is wooden and is covered by a black cloth to limit bouncing and aid image

analysis, and the grid effectively prevents beads from bouncing from one grid location

to another. The sprinkling is performed by tapping a sieve periodically as described

in the text. The sieve distributes grains onto an area of about 15cm × 15cm, so we

construct a frame above the substrate and we stretch strings on the frame to subdivide

it into regions of this size. We then center the sieve and sprinkle beads above each

region in turn.

For the experiment in this supplement, we choose the regions sequentially, left to

right, then front to back, and we change regions after 1 tap to the sieve. We evaluate

uniformity after cycling through each of the 6 regions three times. In the experiments

shown in Fig. 4.2, we remove any potential temporal bias by labeling regions in sequence

and then choosing which region to sprinkle onto next with a random number generator.

In detail, the generator randomly permutes integers up to the number of regions, N, so

that every region is chosen once per N sprinkling cycles, and when N cycles have been

completed, we recalculate a new random permutation so as to vary the placement of

the sieve in an unbiased fashion.

Here we test uniformity by sprinkling each of 6 square regions on a 30cm × 45cm

substrate. We then remove the plastic grid and photograph the deposited grains, and

we perform the following image steps. First, we correct for camera perspective (using

the “unskew” function in GraphicConverter software): this produces the figure shown

in the inset of Fig. C.1. Second, we increase the contrast so that the background is

entirely black and the beads are entirely white. Third, we divide the image into boxes of

the same size and location as the original grid, and measure the size of a grain (15 pixels

diameter). We then divide the white area in each box by the grain area to estimate the

number of beads per box.

We plot a histogram of the resulting distribution of beads per box in Fig. C.1(a),
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Figure C.1: Bead Deposition Graphs.
(a) Frequency distribution within grid boxes. Inset: Beads sprinkled onto substrate
subdivided into grids (see Appendix text); Main plot: histogram of number of beads

per grid box, superimposed by Gaussian. (b) 2D autocorrelation of particle
concentrations between boxes. Main plot: side view; inset: isometric view

and overlay this distribution with a Gaussian. To determine whether the distribution

is normally distributed, we use the Shapiro-Wilk test for normality, which produces a

p-value of 0.7 using significance α = 0.05 (p >> α imples that the distribution is highly

likely to be Gaussian).

We also perform a 2D auto-correlation to evaluate spatial variations in bead con-

centrations, and we plot the result in Fig. C.1(b). As indicated by the dashed line, the

auto-correlation drops off linearly with distance from the origin with slope 7.4 ·107. The

linearity of the auto-correlation means that boxes are strongly correlated with them-

selves; the slope means that correlations diminish by nearly a factor of 108 from one

grid box to its neighbor.

Based on the Shapiro-Wilk and correlation tests, we conclude that particles are
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highly likely to be distributed within each box according to a Gaussian, and the corre-

lation from box to box is extremely small.
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C.3 Computational Boulder Shape

Two views of computational “boulders” consisting of an ellipsoid of 2278 pebbles with

two sides flattened as described in text.

Figure C.2: Shape of computational boulders.
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Appendix D

Upstream Contamination by Floating Particles

D.1 Upstream Contamination

When water is poured into a teacup, it seems self-evident that material in the cup will

not make its way upstream into the teapot. Similarly, when chemicals are pipetted onto

a culture plate, it is taken for granted that cells from the plate will not contaminate

the chemical source. In this chapter, we demonstrate that contrary to expectation,

floating particles can contaminate upstream reservoirs by travelling in rapid jets at

accelerations substantially larger than the gravitational downstream acceleration. This

counterintuitive phenomenon was first observed during the preparation of mate tea,

when hot water was poured from a pot into a cup containing tea leaves: it was found

that when the spout was within 1cm above the leaves, floating leaves would find their

way from the cup into the pot (see figure D.4).

To study the phenomenon under controlled conditions, we first perform the experi-

ment illustrated in figure D.1(a), where water flows from an upstream reservoir down an

inclined channel, off a waterfall and into a receiving vessel. Floating particles of mate

tea (Ilex paraguariensis), chalk and other powders in the receiving vessel are observed

to travel up the waterfall and through the channel to end up in the upstream reservoir,

as shown in figure D.1(b) (see also section D.2, video S1). The downstream water flux

has been varied up to 16cm3s−1 along an 8cm long channel inclined at a slight angle.

