
TOWARDS AN ERROR DETECTION TEST
FRAMEWORK FOR MOLECULAR DYNAMICS

APPLICATIONS

By

SUVIGYA TRIPATHI

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Professor Shantenu Jha

and approved by

New Brunswick, New Jersey

October, 2016

ABSTRACT OF THE THESIS

Towards an Error Detection Test Framework for Molecular

Dynamics Applications

By SUVIGYA TRIPATHI

Thesis Director:

Professor Shantenu Jha

The reliability of a fully developed software is critical, since it determines a software’s credibility

and user satisfaction in the application. A major challenge in the field of testing is to bridge the

gap between the customer requirements and the actual outcome of the software. There are several

applications in the field of chemical sciences for Molecular Dynamics (MD) simulations. These

applications are chemical engineers’ tools to study the simulations and analyze the results. The

EnsembleMD Toolkit and RepEx are Python-based tools for developing MD applications providing

an abstraction that enables the efficient and dynamic usage of High Performance Computing (HPC).

The EnsembleMD toolkit and RepEx facilitates a simple framework for MD applications, but

they lack the feature of testing their functionality during Software Development Life Cycle (SDLC).

Checking the errors and faults at all stages of the SDLC, namely, development, deployment and

run-time is crucial to ensure the proper functioning of the scientific tools and applications.

Frequent changes in the system configuration of supercomputers impose the necessity of a plat-

form which can provide a sanity check on all the components. To address these requirements, we

ii

have developed a Testing Framework. This framework has three primary design components: (1)

Support of testing the Application Program Interfaces (APIs) of the toolkit during development, (2)

Support for testing of faults during their deployment on supercomputers and (3) Support for logging

the run-time exceptions and errors. This test bench enables the developers of various scientific tools

viz. EnsembleMD, RepEx, Amber, etc. to easily and scalably debug the issues faced by the users.

iii

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to Dr. Shantenu Jha for having

faith in me and giving me the opportunity to work on this thesis. I am very thankful to Dr. Jha

for his encouragement and support through all the years of my grad school. Without his guidance,

it would not have been possible to finish this thesis. I would also like to thank Dr. Jha for the

training, advice and motivation that kept me focused during the course of this thesis which helped

me to overcome both professional and personal challenges.

Besides my advisor, I would like to thank the rest of my thesis committee for their encourage-

ment, insightful comments, and challenging questions.

I would like to thank Vivek, Antons and all members of the RADICAL team for their support

and involvement during the development of this thesis. Without their passionate participation and

input, the thesis could not have been successfully completed. I am also grateful to the ExTASY team

for their continuous feedback and support during the entire course of this thesis. I thank XSEDE

and TACC for providing the required resources. I would also like to thank Rutgers University for

providing me an opportunity to study here and nurture my career and future.

Finally, I must express my very profound gratitude to my parents for providing me with unfail-

ing support and continuous encouragement throughout the process of researching and writing this

thesis. Love to Shubhangini, Gayatri and Ankit for their support. This accomplishment would not

have been possible without them. Thank you!

iv

Dedication

Dedicated to family and friends

v

Table of Contents

Abstract . ii

Acknowledgments . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Motivation . 1

1.2. Objective . 3

1.3. Structure of the Thesis . 3

2. Related Work . 4

3. Background of RADICAL Tools . 7

3.1. About the EnsembleMD Toolkit . 7

3.2. EnsembleMD Toolkit Components . 9

3.3. Patterns in EnsembleMD Toolkit . 11

3.4. RADICAL RepEx Framework . 14

4. Software Testing Framework . 16

4.1. Methods of Testing . 16

4.2. Dynamic Test . 17

vi

4.3. Python Testing Tools . 18

4.4. EnsembleMD and Repex Test Automation Framework Requirements 22

4.5. Types of Error . 24

4.6. Limitations . 24

5. Development-Level Testing . 27

5.1. Introduction . 27

5.2. Unit Testing . 27

5.3. End-to-End Testing . 30

5.4. Exception Testing . 31

6. Deployment and Run-time Testing . 32

6.1. SATLite System Design . 33

6.2. System Architecture . 33

6.3. System Log Collection and Processing . 36

6.4. SATLite Tool Components . 37

6.5. Execution . 39

6.6. Features of SATLite Tool . 41

6.7. Steps to Use SATLite . 42

6.8. Expected Output . 43

7. Continuous Integration . 46

7.1. About Continuous Integration . 46

7.2. Principles of Continuous Integration . 47

7.3. Selecting Continuous Integration Server . 49

7.4. Reasons to Select Jenkins . 49

7.5. Jenkins Integration . 52

7.6. Post Build Actions . 53

vii

8. Conclusion and Future Work . 58

8.1. Conclusion . 58

8.2. Future Work . 59

8.3. Links to Current Work . 60

References . 61

viii

List of Tables

4.1. Basic testing infrastructure requirements . 22

4.2. Types of Error captured by Testing Framework . 25

5.1. Pattern APIs for Unit Testing in EnsembleMD toolkit 29

5.2. Test cases for Unit Testing in RepEx . 30

5.3. Test cases for raising exceptions . 31

6.1. Stampede system specifications . 37

6.2. Exposed SATLite tool APIs . 39

7.1. Features of CI system . 50

7.2. Comparative study of CI servers . 51

7.3. Example of SATLite testing scientific tool . 57

ix

List of Figures

3.1. Architecture of EnsembleMD Tool . 9

3.2. Pipeline Pattern . 12

3.3. Allpairs Pattern . 13

3.4. Replica Exchange Pattern . 13

3.5. Simulation Analysis Loop Pattern . 14

3.6. Schematic representation of REMD simulations [5] 15

4.1. Methods of testing . 17

4.2. Block diagram of Blackbox Testing . 18

4.3. Test Execution Flow . 23

5.1. Unit Testing modules . 28

6.1. SATLite System Design . 34

6.2. SATLite tool architecture . 35

6.3. Failure due to improper module loading . 43

6.4. Example of module error log file . 43

6.5. Execution failed to complete in the estimated time 44

6.6. Successful Execution . 45

7.1. Test Process using Jenkins . 52

7.2. Each test case report . 53

7.3. Example failure report . 54

7.4. Code Coverage: Tabular format . 54

7.5. Code Coverage: Graphical format . 55

x

7.6. Success-Failure trend graph . 56

7.7. Code Format Violations . 56

7.8. Code Format Violation Report . 57

xi

1

Chapter 1

Introduction

1.1 Motivation

As supercomputers and HPC clusters increase in size and complexity, system failures have become

inevitable [7]. These failures have a great impact on the available computing resources. Around

1.53% of the total applications failed during the initial 518 production days of the Blue Waters

supercomputer contributing to 9% of the total production node hours [6]. These failures are reported

not only because of the system errors, but might also occur due to an application or software bug.

A software bug is an error in the programming and coding of an application that might cause

it to malfunction. These bugs often have a major impact on cost, money and time. Software

failures can lead to serious consequences both in safety critical and normal applications. Software

testing is defined as a formal process in which a software unit, several integrated software units,

or an entire package, is examined by running the programs on a computer with various inputs and

expected outputs. It is the primary method for assuring high quality and error free software. All

the associated tests are expected to generate results similar to the results generated during actual

execution. Software testing plays a central role in the quality assurance of any application. In SDLC,

testing is paramount during the development and pre-delivery phases of any software.

A testing framework is essential for error control that can be categorized into error detection and

error handling and correction. Error detection is the most important stage for developing reliable

and highly dependable computing as it deals with the detection of errors generated due to software

defects or hardware failures. The error report generated by the error detection phase can be used

by the developers to handle and rectify the defects. Testing is a continuous cycle of error control

2

mechanisms which operates until the software has negligible defects or the errors lie within the

acceptance criteria. A plethora of applications has been developed to perform MD simulations and

analysis. Many of these applications in the field of molecular sciences use ensemble-based methods

as their basis to make scientific progress. EnsembleMD toolkit is one such toolkit that provides an

abstraction layer for executing various scientific simulations where multiple computational execution

units form a part of an ensemble referred to as tasks.

Traditionally, developers of the EnsembleMD toolkit had to back trace all the logs from super-

computers, logs from RADICAL-Pilot and EnsembleMD to debug any failures or exception issues.

Job submission and execution on remote supercomputers may fail due to various factors, viz. fail-

ure due to bugs in source code, wrong kernel inputs, exception if the connection to database fails,

failed job submission or if the modules and configurations specific to the kernel and supercomputer

are loaded incorrectly. A large number of logs generally lead to multiple drawbacks. The major

drawback is to isolate the error and exception causing components. It is cumbersome to debug

innumerable logs and investigate the failures and faults. The failures and errors in the software

can also be reported by the users using different hardware or compilers. Inefficient testing on all of

the platforms can cause a loss of developers’ precious time and efforts to identify and isolate these

errors [13]. As discussed earlier, detecting errors is crucial in error control mechanism of any test

framework, the aforementioned problem to detect errors in MD applications serves as the motivation

for this thesis. The developers and the users of EnsembleMD toolkit and other scientific toolkits

would benefit largely from this testing framework that encapsulates the following:

• Automate the cumbersome process of debugging and isolating errors and exceptions.

• Support a test bench to ensure the expected functionality of all of the APIs in the toolkit.

• Eliminate manual efforts to check for proper configurations required by supercomputers to

execute different kernels.

• Possess the capability to execute all of the tests automatically whenever functionality of the

toolkit is added or modified.

3

1.2 Objective

The main objective of this thesis is to develop a test framework to enable the validation of open

source tools like the EnsembleMD toolkit and RepEx and to test the proper functioning of all of

the APIs. Furthermore, the aim is also to develop a framework that tests the deployment and run-

time errors which may occur while executing scientific tools on remote supercomputers. Another

objective is to analyze the requirements and develop an automated test bench for the developers

with the following capabilities:

• Enable a test bench to ensure that the development code meets its design requirements.

