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ABSTRACT OF THE DISSERTATION

Corroborating Information from Multiple Sources

by Minji Wu

Dissertation Director: Amélie Marian

Information on the Internet is abundant but often inaccurate. Given a query that has a unique

answer (as opposed to a Web query against a search engine), different Web sources might

provide multiple conflicting answers. As a result, users are left with the burden of validating

the correctness of the answer from each source. In order to tackle thisproblem, corroboration

techniques have been proposed in order to identify the correct answergiven a set of candidate

answers extracted from the sources. Corroboration is the technique that evaluates the quality

of the answers by considering the trustworthiness of the sources from which the answers are

extracted. Intuitively, an answer extracted from a trustworthy source ismore likely to be the

correct answer. In return, the more correct answers it reports, themore trustworthy a source is.

Unfortunately, several challenges arise before we can successfullyapply a corroboration

technique to find the correct answer to a query. First of all, the prime challenge is how to

evaluate the trustworthiness of the sources and henceforth derive the quality of an answer based

on the sources reporting it. Secondly, in a case where all the sources agree on a single candidate

answer, how to validate the correctness of the answer. Third, in an application in which each

source only provides a partial answer and the final answer is a combination of partial answers

from multiple sources, how to evaluate the quality of answers and how to efficiently compute

the correct answer. This thesis investigates several real world problems and proposes novel

corroboration techniques that address each of the challenges presented above.
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We first studied the problem of using corroboration for the task of question answering.

With many web sources providing conflicting information on the Internet, users often have to

rummage through a large number of different sites to both retrieve the information and ascertain

the correctness of the retrieved information. While a naive approach thatreturns the most

frequent answer can eliminate outlier answers such as typos, it fails to consider the fact that

answers extracted from different pages are rarely equally important inanswering the query. By

ranking the answers based on the number, relevance and similarity of the web sources reporting

them, as well as the prominence of the answers within the sources, our algorithm is able to

efficiently identify accurate answers for most queries.

We investigated the problem of verifying the correctness of claims that are unanimously

agreed upon among all sources. Intuitively, a claim supported by all the sources must be true,

simply because there is no other source rebutting it. However, it might not bethe case in real

world scenarios since agreeing sources might be out-dated or due to copy/paste. In such a

scenario, existing corroboration approaches tend to reach consensus quickly and conclude that

all claims are true since there is little conflict among the sources. We studied this problem in

a real world scenario (restaurant listings) and proposed a novel corroboration algorithm that

evaluates the claims on a gradual basis. More specifically, our approachdivides the claims into

multiple sets and evaluates each set of claims using a different trust score from each source.

Different from existing algorithms that assign a single trust score to each source, our approach

computes a set of finer-grained trust scores for each source that is used to evaluate different set

of claims.

In real world scenarios there often exist queries in which a single source is insufficient to

provide a candidate answer. To answer these queries, users have to fetch and combine informa-

tion from multiple sources and derive a potential final answer. Such cases are similar to the case

of finding air ticket between two points without direct flight, and differs in that there is no cen-

tralized source (e.g., Expedia.com) that provides the information of all connecting flights. The

process of combining information from two sources is similar to thejoin operation in relational

databases and therefore this problem can be viewed as a join query processing over multiple

web-accessible databases. The main bottleneck of join query processingis tuple accessing of
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web databases, which typically exhibit high and variable latency. In orderto find the top-k an-

swers for a join query, a branch-and-bound algorithm has to be developed to avoid computing

scores of all candidates exhaustively. Our method efficiently computes bounds for partial query

results and determines a good order in which it accesses the tables so as to minimize wasted

efforts in the computation of top-k answers.

In summary, this thesis studies real world problems that involve information from multiple

sources. We demonstrate that using information from a single source is often of low quality and

in some cases insufficient. We discuss the challenges in each individual problem and present

novel corroboration algorithms that efficiently compute scores for the answers by taking into

consideration of the trustworthiness of the sources.
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Chapter 1

Introduction

Recent advancement in the Web 2.0 technologies has fueled the explosion ofonline data. The

huge amount of data has enabled applications in many domains such as business, education, etc.

However, the data itself, be it from the Web, or from a database, or froma set of documents,

is never certain. By certain, we mean that the correctness of the data cannot be blindly trusted.

The is due to that data can be erroneous, misleading, biased and easily plagiarized. For instance,

news sites sometimes post conflicting information pertaining to a certain event. Even the data

from the most authoritative sources has the risk of being outdated. Therefore in order to assure

certainty, data needs to be vetted before it can be used where data quality isof importance.

Consider the following user example.

Example 1: Consider a tourist named Joe wants to find a restaurant for dinner at Mid-

town Manhattan. After consulting with restaurant listing apps on his smartphone, he chose

a restaurant named “Danny’s Grand Sea Palace” located at ‘346 West 46th St, New York’.

Unfortunately, after walking to the exact address, Joe finds out that the restaurant has already

been closed (for good). Although the restaurant is listed at two reputable sources, Citysearch

(http://newyork.citysearch.com) and Yellowpages (http://www.yp.com), thereality is that it has

already gone out of business, and consequently results in a bad user experience for Joe.

The quality of information is undoubtedly crucial to the success of web applications. To

measure the data quality, an important observation is that multiple sources may provide infor-

mation on the same topic that is of interest. For instance, for the topic “Whether the restaurant

named Danny’s Grand Sea Palace is open”, 2 sources (CitysearchandYellowpages) sayyesand

all other sources (e.g., Yelp!, etc) report unknown. Given the listing information from multiple

sources, the task is to derive the correct information for the above topic.
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The availability of data from multiple sources on the same topic has opened the gate of

finding the correct information with the presence of low quality data. For the ease of discussion,

let us consider the topics of interest asqueries, to which each source provides a candidate

answer. To find the correct answer from a set of candidate answers, the most straightforward

way is through voting in which the answer reported by the most sources is selected as the

correct answer. Unfortunately, voting based methods suffer from thefact that sources may be

untrustworthy, and the correct answer could be outvoted by incorrectones from a large number

of unreliable sources.

To tackle this problem, corroboration techniques have been proposed that identify the cor-

rect answer by taking into consideration the trustworthiness of the sources. Intuitively, trustwor-

thy sources are more likely to provide correct answers than unreliable sources. Consequently,

answers from reputable sources should carry more weight in determiningthe right answer com-

pared with the ones from untrustworthy sources. Corroboration techniques work by assigning

a score to each source that represents its trustworthiness and use it to compute a score for each

candidate answer that represents how likely it is the correct answer. The answer with the highest

score is then selected as the correct answer.

This thesis studies the problem of finding the correct answer among a set of candidate an-

swers provided from multiple sources. In particular, we propose novelcorroboration algorithms

that leverage the trustworthiness of the sources. In the remaining of the chapter, we first list

the major challenges (Section 1.1) in designing corroboration algorithms and then give a brief

introduction (Section 1.2) to the problems we discuss in the next few chapters. We summarize

this chapter in Section 1.3.

1.1 Challenges

The two major metrics of a corroboration algorithm is correctness and efficiency. Naturally,

the most important challenge is how to design the algorithm such that it can identify the correct

answer for as many queries as possible. In the meantime, it is also important to identify the

correct answer efficiently, especially in cases in which the accesses to remote sources are costly.

We break these two challenges into smaller ones as below
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• The most important challenge is how to estimate the trustworthiness of the sources, since

an accurate estimation is the basis of computing the probability that an answer is the

correct answer. Estimating the trust scores for the sources is difficult, since there is little

to no prior knowledge about the sources or the candidate answers.

• Given a set of sources as well as their estimated trust scores, another key challenge is

how to compute a score for the candidate answer that represents the likelihood it is the

correct one. It is not clear how to combine the scores of the sources to derive the score

of the answers.

• Given a set of sources that provide candidate answers to queries, how and in what order

to select sources that is to be used for corroboration. Obviously retrieving all sources to

process incurs prohibitive costs and could be impossible in cases where the number of

sources is unbounded. It is crucial to design a way of selecting sources so that the correct

answer can be found efficiently.

• How to design a branch-and-bound algorithm such that it can prune outunnecessary

score computations and source accesses as much as possible. Users are interested in

the information of the highest quality, our corroboration algorithm should beable to

efficiently return the top-k answers.

The problems we are going to discuss in the following chapters present several or all of the

challenges listed above. We did not list some additional challenges such as extracting answers

from sources, simply because we leveraged existing tools and do not consider it as one of our

contributions.

1.2 Our contribution

This thesis studies 3 problems with uncertain data and tries to find the correct answer for the

queries. These problems cover uncertain data from different types ofsources (the Web and

databases). As we show in subsequent chapters, each problem presents a set of challenges

mentioned before. In particular, for each of the problems, our proposed corroboration method

focuses on addressing one of the major challenges. In the following sections, we give a brief
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description for each of the 3 problems we studied, namely, question answering (Section 1.2.1),

unanimous answer assertion (Section 1.2.2), and top-k join query processing (Section 1.2.3).

As the most important challenge, how to estimate the trust scores of the sources is inves-

tigated in all 3 problems and is the core focus of the first 2 problems. In particular, we dealt

with cases in which there exists prior knowledge that can be leveraged to infer the quality of the

sources, as well as cases in which no useful information is available regarding the sources. In

the question answering problem (Section 1.2.1), our corroboration algorithm is able to utilize

the meta-data of the sources (e.g., the ranking) to estimate how trustworthy a sources is. The

problem is also unique in that there is an extra level of uncertainty due to the limitation of the

information extraction techniques through which we used to extract candidate answers. In con-

trast, for the task of asserting unanimous answer (Section1.2.2), estimating the trust scores for

the sources becomes more difficult as there is no knowledge about the sources to begin with.

Therefore, we have to iteratively compute the scores for the sources and answers based on the

answers each source provide until a convergence is reached. To make things more challeng-

ing, since most of the answers are unanimous, there is little conflict among the answers and

consequently making the iterative method converge to perfect sources. Our proposed method

circumvents the challenges by assigning multiple trust scores to the sources and making the

decisions on the answers using one of the score values.

We turn our focus to the challenge of designing an efficient corroborationalgorithm in the

problem of top-k join query processing (Section 1.2.3). For both the question answering and

unanimous answer asserting, despite that the focus is to derive the correct answer, we mea-

sured the time complexity of our proposed methods and demonstrate that they are adequately

efficient. In this problem, the queries are much more complicated in that in orderto obtain a

candidate answer, it requires to retrieve and combine information from multiplesources. Each

source under this problem only hosts partial information of potential answers and the candidate

answers are constructed byjoining partial answers based on a join graph. Top-k join query

processing presents significant challenges on the efficiency of algorithms since it is not viable

to retrieve information from all sources due to its prohibitive costs and therefore significant

pruning is required.
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1.2.1 Question answering

Question answering is the task of returning a direct answer to a user query instead of a set of

Web documents through which the user has to browse in order to find the answer. Such ques-

tions could be ‘Who was the first astronaut that orbited the earth?’, or ‘What is the gas mileage

of Fusion 2014?’. The huge amount of data on the Internet makes it a perfect knowledge base

for question answering. However, it is possible to find different or even conflicting answers

for a given query. In such a case, a frequency based approach may not work well, especially

in a scenario where a large number of untrustworthy sources are present. As a result, question

answering is an application that can directly benefit from corroboration systems. To tackle this

problem, we propose a novel corroboration algorithm that correctly andefficiently returns the

top-k answers for each query (Chapter 4). The key observation is that answers extracted from

different sources are rarely equally important in answering the query.By ranking the answers

based on the number, relevance and similarity of the sources reporting them,as well as the

prominence of the answers within the page, our algorithm is able to identify accurate answers

for most queries [71] [72].

1.2.2 Asserting unanimous answers

It is intuitive that for a query with conflicting candidate answers, there exists uncertainty with

respect to the correct answer, and hence the need for a corroboration system. However, corrob-

oration also helps when all sources agree on one candidate answer, asillustrated in Example 1.

In this scenario, our objective is to identify legitimate restaurants given the listing information

from a set of reputable sources. A legitimate restaurant is defined as onethat is up and running

and in good business shape. Example 1 shows that even if a restaurant islisted at one or mul-

tiple reputable sources it might still be illegitimate. In other words, an answer agreed upon by

all the sources does not necessarily indicate that the answer is the correct one. For such a task,

state-of-the-art corroboration techniques do not work very well dueto the fact that they rely on

conflicting information to differentiate the trustworthiness of the sources. Withlittle conflicts

among the answers, existing methods usually result in a trust score close to 1for all the sources

and answers. To tackle this problem, we propose a novel corroborationalgorithm that utilizes
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a multi-value trust score for each source. Our algorithm incrementally evaluates the restaurants

by considering the information entropy of the unknown restaurants and significantly improve

the accuracy of the corroboration results [73].

1.2.3 Processing top-k join queries

Although we measured the time complexity of our corroboration algorithms for theabove two

problems, we are more interested in improving the answer accuracy. For thecomplex problem

of top-k join query processing, algorithm efficiency is of more importance and we turn our

focus to designing an efficient corroboration algorithm. A join query is a query against a set

of database tables as sources whose answer is composed of a tuple fromeach source, each of

which is uncertain with a probability score. The join operation is based on a joingraph that

specifies the join relations among sources. Different from the first two problems in which a

candidate answer can be independently retrieved from a source, a candidate answer for a join

query requires expensive sorted and random accesses over the sources and therefore is much

more costly. While the number of candidate answers for the first two problemsis bounded by

the number of sources, the number of candidate answers for a join querycan go as much as

the product of the number of tuples of all sources. To tackle this problem, we propose a novel

branch-and-bound algorithm that maintains a set of partial candidate answers and incrementally

determines a good order in which to retrieve tuples from the tables so as to minimizethe efforts

of data accesses.

1.3 Summary

We present the major challenges for a corroboration system and briefly discussed the scenarios

this thesis covers. We demonstrate how to address the challenges in each ofthe scenarios in

the following chapters. The rest of the thesis is organized as follows. We discuss related work

in Chapter 2. Formal definitions and notations are introduced in Chapter 3. We present our

corroboration algorithm for question answering in Chapter 4. We then discuss corroboration of

affirmative statements in Chapter 5, followed by our work in corroboration over join queries in

Chapter 6. Finally the thesis is concluded in Chapter 7.



7

Chapter 2

Related Work

We discuss related work in this chapter. In order to make the discussion organized, we present

the relevant work in literature as follows. We first review the evolution of corroboration tech-

niques (Section 2.1). In particular, we examine frequency based approaches (e.g., voting) that

is considered the primitive form of corroboration in Section 2.1.1, and more advanced cor-

roboration methods that are proposed more recently in Section 2.1.2. We also discuss recent

advancement in determining the data dependencies among sources (Section2.2) which could

greatly affect the corroboration results. Lastly, since corroboration techniques aim to return the

top few best answers, we cover the topic of top-k query processing that are extensively studied

in the research community.

2.1 Corroboration techniques

We consider corroboration a technique that evaluates the quality of answers by considering

the trustworthiness of the sources from which the answers are extracted. A frequency based

approach, by definition, selects the most frequent answer as the correct answer. Although it

does not explicitly take into consideration the quality of the sources, we consider it a special

case of corroboration methods that considers all sources are equally trustworthy. In the follow-

ing discussion, we first present frequency based approaches before jumping to approaches that

differentiate the trustworthiness of the sources.

2.1.1 Frequency based approaches

Early works have considered the frequency of an answer as a measure of answer quality [22,

43, 23, 2]. The Mulder system, proposed in [43], uses frequency ofanswers to increase answer

scores. This approach is similar to our page-frequency approach we examined in Chapter
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4.5.2. The models proposed in [22, 23, 2] consider answer frequency at the extraction-rule

level, i.e., the score of an answer is increased if it is extracted from several high-quality rules

or query rewrites, but not at the source level. In other words, an answer repeatedly extracted

from an unreliable source using multiple rules receives a high score despite the fact that it is

from an untrustworthy source. [22] proposes a probabilistic model to estimate the impact of

repeated extraction from the web. The AskMSR system [2, 23] uses several query rewrites and

n-gram extraction and considers answer redundancy in its answer scoring strategy. However,

the redundancy is based on the number of answers returned by different query rewrites, and

does not consider the quality of the sources reporting the answer.

[74] proposes a novel approach containing a set of features of answer context to estimate

the answer confidence extracted from documents. However, when applied to a large corpora

(e.g., the Web), their approach simplifies to a frequency based approach. [80] proposes a novel

approach that assigns scores to answers by comparing the query and the snippets from which

the answers are extracted. In particular, for each answer, the snippets from which the answer

is extracted are clustered and a bag-of-words feature vector is constructed for the answer. The

answer score is then computed using the feature vector of the cluster and the query. However,

their approach considers all the source snippets equally helpful and could be ineffective when

a large number of low-quality sources are present.

There are also work that has focused on identifying entities from large data collections and

answering queries on these entities. In particular, the WISDM system [12]focuses on entity

search and proposes a probabilistic framework to rank entities extracted from web pages by

considering the context around entities. The NAGA system [38] providessemantic knowledge

to improve web search engine results. Neither systems operate on live web data, but on indexes

built over web-extracted data. Our corroboration system for question answering bears some

similarity with the problem ofentity finding, which has been studied since the introduction of

TREC entity track in 2009. The task of entity finding is, given a query containing an input

entity with its name and homepage, to find related entities that are of a target type.Fang et

al [27] proposed a hierarchical model for entity finding by consideringthe similarity between

the query keyword and the document as well as the passage, from whichentity candidates are

extracted.
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2.1.2 Advanced corroboration

To the best of our knowledge, our techniques in [71, 72] are the first tocombine various mea-

sures of the trustworthiness of web sources, as well as the quality of the answers within the

sources, and the frequency of these answers within the search enginequery result. Using

corroboration as a measure of answer quality has recently been suggested in non-web sce-

narios [41] where corroborating information is used to identify good answers across multiple

databases in the presence of low quality data. In [5], the authors studied the problem of ex-

tracting and ranking numerical quantity answers from snippets. Their algorithm learns to score

and rank quantity intervals by combining snippet quantity and text information.However, their

snippet scoring is based on thetf-idf score as well as lexical proximity features and does not

necessarily represent the trustworthiness of the sources.

More recently, a family of iterative corroboration techniques [79, 40, 28, 49, 54, 81, 29, 55]

have also been proposed in finding the correct value among a set of conflicting values for an

object (see a survey in [46]). An iterative corroboration technique usually assumes no prior

knowledge regarding either the sources or the answers. Starting with a default score for each

source and each answer, such approaches compute scores for the sources based on their votes

on the answers. In return, the scores for the answers are calculated using the computed scores

for the sources. The scores for the sources and the answers are then iteratively computed until a

convergence is reached. An early example is in [40], in which the author proposes a link-based

approach that iteratively computes a hub and authority score that are the sums of one another.

Yin et al. [79] proposed a novel iterative algorithm called TRUTHFINDER that uses Bayesian

analysis and finds true facts among conflicting information. In particular, theanswer score is

calculated based on the quality of the providers. In addition, TRUTHFINDER takes into con-

sideration the similarity among answers and boost the scores of answers if similar answers

exist. Galland et al. in [28] proposed a suite of algorithms (namely, COSINE, TWOESTIMATE,

THREEESTIMATE) that iteratively estimates the probability that an answer is correct and the

trustworthiness of the sources. The COSINE algorithm computes the trust score of the sources

as the cosine similarity between the votes of the source and the estimated probability of the

answer. The TWOESTIMATE algorithm differs from the COSINE approach by calculating the
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trustworthiness of a source as the average probability of all the answersit provides. In return,

the probability of an answer is computed as the average trust scores of thesources. In order

to avoid the algorithm to converge on local optima, TWOESTIMATE normalizes the score of

the sources and the answers to the closest value in{0,1}. In addition, to quickly stabilize the

algorithm, the computation uses a linear combination of the non-normalized and normalized

value. The THREEESTIMATE improves over TWOESTIMATE by considering a third variable

that represents the likelihood a vote on an answer is correct (in other words, how hard an an-

swer is). Under such settings, the more difficult answers a source correctly provides, the more

trustworthy it is.

Pasternack et al. [54] approach the fact-finding problem by incorporating prior knowledge

and propose a set of algorithms (AVGLOG, INVEST AND POOLEDINVEST). In particular, their

framework translates prior knowledge, often derived from common sense as well as known

facts into linear program that enforces constraints on candidate answers. The AVGLOG ap-

proach tries to mitigate the overestimation of the trustworthiness of sources thatprovide more

answers in [40] by taking the average and logarithm values of the answerscores. In contrast,

the INVEST method considers that the trustworthiness of a source is uniformly (instead as a

whole) investedin computing the score of each answer it provides. The score of an answer

is then computed as a non-linear function of all invested trustworthiness from the sources. It

then calculates the trustworthiness of a source as the averaged sum of thescores of answers

it provides, proportional to its investment in each of the answer score. The POOLEDINVEST

algorithm updates the computation for the answer scores by linearly scaling each candidate

answer such that the sum of the answer score equals to the total investmentsfrom the sources.

As a step further, latest techniques [55, 19] try to improve existing fact-finding approaches

by incorporating the consideration of additional uncertainties, such as theones from answer

extraction, entity linkage and schema alignment. In [55] the authors introduceinto the fact-

finding solutions several uncertainties including the uncertainty in the answer extraction, the

uncertainty of the sources, the similarity among the answers and group memberships to which

sources may belong that can be used to infer the support for an answerit does not explicit

provide. Each of these uncertainties is then quantified as a score in [0, 1]and incorporated

into the corroboration algorithms proposed in [54]. Dong et al. [19] proposes the notion of
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knowledge fusionthat examines the role of data extractors in computing the probability of

each candidate answer. In particular, the authors adapt existingdata fusiontechniques in [17,

20] by considering the pair (Extractor, URL) as the sources. By presenting the limitation of

such simple adaptation, the authors propose several refinements that include considering finer

granularity of the sources, provenance selection and using the gold setto predict new extracted

answers.

In our study of asserting unanimous answers in Chapter 5, we propose acorroboration al-

gorithm that incrementally evaluates sources and answers. Such a method ismotivated by the

observation that sources may exhibit different trustworthiness over different queries. By eval-

uating queries using different trust scores from each source, our technique is able to improve

both the precision and recall of the answers. Dong et al. [21] investigated a set of state-of-the-

art corroboration techniques and concluded that there are possible improvements to information

corroboration. In particular, the authors observed that fractions of data from the same source

can have different quality and suggested that differentiating source quality for different cate-

gories of data could improve corroboration quality.

2.1.3 Corroboration over dynamic data

A significant factor that contributes to the data quality is the staleness of data.Indeed, data

generated nowadays becomes obsolete fairly fast in a dynamic world and itis important for

an information source to keep track of the latest value of an object. Unfortunately, it is often

observed that sources could delay, make mistakes or even miss on value updates. We in Chapter

5 investigated a typical case of this problem in which sources provided outdated information

such that it leads the sources to incorrectly agree with each other. We proposed an iterative

algorithm that significantly improves the quality of the corroboration results.

There are several existing works [26, 52, 18] that have studied the corroboration problems

in the presence of stale data. In those studies, it is common assumption that each source pro-

vides the full history of its observations on each data object. Fan et al. [26] studied the stale

data corroboration problem in databases when multiple rows of the same realworld entity con-

sisting outdated values are inserted into the database over time without any timestamps. Those

multiple rows of values about the same entity creates conflicts and confusionsto the users. To
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address this issue, the authors modeled the problem as the studying of data currency, to identify

the current values of an entity and to answer queries with the current values in the absence of

timestamps. The idea here is to infer the currency order between database tuples by leveraging

additional currency relationships (denoted as denial constraints) as well as the copying rela-

tionship among tables. The data currency problem is very similar to the one we investigated in

Chapter 5 in that the data values are missing timestamps and we also try to uncoverthe current

value of each listing. However, in our scenario the dataset is more limited in thatwe only pos-

sess a snapshot of data values. The fact that each data object has one value would render the

techniques in [26] unable to infer the currency order of the multiple values of the same object.

Pal et al. [52] presented a study on a similar problem in the context of the Internet in which

each source may provide values of an object at different points of its lifetime and the goal is

to determine the latent history of the value updates. This particular study differs from other

work in that it not only tried to identify the current value of an object, but also looks for its

entire update history. Given the assumption that sources may delay and miss value updates it is

extremely difficult that existing corroboration techniques can be effectively applied. To address

this problem, a generative model in which each observation from a sourceis considered a noisy

version of the true update is proposed. Several algorithms were given toinfer the mappings

between observations and true updates. However, as we mentioned before, this is another study

in which the underlying assumption is that the observation history of each source is known,

which is not true in our scenario.

Dong et al. [18] studied the problem of identifying the true values of data objects when

the update history of the sources is known. With date staleness in mind, the study considers

the quality of sources by the coverage, exactness andfreshness. Their technique uses a set of

Hidden Markov Models to decide whether a source copies from another source and at which

historical moment it copies. In addition, the authors developed a Bayesian model to decide

when the true value changes and what the new value is. Although the study has a different

assumption as ours in the same way as [26, 52] in that it also assumes the history of sources

updates is known, it is effective to cases in which the observations among sources are generally

in agreement, which is the focus of our study. Due to the similar nature in the underlying data

presented in [18], we tested our approach using the same dataset and reported the results in
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Chapter 5.

Another interesting study relevant to evolving data was presented in [59] inwhich Rekatsi-

nas et al. looked into the problem of source selection considering dynamic data sources whose

content change over time. The key observations here are that sourceswhich update the most

frequently may not be the ones with the most fresh information. In addition, selecting more

sources or acquiring more updates from a source might not necessarilyincrease coverage.

Driven by those observations, the authors introduced algorithmic framework using statistic

models to describe the quality and update patterns of the sources. While the source selection

problem is NP-complete, efficient local search algorithms with theoretical guarantees are pre-

sented. While the techniques proposed in this paper is not directly applicablein our scenario,

it provides insights of trade-off between the corroboration quality and cost when the price of

acquiring sources or updates is not negligible.