Experiments using inclined (figure D.1(b)) and horizontal (figure D.1(d)) channels both

generate upstream contamination; effects of channel angle are discussed shortly. The

snapshots shown in figure D.1 use deionized water, but experiments using tap water

yield indistinguishable results; similarly, the upstream flow of floating particles persists

in experiments using either boiling or cold water, and tests using fluorescein powder
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also exhibit upstream contamination.

Figure D.1: Upstream Contamination Experiment
(a) Schematic showing an upstream tank containing deionized water and a

downstream tank containing the same water sprinkled with floating particles. Levels
of each container are independently controlled by inlet and outlet plumbing (not

shown). (b) Superposition of 30 consecutive video frames (see section D.2, video S1)
in a channel inclined about 20 degrees to the horizontal. Chalk on the right half of the

channel flow is illuminated; chalk on the left half is present, but is in shadow. As
indicated by arrows, particles travel up the back of the waterfall and the sides of the

channel, and down the centre of the channel and the front of the waterfall. (c)
Enlargement showing circulating particles in the channel, including one particle
furthest to the right that leaves the picture frame at about 7cms−1. (d) PTV of

floating mate tea particles across a horizontal channel near the top of the channel at a
net flow of 16± 2cm3s−1. (e) Snapshot of waterfall. (f) Enlargement of rapidly

recirculating chalk particles, with upflow at back of waterfall and downflow at its
front indicated by arrows.

The flows of particles in the waterfall and channel regions are indicated by arrows

in figure D.1(b) and consist of vortices that transport particles upward from the back

of the waterfall to the outside of the channel, and then back downwards through the

centre of the channel and the front of the waterfall. We dissect the flows in greater

detail later.

Upstream flow begins near the waterfall, shown in the snapshot of figure D.1(e)

and enlarged in figure D.1(f). From these panels, we see that a pair of particle-rich
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circulatory vortices form, one on either side of the waterfall (see also section D.2, video

S1). Floating particles travel at speeds ranging between 1 and 7cms−1, as determined

by measuring the lengths of streaklines at a known shutter speed (here, 1/60s).

Only a fraction of the particles in the recirculating waterfall flow become entrained

into the channel region (figure D.1(b,c)), and consequently in this region we see much

lower particle densities. For this reason, figure D.1(e) contains a single snapshot,

whereas figure D.1(b) requires 30 successive video frames to show a similar number

of particles. As indicated by arrows in figure D.1(c), particles in the channel travel

upstream near the flow boundaries, and most particles ultimately change direction and

travel down the centre of the stream. Particles here travel at speeds between 4 and

7cms−1, measured as before.

We have also quantified velocities using particle tracking velocimetry (PTV). Typi-

cal results are shown in figure D.1(d) from an experiment using a horizontal channel. To

perform PTV, we use a horizontal channel because this generates slower downstream

flow than inclined channels, and this slower speed results in longer and steadier up-

stream flows, which in turn produce low noise velocimetry data. Flow in a horizontal

channel is produced by maintaining a slight head between the upstream and down-

stream reservoirs. Particle tracking of video images is performed using ImageJ software

with the MTrack2 plug-in. Particle tracking confirms the visual appearance that par-

ticulate flow is predominantly parallel to the channel walls, upstream in high-speed jets

near the channel edges and downstream through the channel centre.

To analyse possible mechanisms underlying the unexpected upstream flows that

we report, we begin by noting that it is well established that surface tension depends

strongly on the concentration of floating contaminants [88–92]. We therefore hypoth-

esize that the higher surface tension in the clean, upper, reservoir may draw particles

from the contaminated, lower, reservoir [93] against the downstream flow. Indeed, it

has previously been reported that amphiphilic surfactants in a receiving reservoir can

be drawn up waterfalls to a height of 2cm through surface tension gradients based on

a similar mechanism [94]. Consequently, we measured the surface tension of water as a

function of density of floating chalk and mate tea particles (figure D.2(a)). The chalk
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particles were prepared by rubbing a stick of chalk on rough sandpaper, whereas the

tea was obtained directly from commercial yerba mate leaves passed through a no. 25