• Enable remote supercomputer configuration and environment checking at the time of deploy-

ment.

• Enable a framework to detect the run-time faults and errors by mining the logs generated on

the supercomputers at the time of execution of an application.

1.3 Structure of the Thesis

After discussing the motivation and objectives for this thesis in Chapter 1, we will discuss the various

research and related works in Chapter 2 followed by a discussion on the background of the RADICAL

EnsembleMD toolkit and RADICAL RepEx framework in Chapter 3. In Chapter 4, we will explore

the testing infrastructure, its significance and testing framework design for the toolkits. In Chapter

5, we will discuss the development level testing of EnsembleMD and RepEx. Development level

testing includes unit testing and end-to-end testing to ensure a bug-free tool. SATLite, a standalone

testing tool to test deployment and run-time errors will be discussed in Chapter 6. Chapter 7

illustrates the automated testing harness and integration with the Jenkins Continuous Integration

(CI) server in depth along with the testing results. In Chapter 8, we arrive at the conclusion and

discuss the foundations this thesis lays for future work.

4

Chapter 2

Related Work

A large percentage of today’s HPC efficiency and resources are wasted due to various failures. These

failures significantly affect the capacity of HPC clusters. These may occur due to either HPC system

failures or the application level failures. The logs generated by the clusters are abundant and mining

these logs to detect the error is very cumbersome.

Existing research work investigates system diagnostic logs and primarily focuses on detecting the

faults generated with HPC system as a frame of reference. A large number of mining tools have been

developed to study and analyze these logs. Martino et al. [6] studied the impact of system failures

on Blue Waters. Their study emphasized the effect of these failures on the available node hours.

To study and analyze these failures, they have developed LogDiver which is a tool to automate the

system log data processing. LogDiver handles a large amount of textual data extracted from the

system and application level logs and decodes the specific types of events and exit codes. They have

shown that the failing applications contribute to 9% of the total node hours affecting the system

resources. Their study also shows that probability of application failures due to HPC system failures

is just 0.162. The detection of errors and failures at the application level is, therefore, inevitable

and testing the faults with the application as a frame of reference is equally important.

The current ongoing research primarily focuses on providing fault tolerance strategies with an

objective to minimize the fault and failure effects on supercomputer resources. These studies show

how to combat the effect of system failures and predict them to minimize the errors and faults. Chuah

et al. [9] studied the root causes of the failures using system logs of the Ranger supercomputer at the

Texas Advanced Computing Center (TACC). FDig, a diagnostic tool had been developed to extract

the log entries as structured message templates to analyze the faults. FDig detects the frequency

5

of the specific errors by extracting the error template messages from the stored system logs and

supports system administrators in the fault diagnostic processes.

Gainaru et al. [10] extensively exploited the concepts of data mining techniques to determine

system errors from the logs generated by Blue Gene/L machine. According to Papers [6], [8], [9],

[11], console logs are a primary source of information about the condition of a cluster or HPC system.

These error logs help system administrators to analyze the causes of system failures.

A study by Oliner et al. [12] on the system logs from five supercomputers, namely, Blue Gene/L,

Red Storm, Thunderbird, Spirit and Liberty which analyzed failure alerts and actual failure, shows

that a large number of alerts are generated due to hardware issues, but most of the system failures

are due to software issues. A possible explanation for system failure may also be due to software

upgrades. The applications running on these resources might not be compatible with the software

upgrades and hence leading to their failure. Our thesis is also capable of detecting the application

failure due to HPC system upgrades.

All of the novel approaches discussed earlier in this section describes the strategies to anatomize

the system logs and error log files to detect the system errors. These techniques make use of past logs

to predict the plausible causes of failure. There is a window of opportunity for further improvement

in the efficiency of supercomputer resources if we can minimize the errors during application job

submission and faults occurring at the application level. The large sector of computing resources is

used by MD simulations. These applications are responsible for complex simulation and analysis of

various molecular structures. There is always a major cost associated if these MD applications fail.

The scientific simulation workflows such as Amber, CoCo, etc. are the major tools in the field of the

MD domain. These workflows serve as input to various tools such as RADICAL EnsembleMD [23]

and RepEx [24]. With the advancement in these workflows, it is highly possible to have software

bugs. In order to minimize the effect of application failures due to source code bugs, improper

environment loading or transferring incorrect input files, we have developed a testing tool, Simple

Application Testing Lite (SATLite) to detect the application deployment level and run-time errors.

As discussed earlier, SATLite also uses log mining approach to detect faults and exceptions. As

6

discussed in Paper [6], failed applications contribute majorly towards the wastage of supercomputer

resources, SATLite aims at minimizing these failures before distributing the application to the end

user, and thus saving a large number of node hours.

The developers of scientific workflows can directly check for errors while their software is still un-

der development, before releasing it to their user base. The dependency of these scientific simulation

packages on different operating systems and HPC clusters remains undetected unless a full compi-

lation is made, and errors with“make clean” [13] can build successfully on a developer’s machine,

but can fail on user machines. Betz et al. [13] have discussed the effect of application bugs with

respect to Amber development in depth. Since major research in the field of HPC fault-tolerance

system uses logs to predict or combat the failures at the supercomputer end, we make use of these

logs with an aim to detect the application failures both due to supercomputer issues and providing

unit testing results for RADICAL tools.

pyPcazip [28] is a Python-based analysis tool for MD simulation data similar to RADICAL

EnsembleMD and RepEx. pyPcazip has a testing suite that tests all the APIs with different inputs

on different HPC clusters. A similar test framework has been implemented for Mist [29], a C++

library for the MD simulations. The test framework developed for Mist generates a test report for

each testing cycle, providing developers a detailed analysis of all the software bugs and failures.

RADICAL Pilot [25] serves as the basic layer for EnsembleMD toolkit and Repex. RADICAL Pilot

has a fully developed functional test [27] framework to test all of its components and it is able to

capture most of the software bugs. We have designed the testing framework for EnsembleMD toolkit

and RepEx on the similar tracks separating each iteration of tests in different report folders based

on date and time. Also, different parts of the API tests can be invoked independently. The study of

different test frameworks and their implementation provided a background for developing a testing

framework for RADICAL EnsembleMD and RADICAL Pilot. Using the available research, this

thesis accommodates log mining based fault detection approach from MD application’s perspective

and provides unit testing results of RADICAL EnsembleMD and RepEx to aid RADICAL developers

with a motivation to optimize the use of HPC resources.

7

Chapter 3

Background of RADICAL Tools

MD simulation is a key method to study protein structures, gene finding, sequence analysis etc.

These simulations are highly important in the field of drug design and drug discovery to study

active molecules and protein interaction sites [1]. The gene sequence and protein structures are

highly important in the detection of diseases, hence, the analysis of these components is highly

critical and requires high computing. Due to the high complexity of the molecule structure, high

performance and parallel computing provide a substantial improvement in the time taken for various

calculations. The HPC approach helps to minimize the number of target drugs that are required

to be tested by expensive and time-consuming synthesis and laboratory experiments [1]. There are

several tools that provide an interface for the MD simulations. ExTASY tools such as Amber, CoCo,

Gromacs and LSDMap are the scientific tools for MD simulations. RADICAL-EnsembleMD toolkit

(EnMDTK) and RepEx provides an interface for the resource handling and execution of the former

tools on the remote HPC clusters. This chapter deals with the background discussion of the toolkit

whose testing framework has been developed.

3.1 About the EnsembleMD Toolkit

EnsembleMD Toolkit is a Python-based framework for developing, simulating and executing molec-

ular science applications comprising ensembles of simulations. This toolkit is designed to address

the issues of decoupling of tasks, heterogeneity across them and the dependency between them [3],

[23]. This provides a tool for MD applications which efficiently decouples the details of execution

units and manages their submission on the remote machines. It provides an abstraction to the users,

8

hiding the complexity of the mechanism of job submission, execution and data transfer. The Ensem-

bleMD toolkit provides a set of explicit, predefined patterns, that are found in ensemble-based MD

workflows [2], [3], [23]. Users have an advantage of picking up the patterns which represent their

application and populate it with MD engines viz. Amber, Coco, Gromacs or LSDmap, represented

by ‘kernel’ in the tool. Even though traditional tools gave complete control to users to manage MD

applications, the major drawback was that the user was required to have knowledge of load transfer,

job submission or data flow control. Users were required to explicitly undergo these cumbersome

tasks of resource allocation, job submission and execution. In the case of the EnsembleMD toolkit,

this complexity is hidden from the user, hence it provides a simple yet efficient way to execute their

application.

3.1.1 Design of EnsembleMD Toolkit

Ensemble-based applications comprise tasks that may vary in the type of coupling between them or

the amount of information transferred between them. Each of the tasks, with or without coupling,

have different computational requirements [2], [3]. The EnsembleMD toolkit was designed with an

aim to provide a framework for multiple tasks with varying coupling levels on different HPC clusters.

The modular design of the tool serves as a building block to make MD application execution flexible

and scalable.

Figure 3.1 [23] shows the architecture of EnsembleMD toolkit. As depicted in the figure, execution

of any MD application takes place in five steps, namely:

• Pick execution pattern representing the application.

• Define kernel plug-in for various stages of the pattern.

• Resource handler creation and request for resource submission.

• Call Execution plug-in to bind pattern and kernel plug-in and run the job on the remote

resource.

• After successful execution, de-allocate the resources and user gets back the control.

9

Credit: EnsembleMD toolkit architecture document [23]

Figure 3.1: Architecture of EnsembleMD Tool

3.2 EnsembleMD Toolkit Components

As discussed in the above steps, the EnsembleMD tool architecture comprises of four basic compo-

nents showcasing the heterogeneous property of the tool that is described in details in subsequent

subsections.

