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ABSTRACT OF THE DISSERTATION 

Using Multivariate Analysis for Pharmaceutical Drug Product Development 

By Yifan Wang 

Dissertation Directors: 

Fernando J. Muzzio and Benjamin J. Glasser 

Manufacturing of pharmaceutical products has a prominent role in the healthcare 

industry. Generally, the ultimate aim of pharmaceutical development is to release to the 

market products with acceptable quality. As advanced pharmaceutical manufacturing 

technologies such as continuous tablet manufacturing, are developed and embraced, it is 

essential to adopt a scientific, risk-based, and proactive approach for pharmaceutical 

development. The work presented in this dissertation focuses on using multivariate 

analysis tools to establish a predictive capability for pharmaceutical process and product 

development, especially when the amount of materials available is limited. Importantly, 

the methodologies developed in this dissertation can be applied easily to powder handling 

and processing in a wider range of industries, such as cosmetic, catalyst, chemical, 

petrochemical, and food.  

In this work, methods for analyzing flow properties of raw materials and predict process 

performance were developed. A method to analyze shear cell data of powders measured 

under different initial consolidation stresses was introduced.  The method was shown to 

reduce significantly the complexity of shear cell data, and to enabled comparison of 

materials measured under different initial consolidation stresses. In addition, a predictive 

correlation between material flow properties and feeder performance was developed. By 
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using multivariate models, the feeding performance of a material with given flow 

properties can be predicted and quantified.  

Using a quality-by-design approach, the cohesion of a powder mixture can be predicted 

based on the concentration of each ingredient. The prediction model was further 

supplemented by a study investigating two mixing systems. Using statistical analysis, the 

effect of lubrication on blend flow properties was discussed. By quantifying the 

correlations between different flow property measurements, mixing systems that have 

different mixing mechanism were compared.  

Disadvantages of widely used dissolution comparison methods were addressed. 

Statistically reliable methodologies to analyze, compare, and predict drug in vitro release 

profiles were proposed. The proposed methods were shown to be able to consider the 

self-correlated intrinsic nature of dissolution profiles, and to use within-group variability 

to estimate the reliability of observations. Additionally, the work presented a case study 

to improve real-time release testing for advanced tablet manufacturing processes by 

achieving predictive capability for nondestructive dissolution testing. Using hierarchical 

multivariate analysis, the validated prediction models were able to predict dissolution 

profile of an individual tablet based on its NIR spectrum. 
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1. Introduction 

1.1. Background 

Growth of the pharmaceutical industry is highly correlated with general economic 

strength, health care spending levels, and regulatory environments.[1] During 2014-2018, 

global healthcare spending is expected to accelerate by an annual average of 5.2 percent, 

rising to 9.3 trillion USD, as the global economy continues to recover from the Great 

Recession.[2] In the US, the growth of the pharmaceutical industry has been partly driven 

by expanded consumer access to health care through the 2010 Patient Protection and 

Affordable Care Act (PPACA).[3] Meanwhile, as brand drugs came off-patent and 

generic products reduced profit margins, global competition in pharmaceuticals has been 

increased.[4]  

Manufacturing of pharmaceutical products has an increasingly prominent role in the 

pharmaceutical industry.[5] In 2016, advanced pharmaceutical manufacturing has been 

recognized as one of the nation’s priority technology areas by the US federal 

government.[6] In response to increasing competitions and potential opportunities, 

innovation and cutting edge knowledge has been explored and applied to pharmaceutical 

manufacturing.[7]  

The regulatory perspective on pharmaceutical manufacturing has evolved significantly in 

the last two decades. Traditionally, pharmaceutical manufacturing operations are 

inefficient and costly.[8] While opportunities for improving efficiency and quality 

assurance through an engineering approach are often not well acknowledged,[9] the 

“desired state” of pharmaceutical manufacturing, defined by US Food and Drug 

Administration (FDA), emphasizes the improvement of knowledge on design and the 
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understanding of product and process and includes mention of many traditional 

engineering tools such as modeling and distributed process control. Regulatory agencies, 

including US FDA and European Medicines Agency (EMA), have adopted Quality by 

Design (QbD) paradigm. The QbD initiative requires a scientific, risk-based, and 

proactive approach to pharmaceutical development. Quality of a product is not assured by 

testing, but rather built into the design effort from product conception through 

commercialization.[10] In QbD paradigm, critical quality attributes (CQAs) are defined 

as physical, chemical, biological, or microbiological properties or characteristics that 

must be controlled directly or indirectly to ensure the quality of the product.[11] These 

CQAs are usually controlled by understanding and manipulating the effects of critical 

material attributes (CMAs) or critical process parameters (CPPs). 

In the prevailing economic and regulatory environment, solid dosage forms (e.g. tablets 

and capsules) comprise roughly 80% of all pharmaceutical products for US 

consumption.[7, 12] In every tablet, active pharmaceutical ingredients (APIs) are 

formulated with excipients to generate the desired manufacturability and drug release 

attributes of the final drug products.  The manufacturing process usually involves a series 

of unit operations, such as mixing, granulation, drying, milling, and tableting/capsule 

filling.[13] In a QbD perspective, the quality of the final products is heavily dependent on 

raw and intermediate material properties, formulation development, and process 

understanding.[11] 

In terms of tablet manufacturing, the exact sequence of unit operations may vary 

depending on formulation of the drug. However, in general, tablet production is carried 

out by three main processes: direct compaction, wet granulation, and roller compaction. 
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Usually, a process starts with feeding API, excipients and lubricant into the 

manufacturing line. Optionally, the material may be processed in a Comil for delumping 

prior to mixing. In the direct compaction route, materials proceed directly to tableting 

after mixing. Alternatively, the blend can be granulated by wet or dry granulation. In wet 

granulation, a granule drying step is needed before further processing. When granulation 

is involved, an additional milling step may be required to reduce the granule size before 

tableting, followed by a second blending step as additional extragranular ingredients are 

added.  A schematic illustration of tablet production using advanced continuous 

manufacturing is shown in Figure 1-1.  

1.2. Motivation 

Often, during process and product development, the amount of material required for 

testing is often used sparingly and limited to a few hundreds of grams due to cost of 

material, availability, and safety concerns. During early tablet formulation development, 

the amount of API available is often small.[14] For example, less than 10g of API is 

available for conducting drug-excipient compatibility studies. During early drug product 

formulation and manufacturing process development, the amount of API is often limited 

to 0.2-1.0 kg. Therefore, an approach addressing material sparing is highly encouraged to 

save resources and time, and to improve efficiency of dosage form development. 

Specifically, this approach should employ i) use of experimental design concepts to 

perform experiments and obtain data that lead to valid conclusions. ii) selection of 

material characterization techniques that minimizes required amount of materials for 

testing. iii) establishment of predictive models using reliable data analysis methods.  
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The ultimate prerequisite to ensure consistent product quality is the ability to understand 

and manage the effects of material properties and to monitor and control the 

manufacturing process continuously.[15] Multivariate tools for product and process 

design, data acquisition and analysis has been recognized by FDA as part of Process 

Analytical Technology (PAT) tools to enable process understanding for scientific, risk-

managed pharmaceutical development, manufacturer, and quality assurance.[16] 

Methodological experiments based on statistical principles provide effective approaches 

to identify and understand the effects of formulation and process variables, as well as 

their interactions for final product quality. Multivariate mathematical approaches, in 

combination with implemented PAT tools, can be used to predict product quality and 

performance. The established prediction power helps to quickly identify process design 

space and to avoid potential failure modes. Importantly, knowledge obtained using this 

approach is self-updating during development, validation, and commercial manufacturing 

phase, which is able to support product life cycle management, and future development 

products.[17]   

The work presented in this dissertation is motivated by the need to establish predictive 

capability for pharmaceutical process and product development, especially when the 

amount of materials available is limited. Specifically, raw material flow properties and 

their predictive correlations with gravimetric feeding performance are discussed in 

Specific Aim I. Shear cell test has been extensively used to characterize powder flow 

properties. While a number of studies have focused on simulating shear cell testing 

dynamics, examining the effects of various factors on the results, and correlating shear 

cell data with other characterization techniques,[18-20] there are very few published 
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studies that have developed analytical methodologies to reduce the complexity of shear 

cell data. Specifically, since the measurement is dependent on the initial consolidation 

stress, a material is usually characterized under different levels of initial consolidation 

stress in order to generate a family of curves from which parameters can be extracted. It 

is also quite common to develop a material library of the flow properties of various 

powder materials, which leads to a highly dimensional database which can be difficult to 

use and interpret. Meanwhile, as powder flow is a complex behavior and there is no 

unifying index to describe powder flowability, the data complexity often increases to 

higher degrees when multiple characterization techniques are used for testing. When the 

flow properties of a material are characterized by varying measurements, a multivariate 

approach to analyze data and extract information is needed for comparison between 

different materials. Such methods are required, for example, to identify materials with 

matching properties so that placebo or surrogate materials can be used during formulation 

development, saving money and reducing risk to personnel. More importantly, a method 

that develops models for predicting process performance based on material properties is 

needed for process design, development, optimization, and control.      

For Specific Aim II, the powder mixing process and its effect on the flow properties of 

intermediate blends were studied. It has been known for decades that the intensity of the 

mixing process for blends with MgSt may impact blend flow properties significantly. 

Although lubrication effects have been widely studied, there is no published work that 

systematically quantifies and compares the lubrication effect in different mixing devices. 

Questions also remain unanswered regarding how to correlate material properties. Here, 

two mixing systems that have different mixing principles are compared. In addition, the 
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challenge of predicting blend flow properties based on the concentration of each 

ingredient needs to be addressed. Although attention has been paid to characterizing and 

predicting flow properties of mixtures, very few published cases have been presented to 

address the scenario during early formulation development when the amount of drug is 

limited and more than two ingredients are used in the formulation.  

Specific Aim III is devoted to developing methods to analyze, compare, and predict tablet 

dissolution performance, which is one of the critical quality attributes of the finished 

solid dose products. The ability to compare in-vitro dissolution profiles and demonstrate 

similarity of dissolution profiles for tablets and other oral products is extremely important 

to the pharmaceutical industry.[21] The f1 (difference factor) and f2 (similarity factor) 

method has gained considerable popularity and is widely used to guide similarity 

decisions, mostly because of its simplicity and its adoption by various regulatory 

agencies. However, in spite their popularity, studies have shown that these indices have a 

dubious meaning, unknown reliability, and also poor sensitivity in a number of important 

situations.[22] Therefore, alternative methods are needed for comparing dissolution 

profiles that not only are significantly more rigorous and meaningful than f2, but also 

enable the practitioner to assess the reliability of results using standard statistical metrics. 

Additionally, the ability to nondestructively predict in vitro drug release profiles is 

critical for implementing real-time release testing.[23] Previous studies have extensively 

studied the effects of formulation and process variable on dissolution performance.[24, 

25] However, very few studies reported nondestructive methods for predicting entire 

dissolution curve, considering both formulation and process variables. Therefore, 
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systematic methods of using appropriate multivariate analysis tools to analyze and predict 

dissolution profiles are needed and are presented here. 

1.3. Significance to other industries       

The methodologies demonstrated in this dissertation are not limited to the pharmaceutical 

industry. Powder handling and processing are ubiquitous in a wide range of industries, 

such as cosmetic, catalyst, chemical, petrochemical, and food.[26] However, powder-

based processed development, scale-up, and transfer are still based on empirical 

knowledge. Properties of powder and granular materials can be changed significantly 

during the manufacturing process, affecting final product characteristics. For example, 

flow properties of powder and granular materials have great impacts on process stability 

and product uniformity. Gravimetric powder feeding and powder mixing discussed in this 

dissertation are common unit operations in many industries such as oil refining, natural 

gas processing, chemical synthesizing, etc.[27] Understanding the interaction between 

material properties and process performance, as well as establishing predictive models, is 

powerful for robust and reliable process design and development. Therefore, the 

predictive modeling developed in the dissertation, the concept of Quality-by-Design, and 

use of multivariate analysis can be applied and transferred to other industries, offering a 

systematical approach for process and product development.  

1.4. Scope of this dissertation  

Given the preceding discussion, the three specific aims of this dissertation are 

summarized as follows: 
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 Specific Aim I: Flow properties of raw materials and their predictive correlation 

with feeder performance 

 Specific Aim II: Powder mixing and predictive flow properties of intermediate 

blends  

 Specific Aim III: Methods to analyze, compare, and predict drug in vitro release 

profiles 

Each of the six main chapters in this dissertation develops a specific method and 

demonstrates its role in the development of a robust manufacturing process. Chapter 2 

gives an introduction and overview of the statistical and multivariate analysis tools that 

are extensively practiced throughout the dissertation. Chapters 3 and 4 address flow 

properties of raw materials. In Chapter 3, a mathematical method to analyze shear cell 

data of powders measured under different initial consolidation stress is described. In 

Chapter 4, a predictive correlation between material flow properties and feeder 

performance is discussed using a multivariate approach. Chapter 5 and 6 look into flow 

properties of powder mixtures. In Chapter 5, a statistical mixture model is built. The 

model predicts cohesion of a four-component blend based on flow properties and 

concentration of each raw ingredient. Chapter 6 demonstrates use of experimental design 

and statistical methods to study mixing effect on blend flow properties. The lubrication 

effect during mixing on blend flow properties will be quantified and compared in two 

different mixing systems.  Chapter 7 and 8 focus on drug in-vitro release performance. 

Chapter 7 addresses the need to use statistical methods to compare dissolution profiles. In 

Chapter 8, a case study of continuous direct compaction line is presented. Methods are 
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shown to predict tablet dissolution profiles using a combination of chemometrics and 

dissolution profile analysis.  

1.5. Figures for Chapter 1 

 

 

Figure 1-1 A schematic illustration of continuous tablet manufacturing using direct compression, wet 

granulation, and roller compaction. (Picture source: Sebastian Escotet, Fernando Muzzio.) 
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2. Overview of data analysis methods 

2.1. Introduction 

Data-drive models are effective tools to describe and predict data patterns. Formulation 

of statistical and data analytical problems, followed by proper data inference, is necessary 

for a comprehensive approach to process and product development.[28] Most common 

practices during pharmaceutical development seek underlying theoretical guidance in 

statistics.[29] For example, the use of experimental design concepts is common for 

screening, characterizing, and optimizing effects of critical variables on process 

performance and product quality.[30-32] For quality control and validation purposes, the 

sample size determination is strictly based on statistical hypothesis testing, population 

distribution models, and power analysis.[33, 34] Chemometrics, a critical enabling 

component of process analytical technology, is widely used for inline/online process 

monitoring and real time release testing.[35-37] Often, by using experimental design and 

statistical analysis, both effort and experimental error can be significantly reduced. In 

addition, the use of multivariate analysis has been widely used to explore datasets that 

involve multiple inputs or outputs, or both, especially when there is potential correlation 

among multiple variables.[38]   

In this chapter, the data analysis methods used and demonstrated throughout the 

remaining chapters are introduced. The methods are classified into three categories: 

ANOVA-based methods, principal component analysis (PCA) -based methods, and 

regression methods. ANOVA-based methods test the statistical significance of observed 

effects by quantifying and comparing sources of variability, often estimated based on 
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experimental design.[39] PCA-based methods and regression methods explore, discover, 

and recognize the potential correlations in the dataset using machine learning algorithms, 

and use data to train models to learn the correlations and predict future performance. The 

difference between the two approaches is the procedure to identify input-output function 

in regression methods.[40]  

2.2. ANOVA-based methods  

2.2.1.  ANOVA 

Analysis of Variance (ANOVA) is used to test difference between two or more groups by 

comparing the variation between groups and variation within groups. When there is only 

one explanatory variable, for example, ANOVA measures the total amount of variability 

among data observations and splits the total variability into parts. The total variability can 

be expressed as: 

SST (sum of squares total) = ∑ ∑(𝑥𝑖𝑗 − �̅�)2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

The total variability has two sources: the variability between the group means, 

specifically, the variation around the overall mean, �̅�, expressed as: 

SSG = ∑ 𝑛𝑖(�̅�𝑖 − �̅�)2

𝑘

𝑖=1

 

and the variability within the group means, or the variation of observations about the 

mean of individual groups, �̅�𝑖: 
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SSE =  ∑ ∑(𝑥𝑖𝑗 − �̅�𝑖)
2 = ∑(𝑛𝑖 − 1)𝑠𝑖

2

𝑘

𝑖=1

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

Where k is the number of groups, or levels of treatment, ni is the sample size of group i, 

xij is the jth response sampled from the ith group, �̅�𝑖  is the sample mean of responses 

from the ith group (
1

𝑛𝑖
∑ 𝑥𝑖𝑗

𝑛𝑖
𝑗=1 ), si is the sample standard deviation from the ith group 

(
1

𝑛𝑖−1
∑ (𝑥𝑖𝑗 − 𝑥�̅�)

2𝑛𝑖
𝑗=1 ), n is the total sample size (∑ 𝑛𝑖

𝑘
𝑖=1 ), and x̅ is the mean of all 

responses (
1

𝑛
∑ 𝑥𝑖𝑗𝑖𝑗 ). 

Based on the definition, an ANOVA table can be generated as shown in Table 2-1.  

Based on F statistic, in general, if the variability between groups is large relative to the 

variability within groups, it suggests that the means of the populations from where the 

data for the groups were drawn are significantly different.[41] If F is large, the variability 

between treatment levels (groups) is large relative to the variation within treatment levels, 

and therefore the null hypothesis of equal means should be rejected. If F is small, the 

variability between treatments is small relative to the variation within treatments, and the 

sample data is thus consistent with the null hypothesis that population means are equal 

between groups.  

As an extension of one-way ANOVA, when two or more independent variables are 

involved, ANOVA assesses both the main effect of each independent variable, and any 

possible interactions between them. Use of ANOVA-based methods in different 

experimental designs has been extensively detailed by Montgomery.[42] In Chapter 6, 

two-way ANOVA is used to investigate the effect of mixing on blend flow properties. 
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Important to notice, ANOVA is based on several assumptions: i) The dependent variables 

(measured responses) should be continuous variables, as opposed to categorical variables. 

ii) The observations should be independent. In other words, there is no relationship 

between the observations in each group or between the groups. iii) The sample should be 

representative of the population, namely, there should be no significant outliers.  iv) The 

variances between groups are equal. v) The errors are normally distributed.[43]   

2.2.2.  ω2 effect size statistic 

Calculation of effect size, which is often neglected in ANOVA-based analysis, measures 

the relative size of the effect or an interaction. Since the statistical significance of an 

effect, as described by its p-value, depends on both the effect size and the sample size, 

knowing the magnitude of an effect conveys information on practical significance, which 

cannot be obtained based on the p-value. A number of different statistics have been 

described in the literature to estimate effect size.[44] The Omega-squared index is an 

unbiased estimate of the proportion of variance in the population that is explained by a 

given treatment (or by an interaction).[45] 

𝜔2 =
𝑆𝑆𝐺−𝑑𝑓𝑔𝑟𝑜𝑢𝑝∗𝑀𝑆𝐸

𝑆𝑆𝑇+𝑀𝑆𝐸
      (3) 

where SSG is the sum of squares for the treatment group, dfgroup is the degree of freedom 

of the treatment group, MSE is the mean squared error that can be referred to Table 2-1, 

and SST is the sum of squares total.  

The values of omega squared are between 0 and 1 and often referred to the proportion of 

variance accounted by treatment. When F < 1, omega-squared becomes negative but can 
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be interpreted as ω2=0.[46] The use of ANOVA and effect size is further illustrated in 

Chapter 6 and Chapter 7. 

2.2.3.  MANOVA repeated measures 

During pharmaceutical solid processing, many of critical material attributes and critical 

quality attributes are profile data, as opposed to single-point data. Specifically, many of 

the profile data are also associated with repeated measurements. Repeated measurements 

refer to measurements that are taken repeatedly at selected intervals on the same 

sample.[47] For example, compressibility profiles, obtained from a powder flow 

compressibility test, measure change of the same powder bed density by varying applied 

normal stress. Droplet penetration profiles, used to measure the wettability of porous 

powder beds, are intrinsically time-longitudinal data describing the change of liquid 

droplet volume over time during liquid penetrating into a powder bed. Dissolution 

profiles, which also belong to time series data, are measured to describe the trend in drug 

release over time. Since all the measurements described here are repeatedly taken on the 

same subject, there is an intrinsically associated autocorrelation in the data that violates 

the ANOVA assumption of incidence independence.[47] Earlier attempts to analyze 

repeated measures data used split-plot model that assumes a normal distribution of 

random effects and random errors, and that residual random error is constantly correlated 

across the within-group treatment (applied normal stress, or time), which is known as the 

sphericity assumption.[48] However, this univariate approach is not able to consider 

directly the nature of repeated measures data, and thus has limited applications.[49]        
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Alternatively, multivariate approach combines a multivariate general linear model and 

the testing of linear hypotheses using n-dimensional variate vector observations.[50] A 

general expression for MANOVA repeated measures is: 

 

ℎ = 1, … 𝑠 𝑔𝑟𝑜𝑢𝑝𝑠 

i = 1, … 𝑁ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 ℎ 

𝑗 = 1, … 𝑛 𝑟𝑒𝑝𝑒𝑡𝑎𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 (𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠, 𝑜𝑟 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠) 

𝑁 = ∑ 𝑁ℎ 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 

yhi is an n×1 vector of ith sample in the hth group, μ is an n×1 vector for mean response at 

jth within-subject treatment, γh is an n×1 vector for between-group effect of hth group, and 

ehi is an n×1 vector of residuals.[51] 

MANOVA is able to conduct multiple comparisons and directly tests the effect of 

significance. It is also flexible and straightforward to interpret from summary statistics. 

Figure 2-1 uses dissolution profile as an example to show three scenarios: (a) only shows 

time effect, (b) adds treatment effect, and (c) further includes time*treatment interaction 

effect, meaning that the treatment effect is dependent on the time. MANOVA repeated 

measures analysis algorithms are available in most major statistical software packages, 

and O’Brien and Kaiser illustrated an extensive procedure with more technical 

details.[52] In Chapter 7, use of MAVOVA and its advantages for dissolution profile 

comparisons will be further discussed.  
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2.3.  PCA-based methods  

Often in multivariate analysis, the goal is to find hidden structure and correlation between 

variables. Different data-mining techniques haven been developed to address a wide 

range of industries. For example, during marketing basket analysis, association models 

can be used to identify common co-occurrences among a list of possible event [53]. 

Feature extraction algorithms are commonly employed in pattern recognition and image 

processing.[54] Some of the most open-ended data mining techniques are clustering 

algorithms such as principal component analysis (PCA). The aim of PCA is to find and 

group data points with similarities. This has been used extensively when there are no 

obvious natural groupings, in which case the data may be difficult to explore.[55] 

2.3.1.  Principal Component Analysis 

Principal Component Analysis (PCA) is the general name for a clustering technique 

which transforms a number of possibly correlated variables into a smaller number of 

variables called principal components. It uses a vector space transform to reduce the 

dimensionality of large data sets.[56] Specifically, a model is used to represent a data set 

(X) in a reduced dimension (latent variable space) such that the major axes of variability 

are identified [57] by calculating eigenvectors of the co-variance matrix.  The raw data 

set X can be decomposed using the eigenvectors as a new orthogonal basis (a linear 

transformation that is interpreted simply as a rotation of coordinates in parameter space), 

based on the equation below, onto a set of scores (T) and loadings (P), while the 

remaining variability is modeled as random error (ε). 

𝑋 = 𝑇𝑃𝑇 + 𝜀 
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The columns T represent scores in the projected space (the new “coordinates”); loadings 

P represent the weights/ significance of each variable in each dimension.  As mentioned 

earlier, use of PCA is often motivated by the need of identifying hidden structures in 

large data sets, which will be further demonstrated in Chapter 4 where materials with 

similar flow properties can be identified using PCA.   

