CORROBORATING INFORMATION FROM MULTIPLE
SOURCES

BY MINJI WU

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of
Ameélie Marian

and approved by

New Brunswick, New Jersey

October, 2016

ABSTRACT OF THE DISSERTATION

Corroborating Information from Multiple Sources

by Minji Wu

Dissertation Director: Ameélie Marian

Information on the Internet is abundant but often inaccurate. Givaregyghat has a unique
answer (as opposed to a Web query against a search engine)erdiff®eb sources might
provide multiple conflicting answers. As a result, users are left with theeluod validating
the correctness of the answer from each source. In order to tacklerthilem, corroboration
techniques have been proposed in order to identify the correct agsweera set of candidate
answers extracted from the sources. Corroboration is the techniquevtiiaates the quality
of the answers by considering the trustworthiness of the sources froain whe answers are
extracted. Intuitively, an answer extracted from a trustworthy souro®i® likely to be the
correct answer. In return, the more correct answers it reportspdine trustworthy a source is.
Unfortunately, several challenges arise before we can succesapgly a corroboration
technique to find the correct answer to a query. First of all, the prime cigalles how to
evaluate the trustworthiness of the sources and henceforth derivedlity of an answer based
on the sources reporting it. Secondly, in a case where all the soureesaga single candidate
answer, how to validate the correctness of the answer. Third, in an afiptiédn which each
source only provides a partial answer and the final answer is a compirdtpartial answers
from multiple sources, how to evaluate the quality of answers and how teeafficcompute
the correct answer. This thesis investigates several real world prelded proposes novel

corroboration techniques that address each of the challengesteabove.

We first studied the problem of using corroboration for the task of questiswering.
With many web sources providing conflicting information on the Internet,susiéen have to
rummage through a large number of different sites to both retrieve the infiomzand ascertain
the correctness of the retrieved information. While a naive approachréhans the most
frequent answer can eliminate outlier answers such as typos, it fails sideorthe fact that
answers extracted from different pages are rarely equally importaniswering the query. By
ranking the answers based on the number, relevance and similarity of bhrsoweses reporting
them, as well as the prominence of the answers within the sources, ouittalyas able to
efficiently identify accurate answers for most queries.

We investigated the problem of verifying the correctness of claims thatreeimously
agreed upon among all sources. Intuitively, a claim supported by albirees must be true,
simply because there is no other source rebutting it. However, it might ribiebease in real
world scenarios since agreeing sources might be out-dated or duepaste. In such a
scenario, existing corroboration approaches tend to reach cossguiskly and conclude that
all claims are true since there is little conflict among the sources. We studiedabigm in
a real world scenario (restaurant listings) and proposed a novalbmration algorithm that
evaluates the claims on a gradual basis. More specifically, our appiloddés the claims into
multiple sets and evaluates each set of claims using a different trust scoreeéch source.
Different from existing algorithms that assign a single trust score to eagaite, our approach
computes a set of finer-grained trust scores for each source tlstdgtaievaluate different set
of claims.

In real world scenarios there often exist queries in which a single sasiiasufficient to
provide a candidate answer. To answer these queries, users hatehtarid combine informa-
tion from multiple sources and derive a potential final answer. Sucls easeimilar to the case
of finding air ticket between two points without direct flight, and differs irt thare is no cen-
tralized sourced.g, Expedia.com) that provides the information of all connecting flights. The
process of combining information from two sources is similar tgolmreoperation in relational
databases and therefore this problem can be viewed as a join queeggiracover multiple

web-accessible databases. The main bottleneck of join query processipie accessing of

web databases, which typically exhibit high and variable latency. In eodi@rd the topk an-
swers for a join query, a branch-and-bound algorithm has to be gmalo avoid computing
scores of all candidates exhaustively. Our method efficiently computeslsdor partial query
results and determines a good order in which it accesses the tables so asrizemmasted
efforts in the computation of top-answers.

In summary, this thesis studies real world problems that involve informatiom fnailtiple
sources. We demonstrate that using information from a single sourcenbftav quality and
in some cases insufficient. We discuss the challenges in each indiviadidéipr and present
novel corroboration algorithms that efficiently compute scores for thevenssby taking into

consideration of the trustworthiness of the sources.

Abstract e e ii
Listof Figures.. X
Listof Tables o Xii
1. Introduction 1
1.1. Challenges. e 2
1.2. Ourcontribution. 3
1.2.1. Questionanswering. i it e e 5
1.2.2. Asserting unanimous ansSWers ovi e e 5
1.2.3. Processingtopjoinqueries. e 6
1.3, Summary e e 6
2. Related Work 7
2.1. Corroborationtechniques 7
2.1.1. Frequency based approaches 7.
2.1.2. Advanced corroborationo 9
2.1.3. Corroboration overdynamicdata 11
2.2. DataDependency e 14
2.3. Topk Query Processing o i 15
3. Preliminaries 17
3.1, SOUIMCES o e e 17
3.1.1. Extracting Statements o 17
3.1.2. SCoring SOUICES v e e 18

Table of Contents

3.2, ANSWEIS 19
3.2.1. Identifying ANSWErS 19
3.2.2. SCONNGANSWEIS o v i i e e e e e e e e 19

3.3. Corroboration 20

3.4. CostModel 21

3.5, SUMMAry 21

. Corroborating Answers from Multiple Sources 22

4.1, Introduction L 22

4.2, EXtracting ANSWEIS o i 26
4.2.1. Answer Extraction 26
4.2.2. Answer Aggregation 28

4.3. SCONNGANSWEIS o e e e e e e e e e e e e e e 29
43.1. ScoringWebPages 30

Web PageRelevance 31

Web Page Originality 32
4.3.2. Scoring Answers withinWeb Pages 34
4.3.3. Corroborating ANSWers 35

4.4, RetrievingPages e 36

4.5, Evaluation 38
451, Setup e e 38

EvaluationQueries 39
EvaluationMetrics 39
452. TRECQuUEries e e 40
AnswerQuality e 41
Impact of Scoring Components 46
Comparison with Existing Question Answering Techniques 47
Number of Pages Retrieved 49
TimeCost. 50

Vi

453. MSNQUENES o e e e e 51

ComparisonwithUser Clicks 51
Number of Pages Retrieved 52
TimeCost. 53
4.6. Conclusions 54
. Corroborating Affirmative Statements from Unreliable Sources 56
5.1. Introduction 56
5.2. AMotivating Example 59
5.2.1. The TwoEstimate Algorithm 60
5.2.2. The BayesEstimate Algorithm 61
5.23. Ourstrategy 61
5.3. Problem Formulation 63
5.3.1. SOUICES 63
5.3.2. Facts 64
5.3.3. Thecorroborationproblem L. 64
5.4. TrustScoresofSources 65
54.1. Definition 65
5.4.2. Single-valuetrustscore. 66
5.4.3. Multi-value trustscore 67
5.5. Corroboration 68
5.5.1. Selectingfacts 68
5.5.2. TheAlgorithm 71
5.5.3. Complexityanalysis, 72
5.6. EXperiments e 73
5.6.1. Setup 73
Algorithms 74
Environmentand Metrics 74
5.6.2. Real-WorldDataset 75

Vii

Dataset e 75

Corroborationquality L 77
Mean square €rror v i e e e e 79
Multi-value trustscore 80
Timecost 80
The Hubdub Dataset 81
Theonlinelistingdataset 82
5.6.3. SyntheticDataset 84
Dataset 84
Results 85
57. Conclusion 86
. Corroborating Joined Information over Web-accessible Databaes 87
6.1. Introduction 87
6.2. lllustrative Example 92
6.3. Definitions. 95
6.3.1. CostModel 95
6.3.2. Bindings 96
6.3.3. Computing ScoresofBindings 99
6.4. Top-KAlgorithm 101
6.5. Top-k Algorithm 103
6.6. Experimental Evaluation 109
6.6.1. Experimentsetup 110
6.6.2. Graphs and Datasets used in experiments 110
6.6.3. UniformDatasets 112
6.6.4. Skewed and Correlated Datasets 114
6.6.5. LargeDatasets e e 115
6.6.6. Real-World Experiments, 116
6.7. CoNCIUSIONS 116

viii

7. Conclusions and futurework. L 118

7.1. ConcClUSIONS 118
7.2. Futurework 119
Corroboration over text-basedanswers 119
Use of a finer-grained trust scores for the sources 120.
Exploring the dependency amongfacts 120
References 122

4.1.
4.2.

4.3.
4.4,
4.5.
4.6.
4.7.

4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
5.1.
5.2.
5.3.
6.1.
6.2.

List of Figures

Results for the query “first orbited the earth” using MSN Search 23

The log-log plot for the Number of user clicks as a function of the pwosifo

the page in the search engine queryresult 1.
Decrease in value df,,. as we traverse the search engine query result.
Impact of Parameteron PerCorrect for TREC queries fGORROB 41
Impact of Parameteron PerCorrect for numerical queries f0oRROB 41
Impact of Parameteron PerCorrect for factoid queries fGORROB 42

The log-log plot for the number of user clicks as a function of the paositfo

the page inthe searchengineresult
Impact ofs on PerCorrect for TREC queries

Impact ofmaxPage on PerCorrect for TREC queries

Impact of Scoring Components of TREC Queries 46
PerCorrect Comparison with Existing Question Answering Techsique. . . 48
Average Number of Pages Retrieved for TREC Queries 49
Time Cost of different scoring strategies for TREC queries 50

Comparison between User Clicks and Corroborative AnswelM3dt queries 52
Time Cost for MSN queries that have at least one click in the cuUsEemésult . 54
Time Cost for MSN queries that have no clicks in the current SE(@art 1) 54

Time Cost for MSN queries that have no clicks in the current SE(@art2) 55

lllustration of our strategy
Multi-value trust score at each timepoint 9
Corroboration results of syntheticdatasets 85

lllustrationof Example 1

An example of join graph depicting the join relations between tables89.

38

6.3.

Query retrieving top 100 conferences that researchers in PRISBH are

likely to attend, based onfactors F1-F4. 93
6.4. Query graphfortheexamplequery 94
6.5. Generating bindings for a simplified version of the graph in Figure &<hft

edges are unbound): (a) the graph and its associated edge tuplesoaes] s

(b), (c) two different partial bindings. 97
6.6. Graphsusedinexperiments. 091
6.7. Cost of topk join queries for synthetic join graph: (a) Uniform Uncorrelated,;

(b) Skewed Uncorrelated; (c) Uniform Correlated; (d) Skewed&ared . . . 113
6.8. Cost of topk join queries for the large scale dataset: (a) Uniform uncorrelated;

(b) Uniform correlated; (c) Skewed uncorrelated; (d) Skewedetated 114
6.9. Cost of topk join queries as a functionof fanout 115
6.10. Cost of topk join queries for the real-world dataset 116

Xi

4.1.
4.2.
4.3.
4.4,
4.5.
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
6.1.
6.2.
6.3.

6.4.

6.5.
6.6.

List of Tables

Generatingrulesforqueries. o 28
Answer Quality for TREC queries 34
Impact ofs on MRR for TREC queries 44
Answer Quality of Scoring Components 7 4
MRR Comparison with Existing Question Answering Techniques 48.

A scenario with 5 sourcesand 12 restaurants 60
Results of the strategies 63
Source coverageandoverlap o 75
Resultof real-worlddataset 77
The mean square error of trustscore 78
Time cost of various algorithms 81
Results of various algorithms over the Hubdub dataset. 81
Results of NCESTIMATE over the restaurant datasetin[18] 82
Results of various algorithms over the restaurant datasetin [18]....... . . 83
AllStar bindings for the graph in Figure 6.5(a). 103
Bindings computed during the first iteration for the graph in Figure 6.5(a . 106
Bindings generated in Steps 15-23 of two different iterations, fogtagh in

Figure 6.5(a):P B; is generated twice, but only added onc&to. 107
Enforcing the inclusion property for the graph in Figure 6.5()s < PBs,
soPBgisnotaddedtd. 107
Graph Statistics e 111
Top-3 Bindings of real-world experiments 116

Xii

Chapter 1

Introduction

Recent advancement in the Web 2.0 technologies has fueled the explosioinefdata. The
huge amount of data has enabled applications in many domains such as$usilhueation, etc.
However, the data itself, be it from the Web, or from a database, or &eet of documents,
is never certain. By certain, we mean that the correctness of the datat teniplindly trusted.

The is due to that data can be erroneous, misleading, biased and easdyipdag For instance,
news sites sometimes post conflicting information pertaining to a certain eves.the data
from the most authoritative sources has the risk of being outdated. fohene order to assure
certainty, data needs to be vetted before it can be used where data quefitynigortance.

Consider the following user example.

Example 1: Consider a tourist named Joe wants to find a restaurant for dinner at Mid-
town Manhattan. After consulting with restaurant listing apps on his smartphbe chose
a restaurant named “Danny’s Grand Sea Palace” located at ‘346 WWésh St, New York'.
Unfortunately, after walking to the exact address, Joe finds out that tausnt has already
been closed (for good). Although the restaurant is listed at two reputabiess, Citysearch
(http://newyork.citysearch.com) and Yellowpages (http://www.yp.comedlity is that it has

already gone out of business, and consequently results in a badxysenience for Joe.

The quality of information is undoubtedly crucial to the success of web aipgits. To
measure the data quality, an important observation is that multiple sources avaegnfor-
mation on the same topic that is of interest. For instance, for the t¥yiether the restaurant
named Danny’s Grand Sea Palace is ofeésourcesCitysearchandYellowpagessayyesand
all other sourcesg(g., Yelp!, efcreport unknown. Given the listing information from multiple

sources, the task is to derive the correct information for the above topic.

The availability of data from multiple sources on the same topic has openedtthefga
finding the correct information with the presence of low quality data. Fordbe ef discussion,
let us consider the topics of interest qgeries to which each source provides a candidate
answer. To find the correct answer from a set of candidate anstliermost straightforward
way is through voting in which the answer reported by the most sourcedeistest as the
correct answer. Unfortunately, voting based methods suffer frorfatitehat sources may be
untrustworthy, and the correct answer could be outvoted by incarnes from a large number
of unreliable sources.

To tackle this problem, corroboration techniques have been propogddehtfy the cor-
rect answer by taking into consideration the trustworthiness of the sountaitively, trustwor-
thy sources are more likely to provide correct answers than unreliabteeso Consequently,
answers from reputable sources should carry more weight in deterntivamigght answer com-
pared with the ones from untrustworthy sources. Corroboration tewbsigork by assigning
a score to each source that represents its trustworthiness and usenipiote@ score for each
candidate answer that represents how likely it is the correct answear@wer with the highest
score is then selected as the correct answer.

This thesis studies the problem of finding the correct answer among &cmididate an-
swers provided from multiple sources. In particular, we propose rmovebboration algorithms
that leverage the trustworthiness of the sources. In the remaining of dpéechwe first list
the major challenges (Section 1.1) in designing corroboration algorithms endjive a brief
introduction (Section 1.2) to the problems we discuss in the next few chajtersummarize

this chapter in Section 1.3.

1.1 Challenges

The two major metrics of a corroboration algorithm is correctness and efficieNaturally,
the most important challenge is how to design the algorithm such that it can ydéeti€orrect
answer for as many queries as possible. In the meantime, it is also importaantifyidhe
correct answer efficiently, especially in cases in which the accessamtte sources are costly.

We break these two challenges into smaller ones as below

e The most important challenge is how to estimate the trustworthiness of the scainme
an accurate estimation is the basis of computing the probability that an answer is th
correct answer. Estimating the trust scores for the sources is difficulg there is little

to no prior knowledge about the sources or the candidate answers.

e Given a set of sources as well as their estimated trust scores, anethehddlenge is
how to compute a score for the candidate answer that represents the bkkelihe the
correct one. It is not clear how to combine the scores of the sourcesit@ dhe score

of the answers.

e Given a set of sources that provide candidate answers to quenesrtbin what order
to select sources that is to be used for corroboration. Obviously riegiell sources to
process incurs prohibitive costs and could be impossible in cases wieenrtiber of
sources is unbounded. It is crucial to design a way of selecting sosodbat the correct

answer can be found efficiently.

e How to design a branch-and-bound algorithm such that it can prunermécessary
score computations and source accesses as much as possible. Eseterasted in
the information of the highest quality, our corroboration algorithm shouldtie to

efficiently return the toge: answers.

The problems we are going to discuss in the following chapters presesrasev all of the
challenges listed above. We did not list some additional challenges suglrasiag answers
from sources, simply because we leveraged existing tools and do reitleoit as one of our

contributions.

1.2 Our contribution

This thesis studies 3 problems with uncertain data and tries to find the conssegiafor the

gueries. These problems cover uncertain data from different typesus€es (the Web and
databases). As we show in subsequent chapters, each probleentprasset of challenges
mentioned before. In particular, for each of the problems, our praposeoboration method

focuses on addressing one of the major challenges. In the following secti@ give a brief

description for each of the 3 problems we studied, namely, question angW®8ection 1.2.1),
unanimous answer assertion (Section 1.2.2), and:ti@in query processing (Section 1.2.3).

As the most important challenge, how to estimate the trust scores of the sdaiioees-
tigated in all 3 problems and is the core focus of the first 2 problems. In pkntiave dealt
with cases in which there exists prior knowledge that can be leveragectdhefquality of the
sources, as well as cases in which no useful information is availablediregdhe sources. In
the question answering problem (Section 1.2.1), our corroborationithligois able to utilize
the meta-data of the sourcesd, the ranking) to estimate how trustworthy a sources is. The
problem is also unique in that there is an extra level of uncertainty due to thetionitef the
information extraction techniques through which we used to extract caedidawers. In con-
trast, for the task of asserting unanimous answer (Section1.2.2), estimatitigghscores for
the sources becomes more difficult as there is no knowledge about tliesao begin with.
Therefore, we have to iteratively compute the scores for the sourdesrsmers based on the
answers each source provide until a convergence is reached. Botmags more challeng-
ing, since most of the answers are unanimous, there is little conflict amongdheis and
consequently making the iterative method converge to perfect sourcegpr@posed method
circumvents the challenges by assigning multiple trust scores to the somctesaking the
decisions on the answers using one of the score values.

We turn our focus to the challenge of designing an efficient corroboratgworithm in the
problem of topk join query processing (Section 1.2.3). For both the question answerthg an
unanimous answer asserting, despite that the focus is to derive thetamssver, we mea-
sured the time complexity of our proposed methods and demonstrate that eheyeguately
efficient. In this problem, the queries are much more complicated in that in tradatain a
candidate answer, it requires to retrieve and combine information from mustipiees. Each
source under this problem only hosts partial information of potential aissavel the candidate
answers are constructed mining partial answers based on a join graph. Fomin query
processing presents significant challenges on the efficiency of algerigince it is not viable
to retrieve information from all sources due to its prohibitive costs and fibvereignificant

pruning is required.

1.2.1 Question answering

Question answering is the task of returning a direct answer to a user ingezad of a set of
Web documents through which the user has to browse in order to find theerarsuch ques-
tions could be ‘Who was the first astronaut that orbited the earth?’, batg the gas mileage
of Fusion 2014?’. The huge amount of data on the Internet makes ifecpknowledge base
for question answering. However, it is possible to find different omes@nflicting answers
for a given query. In such a case, a frequency based approachahavork well, especially
in a scenario where a large number of untrustworthy sources arenprésea result, question
answering is an application that can directly benefit from corroboragisiess. To tackle this
problem, we propose a novel corroboration algorithm that correcthe#fiaently returns the
top-k answers for each query (Chapter 4). The key observation is thaeamextracted from
different sources are rarely equally important in answering the qisryanking the answers
based on the number, relevance and similarity of the sources reporting dsenell as the
prominence of the answers within the page, our algorithm is able to identifyatecanswers

for most queries [71] [72].

1.2.2 Asserting unanimous answers

It is intuitive that for a query with conflicting candidate answers, theretgxiscertainty with
respect to the correct answer, and hence the need for a coriob@gstem. However, corrob-
oration also helps when all sources agree on one candidate ansWastested in Example 1.
In this scenario, our objective is to identify legitimate restaurants given theglistformation
from a set of reputable sources. A legitimate restaurant is defined akaing up and running
and in good business shape. Example 1 shows that even if a restadistetisit one or mul-
tiple reputable sources it might still be illegitimate. In other words, an answeedgipon by
all the sources does not necessarily indicate that the answer is thet@sree For such a task,
state-of-the-art corroboration techniques do not work very welltdlee fact that they rely on
conflicting information to differentiate the trustworthiness of the sources. Mtith conflicts
among the answers, existing methods usually result in a trust score clofw tlthe sources

and answers. To tackle this problem, we propose a novel corroboedtjonthm that utilizes

a multi-value trust score for each source. Our algorithm incrementallyaesithe restaurants
by considering the information entropy of the unknown restaurants andisantly improve

the accuracy of the corroboration results [73].

1.2.3 Processing top: join queries

Although we measured the time complexity of our corroboration algorithms faatibee two
problems, we are more interested in improving the answer accuracy. Fartipgex problem
of top-k join query processing, algorithm efficiency is of more importance and wedur
focus to designing an efficient corroboration algorithm. A join query isergagainst a set
of database tables as sources whose answer is composed of a tuptafiosource, each of
which is uncertain with a probability score. The join operation is based on ayjajph that
specifies the join relations among sources. Different from the first twbl@ms in which a
candidate answer can be independently retrieved from a sourcedialananswer for a join
qguery requires expensive sorted and random accesses ovewutbhessand therefore is much
more costly. While the number of candidate answers for the first two probtebminded by
the number of sources, the number of candidate answers for a join galeryo as much as
the product of the number of tuples of all sources. To tackle this problenprapose a novel
branch-and-bound algorithm that maintains a set of partial candidateesnand incrementally
determines a good order in which to retrieve tuples from the tables so as to mitfmiztorts

of data accesses.

1.3 Summary

We present the major challenges for a corroboration system and biigflysded the scenarios
this thesis covers. We demonstrate how to address the challenges in éhelsoénarios in
the following chapters. The rest of the thesis is organized as follows.i$¥asb related work
in Chapter 2. Formal definitions and notations are introduced in Chaptere3pré#gent our
corroboration algorithm for question answering in Chapter 4. We thensismrroboration of
affirmative statements in Chapter 5, followed by our work in corroboratien in queries in

Chapter 6. Finally the thesis is concluded in Chapter 7.

Chapter 2
Related Work

We discuss related work in this chapter. In order to make the discussianipegl, we present
the relevant work in literature as follows. We first review the evolution ofaimoration tech-
niques (Section 2.1). In particular, we examine frequency based agm@e€.g, voting) that

is considered the primitive form of corroboration in Section 2.1.1, and madvareed cor-
roboration methods that are proposed more recently in Section 2.1.2. Weisdaesdrecent
advancement in determining the data dependencies among sources (3&)twhich could
greatly affect the corroboration results. Lastly, since corroboratichmigues aim to return the
top few best answers, we cover the topic of foguery processing that are extensively studied

in the research community.

2.1 Corroboration techniques

We consider corroboration a technique that evaluates the quality of emgweconsidering
the trustworthiness of the sources from which the answers are extrastirdquency based
approach, by definition, selects the most frequent answer as thetcangver. Although it
does not explicitly take into consideration the quality of the sources, weadmrnsa special
case of corroboration methods that considers all sources are equatiydrthy. In the follow-
ing discussion, we first present frequency based approacha® pemping to approaches that

differentiate the trustworthiness of the sources.

2.1.1 Frequency based approaches

Early works have considered the frequency of an answer as a reeafsamswer quality [22,
43, 23, 2]. The Mulder system, proposed in [43], uses frequenap®iiers to increase answer

scores. This approach is similar to our page-frequency approactxaveireed in Chapter

4.5.2. The models proposed in [22, 23, 2] consider answer frequertbg @&xtraction-rule
level, i.e., the score of an answer is increased if it is extracted from severaldhiglity rules
or query rewrites, but not at the source level. In other words, awanepeatedly extracted
from an unreliable source using multiple rules receives a high scoréeléisp fact that it is
from an untrustworthy source. [22] proposes a probabilistic modeltimate the impact of
repeated extraction from the web. The AskMSR system [2, 23] usesaeuery rewrites and
n-gram extraction and considers answer redundancy in its answangstrategy. However,
the redundancy is based on the number of answers returned by wliftgrery rewrites, and
does not consider the quality of the sources reporting the answer.

[74] proposes a novel approach containing a set of features ofeart®ntext to estimate
the answer confidence extracted from documents. However, whéiedipp a large corpora
(e.g, the Web), their approach simplifies to a frequency based approdtprigoses a novel
approach that assigns scores to answers by comparing the queryeasmdpgpets from which
the answers are extracted. In particular, for each answer, the sipp® which the answer
is extracted are clustered and a bag-of-words feature vector is gctestifor the answer. The
answer score is then computed using the feature vector of the clustereagdety. However,
their approach considers all the source snippets equally helpful and loe ineffective when
a large number of low-quality sources are present.

There are also work that has focused on identifying entities from langecddlections and
answering queries on these entities. In particular, the WISDM systenfgé@$es on entity
search and proposes a probabilistic framework to rank entities extracmdweb pages by
considering the context around entities. The NAGA system [38] proddasantic knowledge
to improve web search engine results. Neither systems operate on liveateelbat on indexes
built over web-extracted data. Our corroboration system for questisweaing bears some
similarity with the problem oentity finding which has been studied since the introduction of
TREC entity track in 2009. The task of entity finding is, given a query coimtgian input
entity with its name and homepage, to find related entities that are of a targetRgpg. et
al [27] proposed a hierarchical model for entity finding by considetimegsimilarity between
the query keyword and the document as well as the passage, from artishcandidates are

extracted.

2.1.2 Advanced corroboration

To the best of our knowledge, our techniques in [71, 72] are the fitsbabine various mea-
sures of the trustworthiness of web sources, as well as the quality oh#iveees within the
sources, and the frequency of these answers within the search enpgineresult. Using
corroboration as a measure of answer quality has recently been sdjgesion-web sce-
narios [41] where corroborating information is used to identify good answacross multiple
databases in the presence of low quality data. In [5], the authors studigatahlem of ex-
tracting and ranking numerical quantity answers from snippets. Theirthigolearns to score
and rank quantity intervals by combining snippet quantity and text informatlowever, their
snippet scoring is based on ttfadf score as well as lexical proximity features and does not
necessarily represent the trustworthiness of the sources.

More recently, a family of iterative corroboration techniques [79, 4049854, 81, 29, 55]
have also been proposed in finding the correct value among a setfb€tiog values for an
object (see a survey in [46]). An iterative corroboration techniguellys assumes no prior
knowledge regarding either the sources or the answers. Starting wiflaaltdeore for each
source and each answer, such approaches compute scores fourtesdased on their votes
on the answers. In return, the scores for the answers are calcusitedive computed scores
for the sources. The scores for the sources and the answersmitethgvely computed until a
convergence is reached. An early example is in [40], in which the autbpopes a link-based
approach that iteratively computes a hub and authority score that anentiseo$ one another.

Yin etal. [79] proposed a novel iterative algorithm calleRlUr HFINDER that uses Bayesian
analysis and finds true facts among conflicting information. In particulamuisever score is
calculated based on the quality of the providers. In additicr)HFINDER takes into con-
sideration the similarity among answers and boost the scores of answersldi sanswers
exist. Galland et al. in [28] proposed a suite of algorithms (namebhsI8E, TWOESTIMATE,
THREEESTIMATE) that iteratively estimates the probability that an answer is correct and the
trustworthiness of the sources. The€INE algorithm computes the trust score of the sources
as the cosine similarity between the votes of the source and the estimatedilgyobathe

answer. The WOESTIMATE algorithm differs from the ©SINE approach by calculating the

10

trustworthiness of a source as the average probability of all the angvpeowides. In return,
the probability of an answer is computed as the average trust scoressutees. In order
to avoid the algorithm to converge on local optimay@ESTIMATE normalizes the score of
the sources and the answers to the closest val§,it}. In addition, to quickly stabilize the
algorithm, the computation uses a linear combination of the non-normalized amélized
value. The HREEESTIMATE improves over WOESTIMATE by considering a third variable
that represents the likelihood a vote on an answer is correct (in otheiswoow hard an an-
swer is). Under such settings, the more difficult answers a souroectigrprovides, the more
trustworthy it is.

Pasternack et al. [54] approach the fact-finding problem by incatjpgy prior knowledge
and propose a set of algorithms{@&L 0G, INVEST AND POOLEDINVEST). In particular, their
framework translates prior knowledge, often derived from commonesaasvell as known
facts into linear program that enforces constraints on candidate answbke A/GLOG ap-
proach tries to mitigate the overestimation of the trustworthiness of sourcqw¢ivede more
answers in [40] by taking the average and logarithm values of the ars®wegs. In contrast,
the INVEST method considers that the trustworthiness of a source is uniformly (inssead a
whole) investedin computing the score of each answer it provides. The score of aneansw
is then computed as a non-linear function of all invested trustworthinesstfre sources. It
then calculates the trustworthiness of a source as the averaged sumsobths of answers
it provides, proportional to its investment in each of the answer score. PFDIOLEDINVEST
algorithm updates the computation for the answer scores by linearly scalohgoandidate
answer such that the sum of the answer score equals to the total invedtmentise sources.

As a step further, latest techniques [55, 19] try to improve existing fadirignapproaches
by incorporating the consideration of additional uncertainties, such agnia® from answer
extraction, entity linkage and schema alignment. In [55] the authors intradtec¢he fact-
finding solutions several uncertainties including the uncertainty in the arextmction, the
uncertainty of the sources, the similarity among the answers and group nsripisdo which
sources may belong that can be used to infer the support for an aistoss not explicit
provide. Each of these uncertainties is then quantified as a score in §ddlihcorporated

into the corroboration algorithms proposed in [54]. Dong et al. [19] pseg the notion of

11

knowledge fusiorthat examines the role of data extractors in computing the probability of
each candidate answer. In particular, the authors adapt exdditagusiontechniques in [17,

20] by considering the pair (Extractor, URL) as the sources. By ptegpthe limitation of
such simple adaptation, the authors propose several refinements thdeinohsidering finer
granularity of the sources, provenance selection and using the gatdmedict new extracted
answers.