The dynamic nature of information generated nowadays has also prompted the study of

linking records that point to the same entity of different time with conflicting attribute values,

namely temporal record linkage. Often, a curated data source may store theinformation about

the same object over a long timespan. Since there might not always exist a unique key to iden-

tify each entity, it could be difficult to reconcile records that point to the sameobject but have

conflicting values. Traditional techniques (see survey in [24]) have focused on addressing value

conflict that arise from lexical heterogeneity, such as different data convention or schemas, or

even data entry errors. In other words, the assumption that those techniques hold is that the

conflict in values among different sources of the same entity is onlylexical, that those values

are the same in principle. However, such assumptions fail to recognize thatas time goes by, the

value of an entity attribute could indeed change which could make those techniques fall short.

Several works [45, 13] have addressed the problem of temporal record linkage in recent

literature. Li et al. [45] proposed the idea oftime decaywhich models the likelihood that the

value of an entity attribute changes over a time interval. In particular, the authors considered

two types of decays, namely,disagreement decaythat captures the probability with which the

values of an entity attribute over time disagree, andagreement decaythat captures the proba-

bility with which the values of two entities at different time interval may be the same. Using a
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labeled set to learn the decay probabilities, several clustering algorithms were proposed to com-

pute the similarity between records. In comparison, Chiang et al. [13] approached the problem

using a different model calculating the probability that a given attribute valuereappears over

time. This is based on the assumption that attribute values change in a way that is dependent

on its previous values. In addition, the proposed methods evaluate sets of records instead of

pairs of records which improves robustness and accuracy. In recognizing and modeling sophis-

tically the attribute value change, both works effectively addressed the temporal record linkage

problem.

2.2 Data Dependency

When considering the sources in answer corroboration, it is important to note that we implicitly

meanindependentsources. However, in the real world it is not uncommon to see sources

that are not independent in that they are copying/pasting information fromother sources. An

independent source provides genuine information independently, while copying sources present

plagiarized data from other sources. Our work in question answering addressed this issue by

considering theoriginality of the sources (Section 4.3.1) by dampening the trust score of the

sources that are detected as copying sources.

Dong et al. [17, 18, 7, 16] investigated the dependence among sourcesand its role in data

corroboration. The dependence among Web sources with respect to data corroboration was first

mentioned in [7] and challenges examined. To address those challenges, the authors propose 2

important intuitions to explore and provide some preliminary solutions to discoverdependen-

cies. In [17] the authors studied how to detect dependence among sources by using Bayesian

analysis. The important underlying assumption is that the morerare answers (e.g., incorrect

answers) 2 sources share, the more likely there exists dependence among them. Similar as

other data corroboration algorithm examined in Section 2.1.2, an iterative algorithm that takes

into consideration of copying detection as well as answer similarity is proposed and shown

to perform significantly better than existing methods. Different from the analysis in [17] that

focuses on asnapshotof answers provided from the sources, the authors in [18] investigated

the dependency detection and truth finding problem when the update historyof the sources is
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known. In particular, their techniques consider the coverage, exactness and freshness of the

sources and use a Hidden Markov Model for copy detection. In additionto pair-wise copying

detection based on common errors and update patterns, authors in [16] tryto discover the com-

plex dependences such as co-copying, transitive copying and copying from multiple sources

between a set of structured sources. The technique works by first identifying pair-wise copying

locally and then globally uncovering co-copying and transitive copying. Data dependence has

also been studied in querying the deep Web [4]. In [4], the authors investigated the problem

of retrieving and ranking deep web results (e.g., tables) and addressed the possible sourcecol-

luding problem. Sources are considered colluding if they copy from one another to artificially

boost their relevance score. The solution to detect the source dependence is to compare results

from the sources againstgeneral queries. The intuition is that if two sources return the same

results to general queries that have a large number of results, they are likely to be dependent.

2.3 Top-k Query Processing

Top-k query processing has been studied extensively in various areas; see, e.g., [25, 48, 66]).

In the typical top-k query model, the score of each object is computed based on a number of

attributes stored at data sources. The best known top-k algorithm is the threshold algorithm

(TA) proposed by Fagin et al. in [25], which requires both sorted and random accesses. The

NRA algorithm improves over TA by considering only sorted access, whichis cheaper than

random access. Marian et al. [48] proposed the Upper strategy for the case when only random

access is available. Theobald et al. [66] studied top-k queries with probabilistic guarantees

and proposed a series of approximate variants of TA to reduce the run-timecost. However, all

these studies assume that a universal ID for each object is available in each source, which is not

necessarily true in every scenario. As an instance, in the top-k join query processing scenario

(Chapter 6), a join result does not exist before probes are issued to each source.

Algorithms for top-k join query processing have been proposed in [34, 51]). Ilyas et al. [34]

introduced a rank-join algorithm that makes use of the individual orders of its inputs to produce

join results ordered on a user-defined scoring function. The rank-joinalgorithm [34] outper-

forms theJ* algorithm [51] by using a score-guided join strategy, effectively reducing the
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score threshold. However, these two approaches are designed for asingle join path, while we

consider a more general case of a join graph, and hence cannot be directly applied. In addition,

both of their models consider inner join, assuming that each answer in the top-k set meets the

join condition and instantiate scores on each data source, whereas in our model, a join result

could instantiate a subset of the data sources and still have a high score.

A join result that has an instantiated tuple on every edge of the query graphcan be translated

into a DNF formula, with one join condition corresponding to each source-to-sink path. In this

context, Ŕe et al. [58] proposed a novel approach for top-k queries in probabilistic databases.

The method runs several Luby-Karp simulations [36] in parallel, to approximate the score for

each answer. However, their approach requires that all answers becomputed a priori, and the

goal is to minimize the number of simulations. In our model, pre-computing all answers means

accessing all scores in each data source, which simplifies to the naive approach. In fact, our

explicit goal is to minimize the number of such source probes. Note, though, that the two

approaches are orthogonal: one could combine them in order to minimize both probing and

computation costs.

Top-k query processing in probabilistic database is studied in [60, 44, 77]. In probabilistic

databases, the rank of an item is decided by its score in combination with its probability. Soli-

man et al. [60] investigate two top-k semantics (U-Topk and U-kRanks) in uncertain databases

and propose new formulations for top-k queries. Yi et al. [77] propose an improved version

of algorithms for the same query. Li et al. [44] propose two parameterizedranking functions

(PRFω andPRF e) for top-k query in probabilistic databases and present novel generating

function-based algorithms for efficient query processing.

Theobald et al. [64] design the TopX retrieval engine for the top-k query processing for

semistructured data. In their work, they adopt theeagerstrategy to join tuples obtained from

sources after a round of sorted access, which could be incorrect. Inaddition, TopX assumes

that there exists a unique ID for each document (doc id) and it is accessible from each tuple,

which makes it not directly applicable to our problem. As such, theeagerstrategy is limited to

join tuples from sources that are neighbors of each other.
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Chapter 3

Preliminaries

We formally define the concepts and notations that are used throughout the thesis in this chapter.

Let S denote a set of sources and letQ be a set of queries. For each queryq ∈ Q, a source

s ∈ S may express opinion with respect to the query. Such an expression, which we call a

statement, may constitute a candidate answer for the query or provide partialinformation that

is relevant to a candidate answer. We also say a candidate answer can beextractedfrom a

source. As an example, a candidate answer can be extracted from a websource for the question

answering task. Given a set of queriesQ and a set of sourcesS (as well as their statements

overQ), a corroboration task is to identify the correct answer for each queryq ∈ Q.

3.1 Sources

We consider a sources ∈ S as a real-world object that expresses opinions about queries. A

source can be in the form of a database table (local or hosted at a remote site) or a document

(semi-structured or unstructured). We uses(q) to denote the statements from a sources for a

queryq. As an example, for a query ‘The highest mountain in the United States’, a source may

provide a statement as ‘Mountain McKinley’.

3.1.1 Extracting Statements

Depending on the nature of the sources,s(q) can be extracted using the following methods.

• Database tables: In such cases,s(q) can be extracted simply by issuing a database query.

In our model, we consider that both sorted and random accesses are allowed.

• Semi-structured documents: In such cases, a rule based extraction tool suffices to extract

s(q). For instance, in order to extract restaurant listings from several websites, we wrote
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a crawler that retrieves the listing web pages and used regular expression and a set of

simple rules to identify restaurant listings.

• Unstructured documents: Identifying answers for natural language queries in free texts

is a complex problem and poses significant challenges in a corroboration system. In such

cases, a suite of information extraction tools need to be employed to pinpoint thestate-

ments from the sources. In our question answering task, we used a rule-based approach

coupled with existing linguistic tools such as tokenizer and named entity recognizer to

accurately find answers for the queries (see detail in Section 4.2.1).

In addition to extracting answers, another challenge is how to merge similar answers or

entities. Often times, the same answer could be presented in different forms from different

sources. Record linkage is a non-trivial problem that has been studiedin the research commu-

nity. To solve this problem, we employ empirical techniques (Section 4.2.2 and Section 5.6.2)

for answer reconciliation.

3.1.2 Scoring Sources

We associate with each sources a measureσ(s) that represents its trustworthiness. The trust

score is a real number between 0 and 1, with 1 indicating a perfect sourceand 0 indicating a

completely wrong source. We define sources with a trust score between 0.5 and 1 aspositive

sources. In principle, positive sources are the sources that have more correct statements than

incorrect ones. Similarly, anegativesource is defined as a source with a trust score between 0

and 0.5. For convenience, we useσ(S) to denote the collective trust scores for all the sources

in S.

Single-value and multi-value trust scores: Traditionally, corroboration techniques [79, 40,

28, 49, 54, 29, 55] consider the trust scoreσ(s) for sources as a singular numerical value

between 0 and 1. This practice works fairly well in a number of applications.However, as

we demonstrate in Section 5.4.2 of Chapter 5, using one trust score for each source (coined

a single-value trust score based approach) does not work well in somescenarios. To address

its limitations, we propose a novel method (Section 5.5) that uses different trust values toward
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different queries for each source (called a multi-value trust score based approach).

3.2 Answers

3.2.1 Identifying Answers

In order to identify the correct answer for each query, the first step isto find all candidate

answers based on the statements from the sources. As we mentioned in Section 3.1, a statement

from a source in itself can be seen as a candidate answer in certain scenario (e.g., ‘Mountain

McKinley’ for the query ‘The highest mountain in the US’). As another example, for the query

‘Is Danny’s Grand Sea Palace open?’, the statements ‘Yes’ fromYellowpages andCitysearch

can also treated as a candidate answer.

In some other scenarios, however, the statements from the sources serve as partial infor-

mation that can be used to infer a candidate answer. For instance, consider the query ‘The

elevation of the highest mountain in the US’, the statement above (i.e., ‘Mountain McKinley’)

only serves as partial information and we need another statement (‘Mountain McKinley has a

summit elevation of 20,237 feet’) to complete a candidate answer.

Let f be a candidate answer and letC(f) = {s1(q), s2(q), · · · } be the statements from

s1, s2, . . . that are relevant tof . In the case where statements are in themselves candidate

answers, eachsi(q) in C(f) represents an occurrence off (Chapter 4 and 5). Otherwise, a

mechanism needs to be derived candidate answers (Chapter 6).

3.2.2 Scoring Answers

In order to identify the correct answer given multiple candidate answers,we propose techniques

to compute a probabilityσ(f) for each candidate answerf that represents the likelihood that

f is correct. A corroboration considers the answer with the highest probability score as the

correct answer. For convenience, we useFi andSj to denote the set of answers from sourcesi

and the set of sources that have statements for answerfj , respectively.
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3.3 Corroboration

The objective of a corroboration system is to identify the correct answerfor each query (based

onσ(f)) as well as to estimate the trust scoreσ(s) for each source. In principle, the relationship

between the computation ofσ(f) andσ(s) is intertwined. On one hand, the probability score

of σ(f) depends on the trustworthiness of the sources. On the other hand, the trust score for

a source is decided by the quality of answers it provides. We useCorrob() andUpdate() to

denote the operations that used to calculateσ(f) andσ(s), illustrated in Equation 3.1.

σ(fi) = Corrob(σ(Si))

σ(si) = Update(σ(Fi))

(3.1)

As a simple example, a frequency-based corroboration method computes thescore of an

answer as the number sources reporting it. In other words,Corrob() can be implemented as

|Si|. Since all the sources are treated equally in such a method,Update() is ignored by the

frequency-based method.

In practice, the design of a effectiveCorrob() andUpdate() is the key to the performance

of a corroboration system. Intuitively, due to the relationship betweenσ(f) andσ(s), we

need to know one of the scores to calculate the other, as is the case we describe in Chapter

4. However, even without any knowledge with either score, we can still adopt an iterative

algorithm to derive estimations for both scores. Essentially, we can start witha default score

for each source (or answer) and repeatedly calculatesσ(f) andσ(s) using a designedCorrob()

andUpdate() implementation until convergence is reached, illustrated below.

σ(k)(fi) = Corrob(σ(S(k−1)
i ))

σ(k)(si) = Update(σ(k)(Fi))

(3.2)

whereσ(k)(fi) is the score for answerfi atith iteration andσ(S(k−1)
i ) represents the trust score

for S at the(i− 1)th iteration.
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3.4 Cost Model

In addition to returning the correct answer for the queries, another objective of our corrobora-

tion system is to compute the answers efficiently. Since our system deals with heterogeneous

types of sources, we abstract the cost of corroboration systems usingthe number ofprobes

operation. A probe could be a database access (either sorted or random access), a document

retrieval, or a look-up in memory depending on the nature of the sources. In each of the sce-

nario we discuss in the following chapters, we use the same metric when evaluating different

corroboration systems.

3.5 Summary

We give a formal and detailed description of the concepts and notations in thischapter. More-

over, a brief discussion on how a corroboration system works is provided. In each following

application, we address the challenges using the concepts and notations introduced in this chap-

ter.
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Chapter 4

Corroborating Answers from Multiple Sources

4.1 Introduction

We start the technical contribution of this thesis by discussing how corroboration techniques can

help the task of question answering. Given a user issued factoid query,the question answering

task is to identify the correct answer from the Web. In this thesis, we consider afactoidquery

as one to which there exists a factual answer. For instance, a factoid query could be ‘Who is

Tom Hanks’ wife’, or ‘What is the highest mountain in the US’. To make the description and

evaluation of our technique tractable, we focus on factoid queries with succinct answers. For

instance, our discussion leaves out queries such as ‘Who is Abraham Lincoln?’ and ‘How to

repair a computer?’.

Typical web search engines return a list of web pages (or sources) that matches a set of

keywords input by users. Web search engines are increasingly efficient at identifying the best

sources for any given keyword query, and are often able to identify the answer within the

sources. Unfortunately, as we mentioned in chapter 1, many web sourcesare not trustworthy,

because of erroneous, misleading, biased, or outdated information. With many web sources

providing similar information on the Internet, users often have to rummage through a large

number of different sites to both retrieve the information in which they are interested, and to

ascertain that they are retrieving the correct information. In many cases,users are not satisfied

with —or do not trust— the results from any single source, and prefer checking several sources

for corroborating evidence, as illustrated in the following examples:

EXAMPLE 1: Consider a user interested in buying a car, and considering a specific brand

and make (e.g.,Honda Civic). One of the criteria influencing the decision is the gas mileage of

the car. However, the gas mileage information available on the Internet differs not only based

on the year of the car, but also based on the source from which the information is extracted: the
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Figure 4.1: Results for the query “first orbited the earth” using MSN Search

official manufacturer web site (up to 51 mpg in the Honda Civic example) hasa different value

than some other commercial web sites (40 mpg.Autoweb.com; 30/40mpg,Car.com). None

of these sources, all of which appear in the first page of results for the query “Honda Civic 2014

gas mileage” usingMSN Searchhas the “perfect” answer for the query, but they all provide

valuable information to the user.

EXAMPLE 2: Consider a user who wants to find out who the first astronaut who orbited

the earth was. Issuing the query “first orbited the Earth” to a commercialsearch engine returns

a list of web sources that are relevant to the query but provide different extracted answers as

shown in Figure 4.1. The correct answer, Yuri Gagarin, does not appear in the first search
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engine result; in fact, there are several results that does not contain anyvalid answer to the

user’s information need. However, several answer extracted from thesearch engine result pages

are potentially useful to the user as they provide correct answers to refinements of the user’s

query: Valentina Tereshkova was the first woman who orbited the earth,and John Glenn was

the first American to do so.

A naive approach to try to identify the correct answer would be to return the most frequent

answer found among the search engine query result pages. While this method can efficiently

eliminate outlier answers such as typos, it fails to consider the fact that answers extracted from

different pages are rarely equally important in answering the query, asall pages are not equally

trustworthy. In fact, such a frequency-based approach can be viewed as a simplified instance

of the corroboration techniques by considering all sources have the same trustworthiness. In

addition, it opens the gate to malignant behavior from spammers, who would betempted to

create multiple pages containing similarly erroneous information to boost the score of their

chosen answer.

In this chapter, we propose a framework to corroborate query results from different sources

in order to save users the hassle of individually checking query-relatedweb sites to corroborate

answers. In addition to listing the possible query answers from differentweb sites, we rank

the answers based on the number, relevance, and similarity of the web sources reporting them,

as well as the prominence of the answers within the sources. The existenceof several sources

providing the same information is then viewed as corroborating evidence, increasing the quality

of the corresponding information, as measured by a scoring function used to order answers.

Our techniques are built on top of a standard web search engine query result, and use existing

information extraction techniques to retrieve answers from web pages. Corroborating answers

from web sources presents several challenges:

• The main challenge of answer corroboration is the design of a meaningful scoring func-

tion. The scoring function should aggregate similar answers and take into account a

variety of parameters to identify the best answers.

• Accessing all the pages that match a given web search query to retrieve and compare

answers would obviously be very inefficient. We need to select web sources that are
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most likely to contain the best answers.

We propose the following contributions to address these challenges:

• Scoring of corroborated answers.We propose a framework to score corroborated an-

swers. Our approach considers several factors to score both the relevance of a page to

the query and the importance of the query answer within the page. By combining these

two factors we can assign a score to each individual answer based on how likely the

answer is to be the correct answer. We then aggregate the score of similaranswers. To

the best of our knowledge, our techniques are the first to consider notonly the frequency

of the answers in the web search engine result, but also the relevance and originality

of the pages reporting the answers, as well as the prominence of the answer within the

page (Section 4.3). In particular, our web page relevance score is based on search engine

rankings and modeled by a Zipf’s Law, an intuition empirically validated using theuser

clicks from a search engine log.

• Selecting the web sources from which to retrieve the answers.By focusing on the pages

that are most likely to contain good answers we are able to save on query processing

time. This is related to work on top-k query processing and the Threshold Algorithm

[25]; however, score bounds information, commonly used in top-k query processing,

cannot be used in a corroborative framework. We propose a method to consider a prefix

of the search engine query result for information extraction, dynamically deciding the

size of this prefix based on the distribution of answers (Section 4.4). We experimentally

evaluate the effect of the prefix size and show that our method is effective at reducing the

number of pages necessary to corroborate answers.

• Evaluating the quality of our proposed approach.We conducted a novel extensive qual-

itative and quantitative experiments on queries selected from the TREC Question An-

swering Track [67] and from a log of MSN query searches. Our experimental results

show that data corroboration significantly improves the quality of answers (Section 4.5).

We also show that for MSN queries, our corroborative answers correlate with user clicks

in the MSN search log.
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4.2 Extracting Answers

Our corroboration system is built on top of an existing search engine. Given a user keyword

query, our first step is to extract the candidate answers from the web pages returned by the

search engine. The challenge is to efficiently retrieve, and identify, fromthese web pages the

data that qualifies as an answer to the query. For instance, to retrieve answers for the query in

Example 1, we need to identify gas mileage values that correspond to a 2014 Honda Civic from

the search engine web page results.

In addition, it is often observed that the same answer may appear in different form in differ-

ent sources. For example, we found two answers (“John Glenn” and “John H. Glenn”) for our

Example 2 query. While the text of these two answers is slightly different, it is highly probable

they refer to the same answer. Our answer extraction system solves this problem by computing

the cosine similarity score between answers and aggregating similar answersif their similarity

score is above a certain threshold.

4.2.1 Answer Extraction

Information extraction, the process of extracting relevant information from documents using

text and structure, is a complex problem that has been the focus of many work in the Natural

Language Processing and Machine Learning communities [50], among others. Since the focus

of our work is on the corroborative aggregation and scoring of answers, we opted to use regular

expressions techniques to extract answers from web pages. In addition, our current implemen-

tation works on queries with succinct answers, such as the ones illustratedin Example 1 and

2.

It is relatively straightforward to identify numerical answers within web pages. For in-

stance, mileage information will typically be of the form “x mpg,” or “mpg ofx,” wherex is

a numerical value. Note that our extraction technique considers multiple units, and does the

proper conversions, for each numerical query (e.g., “feet” and “meters” for a length query).

It is more complicated to extract answers for a query that calls for a textualanswer. State-

of-art IE systems [1, 10, 31, 32, 33, 53, 56] have used a lot of linguistic tools, namely syntactic

parser, part-of-speech tagger, named entity tagger, WordNet.
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Instead of employing a full featured information extraction system, existing works [57, 35,

62, 75] in the information retrieval community have shown success by using asimplified an-

swer extraction component. Radev et al. apply a part-of-speech taggerto phrases and computes

the probability of phrase type to match the query category. Jijkoun and de Rejke pinpoint the

answers for a query by looking at Frequently Asked Questions (FAQ) archives. If a question in

the FAQ archive is found to match the query, the non-question text block immediately following

the question is identified as the answer for the query. The QA system in [62]retrieves answer

sentences based on keyword matching. The QUALIFIER system in [75] performs answer se-

lection by matching the expected answer type to the NLP results of the query and returns the

named entity in the candidate sentence.

Our answer extraction is similar as the techniques used in[75]. Given a webpage, we

first apply a HTML parser to obtain the text content for answer extraction. We choose the

Jericho HTML parser1, an effective Java open source HTML parser to obtain the plain text of

the web page. We then use a tokenizer to tokenize and tag the plain text from the first step.

The Stanford Name Entity Recognizer (NER) is a Java implementation of a Named Entity

Recognizer which uses a linear chain Conditional Random Field (CRF) sequence models. In

particular, the Stanford NER system segments the plain text into sentences and words. After

giving each word a tag, we apply extraction rules for each query by selecting the sentences that

contain the extraction rule. The answer is then identified as the words from the sentences that

match the expected answer type. The rules for each query are a set of automatically created

texts that may appear around the answer. The rules are not query specific but rather are created

based on the interrogative word to apply to different types of queries. We give a few examples

of such rules for different queries in Table 4.1:

By using rules such as the ones shown in Table 4.1, we can extract answer for each query.

As an example, consider the query: “Who is the speaker of the LebaneseParliament”. We

can create rules “is the speaker of the Lebanese parliament” and “the speaker of the Lebanese

parliament is” to extract query answers.

While these rules cover a wide variety of scenarios, they are insufficientin some cases.

1http://jerichohtml.sourceforge.net/doc/index.html
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Who is/was $x “is $x”, “$x is”
Who VBD $x “VBD $x”, “$x is/was VBN”
Where is $x “$x is”

Where is $x VBN “$x is VBN”
Where did/does $x VB $y “$x VBZ/VBD $y”

Which $x is/was $y “is/was $y”, “$y is/was”
Which $x VBZ/VBD/VBN $y “$y is/was VBN”, “VBZ/VBD/VBN $y”

What $x is/was $y “is/was $y”, “$y is/was”
What $x does/did/have/has $y VB/VBN “$y VBD/VBN $x”

Table 4.1: Generating rules for queries

Consider the following example shown in the title of a news article:

“Nabih Berri reelected as the speaker of the Lebanese Parliament”

Clearly, “Nabih Berri” is an answer to the query, but the two previously created rules cannot

extract it. Therefore, in addition to the rules created as above, we introduce a set ofrelaxedrules

for each query. Therelaxedrules include the noun/verb phrase or part of the noun/verb phrase,

possibly in combination with a specific adjective (e.g., “current”). We manually create a few

specific adjectives that may appear around the extraction rule based on heuristics. For instance,

the relaxedrules for the above query include “the speaker of the Lebanese Parliament”; “the

speaker”; “the current speaker is”; “is the current speaker”.

Applying the Stanford NER recognizer will tag “Nabih Berri” as “PERSON”. Since the

answer to this query is expected to be aPERSON entity and this sentence matches one of the

rules of this query (i.e., “the current speaker is”), “Nabih Berri” is extracted as an answer tothis

query. Note that it is possible to extract multiple answers from the sentence which matches the

extraction rule. We show how we assign scores to each of the extracted answers in Section 4.3.2.

4.2.2 Answer Aggregation

After we have extracted answers from different sources, we need tocombine similar answers.

Due to the poor quality (spelling errors, typographical errors) of a large portion of online con-

tent, answers extracted from different sources bearing textural difference may actually point

to the same information. A simple example is for numerical queries, different sources may

present results using different unit. For instance, for our Example 1 query we may find answers

“26 mpg (mile per gallon)” and “11 km/l (kilometers per liter)” from different sources which
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reflect the same gas mileage information for a Civic in city drive. Our solution tosuch cases

is to convert all extracted answers into the same unit and combine answers that are similar in

value. In our implementation, we consider answers that are within 5% difference in values as

similar answers.

For queries with textual answers, we are dealing with problems of finding similar strings.

Existing work [42, 30, 63] has been proposed using cosine similarity score to effectively handle

spelling errors and rearrangement of words when comparing strings. The key idea is to obtain

the tf-idf score vector for each string and compute cosine similarity score for each pair of

strings. In particular, Koudas et al. leverage the semantic similarity if such information is

available. In our corroboration system, we apply thetf-based2 cosine similarity method to

detect similar answers. The cosine similarity score of two answers is computedusing the word

frequency vector of the two answers. Given two tokenized answers, we first need to obtain the

word frequency vectors for the two answersW1 andW2, the cosine score is then computed as

the dot product of the two vectors divided by the square root of the product of the vector dot

products of each score vector with itself. For example, assuming we have extracted answers

“John Glenn” and “John H. Glenn” for our Example 2 query, the word frequency vectorsW1

andW2 for the two answers are (1, 0, 1) and (1, 1, 1). The cosine similarity score is therefore

computed as the dot product ofW1 andW2 (which is 2) divided by the square root of product of

each vector with itself (which is
√
2 ·
√
3). The cosine similarity score (0.82) is then compared

against a user-defined threshold to test if the two strings can be classifiedas similar answers. In

our implementation, we use the threshold of 0.8 and we recognize “John Glenn” and “John H.

