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Compression is the final unit operation in a pharmaceutical tablet manufacturing process 

scheme that produces the compact. Since compression determines some of the major 

critical quality attributes (CQA’s) of tablets, such as hardness and disintegration time, 

understanding the effect of compression parameters on tablet quality is essential. The 

objective of this study is to develop a proof-of-concept methodology to correlate material 

properties to equipment and process performance using semi-empirical models, 

specifically compression models, and predict model coefficients. In this study, experiments 

involving some commonly used pharmaceutical ingredients such as lactose, 

microcrystalline cellulose, and acetaminophen was performed. The excipients were 

blended with varying levels of magnesium stearate ranging from 0.25 – 1.5% and the 

blends were characterized. The material properties measured for the blends were 

compressibility, permeability, cohesion, density, and particle size. Principal Component 

Analysis (PCA) was performed to understand the operating material design space. After 

tablet compaction, the compression data values were regressed to the unknown coefficients 
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of the Kawakita compression model and the Kuentz hardness equation. The parity plots, 

R-Squared (R2) and RMSE values showed a good fit between experimental data and the 

model output obtained using the regressed coefficients. Partial Least Square (PLS) 

regression was performed using the regressed coefficient values to obtain a linear 

correlation between the regressed coefficients and the original blend material properties. 

The PLS model regression presented less than 10% error for most of the calibration points 

and a decent prediction of the model coefficients for the validation points. The results 

obtained indicate that correlations between material properties and semi-empirical model 

coefficients are feasible and it is possible to predict the response of model coefficients with 

decent accuracy. This work can be used as a basis to expand material property and process 

parameter correlations to semi-empirical models of other unit operations involved in 

pharmaceutical processing in the future. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

The pharmaceutical industry is a global economic sector with a revenue of over $1 

trillion per year, growing at a steady rate of nearly 7% [1, 2]. Responsible for drug 

development, manufacturing and marketing of medications, the industry perseveres to 

address the world healthcare needs and hence, its importance cannot be undermined. With 

huge investments in research and development, there have been numerous technological 

advancements through time, that have helped eradicate diseases, find cure to new ones, and 

keep up with production to meet the global demand. Innovations and progress have helped 

increase average life expectancy at birth by about 6 years globally according to the World 

Health Organization (WHO) report [3]. 

The pharmaceutical industry is highly profitable due to the large profit margins in 

drug prices. The profit margin is as much as 20% for the big pharmaceutical companies, 

higher than the average net profit margins of most other industry sectors [4]. In fact, 

pharmaceuticals has been the major contributor under healthcare technology, making 

healthcare the most lucrative industry of 2015 [4]. However, the challenges faced by the 

pharmaceutical industry have been enormous. The complexity and rarity of diseases are 

making discovery and development of new molecular entities (NME) aimed at treating 

them, increasingly difficult. This, in addition to the varying physical and chemical 

properties of drug substances and rising expectations of “ideal” medical compounds (e.g. 

effective, no side effects, easily accessible) are contributing factors for the relatively steady 
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line observed in the number of NME approval filings in the last few years according to the 

FDA reports [6]. The number of NME approvals for the years, 2001 to 2010, have been 

constant within the range of 18 to 26 [6]. In fact, the number of new drug approvals (NDA) 

per billion US dollars spent on research and development (R & D) has nearly halved every 

9 years since 1950 depicting a decline in pharmaceutical R & D productivity [7]. Figure 1 

shows the declining trend of NDA per billion US dollars spent on R & D. 

 

Figure 1. Trend showing a decline in the number of drugs approved per billion USD spent 

on R & D investment. Adapted from Scannell et al. [7]. 

Competition from generic manufacturers, extended drug development times, 

increased risk of product failures, and cost constraints set by healthcare payers have pushed 

companies to lower their investment cut-offs per drug molecule [5, 8]. Generics are sold at 

much lower prices than branded drugs, hence creating a natural preference for consumers 

[9]. Increased development times are affecting the period of manufacturing exclusivity 

earned by the companies under patent validity [10]. Since the patent system provides 

temporary monopoly to the issuing company, any delay in research or approval, 

enormously affects the profits [10]. On the other hand, the success rates for a new drug 
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product from Phase I to FDA approval is 32% for large molecules and only 13% for small 

molecules according to a study on risks associated with new drug development by DiMasi 

et al. [11]. With only about a quarter of drugs succeeding on an average through the clinical 

phase the expenditure to return ratio is relatively higher for the industry. Further, due to 

the availability of expertise with current procedures, continued high profit margins, and the 

need to get approval from regulatory agencies for any modifications in methods has made 

organizations reluctant to initiate changes in process schemes. 

1.2. Motivation 

The manufacturing scheme in the pharmaceutical industry is batch dominated and 

has been so from the beginning. Batch manufacturing can be described as a process that 

involves charging of raw materials into the system at the beginning, followed by discharge 

of the product after completion of the operation [12]. The complete operation is performed 

within the boundaries of the system, and the product is collected and stored after each unit 

operation before it can be transferred to the subsequent unit for further processing [12, 13]. 

The product obtained after each processing step is usually tested off-line for quality. If the 

in-process material does not meet the quality specifications for the particular step, it is 

either discarded, or reprocessed before moving ahead [14]. A majority of the 

pharmaceutical processes are poorly understood and relatively inefficient as compared to 

most other chemical industries [15]. Sequential scale up of batch processes, though 

challenging, remains the primary strategy towards process development in the 

pharmaceutical industry [16]. Scaling up in order to meet the market demand involves use 

of larger equipment, and study of material behavior and process parameters to maintain 

desirable product properties at that scale. This aforementioned practice, is a difficult task 
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due to the large number of process parameters and steps in pharmaceutical manufacturing, 

and does not result in the most efficient and robust production method [17]. Additionally, 

the steady demand of product for clinical trials, in sync with manufacturing process 

development, calls for expedited study of scaling up of processes [18]. The batch operation 

delays the processing time from days to weeks, which negatively affects productivity and 

profits [13]. The drug shortage issue in United States, other than the disruption of supply 

chain, could be attributed to the lack of agility and flexibility of the current manufacturing 

facilities [19]. Lack of robustness and possibility of failure could result in poor product 

quality consistency and hence, fewer acceptable batches [19]. The probability to introduce 

variation in quality from batch to batch, and a limited ability to expand production volume 

in the event of drug shortage or a pandemic, are some of the disadvantages of the existing 

manufacturing infrastructure [20, 21]. Further, the batch process method is labour intensive 

and requires the presence of skilled operators to function the equipment, handle materials 

while transporting from one step to the next and to troubleshoot. 

It is the above mentioned challenges and adversities associated with the existing 

manufacturing practices and regulatory realities that have prompted the industry for 

development and implementation of newer and more reliable manufacturing technologies 

[21, 22]. These factors discussed above have motivated researchers, industry and 

regulatory bodies to collaboratively propel the industry forward through enhancement of 

process understanding and innovation of time and cost saving techniques [23, 24]. 
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1.3. Technological Paradigm in Pharmaceutical Manufacturing 

Continuous processing, like in other industry sectors, such as automobile, 

petrochemical, food and beverages, has a tremendous potential to address the economic 

and technical concerns of the pharmaceutical industry [17]. A continuous process is 

different from a batch process with respect to the amount of time the material spends in the 

system. Continuous process involves continuous charge and discharge of raw material and 

product, respectively, through the system for the period of processing [12]. As compared 

to batch production, continuous manufacturing helps improve efficiency by eliminating 

down time resulting in shorter processing times and higher throughput [20]. Additionally, 

continuous processing is economically favorable with lower capital and operating costs 

due to utilization of smaller equipment and space [17, 20, 25]. Use of smaller material 

volumes during processing allows for elimination of scale-up bottlenecks, especially 

relevant in batch method [26]. A variety of other options to increase productivity could be 

implemented by modification of process design, such as increasing the flowrate, using 

parallel processing lines or having longer run times [20]. Moreover, continuous processing 

decreases the amount of possibly expensive API required for process development and 

optimization, thus saving on material costs [20]. Flow of materials from one unit to the 

other reduces the amount of waste at each step leaving a smaller ecological footprint [20, 

27]. 

Further, continuous manufacturing may aid in shortening of supply chain and 

making it less complicated. This would be possible because continuous processing would 

reduce or eliminate storage of intermediates which cannot be immediately processed under 

current manufacturing capabilities [20]. Continuous mode, unlike in a batch process, would 
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reduce the number of operators needed to be present on site since transfer of materials from 

one unit to the other would not be required. Lastly, it could diminish the variability in 

product quality through use of real time process control techniques [21, 22]. All of these 

benefits offered by continuous processing, in addition to its successful execution in some 

of the other industries named above, have made it an attractive option for pharmaceuticals 

as well.  

 However, there are numerous technical, operational, regulatory, and workforce 

challenges, that need to be addressed before it can be widely adapted as a manufacturing 

strategy [28]. Technical challenges may involve thorough understanding of process models 

and material attributes for development of good process control strategies, evaluation of 

potential failure points and coming up with optimal solutions for efficient process 

dynamics, such as start-up and shut-down [20, 29]. Development and operation of this new 

technology could demand presence of highly skilled and trained workforce, who are able 

to gain expertise of the process as a whole [28]. Since the pharmaceutical industry is strictly 

regulated, any significant modifications in process technology would require approval 

from the respective regulatory agencies in different countries, depending on the location of 

the manufacturing facility, and this could result in regulatory delays.  

 Bearing all of these potential challenges in mind, modernizing of pharmaceutical 

processes has been well recognized and supported by the FDA. Use of PAT (Process 

Analytical Techniques) tools to enhance QbD (Quality by Design) efforts has been 

encouraged [30]. A number of documents relevant to QbD approaches have been issued 

over time by the FDA in order to provide guidelines on its application [20]. The shift from 

batch to continuous manufacturing will allow for real time characterization through use of 
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state of the art process analytical tools and hence provide control over drug quality, thus 

being consistent with the belief and realization:  “quality cannot be tested into products; it 

should be built-in or should be by design” [31]. These tools are extremely useful with 

respect to quality control (QC) and quality assurance (QA) of drug products in the 

pharmaceutical industry. 

1.4. Application of Process Systems Engineering in Pharmaceutical Process 

Development 

Efforts by the industry, academia and regulatory bodies have made continuous 

manufacturing of solid dosages a reality, but it is still a long way from being widely used 

for manufacturing of drug products. It is essential to achieve a thorough understanding and 

develop expertise of the process systems that will be implemented since these will have 

huge impact on product quality [32]. Process development includes planning the supply of 

API for toxicological and pre-formulation studies, followed by supply of drug product for 

clinical trials, and finally creation of an environmentally benign, economically viable and 

technically sound production process [33]. Evaluation of critical material properties as a 

function of operating parameters would be essential to analyze and optimize individual 

processes and hence mitigate risks associated, by identification and assessment of design 

elements. 

Application of Process Systems Engineering (PSE) tools would be highly effective 

in this endeavor to facilitate a structured transition from batch to continuous manufacturing 

[17]. This would involve building of mechanistic models for representing process 

knowledge, developing algorithms and advanced process control methods with the help of 

computer-aided engineering tools [34]. Simulation of pharmaceutical processes, along with 
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flexibility analysis could be useful in identifying operating variables affecting product 

attributes as well as aid in process operation design and optimization [35]. Online 

measurement of material properties (i.e. process variables) through application of various 

analytical tools could help gain knowledge and collect real time data of the transformations 

occurring in situ, which could form the basis for predictive process models [36]. These 

models could then be utilized to develop control strategies to ensure uniform product 

quality. 

There are a variety of PSE tools that can be applied to achieve various process 

development objectives. As mentioned previously, predictive models could help to 

improve process understanding, while feasibility and flexibility analysis could assist in 

setting process parameter ranges. Sensitivity analysis would be effective in risk 

management, dynamic optimization could be applied to improve process efficiency and 

steady state optimization to better product and process design. Flowsheet modeling would 

allow for integration and simulation of continuous operations along with implementation 

of control design pattern to govern the product characteristics [35].  