(0.7mm) sieve. The chalk or mate was dropped from a small distance onto clean tap

water and allowed to equilibrate, after which the surface tension was measured using

the du Noüy ring method [95]. As shown in figure D.2(a), the surface tension of water

decreases by nearly a factor of 2 with added chalk, and by a factor of 3 with tea. We

note that the upstream contamination effect appears for both soluble and insoluble sur-

factants. For example, the principal ingredient in chalk, calcium carbonate, is nearly

insoluble in water (solubility 0.01gl−1 at room temperature), while we have also verified

that pure fluorescein and sodium dodecyl sulfate (SDS) surfactant powder exhibit up-

stream contamination, with solubilities ranging from weakly to highly soluble (0.8gl−1

for fluorescein to 250gl−1 for SDS).
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Figure D.2: Proposed mechanism for upstream contamination.
(a) Decrease in surface tension of tap water with increase in concentration of two

surface contaminants studied here. (b) Cartoon illustrating reduced surface tension
due to Gaussian concentrations surrounding two nearby particles. Tension is strongly

reduced by a nearby particle, p1, and is more weakly reduced by a more distant
particle, p3; see text. (c) Simulated flow field of particles on a two-dimensional elastic
surface subjected to competition between downstream advection and a surface tension

gradient due to neighbours, as described in the text. Particle flow is shown by
superimposing multiple instantaneous snapshots, and flow directions are indicated by
arrows as in figure D.1(d). (d) Comparison between experimental and computational

maximum upstream contamination distances of particles initially located in the
downstream reservoir. Inset shows floating chalk particle surrounded by a diffuse halo

of finer powder; the scale bar is approximate. (e) Simulated particle motion in a
channel region for a shallow inclination; flow beneath this region is similar to (c).

Calculated inclinations (see section D.5 for derivation) for (c) and (e) are identified in
the plot of (d).

We can easily estimate the order of magnitude effect of such a change in surface

tension on a floating particle, as follows. A particle of radius r on the surface of the

receiving reservoir that is ideally exposed to clean water from the waterfall on one

side and a fixed concentration of solids on its opposite side will feel a surface tension

difference ∆T , which from figure D.2(b) is on the order of 0.01Nm−1. The resulting

acceleration of the particle will be ∆T · L/m, where L is the characteristic length of a

particle, and m is its mass. Taking L = 2r and m = 4πρr3/3, where ρ is the particle
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density, gives an acceleration, a = 10×2×3/4πρr2 ∼ 5/(ρr2). A conservative estimate

for a can be obtained by considering a chalk particle with bulk density ρ = 2.5gcm−3

and radius r ∼ 100m: this gives an acceleration a ∼ 20000cms−2, or about 20 times

gravity. This estimate should be viewed as an upper bound: most particles will likely

feel a milder concentration gradient than this approximation suggests. Furthermore, it

remains to be established how small the particle concentration needs to be to generate

upstream contamination; however, this estimate illustrates that surface tension gradi-

ents produced by flowing clean into particulate-contaminated water can provide ample

accelerations to drive particles upstream much faster than gravity. This is in keeping

with more detailed calculations [94], as well as with experimental data demonstrating

that fine particles disperse explosively when dropped onto a clean water surface [90].

We challenge the hypothesis that upstream contamination is driven by surface ten-

sion gradients by introducing a small amount of liquid surfactant, benzalkonium chlo-

ride, to the upper or lower reservoir. As expected, when surfactant is added to the

upper reservoir, upstream contamination is abruptly eliminated, while adding surfac-

tant to the lower reservoir causes a transient expansion of the surface layer that initiates

upstream contamination if it has not yet begun, or accelerates contamination if it is

already present.

To more systematically evaluate whether surface tension gradients account for the

observations, we have constructed a simulation of multiple point particles on a two-

dimensional domain, where each particle is subject to a competition between two influ-

ences: surface elasticity drawing particles upstream, and ambient fluid flow entraining

particles downstream. Details are presented in the supplementary material in later

parts of this chapter; in overview, elasticity and ambient fluid flow that drive particle

motion are defined as follows.