3.2.1 Execution Patterns

MD application control flow can be categorized into a few repeating types. The EnsembleMD tool

exploits this characteristic to define a high-level object describing the control flow or “what to do”

at different stages. An execution pattern represented by 1 in figure 3.1 describes a parameterized

container which can hold and execute ensembles.

10

3.2.2 Kernel Plugins

A Kernel plug-in represented by 2 in figure 3.1 is an object that performs a computational task in

this toolkit. It represents the instantiating of a specific science tool along with the required software

environment. Kernel hides tool-specific peculiarities across different clusters as well as differences

between the interfaces of the various MD tools to the extent possible.

3.2.3 Resource Handler

The resource handler represented by 3 in figure 3.1 manages the resources for various job submission

and execution on HPC cluster. It provides the following methods:

• Allocate resource

• Run execution pattern on allocated resource

• De-allocate resource

3.2.4 Execution Plug-in

The execution plug-in represented by 4 in figure 3.1 is an internal component of the toolkit managing

the execution of the execution patterns. This layer binds the execution pattern with the kernel plug-

ins, hence, generating the executable units which are forwarded to the underlying run-time system

along with the resource details. This plug-in decouples the execution plug-in into an executable plug-

in enhancing the run-time optimization of various parameters, viz. time to completion, throughput

etc. As we have discussed earlier, the EnsembleMD toolkit is an abstraction tool which hides the

complexity within the underlying layers and only exposes the plug-ins to the users. Execution

pattern, kernel plug-in and resource handlers are exposed to the users, whereas the execution plug-

in manages the underlying complexity of decoupling the tasks, binding patterns and plug-ins, job

submission, job execution and data transfer. This hidden complexity is addressed by the RADICAL-

Pilot layer, which is the most crucial component of the toolkit architecture.

11

3.2.5 RADICAL Pilot

RADICAL-Pilot is a Pilot job framework which allows users to run many computational tasks

simultaneously on one or more different distributed systems such as remote HPC clusters. A Pilot-

job is responsible for acquiring resources necessary to execute the computational units on the HPC

cluster. The Pilot-job submits the jobs or the units to the system’s batch queue. These pilot jobs

are the containers that carry the number of tasks or executable within itself. Once these pilot

jobs become active, it can run sub-jobs directly, by eliminating the need to submit a separate job

for each executable differently and hence, reducing time-to-completion. RADICAL Pilot provides

task-level parallelism, by executing a large number of tasks concurrently on the HPC cluster. In

other words, typically in the absence of any such job submission framework, if the application has

a complex work flow that requires several tasks to be executed, each task or job is required to be

submitted individually with the queue wait time. This call for a resource management framework

can effectively submit parallel jobs, hence, enhancing the effective use of the available resources.

3.3 Patterns in EnsembleMD Toolkit

As discussed earlier, the workflows in molecular sciences applications can be categorized into repeat-

ing types, motivating the developers to create an abstraction layer called “patterns.” EnsembleMD

toolkit has four patterns which envelopes almost all the MD applications. The next few subsections

will discuss the different types of “patterns.”

3.3.1 Pipeline

A pipeline pattern consists of a sequence of executable stages. The EnsembleMD toolkit pipeline

pattern, as shown in Figure 3.2 [23], is the primary pattern that consists of a container of indepen-

dent tasks that contains heterogeneous workloads. The data flow and control mechanism is always

unidirectional and follows a linear pattern. Each pipeline stage might have a dependency from the

previous stage and executes independently [2].

12

Credit: EnsembleMD toolkit architecture document [23]

Figure 3.2: Pipeline Pattern

3.3.2 AllPairs

The All-pairs problem is stated as [2]: All-Pairs(set A, set B, function F) returns a matrix M which is

composed by comparing all elements of set A to all elements of set B using the function F. Otherwise

stated as, M[i,j] = F(A[i],B[j])[12]. A pictorial representation is given in Figure 3.3.

3.3.3 Replica Exchange

Replica Exchange pattern is a generalization of Replica Exchange Molecular Dynamics (REMD)

conformational algorithm [4] and is divided into two stages, namely: Simulation stage and Execution

stage. The Replica Exchange pattern starts with each replica propagating to simulation phase

independently, followed by the exchange phase where an exchange of thermodynamic patterns takes

place. This exchange is determined on the basis of the results of the simulation phase. Figure 3.4

[23] depicts the execution of simulation and exchange phase with various degrees of concurrency

depending on the number of iterations [2].

13

Credit: EnsembleMD toolkit architecture document [23]

Figure 3.3: Allpairs Pattern

Credit: EnsembleMD toolkit architecture document [23]

Figure 3.4: Replica Exchange Pattern

14

Credit: EnsembleMD toolkit architecture document [23]

Figure 3.5: Simulation Analysis Loop Pattern

3.3.4 Simulation Analysis Loop

The Simulation Analysis Loop pattern is divided into two phases of simulation instances and analysis

instances. There are also pre loop and post loop stages which are outside this iterative sequence.

In the MD applications, the Simulation Analysis Loop pattern is executed with multiple iterations

of simulation tool and analysis tool until the convergence criteria are reached. Figure 3.5 depicts N

simulation instances and M analysis instances in each loop [2].

3.4 RADICAL RepEx Framework

RepEx is a framework for replica exchange molecular dynamics simulations over multiple dimensions.

Replica exchange simulation deals with the exchange of thermodynamic information such as temper-

ature, salt concentration or umbrella during molecule interactions, hence supporting 3-dimensional

REMD simulations with an arbitrary ordering of the available exchange types [5], [24]. There are

many REMD simulation tools that handles synchronous replica exchanges. In synchronous replica

exchange, all of the replicas must finish the simulation phase before moving to the next stage, i.e.

15

(a) Synchronous REMD

(b) Asynchronous REMD

Figure 3.6: Schematic representation of REMD simulations [5]

transition phase [5]. RepEx framework not only supports synchronous exchanges, but, it also man-

ages the replicas that do not have global synchronization between the two stages, namely, simulation

and exchange phase as shown in figure 3.6. This framework also handles resource allocation for the

HPC clusters using underlying RADICAL Pilot layer.

The main objective for the development of RepEx is to solve the concerns of the scientific commu-

nity to implement REMD algorithms with a large number of exchanged parameters simultaneously

providing a scalable platform with concealed simulation details.

16

Chapter 4

Software Testing Framework

Software testing is the primary way to improve software reliability. Software faults and errors

could even cause huge financial damage to users, institutions or corporations. Automatic software

testing reduces human efforts by testing the functionality and generating the output reports. This

thesis mainly focuses on the development of a testing framework for the projects under RADICAL

Cybertools Group such as EnsembleMD toolkit and RepEx framework. The earlier chapters focused

on the EnsembleMD toolkit, its kernels, its patterns and underlying RADICAL-Pilot framework

and concentrated on the importance and requirement of RepEx framework to enhance the domain

of REMD simulations. In this chapter, we will discuss the various types of software testing and the

importance of each type of testing in the field of software engineering.

4.1 Methods of Testing

Edsger W Dijkstra (1930-2002) says,“Testing can prove the presence of errors, but not their absence.”

In a broader view, testing methods can be divided into two subsections, namely: Static Test and

Dynamic Test. These testing methods are also depicted in figure 4.1 for reference.

4.1.1 Static Test

In software development and testing, Static testing is a technique in which software is tested without

executing the code. It gives comprehensive diagnostics for the code. This type of testing mainly has

two components [35]:

• Code Review: It is typically used to find and eliminate the errors in the requirements, code,

17

Figure 4.1: Methods of testing

test cases or associated documents. This includes peer reviews.

• Static Analysis: The code written is checked for the proper structure, formatting, syntax

correctness and code complexity. It can be tested manually or using some set of tools.

4.2 Dynamic Test

This method is used to test the dynamic behavior of the code. It refers to the physical response of the

system to various inputs. Unlike the Static test method, Dynamic tests require actual compilation

and execution of the code. The actual output for the system for a given input is verified against the

expected output. A dynamic test monitors system memory, functional behavior, response time, and

overall performance of the system. The Dynamic test can be further divided into Blackbox test and

Whitebox test.

4.2.1 Blackbox Testing

Software testing is required to test each module in the code so that maintenance cost can be re-

duced. Blackbox testing comes into picture when the source code is not available. Blackbox testing

completely focuses on the output generated in response to the given input rather than the internal

18

Figure 4.2: Block diagram of Blackbox Testing

dynamics of the software [21]. This focuses on the functionality of the system rather than its im-

plementation and deployment. Figure 4.2 shows the block diagram for blackbox testing where the

implementation of the system under test is unknown. The only known parameters are the input and

the expected output according to the system design document.

4.2.2 Whitebox Testing

Whitebox testing, in contrast to blackbox testing, includes the knowledge of internal code imple-

mentation and code flow. In these types of test, all the individual paths, loops in the code structure

and all the functions and methods are tested for their logical correctness. Whitebox testing is an

important part of the SDLC of any developing software. A test engineer is required to have a full

knowledge of the source code. These tests might be useful in detecting hidden errors, check dead

code or other code related bugs [22].

4.3 Python Testing Tools

This section focuses on the study of different Python testing tools and selection of the most suitable

tool for the testing framework. EnsembleMD toolkit is a Python-based framework and hence, Pytest

is the most suitable testing tool for the same. The other tools for testing Python framework are

Python Unittest/PyUnit, Doctest, Nose etc which are discussed briefly below.