In our study of asserting unanimous answers in Chapter 5, we propsechoration al-
gorithm that incrementally evaluates sources and answers. Such a methoiiveted by the
observation that sources may exhibit different trustworthiness ovierelift queries. By eval-
uating queries using different trust scores from each source, comitpie is able to improve
both the precision and recall of the answers. Dong et al. [21] investigaset of state-of-the-
art corroboration techniques and concluded that there are possib@/inpents to information
corroboration. In particular, the authors observed that fractionsiaf flom the same source
can have different quality and suggested that differentiating sourakgygtor different cate-

gories of data could improve corroboration quality.

2.1.3 Corroboration over dynamic data

A significant factor that contributes to the data quality is the staleness of thataed, data
generated nowadays becomes obsolete fairly fast in a dynamic world enunjportant for
an information source to keep track of the latest value of an object. Unfatdly, it is often
observed that sources could delay, make mistakes or even miss on vadtesupNVe in Chapter
5 investigated a typical case of this problem in which sources provideateaténformation
such that it leads the sources to incorrectly agree with each other. \Wesaw an iterative
algorithm that significantly improves the quality of the corroboration results.

There are several existing works [26, 52, 18] that have studied thelbmration problems
in the presence of stale data. In those studies, it is common assumption thabeace pro-
vides the full history of its observations on each data object. Fan et dls{@éied the stale
data corroboration problem in databases when multiple rows of the sanveorééentity con-
sisting outdated values are inserted into the database over time without any rtipesTdose

multiple rows of values about the same entity creates conflicts and confugitmsusers. To

12

address this issue, the authors modeled the problem as the studying afrdatey, to identify
the current values of an entity and to answer queries with the currerdsvaduhe absence of
timestamps. The idea here is to infer the currency order between dataplessiyileveraging
additional currency relationships (denoted as denial constraints) lasasviie copying rela-
tionship among tables. The data currency problem is very similar to the onevestigated in
Chapter 5 in that the data values are missing timestamps and we also try to uheosrent
value of each listing. However, in our scenario the dataset is more limited ivéhanly pos-
sess a shapshot of data values. The fact that each data objectehza s would render the
techniques in [26] unable to infer the currency order of the multiple valfifeessame object.

Pal et al. [52] presented a study on a similar problem in the context of th#t in which
each source may provide values of an object at different points of itBrideand the goal is
to determine the latent history of the value updates. This particular studysdiftan other
work in that it not only tried to identify the current value of an object, bub dt®ks for its
entire update history. Given the assumption that sources may delay anchhissipdates it is
extremely difficult that existing corroboration techniques can be efielgtapplied. To address
this problem, a generative model in which each observation from a sisuroasidered a noisy
version of the true update is proposed. Several algorithms were giviefetathe mappings
between observations and true updates. However, as we mentioneg ligfois another study
in which the underlying assumption is that the observation history of eaglees@iknown,
which is not true in our scenario.

Dong et al. [18] studied the problem of identifying the true values of dafactdowhen
the update history of the sources is known. With date staleness in mind, tlyecstusiders
the quality of sources by the coverage, exactnesdrastiness Their technique uses a set of
Hidden Markov Models to decide whether a source copies from anablieces and at which
historical moment it copies. In addition, the authors developed a Bayesidal tmdecide
when the true value changes and what the new value is. Although the stsdy different
assumption as ours in the same way as [26, 52] in that it also assumes thg distources
updates is known, it is effective to cases in which the observations amanges are generally
in agreement, which is the focus of our study. Due to the similar nature in therlyimd) data

presented in [18], we tested our approach using the same datasefpan@dehe results in

13

Chapter 5.

Another interesting study relevant to evolving data was presented in [9@jich Rekatsi-
nas et al. looked into the problem of source selection considering dynatsicdurces whose
content change over time. The key observations here are that sevhimdsupdate the most
frequently may not be the ones with the most fresh information. In additidectsgg more
sources or acquiring more updates from a source might not necessariase coverage.
Driven by those observations, the authors introduced algorithmic frarkewging statistic
models to describe the quality and update patterns of the sources. Whilautice selection
problem is NP-complete, efficient local search algorithms with theoreticabgtees are pre-
sented. While the techniques proposed in this paper is not directly applinadale scenario,
it provides insights of trade-off between the corroboration quality astlwben the price of
acquiring sources or updates is not negligible.

The dynamic nature of information generated nowadays has also promptetutly of
linking records that point to the same entity of different time with conflicting atteilwalues,
namely temporal record linkage. Often, a curated data source may stonéattmeation about
the same object over a long timespan. Since there might not always exisju ey to iden-
tify each entity, it could be difficult to reconcile records that point to the sabject but have
conflicting values. Traditional techniques (see survey in [24]) hameded on addressing value
conflict that arise from lexical heterogeneity, such as different dataention or schemas, or
even data entry errors. In other words, the assumption that those teehriqld is that the
conflict in values among different sources of the same entity is lewigal, that those values
are the same in principle. However, such assumptions fail to recognizasttiate goes by, the
value of an entity attribute could indeed change which could make those taelrfall short.

Several works [45, 13] have addressed the problem of tempomddiokage in recent
literature. Li et al. [45] proposed the ideatohe decaywvhich models the likelihood that the
value of an entity attribute changes over a time interval. In particular, the rautbasidered
two types of decays, namelgisagreement decahat captures the probability with which the
values of an entity attribute over time disagree, agceement decathat captures the proba-

bility with which the values of two entities at different time interval may be the sansend.a

14

labeled set to learn the decay probabilities, several clustering algorithragpveposed to com-
pute the similarity between records. In comparison, Chiang et al. [13papped the problem
using a different model calculating the probability that a given attribute a@appears over
time. This is based on the assumption that attribute values change in a way tepérsldnt
on its previous values. In addition, the proposed methods evaluate setsoods instead of
pairs of records which improves robustness and accuracy. Inmedog and modeling sophis-
tically the attribute value change, both works effectively addressed thetaimpcord linkage

problem.

2.2 Data Dependency

When considering the sources in answer corroboration, it is importaotedimat we implicitly
meanindependensources. However, in the real world it is not uncommon to see sources
that are not independent in that they are copying/pasting informationdthar sources. An
independent source provides genuine information independently, vaipijéng sources present
plagiarized data from other sources. Our work in question answeritiggsged this issue by
considering theriginality of the sources (Section 4.3.1) by dampening the trust score of the
sources that are detected as copying sources.

Dong et al. [17, 18, 7, 16] investigated the dependence among s@andets role in data
corroboration. The dependence among Web sources with respeta twodieboration was first
mentioned in [7] and challenges examined. To address those challereyastlibrs propose 2
important intuitions to explore and provide some preliminary solutions to disc®menden-
cies. In [17] the authors studied how to detect dependence amongsdiyrasing Bayesian
analysis. The important underlying assumption is that the mameanswers €.g, incorrect
answers) 2 sources share, the more likely there exists dependencg Hmaon Similar as
other data corroboration algorithm examined in Section 2.1.2, an iterativetaigdhat takes
into consideration of copying detection as well as answer similarity is prdpasé shown
to perform significantly better than existing methods. Different from thdyaisain [17] that
focuses on @napshobf answers provided from the sources, the authors in [18] investigated

the dependency detection and truth finding problem when the update hitibiy sources is

15

known. In particular, their techniques consider the coverage, exsacarel freshness of the
sources and use a Hidden Markov Model for copy detection. In addiigair-wise copying
detection based on common errors and update patterns, authors in [tedlisgover the com-
plex dependences such as co-copying, transitive copying and ¢ofsgim multiple sources
between a set of structured sources. The technique works by finsifydeg pair-wise copying
locally and then globally uncovering co-copying and transitive copyingtaldependence has
also been studied in querying the deep Web [4]. In [4], the authorstigaésd the problem
of retrieving and ranking deep web resuktsy|, tables) and addressed the possible socote
luding problem. Sources are considered colluding if they copy from one aniatlaetificially
boost their relevance score. The solution to detect the source dewerndd¢o compare results
from the sources againgeneral queries The intuition is that if two sources return the same

results to general queries that have a large number of results, theyayadibbe dependent.

2.3 Top-+*k Query Processing

Top-k query processing has been studied extensively in various area®.ge¢25, 48, 66]).
In the typical topk query model, the score of each object is computed based on a number of
attributes stored at data sources. The best knowrk talgorithm is the threshold algorithm
(TA) proposed by Fagin et al. in [25], which requires both sorted amdom accesses. The
NRA algorithm improves over TA by considering only sorted access, wisicheaper than
random access. Marian et al. [48] proposed the Upper strategydfaatte when only random
access is available. Theobald et al. [66] studied kajpieries with probabilistic guarantees
and proposed a series of approximate variants of TA to reduce the ruraisheHowever, all
these studies assume that a universal ID for each object is availabkhis@arce, which is not
necessarily true in every scenario. As an instance, in theé fop? query processing scenario
(Chapter 6), a join result does not exist before probes are issuaghceurce.

Algorithms for top# join query processing have been proposed in [34, 51]). llyas &4]l. |
introduced a rank-join algorithm that makes use of the individual ordets inputs to produce
join results ordered on a user-defined scoring function. The rankajgiorithm [34] outper-

forms the J* algorithm [51] by using a score-guided join strategy, effectively g the

16

score threshold. However, these two approaches are designedifyi@join path, while we
consider a more general case of a join graph, and hence cannotbiydapplied. In addition,
both of their models consider inner join, assuming that each answer in thesepmeets the
join condition and instantiate scores on each data source, whereas in detl;, Bgoin result
could instantiate a subset of the data sources and still have a high score.

A join result that has an instantiated tuple on every edge of the query gaaybe translated
into a DNF formula, with one join condition corresponding to each sourcgAtopath. In this
context, R et al. [58] proposed a novel approach for fogueries in probabilistic databases.
The method runs several Luby-Karp simulations [36] in parallel, to apprate the score for
each answer. However, their approach requires that all answexguted a priori, and the
goal is to minimize the number of simulations. In our model, pre-computing all assneans
accessing all scores in each data source, which simplifies to the naikaaapp In fact, our
explicit goal is to minimize the number of such source probes. Note, thoughthé two
approaches are orthogonal: one could combine them in order to minimize twodtimgp and
computation costs.

Top-k query processing in probabilistic database is studied in [60, 44, 77}obapilistic
databases, the rank of an item is decided by its score in combination with itsqiligh Soli-
man et al. [60] investigate two tofppsemantics (U-Top and U4Ranks) in uncertain databases
and propose new formulations for tépgueries. Yi et al. [77] propose an improved version
of algorithms for the same query. Li et al. [44] propose two parametereeking functions
(PRF* and PRF*) for top-k query in probabilistic databases and present novel generating
function-based algorithms for efficient query processing.

Theobald et al. [64] design the TopX retrieval engine for the top-k yjpeocessing for
semistructured data. In their work, they adopt dagjerstrategy to join tuples obtained from
sources after a round of sorted access, which could be incorreetdition, TopX assumes
that there exists a unique ID for each documelaic(id and it is accessible from each tuple,
which makes it not directly applicable to our problem. As suchgiigerstrategy is limited to

join tuples from sources that are neighbors of each other.

17

Chapter 3

Preliminaries

We formally define the concepts and notations that are used throughout$eiththis chapter.
Let S denote a set of sources and tbe a set of queries. For each querg 9, a source
s € § may express opinion with respect to the query. Such an expressior) weicall a
statement, may constitute a candidate answer for the query or provide jpddiadation that
is relevant to a candidate answer. We also say a candidate answer eatrdmtedfrom a
source. As an example, a candidate answer can be extracted fromsauveb for the question
answering task. Given a set of queri@sand a set of sourceS (as well as their statements

over Q), a corroboration task is to identify the correct answer for each query.

3.1 Sources

We consider a source € S as a real-world object that expresses opinions about queries. A
source can be in the form of a database table (local or hosted at a ratapt &t document
(semi-structured or unstructured). We uge) to denote the statements from a sousder a
queryq. As an example, for a query ‘The highest mountain in the United Statesiiraesmay

provide a statement as ‘Mountain McKinley'.

3.1.1 Extracting Statements

Depending on the nature of the sourceg, can be extracted using the following methods.

e Database tablesn such cases;(q) can be extracted simply by issuing a database query.

In our model, we consider that both sorted and random accesses aredhllo

e Semi-structured documents such cases, a rule based extraction tool suffices to extract

s(q). Forinstance, in order to extract restaurant listings from severabited) we wrote

18

a crawler that retrieves the listing web pages and used regular expressica set of

simple rules to identify restaurant listings.

e Unstructured documentsdentifying answers for natural language queries in free texts
is a complex problem and poses significant challenges in a corroborasimmsyin such
cases, a suite of information extraction tools need to be employed to pinpoistatiee
ments from the sources. In our question answering task, we used laasge-approach
coupled with existing linguistic tools such as tokenizer and named entity re@vgniz

accurately find answers for the queries (see detail in Section 4.2.1).

In addition to extracting answers, another challenge is how to merge similaeensr
entities. Often times, the same answer could be presented in different faomalifferent
sources. Record linkage is a hon-trivial problem that has been stundiee research commu-
nity. To solve this problem, we employ empirical techniques (Section 4.2.2 aib$8.6.2)

for answer reconciliation.

3.1.2 Scoring Sources

We associate with each soure@ measurer(s) that represents its trustworthiness. The trust
score is a real number between 0 and 1, with 1 indicating a perfect sandc@ indicating a
completely wrong source. We define sources with a trust score betweam® 1 apositive
sources. In principle, positive sources are the sources that haweaowect statements than
incorrect ones. Similarly, aegativesource is defined as a source with a trust score between 0
and 0.5. For convenience, we uséS) to denote the collective trust scores for all the sources

inS.

Single-value and multi-value trust scores Traditionally, corroboration techniques [79, 40,
28, 49, 54, 29, 55] consider the trust scerés) for sources as a singular numerical value
between 0 and 1. This practice works fairly well in a number of applicatittmwyever, as
we demonstrate in Section 5.4.2 of Chapter 5, using one trust score fosearce (coined
a single-value trust score based approach) does not work well in scanarios. To address

its limitations, we propose a novel method (Section 5.5) that uses differshivalues toward

19

different queries for each source (called a multi-value trust scordgsproach).

3.2 Answers

3.2.1 Identifying Answers

In order to identify the correct answer for each query, the first stap fand all candidate
answers based on the statements from the sources. As we mentioned in S4ctaostatement
from a source in itself can be seen as a candidate answer in certaimie¢ers ‘Mountain
McKinley’ for the query ‘The highest mountain in the US’). As anotherrapée, for the query
‘Is Danny’s Grand Sea Palace open?’, the statements ‘Yes’ ffellowpages ancitysearch
can also treated as a candidate answer.

In some other scenarios, however, the statements from the sourcesasepartial infor-
mation that can be used to infer a candidate answer. For instance, cathgidgery ‘The
elevation of the highest mountain in the US’, the statement abag'ountain McKinley’)
only serves as partial information and we need another statement (‘ModntKinley has a
summit elevation of 20,237 feet’) to complete a candidate answer.

Let f be a candidate answer and &tf) = {si1(q),s2(q),-- -} be the statements from
s1,89,... that are relevant t¢f. In the case where statements are in themselves candidate
answers, each;(q) in C(f) represents an occurrence pf(Chapter 4 and 5). Otherwise, a

mechanism needs to be derived candidate answers (Chapter 6).

3.2.2 Scoring Answers

In order to identify the correct answer given multiple candidate answerpropose techniques
to compute a probability (f) for each candidate answérthat represents the likelihood that
f is correct. A corroboration considers the answer with the highest pildpascore as the
correct answer. For convenience, we s@ndsS; to denote the set of answers from sousgce

and the set of sources that have statements for angwespectively.

20

3.3 Corroboration

The objective of a corroboration system is to identify the correct ankweach query (based
ono(f)) as well as to estimate the trust scerfe) for each source. In principle, the relationship
between the computation of(f) ando (s) is intertwined. On one hand, the probability score
of o(f) depends on the trustworthiness of the sources. On the other hand,shsctite for

a source is decided by the quality of answers it provides. We“laseob() andUpdate() to

denote the operations that used to calculdtg) ando (s), illustrated in Equation 3.1.

o(fi) = Corrob(c(S;))
(3.2)
o(si) = Update(o(F;))

As a simple example, a frequency-based corroboration method computesotiecof an
answer as the number sources reporting it. In other wardsyob() can be implemented as
|S;|. Since all the sources are treated equally in such a meliipdgte() is ignored by the
frequency-based method.

In practice, the design of a effecti¢éorrob() andUpdate() is the key to the performance
of a corroboration system. Intuitively, due to the relationship betwegf) and o (s), we
need to know one of the scores to calculate the other, as is the case wibalgs€Chapter
4. However, even without any knowledge with either score, we can stiptadn iterative
algorithm to derive estimations for both scores. Essentially, we can staravdéiault score
for each source (or answer) and repeatedly calcutgtgsando (s) using a designe@'orrob()

andUpdate() implementation until convergence is reached, illustrated below.

e ®(f) = Corrob(a(S*Y))
(3.2)
o) (s;) = Update(a® (F;))

wheres*)(f;) is the score for answef; atith iteration andf(Si(k_l)) represents the trust score

for S at the(i — 1)th iteration.

21

3.4 Cost Model

In addition to returning the correct answer for the queries, anothectdlgeof our corrobora-
tion system is to compute the answers efficiently. Since our system deals watiodeneous
types of sources, we abstract the cost of corroboration systems thsingumber ofprobes
operation. A probe could be a database access (either sorted onraedess), a document
retrieval, or a look-up in memory depending on the nature of the sounce=mach of the sce-
nario we discuss in the following chapters, we use the same metric whentevgdifferent

corroboration systems.

3.5 Summary

We give a formal and detailed description of the concepts and notations ichtiger. More-
over, a brief discussion on how a corroboration system works is pdvith each following
application, we address the challenges using the concepts and notatiodsdett in this chap-

ter.

22

Chapter 4

Corroborating Answers from Multiple Sources

4.1 Introduction

We start the technical contribution of this thesis by discussing how camaitibo techniques can
help the task of question answering. Given a user issued factoid dgoeriestion answering
task is to identify the correct answer from the Web. In this thesis, we cenafdctoid query
as one to which there exists a factual answer. For instance, a factoid gquéd be Who is
Tom Hanks’ wife or ‘What is the highest mountain in the U%o make the description and
evaluation of our technique tractable, we focus on factoid queries wittirsli@nswers. For
instance, our discussion leaves out queries suchVém® ‘is Abraham Lincolri?and ‘How to
repair a computer?

Typical web search engines return a list of web pages (or sourcasindiches a set of
keywords input by users. Web search engines are increasingleeffat identifying the best
sources for any given keyword query, and are often able to identé#yatiswer within the
sources. Unfortunately, as we mentioned in chapter 1, many web sa@recast trustworthy,
because of erroneous, misleading, biased, or outdated information. Wiy web sources
providing similar information on the Internet, users often have to rummageghradarge
number of different sites to both retrieve the information in which they aredsted, and to
ascertain that they are retrieving the correct information. In many casess are not satisfied
with —or do not trust— the results from any single source, and prefakimng several sources
for corroborating evidence, as illustrated in the following examples:

EXAMPLE 1: Consider a user interested in buying a car, and considering a speciitbr
and make (e.ghlonda Civig. One of the criteria influencing the decision is the gas mileage of
the car. However, the gas mileage information available on the Internetgliife only based

on the year of the car, but also based on the source from which the informagxtracted: the

23

Live Search | MSN | Windows Live | Hotmail

8 Live Search | first orbited the earth E

Web 110 of 154,000 results - Advanced
See also: Images, Video, News, Maps, More v

Featured Document: Friendship 7 Transcript John Glenn

The successful completion of Glenn's mission (he orbited the Earth three times) did much to restore
American prestige worldwide. February 20, 1962
www.archives.gov/exhibits/featured_documents/friendship_7_transcript - Cached page

Yuri Gagarin - Wikipedia, the free encyclopedia Yuri Gagarin

On 12 April 1961, he became the first human in space and the first to orbit the Earth. He received
medals from around the world for his pioneering tour in outer space.
en.wikipedia.org/wiki/Yuri_Gagarin - Cached page

Heliocentrism - Wikipedia. the free encyclopedia No Answer Found
... was available in the Tychonic system, in which the Sun orbited the Earth, while the plansts
orbited the Sun as in the Copemican model. The Jesuit astronomers in Rome were at first ...
en.wikipedia.org/wiki/Heliocentrism - Cached page

Flashback - 98.11.05 John Glenn

Atlantic Monthly articles on the space program and John Glenn's first flight orbiting the earth ... | t
has been almost four decades since John Glenn first orbited the Earth.
www.theatlantic.com/unbound/flashbks/glenn.htm

First Thai Observation Satellite To Be Orbited In October No Answer Found
Bangkok (XNA) Jan 29, 2007 - Thailand is doing the final preparations for the launch of its first earth
observation satellite called THEOS into orbit in October, Thai Science and ...
www.spacemart.com/reports/First_Thai_Observation_Satellite_To_Be Orbited_In_October_999.ht...

+ Cached page

Valentina Tereshkova Biography Valentina Tereshkova

Valentina Tereshkova was the first woman in space, orbiting the earth forty-sight times in Vostok VI
in 1963. She orbited the Earth for almost three days, showing that women have ...
www.notablebiographies.com/St-Tr Tereshkova-Valentina.html - Cached page

Solar System Exploration: Missions: By Target: Earth: Past: SputnikNo Answer Found
... shot in the space race between the United States and the forme Soviet Union. the basketball-sized

spacecraft was the world's first artificial satellite. It orbited the Earth ...
solarsystem.nasa.gov/missions/profile.cfm ?MCode=Sputnik - Cached page

Who was the First Astronaut? Yuri Gagarin

... the first human astronaut, Yuri Gagarin, on 12 April 1961, about three and a half years after the
launch of Sputnik. Launched on board Vostok 1, Gagarin orbited the Earth just ...
www.wisegeek.com/who-was-the-first-astronaut.htm - Cached page

Figure 4.1: Results for the query “first orbited the earth” using MSN &ear

official manufacturer web site (up to 51 mpg in the Honda Civic examplea loiferent value
than some other commercial web sites (40 nfag. oweb. com 30/40mpgCar . con). None
of these sources, all of which appear in the first page of results fontbey¢Honda Civic 2014
gas mileage” usingMSN Searchhas the “perfect” answer for the query, but they all provide
valuable information to the user.

EXAMPLE 2: Consider a user who wants to find out who the first astronaut who orbited
the earth was. Issuing the query “first orbited the Earth” to a commersggrch engine returns
a list of web sources that are relevant to the query but provide diffexeinacted answers as

shown in Figure 4.1. The correct answer, Yuri Gagarin, does ngeap in the first search

24

engine result; in fact, there are several results that does not contairvaliy answer to the
user’s information need. However, several answer extracted froselieh engine result pages
are potentially useful to the user as they provide correct answers teeraénts of the user’s
query: Valentina Tereshkova was the first woman who orbited the esmrthJohn Glenn was
the first American to do so.

A naive approach to try to identify the correct answer would be to retrmihst frequent
answer found among the search engine query result pages. While thischoeth efficiently
eliminate outlier answers such as typos, it fails to consider the fact thatashswtracted from
different pages are rarely equally important in answering the queajl pages are not equally
trustworthy. In fact, such a frequency-based approach can bedie® a simplified instance
of the corroboration techniques by considering all sources have the sastworthiness. In
addition, it opens the gate to malignant behavior from spammers, who woukhimed to
create multiple pages containing similarly erroneous information to boost the stdheir
chosen answer.

In this chapter, we propose a framework to corroborate query resoitsdifferent sources
in order to save users the hassle of individually checking query-relegbaites to corroborate
answers. In addition to listing the possible query answers from diffevebtsites, we rank
the answers based on the number, relevance, and similarity of the welesoeporting them,
as well as the prominence of the answers within the sources. The existesmeeral sources
providing the same information is then viewed as corroborating evideneceasing the quality
of the corresponding information, as measured by a scoring functiahtoserder answers.
Our techniques are built on top of a standard web search engine @seity, and use existing
information extraction techniques to retrieve answers from web pagesoliooating answers

from web sources presents several challenges:

e The main challenge of answer corroboration is the design of a meanirngiihg func-
tion. The scoring function should aggregate similar answers and take ictairgtca

variety of parameters to identify the best answers.

e Accessing all the pages that match a given web search query to retridveompare

answers would obviously be very inefficient. We need to select weltesuhat are

25

most likely to contain the best answers.

We propose the following contributions to address these challenges:

e Scoring of corroborated answerdMe propose a framework to score corroborated an-
swers. Our approach considers several factors to score bothl¢hiarree of a page to
the query and the importance of the query answer within the page. By comlirgse
two factors we can assign a score to each individual answer baseovwoiikely the
answer is to be the correct answer. We then aggregate the score of sinsieers. To
the best of our knowledge, our techniques are the first to considenhothe frequency
of the answers in the web search engine result, but also the relevashagigimality
of the pages reporting the answers, as well as the prominence of theramnghin the
page (Section 4.3). In particular, our web page relevance scoredd basearch engine
rankings and modeled by a Zipf’s Law, an intuition empirically validated usingifes

clicks from a search engine log.

e Selecting the web sources from which to retrieve the ansvgréocusing on the pages
that are most likely to contain good answers we are able to save on queEgsping
time. This is related to work on top-query processing and the Threshold Algorithm
[25]; however, score bounds information, commonly used inkapsery processing,
cannot be used in a corroborative framework. We propose a methaasider a prefix
of the search engine query result for information extraction, dynamicaltydihg the
size of this prefix based on the distribution of answers (Section 4.4). Yériexentally
evaluate the effect of the prefix size and show that our method is e#edtieducing the

number of pages necessary to corroborate answers.

e Evaluating the quality of our proposed approadife conducted a novel extensive qual-
itative and quantitative experiments on queries selected from the TREQiQués-
swering Track [67] and from a log of MSN query searches. Our exymntal results
show that data corroboration significantly improves the quality of ansvgestipn 4.5).
We also show that for MSN queries, our corroborative answerglaberwith user clicks

in the MSN search log.

26

4.2 Extracting Answers

Our corroboration system is built on top of an existing search engineenGwser keyword
query, our first step is to extract the candidate answers from the wgds paturned by the
search engine. The challenge is to efficiently retrieve, and identify, fh@se web pages the
data that qualifies as an answer to the query. For instance, to retriaverarier the query in
Example 1, we need to identify gas mileage values that correspond to a 20tk Eivic from
the search engine web page results.

In addition, it is often observed that the same answer may appear in differe in differ-
ent sources. For example, we found two answers (“John Glenn” dotth“H. Glenn”) for our
Example 2 query. While the text of these two answers is slightly different, igldyhprobable
they refer to the same answer. Our answer extraction system solvesaihlisrprhy computing
the cosine similarity score between answers and aggregating similar ainfstienssimilarity

score is above a certain threshold.

4.2.1 Answer Extraction

Information extractionthe process of extracting relevant information from documents using
text and structure, is a complex problem that has been the focus of makynithe Natural
Language Processing and Machine Learning communities [50], among.o8iece the focus
of our work is on the corroborative aggregation and scoring of arsswe opted to use regular
expressions techniques to extract answers from web pages. In addiirocurrent implemen-
tation works on queries with succinct answers, such as the ones illusina@mple 1 and
2.

It is relatively straightforward to identify numerical answers within webgsagFor in-
stance, mileage information will typically be of the forma tnpg,” or “mpg ofz,” wherez is
a numerical value. Note that our extraction technique considers multiple unitsjaes the
proper conversions, for each numerical query (e.g., “feet” and ‘reieter a length query).

It is more complicated to extract answers for a query that calls for a textisaler. State-
of-art IE systems [1, 10, 31, 32, 33, 53, 56] have used a lot of litiguols, namely syntactic

parser, part-of-speech tagger, named entity tagger, WordNet.

27

Instead of employing a full featured information extraction system, existings\é7, 35,
62, 75] in the information retrieval community have shown success by ussigified an-
swer extraction component. Radev et al. apply a part-of-speech taggaases and computes
the probability of phrase type to match the query category. Jijkoun and jite Biepoint the
answers for a query by looking at Frequently Asked Questions (FAD)\es. If a question in
the FAQ archive is found to match the query, the non-question text block inategdfollowing
the question is identified as the answer for the query. The QA system imgBves answer
sentences based on keyword matching. The QUALIFIER system in ptijnmns answer se-
lection by matching the expected answer type to the NLP results of the queéngtamns the
named entity in the candidate sentence.

Our answer extraction is similar as the techniques used in[75]. Given gagd, we
first apply a HTML parser to obtain the text content for answer extractMye choose the
Jericho HTML parsék; an effective Java open source HTML parser to obtain the plain text of
the web page. We then use a tokenizer to tokenize and tag the plain text fedirsthstep.
The Stanford Name Entity Recognizer (NER) is a Java implementation of a Nantéy E
Recognizer which uses a linear chain Conditional Random Field (CREgreg models. In
particular, the Stanford NER system segments the plain text into sentertcessds. After
giving each word a tag, we apply extraction rules for each query bytgglehe sentences that
contain the extraction rule. The answer is then identified as the words fesetitences that
match the expected answer type. The rules for each query are a s#bwofatically created
texts that may appear around the answer. The rules are not queifjcdpgicrather are created
based on the interrogative word to apply to different types of queriesgivé a few examples
of such rules for different queries in Table 4.1:

By using rules such as the ones shown in Table 4.1, we can extractrdios\wwach query.
As an example, consider the query: “Who is the speaker of the Leb&miament”. We
can create rules “is the speaker of the Lebanese parliament” and “takesd the Lebanese
parliament is” to extract query answers.

