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ABSTRACT OF THE DISSERTATION

ROBUST MEDICAL IMAGE RECOGNITION AND

SEGMENTATION

by ZHENNAN YAN

Dissertation Director: Dimitris N. Metaxas

In recent decades, with increasing amount of medical data, clinical trials are designed

and conducted to explore whether a medical strategy, treatment, or device is safe and

effective for humans. In clinical trials, due to the large variance of collected image

data and limited golden standard training samples, designing a robust and automated

algorithm or framework for quantitative medical image analysis is still challenging and

active field of research. Many state-of-the-art algorithms are designed/trained for spe-

cific anatomies or tasks with corresponding prior knowledge. In this dissertation, we

focus on robust and easy-to-use solutions for two fundamental and key modules in

medical image analysis, specifically, anatomy recognition and segmentation.

The medical image recognition is formulated as a classification problem to identify

the body section from which the image is taken. The problem is solved by a patch-

based convolutional neural network (CNN). The proposed method can utilize the image-

level label to discover discriminative local patches without local annotations and train

classifier using these local features. Its performance in our application is superior to

conventional models using ad-hoc designed features as well as standard CNN. Accurate

and efficient image recognition serves as a reliable initialization module for anatomy

segmentation algorithms.
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In medical image segmentation, precise labeling usually relies on prior knowledge

due to ambiguous visual clues of different anatomies and between-subject variance. We

use Gaussian Mixture Model and Markov Random Field to model the appearances and

spatial relationships of voxels in medical image. To finely utilize the prior knowledge

from training atlases (medical image and its corresponding label image), we design an

adaptive statistical atlas based method to segment new subjects which could be very

different from the training samples. The method is shown robust and accurate in brain

segmentation and can be easily applied in other applications.
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Chapter 1

Introduction

With the development of many advanced imaging and computing technologies, com-

puter aided medical image analysis is fast growing in recent decades. Medical imaging,

a process of creating visual representation of the interior of a body, is broadly used

in many clinical diagnosis and surgeries. There is a new computerized medical im-

age modality been introduced into clinical practice about every 10 years. In 1970s,

computed tomography (CT) [1] was introduced. Then, magnetic resonance imaging

(MRI) [2] was developed in the 80s, and PET [3] in the 90s. These days, the combined

modalities, e.g. PET/CT [4], PET/MRI [5, 6] etc., are used in some applications to

produce better visual representation, or new ways to use existing hardware for func-

tional analysis, e.g. functional MRI. Therefore, the problem of medical image analysis

is been redefined every 10 years and requires a fresh look based on the new advan-

tages/limitations that each new modality brings to medical diagnosis.

Numerous algorithms have been developed [7, 8, 9, 10] to assist clinicians or re-

searchers to interpret and assess medical images in different applications, from funda-

mental tasks, e.g. anatomical landmark detection [11, 12, 13] and organ segmentation

[14, 15, 16, 17], to complicated computer aided diagnosis (CAD) systems [18, 19, 20] in

clinical studies and also in surgery. However, since different organ systems have highly

diverse characteristics and different imaging techniques are used in studies, medical

image analysis models are usually trained or designed for specific anatomies or appli-

cations to incorporate appropriate prior knowledge. In clinical research, where a large

number of medical image data is collected with large variance and different artifacts,

designing a robust and automated framework or pipeline [21] is still a challenging and

active field of research.
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1.1 Background

There are many different diseases and disorders affecting people worldwide. For in-

stance, Alzhemimer’s disease (AD) is the sixth leading cause of death in the United

States, and an estimated 5.4 million Americans of all ages have AD in 2016 (of which,

about 5.2 million people are age 65 and older) [22]. The report [22] also states that it is

the only disease among the top 10 causes of death in America that cannot be prevented,

cured or even slowed. Another example, osteoarthritis, the most common chronic con-

dition of the joints (e.g. knee, elbow, etc.), is a leading cause of pain and disability and

affects many people particularly older adults. According to the Agency for Healthcare

Research and Quality, more than 600,000 people undergo knee replacement surgeries

every year in United States [23]. By 2030, the annual demand for primary total knee

arthroplasties is projected to grow to 3.48 million procedures in the U.S. [24]. Accurate

and timely diagnosis and proper treatment is critical. Therefore, to explore whether

a medical strategy, treatment, or device is safe and effective for humans, researchers

conduct studies involving a large set of medical data. Such research studies are called

clinical trials.