1.5. Predictive Flowsheet Modeling  

Advanced process modeling in the pharmaceutical industry has not been as 

developed, compared to the chemical, petrochemical, food and other industries. Computer 

Aided Process Design (CAPD) and other simulation tools have been widely useful in 

chemical and petrochemical industries since the early 1960’s in expediting the process 

design and optimization study [33]. Modeling of solid dosage processes especially, have 

not yet been well established due to their discrete nature, which has resulted in limited 

study in the area [37]. On the other hand, all of this is changing because of the various 
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initiatives that have been taken by industry in collaboration with academic institutions and 

with support from FDA, to enhance and document their process understanding in the form 

of models that could help reduce the high number of experimental trials during early stages 

of product development and mitigate risks of failures when implemented [38]. 

Development of dynamic modeling software packages, such as gPROMS® and gSOLIDS®, 

from Process Systems Enterprise, Aspen Plus™ and Hysys® from Aspen Technology, Inc. 

and others, especially those applicable and specifically designed to cater pharmaceutical 

processes has helped immensely in creating predictive models with fair amount of accuracy 

[39, 40]. 

Models are mathematical relationships used to describe the occurrences in a system. 

Mathematical models could be extremely useful in pharmaceutical engineering because of 

their ability to provide information about the macroscopic properties of a system, using 

microscopic equations depicting the behavior of the materials within the system [41]. 

Application of models could substantially reduce the time and costs associated with 

experimental trials [41]. However, in order to prove the credibility of these models, it is 

important to validate the output from the models with experimental data [41]. Further, fine 

tuning and estimation of certain unknown parameters present in the model may need to be 

done. On completion of this step, verified and validated (V & V) models are obtained, 

which can be used as a process development and optimization tool [17, 41]. Models can be 

divided into sub-categories depending on the fundamentals of development, complexity, 

and the depth of information they provide that could be useful for a powder system. Some 

of the models that could be useful in pharmaceutical technology have been briefly 

explained below. A detailed review of the models that could be implemented in 
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development of processes for solid-based dosage forms has been provided by Rogers et al. 

[17]. 

1.5.1. First Principles Models 

First principles models are based on the principles of mass, energy and momentum 

conservation and the fundamental laws of physics [42]. First principles models are 

expected to be better than statistical models, which have low tolerance and require high 

amount of experimental data. First principles models can be sub-divided into discrete and 

continuum models. Discrete Element Models (DEM) involve modeling of discrete powder 

particles by defining the motion and behavior of the particles in space with the help of basic 

physical and mechanical principles [43]. In DEM, each particle is modeled individually, 

and the position and velocity of particles can be used to calculate certain quantities of 

interest, such as concentration and particle stresses, or study particle phenomena, such as 

segregation and aggregation [43]. DEM is beneficial since it provides a detailed output for 

a system of dynamic particles and allows for a comprehensive study of the effect of 

material properties, process variables and equipment design on the efficiency of the system 

[43]. However, DEM requires substantial computational capability, may involve longer 

simulation times depending on the size of the system, and can be expensive [43]. On the 

other hand, continuum models such as Computational Fluid Dynamics (CFD) are used for 

continuous systems, such as liquids, gases and dense solids, where particle-particle 

interactions can be ignored [43]. Fundamental transport phenomena principles are 

applicable for continuum models. The approach used in CFD is most accurate for systems 

involving fluids [43]. Dilute solid systems can also be modeled via this approach. For dilute 

solid systems, the solids can either be assumed as a second continuous phase and the 
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equations solved accordingly, or modeled discretely using DEM [43]. Like DEM, CFD 

modeling also requires decent computational power to run software packages such as 

ANSYS® Fluent, efficiently. 

1.5.2. Multi-dimensional Models 

Multi-dimensional models, such as Population Balance Models (PBM), describe 

the state of particle population as a function of time, as well as predict the changes 

occurring within the population [44]. In particulate processes, it is necessary to incorporate 

particle population balances in the model, in addition to the general mass and energy 

balance equations to capture the compartmental (population) behavior [44]. Multi-

dimensional models are typically used to model processes which involve modification in 

material properties (e.g. particle size, porosity, density), such as granulation, milling etc. 

[45, 46]. The general population balance equation stated by Randolph and Larson (1971) 

recognizes the characterization of particle population with the help of internal and external 

coordinates of particles [44]. Internal coordinates include intrinsic properties such as 

porosity of a particle, and external coordinates take into account exterior factors such as 

particle velocity, and hence capture a combined effect on the population state [44, 46]. 

Application of multi-dimensional models in pharmaceutical operations can aid in design, 

control and optimization of particulate processes to achieve desirable product attributes 

[44, 45]. Multi-dimensional models for continuous powder mixing and wet granulation 

processes have been discussed in Sen et al. and Barrasso et al., respectively [45, 46].  

 

 



12 
 

 
 

1.5.3. Semi-empirical Phenomenological Models 

Semi-empirical models are based on theoretical first principles models with certain 

parameters estimated using experimental data or calculated from equations and 

fundamental constants [47]. Since some of the parameters are obtained with empirical data 

and most of the equations are based on theory, these models lie between purely empirical 

and purely theoretical [47]. Parameters obtained from experimental data for a specific 

combination of material and equipment help with model calibration [48, 49]. Calibration 

is done in order to maximize the agreement between experimental data and model output 

[49]. The complexity of the model can be reduced with the help of certain well-made 

assumptions. 

Semi-empirical models do not provide a detailed output about the system, unlike 

DEM and CFD, but provide decent information about the system’s behavior by relating 

model variables and operating conditions. These are lower dimensional models that are 

relatively less cost-intensive and involve shorter simulation times than DEM, PBM or 

CFD. A good example of these models are low dimension population balance models such 

as the residence time distribution (RTD) model. RTD models aid in understanding the 

transport of particles within a unit operation and the effective time spent by the material 

inside the system [50, 51]. Experimental studies for RTDs can be carried out using tracers, 

which are non-reactive, easy to detect elements added to the system, whose path can be 

traced back and the desirable variables quantified at the outlet [51]. The probability density 

function can be used for tracers to compute the distribution of time spent in the system 

[51]. A stimulus response via a pulse or step change can be performed at the inlet to study 

the steady state point in a continuous system and the tracer concentration can be recorded 
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at the outlet [50].  Application of RTD models in solid processes such as continuous 

blending, extrusion, with industrial advancements in the area have been reviewed by Gao 

et al. [50]. RTD models can aid in predicting mixing regime, system throughput, product 

composition and many other factors required to improve the understanding of a unit 

operation. Therefore, these can be effectively utilized in modeling of various 

pharmaceutical operations.   

1.5.4. Empirical and Reduced Order Models (ROM) 

Empirical and reduced order models are low dimensional models that allow for 

computationally inexpensive mathematical representation for real time system analysis 

[52]. The construction of ROMs could however be costly due to the need of accumulating 

system responses [52]. ROM may lack robustness with respect to parameter changes and 

may have to re-built for each parameter variation [52]. As opposed to any other model type 

previously described, these models have hardly any relationship with the system’s 

phenomena and are merely regressions of data available for the system. Heavy dependence 

on data makes them ineffective in areas where there is no input available. Due to 

inexpensive computations, these models are useful for design of control systems and their 

development. 

1.5.5. Flowsheet Modeling 

Integration of processes involves connection of individual unit operations with 

piping in a series to perform a sequential completion of tasks to enable conversion of raw 

materials to desirable product(s) without isolation of intermediates [35]. The output of a 

preceding unit becomes the input of a subsequent one in this case, with material 
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continuously flowing between them [35]. This logic works mathematically as well. Models 

of individual equipment can be integrated as a flowsheet by taking the results from a 

preceding model and using it as the inputs of the subsequent one. These so called flowsheet 

models, that allow for the flow of information between the unit models resemble the flow 

of material(s) between unit operations [35]. Flowsheet simulation can enable process 

engineers to identify integration bottlenecks, if any, and hence work on the issues 

beforehand,  point out contrasting design and control objectives, study the effect of start-

up and shut-down on process efficiency, thus reducing integration efforts and down-time 

[53]. 

Modeling and simulation of processes have numerous benefits in research and 

development. In silico experimentation substantially reduces material requirement for 

physical experiments, and hence reduces the associated costs during early stage product 

development. Additionally, it expedites the drug development study, thereby shortening 

development times. Overall, models can help to enhance process knowledge, identify the 

key process variables and maintain them within a design space defined by the desired 

product properties [54]. Models can further assist in optimization, risk assessment and 

development of control strategies to ensure reproducible product quality [17]. The result is 

a potential robust and reliable manufacturing process that can consistently meet the 

stringent quality requirements mandated by regulators (e.g. FDA). Owing to the various 

benefits observed, modeling of pharmaceutical operations has become a desirable and 

pursued field. 
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1.6. Tablet Manufacturing Process 

1.6.1. Process Overview 

Solid oral dosages are the most common type of pharmaceutical drug dosage forms, 

mainly because of the ease of administration and storage, and their widespread acceptance 

among consumers [55]. Together, capsules and tablets capture more than 50% of the 

pharmaceutical drug market, out of which tablets account for the majority, since they are 

simpler to manufacture than capsules and have longer shelf life than most liquids and 

capsules. Due to their ubiquity in the medicinal world, extensive research is being carried 

out to understand and improve the existing manufacturing processes of these powder 

compacts to meet the desired quality standards and strict regulatory (e.g. FDA) 

specifications. 

The contemporary tablet is a complex mixture of a number of compounds, in the 

present context well-known as excipients, in addition to the active drug substance (Active 

Pharmaceutical Ingredient (API), added to impart certain functionalities to the formulation. 

There are numerous reasons that make addition of extra elements rationale. First of all, 

most of the APIs have a limit on the consumption quantity due to toxicological and other 

factors, which restrict their bulk volume to extremely small volumes. Therefore, addition 

of excipients helps to increase the bulk volume to tangible quantities, also classified as 

bulking agents. Secondly, manufacturing of tablets involves the process of compression, 

and not all API are easily compressible and hence may require higher than practical 

compaction and ejection forces. Incorporation of excipients helps to modify these material 

properties to bring process variables within operating ranges and ensure smooth 

functioning of the system. Lastly, different excipients are aimed at achieving desirable 
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critical tablet qualities and hence dependent in vivo functionalities. Some of the commonly 

used pharmaceutical excipients can be classified into types depending on their application, 

as bulking agents, binders, disintegrants, coatings, lubricants etc. [56]. 

There are various routes of manufacturing a tablet: Direct Compaction (DC), Wet 

Granulation (WG) and Dry Granulation (DG). Figure 2 is a schematic representation of the 

unit operations involved with the different routes. The manufacturing process chosen varies 

depending on the raw material and formulation properties [17]. Direct compaction is the 

least complex and fastest way to produce tablets out of the three. But, direct compaction 

requires a careful selection of components in order to ensure a successful compaction 

operation. On the other hand, granulation processes are used to achieve the desired flow 

properties suitable to carry out the compression operation smoothly. Irrespective of the 

route followed, compression is the final unit operation as it allows us to take advantage of 

plastic deformation and bonding mechanisms of materials to form hard, durable compacts. 

Since this process governs the important tablet properties that affect the critical quality 

attributes (CQA’s) laid down by regulators, it is critical to understand and hence optimize 

the process to achieve production consistency. 
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Figure 2. Flexible continuous manufacturing process [35]. 

The general downstream continuous manufacturing process usually starts with 

feeding of raw materials including the active pharmaceutical ingredient, excipients, and 

lubricant with the help of feeders. The feeders have an integrated hopper to hold certain 

amount of material and a rotating screw to vary the flow rate [57]. The comil is used to 

mill down lumps. The material is then blended to ensure a homogeneous mixture with a 

uniform distribution of the API that would help maintain the requisite API content in 

tablets. After the blending operation, the mixture is either directly passed on to the feed 

frame via the hopper attached to the tablet press for the compression process, or granulated 

via wet or dry granulation process. If granulation is implemented, milling is usually 

performed to reduce the granule size to a desired range. In case of wet granulation, drying 

of granules before further processing is needed [17]. Roller compaction is utilized for the 
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dry granulation route, especially when the formulation is known to be sensitive to moisture. 

Ribbons obtained from the roller compactor are milled to smaller particle sizes in the mill 

[57]. In order to ensure consistent particle size range, the oversize particles are recycled to 

the mill while the undersized particles are sent back to the roller compactor [57]. 