Glenn” as similar answers.

4.3 Scoring Answers

Once we have extracted answers from the web pages returned by the search engine, we need

to identify the best answer to the query. For this purpose, we need to assign scores to each ex-

tracted answer. We then aggregate the score of similar answers to identify the best corroborative

answer.

2We did not use theidf score since the document corpus for each query is limited by the numberof documents
returned for each query.



30

In the absence of any knowledge regarding the trustworthiness of the sources, it is difficult

to infer the correctness of the answers. As a result, an iterative corroboration (Equation 3.1)

needs to be employed to identify the correct answer. However, since we are leveraging the web

results from a search engine as the information sources, we are able to model their quality from

which the answers are extracted.

In order to assign a score to each extracted answer, we first assign to each web page a score

that represents the likelihood that an answer found within the page is the correct answer. Then,

for each answer found within a web page, we assign a score that represents the probability

that this answer is the correct answer within the page. Finally, scores of similar answers are

aggregated to provide a corroborative answer score.

We compute the score of an answerf extracted from a given web pagee as the product of

the score of the page (σ(s)) and the score of the answer within the page (σ(f |s)).

σ(f, s) = σ(s) · σ(f |s) (4.1)

In the rest of this section, we detail our scoring approach. We explore several scoring

components that can be used in conjunction, or separately. We will discussthe impact of each

of the components, and evaluate them experimentally in Section 4.5.2. In Section4.3.1, we

propose a scoring method of individual web pages. We then propose techniques to estimate the

score of an answers within a page in Section 4.3.2. The corroborative score of an answer among

all search engine query result pages, and taking into account each ofour proposed component,

is given in Section 4.3.3.

4.3.1 Scoring Web Pages

The score of an answer depends on the quality of the web page from which the answer is

extracted. We consider two factors in measuring the quality of a web pages:the relevance of

the page (Section 4.3.1), and the originality of the page (Section 4.3.1).
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Figure 4.2: The log-log plot for the Number of user clicks as a function of the position of the
page in the search engine query result

Web Page Relevance

Search engines rank web pages according to (among other factors) therelevance between the

page and the query keywords. An intuitive method for web page scoring isto use the page

rank score of web pages as given by the search engine. Unfortunately the search engine does

not provide its internal score along with the ranking. Thetf-idf score has been widely used in

the information retrieval community to compute the relevance of a document with respect to a

keyword query, but our system is built on top of a search engine; as such we do not have access

to indexes of the whole web. Therefore we use the individual ranks of web pages in the search

engine result list as a measure of relevance.

As we traverse the search engine query results, the quality of the match decreases. We con-

sider that a page ranked highly by the search engine is more likely to providegood information

than a page with a lower rank. Therefore an answer found within a higherranked page has a

higher probability than one found within the lower ranked page to be the correct answer. To

model this decrease of the relevance of web pages as we go down the search engine result we

use the Zipf’s Law distribution function [83], commonly used in Natural Language Processing

to model the distribution of words in languages where very common words have very high

frequencies.
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Previous work [8] refers to the commonness of Zipf-like distribution in web access patterns.

For instance, there is evidence that the popularity of web pages follows a Zipf distribution. In

this work, we are interested in the importance of web pages as we go down a search engine

query results. We investigated the click patterns of a query log of about 15million MSN

queries. Figure 4.2 shows the log-log plot for the distribution of user clicksdepending on the

position of the page in the search engine query result, for the first 10 results and for all queries

in the log. We only report on the first 10 results here since the number of user clicks shows a

sharp decrease after the tenth result (and similarly after the twentieth, thirtieth, etc.) as search

engines return results 10 at a time and users are reluctant to go beyond thefirst page of result.

We used curve-fitting techniques3, based on a linear regression in the log-log plot to ap-

proximate the distribution of the user clicks per position. Our results show thatthe distribution

can be approximated to a power law distribution, with an exponent parameter (e) of 1.39, and

constant close to 1.

These results show that the Zipf distribution is adequate to approximate the decrease in

page relevance. We then define the relevance score of a pagee as:

σ(s) =
1/r(s)e

∑N
i=1 1/i

e
(4.2)

whereN is the total number of pages considered (i.e., the estimated size of the search engine

query result), andr(p) is the rank of pagep in the search engine query result. We normalize

the score so that the sum of all page scores are summed to 1.

Thee exponent parameter has an impact on the slope of the score distribution. Itquantifies

how quickly the quality of answers degrades when we traverse the search engine result list. In

our system, varyinge has an impact on both the quality of answers and the number of pages

retrieved to identify the best answer. We explore the effect ofe experimentally in Section 4.5.2.

Web Page Originality

In addition to the web page relevance, we take into account the originality of the pages to re-

duce the effect of similar information coming from sources in the same domain, or sources

3http://www.fast.u-psud.fr/ezyfit/



33

that seem to be mirror (or copy-paste) information from each other. These pages tend to show

some strong correlation as they reflect information coming from the same real-world sources.

As an example, many web pages directly copy material from high-profile websources such

as Wikipedia. Errors in the original web site are therefore propagated to independent web

pages. Our motivation for using corroboration is to confirm evidence from several autonomous

sources. Considering sources that mirror each other as completely separate sources for cor-

roboration would then artificially increase the weight of the original real-world sources (such

as Wikipedia), and would open the door to some possible malignant behavior from content

providers in order to boost the ranking of a given answer. However,discarding the redundant

source is not a good option either, as its existence leads some more credence to the information,

although not as much as if it were a source containing original information.

Since we aim at corroborating answers from different web pages, duplicated pages which

tend to have similar content should not have as much weight in the corroboration as pages

that contain original content. However, they should still be taken into account as corroborative

evidence, as there is a possibility they reflect similar information coming from independent

sources. Our solution is to dampen the score of a page each time a duplication isdetected. Our

implementation detects suspected copy-paste as duplicated text around answers. Detecting near

duplicate web pages is a non-trivial task and has been the focus of a large body of research.

Often, two pages sharing the same core content may be classified as independent sources us-

ing byte-wise comparison due to different framing, advertisements, and navigational banners.

Among those existing works, the SpotSigs technique proposed in [65] proves to be an effective

way to detect such near duplicate pages. The key idea in SpotSigs technique is to create aro-

bustdocument signature with a natural ability to filter out noisy components of Web pages. In

our corroboration system, we implemented the SpotSigs technique to detect copy/paste pages.

Our current implementation is Boolean, a page is a copy or it is not, but we could easily extend

our system to use more complex copy detection tools such as [9, 6] to identify different degrees

of duplication, and use this information to provide a finer granularity of web page originality

scores.

We introduce a parameterβ to quantify the redundancy of duplicated pages. When travers-

ing a search engine result list, we check whether each page contains original content, or whether
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it is similar to a page with higher rank. If for a pagee there existsdm(s) higher-ranked pages

sharing the same domain anddc(s) higher-ranked pages generated from copy/paste informa-

tion, we adjust the relevance of the page as follows:

σ(s) =
1/r(s)e

∑N
i=1 1/i

e
· (1− β)dm(s)+dc(s) (4.3)

The first occurrence of a page from any given domain (or from duplicated web pages)

will therefore be assigned its full score, only subsequent similar pages will have their scores

dampened. This ensures that we are taking into account all original information, and limits the

weight of redundant information in the scoring.

4.3.2 Scoring Answers within Web Pages

It is common for several, possibly different, answers to be extracted from a single web page.

This can be due to some error or uncertainty in the answer extraction process, or to the fact

that the web page does contain several answers. To identify the best answer, we are then faced

with the challenge of scoring these multiple answers. If only one answerf is extracted from a

pagee, it gets a score of 1 for that page (σ(f |s) = 1). A simple way to score multiple answers

stemming from the same page would be to assign each of them a score of1/N(s), whereN(s)

is the number of answers extracted from pagee. One problem of the above method is that

all the answers extracted from the same page are rarely equally helpful inanswering queries.

Consider the following text from which we can extract two answers from asingle web page for

the query in Example 2 “first orbited the earth”.

EXAMPLE 3 . “Now you could have asked, even at the time, what was so special, so

magical, about John Glenn, since a year before him a Russian, one Yuri Gagarin, was the first

human to orbit the Earth in space and four months after him another Russian did it 17 times”.

By applying the answer extraction techniques (Section 4.2) we could extract two answers,

namely, “Yuri Gagarin” and “John Glenn”, which are underlined in the above example. Unfor-

tunately, due to the limitation of the simple information extraction techniques we are using, it

is difficult to figure out which one the correct answer is to the query. Oursolution is to consider

theprominenceof each answer extracted within the page. We define theprominenceM(f, s)
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of an answerf from pagee as the inverse of the distancedis(f) between this answer and the

extraction rule (i.e., “the first human to orbit the earth” in this case).

M(f, s) =
1

dismin(f)
(4.4)

We computedis(f) as the number of tokens plus 1 between the extraction rule and answer

f , with a minimum distance of 1. As mentioned in Section 4.2, it is possible for multiple

answers to be extracted via an extraction rule. The closer an answer is to the extraction rule,

the more prominent it should be to answer the query. This approach is based on the assumption

that in most cases, relevant answers will be close to the extraction rule in theweb pages. We

compute the score of the answer within the page as its normalized prominence. As for example

3, we havedis(”Yuri Gagarin”) = 2 anddis(”John Glenn”) = 12. Therefore the prominence

scores for the two answers are 0.86 and 0.14 respectively. Formally, if an answerf is extracted

from pagee out ofN(s) answers, we define the score of answerf to be as follows:

σ(f |s) = M(f, s)
∑N(s)

i=1 M(fi, s)
(4.5)

Our simple method to compute prominence scores leads to improvements in answer quality

(Section 4.5.2). It is possible that the use of more refined information extraction techniques [50,

22] that return answers with an associated confidence score from which we could derive our

prominence score would result in further improvements.

Finally, some web pages may provide several answers; as for Example 1 the Car.com

web site gives two answers for our query: 30 mpg (city), and 40 mpg (highway). Our current

implementation penalizes answers that are not unique in their sources. In some cases, as in the

city/highway example, multiple answers in a given web page may be due to different context.

We plan to add context to our scoring approach in the future, possibly enabling our techniques

to output different answers for different contexts.

4.3.3 Corroborating Answers

Taking into account the scores of web pages as well as the scores of answers within web pages,

we can assign the score of an answerf from a pagee as:
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σ(f, s) =
1/r(s)e

∑N
i=1 1/i

e
· (1− β)dm(s)+dc(s) · M(f, s)

∑N(s)
i=1 M(fi, s)

(4.6)

The frequencyof the answers in the set of pages is considered in our corroboration ap-

proach. Intuitively, an answer that appears in 10 pages is more likely to bethe correct answer

than an answer that appears in one page, unless those 10 pages have very low scores. Formally,

if σ(f, si) is the score of answerf from pagesi, the corroborative score of answerf is given

by:

σ(f) =
n
∑

i=1

σ(f, si) (4.7)

wheren is the number of pages we consider from the search engine query result.

4.4 Retrieving Pages

Finding and computing the scores of answers are not the only challenges we face when corrob-

orating answers from search engine query results; another challengeis to select the set of result

pages from which we extract information. As we go from higher-rankedto lower-ranked pages,

we have to decide how deep we should go in the search engine query result. Accessing all the

pages that match a given web search query to retrieve and compare answers would obviously

be impractical and inefficient. In addition, lower-ranked pages, which show little correlation

with the query tend to give “noise” instead of useful information. Work on top-k query process-

ing algorithms have focused on adaptively reducing the amount of processing done by query

evaluation techniques by ignoring data that would not be useful to identify the best answers to

a query [25, 47]. However, these techniques cannot be directly applied to our scenario as they

rely on query models where the score upper bounds of query results are known, and use this

information during query processing. In contrast, in our corroborative model, the score of an

answer can potentially grow every time a new page is retrieved.

We adapt ideas from work on top-k query processing to the answer corroboration problem

by adaptively selecting a subset of search results from which to extractanswers, based on the

current scores of the retrieved answers. As was suggested in [41],we focus on estimating

the maximum possible score increase that an answer could receive from pages that have not
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been retrieved, in the absence of score upper bound information. Succinctly, we process web

pages in the search engine result order, and stop retrieving new pageswhen the score of newly

discovered answers would not be high enough to impact the overall corroborative answer score

ranking.

We use our page relevance score (Section 4.3.1) to decide when to stop retrieving new

pages from the search engine result. As we traverse the search engineresult list, the relevance

score of new pages we encounter decreases following a Zipf distribution. We stop retrieving

new pages when the sum of the relevance scores of the unretrieved pages is too small for any

answer extracted from new pages to cause any significant change to thecorroborative answer

list.

The maximum possible score increase is defined as the sum of all scores ofunseen pages.

Based on Equation 4.2, this scoreIMax is defined as:

IMax = 1−
r

∑

i=1

σ(si) (4.8)

wherer is the rank of the last retrieved page, andsi is the page retrieved at ranki. The value

of the maximum possible score increaseIMax constantly decreases as we traverse the search

engine query result.

During corroboration processing, we maintain a threshold variableT , which represents the

value required to cause significant changes to the current result list. Our current implementation

considersT to be the current difference in score between the top-1 answer and the top-2 answer.

That is, we stop retrieving new pages when the current top-1 answer cannot change, i.e., when

T ≥ IMax.

Although we dynamically retrieve pages and stop as soon as the remaining unretrieved

pages will not make significant changes to the current answer list, we may still end up retrieving

a large number of pages. This is due to our Zipf’s Law model where a largenumber of lower-

ranked pages may add up to a high score, as shown in Figure 4.3, which shows the decreasing

value ofIMax as we traverse the search engine result, up to page 50, for various values ofN

(the estimated total number of pages in the query result).

To address this, we limit the maximum number of pages our system will retrieve. This limit
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Figure 4.3: Decrease in value ofIMax as we traverse the search engine query result.

can be user-defined. By limiting the maximum number of pages retrieved, we are ignoring a

subset of the web pages as well as the corresponding score increasethey may bring to the cor-

roborated answer scores. This unused potential score increase depends both on the maximum

number of pages retrieved, and on the expected total number of page considered (as estimated

by the search engine query result size). The normalization factor of Equation 4.2 is adjusted to

consider the maximum number of pagesmaxPage, as follows:

σ(s) =
1/r(s)e

∑maxPage
i=1 1/ie

(4.9)

We use deterministic bound information to decide when to stop retrieving new pages. An

interesting direction to investigate would be the use of probabilistic bound information instead,

in the manner of [66]. We are planning to investigate this approach in future work.

4.5 Evaluation

In this section, we present our in-depth experimental evaluation of our corroboration approach

for web searches. We describe our experimental setup in Section 4.5.1. Section 4.5.2 focuses

on queries taken from the TREC Question Answering Track and derivesthe best setting ofe,

maxPageandβ. Results for real-user queries from a MSN query log are given in Section 4.5.3.

4.5.1 Setup

Our system is implemented using Java SDK 1.5 and built on top of the MSN SearchSDK. We

use MSN search as our backbone search engine. We ran our experiment on machines running
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Fedora 6 with 4 2.8G CPU and 2G RAM.

Evaluation Queries

We reported preliminary experiment results on numerical queries in [71]. In this paper, we

extend our experimental evaluation to a broader range of queries, including queries with textual

answers. We consider queries from two sources: the TREC Question Answering Track and a

MSN Live Search query log that contains real-user queries that were evaluated by MSN in the

Spring of 2006.

TREC Question Answering Track: We extracted 42 numerical queries and 100 factoid queries

from the TREC Question Answering Tracks from TREC-8 (1999) to TREC2006. We use key-

words to extract numerical (e.g., “length of”, “height of”) and factoid queries (e.g., “who”,

“where”) from the TREC QA track. Example numerical queries include: “diameter of the

earth”, “average body temperature”, “length of Columbia River”, “height of the tallest red-

wood”. Example factoid queries include: “Who is the Speaker of the Lebanese Parliament”,

“Who is the manager of Manchester United”, “Where is Merrill Lynch headquartered”, “Where

was Hitchcock born”.

We use the TREC original answers to evaluate the quality of our corroborated answers.

Note however that we are running our queries on top of a web search engine and therefore use

the web as a data corpus rather than the TREC documents. Note also for someTREC queries,

more than one answers are recognized as the correct answer (For example, for the query “Where

did Jay-Z grow up”, both “brooklyn” and “New York” are correct answers according to TREC

judgement). For such queries, we evaluate the corroborated answer withthe highest ranked

correct answer.

MSN Live Search Query Log: We selected 38 numerical queries and 100 factoid queries

from the MSN search log using similar patterns as the TREC QA track. We manually pick

queries to filter out non-factoid queries (For example, “Who wants to be a millionaire”) and

only considered queries which yielded at least one user click on the search engine query result.

Evaluation Metrics

We report on the following evaluation measures.
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• Percentage of Queries Correctly Answered (PerCorrect):For the TREC dataset, we

compare our top corroborated answers with the original TREC answers.We derive the

percentage of queries with correct answers at different rank of our corroborated answer

list (top-1 to top-5).

• Mean Reciprocal Rank (MRR): The mean reciprocal rank of the first correct answer

(MRR) is generally used for evaluating the TREC Question Answering Tasks. If the

query does not have a correct answer in our top-5 corroborated answer list, its reciprocal

rank is set to 0. We report the MRR values for experiments over the TREC queries.

• Similarity between User Clicks and Corroborated Answer: Unlike TREC queries,

queries extracted from the MSN query log do not come with an original answer. To eval-

uate the quality of our corroborated answers, we therefore compare pages that generate

top corroborated answers with user clicks.

• Time Cost: We report the time needed to return the corroborated answer list. This time

cost is divided into retrieval time, which is the time spent accessing the web pages, and

corroboration time, which is the time spent by our system for answer extraction and

scoring.

• Number of Pages Retrieved:As discussed in Section 4.4, we do not retrieve every page

from the search result but dynamically stop when we have identified the top-1 corrobo-

rated answer. We report on the actual number of web pages needed to reach an answer.

4.5.2 TREC Queries

We now report our results on queries from the TREC QA Track. In this section, we first discuss

the quality of our answers (Section 4.5.2). In particular, we show the benefit of each individual

scoring components on the answer quality (Section 4.5.2). We then compare the performance

between our approach and previous question answering techniques (Section 4.5.2). We will

show the number of web pages needed to return an answer (Section 4.5.2), and the time cost of

our techniques (Section 4.5.2).
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Figure 4.4: Impact of Parametere on PerCorrect for TREC queries forCORROB

Figure 4.5: Impact of Parametere on PerCorrect for numerical queries forCORROB

We first evaluate the quality of our corroborated answers by analyzing the percentage of

correct answers (compared to the TREC-supplied original answers) for the 142 queries we

extracted from TREC. Note that as shown in Equation 4.6 there are three parameters which

may affect the answer score:e, β andmaxPage. In the following we evaluate the effect of

each of these parameters.
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Figure 4.6: Impact of Parametere on PerCorrect for factoid queries forCORROB

We first fixβ to 0.25 andmaxPage to 50 and test the effect ofe, which is the parameter in

the Zipf’s distribution. Figure 4.4 shows the PerCorrect values for our top-1 to top-5 corrobo-

rated answers for different values of thee parameter of our Zipf corroboration scoring method

(CORROB) of Section 4.3. Overall, ane value of 1 provides the best results at top-1. Interest-

ingly, the distribution of user click per result position for the subset of the MSN queries that

only considers queries expecting a numerical answer has a slope which isnot as steep as the

one for general queries (Figure 4.2) as these queries yield more clicks,which end up increasing

the probability of clicks for positions higher than 1. Using the same curve-fitting techniques as

we did in Section 4.3.1 we can approximate the click distribution of these numericalquery to

a power law distribution with an exponent parameter (e) of 1.01 (Figure 4.7(a)). In addition,

the curve-fitting yields an exponent parameter of 0.92 for the click distribution of the factoid

queries (Figure 4.7(b)), which have the best PerCorrect and MRR values with ae value of 0.8

and 1.0. Ane value of 1.0 yields a slightly better PerCorrect value at top-2 answer but slightly

worse PerCorrect value at top-5 answer compared with ae value of 0.8. Both of these results

validate our choice of Zipf distribution to model the originality of pages.

As we increasee, the quality of our corroborated answers drops since top search engine

result pages are given the most relevance weight, and fewer pages are considered in the corrob-

oration. Inversely, for lower values ofe, many pages are considered for corroboration, but their
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Figure 4.7: The log-log plot for the number of user clicks as a function of the position of the
page in the search engine result

relevance scores tend to be similar and answers from high-ranked search engine query result

pages are not given more weight.

Figure 4.5 and 4.6 plot the PerCorrect values for numerical and factoid queries respectively.

As shown, both results are consistent with the overall PerCorrect values.

Combined Numerical Factoid
CORROB (e = 0.6) 0.752 0.645 0.797
CORROB (e = 0.8) 0.765 0.651 0.813
CORROB (e = 1.0) 0.767 0.657 0.813
CORROB (e = 1.2) 0.704 0.615 0.741
CORROB (e = 1.5) 0.664 0.586 0.697
CORROB (e = 2.0) 0.610 0.533 0.642

Table 4.2: Answer Quality for TREC queries

Table 4.2 reports the MRR value for theCORROB method presented in this paper. We list

the MRR values for all 142 TREC queries and for the two separate types ofqueries in each

of the three columns. We obtain a MRR score of 0.767 for theCORROB method with ane

value of 1.0. This means that on average, the correct TREC answer is found within the 2 best

corroborated answers. For comparison, the web question answering system presented in [23]

has a best MRR score of 0.507; however they report results on a different subset of TREC

queries that contains a broad variety of queries, which are possibly harder to answer. In the rest

of our experiments, we will usee = 1 as our default parameter value.

Another factor that affects the performance of ourCORROB method (Equation 4.3) is the
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Figure 4.8: Impact ofβ on PerCorrect for TREC queries

β MRR
0 0.766
0.25 0.767
0.50 0.772
0.75 0.756
1.0 0.752

Table 4.3: Impact ofβ on MRR for TREC queries

parameterβ that we use to quantify the decrease of duplicate page score. Figure 4.8 plots the

PerCorrect values for the top-1 to top-5 corroborated answers, andTable 4.3 shows the MRR

values of theCORROB method with aβ value of 0, 0.25, 0.5, 0.75 and 1 and with a fixede

value of 1.0 andmaxPage value of 50. We discussed in Section 4.3.1 that duplicated pages

should not have as much weight as page that contains original information but still need to be

taken into consideration. The results shown in Figure 4.8 and Table 4.3 confirm our claim. As

shown, both PerCorrect and MRR values show improvements compared withthe case that no

originality is considered (β = 0). However, if we completely remove the effect of duplicated

pages by settingβ = 1, the answer quality is not as good as the case for which no originality is

considered. Overall, theCORROB method has the best answer quality when we setβ = 0.5. In

the following experiment, we set 0.5 as the default value forβ.

As discussed in Section 4.4, limiting the number of pages retrieved using themaxPage

parameter may speed up query evaluation, but could affect answer quality as fewer web pages
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Figure 4.9: Impact ofmaxPage on PerCorrect for TREC queries

will be used for corroboration. Figure 4.9 shows the impact of differentmaxPage value (from

20 to 90) on the percentage of correct answers. The answer quality increases asmaxPage goes

from 20 to 50, but remains the same when more pages are considered. As expected, considering

too few pages for corroboration decreases answer quality. Our approach retrieves fewer than

50 pages (on average 34 pages fore = 1, shown in Figure 4.12) to return a corroborated answer,

therefore increasingmaxPage above 50 has little impact on the quality of the corroborated

answers. In addition, high values ofmaxPage lead to retrieving more pages, resulting in

higher query processing times. Therefore, in the rest of our experiments, we set the value of

maxPage to 50.

OurCORROB technique finds the correct answers within the top-5 corroborated answers for

85.2% of the 142 queries we extracted from TREC. For 21 of the TREC queries, we were not

able to identify the correct answer within the top-5 corroborated answers. An in-depth analysis

of these 21 queries shows that 4 of them are multi-answer queries (e.g., “width of Atlantic

Ocean”) for which our top-5 corroborated answer list contain at leastone correct answer (but

not the TREC original answer); we were not able to extract web answers for 10 of the queries

(e.g., “the first director of the World Food Program”); we answered incorrectly 5 queries; and

finally, 2 of the queries have wrong (or possibly outdated) answers withinTREC: “Lifetime of

hermit crabs,” which has a TREC answer of 70 years, and a correct answer of 30 years, and
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Figure 4.10: Impact of Scoring Components of TREC Queries

“highest recorded temperature in San Antonio, TX,” with a TREC answer of 107F and a correct

answer of 111F. Out of the 142 queries, 22 of them were time sensitive (For instance, “who is

the manager of Manchester United”). However, at the time of our experiments, the correct

current answers were the same as the ones provided by the TREC corpus.

Impact of Scoring Components

In this section, we show the benefit of each individual scoring componentswe present in Sec-

tion 4.3. In the following comparison, we denote the baselineBASE as the scoring approach

in which the score of pages are the same, and the score of each answer isthe score of the page

divided by the number of answers within the page. We useZIPF to denote the method in which

only Zipf’s page relevance is considered (Section 4.3.1). We useORIG to denote the baseline

approach with the addition of web page originality (Section 4.3.1). We usePRO to denote the

baseline approach with the addition of answer prominence within web page (Section 4.3.2).

TheCORROB approach, which combinesZIPF, ORIG andPRO, refers to the comprehensive

scoring approach, as described in Equation 4.6.

Figure 4.10 shows the PerCorrect values for our top-1 to top-5 corroborated answers, and

Table 4.4 reports the MRR values for different combinations of the scoringcomponents. In

most cases, the answer quality improves as we incorporate each of the scoring component,
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theZIPF component provides the best improvement. The only exception is when adding the

ORIG component, the PerCorrect value at top-1 slightly decreases, but combined withZIPF

components, the originality provides a small increase in answer quality. TheCORROB scoring

approach, which combines all three components, has the best result, with an MRR value of

0.772, outperforming theBASE case by 6.9%.