2.3.2.  M-PCA for profile analysis 

Modified PCA (M-PCA) is a method to analyze and compare a group of curves in terms 

of their level and shape. Figure 2-2 uses dissolution profiles as examples to draw 

empirical understanding for the two properties: (a) and (c) shows that level and “shape” 

of a line (for example, when comparing t1/2-transformed data) can be varied by slope and 

intercept, (b) and (d) are generalized schematics illustrating the comparison of non-linear 

curves. Mathematically, the level of the ith profile can be defined as the average of release 

percentage across n time points: 

𝑦�̅� =
∑ 𝑦𝑖𝑗

𝑛
   

Snee proposed a method to calculate the shape of a response curve in which the level is 

first analyzed, and then a residual matrix (R) is constructed by subtracting the grand 

mean (y..), row and column means (yi. and y.j , respectively):  

R𝑖𝑗 = 𝑦𝑖𝑗 − 𝑦.. − (𝑦𝑖. − 𝑦..) − (𝑦.𝑗 − 𝑦..)  

which is used to examine profile shape by principal component analysis (PCA).[58]  The 

advantage of the PCA approach is that it does not require sphericity assumptions. For 

profile data from repeated measurements, a direct PCA on raw longitudinal data will 
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necessarily confound shape with factor effects (also known as confounding 

phenomenon).[59] The modified-PCA is able to isolate shape effects into the residual 

matrix and thus has better accuracy and sensitivity. The derived values representing level 

and shape effects can then be tested by standard analysis of variance (ANOVA) methods. 

Using this approach, comparing time series profile is able to transform to comparing its 

representative descriptive values. Application of M-PCA to dissolution profiles 

comparison and prediction is discussed in more details in Chapter 7 and Chapter 8.   

2.4. Regression methods  

Regression methods are often used for developing predictive models.[60] The objective 

of predictive modeling is to determine the relationship between several x-variables 

(independent variables, or explanatory variables) and one or more y-variables (dependent 

variables, or response variables). This objective can be achieved by establishing a model 

to estimate the relationships between independent variables and one or more dependent 

variables. In general, a regression model relates response variable (s) y to a function of x 

and β: 

y ≈ f(X, β) 

where y is the dependent variable(s), X is the independent variable(s), and β are the 

model coefficients. In general, establishing a regression model is used to find statistically 

significant model coefficients that correlate y and X such that the residual error is 

minimized. Depending on selection of X as model inputs, the following regression 

methods are further introduced.  

2.4.1.  Multiple linear regression (MLR) 
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Assuming that there is a linear relationship between the dependent variables and the 

independent variable, and that the independent variables do not have 

multicollinearity,[61] the most common form of regression is multiple linear regression: 

y = 𝛽0 + ∑ 𝛽𝑘𝑥𝑘

𝑘

+ 𝜖 

where y is a dependent variable, xk is the kth independent variable, β0 and βk are the 

coefficients, ε is the error term, or the residual. The coefficients can be estimated by a 

standard least squares fit minimizing the sum of squared residuals. Once the coefficients 

are determined from sufficient calibration samples, the dependent variable can be 

predicted based on the independent variables in the model. Although MLR is easy to 

implement and interpret in some scenarios, a major limitation of MLR is that when there 

are many highly collinear variables, the stability of the established multiple linear 

regression model will decrease, and the derived model coefficients may become difficult 

to interpret.[62] 

2.4.2.  Principal component regression (PCR) 

The principal component regression combines the principal component analysis with 

multiple linear regression. In other words, instead of regressing the dependent variable on 

the explanatory variables directly, the principal components of the explanatory variables 

are used as regressors. Since principal components are orthogonal to each other, PCR is 

more robust, compared to MLR, in dealing with the multicollinearity problem when two 

or more of the explanatory variables are being collinear. [63] In addition, PCR reduces 

the dimensionality of the explanatory variables and lowers the effective number of 

coefficients to characterize the model. This is particularly useful when high-dimensional 
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data matrix is used as model input.[64] The use of PCR will be described in Chapter 8 for 

nondestructive dissolution testing.    

2.4.3.  Partial least squares regression 

A criticism against PCR is that the major principal components may model variation in 

the explanatory variables of little relevance to the response variables. In other words, the 

calculation of principal components does not take into account of response variables of 

interest. Partial least squares regression (PLSR), on the other hand, improves the 

regression strategy. PLSR is similar to PCR in many ways. Historically, PCR predates 

PLS, with the latter appearing in published literature around 1983.[65, 66] Both methods 

model an independent variable, or response variable, when there are a large number of 

explanatory variables, and those variables are potentially highly correlated. Both methods 

project the variables to the most dominating dimensions by constructing new predictor 

variables, or the principal components, as linear combinations of the original explanatory 

variables. The difference between the two methods is that PLSR takes the response 

variable into account when finding the principal components, while PCR does not 

consider the response variable.[67] In other words, for each component to be computed, 

PCR maximizes variance of the linear combinations of the explanatory variables, while 

PLSR additionally maximizes covariance between linear combinations of the explanatory 

variable and the response variables. The use of PLSR is demonstrated in case study 

presented in Chapter 4 to predict gravimetric feeding performance based on material flow 

properties.  

A schematic comparison between MLR, PCR, and PLSR is shown in Figure 2-3.  The 

comparison between PLSR and PCR has been conducted extensively in literature. Studies 
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showed that PLS used fewer latent variables than PCR because it uses a linear 

combination of the eigenvectors to construct its loading vectors.[68] PLS also offers a 

greater interpretability of the loading results.[69] However, this did not reflect better 

predictive ability. Remarkably, PLSR can also be used as a supervised classification 

method. The response variable can be considered as a binary vector containing only zeros 

and ones, which are used to describe classification for each sample. This method is an 

extension of PLSR, called as PLS-discriminant analysis.[70] 

2.5.  Multivariate analysis for pharmaceuticals: A literature review 

The majority of multivariate analysis application in pharmaceutical industry focuses on 

developing chemometric models to predict relevant parameters and quality attributes. 

Ultimately, the efforts are to achieve real-time release testing capabilities. This was also 

driven by the initiative of the US FDA Process Analytical Technology (PAT) guidance, 

which proposed the transition from testing at the end of batch processing to timely 

measurement. Process analytical instruments usually record high-dimensional data, and 

require multivariate techniques to extract the required information from obtained data. 

For example, multivariate analysis approach has been extensively practiced in drug 

substance manufacturing to monitor nucleation and crystallization process using 

attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and focused beam 

reflectance measurement (FBRM).[71-73] In drug product manufacturing, use of NIR or 

Raman spectra, coupled with multivariate analysis, has been commonly used to monitor 

blend uniformity during mixing,[74-76]  to determine end-point for wet granulation,[77-

79]   to monitor tablet content uniformity and predict dissolution and tensile strength,[80-

83]    and to determine coating thickness during coating.[84, 85]  
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Besides chemometrics, there are other possible applications of multivariate analysis to 

support process and product development. For example, a PLSR model was built based 

on process data to identify an optimal operation space of a continuous flow 

hydrogenation process.[86] To model the relationship between API and intermediate 

properties of a hard-capsule formulation process, a PLSR was used to remove irrelevant 

variables without significantly impacting the predictive power of the model.[87] To 

predict material flowability, PLSR was used to develop a model that relates particle 

properties to bulk flow properties.[88] The use of PCA can be applied to statistical 

process control and monitoring. For example, new manufacturing batches can be 

projected onto the model that is based on previous validation batches, and the projected 

trajectory with its expected ranges can signify possible deviations.[89, 90] A previous 

study also showed that PCA applied to analyze early cell culture process was more 

powerful than univariate analysis to reveal relevant process features.[91, 92] Importantly, 

some multivariate analysis applications involve multi-block and multiway extensions of 

PCA/PLS methods. The multi-block PLS (MB-PLS) allows the analysis of multiple types 

of data simultaneously. Therefore, raw material attributes, intermediate material 

attributes, final product quality attributes, and process data from several unit operations 

can be correlated and modelled.[93] In a recent study, MB-PLS was used to study the 

relationships between different process steps and identify variables that have greater 

impact on final product quality.[94] The multiway extension, on the other hand, allows 

analysis with one additional dimension. This approach is common for longitudinal data 

such as dissolution profiles. Studies demonstrated that multiway PCA is an effective way 

for dissolution profile analysis to better reveal within- and between-batch differences.[25]  
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In summary, use of multivariate analysis is helpful for developing calibration models 

using spectroscopic tools, analyzing material properties, identifying critical material 

and process variables, and improving process understanding and monitoring. In chapter 

3-8, experimental design, statistical, and multivariate analysis is extensively applied to 

correlate process variables and critical material attributes such as powder flow 

properties, and critical quality attributes such as table dissolution profiles. In chapter 3, 

efforts to establish a high-dimension material property database is described and a 

mathematical method for shear cell data analysis is introduced. Chapter 4 uses PCA and 

PLSR to correlate material flow properties with feeder performance. Chapter 5 uses 

mixture model, an extension of MLR, to predict flow properties of powder mixtures. 

Chapter 6 applies experimental design, ANOVA, and effect size test to quantify and 

compare lubrication effects in two mixing systems. Chapter 7 proposes statistical 

methods to analyze dissolution profiles based on MANOVA and M-PCA. Chapter 8 

uses PCR and chemometric tools to predict dissolution profiles based on NIR 

spectroscopy.      

2.6. Figures for Chapter 2 

 

Figure 2-1 Schematic illustration for MANOVA repeated measures for dissolution profiles 
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Figure 2-2 A schematic illustration on level and shape of a curve 

 

Figure 2-3 A schematic comparison of MLR, PCR, and PLSR. Both PCR and PLSR constructs principal 

components as linear combinations of the explanatory variable, and correlate the principal components to the 

response variables. The difference between PCR and PLSR is that PLSR considers the covariance between the 

response variable and the explanatory variables when computing the principal components.  

 



25 

 

 

 

2.7. Tables for Chapter 2 

Table 2-1 Calculation of an ANOVA table using F-statistics. 

Source SS df MS F 

Model/Group SSG k-1 
MSG =

𝑆𝑆𝐺

𝑘 − 1
 

𝑀𝑆𝐺

𝑀𝑆𝐸
 

Residual/Error SSE n-k 
MSE =

𝑆𝑆𝐸

𝑛 − 𝑘
 

 

Total SST n-1   
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3.  A Method to Analyze Shear Cell Data of Powders Measured 

under Different Initial Consolidation Stresses  

3.1. Introduction  

Powders and granular materials are commonly handled and processed in a wide range of 

industries.[95] In the pharmaceutical industry, active pharmaceutical ingredients are 

mixed with excipient materials and processed through a series of powder-based unit 

operations (e.g, granulation, drying, milling, and compaction) in order to produce the 

final drug product.[96, 97] Similar powder processing is also widely practiced for 

cosmetic, catalyst, chemical, petrochemical and food products.[98-101] 

 Powder flow behavior, one of the most critical properties of powders and granular 

materials, can change significantly during various stages of processing,[102] and if the 

change is poorly understood, monitored, or controlled, process performance and product 

quality can be adversely affected.[7] Therefore, the ability to understand, measure, and 

predict powder flow at each process unit is vital to ensure controllable processes and 

reproducible products.[103] Ideally, this capability can be achieved by studying 

rigorously the flow of different materials in various types of process equipment. 

However, this can be complex and challenging because powder flowability, by definition, 

results from a combination of inherent material properties, environmental and process 

factors, and even choice of characterization method.[104-106]  

In industrial practice, in order to predict the flow of a material in a given piece of  

equipment, or to compare the flow of a new material to an existing material, a practical 

way is to implement a standardized lab scale test to measure powder properties.[107] As 
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a result, many characterization techniques have been developed,[108] and efforts have 

been made to correlate and compare the results obtained in different measurement 

devices.[18, 109-112]  

The shear cell methodology, which was originally developed by A. W. Jenike for design 

of hoppers and silos,[113] is one of the most common powder flow characterization 

techniques. It has been an engineering practice to classify and rank the flowability of 

different materials according to the extracted flow function coefficient (ffc).[114] The 

cohesion, the unconfined yield strength, the angle of internal friction, and other design 

parameters can be extracted from Mohr circle analysis.[115] The methodology has been 

widely applied for powder characterization, and the testing procedure has been detailed 

and documented as international standards.[116, 117] The shear cell test has thus been 

used extensively to characterize the flow properties of powders, and the effect of 

consolidation state on the powder flow properties has been examined.[118, 119] The 

effects of particle size, particle shape and the environmental factors, such as storage time, 

humidity and temperature, have been studied.[120-122] A recent study compared three 

commercially available shear cells in terms of powder flow properties.[123] In addition, 

multivariate analysis has been applied to analyze shear cell data along with other flow 

indices. For example, principal component analysis was used to develop a method for 

early pharmaceutical formulation development.[124] A partial least square regression 

model was established to predict powder flowability based on particle size and shape 

distribution.[88]  

While a number of studies have focused on simulating the testing dynamics, examining 

the effects of various factors on the results, and correlating shear cell data with other 
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characterization techniques, there are very few published studies that have developed 

methodologies to reduce the complexity of the shear cell data. Specifically, since the 

measurement is dependent on the initial consolidation stress,[125] a material is usually 

characterized under different levels of initial consolidation stress in order to generate a 

family of curves from which parameters can be extracted. It is also quite common to 

develop a material library of the flow properties of various powder materials, which leads 

to a multi-dimensional database which can be difficult to interpret. In addition, 

comparing data measured from different shear cells is, in some cases, also needed. As the 

dimensionality of a shear cell database grows, challenges that inevitably need to be 

addressed are: 1) Correlating different flow parameters to reduce the complexity of the 

database. 2) Comparing different materials measured under different initial consolidation 

stresses. 3) Comparing and transferring the database between different types of shear 

cells.  

The purpose of this chapter is to introduce such an analysis framework to address the 

above scenarios. The methodologies are demonstrated using an established shear cell 

database, which contains 9 catalyst support materials and 32 pharmaceutical materials 

measured under four different initial consolidation stresses. The remainder of this chapter 

is organized as follows: section 3.2 describes the materials in the database, the procedure 

for the shear cell test and the Mohr circle analysis used to extract the flow parameters; 

section 3.3 presents a correlation between different flow parameters, and methods to 

analyze the shear cell data for different materials, initial consolidation stresses, and 

testing devices; and finally, section 3.4 is devoted to conclusions.  

3.2. Materials and Methods 
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The materials used in this study are listed in Tables 3-1 and 3-2. Particle size information 

and conditioned bulk density of the materials are listed in Table 3. The particle size of the 

materials was determined using a laser-diffraction (LS-13320) analyzer with a Tornado 

Dry Powder System (Beckmann-Coulter, Brea, California, US).  Conditioned bulk 

density was measured after the standard conditioning cycle of the shear cell test, which is 

further detailed below.  

3.2.1. Shear cell methodology 

The flow properties of all blends were characterized using a rotational shear cell supplied 

as a component of the FT4 Powder Rheometer (Freeman Technology Inc., 

Worcestershire, UK), which is shown in Figure 3-1. The testing procedure consisted of 

four steps: conditioning, consolidation, preshearing, and shearing. The powder was first 

filled into a glass cylinder. During conditioning, a helical blade moved downwards, and 

then moved upwards to erase powder history and ensure a homogeneous reproducible 

state. In consolidation, a vented piston applied the initial consolidation stress (I) to the 

powder. The powder was then sheared to achieve a steady-state. The shear stress and 

normal stress were recorded and were indicated as a preshear point. After the preshear 

point was achieved, the normal stress was lowered and the sample was further sheared to 

obtain a yield point. The paired preshear-shear procedure was repeated 5 times in total at 

different normal stresses to obtain a yield locus.[116] Each test generated one preshear 

point and five yield points. 

 The shear stress was plotted in terms of the normal stress, which is also known as the τ-σ 

diagram. While models to take into account of shape of the yield locus have been 

developed,[126] a commonly used approach is the Mohr-Coulomb model to generate a 
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linearized yield locus. A schematic illustration of Mohr circle analysis for a yield locus is 

shown in Figure 3-2. Linear regression was used to fit the yield points to a mathematical 

expression for the linearized yield locus. The intercept of the yield locus on the shear 

stress τ -axis is defined as the cohesion (τ1), which can be interpreted as the shear stress 

required to deform the powder when no normal stress is applied. The slope of the 

linearized yield locus is tan (φ), where (φ) is the called the angle of internal friction (see 

Fig. 3-2), which is a measure of ease with which the powder particles will slide past one 

another.[127] To extract other flow indices, a Mohr circle was then plotted passing 

through origin and tangent to the yield locus. The intercept of this Mohr circle with the 

normal stress σ-axis is defined as the unconfined yield strength (σc). A second Mohr 

circle was drawn tangent to yield locus and passing through the preshear point (𝜎𝑝,𝜏𝑝), 

with its intercept on the σ-normal stress axis called the major principal stress (σ1). The 

flow function coefficient (ffc), which is often correlated to the arching phenomenon in 

hoppers, is defined as the ratio between the major principal stress (σ1) and the unconfined 

yield strength (σc):[128] 

ffc =
σ1

σ𝑐
⁄     (1) 

While these parameters are typically calculated and reported as independent 

measurements, they can, in fact, be calculated from the mathematical expression in the 

Mohr circle analysis. The Mohr-Coulomb model in the τ-σ diagram can be described as:  

τ =  σ ∗ tanφ + τ1     (2) 
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For a straight line with slope equal to tan(φ) and intercept (cohesion) τ1, the unconfined 

yield strength can be expressed as a function of the cohesion and the angle of internal 

friction:  

σc = τ1 ∗ 2 ∗ tan(45 +
φ

2⁄ )    (3) 

For a circle tangent to the yield locus and passing through the preshear point (𝜎𝑝,𝜏𝑝), 

with its intercept on the σ-axis equal to the major principal stress (σ1), one can show that 

the major principal stress can be related to the cohesion, the angle of internal friction, and 

the coordinate of the preshear point (𝜎𝑝,𝜏𝑝): 

σ1 = (1 + sin φ) (
(A − √A2sin2φ − τp

2cos2φ)

cos2φ
⁄

) −
τ1

tanφ⁄     (4) 

where A = σp +
τ1

tanφ⁄  

In this study, the normal stresses during the shear cell test, and Mohr-Couloumb model to 

extract flow properties were selected as are typical for material characterization 

purposes.[129]  The four levels of initial consolidation stresses were 3 kPa, 6 kPa, 9 kPa, 

and 15 kPa for all materials studied.  At the initial consolidation stress of 3kPa, the shear 

stresses to achieve incipient flow were obtained at normal stresses of 2 kPa, 1.75 kPa, 1.5 

kPa, 1.25 kPa, and 1 kPa. Similarly, at the initial consolidation of 6 kPa, shear stresses 

under normal stresses of 4 kPa, 3.5 kPa, 3 kPa, 2.5 kPa, and 2 kPa were recorded. At the 

initial consolidation stress of 9 kpa, shear stresses under normal stresses of 7 kPa, 6 kPa, 

5 kpa, 4 kPa, and 3kPa were obtained. For the initial consolidation stress of 15kPa, shear 

stresses at normal stresses of 9 kPa, 8 kPa, 7 kPa, 6 kPa, and 5 kPa were recorded. Before 
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obtaining each yield point, the materials reached a steady-state flow at the pre-defined 

preshear consolidation stress. Sampling replicates of 3 shear stresses were conducted at 

each normal stress.   

3.3. Results and discussion 

3.3.1. Correlation between the flow function coefficient and the cohesion  

The materials in the database covered a wide range of flow behavior. Figure 3-3 

examines the correlation between the flow function coefficient and the cohesion (kPa) for 

all the 41 materials at the same initial consolidation stress, and shows that the two 

parameters have an intrinsic inverse correlation (power law with exponent of -1). The 

inverse correlation at all the initial consolidation stresses is statistically significant (p < 

0.05). The inverse correlation between the flow function coefficient and the cohesion is 

consistent with a previous study on solid mixtures.[130]  Importantly, the pre-factor 

coefficient of the power correlation is a material-independent characteristic, and only 

depends on the initial consolidation stress. Moreover, as shown in Figure 3-4, the pre-

factor coefficient is linearly proportional to the initial consolidation stress (Adjusted R-

squared = 0.996, p < 0.05).  

The flow function coefficient, which, by definition, is obtained from the intercepts of the 

two Mohr circles, can also be calculated through its correlation with the cohesion. To 

further investigate this correlation, a dimensionless cohesion, C*, was defined as: 

C∗ =
τ1 (kPa)

I (kPa)⁄     (5) 

where I is the initial consolidation stress. As shown in Figure 3-5, the flow function 

coefficient for all materials, for all values of the initial consolidation stress, collapse to a 
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single curve when plotted as a function of the dimensionless cohesion C*, once again 

exhibiting inverse proportionality. The correlation between them is statistically 

significant (adjusted R-squared = 0.979, p < 0.05). The correlation can be described as: 

ffc = E
C∗⁄     (6) 

where E is a constant. Based on the usual interpretation of the flow function, materials 

can now be classified based on the dimensionless cohesion, C*: 

C* ≤ 0.048, free-flowing 

0.048 < C* ≤ 0.121, easy-flowing 

0.121 < C* ≤ 0.242, cohesive 

C* > 0.242, very cohesive or not flowing 

The distinction between very cohesive materials and non-flowing materials has not been 

made in this study because materials with C* higher than 0.484 were not tested. The 

advantage of this classification is that while the criteria based on the flow function 

coefficient does not take into account the initial consolidation stress, calculation of C* by 

definition includes the effect of the initial consolidation stress.  

The proportionality constant E = 0.485 in the Figure 3-5 is independent of both material 

characteristics and the initial consolidation stress, but it depends on geometric factors of 

the testing device during consolidation, and can be used as an equipment characteristic 

(or to compare measurements obtained in different devices). By means of a simple 
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logarithmic transformation, the correlation between the flow function coefficient and the 

dimensionless cohesion C* can be linearized, as shown in Figure 3-6.  

Combining the experimental results with the mathematical relation introduced in section 

II, the constant E can be used to describe another material property: 

σ1
I⁄ = 2 ∗ E ∗ tan(45 +

φ
2⁄ )     (7) 

where 𝜎1 is the major principal stress, which is the relative consolidation state when the 

material is in steady-state flow under the preshear normal stress; φ is the angle of internal 

friction, and the plane (45。 +
φ

2⁄ ) to the major principal stress is the direction where 

the shear band with lowest deformation resistance is most likely to occur.[131] Therefore, 

the change of the major principal stress is related to the equipment characteristic, E, and 

the material property, φ .  This is consistent with the previous studies. It has been 

observed that when powder reaches a steady-state, the consolidation state is a material 

property, and only depends on the applied stress.[132] In addition, previous researchers 

showed that the impeller torque, which is related to the shear stress, increased linearly 

with the fill level or applied normal stress.[133, 134]  

3.3.2. Correlation between the unconfined yield strength and the cohesion 

As described in section II, the ratio between σc, the unconfined yield strength (UYS) and 

the cohesion is only dependent on the angle of internal friction. Experimental results in 

this study show that the unconfined yield strength (σc) is linearly correlated with the 

cohesion. Figure 3-7 shows the yield loci of maize starch measured under four initial 

consolidation stresses. By plotting the UYS as a function of the cohesion, all the yield 

points at different initial consolidation stresses can be described by a single line passing 
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through the origin. In other words, as the initial consolidation stress changes, the ratio 

between the change of the UYS and the change of the cohesion is constant. The linear 

correlation is statistically significant (Adjusted R-squared = 0.997, p < 0.05). The 

coefficient 3.303 is independent of the initial consolidation stress, and thus this slope can 

be considered to be a characteristic of the material and to be independent of the testing 

conditions for a particular shear cell.  

Hereon, we describe the relationship between UYS and the cohesion as the “material 

characteristic line”. Figure 3-7 also shows that the characteristic line can be transformed 

back to the shear stress-normal stress (τ-σ) diagram to describe the linearized yield loci. 

In other words, while the UYS-cohesion plot (right) reduces the complexity of the shear 

cell data by collapsing all yield loci into a single line, it contains all the information 

needed, such as the intercept (τ1) and the slope (φ), to transform back to the linearized 

yield loci family (left). In addition, the cohesion is highly correlated to the flow function 

coefficient, as discussed earlier in this section, and therefore the information regarding 

the preshear point, for example the major principal stress, is also stored in the UYS-

cohesion plot. The material characteristic line for the individual materials examined is 

reported in the Figure 3-8 and Figure 3-9. For all the materials investigated, a linear 

relation between UYS and cohesion is obtained (which is statistically significant, p < 

0.05).  

The material characteristic line proposed here is consistent with previous studies. Teoman 

et al. investigated seven bulk solids and found that the angle of internal friction did not 

change significantly with initial consolidation stresses.[135] In addition, simulations have 



36 

 

 

 

demonstrated that the ratio between the shear stress and the normal stress is constant 

when the powder flow is in the elastic-quasistatic regime.[136]  

The methodology used to generate the material characteristic line can be used to compare 

different materials. For demonstration, the yield points at all consolidation states and the 

material characteristic lines of the catalyst support materials in the database are shown in 

Figure 3-10. A yield point with lower value of the cohesion indicates lower inter-

particulate cohesive forces during incipient flow, and a material with lower value of the 

slope generally experiences less frictional forces to flow.[127] While the material 

characteristic line describes a material at different consolidation states, the differences 

between the lines are independent of the initial consolidation, which enables the 

comparison of different materials tested under different initial consolidation stresses.  