In clinical trials, structural medical images are usually collected for diseases asso-

ciated with changes in the size and shape of anatomical structures. The anatomical

changes can be quantified after delineating the structures in the medical images. For

example, ventricles and cortex measurements in brain can be used in Alzheimer’s dis-

ease analysis [25, 26, 27, 28]; the bone and cartilage measurements can help in knee

osteoarthritis studies [29, 30]. X-ray CT and MRI are two of the most commonly used

techniques to acquire image scans as a series of cross-sectional image slices. Each has its

own advantage and disadvantage. CT can produce quick and painless scan for a wide

range of conditions, in particular for lung and bone related analysis. However, it uses

radioisotopes which may cause other risks or problems. MRI is particularly sensitive to

soft tissue injuries and neurologic pathologies, although it can be a lengthy and noisy

procedure. It is ideal to help evaluate structural pathologies because of a high quality

definition. It is also able to evaluate muscle, fat, tendon, cartilage, and bone marrow
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pathology [31, 32, 29, 33]. Accurate delineation of anatomy of interest from the medical

images is prerequisite for quantitative assessment in clinical researches, especially large

data analysis.

Although doctors or clinical experts can manually delineate regions of interest (ROI)

in medical images, it is low-efficient, high-cost and error-prone in a clinical trial which

may involve a huge number of samples. Therefore, an automated, robust and accurate

medical image analysis framework is essential for such large data analysis. Due to

various characteristics of different organ systems, different framework involving multiple

processing steps is designed for specific anatomy.

Among different processing steps, efficient anatomy recognition and robust image

segmentation are two fundamental steps in most medical image analysis frameworks.

Anatomy recognition module is used to identify anatomies contained in medical images.

Through recognition, algorithms can understand the image content and locate the re-

gion of interest in images to initialize the segmentation modules for object delineation.

The image segmentation methods can utilize intensities, shape, relative position and

other prior knowledge to extract desired object boundaries from the ROI. Although

different recognition and segmentation algorithms have been proposed in the recent

decades, it is still challenging to get robust and accurate results due to several major

concerns. First, medical image data set in clinical trials has large variance because

of its collection from different institutes using equipments from different vendors and

different imaging protocols. Second, all medical images contain different visual artifacts

[34, 35, 36], which can affect the accuracy of intensity based algorithms. Third, each

screened body is different. The same anatomy may have different size, shape, location

in different bodies. What’s more, even for the same patient, anatomical changes can

be observed at different age or in pathological conditions. Moreover, limited amount

of manually labeled ground truth can not provide sufficient training samples. Owing

to the variety of data in clinical trials and limited amount of training samples, many

learning based segmentation methods are hardly applied.
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1.2 Organization

In the following chapters, we focus on two fundamental modules in typical medical image

analysis framework, namely, anatomy recognition and segmentation. The methods are

designed to be robust and scalable for two commonly used medical image modalities:

CT and MRI.

In Chapter 2, we describe the main contribution of our first work, which is a

deep learning based anatomy recognition algorithm. It aims to efficiently identify the

anatomies contained in the cross-sectional medical images. To make the method robust

to large variances in medical images, we use deep learning to learn hierarchical features

from the data. Considering that the learning based methods require large amount of

consistent training samples, we design a 2D slice based recognition algorithm, which

could be easily extended to process volumetric images. To avoid the tedious labeling,

training and error-prone online inference requirements of conventional object detection

based approaches, we formulate the problem as a multi-class image classification task

and use a two-stage deep learning framework to discover and utilize the discriminative

local information to train the classifier.