Combined Numerical Factoid
BASE 0.722 0.602 0.773
ORIG 0.717 0.590 0.770
PRO 0.727 0.610 0.776
ORIG+PRO 0.726 0.612 0.775
ZIPF 0.757 0.624 0.812
ZIPF+ORIG 0.760 0.625 0.817
ZIPF+PRO 0.766 0.657 0.812
CORROB 0.772 0.657 0.820

Table 4.4: Answer Quality of Scoring Components

Comparison with Existing Question Answering Techniques

In this section, we compare our approach with existing question answering techniques. Previ-

ous works in question answering have been using answer frequency as the evidence of answer

quality [43, 23, 78]. Summarizing previous work as frequency-based approach is a reasonable

simplification. We could not exactly reproduce the actual question answering techniques of

these works because we do not have access to the detail of their implementations, such as their

information extraction and query rewriting techniques. Our corroborationapproach could be

used in conjunction with these tools to further improve answer quality.

In a frequency based approach, the score of an answer is a functionof the frequency of

the answer among all the pages. In particular, we implement two types of frequency based

approaches: page-frequency(P-FREQ) and answer-frequency(A-FREQ). In P-FREQ, the

score of an answer is based on the number of pages from which this answer was extracted. In

A-FREQ, the score of an answer is based on the number of time the answer was extracted from

all pages.

In addition, we also implementedTOP-PAGE approach, in which we only extract answers
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Figure 4.11: PerCorrect Comparison with Existing Question Answering Techniques

from the first page and rank answers based on their frequency (A-FREQ). We tested the perfor-

mance ofTOP-PAGE simply based on the observation that most users only look into the first

page returned from the search engine.

MRR
P-FREQ 0.663
A-FREQ 0.664
TOP-PAGE 0.360
BASE 0.722
ALPHA(α=0.05) 0.722
CORROB 0.772

Table 4.5: MRR Comparison with Existing Question Answering Techniques

Figure 4.11 and Table 4.5 shows the PerCorrect and MRR values of the twofrequency

based approaches, theTOP-PAGE approach, theBASE approach, theALPHA method [71], and

ourCORROB approach. As shown,P-FREQ andA-FREQ achieve a PerCorrect value of 0.57

at the top-1 corroborated answer and 0.77 at top-5 corroborated answers. In addition,P-FREQ

andA-FREQ have MRR values of 0.663 and 0.664 respectively, both of which are smaller than

theBASE approach, showing that even a simple corroboration-based approachoutperforms the

frequency-based techniques dramatically. We compute the statistical significance of our results

using the one-tailed Wilcoxon Signed-Rank test [69]. The difference betweenCORROB and
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Figure 4.12: Average Number of Pages Retrieved for TREC Queries

A-FREQ and betweenCORROB andP-FREQ are both statistically significant with ap-valueof

0.003. These results confirm that a corroboration-based approach outperforms frequency-based

approaches. In addition, the advantage between theCORROB method and theBASE approach

is statistically significant with ap-valueof 0.034. TheTOP-PAGE approach, performs surpris-

ingly bad compared with all other techniques, with an MRR value of 0.36. This suggests that

looking into only the first page from the search engine result is not sufficient for the users to

get the correct answer in most cases.

We proposed the corroborativeALPHA method in [71]. ALPHA uses a simpler scoring

strategy for the page relevance, dropping the score of a pagep based on a parameterα : s(p) =

(1−α)r(p)−1, wheres(p) is the score of pagep andr(p) is the rank of the page as returned from

the search engine. Our newCORROB strategy outperformsALPHA, with a p-valueof 0.011.

By using a Zipf’s law to model the decrease in page relevance, theCORROB method is able to

return higher quality answers thanALPHA.

Number of Pages Retrieved

We dynamically retrieve pages as we corroborate answers (Section 4.4).Figure 4.12 shows

the average number of pages retrieved when answering queries extracted from TREC for the
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ALPHA method and theCORROB technique with thee parameter ranging from 0.6 to 2.0. In-

creasing the value ofe in ourCORROB method gives more weight to pages ranked higher in the

search engine query result therefore reducing the number of pages needed to identify the top

corroborated answers. In contrast, theALPHA method has the highest average number of page

retrieved except fore = 0.6.

Time Cost

Figure 4.13: Time Cost of different scoring strategies for TREC queries

The query evaluation time for theALPHA andCORROB corroboration techniques is shown

in Figure 4.13. In particular, we divide the time cost into three parts: web page retrieval, answer

extraction and answer corroboration. The first part is the time cost for retrieving cached web

pages from the search engine server, and the second and third part isthe time cost for answer

extraction and corroboration, respectively. As expected, based on the number of pages retrieved

(Figure 4.12), theCORROB method outperformsALPHA method for all values ofe bute = 0.6.

TheCORROB method takes a bit more time thanALPHA with an e value of 0.6 due to more

pages being retrieved.

While the overall query answering cost can be high, most of the time is spenton retrieving

pages from the web. Our query evaluation time is reasonable (3 seconds for answer extraction
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and 0.4 second for corroboration on average for each query), anduser may find it acceptable

to wait for corroborated answers if it saves them the hassle of manually checking the pages

themselves. In addition, our implementation does not have direct access to thesearch engine

indexes and cache but must access these through an interface which incurs web retrieval costs.

If our techniques were implemented within a search engine, they would provide much faster

query response time.

4.5.3 MSN Queries

We now report on experimental results over the queries extracted from the MSN Live Search

query log. We set the default values ofe, β, maxPage to 1, 0.5, 50 respectively as they

provided the best quality results for a reasonable time cost over TREC queries.

Comparison with User Clicks

We do not have a list of correct answers to the queries we extracted from the MSN Live Search

query log. To evaluate the quality of our answers, we compare user clickswith pages that we

used to generate the top corroborated answers. The internet being dynamic, by the time we

performed our experiments, much of the information in the log was obsolete. Many pages on

which users clicked were not available in the search engine (SE) query result anymore. Among

the 331 pages that appeared in user clicks, only 93 pages were still in the search engine result

when we run the experiment. In addition, the position of these pages in the search engine result

has changed greatly: while they had high positions when the query was issued (with average

rank reverse of 0.5), they were ranked much lower in the current search engine result (with

average rank reverse of 0.081). Overall, out of 138 queries in the MSN query set, for 81 of

them the user clicks are no longer in the current search engine result.

Despite these limitations, we found that our corroborated answers correlate with user clicks.

Figure 4.14 shows, for each of the 57 queries that have at least one user click in the current

search engine result, the number of user clicks, the number of corresponding pages that were

returned in the search engine query result at the time of our experiments, the number of such

pages that contained answers to the query, and the number of pages thatcontained the top cor-

roborated answer. As shown, when a page on which the user clicked appears in the search
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Figure 4.14: Comparison between User Clicks and Corroborative Answers for MSN queries

engine query result, it contains one of the top-5 corroborated answersfor 61% of the queries,

and the top-1 answer for 42%. The results show that the corroboration approach is good at

identifying answers that are of interest to the user, as many user clicks correlate with top cor-

roborated answers. We looked into the remaining 22 queries for which there is no overlap

between the user clicks and the pages we use to generate top corroborated answers. We found

that for 14 of them we could not extract answers from these user clicks, for 5 of them our cor-

roboration terminated before reaching these user clicks because they were ranked much lower

by the current search engine. For only 3 of these queries, our corroborated answers do not

include answers extracted from user clicks. We believe that with a more recent search log, our

corroboration method would show better similarity with the user clicks.

Number of Pages Retrieved

We also tested the number of pages retrieved for each MSN query. Our corroboration tech-

niques dynamically retrieve web pages. On average, we retrieve 36.1 pages for each MSN

query, which is lower that our 50maxPage limit. The retrieval stopped dynamically before

themaxPage value for 88% of the queries tested; in some cases fewer than 10 pages were

enough to identify the best corroborated answer.
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Time Cost

Figure 4.15, 4.16 and 4.17 shows the time cost for MSN queries that have atleast one click in

the current SE result and that have no clicks in the current SE result, respectively (In order to

display properly, we break the figure for the queries that have no clicksin the current SE result

into two subfigures). As with TREC queries, the retrieving time is the dominant factor in the

total time cost.

We also compare this time cost with the time the user spent on browsing the web pages.

The MSN query log comes with an accurate timestamp for both the time when the query was

issued by the user and the time when the user clicked on the web page. We calculate the

user time cost as the duration between the time the query was issued and the time ofthe last

user click. Of course, this is an approximation of the time the user took to find ananswer

to the query as it does not take into account the time the user spent loading and reading the

corresponding pages nor does it guarantees that the user found an answer within the clicked

pages. On average, the user time cost (107.3 seconds) is about 4.1 times more than the cost

of our corroboration approach (26.4 seconds). This indicates that our corroboration method is

efficient in identifying the answers and can save users a great amount of time. Figure 4.15,

4.16 and 4.17 show that we do have a few queries for which our corroboration techniques take

longer to return answers than the user time cost (e.g., Query 38, 39 in Figure 4.15; Query 21,

35 in Figure 4.16 and Query 41, 70, 76 in Figure 4.17). For these queriesour corroboration

needs to retrieve more pages while the corresponding number of user clicks is relatively small.

On average, the number of pages retrieved for MSN queries set is 36.1 and the number of

user clicks for each query is 2.4. For the queries that our corroboration techniques take longer

than the user time cost, the average number of pages retrieved is 38.3 and theaverage number

of user clicks is 1.7. Typically, the queries that require expensive corroboration times are the

ones for which multiple correct answers exist. For instance, for the query “who invented the

television”, both “Farnsworth” and “Zworykin” are correct answers. The existence of multiple

correct answers leads our corroboration techniques to go deeper intothe search engine results

to find the top-1 answer, therefore resulting in more pages being retrieved.
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Figure 4.15: Time Cost for MSN queries that have at least one click in the current SE result
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Figure 4.16: Time Cost for MSN queries that have no clicks in the current SE result (Part 1)

4.6 Conclusions

In this chapter, we presented an approach to corroborate answers from the web to improve the

accuracy for the question answering task. Our techniques use information extraction methods

to identify relevant answers from a search engine result. We assign scores to each answer based

on the frequency of the answer in the web search engine result, the relevance and originality of

the pages reporting the answer, as well as the prominence of the answer within the pages. Our

experimental evaluation on queries extracted from the TREC Question Answering Track shows

that a corroboration-based approach yields good quality answers. Inaddition, by comparing our

approach to user-click behavior on a sample of queries from a MSN query log, we show that

our techniques result in faster answers as they prevent users from having to manually check

several sources. The work presented in this chapter was published in [71] and [72].
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Figure 4.17: Time Cost for MSN queries that have no clicks in the current SE result (Part 2)

Our work on corroborating answers was first published in 2007, duringwhich time the

mainstream technology in information corroboration was frequency basedapproaches. By us-

ing a meaningful scoring function for the extract answers, our techniques were among the first

to consider the trustworthiness of the sources and stand out from existingmethods. Our results

have motivated works that were proposed since the publishing of [71] in 2007 not only in in-

formation corroboration [17, 18, 5, 82] but also in other topics such as entity search [11] and

attributes extraction [3, 61]. In particular, Banerjee et al. [5] studied theQuantity Consensus

Queries (QCQs) whose answer is a tight quantity interval extracted from thousands of snippets.

QCQ queries present a unique challenge in that it considers the closeness among numerical an-

swers and existing methods including ours that only consider exact matcheswould be unable to

combine the scores of close but not identical quantities. The authors proposed two algorithms

that learn to score and rank quantity intervals by leveraging the snippet quantity and snippet

text information. The experiments show significant improvement over methodsthat consider

fixed numerical answers but not quantity intervals.

Over the past few years, research in information corroboration [79, 40, 28, 49, 54, 81, 29,

55] has shifted towards more principled ways of evaluating the trustworthiness of the sources

(see a survey in [46]), as opposed to using external metadata such as the rankings from the

search engine . Such methods usually work by iteratively estimating the trustworthiness of the

sources and the probabilities of the answers until convergence is reached. The computation of

the scores of the sources and the answers is based on probability theoryor learned from graph

theories. We present a case study of such algorithms in Chapter 5.
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Chapter 5

Corroborating Affirmative Statements from Unreliable Sources

5.1 Introduction

In the previous chapter, we discussed how corroboration could help thetask of question an-

swering. It is evident that by leveraging the quality of the sources as wellas the prominence

of the answers within the sources, it is possible to significantly improve both theprecision and

recall of the answers. Moreover, as we observe in Table 4.4 in Chapter4, the quality of the

sources is a bigger contributor in improving the answer quality (asZipf is the component that

provided the biggest boost to both PerCorrect and MRR). In many cases, it is possible to infer

the quality of the sources by using some prior knowledge. For instance, weleveraged the rank

of the sources in the search engine result and approximated the quality of the sources using the

Zipf distribution. Unfortunately, in many other applications, such information regarding the

sources might not be readily available and we need to explore other avenues of techniques in

order to carry out corroboration.

The problem of lacking prior knowledge of the sources have been significantly relieved

thanks to the recent advance in corroboration techniques (see a survey at [21]). The key idea of

those methods is to iteratively estimate the probability of the answers and the trustworthiness

of the sources until a convergence is reached (i.e., the scores stabilize). Of all the methods

proposed, the intuition is that they rely on the conflicting answers to differentiate the trustwor-

thiness of the sources. Sources that provide more correct answers (computed by the algorithms)

is more trustworthy than sources with more incorrect answers.

Unfortunately, although such an intuition sounds reasonable and indeed work effectively,

it does not bode well in a scenario where there are little conflicting answers. For each query,

a lack of conflicting answers means that all the sources return the same answer. Intuitively,

it looks as if no corroboration is needed since there is no suggestion of analternative answer.
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However, this is not always the case, as illustrated in the following example.

EXAMPLE 1: Consider we want to identify a list of restaurants that are up and running

in a certain region. There exist several web sources that provide valuable information for this

task. For instance, local search engines such asYellowpages andCitysearch provide

business listings including restaurants. Social web sites such asYelp and Foursquare

allow users to check-in at dining venues. Most of the restaurant listings on these web sources

are hints that the restaurants exist (except for those listed as ‘CLOSED’). However, the fact

that a restaurant is listed at one or several of these web sources is notdefinite evidence that it

is still open. As an example, consider a restaurant named ‘Danny’s Grand Sea Palace’ located

at ‘346 West 46th St, New York’, which is backed by bothYellowpages andCitysearch.

A follow-up check1 revealed that the restaurant is no longer in business and that the listing was

inaccurate.

In this chapter, we investigate the corroboration problem of identifying the veracity of facts

in the presence of mostly affirmative statements. A fact is either true or false,and an affirmative

statement indicates support from a source that the fact is true. Intuitively, for a fact with only

affirmative statements, there should be no ambiguity that it is true, since there isno suggestion

from any source that the fact may be false. However, as we see in Example 1, this is not

necessarily the case. Although there are two affirmative statements for the fact‘Danny’s Grand

Sea Palace is open’, it is still factually false. In addition to the above example, we also observe

similar cases in other domains. For instance, technology blogs usually provide claims regarding

major product releases, each of which could be viewed as facts with only supportive statements.

Note that in Chapter 3, we defined our corroboration model as identifying the correct an-

swer given a set of candidate answers for a query. For the ease of discussion, we in this chapter

usefactsas the object for which we want to corroborate instead of answers. In fact, afact

considered in this chapter can be viewed as aquerywith 2 candidate answers{true, false}. Our

objective is to estimate for each fact its correct value (i.e., trueor false). Note also that by mod-

eling the corroboration problem this way, we are not limiting the applicability of our technique

to problems with binary candidate answers. For a query with multiple candidate answers, our

1The restaurant is one of a set of restaurants that we checked in person.
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model can be adapted by considering each candidate answer as a fact. For instance, consider

a queryq with a set of candidate answers{a1, a2, . . . , }, our model can handle such cases by

creating a factfi for each answerai wherefi is a new query ‘ai is the correct answer forq’.

The main difficulty is to correctly identify false facts, since facts with only affirmative state-

ments appear to be true. In principle, a false fact could be revealed if its affirmative statements

are from sources with low trustworthiness. Unfortunately, in a scenario where most facts have

affirmative statements only, it is hard to compute the correct trustworthiness of the sources. We

listed below the challenges of the problem we focus in this chapter.

• Quality of sourcesInformation on the Internet is fast changing and goes out-dated fast.

For a certain task, there might not exist a source that is fresh and yet withgood coverage.

A serious website such asYelp which allow users to post authentic reviews contains

erroneous restaurant listings. This is different from applications for which existing cor-

roboration techniques have been successful. For instance [81],imdb is a near-perfect

source for themoviedataset. Assessing the quality of the source is critical to derive the

correctness of the facts it reports.

• Apparent consensusThe principle of corroboration is to differentiate the sources’ qual-

ity, hence treating the information from each source differently. Existing corroboration

techniques work well in tasks with conflicting statements because they can dampen the

trust scores for the sources that have incorrect statements. Unfortunately, this is not the

case in our scenario since sources provide mostly same statements (i.e., affirmative state-

ments). As a result, it is extremely difficult to identify any errors from the sources.

To tackle these challenges, we propose a novel corroboration algorithmthat uses a multi-

value trust score for the sources. Each fact is evaluated using one ofthe trust values from each

source. Unlike with a single trust score for the sources where all facts would have the same

corroboration result in a scenario where most or all facts have only affirmative statements, we

can correctly identify false facts by considering a lower trust score forthe sources reporting

them. Intuitively, a source may have different trustworthiness on different sets of facts, and

our algorithm leverages such observation to improve corroboration quality. We summarize our

contributions as follows.
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• We investigate the problem of corroborating facts in the presence of mostly affirmative

statements and demonstrate the limitations of state-of-the-art methods.

• We propose a novel corroboration method that adopts a multi-value trust score for each

source; each fact is evaluated using one set of source trust values.

• Our corroboration algorithm incrementally selects facts by considering the information

entropy in the unprocessed facts and updates the trust scores for the sources.

• We conduct experiments over synthetic and real world datasets and showthat our algo-

rithm significantly outperforms existing approach on precision and accuracy.

To the best of our knowledge, our corroboration algorithm is the first to consider different

trust scores from the same source for different sets of facts. In the following discussion, we

show that a multi-value trust score is not only effective, but necessaryin the corroboration

problem considered in this chapter. The rest of the chapter is organizedas follows. A detailed

motivating example is shown in Section 5.2. We formally define the corroborationproblem in

Section 5.3 and introduce the multi-value trust score strategy in Section 5.4. Wepresent our

incremental algorithm in Section 5.5. Experiment results are shown in Section 5.6. Finally, we

conclude the chapter in Section 5.7.

5.2 A Motivating Example

We use an instance of Example 1 as the motivating example to illustrate the limitation of exist-

ing methods. Consider a scenario with 5 sources{s1, s2, s3, s4, s5} and 12 restaurant listings

{r1, ..., r12}. For the ease of discussion, we useT andF votes to refer to affirmative and dis-

agreeing statements. The votes from the sources are shown in Table 5.1, where in the last

column we list if each restaurant is actually open (ground truth). A sourcecan vote eitherfor

(T) (e.g., by listing the restaurant) oragainst(F) a restaurant (e.g., by listing the restaurant as

CLOSED). A ‘-’ indicates that a source does not list the restaurant. As shown, all the sources

cast votes only for a subset of restaurants. In addition, most restaurants (except forr6 andr12)

receiveT votes only. If we know the correct result for each restaurant (as shown in the last

column) a priori, it could be computed that the global trust scores for all thesources are{1, 0.8,
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1, 0.5, 0.625}, respectively. In the following, we examine the performance of 2 state-of-the-art

corroboration techniques.

s1 s2 s3 s4 s5 correct value
r1 - T - T - true
r2 T T - T T true
r3 T - T - T true
r4 - - - T T false
r5 - T - T T false
r6 - - F T - false
r7 T - - T - true
r8 - T - T T true
r9 - - T - T true
r10 - - - T T false
r11 - - T T T true
r12 - F F T - false

Table 5.1: A scenario with 5 sources and 12 restaurants

5.2.1 The TwoEstimate Algorithm

Galland et al. [28] introduced a set of iterative algorithms that are very related to our corrobora-

tion task. Among those, theTwoEstimate algorithm is directly applicable to our scenario2.

TheTwoEstimateworks by iteratively estimating the probability that each restaurant is open

and the trustworthiness of the sources until convergence is reached. Adirect application of the

TwoEstimate algorithm on the motivating example yields a result oftrue for all the restau-

rants except forr12, and a trust score of{1, 1, 0.8, 0.9, 1} for the 5 sources, respectively.

Although theTwoEstimate algorithm has a recall of 1, the precision and accuracy are

only 0.64 and 0.67 respectively. The reason for the result can be explained as follows. First,

since the majority of the restaurants only haveT votes, the only possible corroboration outcome

for restaurants other thanr6 andr12 is true. In addition, considerr6 with aT vote froms4 and

anF vote froms3. Although there is oneF vote, theT vote is froms4 which has more correct

votes for other restaurants thans3. In a sense, theF vote is ‘outvoted’ by theT vote sinces4 has

a higher trust score thans3. Second, in order to guarantee convergence, theTwoEstimate

2Note that although theThreeEstimate algorithm has shown better performance, it calculates a mea-
sure using the number ofT andF votes for each fact. Since for most restaurants there areT votes only, the
ThreeEstimate algorithm essentially simplifies to theTwoEstimate algorithm in this scenario.
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normalizes the probability of a restaurant or the trustworthiness of a source to 1 if it is greater

than or equal to 0.5. This normalization process essentially translates a restaurant with uncer-

tainty into an absoluteT orF and then uses it as feedback for the calculation of its sources. The

effect of thisreinforcementmechanism is greatly amplified in our scenario since, there is little

conflict for the vast majority of the restaurants and consequently, sources receive a near-perfect

trust score.

5.2.2 The BayesEstimate Algorithm

Zhao et al. [81] proposed a Bayesian probabilistic graphical model (termed asBayesEstimate)

that infer true facts and source quality. Instead of using a single value for the trustworthiness,

theBayesEstimate algorithm leverages two-sided errors (number of false positive and false

negative) of each source. In essence, theBayesEstimate algorithm is tailored for real world

corroboration tasks in which the algorithm has some prior knowledge aboutthe source quality

(e.g., high precision but low recall). In our scenario, although we do have some sources that

match such profile, we have other sources with relatively poor precision (e.g., s4). In addition,

theBayesEstimate algorithm also suffers from the fact that there is little conflict for most

of the restaurants, and hence has similar corroboration result as theIterEstimate algo-

rithm. Using theBayesEstimate algorithm we obtain a result oftrue for all restaurants,

which translates to a precision of 0.58 and recall of 1. The reason thatBayesEstimate did

not identifyr12 as false is because it considers a high-precision-low-recall prior, and therefore

giving F vote less weight.

5.2.3 Our strategy

Consider a simplified version of our strategy, which does not apply to all therestaurants at

once. Instead, it divides the corroboration task into 3 sub-tasks that are carried out in 3 rounds,

as shown in Figure 5.1. We start our algorithm with a default trust value (e.g., 0.9) for each

source and pick restaurantsr9 andr12 to process. By using the default trust scores, our method

computes a corroborated result oftrue andfalse for the restaurants, respectively. In addi-

tion, the trust scores for the sources are then computed as{-, 1, 1, 0, 1}. During the second

round, we choose{r5, r6} (the shaded objects in Figure 5.1 refer to the restaurants which have
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{1, 1, 1, 0.6, 0.75}

r6r 12

rr4 10r6r 12

rr4 10 r1r 2 ......r6r 12

{-, 1, 1, 0, 0}

{, 1, 1, 0, −}
round 1:

round 2:

round 3:

Figure 5.1: Illustration of our strategy

been evaluated), which results infalse for the two restaurants. Note that although we haveT

votes froms4 for both restaurants, since it has a trust score of 0 from the first round, the corrob-

oration assigns a low score for both restaurants. The trust scores forthe sources are updated to

{0, 1, 1, 0, 1}. During the last round, the corroboration is applied to the rest of the restaurants

and results intrue for all the remaining restaurants due to the fact that each restaurant is backed

by at least one of the “good” sources (s2, s3, s5). Overall, the sources have a trust score of

{0.67, 1, 1, 0.7, 1} respectively and the corroboration results in a precision of 0.78 and a recall

of 1.

The rationale behind considering a multi-round corroboration strategy canbe explained as

follows. In order to identify as many corrupt listings (restaurants that areno longer open or

are not at the address) as possible, we need to have sources with low trust scores. However,

in a scenario where all sources are generally good (i.e., with a trust score above 0.5), it is

impossible to find bad listings. By applying corroboration in a step-by-step fashion, we are

able to obtain a low trust score for some sources over a subset of restaurants. For instance, the

above strategy calculates a trust score of 0 fors4 over{r6, r12}. During the second round, it

aggressively selects all listings that are projected to be corrupt based on the current trust scores

of the sources ({r4, r10}). In the third round, since all remaining restaurants are projected to be

valid, it processes all of them and finish corroboration.

Table 5.2 lists the results of the three methods described above on Example 1, where it

shows that our strategy is advantageous compared with two state-of-the-art algorithms. In the

following sections, we formally define the corroboration problem (Section 5.3) and present our

algorithm with a more sophisticated strategy (Section 5.4 and 5.5) that seeks to further improve



63

Precision Recall Accuracy
TwoEstimate 0.64 1 0.67
BayesEstimate 0.58 1 0.58
Our strategy 0.88 1 0.92

Table 5.2: Results of the strategies

the corroboration quality.

5.3 Problem Formulation

We consider a problem that consists a set of sourcesS = {s1, s2, · · · } and a set of facts

F = {f1, f2, · · · }. A fact could be eithertrue (meaning it is correct) orfalse(erroneous). For

instance, a fact could be “A restaurant called ‘M Bar’ located at 12 W 44th St is a legitimate

restaurant”.

5.3.1 Sources

We consider a sources ∈ S as a real-world object that expresses opinions about facts. A source

may agree or disagree with a fact in the form of casting a true (T) vote or false (F) vote. For

instance, a source may disagree with the legitimacy of a restaurant by listing it asCLOSED. We

uses(f) to denote the vote of sources over a factf , illustrated below.

s(f) =































T, if s agrees withf

F, if s disagrees withf

−, if s has no knowledge aboutf

(5.1)

Note that in certain scenarios, an unknown vote (i.e., the ‘-’ vote) from a source may slightly

indicate that it disagrees with the fact (e.g., a source may delete a restaurant listing after it

went out of business), we cannot differentiate such cases from cases where the source has no

knowledge about the object.