3.3.3. Comparison of different shear cells 

To summarize the previous discussion, the UYS – cohesion plot gives a material 

characteristic line that is independent of the initial consolidation stress, and the ffc – C* 

plot enables one to classify the material. This relationship can also be used to compare 

measurements obtained in different types of equipment. This section compares different 

types of rotational shear cells to further investigate the proposed methodology. Three 

commercially available rotational shear cells were compared in a previous study[123]: 

The RST-XS (Dietmar Schulze, Wolffenbuttel, Germany), the FT4 (Freeman 

Technology, Tewkesbury, Gloucestershire, UK), and the PFT (Brookfield Engineering 

Laboratories, Inc., Middleboro, MA, USA). The same coarse alumina and fine alumina 

materials described above and used in the present study were used in the previous study. 

3 kPa, 6 kPa, and 9 kPa were selected as initial consolidation stresses for all the shear 
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cells, and an additional 15 kPa was used for both FT4 and Schulze shear cell. A previous 

study showed that the reproducibility of measurements of the free-flowing material is 

lower than that of cohesive materials.[123] The yield locus measured for the coarse 

alumina using the Brookfield shear cell had negative cohesion values at initial 

consolidation stresses of 6 kPa and 9 kPa, which was an artifact of the extrapolation of 

the linearized yield locus, and thus were not considered here.  

Figure 3-11 shows that the equipment characteristic E of the Schulze (E=0.447) and the 

FT4 (E=0.485) shear cell are reasonably similar. The Brookfield shear cell, on the other 

hand, had different testing performance to achieve the steady-state flow. As shown in 

Figure 3-12, the angle of internal friction measured from the Schulze shear cell was 

larger than the one measured using the FT4 shear cell for both materials. The Brookfield 

shear cell gave similar results for the angle of internal friction to the FT4 shear cell for 

fine alumina. For both materials, the cohesion measured by the FT4 shear cell had a 

wider span as the initial consolidation stress increases.  The UYS – cohesion plot 

suggests that the devices had different testing performance in achieving the incipient flow 

of materials as well. The difference in achieving both the steady-state flow and the 

incipient flow is consistent with the statistical analysis in the previously published 

paper.[123]  

3.4. Conclusion 

In this chapter, shear cell methodologies used to characterize powder flow properties 

were examined.  A shear cell database containing 41 powder and granular materials at 4 

different initial consolidation stresses was presented. The flow indices were extrapolated 

based on the Morh-Coulomb model to generate the linearized yield locus. In order to 
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reduce the complexity of the dataset, the correlation between different parameters was 

examined. For the cases studied here, an inverse correlation between the flow function 

coefficient and the cohesion was identified. The correlation pre-factor is material 

independent and increases linearly with the initial consolidation stress. A dimensionless 

cohesion, C*, was defined using the cohesion value and initial consolidation stress. The 

ratio between the flow function coefficient and C* was independent of the initial 

consolidation stress, and can be considered to be a testing equipment characteristic 

value, E. The characteristic E can also be used to describe the relationship between the 

applied normal stress and the characteristic state when materials are critically 

consolidated.   

The mathematical relation between the unconfined yield strength and the cohesion is a 

function of the angle of internal friction. For the cases studied here, by finding that the 

angle of internal friction did not change significantly with the initial consolidation stress 

for all the 41 materials in the database, a material characteristic line was generated to 

collapse all the yield loci for a given material into a single line independent of the initial 

consolidation stress. The slope of the material characteristic line is a material property 

required to achieve incipient flow. Material characteristic lines can be used to compare 

different materials, even when measurements were taken under different initial 

consolidation stresses.  

The methodology presented here augments the shear cell data analysis through 

understanding the relationships of the different measurements. The identified correlation 

can be used to compare different types of shear cells as shown in the case study presented 

here. For the cases studied here, the comparison suggests that shear cells have different 
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testing dynamics to achieve the incipient and the steady-state flow for different materials. 

The results presented here are for a limited set of materials and further work is needed to 

see if additional materials will follow the same behavior.  If the observed behavior carries 

over to other materials, then the proposed methods could facilitate understanding of shear 

cell measurements and provide valuable ways to analyze and compare them.  Based on 

the results presented in this chapter, the angle of internal friction will be used as an 

important material flowability input in the following chapters. Chapter 4 combines data 

from the shear cell test and other flow characterization techniques to predict feeding 

performance of raw materials. Chapter 5 supplements the proposed shear cell data 

analysis method by investigating powder mixture systems.  

3.5. Figures for Chapter 3 

 

 

Figure 3-1 The schematic (a) and image (b) of the shear cell setup supplied with the FT4 Powder Rheometer 
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Figure 3-2 Mohr circle analysis for shear cell data. 

 

 

 

Figure 3-3 Correlation between flow function coefficient and cohesion (kPa) for 41 materials under four initial 

consolidation stresses. 
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Figure 3-4 The power correlation coefficient of flow function coefficient and cohesion vs.the initial consolidation 

stresses. 

 

 

 

Figure 3-5 The correlation between the flow function coefficient and log of C* for 41 materials under 4 initial 

consolidation stresses. 
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Figure 3-6 The correlation between the log of the flow function coefficient and log of C* for 41 materials under 4 

initial consolidation stresses. 
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Figure 3-7 The yield points of maize starch are shown. Top: Yield loci of coarse alumina measured under four 

different initial consolidation stresses. Bottom: The unconfined yield strength (UYS) as a function of the 

cohesion. 
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Figure 3-8 Plots of unconfined yield strength and cohesion showing the material characteristic lines for catalyst 

support materials.  
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Figure 3-8 Plots of unconfined yield strength and cohesion showing the material characteristic lines for 

pharmaceutical materials. 
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Figure 3-8-continued Plots of unconfined yield strength and cohesion showing the material characteristic lines 

for pharmaceutical materials. 
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Figure 3-9 Using material characteristic lines to compare different materials. The unconfined yield strength 

(UYS) as a function of the cohesion. 

 

Figure 3-10 Comparing three shear cells by using ffc-C* correlation 

y = 0.447x-1

R² = 0.999

y = 0.485x-1

R² = 0.968

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2

fl
o

w
 f

u
n

ct
io

n
 c

o
ef

fi
ci

en
t

C*

Schulze

FT4

Brookfield



48 

 

 

 

 

Figure 3-11 Comparing three shear cells by using the material characteristic line for fine alumina (a) and the 

coarse alumina (b). 
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3.6. Tables for Chapter 3 

Table 3-1 Information for the 32 pharmaceutical materials in the study. 

Material Supplier 

Kollidon® CL-F BASF, Ludwigshafen, Germany 

Kollidon® VA 64 BASF, Ludwigshafen, Germany 

Kollidon® CL BASF, Ludwigshafen, Germany 

Kollidon® CL-SF BASF, Ludwigshafen, Germany 

Kollidon® 30 BASF, Ludwigshafen, Germany 

Kollicoat® IR BASF, Ludwigshafen, Germany 

Kolliphor® P 188 micro BASF, Ludwigshafen, Germany 

Kolliphor® P 407 micro BASF, Ludwigshafen, Germany 

Soluplus® BASF, Ludwigshafen, Germany 

Avicel PH 101®  FMC Biopolymer, Newark Delaware, US 

Avicel® PH 102  FMC Biopolymer, Newark Delaware, US 

Vivapur 101  JRS Pharma LP, IA, US 

Vivapur 102  JRS Pharma LP, IA, US 

Lactose monohydrate  Foremost Farms, WI, US 

Acetaminophen, anhydrous basis Mallinckrodt Inc. IL, US 

Maize starch  Mitsubishi Corporation, Tokoy, Japan 

Mannitol, type SD 100 Roquette Pharma, Lestrem, France 

Solka Floc International Fiber Corportation, OH, US 

Pre-gel starch  Ingredion Incorporated, IL, US  

Ac-Di-Sol   FMC Biopolymer, Newark Delaware, US 

Sodium starch glycolate, type A  Roquette Pharma, Lestrem, France 

Microcelac® 100  Meggal, Wasserburg, Germany 

AnhyDiCalPhos JRS Pharma LP, IA, US 

SuperTab® 11SD  DFE Pharma, Norten-Hardenberg, Germany 

ProSolv® HD90  JRS Pharma LP, IA, US 

Polyplasdone® XL  ISP Chemicals LLC. KY, US 

Metformin hydrochloride  Ganules India Ltd, India 

Magnesium stearate  Mallinckrodt, MO, US 

API 1 Janssen Pharmaceutica N.V, Beerse, Belgium 

API 2 Jassen Pharmaceutica, NV, Beerse, Belgium 

API 3 Janssen Ortho LLC. Puerto Rico 

API 4  Jassen Pharmaceutica N.V., Beerse, Belgium 
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Table 3-2 Information for the 9 catalyst support materials in the study. 

Material Supplier 

Coarse γ-alumina Albermarle, Amsterdam, the Netherlands 

Fine γ-alumina Albermarle, Amsterdam, the Netherlands 

Fine zeolite Albermarle, Amsterdam, the Netherlands 

Molybdenum oxide (fine, sublimed type) Albermarle, Amsterdam, the Netherlands 

Zeolite Y-655 (calcined) Albermarle, Amsterdam, the Netherlands 

Zeolite Y-type CBV100 BASF Corporation, NJ, US 

Titania ISK grade MC-150 BASF Corporation, NJ, US 

Satintone (calcined kaolin SP-33) BASF Corporation, NJ, US 

FCC BASF Corporation, NJ, US 
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Table 3-3 Particle size information and conditioned bulk density results for the materials used in the study. 

Material 

d10 

(μm) 

d50 

(μm) 

d90 

(μm) 

Conditioned 

Bulk Density 

(g/mL) 

Kollidon® CL-F 26.77 37.31 86.89 0.29 

Kollidon® VA 64 12.17 47.07 87.97 0.44 

Kollidon® CL 17.90 76.06 154.90 0.42 

Kollidon® CL-SF 11.26 30.14 68.94 0.21 

Kollidon® 30 34.14 86.92 141.10 0.49 

Kollicoat® IR 19.16 77.95 155.67 0.42 

Kolliphor® P 188 micro 13.28 40.90 74.38 0.54 

Kolliphor® P 407 micro 14.20 46.64 84.76 0.40 

Soluplus® 197.10 325.40 476.10 0.81 

Avicel PH 101®  22.93 69.98 154.89 0.34 

Avicel® PH 102  34.63 113.39 220.95 0.36 

Vivapur 101  20.14 64.09 131.15 0.35 

Vivapur 102  31.46 123.75 224.95 0.37 

Lactose monohydrate  10.32 63.54 157.78 0.66 

Acetaminophen, anhydrous basis 9.93 57.40 166.00 0.41 

Maize starch  9.95 14.40 24.20 0.51 

Mannitol, type SD 100 59.60 97.90 147.00 0.46 

Solka Floc 29.80 147.00 625.00 0.16 

Pre-gel starch  8.89 36.60 104.00 0.51 

Ac-Di-Sol  19.52 45.72 117.87 0.54 

Sodium starch glycolate, type A  25.40 49.20 76.20 0.80 

Microcelac® 100  54.10 158.00 264.00 0.51 

AnhyDiCalPhos 68.60 185.00 304.00 0.75 

SuperTab® 11SD  47.00 122.00 213.00 0.62 

ProSolv® HD90  26.70 127.00 241.00 0.48 

Polyplasdone® XL  9.65 23.60 54.16 0.42 

Metformin hydrochloride  50.46 136.75 248.144 0.52 

Magnesium stearate  2.1 7.8 8.8 0.27 

API 1 9.66 63.60 185.00 0.36 

API 2 3.15 11.90 24.40 0.37 

API 3 14.60 47.10 95.90 0.36 
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API 4 9.75 41.50 153.00 0.36 

Coarse γ-alumina 11.16 59.37 122.19 0.97 

Fine γ-alumina 0.99 4.07 11.46 0.31 

Fine zeolite 0.94 3.85 5.81 0.86 

Molybdenum oxide  0.76 3.71 10.31 1.4 

Zeolite Y-655 (calcined) 0.80 2.33 7.59 0.31 

Zeolite Y-type CBV100 0.77 2.99 10.44 0.25 

Titania ISK grade MC-150 0.69 2.99 10.13 0.35 

Satintone (calcined kaolin SP-33) 0.92 6.09 21.14 0.52 

FCC 38.48 79.65 134.30 0.83 
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4. Predictive Feeder Performance Based on Material Flow 

Properties 

4.1. Introduction 

Continuous manufacturing has been widely adopted across many industries, such as oil 

refining, natural gas processing and bulk chemical production [137, 138]. There are many 

advantages of continuous processing, including smaller scale equipment, higher 

flexibility, enhanced controllability, and reduced labor requirements. Studies have shown 

that continuous manufacturing can significantly decrease production costs while 

improving product quality [8]. In continuous processing, input raw materials and energy 

are fed into the system at a constant rate, and at the same time, a constant extraction of 

output products is achieved. The process performance is heavily dependent on stability of 

the material flowrate.  For powder-based continuous processes, it is critical to feed 

powders consistently and accurately into subsequent unit operations of the process line, 

as feeding is typically the first unit operation. Feeder consistency also has an impact on 

mixing efficiency [139]. In particular, when multiple ingredients are fed to the process, 

inability to maintain constant material concentrations in the process stream can 

potentially lead to product failure [140]. Therefore, accurate gravimetric feeder 

performance has been recognized as crucial to success of the overall process.   

Feeders have been designed to achieve performance reliability, feed rate accuracy, and 

minimal disturbances [141-143]. Loss-in-weight feeders control material dispensing by 

weight at a precise rate, and are often selected to minimize the flowrate variability that is 

caused by change of fill level and material bulk density [144]. Engisch et al. proposed a 

method to characterize and evaluate the steady state performance of a loss-in-weight 
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feeder for different powders [145]. Methods to measure feeding performance during 

hopper refill and to optimize scheduling of refilling have also been presented [146]. 

Kehlenbeck et al. showed improved feeder dosing consistency by using a single 

proportioning device at the discharge [147]. Tardos et al. used vibratory hopper agitation 

to improve overall flow and feeding precision [148].  

In general, a particular feeder cannot handle all materials [149]. For a certain feeder, the 

feeding performance depends not only on equipment design and control systems and 

target flow rate, but also on material properties, specifically, material flow properties. For 

example, cohesive powders can adhere to screws, or can bridge across feeder hopper, 

causing phenomena called rat holes”. Free flowing materials, on the other hand, often 

have higher densities and thus requires more energy for the feeder to displace the 

materials. They can also “flush” through the feeder, causing pulsating flow rates. A 

poorly paired powder-feeder combination typically leads to powder sticking to equipment 

walls, and high feed rate variability [150]. Therefore, the selection of an appropriate 

feeder and feeder tooling for a powder material usually starts with characterizing the 

powder flow properties.  In fact, some flow property measurements were initially 

developed to bring a mathematical approach for powder handling equipment design, for 

example using shear cell tests for hopper specification [113]. However, currently, feeder 

tooling selection for a material to achieve good feeding performance heavily relies on 

empirical knowledge.  

Raw material properties often have substantial impact on the performance of the 

manufacturing process [104, 109]. Identifying the relationship between raw material 

properties and process performance is critical for determining the effect of material 
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property variations on downstream processes [151].  However, there is still a lack of 

published work on using a systematic approach to predict feeder performance based on 

material flow properties. Owen et al. demonstrated use of the Discrete Element Method 

(DEM) to predict screw conveyor performance as a function of operating conditions 

[152]. Unfortunately, material properties are not considered in the model. Freeman et al. 

used a dynamic powder characterization test to correlate two dynamic properties to the 

volumetric flow rate of different screw feeders [153]. Importantly, the “flowability”(i.e., 

flow-related behavior) of a powder is a multi-dimensional characteristic [154]. Relying 

on a single characterizing technique to correlate to process performance is not sufficient 

[155]. Questions remain regarding which measurement or measurements provide the best 

predictive capability for feeder performance.  

The purpose of this paper is the development of a multivariate approach to correlate 

feeder performance with material flow properties. Particularly, the aim is to answer the 

following three questions: i) How can we compare a given new material to previously 

characterized materials? ii) For a material with given properties, can we predict its feeder 

performance? iii) Furthermore, for a material with given properties, can we predict the 

optimal tooling that achieves a specified feeding performance?  

The method to be presented in this paper includes characterization of material flow 

properties, characterization of feeder performance, and predictive multivariate analysis.  

As there is no unifying framework to describe powder flow behavior, materials were 

characterized by multiple flow property measurements so that each reflects a different 

aspect of flow behavior. Based on the methods to analyze shear cell data, introduced in 

Chapter 3, the angle of internal friction was included as one of material flow properties. 
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As discussed in Chapter 3, dimensionless cohesion, C*, was used to classify material 

flowability. Materials were thus selected based on measurement results from Chapter 3 to 

represent varying flow regimes, as shown in Figure 3-5. To characterize feeder 

performance, volumetric studies were initially performed to determine feeder capability, 

followed by gravimetric studies to evaluate overall performance. For multivariate 

analysis, two approaches were carried out. Principal component analysis (PCA) was 

firstly used to project material properties onto reduced dimensions; the predictive 

capability can then be achieved by calculating similarity scores to find materials with 

similar flow behavior. Secondly, partial least squares regression (PLSR) was used to 

directly predict feeder performance based on material property inputs. The method was 

demonstrated by using a commercially available feeder, a K-Tron KT20 loss-in-weight 

feeder, for seven powder materials that were characterized by four material flow 

characterization techniques, represented by 30 flow indices.  

4.2. Materials and methods 

4.2.1. Materials 

The materials that were characterized in this study were: Coarse γ-alumina (Albermarle 

Inc., Amsterdam, the Netherlands), Fine γ-alumina (Albermarle Inc. , Amsterdam, the 

Netherlands), Fine zeolite (Albermarle Inc., Amsterdam, the Netherlands), Zeolite (Y-

type CBV 100, BASF Corporation, NJ, USA), Satintone (calcined kaolin SP-33, BASF 

Corporation, NJ, USA), and Lactose monohydrate (Foremost Farms, WI, USA). The 

material used to demonstrate the predictive model was a calcined zeolite which we term 

“Material A” (Albermarle Inc., Amsterdam, the Netherlands). The particle size 

information of the materials was discussed in Chapter 3.  
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4.2.2. Material flow property measurements 

The shear cell test has been extensively discussed in Chapter 3, therefore is not 

introduced here. In addition to shear cell test, the following test was also performed 

including compressibility test, permeability test, shear cell test, and dynamic flow test. 

4.2.2.1. Compressibility test 

The compressibility test is part of the Freeman Technology FT4 Powder Rheometer suite 

(Freeman Technology Inc., Worcestershire, UK). The test measured change of powder 

bulk density as normal consolidation stress changes. The powder was first conditioned by 

a helical blade in order to create a uniform and reproducible packing state. A normal 

force was then slowly applied by a vented piston. The normal forces ranges from 0.5 to 

15 kPa, holding each load for 60 seconds. The change of volume due to compression was 

measured, and the compressibility (CPS %) was calculated as the percent change in 

volume after compression: 

CPS % = 100 ∗  
𝑉𝑐 − 𝑉𝑝

𝑉𝑐
 

where Vc is the bulk volume after the conditioning step and Vp is the powder volume 

after compression.  

4.2.2.2. Permeability test 

Permeability test, also achieved by the FT4 powder Rheometer, measures how well air 

passes through a powder bed. After conditioning step mentioned previously, an upward 

air velocity of 2mm/s was introduced from the bottom of the powder bed. Meanwhile, a 
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normal stress was applied by the vented piston over a range of 0.5 to 15kPa. At each 

normal force, the pressure drop (PD) across the bed was recorded.  

4.2.2.3. Dynamic flow test 

Flow energy E is defined as the energy required to move a helical blade through a powder 

bed. The Freeman Technology FT4 dynamic test measures this energy as a function of 

time and shear rate [18]. The powder sample was loaded into the vessel and then 

conditioned using a helical blade. The blade, moving on the downward and upward 

traverse, was used for the testing cycle and the energy consumed to induce the powder to 

flow was measured. The conditioning step followed by a testing cycle was repeated seven 

times with measured flow energy E1 – E7. The flow energy required on the seventh 

downward blade pass is known as the basic flow energy (BFE). The energy consumed 

during the seventh upward traverse is called the specific energy (SE). The stability index, 

SI, reflects the change in flow energy over time: 

SI =
𝐸7

𝐸1
 

where E1 is the flow energy required on the first downward blade pass, and E7 is the flow 

energy required on the seventh downward blade pass. A SI value of 1 suggests that the 

material is stable and non-friable. If SI is larger than 1, it indicates that a material requires 

more energy to flow over time, possibly due to de-aeration, agglomeration, moisture 

uptake, or electrostatic charges. If SI is smaller than 1, it may be caused by material 

attrition or de-agglomeration [18].  
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Four additional repetitions were performed with different shear rates (i.e., different blade 

tip speeds). The four repetitions were performed with a tip speed ranging from 10 to 

100mm/s. The flow rate index (FRI) is the ratio between the required flow energy at 

100mm/s and 10mm/s: 

FRI =
𝐸11

𝐸8
 

Where E11 is the basic flow energy at a blade tip speed of 100mm/s, and E8 is the basic 

flow energy at 10mm/s. If materials are more sensitive to changes in flow rate, for 

example cohesive materials due to higher air content, the FRI values are typically higher.  

In total, 30 different (but related) flow measurements were used as material property 

inputs for feeder performance prediction, including conditioned bulk density (CBD), 

compressibility% from the compressibility test, pressure drop at 15kPa, consolidation 

stress from the permeability test, cohesion, unconfined yield strength, major principal 

stress, angle of internal friction, flow function coefficient at 3kPa, 6kPa, 9kPa, and 15kPa 

from the shear cell tests, basic flow energy, stability index, flow rate index, specific 

energy from the dynamic flow test, and d10, d50, and d90 from the particle size 

distribution. Three replications were performed for each test that was performed.  

4.2.3. Feeder characterization 

A commercially available twin screw loss-in-weight feeder K-Tron KT20 (Coperion K-

Tron Pitman, Inc. Sewell, NJ, US ) was used in the study. A loss-in-feeder consists of 

three parts: volumetric feeder, weighing platform, and a gravimetric controller, as shown 

in Figure 4-1. The weighing platform measures the mass of the feeder and contained 
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powder materials in the hopper. The bottom of the feeder hopper contains a horizontal 

agitator that helps to fill the flights of feed screws. The gearbox controlling the screws is 

a type C gearbox with maximum speed of 154 RPM.   

As feeder delivers powder materials, the gravimetric controller acquires signals from the 

weighting platform over time, and determines real time feed rate. The feed rate is thus 

controlled by adjusting rotation speed of the screw that dispense the material accordingly. 

The feeder was placed on a plane lab bench. Feeder characterization experiments were 

performed by using a gain-in-weight catch scale (OHAUS adventurer, OHAUS 

Corporation, Parsippany, NJ, US) to record the weight of powder dispensed by the feeder 

every 1s for all tests. Buckets were used to collect the samples. The feeder was connected 

to an external laptop. Besides data from the catch scale, feeder data from the gravimetric 

control box was also recorded to ensure consistent control capability, including time, set 

point, mass flow, screw speed, drive command, and perturbation value. Three feeder 

screws were available in this study: fine concave screw (FCS), coarse concave screw 

(CCS), and fine auger screw (FAS). The experimental set-up and screws are shown in 

Figure 4-2. The feeder was firstly calibrated with 100% fill level at volumetric mode, 

without engaging the feeder gravimetric control system, to determine the maximal 

volumetric capacity. The calibration procedure was performed three times and the 

average was recorded as the initial average feed factor. The averaged initial feeder factor 

is the control value that refers to the capacity of the feeder at 100% of the control 

magnitude.[145]  

After calibration at volumetric mode, the feeder was then performed in gravimetric mode 

starting at 80% fill level. Fine concave screw was firstly used because it has the smallest 
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capacity among the three screws. For each material, the set point for the three screws 

tested was kept constant and set at 50% and 80% of the initial average feed factor of fine 

concave screw. For each screw, the experiment was run for 20 min. The data obtained 

from the catch scale and the control box were used for screw comparison. Defining the 

target mass feed rate as m, the actual mass feed rate, 𝑚𝑖̇ , at the ith time point can be 

calculated by: 

𝑚𝑖̇ =
∆𝑚𝑖

∆𝑡
 

Since the set point for each material may not be the same, relative standard deviation 

(RSD) and relative deviation between the set point and the mean (RDM) were used as 

criteria for feeder performance: 

σ = √
∑ (�̇�𝑖 − �̅̇�)2𝑛

𝑖=1

𝑛 − 1
 

RSD =
𝜎

�̅̇�
 

RDM =
|�̇�𝑖 − �̅̇�|

�̅̇�
 

where σ is standard deviation, �̅̇� is the arithmetic mean of the actual mass feed rate, and 

n is the number of time points. A moving average of 5 seconds of the obtained data from 

catch scale was used to calculate the RSD and RDM (Δt=5). RSD reflects the consistency 

of the mass feed rate, and RDM suggests the difference between the actual mass feed rate 

and the target mass feed rate. In this study, the aim is to find the screw that provides the 

best feeder performance, namely performance with lowest RSD and RDM. For data 
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analysis, experiment data of the first 5 seconds and the last 10 seconds were removed 

since there may be significant perturbation. For the same reason, data of a period of 20 

seconds were also removed if changing bucket was needed during the experiment [145]. 