1.6.2. Tablet Press Operation 

Tablet Press is the final unit operation that compresses pharmaceutical powder 

blends to give tablets of uniform size and weight. Since fast paced production of these 

miniatures is necessary to keep up with the global demand and knowing well that tablet 

presses govern the critical table properties, these devices are essential to the pharmaceutical 

industry. Tablet Press consists of several components, all sophisticatedly packed in this 

compact space. Hopper, feed frame, turret, punches and dies are the main parts involved 

with compaction operation in a rotary tablet press. The hopper holds the material to be 

compressed. The material is transferred from the hopper into the dies via the feed frame, 

which pushes the powder with the help of rotating blades on to the turret. The turret is 

rotatable and consists of multiple die stations, each with an upper and lower punch that can 

move vertically to compress the powder. Once the powder is pushed on to the turret, the 

lower punch moves downward allowing the powder to fall gravimetrically into the die 

while creating some suction during the filling stage. Following this, the upper punch and 

lower punch compress the powder in the die at relatively lower pressures during the pre-

compression step designed to eliminate air gaps that could potentially affect tablet porosity 

and hence hardness. The final compact is formed during main compression when much 

higher pressures are applied resulting in products of desirable hardness. Subsequently, the 

tablet is ejected as the lower punch moves upward and the upper punch back to its initial 
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position. Cam tracks guide the movement of punches through these various stages of a 

tablet press cycle. The shape and size of the tablet is governed by the geometry of the die 

and punch used. Nowadays, companies can be seen making great use of this flexibility for 

marketing by using custom built punches that inscribe the brand name on tablets. Figure 3 

below is a schematic representation of the various stages observed in a rotary tablet 

compression system. 

 

Figure 3. Schematic representation of the top-view of feed frame and turret arrangement 

in a rotary tablet press depicting the various stages in the tablet compression process. 

1.7. Development of Tablet Compression Models 

As discussed previously about the advantages of modeling, there have been various 

attempts in literature to develop models for pharmaceutical processes based on operation 

know-how and empirical results. Extensive research on processes associated with 

continuous manufacturing of tablets in recent times has allowed for development of first 
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principles models of the different unit operations, well summarized in Boukouvala et al. 

[53]. A more detailed idea of unit operation models along with in silico process control 

strategies that could be implemented has been reported by Singh et al. [57]. 

A substantial amount of work has been dedicated to understanding the 

compressibility of powders in the past, especially due to the application of this process in 

a variety of industries like metals, ceramics, catalyst, food and pharmaceuticals. Predicting 

compaction profiles that could lead to desirable compact characteristics by relating 

operating parameters to the powder properties has been the basis for most models 

developed in literature. 

Impact of compression on particle fragmentation, deformation, and bonding, using 

mechanical concepts of elasticity and plasticity has been widely studied via mechanistic 

models developed through DEM [58] and FEM [59]. A good amount of information such 

as the effect of die filling, impact of tooling and particle-particle interaction on 

compression forces can be obtained with these models. Tablet characteristics can hence be 

determined and the formulation evaluated. The biggest disadvantage of these models would 

be the need to supply model constants and data for certain phenomena which are difficult 

to capture. PBM has not been used often to model this particular unit operation as compared 

to phenomenological semi-empirical models.  

Phenomenological models have been preferred due to minimal computational time 

and reasonable development costs. Here, the goal has been to associate tablet 

characteristics (like weight, density, hardness) to operation variables (turret speed, fill 

depth, pre-compression length, die and punch dimensions) and incoming powder properties 

(bulk density, porosity). Variation in tablet weight due to die filling is related through 
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powder density, making it a critical property to track in the process [60]. Some of the 

successful endeavors of developing powder densification models can be attributed to the 

significant works of Shapiro, Kawakita [61] and Heckel [62]. Evolution of comprehension 

of powder compressibility and a comparison between Heckel and Kawakita equations has 

been well reviewed by Denny [63]. Though not all of these models were developed for 

pharmaceutical powders in particular, the equations have been modified or shown to work 

well with them in some cases and hence can be extrapolated. 

1.7.1. Heckel Equation 

The Heckel equation is based on the assumption that compression of powders is 

similar to a first order chemical reaction, where pores are reactants and densification of 

bulk is the product. It was first developed for metal powders and has now been extrapolated 

to different materials [62]. Equation 1, below, shows the first order relationship described 

by Heckel. Here, D is the relative density, K is the proportionality constant and P is the 

applied pressure. 

(1 )
dD

k D
dP

            Equation 1 

This equation was integrated for relative density changing from D0 (initial relative 

density) to D (final relative density), while pressure increases from zero to P (peak). This 

led to Equation 2. 

01

1

D
Ln kP

D

 
 
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        Equation 2 

This equation was used to plot Heckel curves for a selection of metal powders using 

uniaxial compaction by Deju et al., as mentioned in Denny [63]. For certain metals such as 
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zinc, the graph did not depict a straight line even after the initial curved region. On the 

other hand, studies carried out by Duberg and Nystrom [64], with softer materials like 

alkali halides and sodium bicarbonates, showed Heckel plots majorly as straight lines with 

hardly any inflection or bend. Since, the 
1

1
Ln

D

 
 
 

 vs P curves obtained were not 

observed to be linear for the complete range for the selection of metal powders and did not 

pass through the origin, Heckel modified the equation to the following, where, 1-D was 

replaced by ε (porosity), and a new parameter A was introduced. 

1
Ln kP A



 
  

 
          Equation 3 

Where, 

0

1
A Ln B



 
  

 
        Equation 4 

This helped to validate the equation for the linear part of the graphs, even though 

the non-linearity at lower pressures for higher initial porosities was not addressed. 

Various reasons were constructed to explain the initial curvature observed in the Heckel 

plots. Some of the reasons put forward were [63]: 

a) Particle rearrangement and settling which is difficult to quantify and hence not 

captured by the equation. 

b) Densification of the sample by fragmentation due to brittle nature at lower 

pressures followed by plastic deformation at increasing compression. Though this 
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explanation did not seem logical enough for metal powders, it could be argued for 

pharmaceutical powders and softer materials. 

c) Presence of agglomerates of fine powders, either due to processing to improve 

properties like flowability, for subsequent steps, or due to the tendency of the 

material to form aggregates. These aggregates, known to be weaker in strength 

than the particles that make them up, could be easily dismantled under slight 

pressure before the material started deforming. 

While the relevance of these explanations was studied upon, the possibility of 

Heckel equation not being completely correct could not be ignored. Hence, Shapiro et al. 

[26] and Carstensen et al. [26], modified the existing Heckel equation to improve the 

predictability of the plot [65]. 

1.7.2. Shapiro General Compaction Equation 

Shapiro general compaction equation can be seen to be an extension of the Heckel 

equation and includes an exponential term to capture the initial curved (non-linear) region 

in the Heckel profile. The Shapiro equation, just like the Heckel equation, was developed 

for a series of metal powders. 

0.50Ln kP mP




 
  

 
       Equation 5 

Here, ε is the porosity of the powder bed, whereas ε0 is the initial porosity of the 

powder bed and P is the compression pressure, while k and m are parameters. 

Carstensen et al. [65], modified the equation to extend its application to 

pharmaceutical powder formulations, that usually compress at relatively lower 
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compression pressures than metals. Since most of the compression data for 

pharmaceuticals is expected to be at pressures lower than the yield pressure (pressure at 

which yield strength of the material is reached), the team looked to improve the validity of 

the model within that pressure range. They worked with binary mixtures of pharmaceutical 

compounds to study and develop the model, and came up with an equation based on the 

fundamental idea that increase in pressure results in a decrease in powder porosity, with 

the assumption that this decrease is exponential. 

1
( )

1
s true A trueLn V aP Ln V 



 
    

 
        Equation 6 

Here, true  is the true density of the powder, VS is the actual specific solids volume, 

ε is the porosity, P is the compression pressure, and ‘a’ is a parameter. 

1.7.3. Kawakita Equation 

            On the other hand, Kawakita and Lüdde proposed a completely new equation that 

relates the compression pressure to relative change in volume of the material and works 

best under lower pressures for soft fluffy pharmaceutical materials [61]. The equation, 

popular as the Kawakita equation, was arranged as, 

1P P

C ab a
          Equation 7 

Where, C is the relative change in volume, and can be mathematically put as,

0

0

V V
C

V


 , P is the applied compression pressure, a was found to be equal to the initial 

porosity and b is a parameter that has to be estimated.  
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Singh et al. [66] have derived Equation 8 from the Kawakita equation to predict 

compression pressures provided we know the change in volume, initial porosity of the 

powder and are able to determine b, generally referred to as the Kawakita parameter. 

( )

( ( 1) )

i f

i f

V V
P

b V V




 
       Equation 8 

Determination of the Kawakita parameter would require the attainment of force-

displacement data, every time a different formulation is studied, to be able to regress the 

parameter since it is formulation specific. Since pharmaceutical formulations are a complex 

mixture of a variety of powders, performing experiments to estimate the Kawakita 

parameter each time a change in composition or constituent material is made, makes the 

model redundant. Hence, there have been various attempts to understand and relate the 

effective Kawakita parameter for a formulation with Kawakita parameters of its pure 

constituent components. One of such studies carried out by Frenning et al., for binary 

mixtures of MCC (Avicel PH101) and PEG (Polyethylene glycol), led them to conclude 

that ideal mixing was valid for this particular system and the calculation of Kawakita 

parameter for the system is the weighted average of the individual components making the 

mixture [67]. Their idea was based on the hypothesis of addition of volumes. Relying on 

the same hypothesis, Mazel and his team, developed a model for prediction of reduction in 

volume of binary mixtures [68]. Here, they worked with MCC and L-alanine as the 

constituents and suggested a way to compute volume reduction under pressure using the 

Kawakita parameters of the pure components in the mixture rather than calculating the 

effective value, and the initial volume fractions [68]. 
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Observing the analogy of Equation 7 to the fundamental law of electrical circuits, 

where the proportionality of voltage to current has been explained by inclusion of the 

proportionality constant, resistance, the Kawakita parameter can be interpreted to be the 

resistance to the applied compression pressure. 

Table 1 below briefly describes the different compression models seen in literature over 

time. 

Table 1. Powder compaction models. 

Compaction 

Model 

Equation Inputs Outputs 

Heckel equation 

[62] 
1

Ln kP A


 
  

 
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Shapiro general 
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equation 
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 Initial Porosity 

Compression Pressure 
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the initial non-linearity 
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experimental data 

Kawakita 

compression model 

[61] 
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1.8. Tablet Hardness Model 

1.8.1. Kuentz and Leuenberger Hardness Model 

The tablet press model described in Singh et al. [66] and implemented in gPROMS 

utilizes the Kuentz and Leuenberger hardness model developed for a compacted particle 

system to determine the tablet hardness. The Kuentz and Leuenberger equation, describes 

the hardness of a compact as a function of relative density and involves two parameters, 

namely, maximum hardness (Hmax) and critical relative density (ρrc) [69]. This model was 

adapted by Singh et al. [66] as given below: 

max (1 exp( ))tablet r rc hardH H             Equation 9 

Where,  

solid
r

tablet
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V
      Equation 10 
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log( )
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hard
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








    Equation 11 

Maximum hardness can be defined hypothetically as the hardness at zero porosity, 

and critical relative density could be explained as the minimum relative density required to 

hold the powder with enough shear strength [69].  

1.9. Objectives 

As summarized above, considerable work has already been pursued with respect to 

compaction of powders and developing models that are able to predict force vs 

displacement curves. However, very little work has been done to assess the effect of 

material properties on compressibility. The compressibility of materials involved in a 

pharmaceutical formulation is extremely essential to understand, since this will help to 
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estimate the forces needed to make tablets of requisite standards and desired quality. 

Dependency of tablet physicochemical properties such as disintegration, dissolution, 

tensile strength and friability on compressibility, makes it a critical factor in the 

manufacturing operation. A lot of the problems that arise during the later stages of product 

development in the industry, are due to the lack of knowledge and ignorance of 

compressibility of pharmaceutical powders and the inability to associate its effect on some 

of the tablet attributes discussed previously. Detailed studies on the connection between 

blend characteristics and compressibility would greatly help alleviate this issue by fixing 

major failure possibilities (e.g. hardness and disintegration problems due to over-

lubrication) during the formulation development stage. 