19

4.3.1 Python Unittest/ PyUnit

Python’s Unittest framework, developed by Kent Beck and Erich Gamma is based on the XUnit

framework. PyUnit supports modularity and is flexible as tests can be organized into test suites

with fixtures (setup/teardown). PyUnit supports test fixtures, test cases and a test runner to enable

automated testing. The example of Unittest is below:

import u n i t t e s t

class TestStringMethods (u n i t t e s t . TestCase) :

def t e s t upp e r (s e l f) :

s e l f . a s s e r tEqua l (’ foo ’ . upper () , ’FOO’)

i f name == ’ ma in ’ :

u n i t t e s t . main ()

Output:

Ran 3 t e s t s in 0 .000 s

OK

4.3.2 Doctest

Doctest is a simple testing framework that executes a shell script in docstring format in a small

function at the bottom of the test file. Doctest enables the test by running examples included in

the documentation and verifying the expected results. The test module searches for pieces of text

that look like interactive Python sessions and then executes those sessions to verify that they work

exactly as shown in the text. The example of doctest is below:

def mul funct ion (a , b) :

>>>mul funct ion (2 , 3)

6

return a∗b

20

Output:

Trying :

mul funct ion (2 , 3)

Expecting :

6

ok

1 t e s t s in 1 items .

1 passed and 0 f a i l e d .

Test passed .

4.3.3 Nose

Nose is an extension of Python Unittest to enhance testing. It has several built-in modules which

help to capture error, output, code coverage. Nose, although fully compatible with Python Unittest,

has a slightly different approach to running tests. Nose lowers the barrier to writing tests and its

syntax is less complicated. The example of Nose test is below:

from unnecessary math import mult ip ly

def t e s t numbers 3 4 () :

a s s e r t mult ip ly (3 , 4) == 12

Output:

Ran 1 t e s t s in 0 .000 s

OK

> n o s e t e s t s −v test um nose . py

s imple example . te s t um nose . t e s t numbers 3 4 . . . ok

Ran 2 t e s t s in 0 .000 s

OK

21

4.3.4 Pytest

Pytest is easy and has straightforward assertion statements. The failure output description of Pytest

is better than other test frameworks. It provides a better description whenever the test case fails.

Pytest framework has its own runner method to execute the tests with name test *.py.

def func (x) :

return x + 1

def t e s t answer () :

a s s e r t func (3) == 5

Output:

======= t e s t s e s s i o n s t a r t s ========

plat form l inux −− Python 3 . 4 . 3 , pytest −2 .8 .7 , py−1 .4 .31 , pluggy −0.3 .1

r o o t d i r : /home/ suvigya / r a d i c a l . ensemblemd−master , i n i f i l e :

c o l l e c t e d 1 items

t e s t s amp l e . py F

======= FAILURES ========

tes t answer

def t e s t answer () :

> a s s e r t func (3) == 5

E a s s e r t 4 == 5

E + where 4 = func (3)

t e s t s amp l e . py : 5 : Asse r t i onErro r

======= 1 f a i l e d in 0 .12 seconds ========

The above results and the output of Pytest are more descriptive and hence, serves as the backbone

for our testing framework over the other available test tools. Pytest not only provides better output

logging, but also has simpler syntax, is easy to implement and is easy to integrate with continuous

integration tools such as Jenkins or code coverage tools.

22

Automatic Test Execution The primary requirement of the test framework is to execute the
test automatically along with error reporting, test analysis and
test report generation.

Convenience Framework must be easy and convenient to use by the testers/
developers and must be easy to edit and add more tests.

Maintainability Framework should be easy to maintain and update the test results
as soon as any changes have been made in the source code or any
changes have been pushed to the repository.

Table 4.1: Basic testing infrastructure requirements

4.4 EnsembleMD and Repex Test Automation Framework Requirements

The previous sections discuss the different types of testing methods and tools available and superior-

ity of Pytest over other testing tools. This section aims at the basic test structure and requirements

of our test infrastructure.

4.4.1 High Level Requirements

The basic requirement of any test framework, especially EnsembleMD and RepEx framework, is

described in the table 4.1.

4.4.2 Test Framework Capabilities

The flows chart in figure 4.3 depicts the capabilities of a test execution framework.

• Starting or Stopping tests

As EnsembleMD toolkit and RepEx are evolving open source projects, where functionalities,

APIs and source code is always changing and modified, it is important for the test infrastructure

to start testing the updated source code with any newly pushed changes automatically. This

ensures that the functionality of the overall system is intact and flawless. The framework should

also start executing these tests at some frequent intervals to ensure that even a software upgrade

on the remote HPC clusters are properly captured and source code of scientific applications is

modified accordingly to make it compatible with the upgrades.

23

Figure 4.3: Test Execution Flow

• Test Report Generation

Test reports generated after each automated testing is very crucial. These test reports are not

only important for test engineers, but also significant for the developers. Test reports elucidate

developers about the failing modules. These reports provide steps or inputs to reproduce the

error which is beneficial at the later stage to re-test the bug-fix provided by the developers.

• Verifying Test Results

Verifying the test results is an integral part of test execution. Tests can be verified by comparing

the actual output with the predefined expected output.

• Handling Expected Failures

The essential part of any test execution is to verify and handle the failures. The analysis of the

test failures is important to ascertain that the known to fail test cases have failed similarly as

expected or new defects have appeared. A test framework is expected to distinguish between

24

the expected test failures and the new test failures on the basis of the expected output for a

test failure.

The complete design of testing framework and the error detection is divided into 3 levels:

• Development level testing: This is the basic API level testing of the EnsembleMD toolkit

and RepEx framework.

• Deployment level testing: This includes testing for the errors that occur during loading the

environment, modules or the errors that arise during the transfer of scientific tool dependent

input files on to remote machines.

• Run-time testing: This level of testing framework deals with the execution failure of scientific

tools due to various reasons which are discussed in further chapters.

In our testing framework, Development level testing includes unit testing of all the independent

APIs of EnsembleMD toolkit and RepEx framework which is discussed in the next chapter. We

have designed Simple Application Testing Lite (SATLite), an independent framework for testing

deployment and run-time level errors and faults. SATLite detects the errors using console logs of

the supercomputer.

4.5 Types of Error

Table 4.2 focuses of the types of errors with is detected by this testing framework.

4.6 Limitations

The current version of this testing framework has been developed with a focus on MD applications.

As discussed earlier, development level testing covers the unit testing and end-to-end testing, it

consolidates RADICAL EnsembleMD and RepEx. Since RADICAL tools have a high dependency

of external MD engines such as Amber, CoCo, Gromacs, etc. for simulation and analysis, it becomes

difficult to design multi-path test framework to cover all the possible test execution paths.

25

Types of error Source of error Remarks

Source code bugs RADICAL EnsembleMD and
RepEx development code

These errors can produce un-
expected results.

Improper or obsolete environ-
ment

Occurs on HPC cluster Environment specific to MD
engines are important for ex-
ecution. Improper/ obsolete
environment can cause the
execution failure.

Improper input files Can occur at local machine
where the input files are erro-
neous. Can also occur at su-
percomputer due to improper
transfer of files or transfer
failure.

These files are important for
execution. Errors due to
wrong file can cause execu-
tion failure or erroneous re-
sults.

System failure Occurs at HPC cluster Errors generated while MD
engine execution of HPC due
to HPC system upgrades or
hardware failures.

Segmentation Fault Occurs in MD engine and
HPC cluster.

These errors might occur
when MD engines try to ac-
cess illegal memory addresses.

Improper MD engine execu-
tion

Occurs at HPC cluster. These errors occur due to job
submission failure on HPC,
job execution timed out or if
job completed in unexpected
range of time.

Table 4.2: Types of Error captured by Testing Framework

SATLite tool can be generalized and scaled for the integration with applications other than

MD applications. Miscellaneous applications such as simple mathematical software or hello world

programmes can be used with the SATLite to detect the errors that might occur at the supercomputer

during their execution.

The current version of testing framework lacks the user study. The results of the bug capture

during the development phase reports the error captured during EnsembleMD’s and RepEx’s exe-

cution on Stampede. The extensive testing on other HPC clusters can provide a broad list of errors

specific to a particular HPC cluster. Also, SATLite has been tested only with the developed versions

of MD engines and tested only with RADICAL Jenkins server. SATLite can be made more robust

26

with an extensive user study. Its features can be further enhanced with a profound study of user

behavior and requirements.

27

Chapter 5

Development-Level Testing

5.1 Introduction

The previous chapter briefly discussed the various testing tools and design features required for

developing a test infrastructure for the EnsembleMD toolkit and RepEx. This chapter focuses

mainly on the API level testing of all the pattern APIs, kernel APIs and execution handler APIs of

EnsembleMD toolkit. The testing infrastructure is divided into Unit Testing, End to End Testing

and Exception testing which is described in detail in this chapter.

5.2 Unit Testing

Unit tests are written and executed by the developers to ensure that the output of the code meets

the design of the software. In the field of software programming, Unit Testing is a method to test

the individual modules or units of the code to verify its proper functioning.

Pytest was chosen because of the following features:

• It collects all the test files automatically as it looks for file names starting with test *.py.

• It has simple asserts and highly customizable debugging logs and output.

5.2.1 Unit Test for EnsembleMD Toolkit

All of the different APIs of all the patterns forms the building blocks of the EnsembleMD toolkit.

Different APIs of a pattern can execute as an individual module with or without data dependency

from previous stages. In general, Unit Testing for EnsembleMD toolkit pattern is divided into three

modules as shown in figure 5.1, namely:

28

Figure 5.1: Unit Testing modules

• Basic API Test module: It tests the basic APIs of the patterns viz import module test, the

name of the pattern, check the variables etc.

• Not Implemented Error test module: The important feature of EnsembleMD toolkit is

to generate the error and throw an exception when the pattern API or function is not defined

or given any functionality. In this case, toolkit raises NotImplementedError error. In this

module, we test the function without definition and the exceptions raised.

• Implemented API module: In this module, we define the APIs of the pattern and provide

them functionality. These functions are given required inputs and are tested for the expected

output. This tests all the APIs which generated NotImplementedError by defining them and

executing them with specific input data or files.

Table 5.1 shows all the APIs of the patterns which were included in unit testing.

5.2.2 Unit test for RepEx toolkit

Unlike EnsembleMD toolkit, RepEx framework is a modifiable and scalable REMD simulation pack-

age that supports Amber and Nanoscale Molecular Dynamics (NAMD) as MD application kernels.