With the result of the recognition module, we can easily initialize appropriate seg-

mentation algorithm to delineate desired organs or structures. In Chapter 3, we propose

a 3D image segmentation method, which is based on statistical and adaptive atlas. Con-

sidering the limited training samples in clinical trials, our adaptive atlas is designed to

finely utilize the prior information in the training dataset and adapt to the target subject

to obtain a robust and accurate segmentation result. The segmentation is formulated

as an optimization task to label each image voxel as one of the classes. It is solved

by an expectation-maximization (EM) algorithm. We can use this method to label the

multiple structures simultaneously in human brains with Alzhemimer’s disease using

healthy training samples. However, the proposed method assumes the intensity of each

class follows a Gaussian distribution, which may not hold in single object segmentation

or binary classification where the background class needs complex modeling.

In Chapter 4, another application of liver segmentation is discussed. In this single
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object segmentation, we utilize the atlas-based prior knowledge and incorporate into

an improved deformable mode for robust result. We demonstrate that even with lim-

ited training data, the proposed method can still achieve promising results for robust

segmentation in clinical researches. Based on the this framework, we also develop an

intuitive correction method to refine the segmentation result interactively. An expert

can use it to efficiently edit the segmentation result for quality assurance. At last, we

conclude the proposed modules in Chapter 5, and discuss future work to produce robust

results towards large scale medical image data analytics.
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Chapter 2

Deep Learning based Medical Image Recognition

2.1 Introduction

CT and MR are two common forms of medical imaging scans. A CT/MR sequence is

typically a 3D volume image consisted of a series of cross-sectional 2D slices. With the

availability of more and more intelligent medical image analysis algorithms, radiologists

hope that medical images could have been “pre-processed” by all applicable automatic

algorithms before being loaded for visual evaluation. In this way, the automatic results

can be displayed instantaneously in the reading room to speed up the reading process.

Since automatic algorithms are usually trained or designed for specific anatomies, a

robust image recognition algorithm becomes important to gate the intelligent algorithms

properly for meaningful results. In this scenario, it is important to have a reliable

automatic module that can identify the human body part contained in the medical

image in the first place. Such a program can act like a medical professional to tell

quickly different anatomies and their rough positions in an image at a glance. With the

correct first impression, automated work flows can conduct meaningful pre-processing

and other higher level tasks (e.g. anatomy detection or segmentation algorithms) using

appropriate methods or models. Moreover, given the body part information, the search

range of the following detection/segmentation algorithms can be reduced, hence, the

algorithm speed and robustness are improved.

In fact, medical image recognition can also help the anatomy-based query in picture

archiving and communication system (PACS). A PACS allows a healthcare organization

to store and retrieve medical images conveniently. It is worth noting that although

DICOM header includes body part information, text-based retrieval is not an ideal

choice due to three major challenges. First, it may contain about 15% errors in DICOM
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Figure 2.1: Definition of body sections. Human body is divided into 12 continuous parts.
Each parts may cover different ranges due to the variability of anatomies. Yellow boxes
indicate the discriminative local regions in aorta arch class and cardiac class, while
green boxes indicating ambiguous local regions for this classification task.

headers [37]. Second, text information in DICOM is sometimes too abstract to precisely

describe the anatomies contained in the scan. For example, it is difficult to tell if a scan

with DICOM tag (0018,0015)=“TSPINE” includes the mid-part of the liver. Third,

the multi-language supporting of DICOM header becomes another barrier for text-

based retrieval. On the contrary, a reliable image-based anatomy recognition algorithm

can tackle all these three challenges by learning the intrinsic anatomical appearance

information to enable content-based image retrieval [38, 39] and improve the retrieval

precision.