The elasticity acting on a floating particle is taken to depend on the concentration

gradient of contaminants that is produced by neighbouring floating particles. Heuristi-

cally, we model each particle as being surrounded by a halo of molecules that diminish

the local surface tension between that particle and any neighbour. For example, in the

inset to figure D.2(d), we confirm that a halo of fine particulates appears shortly (under
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1s) after a single particle of chalk is dropped into clean water; some powders may well

also contain chemical surfactants (e.g. stearic acid [96] in mate tea).

A cartoon illustrating how this heuristic is used to compute tensile forces in our

simulation is shown in figure D.2(b) in the simplest case of three particles in a line,

with particle p1 closer to the central particle than particle p3. We make use of the

fact that the molecular concentration surrounding a spherical source particle is ana-

lytically known [97] to be a Gaussian function of radius with prescribed variance, σ2g ,

and amplitude, Ag, so if we assume that all particles are identical spheres and that all

Gaussians are defined at the same instant in time, we can solve for the concentration

everywhere. In figure D.2(b), the contaminant concentration at the central particle,

p2, due to the Gaussian surrounding p1 would be larger than the concentration due to

the more distant p3, and consequently the elastic tension due to p1 would be smaller

than that due to p3-resulting in a net elastic force on p2 towards p3. For simplicity, we

take the surface tension to decrease linearly with concentration, and since the diffusion

equation itself is linear, all concentrations-and so tensile forces-at any point are simple

linear superpositions of values due to all other particles. Thus, we determine the ten-

sile force on any given particle by evaluating the concentrations at that location due

to the analytically defined diffuse halo of concentrations surrounding all neighbouring

particles.

The ambient fluid velocity is calculated independently, using separate calculations

in the channel and in the waterfall regions. In the channel region, surface flow is

bounded at the sides, and since the shallow water Reynolds number [98] is under about

8 (see section D.5), we take the velocity at the surface in that region to be defined by

laminar two-dimensional Poiseuille flow with maximum speed, Vmax, at the centre of

the channel. In the waterfall region, flow is azimuthally periodic, and so the velocity

is readily expressed as a Fourier series. We approximate the flow in the waterfall to be

the leading order term in this series, a single cosine, fastest in the front of the waterfall

where the surface is free and slowest in its back, where the surface is initially retarded by

contact with the channel. We close the problem by noting that the waterfall is fed from

the channel, so that if we conserve surface area, the surface flow rate integrated across
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the channel will equal the flow rate integrated around the circumference of the waterfall.

This sets the amplitude of the cosinusoidal waterfall flow to be expressible in terms of

Vmax, thus reducing the number of parameters to three kinetic terms, Vmax, Ag and σ2g ,

several purely geometric terms (e.g. the widths and lengths of the channel and waterfall)

and the number of particles in the simulation. Finally, we define boundary conditions

by assuming that particles that impinge on the channel sides reflect specularly, whereas

particles travel freely around the azimuthally periodic waterfall. Effects of parameter

variations are discussed below; for further discussion, see section D.5l.

Given a choice of parameters, we calculate trajectories of particles on the surface by

applying the elastic force to every particle, taken to have unit mass, and then requiring

each particle to follow the ambient fluid velocity. To mimic experimental conditions,

particles start in a 1 × 1 unit reservoir at the bottom of the computational domain,

i.e. at y < 0, and particles move on a domain x ∈ [−1, 1] and y ∈ [−1,∞] , thereafter.

To add verisimilitude, the waterfall region is defined to be narrower than the channel

region (again defined in the section D.5), as shown in figure D.2(c), although separate

computational trials show that geometric details such as this have little effect on the

upstream contamination. Likewise, the simulations shown here use 500 particles, but

we obtain similar results using between 100 and 1500 particles, with more particles

crowding to move upstream as the number of total particles is increased.

More detailed embellishments to this model are certainly possible, for example, ac-

counting for time variations in contaminant concentration surrounding each particle, or

including inertial corrections. Despite its simplicity, the model captures both quantita-

tive and qualitative features seen in experiments. Qualitatively, the model reproduces

both the rapid vortical motion circulating particles between the front and back of the

waterfall seen in experiments, and the upstream flow that entrains a fraction of these

circulating particles to flow upstream along the edges of the channel and downstream

near its centre (see section D.2 video S2). These features are shown in figure D.2(c) at

high Vmax, and figure D.2(e) at smaller Vmax.