The most important stage in any replica exchange simulation is the initialization of the replicas

and the number of replicas in each dimensional group. Errors propagate to the next stage if the

29

Pattern Basic API Not Implemented API Implemented API

Pipeline

• import
pipeline
module

• name

• instances

• steps

• step n • step n

AllPairs

• import

• name

• permutations

• set1 elements

• set2 elements

• set1element initia
-lization

• set2element initia
-lization

• element comparison

• set1element initia
-lization

• set2element initia
-lization

• element comparison

Replica
Exchange • import

• name

• add replica/
get replica

• initialize replica()

• build input file

• get swap matrix

• perform swap

• prepare replica for md

• prepare replica
for exchange

• exchange

• initialize replica()

• build input file

• get swap matrix

• perform swap

• prepare replica for md

• prepare replica
for exchange

• exchange

Simulation
Analysis
Loop

• import

• name

• iterations

• simulation
instances

• analysis
instances

• simulation
adaptivity

• pre loop()

• simulation step()

• analysis step()

• post loop()

• pre loop()

• simulation step()

• analysis step()

• post loop()

Table 5.1: Pattern APIs for Unit Testing in EnsembleMD toolkit

30

Test Cases Usage If test fails

test initialize replica idTests the IDs of all the repli-
cas that are initialized.

Wrong replica IDs would lead to im-
proper exchange and tracking of repli-
cas at the later stages.

test total group Tests the total number of
groups generated.

Incorrect group number would lead to
improper exchanges.

test group d1 Tests for the proper number
of replicas in D1 dimension.

Incorrect numbers would lead to er-
ror propagation to next stages and im-
proper exchanges.

test group d2 Tests for the proper number
of replicas in D2 dimension.

Incorrect numbers would lead to er-
ror propagation to next stages and im-
proper exchanges.

test group d3 Tests for the proper number
of replicas in D3 dimension.

Incorrect numbers would lead to er-
ror propagation to next stages and im-
proper exchanges.

test simulation Tests for the proper exchange
of parameters after each cy-
cle.

Incorrect exchange of parameters would
lead to erroneous output in the analysis
stage.

Table 5.2: Test cases for Unit Testing in RepEx

initialization of replicas is faulty and hence providing erroneous results. These errors in the final

output might cause severe damages if the results are used in the development of drugs [1].

As discussed earlier, RepEx supports one-dimensional simulation with temperature exchange,

umbrella sampling and salt concentration. These one-dimensional simulations can be combined to

perform multidimensional exchange simulations. The test cases for the RepEx extensively focuses on

the replica initialization part. Table 5.2 shows the important test cases scenarios of RepEx. These

test cases are executed for all the dimensions for all the possible combinations; moreover, these test

cases also checks for errors in synchronous and asynchronous modes of execution.

5.3 End-to-End Testing

End-to-end testing tests the complete functionality of all the patterns starting from the selecting

pattern, defining kernel and allocating the resource. Each pattern is tested with a specific input

and compared with the expected output. These tests ensure the proper functioning and behavior

31

Test Case Exception Raised Remarks

test TypeError radical.ensemblemd.exceptions.
TypeError

TypeError is thrown if a
parameter of a wrong type is
passed to a method or func-
tion.

test FileError radical.ensemblemd.exceptions.
FileError

FileError is thrown if some-
thing goes wrong related to
file operations, i.e., if a file
does not exist or cannot be
copied.

test ArgumentError radical.ensemblemd.exceptions.
ArgumentError

This exception is thrown if a
wrong set of arguments are
passed to a kernel.

test NoKernelPluginError radical.ensemblemd.exceptions.
NoKernelPluginError

This exception is thrown if no
kernel plug-in could be found
for a given kernel name.

test NoKernelConfigur-
ationError

radical.ensemblemd.exceptions.
NoKernelConfigurationError

This exception is thrown if
no kernel configuration could
be found for the provided re-
source key.

Table 5.3: Test cases for raising exceptions

satisfaction of the complete toolkit. The End-to-end testing on different supercomputers helps in

establishing the reliability of the toolkit.

End-to-end testing includes testing all of the miscellaneous kernels along with the scientific tool

kernels (Amber, CoCo, Gromacs and LSDMap). These tests are executed on both the localhost and

Stampede supercomputer.

5.4 Exception Testing

The EnsembleMD toolkit and RepEx provides a well-detailed logging for the errors and exceptions. It

generates very specific exceptions which help in debugging the failure at any step. We provide wrong

or improper inputs to check if these exceptions are raised. Table 5.3 shows important exceptions

provided by the two RADICAL toolkits.

32

Chapter 6

Deployment and Run-time Testing

Deployment testing is the next level of testing that captures the exceptions, faults and errors that

might occur during the deployment of input files on HPC cluster or loading the scientific tool specific

modules and environment onto the supercomputer. Run-time testing focuses on the exceptions that

occur due to system failure or segmentation faults. In this thesis, we have carefully designed a

framework that checks for the above-discussed levels of testing. Simple Application Testing Lite

(SATLite) is primarily developed with an objective to test errors and exceptions which occur during

the execution of scientific tools (Amber, Coco, Gromacs, LSDMap etc) on remote supercomputers.

According to [6], 1.53% of the total applications on Blue Waters supercomputer failed because

of the system problems. Such system failures have a great impact on the computing resources and

financial budgeting. The majority of testing tools that have been developed focuses on testing the

failures due to system faults, both software and hardware. LogDiver, a tool primarily developed

by Martino et al. [6] analyzes the system level faults. Failures in HPC clusters have become more

prominent with the enhancement in the number of components. The exponential increase in the

failures calls for immediate actions to minimize the effect of failed applications on the high computing

resources. In this chapter, we focus on application side failure detection.

6.0.1 Basic Definitions

A few terms related to the development of testing frameworks are discussed below:

• Modules: Basic environment for the default compilers, tools and libraries. Users requiring

3rd party libraries or tools can tailor their environment with the applications and tools they

need. Module and environment can be used interchangeably.

33

• Files: User’s input files specific to the scientific tool

• Supercomputer: These are the HPC resources that are used for the execution of applications.

HPC cluster, remote machines and supercomputers can be used interchangeably.

• Scientific tools: These are the MD simulation and analysis tools such as Amber, CoCo,

Gromacs and LSDMap.

SATLite tool can help the developers of the scientific community, especially the MD community

to investigate the errors and issues that may be generated due to their software bugs or the remote

system changes and upgrade. This enables them to test the changes which have been made in their

tools before releasing it for their users. The errors and exceptions might occur due to the following

occurrences:

• Improper or obsolete module loading.

• Improper input arguments or input files.

• System failure or segmentation fault.

• Failure as the execution did not complete in expected range of time.

6.1 SATLite System Design

Figure 6.1 shows the block diagram of the system. SATLite tool performs the test in two steps, i.e.

Module Test and Execution Test. In figure 6.1, user attributes field depicts the APIs exposed to the

users. These APIs are explained in the later sections. Resource configuration file and scientific tool

specific defaults modules file serves as the input to this testing tool.

6.2 System Architecture

As a part of SATLite design and development, the primary focus is to report the exceptions and

errors occurred due to the inadmissible loading of the environment or improper input files on the

34

Figure 6.1: SATLite System Design

supercomputer. The continuous development of the scientific tools and changes in their source code

raised a requirement to develop a tool that can report any errors relating to its execution on the

remote supercomputers.

SATLite tool provides a set of explicit APIs to the users to test their own scientific tool or

application. It has been currently tested for Amber, CoCo, Gromacs and LSDMap. The environment

loading, file transfer, job scheduler script generation and its execution is hidden from the users, hence,

they can solely focus on the development of scientific tools rather than concentrating on debugging

the errors and exceptions.

6.2.1 Control Flow

The control flow for two stages of the SATLite as shown by specific numbers in figure 6.2 are discussed

below.

Module Test

{1} Load user provided or defaults modules on the supercomputer and wait for the console logs. If

the user does not explicitly provide any input modules, then the default modules from the scientific

tool specific file are used. These console logs are examined to check for the errors during the

environment loading stage. If any error event occurs at this stage, the logs are written to the

35

Figure 6.2: SATLite tool architecture

36

module error log file explaining the possible reason for failure.

Execution Test

{2} Generate job scheduler script using scientific tool executable, modules for a specific remote

machine using remote machine configuration file.

{3} All of the input files along with the scheduler script is transferred to the remote machine using

Secure Copy Protocol (SCP). The errors and exceptions are detected, if any, during the file transfer

stage. If all the files are transferred successfully, the job is submitted to the computing resource

queue where the tool waits for execution to complete.

{4} Output files and error files are generated and these log files are examined to detect any failure

during execution.

{5} At the last stage, errors are reported back to the users. Also, all the output files and error files

are transferred back to the local machine.

6.3 System Log Collection and Processing

We begin by examining the details of the cluster, event methodology and then it’s processing.

6.3.1 About the Cluster: Stampede

We have currently tested SATLite on the Stampede supercomputer from TACC. Stampede is one of

the most powerful supercomputers which went into production in 2013. In 2012, a pre-production

configuration of Stampede used 1875 nodes which were then expanded to 6400 nodes with a total

memory of 205 TB. The project was built in partnership with Intel, Mellnox and Dell. Table 6.1

shows the technical details of Stampede.

6.3.2 Event Logs and Processing

Supercomputers such as Stampede logs all of the events that occur during the complete execution

of the application. System logs serve as the repository of the event data. Console logs provide the

37

Resource Specification

of Nodes 6400

Processors Xeon E5-2680 8-core processors

Co-processor Xeon Phi coprocessor

Memory 32 GB RAM, 205 TB total memory

GPU Nvidia Kepler K20 GPUs

Operations 9.6 quadrillion floating point operations per second

Table 6.1: Stampede system specifications

real-time job status. We have utilized these console logs to detect the deployment time and run-time

errors. In the deployment stage, it is highly likely that the modules required to run a scientific tool

and workflow are erroneous or have become obsolete. The events generated on the console logs are

analyzed to provide the explanation of the error.