We associate with each sources a trustworthiness scoreσ(s) which represents its precision.

The trust score is a real number between 0 and 1, with 1 indicating a perfect source and 0
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indicating a completely wrong source. We define sources with a trust scoreσ(s) between 0.5

and 1 aspositivesources. In principle, positive sources are the sources that have more correct

votes than incorrect ones. Similarly, anegativesource is defined as a source with a trust score

between 0 and 0.5.

5.3.2 Facts

A fact f ∈ F is an expression over a real-world object that is of interest to the users.A fact

is either true or false. In order to estimate the correct value (i.e., true or false) of a factf ,

we propose techniques to compute a probabilityσ(f) which represents the likelihood thatf is

true. A fact with a probability of 1 (or 0) is a true (or false) fact. A corroboration algorithm

determines the value of a factf if σ(f) is greater than a certain threshold. In this chapter, we

use 0.5 as the threshold value, shown below.

f =















true, if σ(f) ≥ 0.5

false, if σ(f) < 0.5

(5.2)

Entropy of unknown facts: In information theory [14], the entropy is a measure of uncer-

tainty of a random variable. Since we considerσ(f) the probability of a factf being true, we

can calculate the entropyH(f) of the unknown factf as follows.

H(f) = −σ(f) · log σ(f)− (1− σ(f)) · log(1− σ(f) (5.3)

It is easy to see that a factf has an entropy of 0 if its probability is 1 or 0 (i.e., no uncertainty)

and has the highest entropy of 1 if its probability of 0.5. Intuitively, we expect a fact to have an

entropy between 0 and 1 given the votes from the sources. We discuss how to iteratively select

facts by leveraging the fact entropy in the following section.

5.3.3 The corroboration problem

Given a set of sourcesS and a set of factsF , the corroboration problem is to identify the correct

value of each fact and estimate the trustworthiness of each source. In thischapter, we focus on

a corroboration problem in a specific scenario in which most facts inF only receive affirmative

statements. More formally, letF∗ be a subset ofF such that for each factf ∈ F∗ there are
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only T votes only. We focus on a corroboration problem in which most facts inF are inF∗

(i.e., |F∗| ≫ |F − F∗|).

5.4 Trust Scores of Sources

Our corroboration algorithm is built upon the concept of a multi-value trust score for each

source. In the following discussions, we first formally define the single-value trust score and

multi-value trust score (Section 5.4.1). We then demonstrate the limitation of an algorithm

using a single-value trust score (Section 5.4.2). We finally present our method of implementing

multi-value trust scores (Section 5.4.3).

5.4.1 Definition

Traditional corroboration techniques [72, 49, 28, 37, 81, 78] usuallycalculate a trust score for

each source that is used to evaluate facts. In such a setting, the same trustscore of each source

is used to evaluateeveryfact. There are exceptions in which a technique may consider more

than one trust score for each source. For instance, theBayesEstimate method considers a

two-sided errors for each source which capture both the false positiveand false negative rates.

However, the same measures for a source are used to evaluateeveryfact for which the source

casts a vote.

Formally, we define asingle-value trust scorethat is used in existing techniques asone

measureσ(s) that is computed for each sources. The measureσ(s) is used to evaluate each

fact{f |s(f) ∈ {T, F}} thats casts vote. Note that such measureσ(s) could contain more than

one value (e.g., BayesEstimate). In this following, we focus our discussion on the case

whereσ(s) is a single value.

In contrast, we propose to use amulti-value trust scorein our corroboration algorithm. A

multi-value trust scoreis defined as a group of values assigned to each source, as shown below.

σ(s) =< σ1(s), σ2(s), · · · , > (5.4)

where we callσi(s) one of the trust values of sources. In such a setting, each factf is evaluated

using one of the trust values ofσ(s) of sources that have voted forf . Consider 2 factsf1, f2
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for which a sources has aT vote. A single-value based algorithm evaluates both facts use the

same measureσ(s), while a multi-value based algorithm may use different trust values ofσ(s).

As an example, assume we adopt the scoring used in theTwoEstimate [28] to compute

the probability for facts. Formally, letfi ∈ F∗ andS+i be the set of sources that have aT vote

for f . We usep(σ(s)) to denote the function that picks a trust value fromσ(s). A multi-value

trust score based algorithm computes the probability off as follows.

σ(fi) =

∑

s∈S+

i
p(σ(s))

|S+i |
(5.5)

5.4.2 Single-value trust score

A single-value trust score based algorithm works by iteratively estimate the probability of facts

and the trust score for the sources. As shown in Equation 5.7, the probability of facts is calcu-

lated using the trust score for the sources from the previous iteration (theCorrob method). In

return, the trust score for the sources is updated using the probability ofthe facts (theUpdate

method). The algorithm terminates once convergence is reached.

σ(k)(fi) = Corrob(σ(S(k−1)
i )) (5.6)

σ(k)(si) = Update(σ(k)(Fi)) (5.7)

In a regular corroboration task in which there exist conflicting votes (i.e., bothTs andFs),

a single-value trust score often works because incorrect votes can be identified based on the

corroborated result of each fact. For instance, consider a factf with aT vote froms1, s2 and an

F vote froms3. Assume that the right result (true) for f has been derived by the corroboration

algorithm. Sinces3 has the incorrect vote, its trust score is discounted and is reflected in the

corroboration of other facts. However, in a scenario where most factshaveT votes only, it is

difficult to identify any incorrect votes.

Let A be an iterative corroboration algorithm using a single-value trust score.Let us simu-

late the procedure ofA and explain that after applyingA, all the factsf ∈ F∗ have the same

corroboration result and all the sources have near perfect (or completely wrong) trust scores.

Suppose the algorithm starts with an initial trust scoreλ (e.g., 0.9) for each source.A computes

the probability for each fact using theCorrob() operation. Since for eachf ∈ F∗ there are
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T votes only and sources have a high initial trust score, facts inF∗ receive a high probability.

This is based on the assumption that if a fact is vouched by a number of accurate sources, it is

likely to be true. In return,A then updates the trust score for each source based on the calcu-

lated probabilities of the facts. Recall that most of the facts are inF∗, i.e., |F∗| ≫ |F − F∗|.

Therefore the computation ofσ(s) is dominated by the probabilities of facts inF∗. SinceA

considers that each source has the correct vote for each factf ∈ F∗, it assigns a high trust

score to each source. This is based on the assumption that the more correct votes a source has,

the more trustworthy it is. In addition, in order to avoid converging to a local optima (i.e., all

sources have a trust score of 0.5), a common fix is to use a normalization process that converts

the probability to 1 (or 0) if it is above or equal to (or less than) 0.5. OnceA converges, it

results intrue for each factf ∈ F∗ and a trust score close to 1 for each source.

From the information entropy perspective, such result indicates that the entropy of all un-

known facts is 0 since for each factf the probability is 1, and therefore we haveH(f) = 0.

In other words, a single-value based method dismisses the uncertainty of facts and considers

them true with a probability of 1. This result is counter-intuitive as we expectthat in real life

scenarios, each source has a trust score between 0 and 1, and eachfact has a level of uncertainty

quantified by its entropyH(f).

5.4.3 Multi-value trust score

Since a method that uses a single measure to evaluate all facts does not workwell for our

scenario, we now resort to a strategy that processes unknown facts separately. However, we

have to address two fundamental challenges: 1) how do we calculate the trust values for each

source; and 2) for each fact, how do we select the trust values from each source (i.e., thep(σ(s))

function) to compute its correct value.

Both challenges above can be addressed by incrementally evaluating factsand updating the

trust score for the sources. We repeatedly select a subset of the facts to process and update

the trust value that represents the trust score over the facts that have been evaluated. During

each round, we use the latest trust value for the sources and leverageheuristics in selecting

unevaluated facts. We formally define the incrementally calculated trust score as follows.
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Definition 1 (Incrementally calculated trust score) Consider{t0, t1, · · · , tm} be a set of fi-

nite time points. We define an incrementally calculated trust score for sources asσ(s) =

{σ0(s), σ1(s), · · · , } whereσi(s) is the trust score ofs at time ti. At each time pointti, a

subset of factsFi is selected for evaluation. The facts inFi are evaluated using the trust scores

σi(S)={σi(s1), σi(s2), . . . , }. In return, we update the trust score of the sources toσi+1(S)

by incorporating the corroboration result of the facts inFi. Let t(f) denote the time point at

whichf is selected. In essence, the trust scoreσi(S) at timeti represents the trustworthiness of

the sources over the facts{f |t(f) < ti} that have been evaluated up toti. When the algorithm

terminates attm, the probabilityσ(f) is used to determine the corroborated result of each fact.

The advantage of using an incrementally calculated trust score is two-fold.First, it enables

us to incrementally calculate the trust values for each source. Second, thefunction to choose a

trust value from the sources for factsp(σ(s)) can be set toσi(S) at timeti, By incrementally

calculating the trust score for each source, the challenge is now how to select facts at each time

point so that the correct result could be computed for as many facts as possible. We detail this

process in the following section.

5.5 Corroboration

In this section, we investigate strategies of selecting facts at each time point and present our

corroboration algorithm (denoted asIncEstimate). In the following discussion, we assume

the scoring of theTwoEstimate algorithm (Equation 5.5) is used. We first introduce our fact

selecting strategy (namelyIncEstHeu) in Section 5.5.1. We then present theIncEstimate

algorithm int Section 5.5.2. We analyze the complexity ofIncEstHeu in Section 5.5.3.

5.5.1 Selecting facts

Recall that in Section 5.4 we showed the main limitation of existing algorithms is that theyuse

a universal trust score for each source and incorrectly dismisses theuncertainty of facts. In

order to uncover the correct value of unknown facts, the key challenge is to evaluate each fact

f at a pointti such thatσ(S) is a more accurate measure for the facts.

Let F̄i ⊆ F be the set of facts that have not been evaluated atti andσi(S) be the trust values
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for the sources. It is yet difficult to decide a set of factsFi ∈ F̄i such thatσi(S) is accurate for

Fi. Now let us again look at the problem from the information entropy perspective. Since we

know that the entropy for an unknown fact is 0 if its probability is 1 (or 0), we model the fact

selection problem as a problem to maximize the collective entropyH(F̄i) of unknown facts.

One possible greedy strategy is to select facts with the highest entropy at eachti. However,

such a strategy does not necessarily maximizeH(F̄) since the selectedFi would impact the

trust valuesσ(S) for the sources. In turn, the updated trust values would affect the entropy of

the remaining facts̄Fi − Fi. For instance, suppose we selectr1 (which has the highest entropy

of 1) at round 2 in the motivating example. Such a selection results inσ(S) = {−, 1, 1, 0.5,−}

which would decrease the entropy of remaining facts. As a consequence, we would be unable

to identify the false factsr4 andr10.

Given a set of unknown facts̄Fi, it is easy to see that there exist2|F̄i| ways of selecting

facts atti. However, it is computationally expensive to explore all possibility so as to maximize

H(F). We approach the problem by selecting a set of facts such that the updated trust values

σi+1(S) is unlikely to decrease the entropy of the remaining facts. Consider below 2 cases of

trust valuesσi+1(S) after evaluatingFi.

• σi+1(sj) > σi(sj) for eachj or

• σi+1(sj) < σi(sj) for eachj

For simplicity, let us assume that all the remaining factsF̄i haveT votes only (̄Fi ⊆ F∗).

Consider the case in which by selectingFi the trust value increases for each source (i.e., case 1).

Since the probability of facts is calculated as the average trust scores of itssources (Equation

5.5) and a higher trust value for the sources would increase the probability of the facts, the

entropy decreases for facts with a probability above 0.5 (recall a fact has the highest entropy

if it has a probability of 0.5). On the other hand, the updated trust value increases the entropy

for the facts with a probability smaller than 0.5 andσi+1(S) brings its probability closer to 0.5

thanσi(S). Similarly, a smaller trust value for the sources would bring down the entropyfor

facts with a probability smaller than 0.5 and could raise the entropy for facts witha probability

greater than 0.5.

Now let us examine the relationship between facts and the trust value changes. We observe
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that if the evaluation results ofFi are true (or false), the trust value for the sources increase

(or decrease). This is based on the intuition that the more correct votes a source has, the more

trustworthy it is. Letσi+1(s) be the trust value for sources after evaluatingFi and for each

f ∈ Fi the corroboration result is true,σi+1(s) can be calculated as follows.

σi+1(s) =

∑

fj∈F̂i
σ(fj)

|F̂i|

=

∑

fj∈F̂i−1
σ(fj) +

∑

fj∈Fi
σ(fj)

|F̂i−1|+ |Fi|

>

∑

fj∈F̂i−1
σ(fj)

|F̂i−1|
= σi(s) (5.8)

whereF̂i+1 refers to the facts that have been evaluated up toti. Note that the above calculations

consider the probability to be 1 for true facts.

Based on the discussions above, we now have a viable strategy. We firstgroup unevaluated

facts based on the sources of the votes. Facts in the same group receivevotes from the same

set of sources. The intuition behind is that facts with the same votes should have the same

corroboration result. As an instance in the motivating example,r5 andr8 are grouped together

since they have the same votes. We then calculate a score∆H(F̄) for each fact groupFG that

represents the entropy change for the remaining facts ifFG is selected. We rank fact groups in

decreasing order of their∆H(F̄) scores and pick the one with the highest score.

∆H(F̄)FG =
∑

FG′∈F̄−FG

(Hi+1(F̄)FG′ −Hi(F̄)FG′) (5.9)

There is one special case in which givenσ(S), all remaining facts have a probability above

(or below) 0.5. In this case, the facts would be evaluated to be true (or false) which is equiv-

alently as having a entropy of 0 (recall true facts have a normalized probability of 1). Such a

scenario could be caused ifIncEstHeu repeatedly selects facts that evaluated to be true facts.

To avoid this effect, we slightly modify our strategy as follows. During each timepoint ti,

we divide fact groups into positive part (fact groups with probability above 0.5) and negative

part (fact group with probability below 0.5). We then pick one fact groupfrom each part with

the highest∆H(F̄) score. In addition, we require that the same number of facts are selected

from each group. LetFG+
i andFG−

i denote the positive and negative fact group, and we use
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size(FG) to denote the number of facts of groupFG. IncEstHeu selectsn facts from each

group wheren = min{size(FG+
i ), size(FG−

i )}. The rationale behind is that asFG+
i and

FG−
i become extremely disparate in sizes, the updated trust scores are dominatedby the larger

fact group.

5.5.2 The Algorithm

Algorithm 1 Incremental Estimate (IncEstimate)
Input : F : a collection of facts;S: a set of sources
Output : σ(S): estimations for the sources,σ(F): estimations for the facts

1: Initialize σ0(S), σ(F)
2: while |F̄ | > 0 do
3: Fi ← Select Facts(F̄ , σi(S))
4: F̄ ← F̄ − Fi

5: for all f ∈ Fi do
6: σ(f)← Corrob(f, σi(S))
7: W ←W ∪ f
8: end for
9: σi+1(S)← Update Trust(W)

10: end while
11: returnσ(S), σ(F)

Algorithm 1 demonstrate the overall flow of ourIncEstimate algorithm. OurIncEstimate

takes a set of facts and a set of sources as input, and output the estimations of the trust scores

of the sources as well as the probabilities of the facts. At first, we initializeσ0(S) andσ(F)

with a default value (e.g., 0.9). Our algorithm then repeatedly selects a new subset of facts

in each round. During each round (line 2-10), the new set of facts areselected using the

Select Facts(F̄ , σi(S)) function (line 3, defined in Algorithm 2). The corroboration calcu-

lates the probability for each selected fact (line 6) and inserts it into a setW that contains facts

which have been evaluated (line 7). The trust scores of the sources are then updated incorpo-

rating the results of facts that have been selected. Our algorithm terminates when all facts have

been evaluated and returnsσ(S) andσ(F).

We briefly discuss theIncEstHeu strategy defined in Algorithm 2. At first, theIncEstHeu

strategy initializes a setW which is the set of facts that are to be selected, andP andN which

represents the set of positive and negative fact groups respectively (line 5). The setP andN
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Algorithm 2 Select Facts(F̄ , σ(S))
1: IncEstHeu:
2: W ← ∅,N ← ∅,P ← ∅
3: P ← all fact groupsFG in F̄ s.t.σ(FG) > 0.5
4: N ← F̄ − P
5: sortP,N in decreasing order of∆H(F̄)
6: FG+ ← peek(P) FG− ← peek(N )
7: n← min{size(FG+), size(FG−)}
8: for i = 1→ n do
9: W ←W ∪ peek(FG+) ∪ peek(FG−)

10: end for
11: returnW

are then filled with positive and negative facts that have not been evaluated (line 6 and 7). Note

that thepeek(P) function pops the first elements fromP. We then sort the setP andN based

on their∆H(F̄) in decreasing order (line 8). FromP andN , we pick the fact group that has

the highest∆H(F̄) score, denote asFG+ andFG− respectively (line 9). We selectn facts

from each group wheren is the number of facts of the smaller group betweenFG+ andFG−

(line 10-13).

5.5.3 Complexity analysis

In this section, we analyze the complexity of ourIncEstimate algorithm. As a comparison,

a voting based method simply counts the number of votes for each fact and therefore incurs a

cost ofΘ(|F|). Methods that iteratively computes the scores for the facts and sources have a

cost ofΘ(m(|F|+ |S|)), wherem is the number of iterations needed for convergence.

Our IncEstimate algorithm incurs additional cost when calculating projected scores

for unevaluated facts and updating trust scores for the sources at each time point. Lettm

be the number of time pointsIncEstimate needs to evaluate all facts. As we see before,

IncEstHeu evaluates at least one fact group at each time point, therefore we can bound tm

by the number of fact groups inF . Recall that a vote takes a value from{T, F,−}, therefore

the maximum number of fact groups is3|S| − 2|S| − 1 (we excluded fact groups with only one

vote or no vote). Further, since we focus on scenarios where most facts receiveT votes only,

the bound for the number of fact groups can be reduced toO(2|S−S∗| · 3|S∗|) whereS∗ is the

set of sources that castF votes (S∗ < S).
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At each time point,IncEstHeu calculates projected scores for unevaluated facts and up-

date trust scores for the sources. In the worse case scenario, eachof the fact groups evaluated at

t1 throughtm−1 contains one fact, and the fact groups evaluated attm contains|F|−2(tm−1)

facts. The total cost on calculating projected score is thereforetm·(tm−1)+(|F|−2tm+2)·tm.

In the best case scenario, the majority facts|F| − 2(tm − 1) are evaluated att1 and 2 facts are

evaluated fromt2 throughtm, which brings the cost to(|F| − 2tm + 2) + tm · (tm + 1). On

the average case where the number of facts in fact groups is uniformly distributed, the cost

is |F|(tm+1)
2 . By adding the cost for calculating trust scores for the sources, the total cost for

IncEstimate can be bounded byO(|F| · 2S−S∗ · 3S∗

).

While the cost ofIncEstimate is exponential in the number of sources, in typical cases

this number is small. In addition, whether adding more sources results in better corroboration

quality is still an open question [21]. Moreover,tm is also bounded by the number of facts|F|

since at least one fact is evaluated at each time point, and therefore the cost forIncEstimate

can be bounded by a polynomial termO(|F|2). Our experimental results in Section 5.6.2 show

the overhead of a more sophisticated algorithm is acceptable in exchange for better corrobora-

tion results.

5.6 Experiments

In this section, we present our experimental results. Section 5.6.1 describes the experiments

setup. We first present our results on the real-world dataset, the restaurant application men-

tioned before in Section 5.6.2. We then show the experimental results on synthetic datasets in

Section 5.6.3.

5.6.1 Setup

In this section, we present our experiment setup and evaluation metrics, aswell as the algo-

rithms we implemented for comparison.
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Algorithms

[Baseline methods]: We provided two baseline approaches namedCounting andVoting.

TheCounting method assigns atrue result to each fact if more than half the sources report

it true. In contrast, theVoting method considers a fact astrue if there exist more sources

reporting it true than false.

[Corroboration methods]: We implemented the strategyIncEstHeu of our incremental al-

gorithm introduced in Section 5.5. We used a default trust scoreσ(S) of 0.9 for each source

to start our algorithm. We tested other default values and we observed all default value above

0.5 generate the same corroboration result. This is because despite differentσ0(S) used, the

same facts are selected att0, and therefore they result in the same trust value att1. We are

also interested in how a different fact selection strategy would impact the performance of

IncEstimate. To that end, we implementedIncEstPS, a simple strategy that selects

the fact group with the highest probability at each time point. The rationale behind is that

facts with higher probability are more likely to receive correct corroboration results. Com-

pared with a balanced strategyIncEstHeu that considers both positive and negative facts, we

want to see how a naive greedy strategy performs in the competition. We alsoimplemented

theTwoEstimate algorithm [28] and theBayesEstimate algorithm [81] for comparison.

For theBayesEstimate algorithm, we used the same assumption as in [81] that sources

have low false positive rate but high false negative rate. In particular, we setα0 = (100, 10000),

α1 = (50, 50), andβ = (10, 10).

[ML-based methods]: Since our problem can be naturally seen as a classification problem,

we also tested machine learning based algorithms using the votes as features.In particular, we

tested 2 classifiers using Weka: a SVM classifier (using SMO implementation) and a logistic

classifier with default parameter. We report the results using 10-fold cross validation.

Environment and Metrics

We implemented all the algorithms using Java SDK 6. All the experiments were conducted

on a Mac OS 10.8.2 with a quad-core CPU of 3.3 GHz and 8GB Ram. We use the following

metrics to evaluate the results of various algorithms.
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Source coverage YellowPages Foursquare MenuPages OpenTable CitySearch Yelp

0.59 0.24 0.20 0.07 0.50 0.35

Source overlap YellowPages Foursquare MenuPages OpenTable CitySearch Yelp

YellowPages 1 0.22 0.18 0.04 0.43 0.26
Foursquare 0.22 1 0.30 0.08 0.22 0.29
MenuPages 0.18 0.30 1 0.09 0.17 0.29
OpenTable 0.04 0.08 0.09 1 0.05 0.07
CitySearch 0.43 0.22 0.17 0.05 1 0.27

Yelp 0.26 0.29 0.29 0.07 0.27 1

Source accuracy YellowPages Foursquare MenuPages OpenTable CitySearch Yelp

0.59 0.78 0.93 0.96 0.62 0.84

Table 5.3: Source coverage and overlap

Precision, Recall, Accuracy:We first report standard information retrieval metrics to evaluate

the results of all algorithms.

Mean square error of trust score (MSE):We uset(si) to denote the trustworthiness of source

si over a sampled golden set, and letσ(si) denote the computed trust score ofsi by a corrobo-

ration algorithm. The mean square error of trust score is computed as follows.

MSE =
1

n

n
∑

i=1

(t(si)− σ(si))
2 (5.10)

5.6.2 Real-World Dataset

We report our experiment results over real world datasets in this section.

Dataset

We used the restaurant example discussed in Section 5.2 in our experimentalevaluation. We

used the same example in [49] and reported results of existing techniques ona small sample of

restaurant listings. In this study, we expanded our investigation and conducted experiments in

a much larger scale. We crawled data from six major sources for restaurant listings3, namely

Yellowpages, Foursquare, Menupages, Opentable, Citysearch, and Yelp. Some of the

web sources allow accesses to the list of restaurant listings at a given a location (e.g., Manhat-

tan), while for others we have to do random accesses to probe as many listings as possible. In

3We comducted the crawling in Feb 2012.
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this particular experiment, we consider restaurant listings in the greater NewYork City area.

Our initial crawling yielded 42969 restaurant listings but contains numerousduplicates due to

various presentation of the same listing. In order to clean the data and removeduplicates, we

employ the following strategy. We first wrote a rule-based script to normalizethe addresses

of all listings. Listings that share the same address are then grouped together. We calculate a

similarity score between each pair of listings within a group and we consider twolistings are

the same entities if their similarity score is above a certain threshold. For the purpose of this

project, we adopted the cosine similarity score at the term level as well as 3-gram level and

used a threshold of 0.8. After removing the duplicates, we recorded 36916 restaurant listings

from these 6 sources. Among those, only 654 listings (<2%) haveF votes from sources. More

specifically,F votes come from 3 sources,Foursquare (10), Menupages (256), andYelp

(425).

Table 5.3 reports source coverage (the fraction of the total restaurantlistings contained

in each source), as well as the source overlap (a measure of how much two sources have in

common). As shown, all sources contain only a fraction of the entire listings.Among all

sources, 2 sources (i.e., Yellowpages, Citysearch) have significantly more coverage (>50%)

compared with others.

Golden set: In order to evaluate the performance of various algorithms, we must create a golden

set of listings for which we know for certain their correct value (true or false). Unfortunately,

there does not exist an authoritative source that can provide such information. To that end,

we selected restaurant listings from 3 zip codes and investigated their legitimacy in person4.

Overall, our golden set contains 601 listings, out of which 340 are true and 261 are false. We

also calculated the accuracies of all sources in the golden set, listed in Table5.3. Unsurpris-

ingly, sources that have direct connection with restaurants (e.g., OpenTable andMenupages)

have high accuracies (>0.9). Interestingly, the two sources with significantly higher coverage

(Yellowpages, Citysearch) are also the sources with low accuracy (∼0.6).

Identifying legitimate restaurants is not a trivial task. Before we embarked on designing a

corroboration algorithm for this task, we tried to leverage the reviews information from some

4The in-person check-up was conducted during Apr 2012.
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of the sources to predict whether a restaurant listing is legitimate. In particular, we used a

variety of meta data (number of reviews, average interval of review time stamp, length since

last review, etc) as well as the review content as features and tested using a SVM classifier.

However, the classifier resulted in a less-than-satisfactory accuracy (< 0.7).