4.2.4. Multivariate analysis 

Multivariate data analysis was performed using The unscramble X 10.2 (Camo, Oslo, 

Norway). Since material properties have different units and theirs ranges have different 

scales, the data was firstly preprocessed using Z-score normalization. The z scores were 

calculated as follows: 

z =
𝑥 − 𝜇

𝜎
 

where μ is the average of each property and σ is the standard deviation from the average. 

Data after z-score normalization are centered around 0 with a standard deviation of 1, 

which is a common requirement for most machine learning estimators, especially for 

clustering analysis, such as PCA, when comparing similarities between samples is needed 

based on certain distance measures.[156, 157] 

Two approaches to predict feeder performance are discussed in this study: Principal 

component analysis followed by similarity scoring (PCA-SS), and Partial least squares 

regression (PLSR). Both approaches identify hidden structures in the material property 

data set and use a vector space transform to reduce the dimensionality of large data sets 

[158]. The difference between the two approaches is that PLSR directly regresses the data 

in reduced dimensions to feeder performance, while PCA-SS firstly identifies similarity 

between materials and uses feeder performance of the most similar material to predict 

results.  
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In the PCA-SS approach, a PCA model was used to represent the z-score normalized 

material property data set (X) in a reduced dimension (principal component space) such 

that the major axes of variability are identified [57]. The data set X can be decomposed, 

based on the equation below, into a set of scores (T) and loadings (P), while the 

remaining variability is modeled as random error (ε). 

𝑋 = 𝑇𝑃𝑇 + 𝜀 

The columns T represent principal component (PC) scores of each material in the 

projected space; loadings P represent the significance of each material property in each 

principal component.  Both T and P are obtained from eigenvectors and eigenvalues of 

the covariance matrix of X. A good indication of similarity between two materials is a 

measure of the distance between them [159]. Principal components (PCs) [61] are 

orthogonal to each other, and each is associated with the value that explains the 

proportion of variability in the data set. Usually, only a few PCs are retained based on 

their statistical significance. The similarity scores between material a and material b can 

thus be calculated based on weighted Euclidean distance dw: 

𝑑𝑤 (𝑎,𝑏) = √∑ 𝑤𝑖 (𝑎𝑖 − 𝑏𝑖)2
𝑛

𝑖=1
 

where n is the total number of principal components selected in the model, ai is the score 

of material a in the ith principal component, bi is the score of material b in the ith 

principal component, wi is the weight of the ith principal component, namely the relative 

variability explained by the ith principal component: 

0 < 𝑤𝑖 < 1  
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A relatively small value of dw suggests similarity between materials.  

Partial least squares regression, also known as projection to latent structure regression, 

was used also to correlate a number of predictor variables X with response variables Y by 

finding the latent variables in the data set. The calculation of latent variables in the PLSR 

approach takes into account the response variables so that the linear combinations have 

maximal covariance [61]. In this study, the aim is to understand how varying flow indices 

impact feeder performance for different materials. Therefore, flow properties of six 

powder materials, covering a wide range of flow properties, were used to develop the 

calibration model for RSD and RDM obtained from feeder characterization experiments. 

Cross-validation (CV) was used for initial method evaluation. CV was performed by 

developing six parallel regression models from reduced data with one of the materials 

deleted, which is also called leave-one-out cross validation. In addition, the model was 

used to predict feeder RSD and RDM of one additional material, material A. A 

confirmatory feeder experiment for material A was then performed using the same 

procedure described in section 2.3. The predicted results were compared with the 

experimental results.  

4.3. Results and discussion 

To demonstrate the application of proposed approaches, Material A was used as the 

prediction material. This material belongs to a group of calcined zeolite materials for 

catalyst manufacturing processes. Flow properties of Material A was firstly characterized, 

and each flow parameter was compared with all other materials that were already 

characterized. Because both approaches are, in general, linear regressions, it is important 

to ensure that each flow parameter of Material A is within the range of existing 
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materials.[160] Figure 4-3 compares the results from shear cell test at initial 

consolidation stress of 9kPa. The major principal stress relates to a material property 

during steady-steady flow under a certain normal stress.  Unconfined yield strength, 

cohesion, and angle of internal friction are known as characteristic values when material 

achieves incipient flow.[161] The flow function coefficient (ffc) is often used to rank the 

flowability of a material, where a larger ffc value indicates a more free-flowing material. 

The materials can be ranked in terms of ffc from highest to lowest as follows: coarse 

alumina, zeolite, lactose, fine alumina, satintone, Mateiral A, and fine zeolite. Shear cell 

test results at initial consolidation stress of 3kPa, 6kPa, and 15kPa were not shown in 

Figure 4-3, but it was confirmed that, for each flow index, data for Material A was 

between the minimum value and maximum value of six calibration materials.  

Figure 4-4 shows results from compressibility test and permeability test for all materials. 

Typically, a lower compressibility percent corresponds to a material with lower cohesion 

and better flowability. Based on compressibility result, the material flowability can be 

ranked from highest to lowest as follows: Coarse alumina, zeolite, lactose, Material A, 

fine alumina, fine zeolite, and satintone. Interestingly, material flowability ranking in 

terms of compressibility percent was different from the one based on ffc. In other words, 

material with higher ffc does not necessarily have higher value of compressibility 

percent. Similarly, pressure drop, obtained from permeability test, did not have a linear 

correlation with compressibility percent.  For example, while both fine alumina and fine 

zeolite had relatively higher value of compressibility percent, fine alumina had much 

larger pressure drop than fine zeolite had, possibly due to difference of pore volume 

inside the particles.  
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Figure 4-5 includes results from dynamic test. As mentioned previously, the basic flow 

energy (BFE) measures the energy requires to stir a blade through a sample. Generally, if 

a material is free flowing, it requires low energy to move the powder, resulting in a low 

BFE. For porous materials, BFE will also be low, as the blade is in contact with low 

density particle bed. Interestingly, among all materials characterized, while coarse 

alumina was the least compressible material, and satintone as the most compressible 

material, both had relatively higher value of BFE compared to other materials. Both 

materials had relatively high value of conditioned bulk density, suggesting that bulk 

density has potentially an importantly role in determining the basic flow energy. All 

materials in this study had stability index (SI) close to 1.0, indicating materials are 

relatively stable and non-friable. Flow rate index (FRI) measures material sensitivity to 

flow rate. Most materials in this study had FRI value between 1.5 to 3.0, which 

corresponds to a modest increase in flow energy at higher flow rate. Lactose, with a FRI 

value of 1.0, was considered as a flow rate insensitive material.  

In summary, two conclusions can be made based on material characterization results: i) 

For all flow indices considered in this study, Material A, was within the range between 

the maximal value and minimal value of other six materials. Material A can thus be used 

for prediction based on material properties. ii) Comparing materials based on a single 

flow index, also called as a univariate approach, is not sufficient. As described earlier, 

each flow parameter reflects a different aspect in terms of flow property. Furthermore, 

results from conducting multiple univariate comparisons may often be perplexing to 

interpret. In fact, univariate comparison approach does not take into account the 

correlation between different parameters. Results have shown that flow parameters do not 
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all vary independently, and how they correlate with each other is also a critical material 

characteristic. Therefore, multivariate analysis was performed to compare materials with 

different flow properties. 

In multivariate analysis, not only the isolated individual flow index was included, but 

also the relationships among different indices. All material property data can be 

considered and analyzed simultaneously, providing greater statistical power compared to 

univariate comparison.[162] A PCA model was developed including Material A and six 

calibration materials. As the aim in this study is to identify materials with similar 

properties, the number of principal components was retained to ensure the model 

captured at least 95% of the overall variability in the data set. In addition, cross-

validation was used to avoid model overfitting when most of the variability was included 

in the model. The first four principal components were found to explain 96.4% of total 

variability in the dataset, as shown in Figure 4-6. This was also the component with the 

highest explained variability in validation, and for this reason, four components were 

retained in the model to be used in subsequent calculations. A score plot was used to 

visualize how each material is projected into the reduced dimension space. As shown in 

Figure 4-7, a cubic score plot, including the first three principal components that 

explained 91.4% variability of the data set, suggests that the six calibration materials 

represented a wide range of materials with varying flow properties. If materials have the 

same properties, they will be projected to the same location in the score plot. Materials 

that are projected to be close to each other indicate similar flow behavior. To quantify 

distance between two materials, a weighted Euclidean distance was calculated based on 

the first four principal components, as described in section 2.4. The similarity score 
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outputs are presented in Figure 4-8.  The material most similar to Material A was fine 

zeolite. The identified similarity between Material A and fine zeolite using PCA-SS was 

further confirmed in the following feeder characterization experiment.  

The relative standard deviation (RSD) and relative deviation from the mean (RDM) using 

different screws were used for comparison of feeder performance for each calibration 

material, as shown in Figure 4-9, and Figure 4-10, respectively. Consistent with 

previous knowledge, material with different flow properties lead to different feeding 

performance, and therefore different screw is selected in order to achieve the consistent 

and accurate delivery of materials.[163] For example, for coarse alumina, which is very 

free-flowing and can easily fill the flights of the screws, all screws were found to be able 

to achieve stable feeding at both predefined feed rate. The feeding performance of some 

less free-flowing materials, such as lactose monohydrate, zeolite, was found to be heavily 

dependent on selection of screws and feed rate. For lactose, the fine concave screw (FCS) 

achieved best performance at feed rate of 7.0 kg/hr, and coarse concave screw (CCS) 

became the optimal when feed rate increased to 11.2kg/hr . For zeolite, FCS had the 

lowest RSD and RDM at both feed rate of 3.0 kg/hr and 4.9 kg/hr, however, use of fine 

auger screw (FAS) at feed rate of 4.9 kg/hr significantly increased RSD and RDM. For 

cohesive materials studied here, the selection of optimal screw was consistent at two feed 

rate investigated in this study. Specifically, FAS was considered as the optimal selection 

for satintone at feed rate of 2.1 kg/hr and 3.4 kg/hr, and fine alumina at 4.3 kg/hr and 

6.8kg/hr. FCS was selected for fine zeolite both at 4.7kg/hr and at 7.5kg/hr.   

As fine zeolite had the shortest weighted Euclidean distance, FCS was predicted to be the 

optimal screw for Material A. To validate the hypothesized prediction, feeder experiment 
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was performed using Material A, and the results were compared to fine zeolite. As shown 

in Figure 4-11, FCS was considered the optimal screw for both materials. However, it 

was noticed in Figure 4-11(a) that FAS had a higher RSD than CCS for fine zeolite, 

while for Material A, the order reversed. Nevertheless, the overall performance of 

Material A and fine zeolite was relatively agreed.  

Surprisingly, a strong linear correlation was observed between the initial feed factor and 

score of the first principal component for all three screws, as shown in Figure 4-12. 

Since the first principal component is a linear combination of measured flow indices, the 

initial feed factor can be directly predicted based on observed linear correlation. The 

initial feed factor is an important process parameter that refers to maximal capacity for 

each screw. A typical operation set point during feeding process for each screw is usually 

20-80% of its maximal capacity. Therefore, the initial feed factor is required to determine 

operational space. To obtain the initial feed factor, hopper needs to achieve 100% fill 

level, which requires a comparable large amount of materials, relative to the amount 

required for material property measurements. In the case presented here, 2-6 kg of 

materials were used, depending on material bulk density, to obtain the initial feed factor, 

while the amount of materials required for characterization was 0.2-0.5kg. It is common 

that in early process and product development, the amount of materials is often limited. 

In this case, the predictive correlation can be used to determine the initial feed factor 

based on material properties, represented by scores of the first principal component.  

The workflow of PCA-SS approach is described in Figure 4-13. In general, when a new 

material is received, it is first characterized by flow property measurements described in 

section 2.2. A PCA is performed including the new material and all existing materials 
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that have been previously characterized. By knowing the PC score of each material and 

weight of each PC, the weighted Euclidean distance can be calculated. Distances between 

the new material and all other materials can be ranked, and the material with the smallest 

distance can be identified. Based on the assumption that, under the same feeder parameter 

settings, materials with similar flow properties have similar feeder performance, the 

optimal feeder screw option for the new material can be predicted based on existing 

knowledge of the material with the smallest weighted Euclidean distance. More 

importantly, new material property is automatically added to material library. Knowledge 

of materials with various flow properties are accumulated. As the number of 

characterized materials is expanding, the accuracy of identifying similar materials will 

also be improved.   

The advantage of PCA-SS approach is the ability to quickly identify material similarity 

considering all available flow property measurements. The prediction material is also 

included when developing PCA model, which enables the model to fully explore the 

overall data structure and pattern. The prediction error can be reduced significantly by 

using similarity scores, instead of projecting prediction material data to existing PCA 

models. When material is sparing, this approach can be powerful to find placebo 

materials, and use placebo materials to identify operation space. However, there also 

limitations for PCA-SS approach. The approach is based on an assumption that materials 

with similar flow properties have similar screw selection in order to achieve good feeding 

performance. If calibration materials do not cover a wide range of flow properties, the 

difficulty to find materials of similarity may potentially increase prediction error. In 

addition, the optimal screw was predicted only based on the material that has the highest 
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similarity. To consider the potential quantitative correlation between material properties 

and feeder performance, PLSR models can be developed.  

In this study, four factor non-hierarchal PLS models were fitted to material property data 

consisting six calibration materials and 30 flow parameters. The response variables were 

RSD and RDM for each screw at feed rates that correspond to 80% of initial feed factor 

of FCS. The cumulative percent variance explained by the four factor in all models were 

above 95%. Figure 4-14 suggest that good parity was observed between the predicted 

and actual y-values (RSD or RDM). The root mean square error of calibration (RMSEC) 

and root mean square error of cross validation (RMSECV) was also shown. The 

regression coefficients for RSD models are depicted in Figure 4-15. The regression 

coefficients indicate the contribution of each material flow property to the prediction 

models, with higher absolute value of coefficients indicating larger contributions. 

Positive value of coefficients indicates a positive correlation with the RSD, and negative 

coefficient values indicate inverse correlation. Material flow property with relatively 

small coefficients suggests its small contribution in the prediction. Figure 4-15 suggests 

that material property contributes to feeder performance differently when different screws 

are selected. For example, pressure drop (PD) from permeability test had significant 

effect on RSD when using FCS and FAS, while its contribution when using CCS was 

relatively small.  Also interestingly, PD increased RSD when using FCS, but decreased 

RSD when using FAS. Importantly, flow property variables that have small contributions 

can be removed without losing predictive capability.  That work will be the focus of a 

subsequent publication.  
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The RSD and RDM of a material during feeding process can be predicted based on 

obtained regression coefficients and material flow properties. Figure 4-16 shows the 

prediction results of Material A in comparison to measured results. It was validated that 

the developed PLSR models were able to predict RSD and RDM that are reasonably 

similar to experimental results. By comparing predicted RSD and RDM values using 

different screws, FCS was predicted to be the optimal screw for Material A, which was 

consistent with predicted results using PCA-SS approach, as well as experimental results. 

The workflow using PLSR approach can be summarized in Figure 4-17. When a new 

material is received, its properties were firstly characterized. The material property data is 

then projected to the PLSR model. The model outputs are RSD and RDM using different 

screws. The optimal screw, with the lowest predicted RSD and RDM value, is then 

selected. Confirmatory experiments using the screw from prediction results are 

performed. Importantly, models are consistently maintained and updated by adding 

confirmatory experimental results to the model.   

While multivariate analysis has been used to develop the predictive process performance 

based on material properties, it is important to note that the size of the data set available 

is important to both the approaches discussed in this study. For the PCA-SS approach, as 

more materials are added, model knowledge to predict feeder performance is consistently 

expanded and accumulated, increasing the likelihood of finding similar materials for a 

given new material. For the PLSR approach, models are maintained and updated when 

feeder performance of more materials are obtained during process development, 

continuously improving the prediction accuracy for future materials. Further work is 

required to test if the proposed approaches can be validated across a wider range of 
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material flow properties that were not considered in this study, for example electrostatics 

[164, 165], surface energy, etc. Additionally, as more flow property measurements are 

considered, it would be useful to use the multivariate analysis and similarity scores as 

tools to meaningfully select the measurements that have higher weights in terms of 

classification of the materials.  

4.4. Conclusions 

This paper examines two methodologies, PCA and PLS, to develop predictive 

correlations between material flow properties and material feeder performance. The 

methods include characterization of material flow properties, characterization of feeder 

performance, and predictive multivariate analysis. Six calibration materials with varying 

flow properties were firstly characterized by five techniques. The flow properties of each 

material were represented by 30 flow indices. The calibration materials were 

characterized by feeder performance. Multivariate analysis was used to find the 

correlation between material properties and feeding performance.  Specifically, two 

approaches were discussed and compared. The PCA-SS approach is based on weighted 

Euclidean distance, calculated after performing the principal component analysis on the 

entire data set. The material that has the shortest distance to a given new material can be 

considered to have similar flow behavior. The PLSR approach further quantifies the 

correlation between material properties, projected into a reduced dimensional space, and 

feeder performance, represented by the RSD and RDM.  

This study shows that material flow properties affect feeder performance, and therefore 

the screw that achieves the best feeding performance is heavily dependent on the material 

flow properties. Experimental results in combination with multivariate analysis suggest 
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that material flow properties and feeding performance are highly correlated. Both 

approaches discussed in this study were confirmed by cross-validation and prediction of 

one additional material. The predicted feeding results were, in general, in good agreement 

with the experimental results. The work presented here has shown an efficient approach 

to correlate material properties with process performance using multivariate analysis. 

This approach is especially powerful when the amount of a given new material is limited 

or if the new material is expensive or dangerous.  

The initial feed factor and scores of the first principal component for each material were 

found to be linearly correlated. By characterizing flow properties, the initial feed factor, 

or maximal capacity, of each screw can be predicted, which enables a quick identification 

of operational ranges.  By using the PCA-SS method, a placebo material with similar 

flow behavior can be identified. When a material is not available in large amounts, 

placebo materials can be used for process development. Additionally, instead of selecting 

optimal tooling based on empirical knowledge and a trial-and-error method, feeding 

performance using different screws can be directly quantified, predicted and compared by 

developing predictive PLSR models.   

Importantly, for any data-driven models, the size of the data set is important for 

prediction. Therefore, the methodology should be implemented as a self-updating 

knowledge reservoir. The more materials and properties that the data base includes, the 

better will be the predictive power of the models. It is also important to notice that the 

same type of models can be augmented by additional measurements performed during 

process scale-up, validation, and commercial manufacturing in order to capture process 

knowledge and increase predictability. At the same time, this study has been for a limited 
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number of materials and for one feeder. Future work should examine additional materials 

and other feeders in order to examine if the results observed in this work carry over to 

other types of feeders. Future work should also test the validity of the proposed methods 

across a wider range of material properties, characterized by additional techniques.  

In Chapter 3, the intrinsic power correlation between the cohesion and the flow function 

coefficient from the shear cell test has been discussed.  As this chapter investigates the 

correlation between material flow properties and feeding process, it is also important to 

understand the correlation between different flow indices. Therefore, results of powder 

mixtures are discussed in Chapter 5 to validate the correlation that was found in raw 

materials. Chapter 6 examines the correlation between different flow indices of powder 

mixtures, and uses the correlation to compare different mixing systems. As more 

characterization techniques become available, PCA-SS can also be used to reduce the 

number of measurements, which will be discussed in future work recommendation 

section.  
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4.5. Figures for Chapter 4 
 

 

Figure 4-1 A schematic illustration of a loss-in-weight feeder. (picture source: W. Engisch, F. Muzzio) 

 

 

 

Figure 4-2 Experimental set-up of characterizing feeding performance for each material. Available screws in 

this study are (a) fine concave screw, (b) fine auger screw, and (c) coarse concave screw. 
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Figure 4-3 Material characterization results from shear cell test at initial consolidation stress of 9 kPa. 

 

 

Figure 4-4 Material characterization results from compressibility test and permeability test. 
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Figure 4-5 Material characterization results from dynamic flow test. 
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Figure 4-6 The first four principal components were selected for the PCA model. 
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Figure 4-7 A cubic score plot was used to visualize materials in the projected spaces. Only the first three 

principal components were shown in cubic plot. 
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Figure 4-8 Based on similarity score using weighted Euclidean distance, fine zeolite was identified to be the most 

similar material to Material A. 
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Figure 4-9 Gravimetric feeding performance, represented by relative standard deviation (RSD), for each 

material using three available screws. 
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Figure 4-10 Gravimetric feeding performance, quantified by relative deviation from the mean (RDM), for each 

material using three available screws. 
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Figure 4-11 Comparison of feeding performance between fine zeolite and Material A at (a) 50% initial feed 

factor of fine concave screw and at (b) 80% initial feed factor of fine concave screw. Screw type 1 corresponds to 

fine concave screw, screw type 2 corresponds to fine auger screw, and screw type 3 corresponds to coarse 

concave screw.  
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Figure 4-12 (a) Initial feed factor during volumetric calibration for each material using three available screws. 

(b) A strong linear relation between the obtained initial feed factor and the scores of the first principal 

component. 
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Figure 4-13 Workflow of principal component analysis - similarity score (PCA-SS) approach. 
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Figure 4-14 Predicted versus reference parity plot for feeding performance, represented by RSD and RDM, for 

three screws. 
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Figure 4-15 Regression coefficients for PLSR models of RSD prediction.  
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Figure 4-16 Predicted feeding results for Material A, in comparison with experimental results. Screw type 1 

corresponds to fine concave screw, screw type 2 corresponds to fine auger screw, and screw type 3 corresponds 

to coarse concave screw. 
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Figure 4-17 Workflow of partial least squares regression (PLSR) approach to predict feeder performance based 

on material flow properties. 
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5. Predicting Flow Behavior of Pharmaceutical Blends Using 

Shear Cell Methodology: A Quality by Design Approach  

5.1. Introduction 

The ability to understand, evaluate, and most importantly predict powder flow 

performance is critical for formulation development and process design of solid dosage 

forms in the pharmaceutical industry. During product development, flow properties are 

tested routinely to achieve desired manufacturability. This process often includes 

evaluation the flow performance of APIs, blends, and sometimes even excipients. Poor 

flow performance can result in multiple problems during bulk solids processing, such as 

arching in hoppers, segregation and/or agglomeration after mixing, and content 

variability in final dosage forms.[166] Powders are complex materials. Flow 

measurement is more of a functional performance test than a physical test,[167] and there 

have been many indices developed to indicate powder flow properties, such as angle of 

repose, compressibility index, Hausner ratio, flow through an orifice, and parameters 

from the shear cell tests. Another widely used dynamic test, the avalanching test, has 

been correlated to compressibility and shear cell results in a recent comparative 

study.[109] 

Among the various characterization techniques, one of the commonly used is the shear 

cell methodology, which was originally developed by Jenike for design of hoppers and 

silos.[113, 168] A flow regime was proposed to describe the limit when powders jam and 

form an arch at the opening of a hopper. Useful information, such as cohesion, flow 

factor, unconfined yield strength and angle of internal friction, can be extracted from the 

test to guide process design. Jenike’s mathematical analysis to determine hopper angle 



92 

 

 

 

and opening size has become an engineering standard practice.[169] Shear cell testing 

has been therefore used extensively for flow properties measurement. The effect of 

particle size, shape, and density on flow properties have been well studied using the shear 

cell methodology.[120], [121] Effects of the storage time and environmental factors, such 

as relative humidity and temperature, have also been reported.[122, 170] For example, 

Freeman showed repeatability in shear cell measurement,[18] and examined the effect of 

consolidation on shear properties and normal stresses.[118]   

The quality by design initiative (QbD) of the U.S. Food and Drug Administration 

requires a process to be controllable and predictable.[11] Theories and methods to 

characterize powder flow have facilitated the implementation of QbD approaches to 

predict powder flow. Taylor et al. used principal component analysis based on five flow 

characterization methods to develop a method for material screening in early formulation 

development stage.[124]  Both Niklas et al. and Yu et al. used principal component 

analysis and partial least square regression to predict powder flowability as a function of 

particle size and shape distribution.[88, 171] Although attention has been paid to 

characterizing and predicting flow properties of a mixture, very few cases were presented 

to address the scenario during early formulation development when the amount of drug is 

limited and more than two ingredients are in the formulation.  