In the run-time stage, we have used console logs to extract job id, job status, execution time etc.

When a batch job exits [6], Stampede generates an exit code which shows the completion status. A

successful and exception-free execution returns ExitCode 0 as a return code, otherwise an integer

greater than 0 depicting the different type of errors and exceptions. It is also possible that a job can

finish successfully even if the application has terminated abnormally. To address this case, we have

used the actual execution time to complete and checked if it lies in the expected range of completion

time.

6.4 SATLite Tool Components

The components exposed to the users are discussed below. These components are the parameters

that are required to be set using set attribute().

6.4.1 Scientific Tool Name

This is the field where the user has to provide the scientific tool name (currently supported scientific

tool name are Amber, CoCo, Gromacs and LSDMap) that has to be tested. For example,

38

name = amber

6.4.2 Resource Name

The input to this field is the name of the supercomputer or any target machine where the execution

of the scientific tool has to be checked. This currently supports SLURM job scheduler. For example,

r e s ou r c e = xsede . stampede

6.4.3 Arguments

The list of input files specific to the scientific tools along with the arguments is provided in a specific

format as shown in the example below.

arguments = [‘ argument1=i n p u t f i l e 1 ’ , ‘ argument2=i n p u t f i l e 2]

6.4.4 Exe

This is an optional field where the users can provide their executable which then overrides the default

executable.

6.4.5 User Modules

This is an optional field where the user can explicitly provide the required environments. The

inbuilt modules specific to scientific tools (Amber, CoCO, Gromacs and LSDMap) are used if no

user modules are provided.

6.4.6 Run-time

Users can provide an estimated range for run-time to check for additional execution failures if no

exit code or error is found. The actual run time of the execution should lie in the runtime range

provided by the user. It is provided in the following format:

39

Function Name Arguments Description

set attribute

• name,

• resource,

• arguments,

• exe (optional),

• modules (optional),

• runtime (optional)

Sets all the required attributes
for execution

run void Executes test

Table 6.2: Exposed SATLite tool APIs

runtime = [‘ ‘ min time (hh :mm: s s) ” , ‘ ‘ max time (hh :mm: s s) ”]

6.5 Execution

There are two ways for the users to execute the SATLite, namely:

• Command Line Tool

• Use the exposed APIs in the code.

6.5.1 Command Line Tool

To run SATLite using command line tool, users are required to provide the scientific tool name,

target remote machine and arguments file or a file with the list of input files that are required for

the execution of the scientific tool. Users can also provide optional executable name and module file

explicitly. They can also provide optional execution runtime range. It is recommended to provide a

runtime range to enhance the failure reporting. The resulting invocation of SATLite should be:

python s a t l i t e e x e . py −−name <s c i e n t i f i c t o o l n a m e > −−r e s ou r c e

40

<target re source name> −−arguments <argument f i l e> −−exe <Optional

executab l e> −−modules <o p t i o n a l m o d u l e f i l e > −−runtime <Optional

runt ime range>

Where,

s c i e n t i f i c t o o l n a m e = S c i e n t i f i c Tools (Amber , CoCo , Gromacs , LSDMap)

ta rge t r e source name = Remote Supercomputer Name (Current ly t e s t e d on

Stampede)

a r g u m e n t f i l e = F i l e o f l i s t o f input f i l e s with arguments

Opt iona l executab l e = Executable

o p t i o n a l m o d u l e f i l e = F i l e with l i s t o f modules

Opt iona l runt ime range= Runtime range in format [min time , max time] in

hh :mm: s s

6.5.2 Use the Exposed APIs in the Code

This section provides a guide for using the APIs exposed to the users. The below-mentioned example

executes Amber on Stampede.

”””

Sample Code

”””

from s a t l i t e import SATLite

i f name == ” main ” :

t e s t = SATLite ()

t e s t . s e t a t t r i b u t e (name = ’ amber ’ ,

r e s ou r c e = ’ xsede . stampede ’ ,

amber

41

arguments = [’−O’ ,

’− i=/home/ suvigya / inp /min . in ’ ,

’−p=/home/ suvigya / inp / penta . top ’ ,

’−c=/home/ suvigya / inp / penta . crd ’ ,

’− i n f =/home/ suvigya / inp /min . i n f ’ ,

’−r=/home/ suvigya / inp /md. crd ’ ,

’−r e f =/home/ suvigya / inp /min . crd ’] ,

#Executab l e o p t i o n a l

exe = sander

#amber modules o p t i o n a l

modules = [”module load TACC” ,

”module load i n t e l / 1 3 . 0 . 2 . 1 4 6 ” ,

”module load python / 2 . 7 . 9 ” ,

”module load netcd f / 4 . 3 . 2 ” ,

”module load hdf5 / 1 . 8 . 1 3 ”]

runtime = [” 0 : 0 : 1 ” , ” 0 : 0 : 1 5 ”]

)

t e s t . run ()

6.6 Features of SATLite Tool

This section focuses on various design features of the SATLite tool that make it an abstraction level

scalable solution for detecting deployment and run-time faults.

• It is highly scalable as it can test a large number of miscellaneous kernels and executables in

addition to the scientific tool kernels.

• This tool supports multiple independent executions, hence saving user’s time in submitting

different jobs separately.

42

• If scientific tools are being tested, users can explicitly provide an environment list to load on

the remote machine. If the environment list is not provided by the user, the tool uses default

modules from the scientific tool configuration file. This feature enables the user to override

the obsolete environment and module list provided by the tool.

• SATLite also detects the error caused due to improper execution of the job leading it to

complete execution successfully in an unexpected range of time. For instance, the execution

of a job with 1000 input files takes 5 seconds to complete on a remote machine might return

a successful execution, but if the absolute time to completion is more than the actual time

depicts that execution is erroneous. Users can optionally provide an estimated range for the

run-time to check for additional errors and exceptions.

• SATLite tool also checks for similar files that are required by multiple jobs before transferring

them to the remote machine. This limits the number of file transfers to the remote machine,

hence saving resources.

• The errors encountered are also written to the local machine in module error log files for further

investigation.

6.7 Steps to Use SATLite

This section focuses on the steps for the users to exploit the features of SATLite to detect the errors

and debug them.

STEP I: User runs SATLite with required MD engine name, remote resource name, required input

files and arguments using command line or the exposed APIs.

STEP II: SATLite reports the error, if any, during the environment loading stage. If there are any

errors, the execution terminates.

STEP III: If failure occurred during step II, user can use module error.log file to debug the error.

STEP IV: If step II is successful, SATLite proceeds to execution stage. It transfers all the input

files provided by the user to the HPC cluster. It reports error during the tranfer of files.

43

Figure 6.3: Failure due to improper module loading

In Figure 6.3 execution failed as the modules required for the execution of Amber on Stampede had
errors.

Figure 6.4: Example of module error log file

Figure 6.4 shows an example of module error log file which provides explanation of possible error.

STEP V: SATLite submits the job to the batch queue and waits for execution. Users are reported

the errors, if any occurred, during execution.

STEP VI: Errors discussed in Table 4.2 are reported by SATLite and can be used by users to debug

the failures.

6.8 Expected Output

The main objective of SATLite is to detect and report the execution errors and exceptions, this

section discusses the expected output in case of execution failure or success.

44

Figure 6.5: Execution failed to complete in the estimated time

In Figure 6.5, the tool reported an error as the execution failed to complete in the estimated range
provided by the user.

45

Figure 6.6: Successful Execution

In Figure 6.6, tools reports successful execution as no errors or exceptions were reported during the
execution.

46

Chapter 7

Continuous Integration

Manual testing at times can be a laborious and time-consuming process. Sometimes it is not feasible

and efficient to test the same modules every time if a small change has been made. This difficulty

further increases with the increase in complexity of components in a software product. Even a single

component change in such a complex and interdependent system can affect the behavior of other

modules. This requires an urgency to implement an automated testing framework that can reduce

manual testing work and simultaneously test all the critical components of the system. Continuous

integration is a software engineering principle of rapid and automated development and testing.

As discussed by Betz et al. [13], a continuous integration and central testing repository help the

developers to identify a broken test case or failure with certain compilers automatically whenever a

change is pushed.

Testing is an inevitable part of any project and it is required to be automated and integral to

the build process so that developers do not have to manually test every aspect of their code.

7.1 About Continuous Integration

The complete source code is required to be pushed on to central repository. GIT is the most

common tool used for version control by recent day developers. Github provides online free code

repository. Since, the major work done by the scientific community, especially RADICAL Group, is

open source, Github becomes an obvious choice for controlling and maintaining our code repository.

In a continuous integration lifecycle, an automated system gets triggered when developers push their

revised code on the repository. This system picks up the changes, pulls down the code and execute

a few sets of commands to verify that the application still works as expected even after the code

47

modification [14]. The most difficult part was to select the continuous integration server which would

serve our purpose and execute our development stage unit cases for EnsembleMD and RepEx along

with SATLite tool for testing deployment and run-time error reporting. The primary reasons for

building an automated testing system are:

• Time saving: Developers can save a considerable amount of time testing their build by

automating the build and test phase.

• Improved software qualities: Any detected issues can be resolved immediately, hence

keeping software in a state where it can be safely released at any time.

• Faster development: Development and release of any software is faster since manual inte-

gration issues are less likely to occur.

7.2 Principles of Continuous Integration

The software engineering practice of continuous integration was used to create a common build and

test environment that integrates the developers’ code into one test environment and hence, errors

can be detected on a commit basis [13]. This section focuses on the main principles involved in the

designing of continuous integration.

A. Maintain a Single Repository

One of the most important aspects of continuous integration is to maintain a single and central

repository. This allows keeping track of multiple files and code changes. Maintaining a single

repository can also prevent divergence in the code that could lead to difficult in resolving conflicts

close to release.