While these rules cover a wide variety of scenarios, they are insuffitiestme cases.

http://jerichohtml.sourceforge.net/doc/index.html

28

Who i s/was $x “is $x”, “$x is”
VWo VBD $x “VBD $x”, “$x is/was VBN”
Where is $x “$x is”
Wiere is $x VBN “$x is VBN”
Wher e di d/ does $x VB $y “$x VBZ/VBD $y”
Whi ch $x is/was 3y “islwas $y”, “$y is/was”
Wi ch $x VBZ/ VBD VBN $y “$y is/was VBN”, “VBZ/VBD/VBN $y”
What $x is/was Sy “is/was $y”, "By is/was”
What $x does/ di d/ have/ has $y VB/ VBN “$y VBD/VBN $x”

Table 4.1: Generating rules for queries

Consider the following example shown in the title of a news article:
“Nabih Berri reelected as the speaker of the Lebanese Parliament”

Clearly, “Nabih Berri” is an answer to the query, but the two previoushated rules cannot
extract it. Therefore, in addition to the rules created as above, we ie@dset ofelaxedrules
for each query. Theslaxedrules include the noun/verb phrase or part of the noun/verb phrase,
possibly in combination with a specific adjectived, “current”). We manually create a few
specific adjectives that may appear around the extraction rule basedidstics. For instance,
the relaxedrules for the above query include “the speaker of the Lebanese Parliarftbe
speaker”; “the current speaker is”; “is the current speaker”.

Applying the Stanford NER recognizer will tag “Nabih Berri” aBERSON’. Since the
answer to this query is expected to b@BERSON entity and this sentence matches one of the
rules of this queryi(e., “the current speaker is”), “Nabih Berri” is extracted as an answ#1iso
guery. Note that it is possible to extract multiple answers from the sentdmich matches the

extraction rule. We show how we assign scores to each of the extract@drain Section 4.3.2.

4.2.2 Answer Aggregation

After we have extracted answers from different sources, we neeahtbine similar answers.
Due to the poor quality (spelling errors, typographical errors) of alaaytion of online con-
tent, answers extracted from different sources bearing texturareifte may actually point
to the same information. A simple example is for numerical queries, differemtes may
present results using different unit. For instance, for our Exampletyque may find answers

“26 mpg (mile per gallon)” and “11 km/I (kilometers per liter)” from differertsces which

29

reflect the same gas mileage information for a Civic in city drive. Our solutiGuth cases
is to convert all extracted answers into the same unit and combine ansaeesdtsimilar in
value. In our implementation, we consider answers that are within 5% ditferm values as
similar answers.

For queries with textual answers, we are dealing with problems of finding sistiiags.
Existing work [42, 30, 63] has been proposed using cosine similaritgsoaffectively handle
spelling errors and rearrangement of words when comparing strifgskdy idea is to obtain
the tf-idf score vector for each string and compute cosine similarity score for esictofp
strings. In particular, Koudas et al. leverage the semantic similarity if suchniation is
available. In our corroboration system, we apply thbased cosine similarity method to
detect similar answers. The cosine similarity score of two answers is comysitepthe word
frequency vector of the two answers. Given two tokenized answerfirst need to obtain the
word frequency vectors for the two answé¥g andWWs, the cosine score is then computed as
the dot product of the two vectors divided by the square root of thdymtoof the vector dot
products of each score vector with itself. For example, assuming we kaaeted answers
“John Glenn” and “John H. Glenn” for our Example 2 query, the wosedjfrency vectorl’y
and W, for the two answers are (1, 0, 1) and (1, 1, 1). The cosine similarityedsdherefore
computed as the dot productidf; andWWs, (which is 2) divided by the square root of product of
each vector with itself (which is/2 - v/3). The cosine similarity score (0.82) is then compared
against a user-defined threshold to test if the two strings can be classifsguilar answers. In
our implementation, we use the threshold of 0.8 and we recognize “John"GledriJohn H.

Glenn” as similar answers.

4.3 Scoring Answers

Once we have extracted answers from the web pages returned byatbh segine, we need
to identify the best answer to the query. For this purpose, we need tm a&ssiges to each ex-
tracted answer. We then aggregate the score of similar answers to idemtigsthcorroborative

answer.

2\We did not use thédlf score since the document corpus for each query is limited by the nusfidlecuments
returned for each query.

30

In the absence of any knowledge regarding the trustworthiness of tineesp it is difficult
to infer the correctness of the answers. As a result, an iterative aratidn (Equation 3.1)
needs to be employed to identify the correct answer. However, sincevievaraging the web
results from a search engine as the information sources, we are ableeabthedquality from
which the answers are extracted.

In order to assign a score to each extracted answer, we first assigchtaveb page a score
that represents the likelihood that an answer found within the page is tteetanswer. Then,
for each answer found within a web page, we assign a score thasegpsethe probability
that this answer is the correct answer within the page. Finally, scorémitdusanswers are
aggregated to provide a corroborative answer score.

We compute the score of an answfeextracted from a given web pages the product of

the score of the page (s)) and the score of the answer within the pagéf(s)).

o(fs) =0o(s)-o(fls) (4.1)

In the rest of this section, we detail our scoring approach. We exptweral scoring
components that can be used in conjunction, or separately. We will digmisapact of each
of the components, and evaluate them experimentally in Section 4.5.2. In Sé@&iénwe
propose a scoring method of individual web pages. We then propdsgdees to estimate the
score of an answers within a page in Section 4.3.2. The corroboratikeafcan answer among
all search engine query result pages, and taking into account eacin pfoposed component,

is given in Section 4.3.3.

4.3.1 Scoring Web Pages

The score of an answer depends on the quality of the web page fronh Wigcanswer is
extracted. We consider two factors in measuring the quality of a web ptdgeselevance of

the page (Section 4.3.1), and the originality of the page (Section 4.3.1).

31

8100000 B

A * General Queries +
Zipf distribution (§=1.39) -

2700000 | |

900000 |- p

Number of Clicks

300000 4

T T e e s
Click Position
Figure 4.2: The log-log plot for the Number of user clicks as a function efaibsition of the
page in the search engine query result

Web Page Relevance

Search engines rank web pages according to (among other factorg)av@nce between the
page and the query keywords. An intuitive method for web page scorit@ylise the page
rank score of web pages as given by the search engine. Unfotuttegesearch engine does
not provide its internal score along with the ranking. Thiglf score has been widely used in
the information retrieval community to compute the relevance of a document \sjplectto a
keyword query, but our system is built on top of a search engine;cdmsvge do not have access
to indexes of the whole web. Therefore we use the individual rankebfpages in the search
engine result list as a measure of relevance.

As we traverse the search engine query results, the quality of the matdases. We con-
sider that a page ranked highly by the search engine is more likely to prgeatkinformation
than a page with a lower rank. Therefore an answer found within a high&ed page has a
higher probability than one found within the lower ranked page to be theaoanswer. To
model this decrease of the relevance of web pages as we go down tttie segine result we
use the Zipf's Law distribution function [83], commonly used in Natural Lizage Processing
to model the distribution of words in languages where very common words Yey high

frequencies.

32

Previous work [8] refers to the commonness of Zipf-like distribution in weleas patterns.
For instance, there is evidence that the popularity of web pages follows diZtribution. In
this work, we are interested in the importance of web pages as we go dogarch £ngine
query results. We investigated the click patterns of a query log of abomillibn MSN
gueries. Figure 4.2 shows the log-log plot for the distribution of user cligfg®nding on the
position of the page in the search engine query result, for the first lGgesd for all queries
in the log. We only report on the first 10 results here since the numbeeofclisks shows a
sharp decrease after the tenth result (and similarly after the twentieth, thigiethas search
engines return results 10 at a time and users are reluctant to go beydingttbage of result.

We used curve-fitting techniquésased on a linear regression in the log-log plot to ap-
proximate the distribution of the user clicks per position. Our results showttealistribution
can be approximated to a power law distribution, with an exponent paramgtdrl.39, and
constant close to 1.

These results show that the Zipf distribution is adequate to approximate treadedn

page relevance. We then define the relevance score of eczage

US:M 4.2
NI 9

whereN is the total number of pages considered (i.e., the estimated size of the segireh e
query result), ana(p) is the rank of page in the search engine query result. We normalize
the score so that the sum of all page scores are summed to 1.

Thee exponent parameter has an impact on the slope of the score distributioantifies
how quickly the quality of answers degrades when we traverse thenseragine result list. In
our system, varying has an impact on both the quality of answers and the number of pages

retrieved to identify the best answer. We explore the effeetexfperimentally in Section 4.5.2.

Web Page Originality

In addition to the web page relevance, we take into account the originalitye giaes to re-

duce the effect of similar information coming from sources in the same domasgurces

Shttp://ww. fast.u-psud.fr/ezyfit/

33

that seem to be mirror (or copy-paste) information from each other.elp@ges tend to show
some strong correlation as they reflect information coming from the sameoelal-sources.
As an example, many web pages directly copy material from high-profilespalces such
as Wikipedia Errors in the original web site are therefore propagated to indepemdsn
pages. Our motivation for using corroboration is to confirm evidenaa feveral autonomous
sources. Considering sources that mirror each other as completehatgsepaurces for cor-
roboration would then artificially increase the weight of the original realldveources (such
as Wikipedig, and would open the door to some possible malignant behavior from ¢onten
providers in order to boost the ranking of a given answer. Howeliscarding the redundant
source is not a good option either, as its existence leads some more erémldrecinformation,
although not as much as if it were a source containing original information.

Since we aim at corroborating answers from different web pagegdicdted pages which
tend to have similar content should not have as much weight in the cortmoes pages
that contain original content. However, they should still be taken into at@sicorroborative
evidence, as there is a possibility they reflect similar information coming frompigradent
sources. Our solution is to dampen the score of a page each time a duplicatgbadted. Our
implementation detects suspected copy-paste as duplicated text arouedsari3gtecting near
duplicate web pages is a non-trivial task and has been the focus ofeabdady of research.
Often, two pages sharing the same core content may be classified asnidelefpgources us-
ing byte-wise comparison due to different framing, advertisements, angati@nal banners.
Among those existing works, the SpotSigs technique proposed in [65ptobe an effective
way to detect such near duplicate pages. The key idea in SpotSigs tezisiqicreate @o-
bustdocument signature with a natural ability to filter out noisy components of \&gb$ In
our corroboration system, we implemented the SpotSigs technique to detgliasip pages.
Our current implementation is Boolean, a page is a copy or it is not, but we easily extend
our system to use more complex copy detection tools such as [9, 6] to ideifféfydt degrees
of duplication, and use this information to provide a finer granularity of wasdpeporiginality
scores.

We introduce a parametgrto quantify the redundancy of duplicated pages. When travers-

ing a search engine result list, we check whether each page containslcantent, or whether

34

it is similar to a page with higher rank. If for a pagehere existsi,, (s) higher-ranked pages
sharing the same domain adds) higher-ranked pages generated from copy/paste informa-

tion, we adjust the relevance of the page as follows:

_ V) ydm(s)+des)
o) = S (1) (4.3

The first occurrence of a page from any given domain (or from daggi web pages)
will therefore be assigned its full score, only subsequent similar padkesawve their scores
dampened. This ensures that we are taking into account all originatiafam, and limits the

weight of redundant information in the scoring.

4.3.2 Scoring Answers within Web Pages

It is common for several, possibly different, answers to be extracted &single web page.
This can be due to some error or uncertainty in the answer extractionsgrameto the fact
that the web page does contain several answers. To identify the lsestrawe are then faced
with the challenge of scoring these multiple answers. If only one anguseextracted from a
pagee, it gets a score of 1 for that page((f|s) = 1). A simple way to score multiple answers
stemming from the same page would be to assign each of them a sdgi¥ @f), whereN (s)

is the number of answers extracted from pageOne problem of the above method is that
all the answers extracted from the same page are rarely equally helgu$wering queries.
Consider the following text from which we can extract two answers fraingle web page for

the query in Example 2 “first orbited the earth”.

EXAMPLE 3. “Now you could have asked, even at the time, what was so special, so
magical, about John Glenmsince a year before him a Russian, one Yuri Gagasias the first

human to orbit the Earth in space and four months after him another Russlanld times”.

By applying the answer extraction techniques (Section 4.2) we could er’tra@nswers,
namely, “Yuri Gagarin” and “John Glenn”, which are underlined in theweexample. Unfor-
tunately, due to the limitation of the simple information extraction techniques we Bg, its
is difficult to figure out which one the correct answer is to the query.0lution is to consider

the prominenceof each answer extracted within the page. We defingtbminenceM (f, s)

35

of an answerf from pagee as the inverse of the distandés(f) between this answer and the

extraction ruleice., “the first human to orbit the earth” in this case).

_ 1

We computelis(f) as the number of tokens plus 1 between the extraction rule and answer

M(f,s) (4.4)

f, with a minimum distance of 1. As mentioned in Section 4.2, it is possible for multiple
answers to be extracted via an extraction rule. The closer an answer & édgtthction rule,

the more prominent it should be to answer the query. This approach id baskee assumption
that in most cases, relevant answers will be close to the extraction rule weth@ages. We
compute the score of the answer within the page as its normalized prominenfor.eXample

3, we havedis("Yuri Gagarin”) = 2 anddis("John Glenn’) = 12. Therefore the prominence
scores for the two answers are 0.86 and 0.14 respectively. Formaltyariswerf is extracted

from pagee out of N (s) answers, we define the score of ansy¢o be as follows:

M(f,s)
SN M (f;,)

Our simple method to compute prominence scores leads to improvements in analitgr q

o(fls) = (45)

(Section 4.5.2). Itis possible that the use of more refined information éwindgechniques [50,
22] that return answers with an associated confidence score fronm wigicould derive our
prominence score would result in further improvements.

Finally, some web pages may provide several answers; as for ExampéeCaith com
web site gives two answers for our query: 30 mpg (city), and 40 mpg\{fEgh Our current
implementation penalizes answers that are not unique in their sourcesnéncsses, as in the
city/highway example, multiple answers in a given web page may be due tcediffeontext.
We plan to add context to our scoring approach in the future, possibblirga@ur techniques

to output different answers for different contexts.

4.3.3 Corroborating Answers

Taking into account the scores of web pages as well as the scoreswdrarwithin web pages,

we can assign the score of an ansydrom a page: as:

36

1/r(s)¢ . s M(f,s
olf,s) =]/\fi(k (1 - 5)dm(‘)+dc(). N(S)(—) (4.6)
Zz‘:l 1/Z Zizl M(fias)

The frequencyof the answers in the set of pages is considered in our corroboration ap
proach. Intuitively, an answer that appears in 10 pages is more likely ttoebeprrect answer
than an answer that appears in one page, unless those 10 pageerijdoescores. Formally,
if o(f,s;) is the score of answef from pages;, the corroborative score of answgiis given
by:

n

o(f) = o(f,s) 4.7)

=1
wheren is the number of pages we consider from the search engine query result.

4.4 Retrieving Pages

Finding and computing the scores of answers are not the only challergasewhen corrob-
orating answers from search engine query results; another chaltetogeelect the set of result
pages from which we extract information. As we go from higher-rat&dower-ranked pages,
we have to decide how deep we should go in the search engine quelty Aesiessing all the
pages that match a given web search query to retrieve and comparersngwuld obviously
be impractical and inefficient. In addition, lower-ranked pages, whickvdhtle correlation
with the query tend to give “noise” instead of useful information. Work gnit@juery process-
ing algorithms have focused on adaptively reducing the amount of miogedone by query
evaluation techniques by ignoring data that would not be useful to idenéfipdist answers to
a query [25, 47]. However, these techniques cannot be directly dpplieur scenario as they
rely on query models where the score upper bounds of query reseligrawn, and use this
information during query processing. In contrast, in our corrobagatiodel, the score of an
answer can potentially grow every time a new page is retrieved.

We adapt ideas from work on tdpguery processing to the answer corroboration problem
by adaptively selecting a subset of search results from which to ednaeters, based on the
current scores of the retrieved answers. As was suggested inWélfpcus on estimating

the maximum possible score increase that an answer could receive &ges fhat have not

37

been retrieved, in the absence of score upper bound information. Siligcime process web
pages in the search engine result order, and stop retrieving newwhgrghe score of newly
discovered answers would not be high enough to impact the overadbaorative answer score
ranking.

We use our page relevance score (Section 4.3.1) to decide when to steping new
pages from the search engine result. As we traverse the search eggiiftdist, the relevance
score of new pages we encounter decreases following a Zipf distriblfienstop retrieving
new pages when the sum of the relevance scores of the unretrievesiipago small for any
answer extracted from new pages to cause any significant changedortbborative answer
list.

The maximum possible score increase is defined as the sum of all scanesesi pages.

Based on Equation 4.2, this scarg, is defined as:

T

Inaz =1 — ZU(Si) (48)

=1
wherer is the rank of the last retrieved page, anyds the page retrieved at rark The value

of the maximum possible score incredsg,, constantly decreases as we traverse the search
engine query result.

During corroboration processing, we maintain a threshold vari&bighich represents the
value required to cause significant changes to the current result listu@ent implementation
considerd to be the current difference in score between the top-1 answer angtBeattswer.
That is, we stop retrieving new pages when the current top-1 answeotehange, i.e., when
T > Inaz-

Although we dynamically retrieve pages and stop as soon as the remainigtgieved
pages will not make significant changes to the current answer list, wetithayd up retrieving
a large number of pages. This is due to our Zipf's Law model where a tamger of lower-
ranked pages may add up to a high score, as shown in Figure 4.3, whigh #fe decreasing
value of I/, as we traverse the search engine result, up to page 50, for varioes dliy
(the estimated total number of pages in the query result).

To address this, we limit the maximum number of pages our system will retriéng limit

38

Probability Sum (N=1k) ——
a Probability Sum (N=10k) ---%-
2 Probabilty Sum (N=100k) &
X

Figure 4.3: Decrease in value by, as we traverse the search engine query result.
can be user-defined. By limiting the maximum number of pages retrieved,engraoring a
subset of the web pages as well as the corresponding score inttrepseay bring to the cor-
roborated answer scores. This unused potential score increasedddpoth on the maximum
number of pages retrieved, and on the expected total number of pagjderen (as estimated
by the search engine query result size). The normalization factor cftegus.2 is adjusted to

consider the maximum number of pageaz Page, as follows:

_ 1r(s)f
o(s) = S (4.9)

We use deterministic bound information to decide when to stop retrieving ness paa
interesting direction to investigate would be the use of probabilistic bounchiraftton instead,

in the manner of [66]. We are planning to investigate this approach in futorie. w

45 Evaluation

In this section, we present our in-depth experimental evaluation of etohmration approach
for web searches. We describe our experimental setup in Section 4extlort4.5.2 focuses
on gueries taken from the TREC Question Answering Track and ddtigelest setting of,

maxPageandg. Results for real-user queries from a MSN query log are given in Seétm3.

45.1 Setup

Our system is implemented using Java SDK 1.5 and built on top of the MSN SgBi¢hWwe

use MSN search as our backbone search engine. We ran our expesim@achines running

39

Fedora 6 with 4 2.8G CPU and 2G RAM.

Evaluation Queries

We reported preliminary experiment results on numerical queries in [flthi$ paper, we
extend our experimental evaluation to a broader range of queries, inglgaénies with textual
answers. We consider queries from two sources: the TREC Questmmehimg Track and a
MSN Live Search query log that contains real-user queries that wateaged by MSN in the
Spring of 2006.

TREC Question Answering Track: We extracted 42 numerical queries and 100 factoid queries
from the TREC Question Answering Tracks from TREC-8 (1999) to TRBO6. We use key-
words to extract numericak(g, “length of”, “height of”) and factoid queriese(g, “who”,
“where”) from the TREC QA track. Example numerical queries includeiartteter of the
earth”, “average body temperature”, “length of Columbia River”, “Inigf the tallest red-
wood”. Example factoid queries include: “Who is the Speaker of the LedaParliament”,
“Who is the manager of Manchester United”, “Where is Merrill Lynch repeattered”, “Where
was Hitchcock born”.

We use the TREC original answers to evaluate the quality of our corr@gbemswers.
Note however that we are running our queries on top of a web seagafecaind therefore use
the web as a data corpus rather than the TREC documents. Note also fof R&@Gequeries,
more than one answers are recognized as the correct answer g§rgrlexfor the query “Where
did Jay-Z grow up”, both “brooklyn” and “New York” are correctamers according to TREC
judgement). For such queries, we evaluate the corroborated answethwittighest ranked
correct answer.

MSN Live Search Query Log: We selected 38 numerical queries and 100 factoid queries
from the MSN search log using similar patterns as the TREC QA track. We riyaipick
gueries to filter out non-factoid queries (For example, “Who wants to be a ndllie”) and

only considered queries which yielded at least one user click on thehseiagine query result.

Evaluation Metrics

We report on the following evaluation measures.

40

e Percentage of Queries Correctly Answered (PerCorrect)For the TREC dataset, we
compare our top corroborated answers with the original TREC answéslerive the
percentage of queries with correct answers at different rank oé@woborated answer

list (top-1 to top-5).

e Mean Reciprocal Rank (MRR): The mean reciprocal rank of the first correct answer
(MRR) is generally used for evaluating the TREC Question AnsweringsTa#kthe
guery does not have a correct answer in our top-5 corroboratydeatist, its reciprocal

rank is set to 0. We report the MRR values for experiments over the TRIEEGSS.

e Similarity between User Clicks and Corroborated Answer: Unlike TREC queries,
queries extracted from the MSN query log do not come with an original @ndw eval-
uate the quality of our corroborated answers, we therefore compges plaat generate

top corroborated answers with user clicks.

e Time Cost: We report the time needed to return the corroborated answer list. This time
cost is divided into retrieval time, which is the time spent accessing the weds pagd
corroboration time, which is the time spent by our system for answer extnaatid

scoring.

e Number of Pages RetrievedAs discussed in Section 4.4, we do not retrieve every page
from the search result but dynamically stop when we have identified th& toprobo-

rated answer. We report on the actual number of web pages needsthoan answer.

45.2 TREC Queries

We now report our results on queries from the TREC QA Track. In tlusasg we first discuss
the quality of our answers (Section 4.5.2). In particular, we show thefibeheach individual
scoring components on the answer quality (Section 4.5.2). We then comparerthrmance
between our approach and previous question answering techniqeeE®(s4.5.2). We will
show the number of web pages needed to return an answer (Sectiondn8l.#)e time cost of

our techniques (Section 4.5.2).

41

Answer Quality

0.9
0.8 1
0.7

06 | Otop -
Btop -
05 otop -

B|top -
0.4

PerCorrect
g B W N P

Otop -

0.3 4

0.2

0.1

Figure 4.4: Impact of Parameteion PerCorrect for TREC queries fGORROB

0.9
0.8 1

0.7 -

06 - Otop-1
Btop-2
0.5 Otop-3

Wtop-4
0.4

PerCorrect

Otop-5

0.3 -

0.2

0.1 -+

e =0.6 e =08 e=10 e=12 e =15 e=2.0

Figure 4.5: Impact of Parameteion PerCorrect for numerical queries f00RROB

We first evaluate the quality of our corroborated answers by analyzangdicentage of
correct answers (compared to the TREC-supplied original answarshé 142 queries we
extracted from TREC. Note that as shown in Equation 4.6 there are threm@rs which
may affect the answer score; 5 andmaxzPage. In the following we evaluate the effect of

each of these parameters.

42

0.9 -
0.8
0.7

06 - Otop -
mtop -
0.5 Otop -
mtop -

04 Otop -

PerCorrect
a b W NP

0.3 -

0.2

0.1

Figure 4.6: Impact of Parameteion PerCorrect for factoid queries f6ORROB

We first fix 8 to 0.25 andnax Page to 50 and test the effect ef which is the parameter in
the Zipf’s distribution. Figure 4.4 shows the PerCorrect values for quultto top-5 corrobo-
rated answers for different values of th@arameter of our Zipf corroboration scoring method
(CORROB) of Section 4.3. Overall, an value of 1 provides the best results at top-1. Interest-
ingly, the distribution of user click per result position for the subset of tl&N\Wjueries that
only considers queries expecting a numerical answer has a slope wiiichds steep as the
one for general queries (Figure 4.2) as these queries yield more eliblcd) end up increasing
the probability of clicks for positions higher than 1. Using the same curvegfitdohniques as
we did in Section 4.3.1 we can approximate the click distribution of these numgtiegy to
a power law distribution with an exponent parametgraf 1.01 (Figure 4.7(a)). In addition,
the curve-fitting yields an exponent parameter of 0.92 for the click distributfdhe factoid
gueries (Figure 4.7(b)), which have the best PerCorrect and MRRwavith ae value of 0.8
and 1.0. Are value of 1.0 yields a slightly better PerCorrect value at top-2 answetightlg
worse PerCorrect value at top-5 answer compared witlvalue of 0.8. Both of these results
validate our choice of Zipf distribution to model the originality of pages.

As we increase, the quality of our corroborated answers drops since top searcheengin
result pages are given the most relevance weight, and fewer pagesaidered in the corrob-

oration. Inversely, for lower values ef many pages are considered for corroboration, but their

43

20000 ——

Numerical I Queries - L N Factoid Queries +]
fetr 3000 Zipt distribution (5=.92) -------

o 2000

10000

1000 |
5000

Number of Clicks
Number of Clicks

g
8

2500

5 6 7 8 910 1 5 6 7 8 910

. s s . s 4
Click Position Click Position

(@) (b)

Figure 4.7: The log-log plot for the number of user clicks as a function@pisition of the
page in the search engine result

relevance scores tend to be similar and answers from high-rankezh sgagine query result
pages are not given more weight.
Figure 4.5 and 4.6 plot the PerCorrect values for numerical and faateides respectively.

As shown, both results are consistent with the overall PerCorrectszalue

Combined| Numerical | Factoid

CORROB (€= 0.6)| 0.752 0.645 | 0.797
CORROB (€=0.8)| 0.765 0.651 | 0.813
CORROB (e = 1.0)| 0.767 0.657 | 0.813
CORROB (e = 1.2)| 0.704 0.615 | 0.741

CORROB (e =1.5)| 0.664 0.586 0.697
CORROB (e =2.0)| 0.610 0.533 0.642

Table 4.2: Answer Quality for TREC queries

Table 4.2 reports the MRR value for t@®RROB method presented in this paper. We list
the MRR values for all 142 TREC queries and for the two separate typggeasfes in each
of the three columns. We obtain a MRR score of 0.767 forGORROB method with are
value of 1.0. This means that on average, the correct TREC answemid faithin the 2 best
corroborated answers. For comparison, the web question answesitggrspresented in [23]
has a best MRR score of 0.507; however they report results on aediffeubset of TREC
gueries that contains a broad variety of queries, which are possildgh@aranswer. In the rest
of our experiments, we will use = 1 as our default parameter value.

Another factor that affects the performance of @BRROB method (Equation 4.3) is the

44

09 -
0.8 -
0.7

0.6 | W top -

top -
m top -

Percorrect

W top -

U oA W N R

W top -

Figure 4.8: Impact off on PerCorrect for TREC queries

5 | MRR
0 |0.766
0.25] 0.767
050 0.772
0.75] 0.756
1.0 | 0.752

Table 4.3: Impact of on MRR for TREC queries

parametefs that we use to quantify the decrease of duplicate page score. Figuriot 8he
PerCorrect values for the top-1 to top-5 corroborated answersTarld 4.3 shows the MRR
values of theCORROB method with ag value of 0, 0.25, 0.5, 0.75 and 1 and with a fixed
value of 1.0 andnaxz Page value of 50. We discussed in Section 4.3.1 that duplicated pages
should not have as much weight as page that contains original informatiatilbneed to be
taken into consideration. The results shown in Figure 4.8 and Table 4.3manfr claim. As
shown, both PerCorrect and MRR values show improvements comparetheitlase that no
originality is consideredd = 0). However, if we completely remove the effect of duplicated
pages by setting = 1, the answer quality is not as good as the case for which no originality is
considered. Overall, theORROB method has the best answer quality when wessel0.5. In
the following experiment, we set 0.5 as the default valuestor

As discussed in Section 4.4, limiting the number of pages retrieved usingdhé@age

parameter may speed up query evaluation, but could affect answidy qisefewer web pages

45

0.9
0.8 -
0.7

0.6 Otop -

Btop -
0.5 DOtop -

s mtop -
0.4 - Otop -

aRWN R

PerCorrect

0.3 -

0.2

0.1

20 30 40 50 60 70 80 920

Figure 4.9: Impact ofnax Page on PerCorrect for TREC queries

will be used for corroboration. Figure 4.9 shows the impact of diffeneit Page value (from

20 to 90) on the percentage of correct answers. The answer quatitases as.ax Page goes
from 20 to 50, but remains the same when more pages are consideregekssel, considering
too few pages for corroboration decreases answer quality. Ouoagipretrieves fewer than
50 pages (on average 34 pagesderl, shown in Figure 4.12) to return a corroborated answer,
therefore increasingnax Page above 50 has little impact on the quality of the corroborated
answers. In addition, high values ofaxz Page lead to retrieving more pages, resulting in
higher query processing times. Therefore, in the rest of our expetsmer set the value of
maxPage 10 50.