The intention of this chapter is to demonstrate a general QbD approach to quickly classify 

flow properties of a mixture during formulation development. In addition, this chapter 

also aims to validate the analysis methods, proposed in Chapter 3, by including 

measurement results of powder mixtures. Four ingredients, including one model drug and 

three excipients, were used to represent a realistic formulation design process. This 
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approach also addresses the challenge in using minimal materials during early 

formulation development.  

5.2. Material and Methods 

5.2.1. Material 

The materials used in this study were: Semi-fine acetaminophen (Mallinckrodt, Raleigh, 

North Carolina, USA), microcrystalline cellulose (Avicel PH102, FMC Biopolymer, 

Newark Delaware, USA), Fast-Flo® lactose (Monohydrate N.F. modified-spray dried, 

Foremost Farms USA, Rothschild, Wisconsin, USA), and Regular lactose (Monohydrate, 

Foremost Farms USA, Rothschild, Wisconsin, USA). Particle size information of the 

reported materials is listed in Table 5-1. The particle size distribution of each ingredient 

was measured using a laser diffraction analyzer (LS-13320) with a Tornado Dry Powder 

System (Beckmann-Coulter, Brea, California, USA). 

5.2.2. Design of experiments 

 A mixture extreme vertices design was used to characterize flow properties of the four-

component system.[172] Constraints for concentration of Acetaminophen (APAP, x1), 

MCC(x2), Fast-Flo lactose (x3) and Regular lactose (x4) are expressed as follows: 

x1 ≤ 0.45 

x2 ≤ 0.40 

x1 + x2 + x3 + x4 = 1.0 

 The MINITAB® Release 16 (Minitab Inc.) software was used to aid the design and 18 

conditions were generated. The four raw materials were also included to the design 
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adding up to 22 conditions in the study. Figure 5-1 shows the mixture design structure. 

Detailed formulation for each blend is listed in Table 5-2. Blends 13 and 14, 15 and 16, 

17 and 18, 19 and 20 were four pairs of replications to evaluate experimental variations.  

5.2.3. Blend preparation 

 To minimize amounts of materials used in the study (as is often the requirement in early 

formulation development), 100 g of each blend was prepared. Before blending, each 

material was passed through a no. 18 sieve (sieve size of 1.0mm) to enhance blend 

homogeneity by breaking up agglomerates. Blends were prepared in a laboratory scale 

ResonantAcoutic ® Mixer (RAM, Resodyn Acoustic Mixers, Butte, Montana, USA) 

which uses low frequency and high intensity acoustic energy to induce mixing and allows 

for sufficient mixing for small-scale blends. [173, 174] The effect of LabRAM mixing on 

blend flow properties will be further investigated in Chapter 6.   

5.2.4. Shear cell methodology 

The flow properties of the blend were characterized by shear cell test at an initial 

consolidation stress of 9 kpa. A detailed description of the shear cell test can be found in 

Chapter 3. The value of ffc can be used to characterize flowability numerically. Larger ffc 

indicates better flow performance. A criterion has been defined to classify flow behavior 

by Schulze: [175] 

ffc < 1, not flowing; 

1 < ffc< 2, very cohesive; 

2 < ffc < 4, cohesive; 

4 < ffc < 10, easy-flowing; 
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10 < ffc, free-flowing.  

Importantly, values of ffc depend on the actual device used to measure it, although 

ranking orders of materials tend to be preserved[123, 176]. Both flow factor and cohesion 

were calculated in the experiment. The consolidation stress and pre-shearing normal 

stress in the experiments was 9kPa. Normal stress for shearing at 7kPa, 6kPa, 5kPa, 4kPa, 

and 3kPa were used, the pre-shearing/shearing process is repeated to generate five yield 

points.  To minimize samples required, a standard 25mm x 25ml split-vessel was used 

and sampling replicates of 3 were conducted for each condition.   

5.3. Results and Discussion 

5.3.1. Correlation of Measured Flow Indices 

In chapter 3, the power correlation between the flow function coefficient and cohesion 

was discussed. Figure 5-2 validates the correlation observed in powder mixtures by 

showing that the flow factor and the cohesion (kPa) follow an inverse relation with a 

proportionality constant of 4.2. As the initial consolidation stress performed during the 

test was 9kPa, the coefficient from the ffc-C* plot in this study is 0.467, which is 

reasonably close to the coefficient (0.485) in Figure 3-5 for raw materials.  In other 

words, the intrinsic power correlation between the ffc and C* can be expanded to powder 

mixtures. This observed relationship can be explained by the definition of the flow factor. 

As introduced previously, the flow factor is defined as the ratio between major principal 

stress (MPS) and unconfined yield strength (UYS). Major principal stress was kept 

constant due to the same initial consolidation stress. For blends with a linear yield locus, 

the unconfined yield strength has a strong linear relationship with the cohesion, as shown 

in Figure 5-3. The flow factor can be rewritten as the reciprocal of the cohesion with a 
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constant related to MPS and UYS. The classification of flow behavior can thus be 

extended to cohesion as follows: 

Cohesion < 0.42 kPa, free-flowing; 

0.42 kPa < Cohesion < 1.05 kPa, easy- flowing; 

1.05 kPa < Cohesion < 2.10 kPa, cohesive; 

2.10 kPa < Cohesion < 4.20 kPa, very cohesive;  

Cohesion > 4.20 kPa, not flowing.  

5.3.2.  Model Selection     

Four regression models were compared, as shown in Table 5-3. Having four components 

in the formulation made linear and quadratic models less robust. The full cubic model 

generated the best fitting results by including 18 terms. Since the calibration model was 

built from 22 sample blends and over-fitting needs to be avoided, the full cubic model 

was not selected in our case. The special cubic model was selected because it was 

sufficient for the purpose of prediction flow classification.  

A probability plot is shown in Figure 5-4 to test the normality assumption of residuals 

for analysis of variance (ANOVA). The probability plot can provide a graphical view for 

the normal distribution. The linearity of the scattered points in the plot suggested a 

normal distribution for cohesion residuals. The figure also shows that the residuals of the 

flow factor model were not distributed normally. The model was less robust to predict 

flow factor than cohesion unless certain transformation technique was performed. Since 

the flow factor and the cohesion were highly correlated, the regression model for 

cohesion was used. Analysis of Variance (ANOVA) was used for data analysis, which 
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was discussed in Chapter 2. Table 5-4 shows ANOVA results including linear, quadratic 

and special cubic terms. Term APAP*FastFlo (p=0.31) and MCC*FastFlo*Regular 

(p=0.56) were excluded for model reduction leaving 12 terms in total. Adjusted R-

squared showed that 74.95% of total variability in the dataset could be explained by the 

model. The reduced model had higher adjusted R-squared value compared to the full 

special cubic model (R-squared = 64.87%). Based on the ANOVA analysis, cohesion can 

be predicted with the following equation:  

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 1.71 𝑥1 + 0.23 𝑥2 + 0.60 𝑥3 + 0.74 𝑥4 + 5.71 𝑥1 𝑥2 + 1.62 𝑥1 𝑥4

+ 4.11 𝑥2 𝑥3 + 3.86 𝑥2 𝑥4 − 14.00 𝑥3 𝑥4 − 25.80 𝑥1 𝑥2 𝑥3

− 47.97 𝑥1 𝑥2 𝑥4 + 40.05 𝑥1 𝑥3 𝑥4 

Experimental measurements were compared to the estimated values as shown in Figure 

5-5. The diagonal dashed line represents the points at which the measured values equals 

to the predicted values. The regression parameters show that the model prediction is 

statistically consistent with the reference values (p < 0.05) 

5.3.3. Model applicability 

The model can be used to estimate flow performance during formulation screening. For 

example, Figure 8 shows contour plots of predicted cohesion with varying excipient 

combinations at constant APAP concentration. Figure 5-6(a) shows the flow regime 

when concentration of APAP was kept constant at 27% and 5-6(b) shows corresponding 

results at 45%. Two highlighted points were selected as external validation to predict 

flow classification. Blends were prepared and tested with shear cell methodology using 

the same procedure described previously. The predicted and measured cohesion values 
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are shown in Table 5-5, along with formulation details. Formulation 1 was confirmed by 

experiment to be easy flowing, while formulation 2 was found to be cohesive. This 

approach can be particularly useful when cohesive formulations are avoided during 

formulation screening. For the purpose of model maintenance, once a new data point is 

tested and validated, it can be added to the model to help extend the applicable range and 

improve model robustness. In addition, if each calibration sample is measured under 

different levels of initial consolidation stresses, the model can be expanded to predict the 

blend cohesion at a certain consolidation stress for process development.     

5.4.  Conclusion 

A model was built to predict the flow regime of pharmaceutical blends based on a four-

component mixture design. A special cubic model was established using 22 calibration 

blends including four-component powder mixtures and raw materials. The measured flow 

indices from the shear cell test were highly correlated. For example, Cohesion was in a 

power correlation to the flow factor and in linear relation with unconfined yield strength. 

The flow classification based on flow factor was thus extended to cohesion. Normality 

test of residuals was performed to examine model robustness. It was found that the 

regression model for flow factor did not have normal distribution of residuals.  

The work presented here has shown an effective approach to characterize flow properties 

of powder mixture using statistical methods. The motivation for Quality by Design is to 

quickly determine the design space using minimum materials and time. Shear cell 

methodology requires a relatively small amount of material and a mixture design assures 

minimum amounts of blend prepared. This approach can be used to screen through a 

large number of formulations to avoid cohesive formulations with little materials or 
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manpower cost. To illustrate model applicability, two external validation points were 

prepared. The predicted and measured cohesion values were consistent.  

In this chapter, the prediction model only includes formulation variables since mixing of 

the powder mixtures was set constant. Chapter 6 further supplements the prediction 

model by considering the effects of lubrication variables on blend flow properties.  Also 

important to notice is that the same type of data can be augmented by additional 

measurements performed during scale up and validation of the blending process, and 

during commercial manufacturing of a product. In this context, it might also be possible 

to expand models to include process variables. Model parameters can then be refined 

and/or the model itself can be upgraded, consistent with the spirit of the recent continual 

process verification regulation, to capture process knowledge and increase predictability.  
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5.5. Figures for Chapter 5 

 

Figure 5-1 Design of experiments. 18 blends were generated from extreme vertices design. 4 raw materials were 

also included adding up to 22 design points. 
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Figure 5-2 A power relation was observed between ffc and cohesion (kPa). Using this correlation, the 

classification of flow behavior based on ffc can be extended to cohesion. 
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Figure 5-3 A linear relation between unconfined yield strength and cohesion explains the power correlation 

between flow factor and cohesion. 
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Figure 5-4 Normality plot to test normality assumption for analysis of variance (ANOVA) for (a) flow factor and 

(b) cohesion. Regression model for cohesion was more robust than flow factor. 
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Figure 5-5 Comparison of experimental and estimated cohesion with classification criteria shown. . 
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Figure 5-6 Contour plots of cohesion (kPa) at (a) APAP=27%, (b) APAP=45%. Highlighted dots were selected 

for external validation. 
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5.6. Tables for Chapter 5 

 

Table 5-1 Particle size information for materials used in this study.  

Material Mean(µm) d10(µm) d50(µm) d90(µm) 

Semifine 

Acetaminophen 
48.9 5.6 32.6 122.7 

MCC 141.2 34.0 120.8 244.1 

Fast-Flow Lactose 114.5 54.2 113.3 174.6 

Regular Lactose 71.9 10.3  63.5 157.7  
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Table 5-2 Design points for mixture model: formulation for each blend was shown. 

Blend APAP (x1) MCC (x2) FastFlo lactose (x3) Regular lactose (x4) 

1 1.000 0.000 0.000 0.000 

2 0.000 0.000 0.000 1.000 

3 0.000 1.000 0.000 0.000 

4 0.000 0.000 1.000 0.000 

5 0.090 0.000 0.000 0.910 

6 0.090 0.000 0.910 0.000 

7 0.450 0.000 0.550 0.000 

8 0.450 0.000 0.000 0.550 

9 0.090 0.400 0.510 0.000 

10 0.090 0.400 0.000 0.510 

11 0.450 0.410 0.000 0.140 

12 0.450 0.410 0.140 0.000 

13 0.270 0.000 0.365 0.365 

14 0.270 0.000 0.365 0.365 

15 0.270 0.200 0.265 0.265 

16 0.270 0.200 0.265 0.265 

17 0.450 0.200 0.175 0.175 

18 0.450 0.200 0.175 0.175 

19 0.270 0.400 0.165 0.165 

20 0.270 0.400 0.165 0.165 

21 0.270 0.200 0.530 0.000 

22 0.270 0.200 0.000 0.530 

 

 

Table 5-3 Four models were fitted to flow factor and cohesion respectively. Adjusted R-squared were used for 

model selection. 

Model Terms included 

Number 

of Terms 

Flow factor 

R-sq adj. 

Cohesion 

R-sq adj. 

1 Linear 4 35.24% 34.71% 

2 Linear, Quadratic 10 48.62% 54.88% 

3 Linear, Quadratic, Special cubic 14 74.54% 64.87% 

4 Linear, Quadratic, Special cubic, Full cubic 18 96.75% 96.14% 
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Table 5-4 Analysis of variance of the mixture design. Effect of linear terms was not evaluated due to nature of 

mixture design. Terms of APAP*FastFLo and MCC*FastFlo*Regular were not included after model reduction 

due to insignificance effect.  

Source DF 

Seq 

SS 

Adj 

SS 

Adj 

MS F P 

Regression 13 9.476 9.476 0.861 18.68 0.00 

Linear 3 4.574 3.934 1.311 28.43 0.00 

Quadratic 5 2.092 2.296 0.459 9.96 0.00 

APAP*MCC 1 0.029 1.744 1.744 37.81 0.00 

APAP*Regular 1 0.089 0.339 0.339 7.34 0.009 

MCC*FastFLo 1 0.283 0.779 0.778 16.88 0.00 

MCC*Regular 1 0.355 0.671 0.671 14.56 0.00 

FastFLo*Regular 1 1.337 0.296 0.296 6.41 0.014 

Special cubic 3 2.809 2.809 0.936 20.30 0.00 

APAP*MCC*FastFLo 1 0.224 0.805 0.805 17.46 0.00 

APAP*MCC*Regular 1 2.404 2.566 2.566 55.65 0.00 

APAP*FastFLo*Regular 1 0.180 0.180 0.180 3.91 0.053 

Residual 54 2.490 2.49 0.046 

 

  

Total 65 11.966         

R-Sq = 79.19%, R-Sq(adj) = 74.95% 
 

 

Table 5-5 Two points were selected from contour plots as an example of model application for flow performance 

estimation during formulation design. 

Formulation APAP MCC 
FastFlo 

Lactose 

Lactose 

Regular 

Predicted 

Cohesion (kPa) 

Measured 

Cohesion (kPa) 

1 0.27 0.11 0.35 0.27 0.53 0.59 

2 0.45 0.12 0.32 0.11 1.06 1.10 

 

 

 

 

 

 



109 

 

 

 

6. Controlled Shear System and Resonant Acoustic Mixing 

Effects on Lubrication and Flow Properties of Pharmaceutical 

Blends  

6.1. Introduction  

Achieving desired powder flowability is critical for powder handling and processing. In 

the pharmaceutical industry, the active pharmaceutical ingredient, which is often 

cohesive, is mixed with excipient materials through a series of unit operations before the 

delivery of final solid dosage forms [7]. Lubricants, such as magnesium stearate (MgSt), 

or glidants such as Silicon dioxide (SiO2) are commonly included during formulation 

development. MgSt interacts with other materials during lubrication process to improve 

the flowability of the blends, and therefore to ensure reproducible final products with 

acceptable weight variation and content uniformity [177, 178]. The mechanism of 

lubrication has been explained by the formation of lubricant layers on the large particles, 

reducing frictional forces, cohesive forces or both between particles [179, 180]. Studies 

have shown that lubrication significantly affects the density and compactability of blends 

[181, 182]. Properties of the final solid dosage forms, such as tensile strength and in vitro 

drug release, are also heavily dependent on the lubrication process [82, 183, 184].  

Controlling the extent of shear, or energy, that the blend experiences during lubrication is 

necessary to achieve the desired lubricity and flowability and to avoid over-lubrication 

[185]. Sufficient energy during mixing is necessary to homogenize cohesive ingredients 

by de-lumping agglomerates and redistributing them within the blend matrix. However, 

excessive energy can lead to electrostatic buildup and over-lubrication [186]. Studies 

have shown that tablet properties made from over-lubricated blends can be adversely 

affected [187-189]. Lubrication can take place in numerous unit operations that are 
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intrinsically associated with shear mixing, such as blending and feeding in a tablet press 

[190]. Two process variables are important for lubrication: the total energy per unit mass, 

and the rate of energy being applied. Although the rate is difficult to measure inside a 

blender, several studies have shown that these variables can be indirectly correlated to 

operating conditions, such as mixing time, fill level and rotation speed, and are used for 

process scale-up [191-193]. 

In recent studies, two laboratory scale devices have been used substantially to investigate 

the effect of lubrication variables on blend and tablet properties: the controlled shear 

system and the Resonant Acoustic Mixer (RAM). The controlled shear system, also 

known as the modified Couette shear cell, provides a controlled and uniform shear 

environment to the blends by equally spaced interlocking pins creating a homogeneous 

shear filed. Both total shear, quantified by total revolutions, and shear rate, quantified by 

the rotational speed, can be controlled. The principles by which the controlled shear 

system works are explained in more detail elsewhere [12, 185]. Studies show that 

increasing total shear improves the powder flowability and decreases tablet hardness. The 

shear rate was found to have smaller effect than total shear on the blend and tablet 

properties.[12, 186]   The RAM uses low frequency and high intensity acoustic energy to 

induce mixing and allows for sufficient mixing for small-scale blends [194]. The total 

energy during mixing can be easily assessed by controlling the energy input rate and the 

mixing time. Our previous work discussed the blending performance observed in a 

laboratory-scale resonant acoustic mixer (LabRAM) and investigated the effect of 

process parameters on the material properties of blends and tablet performance. Studies 

suggest that improved flowability and increased wettability of the blend can be obtained 
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with increasing energy input rate and blending time. The tableting performance and tablet 

properties were found to be correlated to the total energy. [195, 196].  

Although both devices have been well studied, to our knowledge, there is no published 

work that systematically compares and correlates the two devices. Based on our 

understanding of the shear mixing mechanism, it is expected that the observed lubrication 

using one device will agree with that from the other. However, questions that remain 

unanswered include: 1) Are the lubrication process of the two devices, controlled by 

different operation parameters, processed at different scales, and measured in different 

units, comparable? 2) Can final blends with the same flow properties be made using 

different device by adjusting process parameters? 3) More importantly, when comparing 

two devices that have different mixing principles, what properties can be correlated and 

what properties cannot? Considering how common and critical lubrication is, it is 

important to answer these questions using a science-based process and product 

development approach [11].     

The objective of this chapter is to systematically compare the lubrication effects of the 

controlled shear system and the resonant acoustic mixer on the flow properties of 

pharmaceutical blends. Importantly, understanding the effects of lubrication variables on 

blend flow properties supplements the mixture model, introduced in Chapter 5, to predict 

blend cohesion by considering both formulation and processing variables. A model 

formulation consisting of a drug substance, a filler and a lubricant was used. Two 

factorial experimental designs were carried out to fully characterize the effect of the total 

shear in the controlled shear system and the total energy in the LabRAM, and the 

lubrication rate on the blend flow properties. Due to the complexity of powders, many 
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measurements have been developed to elucidate their flow properties. The flow 

properties in this study were characterized by density, compressibility and flow indices 

extracted from the shear cell tests [18].  

6.2. Materials and Methods  

6.2.1. Materials  

 The blend consisted of semi-fine acetaminophen (Mallinckrodt Inc. Raleigh, North 

Carolina) as the active pharmaceutical ingredient in the formulation, lactose monohydrate 

NF (Foremost Farms, Rothschild, Wisconsin) as the filler, and magnesium stearate NF 

(Mallinckrodt Inc. St Louis, Missouri) as the lubricant. The particle size information of 

the materials is listed in Table 6-1. Particle size was determined using a laser-diffraction 

(LS-13320) analyzer with a Tornado Dry Powder System (Beckmann-Coulter, Brea, 

California).  

6.2.2. Blending 

The formulation in this study consisted of 90% w/w lactose, 9% w/w acetaminophen and 

1% w/w magnesium stearate (MgSt). Prior to lubrication, 900 g of lactose and 90 g of 

semi-fine acetaminophen were mixed in a 1.87-L V-blender (Patterson Kelley, East 

Stroudsburg, PA) at 15 rpm for 15 minutes. 10 g of MgSt was then added to the pre-blend 

and mixed further for 2 minutes. The blend with MgSt without further lubrication, either 

in the controlled shear system or in the LabRAM, is referred to as “0Rev” blend in this 

study. The above steps were repeated five times so that in total 5 kg of 0Rev blends were 

prepared for the lubrication experiments. The flow chart of the experiment methods is 

shown in Figure 6-1. 
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To investigate the controlled shear system, a full factorial design covering three levels of 

shear rate and five levels of total shear was conducted. The variables to characterize the 

controlled shear system are listed in Table 6-2. A total of 250 g of blend was prepared 

each condition. For the LabRAM study, a full factorial design including three levels of 

intensity and four levels of total energy was performed. The experimental design is listed 

in Table 6-3. A total of 100 g of blend for each condition was prepared.  

In addition, a control group of each device was prepared, which is referred to as the 

“reference blends.” The reference blend was prepared by firstly mixing 90 g of 

acetaminophen and 900 g of lactose in the 1.87-L V-blender at 15 rpm for 17 minutes. 

The reference blends of the controlled shear system were then subjected to the five 

different shear levels from the experimental design (80, 160, 320, 640, and 1280 

revolutions) at shear rate of 80 rpm. The reference blends for the LabRAM were 

subjected to the four different energy levels from the predefined experimental design 

(2000, 5000, 10000, and 50000 J/kg) at 60% intensity (10.4 Watts).   

6.2.3.  Blend Characterization 

The bulk and tapped densities were measured using the standard procedure (ASTM 

Standard D7481-09).[197] The bulk density was measured using a 100-mL graduated 

cylinder. The cylinder was filled at 60 mL and the mass was weighed. An automatic 

tapping machine (Model No. AT.4.110.60, Quantachrome Instruments, Boynton Beach, 

Florida) was used for the tap density measurement. Three replications were performed for 

each experiment condition. In addition to particle size analysis, and density 

measurements, blend flow properties were characterized by compressibility test and shear 

cell test, which were discussed in details in Chapter 3 and Chapter 4.  
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6.3. Results and discussion 

The effect of lubrication in the controlled shear system (CSS) and the resonant acoustic 

mixer (RAM) on the material and flow properties of the model blend under investigation 

was characterized and compared. Powder blend properties, namely particle size, bulk 

density, compressibility, cohesion, flow function coefficient (ffc), and the angle of 

internal friction, were compared. Selected powder flow property measurements were also 

correlated to one another to directly compare the effect of shearing (energy input rate) 

and total shear (energy) of the two systems under investigation. Statistical analysis was 

carried out to elucidate the effect of the process parameters on the final properties 

measured.          

6.3.1. The effect of lubrication on flow properties 

Figure 6-2a shows the particle size distribution of the lubricated blends from the 

controlled shear system at shear rate of 80 rpm. Figure 6-2b shows the particle size 

distribution of the lubricated blends from the LabRAM at intensity of 60% (10.4 Watts). 

Blends from other lubrication rates had similar results and therefore are not shown here. 