The current EnsembleMD and RepEx development process maintain a common Git repository

for the source code. This feature has been extended to maintain a separate repository for the testing

framework of the former tools.

48

B. Automate the Build

As the project gets larger and bigger, it becomes important that developers do not spend time in

typing commands to compile, build and test the source code. The automated test build software

ensures the efficiency and also allows the easier support for many build options, such as building in

a virtual environment, execution on multiple supercomputers, etc.

C. Make the Build Self-testing

All software needs testing to eliminate source code bugs. Testing is a significant part of the SDLC

and validation needs to be automated and integral to the build process. The continuous integration

is expected to build the code changes pushed to a central repository automatically and execute the

testing suite to ensure that it behaves as expected by the developers.

D. Frequent Commits

The practices of continuous integration encourage developers to commit their code changes as often

as possible. This is beneficial to avoid merge conflicts if two developers are unknowingly modifying

the same segment of the code. It is easier for the developers to merge, move, add or remove the

code changes if the commits are more modular. Committing the code marks a point in the history

of the code base where developers can switch back and use the changes made.

E. Testing in a Clone of Production Environment

It is highly likely that the production environment used by the end user is different from the de-

velopment or the test environment. The testing environment should be close to the production

environment. This principle aids in finding errors that may not be present on the developers’ ma-

chine.

49

F. Build and Test Result Availability

According to this principle, it is important to have a current development and staging build available

at all times. Along with the build, the test result availability provides a visibility on the results to

the developers.

7.3 Selecting Continuous Integration Server

The previous section discussed the principles and guidelines required to design a complete automated

continuous integration server. There are a lot of existing and open source CI servers, namely, Jenkins

[31], GitLab [32], Hudson, Cruise Control, TeamCity [33], Travis, Cider [15], etc. Selecting the best

and optimal CI server is the most arduous task. The most suitable continuous integration server

should have certain features as discussed in table 7.1. We have conducted a detailed study of the

various available CI servers based on various features. Jenkins is Java based and is the most popular

CI server which is compatible with most of the operating systems and many languages. Moreover, it

has multiple plug-ins to configure the required system-of-interest. Travis is also a commonly used CI

server where each project runs in an individual virtual machine [23]. Testing open source projects

in Travis is free of cost, but there is a charge for private repositories. TeamCity, developed by

JetBrains, is an excellent paid CI server; whereas, Jenkins is a free open source server. TeamCity is

extensively used in large organizations. GitLab is a more recent application which integrates source

code management and a CI server, but it does not support as many plugins and languages as is

supported by Jenkins [13], [14], [17]. Table 7.2 summarizes and compares the different CI servers

that were considered in the study.

7.4 Reasons to Select Jenkins

The extensive research of different CI server has led us to choose Jenkins. Jenkins is very well

established and extensively utilized CI server due to the following reasons:

• Available Plugins: Jenkins currently supports 392 plug-ins. It is a hub for the development

50

Sr No. Feature Remarks

1. Version control system inte-
gration

CI system should support the integration with all
the version control systems.

2. First-time setup CI system is expected to guide through the first
time steps to setup the project.

3. User Interface CI system at minimum is expected to provide an
overview of all the builds and allows to examine
each specific build for more detailed information.

4. Build Environment CI system should support a large number of pro-
gramming languages and has extensive configura-
tion properties.

5. Feedback and reporting CI systems should have mechanism to notify de-
velopers about the bugs or the issues.

6. Post-build setups/ deploy-
ments

CI server should be able to deploy artifact to stag-
ing server, send emails, update bug, generate re-
ports etc.

7. Ease of extensibility CI systems should be extensible and should pro-
vide large number of plug-ins.

Table 7.1: Features of CI system

51

Feature Jenkins Travis TeamCity GitLab CI

Source availabil-
ity model

Free and Open
Source

Free for open
source project

Proprietary/
Closed source

Free and Open
source

Customizable
and Scalable

Highly customiz-
able. Large plu-
gin ecosystem

Supports dozens
of languages.

Supports large
number of lan-
guages and APIs
for the extension.

Highly scalable.
Tests can run on
parallelly.

Operating Sys-
tem support

Supports Win-
dows, Mac OS,
Unix-like OS

OSX and
Ubuntu. Win-
dows not sup-
ported. Python
is not supported
on OSX

Supported on
Windows, Mac
OS, Linux

Supported on
Ubuntu, Debian,
CentOS. Not
supported on
OSX, Windows,
Fedora.

Integration Can be inte-
grated with all
the source code
management
software.

Supports integra-
tion only with
GitHub.

Can be inte-
grated with all
the source code
management
software.

Officially inte-
grates only with
GitLab.

Tutorial and Doc-
umentation

Good tutorials
available. Poor
official documen-
tation.

Extensive and
helpful documen-
tation available.

Well docu-
mented.

Well docu-
mented.

Cost Free Not free for pri-
vate repos

Expensive Free

Capability Easy installation,
easy configura-
tion, distributed
builds, and
extensive plugins.

Easy setup,
multiple test
environments for
different runtime
versions, helpful
community.

Easy installation,
great user inter-
face.

Quick setup
for the projects
hosted on GitLab

Table 7.2: Comparative study of CI servers

52

Figure 7.1: Test Process using Jenkins

of a large number of projects and applications due to its powerful and diverse functionality.

• Cloud-enabled: Cloudbees provides unlimited cloud space to the Jenkins users to build and

test their code.

• Large number of developer: Jenkins is maintained by a large number of developers who

were initially members of the Hudson CI server. Since Jenkins has a team of well-experienced

developers, the software releases and upgrades are usually stable.

7.5 Jenkins Integration

Jenkins is the obvious choice for automated test bench integration of our development, deployment

and run-time testing of EnsembleMD, RepEx and SATLite tool. Figure 7.1 shows the stages in our

Jenkins test process. The following are the generalized steps in integrating our testing with Jenkins:

• Jenkins job gets triggered whenever changes are pushed into the Github repository or builds

periodically even if the code base in not modified. This periodic build ensures that unmodified

53

Figure 7.2: Each test case report

code builds and executes successfully on the remote machines.

• Jenkins pulls the code from the tool repository and installs the tools in the virtual environment.

• It then clones the test cases and executes unit test using Pytest.

• Post-build generates a detailed test report showing the failure points, code coverage graphs,

general trend in execution and violations in the Python code formatting as shown in figures

7.2,7.3, 7.4. 7.5, 7.6, 7.7 and 7.8.

7.6 Post Build Actions

After Jenkins build has finished execution and build, it generates different reports in order to provide

detailed logging of the build. This section focuses on the various reporting mechanisms used in

continuous integration system.

A. Test Case Report

Test case report provides a detailed result of the tests included in the build. It shows each test case

function name with the failure or success report as shown in figure 7.2.

54

Figure 7.3: Example failure report

Figure 7.4: Code Coverage: Tabular format

B. Failure Report

Jenkins exploits the characteristics of Pytest that displays the possible reason for the failure. Figure

7.3 shows an example of the detailed failure report. This is beneficial to debug the code bugs and

resolve them.

C. Code Coverage

Code coverage is a measure used to describe the extent of which the test code is tested by a test

suite. A high code coverage shows that the program has been thoroughly tested and has lower

chances of containing software bugs. Figure 7.4 and Figure 7.5 shows code coverage in tabular and

graphical format respectively.

55

Figure 7.5: Code Coverage: Graphical format

D. Trend Graph

Trend Graph shows a general trend of success and failures of the builds. The greater the red area,

the greater the failure. This type of graph provides a visual effect of the success ratio of the builds.

Figure 7.6 shows an example of a success-failure trend. This graph has been plotted for total number

of test cases in a particular Jenkins job. Each Jenkins job is triggered with periodically or whenever

EnsembleMD or RepEx source code changes are pushed on to the Github.

E. Code Format

Code formatting of any specific language should be ubiquitous. A properly formatted code is easy to

distribute, understand and is universally accepted. Our continuous integration system uses Pylint

to check the Python code formatting using standard PEP 8 (Style Guide for Python Code). Pylint

checks the code-line length, checks for proper spacing, checks if imported modules are used, etc.

Figure 7.7 shows the graphical view of violations in the code formatting. The red section in the

graph represents a higher priority of violations which needs to be resolved before any product release.

Medium and Low violations have less priority and can be ignored as they include unused modules

or spacing issues. Figure 7.8 shows an example of the detailed report of the violations with low,

56

Figure 7.6: Success-Failure trend graph

Figure 7.7: Code Format Violations

medium and high priorities. The report also shows the exact location and reason for the violation.

57

Figure 7.8: Code Format Violation Report

Application Command Remarks

Amber python satlite exe.py –name “amber” –
resource “xsede.stampede” –arguments am-
ber arguments.wcfg

Single executable exam-
ple. Tested on Stampede.

CoCo python satlite exe.py –name “coco” –
resource “xsede.stampede” –arguments
coco arguments.wcfg

Single executable exam-
ple. Tested on Stampede.

Gromacs python satlite exe.py –name “gromacs” –
resource “xsede.stampede” –arguments gro-
macs arguments.wcfg

Single executable exam-
ple. Tested on Stampede.

LSDMap python satlite exe.py –name “lsdmap” –
resource “xsede.stampede” –arguments ls-
dmap arguments.wcfg

Single executable exam-
ple. Tested on Stampede.

Hello World python satlite exe.py –name
hello –resource xsede.stampede –
exe “icpc”,“ibrun” –arguments
“hello test1.wcfg”,“hello test2.wcfg”

Hello world example with
multiple executable. Two
executable for compiling
and executing c++ hello
world program. Tested on
Stampede.