Our CORROB technique finds the correct answers within the top-5 corroborateceasgor
85.2% of the 142 queries we extracted from TREC. For 21 of the TREGeagp,ieve were not
able to identify the correct answer within the top-5 corroborated ansvaers-depth analysis
of these 21 queries shows that 4 of them are multi-answer queries (eidth ‘@f Atlantic
Ocean”) for which our top-5 corroborated answer list contain at leastcorrect answer (but
not the TREC original answer); we were not able to extract web assiwefiO of the queries
(e.g., “the first director of the World Food Program”); we answeredriremtly 5 queries; and
finally, 2 of the queries have wrong (or possibly outdated) answers WifREEC: “Lifetime of

hermit crabs,” which has a TREC answer of 70 years, and a comsuteat of 30 years, and

46

09 -

mtop-1
top-2
W top-3

PerCorrect

mtop-4
mtop-5

BASE ORIG PRO PRO+ORIG ZIPF ZIPF+ORIG ZIPF+PRO CORROB

Figure 4.10: Impact of Scoring Components of TREC Queries

“highest recorded temperature in San Antonio, TX,” with a TREC ansi&doF and a correct
answer of 111F. Out of the 142 queries, 22 of them were time sensitiver(§tance, “who is
the manager of Manchester United”). However, at the time of our expetémdre correct

current answers were the same as the ones provided by the TREG.corpu

Impact of Scoring Components

In this section, we show the benefit of each individual scoring compomenfgesent in Sec-
tion 4.3. In the following comparison, we denote the basdBASE as the scoring approach
in which the score of pages are the same, and the score of each andveesdere of the page
divided by the number of answers within the page. WedldeF to denote the method in which
only Zipf's page relevance is considered (Section 4.3.1). WeOR&5to denote the baseline
approach with the addition of web page originality (Section 4.3.1). WePt&&to denote the
baseline approach with the addition of answer prominence within web pagtd$ 4.3.2).
The CORROB approach, which combined PF, ORI GandPRO, refers to the comprehensive
scoring approach, as described in Equation 4.6.

Figure 4.10 shows the PerCorrect values for our top-1 to top-5 coradd answers, and
Table 4.4 reports the MRR values for different combinations of the scadngponents. In

most cases, the answer quality improves as we incorporate each of tirggsoemponent,

47

the ZI PF component provides the best improvement. The only exception is whengatthéin
ORI G component, the PerCorrect value at top-1 slightly decreases, but cainbith ZI PF
components, the originality provides a small increase in answer qualityCORBOB scoring
approach, which combines all three components, has the best result, \MRR value of

0.772, outperforming thBASE case by 6.%.

Combined| Numerical | Factoid
BASE 0.722 0.602 0.773
ORI G 0.717 0.590 0.770
PRO 0.727 0.610 0.776
ORI G+PRO 0.726 0.612 0.775
Zl PF 0.757 0.624 0.812
Z| PF+ORI G 0.760 0.625 0.817
Z| PF+PRO 0.766 0.657 0.812
CORRCB 0.772 0.657 0.820

Table 4.4: Answer Quality of Scoring Components

Comparison with Existing Question Answering Techniques

In this section, we compare our approach with existing question answecdngideies. Previ-
ous works in question answering have been using answer frequeticg avidence of answer
quality [43, 23, 78]. Summarizing previous work as frequency-bapedoach is a reasonable
simplification. We could not exactly reproduce the actual question angyverahniques of
these works because we do not have access to the detail of their implenrentstich as their
information extraction and query rewriting techniques. Our corroboratpproach could be
used in conjunction with these tools to further improve answer quality.

In a frequency based approach, the score of an answer is a funéttoe frequency of
the answer among all the pages. In particular, we implement two types afefieg based
approaches: page-frequencly- FREQ) and answer-frequendyA- FREQ) . In P- FREQ, the
score of an answer is based on the number of pages from which thigrawsw extracted. In
A- FREQ, the score of an answer is based on the number of time the answer waseskfram
all pages.

In addition, we also implementéldOP- PAGE approach, in which we only extract answers

48

0.9 -
0.8 -
0.7 -

06 1 Htop-1

05 | top-2
mtop-3

PerCorrect

0.4 - Htop-4

mtop-5
0.3
0.2

0.1 -

PFREQ AFREQ TOP PAGE BASE ALPHA CORROB

Figure 4.11: PerCorrect Comparison with Existing Question Answeringrigaes

from the first page and rank answers based on their frequencREeH. We tested the perfor-
mance ofTOP- PAGE simply based on the observation that most users only look into the first

page returned from the search engine.

MRR
P- FREQ 0.663
A- FREQ 0.664
TOP- PAGE 0.360
BASE 0.722
ALPHA(a=0. 05) | 0.722
CORRCB 0.772

Table 4.5: MRR Comparison with Existing Question Answering Techniques

Figure 4.11 and Table 4.5 shows the PerCorrect and MRR values of th&rdgueency
based approaches, the&P- PAGE approach, th8ASE approach, thé&L PHA method [71], and
our CORROB approach. As showrR- FREQ andA- FREQ achieve a PerCorrect value of 0.57
at the top-1 corroborated answer and 0.77 at top-5 corroborateeendn additionP- FREQ
andA- FREQhave MRR values of 0.663 and 0.664 respectively, both of which are sritwie
the BASE approach, showing that even a simple corroboration-based approgugrforms the
frequency-based technigues dramatically. We compute the statistical sigodiof our results

using the one-tailed Wilcoxon Signed-Rank test [69]. The different¢edsn CORROB and

49

45 -
40
35 -
30 -
25
20
15 -

10 -

Number of Pages Retrieved

0 — T
ALPHA e=0.6 e=0.8 e=1.0 e=1.2 e=15 e=2.0

Figure 4.12: Average Number of Pages Retrieved for TREC Queries

A- FREQand betwee®ORROB andP- FREQare both statistically significant withmvalueof
0.003. These results confirm that a corroboration-based approgmrforms frequency-based
approaches. In addition, the advantage betweeC@RROB method and thBASE approach
is statistically significant with p-valueof 0.034. TheTOP- PACE approach, performs surpris-
ingly bad compared with all other techniques, with an MRR value of 0.36. Thjgests that
looking into only the first page from the search engine result is not mirffifor the users to
get the correct answer in most cases.

We proposed the corroborativil PHA method in [71]. ALPHA uses a simpler scoring
strategy for the page relevance, dropping the score of ajphgsed on a parameter. s(p) =
(1—a) 1 wheres(p) is the score of pageandr(p) is the rank of the page as returned from
the search engine. Our neWORROB strategy outperformaLPHA, with a p-valueof 0.011.
By using a Zipf’s law to model the decrease in page relevanceZ@RROB method is able to

return higher quality answers th&h PHA.

Number of Pages Retrieved

We dynamically retrieve pages as we corroborate answers (SectionHgtixe 4.12 shows

the average number of pages retrieved when answering queriestedtfiamm TREC for the

50

ALPHA method and th€ORROB technique with the parameter ranging from 0.6 to 2.0. In-
creasing the value efin our CORROB method gives more weight to pages ranked higher in the
search engine query result therefore reducing the number of pagdgsato identify the top
corroborated answers. In contrast, &ePHA method has the highest average number of page

retrieved except foe = 0.6.

Time Cost

W Retrieval ™ Extraction Corroboration

25 I I I I
27 I
e =06 e=08 e=1.0 e=12 e=15 e=2.0

ALPHA

Time Cost (secs)

.
15}

w

o

Figure 4.13: Time Cost of different scoring strategies for TREC queries

The query evaluation time for thPHA and CORROB corroboration techniques is shown
in Figure 4.13. In particular, we divide the time cost into three parts: web pgeval, answer
extraction and answer corroboration. The first part is the time cosefdeving cached web
pages from the search engine server, and the second and third th&rtiirme cost for answer
extraction and corroboration, respectively. As expected, baseaauthber of pages retrieved
(Figure 4.12), th€€ORROB method outperform8L PHA method for all values of bute = 0.6.
The CORROB method takes a bit more time th&h PHA with an e value of 0.6 due to more
pages being retrieved.

While the overall query answering cost can be high, most of the time is epaetrieving

pages from the web. Our query evaluation time is reasonable (3 seaorafssiver extraction

51

and 0.4 second for corroboration on average for each query)serdmay find it acceptable
to wait for corroborated answers if it saves them the hassle of manuabkicty the pages
themselves. In addition, our implementation does not have direct accesssesattoh engine
indexes and cache but must access these through an interface whichwvireb retrieval costs.
If our techniques were implemented within a search engine, they would provicth faster

query response time.

4.5.3 MSN Queries

We now report on experimental results over the queries extracted fref8N Live Search
query log. We set the default values @f 3, maxzPage to 1, 0.5, 50 respectively as they

provided the best quality results for a reasonable time cost over TRE{2guUe

Comparison with User Clicks

We do not have a list of correct answers to the queries we extractadfieMSN Live Search
query log. To evaluate the quality of our answers, we compare user alitkpages that we
used to generate the top corroborated answers. The internet beiamidyy the time we
performed our experiments, much of the information in the log was obsoletsy piges on
which users clicked were not available in the search engine (SE) gesult anymore. Among
the 331 pages that appeared in user clicks, only 93 pages were still ieat@£ngine result
when we run the experiment. In addition, the position of these pages in ttoh sggyine result
has changed greatly: while they had high positions when the query wasliésith average
rank reverse of 0.5), they were ranked much lower in the currentiseamgine result (with
average rank reverse of 0.081). Overall, out of 138 queries in the Nl&ry set, for 81 of
them the user clicks are no longer in the current search engine result.

Despite these limitations, we found that our corroborated answers ¢emeth user clicks.
Figure 4.14 shows, for each of the 57 queries that have at least enelitk in the current
search engine result, the number of user clicks, the number of congisgagpages that were
returned in the search engine query result at the time of our experimeatsythber of such
pages that contained answers to the query, and the number of pagestaitied the top cor-

roborated answer. As shown, when a page on which the user clickezhesoin the search

O B N W B U O N ®

52

W number of user clicks number of pages in SE result M number of pages in answers B number of pages in top-1 answer

bt ik || “ | il ‘ ‘I bl

1 2 3 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Query

Figure 4.14: Comparison between User Clicks and Corroborative AsfaeMSN queries

engine query result, it contains one of the top-5 corroborated an$are4% of the queries,
and the top-1 answer for 42%. The results show that the corroborgifmmoach is good at
identifying answers that are of interest to the user, as many user clickdate with top cor-
roborated answers. We looked into the remaining 22 queries for which ihero overlap
between the user clicks and the pages we use to generate top corrolzosuesrs. We found
that for 14 of them we could not extract answers from these user cfiwkS of them our cor-
roboration terminated before reaching these user clicks because theeyanked much lower
by the current search engine. For only 3 of these queries, ourbmyated answers do not
include answers extracted from user clicks. We believe that with a moretreearch log, our

corroboration method would show better similarity with the user clicks.

Number of Pages Retrieved

We also tested the number of pages retrieved for each MSN query. @obotation tech-
niques dynamically retrieve web pages. On average, we retrieve 36ek fageach MSN
query, which is lower that our 58vax Page limit. The retrieval stopped dynamically before
the max Page value for 88% of the queries tested; in some cases fewer than 10 pages we

enough to identify the best corroborated answetr.

53

Time Cost

Figure 4.15, 4.16 and 4.17 shows the time cost for MSN queries that hieasabne click in
the current SE result and that have no clicks in the current SE resspgctvely (In order to
display properly, we break the figure for the queries that have no dlicke current SE result
into two subfigures). As with TREC queries, the retrieving time is the dominatdrfin the
total time cost.

We also compare this time cost with the time the user spent on browsing the weh pag
The MSN query log comes with an accurate timestamp for both the time when thewgaer
issued by the user and the time when the user clicked on the web page. \Wateathe
user time cost as the duration between the time the query was issued and the ttimdast
user click. Of course, this is an approximation of the time the user took to firahawer
to the query as it does not take into account the time the user spent loadingaating the
corresponding pages nor does it guarantees that the user foumdwaarawithin the clicked
pages. On average, the user time cost (107.3 seconds) is about 4.1 tineethamothe cost
of our corroboration approach (26.4 seconds). This indicates thatootoboration method is
efficient in identifying the answers and can save users a great ambtimteo Figure 4.15,
4.16 and 4.17 show that we do have a few queries for which our coatbotechniques take
longer to return answers than the user time ceg,(Query 38, 39 in Figure 4.15; Query 21,
35 in Figure 4.16 and Query 41, 70, 76 in Figure 4.17). For these qumiuresorroboration
needs to retrieve more pages while the corresponding number of usearisligtatively small.
On average, the number of pages retrieved for MSN queries set is 86.tha number of
user clicks for each query is 2.4. For the queries that our corroborishniques take longer
than the user time cost, the average number of pages retrieved is 38.3 andrdoge number
of user clicks is 1.7. Typically, the queries that require expensiveboration times are the
ones for which multiple correct answers exist. For instance, for theyqudro invented the
television”, both “Farnsworth” and “Zworykin” are correct answerke existence of multiple
correct answers leads our corroboration techniques to go deepé¢hénsearch engine results

to find the top-1 answer, therefore resulting in more pages being retrieved

600

500

400 -

300

200 A

100 -

500

400 -

300 -

200

100 -

54

M Retrieve + Corroboration User Time Cost

. G63sec <— 1372sec

| NN G SN S R e] NS LL l n \ l Illll\ | | R T -

12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

- l‘lI
4 5 6

Query

Figure 4.15: Time Cost for MSN queries that have at least one click in thierdl5E result

M Retrieve + Corroboration User Time Cost

l-llllllllll‘|-‘|lllIIII-I‘l-II.
8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Query

Figure 4.16: Time Cost for MSN queries that have no clicks in the curféneSult (Part 1)

4.6 Conclusions

In this chapter, we presented an approach to corroborate ansaershie web to improve the
accuracy for the question answering task. Our techniques use infomeati@ction methods
to identify relevant answers from a search engine result. We assiggsgoeach answer based
on the frequency of the answer in the web search engine result, tharreéeand originality of
the pages reporting the answer, as well as the prominence of the angherthhe pages. Our
experimental evaluation on queries extracted from the TREC Questionekimgi rack shows
that a corroboration-based approach yields good quality answeaddition, by comparing our
approach to user-click behavior on a sample of queries from a MSN dpgrwe show that
our techniques result in faster answers as they prevent users &eimghto manually check

several sources. The work presented in this chapter was publishét] iard [72].

55

M Retrieve + Corroboration User Time Cost

O‘I-III--Il-l-.--ll.-_--ll_ll-II---I_
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

Query

Figure 4.17: Time Cost for MSN queries that have no clicks in the currémeSult (Part 2)

Our work on corroborating answers was first published in 2007, dwinigh time the
mainstream technology in information corroboration was frequency s@daches. By us-
ing a meaningful scoring function for the extract answers, our teclsigiere among the first
to consider the trustworthiness of the sources and stand out from existitngpds. Our results
have motivated works that were proposed since the publishing of [7X]0i Bot only in in-
formation corroboration [17, 18, 5, 82] but also in other topics suchéi/esearch [11] and
attributes extraction [3, 61]. In particular, Banerjee et al. [5] studiedXbantity Consensus
Queries (QCQs) whose answer is a tight quantity interval extracted fronsémds of snippets.
QCQ queries present a unique challenge in that it considers the cleseneng numerical an-
swers and existing methods including ours that only consider exact matchésbe unable to
combine the scores of close but not identical quantities. The authoregeowo algorithms
that learn to score and rank quantity intervals by leveraging the snippatityuand snippet
text information. The experiments show significant improvement over methatigonsider
fixed numerical answers but not quantity intervals.

Over the past few years, research in information corroboration 28, 49, 54, 81, 29,
55] has shifted towards more principled ways of evaluating the trustwogthiofethe sources
(see a survey in [46]), as opposed to using external metadata such emkings from the
search engine . Such methods usually work by iteratively estimating the trtisivess of the
sources and the probabilities of the answers until convergence isegkathe computation of
the scores of the sources and the answers is based on probability tinéesyned from graph

theories. We present a case study of such algorithms in Chapter 5.

56

Chapter 5

Corroborating Affirmative Statements from Unreliable Sources

5.1 Introduction

In the previous chapter, we discussed how corroboration could heliaskeof question an-
swering. It is evident that by leveraging the quality of the sources asasdhe prominence
of the answers within the sources, it is possible to significantly improve botbréduésion and
recall of the answers. Moreover, as we observe in Table 4.4 in Chéptee quality of the
sources is a bigger contributor in improving the answer qualitZ{as is the component that
provided the biggest boost to both PerCorrect and MRR). In mang ciise possible to infer
the quality of the sources by using some prior knowledge. For instandeyemaged the rank
of the sources in the search engine result and approximated the qualigysafitces using the
Zipf distribution. Unfortunately, in many other applications, such informategarding the
sources might not be readily available and we need to explore otheres/efhtechniques in
order to carry out corroboration.

The problem of lacking prior knowledge of the sources have been signify relieved
thanks to the recent advance in corroboration techniques (see & atf2é]). The key idea of
those methods is to iteratively estimate the probability of the answers and thedirhstess
of the sources until a convergence is reachad, the scores stabilize). Of all the methods
proposed, the intuition is that they rely on the conflicting answers to diffiaterthe trustwor-
thiness of the sources. Sources that provide more correct answerpyted by the algorithms)
is more trustworthy than sources with more incorrect answers.

Unfortunately, although such an intuition sounds reasonable and indesdeffectively,
it does not bode well in a scenario where there are little conflicting answerseach query,
a lack of conflicting answers means that all the sources return the sameranstuitively,

it looks as if no corroboration is needed since there is ho suggestionalfeanative answer.

57

However, this is not always the case, as illustrated in the following example.

ExaMPLE 1: Consider we want to identify a list of restaurants that are up and running
in a certain region. There exist several web sources that provideabddunformation for this
task. For instance, local search engines suctivas| owpages andCi t ysear ch provide
business listings including restaurants. Social web sites suctiedp and Four squar e
allow users to check-in at dining venues. Most of the restaurant listingbese web sources
are hints that the restaurants exist (except for those listed as ‘CLOSED\vever, the fact
that a restaurant is listed at one or several of these web sources wefioite evidence that it
is still open. As an example, consider a restaurant named ‘DannyasEea Palace’ located
at ‘346 West 46th St, New York’, which is backed by Methl owpages andCi t ysear ch.

A follow-up checkrevealed that the restaurant is no longer in business and that the listing was
inaccurate.

In this chapter, we investigate the corroboration problem of identifying ¢haoity of facts
in the presence of mostly affirmative statements. A fact is either true or &aldegn affirmative
statement indicates support from a source that the fact is true. Intujtieelg fact with only
affirmative statements, there should be no ambiguity that it is true, since thereiggestion
from any source that the fact may be false. However, as we see in Exdmthis is not
necessarily the case. Although there are two affirmative statements factiednny’s Grand
Sea Palace is openit is still factually false. In addition to the above example, we also observe
similar cases in other domains. For instance, technology blogs usually e@aiths regarding
major product releases, each of which could be viewed as facts withupbpgive statements.

Note that in Chapter 3, we defined our corroboration model as identifymgdlrect an-
swer given a set of candidate answers for a query. For the eageo$sion, we in this chapter
usefactsas the object for which we want to corroborate instead of answersacln dfact
considered in this chapter can be viewed gs@rywith 2 candidate answefgrue, falsg. Our
objective is to estimate for each fact its correct vaiue (trueor false). Note also that by mod-
eling the corroboration problem this way, we are not limiting the applicability otechnique

to problems with binary candidate answers. For a query with multiple candidsweeas, our

1The restaurant is one of a set of restaurants that we checked inperso

58

model can be adapted by considering each candidate answer as eofaicist&nce, consider
a queryq with a set of candidate answefs, as, ..., }, our model can handle such cases by
creating a factf; for each answet; wheref; is a new queryd; is the correct answer fay'.

The main difficulty is to correctly identify false facts, since facts with only aféitive state-
ments appear to be true. In principle, a false fact could be revealed ifitaaive statements
are from sources with low trustworthiness. Unfortunately, in a scendr@revmost facts have
affirmative statements only, it is hard to compute the correct trustworthiféss sources. We

listed below the challenges of the problem we focus in this chapter.

e Quality of sourcesInformation on the Internet is fast changing and goes out-dated fast.
For a certain task, there might not exist a source that is fresh and yegjodgthcoverage.
A serious website such a&l p which allow users to post authentic reviews contains
erroneous restaurant listings. This is different from applications fachvexisting cor-
roboration techniques have been successful. For instancei [8d] is a near-perfect
source for thanoviedataset. Assessing the quality of the source is critical to derive the

correctness of the facts it reports.

e Apparent consensusThe principle of corroboration is to differentiate the sources’ qual-
ity, hence treating the information from each source differently. Existimgoboration
techniques work well in tasks with conflicting statements because they caredahe
trust scores for the sources that have incorrect statements. Urdtatyrthis is not the
case in our scenario since sources provide mostly same stateireenédfirmative state-

ments). As a result, it is extremely difficult to identify any errors from theacest

To tackle these challenges, we propose a novel corroboration algdhititmses a multi-
value trust score for the sources. Each fact is evaluated using dhe wlist values from each
source. Unlike with a single trust score for the sources where all famtddwhave the same
corroboration result in a scenario where most or all facts have ontynative statements, we
can correctly identify false facts by considering a lower trust scoréhf®rsources reporting
them. Intuitively, a source may have different trustworthiness on diffesets of facts, and
our algorithm leverages such observation to improve corroboration quAysummarize our

contributions as follows.

59

e We investigate the problem of corroborating facts in the presence of mdfsthpative

statements and demonstrate the limitations of state-of-the-art methods.

e We propose a novel corroboration method that adopts a multi-value tarst fer each

source; each fact is evaluated using one set of source trust values.

e Our corroboration algorithm incrementally selects facts by considering thamation

entropy in the unprocessed facts and updates the trust scores foutbes

e We conduct experiments over synthetic and real world datasets andisaibaur algo-

rithm significantly outperforms existing approach on precision and acgura

To the best of our knowledge, our corroboration algorithm is the firsotwsicler different
trust scores from the same source for different sets of facts. Inotleving discussion, we
show that a multi-value trust score is not only effective, but necednattye corroboration
problem considered in this chapter. The rest of the chapter is orgaaszetiows. A detailed
motivating example is shown in Section 5.2. We formally define the corroborataiem in
Section 5.3 and introduce the multi-value trust score strategy in Section 5.4resent our
incremental algorithm in Section 5.5. Experiment results are shown in SecéioRibally, we

conclude the chapter in Section 5.7.

5.2 A Motivating Example

We use an instance of Example 1 as the motivating example to illustrate the limitatioistef ex
ing methods. Consider a scenario with 5 sourges so, s3, s4, 55} and 12 restaurant listings
{ry,...,m12}. For the ease of discussion, we usandF votes to refer to affirmative and dis-
agreeing statements. The votes from the sources are shown in Tablehgrk w the last
column we list if each restaurant is actually open (ground truth). A satanevote eithefor

(T) (e.g, by listing the restaurant) against(F) a restaurantd.g, by listing the restaurant as
CLOSED). A ‘-’ indicates that a source does not list the restaurant. As sholiviiheasources
cast votes only for a subset of restaurants. In addition, most restaexcept fors andris)
receiveT votes only. If we know the correct result for each restaurant (as/shn the last

column) a priori, it could be computed that the global trust scores for afidheces ar¢1, 0.8,

60

1, 0.5, 0.625, respectively. In the following, we examine the performance of 2 statheshirt

corroboration techniques.

S1 | S2 | 83| s4 | s5 | correct value
1 - T - T - true
T9 T| T/ - T| T true
rg | T | - T | - T true
re | - - - T T fal se
rs | - T T| T fal se
e | - - F| T/ - fal se
ro | T | - - T - true
rg | - T - T T true
rg - - T | - T true
ro | - - - T| T fal se
11 - - T T T true
19 | - FIF|T]| - fal se

Table 5.1: A scenario with 5 sources and 12 restaurants

5.2.1 The TwoEstimate Algorithm

Galland et al. [28] introduced a set of iterative algorithms that are véateto our corrobora-
tion task. Among those, tHBwoEst i mat e algorithm is directly applicable to our scenario
TheTwoEst i mat e works by iteratively estimating the probability that each restaurant is open
and the trustworthiness of the sources until convergence is reachdicechapplication of the
TwoEst i mat e algorithm on the motivating example yields a resultrok for all the restau-
rants except for;2, and a trust score df1, 1, 0.8, 0.9, } for the 5 sources, respectively.
Although theTwoEst i mat e algorithm has a recall of 1, the precision and accuracy are
only 0.64 and 0.67 respectively. The reason for the result can beimaglas follows. First,
since the majority of the restaurants only haweotes, the only possible corroboration outcome
for restaurants other thag andrs is true. In addition, considerg with aT vote froms, and
anF vote fromss. Although there is on& vote, theT vote is froms, which has more correct
votes for other restaurants than In a sense, thE vote is ‘outvoted’ by thd vote sinces, has

a higher trust score tha#y. Second, in order to guarantee convergence;ltheEst i mat e

2Note that although th&hr eeEst i mat e algorithm has shown better performance, it calculates a mea-
sure using the number &f and F votes for each fact. Since for most restaurants thereTavetes only, the
Thr eeEst i mat e algorithm essentially simplifies to thiewEst i mat e algorithm in this scenario.

61

normalizes the probability of a restaurant or the trustworthiness of astwtkif it is greater
than or equal to 0.5. This normalization process essentially translates @ragstaith uncer-
tainty into an absolut& or F and then uses it as feedback for the calculation of its sources. The
effect of thisreinforcementnechanism is greatly amplified in our scenario since, there is little
conflict for the vast majority of the restaurants and consequently, s@veceive a near-perfect

trust score.

5.2.2 The BayesEstimate Algorithm

Zhao et al. [81] proposed a Bayesian probabilistic graphical modei¢gaBayesEst i mat e)
that infer true facts and source quality. Instead of using a single vatubddrustworthiness,
theBayesEst i mat e algorithm leverages two-sided errors (number of false positive aral fals
negative) of each source. In essence BhgesEst i mat e algorithm is tailored for real world
corroboration tasks in which the algorithm has some prior knowledge @hb@gburce quality
(e.g, high precision but low recall). In our scenario, although we do haweessources that
match such profile, we have other sources with relatively poor precisigndy). In addition,
theBayesEst i mat e algorithm also suffers from the fact that there is little conflict for most
of the restaurants, and hence has similar corroboration result a4 #reEst i mat e algo-
rithm. Using theBayesEst i nat e algorithm we obtain a result dfue for all restaurants,
which translates to a precision of 0.58 and recall of 1. The reasoB#yssEst i mat e did

not identify 1, as false is because it considers a high-precision-low-recall pridrteamefore

giving F vote less weight.

5.2.3 Our strategy

Consider a simplified version of our strategy, which does not apply to allesi@urants at
once. Instead, it divides the corroboration task into 3 sub-tasks #natared out in 3 rounds,

as shown in Figure 5.1. We start our algorithm with a default trust vadiuge 0.9) for each
source and pick restaurantsandr, to process. By using the default trust scores, our method
computes a corroborated resulttafue andf al se for the restaurants, respectively. In addi-
tion, the trust scores for the sources are then computde, ds 1, 0, 3. During the second

round, we choosérs, 4} (the shaded objects in Figure 5.1 refer to the restaurants which have

62

round 1:

{-.1,1,0,-}

round 2:

{-1,1,0,0}

round 3:[T | fag ta | Taol[1 [z [
{1,1,1,0.6, 0.75}

Figure 5.1: lllustration of our strategy

been evaluated), which resultsfial se for the two restaurants. Note that although we have
votes froms, for both restaurants, since it has a trust score of 0 from the firstltahia corrob-
oration assigns a low score for both restaurants. The trust scoréefsources are updated to
{0, 1, 1, 0, 3. During the last round, the corroboration is applied to the rest of theurastts
and results inrue for all the remaining restaurants due to the fact that each restaurackistba
by at least one of thegood' sources §s, s3, s5). Overall, the sources have a trust score of
{0.67, 1, 1, 0.7, 1respectively and the corroboration results in a precision of 0.78 archH re
of 1.

The rationale behind considering a multi-round corroboration strategheaxplained as
follows. In order to identify as many corrupt listings (restaurants thanarnger open or
are not at the address) as possible, we need to have sources with $bwscioees. However,
in a scenario where all sources are generally go@d (vith a trust score above 0.5), it is
impossible to find bad listings. By applying corroboration in a step-by-stefida, we are
able to obtain a low trust score for some sources over a subset ofreeggau~or instance, the
above strategy calculates a trust score of Osfoover {rg, r12}. During the second round, it
aggressively selects all listings that are projected to be corrupt bagée current trust scores
of the sources{(4, r10}). In the third round, since all remaining restaurants are projected to be
valid, it processes all of them and finish corroboration.

Table 5.2 lists the results of the three methods described above on Exampherg, itv
shows that our strategy is advantageous compared with two state-afttlgaaithms. In the
following sections, we formally define the corroboration problem (SectiBhdnd present our

algorithm with a more sophisticated strategy (Section 5.4 and 5.5) that seekhtr improve

63

Precision| Recall | Accuracy
TwoEst i mat e 0.64 1 0.67
BayesEsti mat e 0.58 1 0.58
Qur strategy 0.88 1 0.92

Table 5.2: Results of the strategies

the corroboration quality.

5.3 Problem Formulation

We consider a problem that consists a set of sou&es {si,s2,---} and a set of facts
F ={f1, f2,- - }. Afact could be eithetrue (meaning it is correct) ofalse(erroneous). For
instance, a fact could be\‘restaurant called ‘M Bar’ located at 12 W 44th St is a legitimate

restaurant.

5.3.1 Sources

We consider a sourcec S as a real-world object that expresses opinions about facts. A source
may agree or disagree with a fact in the form of casting a tiye/gte or false) vote. For
instance, a source may disagree with the legitimacy of a restaurant by listsQLiOSED. We

uses(f) to denote the vote of soureeover a factf, illustrated below.

T, if sagrees withf

s(f) = F, if sdisagrees witty (5.1)

—, if s has no knowledge abotjt
Note that in certain scenarios, an unknown vote,(the ‘-’ vote) from a source may slightly
indicate that it disagrees with the fad.q, a source may delete a restaurant listing after it
went out of business), we cannot differentiate such cases froes edsere the source has no
knowledge about the object.