The current dynamic tablet press model implemented in gPROMS (PSE) simulation 

tool is developed by Singh et al. [66]. This model adapted the Kawakita equation to 

determine the peak compression forces (pre-compression and main compression), and 

adapted Kuentz and Leueberger equation to calculate the tablet hardness (tensile strength). 

Additionally, the model employs material balance and other equations to relate 

input/output parameters and to calculate tablet weight.  

Since Kawakita parameter is formulation dependent and has to be regressed every 

time the composition or material is varied, associating this parameter to measurable 

material properties would help determine this parameter for any new formulation without 

the need to conduct a series of experiments to collect data to help regress the constant. 

Therefore, this work is an attempt to understand the effect of material properties on the 

compaction profile and the peak compression forces observed and hence, possibly identify 

the Kawakita parameter as a function of these. 
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Figure 4. Dependence of Kawakita parameter on material properties. 

The measurable and classifiable, material type and properties that were thought to 

affect compressibility have been shown in the Figure 4. Out of those mentioned, some of 

these properties are inter-dependent and hence all of them need not be evaluated. Also, 

some factors like moisture content depend on the condition (relative humidity) of the 

environment (here, laboratory), where the experiments were performed. Since factors like 

these are difficult to control, their influence was not considered in this study. The same 

properties mentioned above were used to develop a linear relation to determine the model 

parameters in the Kuentz hardness equation. 

Furthermore, an attempt has been made to observe the effect of lubricant 

concentration on the behavior of model coefficients and notice a trend if any. Similar to 

studies concerned with understanding the effect of lubricant on powder and tablet 

properties [70], such as flowability [71], hardness, etc., this study will enhance our 

knowledge of lubricants and their effect on pharmaceutical processes.  
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CHAPTER 2 

EXPERIMENTAL METHODS 

 

2.1. Materials 

The materials for the experiment were carefully selected in order to have a broad 

design input (material property) space. Some commonly used pharmaceutical excipients: 

Lactose monohydrate, two different grades of microcrystalline cellulose (MCC), and active 

pharmaceutical ingredient: Acetaminophen, were used with varying concentrations of 

lubricant, magnesium stearate. The two grades of MCC utilized were Avicel PH101 (FMC 

BioPolymer) and Avicel PH301 (FMC BioPolymer). 

Table 2. Average bulk densities of selected excipients (Input design space). 

Excipient (Trade 

Name) 

Description Bulk Density 

(g/cm3) 

Lactose Monohydrate, Foremost® NF Lactose, 310 0.66 

Avicel® PH 101 Microcrystalline Cellulose NF 0.26 – 0.31 

Avicel® PH 301 Microcrystalline Cellulose NF 0.34 – 0.45 

 

The excipients, which form the majority of any pharmaceutical formulation, and 

hence dramatically affect formulation properties, were chosen such that a wide range of 

material properties would be tested. All the excipients included in this experimental design 

are plastic in nature and hence, undergo compaction via plastic deformation. 

A detailed description of the materials used for the study has been mentioned in Table 3. 
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Table 3. List of materials used for the study. 

Brand Name Material Supplier 

Paracetamol (APAP Compap 

0093)  

Acetaminophen Mallinckrodt Inc. 

Avicel® PH 101 Microcrystalline cellulose 

(MCC) 

FMC BioPolymer 

Avicel® PH 301 Microcrystalline cellulose 

(MCC) 

FMC BioPolymer 

Lactose Lactose monohydrate Foremost Farms 

Magnesium Stearate Magnesium Stearate Mallinckrodt Inc. 

 

2.2. Design of Experiment 

The blends that were used to study the effect of material properties on compression 

have been described in Table 4 below. 

Table 4. Blend composition. 

Blend No. API Excipient* Lubricant** 

1 - Lactose 0.25% 

2 - Lactose 0.75% 

3 - Lactose 1% 

4 - Lactose 1.5% 

5 - Avicel 101 0.25% 

6 - Avicel 101 0.75% 

7  - Avicel 101 1% 

8  - Avicel 101 1.5% 

9 - Avicel 301 0.25% 

10 - Avicel 301 0.75% 

11 - Avicel 301 1% 

12 - Avicel 301 1.5% 

13 APAP Compap (15%) Avicel 101 1% 

*Remaining is the excipient composition, **Magnesium Stearate 

Lactose, Avicel 101, and Avicel 301, were blended at four different levels of 

magnesium stearate ranging from 0.25 – 1.5%. One blend of each, lactose, Avicel 101, and 

Avicel 301, at a particular lubricant concentration were used as internal validation points. 
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Blend of paracetamol (APAP Compap 0093 – Mallinckrodt) as Active Pharmaceutical 

Ingredient, Avicel PH101 and magnesium stearate was used as an external validation and 

to check if the relationship obtained could be extrapolated and applied to ternary mixtures.          

The advantage of this Design of Experiment (DOE) is that it helps to not only study 

the effect of material properties, majorly influenced by the excipient here, on the 

compaction profiles, but also the influence of magnesium stearate as an additive (lubricant) 

on the formulation and hence, compression forces and tablet properties. 

2.3. Experimental Procedures 

2.3.1. Preparation of blends 

All the powders were used as received. All the formulations were prepared with a 

target weight of 1500 g in an 8 quart capacity V-shell blender (Patterson-Kelley). Top-

bottom loading format was followed for charging of the mixture components into the 

blender. For the binary mixtures, the excipient was loaded first, followed by the lubricant 

on the top. The lubricant was well spread over the excipient to ensure as uniform mix as 

possible. Blender speed was set at 19 RPM for a period of 2.5 mins. In case of the ternary 

mixture, the API (APAP Compap 0093) and excipient (Avicel PH101) were initially 

blended for a period of 12.5 minutes at the same speed of 19 RPM, followed by another 

2.5 minutes with the lubricant (Magnesium stearate). The blending was monitored and 

performed in between temperatures of 25 – 29°C at a steady 10% relative humidity. The 

intensifier bar was not used for any of the formulations during blending, and hence it can 

be speculated that the shear effect is negligible and hence the coating of magnesium stearate 

on the excipient particles is insignificant. Additionally, intensifier bars aid with the purpose 
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of disintegrating agglomerates usually formed during wet granulation. Since here a direct 

compaction process was being followed, application of the intensifier bar was not needed. 

 

Figure 5. V-blender used for blending. 

In order for the V-blender to be an effective mixing tool, the recommended fill 

volume is 40-60% of its capacity [72, 73]. This is to allow air space for the particles to 

shift, move and mix well. A fill volume of less than 20% is too small to witness substantial 

slipping action, the mechanism on which this blender is dependent for mixing. Hence, in 

order to ensure decent blend uniformity, it is advised that the fill volume is at least 25% 

and not more than 60%.  

With 1500 g as the target blend weight, the fill volume percent of the blends could 

be calculated using bulk density data to check if it met the suggested requisite. 
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Table 5. Fill volume percent in V-blender  

Blend Volume of 

material (cm3) 

Fill volume 

percent (%) 

Lactose + MgSt (0.25%) 2319.89 30.6 

Lactose + MgSt (0.75%) 2250.00 29.7 

Lactose + MgSt (1%) 2245.00 29.7 

Lactose + MgSt (1.5%) 2320.96 30.7 

Avicel 101 + MgSt (0.25%) 4295.88 56.7 

Avicel 101 + MgSt (0.75%) 4102.50 54.2 

Avicel 101 + MgSt (1%) 4145.83 54.8 

Avicel 101 + MgSt (1.5%) 4079.29 53.9 

Avicel 301 + MgSt (0.25%) 3360.00 44.4 

Avicel 301 + MgSt (0.75%) 3276.25 43.3 

Avicel 301 + MgSt (1%) 3226.36 42.6 

Avicel 301 + MgSt (1.5%) 3307.42 43.7 

APAP (15%) + Avicel 101 + MgSt (0.25%) 3790.08 50.1 

 

2.3.2. Characterization of Blends – Analytical methods 

The blends were characterized for material properties like bulk and tapped density, 

cohesion, permeability, compressibility and particle size distribution before making 

compacts using the PressterTM tablet press. 

(a) Bulk and Tapped Density 

Bulk and tapped density of the blends were estimated by following the standard 

procedure outlined in USP <616> [74]. In this process 100 g of powder was poured in a 

250 ml graduated cylinder and the volume of powder was noted. The actual mass of powder 

(m) added was divided by the observed volume (V0) to obtain the bulk density in g/ml. In 

order to estimate the tapped density of the powder formulation, the graduated cylinder was 

then tapped 10, 500 and 1250 and 2500 times using a Quantachrome AutotapTM tapped 

density analyzer. Volumes after 10, 500, 1250 and 2500 taps were recorded respectively as 
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V10, V500, V1250 and V2500. The last volume which did not subside the volume previous to 

it by 2 ml was noted as the final tap volume (Vt) and was used to calculate the tapped 

density of the blend. 

0

bulk

m

V
              Equation 12 

tapped

t

m

V
             Equation 13 

The bulk and tapped density calculations were used to further calculate the 

Hausner’s ratio (H) and Carr Index (CI) and qualitatively designate the blends with their 

flow character. Hausner’s ratio is widely used to characterize powder flow properties and 

can be defined quantitatively as the ratio of tapped density of a powder to its bulk density. 

Carr Index, on the other hand is an indication of powder compressibility and can be 

estimated by the equation given below. 

tapped

bulk

H



          Equation 14 

1
100

H
C

H

 
  

 
        Equation 15 

(b) Shear Cell 

The Freeman FT4 powder rheometer (Freeman technology Ltd., Worcestershire, 

UK) was used to perform shear cell tests to understand flow properties of the blends by 

determining the cohesion values for the same. FT4 powder rheometer is a universal powder 

tester and the shear test is an important and widely accepted characterization test for 

pharmaceutical powders. Shear cell test measures the shear stress of the powder observed 
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at different levels of the applied normal stress and this allows for plotting of the Yield 

Locus (line), the intersection of which with the y-axis gives the cohesion value. 

For the measurements, the powder samples were gently poured into a 25 mm x 10 

ml splitting cylindrical vessel. A 23.5 mm helical blade provided with the equipment was 

used for conditioning to remove excess air, followed by which the vessel was split and the 

mass automatically recorded by the computer. Since the shear cell module of 6 kPa was 

chosen, the powder was then consolidated at a normal pressure of 6 kPa by a 24 mm shear 

cell provided. As mentioned previously, the shear stress was then measured at five different 

applied normal stresses, quantitatively, 4, 3.5, 3, 2.5 and 2 kPa. The FT4 software then 

constructed the Mohr’s diagram for the samples and provided the flow function and 

cohesion coefficients. 

(c) Permeability 

Permeability test is useful in measuring the resistance between particles in a powder 

bed and plays an important role in understanding filling behavior of materials in the die 

before compression. The permeability module in the FT4 powder rheometer measures the 

pressure drop across the powder bed. This pressure drop ( P ) measured, along with the 

air flow rate used (q), viscosity of air ( ) and height of powder bed (L) can be applied in 

the following equation to calculate the permeability of the powder blend. 

q L

P


 


    Equation 16 

Here, a splitting cylindrical vessel of 25 mm x 10 ml dimension was used to run the 

permeability test. The splitting vessel allows for accurate mass and volume measurements 
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and the pressure drop across the powder bed was estimated whilst a consolidated normal 

stress of 15 kPa was applied. 

Since all the measurements were performed around room temperature (within the 

temperature range of 22.7 – 27.6°C), the viscosity of air was taken to be 184.82 Pa.s 

(viscosity of air at 26.67°C) for the calculations. Length of powder bed was 0.51 cm and 

the flow rate of air was regulated at 0.2 cm/s. 

(d) Compressibility 

The compressibility tests are done to assess the ability of a powder to form a 

compact. The FT4 has a compressibility test module capable of doing measurements at 

varying levels of normal stress up to 15 kPa. Here, the change in volume of the powder is 

measured with increasing load applied via a vented piston that allows for excess air to 

escape. This percentage change in volume for a given normal pressure is given out as 

compressibility. 

(e) Particle Size Analysis 

Particle size distribution analysis was conducted on the Beckman Coulter LS 13 

320 multi-wavelength laser diffraction particle size analyzer. The instrument uses the 

principles of light scattering with its patented PIDS (Polarization Intensity Differential 

Scattering) technology along with its Tornado powder dispersing system to measure the 

particle size distribution for a range of 0.017 um to 2000 um for wet or dry powder systems. 