Results suggested that the particle size distribution did not change significantly compared 

to the 0Rev blend. During mixing in lubrication, adhesion forces and possibly 

electrostatic effects may result in larger agglomerated particles. These particles could also 

break down to smaller particles during mixing. From the particle size measurements, the 

distribution did not show a marked difference, indicating that the two mechanisms were 

acting simultaneously, and neither was dominating.  

The bulk density of the lubricated blends increased as the total shear or energy increased 

(Figure 6-3). Results of tapped density also showed increasing trends and therefore are 
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not shown here. The observed densification effect was independent of the lubrication 

device and the lubrication rate, and was heavily dependent on the presence of MgSt. For 

the reference blend, the bulk density decreased as the total shear or energy increased. 

Typically, a powder with a strong structural strength (i.e., a cohesive powder) will resist 

collapse and will have a low bulk density, while a structurally weak powder will collapse 

easily and have a high bulk density [198]. Therefore, although the particle size 

distribution was not changing as illustrated earlier, the lubrication process impacted the 

strength of interparticle forces 

The compressibility measurements confirmed the change of interparticle forces as shown 

in Figure 6-4. The compressibility decreased as the total shear or energy increased. 

Notably, the results of the reference blends suggest that further mixing the pre-blend 

without adding lubricant significantly increased the compressibility of the powders. 

Figure 6-5 shows the same findings for the cohesion from the shear cell test. 

Interestingly, the 0Rev blend, which had MgSt mixed for 2 min during experiment after 

pre-blending, was significantly more cohesive than the reference blend at zero revolution 

or energy (p < 0.05). Typically, the lubrication process reduces interparticle cohesive 

forces and improves the powder flowability. However, the findings indicate that 

insufficient shear or energy during lubrication may result in more cohesive materials. It is 

therefore important during process design and development stages to consider sufficient 

lubrication time, the appropriate time to add the lubricant, and the mixing order of the 

lubricant [199].   

Figure 6-6 shows the effect of lubrication in both devices on the flow function 

coefficient. Based on the flow classification criteria, the lubrication process in the study 
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improved the flowability of the blend from relatively cohesive (ffc = 4.74) to free flowing 

(ffc > 10 )[175]. Cohesive forces and frictional resistance are the two main interaction 

forces between pharmaceutical particles. As discussed earlier, as MgSt forms layers on 

the surface of large particles, the capillary cohesion between particles are disrupted. In 

addition, as particles are coated by lubricant, they will create smoother surface area with 

fewer sharp edges [200]. The frictional forces between particles will thus be smaller. This 

is confirmed by the results of the angle of internal friction as shown in Figure 6-7. 

Surprisingly, the angle of internal friction of the 0 Rev blend is similar to the reference 

blend at zero shear or zero energy (p < 0.05), implying that the decreased flowability due 

to insufficient lubrication is dominated by the increased cohesive forces rather than the 

frictional forces.   

Lubricated blends increased in bulk density due to a reduction in capillary cohesion and 

Van der Waals forces by possible coating of the lubricant onto other “carrier” particles. 

MgSt is a dry and soft material that deforms under load and accommodates surface 

velocity differences by adhering to surfaces and shearing in the bulk medium. When 

sufficient energy during lubrication is provided, MgSt can coalesce and transfer a thin 

lubricating film to achieve enhanced lubrication performance.[201] For the unlubricated 

blends, further mixing of the cohesive drug (acetaminophen) might be causing increased 

capillary cohesion, Van der Waals forces, and electrostatic charging.[185] Experimental 

results agree with the two competing regimes during lubrication process, one where the 

cohesive materials dominate to increase the interparticle forces, and another where the 

lubricant is dispersive enough in the bulk medium to provide lubricating 

capabilities.[202]   
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6.3.2.     Statistical analysis 

Statistical analysis, using analysis of variance (ANOVA) and omega-squared statistics, 

were used to test the effect of total shear or energy, the lubrication rate, and their 

interaction on the blend flow properties. The p-value for each factor and the two-way 

interaction was calculated using ANOVA. Typically, a factor with a p-value of less than 

0.05 was considered statistically significant. Since the statistical significance of an effect 

depends on both the effect size and the sample size, knowing the magnitude of an effect 

conveys information on practical significance [203]. Calculation of ANOVA and effect 

size using omega-squared statistics can be referred to Chapter 2.  

The ANOVA and omega squared results for the controlled shear system and for the 

LabRAM are tabulated in Tables 6-4 and 6-5, respectively. Results show that shear rate 

in both devices had minimal effect on the flow properties. On the other hand, the effect of 

total shear, or total energy, during lubrication was significant (p < 0.05) and had much 

larger magnitude (ω2 > 0.14). A previous study showed that the rotation rate during 

convective mixing had little influence on the mixing process [204]. During lubrication, 

MgSt acquires sufficient energy to disrupt its adhesive forces and to be dispersed. Hence, 

the most important factor determining the overall extent of lubrication is the total amount 

of mechanical energy dissipated in the blend, rather than the rate of the energy being 

applied. Since the effect of shear rate is small, it can be adjusted during process scale-up 

development to accommodate the lubrication time, if necessary.    

6.3.3. Correlation between flow properties 

Figure 6-8 shows that the lubricated blends from both devices fit into one linear 

correlation (p < 0.05) between the cohesion and the compressibility. Both flow indices 
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reflect cohesive forces between particles, and thus have a good correlation as lubrication 

weakens the cohesive forces. Figure 6-9 shows two relatively parallel lines, indicating 

the correlation between the bulk density and the angle of internal friction. A previous 

study showed that the angle of internal friction is a material property that is insensitive to 

the change of normal stress applied to the material [135]. The results indicate that as 

lubrication processes densified the blend, the frictional forces changed in a reasonably 

similar rate in both devices. However, the correlations between the bulk density and the 

cohesion of the two devices were significantly different (p < 0.05) as shown in Figure 6-

10. In other words, as the controlled shear system and the LabRAM work on different 

mixing principles, the frictional forces during lubrication can be well correlated, rather 

than the cohesive forces. Interestingly, mixing without adding MgSt significantly 

changed cohesive forces, while the frictional forces remained relatively constant, as can 

be observed from the reference blends in Figure 6-9 and Figure 6-10. Therefore, the 

experimental results suggest that although the two devices had comparable lubrication 

effects on the overall blend flowability, the changes of the interparticle forces were not 

identical.  

6.4. Conclusion 

In this study, the lubrication effect of the controlled shear system and the laboratory scale 

Resonant Acoustic Mixer (LabRAM) was compared. Both devices enable direct control 

of the total shear, or energy, and the lubrication rate. A model formulation was selected to 

examine the effects of the process parameters on the blend flow properties. The 

lubricated blends were characterized by density measurement, compressibility test, and 

the shear cell test. Experimental results support the previous knowledge that the 
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lubrication significantly improves blend flowability. Reference blends were prepared as 

control sets to illustrate the effect of mixing on the blend flow properties with presence of 

MgSt. Results show that mixing without MgSt created more cohesive blends. In addition, 

early stage of lubrication made the blends more cohesive due to insufficient energy 

applied to disperse the MgSt and increased cohesive forces between particles.    

Analysis of Variance (ANOVA) and effect size test using omega-squared were used to 

assess the relative magnitude of the process parameters. The statistical analysis suggests 

that the shear rate, which is controlled by the rotation rate in the controlled shear system 

and the intensity in the LabRAM, has minimal effect on the blend flow properties. In 

other words, the most important factor determining the overall extent of lubrication is the 

total energy transferred to the blend, rather than the rate of the energy being applied. The 

non-significant effect of the shear rate can be used during process design and 

development to reduce the lubrication time and to increase lubrication efficiency.  

This study also represents an initial effort to demonstrate a scientific approach to 

compare lubrication processes, which have different mixing mechanisms and are 

different in scales, in a reproducible manner. Full factorial experimental design covering 

the operational space was conducted. Rigorous statistical analysis was performed to 

investigate the effect of lubrication parameters. Different flow characterization 

techniques were used to provide insight into the change of interparticle forces during 

lubrication. Results suggest that although the two devices had comparable lubrication 

effect on the overall blend flowability, the changes of the interparticle forces were not 

identical. The frictional forces can be well correlated with the bulk density of lubricated 

blends from both devices, while the correlations between the bulk density and cohesive 
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forces were significantly different. In other words, while the power relation between the 

flow function coefficient and the dimensionless cohesion is valid for both raw materials 

(Chapter 3) and powder mixtures (Chapter 5), the results from this chapter suggest that 

the correlation between different flow indices may be dependent on processing 

parameters for intermediate blends. Future work is needed on different formulations to 

test the robustness of the results and to generalize across available lubrication equipment.  
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6.5. Figures for Chapter 6 

 

Figure 6-1 Experimental procedure in this study. 
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Figure 6-2 Particle size distribution from (a) controlled shear system at 80rpm and (b) LabRAM at 80% 

Intensity (22.0 Watts).  
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Figure 6-3 Effect of lubrication on blend bulk density in (a) controlled shear system and (b) LabRAM. 
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Figure 6-4 Effect of lubrication on blend compressibility in (a) controlled shear system and (b) LabRAM 
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Figure 6-5 Effect of lubrication on blend cohesion in (a) controlled shear system and (b) LabRAM 
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Figure 6-6 Effect of lubrication on blend flow function coefficient in (a) controlled shear system and (b) 

LabRAM 
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Figure 6-7 The effect of lubrication on blend angle of internal friction in (a) controlled shear system and (b) 

LabRAM 
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Figure 6-8 The correlation between the cohesion and compressibility.  
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Figure 6-9 The correlation between the bulk density and the angle of internal friction.  

 

Figure 6-10 Comparison of the correlation between the bulk density and the cohesion of the two devices.  
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6.6. Tables for Chapter 6 

Table 6-1 Particle size distribution of the raw materials used in the study. 

Material Mean (µm) d10 (µm) d50 (µm) d90 (µm) 

Lactose 71.9 10.3  63.5 157.7  

Semifine 

Acetaminophen 
48.9 5.6 32.6 122.7 

MgSt 8.8 2.1 7.8 16.6 

 

 

Table 6-2 Experimental design for the controlled shear system. 

Total 

Revolutions 40 rpm 80 rpm 160 rpm 

80 √ √ √ 

160 √ √ √ 

320 √ √ √ 

640 √ √ √ 

1280 √ √ √ 

 

 

Table 6-3. Experimental design for the LabRAM. 

Energy (J/kg) 

40% Intensity 

(3.7 Watts) 

60% Intensity 

(10.4 Watts) 

80% Intensity 

(22.0 Watts) 

2000 √ √ √ 

5000 √ √ √ 

10000 √ √ √ 

50000 √ √ √ 
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Table 6-4 Statistical analysis, using analysis of variance (ANOVA) and omega-square (ω 2), of the effect of total 

shear (revolutions) and shear rate on the powder flow properties for the controlled shear system.  
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Table 6-5 statistical analysis, using analysis of variance (ANOVA) and omega-square (ω 2), of the effect of total 

energy and lubrication rate (intensity) on the powder flow properties for the LabRAM.. 
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7. Statistical Comparison of Dissolution Profiles 

7.1. Introduction 

The ability to compare in-vitro dissolution profiles and demonstrate similarity for tablets 

and other oral products is extremely important to the pharmaceutical industry. Consider 

three typical situations: (i) Formulation and Optimization decisions: During product 

development, for products where dissolution performance is a critical quality attribute, 

both the product formulation and the manufacturing process are optimized based on 

achieving specific dissolution targets. (ii) Equivalence decisions: During generic product 

development, and also when implementing post-approval process or formulation changes, 

similarity of in vitro dissolution profiles between the reference product and its generic or 

modified version are one of the key requirements for regulatory approval decisions. (iii) 

Product compliance and release decisions: During routine manufacturing, dissolution 

outcomes are very often one of the criteria used to make product release decisions. [190, 

205, 206]  

The first two decision scenarios described above are typically based either on pairwise 

comparisons or multiple comparisons of average dissolution profiles, while the third one 

usually involves the comparison of an average profile to one or more discrete 

specifications (i.e, NMT 40% dissolution after one hour, NLT 90% dissolution after eight 

hours, etc.). However, the data is typically composed of multiple (6 or 12) dissolution 

profiles for individual tablets. From a theoretical perspective, to compare multiple curves 

(whether dissolution profiles or anything else), there are three quantitative approaches: 

ANOVA-based, model-dependent, and model-independent methods. ANOVA-based 
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methods maintain dissolution data in their original form [207], and test the statistical 

significance of observed effects by quantifying and comparing sources of variability, 

often estimated based on experimental design. On the other hand, both model-dependent 

and model-independent methods describe a dissolution curve by calculated parameters, 

and thus transform comparison of curves into comparison of parameter values.[208] The 

difference between the last two approaches is the additional need for selecting a 

mathematical model and adopting a curve-fitting procedure in model-dependent methods. 

While all three approaches are clearly rooted in practice and consistent with current 

regulations, current industrial practice rarely uses any of them, instead relying on the 

computation of f1 and f2, the so-called similarity and difference indexes. In our opinion, 

in spite of their popularity, these indexes have dubious meaning, unknown reliability, and 

also poor sensitivity in a number of important situations. 

This chapter focuses on the first of the three decision scenarios described above, the 

“optimization” scenario, characterized by the need to compare dissolution profiles 

obtained for multiple experimental conditions. We introduce several alternative methods 

for comparing dissolution profiles that not only are significantly more rigorous and 

meaningful than f2, but also enable the user to assess the reliability of results using 

standard statistical metrics, at the expense of a very small increase in calculation 

complexity. The other two decision scenarios, i.e., the “equivalence between two 

conditions”, and the “compliance with specification” conditions, will be addressed in 

future publications.  
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However, before proceeding with a further discussion of statistical method significance, 

it is useful to consider the different meanings of the term “significance” in the context of 

pharmaceutical product development.  

- Statistical Significance, as a means of assessing the reliability of a scientific 

result, is a measurement of the probability that the observed result actually exists, 

(or complementary, that an effect believed to be absent is indeed not present). 

Statistical significance, and thus, statistical reliability, depends on four factors – 

how much data has been collected, how the experimental space has been sampled, 

how much variability is present in the data, and how large are measurement errors 

relative to the magnitude of the effect. 

- Clinical Significance, in the context of pharmaceutical development, product 

equivalence, product release, and quality control, is related to a completely 

different question: whether the effect is large enough to have a meaningful impact 

on a patient’s health. Critically, Statistical Significance must not be confused with 

Clinical Significance: given enough data, even very small effects can be 

quantified in a statistically significant manner, but that does not make them 

clinically relevant. 

- Finally, Regulatory Significance, ideally, should be the answer to yet another 

question – whether the observed effects, known with a given degree of reliability, 

are important enough to warrant regulatory action (or inaction)

The proposed methodology aims to improve all three types of significance – to increase 

statistical significance of dissolution profile comparison, so that effects can be measured 
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more accurately and reliably, so that clinical significance can be ascertained with 

increased confidence, and regulatory decisions can be made more objectively. 

7.1.1. Current approaches for dissolution profile comparison 

The most common current practice to compare dissolution profiles is to use the 

“similarity factor” f2, which is a model-independent approach to define dissolution 

similarity based on the mean-squared difference between a pair of profiles [209], usually 

estimated as the average of twelve tablets (although comparisons based on the average of 

six tablets, or even as little as three tablets, are not uncommon in product development). 

This method is one of the approaches described in the latest FDA’s Guidance for Industry 

regarding dissolution testing [210-212]. In the f2 protocol, the average dissolution values 

of test and reference profiles are used. According to the guidance, an f2 value greater than 

50 is required for curves to be considered similar, and roughly corresponds to differences 

between profiles being smaller than about 10%. Another model-independent index 

derived from average absolute differences between individual time points of the average 

profiles is termed as the “difference factor” f1, with value less than 15 presumably 

indicating similarity. Other methods mentioned in the current FDA Guidance for 

immediate release dosage forms include a multivariate confidence region procedure and a 

model-dependent method with no more than three parameters, where both similarity 

decisions are based on whether the “confidence region” is within the limits of a so-

defined “similarity region”.[210-212] 

7.1.2. Disadvantages of the f2 method for pharmaceutical product 

development 
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Because of its simplicity and its adoption by various regulatory agencies, the f2 method 

has gained considerable popularity and is widely used to guide similarity decisions.[213-

215] However, this method has several easily noted shortcomings. First, f2 is limited to 

pairwise comparison. When there are N groups of dissolution profiles, N*(N-1)/2 f2 

values need to be calculated. Moreover, f2 is generally used to compare two dissolution 

profiles such as that of reference and test batches, pre-change batch and post-change 

batch. However, in cases when similarity is investigated among groups of dissolution 

profiles without an obvious reference, the f2 matrix cannot provide a direct interpretation.  

In addition, and perhaps much more importantly, the similarity factor does not consider 

the degree of variability among individual measurements. Although there is a 

recommendation in the guidance for the coefficient of the variability (RSD) between 

individual values at specific time points to be less than 10% (except at early time points, 

where the recommendation is that the RSD should not exceed 20%), the use of the 

average alone fails to consider the measurement variation and sampling error.[216]  

When variability exceeds the rule from the guidance, f2 cannot be applied and other 

statistical models should be considered.[217]  

Also importantly, the outcomes of the f2 test can depend on the number and spacing of 

time points selected to perform the test, allowing for another source of ambiguity.[218] 

FDA addresses this issue by suggesting using no more than one time point corresponding 

to dissolution above 85%, but as seen below, this recommendation by itself does not 

resolve the problem, and does not even apply to situations where the relevant and 

important comparisons take place at early stages of the dissolution process.  
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Finally, the lower similarity limit of 50 in f2 method is calculated based on an average 10% 

difference at all sampling times. However, it is standard statistical practice in statistical 

data analysis to use “within group” variance components to evaluate the reliability of any 

measurement. It is also very common to compare “within group” to “between groups” 

variance components, informed by the size of the sample, to ascertain the statistical 

significance of the observed effect (in fact, this latest comparison is the root concept of 

all ANOVA methods). Remarkably (and not in a positive way), the f2 method ignores the 

sample size (other than a recommendation by FDA to use at least 12 tablets, which as 

mentioned, is often not followed), and wastes the known within-group variability 

information, providing neither an estimate of the reproducibility of the measurement nor 

an estimate of its significance.[219]  

The lack of statistical justification of the similarity factor has been reported in the 

literature. Liu et al. used simulated dissolution profiles to generate distribution statistics 

of f2 and suggested that the similarity factor is too liberal in concluding similarity 

between dissolution profiles.[220]  As observed by Hsu et al., the f2 formula simply 

reflects the overall average difference and neglects the difference of dissolution pattern 

between the test and reference.[221] Shah et al. simulated the confidence interval of f2 

with a Bootstrap method, and found that the commonly used similarity factor formula can 

generate biased and conservative estimates.[222] Further investigation by Ma et al. 

showed that in order to produce the acceptable 50-100 range, the distribution of f2 would 

be unnecessarily complicated.[223] Later simulation work from Ocana et al. confirmed 

the insufficiency of statistical justification for 50-value threshold.[224] The similarity 

factor may be indeed easy to calculate and be intuitively appealing for empirical 
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comparison of two dissolution profiles, but it is not a good statistical estimator of 

similarity. 

7.1.3. Alternatives to f2 index in the previous literature 

The limitations of f2 have inspired researchers to propose other methods to conduct 

pairwise dissolution comparisons. For example, the concept of similarity factor Sd was 

introduced in combination of f2 to evaluate selected variables on dissolution in a factorial 

experiment.[225, 226] Seo et al. used a four metrics along with f2 to compare dissolution 

profiles.[227]  Saranadasa et al. proposed a multivariate test to compare two dissolution 

profiles with the assumption of multivariate normality of the data.[228] Interestingly, 

Maggio et al. proposed a method based on principal component analysis with the 

establishment of a confidence region (PCA-CR) after an outlier detection step using 

Hotelling’s test to avoid high variability in the data.[229, 230] The advantage of PCA is 

its ability to examine multivariate data and reveal hidden trends in fewer dimensions, thus 

simplifying interpretation of results.[231] For dissolution profiles with missing elements, 

Adams et al. used expectation-maximization algorithm in combination with PCA, and 

constructed confidence limits by bootstrap technique.[232, 233]  Comparison methods 

based on nonparametric Permutation Test theory were also described as viable 

alternatives.[234] Another method based on cluster analysis from D. Enachescu 

demonstrated the capability to visualize data and reflect variability within the individual 

dissolution curves.[235] In addition, the use of time series models,[236] fractional 

dissolution rate functions,[237] and Lagrange multipliers[238] have also appeared in the 

literature to assist pairwise comparison. 
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As diverse as these methods are, they do not address several critical features of multi-

group testing. For example, pairwise comparison is of limited value when one needs to 

investigate several factors with multiple levels (which is the typical situation when 

optimizing a formulation or a process). In such a case, one needs to examine not only be 

the similarity between dissolution profiles, but also the relative effects of multiple factors 

and their interactions, usually from designed experiment. Moreover, it is useful to 

ascertain whether the observed effects are independent of sample size, which usually 

requires an estimation of effect size (besides the typical calculation of p-value). 

Importantly, to maximize usefulness, a method should be as easy to apply as possible.  

To summarize, the shortcomings of the f2 method are inconsistent with the enormous 

reliance currently placed on dissolution testing to make quality and regulatory decisions, 

particularly in situations where dissolution is a critical product attribute and patient risk 

and manufacturer failure risk are high. Industry and regulatory agencies need a flexible 

and reliable analysis framework that can be adapted to the different types of comparisons 

required by the multiple scenarios that use dissolution results to make decisions.  

The purpose of this chapter is to introduce such a framework. To that end, we introduce 

two methodologies for the reliable and meaningful comparison of multiple groups of 

dissolution profiles: (i) MANOVA with repeated measures and (ii) modified level-shape 

PCA analysis. In Section 3, we use a designed case study to compare the introduced 

methods with results obtained using f2. In performing this comparison, we propose the 

use of the omega-squared statistic to quantify effect size and to promote the application 

of a test with increased statistical significance as a tool to ascertain clinical significance. 
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In the final section, we provide a step-by-step illustration of the statistical procedures 

through a demonstrative case study. 

7.2. Methods 

Methods of effect size test, multivariate ANOVA (MANOVA) and modified-PCA were 

detailed in Chapter 2. Importantly, both the modified-PCA and the MANOVA repeated 

measures methods examine level and shape independently, and their conclusions can be 

readily compared. The treatment effects in MANOVA repeated measures correspond to 

the level effects in modified-PCA, and Time*Treatment interaction effects in MANOVA 

are in fact shape effects in modified-PCA. Both methods can be used to perform both 

pairwise and multiple comparisons, and both can examine multiple effects and their 

interactions. Moreover, for both methods, as seen below, reliability of measurements, 

statistical significance of results, and effect size can be readily determined. In our opinion, 

neither method is uniformly superior. 

Dissolution data from a case study is used here for the purpose of illustration. The 

formulations were designed with an enteric coating, which was supposed to prevent the 

release of the drug under acidic conditions. The dissolution test measured the amount of 

drug released under different conditions. Time points of interest extended up to 240 min 

(Figure 7-1). The case study aimed to study the effect of drug strength (level 1 and level 

2), tablet stability time (level 1- level 4), and dissolution testing condition (level 1 and 

level 2) on release profiles by a 2*4*2 full factorial design. In total 16 conditions were 

generated, and for each condition, 6 tablets were sampled for dissolution test. Further 

technical details, which are unavailable due to confidentiality requirements of the product 

owner, are not needed to gain the benefit of the example. Importantly, this example is 
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also relevant to other situations where only small amounts of drug are supposed to be 

released, such as abuse resistant formulations, dose dumping prevention, etc. 

7.3. Results and discussion 

Since there are 16 conditions tested (6 tablets each), 16 averaged profiles were calculated. 

The 16 profiles, shown in Fig 7-1, are all found to be “similar” (f2>50) when tested using 

the similarity factor method.  In other words, all (15*14/2) pairwise interactions gave a 

value of (f2>50).  

However, visual examination readily indicates that the profiles are not equivalent. The 

differences between profiles, and moreover, the effects of the independent variables, can 

be readily detected by MANOVA and modified PCA.  The information with nominal 

variables described in Table 7-1 is sufficient to implement a full analysis to find target 

information: 1) Do the 16 groups have statistically significant differences? 2) Does all 

three variables have a statistically significant effect on dissolution? Do the variables have 

statistically significant interactions? What is the relative magnitude of each effect and 

each interaction? 3) Which groups are (statistically) significantly different among the 16? 