Although organ segmentation and landmark detection topics have been extensively

investigated, the automatic medical image recognition (identify the anatomies contained

in the medical image) is not well explored. In this chapter, we introduce the human

body parts recognition task in 2D image slice, namely “slice-based body part recogni-

tion” [40]. Specifically, we divide human body into continuous sections according to

anatomical context as shown in Fig. 2.1. Given a 2D transversal slice, the task of a

slice-based body part recognition algorithm is to identify which section the slice belongs
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to. This is basically a multi-class image classification problem. Although 3D volume

always contain more comprehensive anatomy information, based on which the body

part recognition could be more accurate, this study only aims at slice-based body part

recognition for three reasons. First, 2D slice-based body part recognition provides the

foundation of 3D body part identification. Given the body part identities of all slices

of a 3D volume, the 3D body part can be straightforwardly derived. Second, training a

3D model may need a large number of consistent and labeled 3D data, which is usually

unavailable in clinical studies. Third, in some real-world systems, 3D volume is not

always accessible. For example, in a client-server application, the server end might only

receive the 3D volume data slice-by-slice due to the limited network speed but need to

output body part information instantaneously.

Multi-class image classification has been extensively studied for decades in computer

vision and machine learning communities. In general, image classification algorithms

consist of feature extraction and classification modules. Conventionally, different hand-

craft features based on prior or domain knowledge are used with various classifiers, e.g.

SVM [41], logistic regression [42], random forest [43], etc. In slice-based body part

recognition, it is difficult to “design” common features that work well for different body

sections, due to diverse appearances in different body sections and large variability

between subjects. Thus, deep learning technology, which learns features and classifiers

simultaneously, becomes a promising solution. Instead of designing any features, those

algorithms [44, 45] aim to learn both the features and classifiers jointly from the data.

As the features are learned for specific image classification tasks, they often have more

discriminative power, hence, achieve better classification performance than those ad-hoc

designed ones.

However, slice-based body part recognition has its unique challenge which might

not be solved by standard deep learning. As shown in Fig. 2.1, although image 7

and 8 come from aorta arch and cardiac sections, respectively, their global appearance

characteristics are quite similar. For these two slices, the discriminative information

only resides in the local mediastinum region (indicated by the yellow boxes). The rest

areas are just “non-informative” for classification. Although the standard deep learning
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framework is able to learn some low-level and abstract features from global context, it

cannot learn local patches that are most discriminative for body part recognition. The

“non-informative” regions here may mislead the classifier to recognize these two sections

as identical. Hence, the classification power of the learned deep network may be limited.

To leverage local information but avoid the tedious local annotations, we present a

two-stage deep learning method for body part recognition task [40, 46] in this chapter.

Specifically, in the first stage (namely pre-training stage), a convolutional neural net-

work (CNN) is learned in a multi-instance learning fashion to “discover” the most dis-

criminative and non-informative local patches. In the second stage (fine-tuning stage),

we select discriminative and non-informative local patches for each class based on the

responses of the pre-trained CNN. These selected local instances are used to fine tune

the pre-trained CNN. At run-time, a sliding window approach is employed to apply the

fine-tuned CNN to the subject image. As the CNN is sensitive to the discriminative

local patches, it essentially identifies body part by focusing on the most distinctive local

information and discarding non-informative local regions.

2.2 Related Work

Several body part recognition systems in medical imaging domain has been introduced.

Park et al. [47] proposed an algorithm to determine the body parts using energy infor-

mation from Wavelet Transform. Look-up tables are designed to classify the imaging

modality and body parts. Hong et.al. [48] proposed a framework to identify differ-

ent body parts from a whole-body scan. The method starts from establishing global

reference frame and the head location. After determining the bounding box of the

head, other body parts including neck, thorax cage, abdomen and pelvis, are local-

ized one by one using different algorithms. In general, these approaches employ ad-hoc

designed features and algorithms to identify major body parts which have globally vari-

ant appearances. Recently, more learning-based approaches are proposed for body part