The basis of this equipment is that the scattered light is unique for each particle size since 

the intensity of scattered light depends on the scattering angle. The scattering pattern 

obtained is passed through a Fourier lens that refracts the light of any particle at a specific 
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angle onto a particular detector, irrespective of the particle’s position in space in the 

incident beam. This composite scattering pattern obtained for all particle sizes in the 

sample is measured by the detectors and de-convolved into the different particle sizes that 

can be observed as an output in the software, and the relative amplitude of each number is 

a measure of the relative volume of the equivalent spherical particles of similar size.   

Since this is a disruptive method of particle size analysis, it is important to have 

excess material at hand for other characterization tests. 

2.3.3. Compression of Blends 

The blends were made into tablets on a compaction simulator known as the 

PressterTM (Metropolitan Computing Corporation, East Hanover, NJ). The PressterTM is a 

rotary tablet press replicator involving a single die and punch assembly capable of moving 

along a linear track, back and forth during the compression operation. It is capable of 

replicating a number of industrially used tablet presses such as the Fette, Kikusui and 

others. This ability of the equipment to mimic the environment of different tablet presses 

is due to the presence of different compression rolls (based on dimension) that change with 

each selection. 

The tablets press is connected to a software which allows the user to adjust and fix 

the operating parameters for each run, record the values of desired variables, and generates 

plots such as the Heckel and Kawakita plot, force-displacement, stress-strain graphs etc., 

for study purposes. Some of the variables that need to be input at the start of each run are 

dosing position (fill depth), pre-compression position (pre-compression length) and 

compression position (tablet thickness desired). The sample, then has to be transferred to 
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the feed shoe, accurately located above the die to guide the powder. The feed shoe has been 

devised to move from its initial place to a temporary position during the compression and 

ejection stages to allow for the movement of punches in and out of the die. This movement 

is automatic, fast and has impeccable timing. It is recommended to run the carriage 

manually once, through the rolls, before starting to make tablets to check for mechanical 

setup errors. Following this, it is suggested that the first trial tablet be discarded and 

excluded from the experimental data. It is advised that this practice be followed every time 

an input parameter is changed or a new set of tablets with a different powder sample are 

going to be made. The PressterTM, hence, is a versatile and complex tablet press replicator, 

that is friendly to operate with fair bit of practice and experience. 

The set of experiments on the PressterTM were performed using the same die 

diameter of 8 mm for all. The fill depth and tablet thickness were varied as a 2 x 3 factorial 

design with the rate of tablet production kept constant. The compaction profiles and peak 

compression forces were recorded for each formulation. The tables of the process 

parameters used for each formulation can be found in Appendix 2. 

2.3.4. Tablet Weight, Thickness and Hardness Measurement 

A random sample of six tablets out of the ten for each operating condition for each 

formulation were selected for weight, thickness and hardness measurements. The thickness 

of the tablets were measured after a rest period of 4-5 days to allow for complete elastic 

expansion. A set of digital vernier calipers (Mitutoyo) was used to record tablet thickness. 

Following weight and thickness measurements, tablets were tested for hardness on Dr. 

Schleuniger® Pharmatron Manual tablet hardness tester (Model 6D). The Pharmatron 

allows for hardness measurement in units of Kiloponds, Newtons, Strong Cobbs, or Pounds 
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Apothecary. The equipment is user-friendly and the measurement procedure involves 

placing the tablet in between the jaws and pressing start button. The jaws close to 

diametrically apply pressure on the tablet and detect the corresponding break force. The 

break force is displayed on the screen in the units selected and shall be recorded for every 

tablet in the random sample as it may vary. Tablet hardness is a destructive measurement 

technique and should be performed last and only after other requisite measurements have 

been performed.    

 

Figure 6. Schleuinger® Pharmatron tablet hardness tester (Model 6D). 
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CHAPTER 3 

RESULTS AND DISCUSSIONS 

 

3.1. Experimental Result 

The blends were characterized for the material properties of bulk and tapped 

density, cohesion, permeability, compressibility, and particle size. All the tests were 

performed in triplicates to ensure reproducible results, except for bulk and tapped density 

measurements which were performed as a duplicate. The averages of the material 

characterization results from experiments have been reported below in Tables 6-7. The 

particle size analysis measurements are given in Table 8. 

Table 6. Material characterization results I. 

Blend  Bulk 

Density 

(g/cm3) 

Standard 

Deviation 

(g/cm3) 

Tapped 

Density 

(g/cm3) 

Standard 

Deviation 

(g/cm3) 

Hausner 

Ratio 

(-) 

1 0.647 0.007 0.883 0.019 1.366 

2 0.667 0.000 0.913 0.007 1.370 

3 0.646 0.006 0.902 0.000 1.396 

4 0.668 0.012 0.915 0.006 1.370 

5 0.349 0.003 0.456 0.009 1.307 

6 0.366 0.002 0.477 0.002 1.304 

7 0.368 0.007 0.479 0.009 1.303 

8 0.362 0.001 0.484 0.005 1.339 

9 0.446 0.000 0.587 0.007 1.314 

10 0.458 0.013 0.592 0.001 1.292 

11 0.454 0.007 0.588 0.000 1.297 

12 0.465 0.001 0.595 0.004 1.279 

13 0.396 0.001 0.514 0.009 1.299 
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Table 7. Material characterization results II. 

Blend  Cohesion 

(kPa) 

Standard 

Deviation 

(kPa) 

Pressure 

Drop 

(mbar) 

Standard 

Deviation 

(mbar) 

Compressibility 

(volume %) 

Standard 

Deviation 

(volume                      

%) 

1 0.35 0.09 6.94 0.47 14.95 0.54 

2 0.37 0.03 11.28 0.48 14.91 0.15 

3 0.36 0.03 12.23 0.83 16.02 0.79 

4 0.44 0.07 13.62 0.23 16.17 1.21 

5 0.76 0.23 2.43 0.08 15.19 0.05 

6 0.66 0.07 2.91 0.21 14.46 0.54 

7 0.29 0.01 3.25 0.06 14.35 0.36 

8 0.43 0.08 3.11 0.27 14.14 0.37 

9 0.35 0.02 3.71 0.09 13.26 0.19 

10 0.47 0.32 3.87 0.03 13.91 0.16 

11 0.17 0.04 4.5 0.12 13.93 0.71 

12 0.60 0.51 4.92 0.31 13.34 0.33 

13 0.44 0.08 1.21 0.01 12.85 0.31 

 

Table 8. Blend particle size analysis results. 

Blend Mean (µm) D10 (µm) D50 (µm) D90 (µm) Standard 

Deviation (µm) 

1 55.05 11.48 55.69 96.94 31.31 

2 53.31 9.57 53.65 96.29 31.90 

3 49.31 8.47 49.84 89.33 29.91 

4 49.18 7.81 48.90 91.34 31.03 

5 71.06 21.20 66.23 129.63 39.46 

6 66.24 17.41 62.61 119.87 37.30 

7 69.27 17.47 66.13 123.85 39.21 

8 56.60 13.18 55.99 99.34 31.50 

9 59.01 16.29 55.87 106.87 32.78 

10 53.72 13.95 51.92 95.72 30.27 

11 49.82 12.53 49.04 88.26 28.00 

12 51.94 12.13 49.88 94.33 30.38 

13 65.71 16.42 63.22 116.93 36.94 
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3.2. Data Analysis and Regression 

3.2.1. Principal Component Analysis 

Principal Component Analysis was performed using a statistical software, Minitab 

17 (Minitab). The objective of performing a PCA was to segregate the blends on the basis 

of material properties and understand the operating material design space we would be 

using to build the model. PCA helps to be able to conclude patterns in this high dimension 

data set by reducing the variables of interest into smaller set of components. These 

components are able to express majority of the variability observed in the actual results. A 

correlation PCA was performed with the material characterization and particle size results 

obtained since these measured variables are different physical quantities and hence, they 

need to be standardized and rescaled. The Eigen values of the correlation matrix given in 

Appendix 4 indicate that taking the first two components would help capture sufficient 

variability (87.3%) and hence reduce the dimension of our data set from 9 to 2. Figure 7, 

also known as the scree plot, is a graphical representation of the Eigen values for each 

component present in Appendix 4. 
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Figure 7. Scree Plot generated during PCA. 

The Eigen value analysis in Table 29 of Appendix 4 lists the correlations between 

each variable (i.e. material property) and each principal component. These correlations 

help interpret the influence of each variable on the principal components. From the 

correlation values, it can be concluded that PC1 (Principal Component 1) is strongly 

affected by bulk density, tapped density, pressure drop and particle size of the blend since 

the absolute values for these variables are higher than that of others. Similarly, PC2 

(Principal Component 2) is strongly correlated to compressibility and cohesion. PC1 can 

be seen to increase with decrease in bulk density, tapped density and pressure drop (since 

these are negatively correlated) and increase in particle size (since this is positively 

correlated). For PC2, both cohesion and compressibility are negatively correlated, hence 
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an increase in any leads to a decrease in PC2. This analysis can be used to explain the 

distribution of scores in Figure 8.        

Lactose, Avicel 101 and Avicel 301 have magnesium stearate as lubricant at four 

levels of 0.25%, 0.75%, 1% and 1.5%. From the score plot shown in Figure 8, we can 

conclude that magnesium stearate does not significantly affect the measured properties for 

lactose and Avicel 301. However, the lubricant concentration seems to influence the 

properties of Avicel 101. This is because, as we can concur from the plot that the excipient 

scores for lactose and Avicel 301 are closely knit to each other, whereas the scores for 

Avicel 101 are distributed further apart, especially along PC2 axis. This distribution of 

scores for Avicel 101 along the PC2 axis can be attributed to the difference in properties 

of compressibility and cohesion among its blends. The scores for lactose and Avicel 301 

are both slightly distributed along PC1 and PC2 axis showing a minor difference in material 

properties between the excipient blends. On the other hand, it can be observed that the 

excipient types affect the material characteristics vastly. This is due to the fact that the 

scores of different excipients are further apart on the plot. Thus we can conclude that the 

excipient, which is majority in quantity, dictates the material properties as compared to the 

lubricant, except for Avicel 101. The effect of APAP in a mixture of Avicel 101 and 

magnesium stearate is not impactful in terms of variation in material properties, since the 

score lies within the distributed group of Avicel 101. The operating material design space 

can be seen to be governed by the extreme points in the score plot. Since, the validation 

points lie within or in proximity of the design space, suitable prediction of model 

coefficients for these points is expected. 
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Figure 8. Score plot of the measured blend properties. 

3.2.1. Regression of model coefficients 

(a) Pre-compression and main compression parameters 

      The initial porosity was calculated using bulk and true density of the blends as 

shown in Equation 17 [75]. 

0 1 true

bulk






 
  

 
         Equation 17 

            The bulk density of the blends was measured whereas the true density for the 

blends was calculated as a weighted average via Equation 18, using the true densities 

of individual components obtained from literature.  

mix A BA B
true true true

A B A B

w w

w w w w
  

   
    

    
     Equation 18 
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The true densities of the materials used in the experiment have been reported in Table 9. 

Table 9. True densities of materials used in the experiment. 

Material (-) True Density 

(g/cm3) 

Reference (-) 

Lactose 1.54 [76] 

Microcrystalline cellulose 1.547 [77] 

Acetaminophen (APAP) 1.293 - 

Magnesium Stearate 1.092 [78] 

 

The initial porosity of the blends were calculated as mentioned above and given in Table 

10. 

Table 10. Calculated blend initial porosities. 

Blend (-) Calculated Initial Porosity (-) 

1 0.58 

2 0.57 

3 0.58 

4 0.56 

5 0.77 

6 0.76 

7 0.76 

8 0.77 

9 0.71 

10 0.70 

11 0.71 

12 0.70 

13 0.74 

 

              The Kawakita parameter as explained earlier is a constant that aids in adjusting 

the value of compression force. Separate values for pre-compression force and main 

compression force were obtained via regression with the help of experimental data from 

the Presster since pre-compression and main compression forces work in different ranges 
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with respect to the relative density. Non-linear regression was performed using the solver 

tool in Excel 2013 to regress the compression parameters. The pre-compression force 

observed was in the range of 0.3 – 1.3 kN and the main compression force was in the range 

of 0.2 – 24 kN overall. 