Quantitatively, we can compare simulation and experiment by observing that Vmax

grows in the experiment with the angle of inclination of the channel-that is, water flows
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faster on steeper surfaces. Thus in figure D.2(d), we show a comparison between the

maximum distance that particles travel up the channel as a function of angle of incli-

nation of the channel (the relation between Vmax and angle is derived in section D.5).

Evidently, experiment and simulation show comparable increases in upstream contam-

ination as the channel angle is decreased. Mechanistically, we note that upstream flow

in both simulations and experiments appears where the downstream flow is slowest-at

the back of the waterfall and along the sides of the channel.

Finally, we also tested the upstream contamination effect at both smaller and larger

scales. At smaller scales, surface tension effects typically grow as scales diminish [99],

so it can be anticipated that upstream contamination may increasingly be encountered

in smaller scale applications [100]-e.g. cell culture [101] or free-surface microfluidics

[102]. Indeed, it has long been known that bacteria actively manipulate surface tension

gradients to control migration and swarming [103]. To assess upstream contamination

in an archetypal bioengineering device, we pipetted deionized water into a Petri dish

containing water on which fluorescein powder was sprinkled. In six out of 10 trials

at pipette angles of 20 ± 5 degrees to the horizontal, heights between 3 and 5mm,

and flow rates of 0.7± 0.1mls−1, significant contamination inside the pipette was seen

(shown in figure D.5 of section D.4 and video S3 of section D.2), and in seven out

of 10 additional trials, contamination was seen either inside or outside of the pipette.

Importantly, in both experiments and simulations, upstream contamination appears to

rely on a differential in ambient fluid speed, and correspondingly, upstream flow was

not encountered in our experiments if the pipette was held vertically. Nevertheless,

we caution that we cannot rule out the possibility that upstream contamination could

occur in uniform flows-especially at small scales.

At larger scales, we have performed two sets of tests. First, to study the effects

of scale on flow up waterfalls, we repeated the experiments shown in figure D.1 using

square channels of widths 3, 5 and 10cm. We confirmed that chalk powder continues to

climb small waterfalls (heights less than 1cm) in all of these channels. Second, to study

upstream flow in channels, we used a 4.5m long, 30cm wide, flume (described in [104])

filled with tap water, and found that contamination against a steady downstream flow
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occurs over this scale as well. In figure D.3(a), we show a schematic of the flume.

We found that inclining the chute bottom very slightly uphill produces a reproducibly

steady and uniform flow, so that for all experiments described here, the flume was set

at 1 degree uphill to the horizontal. For the experiments shown in figure D.3, this

produced a water depth at the downstream end of the flume of 3cm and a depth at

the upstream end of 5cm. In these experiments, we measured the downstream surface

velocity to be 3.6 ± 0.1cms−1 by timing how long individual small polystyrene beads

dropped in the centre of the flow take to travel the length of the flume.
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Figure D.3: Upstream contamination in 4.5m long, 30cm wide, flume.
(a) Schematic of upstream and downstream portions of flume. Water is recirculated at

a controlled rate (pump and plumbing not shown) from the downstream receiving
tank to the upstream holding tank. Flow is laminarized using the honeycomb tubing
indicated, and depth is controlled using the gate upstream and the weir downstream.
Chalk powder is metered continuously near the downstream end, and powder flow is
recorded with a video camera from above (see section D.2, video S4). (b) Snapshot

taken about 30s into experiment, with competing downstream fluid flow at the centre
of the flume and the upstream powder flow along channel sides identified in by

straight arrows. This competition produces the powder raft shown and circulatory
flow, indicated by curved arrows. Asterisks indicate the highest upstream points on
the raft discussed in the text. (c) Leading edges of powder at 5s intervals during the
first minute of the experiment. Edge locations are quantitatively approximate due to
parallax and limited contrast, but are qualitatively veridical, as shown by the white

dotted edge in (b). Circulatory regions identified in dark colouring contain no powder
and are formed after pinch-off of elongated fingers at locations indicated by black

arrowheads.