We associate with each sourca trustworthiness scoegs) which represents its precision.

The trust score is a real number between 0 and 1, with 1 indicating a psderce and 0

64

indicating a completely wrong source. We define sources with a trust s¢eydetween 0.5
and 1 agositivesources. In principle, positive sources are the sources that haeeamwect
votes than incorrect ones. Similarlypnagativesource is defined as a source with a trust score

between 0 and 0.5.

5.3.2 Facts

A fact f € F is an expression over a real-world object that is of interest to the uAdiact
is either true or false. In order to estimate the correct vaiae (rue or false) of a facy,
we propose techniques to compute a probabitity) which represents the likelihood thatis
true. A fact with a probability of 1 (or 0) is a true (or false) fact. A cowadttion algorithm
determines the value of a fagtif o(f) is greater than a certain threshold. In this chapter, we
use 0.5 as the threshold value, shown below.
true, ifo(f)>0.5
f= (5.2)
false, ifo(f)<0.5
Entropy of unknown facts: In information theory [14], the entropy is a measure of uncer-
tainty of a random variable. Since we considé¢)) the probability of a faclf being true, we

can calculate the entropy (f) of the unknown facyf as follows.

H(f) = —o(f)-loga(f) = (1 —o(f)) -log(1 —o(f) (5.3)

Itis easy to see that a fagthas an entropy of 0 if its probability is 1 or Dg., no uncertainty)
and has the highest entropy of 1 if its probability of 0.5. Intuitively, we expdact to have an
entropy between 0 and 1 given the votes from the sources. We disowdgs teratively select

facts by leveraging the fact entropy in the following section.

5.3.3 The corroboration problem

Given a set of sourcesand a set of fact&, the corroboration problem is to identify the correct
value of each fact and estimate the trustworthiness of each source. thapier, we focus on
a corroboration problem in a specific scenario in which most factsamly receive affirmative

statements. More formally, Ief* be a subset af such that for each fagt € F* there are

65

only T votes only. We focus on a corroboration problem in which most facfs are in 7*

(i.e. |F*| > |F = F*)).

5.4 Trust Scores of Sources

Our corroboration algorithm is built upon the concept of a multi-value trostesfor each
source. In the following discussions, we first formally define the singlaestrust score and
multi-value trust score (Section 5.4.1). We then demonstrate the limitation of aritlafgo
using a single-value trust score (Section 5.4.2). We finally present ahoohef implementing

multi-value trust scores (Section 5.4.3).

5.4.1 Definition

Traditional corroboration techniques [72, 49, 28, 37, 81, 78] usuallgulate a trust score for
each source that is used to evaluate facts. In such a setting, the sarsedrasif each source
is used to evaluateveryfact. There are exceptions in which a technique may consider more
than one trust score for each source. For instanceBalgesEst i mat e method considers a
two-sided errors for each source which capture both the false positt/éalse negative rates.
However, the same measures for a source are used to evaleaygact for which the source
casts a vote.

Formally, we define aingle-value trust scor¢hat is used in existing techniques ase
measurer(s) that is computed for each sourge The measure (s) is used to evaluate each
fact{ f|s(f) € {T, F'}} thats casts vote. Note that such meastife) could contain more than
one value €.g, BayesEst i mat e). In this following, we focus our discussion on the case
whereo (s) is a single value.

In contrast, we propose to usarailti-value trust scorén our corroboration algorithm. A

multi-value trust scorés defined as a group of values assigned to each source, as shown belo
U(S) =< 01 (8)7 02(8)7 T, > (54)

where we calb;(s) one of the trust values of sourseln such a setting, each fafis evaluated

using one of the trust values of(s) of sources that have voted fgr Consider 2 factg, fo

66

for which a source has aT vote. A single-value based algorithm evaluates both facts use the
same measure(s), while a multi-value based algorithm may use different trust values sf.
As an example, assume we adopt the scoring used ifitb&st i mat e [28] to compute
the probability for facts. Formally, lef; € F* ande be the set of sources that havé &ote
for f. We usep(o(s)) to denote the function that picks a trust value fretfs). A multi-value
trust score based algorithm computes the probability a$ follows.

e ()

571 -9

o(fi) =

5.4.2 Single-value trust score

A single-value trust score based algorithm works by iteratively estimate thalbpility of facts
and the trust score for the sources. As shown in Equation 5.7, thelplibbaf facts is calcu-
lated using the trust score for the sources from the previous iteratio@gtheob method). In
return, the trust score for the sources is updated using the probabilitg &cts (theJpdat e

method). The algorithm terminates once convergence is reached.

o™ () = Corrob(a(S*1)) (5.6)

o™ (s;) = Update(c™ (F;)) (5.7)

In a regular corroboration task in which there exist conflicting votes, poth Ts andFs),

a single-value trust score often works because incorrect votesecatebtified based on the
corroborated result of each fact. For instance, consider g faith a T vote froms, s3 and an

F vote fromss. Assume that the right resulirge) for f has been derived by the corroboration
algorithm. Sincess has the incorrect vote, its trust score is discounted and is reflected in the
corroboration of other facts. However, in a scenario where most lfestsT votes only, it is
difficult to identify any incorrect votes.

Let A be an iterative corroboration algorithm using a single-value trust steteis simu-
late the procedure ofl and explain that after applying, all the factsf € F* have the same
corroboration result and all the sources have near perfect (orletahpwrong) trust scores.
Suppose the algorithm starts with an initial trust scofe.g, 0.9) for each sourced computes

the probability for each fact using th@orrob() operation. Since for each € F* there are

67

T votes only and sources have a high initial trust score, fac& ineceive a high probability.
This is based on the assumption that if a fact is vouched by a number ohtesources, it is
likely to be true. In returnA then updates the trust score for each source based on the calcu-
lated probabilities of the facts. Recall that most of the facts a®&*in.e., | F*| > |F — F*|.
Therefore the computation of(s) is dominated by the probabilities of facts #i*. Since A
considers that each source has the correct vote for eaclf factF*, it assigns a high trust
score to each source. This is based on the assumption that the more wotes@ source has,
the more trustworthy it is. In addition, in order to avoid converging to a lopéhm (.e., all
sources have a trust score of 0.5), a common fix is to use a normalizatioesprinat converts
the probability to 1 (or 0) if it is above or equal to (or less than) 0.5. QAamnverges, it
results intrue for each factf € F7* and a trust score close to 1 for each source.

From the information entropy perspective, such result indicates thanthapg of all un-
known facts is 0 since for each fagtthe probability is 1, and therefore we ha¥g f) = 0.
In other words, a single-value based method dismisses the uncertainstoafal considers
them true with a probability of 1. This result is counter-intuitive as we exfyexttin real life
scenarios, each source has a trust score between 0 and 1, afactaels a level of uncertainty

quantified by its entrop¥Z (f).

5.4.3 Multi-value trust score

Since a method that uses a single measure to evaluate all facts does natvellofdr our
scenario, we now resort to a strategy that processes unknown épetsately. However, we
have to address two fundamental challenges: 1) how do we calculate shealues for each
source; and 2) for each fact, how do we select the trust values siomssurcei(e., thep(o (s))
function) to compute its correct value.

Both challenges above can be addressed by incrementally evaluatingrfdeaipdating the
trust score for the sources. We repeatedly select a subset of tagddgurocess and update
the trust value that represents the trust score over the facts that éanestaluated. During
each round, we use the latest trust value for the sources and leveragstics in selecting

unevaluated facts. We formally define the incrementally calculated trust asdollows.

68

Definition 1 (Incrementally calculated trust score) Consider{to,t1,--- ,%,} be a set of fi-
nite time points. We define an incrementally calculated trust score for seuasar (s) =
{o0(s),01(s),---, } whereo;(s) is the trust score of at timet;. At each time point;, a
subset of fact#’; is selected for evaluation. The factshhare evaluated using the trust scores
0i(S)={0i(s1),0i(s2), ..., }. Inreturn, we update the trust score of the sources;to (S)

by incorporating the corroboration result of the facts#y. Lett(f) denote the time point at
which f is selected. In essence, the trust seafes) at timet; represents the trustworthiness of
the sources over the fac{g|t(f) < t;} that have been evaluated up#o When the algorithm

terminates at,,,, the probabilityo (f) is used to determine the corroborated result of each fact.

The advantage of using an incrementally calculated trust score is twoFiodd, it enables
us to incrementally calculate the trust values for each source. Secoridntti®n to choose a
trust value from the sources for fagiéo(s)) can be set te;(S) at timet;, By incrementally
calculating the trust score for each source, the challenge is now hovet feects at each time
point so that the correct result could be computed for as many factsaib@ We detail this

process in the following section.

5.5 Corroboration

In this section, we investigate strategies of selecting facts at each time pdiptresent our
corroboration algorithm (denoted BacEst i mat e). In the following discussion, we assume
the scoring of th&woEst i nat e algorithm (Equation 5.5) is used. We first introduce our fact
selecting strategy (namelyncEst Heu) in Section 5.5.1. We then present thecEst i mat e

algorithm int Section 5.5.2. We analyze the complexity nEEst Heu in Section 5.5.3.

5.5.1 Selecting facts

Recall that in Section 5.4 we showed the main limitation of existing algorithms is thatifeey
a universal trust score for each source and incorrectly dismissamtegtainty of facts. In
order to uncover the correct value of unknown facts, the key chalentp evaluate each fact
f ata pointt; such that(S) is a more accurate measure for the facts.

Let F; C F be the set of facts that have not been evaluategdamido; (S) be the trust values

69

for the sources. Itis yet difficult to decide a set of fakfsc F; such that;(S) is accurate for
F;. Now let us again look at the problem from the information entropy petsjgecSince we
know that the entropy for an unknown fact is O if its probability is 1 (or 0§, wodel the fact
selection problem as a problem to maximize the collective entfd¥;) of unknown facts.

One possible greedy strategy is to select facts with the highest entropgtat eHowever,
such a strategy does not necessarily maxinfiZé-) since the selectedl; would impact the
trust valuess(S) for the sources. In turn, the updated trust values would affect themntf
the remaining fact§; — F;. For instance, suppose we selec{which has the highest entropy
of 1) at round 2 in the motivating example. Such a selection resudt&Sn = {—,1,1,0.5, -}
which would decrease the entropy of remaining facts. As a consequeaaeould be unable
to identify the false facts, andry.

Given a set of unknown fact§;, it is easy to see that there exifil ways of selecting
facts att;. However, it is computationally expensive to explore all possibility so as tamizas
H(F). We approach the problem by selecting a set of facts such that the dpdatevalues
0i+1(S) is unlikely to decrease the entropy of the remaining facts. Consider belase? of

trust valuesr; ;1 (S) after evaluating;.
e 0i11(sj) > oi(s;) for eachj or
e 0,11(85) < oi(sj) for eachj

For simplicity, let us assume that all the remaining fa€tshaveT votes only F; C F*).
Consider the case in which by selectifigthe trust value increases for each soui@s Case 1).
Since the probability of facts is calculated as the average trust scoressofiitses (Equation
5.5) and a higher trust value for the sources would increase the pligbabthe facts, the
entropy decreases for facts with a probability above 0.5 (recall a &scthe highest entropy
if it has a probability of 0.5). On the other hand, the updated trust valueases the entropy
for the facts with a probability smaller than 0.5 and ; (S) brings its probability closer to 0.5
thano;(S). Similarly, a smaller trust value for the sources would bring down the enfimpy
facts with a probability smaller than 0.5 and could raise the entropy for factsavgthbability
greater than 0.5.

Now let us examine the relationship between facts and the trust value chaklig@bserve

70

that if the evaluation results df; are true (or false), the trust value for the sources increase
(or decrease). This is based on the intuition that the more correct vobesaehas, the more
trustworthy it is. Leto;11(s) be the trust value for sourceafter evaluatingF; and for each
f € F; the corroboration result is true; 1 (s) can be calculated as follows.
ije]:"i U(fj)

7]
_ 2opetiy O + 2 pem 0(f5)

| Fiza| + | Fi

Zf'Eﬁ'_1 U(fj)
— = = i(s 5.8
> 7 (s) (5.8)

oit1(s) =

where]:"iﬂ refers to the facts that have been evaluated up fdote that the above calculations
consider the probability to be 1 for true facts.

Based on the discussions above, we now have a viable strategy. Vggdirgtunevaluated
facts based on the sources of the votes. Facts in the same group retewérom the same
set of sources. The intuition behind is that facts with the same votes showddtiea same
corroboration result. As an instance in the motivating examplandrs are grouped together
since they have the same votes. We then calculate a AchifeF) for each fact groug”G that
represents the entropy change for the remaining fadtgiifis selected. We rank fact groups in

decreasing order of theik H (F) scores and pick the one with the highest score.

AH(F)ra = Y, (Hip1(F)rer — Hi(F)rar) (5.9)
FG'eF-FG

There is one special case in which give(®), all remaining facts have a probability above
(or below) 0.5. In this case, the facts would be evaluated to be true (e) fatsch is equiv-
alently as having a entropy of 0 (recall true facts have a normalized lpitityp@f 1). Such a
scenario could be caused ihcEst Heu repeatedly selects facts that evaluated to be true facts.
To avoid this effect, we slightly modify our strategy as follows. During each toiat ¢;,
we divide fact groups into positive part (fact groups with probabilitp\e0.5) and negative
part (fact group with probability below 0.5). We then pick one fact grivom each part with

the highestA H(F) score. In addition, we require that the same number of facts are selected

from each group. LeFGj andF'G; denote the positive and negative fact group, and we use

71

size(F'G) to denote the number of facts of grodifgs. | ncEst Heu selects: facts from each
group wheren = min{size(FG;), size(FG;)}. The rationale behind is that 48G;" and
FG; become extremely disparate in sizes, the updated trust scores are dorhintitedarger

fact group.

5.5.2 The Algorithm

Algorithm 1 Incremental Estimatd ficEst i mat e)
Input: F: a collection of factsS: a set of sources
Output: o(S): estimations for the sources(F): estimations for the facts

1: Initialize oo (S), o(F)
2: while | 7| > 0 do
3: F; < Select_Facts(F,oi(S))
F+ F-F
forall f € F;do
a(f) < Corrob(f,c;(S))
W<+ WU S
end for
0i+1(8S) < Update_Trust(W)
10: end while
11: returno(S), o(F)

© N9 A

©

Algorithm 1 demonstrate the overall flow of duncEst i mat e algorithm. Oud ncEst i nat e
takes a set of facts and a set of sources as input, and output the estintditiba trust scores
of the sources as well as the probabilities of the facts. At first, we initialiZé&) ando (F)
with a default value €.g, 0.9). Our algorithm then repeatedly selects a new subset of facts
in each round. During each round (line 2-10), the new set of factselexted using the
Select_Facts(F,o;(S)) function (line 3, defined in Algorithm 2). The corroboration calcu-
lates the probability for each selected fact (line 6) and inserts it into)d/dhiat contains facts
which have been evaluated (line 7). The trust scores of the souredisesr updated incorpo-
rating the results of facts that have been selected. Our algorithm termirfaeesall facts have
been evaluated and retur#&S) ando (F).

We briefly discuss thenc Est Heu strategy defined in Algorithm 2. At first, thenc Est Heu
strategy initializes a s’ which is the set of facts that are to be selected, Arahd " which

represents the set of positive and negative fact groups respgdtive 5). The setP and N

72

Algorithm 2 Select_Facts(F,o(S))

1. I ncEst Heu:
2 W+ ON«—OP+0
P + all fact groupsF'G in F s.t.o(FG) > 0.5
N«F-P
sortP, NV in decreasing order ok H (F)
FG* + peek(P) FG~ « peek(N)
n < min{size(FG"), size(FG™)}
fori=1—ndo

W WU peek(FGT) U peek(FG™)
10: end for
11: returnW

are then filled with positive and negative facts that have not been evailiate6 and 7). Note
that thepeek(P) function pops the first elements frofh We then sort the sé2 and " based

on theirAH (F) in decreasing order (line 8). Frof and\/, we pick the fact group that has
the highestA H(F) score, denote aBG* and FG~ respectively (line 9). We seleet facts
from each group where is the number of facts of the smaller group betwé&s™ and FG~

(line 10-13).

5.5.3 Complexity analysis

In this section, we analyze the complexity of durcEst i nat e algorithm. As a comparison,
a voting based method simply counts the number of votes for each fact armtbtiedncurs a
cost of ©(|.F|). Methods that iteratively computes the scores for the facts and sowaeesah
cost of©(m(|F| + |S|)), wherem is the number of iterations needed for convergence.

Our I ncEst i mat e algorithm incurs additional cost when calculating projected scores
for unevaluated facts and updating trust scores for the sourcelattiege point. Lett,,
be the number of time pointsncEst i mat e needs to evaluate all facts. As we see before,
I ncEst Heu evaluates at least one fact group at each time point, therefore we oad 4
by the number of fact groups iA. Recall that a vote takes a value frdi, F', —}, therefore
the maximum number of fact groups3s’! — 2|S| — 1 (we excluded fact groups with only one
vote or no vote). Further, since we focus on scenarios where mastrémeiveTl votes only,
the bound for the number of fact groups can be reduced(®°—5"1 . 315"1) whereS* is the

set of sources that caStvotes §* < S).

73

At each time point] ncEst Heu calculates projected scores for unevaluated facts and up-
date trust scores for the sources. In the worse case scenari@feheltiact groups evaluated at
t1 throught,,,_; contains one fact, and the fact groups evaluateg, @ontaing 7| — 2(¢,, — 1)
facts. The total cost on calculating projected score is therefore,, — 1)+ (|F| =2t +2) tp.

In the best case scenario, the majority fadts— 2(¢,, — 1) are evaluated &t and 2 facts are
evaluated front, throught,,,, which brings the cost to|.F| — 2t,,, + 2) + ty, - (tm + 1). On
the average case where the number of facts in fact groups is unifornttijpaied, the cost
is M By adding the cost for calculating trust scores for the sources, thectishfor
| ncEst i mat e can be bounded b@ (| F| - 25—5" . 357).

While the cost of ncEst i nat e is exponential in the number of sources, in typical cases
this number is small. In addition, whether adding more sources results in battebaration
quality is still an open question [21]. Moreovey, is also bounded by the number of facH
since at least one fact is evaluated at each time point, and thereforestier¢ancEst i mat e
can be bounded by a polynomial tetif| F|?). Our experimental results in Section 5.6.2 show
the overhead of a more sophisticated algorithm is acceptable in excharigsté corrobora-

tion results.

5.6 Experiments

In this section, we present our experimental results. Section 5.6.1 desthid experiments
setup. We first present our results on the real-world dataset, the nastapplication men-
tioned before in Section 5.6.2. We then show the experimental results oresgrthtasets in

Section 5.6.3.

5.6.1 Setup

In this section, we present our experiment setup and evaluation metrieg|llass the algo-

rithms we implemented for comparison.

74

Algorithms

[Baseline methods] We provided two baseline approaches nar@ednt i ng andVot i ng.

The Count i ng method assigns @ue result to each fact if more than half the sources report
it true. In contrast, th&ot i ng method considers a fact @sue if there exist more sources
reporting it true than false.

[Corroboration methods]: We implemented the strategyncEst Heu of our incremental al-
gorithm introduced in Section 5.5. We used a default trust seasg of 0.9 for each source

to start our algorithm. We tested other default values and we observeefalilidvalue above
0.5 generate the same corroboration result. This is because despitendiffgkS) used, the
same facts are selectedtgt and therefore they result in the same trust valug atWe are
also interested in how a different fact selection strategy would impact ttferpance of

I ncEsti mate. To that end, we implementddncEst PS, a simple strategy that selects
the fact group with the highest probability at each time point. The rationalmdet that
facts with higher probability are more likely to receive correct corrotimnaresults. Com-
pared with a balanced stratepgc Est Heu that considers both positive and negative facts, we
want to see how a naive greedy strategy performs in the competition. Wargiemented
theTwoEst i mat e algorithm [28] and th&ayesEst i mat e algorithm [81] for comparison.
For theBayesEst i mat e algorithm, we used the same assumption as in [81] that sources
have low false positive rate but high false negative rate. In particuasetr, = (100, 10000),

a1 = (50, 50), and3 = (10, 10).

[ML-based methods} Since our problem can be naturally seen as a classification problem,
we also tested machine learning based algorithms using the votes as featpagsicular, we
tested 2 classifiers using Weka: a SVM classifier (using SMO implementatidrg &yistic

classifier with default parameter. We report the results using 10-folbaralidation.

Environment and Metrics

We implemented all the algorithms using Java SDK 6. All the experiments weraiciaad
on a Mac OS 10.8.2 with a quad-core CPU of 3.3 GHz and 8GB Ram. We uselltheirfig

metrics to evaluate the results of various algorithms.

75

| Source coveragé YellowPages Foursquare] MenuPages OpenTable| CitySearch| Yelp |

| [059 | 024 | 020 | 007 | 050 |035]

| Source overlap|| YellowPages| Foursquare] MenuPages OpenTable| CitySearch| Yelp |
YellowPages 1 0.22 0.18 0.04 0.43 0.26
Foursquare 0.22 1 0.30 0.08 0.22 0.29
MenuPages 0.18 0.30 1 0.09 0.17 0.29
OpenTable 0.04 0.08 0.09 1 0.05 0.07
CitySearch 0.43 0.22 0.17 0.05 1 0.27

Yelp 0.26 0.29 0.29 0.07 0.27 1
| Source accuracy YellowPages| Foursquarel MenuPages OpenTable| CitySearch| Yelp |
| | o059 | 078 | 093 | 09 | 062 [0.84]

Table 5.3: Source coverage and overlap

Precision, Recall, Accuracy:We first report standard information retrieval metrics to evaluate
the results of all algorithms.

Mean square error of trust score (MSE): We usé€l(s;) to denote the trustworthiness of source
s; over a sampled golden set, anddét;) denote the computed trust scorespby a corrobo-

ration algorithm. The mean square error of trust score is computed asdgollow

n

MSE = % S (t(si) — o(s:)? (5.10)
=1

5.6.2 Real-World Dataset

We report our experiment results over real world datasets in this section.

Dataset

We used the restaurant example discussed in Section 5.2 in our experievaiiation. \We
used the same example in [49] and reported results of existing technigaeswall sample of
restaurant listings. In this study, we expanded our investigation andictatiexperiments in
a much larger scale. We crawled data from six major sources for restaistings’, namely
Yellowpages, Foursquare, Menupages, Opentable, Citysearch, and Yelp. Some of the
web sources allow accesses to the list of restaurant listings at a giveatamiog.g, Manhat-

tan), while for others we have to do random accesses to probe as margslasipossible. In

3We comducted the crawling in Feb 2012.

76

this particular experiment, we consider restaurant listings in the greateryNgwCity area.
Our initial crawling yielded 42969 restaurant listings but contains numetdopbcates due to
various presentation of the same listing. In order to clean the data and relmpheates, we
employ the following strategy. We first wrote a rule-based script to norm#ie@ddresses
of all listings. Listings that share the same address are then groupedeaiogdéth calculate a
similarity score between each pair of listings within a group and we considelidtivgys are
the same entities if their similarity score is above a certain threshold. For thegsuop this
project, we adopted the cosine similarity score at the term level as well een8igvel and
used a threshold of 0.8. After removing the duplicates, we recordedb3@8diaurant listings
from these 6 sources. Among those, only 654 listing8%) haveF votes from sources. More
specifically, F votes come from 3 sourceBpursquare (10), Menupages (256), andYelp
(425).

Table 5.3 reports source coverage (the fraction of the total restalistings contained
in each source), as well as the source overlap (a measure of how mocotnces have in
common). As shown, all sources contain only a fraction of the entire listidgaong all
sources, 2 sourcesd., Yellowpages, Citysearch) have significantly more coverage $0%)
compared with others.
Golden set In order to evaluate the performance of various algorithms, we museaegmlden
set of listings for which we know for certain their correct value (trueatsd). Unfortunately,
there does not exist an authoritative source that can provide suaimition. To that end,
we selected restaurant listings from 3 zip codes and investigated their legitimpersof.
Overall, our golden set contains 601 listings, out of which 340 are trde2éf are false. We
also calculated the accuracies of all sources in the golden set, listed in5tablelnsurpris-
ingly, sources that have direct connection with restaurants OpenTable andMenupages)
have high accuracies-0.9). Interestingly, the two sources with significantly higher coverage
(Yellowpages, Citysearch) are also the sources with low accurasy)(6).

Identifying legitimate restaurants is not a trivial task. Before we embarketksigning a

corroboration algorithm for this task, we tried to leverage the reviewsrimdition from some

“The in-person check-up was conducted during Apr 2012.

77

of the sources to predict whether a restaurant listing is legitimate. In parfieudaused a
variety of meta data (number of reviews, average interval of review time stamgth since
last review, etc) as well as the review content as features and testedauS¥M classifier.
However, the classifier resulted in a less-than-satisfactory accura@yry.

Corroboration quality

| | Precision| Recall | Accuracy| F-1 |

Vot i ng 0.65 1.00 0.66 0.79
Count i ng 0.94 0.65 0.76 0.77
BayesEsti mat e 0.63 1.00 0.67 0.77
TwoEst i mat e 0.65 1.00 0.66 0.79
M.- SVM (SMO) 0.98 0.74 0.77 0.84
M.- Logi stic 0.86 0.85 0.82 0.82
| ncEst PS 0.66 1.00 0.68 0.79

| ncEst Heu 0.86 0.86 0.83 0.86

Table 5.4: Result of real-world dataset

Table 5.4 lists the performance of various algorithms as well aSdh@t i ng andVot i ng
methods. Since for most of the listings there exist ohlyotes, thevVot i ng method assigns
them atrue result, thus results in a perfect recall value (1.0) but a low precisiob)0.6
contrast, theCount i ng method uses a high threshold to filter out listings with insufficient
votes, hence has a high precision (0.94). However, the threshold isimgigh to reject a lot of
legitimate listings, therefore resulting in a low recall value (0.65). The twocwrmboration
based approaches have an accuracy of 0.66 and 0.76, respectively

Existing corroboration-based approaches do not perform much bedtethe two baseline
approaches. As they cannot leverage conflicting information from tise it TWOESt i mat e
algorithm has almost the same result as Yod i ng method by assigning &ue result to
every listing except for a small set for which there are mbreotes thanT votes. The
BayesEst i mat e algorithm also has very similar results &s0Est i mat e. In addition to
suffering from the lack of conflicting votes among facts, BayesEst i nat e algorithm re-
lies heavily on the prior knowledge regarding the sources. hige-precision low-recalprior
that is used byBayesEst i mat e is clearly different from the actual trustworthiness of the
sources, as we see in Table 5.3 that Bdaghowpages andCitysearch have poor precisions.

The two machine learning based algorithms perform noticeably better tharbasgfine

78

] | YellowPages Foursquare] MenuPages OpenTable| CitySearch| Yelp | MSE |

Source accuracy 0.59 0.78 0.93 0.96 0.62 0.84 -
TwoEst i mat e 1.00 1.00 0.98 1.00 1.00 0.98 | 0.063
BayesEsi t mat e 1.00 1.00 1.00 1.00 1.00 1.00 | 0.066
M.- Logi sti c 0.62 0.85 0.98 0.92 0.65 0.95 | 0.004
| ncEst Heu 0.51 0.70 0.90 0.93 0.51 0.89 | 0.005

Table 5.5: The mean square error of trust score

and existing corroboration methods. In particular, the support vectesifitx improves on
both accuracy (0.77) and recall (0.84). In comparison, the logisticifittasgroves to be a
better model in this case, with a precision of 0.86 and an accuracy of 0.82urftisingly,
the most discriminating features are fheotes from the 3 sources. The performance gain of
machine learning algorithms is largely due to the consideration of missing votegjaoorces.
As we discussed earlier, a missing vote could be seen as eifheote or that a source has no
knowledge about the fact. By taking advantage of the missing votes, mdehiméng based
algorithms can leverage extra knowledge and therefore improve agafracedictions.

Ourl ncEst Heu strategy significantly outperforms the baseline and existing corroboration
methods, and slightly improve on accuracy and recall compared with machiménig based
algorithms. The improvement is statistical significant for both baseline antingxeorrobora-
tion techniques (withp-value j 0.001). Thé ncEst PS strategy has a similar result as existing
approaches and improves on accuracy only marginally. This is due to thé m&Est PS
selects facts at each time point. We obsdrme Est PS repeatedly selects facts with high
probability which are evaluated to be true. As a consequence, the ttussvamain high and
most of the facts are evaluated to be true except for a few with fRaretes thanT votes.
Thel ncEst Heu has a good balance between precision and recall, results in the bedforalue
accuracy and F-1. In particuldrnc Est Heu results in more true negatives (141 in the golden
set). The best machine learning methbti{Logi sti c) has 137 true negatives.

Although the improvement of oumc Est Heu over the machine learning based approaches
is not statistically significant, we argue that our method is advantageoustirtaslc For one
thing, our approach does not require any training data, which couldflmild to obtain in cer-

tain applications. In addition, the machine learning methods are trained usinglledsitaset

79

11

L | PR R R
| R
Yellowpages —+— |
Foursquare o8l |
Menupages - - |
1.05 | Opentable -} +
Citysearch |
Yelp |
|
06 |
: 0 T
8 8
2 1 H 2 |
] ! %
2 SRR - 3 |
= SRR Toat | L e
| ;
\ I
L -
0.95 Q I Yellowpages ——
0.2 \ / Foursquare 7
H o Menupages é
\ / Opentable
H Citysearch
kkkk‘ Yeli
05 ‘ ‘ ‘ ‘ ‘ 0 sl ‘ ‘ P
0 20 40 60 80 100 0 20 40 60 80 100
Time point Time point
(&) I ncEst PS (b) I ncEst Heu

Figure 5.2: Multi-value trust score at each time point

and it is unclear whether it would scale to a larger unseen dataset due facttiee model

could be overfitting over the small golden set.