Corroboration quality

Precision Recall Accuracy F-1

Voting 0.65 1.00 0.66 0.79
Counting 0.94 0.65 0.76 0.77

BayesEstimate 0.63 1.00 0.67 0.77
TwoEstimate 0.65 1.00 0.66 0.79
ML-SVM (SMO) 0.98 0.74 0.77 0.84
ML-Logistic 0.86 0.85 0.82 0.82
IncEstPS 0.66 1.00 0.68 0.79
IncEstHeu 0.86 0.86 0.83 0.86

Table 5.4: Result of real-world dataset

Table 5.4 lists the performance of various algorithms as well as theCounting andVoting

methods. Since for most of the listings there exist onlyT votes, theVoting method assigns

them atrue result, thus results in a perfect recall value (1.0) but a low precision (0.65). In

contrast, theCounting method uses a high threshold to filter out listings with insufficientT

votes, hence has a high precision (0.94). However, the threshold is highenough to reject a lot of

legitimate listings, therefore resulting in a low recall value (0.65). The two non-corroboration

based approaches have an accuracy of 0.66 and 0.76, respectively.

Existing corroboration-based approaches do not perform much betterthan the two baseline

approaches. As they cannot leverage conflicting information from the data, theTwoEstimate

algorithm has almost the same result as theVoting method by assigning atrue result to

every listing except for a small set for which there are moreF votes thanT votes. The

BayesEstimate algorithm also has very similar results asTwoEstimate. In addition to

suffering from the lack of conflicting votes among facts, theBayesEstimate algorithm re-

lies heavily on the prior knowledge regarding the sources. Thehigh-precision low-recallprior

that is used byBayesEstimate is clearly different from the actual trustworthiness of the

sources, as we see in Table 5.3 that bothYellowpages andCitysearch have poor precisions.

The two machine learning based algorithms perform noticeably better than bothbaseline
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YellowPages Foursquare MenuPages OpenTable CitySearch Yelp MSE

Source accuracy 0.59 0.78 0.93 0.96 0.62 0.84 -
TwoEstimate 1.00 1.00 0.98 1.00 1.00 0.98 0.063

BayesEsitmate 1.00 1.00 1.00 1.00 1.00 1.00 0.066
ML-Logistic 0.62 0.85 0.98 0.92 0.65 0.95 0.004
IncEstHeu 0.51 0.70 0.90 0.93 0.51 0.89 0.005

Table 5.5: The mean square error of trust score

and existing corroboration methods. In particular, the support vector classifier improves on

both accuracy (0.77) and recall (0.84). In comparison, the logistic classifier proves to be a

better model in this case, with a precision of 0.86 and an accuracy of 0.82. Unsurprisingly,

the most discriminating features are theF votes from the 3 sources. The performance gain of

machine learning algorithms is largely due to the consideration of missing votes among sources.

As we discussed earlier, a missing vote could be seen as either aF vote or that a source has no

knowledge about the fact. By taking advantage of the missing votes, machinelearning based

algorithms can leverage extra knowledge and therefore improve accuracy of predictions.

OurIncEstHeu strategy significantly outperforms the baseline and existing corroboration

methods, and slightly improve on accuracy and recall compared with machine learning based

algorithms. The improvement is statistical significant for both baseline and existing corrobora-

tion techniques (withp-value ¡ 0.001). TheIncEstPS strategy has a similar result as existing

approaches and improves on accuracy only marginally. This is due to the way IncEstPS

selects facts at each time point. We observeIncEstPS repeatedly selects facts with high

probability which are evaluated to be true. As a consequence, the trust values remain high and

most of the facts are evaluated to be true except for a few with moreF votes thanT votes.

TheIncEstHeu has a good balance between precision and recall, results in the best valuefor

accuracy and F-1. In particular,IncEstHeu results in more true negatives (141 in the golden

set). The best machine learning method (ML-Logistic) has 137 true negatives.

Although the improvement of ourIncEstHeu over the machine learning based approaches

is not statistically significant, we argue that our method is advantageous in such task. For one

thing, our approach does not require any training data, which could be difficult to obtain in cer-

tain applications. In addition, the machine learning methods are trained using a small dataset
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Figure 5.2: Multi-value trust score at each time point

and it is unclear whether it would scale to a larger unseen dataset due to thefact the model

could be overfitting over the small golden set.

Mean square error

Table 5.6.2 lists the corroborated trust scores of the sources of variousalgorithms as well as their

MSEs. ForIncEstHeu we report the trust scores for the sources at the end of last time point,

which reflects their trustworthiness over the entire dataset. Compared with theactual source

accuracy over the golden set, theIncEstHeu is clearly the best performer (almost identical

trust score forMenupages, Opentable), thus results in the smallest MSE (0.005) among all

corroboration techniques. This is due to the fact that it adapts its trust value for each fact

group. TheTwoEstimate algorithm, which is unable to identify most illegitimate listings,

concludes all the sources as perfect or near perfect sources. Similar as precision and recall, the

BayesEsimate algorithm assign a trust score to each source similar toTwoEstimate. The

machine learning methodML-Logistic has the best MSE value overall, slightly outperform

our best strategy. This is because the machine learning methods are specifically trained using

the golden set. In addition, our method reports the trust score at the end ofthe last round, which

represents the trust score over the entire dataset, and therefore it is not surprising that it deviates

from the trustworthiness of the sources on the golden set.
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Multi-value trust score

In this section, we illustrate how the trust score for each source changeswhen using different

strategies of theIncEstimate algorithm. Figure 5.2 plots, for each strategy, different trust

scores that are used for corroboration at each time point.

Since we use an initial trust scoreσ(S)0 for each source, all sources share the same trust

score att0. As theIncEstimate algorithm continues, each strategy develops different trust

score trajectory for the sources. In particular, theIncEstPS strategy (Figure 5.2(a)) chooses

the set of facts with the highest probability which are evaluated to be true. Inreturn, the true

facts boost the trust score for the sources that cast votes. SinceIncEstPS favors facts with

high probability, the trust scores for the sources remain at 1 until all factswith only T votes

have been evaluated. It is not surprising that from then on, trust values for sources withF votes

start to decrease since facts withF votes are evaluated to be true. Eventually,IncEstPS is

only able to identify 2 true negatives, which is similar as existing corroborationtechniques.

In contrast, theIncEstHeu strategy overcomes the limitation ofIncEstPS by selecting

both positive and negative listings during each round. This results in significantly different

trust score change from theIncEstPS strategy (Figure 5.2(b)) While after evaluatingF0 all

sources are positive sources, the trust scores for bothCitysearch andYellowpages begin to dip

as more false facts withF votes are identified, which effectively makes them negative sources

(after t12). With the presence of negative sources,IncEstHeu is able to uncover false facts

from F∗ which explains a significantly higher number of true negatives.IncEstHeu then

continues to evaluate facts and the trust scores eventually converges to the actual accuracy for

the sources.

Time cost

Inevitably, a more sophisticated corroboration algorithm incurs additional timecost in compu-

tation. OurIncEstimate algorithm suffers from the overhead of the multiple round cor-

roboration. Table 5.6 lists the time cost of various algorithms over the real world dataset. We

used the ‘time’ command to test the time cost of each algorithm and report thereal part. The

two baseline approaches,Voting andCounting, which only considers the number ofT
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Time cost (secs)

Voting 0.60
Counting 0.61

BayesEstimate 7.38
TwoEstimate 0.69

ML-SMO 0.99
ML-Logistic 0.91
IncEstPS 1.13
IncEstHeu 1.15

Table 5.6: Time cost of various algorithms

Number of errors

Voting 292
Counting 327

TwoEstimate 269
ThreeEstimate 270

IncEstHeu 262

Table 5.7: Results of various algorithms over the Hubdub dataset

andF votes, are the fastest ones, with a time cost of 0.6 and 0.61 seconds, respectively. The

TwoEstimate algorithm, which applies corroboration on all the listings at once, is also fairly

efficient, with a time cost of 0.69 seconds. TheBayesEstimate algorithm requires a burning

period before stabilizing and results in the longest time (7.38 secs). The two machine learning

based approaches take less than 1 second largely due to the fact that they only run over the

golden set. The best strategy of ourIncEstimate algorithm results in a little more than 1

second, with the best performing strategy having an acceptable time cost of1.15 secs.

The Hubdub Dataset

Our technique focuses on the scenario where most or all facts have onlyT votes. Nevertheless,

we do not believe that our incremental algorithm is limited to such cases. To demonstrate the

effectiveness ofIncEstimate in dataset with ample conflicting votes, we use the Hubdub

dataset from [28]. The Hubdub dataset was constructed using a snapshot of settled questions

from hubdub.com, which contains 830 facts from 471 users on 357 questions.

Table 5.7 report the results of various algorithms on the Hubdub dataset. Wedid not include

the machine learning based methods since this task involves more than two candidate answers.
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Snapshot Precision Recall F-measure

1 .843 .722 .778
2 .843 .688 .758
3 .873 .699 .776
4 .878 .749 .808
5 .843 .759 .799
6 .744 .816 .778
7 .873 .821 .857
8 .840 .832 .836

Table 5.8: Results of INCESTIMATE over the restaurant dataset in [18]

For comparison, we report the same metric used in [28], the number of errors (the sum of

false positive and false negative). The best performance in [28] wasfrom TwoEstimate,

which recorded 269 errors. OurIncEstHeu outperforms all existing methods by reducing it

to 262 errors. This proves thatIncEstHeu is not only suitable for the corroboration problem

discussed in this chapter, but also effective in scenarios with conflicting statements.

The online listing dataset

In addition to the Hubdub dataset, we also tested our approach on the dataset used in [18] that

comprises restaurant listings from a set of web sources. The authors in[18] studied the problem

of identifying the true values of data objects when the update history of the sources is known.

To that end, a method that takes into consideration the coverage, exactness and freshness of the

sources is proposed. To test the effectiveness of their method, [18] used a dataset that contains

a list of restaurants scraped from multiple listing websites containing severalsnapshots over

a period of time to determine whether each of the restaurant is still in business.Due to the

similarity in nature between this dataset and the one we used in 5.6.2, we like to testif our

algorithm is robust enough to handle another dataset.

We obtained a copy of the raw dataset which contains all the 8 snapshots ofweekly crawling

results of restaurant listings from 12 sources. Similarly as the authors did in[18], we used the

name to identify each restaurant and only retain those that appeared in morethan one source.

We ran our algorithm against all 8 snapshots of data and report their precision, recall and the

F-measure in Table 5.8.

As shown in Table 5.8, our INCESTIMATE algorithm performs consistently well against all
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Precision Recall F-measure

NAIVE .70 .93 .80
CEF .83 .88 .85

COPYCEF .86 .87 .86
INCESTIMATE .84 .83 .84

Table 5.9: Results of various algorithms over the restaurant dataset in [18]

8 data snapshots. The precision is reasonably good among all runs (> 0.8), except for snapshot

#6 which took a notable hit in precision. Note that it is possible that two snapshots with minor

updates could result in a sizable difference in the evaluation results underINCESTIMATE. This

is because that even a slight difference in voting from the sources couldcause INCESTIMATE

to assign an initial trust score to sources that might deviate from its true trustworthiness over all

facts. Since selecting facts at each iteration depends on the trust scoresfrom the previous round,

an inaccurate initial estimate of the trust scores might take longer to correct. On the other hand,

the recall of INCESTIMATE has seen a steady gain as we evaluate each snapshots in chronicle

order. This is hardly surprising due to the fact that the test set was selected as restaurants that

later disappeared from the listings. By obtaining more evidence of those disappearing listings,

INCESTIMATE is able to uncover more true negatives.

Table 5.9 lists the results of various approaches reported in [18], as wellas INCESTIMATE at

snapshot #8 which represents the final result of the entire dataset. As shown in the table, both

CEF and COPYCEF perform exceptionally well with COPYCEF having the best overall F-

measure value. Our INCESTIMATE algorithm also performs quite well, with a precision of 0.84

and a recall of 0.83 that only trails slightly the best-performing COPYCEF method. This minor

performance disparity can be explained due to the fact that CEF and COPYCEF were designed

to capture not only the correctness and coverage, but also the freshness of the sources. As

such, they perform extremely well when a rich history of data values is available. In addition,

COPYCEF takes into consideration of the data dependencies among the sources which could

effectively rule out copious votes. In contrast, although our approach focus on more on static

data, it is generating results with a more than acceptable quality and is very suitable when the

history of data values is expensive to obtain.
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5.6.3 Synthetic Dataset

We present our experiment results on synthetic datasets in this section. We first provide details

on how we generate synthetic datasets (Section 5.6.3) and then present thecorroborated results

(Section 5.6.3).

Dataset

We use the following model to generate synthetic datasets. We consider all thesources are

positive sources,i.e., with a trust score of greater than 0.5. For each sources, let σ(s) and

c(s) denote its trust score and coverage. For each fact, we randomly assigna correct value of

either true or false. We also consider a factorη that determines the percentage of facts that

haveF votes. The parametersσ(s) andc(s) controls whether and how a sources casts votes

on facts. Motivated by the observation in the real world dataset, we dividethe sources into

accurate sources (e.g., Menupages) and inaccurate sources (e.g., Yellowpages). In particular,

we create sources as follows.

• Accurate sourcesare created with a trust score uniformly distributed in [0.7, 1.0]. In

addition, each accurate sources is associated with a probabilitym(s) that it casts aF

vote for a false fact. We setm(s) to be uniformly distributed in [0, 0.5].

• Inaccurate sourcesare created with a trust score uniformly distributed in [0.5, 0.7].

Inaccurate sources do not castF votes for any fact.

We generate coverage for each source by following the intuition that inaccurate sources have a

higher coverage compared with accurate sources. In particular, the coverage is calculated using

Equation 5.11,

c(s) = 1− σ(s) + random() ∗ 0.2 (5.11)

whererandom() is a function that generates a random real number in [0, 1]. For each synthetic

dataset we generate 20000 facts which are randomly assigned a true or false value.
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Figure 5.3: Corroboration results of synthetic datasets

Results

Figure 5.3 plots the performance comparison of various algorithms in the synthetic datasets.

In particular, Figure 5.3(a) illustrates the accuracy of algorithms with a varying total number

of sources. In this experiment, we fix the number of inaccurate sources at 2. As shown, our

IncEstHeu algorithm consistently outperforms all other methods by a large margin. As the

number of accurate sources increases, the accuracy of theIncEstHeu improves. In contrast,

except for theCounting method, all methods remain almost flat as the number of sources

change. The performance of existing algorithms is not unexpected. Although the majority

sources are accurate, their low coverage, coupled with the fact there exist very few conflict

votes, renders the state-of-the-art methods incapable of identifying false facts.

Figure 5.3(b) demonstrates the results under a varying number inaccuratesources, with the

total number of sources fixed at 10. We are seeing similar results as shownin Figure 5.3(a).

Unsurprisingly, as the number of inaccurate sources increases, the accuracy of theIncEstHeu

decreases and eventually drops to the same level when 9 out 10 sourcesare inaccurate. Our

IncEstHeu outperforms all other methods by as much as 37%.

Figure 5.3(c) shows the results with a different percentageη of facts that haveF votes

(from 0.01 to 0.05). We fix the number of total and inaccurate sources at 10 and 2 respectively.

Again, theIncEstHeu algorithm generates significantly more accurate corroboration results

than any other methods.
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5.7 Conclusion

We studied the corroboration problem in a scenario in which there exists little conflicting in-

formation. We tackle the problem by proposing an algorithm based on a multi-value trust score

for each source. For each source, we use a different trust scorewhen evaluating different sets

of statements. We leverage the entropy of unknown facts and derive strategies of choosing facts

during each round in our algorithm. We conduct experiments on both synthetic and real-world

datasets and demonstrate that our algorithm significantly outperforms state-of-the-art corrob-

oration methods and improves accuracy over machine learning based approaches. The work

presented in this chapter was published in [49] and [73].



87

Chapter 6

Corroborating Joined Information over Web-accessible Databases

6.1 Introduction

We have demonstrated in the previous two chapters that corroboration techniques could lever-

age the quality of the sources to improve the quality of the answers (Chapter 4). Moreover,

we proposed finer-grained trustworthiness for the sources (i.e., multi-value trust scores) that

captures an observation that a source may exhibit different trustworthiness towards different

queries (facts). Such technique proves to be extremely effective in a situation where the sources

agree on the same answer for most queries (Chapter 5).

Although the corroboration methods proposed in the previous two chaptersare aimed to-

wards different scenarios, the corroboration problems (queries) are bothsimplequeries: queries

whose candidate answers can be independently extracted from a single source. As an example,

in Chapter 4, each candidate answer (e.g., theMPG of a car) is independently extracted from a

single source. Unfortunately, the fact that an answer can be extractedfrom a single source is

not always true for real world scenarios. Consider the following query.

(1, "29029 ft", 0.9)

(3, "Mount Vancouver", 0.7)

(1, "Mount Everest", 0.3)

s

Q: what is the elevation of the highest mountain in the US?

s1 2

(2, "20322 ft", 0.7)

(3, "18000 ft", 0.6)

(2, "Mount McKinley", 0.9)

Figure 6.1: Illustration of Example 1

EXAMPLE 1: Consider the query “What is the height of the highest mountain in the United

States?”. It is possible that a single source might provide the answer to thisquery. But in a
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more probable scenario we may find two sources wheres1 provides a list of highest mountain

in the US ands2 provides the height of a list of mountains (Figure 6.1).

EXAMPLE 2: As another example, consider the query “Show me the upcoming movies that are

directed by winners of Oscar best actor”. It is unlikely that we could finda source that provides

a direct answer. We could however, identify a list of Oscar best actor winners as well as the list

of movies that are about to be released from multiple sources.

For both scenarios, each value provided from the sources is only partial information of an

answer to the original queries, and a post processing function similar to thejoin operation in

databases is needed in order to generate the final answer to the queries.In addition, each partial

information may be correct or incorrect, and corroboration techniques need to be employed in

order to ensure the correctness of the final answer.

While search engines and deep Web technologies have been increasinglyeffective at find-

ing relevant documents and information in a certain domain, they are less capable of auto-

matically combining pieces of relevant information to form a consolidated answer that is of

users’ interest. In this chapter, we discuss corroborating answers for queries that involve join-

ing information from multiple sources (denoted asjoin queries). The problem of join query

corroboration significantly differs from the ones we introduced in the previous two chapters

(henceforth denoted as traditional corroboration problems) in two major parts. First, in tradi-

tional corroboration problems, each source provides a candidate answer and the correct answer

is decided as one of the candidate answers. In this case, each source provides partial informa-

tion and only by combining the partial information from multiple sources can we construct a

candidate answer. The correct answer is then picked from a set of candidate answers, each of

which is generated using partial information from the sources. Second, the number of potential

candidate answers increases dramatically in join query corroboration. For traditional corrobo-

ration problems, the number of candidate answers is bounded by the total number of different

candidate answers from the sources (and hence, the number of sources). In contrast, the poten-

tial candidate answer space could be as large as the Cartesian product of the cardinality of all

sources for the problem of join query corroboration. Therefore, a more pressing challenge is to

efficientlyidentify the top answers for join queries.

Motivated by the biggest challenge, we focus on efficiently corroborating answers for
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Figure 6.2: An example of join graph depicting the join relations between tables

join queries in this chapter. Formally, let us consider a join queryq and a set of sources

S = {s1, s2, . . . }. Each sourcesi provides statementssi(q) = {f1
i (q), f

2
i (q), . . . } pertaining

to the queryq that shed lights on the partial information of a potential answer toq. Each state-

mentf j
i is associated with a scoreσ that represents its quality with respect to the queryq. We

write a candidate answerf = {f1, f2, . . . } of queryq as a combination of one statement from

each source (fi ∈ si(q)) that satisfies the join condition specified inq. Given a scoring function

Corrob(f) that evaluates the candidate answerf based on the statements from each source, the

objective is to efficiently identify a set of answers of sizek that have the highest scores. As an

example, consider the queryq and the sourcess1 ands2 in Example 1. We extract statements

from each source ass1(q) = {(1, “MountEverest”, 0.3), (2, “MountMcKinley”, 0.9),

(3, “MountV ancouver”, 0.7)} ands2(q) = {(1, 29029ft, 0.9), (2, 20332ft, 0.7), (3, 18000ft, 0.6)}.

Based on the statements froms1 and s2, we can construct candidate answers as (f1
1 , f

1
2 ),

(f2
1 , f

2
2 ) and (f3

1 , f
3
2 ). Note that although the original query does not explicitly specify the

join condition, it is obvious to conclude that, given the two sources, it is a natural join between

s1 ands2.

In order to conform to the terminology used in the context of join operations,we from here

on refer to the sources as tables and the statements as tuples (e.g., (1, “MountEverest”, 0.3)).

Note that both queries shown in Example 1 and 2 are simple joins in that the tables are joined

in a chain. In other words, each table joins with two adjacent tables except for the first and

last table. Consider a more general join graph shown in Figure 6.1 as an example. Assume that

edges represent sources and nodes represent attributes on which two tables join. Intuitively, the
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score for a join of multiple tuples is computed as the product of the scores of each tuple. Given

a value for an attribute (e.g., a), a possible join query would be to retrieve the value of another

attribute (e.g., c) connected to the first attribute via a join path (i.e., e1 → e2). An important

observation is that given a source and a destination attribute, there may exist multiple join paths

connecting them. We consider that each join pathvouchesfor the quality of the generated join

result. Therefore, in addition to the attribute value in the destination node, the user may be also

interested in the tuples (i.e., edges) that support the join result.

Recent efforts on top-k join query processing have made great stridesthat are relevant to our

corroboration problem. In particular, Ilyas et al. [34] proposed a branch-and-bound algorithm

named the rank-join algorithm that efficiently computes the top-k answers forjoin queries. The

key idea is similar to the Threshold Algorithm (TA) proposed by Fagin in [25] that maintains

a buffer of candidate answers and threshold of score upper bound of unseen answers and halts

when the score of thekth answer is above the threshold. The rank-join algorithm would work

beautifully for join query corroboration such as the ones mentioned in Example 1 and 2. Despite

the performance advantage, the rank-join algorithm suffers from two limitations. First, the join

queries considered in [34] involve tables that form only one join path. In contrast, we consider

a more general join graph, allowing multiple join paths between the source and destination

attributes. The second limitation of rank-join algorithm is that it is essentially considering

inner-join, which requires the join answer to have an instantiated value fromeach source in the

join graph. The study in [39] shows that inner join may produce answers with scores that are

too low to be of interest.

Note that one important feature of our join query corroboration is that we allow null tuples

for some of the data sources in a join answer. This is different from the rank-join algorithm

which considers only inner-joins. Consider the same join graph in Figure 6.1. Assume we find

one complete join answer with score 0.1 on each edge and another partial joinanswer with

score 0.9 on edgee1 ande2 andnull on all other edges. Clearly the latter join answer has a

higher score and therefore is of more interest to the user. Even if the rank-join algorithm could

be applied to the join graph considered in our case, it could not produce the latter answer since

it containsnull tuples on some of the join edges. For comparison purposes, we extended

the rank-join approach to more general join graphs. Our experimental results show that our
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approach is significantly better than the rank-join based approach.

We consider the major bottleneck of top-k join query corroboration to be tupleaccessing

of web-accessible databases. If, for instance, the tables involved in one query are stored on

different servers, and can only be accessed via a Web interface, executing a single join between

two tables may become very expensive, as Web accesses exhibit high andvariable latency.

In addition, the query optimizer in one database will generally have no statisticsabout tables

stored at remote sites and thus be unable to offer any improvements over the naive approach.

Our contributions. We propose a novel branch-and-bound algorithm for computing the

top-k answers for join queries over Web-accessible databases. Rather than computing all the

results of the join query, our strategy dynamically retrieves a subset of tuples from each table,

and maintains lower and upper scores bounds for the query results that include the retrieved

tuples. By ordering the retrieval of table tuples based on the score bounds of the partial re-

sults, our algorithm results in significant savings in the number of Web accesses. We make the

following contributions:

• We propose a model for scoring answers of arbitrary join graphs based on network relia-

bility. We also develop methods for computing score bounds for partial answers.

• We present a novel branch-and-bound algorithm which aims to minimize the number of

Web accesses required for computing the top-k answers.

• We evaluate our algorithms on a variety of queries and data sets and demonstrate the

significant benefits they provide.

The rest of this chapter is structured as follows. Section 6.2 presents a real-life example that

we use in our experimental study. The example illustrates the concepts that weformally define

in Section 6.3. Section 6.4 presents our dynamic probing techniques that efficiently compute

the top-k results. We present our experimental study in Section 6.6. We conclude this chapter

in Section 5.7.
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6.2 Illustrative Example

Suppose that a sophisticated marketer wants to design personalized promotional packages for

attendees of certain scientific conferences. To optimize his strategy, he would like to find

out who are the researchers most likely to attend which conferences, and what are their main

reasons. The marketer decides that he could estimate the answer with reasonable accuracy by

taking into account the following factors:

F1: Travel cost for each potential attendee to each conference site;

F2: Whether a potential attendee has at least one accepted paper; has atutorial; is a confer-

ence organizer; or is a conference committee member.

F3: How important the conference is in its field.

F4: Whether the attendee is likely to attend in order to meet with a close collaborator such as

his Ph.D. advisor; and how likely the collaborator is to attend.

The marketer finds several sites that each contains part of the data he needs. For example,

a list of researchers’ contributions to various conferences can be obtained from DBLife1. The

same site also has information on researchers’ affiliation, and thus their location. Travel sites

return travel costs between any two locations. Conference locations canbe obtained from the

DBLP website, and IA Genealogy has a fairly large list of researchers’Ph.D. advisors.

Suppose that the following structured data is accessible from these websites.

- TableResearch with attributes{person, conf, σ}, whereσ is the tuple score, normalized

between 0 and 1: Tuples connect researchers to conferences. Thevalueσ is a measure of

the strength of this connection, based on their roles in that conference (author, tutorial giver,

organizer etc.). For example,(A, V LDB09, 0.9) ∈ Research may mean that researcherA

will give a tutorial at VLDB09. Intuitively, this means he is very likely to attend VLDB09,

so the tuple has a high score. Tuple(A, ICDE09, 0.5) may mean that researcherA has one

accepted paper at ICDE09, with another co-author.