In this larger system, we metered chalk powder continuously from above at a fixed

location near the downstream end of the flume (indicated in figure D.3(a,c)), and we

recorded the powder flow from above with a video camera (see section D.2, video S4).

We did not investigate climbing of a waterfall in the flume because this would have

required a large quantity of powder that could foul the recirculation pump. Instead,

we used the flume to focus on contamination in a larger scale channel as might occur

upstream of a continuous waste discharge into a stream.
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As in the smaller channel experiments shown in figure D.1, we find that upstream

contamination is fastest along the edges of the channel and competes against down-

stream ambient flow in the centre of the channel to produce recirculation near the

channel edges. Unlike the earlier experiments, the powder forms a contiguous raft that

travels upstream across the width of the flume. The competing flows and the powder

raft are indicated in figure D.3(b) in a snapshot taken 30s after the start of an exper-

iment. Recirculation produces tendrils of entrained powder-free fluid as seen near the

bottom of this figure.

The same can be seen in time-lapse images: in figure D.3(c), we show the leading

edge of a raft as it travels upstream, traced from video images at 5s intervals. Tendrils in

the raft appear here as well: these tendrils break off at times 0.30 and 0.35 (arrowheads

in figure D.3(c)) to form recirculating powder-free islands that are highlighted in dark

shading at later times. These islands continue to recirculate-and the raft continues to

move upstream-as long as powder is metered downstream. When metering is halted,

recirculation stops and the raft convects downstream into the holding tank.

Edges in figure D.3 are traced by hand. Gradient and Sobel edge-finding algorithms

were also investigated, but were found to be ineffective due to the intrinsic low contrast

of the powder-water interface, as well as being dominated by spurious edges caused by

reflections and flume support members. A typical tracing is shown as a dotted line in

figure D.3(b), and comparison with the video record can be made from section D.2,

video S4.

We also varied the fluid flow speed by increasing the head in the upstream tank,

with the goal of establishing the maximum speed, Vmax that could be defeated by

upstream contamination. However, we found that Vmax depends on the rate of metering

of powder, Qpowder: by increasing Qpowder, we could drive the raft of powder upstream

at increasing downstream speeds-at least up to 30cms−1, beyond which a prohibitive

amount of powder was needed to sustain upstream contamination. Additionally, we

investigated fixing Qpowder, but in that case, we found that as Vmax was increased, the

raft would approach a limiting upstream distance, Dmax and stop, and as the flow speed

was increased, Dmax would decrease, and vice versa. Thus, for continuous deposition
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of powder,Vmax depends both on Qpowder and on Dmax.

Therefore, to produce a unique measure of a threshold fluid speed that would out-

compete upstream contamination, we metered a fixed quantity of powder (5.5g released

over 3.5s) and evaluated the maximum speed,Vmax at which the highest upstream points

of the raft (asterisks in figure 3b) passed upstream of the deposit location. We found

this criterion to be reproducible, yielding a maximum speed Vmax ∼ 24cms−1 measured

at the centre of the channel.

In conclusion, we have demonstrated that floating particles can travel upstream as

much as 1cm up a waterfall and several metres up a channel against a downstream fluid

flow. We have seen that this effect occurs for both pure ingredients (e.g. fluorescein in

deionized water) and more common materials (e.g. tea in tap water). We have shown

that upstream flow of contaminant particles can be generated by surface tension gra-

dients that are established by the downstream flow of clean water into a contaminated

reservoir, and we have seen upstream contamination in both small (millimetre scale)

and large (metre scale) experiments.
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D.2 Supplementary Videos

• Video S1 - flow of floating chalk particles (white) up waterfall and inclined channel.

http://coewww.rutgers.edu/~shinbrot/temp/VideoS1.mov

• Video S2 - simulated flow of floating point particles. http://coewww.rutgers.

edu/~shinbrot/temp/VideoS2.mov

• Video S3- upstream contamination into pipette. http://coewww.rutgers.edu/

~shinbrot/temp/VideoS3.mov

• Video S4 upstream contamination in flume. http://coewww.rutgers.edu/

~shinbrot/temp/VideoS4.mov
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D.3 Tea Leaves flowing upstream into pot of initially clear water

Figure D.4: Upstream contamination of Mate Tea.
Preparation of mate tea, showing tea leaves climbing up waterfall into pot of water.