            The regressed parameters and initial porosities for the blends have been reported 

along with R2 (correlation) and RMSE (Root Mean Square Error) values in Table 11. The 

correlation values for the pre-compression and main compression forces are in the range 

of 0.573 – 0.965 and 0.617 – 0.986 respectively, mainly on the higher side, thus showing 

good agreement between the model and experimental data. In addition the RMSE values 

show that the model is able to convincingly predict the compression forces using the 

regressed parameters. 

Table 11. Regressed pre-compression and main compression Kawakita parameters with 

the initial porosities used. 

Blend 

(-) 

Kawakita Parameter 

(MPa-1) 

Correlation (-) Force (kN) 

Regressed Parameter R2 RMSE 

Pre-

compression 

Main 

compression 

Pre-

compression 

Main 

compression 

Pre-

compression 

Main 

compression 

1 0.0555 0.0412 0.965 0.964 0.106 1.067 

2 0.0518 0.0322 0.944 0.939 0.105 1.203 

3 0.0602 0.0263 0.741 0.828 0.121 2.345 

4 0.0526 0.0237 0.859 0.617 0.098 3.528 

5 0.1445 0.0278 0.573 0.943 0.060 1.317 

6 0.1512 0.0373 0.629 0.981 0.052 0.771 

7 0.1529 0.0382 0.865 0.939 0.050 1.533 

8 0.1581 0.0398 0.800 0.885 0.057 2.157 

9 0.1246 0.0563 0.925 0.952 0.049 1.627 

10 0.1177 0.0382 0.849 0.986 0.048 0.772 

11 0.1218 0.0342 0.756 0.897 0.047 2.021 

12 0.1164 0.0318 0.899 0.800 0.056 3.179 

13 0.1457 0.0389 0.864 0.943 0.047 1.653 
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The plots in Figure 9 are a comparison of the model output to the experimental data 

for the regressed values of the Kawakita parameters for main compression force. These 

plots for Avicel 101, lactose, and Avicel 301, all at 0.75% magnesium stearate 

concentration, and APAP + Avicel 101 with 1% lubricant show a good agreement between 

the model and experimental data for the compression forces. The plots also observe the 

variation in compression force with fill depth and tablet thickness. This shows that the 

material in application significantly affects the compression process parameters which 

influences the process output.
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Figure 9. Comparison between experimental data and model output for main compression force obtained using regressed Kawakita 

parameters with variation in fill depth and tablet thickness set points for (a) Avicel 101 with 0.75% MgSt (b) Avicel 301 with 0.75% 

MgSt (c) Lactose with 0.75% MgSt (d) APAP (15%) + Avicel 101 with 1% MgSt.
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Additionally, parity plots for main compression force for all the blends have been 

included in Appendix 1 for reference to show the agreement between model output and 

experimental values. 

           The effect of magnesium stearate concentration on Kawakita parameter for pre-

compression and main compression was studied for the three excipients: Lactose, Avicel 

101, and Avicel 301. There was only a slight variation in the Kawakita parameter for pre-

compression for all the three excipient blends at different magnesium stearate 

concentrations. Since pre-compression force is utilized to remove excess air between the 

particles and does not contribute directly to bonding of particles to form the final compact, 

the variation in pre-compression force among the same excipient blends was observed to 

be insignificant. This could be the reason why the force adjusting pre-compression 

Kawakita coefficient seemed to change only marginally. The small variation in pre-

compression parameter with lubricant concentration could be due to change in material 

properties of the system.  
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Figure 10. Effect of magnesium stearate concentration on kawakita parameter for pre-

compression. 

 On the other hand, it can be observed from the plot (see Figure 11) that the main 

compression parameter for lactose and Avicel 301 decreases with increasing magnesium 

stearate concentration, whereas, the parameter increases in case of Avicel 101. As we know 

from Equation 8 the kawakita parameter and compression pressure are inversely 

proportional to each other. This means that higher compression pressure is required for 

lactose and Avicel 301 with increasing lubricant concentration. This could be attributed to 

the fact that increasing magnesium stearate concentration leads to coating of particles 

resulting in reduced surface area available for inter-particle bonding of excipient 

molecules. On the other hand, the opposite trend observed for Avicel 101 maybe due to the 
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difference in material properties such as bulk density and cohesion of this powder system 

compared to lactose and Avicel 301. 

 

Figure 11. Effect of magnesium stearate concentration on kawakita parameter for main 

compression. 

(b) Maximum hardness and critical relative density 

            Maximum hardness parameter and critical relative density in the Kuentz and 

Leuenberger equation were regressed simultaneously by minimizing the sum square error 

between the model output and the experimental data. Trends within similar materials with 

changing magnesium stearate concentration were studied for both the model parameters. 

Here, the break force recorded as a result from the hardness tester was converted to 

tensile strength, since the hardness of a tablet refers to the tensile strength of the compact.  

Regression for maximum hardness and critical relative density was performed in Excel. 
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The regression results along with the corresponding R2 (coefficient of determination) and 

RMSE values have been tabulated below. 

Table 12. Hardness model regressed parameters. 

Blend 

(-) 

Regressed Parameters Correlation (-) Hardness (MPa) 

Critical Relative 

Density (-) 

Maximum 

Hardness (MPa) 

R2 RMSE 

1 0.799 4.462 0.935 0.324 

2 0.808 4.312 0.965 0.197 

3 0.847 4.530 0.946 0.276 

4 0.844 4.260 0.959 0.239 

5 0.622 16.727 0.968 0.365 

6 0.656 15.188 0.987 0.204 

7 0.620 17.000 0.951 0.604 

8 0.626 12.595 0.960 0.263 

9 0.703 12.110 0.984 0.214 

10 0.682 10.336 0.963 0.213 

11 0.672 9.354 0.950 0.202 

12 0.659 8.705 0.940 0.205 

13 0.646 10.541 0.973 0.165 

 

Figure 12 show the plots for tablet tensile strength with varying tablet relative 

density and compares the model output to the measured value. Trendline have been shown 

to depict the power nature of tensile strength and relative density. The plots show a very 

good agreement between model and experimental data with R2 value greater than 0.93 for 

all the different blends. 

 

 

 

 



55 
 

 

             

Figure 12. Comparison between tensile strength data and model output for varying tablet relative densities for (a) Avicel  101 with 

0.75% MgSt (b) Avicel 301 with 0.75% MgSt (c) Lactose with 0.75% MgSt (d) APAP (15%) + Avicel 101 with 1% MgSt.
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The effect of magnesium stearate concentration on maximum hardness and critical 

relative density can be observed in Figure 13. The maximum hardness for Avicel 101 and 

Avicel 301 can be interpreted to decrease with increasing lubricant concentration, except 

for the deviation of Avicel 101 with 1% MgSt. This decrease in maximum hardness is same 

as the expected decrease in tensile strength of tablets with increasing lubricant surface area 

and can be attributed to the fact that coating of excipient particles with lubricant reduces 

the surface area for inter-particle bonding [70, 71]. The deviation for Avicel 101 with 1% 

MgSt may be ignored as an outlier in this case. On the other hand, a constant maximum 

hardness is observed for lactose with changing magnesium stearate concentration. This 

difference from microcrystalline cellulose could be due to difference in material properties, 

which might have affected the coating of particles with the lubricant. 

 

Figure 13. Effect of magnesium stearate concentration on maximum hardness. 
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Theoretically, critical relative density can be expected to increase with increase in 

lubricant concentration. This is because, as hardness of the compressed powder system 

decreases with increasing magnesium stearate concentration, the minimal density required 

to hold the powder as a compact will increase. However, from Figure 14, only lactose and 

Avicel 101 seem to follow the trend expected. The critical relative density of Avicel 301, 

on the other hand, is seen to decrease with larger quantities of magnesium stearate. The 

change in critical relative is only marginal for all the three excipients and this could be 

since small concentrations of magnesium stearate does not notably affect the relative 

density of the blends, and hence might not drastically affect the critical relative densities 

as well. 

 

Figure 14. Effect of magnesium stearate concentration on critical relative density. 
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3.2.2. Partial Least Squares Regression 

PLS regression works to minimize the squared error between the data and functions 

used to predict the data, and thus helps to improve the predictability of the regressed model. 

Since the objective here was to develop a model that would be able to predict the data with 

the functions desired with fair accuracy, regression via least squares was selected. Non-

linear regression may help improve the accuracy of prediction further, but would come at 

a significant cost of using iterative optimization techniques to estimate the unknown 

parameters. Additionally, iterative optimizations usually require a reasonable initial value 

of the parameters to converge at a solution. Since the knowledge of the behavior of model 

coefficients with respect to each material property is limited, use of non-linear regression 

would be complex and may not be feasible. Therefore, the model coefficients were 

associated to the material properties measured via a regressed linear model. 

A general PLS linear model is represented as Equation 19. Here, a0 is the constant, 

whereas ai is the coefficient of ith function, Xi, and Y is the response. 

Y = a0 + aiXi
i=1

9

å        Equation 19 

(a) Kawakita parameter for precompression and main compression 

The regressed values of the kawakita parameter for pre-compression and main 

compression were used for partial least squares regression to obtain a correlation between 

the regressed values and the blend material properties. Only the three blends involving 

lactose, Avicel 101, and Avicel 301 at three different magnesium stearate concentrations 

of 0.25, 1 and 1.5% were used to fit the regressed model. The blends at 0.75% concentration 
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of magnesium stearate was used as internal validation, and the APAP and Avicel 101 

mixture was utilized as an external validation. 

The partial least squares regression was performed on Minitab 17 and the results 

generated have been given in Appendix 4. Equations 20 and 21 below are the regressed 

linear models obtained for the prediction of Kawakita parameters for pre-compression and 

main compression, respectively. 

( ) 0.2435 0.1724( ) 0.1189( ) 0.0198( )

0.001147( ) 0.005145( ) 0.000102( ) 0.00016( 10)

0.00028( 50) 0.00008( 90)

bulk tappedb PCF

P V D

D D

  



   

     

 

    Equation 20 

Figure 15 plots the standardized coefficients for each predictor (material property) 

considered in the PLS model for the pre-compression parameter. These plots have been 

obtained as a result of the PLS regression performed in Minitab 17. 

Table 13 describes the material property corresponding to the predictor variable in 

the standardized coefficient plots. 

Table 13. Predictor variables. 

Predictor Variable (-) Material Property (-) 

1 Bulk Density 

2 Tapped Density 

3 Cohesion 

4 Pressure Drop 

5 Compressibility 

6 Mean Particle Size 

7 D10 

8 D50 

9 D90 
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As we can see from Figure 15, the pre-compression Kawakita parameter is strongly 

affected by bulk density, tapped density, and compressibility among other properties. This 

is because the standardized coefficients associated with these properties are substantially 

higher as compared to others. Standardized coefficients ignore the units of the independent 

variables, which are different in this case, and hence aid in making comparisons easy. The 

negative signs ahead of the coefficients for bulk and tapped density depict their inverse 

relation to the pre-compression Kawakita parameter, i.e. when either of these two 

properties increases in value, the pre-compression Kawakita parameter will decrease. Since 

the pre-compression Kawakita parameter is inversely proportional to pre-compression 

pressure, an increase in bulk or tapped density will require a higher pre-compression force, 

which is the case. A powder system with higher density will require higher compression 

pressures to compress the same amount of material over the same volume. 

 

Figure 15. Standardized regression coefficients plot for the pre-compression PLS model. 
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Equation 16 depicts the linear relation between the original blend properties and 

the main compression Kawakita parameter. According to Figure 22, the main compression 

Kawakita parameter, seems to be strongly influenced by bulk density, tapped density, and 

compressibility, among other material properties. Standardized coefficients refer to the 

number of standard deviations by which a response variable will change with increase in 

one standard deviation of the predictor variable. Therefore, Figure 22 helps identify the 

most influential predictors of the main compression Kawakita parameter. Since the main 

compression stage is involved will actual compression of the powder system to form a 

compact, strong influence of compressibility of the material seems practical.  