1http://dblife.cs.wisc.edu/
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- Table Travel with attributes{person, loc, σ}: Tuples in this table reflect how cost-

effective it is for a researcher to travel to a location. For example,(A,Shanghai, 0.1) means

that researcherA has only expensive options for traveling to Shanghai, while(A,Providence, 0.9)

means that researcherA has at least one cheap option for going to Providence; e.g., researcher

A may live in New Jersey and travel by train.

- TablePeoplewith attributes{person, advisor, σ}: Tuples in this table reflect the strength

of the professional connection between a person and their advisor. This strength may be mea-

sured as, e.g., the percentage of papers a person co-authored with their advisor in the past 5

years; or as the inverse of the number of years since the person graduated.

- TableConference with attributes{conf, loc, σ}: Tuples contain information on the con-

ference name and location. The valueσ reflects the importance of the conference in its field.

SELECT TOP 100 C.conf
FROM Research R, Travel T, Conference C,

People P, Research R1, Travel T1
WHERE ((R.conf=C.conf)

or (R.person=T.person and T.loc=C.loc)
or (R.person=P.person

and ((P.advisor=T1.person and T1.loc=C.loc)
or (P.advisor=R1.person and R1.conf=C.conf))))

and R.person IN PREDEF-SET

Figure 6.3: Query retrieving top 100 conferences that researchers inPREDEF-SET are likely
to attend, based on factors F1–F4.

Note that in our model we assume, as in other prior work [58, 15], that the scores of tuples in

each table are available. Such scores may be computed based on surveys(e.g.,Conference.σ);

by machine learning methods (e.g., examine historical attendance records to learn a model

for Research.σ); or by formulas provided by the query issuer (e.g., the marketer believes

thatPeople.σ should be computed as(years)−1, whereyears is the number of years since a

person’s graduation; if tablePeople contains attributeyears instead ofσ, thenσ is computed

on the fly). A full discussion on modeling tuple scores is beyond the scope of this chapter. If

all tables were stored in a single DBMS, the marketer would issue the SQL query in Figure 6.2.



94

6

person conf

e

e e

e e
e

advisor

loc

1 2

3 4
5

Figure 6.4: Query graph for the example query

Query graphs It is easier to visualize this SQL query as the query graph in Figure 6.4.

Each edge corresponds to a table, while each node corresponds to an attribute2. If two edges

share a node, then there is a join on that attribute between the two tables. For example, edge

e6 corresponds to tableResearch, and edgee3 to tableTravel. Edgee5 also corresponds to

Travel. The reason we represent this table by two edges is that the table appearstwice in the

query, asT andT1.

Nodes connected by a path correspond to a logical ‘and’ between their corresponding

joins. Thus, the pathperson - loc - conf corresponds to the clauseR.person=T.person and

T.loc=C.loc. Edges emanating from the same node correspond to a logical ‘or’ between the

clauses that start with the corresponding tables. Thus, since edgese6 ande3 start two paths

from the same node, the corresponding clauses(R.conf=C.conf)and(R.person=T.person and

T.loc=C.loc)are connected by ‘or’.

We use directions on the edges to ensure that certain paths are impossible. For example, the

pathperson - loc - advisor - conf would be a valid path in an undirected graph. However, this

would correspond to a clause(R.person=T.person and T.loc=T1.loc and T1.person=R1.person

and R1.conf=C1.conf)being ‘or’-connected to the other conditions. Such a clause breaks

the semantics of the SQL query: forR.person = A, T.loc = Shanghai, andC.conf =

ICDE09, there are many valuesT1.person = B that satisfy this clause, because there are

many other researchers that are connected toICDE09. However, this should not contribute

2We restrict the model to binary tables. Tables with more join attributes can be modeled as multiple binary
tables.
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to the likelihood thatA will attend ICDE09. To insure the equivalence between the query

semantics and the paths in the query graph, we impose directions on edges. Nevertheless, our

methods are directly applicable to undirected graphs, as well.

Finally, in order to fix the source and destination nodes, we use the techniques proposed

in [76]. The source attributes are the ones that have selection conditions inthe “WHERE”

clause, and the destination attributes are the ones that appear on the “SELECT” clause. For

instance, the example query above hasperson in the “WHERE” clause with selection condi-

tion andconf in the “SELECT” clause, therefore we fix them as source and destination nodes

respectively. For simplicity, we assume there are exactly one source and one destination (oth-

erwise, add new nodess andt; connects to all sources via edges with scores 1; connect all

destinations tot via edges with scores 1).

6.3 Definitions

We study join queries of typeSELECTL fromR whereC, whereR is a list of tables,L is a

list of attributes fromR, andC is a set of join conditions over attributes fromR, connected by

and/or operators. For the remainder of this chapter, we assume that the joinquery is represented

as a query graph, as described in the previous section.

Let G = (V,E) be the (directed or undirected) query graph, withsource nodes anddes-

tination nodet; s, t ∈ V . Each edgee ∈ E corresponds to a table accessible via a Web site,

and thus has an associated set of tuples denotedTup(e). For each tupleτ , let σ(τ) ∈ [0, 1]

denotes the score ofτ . Similarly, each nodev ∈ V corresponds to an attribute and has an

associated domain denotedV al(v). The domain contains all possible values for that attribute,

over all the tables that have that attribute. For any edgee, if its endpoints are nodesu andv,

thenTup(e) ⊆ V al(u)× V al(v).

6.3.1 Cost Model

Our goal is to minimize the number of Web accesses necessary to compute the query results. As

in [48], we consider two types of probes:random access probes (RA)andsorted access probes

(SA). We first define them below, and then explain their contribution to the cost function.
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In an RA probe, we know the value for at least one position in the tuple, andwe ask for

all the tuples that match that value, along that edge. An SA probe, on the other hand, returns

the tuple with highest score that has not been accessed so far. We use the notationsRA(e) and

SA(e) to denote random and sorted accesses on edgee respectively.

Whenever a tupleτ is returned as part of an RA or SA result, we assume that its scoreσ(τ)

is also returned. An RA probe may return more than one tuple. Ifk tuples are returned, the cost

of the operation isCostRA + α(k − 1)CostRA, whereCostRA is the cost of one Web access,

and0 < α < 1 is a dampening factor. The rationale is that having a Web request processed

by a remote site is the main bottleneck, and the number of results returned adds only a small

overhead. By contrast, an SA probe only returns one request at a time.However, since these

results are accessed sequentially, it is reasonable to assume that multiple results are sent at once,

and cached on the query processor’s site. Therefore, we assume that CostSA = βCostRA, for

some0 < β < 1.

6.3.2 Bindings

We define aquery resultto be a set of tuples, one from each table in the ‘FROM’ listR,

such that the tuples satisfy the conditions in the ‘WHERE’ clauseC. The set of values for

the columns in the ‘SELECT’ listL can easily be computed from the query result. A brief

justification for this definition is provided in Remark 1 at the end of this subsection. This set of

tuples induces a binding of all nodes in the graph to some specific values. Inaddition, it also

induces corresponding scores on the edges. Conversely, a binding of nodes to values and edges

to scores, if it is consistent with the query conditions, induces a unique query answer (and its

score). For the sake of clarity, we therefore refer to query results ascomplete bindings, defined

below.

Definition 2 Let G = (V,E) be a directed query graph, whereV = {v1, . . . , vn} andE =

{e1, . . . , em}. A complete bindingofG is a vector

B = (a1, . . . , an, σ1, . . . , σm), ai ∈ V al(vi)

such that, for any edgeei = vj → vk, if the tuple(aj , ak) belongs toTup(ei) thenσi =

σ((aj , ak)); and otherwise,σi = 0. We say that edgeei is bound to the tuple(aj , ak), and
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nodesvj , resp.vk, arebound to the valuesaj , resp.ak.

Note that we must allow zero-score values on edges in order to model situations in which

not all paths can be instantiated. For example, the vector(A,SIGPOD09, P rovidence,B,

0, 0.8, 0.9, 0.4, 0.9, 0.7) is a complete binding of the query graph in Figure 6.4. Tuple(A,SIGPOD09)

is not an instance of tablee1. Therefore,σ1 = 0. Tuple(A,Providence) is an instance ofe2,

with score 0.8.
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Figure 6.5: Generating bindings for a simplified version of the graph in Figure 6.4 (dashed
edges are unbound): (a) the graph and its associated edge tuples and scores; (b), (c) two differ-
ent partial bindings.

Our branch-and-bound strategy involves exploring and possibly discarding a subset of com-

plete bindings (i.e., complete results) at each step. We represent such subsets as partial bindings

(i.e., partial results), defined below.

Definition 3 LetG = (V,E) be a query graph, whereV = {v1, . . . , vn} andE = {e1, . . . , em}.

We denote by ’*’ a new symbol, such that∗ 6∈ (∪ni=1V al(vi)). A partial bindingof G is the

vector

PB = (b1, . . . , bn, [ℓ1, L1], . . . , [ℓm, Lm]), bi ∈ (V al(vi) ∪ {∗}),

such that for each1 ≤ j ≤ m, [ℓi, Li] ⊆ [0, 1] and [ℓi, Li] contains at least one scoreσ(τ) of

a tupleτ ∈ Tup(ei).

For any vi ∈ V , we usePB[vi] to denote the value ofPB corresponding tovi (i.e.,

PB[vi] = bi). Similarly, for anyej ∈ E, PB[ej ] denotes the range[ℓj , Lj ] corresponding

to ej .

Note that, unlike a complete binding, a partial binding allows a node instancebi to be the

new symbol *. This signifies that nodevi has not been bound to any instance fromV al(vi).
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For the range of an edgeei, we will only allow two cases: Eitherℓi = 0 < Li, in which case

we say thatei is unbound; or ℓi = Li = σ(τ), whereσ(τ) is the score of a tupleτ ∈ Tup(ei).

In the latter case, we say thatei is boundto the tupleτ , and denote it byei → τ .

As we detail in Section 6.4, our algorithm generates new partial bindingsPB′ from a

current partial bindingPB using probes on unbound edgesei. In general, in the new partial

bindings edgeei will be bound to one of the tuplesτ ∈ Tup(ei) returned by the probe (some

exceptions occur for SA probes).

Executing one edge binding:We use the notationPB′ = (PB, ei → τ) to signify that

PB′ was created fromPB by binding edgeei to τ . Edgeei must be unbound inPB. More

precisely,PB′ is computed as follows:PB′[ei] = σ(τ); if ei = vj → vk andτ = (a, b), then

PB′[vj ] = a andPB′[vk] = b; all other entries inPB′ are the same as inPB. This edge

binding operation is well-defined only ifτ is compatible withPB, i.e.,PB[vj ] ∈ {a, ∗} and

PB[vk] ∈ {b, ∗}. In other words, we only execute an edge bindingei → τ if the endpoints of

ei are either unbound, or bound to the same values as inτ .

EXAMPLE 3: Consider the query graph from Figure 6.5(a). A complete binding for this

graph is, e.g.,

B = (a3, b2, c1, d1, 0.1, 0.3, 0.9, 1, 1).

Two partial bindings for the graph are illustrated in Figures 6.5(b) and (c):unbound edges

are dashed, while bound ones are solid; ranges/scores are indicated along the edges; and the

binding values for nodes are indicated by small arrows. Hence, Figure 6.5(b) illustrates the

partial binding

PB1 = (a3, b2, c1, d1, [0, 0.7], 0.3, 0.9, 1, 1),

and Figure 6.5(c) corresponds to

PB2 = (a3, b2, c1, d1, 0.1, [0, 1], 0.9, 1, 1).

Note that, even though the nodes are bound to the same values in all 3 cases, the bindings

are different, because they were generated via different edge bindings. For example,B =
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(PB1, e1 → (a3, b2)) = (PB2, e2 → (b2, c1)), butPB1 andPB2 cannot be generated from

each other via edge bindings.

An example of invalid edge binding in this figure is(PB1, e1 → (a2, b2)), since it conflicts

with the binding of nodes to a3 in PB1.

Intuitively, a partial binding is a short-hand notation for a subset of complete bindings. It is

therefore natural to talk about an inclusion relationship between bindings,as follows.

Definition 4 LetPB1 andPB2 denote two partial bindings, such that

PB1 = (b1, . . . , bn, [ℓ1, L1], . . . , [ℓm, Lm])

PB2 = (c1, . . . , cn, [r1, R1], . . . , [rm, Rm]).

We say thatPB1 is included inPB2, and writePB1 ⊆ PB2, if for all 1 ≤ i ≤ n, either

ci = bi or ci = ∗; and for all1 ≤ j ≤ m, [ℓi, Li] ⊆ [ri, Ri]. If, in particular,PB1 is a complete

binding and is included inPB2, we say thatPB1 belongs toPB2 and writePB1 ∈ PB2.

Remark 1 In the example from Section 6.2, there is a unique complete binding for each pair

(R.person,C.conf). However, this is not usually the case. Suppose that tableTravel has an

extra attributeOptionID, and that it contains tuplest1 andt2 as(ID1, A, Providence, 0.9)

and (ID2, A, Providence, 0.88). Then the answer(A,SIGPOD09) is obtained via 2 com-

plete bindingsB1 andB2: B1 binds edgee2 to t1 with a score of0.9, whileB2 binds it tot2

with a score of0.88. ReturningB1 andB2 as separate results gives the marketer additional

information; e.g., he may have airline clients interested in it. Moreover, our algorithms can still

be adapted to return just(A,SIGPOD09), with scorescore(B1), i.e., the maximum score of

all complete bindings generating the pair.

6.3.3 Computing Scores of Bindings

LetG = (V,E) be a query graph with specifiedsource nodes anddestination nodet; s, t ∈ V .

GraphG can be seen as a communication network, in whichs transmits a signal thatt must

receive. The signal can travel along any edge. An edgee ∈ E fails (gets disconnected) with

probability1 − π(e), whereπ(e) is thesuccess probabilityof e. The probabilities of different



100

edges are assumed to be independent. The probability that a pathP = e1e2 . . . ek succeeds,

i.e., that the signal travels from one end to the other ofP , is thereforeπ(P ) = Πk
i=1π(ei).

The reliability of networkG is the probability that at least one of the paths betweens andt

succeeds; equivalently, it is the probability thatG remains connected. Given the equivalence

between the boolean conditions in a SQL queryQ, and the structure of its corresponding query

graphG, we propose scoring the answer toQ as the network reliability ofG. More precisely,

Definition 5 LetB = (a1, . . . , an, σ1, . . . , σm) be a complete binding ofG. For any edgeei,

we define its success probability asπ(ei) = σi (recall thatσi ∈ [0, 1]). We define the score of

B, denotedscore(B), to be the reliability of networkG under these edge probabilities.

For partial bindings

PB = (b1, . . . , bn, [ℓ1, L1], . . . , [ℓm, Lm]),

we will compute a range of scores[min(PB),max(PB)] as follows: Let theminimum net-

work ofPB, resp.maximum network ofPB, be the networkG where the success probability

of any edgeei is defined asπ(ei) = ℓi, resp.π(ei) = Li. Thenmin(PB), resp.max(PB), is

the reliability of the minimum, resp. maximum, network ofPB. The following result will be

used in Section 6.4 to explain our strategy for choosing edge probes.

Proposition 1 LetPB1, PB2 be two partial bindings such thatPB1 ⊆ PB2. Then:

(i) [min(PB1),max(PB1)] ⊆ [min(PB2),max(PB2)]. In particular, if PB1 is a com-

plete bindings, thenscore(PB1) ∈ [min(PB2),max(PB2)].

(ii) If there exists at least one pathP such that all edges ofP are bound to non-zero values

in PB1, but at least one such edge is unbound inPB2, thenmin(PB1) > min(PB2). If no

such path exists, thenmin(PB1) = min(PB2).

Proof 1 SincePB1 ⊆ PB2, claim (i) is immediate.

To see why (ii) is true, suppose first that there exists a pathP satisfying the conditions as

stated. Letei ∈ P be an edge which is unbound inPB2. This implies thatPB2[ei] = [0, Li],

so in the minimum network ofPB2, π(ei) = 0. Therefore, pathP always fails, so it contributes

nothing to the network reliabilitymin(PB2). By contrast, sincePB1[ei] = σi > 0 for all
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edgesei ∈ P , it follows thatπ(P ) > 0 in the minimum network ofPB1, soP contributes

towards the network reliabilitymin(PB1). BecausePB1 ⊆ PB2, any other pathP ′ has at

least the same probability in the minimum network ofPB1 as in the minimum network ofPB2.

This implies thatmin(PB1) > min(PB2). For the last claim, if no pathP satisfies the stated

conditions, it follows that: eitherP contains an unbound edge in bothPB1 andPB2; or all

edges ofP are bound in bothPB1 andPB2. In the first situation,π(P ) = 0 in both minimum

networks, while in the second situation,π(P ) is the same in both minimum networks. Since

this is true for all pathsP , min(PB1) = min(PB2).

Computing the reliability of a general network is NP-Hard [68]. The Monte-Carlo algo-

rithm in [36] approximates the reliability of a network with arbitrarily high precision. Multiple

iterations are executed, and the precision increases with the number of iterations. Note that one

could also compute the network reliability in a deterministic way by the inclusion/exclusion

formula over paths. However, the complexity of this approach grows exponentially with the

number of paths, and quickly becomes impractical. Therefore, we will employthe Monte-

Carlo algorithm for computing the scores of bindings, and assume that enough iterations are

executed so that all approximation errors are negligible.

6.4 Top-k Algorithm

In this section, we present our algorithm for efficiently computing the top-k complete bindings

of a query graph. Our cost model assumes that tuple scores are storedremotely and are expen-

sive to access. To this end, we design an efficient edge probing strategy that computes the top-k

bindings based on a subset of tuple scores.

Our strategy generalizes Fagin’s Threshold Algorithm (TA) [25]. The TA algorithm as-

sumes that each object in a database hasm attributes stored inm lists. The score of an object

is computed using some monotonic aggregation functionf , such as min or average. The algo-

rithm works by doing sorted access in parallel to each of them sorted lists. For each object

B that is seen under sorted access, TA then does a random access to the other lists to find the

corresponding scores for objectB and computes its overall scoref(B). Only thek objects

with highest overall score are stored, at any given time. TA defines thethreshold valueτ to be
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f(x1, . . . , xm) (wherexi is the last object seen under sorted access on listi) and halts when the

k highest scores are at least equal toτ .

In our setting, the objects correspond to complete bindings, and them attributes of an

objectB correspond to them edge bindings inB. The value of an attribute is the score of

the corresponding edge binding. The monotonic functionf is score(B). However, a direct

application of the TA algorithm is impossible in our model, as we explain below. Suppose

we started by doing a sorted access in parallel on all edges, i.e., an SA probe on each edge.

For each bindingei → SA(ei) that is retrieved under sorted access, we would need to know

the objectB to which it belongs. However, in our case, one edge binding may be part of

many complete bindings, and we have no way of identifying them at this point. Even if an

edge binding occurred in only one complete bindingB for which we could somehow obtain

an identifier, the TA algorithm would still require random accesses on all other edges (using

B’s id) to find all the edge bindings inB and their scores. Clearly, this would lead to many

expensive edge probes.

Instead, our approach modifies the TA method in several crucial ways: We maintain sets

of objects together, and compute lower and upper bounds for the scoresof all objects in a set.

Each such set has a succint representation as a partial binding. We may store more thank

(complete or partial) bindings at any given point. While we still do sorted access in parallel

over all edges, we do not follow such a step by compulsory RA probes onall edges. Instead,

we design and study several strategies for deciding what RA probes to execute.

Throughout this section, we use the query graph from Figure 6.5(a) to illustrate these ideas.

This graph is obtained from the query graph in Figure 3, where edgee6 was removed for

simplicity. As mentioned above, we assume that each edge in the graph has a sorted list of

tuple scores, in descending order of scores. Ties are broken in an arbitrary but fixed manner.

We say that the topmost tuple has level 1, the next tuple has level 2, a.s.o. Wewill maintain

a global levels, which is originally set to 0, i.e., the pointer in each sorted list lies above the

first tuple. To execute SA probes in parallel on all edges, we increments and access the tuple

at levels on each edge. If an edge has fewer thans levels, then the result of its SA probe is

undefined, and no further SA probes are executed.

Our algorithm employs parallel SA probes to generate bindings in which all nodes and
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PB∗,0 = (∗, ∗, ∗, ∗, [0, 1], [0, 1], [0, 1], [0, 1], [0, 1])
PB∗,1 = (∗, ∗, ∗, ∗, [0, 0.9], [0, 1], [0, 0.9], [0, 1], [0, 1])
PB∗,2 = (∗, ∗, ∗, ∗, [0, 0.7], [0, 0.5], [0, 0.8], [0, 0.9], [0, 1])
PB∗,3 = undefined

Table 6.1: AllStar bindings for the graph in Figure 6.5(a).

edges are unbound, but edge ranges are progressively tighter. Wecall such bindingsAllStar.

More precisely, theAllStar of levels is defined asPB∗,s = (∗, . . . , ∗, [0, σs
1], . . . , [0, σ

s
m]),

whereσs
i is the score of the tuple on levels in the sorted list ofei. For s = 0, PB∗,0 =

(∗, . . . , ∗, [0, 1], . . . , [0, 1]).

EXAMPLE 4: The graph in Figure 6.5(a) has AllStar bindings of levels 0, 1, and 2. They

are depicted in Table 6.1.

6.5 Top-k Algorithm

Our overall approach is described in Algorithm 3. It takes as input a query graphG, which

comprises, in addition to its node and edge structure, information about the data sources from

which edge tuples can be retrieved (via edge probes).

The algorithm maintains a set of partial bindingsS, and a set of complete bindingsT .

Initially, S = {PB∗,0, PB1, . . . , PBk}, wherePBi is the partial binding having the source

node bound to theith value in PREDEF-SET, and all other nodes and edges unbound; and

T = ∅. As the algorithm executes thewhile loop, partial bindings fromS are replaced by

new bindings with fewer unbound edges. Eventually, some of the partial bindings inS become

complete bindings, and may be added toT . The setT stores at mostk complete bindings at

any given time, and they are the bindings with highest scores. The algoritm terminates when

|T | = k. It may also terminate sooner ifS becomes empty, which occurs if the query graph

has fewer thank complete bindings (Step 25).

During each iteration, we select the bindingPB′ with maximum upper boundmax(PB′).

If PB′ is a complete binding, we add it toT . Otherwise,PB′ is replaced with one or

more bindingsPB′′ such thatPB′′ ⊆ PB′ (when addingPB′′ to S, we also compute

[min(PB′′),max(PB′′)]). Each such computation requires either a round of parallel SA
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Algorithm 3 Finding top-k Complete Bindings
top-k(G)[H]

1: S ← {PB∗,0, PB1, . . . , PBk}
{wherePBi = (V ali, ∗, . . . , ∗, [0, 1], . . . , [0, 1])}
{V ali: ith value in PREDEF-SET}

2: T ← ∅
3: s← 0 {level of SA probes}
4: while |T | < k do
5: pick PB′ ∈ S s.t.max(PB′) = maxPB∈S max(PB)
6: deletePB′ from S
7: if PB′ is complete bindingthen
8: T ← T ∪ {PB′}
9: else ifPB′ is AllStar then

10: s← s+ 1; do SA probes of levels on all edges
11: if all SA probes are definedthen
12: S ← S ∪ {PB∗,s}
13: S ← S ∪ {(PB∗,s, ei → SA(ei, s))}, ∀ei : edge
14: end if
15: else
16: choose unbound edgee: PB′[e] = [0, L(e)]
17: do RA probe one
18: for each tupleτ ∈ RA(e) do
19: if σ(τ) ≤ L(e) AND (PB′, e→ τ) 6∈ S then
20: S ← S ∪ {(PB′, e→ τ)}
21: end if
22: end for
23: end if
24: if S == ∅ then
25: returnT
26: end if
27: end while
28: returnT
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probes, or an RA probe, depending on whether or notPB′ is AllStar. We explain each case

below.

Replacing an AllStar (Steps 9-14): We first increment the levels and execute all SA probes

in parallel, as explained above. If at least one probe is undefined, thenwe do not generate any

new bindings. In this case, no subsequent iteration will enter Step 10 (notethatPB′ is deleted

from S in Step 6). If, however, all probes are valid, we add the new AllStar toS. We also bind

each edgeei in turn to its tuple of levels, i.e., toSA(ei, s). In total, we add exactly|E| + 1

new partial bindings in Steps 12 and 13. It is trivial to verify that all these new bindings are

included inPB′. We make the observation that the setS contains exactly one AllStar as long

as the algorithm passes the test in Step 11, and no AllStar thereafter.

EXAMPLE 5: Table 6.2 shows three of the six bindings added toS during the first itera-

tion, as a result of selectingPB′ = PB∗,0 in Step 5. Refer also to the graph in Figure 6.5(a).

Remark 2 In Step 13 of Algorithm 3, we could also take an “eager” approach, by attempting

to create partial bindings in which several compatible edges are simultaneously bound. In

Example 5, such a binding could bePB1,2 = (PB∗,1, e1 → (a1, b1), e2 → (b1, c1)), which

is valid, since both edge bindings require the value in nodeu to beb1. Instead, we ignore this

possibility, and allow the algorithm to generatePB1,2 in Step 20 of a later iteration, either

as (PB1, e2 → (b1, c1)), or as (PB2, e1 → (a1, b1)). Suppose thatPB1,2 is generated as

(PB1, e2 → (b1, c1)), during the iteration for whichPB1 is chosen in Step 5. This will require

executing the RA probeRA(e2, u → b1) in Step 17 of that iteration. Hence, we will access

the tuple(b1, c1) for a second time (the first time was as the result of the probeSA(e2, 1).)

Therefore, we appear to be inefficient when it comes to minimizing the number of edge probes.

There are two reasons for which we choose this “lazy” approach to edgebinding in Step

13. First, notice that executing the RA probeRA(e2, u → b1) in a subsequent iteration is not

superfluous, as this probe also returns the tuple(b1, c2), which is not returned by the probe

SA(e2, 1). In fact, if after the first iterationS contained onlyPB1,2, but notPB1, then we

could not later generate any complete bindings in whiche1 → (a1, b1) and e2 → (b1, c2).