Enlargement to right shows tea leaves that have made their way from the cup into the
pot, up a waterfall about 1 cm in height
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D.4 Clear water being pipetted into reservoir of water containing flu-

orescent particles.

In multiple trials of the experiment shown in Fig. D.5, a plastic pipette was flushed

with deionized water and dried with compressed air. The pipette was then filled with

11 ml of deionized water using a Thermo Scientific Matrix pipettor. 10 ml of this

water was then discharged using the pipettor, with the pipette held between 2 and 5

mm above the water surface of a Petri dish, onto which powdered fluorescein had been

sprinkled. The pipette was held at an angle measured to be 20±5 degrees, and was never

permitted to become submerged into the receiving water. All trials were videotaped,

and any trial in which the pipette tip was observed to become submerged was discarded

from consideration. Angle and height measurements were obtained by analyzing video

footage (cf. Video S3) with ImageJ software. The rate of discharge from the pipette

was measured to be 0.7±0.1ml/s in a separate evaluation. After each trial, the exterior

of the pipette tip was wiped with a clean paper towel to remove surface liquid, and the

pipette was exposed to UV light and photographed. 10 ml was then drained from the

Petri dish using a separate pipette, and the procedure was repeated.
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Figure D.5: Upstream Contamination in pippetted water
Pipetting of deionized water into Petri dish containing fluorescein illumined with UV
light. Pipette is initially washed in deionized water, dried with compressed air and

confirmed to be free of fluorescence. Upper panel shows water stream during pipetting
of with an electric pipettor. The discharge rate is measured to be 0.7± 0.1 ml/sec,
and the pipettor is initially filled with 11 ml, of which 10 ml was discharged. Lower

panel shows pipette tip after pipetting tip has been wiped with clean towel to remove
any external contamination, so the illuminated fluid is inside the pipette tip,

indicating that it was not transferred by splashing or the “teapot effect” evident in
the upper panel.
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D.5 Computational Simulations

As described in the text, a number of particles are tracked on a 2D domain and subjected

to simulated elastic forces and an entraining fluid velocity. In detail, these two influences

are defined as follows.

The elastic response of particles on the water surface is defined by specifying a

Gaussian concentration field surrounding each particle. To find the concentration at

the location, ~ri , of particular particle, I, due to a second particle, j, at another location,

~rj , we compute:

Cij = Age
(
−r2ij
σ2g

)
(D.1)

where the parameter values used in this paper are Ag = 9 and σg = 1/
√

150 . These

values were chosen because they produce flows similar to those seen in experiments;

tests using different values ranging over at least an order of magnitude for each param-

eter were also performed, yielding the following results. Moreover, tests using other

decreasing functions, including 1/r and erfc(r) produce qualitatively similar behaviors.

As Ag is increased (decreased) particles effectively repel one another more strongly

(weakly), and as σg is increased (decreased), the distance over which particles interact

is increased (decreased). The qualitative flow (up the back of the waterfall and sides of

the channel, down the center) is unchanged by these variations.

As described in the text, given a concentration Cij , the elastic force in the direction

on the i-th due to the j-th particle is assumed to be reduced proportionally to Cij ,

and we take the proportionality constant to be unity. We make use of the fact that a

reduction in attractive force on an elastic surface is indistinguishable from an increase

in repulsive force: this permits us to simply treat pairs of particles on the surface as

repelling with force, ~Cij , of magnitude Cij and direction along the vector connecting

the two particles. We assume superposition, again as mentioned in the text, so the

vector sum of all forces acting on each particle produces a net force that we iterate

forward by a timestep ∆t = 0.1 using simple Euler integration. Assuming that each

particle has unit mass, we obtain:
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~ri(t+ ∆t) = ~ri(t) + ∆t · ~vi(t) +
∆t2

2

∑
i 6=j

~Cij (D.2)

~vi(t+ ∆t) = γ~vi(t) + ∆t
∑
i 6=j

~Cij (D.3)

where ~ri(t) and ~vi(t) are respectively the position and velocity of the i-th particle

at time t. The constant is included to account for viscous losses: for γ = 1, particles

would be fully inertial; for γ = 0, particles would act in the Stokes regime with no iner-

tia. We use γ = 1/2 in the simulations shown; trials using smaller γ behave essentially

identically, while for larger γ the simulations become increasingly computationally un-

stable, and smaller ∆t values are required to produce smooth particle motions. The

boundaries in the channel region (described next) are taken to be specular, so that par-

ticles that stray outside of the allowed domain, −L/2 < x < L/2, due to elasticity or

noise (discussed shortly), are reflected back into the domain by reversing their velocity

component normal to the channel boundary.