( ) 0.0934 0.0038( ) 0.0233( ) 0.0185( )

0.00075( ) 0.0079( ) 0.000166( ) 0.000573( 10)

0.00025( 50) 0.000061( 90)

bulk tappedb MCF

P V D

D D

  



   

     

 

    Equation 21 

 

Figure 16. Standardized regression coefficients plot for the main compression PLS model. 
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The parity plot in Figure 17 and 18 compare the predicted value of pre-compression 

main compression kawakita parameter obtained from the Equation 20 and 21, respectively, 

to its fitted value. The plots show good correlation between the two values for three 

excipients with varying magnesium stearate concentrations, as well as for the internal and 

external validations for both pre-compression and main compression parameters. Thus, we 

can conclude that the linear regression model is able to predict the pre-compression and 

main compression Kawakita parameter with decent accuracy. 

 

Figure 17. Parity plot between predicted and regressed kawakita parameter.  
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Figure 18. Parity plot between predicted and regressed kawakita parameter.  

(b) Maximum hardness 

Partial least squares regression was performed to obtain a linear relation that can be 

used to predict the maximum hardness from the material properties measured (i.e. bulk and 

tapped density, pressure drop, cohesion, compressibility and particle size). Here, the blends 

involving lactose, Avicel 101, and Avicel 301 at 0.25, 0.75 and 1.5% magnesium stearate 

concentrations were used to fit the regressed model. The blends at 1% lubricant 

concentration was used as internal validation, and the ternary mixture of APAP, Avicel 

101 and magnesium stearate was used as an external validation. 

Equation 22 shows the linear equation obtained via PLS associating material 

properties to maximum hardness. 
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max 9.425 16.169( ) 11.013( ) 4.374( ) 0.0231( )

0.365( ) 0.0728( ) 0.273( 10) 0.118( 50) 0.094( 90)

bulk tappedH P

V D D D

  



     

     
  Equation 22                                                                       

Here, again, bulk and tapped density seem to be the most influential properties from 

Figure 19, followed by D90 and D10. 

 

Figure 19. Standardized regression coefficients plot for maximum hardness PLS model. 

The parity plot in Figure 20 compares the predicted value of maximum hardness 

parameter obtained from the Equation 22 to its fitted value. The plot shows a good 

correlation between the two values for all the blends along with the internal and external 

verification points. 
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Figure 20. Parity plot between predicted and regressed maximum hardness.  

Equation 23 shows the linear equation obtained via PLS for the prediction of critical 

relative density as part of the Kuentz hardness model. 

        

0.2898 0.1546( ) 0.1091( ) 0.062( )
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0.00023( 50) 0.000043( 90)
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     

 

             Equation 23      

Figure 21 compares the standardized coefficients for the predictors of the critical 

relative density model. The plot suggests bulk and tapped density as the most influential 

properties for critical relative density, followed by permeability and compressibility.                                     
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Figure 21. Standardized regression coefficients plot for critical relative density PLS model. 

Figure 22 compares the predicted and fitted values of critical relative density and 

shows a very good agreement between the two values for all the blends and the validation 

points.  
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Figure 22. Parity plot between predicted and regressed critical relative density. 

Summary of the regression models relating material properties to the response 

variables have been given below in Table 13. The table provides the coefficients associated 

with each material property in the linear model for each response variable when represented 

as Equation 19. 
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 Table 14. Summary of the regression models relating material properties to response 

variables. 

Model Variables 

(units) 

Constant 

Coefficient 

Parameter 

Response Variable 

Pre-

compression 

Kawakita 

Parameter  

(b in MPa-1) 

Main 

Compression 

Kawakita 

Parameter  

(b in MPa-1) 

Maximum 

Hardness  

(Hmax in MPa) 

Critical 

Relative 

Density (ρc) 

Constant (as response) a0 0.2345 0.0934 9.425 0.2898 

Bulk Density (g/ml) a1 -0.1724 – 0.0338 – 16.169 – 0.1546 

Tapped Density (g/ml) a2 -0.1189 – 0.0233 – 11.013 – 0.1091 

Cohesion (kPa) a3 -0.0198 – 0.0185 – 4.374 – 0.062 

Pressure Drop (mbar) a4 -0.001147 – 0.0075 0.0231 0.0046 

Compressibility (%) a5 0.005145 – 0.0079 0.365 0.00201 

Mean Particle Size (µm) a6 -0.000102 0.000166 0.0728 0.00013 

Particle D10 (µm) a7 -0.00016 0.000573 0.273 0.0017 

Particle D50 (µm) a8 -0.00028 0.00025 – 0.118 0.00023 

Particle D90 (µm) a9 -0.00008 0.000061 0.094 0.000043 

 

Figure 23 shows the normalized coefficient values for each variable involved in 

predicting the response variables: main compression Kawakita parameter, maximum 

hardness, and critical relative density. The plot summarizes our conclusion of the PLS 

regression by estimating the most influential material properties with respect to the model 

coefficients. The normalized coefficient values suggest that bulk and tapped density, along 

with cohesion play the most crucial role in predicting the responses of the model 

coefficients studied. The effect of particle size on the model coefficients can be concluded 

to be negligible from the respective normalized coefficients in the plot. Hence, it would be 

interesting to check the robustness of this methodology by eliminating particle size as a 

predictor in PLS models developed for new set of materials with contrasting properties in 

the future. 
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Figure 23. Normalized coefficient plot for main compression Kawakita parameter, 

maximum hardness and critical relative density.
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

 

In this research, the effect of material properties on compressibility of commonly 

used pharmaceutical powders was studied. The design of experiment implemented helped 

generate experimental data to achieve the objective of the study to develop a methodology 

to correlate blend material properties to process parameters. The regressed linear models 

for both compression and hardness parameters were developed and validated for internal 

validation points. For the external validation point, the model showed better prediction of 

the hardness parameters than compression parameters. This can be observed from the parity 

plots that compare the actual coefficient to the PLS model estimated coefficient. In addition 

to developing the concept of predicting model coefficients with material properties, the 

effect of lubricant on the behavior of model coefficients was studied as well. Trends were 

observed for the response in the model coefficients (Kawakita parameter for pre-

compression and main compression, maximum hardness, and critical relative density) with 

varying lubricant concentration. Though these seemed theoretically convincing for most of 

the blends, certain deviations were observed. The deviations were possibly due to the 

differences in material properties observed among the blends and in certain case were 

absolute outliers. 

The results obtained indicate that correlations between material properties and 

semi-empirical model coefficients are feasible provided we are working within the 

operating material properties design space, and it is possible to predict the response of 

model coefficients with adequate accuracy. Such studies aid in development of process 
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models to predict process performance in silico, thereby reducing the need for 

experimentation. This proof of concept can aid in process development, especially in the 

area of design space characterization and robustness analysis. Overall, the work can be 

used as a basis for correlating material properties to semi-empirical models of other unit 

operations involved in continuous pharmaceutical processing in the future. Furthermore, 

the work can be expanded with other materials lying outside of the design space currently 

studied. 

            The PLS regression model obtained as a result of this work would further be 

implemented in the tablet press model (Equations detailed in Appendix 5) developed on 

gPROMS at the Engineering Research Center for Structured Organic Particulate Systems 

(ERC-SOPS), Rutgers University, with limitations on the validity of the model. The model 

could then only be applied specifically for blends involving materials used to develop it. 
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NOMENCLATURE 

Abbreviations 

WHO World Health Organization 

R&D Research and Development 

NME New Molecular Entity 

NDA New Drug Application 

FDA Food and Drug Administration 

PAT Process Analytical Techniques 

QbD Quality by Design 

QC Quality Control 

QA Quality Assurance 

PSE Process System Engineering 

DEM Discrete Element Modeling 

FEM Finite Element Modeling 

CFD Computational Fluid Dynamics 

PBM Population Balance Modeling 

RTD Residence Time Distribution 

ROM Reduced Order Models 

API Active Pharmaceutical Ingredient 

DC Direct Compaction 

WG Wet Granulation 

DG Dry Granulation 

MCC Microcrystalline cellulose 

APAP Acetaminophen 

USP United States Pharmacopeia 

PCA Principal Component Analysis 

PC1 Principal Component 1 

PC2 Principal Component 2 

MCF Main compression force 

PCF Pre-compression force 

MgSt Magnesium Stearate 

RMSE Root Mean Square Error 

 

Symbols 

D  Relative density 

0D  Initial relative density 

P  Compression pressure 

k  Proportionality constant 

  Porosity 
, , ,A B m a  Parameters 
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0  Initial porosity 

true  True density 

b  Kawakita parameter 

C  Relative change in volume 

iV  Initial volume 

fV  Final volume 

tabletH  Tablet hardness 

maxH  Maximum hardness 

r  Relative density 

rc  Critical relative density 

hard  Function of relative density and critical relative density 

solidV  Volume of solid fraction 

tabletV  Volume of tablet 

bulk  Bulk density 

tapped  Tapped Density 

m  Mass 

0V  Initial volume 

tV  Volume after tapping 

H  Haunser ratio 

CI  Carr Index 

P  Pressure drop 
q  Air flow rate 
  Viscosity of air 

L  Height of the powder bed 

  Permeability 
  Cohesion 

mix

true  True density of a mixture 
i

true  True density of a pure component 

Aw  Mass of component ‘A’ in the mixture 

Bw  Mass of component ‘B’ in the mixture 

V  Percent volume change (Compressibility) 

 

Superscripts 

mix  Mixture 

i  Pure component ‘i’ 

 

Subscripts 

0  Initial 

true  True or Absolute 
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f  Final 

tablet  Of tablet 

max  Maximum 

r  Relative 

rc  Critical relative 

hard  Function of relative density and critical relative density 

solid  Solid fraction 

bulk  Bulk or whole 
tapped  After tapping 

A  Component ‘A’ 

B  Component ‘B’ 
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APPENDIX 1 

Parity plots for main compression force to compare the fit between model output and 

experimental data for all the blends. 

 

Figure 24. Parity plot for main compression of lactose with 0.25% magnesium stearate. 
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Figure 25. Parity plot for main compression of lactose with 0.75% magnesium stearate. 

 

Figure 26. Parity plot for main compression of lactose with 1% magnesium stearate. 
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Figure 27. Parity plot for main compression of lactose with 1.5% magnesium stearate. 

 

Figure 28. Parity plot for main compression of Avicel 101 with 0.25% magnesium stearate. 
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Figure 29. Parity plot for main compression of Avicel 101 with 0.75% magnesium stearate. 

 

Figure 30. Parity plot for main compression of Avicel 101 with 1% magnesium stearate. 
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Figure 31. Parity plot for main compression of Avicel 101 with 1.5% magnesium stearate. 

 

Figure 32. Parity plot for main compression of Avicel 301 with 0.25% magnesium stearate. 
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Figure 33. Parity plot for main compression of Avicel 301 with 0.75% magnesium stearate. 

 

Figure 34. Parity plot for main compression of Avicel 301 with 1% magnesium stearate. 
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Figure 35. Parity plot for main compression of Avicel 301 with 1.5% magnesium stearate. 

 

Figure 36. Parity plot for main compression of APAP and Avicel 101 with 0.25% 

magnesium stearate. 
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APPENDIX 2 

Compression parameters applied (i.e. fill depth, pre-compression length and tablet 

thickness) for all the blends have been tabulated below. 