Which groups can be considered to be similar to each other? 

7.3.1. Test effect of treatment by MANOVA repeated measures 

To test the treatment effects, commercial software JMP 10 (SAS Institute Inc.) was used 

for MANOVA repeated measures analysis. Full results of the F test are listed in Table 7-

2.  This analysis immediately shows that strength, stability time, and testing condition all 

have significant (p<0.05) effects on dissolution profiles. In other words, the observed 

differences between the 16 groups of responses under investigation are statistically 
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significant. Also, one of the two-way interactions (strength*stability time) and the three-

way interaction were statistically significant. In other words, all three main effects, one of 

the two-way interactions, and the three-way interaction all had statistically significant 

effect in the total amount of drug released. 

The analysis can then be shifted to the “within subject” effects, where the effect of time is 

of course statistically significant, and where the presence of significant interactions of the 

time factor with other factors indicates that differences in profile shape are also 

statistically significant. Interactions with time imply that profiles are not parallel in 

shape.[239]  

7.3.2. Modified-PCA for level and shape analysis 

Before M-PCA is performed, the level for each profile can firstly be calculated according 

to equation (1). The formula averages the percentage released over 240 min and directly 

reflects an overall performance (total amount released) without considering the time trend 

(i.e., the shape). 

In order to calculate shape score, average profiles are calculated for each group. The 

simplest procedure to organize average profiles is as follows: the data is arranged in a 

spreadsheet as in Table 7-3, followed by calculation of row mean (yi.) and column mean 

(y.j) respectively, as well as grand mean (y..).  

The residual matrix is then constructed from the average profiles. The element in residual 

matrix can be calculated according to equation (2). The constructed residual matrix is 

shown in Table 7-4 as an example. Residuals are subtracted from the mean effect, and 

thus are representative of differences in shape. The advantage of using average profiles 
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for modified principal component analysis is to better capture the “between group” 

variability with minimization of experimental variations. The “within group” variability 

is still kept in the residual matrix calculated from individual profiles as shown in 

subsequent step.  

Principal component analysis is then performed on the residual matrix (M-PCA), instead 

of original dissolution data, based on average profiles. Special attention needs to be paid 

to the eigenvectors (e) that explain most of the variance in shape. As shown in Table 7-5, 

the first four components account for more than 99.5% of the variance. Further 

observation shows the first component claims 94%, and thus can be used alone to 

represent shape. Column vector (e) is shown in Table 7-6.  

Finally, a residual matrix based on individual profiles is constructed. The matrix is 

composed of 96 row vectors (yi) and each vector records individual release percentage at 

10 time points. Based on eigenvectors from M-PCA on average profiles, the shape score 

of individual profiles can be calculated from the residual matrix of individual profiles. 

Once this is done, a shape score is calculated for each individual profile. The shape score 

is the dot product e·yi. Since only one vector is sufficient in this case study to describe 

shape, only one score needs to be calculated for each profile In other words, the 

calculated value is the score of individual profile after an orthogonal transformation of 

residual matrix. (N.B. – more complex cases might require multiple eigenvectors, and 

therefore, multiple scores per profile).  

Once the level and shape factors are calculated, ANOVA methods can be used to test the 

effect of treatment on level and shape. By now, level and shape factors have been 
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calculated separately for each individual profile, and comparing dissolution profiles is 

transformed into comparing the two descriptive values (level value and shape score). 

Table 7-7 and Table 7-8 show ANOVA results for level and shape. Since tablets and 

associated profiles represent sampling error, the degrees of freedom (DoF) of the error 

term come from pooling the two and three factor interaction to produce a valid test of 

significance. Pooling does not produce additional DoF, and the total DoF is still 15. High 

R-squared values confirm that the reduced model explains most variability. Minitab 16 

(Six Sigma Academy Module, Minitab Inc.) was used.  

 ANOVA shows that product strength and testing condition both had significant (p<0.05) 

effects on both level and shape of dissolution profiles.  A further graphical presentation 

of the main effect suggests the trend and magnitude of these effects. For example, in 

Figure 7-2, change from strength 1 to strength 2 will decrease the level of dissolution 

profiles (suggesting a formulation effect on the release rate), while change from testing 

condition 1 to testing condition 2 will increase the level (indicating a sensitivity with 

respect to testing conditions). On the other hand, in shape analysis, change from strength 

1 to strength 2 will decrease the shape score while change of testing condition will result 

in an increase of the shape score (Figure 7-3).  

 The values of the shape score are less direct for interpretation. For illustration purposes, 

two profiles with the shape scores of 2 and -2 are selected from the 96 profiles to provide 

a visual comparison.  From Figure 7-4, it is clear that the shapes are quite different. The 

release percentage of the profile with shape score of 2 after subtraction of level effect has 

a wider range than the profile with score of -2. Profile shape is frequently affected by the 

drug release mechanism, and therefore, ability to isolate profile shape observations are 
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useful to understand how process and formulation parameters might affect the drug 

release mechanisms of the product.   

Moreover, it is also clear that dissolution profiles with higher values of the level score 

also has higher values of the shape score, meaning, reasonably, that the same factors that 

enhance drug release affect the shape of the profile. Figure 7-5 demonstrates a general 

linear relationship between level and shape score from all 96 dissolution profiles. Such an 

effect can occur, for example, in situations where the product total weight is kept constant 

as the product strength is increased, by decreasing the concentration of a second 

ingredient.  In such a situation, the change in drug content can also lead to a change in the 

mechanism controlling drug release.  

3.1 Effect size test  

As mentioned, the Omega squared index is an unbiased estimate of the proportion of 

variance in the population that is explained by a given treatment (or by an interaction). 

The index can be calculated using equation (3). In general, large effect display ω2 values 

above 0.14.[240] Recall that two-way and three-way interaction effects have been pooled 

to estimate experimental error. Table 9 shows the effect size of main effects from 

ANOVA table. Strength and testing condition can be categorized as large effects both for 

level and shape, suggesting that the significance reported in ANOVA table is independent 

of sample size, and that the statistical significance from p-value is also indicating 

practical significance in terms of effect size. It is also clear that the strength and testing 

condition factors are much larger than the stability time factor, indicating that these two 

parameters contribute much more to both the amount of drug released, and the time 

pattern of drug release, than the stability time.  
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 Effect size indexes, while very useful to ascertain relative importance of multiple 

statistically significant factors, are generally normalized by the total system variability, 

and therefore are not a stand-alone indication of clinical or regulatory significance. An 

extrinsic standard of maximum acceptable variability (e.g., “difference between profiles 

should not exceed 15%”), ideally determined based on knowledge of therapeutic 

characteristics of the product, is needed for the determination of clinical or regulatory 

significance.  

3.4 Post-hoc analysis  

Tukey’s test was applied for post hoc analysis of the level and shape factors using 

Minitab 16. The method first calculates group means, and then compares group means 

with 0.95 confidence interval. The null hypothesis is that pairs of groups under 

investigation are from the same population. The test statistic in Tukey’s method is a 

generalization of the t-test in order to avoid increasing type I error for multiple 

comparisons: 

 (4) 

Y1, Y2 represent two group means, and SE is standard error of the data. If qs is larger than 

the qcritical, the null hypothesis is rejected and two groups are concluded to be significantly 

different.[241]  

Table 7-10 and Table 7-11 have classified similar groups with the same letter based on 

values of level and shape factors, respectively. Groups that do not share a letter suggest 
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significant differences. A combination of the two gives 3 statistically similar groups: 

Group 1, 3, 5, 7, 10, 12, 14; Group 4, 6, 8; and Group 11, 13, 15 (Figure 7-6).  

7.4. Conclusions 

One of the most important product quality attributes, dissolution performance, is 

currently analyzed using a non-rigorous, and often inadequate method introduced 17 

years ago.  While commonly used similarity factor f2 method provides a simple method, 

based on calculation of a single value, to perform pairwise profile comparisons, other 

approaches are better suited for many situations of interest.  

In this chapter, rigorous yet easy to use methodologies are introduced for the 

determination of statistical significance of observed multivariate effects in dissolution 

testing. MANOVA with repeated measures and modified PCA methods in combination 

offer detailed and valuable information. A step-by-step procedure including effect size 

test and Tukey’s method was demonstrated using commercially available software 

packages and actual dissolution data. The statistical assumptions are the usual 

assumptions of statistical tests of significance, which is normally distributed experimental 

variation with homogeneous variance.  

The main point in this chapter is that analysis of dissolution profiles is dependent on the 

target information and needs to consider the applicable decision scenario and also the 

intrinsic data structure. Critically, if the purpose is to optimize a product or a process, the 

method used to analyze the data should consider the multivariate nature of the 

information, the self-correlated intrinsic nature of dissolution profiles, and the availability 

of within-group variability as a means for determining reliability and significance. 
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Confronted with such a situation, the pharmaceutical scientist can first run MANOVA 

with repeated measures and obtain a quick assessment of the significance of between and 

within subject effects. This analysis, combined with effect size calculations, allows the 

skilled artisan to quickly establish the significance and reproducibility of the dissolution 

method as a whole, and to discriminate factors that are important from those that are not.  

Importantly, since Omega-squared tests the magnitude of effects relative to the total 

variability in the data set, in order to make a final assessment regarding the practical (or 

clinical) significance of observed effects, an extrinsic standard of total acceptable 

variation is needed. Such a factor is, necessarily, product dependent, and should be 

different for drugs with narrower or wider therapeutic indexes, toxicity, and side effect 

issues, etc. 

Subsequent to MANOVA, modified PCA analysis enables to dissect dissolution profiles 

to separate “level” (how fast is the product dissolving) from shape (are drug release 

mechanisms changing?). Interestingly, a strong correlation between level and shape was 

found in the case study discussed here, indicating that sometimes level and shape are both 

affected by the same factors, i.e., they are covariate.  

Using M-PCA, curve comparison becomes a straightforward comparison of a small 

number of representative, model-independent values, the level and shape scores.  

Although specific calculations vary, the level in modified PCA method corresponds 

loosely to between-subject effect in MANOVA repeated measures, and shape is 

interpreted as within-subject effect from interactions with time. PCA makes the analysis 

more straightforward, at the expense of a small additional computational effort.  
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A final post-hoc analysis using Tukey’s method identified groups of similar release 

behavior. The similarity from Tukey’s method is more sensitive to profile differences 

than the threshold of 50 in f2. 

To conclude, there is a difference between statistical significance and clinical/regulatory 

significance. Statistical significance implies that observed difference is larger than 

random variation. Commonly reported p-value measures statistical significance, which is 

dependent not only on the size of the effect, but on the amount and noisiness of the data. 

Clinical significance, on the other hand, is determined by whether the observed 

differences are likely to have an effect on a patient. Statistical significance must be 

present before it is meaningful to assess practical significance, but given enough data, 

some statistically significant difference may be of no practical importance. A clear 

illustration of this issue is the fact that, for a fixed amount of data, as measurement error 

decreases, statistical significance increases, without changing the true size of effects or 

their putative clinical/regulatory significance.   

However, this does not mean that we should continue using a less robust method to mask 

uncertainty. On the contrary, only through the efforts of providing better methodology 

and narrowing the gap between methodology and implementation can we continue to 

move towards scientifically grounded regulatory decisions. It is hoped that the proposed 

statistically based methods in this chapter with ease of practice could facilitate 

understanding the nature of dissolution curves and more appropriate ways to analyze 

them. To further demonstrate the application of the proposed methodology, Chapter 8 

connects M-PCA to chemometrics and multi-linear regression, to enable nondestructive 

prediction of tablet dissolution profiles.   
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7.5. Figures for Chapter 7 

 

Figure 7-1 Dissolution profiles from 16 conditions. Each is an average of 6 profiles with error bars shown. 
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Figure 7-2 Main effect plot of level 

 

 

Figure 7-3 Main effect plot of level 
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Figure 7-4 Dissolution profiles from shape value of -2 and value of 2. 
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Figure 7-5 Correlation between level and shape. 
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Figure 7-6 Based on level and shape scores, 13 among the 16 groups can be classified into three different 

categories: Group 1, 3, 5, 7, 10, 12, 14; Group 4, 6, 8; and Group 11, 13, 15.  Groups in the same category are 

considered similar both in terms level and shape 
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7.6. Tables for Chapter 7 
 

Table 7-1 Design of experiment for the case study presented in this chapter 

Strength Stability Time Testing Condition Group No. 

1 

1 

1 1 

2 2 

2 

1 3 

2 4 

3 

1 5 

2 6 

4 

1 7 

2 8 

2 

1 

1 9 

2 10 

2 

1 11 

2 12 

3 

1 13 

2 14 

4 

1 15 

2 16 
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 Table 7-2 MANOVA repeated measures results  

Factor F value DoF Prob.>F 

Between 

Subject 

Strength 324.105 1 0* 

Stability time 12.517 3 0* 

Testing condition 509.289 1 0* 

Strength*Stability time 4.116 3 0.046* 

Strength*Testing condition 0.0308 1 0.861 

Stability time*Testing condition 0.986 3 0.324 

Strength*Stability time*Testing condition 25.288 3 0* 

Within  

Subject 

Time 174.785 9 0* 

Time*Strength 79.115 9 0* 

Time*Stability time 3.989 27 0* 

Time*Testing condition 129.109 9 0* 

Time*Strength*Stability time 2.238 27 0.030* 

Time*Strength*Testing condition 16.403 9 0* 

Time*Stability time*Testing condition 1.914 27 0.066 

Time*Strength*Stability time*Testing 

condition 2.9614 27 0.005* 

* denotes statistical significance 
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Table 7-3 Arrangement of average profiles for each group 

Group No. 15min 30min 45min … j 240min Average 

1 

       2 

       3 

       … 

       i 

    

yij 

 

yi. 

        16 

       Average 

    

y.j 

 

y.. 
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Table 7-4 Example of residual matrix 

Group 15min 30min 45min 60min 75min 90min 105min 120min 135min 240min 

1 0.185 0.084 0.026 -0.106 -0.092 -0.085 -0.069 -0.030 -0.003 0.090 

2 -1.047 -1.351 -0.546 0.261 0.241 0.421 0.551 0.564 0.532 0.373 

3 -0.023 -0.239 -0.162 0.188 0.249 0.226 -0.032 -0.063 -0.074 -0.069 

4 -1.104 -0.863 -0.299 0.029 0.344 0.448 0.414 0.414 0.403 0.214 

5 0.103 0.327 0.058 -0.077 -0.073 -0.151 -0.119 0.018 -0.099 0.014 

6 -0.830 -0.574 -0.027 0.186 0.243 0.233 0.239 0.216 0.216 0.099 

7 0.228 0.038 -0.176 -0.106 -0.028 0.004 0.029 -0.050 0.006 0.055 

8 -0.858 -0.539 0.056 0.206 0.240 0.208 0.209 0.173 0.191 0.114 

9 0.991 0.591 0.382 0.113 -0.072 -0.228 -0.370 -0.378 -0.526 -0.503 

10 -0.089 0.004 -0.049 -0.122 -0.055 -0.016 0.032 0.060 0.077 0.159 

11 1.212 0.920 0.371 -0.114 -0.296 -0.407 -0.402 -0.429 -0.432 -0.424 

12 -0.121 -0.005 -0.040 -0.101 -0.058 -0.028 0.016 0.063 0.079 0.194 

13 1.233 1.010 0.440 -0.093 -0.294 -0.395 -0.443 -0.473 -0.478 -0.507 

14 0.067 0.131 -0.003 -0.165 -0.096 -0.080 -0.012 -0.005 0.047 0.117 

15 1.203 0.972 0.450 -0.069 -0.270 -0.396 -0.426 -0.466 -0.480 -0.517 

16 -0.163 -0.265 -0.335 -0.134 -0.064 0.144 0.104 0.095 0.255 0.361 
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Table 7-5 Eigenvalues from principal component analysis 

Number Eigenvalue Percent Cum.Percent 

1 1.5506 94.039 94.039 

2 0.055 3.333 97.372 

3 0.0297 1.801 99.197 

4 0.0072 0.439 99.612 

 

 

Table 7-6 The eigenvector from principal component analysis that most of variance in residual matrix. 

15min -0.623 

30min -0.527 

45min -0.207 

60min 0.060 

75min 0.147 

90min 0.212 

105min 0.233 

120min 0.238 

135min 0.251 

240min 0.217 
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Table 7-7 ANOVA table for Level 

Source DF SS  MS  F P 

Strength 1 3.8321 3.8321 72.41 0* 

Stability time 3 0.2133 0.0711 1.34 0.315 

Testing condition 1 5.8291 5.8291 110.15 0* 

Error 10 0.5292 0.0529 

  Total 15 10.4037 

   S=0.23, R-Sq = 94.91%, R-sq(adj.)=92.37%, R-sq(pred)=91.23%. 

* denotes statistical significance 

 

Table 7-8 ANOVA table for shape 

Source DF SS Adj. MS Adj. F P 

Strength 1 10.8772 10.7882 74.91 0* 

Stability time 3 0.9051 0.3017 2.09 0.165 

Testing condition 1 14.7866 14.7866 102.67 0* 

Error 10 1.4402 0.1440 

  Total 15 27.9201 

   S=0.38, R-Sq = 94.84%, R-sq(adj.)=92.26%, R-sq(pred) =91.07%.    

* denotes statistical significance 
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Table 7-9 Effect size test using omega-squared 

Response Effect Omega-squared 

Level 

Strength 0.361 

Stability time 0.005 

Testing condition 0.552 

Shape 

Strength 0.379 

Stability time 0.017 

Testing condition 0.522 
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Table 7-10 Post-hoc analysis based on level 

Group N Mean Grouping 

1 6 3.20   

  

D 

 

  

2 6 5.01 A 

    

  

3 6 3.49   

 

C D 

 

  

4 6 4.40   B 

   

  

5 6 3.34   

  

D 

 

  

6 6 4.12   B 

   

  

7 6 3.21   

  

D 

 

  

8 6 4.27   B 

   

  

9 6 2.64   

   

E   

10 6 3.48   

 

C D 

 

  

11 6 2.27   

    

F 

12 6 3.51   

 

C D 

 

  

13 6 2.23   

    

F 

14 6 3.28   

  

D 

 

  

15 6 2.24   

    

F 

16 6 3.76     C       
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Table 7-11 Post-hoc analysis based on shape. 

No. N Mean Grouping 

1 6 -0.21   

  

D   

2 6 2.09   

   

E 

3 6 0.13   

 

C D   

4 6 1.69   B 

  

E 

5 6 -0.34   

  

D   

6 6 1.10   B C 

 

E 

7 6 -0.23   

  

D   

8 6 1.06   B C 

 

  

9 6 -1.61 A 

   

  

10 6 -0.01   

  

D   

11 6 -1.87 A 

   

  

12 6 0.05   

  

D   

13 6 -1.97 A 

   

  

14 6 -0.46   

  

D   

15 6 -1.93 A 

   

  

16 6 0.24     C D   

 

 

 

 



165 

 

 

 

8. Predicting drug in-vitro release profiles for pharmaceutical 

continuous manufacturing processes   

 

This chapter describes joint work with Pallavi Pawar and Golshid Keyvan. 

8.1. Introduction 

In the last decade, advanced pharmaceutical manufacturing technology, including 

continuous manufacturing, has been embraced by industry and by regulators.[242] Long 

ago adopted from other manufacturing industries, such as automobile and semiconductor, 

advanced manufacturing processes require distributed control systems to enable process 

control and achieve real-time product quality assurance.[243, 244] Current real time 

release testing (RTRt) initiative encourages online/inline process monitoring and real-

time quality control in a robust and reliable manner.[11] In other words, RTRt is real-

time measurement or prediction of product CQAs during the process, without requiring 

time consuming off-line assays. Importantly, the ability to achieve RTRt builds on 

process understanding, and appropriate use of process analytical technology (PAT) 

tools.[245]  

In the pharmaceutical industry, drug in vitro dissolution profiles, often measured from 

dissolution testing, are a critical quality attributes (CQAs) of finished products.[11] As 

discussed previously in Chapter 7, dissolution profiles are commonly used for 

formulation optimization, equivalence decisions, product compliance, and product release 

decisions. For decades, regulatory agencies and the pharmaceutical industry have placed 

significant emphasis on dissolution testing for approval of new products, bio-equivalence 

studies for generic products, and for approval of existing products post minor changes in 
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the processing or formulation.[246, 247] Additionally, dissolution testing is also useful 

during process development to identify critical process parameters in different unit 

operations.[248-251]  

Despite its widespread use in the pharmaceutical industry, dissolution testing has several 

shortcomings. The test itself is time-consuming, expensive, and requires extensive media 

and analytical instrument preparation,[82] which makes it difficult to include dissolution 

testing as part of the RTRt strategy for process control. Furthermore, as it is intrinsically 

a destructive test, the sample used in dissolution testing cannot be used in other quality 

measurements. It is thus difficult to conduct gauge repeatability and reliability study for 

dissolution testing to separate sampling error from overall experimental error.[252]   

Near infrared spectroscopy (NIR), being a non-destructive and fast PAT tool, has been 

extensively investigated in terms of the ability to evaluate the drug release from the final 

products. Zannikos et al. found that NIR spectra was able to capture the effect of 

humidity in tablet dissolution profiles.[253] Blanco et al. combined NIR with partial least 

squares regression (PLSR) to predict dissolution profiles considering the effects of 

compaction force and API concentration.[254] Tabasi et al. used similar multivariate 

analysis to predict dissolution profiles at different time points with different tablet coating 

grades.[255] Previous studies also showed that NIR spectroscopy in combination with 

appropriate chemometric modeling can be used to predict dissolution considering effect 

of medium pH, surfactants and crystallization inhibitors, and shear during mixing.[81, 82, 

256]  
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Although attention has been paid to predicting tablet dissolution profiles using non-

destructive PAT tools, very few cases considered longitudinal nature of dissolution 

profiles. Specifically, many of the previous efforts are either predicting drug release at 

one or multiple time-points, or relying on fitting an empirical kinetic equation to 

dissolution profiles. However, as explained in Chapter 7, dissolution profiles are, 

intrinsically, repeated measurements datasets and thus have intrinsic auto-correlation. 

Single time-point prediction is often not representative to capture overall profile 

variability. Furthermore, models focused on predicting multiple, or even all time-points 

neglect autocorrelation and significantly reduce prediction power by building up Type-I 

error. Fitting model equations to dissolution profiles, on the other hand, is able to 

transform predicting a full curve into predicting one or two descriptive values. However, 

since it is a model-dependent approach, its application is limited when a master equation 

cannot be found to best fit a large number of dissolution profiles available.  

The objective of this chapter is to propose a real time release testing method for online 

dissolution profile prediction. The proposed method includes at-line NIR spectroscopy 

implementation, process experimental design, statistical analysis of dissolution profile, 

and multivariate predictive modeling. Particularly, in the case presented here, tablets 

were manufactured using a continuous manufacturing processes. A fractional factorial 

experimental design was used including formulation and process variables. M-PCA, a 

methodology proposed in Chapter 7 that takes into account auto-correlation in dissolution 

profiles, was used for analysis. Principal component regression models were developed to 

enable predicting power.  

8.2. Materials and method 
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8.2.1.  Materials 

The ingredients in this study were semi-fine acetaminophen (APAP) (Mallinckrodt Inc., 

Raleigh, NC) as the active pharmaceutical ingredient, lactose monohydrate NF (Foremost 

Farms, Rothschild, Wisconsin) as the filler excipient, and magnesium stearate NF (MgSt) 

(Mallinckrodt, St. Louis, Missouri) as the lubricant.  

8.2.2. Methods 

8.2.2.1. Continuous manufacturing direct compression 

Tablets were made in a continuous direct compaction (CMDC) line developed at the 

Engineering Research Center for Structured Organic Particulate Systems (ERC-SOPS). A 

schematic illustration of the CMDC line is shown in Figure 8-1.  The manufacturing line 

consisted of a KT20 and a KT35 gravimetric feeders (Coperion K-Tron, Sewell, NJ ) 

used for feeding APAP and Lactose respectively. MgSt was fed through a MT12 feeder 

(Coperion K-Tron, Sewell, NJ). Tablet production rate was kept constant at around 20 

kg/hr. The feed rate in the feeders was adjusted to obtain the desired concentrations of 

individual raw materials. The APAP and the Lactose were fed into a S197 Comil (Quadro 

Engineering, Waterloo, Canada), which was used to delump the active and the excipient 

before entering continuous mixer.  