Every timestep, we evolve all particles forward using Eqn’s. [D.2,D.3], after which

we take them to be advected passively by the ambient fluid velocity. This we define as

follows. In the channel region, we assume that particles follow a fluid flow downstream

with a velocity that is defined by the Poiseuille relation,

~Vchannel = V1max[1− (2x/L)2]ŷ (D.4)

where V1max and L are constants defining the centerline speed and the channel

width, x is the spanwise coordinate, and y is the streamwise unit vector. The use of the

laminar Poiseuille relation is justified by a calculation of the shallow water Reynolds

number [98]

Reshallow = (
depth

width
)2
V · L
υ

(D.5)

which is Reshallow ∼ 8 for our system, using depth = 0.2cm, width = 2cm, V =

4cm/s, L = 2cm, and υ = 0.01P .
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The channel flow feeds the waterfall, and in that region, boundary conditions are

periodic in the x-direction: we take x = r · φ, where r is the radius of the waterfall,

taken to be r ≡ 1/2π, and φ is the azimuthal angle. Flow in the y-direction is not

known in closed form, but flow toward the back of the waterfall is slowed by contact

with the channel bottom, while flow toward the front is unconstrained, so as described

in the text to lowest order the flow must depend on:

~Vwaterfall = V2max[
1 + cos(2πx/C)

2
]ŷ (D.6)

where C is the circumference of the waterfall which we take to be constant, and

V2max is defined to conserve mass, so that the velocities integrated over the widths in

the channel and waterfall regions are identical: this defines V2max in terms of C, L, and

V1max. Conservation of mass at the surface is not strictly required, but is plausible and

reduces the number of free parameters in the problem. The last thing to be prescribed

is the circumference, C, which we observe from experiments to be close to L/2 (cf. Fig.

D.1(b)), so to close the problem, we take L=1 and C = L/2, and for simplicity we define

the boundaries to change smoothly, as shown in Fig. D.2(c), from the channel to the

waterfall regions using the form, Width = [3 − tanh(4y)]L/4 . A last addition to the

time evolution is that we include noise by adding random white noise with maximum

amplitude ±0.01 to both Vx and Vy once per timestep.

Finally, in order to correlate the dimensionless model (where fluid flow speed de-

pends on Vmax expressed in channel widths per 10 timesteps) with the dimensional

experiment (where the fluid speed in centimeters/sec. is determined by the inclination

angle, θ, of the channel), we perform dimensional analysis guided by the Buckingham

π theorem [105]. Surface tension is defined as force per unit length, so we consider a

unit length, λ, of fluid at the center of the channel, with density ρ and viscosity υ that

is accelerated in the downstream direction by Adown = g · sin(θ) where g is gravity. At

steady state, this volume is slowed by an equal acceleration Aup that we assume grows

with Vmax. This problem consists of 5 parameters, λ, ρ, υ, Aup, and Vmax, that are de-

fined in terms of 3 physical quantities, mass, M, length, L and time, T, so Buckingham

π tells us that the problem must depend on 5 3 = 2 dimensionless groups. If Reshallow
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is one group, a second is Cd = Aup · λ/V 2
max = g · λ · sin(θ)/V 2

max, so that:

Vmax ∝
√
g · λ · sin(θ). (D.7)

Thus in Fig. D.2(d), we plot on the abscissa the inclination angle, θ, for experimental

data, alongside θ = sin−1(c · V 2
max) for the simulation data, where c is a dimensional

fitting constant taken to be c = 5. As for the ordinate axis, that is expressed in

centimeters in the experiment, but is again dimensionless in the simulation, and so the

ordinate in the simulation is scaled by a second dimensional fitting constant.