Table 15. Compression parameters for lactose with 0.25% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 5.75 4 2.75 

2 5.75 4 2.5 

3 5.75 4 2.25 

4 5 4 2.75 

5 5 4 2.5 

6 5 4 2.25 

 

Table 16. Compression parameters for lactose with 0.75% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 5.75 4 2.75 

2 5.75 4 2.5 

3 5.75 4 2.25 

4 5 4 2.75 

5 5 4 2.5 

6 5 4 2.25 

 

Table 17. Compression parameters for lactose with 1% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 5.75 4 2.5 

2 5.75 4 2.25 

3 5.75 4 2 

4 5.25 4 2.5 

5 5.25 4 2.25 

6 5.25 4 2 
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Table 18. Compression parameters for lactose with 1.5% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 5.75 4 2.5 

2 5.75 4 2.25 

3 5.75 4 2 

4 5.25 4 2.5 

5 5.25 4 2.25 

6 5.25 4 2 

 

Table 19. Compression parameters for Avicel 101 with 0.25% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 10.75 5 2.25 

2 10.75 5 2 

3 10.75 5 1.75 

4 10.25 5 2.25 

5 10.25 5 2 

6 10.25 5 1.75 

 

Table 20. Compression parameters for Avicel 101 with 0.75% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 10.75 5 2.25 

2 10.75 5 2 

3 10.75 5 1.75 

4 10.25 5 2.25 

5 10.25 5 2 

6 10.25 5 1.75 
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Table 21. Compression parameters for Avicel 101 with 1% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 10.75 5 2.25 

2 10.75 5 2 

3 10.75 5 1.75 

4 10.25 5 2.25 

5 10.25 5 2 

6 10.25 5 1.75 

 

Table 22. Compression parameters for Avicel 101 with 1.5% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 10.75 5 2.25 

2 10.75 5 2 

3 10.75 5 1.75 

4 10.25 5 2.25 

5 10.25 5 2 

6 10.25 5 1.75 

 

Table 23. Compression parameters for Avicel 301 with 0.25% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 8.5 5 1.75 

2 8.5 5 2 

3 8.5 5 2.25 

4 8 5 1.75 

5 8 5 2 

6 8 5 2.25 
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Table 24. Compression parameters for Avicel 301 with 0.75% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 8.5 5 1.75 

2 8.5 5 2 

3 8.5 5 2.25 

4 8 5 1.75 

5 8 5 2 

6 8 5 2.25 

 

Table 25. Compression parameters for Avicel 301 with 1% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 8.5 5 1.75 

2 8.5 5 2 

3 8.5 5 2.25 

4 8 5 1.75 

5 8 5 2 

6 8 5 2.25 

 

Table 26. Compression parameters for Avicel 301 with 1.5% magnesium stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 8.5 5 1.75 

2 8.5 5 2 

3 8.5 5 2.25 

4 8 5 1.75 

5 8 5 2 

6 8 5 2.25 
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Table 27. Compression parameters for APAP (15%) + Avicel 301 with 1% magnesium 

stearate. 

Condition  Dosing Position or Fill 

Depth (mm) 

Pre-compression 

Position (mm) 

Compression Position or 

Tablet Thickness (mm) 

1 10 5 1.75 

2 10 5 2 

3 10 5 2.25 

4 9.5 5 1.75 

5 9.5 5 2 

6 9.5 5 2.25 
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APPENDIX 3 

Comparison between the model predicted and regressed parameter values have been 

tabulated below. 

Table 28. Comparison between calculated and regressed compression parameters. 

Blend Pre-compression 

Parameter (MPa-1) 

Percent 

Difference 

(%) 

Main Compression 

Parameter (MPa-1) 

Percent 

Difference 

(%) Predicted Regressed Predicted  Regressed 

1 0.0583 0.0555 4.95% 0.0423 0.0412 2.76% 

2 0.0468 0.0519 -9.88% 0.0385 0.0322 19.41% 

3 0.0586 0.0602 -2.70% 0.0256 0.0264 -2.79% 

4 0.0511 0.0526 -2.91% 0.0225 0.0237 -5.42% 

5 0.1498 0.1446 3.61% 0.0291 0.0278 4.53% 

6 0.1451 0.1512 -4.02% 0.0329 0.0373 -11.94% 

7 0.1493 0.1529 -2.39% 0.0421 0.0382 10.12% 

8 0.1527 0.1581 -3.43% 0.0326 0.0398 -18.12% 

9 0.1210 0.1247 -2.92% 0.0484 0.0563 -14.03% 

10 0.1222 0.1178 3.72% 0.0376 0.0382 -1.68% 

11 0.1307 0.1219 7.21% 0.0396 0.0343 15.68% 

12 0.1150 0.1165 -1.23% 0.0372 0.0318 17.12% 

13 0.1338 0.1457 -8.18% 0.0521 0.0389 33.68% 

 

Table 29. Comparison between calculated and regressed hardness parameter. 

Blend Maximum Hardness (MPa) Percent Difference 

(%) Predicted Regressed 

1 4.5132 4.4620 1.15% 

2 4.2914 4.3120 -0.48% 

3 4.6099 4.5300 1.76% 

4 4.2512 4.2600 -0.21% 

5 16.9349 16.7270 1.24% 

6 14.8468 15.1880 -2.25% 

7 16.6414 17.0000 -2.11% 

8 12.7444 12.5950 1.19% 

9 12.1679 12.1100 0.48% 

10 10.0684 10.3360 -2.59% 

11 10.6054 9.3540 13.38% 

12 8.8688 8.7050 1.88% 

13 13.2684 10.5410 25.87% 
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Table 30. Comparison between calculated and regressed critical relative density. 

Blend Critical Relative Density (-) Percent Difference 

(%) Predicted Regressed 

1 0.7868 0.7990 -1.53% 

2 0.8143 0.8075 0.84% 

3 0.8385 0.8466 -0.95% 

4 0.8488 0.8439 0.58% 

5 0.6375 0.6220 2.49% 

6 0.6420 0.6557 -2.10% 

7 0.6572 0.6264 4.93% 

8 0.6654 0.6200 7.32% 

9 0.6661 0.7028 -5.22% 

10 0.6782 0.6823 -0.61% 

11 0.7011 0.6722 4.29% 

12 0.6678 0.6590 1.34% 

13 0.6260 0.6459 -3.08% 
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APPENDIX 4 

Detailed statistical analysis result tables have been included below. 

Table 31. Results of PCA. 

Eigen analysis of the Correlation Matrix 

Eigenvalue 6.3168 1.5415 0.7205 0.2901 0.0776 0.0506 0.0023 0.0005 0.0001 

Proportion 0.702 0.171 0.080 0.032 0.009 0.006 0.000 0.000 0.000 

Cumulative 0.702 0.873 0.953 0.985 0.994 1.000 1.000 1.000 1.000 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Bulk 

Density -0.365 -0.214 

 

0.138 -0.472 

 

-0.308 

 

-0.042 

 

-0.351 

 

-0.595 

 

0.065 

Tapped 

Density -0.363 -0.242 

 

0.158 -0.427 

 

-0.257 

 

-0.121 

 

0.237 

 

0.678 

 

-0.082 

Cohesion 0.184 -0.393 -0.857 -0.254 0.048 -0.087 0.050 -0.017 -0.006 

Pressure 

Drop -0.358 -0.317 

 

0.046 0.017 

 

0.428 

 

0.649 

 

0.371 

 

-0.160 

 

-0.037 

Compressi-

bility -0.209 -0.614 

 

0.036 0.684 

 

-0.216 

 

-0.220 

 

-0.122 

 

 0.013 

 

 0.000 

Mean 

Particle 

Size 0.365 -0.267 

 

 

0.242 -0.126 

 

 

0.122 

 

 

0.006 

 

 

-0.150 

 

 

-0.037 

 

 

-0.826 

D10 0.387 -0.054 0.031 0.045 -0.723 0.439  0.343 -0.103 0.030 

D50 0.345 -0.300 0.348 -0.162 0.222 -0.441 0.488 -0.231 0.328 

D90 0.357 -0.317 0.193 -0.131 0.144 0.344 -0.535 0.308 0.444 
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Table 32. PLS regression results for pre-compression and main compression Kawakita 

parameter. 

Method    

Cross-validation Leave-one-out    

Components to evaluate Set    

Number of components evaluated  7    

Number of components selected 4    

Predictor 

Variables 

Pre-compression Kawakita 

parameter 

Main compression Kawakita 

parameter 

Coefficient 

Standardized 

coefficient Coefficient 

Standardized 

coefficient 

Constant 0.243530 0.000000 0.093370 0.000000 

Bulk Density -0.172368 -0.527613 0.033880 0.444962 

Tapped Density -0.118930 -0.535043 0.023321 0.450157 

Cohesion -0.019816 -0.080852 -0.018494 -0.323765 

Pressure Drop -0.001147 -0.110708 -0.000749 -0.310261 

Compressibility 0.005145 0.128636 -0.007852 -0.842381 

Mean PS -0.000102 -0.019847 0.000166 0.139272 

D10 -0.000160 -0.016140 0.000573 0.247968 

D50 -0.000280 -0.045150 0.000250 0.172959 

D90 -0.000080 -0.028222 0.000061 0.092599 
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Table 33. PLS regression results for maximum hardness. 

Method 

Cross-validation Leave-one-out 

Components to evaluate Set 

Number of components evaluated  7 

Number of components selected 5 

Predictor 

Variables 

Maximum Hardness 

Coefficient 

Standardized 

coefficient 

Constant 12.257000 0.000000 

Bulk Density -16.873500 -0.487614 

Tapped Density -11.164600 -0.467043 

Cohesion -4.710600 -0.150285 

Pressure Drop 0.250800 0.217283 

Compressibility 0.163100 0.033006 

Mean PS 0.075700 0.115940 

D10 0.176300 0.157400 

D50 -0.085400 -0.104728 

D90 0.093100 0.263177 

 

 

 

 

 

 

 

 

 



97 
 

 
 

Table 34. PLS regression results for critical relative density. 

Method 

Cross-validation Leave-one-out 

Components to evaluate Set 

Number of components evaluated  7 

Number of components selected 2 

Predictor 

Variables 

Critical Relative Density 

Coefficient 

Standardized 

coefficient 

Constant 0.289843 0.000000 

Bulk Density 0.154691 0.245990 

Tapped Density 0.109135 0.251222 

Cohesion -0.062008 -0.108859 

Pressure Drop 0.004627 0.220550 

Compressibility 0.020099 0.223745 

Mean PS -0.000129 -0.010883 

D10 -0.001741 -0.085514 

D50 0.000226 0.015280 

D90 0.000043 0.006619 
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APPENDIX 5 

Tablet Press Model Equations 

The tablet press model has been briefly described in this section. The model details can be 

found in Singh et al. (2010, 2012) [66, 79]. 

Tablet geometry: Flat cylinder 

1. Area of tablet: 

2( )

4

tablet
tablet

d
A


  

2. Since, the shape of the tablet is that of a cylinder, volume of tablet is calculated 

using geometrical equation for a cylinder. 

tablet tablet tabletV L A  

3. The feed volume for the tablet is associated to the fill depth or the position of the 

lower punch in the die during the initial filling stage. 

0 depth tabletV L A  

4. The following equation gives the pre-compression volume of the tablet. It uses the 

pre-compression length, which is the height of the powder in the die after the pre-

compression stage and is input into the model. 

pre pre tabletV L A  

5. The weight of the tablet is calculated based on the bulk density and feed volume of 

the powder in the die. 

0tablet bulkM V   

6. The pre-compression and main compression forces are calculated via the Kawakita 

compression equations. These equations give the peak compression force and use 

a material dependent parameter, b, known as the Kawakita parameter. 

0 0( 1)pre preV V     

If the true density of the powder blend is known, the initial porosity can be 

computed using the relation between bulk and true density. 
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0(1 )true bulk   
 

0( )pre

pre

pre pre

V V
CP

b 


  

7. The pre-compression force equation involves multiplication with 610  to adjust the 

units of force. 

610pre pre tabletCF CP A  

8. The change in porosity of the tablet after pre-compression is recalculated and 

termed as main porosity or porosity before main compression in the model. 

0 01 ((1 ) )main preV V     

( 1)main pre main tabletV V     

( )pre tablet

main

main main

V V
CP

b 


  

9. Again, the multiplication with 610  is to adjust the units of force. 

610main main tabletCF CP A  

10. The solid volume of the powder is calculated based on porosity and feed volume. 

0 0(1 )solidV V   

11. Relative density is necessary to obtain the hardness of the tablet via Kuentz 

hardness model. 

solid
r

tablet

V

V
   

1
log( )

1

r
hard

rc










 

12. Tablet hardness is to be optimized for a given weight of tablet and is given by the 

following equation. It uses maximum hardness, which is defined as the hardness at 

zero porosity. 

( )

max (1 )r rc hard

tabletH H e
   

   
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13. The rate of tablet production set point is calculated from the flow rate coming in 

using fundamental mass balance and the turret speed set point is subsequently 

calculated from the rate of tablet production set point. 

in set tabletF R M  

60set set dieR T N  

14. The turret speed has been modelled as a first order response, 

( )
( )

speed

speed set

dT t
T t T

dt
    

So is the fill depth, tablet thickness, pre-compression and main compression forces. 

 

15.  The actual rate of tablet production depends on the variation in the turret speed and 

can be given by the equation, 

( ) ( ) 60tablet speed dieR t T t N  

16.  Mass flow rate out of the tablet press is predicted as given below. 

( ) ( )out tablet tabletF t R t M  

 