But discarding such complete bindings at this point is incorrect, as we cannot guarantee that

they are not among the top-k. The correct alternative is to put bothPB1,2 andPB1 in S,



106

PB∗,1 = (∗, ∗, ∗, ∗, [0, 0.9], [0, 1], [0, 0.9], [0, 1], [0, 1])
PB1 = (PB∗,1, e1 → (a1, b1)) = (a1, b1, ∗, ∗, 0.9, [0, 1], [0, 0.9], [0, 1], [0, 1])
PB2 = (PB∗,1, e2 → (b1, c1)) = (∗, b1, c1, ∗, [0, 0.9], 1, [0, 0.9], [0, 1], [0, 1])

Table 6.2: Bindings computed during the first iteration for the graph in Figure6.5(a).

thus increasing the size ofS. This is a non-trivial problem: In the extreme case, all|E| edge

bindingsei → SA(ei, 1) may be mutually compatible (instead of juste1 and e2). In such a

case, the eager approach would have to add2|E| partial bindings toS in order to maintain

correctness (each of these bindings would leave a different subset ofedges unbound).

Second, note that ifPB1 ∈ S, it may still be selected in Step 5 of a later iteration, which

may still trigger the RA probeRA(e2, u → b1). We conclude that the lazy approach is in fact

more efficient than the eager one.

Replacing other bindings (Steps 15-23): For ease of presentation, we have omitted some

details in Step 16 of Algorithm 3. More precisely, the edgee chosen in this step must have at

least one of its endpoints bound to a value, since otherwise we cannot execute an RA probe.

Suppose thate = u → v. If both u andv are bound to valuesa, resp. b, then the RA probe

asks whether the tuple(a, b) exists on edgee. If it does, thene is bound to the scoreσ((a, b));

otherwise,e is bound to 0; the bindings ofu andv remain the same in either case. If only one

endpoint ofe is bound, it is possible that the RA probe returns multiple tuples. In that case,we

bind e in turn to each such tuple. In general, there are multiple unbound edges with one bound

endpoint. We choose one randomly from among them.

The resulting new bindings are added toS, provided that they satisfy the conditions in Step

19. We discuss the second condition first. Clearly, this condition ensures that we keepS as

small as possible, and that we do not run unnecessary iterations by selecting duplicate bindings

in Step 5. Moreover, it also ensures that we do not double-count complete bindings in the result

setT . The test can be executed very efficiently by keeping a hash table on the bindings inS.

The next example illustrates how duplicates may arise.

EXAMPLE 6: Consider two different iterations over the graph from Figure 6.5(a): In

the first iterations, we choosePB′ = PB1 in Step 5, while in the other iteration, we choose
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PB′ = PB2 in Step 5;PB1 andPB2 are the bindings defined in Table 6.2. Suppose that

for PB1, we choose the edgee = e2 in Step 16, and forPB2 we choosee = e1 in Step 16.

Table 6.3 shows the bindings generated during Steps 15-23 of each iteration. SincePB3 is

generated as a duplicate during the second iteration, it is not added toS again.

Step 5: PB′ = PB1 = (a1, b1, ∗, ∗, 0.9, [0, 1], [0, 0.9], [0, 1], [0, 1])
Steps 15-23:

PB3 = (a1, b1, c1, ∗, 0.9, 1, [0, 0.9], [0, 1], [0, 1])
PB4 = (a1, b1, c2, ∗, 0.9, 0.5, [0, 0.9], [0, 1], [0, 1])

Step 5: PB′ = PB2 = (∗, b1, c1, ∗, [0, 0.9], 1, [0, 0.9], [0, 1], [0, 1])
Fails Step 19: PB3 = (a1, b1, c1, ∗, 0.9, 1, [0, 0.9], [0, 1], [0, 1])

Table 6.3: Bindings generated in Steps 15-23 of two different iterations, for the graph in Fig-
ure 6.5(a):PB3 is generated twice, but only added once toS.

We now discuss the first condition in Step 19. Recall that we wish to generatenew bindings

PB′′ from PB′ such thatPB′′ ⊆ PB′. The testσ(τ) ≤ L(e) ensures this for all bindings

generated in Step 20. The following example illustrates a situation when the test fails, i.e.,

σ(τ) > L(e).

EXAMPLE 7:

Consider the iteration over the graph from Figure 6.5(a), in which Step 5 choosesPB′ =

PB5 as depicted in Table 6.4. (BindingPB5 was added toS in Step 13 of an earlier iteration,

sincePB5 = (PB∗,2, e2 → (b1, c2)).) Suppose that forPB5, we choose the edgee = e1

in Step 16. ThenL(e1) = 0.7, since the range fore1 is PB5[e1] = [0, 0.7]. The RA probe

RA(e1, u → b1) returns the tuple(a1, b1), with score0.9 > 0.7. Therefore, bindingPB6 is

not added toS. Note thatPB6 ⊆ PB4, wherePB4 ∈ S is defined as in Table 6.3. Hence,

all complete bindings contained inPB6 are also contained inPB4, and we do not miss any

information by ignoringPB6. On the contrary, we eliminate a redundant partial binding.

PB′ = PB5 = (∗, b1, c2, ∗, [0, 0.7], 0.5, [0, 0.8], [0, 0.9], [0, 1])
PB6 = (PB5, e1 → (a1, b1)):

(a1, b1, c2, ∗, 0.9, 0.5, [0, 0.8], [0, 0.9], [0, 1])

Table 6.4: Enforcing the inclusion property for the graph in Figure 6.5(a): PB6 6⊆ PB5, so
PB6 is not added toS.

To prove that Algorithm 3 works correctly we need the following two lemmas.
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Lemma 1 Let B be a complete binding added toT in some iterationi. Thenscore(B) ≥

max(PB) for any partial bindingPB that belongs toS at the end of any iterationj, j ≥ i.

Lemma 2 Let B be a complete binding that is never added toT . Then at the end of each

iteration in Algorithm 3, there exists at least one bindingPB ∈ S such thatB ∈ PB (and

therefore,score(B) ∈ [min(PB),max(PB)]).

Proof 2 Lemma 1: We use induction on iterationj. For j = i: B is added toT if and only

if B is selected in Step 5, soscore(B) = max(B) ≥ max(PB) for anyPB that belongs

to S in iteration i. Suppose the claim is true for some iterationj. In iteration j + 1, the

only new partial bindingsPB′′ in S are those generated either in Steps 9-14, or in Steps 15-

23, from the bindingPB′ chosen in Step 5. As discussed above,PB′′ ⊆ PB′, which implies

max(PB′′) ≤ max(PB′). SincePB′ belongs toS after iterationj, max(PB′) ≤ score(B),

and the claim follows.

Proof 3 Lemma 2:Each edgeei in B is bound to a tupleτi ∈ Tup(ei), with tuples on adjacent

edges having compatible node bindings. Letsi be the level of tupleτi in the sorted list on edge

ei. Without loss of generality, assume thats1 ≤ . . . ≤ sm. Then along each edgeei, any tupple

on a levels ≤ s1 − 1 has score at least as large asσ(τi). We deduce thatB ∈ PB∗,s for

all s ≤ s1 − 1. Moreover, the algorithm passes the test in Step 11 during any iteration prior

to choosingPB′ = PB∗,s1−1 in Step 5. Therefore,S contains onePB∗,s, with s ≤ s1 − 1,

during all such iterations, (If the algorithm returns without ever choosingPB∗,s1−1 in Step 5,

then our claim holds).

OncePB∗,s1−1 is chosen in Step 5, Steps 9-14 are executed. The test in Step 11 is still true,

since there exist tuplesτi at levelssi ≥ s1 on all edgesei. Therefore,PB1 = (PB∗,s1 , e1 →

τ1) is added toS. Note thatPB1 binds edgee1 to tupleτ1, the same asB. For all i ≥ 2,

PB1[ei] = [0, Ls1(ei)], whereLs1(ei) is the score of the tuple on levels1 in ei. Sinceτi has

levelsi ≥ s1, it follows thatσ(τi) ∈ [0, Ls1(ei)]. We deduce thatB ∈ PB1.

The bindingPB1 remains inS until PB1 is chosen in Step 5 of a later iteration. Then, Steps

15-23 are executed. Letek denote the edge chosen in Step 16;ek must be adjacent toe1, so we

can do an RA probe. Sinceτk is compatible withτ1, tupleτk is among those returned by the

RA probe. Moreover,σ(τk) ≤ Ls1(ek), as discussed above. Therefore,PB2 = (PB∗,s1 , e1 →
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Figure 6.6: Graphs used in experiments

τ1, ek → τk) is added toS, andB ∈ PB2. We can now repeat this argument withPB2 instead

of PB1. By induction, we show that after any iteration there existsPBr ∈ S with r bound

edges,r ≤ m, such thatB ∈ PBr. If r = m andPBm = B is added toS, then it is never

deleted, sinceB is never selected inT .

Let B be a complete binding. We claim that ifB 6∈ T at the end of Algorithm 3, then all

complete bindings ofT have scores larger or equal toscore(B). Let B′ ∈ T be an arbitrary

complete binding. SinceB 6∈ T , Lemma 2 implies that after thelast iteration,S contains a

partial bindingPB such thatB ∈ PB. Therefore,score(B) ≤ max(PB). By Lemma 1,

max(PB) ≤ score(B′). Hence,score(B) ≤ score(B′), and this is true for anyB′ ∈ T . We

conclude with the following.

Theorem 1 For any query graphG that admits at leastk complete bindings, the setT returned

by algorithm top-k(G) contains the top-k complete bindings ofG.

6.6 Experimental Evaluation

In this section we report the results of the extensive experimental study weconducted to eval-

uate the benefits of our approach for various query graphs and data distributions. We imple-

mented our method using Java with SDK 1.5 and ran experiments on a CentOS machine with

3.0 GHz Intel Xeon CPU and 16 GB RAM.
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6.6.1 Experiment setup

We implemented Algorithm 3, which throughout this section is referred as theSMART method.

In all experiments, PREDEF-SET is the entire domain of the source attribute. We also imple-

ment a rank-join [34] based approach (RJ) as follows: The rank-join algorithm is first applied

to each join path to generate the top-k join results with the scoring function being the product

of all edge scores. We then apply the rank-join algorithm to the graph treating each path as data

sources to produce the overall top-k join results with the scoring function being the network

reliability. Note that we extend the original rank-join algorithm to consider random access as

well as sorted access. We do not compare with the naive approach whichinstantiates and sorts

all join results because both approaches we study are orders of magnitude better.

We consider various graphs in our experiments. We evaluate our approach using both syn-

thetic and real world datasets (the motivating example). We show experimentalresults for one

synthetic join graph (see Figure 6.6(a)), and for the join graph over real world datasets from

Figure 6.6(b). For synthetic datasets, we consider various types of datadistribution (uniform

v.s. skewed, uncorrelated v.s. correlated). We evaluate the performance by counting the num-

ber of SA and RA probes, as defined in Section 6.3.1. We setα=0.1 andβ=0.1 and report

Join Cost =
∑

RA probeCostRA +
∑

SA probeCostSA.

6.6.2 Graphs and Datasets used in experiments

For testing purposes, we created two different graphs, in order to study the effect of various

graph properties on the efficiency of each method. Figure 6.6 shows the two graphs used in

our experiments (with numbers annotating nodes and letters annotating edges). In the synthetic

graph, we assume the leftmost and the rightmost nodes are the source and destination nodes,

respectively. Rather than assigning directions to edges in some arbitrary manner, we choose to

use undirected edges. This is because the number of undirected paths between the source and

destination is higher than the number of directed paths, making each instance more challenging.

We want to point out, however, that our methods are directly applicable to both directed and

undirected graphs.

The synthetic graph has 8 distinct paths between the source and destinationnodes, such as
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a − b − c anda − g − e − h − c. It also has 9 minimum cuts; for instance, (a, d) or (c, h, d).

We list the number of nodes, edges, paths and cuts of the two graphs in Table 6.5.

Nodes Edges Paths Cuts
Synthetic 6 8 8 9

Real-world 4 6 4 4

Table 6.5: Graph Statistics

We test our algorithm using both synthetic and real world dataset.

[Synthetic Dataset]: We generate a variety of datasets for our experiments, which model

different types of real-life instances. For each edge in one of the threegraphs, we must generate

tuples and their corresponding scores. Let (vi, vj , score) denote a scored tuple, wherevi and

vj represent the values of the tuple corresponding to the end nodes of its edge, andscore is

its score. Each tuple may join with multiple tuples on other edges. In our dataset, we set the

number of tuples on each edge to 200 and the average fan-out of each tuple to 4. The tuple

scores are generated randomly, as explained below. We are interested instudying the effect of

the following two parameters on the efficiency of the methods:

• Uniform vs. Skewed score distributionWe generate two datasets: In the first dataset,

scores on an edge are drawn from the uniform distribution on[0, 1]. In the second dataset,

scores on an edge follow the Zipf’s distribution [84]. With a traditional Zipf’s distribution

(s = 1), the tuple score is the inverse of its rank.

• Edge-Correlated vs. Uncorrelated scoresTuples that join, from adjacent edges, may

or may not have correlated scores. We test the performance of our approach in both sce-

narios. For correlated datasets, we pick a join path for which a high-score tuple from one

edge implies high scores of the join partners from other edges. We limit the correlations

to be among the top few (10%) tuples on the selected path.

[Real-world Dataset]: We use the motivating example discussed in Section 6.2 for the

real-world experiment (Figure 6.6(b)). In such a query, we are tryingto find the top-k bindings

(person, location, advisor, conference). In particular, edge scores are computed as follows.
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• The scores of edgese1 ande5 are computed based on the researcher’s papers accepted by

the conference. For each paper, the researcher gets a score of 1 divided by the number of

authors of the paper. For example, a researcher gets a score of 0.7 if he has two papers

with 2 and 5 authors accepted by the conference. Since this score can reach a value

greater than 1, we set an upper bound of 0.9.

• The scores of edgee2 ande6 are computed as 100 divided by the distance (in miles)

between the researcher and the conference location, with an upper bound of 0.7.

• We assign a score between 0.3 to 0.9 to edgee3 based on the conference reputation.

• The relation score between a researcher and his or her advisor (edgee4) is based on the

graduation year: it gets a score of 0.8 when the researcher was still under supervision

and decrease by a factor of 2 every year after graduation.

We extracted data from a snapshot of the DBLife dataset , which containsthe publication

and conference information up to the year of 2006. In order to find genealogy information

of researchers, we use the data from the AI Genealogy Project3 , which provides genealogy

information for researchers in AI area. By corroborating the data fromAI Genealogy and

DBLife, we were able to check out 59 AI researchers, as well as their advisors. We manually

retrieved the affiliation of the researchers and conference locations and computed the distance

between researchers and conferences for edgee2 and e6. Our real world dataset4 contains

information for 91 researchers and 110 conferences.

6.6.3 Uniform Datasets

Figure 6.7(a) shows the Join Cost for theSMART andRJ methods for the uniform uncorrelated

dataset. The x-axis is the number of top-k answers computed. We varyk from 10 to 100.

As shown, theSMART method clearly outperforms theRJ method in all four distributions.

In addition, the cost of theRJ method is the same over allk values. This can be explained as

follows. First of all, since multiple paths may share the same edge and theRJmethod is applied

3http://aigp.eecs.umich.edu/

4http://paul.rutgers.edu/∼alexng/dataset.txt
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Figure 6.7: Cost of top-k join queries for synthetic join graph: (a) Uniform Uncorrelated; (b)
Skewed Uncorrelated; (c) Uniform Correlated; (d) Skewed Correlated

to each path of the graph, it incurs cost on the same edge repeatedly (e.g., patha → b → c

anda→ g → f share edgea). More importantly, theRJ method computes the top-k result on

the path level, making it difficult to decrease thethresholdvalue [34]. AssumeRJ joins path

p1 andp2 and it computes the threshold value asmax(f(E
(1)
top, E

(2)
current), f(E

(1)
current, E

(2)
top)),

whereE(i)
top andE(i)

current refer to the edge scores of the top-1 and current join result on path

pi, andf is the computation of network reliability. Even if the current join result on pathpi

has a low score, it could still have high scores on a few edges along the path, making the score

of the overall join result high. In fact, we observe in the experiments that even the top-1 join

query requires theRJ method to retrieve all join results on each path, which explains why the

RJ method has the same cost over allk values. Compared with theRJ method, theSMART

method reduces the cost by 68% on average.
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Figure 6.8: Cost of top-k join queries for the large scale dataset: (a) Uniform uncorrelated; (b)
Uniform correlated; (c) Skewed uncorrelated; (d) Skewed correlated

6.6.4 Skewed and Correlated Datasets

Figure 6.7(b), 6.7(c) and 6.7(d) show the performance comparison forskewed and correlated

datasets. As shown, the performance gain of theSMART method magnifies as the datasets have

skewed and correlated distribution. TheRJmethod performs similarly over skewed, correlated,

and uniform datasets, largely due to the fact that it has to instantiate all the joinresults on each

path. By contrast, theSMART method performs better over the skewed (32%) and correlated

dataset (24%), versus the uniform dataset. We attribute this cost reduction to the fact that in

the skewed dataset the tuple scores drop faster, and thus the SA probescould effectively reduce

the upper bound of unseen bindings. For the correlated dataset, ourSMART method benefits

by identifying early a few partial bindings instantiated from the correlated path edges that are

likely to have very high scores.



115

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 8 7 6 5 4 3 2

Jo
in

 C
os

t

Fanout

RJ
SMART

Figure 6.9: Cost of top-k join queries as a function of fanout

6.6.5 Large Datasets

In previous section, we show the performance of our approaches in a fairly small dataset, with

each edge hosting 200 tuples with a fanout of 4. Despite the superiority of theSMART method,

we are also interested in how it scales in large dataset and with large fanoutvalue. Figure 6.9

plots the cost for theRJ andSMART methods over uniform uncorrelated dataset for a fanout

value from 2 to 8. As the fanout value grows, the cost for theSMART grows steadily in a slow

pace. Compared with a fanout of 2, the cost forSMART method grows to 5.2 times for a fanout

of 8. On the contrary, the cost for theRJ grows more than 34 times for the same fanout change.

These results demonstrate that our approach is extremely suitable in datasetswhere heavy joins

are expected (i.e., large fanout).

Figure 6.8 plots the cost for theRJ and theSMART methods in large datasets, with the

number of tuples on each edge ranging from 20 to 20000 and a fixed fanout of 4. Under

four different types of datasets, theSMART method unanimously demonstrates further benefits

compared the other two methods. By increasing the size of the dataset by 1000 times, the cost

of theSMART method only grows 117.53, 137.33, 2.22, 3.05 times for each of the four datasets

respectively. This is because theSMART method can prune out a large set of unnecessary

binding processing by maintaining a tight upper bound. On the contrary, thecost of theRJ

method grows by a factor of 1084 times among all the four datasets simply because it has to

expand all partial bindings on each join path.
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Bindings (e1, e2, e3, e4, e5, e6) score
(“Tao Li”, “Washington”, “Mitsunori Ogihara”, “CIKM 2004” ) (0.833, 0.34, 0.75, 0.8, 0.833, 0.34)0.9627

(“Tao Li”, “Toronto”, “Mitsunori Ogihara”, “SIGIR 2003” ) (0.667, 0.7, 0.8, 0.8, 0.667, 0.7) 0.9471
(“Daphne Koller”, “Seattle”, “Joseph Y. Halpern”, “IJCAI 2001” ) (0.9, 0.142, 0.9, 0.003, 0.9, 0.041) 0.9137

Table 6.6: Top-3 Bindings of real-world experiments

6.6.6 Real-World Experiments

We show in Section 6.6.2 how we extract real world datasets. Table 6.6 shows the top-3 bind-

ings as well as the edge scores for the real dataset experiment. As shown, our algorithm returns

reasonable results for such a real life query. In particular, all edgesare instantiated for each

of the 3 bindings, indicating that every path contributes to the final score ofthe bindings. Al-

though the third binding has the highest score on one of the paths (the singleedge pathe1),

the other two bindings have relatively high scores on all paths, thereforeand result in higher

overall score.
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Figure 6.10: Cost of top-k join queries for the real-world dataset

Figure 6.10 shows the cost of theSMART andRJ approaches for the real-world experiments.

Similar as the synthetic experiments, theSMARTmethod achieves significant cost savings com-

pared with theRJ method. On average, theSMART method beats theRJ as much as 70%. This

demonstrate that our algorithm is practical when used in real life applications.

6.7 Conclusions

We proposed a novel branch-and-bound approach for top-k join query processing, under a cost

model in which data access is expensive. Each data instance has an associated score. We model

the score of the overall answer as a network reliability problem. Our algorithm dynamically
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retrieves a subset of the data on each join edge, and maintains tight upper and lower bounds

for sets of answers. We conduct experiments with different types of datasets and query graphs,

and show that our algorithm significantly outperforms the rank-join algorithm.The benefits

further improve if data scores are correlated and/or skewed, which is often the case for real-life

datasets. The work presented in this chapter was published in [70].
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we studied the problem of corroborating answers from multiplesources. Given

a query to which multiple sources provide different and possible conflictinganswers, corrobo-

ration aims to identify the correct answer by distinguishing the trustworthinessof the sources.

The key idea of a corroboration approach is that the more trustworthy a source is, the more

likely it is to provide the correct answer. However, in order to design an effective and efficient

corroboration algorithm, we have to address several challenges. The first and foremost chal-

lenge is how to derive the trustworthiness of a source and given the trustworthiness of a source,

how to evaluate the probability its answer is the correct answer. Second ofall, in a case where

all the sources agree on a single answer, how to validate the correctnessof the answer. Finally,

in a case where each source only provides partial answers and it is required to combine partial

answers from multiple sources to construct a final answer, how to evaluate the quality of the

answer and how to efficiently derive the correct answer.

To address each of these challenges, we studied three empirical problemsfor which we

propose novel corroboration algorithms. We first studied the problem ofquestion answering in

which multiple sources provide conflicting answers (Chapter 4). By extracting answers from

the documents obtained from a search engine, our corroboration technique ranks the answers

based on the number, relevance and similarity of the web sources reportingthem, as well as the

prominence of the answers within the sources.

The second problem we investigated was to verify the correctness of claimsthat are agreed

upon between all sources (Chapter 5). Intuitively, a claim supported byall sources must be

true, simply because there is no other source rebutting it. However, in a real world scenario

this might not necessarily be true since agreeing sources could be out-dated or wrong due to
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copy/paste. As a solution, we proposed a novel corroboration approach that evaluates the claims

on a gradual basis. Different from existing methods that apply corroboration on all the claims

at once, we evaluate the claims one set at a time and gradually refine the trustworthiness of the

sources.

The third problem we studied was queries in which a single source is insufficient to provide

a candidate answer (Chapter 6). To answer such queries, users have to fetch and combine

information from multiple sources and construct a final answer. The process of combining

information from two sources is similar to the join operation in a relational database and hence

the problem can be viewed as a join query processing over multiple databases. The main

bottleneck of join query processing is tuple accessing which typically exhibitshigh and variable

latency. For this problem, we propose a branch-and-bound algorithm that tightly bounds the

scores of partial results and determines a good order in which it accesses the tables so as to

minimize efforts in the computation of the top-k answers.

For each of the three problem, we demonstrate that there exists only trivial approach or

the challenges render the performance of the state-of-the-art algorithmsless than satisfactory.

In comparison, our proposed approach for each problem significantlyoutperforms existing

approaches in answer accuracy and computational efficiency.

7.2 Future work

Based on the findings from the studies presented in this thesis, we identify several future work

directions that could be of interest and improve the strength of corroboration techniques.

Corroboration over text-based answers

To the best of our knowledge, existing corroboration techniques including ours assumed the

presence of structured answers or the ease of extraction of succinctanswers from information

sources. This assumption might not hold for certain scenario in which the fact is text-based. For

example, news agencies usually report on breaking stories and providerelevant background tid-

bits. It could be of interest to certain group of people to verify the correctness of those ‘gossips’.

As another example, users reviews posted online greatly affect people’s purchase decision of a
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product. Due to the pervasiveness of falsified user reviews it is necessary to develop a corrobo-

ration technique that can produce genuine and accurate product reviews. In both use cases, the

unique challenge is that the answers of interest are not entities or attributesof an entity but are

rather descriptions of past events or experiences. It is important to define a proper data model

to accommodate such answers. In addition, different from existing techniques that consider

that two answers either agree or are in conflict, text-based answers could agree with each other

while being phrased differently.

Use of a finer-grained trust scores for the sources

Most existing corroboration techniques use a single trust score for each source. In Chapter 5

we proposed a multi-value trust score for the sources. In such a setting,each trust value is

used to evaluate a subset of the listings. The intuition is that each trust value isa finer-grained

measure of a source toward a certain of group of listings. While we derivethe multi-value trust

scores using a heuristic approach, we could explore if such multi-valued trust scores actually

correspond to one of the properties of the entities. For instance, it is not uncommon that a

source might be more accurate toward New York based restaurants or another source is more

up to date of restaurants serving Asian cuisine.

Exploring the dependency among facts

Several existing work [17, 18, 7, 16] have investigated the dependencies among the sources in

the sense that some sources might be copying information from other sources. However, most

existing techniques assumed that facts are independent or only considered basic functional de-

pendencies such as one that only one fact could be true when considering the attribute value of

an entity. An exception is [26] in which the authors explored the relationship among multiple

attributes of entities (denoted as denial constraints) when computing the data currency. In prac-

tice, facts are rarely completely independent and taking into consideration of fact dependencies

could help us leverage domain specific knowledge. As a simple example, consider a source that

provides personnel contact information includinghome addressesandphone numbers. While

it is not always true that thecity information of theaddressrecord matches thearea codepart

of thephonerecord, a mismatching pair does not have the same probability that both valuesare
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true compared with a matching one. Instead of using the trust scores of the source to evaluate

the quality of the two attributes, it is more intuitive to plugging in the relationship between

attributes so as to improve the corroboration results.

The relationship between attributes do not necessarily have to come from thesame entity.

Consider a data source that provides personnel contact information withonly home addresses

as well as spousal information. By leveraging theaddressinformation of the spouse personnel,

it is possible to design a corroboration algorithm that outperforms one that only considers in-

dependent facts. However, the dependencies among the attributes, although intuitive, are rarely

readily defined and easy to incorporated into a corroboration system. To use those information,

a suite of sub-problems (including schema matching, entity linking, etc) need to tackled before

a successful corroboration algorithm could be designed.
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