Mean square error

Table 5.6.2 lists the corroborated trust scores of the sources of vatgnrghms as well as their
MSEs. Forl ncEst Heu we report the trust scores for the sources at the end of last time point,
which reflects their trustworthiness over the entire dataset. Compared wiéttin source
accuracy over the golden set, thecEst Heu is clearly the best performer (almost identical
trust score foMenupages, Opentable), thus results in the smallest MSE (0.005) among all
corroboration techniques. This is due to the fact that it adapts its trust ¥atueach fact
group. TheTwoEst i nat e algorithm, which is unable to identify most illegitimate listings,
concludes all the sources as perfect or near perfect sources. r@impeecision and recall, the
BayesEsi mat e algorithm assign a trust score to each source similawmEst i mat e. The
machine learning methdd_- Logi st i ¢ has the best MSE value overall, slightly outperform
our best strategy. This is because the machine learning methods arecafigdifiined using
the golden set. In addition, our method reports the trust score at the #rallast round, which
represents the trust score over the entire dataset, and thereforet sisprising that it deviates

from the trustworthiness of the sources on the golden set.

80

Multi-value trust score

In this section, we illustrate how the trust score for each source chavtgmsusing different
strategies of thé ncEst i mat e algorithm. Figure 5.2 plots, for each strategy, different trust
scores that are used for corroboration at each time point.

Since we use an initial trust scosgS), for each source, all sources share the same trust
score aty. As thel ncEst i mat e algorithm continues, each strategy develops different trust
score trajectory for the sources. In particular, tme Est PS strategy (Figure 5.2(a)) chooses
the set of facts with the highest probability which are evaluated to be truetum, the true
facts boost the trust score for the sources that cast votes. Simudést PS favors facts with
high probability, the trust scores for the sources remain at 1 until all faittsonly T votes
have been evaluated. It is not surprising that from then on, trustvédusources witlr votes
start to decrease since facts wihvotes are evaluated to be true. EventudligcEst PS is
only able to identify 2 true negatives, which is similar as existing corrobor&ticmiques.

In contrast, thé ncEst Heu strategy overcomes the limitation bhcEst PS by selecting
both positive and negative listings during each round. This results in signily different
trust score change from thencEst PS strategy (Figure 5.2(b)) While after evaluatifg all
sources are positive sources, the trust scores for@itbgkearch andYellowpages begin to dip
as more false facts with votes are identified, which effectively makes them negative sources
(aftert12). With the presence of negative sourcescEst Heu is able to uncover false facts
from F* which explains a significantly higher number of true negativiescEst Heu then
continues to evaluate facts and the trust scores eventually convergesatctill accuracy for

the sources.

Time cost

Inevitably, a more sophisticated corroboration algorithm incurs additionaldastin compu-
tation. Ourl ncEsti mat e algorithm suffers from the overhead of the multiple round cor-
roboration. Table 5.6 lists the time cost of various algorithms over the redd wataset. We
used the ‘time’ command to test the time cost of each algorithm and repaddheart. The

two baseline approache¥pt i ng and Count i ng, which only considers the number &f

81

] | Time cost (secs)

Vot i ng 0.60
Counti ng 0.61
BayesEsti mat e 7.38
TwoEsti mat e 0.69
M.- SMO 0.99

M.- Logi stic 0.91
I ncEst PS 1.13

| ncEst Heu 1.15

Table 5.6: Time cost of various algorithms

] | Number of errorg

Vot i ng 292
Counti ng 327
TwoEsti nat e 269
ThreeEsti mat e 270
| ncEst Heu 262

Table 5.7: Results of various algorithms over the Hubdub dataset

andF votes, are the fastest ones, with a time cost of 0.6 and 0.61 secondstigdp. The
TwoEst i mat e algorithm, which applies corroboration on all the listings at once, is also fairly
efficient, with a time cost of 0.69 seconds. TBeyesEst i mat e algorithm requires a burning
period before stabilizing and results in the longest time (7.38 secs). The talimedearning
based approaches take less than 1 second largely due to the fact yhahlgheun over the
golden set. The best strategy of durcEst i mat e algorithm results in a little more than 1

second, with the best performing strategy having an acceptable time do&6afecs.

The Hubdub Dataset

Our technigue focuses on the scenario where most or all facts havé gotgs. Nevertheless,
we do not believe that our incremental algorithm is limited to such cases. Tordémie the
effectiveness of ncEst i mat e in dataset with ample conflicting votes, we use the Hubdub
dataset from [28]. The Hubdub dataset was constructed using alsyiagyf settled questions
from hubdub.com, which contains 830 facts from 471 users on 357 questions.

Table 5.7 report the results of various algorithms on the Hubdub dataselid\Wet include

the machine learning based methods since this task involves more than twoatardlisivers.

82

| Snapshof Precision| Recall| F-measure

1 .843 722 778
2 .843 .688 .758
3 .873 .699 776
4 .878 .749 .808
5 .843 .759 799
6 744 .816 778
7 .873 .821 .857
8 .840 .832 .836

Table 5.8: Results oNCESTIMATE over the restaurant dataset in [18]

For comparison, we report the same metric used in [28], the number o6 the sum of
false positive and false negative). The best performance in [28]fiwas TWOESt i mat e,
which recorded 269 errors. OuncEst Heu outperforms all existing methods by reducing it
to 262 errors. This proves thehcEst Heu is not only suitable for the corroboration problem

discussed in this chapter, but also effective in scenarios with conflidttgnsents.

The online listing dataset

In addition to the Hubdub dataset, we also tested our approach on thet datedén [18] that
comprises restaurant listings from a set of web sources. The autja8] studied the problem
of identifying the true values of data objects when the update history of tireeis known.
To that end, a method that takes into consideration the coverage, exaatueseshness of the
sources is proposed. To test the effectiveness of their method, $&8]aidataset that contains
a list of restaurants scraped from multiple listing websites containing sesespshots over
a period of time to determine whether each of the restaurant is still in busiDessto the
similarity in nature between this dataset and the one we used in 5.6.2, we like ibdest
algorithm is robust enough to handle another dataset.

We obtained a copy of the raw dataset which contains all the 8 snapshatskify crawling
results of restaurant listings from 12 sources. Similarly as the authors fi8Jinve used the
name to identify each restaurant and only retain those that appeared inhaorene source.
We ran our algorithm against all 8 snapshots of data and report theisjorg recall and the
F-measure in Table 5.8.

As shown in Table 5.8, ouNICESTIMATE algorithm performs consistently well against all

83

| Precision| Recall | F-measure

NAIVE .70 .93 .80
CEF .83 .88 .85
CoprYCEF .86 .87 .86
INCESTIMATE .84 .83 .84

Table 5.9: Results of various algorithms over the restaurant datasefin [18

8 data snapshots. The precision is reasonably good among altxun8), except for snapshot
#6 which took a notable hit in precision. Note that it is possible that two sépshith minor
updates could result in a sizable difference in the evaluation results LIdESTIMATE. This

is because that even a slight difference in voting from the sources caukk NCESTIMATE

to assign an initial trust score to sources that might deviate from its true tuibiness over all
facts. Since selecting facts at each iteration depends on the trustfoargke previous round,
an inaccurate initial estimate of the trust scores might take longer to cornette@ther hand,
the recall of NCESTIMATE has seen a steady gain as we evaluate each snapshots in chronicle
order. This is hardly surprising due to the fact that the test set wadesglas restaurants that
later disappeared from the listings. By obtaining more evidence of thoggpaiagng listings,
INCESTIMATE is able to uncover more true negatives.

Table 5.9 lists the results of various approaches reported in [18], aasMRIEESTIMATE at
snapshot #8 which represents the final result of the entire datasehoi® $n the table, both
CEF and @PYCEF perform exceptionally well with @YCEF having the best overall F-
measure value. OUNCESTIMATE algorithm also performs quite well, with a precision of 0.84
and a recall of 0.83 that only trails slightly the best-performirmp@CEF method. This minor
performance disparity can be explained due to the fact that CEF ardCEF were designed
to capture not only the correctness and coverage, but also the fsssbhthe sources. As
such, they perform extremely well when a rich history of data values iall& In addition,
CoPYCEF takes into consideration of the data dependencies among the sobicksould
effectively rule out copious votes. In contrast, although our appré@mus on more on static
data, it is generating results with a more than acceptable quality and is vetfylswitaen the

history of data values is expensive to obtain.

84

5.6.3 Synthetic Dataset

We present our experiment results on synthetic datasets in this sectionstyedvide details
on how we generate synthetic datasets (Section 5.6.3) and then presmorttierated results

(Section 5.6.3).

Dataset

We use the following model to generate synthetic datasets. We consider athuhees are
positive sourcesi.e., with a trust score of greater than 0.5. For each sosrdet o(s) and
¢(s) denote its trust score and coverage. For each fact, we randomly assagrect value of
either true or false. We also consider a facjathat determines the percentage of facts that
haveF votes. The parametetqs) andc(s) controls whether and how a sourgeasts votes
on facts. Motivated by the observation in the real world dataset, we diliglesources into
accurate sourceg.g, Menupages) and inaccurate sources.g, Yellowpages). In particular,

we create sources as follows.

e Accurate sourcesare created with a trust score uniformly distributed in [0.7, 1.0]. In
addition, each accurate soureés associated with a probability.(s) that it casts &

vote for a false fact. We set(s) to be uniformly distributed in [0, 0.5].

e Inaccurate sourcesare created with a trust score uniformly distributed in [0.5, 0.7].

Inaccurate sources do not c&stotes for any fact.

We generate coverage for each source by following the intuition thatunatecsources have a
higher coverage compared with accurate sources. In particular,ybeage is calculated using
Equation 5.11,

c(s) =1—o0(s) + random() x 0.2 (5.11)

whererandom() is a function that generates a random real number in [0, 1]. For eatihetic

dataset we generate 20000 facts which are randomly assigned a talseordlue.

85

2 3 4 5 6 7 8 9 10 1 o 2 4 6 8 10 o 001 002 003 0.04 005 0.06
Number of sources Number of inaccurate sources. Percentage of statements with F votes

(a) Varying number of sourcegb) Varying number of inaccurate) Varying percentage of F votes
sources

Figure 5.3: Corroboration results of synthetic datasets

Results

Figure 5.3 plots the performance comparison of various algorithms in theesintfatasets.

In particular, Figure 5.3(a) illustrates the accuracy of algorithms with ainguptal number

of sources. In this experiment, we fix the number of inaccurate sout@sAs shown, our

I ncEst Heu algorithm consistently outperforms all other methods by a large margin. As the
number of accurate sources increases, the accuracy bhttiest Heu improves. In contrast,
except for theCount i ng method, all methods remain almost flat as the number of sources
change. The performance of existing algorithms is not unexpected. Alththe majority
sources are accurate, their low coverage, coupled with the fact thistevery few conflict
votes, renders the state-of-the-art methods incapable of identifyireféalts.

Figure 5.3(b) demonstrates the results under a varying number inacsouates, with the
total number of sources fixed at 10. We are seeing similar results as shdvigure 5.3(a).
Unsurprisingly, as the number of inaccurate sources increasescimaegof thd ncEst Heu
decreases and eventually drops to the same level when 9 out 10 satedaaccurate. Our
I ncEst Heu outperforms all other methods by as much as 37%.

Figure 5.3(c) shows the results with a different percentagé facts that havd- votes
(from 0.01 to 0.05). We fix the number of total and inaccurate source®atd 2 respectively.
Again, thel ncEst Heu algorithm generates significantly more accurate corroboration results

than any other methods.

86

5.7 Conclusion

We studied the corroboration problem in a scenario in which there exists litiiatmg in-
formation. We tackle the problem by proposing an algorithm based on a mllg-rast score
for each source. For each source, we use a different trust etmne evaluating different sets
of statements. We leverage the entropy of unknown facts and derivegii®of choosing facts
during each round in our algorithm. We conduct experiments on both sim#mel real-world
datasets and demonstrate that our algorithm significantly outperforms Gthte-art corrob-
oration methods and improves accuracy over machine learning basezhelpgs. The work

presented in this chapter was published in [49] and [73].

87

Chapter 6

Corroborating Joined Information over Web-accessible Databases

6.1 Introduction

We have demonstrated in the previous two chapters that corroboratiorigeehl could lever-
age the quality of the sources to improve the quality of the answers (Chgptéfoteover,
we proposed finer-grained trustworthiness for the sourices ulti-value trust scores) that
captures an observation that a source may exhibit different trustwesthiowards different
gueries facty. Such technique proves to be extremely effective in a situation wheretiness
agree on the same answer for most queries (Chapter 5).

Although the corroboration methods proposed in the previous two chagEmed to-
wards different scenarios, the corroboration probleguefies are bothsimplequeries: queries
whose candidate answers can be independently extracted from a singie.sAs an example,
in Chapter 4, each candidate answeg(the MPG of a car) is independently extracted from a
single source. Unfortunately, the fact that an answer can be extrfotadh single source is

not always true for real world scenarios. Consider the followingyuer

Q: what is the elevation of the highest mountain in th

(1, "Mount Everest", 0.3) (1, "29029 ft", 0.9)
(2, "Mount McKinley", 0.9) (2,"20322 ft", 0.7)
(3, "Mount Vancouver", 0.7) (3, "18000 ft", 0.6)

S S

Figure 6.1: lllustration of Example 1

ExAMPLE 1. Consider the query “What is the height of the highest mountain in the United

States?”. It is possible that a single source might provide the answer tajtigsy. But in a

88

more probable scenario we may find two sources whengrovides a list of highest mountain
in the US ands, provides the height of a list of mountains (Figure 6.1).

EXAMPLE 2: As another example, consider the query “Show me the upcoming mosiesdh

directed by winners of Oscar best actor”. It is unlikely that we could frsurce that provides
a direct answer. We could however, identify a list of Oscar best actanevinas well as the list
of movies that are about to be released from multiple sources.

For both scenarios, each value provided from the sources is onlylpaftianation of an
answer to the original queries, and a post processing function similar foitheperation in
databases is needed in order to generate the final answer to the gueaigdition, each partial
information may be correct or incorrect, and corroboration technigeed to be employed in
order to ensure the correctness of the final answer.

While search engines and deep Web technologies have been increasiaglive at find-
ing relevant documents and information in a certain domain, they are leskleagaauto-
matically combining pieces of relevant information to form a consolidated anthaeis of
users’ interest. In this chapter, we discuss corroborating answegsiéoies that involve join-
ing information from multiple sources (denotedjas querieg. The problem of join query
corroboration significantly differs from the ones we introduced in theipus two chapters
(henceforth denoted as traditional corroboration problems) in two majts. gairst, in tradi-
tional corroboration problems, each source provides a candidaternasd/the correct answer
is decided as one of the candidate answers. In this case, each smwide$ partial informa-
tion and only by combining the partial information from multiple sources can wstoact a
candidate answer. The correct answer is then picked from a sehdidede answers, each of
which is generated using partial information from the sources. Secanduthber of potential
candidate answers increases dramatically in join query corroborationraédional corrobo-
ration problems, the number of candidate answers is bounded by the tothénof different
candidate answers from the sources (and hence, the number aéspunccontrast, the poten-
tial candidate answer space could be as large as the Cartesian prbtihectardinality of all
sources for the problem of join query corroboration. Therefore, Bempessing challenge is to
efficientlyidentify the top answers for join queries.

Motivated by the biggest challenge, we focus on efficiently corrobayaginswers for

89

b
1, b1) 0.9
-E 82, b3) 0.1 eLE (b1, c2) 0.9
(b3, c1) 0.
el
a b2,d1) 1
-E (bS,d3) 0. e C
e3 e4
EXSIE @5, cB)o

d

Figure 6.2: An example of join graph depicting the join relations between tables

join queries in this chapter. Formally, let us consider a join quegnd a set of sources
S = {s1, s2,... }. Each source; provides statements(q) = {f}(q), f*(q), ...} pertaining
to the queryy that shed lights on the partial information of a potential answetr t6ach state-
ment fl.j is associated with a scoeethat represents its quality with respect to the querye
write a candidate answgr= { f1, f2, ...} of queryq as a combination of one statement from
each sourceff € s;(q)) that satisfies the join condition specifiedjinGiven a scoring function
Corrob(f) that evaluates the candidate answéased on the statements from each source, the
objective is to efficiently identify a set of answers of sizthat have the highest scores. As an
example, consider the quegyand the sources, andss in Example 1. We extract statements
from each source as;(q) = {(1, “MountFEverest”,0.3), (2, “MountMcKinley”,0.9),
(3, “MountVancouver”,0.7)} andsa(q) = {(1,29029ft,0.9), (2,20332ft,0.7), (3,18000f¢,0.6)}.
Based on the statements frosn and sy, we can construct candidate answers ﬁi5 ﬁ),
(f2, 2) and (f, f3). Note that although the original query does not explicitly specify the
join condition, it is obvious to conclude that, given the two sources, it is aalgtin between
s1 andss.

In order to conform to the terminology used in the context of join operativagrom here
on refer to the sources as tables and the statements as eigled (“Mount Everest”, 0.3)).
Note that both queries shown in Example 1 and 2 are simple joins in that the tediesnad
in achain. In other words, each table joins with two adjacent tables except for steafid
last table. Consider a more general join graph shown in Figure 6.1 asarpkx Assume that

edges represent sources and nodes represent attributes on whitebleg join. Intuitively, the

90

score for a join of multiple tuples is computed as the product of the scorexbfteple. Given

a value for an attributee(g, a), a possible join query would be to retrieve the value of another
attribute €.g, ¢) connected to the first attribute via a join patle(e; — e3). Animportant
observation is that given a source and a destination attribute, there mamakiple join paths
connecting them. We consider that each join pathchedor the quality of the generated join
result. Therefore, in addition to the attribute value in the destination nodesénenay be also
interested in the tuples.¢., edges) that support the join result.

Recent efforts on top-k join query processing have made great diniatesre relevant to our
corroboration problem. In particular, llyas et al. [34] proposed adiieand-bound algorithm
named the rank-join algorithm that efficiently computes the top-k answejaifiogueries. The
key idea is similar to the Threshold Algorithm (TA) proposed by Fagin in [2&} thaintains
a buffer of candidate answers and threshold of score upper bdumseen answers and halts
when the score of thikth answer is above the threshold. The rank-join algorithm would work
beautifully for join query corroboration such as the ones mentioned in Ebealgnd 2. Despite
the performance advantage, the rank-join algorithm suffers from two limitgtigirst, the join
gueries considered in [34] involve tables that form only one join pathoitrast, we consider
a more general join graph, allowing multiple join paths between the source estithation
attributes. The second limitation of rank-join algorithm is that it is essentiallyideriag
inner-join, which requires the join answer to have an instantiated valuedemim source in the
join graph. The study in [39] shows that inner join may produce answighssgores that are
too low to be of interest.

Note that one important feature of our join query corroboration is thatlae aul | tuples
for some of the data sources in a join answer. This is different from thiejoan algorithm
which considers only inner-joins. Consider the same join graph in FiguréA8sLime we find
one complete join answer with score 0.1 on each edge and another partiahgvirer with
score 0.9 on edge; andes andnul | on all other edges. Clearly the latter join answer has a
higher score and therefore is of more interest to the user. Even if tkgasmalgorithm could
be applied to the join graph considered in our case, it could not prodadattar answer since
it containsnul | tuples on some of the join edges. For comparison purposes, we extended

the rank-join approach to more general join graphs. Our experimersialkseshow that our

91

approach is significantly better than the rank-join based approach.

We consider the major bottleneck of top-k join query corroboration to be fagiessing
of web-accessible databases. If, for instance, the tables involveceinuery are stored on
different servers, and can only be accessed via a Web interfaamytarg a single join between
two tables may become very expensive, as Web accesses exhibit higlargadule latency.
In addition, the query optimizer in one database will generally have no statidtms tables
stored at remote sites and thus be unable to offer any improvements oveiMb@pproach.

Our contributions. We propose a novel branch-and-bound algorithm for computing the
top-k answers for join queries over Web-accessible databases.r Rshecomputing all the
results of the join query, our strategy dynamically retrieves a subset lestinom each table,
and maintains lower and upper scores bounds for the query results chatdrthe retrieved
tuples. By ordering the retrieval of table tuples based on the score bainte partial re-
sults, our algorithm results in significant savings in the number of Web sese¥/e make the

following contributions:

e We propose a model for scoring answers of arbitrary join graphsitmasaetwork relia-

bility. We also develop methods for computing score bounds for partialenssw

e We present a novel branch-and-bound algorithm which aims to minimize thbenof

Web accesses required for computing the top-k answers.

e We evaluate our algorithms on a variety of queries and data sets and deatetisér

significant benefits they provide.

The rest of this chapter is structured as follows. Section 6.2 presergkldeexample that
we use in our experimental study. The example illustrates the concepts thatmadly define
in Section 6.3. Section 6.4 presents our dynamic probing techniques tioareffi compute
the top-k results. We present our experimental study in Section 6.6. Véduderthis chapter

in Section 5.7.

92

6.2 lllustrative Example

Suppose that a sophisticated marketer wants to design personalized praingptickages for
attendees of certain scientific conferences. To optimize his strategy, i Vike to find

out who are the researchers most likely to attend which conferenadsytaat are their main
reasons. The marketer decides that he could estimate the answer withaldasaccuracy by

taking into account the following factors:

F1: Travel cost for each potential attendee to each conference site;

F2: Whether a potential attendee has at least one accepted papetut@asd is a confer-

ence organizer; or is a conference committee member.
F3: How important the conference is in its field.

F4: Whether the attendee is likely to attend in order to meet with a close collabsuatoas

his Ph.D. advisor; and how likely the collaborator is to attend.

The marketer finds several sites that each contains part of the datad®e f®@r example,
a list of researchers’ contributions to various conferences canta@ed from DBLif¢. The
same site also has information on researchers’ affiliation, and thus theiolocaravel sites
return travel costs between any two locations. Conference locationsecabtained from the
DBLP website, and IA Genealogy has a fairly large list of researcidrD. advisors.

Suppose that the following structured data is accessible from these vgebsite

- Table Research with attributes{person, con f, o }, wheres is the tuple score, normalized
between 0 and 1: Tuples connect researchers to conferencesvalliger is a measure of
the strength of this connection, based on their roles in that confereatteofatutorial giver,
organizer etc.). For exampléA, VLDB09,0.9) € Research may mean that researchdr
will give a tutorial at VLDBO09. Intuitively, this means he is very likely to attenddB09,
so the tuple has a high score. Tuple, IC DE09,0.5) may mean that researchdrhas one

accepted paper at ICDEQ9, with another co-author.

http://dblife.cs.wisc.edu/

93

- Table T'ravel with attributes{person,loc,c}: Tuples in this table reflect how cost-
effective it is for a researcher to travel to a location. For exampleShanghai,0.1) means
that researchet has only expensive options for traveling to Shanghai, willeProvidence, 0.9)
means that researchdrhas at least one cheap option for going to Providence; e.g., researche
A may live in New Jersey and travel by train.

- Table People with attributes{ person, advisor, o }: Tuples in this table reflect the strength
of the professional connection between a person and their advisiersfféngth may be mea-
sured as, e.g., the percentage of papers a person co-authored withdthigor in the past 5
years; or as the inverse of the number of years since the persoratgddu

- TableCon ference with attributes{con f, loc, o }: Tuples contain information on the con-

ference name and location. The vatueeflects the importance of the conference in its field.

SELECT TOP 100 C. conf
FROM Research R, Travel T, Conference C,
Peopl e P, Research R1, Travel T1

WHERE ((R conf=C. conf)

or (R person=T.person and T.loc=C. | oc)

or (R person=P. person

and ((P.advisor=T1. person and T1.| oc=C. | oc)
or (P.advisor=Rl.person and Rl.conf=C. conf))))
and R person | N PREDEF- SET

Figure 6.3: Query retrieving top 100 conferences that research@REDEF-SET are likely
to attend, based on factors F1-F4.

Note that in our model we assume, as in other prior work [58, 15], thattites of tuples in
each table are available. Such scores may be computed based on gewyeyen ference.o);
by machine learning methods (e.g., examine historical attendance recordsrtalenodel
for Research.o); or by formulas provided by the query issuer (e.g., the marketer believes
that People.o should be computed dgears)~!, whereyears is the number of years since a
person’s graduation; if tablBeople contains attributgears instead ofo, theno is computed
on the fly). A full discussion on modeling tuple scores is beyond the scbihésacchapter. If

all tables were stored in a single DBMS, the marketer would issue the SQY. iqugigure 6.2.

94

%

e A

person—-=advisor———= cor

& e g

loc

Figure 6.4: Query graph for the example query

Query graphs It is easier to visualize this SQL query as the query graph in Figure 6.4.
Each edge corresponds to a table, while each node correspondsttdlané. If two edges
share a node, then there is a join on that attribute between the two tablexaRule, edge
eg corresponds to tabl®esearch, and edge:; to tableTravel. Edgees also corresponds to
Travel. The reason we represent this table by two edges is that the table apyearis the
query, asl" andT'1.

Nodes connected by a path correspond to a logical ‘and’ between thregsponding
joins. Thus, the patherson - loc - conf corresponds to the clauseperson=T.person and
T.loc=C.loc Edges emanating from the same node correspond to a logical ‘or’ hethee
clauses that start with the corresponding tables. Thus, since eglgesl e; start two paths
from the same node, the corresponding claBesonf=C.confland (R.person=T.person and
T.loc=C.loc)are connected by ‘or’.

We use directions on the edges to ensure that certain paths are impossilgeample, the
pathperson - loc - advisor - con f would be a valid path in an undirected graph. However, this
would correspond to a claugB.person=T.person and T.loc=T1.loc and T1.person=R1.person
and R1.conf=Cl.confpeing ‘or’-connected to the other conditions. Such a clause breaks
the semantics of the SQL query: fét.person = A, T.loc = Shanghai, andC.conf =
ICDEO09, there are many valueEl.person = B that satisfy this clause, because there are

many other researchers that are connecteflt® £09. However, this should not contribute

2\We restrict the model to binary tables. Tables with more join attributes candoeled as multiple binary
tables.

95

to the likelihood thatA will attend IC DFE09. To insure the equivalence between the query
semantics and the paths in the query graph, we impose directions on edyyesthNless, our
methods are directly applicable to undirected graphs, as well.

Finally, in order to fix the source and destination nodes, we use the teelsnimaposed
in [76]. The source attributes are the ones that have selection conditidthe WHERE”"
clause, and the destination attributes are the ones that appear on theCEEtIBuse. For
instance, the example query above hasson in the “WHERE” clause with selection condi-
tion andcon f in the “SELECT” clause, therefore we fix them as source and destinadidesn
respectively. For simplicity, we assume there are exactly one sourcenangestination (oth-
erwise, add new nodesandt; connects to all sources via edges with scores 1; connect all

destinations ta via edges with scores 1).

6.3 Definitions

We study join queries of typ8ELECTL from R whereC, whereR is a list of tables. is a
list of attributes fromR, and(C is a set of join conditions over attributes froRy connected by
and/or operators. For the remainder of this chapter, we assume that thagoyns represented
as a query graph, as described in the previous section.

Let G = (V, E) be the (directed or undirected) query graph, veithurce nodes anddes-
tination nodet; s,t € V. Each edge € E corresponds to a table accessible via a Web site,
and thus has an associated set of tuples deribtede). For each tuple-, leto(7) € [0, 1]
denotes the score of. Similarly, each node € V corresponds to an attribute and has an
associated domain denot&@!(v). The domain contains all possible values for that attribute,
over all the tables that have that attribute. For any edgkits endpoints are nodes andv,

thenTup(e) C Val(u) x Val(v).

6.3.1 Cost Model

Our goal is to minimize the number of Web accesses necessary to computempessgults. As
in [48], we consider two types of probestndom access probes (Ra)dsorted access probes

(SA) We first define them below, and then explain their contribution to the costitin.

96

In an RA probe, we know the value for at least one position in the tuplewandsk for
all the tuples that match that value, along that edge. An SA probe, on thehathe, returns
the tuple with highest score that has not been accessed so far. We ustationsk? A(e) and
SA(e) to denote random and sorted accesses on edggpectively.

Whenever a tuple is returned as part of an RA or SA result, we assume that its sqane
is also returned. An RA probe may return more than one tupfetuples are returned, the cost
of the operation i€fostpa + a(k — 1)Costra, WhereCostr4 is the cost of one Web access,
and0 < a < 1 is a dampening factor. The rationale is that having a Web request pedcess
by a remote site is the main bottleneck, and the number of results returnedrdgdssmall
overhead. By contrast, an SA probe only returns one request at alioveever, since these
results are accessed sequentially, it is reasonable to assume that multiiidearessent at once,
and cached on the query processor's site. Therefore, we assuniétiigy = SCostg4, for

somel < 8 < 1.

6.3.2 Bindings

We define aquery resultto be a set of tuples, one from each table in the ‘FROM’ Rst
such that the tuples satisfy the conditions in the ‘WHERE’ clatiseThe set of values for
the columns in the ‘'SELECT’ listC can easily be computed from the query result. A brief
justification for this definition is provided in Remark 1 at the end of this subseclibis set of
tuples induces a binding of all nodes in the graph to some specific valuaddition, it also
induces corresponding scores on the edges. Conversely, a birfidiodes to values and edges
to scores, if it is consistent with the query conditions, induces a unique qnewer (and its
score). For the sake of clarity, we therefore refer to query resuttsraplete bindingdefined

below.