Table 7.3: Example of SATLite testing scientific tool

58

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we attempted to address the issue of HPC resource wastage by minimizing the errors

right from the development phase of an application. This thesis pivots around detecting the errors in

the ongoing development of scientific tools such as RADICAL EnsembleMD and RepEx. It provides

a continuous testing framework to test EnsembleMD toolkit and RepEx frameworks which serve as

an abstraction tool for MD simulation packages. The intensive study for this thesis focuses on setting

up a 3-stage automatic testing and error reporting framework, the three stages being development,

deployment and run-time. As reported by several researchers, a large amount of HPC resource is

wasted due to system failures. Their studies mainly concentrated on techniques to curtail the errors

from a supercomputers’ perspective. The study in this thesis provides a solution to combat the

errors at the application level. Mining and analyzing the system logs is a universal approach to

developing tools which can automatically detect the error and generate failure reports with proper

justification. The logs from the supercomputers do not provide sufficient information to perform

automatic detection of failures. Moreover, the system logs do not provide a real-time status of the

application. We have used console logs to detect various parameters such as job id or errors or exit

codes.

The unit testing and end-to-end testing for EnsembleMD and RepEx covered the important APIs

and functionalities to check the software and implementation bugs. These toolkits were continuously

tested by the Jenkins CI server, hence ensuring their stability. We observed that the test cases we

developed could successfully test the proper functioning of EnsembleMD and RepEx and capture

59

the errors in their source code. The development level testing can help in fixing the software bugs

right in the development phase. The SATLite tool is able to capture deployment and run-time errors

when scientific tools are executed directly on to the supercomputers. This error reporting can help

molecular dynamics community and developers to achieve confidence in their simulation packages.

This testing suite was able to capture code bugs and logical errors in EnsembleMD and RepEx tools.

At deployment and run-time phases, SATLite was able to capture environment setup failures, errors

due to obsolete modules, input file errors, execution failures or even improper execution.

8.2 Future Work

There is a broad scope in the development of error detection tools to enhance the performance of

applications on supercomputing resources. An ideal bug-free application should be tolerant to any

system upgrades or changes and should have optimized execution to utilize the maximum perfor-

mance of supercomputers. As the scientific tools are continuously updating, so are EnsembleMD

and RepEx. There is always an opportunity to increase the number of test scenarios to check the

source code bugs and to establish a confidence in the application.

The SATLite tool has been currently developed for SLURM job schedulers and tested on Stam-

pede supercomputer. In future scope, SATLite has to be extended for resources with other job

schedulers such as PBS. To achieve this, one of the approaches could be to use RADICAL SAGA

[20],[26] as an underlying framework as it can handle a large number of job schedulers and batch

scripts. Moreover, error detection can be improved by translating exit code to text-based report-

ing. A more intensive usage of SATLite with many scientific applications can help in expanding

this testing framework. The proof-of-concept of SATLite proves to be promising in minimizing the

application failures due to software bugs or improper environment loading or incorrect input files. It

can be used by the developers and scientists to scrutinize their application before actually releasing

it for their users.

60

8.3 Links to Current Work

The current development version of the testing framework can be downloaded from the below men-

tioned Github links.

• EnsembleMD Unit Testing: https://github.com/suvigya91/EnsembleMD-Testsuit

• RepEx Unit Testing: https://github.com/suvigya91/repex-test

• SATLite- Deployment and Run-time testing suit: https://github.com/suvigya91/SATLite

• SATLite readthedocs: http://satlite.readthedocs.io/en/latest/

• Jenkins CI server: 144.76.72.175:8080

61

References

[1] M. Q. Yang, J. Y. Yang. High-Performance Computing for Drug Design. In Bioinformatics and

Biomedicine Workshops, 2008 IEEE Conference, Philadelphia, PA.

[2] V. Balasubramanian, A. Treikalis, O. Weidner, S. Jha. EnsembleMD Toolkit: Scalable and

Flexible Execution of Ensembles of Molecular Simulations, 2016 Cornell University Library,

arXiv:1602.00678v2.

[3] V. Balasubramanian. Towards Frameworks for Large Scale Ensemble-based Execution Patterns.

In Master’s thesis, 2015 Rutgers University.

[4] Y. Sugita, Y. Okamoto. Replica-exchange molecular dynamics method for protein folding. In

Chemical Physics Letters, Volume 314, Issues 1–2, 26 November 1999, Pages 141–151.

[5] A. Treikalis, A. Merzky, H. Chen, T. Lee, D. M. York, S. Jha. RepEx: A Flexible Framework for

Scalable Replica Exchange Molecular Dynamics Simulations, 2016 Cornell University Library,

arXiv:1601.05439v1.

[6] C. D. Martino, Z. Kalbarczyk, W. Kramer, R. Iyer. Measuring and Understanding Extreme-

Scale Application Resilience: A Field Study of 5,000,000 HPC Application Runs. In Proceedings

of 45th Annual IEEE Conference Dependable Systems and Networks, 2015, IEEE Computer

Society.

[7] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, F. Cappello. Modeling and Tolerating

Heterogeneous Failures in Large Parallel Systems. In 2011 ACM, Seattle, Washington.

62

[8] B. Schroeder, G. A. Gibson. A Large-Scale Study of Failures in High-Performance Comput-

ing Systems. Proceedings in IEEE Transactions on Dependable and Secure Computing, IEEE

Computer Society, 2010.

[9] E. Chuah, S. Kuo, P. Hiew, W. C. Tjhi, G. Lee, J. Hammond, M. T. Michalewicz, T. Hung,

J. C. Browne. Diagnosing the Root-Causes of Failures from Cluster Log Files, Proceeding from

International Conference on High Performance Computing, 2010 IEEE.

[10] A. Gainaru, F. Cappello, M. Snir, W. Kramer. Fault Prediction under the microscope: A closer

look into HPC systems. Proceeding of International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC), 2012 IEEE. Pages 1-11, Salt Lake City, UT.

[11] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, J. Browne. Towards Increasing the Error

Handling Time Window in Large-Scale Distribured Systems using Console and Resource Usage

Logs. Proceeding of IEEE Conference on Trustcom, BigDataSE and ISPA, 2015 (Vol 3), Helsinki.

Pages 61-68.

[12] A. Oliner, J. Stearley. What Supercomputers Say: A Study of Five System Logs. Proceeding

of 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN’07), 2007 IEEE, Edinburgh. Pages 575-584.

[13] R. M. Betz, R. C. Walker. Implementing Continuous Integration Software in an Established

Computional Chemistry Software Package. Proceeding of 5th International Workshop on Soft-

ware Engineering for Computational Science and Engineering (SE-CSE), 2013 IEEE, San Fran-

cisco. Page 68-74.

[14] M. Meyer. Continuous Integration and Its Tools. In IEEE Software (Vol 31, Issue 3), Sponsored

by IEEE Computer Society. Page 14-16.

[15] O. Kupka, F. Zavoral. Cider: An Event-driven Continuous Integration Server. Proceeding of

Computer Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual Con-

ference, Vasteras. Page 646-647

63

[16] L. Bautista-Gomez, A. Benoit, A. Cavelan, S. K. Raina, Y. Robert, H. Sun. Which Verification

for Soft Error Detection. Proceeding of 22nd International Conference on High Performance

Computing (HiPC), 2015 IEEE, Bangalore. Page 2-11

[17] P. Rai, Madhurima, S. Dhir, Madhulika, A. Garg. A Prologue of Jenkins with Comparative

Scrutiny of Various Software Integration Tools. Proceedings of 2nd International Conference

on Computing for Sustainable Global Development (INDIACom), 2015 IEEE, New Delhi. Page

201-205.

[18] M. Wahid, A. Almalaise. JUnit Framework: An Interactive Approach for Basic Unit Testing

Learning in Software Engineering. Proceedings of 3rd International Congress on Engineering

Education (ICEED), 2013 IEEE, Kuala Lumpur. Page 159-164.

[19] A. Merzky, M. Santcroos, M. Turilli, S. Jha. RADICAL-Pilot: Scalable Execution of Heteroge-

neous and Dynamic Workloads on Supercomputers. 2015 Cornell University Library.

[20] A. Luckow, L. Lacinski, S. Jha SAGA BigJob: An Extensible and Interoperable Pilot-Job Ab-

straction for Distributed Applications and Systems. In proceeding of Symposium on Cluster,

Cloud and Grid Computing, 2010 10th IEEE/ACM International, Melbourne. Page 135 - 144.

[21] H. Bhasin, E. Khanna, Sudha. Black Box Testing based on Requirement Analysis and Design

Specifications. 2014, International Journal of Computer Applications (0975 – 8887), Vol 87

-No.18.

[22] S. Nidhra, J. Dondeti. Black box and White box Testing Techniques: A Literature Review. In

International Journal of Embedded Systems and Applications (IJESA) Vol.2, No.2, June 2012.

[23] Radical EnsembleMD Readthedocs. radicalensemblemd.readthedocs.io/en/master/index.html

[24] RADICAL RepEx Readthedocs. http://repex.readthedocs.io/en/latest/

[25] RADICAL Pilot Readthedocs. https://radicalpilot.readthedocs.io/en/stable/

[26] RADICAL SAGA. http://saga-python.readthedocs.io/en/latest/

64

[27] RADICAL Pilot Test Suite. https://github.com/radical-cybertools/radical.pilot/tree/devel/tests

[28] pyPcazip. https://bitbucket.org/ramonbsc/pypcazip

[29] Mist. https://bitbucket.org/extasy-project/mist/wiki/Home

[30] Continuous Integration With Gitlab CI. http://alanmonger.co.uk/php/continuous/integration

/gitlab/ci/docker/2015/08/13/continuous-integration-with-gitlab-ci.html

[31] Jenkins CI server. https://jenkins.io/

[32] GitLab CI server. https://about.gitlab.com/

[33] TeamCity CI server https://www.jetbrains.com/teamcity/

[34] BuildForge CI server. http://www.ibm.com/developerworks/downloads/r/rbuildforge/

[35] Static Testing. http://www.tutorialspoint.com/software testing dictionary/static testing.htm