Ingredients were blended in a Glatt GCG 70 mixer with 24 blades arranged in the “1/3 

forward + 1/3 alternate + 1/3 forward” blade configuration (Glatt group, Binzen, 

Germany). In this blade configuration, only the middle 1/3 (or blades 9-16) are alternated 

forward 45° and backward 45°. Previous study concluded that the “1/3 forward” 

configuration yielded improved mixing performance without sacrificing throughput.[193]  
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After passing through the mixer, the blend passed through a chute into a tablet rotary 

press. A 36-station Kikusui Libra2 tablet press (KIKUSUI America Inc., Santa Clara, 

CA) was used in a single layer configuration. The press was fitted with a type B flat 

tooling to make tablets of 10 mm diameter. The fill depth was adjusted to obtain 350 mg 

tablets. The press was operated at a variable feed-frame speed but a constant turret speed 

of 20 rpm for the 20 kg/h flow rate. 

In this study, the target drug concentration and process parameters were 9% APAP, 

compaction force of 24 kN, blender speed at 200 rpm and feed frame speed of 25 rpm. 

The aim of this study is to develop predictive models to for tablet dissolution profiles 

with target settings.  

8.2.2.2. Experimental design 

Four variables were included in the experimental design: API concentration (low 5%, 

medium 9%, high 13%), blender speed (150 rpm, 200 rpm, 250 rpm), feed frame speed 

(20 rpm, 25 rpm, 30 rpm), and compaction force (8 kN, 15 kN, 24 kN). The variables and 

their coded factors are tabulated in Table 8-1. The experimental design consisted of a 34-1 

fractional factorial design with additional three center point replications, which leads to a 

total of 30 conditions. All conditioned in the experimental design are detailed in Table 8-

2.  For each condition, six tablets were analyzed for dissolution tests, resulting into a total 

of 180 (30*6) tablets under investigation in the study. 

8.2.2.3. NIR transmission spectroscopy 

A Bruker Optics Multipurpose Analyzer (MPA) FT-NIR spectrometer (Bruker 

Corporation, Billerica, Massachusetts) was used to collect tablet spectra in transmission 
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mode at line. In transmittance mode, the light interacts with the tablet, as opposed to 

tablet surface in reflectance mode. The spectral range chosen was from 12500 to 5800 

cm-1 with a resolution of 32 cm-1. A background and a tablet spectrum were obtained by 

averaging a total of 256 background scans and sample scans respectively. 

8.2.2.4. Dissolution testing 

A total of 180 dissolution profiles of the tablets obtained from the continuous line 

described previously were used to build a calibration model. A VK 7010 dissolution 

apparatus (Varian Inc., Santa Clara, CA) fitted with USP paddles was used to study the 

drug release. The paddle rotational speed was 50 rpm. The dissolution medium used was 

phosphate buffer at pH 5.8 and the media temperature was maintained at 37.0 ± 0.5oC. 

Six tablets were each placed in the dissolution apparatus chambers containing 900 ml of 

medium, simultaneously at the start of the experiment.  A peristaltic pump VK 810 

(Varian Inc., Santa Clara, CA) was used to pump out aliquots of the dissolution medium 

at 3-minute time intervals. The medium was then filtered through 35 μm full flow filters 

prior to detection using a UV spectrophotometer (Varian Inc., Santa Clara, CA) at a 

wavelength of 243 nm. Absorbance values for each tablet were converted to the percent 

of drug released at each analysis time. For each tablet, a dissolution profile was obtained 

recording the change of drug release percent over time.  

8.2.2.5. Chemometrics 

The data obtained from the NIR spectrometer was analyzed using Unscrambler X 10.2 

(Camo Inc., Oslo, Norway). The data was baseline corrected, where the lowest 

absorbance value in the spectrum was subtracted from the absorbance values at all the 

other wavenumbers. This was followed by a Savitzky-Golay first derivative, fitted to a 
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second order polynomial with a total of 11 smoothing points. This pretreatment removed 

the baseline offset between samples and improved the resolution of the peaks that carried 

the chemical information associated with the concentration of the API. Principal 

Component Analysis (PCA) was then performed on pre-treated data. Calculation of PCA 

can be found in Chapter 2.  

8.2.2.6. Dissolution profile analysis 

A previously developed methodology in Chapter 7, M-PCA, was used in this chapter for 

dissolution profile prediction. A detailed description of the M-PCA can be found in 

Chapter 2. In brief, the methodology looks at a dissolution curve in terms of its level and 

shape separately. The advantage of this approach is that it takes into account the auto-

correlation in the dissolution profile as time series data. The level is extracted based on 

clustering analysis, and is thus intrinsically associated with similarity/dissimilarity 

values.  In addition, it is a model-independent approach for dissolution profile analysis. In 

other words, this method does not rely on fitting dissolution profiles using any empirical 

equations. Software JMP 10 (SAS institute, Inc., Cary. NC) was used for M-PCA 

analysis. 

8.2.2.7. Prediction models 

A principal component regression (PCR) model was developed. The structure of PCR 

model was discussed in more details in Chapter 2. The model was based on the 

assumption that, in this experimental design, NIR spectroscopy captures variability that 

contributes to dissolution profile changes. Scores of principal components from 

chemometric analysis were used as PCR model input, while response variables were level 

and shape values obtained from dissolution profile analysis.  
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8.3. Results and discussion 

8.3.1. Chemometric analysis 

As dissolution profiles were potentially affected by four variables in this study, the aim of 

NIR data pre-treatment was to improve the resolution that helps to distinguish 

contributions of each variable. A baseline offset was observed to be present in the NIR 

absorbance data. The offset was removed by subtracting the lowest intensity in the 

spectra from all the other variables for each sample. This treatment was useful in 

removing the effect of scattering on the NIR signal.[257] The effect of compaction force 

was evidently shown on the baseline corrected NIR absorbance spectra (Figure 8-2). It 

was observed that the absorbance decreased with an increase in the compaction force. In 

addition to baseline correction, a Savitzky-Golay first derivative (second order 

polynomial, 11-point smoothing) treatment was performed to separate the drug 

concentration effects. [258] The second order polynomial and an 11- point smoothing 

enhanced the signal-to-noise ratio without compromising on the resolution of the peaks.   

PCA on the pre-treated NIR data yielded three principal components accounting for 99% 

of the total variability in the data. The first principal component (PC1) explained 85% of 

total variance in the data. As shown in Figure 8-3, three clusters were observed in the 

scores plot along the PC1 axis, suggesting PC1 represents tablet variability contributed 

by compaction force. In terms of the second principal component, as shown in Figure 8-

4, the effect of API concentration in the formulation can be distinguished along the axis 

of PC2.  In addition to the first two PCs, the third principal component was also 

considered in this study. Although PC3 only accounted for 2% variability in the dataset, it 

was included as it potentially related to amount of shear during mixing based on previous 
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studies.[82] As discussed in Chapter 6, the shear experienced by the powder blends leads 

to the coating of MgSt on other particles, affecting the particle bonding, and hence the 

internal structure of the tablets.[259] The shear experienced by the powder in the 

continuous line is known to be affected by the blender speed and the feed frame rotation 

rate and is also known to have an impact on the micro- mixing on MgSt, which in turn 

affects tablet dissolution.  

The scores of PC1, PC2, and PC3 for all 180 tablets in this study were obtained. To 

leverage tablet-to-tablet variability, for each processing condition, the average scores of 

each PC was calculated. The average scores were then used for principal component 

regression.   

8.3.2. Principal component regression (PCR) 

PCR was used to examine the relationship between the eigenvalues obtained from the 

chemometric analysis and the dissolution parameters, level and shape, obtained using M-

PCA. As described previously, the level using M-PCA was calculated by using the 

average of individual dissolution profile across all the time points. The shape was 

calculated by performing a PCA on the residual matrix after the level was subtracted. The 

principal components were based on the covariance matrix. The first two PCs explained 

98.7% of the variability of the dataset, and thus two shape values, corresponding to 

“shape I” and “shape II” were calculated.  PCR models were developed to predict level, 

shape I, and shape II separately. The equations can be expressed as: 

Level = 74.12 - 81.66 * PC1 + 103.41 * PC2 + 30.17 * PC3 + 377.84 * PC1*PC2 + 

          1762.93 * PC1*PC3 - 653.278 * PC2*PC3 - 38489.1 * PC1*PC2*PC3 

Shape I = 3.57 - 330.25 * PC1 + 254.11 * PC2 + 176.14 * PC3 - 1050.08 * PC1*PC2 + 
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          6994.8 * PC1*PC3 - 2452.04 * PC2*PC3 – 109821 * PC1*PC2*PC3 

Shape II = -0.81 + 65.23 * PC1 - 100.16 * PC2 + 15.17 * PC3 - 566.01* 

             PC1*PC2 - 1989.88 * PC1*PC3 + 1310.25 * PC2*PC3 + 41747.1 * PC1*PC2*PC3 

The equation for each of the parameters was calculated using standard least squares 

algorithm. The equation provided a relatively good fit with R2 values of 0.80, 0.82 and 

0.73 for level, shape I and shape II predictions respectively (p<0.001). The parity plots 

are shown in Figure 8-5. Both internal validation and external validation were further 

conducted to evaluate predicting power of the model.  

8.3.3. PCR model internal validation 

Ten tablets from the 180 tablets were used in the internal validation set. These tablets 

were randomly picked from these 180 tablets and covered varying conditions with respect 

to the four input variables. The internal validation set was projected into the scores plot 

space as shown in Figure 8-6. All the ten tablets were within the 95% confidence interval 

as marked by the Hotelling’s T2 ellipse in the figure. Similar to cross-validation, 

performed in Chapter 4, the PCA followed by the PCR was repeated for the remaining 

170 tablets. The dissolution profiles of the ten tablets were predicted using the regression 

models developed. 

f1 (difference factor) and f2 (similarity factor) indices were used to compare the measured 

dissolution profiles and the predicted dissolution profiles. As mentioned in Chapter 7, 

using f1 and f2 analysis is a common approach recommended by FDA’s dissolution 

testing Guidance for Industry. It is a model- independent approach to define dissolution 

similarity based on the mean-squared difference between a pair of profiles. A predicted 

dissolution profile is considered similar to the reference profile when f1 value is less than 
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15 and f2 value between the two profiles is more than 50. Table 8-3 tabulates the f1 and f2 

values for the ten tablets. The predicted results were similar to experimental results for all 

ten tablets for internal validation. This is remarkable, considering that the typical use of f1 

and f2 is for comparison of profiles averaged for 12 tablets, not individual tablets, that are 

subjected to significantly more experimental variability.   

8.3.4. Prediction results for tablets manufactured from target process space 

In order to further examine robustness of the prediction model, additional tablets were 

made at the target design space, namely drug concentration of 9%, compaction force of 

24 kN, blender speed of 200 rpm, and feed frame speed of 25 rpm. Six tablets were 

sampled and used as external validation set for prediction. The NIR spectrum of the six 

tablets were projected to the calibration tablets. The scores of first three PCs were 

obtained. The scores of the six tablets were used as inputs of the PCR model. Once the 

predicted level, shape I, and shape II for each tablet was predicted, the predicted 

dissolution profiles were constructed. The tablets were subjected to dissolution tests to 

verify the prediction results.  Figure 8-7 displays the reference and the predicted 

dissolution profiles for individual tablets. The values of similarity factor and difference 

factor are also shown. For all six tablets, the prediction results were in good agreement 

with the experimental results.  

The results confirmed the hypothesis that NIR spectroscopy is able capture critical 

changes in formulation and process settings that contribute to variations in tablet 

dissolution profiles. The proposed method is able to predict dissolution profiles using 

NIR spectroscopy in combination with appropriate multivariate analysis models. 

Important to notice, the way that M-PCA works is that it finds the most similar profile in 
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the calibration set to the predicted profile (both level and shape). In other words, it does 

not create a new profile based on the calibration sets. The precision of the prediction 

requires the calibration sets to be fully comprehensive and diversified for the 

combination. Developed models can be maintained augmented by additional 

measurement performed during process scale-up, validation, and commercial 

manufacturing to capture process knowledge and increase predictability. 

8.4. Conclusions 

This chapter addressed a challenge in implementing real-time release methods for 

advanced tablet manufacturing process: the need to non-destructively predict dissolution 

profiles. A quality-by-design approach was used to predict tablet dissolution profiles 

using NIR spectroscopy in combination with appropriate multivariate analysis methods. 

Designed experiments were used to understand the impacts of process changes. A PCA 

algorithm was used to extract the effect of process and formulation variation from the 

Near IR data of tablets. It was observed that changes in API concentration and process 

parameters can be reflected in NIR spectrum using appropriate pre-treatment processing. 

The established principal component regression models were able to predict the 

dissolution profile of individual tablets based on its NIR spectrum. The prediction power 

of the models was confirmed by ten internal validation samples and additional six 

external samples. The prediction results were in a good agreement with experimental 

results.  

Only one type of formulation was examined in this paper. This formulation has relatively 

simple dissolution behavior, determined primarily by three parameters: tablet porosity, 

amount of API, and extent of shear experienced by the blend. For such a system, a small 
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number of degrees of freedom are needed to predict dissolution behavior. More complex 

formulations where drug release might depend on amounts of other ingredients (such as 

controlled-release polymers and pH modifiers), it might require a larger number of 

factors, and perhaps a more extensive calibration set. However, to the extent that the 

relevant parameters can be tested non-destructively, the methods introduced here are 

likely to be effective. Importantly, once the ability to predict dissolution profiles reliably 

is properly demonstrated, meeting the remaining requirement for closed-loop quality 

control, real-time quality assurance, and real-time release should be relatively 

straightforward.  
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8.5. Figures for Chapter 8 

 

 

 

Figure 8-1 Schematic illustration of continuous manufacturing direct compression line. (Picture source: 

Sebastian Escotet, Fernando Muzzio) 
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Figure 8-2 NIR spectrum after baseline correction. The absorbance value was observed to decrease as 

compaction force increases. 

 

 

 

Figure 8-3 A scatter plot of the first two principal components (PCs). PC1 is shown to account for variations 

contributed by compaction force. 
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Figure 8-4 A scatter plot of the first two principal components. PC2 is shown to represent variations caused by 

API concentration in the formulation.  
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Figure 8-5 Predicted versus reference parity plot for level and shape values. 
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Figure 8-6 Projection of ten tablets used for internal validation. The projected tablets were shown to have 

varying process parameters, and were within the 95% Hotelling’s ellipse.  
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Figure 8-7 Comparison between experimental results (reference) and prediction results for six external 

validation tablets. 
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8.6. Tables for Chapter 8 
 

Table 8-1 Design space using coded factors 

 A B C D 

coded 

level 

API Concentration 

(%) 

blender 

(RPM) 

feed frame 

(RPM) 

compaction force 

(kN) 

0 5 150 20 8 

1 9 200 25 16 

2 13 250 30 24 
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Table 8-2 Fractional factorial design in this study using coded factors. A total of 30 experiments were included. 

 

A B C D 

1 0 0 0 0 

2 0 0 1 1 

3 0 0 2 2 

4 0 1 0 1 

5 0 1 1 2 

6 0 1 2 0 

7 0 2 0 2 

8 0 2 1 0 

9 0 2 2 1 

10 1 0 0 1 

11 1 0 1 2 

12 1 0 2 0 

13 1 1 0 2 

14 1 1 1 0 

15 1 1 2 1 

16 1 2 0 0 

17 1 2 1 1 

18 1 2 2 2 

19 2 0 0 2 

20 2 0 1 0 

21 2 0 2 1 

22 2 1 0 0 

23 2 1 1 1 

24 2 1 2 2 

25 2 2 0 1 

26 2 2 1 2 

27 2 2 2 0 
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28 1 1 1 1 

29 1 1 1 1 

30 1 1 1 1 
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Table 8-3 Similarity and different factor between predicted results and experimental results for model internal 

validation. 

 

 

 

 

 

 

 

 

  

Internal validation 

tablet 

Predicted vs. Measured 

f1 f2 

1 9.83 55.13 

2 5.34 59 

3 1.62 64.35 

4 5.75 60.72 

5 2.89 78.66 

6 1.4 89.87 

7 1.08 94.37 

8 1.16 93.49 

9 2.99 68.56 

10 3.92 72.80 
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9. Conclusions and recommendations 

The work presented in this dissertation focused on using multivariate analysis tools to 

improve understanding of pharmaceutical powder-based processing, and to optimize 

analytical methods for characterizing material properties and final product quality. 

Throughout the case studies examined here, the ability of predicting process 

performance, critical material properties, and critical quality attribute was achieved. Flow 

properties of raw materials and their effects on feeder performance were examined. An 

analytical method to analyze data from shear cell data was introduced. Commonly used 

techniques to characterize powder flow properties were investigated and used to predict 

gravimetric feeder performance. Mixing effects on flow properties of intermediate blends 

were also discussed. A mixture model was developed to predict cohesion of powder 

mixtures. Drug in vitro release profile was studied using a statistically reliable approach. 

A toolbox of statistical methods for dissolution profile comparisons was proposed. In 

addition, a nondestructive method for predicting dissolution profiles was developed. This 

chapter summarizes work presented in the dissertation and outlines recommendations for 

future work.  

9.1. Conclusions 

The first specific aim focused on developing methods for analyzing flow properties of 

raw materials, and using the methods to predict process performance. Chapter 3 of the 

dissertation augmented the shear cell data analysis through understanding the 

relationships of different measurements. A dimensionless cohesion C* was defined. The 

ratio between the flow function coefficient and C* was considered to be a testing 

equipment characteristic, which can also be used to describe the relationship between 



189 

 

 

 

applied normal stress and the characteristic state when materials are critically 

consolidated. In addition, a material characteristic line was generated to collapse all the 

yield loci of a material into a single line that is independent of the initial consolidation 

stress. Identifying material characteristic lines enables comparison of materials measured 

under different initial consolidations stresses.  

Chapter 4 explored the possibility to correlate raw material flow properties with feeder 

performance. In addition to shear cell tests, other commonly used characterization 

techniques were included in the study. It was shown that material flow properties affect 

feeder performance, and therefore, selection of screw that achieves best feeding 

performance is dependent on material flow properties. Two approaches were discussed: 

principal component analysis followed by similarity scoring (PCA-SS), and partial least 

squares regression (PLSR). This chapters showed that by characterizing flow properties 

of a material, its initial feed factor, or maximal capacity, of each screw can be predicted, 

which enables to quickly identify operation ranges. Using PCA-SS method, placebo 

material with similar flow behavior can be identified. When a material is not available in 

large amounts, placebo materials can be used for process development. Additionally, 

instead of selecting optimal tooling based on trial-and-error, by developing predictive 

PLSR models, feeding performance using different screws can be directly quantified, 

predicted and compared.   

The second specific aim looked into mixing powders and predicting the effect of the 

mixing process on flow properties of intermediate blends. In Chapter 5, a model was 

developed to predict the flow regime of pharmaceutical blends based on a four-

component mixture design. A special cubic model was established using 22 calibration 
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blends including four-component powder mixtures and raw materials. ANOVA was used 

for model selection and optimization. The work presented showed an effective approach 

to characterize flow properties of powder mixture using statistical methods. Using a 

quality-by-design approach, the cohesion of blend mixtures can be predicted based on the 

concentration of each ingredient. The model can be used to screen through a large 

number of formulations to avoid cohesive formulations with little materials or manpower 

cost. In addition, the methods to analyze shear cell data, introduced in Chapter 3, were 

validated using powder mixtures. Importantly, the prediction model can be extended by 

understanding effect of mixing on blend flow properties in different mixing systems.  

Chapter 6 compared mixing effect in the controlled shear system (CSS) and in a 

laboratory scale Resonant Acoustic Mixer (LabRAM). Experimental results suggested 

that mixing without MgSt created more cohesive blends. Using ANOVA and effect size 

test, lubrication rate in both mixing systems had minimal effects on blend flow properties. 

Results also showed that although the two devices had comparable lubrication effect on 

the overall blend flowability, the changes of the interparticle forces were not identical. 

The frictional forces can be well correlated with the bulk density of lubricated blends, 

while the correlations between the bulk density and cohesive forces were significantly 

different. 

The third specific aim developed statistically justified methodologies to analyze, 

compare, and predict drug in vitro release profiles considering both formulation and 

process variables. In Chapter 7, rigorous, yet easy to use methodologies are introduced 

for the determination of statistical significance of observed multivariate effects in 

dissolution testing. MANOVA with repeated measures and modified PCA (M-PCA) 
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methods in combination were able to offer detailed and valuable information. The 

proposed methods consider the multivariate nature of the information, the self-correlated 

intrinsic nature of dissolution profiles, and the availability of within-group variability as a 

means for determining reliability and significance. Chapter 8 further demonstrated 

application of M-PCA for dissolution profile prediction. A quality-by-design approach 

was used to predict tablet dissolution profiles using NIR spectroscopy in combination 

with appropriate multivariate analysis methods. Experimental results showed that that 

changes in API concentration and process parameters can be reflected in NIR spectrum 

using appropriate pre-treatment processing. The established principal component 

regression models were validated as robust and reliable, and were able to predict the 

dissolution profile of individual tablets based on its NIR spectrum. The work presented 

improved real-time release strategy for advanced tablet manufacturing process by 

achieving predictive capability for nondestructive dissolution testing.  

9.2. Recommendations for future work 

Based on the work presented in this dissertation, several potential areas are discussed 

here for future study.  

9.2.1. Application of PCA-SS method for measurement reduction 

 In Chapter 4, PCA-SS approach was proposed and used to identify materials of similar 

flow properties. The materials with matching flow properties can be used as placebo, or 

surrogate materials for formulation and process development. For example, Figure 9-1 

used PCA to find surrogate materials with matching flow properties for API 4. This 

approach is especially helpful when the amount of drug substance is limited. Another 

potential application of PCA-SS is to reduce dimensionality of characterization 
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techniques. As discussed previously, flow properties of materials do not all vary 

independently. Many of the parameters are often highly correlated, suggesting that 

variables of interest vary in a much lower dimensional space than the number of 

measurements. Identifying a reduced set of measurements, based on lower dimensional 

space, is useful to characterize a material using minimal cost without compromising 

maximal information that can be obtained. Each eigenvector of the PCA provides 

information on contribution of each property to classifying materials. In other words, 

based on loading plots, the number of measurements can be reduced by removing 

material properties that have little contribution to the total variability of the dataset. The 

selection of the reduced set of measurements can be based on amount of testing time, 

amount of materials required, or availability of testing equipment. The prioritized 

selection can be archived by assignment different weights to each flow property before 

PCA is performed. Similarity scoring can be used to justify similarity of material scores 

between full and reduced characterized set. Specifically, by conducting iterations that 

include all possible reduction combinations, the reduced set that generates linearly 

correlated similarity scores with full characterization set can be selected as the optimal 

reduced set of measurements. The reduced measurements can then be used to find 

material surrogates with matching properties, and to predict process performance.  

9.2.2. Blend wettability measurement using droplet penetration technique 

Blend wettability, as an intermediate material property, reflects process changes in 

pharmaceutical manufacturing and helps to guide process scale-up and transfer. As blend 

wettability affects tablet dissolution profiles, it is useful to develop a predictive 

correlation between the blend wettability measurements and tablet dissolution results.   



193 

 

 

 

For loose powders, techniques have been available to indirectly determine the contact 

angle based on liquid penetration process. Efforts have been devoted to developing a 

method based on image analysis of droplet penetration process on porous powder bed to 

measure its contact angle. A schematic experimental set-up is shown in Figure 9-2. In a 

preliminary case study, pharmaceutical blends subjected to different level of shear, 

described in Chapter 6, were prepared. Figure 9-2 shows that recorded droplet 

penetration time was able to reflect effect of process changes on blend wettability. Using 

video processing, it is possible to obtain penetration profiles that describe change of 

droplet volume over time. Changes in penetration profiles can be correlated to changes in 

the dissolution profiles of tablets. As both penetration profiles and dissolution profiles are 

repeated measurements, as explained in Chapter 2, M-PCA can be used to develop the 

predictive correlation, which can be used in combination with models developed in 

Chapter 8 for dissolution profile prediction.  
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9.3. Figures for Chapter 9 

 
Figure 9-1 Using PCA to find surrogate materials with matching flow properties for API 4 during early 

formulation development when amount of materials is limited.  
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Figure 9-2 A schematic illustration for droplet penetration method set-up. 

 

 

 
Figure 9-3 Water droplet penetration process for blends with (a)0Rev shear, (b) 160Rev shear, (c) 640Rev shear, 

and (d) 1280Rev shear. 
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