Definition 2 LetG = (V, E) be a directed query graph, wheié = {vq,...,v,} andE =

{e1,...,em}. Acomplete bindingf G is a vector
B=(a1,...,an,01,...,0m), a; € Val(v;)

such that, for any edge; = v; — wy, if the tuple(a;, a;) belongs tol'up(e;) theno; =

o((aj,ar)); and otherwiseg; = 0. We say that edge; is bound to the tupl€a;, a;), and

97

nodesy;, resp.uvy, are bound to the values;, resp.ay.

Note that we must allow zero-score values on edges in order to model sisatiovhich
not all paths can be instantiated. For example, the vectofIG PO D09, Providence, B,
0,0.8,0.9,0.4,0.9,0.7) is a complete binding of the query graph in Figure 6.4. TydleS1G PO D09)
is not an instance of tablg. Thereforeg; = 0. Tuple (A, Providence) is an instance ofs,

with score 0.8.

(a1, b1)| 0.9 (blcl)| 1
(@2b2)| 0.7 u (b1,c2)| 0.5
(@3.02) (b3,c3)| 0.5

: (b2.c1)| 0.3

(di,c1) |1
(d2,c3) | 0.9

(a3,d1) | O.
(a3,d2) | 0.g| Vv
(a)
Figure 6.5: Generating bindings for a simplified version of the graph in Eigu (dashed

edges are unbound): (a) the graph and its associated edge tuplesey] &), (c) two differ-
ent partial bindings.

Our branch-and-bound strategy involves exploring and possiblyrdisgpa subset of com-
plete bindings (i.e., complete results) at each step. We represent sgeltissabpartial bindings

(i.e., partial results), defined below.

Definition 3 LetG = (V, E) be aquery graph, whef€ = {vy,...,v,}andE = {eq,...,en}.
We denote by *" a new symbol, such thagz (U, Val(v;)). A partial bindingof G is the
vector
PB = (bi,...,bn,[l1, L], .., [lm, L)), bi € (Val(v;) U{x}),

such that for each < j <m, [¢;, L;] C [0,1] and [¢;, L;] contains at least one scotg(r) of
atupler € Tup(e;).

For anyv; € V, we usePB[v;] to denote the value aPB corresponding tov; (i.e.,
PBlv;] = b;). Similarly, for anye; € E, PBle;] denotes the rang#;, L;| corresponding

to €j.

Note that, unlike a complete binding, a partial binding allows a node instarioebe the

new symbol *. This signifies that node has not been bound to any instance fromal (v;).

98

For the range of an edgg, we will only allow two cases: Eithef; = 0 < L;, in which case
we say that; is unboundor ¢; = L; = o(7), whereo () is the score of a tuple € T'up(e;).
In the latter case, we say thatis boundto the tupler, and denote it by; — 7.

As we detail in Section 6.4, our algorithm generates new partial bindihgs from a
current partial binding? B using probes on unbound edggs In general, in the new patrtial
bindings edge:; will be bound to one of the tuples € Tup(e;) returned by the probe (some
exceptions occur for SA probes).

Executing one edge binding:We use the notatio®® B’ = (PB,e; — 7) to signify that
PB’ was created fronP B by binding edge:; to 7. Edgee; must be unbound i®B. More
precisely,PB’ is computed as followsPB'[e;] = o(7); if e; = v; — v andT = (a, b), then
PB'lvj] = a and PB'[v;] = b; all other entries inPB’ are the same as iRB. This edge
binding operation is well-defined only if is compatible withP B, i.e., PB[v;] € {a,*} and
PBluvg] € {b,x}. In other words, we only execute an edge binding> 7 if the endpoints of
e; are either unbound, or bound to the same values as in

EXAMPLE 3: Consider the query graph from Figure 6.5(a). A complete binding for this
graph is, e.g.,

B = (ag, bQ,Cl, d1,0.1, 03, 09, 1, 1)

Two partial bindings for the graph are illustrated in Figures 6.5(b) and (mbound edges
are dashed, while bound ones are solid; ranges/scores are indicéted ¢he edges; and the
binding values for nodes are indicated by small arrows. Hence, Figusébpillustrates the

partial binding

PB1 = (CL3, bg, Cl,dl, [070.7],0.3, 0.9, 1, 1),

and Figure 6.5(c) corresponds to

PBQ = (a3, bQ,Cl, dl, 0.1, [0, 1], 0.9, 1, 1).

Note that, even though the nodes are bound to the same values in all 3tbesbmdings

are different, because they were generated via different edge bindifrgsexample,B =

99

(PBy,e1 — (a3, ba)) = (PBa,ea — (b2, c1)), but PB; and P B, cannot be generated from
each other via edge bindings.

An example of invalid edge binding in this figurd BB1,e; — (a2, b2)), since it conflicts
with the binding of node to a3 in PB;.

Intuitively, a partial binding is a short-hand notation for a subset of comjpi@dings. It is

therefore natural to talk about an inclusion relationship between bindasds)lows.

Definition 4 Let PB; and PB5 denote two partial bindings, such that

PB, = (bla‘ oy bn, [glel]an - [EmaLm])
PBQ = (Cl,...,Cn,[Tl,Rl],‘..,[Tm,Rm]).

We say that” B; is included inP By, and write PB; C PB», if for all 1 < i < n, either
¢i =b;orc; = x;andforalll < j <m,[¢;, L;] C [r;, R;]. If, in particular, PB; is a complete

binding and is included iP B2, we say thatP? B; belongs toP B, and write PB; € PBs.

Remark 1 In the example from Section 6.2, there is a unique complete binding for each pa
(R.person, C.conf). However, this is not usually the case. Suppose that tbteecl has an
extra attributeOptionI D, and that it contains tuples andt, as(ID1, A, Providence, 0.9)

and (D2, A, Providence, 0.88). Then the answefA, SIGPOD09) is obtained via 2 com-
plete bindingsB; and Bs: B binds edgee; to t; with a score 00.9, while Bs binds it tot,

with a score 010.88. ReturningB; and B, as separate results gives the marketer additional
information; e.g., he may have airline clients interested in it. Moreover, owrélyms can still

be adapted to return justd, SIGPOD09), with scorescore(B), i.e., the maximum score of

all complete bindings generating the pair.

6.3.3 Computing Scores of Bindings

LetG = (V, E) be a query graph with specifisdurce node anddestination node; s,t € V.
GraphG can be seen as a communication network, in whickansmits a signal thatmust
receive. The signal can travel along any edge. An edgeF fails (gets disconnected) with

probability 1 — 7(e), wherer(e) is thesuccess probabilitgf e. The probabilities of different

100

edges are assumed to be independent. The probability that &pathees .. . e, Succeeds,
i.e., that the signal travels from one end to the othePois thereforer(P) = TI¥_ 7 (e;).
The reliability of network G is the probability that at least one of the paths betweandt
succeeds; equivalently, it is the probability tliatremains connected. Given the equivalence
between the boolean conditions in a SQL quérnand the structure of its corresponding query

graphG, we propose scoring the answer@aas the network reliability ofs. More precisely,

Definition 5 LetB = (a4, ...,an,01,...,0m,) be a complete binding a¥. For any edge:;,
we define its success probability a&;) = o; (recall thato; € [0, 1]). We define the score of

B, denotedscore(B), to be the reliability of networks under these edge probabilities.
For partial bindings
PB = (bla s 7bn7 [617 L1]7 ceey [Ema Lm])a

we will compute a range of scorésiin(PB), max(PB)] as follows: Let theminimum net-
work of PB, resp.maximum network oP B, be the networkG where the success probability
of any edge; is defined asr(e;) = ¢;, resp.w(e;) = L;. Thenmin(PB), resp.max(PB), is
the reliability of the minimum, resp. maximum, network 8. The following result will be

used in Section 6.4 to explain our strategy for choosing edge probes.

Proposition 1 Let PBy, P B> be two partial bindings such thd®B; C PBs. Then:

() [min(PB1), max(PBy)] C [min(PB2), max(PBs)]. In particular, if PB; is a com-
plete bindings, thercore(PB1) € [min(PBs), max(PBs)].

(i) If there exists at least one path such that all edges a? are bound to non-zero values
in PBy, but at least one such edge is unbound?iBs, thenmin(PBy) > min(PBs). If no

such path exists, thenin(PB;) = min(PBs).

Proof 1 SincePB; C PB,, claim (i) is immediate.

To see why (ii) is true, suppose first that there exists a pagatisfying the conditions as
stated. Lek; € P be an edge which is unbound Bs. This implies thatP Bs[e;] = [0, L],
so in the minimum network &fBs, w(e;) = 0. Therefore, pathP always fails, so it contributes

nothing to the network reliabilitynin(PBs). By contrast, sincé®Bi[e;] = o; > 0 for all

101

edgese; € P, it follows that7(P) > 0 in the minimum network aPB;, so P contributes
towards the network reliabilitynin(PB;). Because”?B; C P By, any other path”’ has at
least the same probability in the minimum networlPd; as in the minimum network &t B,.
This implies thatnin(PB;) > min(PBs). For the last claim, if no pattP satisfies the stated
conditions, it follows that: eitheP contains an unbound edge in baothB; and PBs; or all
edges ofP are bound in bothP? B; and P Bs. In the first situationsr(P) = 0 in both minimum
networks, while in the second situatian(P) is the same in both minimum networks. Since

this is true for all pathsP, min(PB;) = min(PBs).

Computing the reliability of a general network is NP-Hard [68]. The Mongel&algo-
rithm in [36] approximates the reliability of a network with arbitrarily high preasiMultiple
iterations are executed, and the precision increases with the number tditer&ote that one
could also compute the network reliability in a deterministic way by the inclusion/sxeiu
formula over paths. However, the complexity of this approach growsreq@lly with the
number of paths, and quickly becomes impractical. Therefore, we will entpWonte-
Carlo algorithm for computing the scores of bindings, and assume thagleri@uations are

executed so that all approximation errors are negligible.

6.4 Top-k Algorithm

In this section, we present our algorithm for efficiently computing thektapmplete bindings
of a query graph. Our cost model assumes that tuple scores are rgtoreiely and are expen-
sive to access. To this end, we design an efficient edge probing stthsggomputes the top-
bindings based on a subset of tuple scores.

Our strategy generalizes Fagin’s Threshold Algorithm (TA) [25]. Thealgorithm as-
sumes that each object in a databaserhadtributes stored im: lists. The score of an object
is computed using some monotonic aggregation funcfiosuch as min or average. The algo-
rithm works by doing sorted access in parallel to each ofithsorted lists. For each object
B that is seen under sorted access, TA then does a random accessttetiests to find the
corresponding scores for objeBt and computes its overall scoféB). Only thek objects

with highest overall score are stored, at any given time. TA definethteshold value- to be

102

f(z1,...,zm) (Wherez; is the last object seen under sorted access of) bstd halts when the
k highest scores are at least equatto

In our setting, the objects correspond to complete bindings, andrtlagtributes of an
object B correspond to then edge bindings inB. The value of an attribute is the score of
the corresponding edge binding. The monotonic functias score(B). However, a direct
application of the TA algorithm is impossible in our model, as we explain below.p&e
we started by doing a sorted access in parallel on all edges, i.e., an 84 @noeach edge.
For each binding; — SA(e;) that is retrieved under sorted access, we would need to know
the objectB to which it belongs. However, in our case, one edge binding may be part o
many complete bindings, and we have no way of identifying them at this poirgn Evan
edge binding occurred in only one complete bindiddor which we could somehow obtain
an identifier, the TA algorithm would still require random accesses on adir atiges (using
B’s id) to find all the edge bindings i and their scores. Clearly, this would lead to many
expensive edge probes.

Instead, our approach modifies the TA method in several crucial wagsm#intain sets
of objects together, and compute lower and upper bounds for the sifat®bjects in a set.
Each such set has a succint representation as a partial binding. Wetanayrmere thark
(complete or partial) bindings at any given point. While we still do sortedszcoeparallel
over all edges, we do not follow such a step by compulsory RA probesl enlges. Instead,
we design and study several strategies for deciding what RA probasdate.

Throughout this section, we use the query graph from Figure 6.5(a) $trdbe these ideas.
This graph is obtained from the query graph in Figure 3, where eggeas removed for
simplicity. As mentioned above, we assume that each edge in the graph hdsdalist of
tuple scores, in descending order of scores. Ties are broken irbdragr but fixed manner.
We say that the topmost tuple has level 1, the next tuple has level 2, a.s.willWeintain
a global levels, which is originally set to 0, i.e., the pointer in each sorted list lies above the
first tuple. To execute SA probes in parallel on all edges, we incresnamd access the tuple
at levels on each edge. If an edge has fewer thdavels, then the result of its SA probe is
undefined, and no further SA probes are executed.

Our algorithm employs parallel SA probes to generate bindings in which dishand

103

PB.o = (%, % % %, 0,1],]0,1], 0, 1], [0, 1], [0, 1])
PB*,l — (*a *, 0k K, [0709]a [07 ” [O 0. 9], [’ ”7 [Oa 1])
PB.a = (% % %%, 0,0.7],[0,0.5], [0, 0.8], [0,0.9], [0, 1])
PB, 3 = undefined

Table 6.1: AllStar bindings for the graph in Figure 6.5(a).

edges are unbound, but edge ranges are progressively tighteralMgaich bindinggAllStar.
More precisely, theAlIStar of levels is defined asPB, s = (*,...,*, [0,07],...,[0,0;,]),
whereo; is the score of the tuple on levelin the sorted list ofe;. Fors = 0, PB, o =
(%,...,%,[0,1],...,[0,1]).

EXAMPLE 4. The graph in Figure 6.5(a) has AllStar bindings of levels 0, 1, and 2. They

are depicted in Table 6.1.

6.5 Top-k Algorithm

Our overall approach is described in Algorithm 3. It takes as input ayqgraphG, which
comprises, in addition to its node and edge structure, information abouttdnealaces from
which edge tuples can be retrieved (via edge probes).

The algorithm maintains a set of partial bindin§s and a set of complete bindings.
Initially, S = {PB. o, PB, ..., PB*}, wherePB' is the partial binding having the source
node bound to théth value in PREDEF-SET, and all other nodes and edges unbound; and
T = (. As the algorithm executes thehile loop, partial bindings fron® are replaced by
new bindings with fewer unbound edges. Eventually, some of the partidingis inS become
complete bindings, and may be added/to The set] stores at most complete bindings at
any given time, and they are the bindings with highest scores. The algoritmm#ges when
|7| = k. It may also terminate sooner & becomes empty, which occurs if the query graph
has fewer tha: complete bindings (Step 25).

During each iteration, we select the bindifd’ with maximum upper bounthax(PB’).

If PB’ is a complete binding, we add it tf. Otherwise, PB’ is replaced with one or
more bindingsPB” such thatPB” C PB’ (when addingPB” to S, we also compute

[min(PB"), max(PB")]). Each such computation requires either a round of parallel SA

104

Algorithm 3 Finding top4 Complete Bindings

top-%(G)[H]
1 S« {PB.y,PB',...,PB*}

{wherePB! = (Val;,*,...,%,[0,1],...,[0,1])}
{Val;: ith value in PREDEF-SETT

22T« 0
3: s + 0 {level of SA probe$
4: while |T| < k do

5. pick PB’ € § s.t.max(PB') = maxppes maz(PB)
6: deletePB’ fromS
7. if PB’is complete bindinghen
8 T« TU{PB'}
9: elseifPB’ is AllStarthen
10: s < s+ 1; do SA probes of levet on all edges
11: if all SA probes are defingtien
12: S~ SU{PB,}
13: S« SU{(PBys,e; = SA(ei,s))}, Ve, : edge
14: end if
15: else
16: choose unbound edge PB’[e] = [0, L(e)]
17: do RA probe ore
18: for each tupler € RA(e) do
19: if o(7) < L(e) AND (PB’,e — 1) ¢ S then
20: S+ SU{(PB,e—r1)}
21 end if
22: end for
23 endif
24: if S == (then
25: return7
26: endif
27: end while

28: return7

105

probes, or an RA probe, depending on whether or/Bt is AllStar. We explain each case
below.

Replacing an AllStar (Steps 9-14)/e first increment the levaland execute all SA probes
in parallel, as explained above. If at least one probe is undefinedwthelo not generate any
new bindings. In this case, no subsequent iteration will enter Step 10tfradtB B’ is deleted
from S in Step 6). If, however, all probes are valid, we add the new AllSt&. td/e also bind
each edge; in turn to its tuple of levek, i.e., toSA(e;, s). In total, we add exactlyE| + 1
new partial bindings in Steps 12 and 13. It is trivial to verify that all thes& hindings are
included inPB’. We make the observation that the Setontains exactly one AllStar as long
as the algorithm passes the test in Step 11, and no AllStar thereafter.

EXAMPLE 5: Table 6.2 shows three of the six bindings adde8 tturing the first itera-

tion, as a result of selecting B’ = PB, in Step 5. Refer also to the graph in Figure 6.5(a).

Remark 2 In Step 13 of Algorithm 3, we could also take an “eager” approach, bynapiéng
to create partial bindings in which several compatible edges are simultathedound. In
Example 5, such a binding could B&B; > = (PB.1,e1 — (a1,b1),e2 — (b1, c1)), Which
is valid, since both edge bindings require the value in node beb;. Instead, we ignore this
possibility, and allow the algorithm to generaieB; » in Step 20 of a later iteration, either
as (PBy,ea — (b1,c1)), or as(PBy,er — (a1,b1)). Suppose thaPB; » is generated as
(PBy,e3 — (b1,c1)), during the iteration for whichP B; is chosen in Step 5. This will require
executing the RA probBA(es,uw — b1) in Step 17 of that iteration. Hence, we will access
the tuple(b;, ¢1) for a second time (the first time was as the result of the p®He¢es, 1).)
Therefore, we appear to be inefficient when it comes to minimizing thearwhbdge probes.
There are two reasons for which we choose this “lazy” approach to dxgéing in Step
13. First, notice that executing the RA proBel(es, u — b1) in @ subsequent iteration is not
superfluous, as this probe also returns the tugdlg c,), which is not returned by the probe
SA(ez,1). In fact, if after the first iterationS contained onlyP B; o, but notPB;, then we
could not later generate any complete bindings in whigh— (a1,b1) andey — (b1, c2).
But discarding such complete bindings at this point is incorrect, as waataguarantee that

they are not among the tofp- The correct alternative is to put botRB; » and PB; in S,

106

PB,; = (, %, %, %, [0,0.9], [0, 1], [0,0.9], [0, 1], [0, 1])
PBl = (PB*J, er — (al, bl)) = (al, bl, *, %k, 0.9, [O, 1], [0, 0.9], [0, 1}, [0, 1])
PBy = (PB*J? €2 — (blv Cl)) = (*7 b17cla *, [Ov 09]7 17 [07 09]7 [Ov 1]a [07 1])

Table 6.2: Bindings computed during the first iteration for the graph in Figir@).

thus increasing the size &f. This is a non-trivial problem: In the extreme case, |&] edge
bindingse; — SA(e;, 1) may be mutually compatible (instead of justande;). In such a
case, the eager approach would have to @fél partial bindings toS in order to maintain
correctness (each of these bindings would leave a different subsdge$ unbound).

Second, note that PB; € S, it may still be selected in Step 5 of a later iteration, which
may still trigger the RA prob& A(e2, u — b1). We conclude that the lazy approach is in fact

more efficient than the eager one.

Replacing other bindings (Steps 15-28pr ease of presentation, we have omitted some
details in Step 16 of Algorithm 3. More precisely, the edgshosen in this step must have at
least one of its endpoints bound to a value, since otherwise we canmitex® RA probe.
Suppose that = v — v. If both« andv are bound to values, resp. b, then the RA probe
asks whether the tuple, b) exists on edge. If it does, there is bound to the score((a,b));
otherwise ¢ is bound to 0; the bindings af andv remain the same in either case. If only one
endpoint ofe is bound, it is possible that the RA probe returns multiple tuples. In that aase,
bind e in turn to each such tuple. In general, there are multiple unbound edges wittoand
endpoint. We choose one randomly from among them.

The resulting new bindings are addedtoprovided that they satisfy the conditions in Step
19. We discuss the second condition first. Clearly, this condition ensuaesvéhkeepS as
small as possible, and that we do not run unnecessary iterations biyrepteglicate bindings
in Step 5. Moreover, it also ensures that we do not double-count ctaripialings in the result
set7. The test can be executed very efficiently by keeping a hash table omtiads inS.
The next example illustrates how duplicates may arise.

EXAMPLE 6: Consider two different iterations over the graph from Figure 6.5(a): In

the first iterations, we choosBB’ = PB; in Step 5, while in the other iteration, we choose

107

PB’ = PBs in Step 5;PB; and PB, are the bindings defined in Table 6.2. Suppose that
for PB, we choose the edge= e; in Step 16, and fol? B, we choose = e; in Step 16.
Table 6.3 shows the bindings generated during Steps 15-23 of each iter&ioceP B; is

generated as a duplicate during the second iteration, it is not addédagain.

Step5: | PB' = PB; = (a1, b, *, *,0.9, [

JO

1
. . PB3 (a1>blvclv*709a17[009] [3 [5)
Steps 1523 5 g (4 by ¢, %,0.9,0.5,0,0.9], 0, 1, [0, 1])
Step 5: PB' = PBy = (x,b1,¢1,%,[0,0.9], 1,0, 0.9], [0, 1], [0, 1])
Fails Step 19| PB3 = (a1, b1,¢1,%,0.9,1,[0,0.9],[0,1], [0, 1])

Table 6.3: Bindings generated in Steps 15-23 of two different iterationghé graph in Fig-
ure 6.5(a):P B3 is generated twice, but only added onceto

We now discuss the first condition in Step 19. Recall that we wish to gemaratbindings
PB” from PB’ such thatPB” C PB’. The tests(r) < L(e) ensures this for all bindings
generated in Step 20. The following example illustrates a situation when theailesti .E.,
o(t) > L(e).

EXAMPLE 7:

Consider the iteration over the graph from Figure 6.5(a), in which Step BsbsP B’ =
PBs5 as depicted in Table 6.4. (BindingB; was added t& in Step 13 of an earlier iteration,
sincePBs = (PBi2,ea — (b1,c2)).) Suppose that foPBs, we choose the edge= e;
in Step 16. Ther.(e;) = 0.7, since the range foe; is PBsle;] = [0,0.7]. The RA probe
RA(e1,u — by) returns the tuplgas, b1), with score0.9 > 0.7. Therefore, binding® B is
not added taS. Note thatPBgs C PB4, wherePB, € S is defined as in Table 6.3. Hence,
all complete bindings contained iRBg are also contained iP B4, and we do not miss any

information by ignoringP Bg. On the contrary, we eliminate a redundant partial binding.

PB = PB; = (%, b1, ¢2,%,0,0.7],0.5, 0, 0.8], [0, 0.9], [0, 1])
PBG = (PB5,61 — (al,bl)):
(a1, b1, ¢2,%,0.9,0.5,[0,0.8], [0,0.9], [0, 1])

Table 6.4: Enforcing the inclusion property for the graph in Figure 6.5¢a}s Z PBs5, SO
PBg is not added tc.

To prove that Algorithm 3 works correctly we need the following two lemmas.

108

Lemma 1 Let B be a complete binding added 1 in some iterationi. Thenscore(B) >

maz(PB) for any partial bindingP B that belongs te& at the end of any iteratiop, j > i.

Lemma 2 Let B be a complete binding that is never added7to Then at the end of each
iteration in Algorithm 3, there exists at least one bindifg < S such thatB € PB (and
therefore,score(B) € [min(PB), max(PB)]).

Proof 2 Lemma 1 We use induction on iteratiop. For j = i: B is added to7 if and only

if B is selected in Step 5, s@ore(B) = max(B) > maxz(PB) for any PB that belongs

to S in iteration . Suppose the claim is true for some iteratipin In iteration j + 1, the
only new partial bindings®B” in S are those generated either in Steps 9-14, or in Steps 15-
23, from the binding®B’ chosen in Step 5. As discussed aba@¥s8/” C PB’, which implies
max(PB") < max(PB'). SinceP B’ belongs taS after iterationj, max(PB’) < score(B),

and the claim follows.

Proof 3 Lemma 2:Each edge; in B is bound to a tuple; € T'up(e;), with tuples on adjacent
edges having compatible node bindings. &;éte the level of tuple; in the sorted list on edge
e;. Without loss of generality, assume that< ... < s,,. Then along each edgg, any tupple
on a levels < s; — 1 has score at least as large ag7;). We deduce thaB € PB, for
all s < s; — 1. Moreover, the algorithm passes the test in Step 11 during any iteration prio
to choosingPB’ = PB, 5, in Step 5. Therefore§ contains onePB, ;, with s < s; — 1,
during all such iterations, (If the algorithm returns without ever choosig, s, 1 in Step 5,
then our claim holds).

OncePB, 4,1 is chosenin Step 5, Steps 9-14 are executed. The testin Step 11 is still true,
since there exist tuples at levelss; > s; on all edges;. Therefore,PB; = (PB,,,e1 —
71) is added taS. Note thatPB; binds edge:; to tupler;, the same a$3. For all i > 2,
PByle;] = [0, Ls, (e;)], whereLg, (e;) is the score of the tuple on level in e;. Sincer; has
levels; > sq, it follows thato (7;) € [0, L, (e;)]. We deduce thaB € PB;.

The bindingP B; remains inS until P By is chosen in Step 5 of a later iteration. Then, Steps
15-23 are executed. Le}, denote the edge chosen in Step d6must be adjacent te;, so we

can do an RA probe. Sinee is compatible withr;, tupler, is among those returned by the

RA probe. Moreovetr (1) < Lg, (ex), as discussed above. Therefale3; = (PB, s,,e1 —

109

%

4 person——=advisor———= cor

DN~

loc
(a) Synthetic join graph (b) Real-life query graph

Figure 6.6: Graphs used in experiments

T1, e, — T) IS added taS, and B € P B,. We can now repeat this argument wittB, instead
of PB;. By induction, we show that after any iteration there exiBt8, € S with » bound
edgesy < m, such thatB € PB,. If r = m and PB,,, = B is added taS, then it is never

deleted, sinceB is never selected iff.

Let B be a complete binding. We claim thatif ¢ 7 at the end of Algorithm 3, then all
complete bindings of” have scores larger or equal dcore(B). Let B’ € T be an arbitrary
complete binding. Sinc®& ¢ T, Lemma 2 implies that after thast iteration, S contains a
partial bindingPB such thatB € PB. Therefore,score(B) < max(PB). By Lemma 1,
max(PB) < score(B’). Hencescore(B) < score(B’), and this is true for any3’ € 7. We

conclude with the following.

Theorem 1 For any query graplt: that admits at least complete bindings, the s@treturned

by algorithm topk(G) contains the toge complete bindings afr.

6.6 Experimental Evaluation

In this section we report the results of the extensive experimental studpmdricted to eval-
uate the benefits of our approach for various query graphs and daiautions. We imple-
mented our method using Java with SDK 1.5 and ran experiments on a CentOffenaith

3.0 GHz Intel Xeon CPU and 16 GB RAM.

110

6.6.1 Experiment setup

We implemented Algorithm 3, which throughout this section is referred aSMART method.

In all experiments, PREDEF-SET is the entire domain of the source attribigeals’ imple-
ment a rank-join [34] based approadRl| as follows: The rank-join algorithm is first applied
to each join path to generate the tbein results with the scoring function being the product
of all edge scores. We then apply the rank-join algorithm to the graph tgesdich path as data
sources to produce the overall tégein results with the scoring function being the network
reliability. Note that we extend the original rank-join algorithm to considedoam access as
well as sorted access. We do not compare with the naive approach wsiightiates and sorts
all join results because both approaches we study are orders of magnétidr.

We consider various graphs in our experiments. We evaluate our appusang both syn-
thetic and real world datasets (the motivating example). We show experimesiits for one
synthetic join graph (see Figure 6.6(a)), and for the join graph ovémmedd datasets from
Figure 6.6(b). For synthetic datasets, we consider various types ofligatidution (uniform
v.s. skewed, uncorrelated v.s. correlated). We evaluate the perfagrbgreounting the num-

ber of SA and RA probes, as defined in Section 6.3.1. Wexs6t1l ands=0.1 and report

Join Cost =3 p 4 probe COSLRA + D54 prove COStsA-

6.6.2 Graphs and Datasets used in experiments

For testing purposes, we created two different graphs, in order ty #tedeffect of various

graph properties on the efficiency of each method. Figure 6.6 shows thgraphs used in
our experiments (with numbers annotating nodes and letters annotating.dddgks synthetic

graph, we assume the leftmost and the rightmost nodes are the sourcestindttbn nodes,
respectively. Rather than assigning directions to edges in some arbitranemeae choose to
use undirected edges. This is because the number of undirected patberbéhe source and
destination is higher than the number of directed paths, making each instareetratlenging.

We want to point out, however, that our methods are directly applicablettodieected and

undirected graphs.

The synthetic graph has 8 distinct paths between the source and destireatas) such as

111

a—b—canda — g —e— h — c. Italso has 9 minimum cuts; for instance, {) or (c, h, d).

We list the number of nodes, edges, paths and cuts of the two graphdé6Tab

Nodes| Edges| Paths| Cuts
Synthetic 6 8 8 9
Real-world 4 6 4 4

Table 6.5: Graph Statistics

We test our algorithm using both synthetic and real world dataset.

[Synthetic Dataset]: We generate a variety of datasets for our experiments, which model
different types of real-life instances. For each edge in one of the ginapds, we must generate
tuples and their corresponding scores. Lgf ¢;, score) denote a scored tuple, whergand
v; represent the values of the tuple corresponding to the end nodes ofésatlscore is
its score. Each tuple may join with multiple tuples on other edges. In our datassetthe
number of tuples on each edge to 200 and the average fan-out of gdehau. The tuple
scores are generated randomly, as explained below. We are interestedyimg the effect of

the following two parameters on the efficiency of the methods:

e Uniform vs. Skewed score distributionWe generate two datasets: In the first dataset,
scores on an edge are drawn from the uniform distributiof® orj. In the second dataset,
scores on an edge follow the Zipf’s distribution [84]. With a traditional Aplfistribution

(s = 1), the tuple score is the inverse of its rank.

e Edge-Correlated vs. Uncorrelated scoreJuples that join, from adjacent edges, may
or may not have correlated scores. We test the performance of owraabdn both sce-
narios. For correlated datasets, we pick a join path for which a higle-sgple from one
edge implies high scores of the join partners from other edges. We limit thelations

to be among the top few (10%) tuples on the selected path.

