Staff View
Application of hydrogen bonding in asymmetric hydrogenation

Descriptive

TitleInfo
Title
Application of hydrogen bonding in asymmetric hydrogenation
Name (type = personal)
NamePart (type = family)
Wen
NamePart (type = given)
Jialin
NamePart (type = date)
1987-
DisplayForm
Jialin Wen
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Zhang
NamePart (type = given)
Xumu
DisplayForm
Xumu Zhang
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Goldman
NamePart (type = given)
Alan
DisplayForm
Alan Goldman
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Warmuth
NamePart (type = given)
Ralf
DisplayForm
Ralf Warmuth
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Hu
NamePart (type = given)
Longqin
DisplayForm
Longqin Hu
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2016
DateOther (qualifier = exact); (type = degree)
2016-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2016
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Hydrogen bonding has been widely observed in biosynthesis and enzyme catalysis. It plays an important role in such fields as molecular recognition, supramolecular chemistry and small molecule catalysis. A new concept of organocatalysis emerged in recent two decades. Hydrogen bonding is the keystone for thiourea catalysis or phosphoric acid catalysis. With high turnover numbers and excellent enantioselectivity, transition metal catalysis not only is the arts in academia, but also find its merit in industrial application. Homogeneous hydrogenation, among many successful transition metal catalyzed reactions, has been serving the synthetic communities for many years, both in academia or in industry. The success of secondary interaction and hydrogen bonding offer us an alternative: the combination of hydrogen bonding and steric hindrance help to create a chiral environment in which substrates could be reduced efficiently. Guided by this rationale, a ferrocene-based bisphosphine/thiourea ligand, ZhaoPhos was synthesized in our group. It was applied in the asymmetric hydrogenation of nitroolefins with hydrogen bonding between the ligand and substrates. Thiourea-carbonyl hydrogen bonding is another model of non-covalent interaction. Therefore, the asymmetric hydrogenation of unsaturated carbonyl compounds is also practical. Besides neutral compounds, ionic unsaturated substrates could form non-covalent interactions with thiourea through anion binding as well. It makes the asymmetric reduction of iminium ions and N-heteroaromatics (quinolines, isoquinolines and indoles) possible. These type of unsaturated compounds were challenging for traditional transition metal catalyzed hydrogenation. They could now be achieved with high enantioselectivity with a rhodium/ZhaoPhos complex. An outer-sphere mechanism involving hydride transfer was proposed since these substrates were thought to lack of coordinating ability to the metal center. As a traditional catalytic system, rhodium/bisphosphine complexes have been applied to catalyze hydrogenation of C=C bonds in a long time. The application in hydrogenation of non- or weak coordinating unsaturated compounds changed our view towards of this class of complexes. In the meanwhile, the role of hydrogen bonding is still a mechanistically unexplored area: what is the geometry of the ligand-substrate complex? How does the hydrogen bonding influence the activation energy in the transition state? Many in-depth studies are needed in the future.
Subject (authority = RUETD)
Topic
Chemistry and Chemical Biology
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_7543
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xii, 155 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Hydrogen bonding
Subject (authority = ETD-LCSH)
Topic
Hydrogenation
Note (type = statement of responsibility)
by Jialin Wen
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3XS5XQW
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Wen
GivenName
Jialin
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-09-07 21:06:37
AssociatedEntity
Name
Jialin Wen
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2018-10-31
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after October 31st, 2018.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-09-09T22:25:41
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-09-09T22:25:41
ApplicationName
Microsoft® Word 2016
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024