[Real-world Dataset]: We use the motivating example discussed in Section 6.2 for the
real-world experiment (Figure 6.6(b)). In such a query, we are trigritnd the topk bindings

(person, location, advisor, confererjcén particular, edge scores are computed as follows.

112

e The scores of edges andes are computed based on the researcher’s papers accepted by

the conference. For each paper, the researcher gets a scoriwioltl by the number of
authors of the paper. For example, a researcher gets a score of 8.fdaghwo papers
with 2 and 5 authors accepted by the conference. Since this scoream@naeralue

greater than 1, we set an upper bound of 0.9.

e The scores of edge, andeg are computed as 100 divided by the distance (in miles)

between the researcher and the conference location, with an uppet bbd.7.
e We assign a score between 0.3 to 0.9 to egggeased on the conference reputation.

e The relation score between a researcher and his or her advisordgdgédased on the
graduation year: it gets a score of 0.8 when the researcher was sgit andervision

and decrease by a factor of 2 every year after graduation.

We extracted data from a snapshot of the DBLife dataset , which contersublication
and conference information up to the year of 2006. In order to find dmgeanformation
of researchers, we use the data from the Al Genealogy Ptajedtich provides genealogy
information for researchers in Al area. By corroborating the data ffdrnGenealogy and
DBLife, we were able to check out 59 Al researchers, as well as theisars. We manually
retrieved the affiliation of the researchers and conference locatiehscenputed the distance
between researchers and conferences for edgmdes. Our real world datasétcontains

information for 91 researchers and 110 conferences.

6.6.3 Uniform Datasets

Figure 6.7(a) shows the Join Cost for BIFART andRJ methods for the uniform uncorrelated
dataset. The x-axis is the number of tb@nswers computed. We vakyfrom 10 to 100.
As shown, theSMART method clearly outperforms thieJ method in all four distributions.
In addition, the cost of th®J method is the same over dllvalues. This can be explained as

follows. First of all, since multiple paths may share the same edge afd threethod is applied

3http://aigp.eecs.umich.edu/

“http://paul.rutgers.edu/alexng/dataset. txt

113

--RJ -SMART --R) -SMART
600000 600000
S00000 | o o & ¢—@—0—0—0—0—@ 500000 - —P—90—0—0—0—0—0—0—0
400000 400000
300000 300000
e HFEE-E-E-E-EEEE o000
100000 100000 - g
0 T T T T T 0 T T T |
10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6 7 8 9 10
@ (b)
--RJ -SMART --R) -SMART
600000 600000
500000 - 9—9—0—0—0—0—00 90 500000 | —Pp—Pp—0—0—0—0—0—0—0
400000 400000
300000 300000
200000 200000
100000 - gy g - 100000
0 + T T T T T T 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
() (d)

Figure 6.7: Cost of tog join queries for synthetic join graph: (a) Uniform Uncorrelated; (b)
Skewed Uncorrelated; (c) Uniform Correlated; (d) Skewed Corretlate

to each path of the graph, it incurs cost on the same edge repeaagliypétha — b — ¢
anda — g — f share edge). More importantly, thdRJ method computes the tapresult on
the path level, making it difficult to decrease tieesholdvalue [34]. Assumdr] joins path
p1 andps and it computes the threshold valueragz(f (Et(ol;, Eéilrem), f (E(Ei)mm,Egg)),

WhereE(i) and E(i)

top current

refer to the edge scores of the top-1 and current join result on path
p;, and f is the computation of network reliability. Even if the current join result on path
has a low score, it could still have high scores on a few edges alongttiameking the score

of the overall join result high. In fact, we observe in the experiments thet the top-1 join
query requires th& method to retrieve all join results on each path, which explains why the
RJ method has the same cost overfaNalues. Compared with thRJ method, theSMART

method reduces the cost by 68% on average.

114

1.2e+07 ‘ : 1.6e+07
le+07 RJ —x ’ 14e+07; SMAI?'[—] : 77777
3 SMART = 1.2e+07f
8 8e+06 /o g 1e+07}
= 6e+06¢ (é 8e+06 |
S 4e+06| S 6e+06
4e+06
2e+06 |
O 2e+06
20 200 2000 20000 20 200 2000 20000
Number of tuples on each edge Number of tuples on each edge
@ (b)
1.8e+07
1.4e+07| N Lee+07l
1.2e+07} SMART ---s- s 1.4e+07} A
3 1e+07+ ' 3 1.2e+07¢
O 8e+06f O le+07f
< S 8et06}
S 6e+06|]
- 7 6e+06|
4e+06 4e+06 |
2e+06 - 1 2e+06 | o
20 200 2000 20000 20 200 2000 20000
Number of tuples on each edge Number of tuples on each edge
(©) (d)

Figure 6.8: Cost of tofjoin queries for the large scale dataset: (a) Uniform uncorrelated; (b)
Uniform correlated; (c) Skewed uncorrelated; (d) Skewed corilate

6.6.4 Skewed and Correlated Datasets

Figure 6.7(b), 6.7(c) and 6.7(d) show the performance comparisské&ved and correlated
datasets. As shown, the performance gain o8KMBRT method magnifies as the datasets have
skewed and correlated distribution. TR& method performs similarly over skewed, correlated,
and uniform datasets, largely due to the fact that it has to instantiate all thegoitts on each
path. By contrast, th8MART method performs better over the skewed (32%) and correlated
dataset (24%), versus the uniform dataset. We attribute this cost radttibe fact that in

the skewed dataset the tuple scores drop faster, and thus the SA poolsbsffectively reduce

the upper bound of unseen bindings. For the correlated dataseSMART method benefits

by identifying early a few partial bindings instantiated from the correlatéd pdges that are

likely to have very high scores.

115

5e+06

4.5e+061 RJ -
4e+06 | SMART
. 3.5e+06|
§ 3e+06|
c 2.5e+06
8 2e+06
1.5e+061
1e+06 |
500000 "
0 . o

Fanout

Figure 6.9: Cost of togjoin queries as a function of fanout

6.6.5 Large Datasets

In previous section, we show the performance of our approacheainyadmall dataset, with
each edge hosting 200 tuples with a fanout of 4. Despite the superioritg BMART method,

we are also interested in how it scales in large dataset and with large faaloat Figure 6.9
plots the cost for th&kJ and SMART methods over uniform uncorrelated dataset for a fanout
value from 2 to 8. As the fanout value grows, the cost forSMART grows steadily in a slow
pace. Compared with a fanout of 2, the cost3MART method grows to 5.2 times for a fanout
of 8. On the contrary, the cost for tR3 grows more than 34 times for the same fanout change.
These results demonstrate that our approach is extremely suitable in datasetdeavy joins
are expected.g., large fanout).

Figure 6.8 plots the cost for thRJ and theSMART methods in large datasets, with the
number of tuples on each edge ranging from 20 to 20000 and a fixedtfaha. Under
four different types of datasets, ti®ART method unanimously demonstrates further benefits
compared the other two methods. By increasing the size of the dataset®yirh@8, the cost
of the SMART method only grows 117.53, 137.33, 2.22, 3.05 times for each of the fowgadata
respectively. This is because tBMART method can prune out a large set of unnecessary
binding processing by maintaining a tight upper bound. On the contrarygasteof theR]
method grows by a factor of 1084 times among all the four datasets simplydgeitdas to

expand all partial bindings on each join path.

116

Bindings (e1, ea, e3, ey, €5, €5) score

(“Tao Li", “Washington”, “Mitsunori Ogihara”, “CIKM 2004”) | (0.833, 0.34,0.75, 0.8, 0.833, 0.34)0.9627
(“Tao Li", “Toronto”, “Mitsunori Ogihara”, “SIGIR 2003") (0.667,0.7,0.8,0.8,0.667,0.7)| 0.9471
(“Daphne Koller”, “Seattle”, “Joseph Y. Halpern”, “lJCAI 2001") | (0.9, 0.142, 0.9, 0.003, 0.9, 0.041) 0.9137

Table 6.6: Top-3 Bindings of real-world experiments

6.6.6 Real-World Experiments

We show in Section 6.6.2 how we extract real world datasets. Table 6.&%hewop-3 bind-

ings as well as the edge scores for the real dataset experiment. As,gshovalgorithm returns

reasonable results for such a real life query. In particular, all edgestantiated for each

of the 3 bindings, indicating that every path contributes to the final scatteedbindings. Al-

though the third binding has the highest score on one of the paths (the sdggepathe,),

the other two bindings have relatively high scores on all paths, therafateesult in higher

overall score.

30000

20000
15000

5000

—-R) -®-SMART

25000 | ¢—¢—0—0—0—0—0—0—0—0

10000 ./.__._.,__.,,../H—'—-

T T T]
10 20 30 40 50 60 70 8 90 100

Figure 6.10: Cost of top-join queries for the real-world dataset

Figure 6.10 shows the cost of tBMART andRJ approaches for the real-world experiments.

Similar as the synthetic experiments, 8ART method achieves significant cost savings com-

pared with theRJ method. On average, tf8VART method beats thRJ as much as 70%. This

demonstrate that our algorithm is practical when used in real life applications

6.7 Conclusions

We proposed a novel branch-and-bound approach fok fojr query processing, under a cost

model in which data access is expensive. Each data instance has@atassscore. We model

the score of the overall answer as a network reliability problem. Our algomkynamically

117

retrieves a subset of the data on each join edge, and maintains tight umgplemeer bounds
for sets of answers. We conduct experiments with different typestaédis and query graphs,
and show that our algorithm significantly outperforms the rank-join algoritfitme benefits
further improve if data scores are correlated and/or skewed, whicteis thfe case for real-life

datasets. The work presented in this chapter was published in [70].

118

Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we studied the problem of corroborating answers from mutipieces. Given
a query to which multiple sources provide different and possible conflietirsgvers, corrobo-
ration aims to identify the correct answer by distinguishing the trustworthiofetb® sources.
The key idea of a corroboration approach is that the more trustworthyraesds, the more
likely it is to provide the correct answer. However, in order to designfiactive and efficient
corroboration algorithm, we have to address several challenges. rsherfd foremost chal-
lenge is how to derive the trustworthiness of a source and given the tmisimess of a source,
how to evaluate the probability its answer is the correct answer. Secalk]iofa case where
all the sources agree on a single answer, how to validate the correcfribesanswer. Finally,
in a case where each source only provides partial answers and itiisegt¢p combine partial
answers from multiple sources to construct a final answer, how to egate quality of the
answer and how to efficiently derive the correct answer.

To address each of these challenges, we studied three empirical prdblemisich we
propose novel corroboration algorithms. We first studied the problaquedtion answering in
which multiple sources provide conflicting answers (Chapter 4). By dktgaanswers from
the documents obtained from a search engine, our corroboration taetmainks the answers
based on the number, relevance and similarity of the web sources reghgimgas well as the
prominence of the answers within the sources.

The second problem we investigated was to verify the correctness of c¢lztrere agreed
upon between all sources (Chapter 5). Intuitively, a claim supportealltsources must be
true, simply because there is no other source rebutting it. However, il wodd scenario

this might not necessarily be true since agreeing sources could betedtatavrong due to

119

copy/paste. As a solution, we proposed a novel corroboration agiptioat evaluates the claims
on a gradual basis. Different from existing methods that apply coration on all the claims
at once, we evaluate the claims one set at a time and gradually refine thetthstass of the
sources.

The third problem we studied was queries in which a single source is ineuaffto provide
a candidate answer (Chapter 6). To answer such queries, usergchietch and combine
information from multiple sources and construct a final answer. Theepsoof combining
information from two sources is similar to the join operation in a relational datedoad hence
the problem can be viewed as a join query processing over multiple dasab@be main
bottleneck of join query processing is tuple accessing which typically exhilgitsand variable
latency. For this problem, we propose a branch-and-bound algorithinighdly bounds the
scores of partial results and determines a good order in which it ascwséables so as to
minimize efforts in the computation of the top-k answers.

For each of the three problem, we demonstrate that there exists only tpyedach or
the challenges render the performance of the state-of-the-art algotébmthan satisfactory.
In comparison, our proposed approach for each problem significantlyerforms existing

approaches in answer accuracy and computational efficiency.

7.2 Future work

Based on the findings from the studies presented in this thesis, we idengiyakiiture work

directions that could be of interest and improve the strength of corrbbortechniques.

Corroboration over text-based answers

To the best of our knowledge, existing corroboration techniques in@udlims assumed the
presence of structured answers or the ease of extraction of suangwers from information
sources. This assumption might not hold for certain scenario in which¢his f@xt-based. For
example, news agencies usually report on breaking stories and prelgdant background tid-
bits. It could be of interest to certain group of people to verify the comess of those ‘gossips’.

As another example, users reviews posted online greatly affect peppiehase decision of a

120

product. Due to the pervasiveness of falsified user reviews it is saceto develop a corrobo-
ration technigue that can produce genuine and accurate produetseVieboth use cases, the
unique challenge is that the answers of interest are not entities or attrdfe®ntity but are
rather descriptions of past events or experiences. It is important teedefiroper data model
to accommodate such answers. In addition, different from existing tashsitipat consider
that two answers either agree or are in conflict, text-based answédsagyae with each other

while being phrased differently.

Use of a finer-grained trust scores for the sources

Most existing corroboration techniques use a single trust score farssagce. In Chapter 5
we proposed a multi-value trust score for the sources. In such a sedting,trust value is
used to evaluate a subset of the listings. The intuition is that each trust valdmés-grained
measure of a source toward a certain of group of listings. While we dimdveulti-value trust
scores using a heuristic approach, we could explore if such multi-valustisttores actually
correspond to one of the properties of the entities. For instance, it isnootmmon that a
source might be more accurate toward New York based restaurantstbeasource is more

up to date of restaurants serving Asian cuisine.

Exploring the dependency among facts

Several existing work [17, 18, 7, 16] have investigated the depereteamong the sources in
the sense that some sources might be copying information from otheesotttowever, most
existing techniques assumed that facts are independent or only ceasizesic functional de-
pendencies such as one that only one fact could be true when camgitter attribute value of
an entity. An exception is [26] in which the authors explored the relationshigmg multiple
attributes of entities (denoted as denial constraints) when computing theudesaay. In prac-
tice, facts are rarely completely independent and taking into considerdiiact dependencies
could help us leverage domain specific knowledge. As a simple exampléjeoasource that
provides personnel contact information includimgme addresseendphone numberswWhile

it is not always true that theity information of theaddressrecord matches tharea codepart

of thephonerecord, a mismatching pair does not have the same probability that both aadues

121

true compared with a matching one. Instead of using the trust scores afutee o evaluate
the quality of the two attributes, it is more intuitive to plugging in the relationship batwe
attributes so as to improve the corroboration results.

The relationship between attributes do not necessarily have to come fraartteeentity.
Consider a data source that provides personnel contact informatiommjtihome addresses
as well as spousal information. By leveraging #ukliressnformation of the spouse personnel,
it is possible to design a corroboration algorithm that outperforms one tihatonsiders in-
dependent facts. However, the dependencies among the attributegghlthtuitive, are rarely
readily defined and easy to incorporated into a corroboration systenselihose information,
a suite of sub-problems (including schema matching, entity linking, etc) needkedsefore

a successful corroboration algorithm could be designed.

122

References

[1] Steven P. Abney, Michael Collins, and Amit Singhal. Answer extractiorProc. of the
6th Applied Natural Language Processing Conference (ANLR2000.

[2] David Azari, Eric Horvitz, Susan Dumais, and Eric Brill. Web-basedsiion answer-
ing: A decision-making perspective. Rroc. of the 19th Conference on Uncertainty in
Artificial Intelligence (UAI'03) 2003.

[3] Anton Bakalov, Ariel Fuxman, Partha Pratim Talukdar, and Soumeak(barti. SCAD:
collective discovery of attribute values. WWW

[4] Raju Balakrishnan, Subbarao Kambhampati, and Manishkumar Jisasgiag relevance
and trust of the deep web sources and results based on inter-sgueesnant. TWEB
7(2):11, 2013.

[5] Somnath Banerjee, Soumen Chakrabarti, and Ganesh Ramakrisbheaming to rank
for quantity consensus queries. SIGIR

[6] Yaniv Bernstein and Justin Zobel. Redundent documents andhseffectiveness. In
Proc. of 14th ACM International Conference on Information and Knogdéddanagement
(CIKM’05), 2005.

[7] Laure Berti-Equille, Anish Das Sarma, Xin Dong, A&tre Marian, and Divesh Srivastava.
Sailing the information ocean with awareness of currents: Discovery gplitation of
source dependence. GIDR, 2009.

[8] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Sheltel caching and zipf-
like distributions: Evidence and implications. Rroc. of the 18th IEEE International
Conference on Computer Communications (INFOCOM'3999.

[9] Sergey Brin, James Davis, and Hector Garcia-Molina. Copy deteatisrhanisms for
digital documents. IfProc. of the 1995 ACM International Conference on Management
of Data (SIGMOD’95) 1995.

[10] Jiangping Chen, Anne Diekema, Mary D. Taffet, Nancy J. Mc&ea¢ Necati Ercan
Ozgencil, Ozgur Yilmazel, and Elizabeth D. Liddy. Question answering: @nlihe
trec-10 question answering track. Pnoc. of the 10th Text REtrieval Conference (TREC
2001) 2001.

[11] Tao Cheng and Kevin Chen-Chuan Chang. Beyond pagesodimpefficient, scalable
entity search with dual-inversion index. EDBT.

[12] Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang. Entitgr&earching entities
directly and holistically. InProc. of the 33rd International Conference on Very Large
Data Bases (VLDB'07)2007.

123

[13] Yueh-Hsuan Chiang, AnHai Doan, and Jeffrey F. Naughtormd@ling entity evolution
for temporal record matching. Imternational Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2(daes 1175-1186, 2014.

[14] Thomas M. Cover and Joy A. ThomasElements of information theary Wiley-
Interscience, New York, NY, USA, 1991.

[15] Nilesh Dalvi and Dan Suciu. Management of probabilistic data: fatinods and
challenges. InProc. of the 26th ACM symposium on Principles of database systems
(PODS’07) 2007.

[16] Xin Dong, Laure Berti-Equille, Yifan Hu, and Divesh Srivastav@lobal detection of
complex copying relationships between sourd®gLDB, 3(1):1358-1369, 2010.

[17] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. gnééing conflicting data:
The role of source dependend&v/LDB, 2(1):550-561, 2009.

[18] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava.tfiiscovery and copying
detection in a dynamic worldPVLDB, 2(1):562-573, 2009.

[19] Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, KeWturphy, Shao-
hua Sun, and Wei Zhang. From data fusion to knowledge fu$t.DB, 7(10):881-892,
2014.

[20] Xin Luna Dong, Barna Saha, and Divesh Srivastava. Less i®:n®electing sources
wisely for integration.PVLDB, 6(2):37—-48, 2012.

[21] Xin Luna Dong and Divesh Srivastava. Big data integratiBWLDB, 6(11):1188-1189,
2013.

[22] Doug Downey, Oren Etzioni, and Stephen Soderland. A probabihstidel of redun-
dancy in information extraction. IICAI, 2005.

[23] Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin, and Andrew Ng. Vdelestion
answering: Is more always better? SIGIR 2002.

[24] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. VerykiDsiplicate
record detection: A surveyEEE Trans. Knowl. Data Eng19(1):1-16, 2007.

[25] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation ahguos for mid-
dleware.Journal of Computer and System Sciences (JO&%)), 2003.

[26] Wenfei Fan, Floris Geerts, and Jef Wijsen. Determining the cuyreihdata. ACM Trans.
Database Syst37(4):25, 2012.

[27] Yi Fang, Luo Si, Zhengtao Yu, Yantuan Xian, and Yangbo Xu. Emnttyieval with hi-
erarchical relevance model. Rroc. of the Eighteenth Text REtrieval Conference (TREC
2009) 2009.

[28] Alban Galland, Serge Abiteboul, Aglie Marian, and Pierre Senellart. Corroborating
information from disagreeing views. WSDM pages 131-140, 2010.

124

[29] Liang Ge, Jing Gao, Xiao Yu, Wei Fan, and Aidong Zhang. Estimatinglimformation
trustworthiness via multi-source joint matrix factorization. I@DM, pages 876—881,
2012.

[30] Luis Gravano, Panagiotis G. Ipeirotis, Nick Koudas, and DivaslaStava. Text joins for
data cleansing and integration in an rdbmslGBDE, pages 729731, 2003.

[31] Sanda M. Harabagiu, Dan |. Moldovan, Marius Pasca, RadaltéhaMihai Surdeanu,
Razvan C. Bunescu, Roxana Girju, Vasile Rus, and Paul Morardsmiaon: Boosting
knowledge for answer engines. Rroc. of the 9th Text REtrieval Conference (TREC-9)
2000.

[32] Eduard H. Hovy, Laurie Gerber, Ulf Hermjakob, Michael Junkg €hin-Yew Lin. Ques-
tion answering in webclopedia. Proc. of the 9th Text REtrieval Conference (TREC-9)
2000.

[33] Eduard H. Hovy, Ulf Hermjakob, and Chin-Yew Lin. The use of ertd knowledge of
factoid qa. INTREG 2001.

[34] Ihab F. llyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supportingkdgpin queries
in relational databases. WiL.DB, pages 754—765, 2003.

[35] Valentin Jijkoun and Maarten de Rijke. Retrieving answers fromueady asked ques-
tions pages on the web. Proc. of the 14th ACM International Conference on Informa-
tion and Knowledge Management (CIKM'0rages 7683, 2005.

[36] Richard M. Karp and Michael Luby. Monte-carlo algorithms for erasation and relia-
bility problems. InNFOCS 1984.

[37] Gjergji Kasneci, Jurgen Van Gael, David H. Stern, and Thorefh Cobayes: bayesian
knowledge corroboration with assessors of unknown areas oftesgeinWSDM pages
465-474, 2011.

[38] Gjergji Kasneci, Fabian Suchanek, Maya Ramanath, and Geffeikdim. How naga un-
coils: Searching with entities and relations.Aroc. of the 16th International Conference
on the World Wide Web (WWW’Q2007.

[39] Benny Kimelfeld and Yehoshua Sagiv. Maximally joining probabilistic ddtePODS
pages 303-312, 2007.

[40] Jon M. Kleinberg. Authoritative sources in a hyperlinked environme J. ACM
46(5):604—-632, 1999.

[41] Yannis Kotidis, Anglie Marian, and Divesh Srivastava. Circumventing data quality prob-
lems using multiple join paths. IGleanDB 2006.

[42] Nick Koudas, Amit Marathe, and Divesh Srivastava. Flexible strimagching against
large databases in practice. Pnoc. of the 30th International Conference on Very Large
Data Bases (VLDB’'04)ages 1078-1086, 2004.

[43] Cody C. T. Kwok, Oren Etzioni, and Daniel S. Weld. Scaling quessioswering to the
web. InWWW 2001.

125

[44] Jian Li, Barna Saha, and Amol Deshpande. A unified approaantarrg in probabilistic
databases. INLDB, pages 502-513, 2009.

[45] Pei Li, Xin Luna Dong, Andrea Maurino, and Divesh Srivastaviainking temporal
records.PVLDB, 4(11):956-967, 2011.

[46] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Diveshvastava. Truth
finding on the deep web: Is the problem solvde?LDB, 6(1):550-561, 2013.

[47] Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-k queres web-
accessible database®CM Transactions on Database Systems (TQRS(8), 2004.

[48] Amélie Marian, Luis Gravano, and Nicolas Bruno. Evaluating top-k queres web-
accessible databaseSCM Trans. Database Sys29(2), 2004.

[49] Amélie Marian and Minji Wu. Corroborating information from web sourdé&EE Data
Eng. Bull, 34(3):11-17, 2011.

[50] Andew McCallum. Information extraction: distilling structured data fronstouctured
text. ACM Queue3(9):48-57, 2005.

[51] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Shangnd Jeffrey Scott
Vitter. Supporting incremental join queries on ranked inputsVILDB, pages 281-290,
2001.

[52] Aditya Pal, Vibhor Rastogi, Ashwin Machanavajjhala, and Philip Batzem Information
integration over time in unreliable and uncertain environmentsvYWiW 2012.

[53] Marius Pasca and Sanda M. Harabagiu. High performance guéstgwering. IrProc.
of the 24th Annual International ACM SIGIR Conference (SIGIR’@@P1.

[54] Jeff Pasternack and Dan Roth. Knowing what to believe (wherayt@ady know some-
thing). INnCOLING, pages 877-885, 2010.

[55] Jeff Pasternack and Dan Roth. Making better informed trust desisidth generalized
fact-finding. InIJCAI, pages 2324-2329, 2011.

[56] John M. Prager, Eric W. Brown, Anni Coden, and Dragomir Rd&®a Question-
answering by predictive annotation. Pnoc. of the 23rd Annual International ACM SIGIR
Conference (SIGIR’00R000.

[57] Dragomir R. Radev, Weiguo Fan, Hong Qi, Harris Wu, and Amardesgwal. Proba-
bilistic question answering on the web. Pnoc. of the 11th International Conference on
World Wide Web (WWW’02pages 408-419, 2002.

[58] Christopher R, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query evaluation on
probabilistic data. INCDE, pages 886—895, 2007.

[59] Theodoros Rekatsinas, Xin Luna Dong, and Divesh Srivast&zaracterizing and se-
lecting fresh data sources. 8iIGMOD, 2014.

[60] Mohamed A. Soliman, lhab F. llyas, and Kevin Chen-Chuan Charg-k query pro-
cessing in uncertain databasesI®DE, pages 896-905, 2007.

126

[61] Matthew Solomon, Cong Yu, and Luis Gravano. Popularity-guideektegtraction of
entity attributes. InWebDB 2010.

[62] Swapna Somasundaran, Theresa Wilson, Janyce Wiebe, aalih\@®yanov. Qa with
attitude: Exploiting opinion type analysis for improving question answering Hinen
discussions and the news. Pnoc. of the International Conference on Weblogs and Social
Media 2007.

[63] Sandeep Tata and Jignesh M. Patel. Estimating the selectivitydifoased cosine simi-
larity predicatesSIGMOD Record36(2):7-12, 2007.

[64] Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf Schenlgld Gerhard
Weikum. Topx: efficient and versatile top- query processing for sendistred data.
VLDB J, 17(1):81-115, 2008.

[65] Martin Theobald, Jonathan Siddharth, and Andreas Paepcketsi§a robust and ef-
ficient near duplicate detection in large web collections. Ptoc. of the 31st Annual
International ACM SIGIR Conference (SIGIR'0®ages 563-570, 2008.

[66] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k yesaluation with
probabilistic guarantees. IRroc. of the 30th International Conference on Very Large
Data Bases (VLDB’'04)2004.

[67] TREC Question Answering Track.

[68] Leslie G. Valiant. The complexity of enumeration and reliability proble8i&\M Journal
on Computing8:410-421, 1979.

[69] Frank Wilcoxon. Individual comparisons by ranking methodBiometrics Bulletin
1(6):80-83, 1945.

[70] Minji Wu, Laure Berti-Equille, Antlie Marian, Cecilia M. Procopiuc, and Divesh Srivas-
tava. Processing top-k join querié®YLDB, 3(1):860-870, 2010.

[71] Minji Wu and Amélie Marian. Corroborating answers from multiple web sources. In
Proc. of 10th International Workshop on Web and Database (WebDB2007.

[72] Minji Wu and Amélie Marian. A framework for corroborating answers from multiple
web sourceslnf. Syst, 36(2):431-449, 2011.

[73] Minji Wu and Amélie Marian. Corroborating facts from affirmative statement&EMBT,
pages 157-168, 2014.

[74] Jinxi Xu, Ana Licuanan, Jonathan May, Scott Miller, and Ralph \dleéslel. Trec2002
ga at bbn: Answer selection and confidence estimatiorRrde. the 11th Text REtrieval
Conference (TREC’'022002.

[75] Hui Yang and Tat-Seng Chua. Qualifier: Question answering hgdéfabric and exter-
nal resources. IRroc. of the Conference of the European Chapter of the Association for
Computational Linguisticpages 363—370, 2003.

[76] Xiaoyan Yang, Cecilia M. Procopiuc, and Divesh Srivastavacdr@nending join queries
via query log analysis. IICDE, pages 964-975, 2009.

127

[77] Ke Yi, Feifei Li, George Kollios, and Divesh Srivastava. Effidigmocessing of top-k
gueries in uncertain databases|@bE, pages 1406-1408, 2008.

[78] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery with multiplenfiicting
information providers on the web. KDD, 2007.

[79] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery with multiplenflcting
information providers on the welbEEE Trans. Knowl. Data Eng20(6):796—-808, 2008.

[80] Dell Zhang. Web based question answering with aggregation sgrdteBroc. of the 6th
Asia-Pacific Web Conferencpages 353-362, 2004.

[81] Bo Zhao, Benjamin I. P. Rubinstein, Jim Gemmell, and Jiawei Han. Adiagepproach
to discovering truth from conflicting sources for data integrat®WLDB, 5(6):550-561,
2012.

[82] Zhou Zhao, James Cheng, and Wilfred Ng. Truth discovery in degarss: A single-pass
probabilistic approach. I€IKM, pages 1589-1598, 2014.

[83] G. Zipf. Selective Studies and the Principle of Relative Frequency in Langu#ayward
University Press, 1932.

[84] George K. Zipf. Human Behavior and the Principle of Least EfforAddison-Wesley
(Reading MA), 1949.