recognition. All of these methods essentially resort to the detection of specific organs or

landmarks. In [49], Zhan et al. trained multiple, organ-specific classifiers and optimize

the schedule of organ detections based on information theory. In [50], Criminisi et al.
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utilized regression forests for anatomy detection and localization and obtained better

accuracy than their classification approach in [51]. In [52], Donner et al. also trained

regressor for anatomical landmark detection. However, since these organ/landmark-

based recognition methods rely on a number of organ/landmark detectors, large efforts

of manual annotation are required in the training stage. Besides, complex inferences

needed to resolve the correlation between results from different detectors may prone to

error.

Technically, slice-based body part recognition is an image classification problem,

which has been extensively studied in recent decades. Feature extraction from im-

ages is essential for the subsequent learning and generalization steps. Conventionally,

features, such as SIFT [53], Histogram of Oriented Gradients (HOG) [54] and their vari-

ants, are carefully designed or selected for specific applications with domain knowledge.

With the latest advances of machine learning technology, deep learning [55, 56] meth-

ods with automatic feature learning ability has shown successful outcomes in different

applications, including signal processing [57], image/object recognition [44, 58], natural

language processing [59], etc. The deep network architecture uses multiple layers of

simple but nonlinear activation functions to transform the input data to multiple levels

of feature representation, from low (detail) level to high (abstract) level. The network

is able to learn such hierarchical feature representations in unsupervised or supervised

way from a large amount of training data by itself. Among different deep learning

methods, convolutional neural network (CNN) [60] based algorithms are more suitable

in image related tasks, since images have highly correlated intensities in local regions

and some local signals or statistics are invariant to location. So far, different CNN

based methods [44, 61, 45] have shown their superiority in image classification tasks

compared to conventional approaches with carefully designed/selected features. Despite

its success, its application in medical image analysis remains to be fully explored.

Recently, deep learning methods have been applied in CAD tasks, including detec-

tion [62, 63, 64], segmentation [65, 66, 67, 68], disease classification [69], etc. They are

proposed for specific anatomies and tasks. As discussed before, it would be useful to
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have an image-based anatomy recognition method in the CAD system as a preprocess-

ing module. Roth et.al. [70] proposed a method for anatomy-specific classification of

medical images using CNN. They applied a standard deep CNN on 2D axial CT images

to classify 5 anatomies (neck, lungs, liver, pelvis and legs) and obtained the state-of-the-

art accuracy (5.9% error). In this slice-based anatomy recognition, the standard CNN

is conducted as a global learning scheme, which takes the entire image as input. The

CNN successfully learned feature representations to capture the diverse appearances in

the five body sections. However, this standard CNN is not easily scalable to handle

more detailed anatomy recognition (as shown in Fig. 2.1) effectively, since distinctive

information often comes from local patches and these local patches are distributed “in-

consistently” at different positions of the slices. As shown in Fig. 2.1, aorta arch section

and cardiac section have globally similar appearance, while the discriminative informa-

tion only resides in the local mediastinum region (indicated by the yellow boxes). The

rest areas are just “non-informative” or misleading for classification purpose. One may

argue that CNN can still learn local features through its convolutional layers. However,

this situation only holds while local features always appear at the similar location across

different images, which is not the case of body part recognition.

In fact, this problem also exists in general image classification/recognition applica-

tions in computer vision. Researchers are trying to leveraging local region information

to train CNN for recognition or classification. For example, in face recognition [71],

the authors first detect and align face regions properly before training CNN. In [61],

Szegedy et al. utilized CNN for local object detection and recognition and achieves

state-of-the-art performance on Pascal VOC database. Similarly, Girshick [72] trained

a region-based CNN (fast R-CNN) based on existing object proposals and used a multi-

task loss function to learn the classifier and bounding-box regressor for efficient object

detection. Then, Ren et.al. [73] proposed a faster R-CNN detection by using a region

proposal network which shares convolutional features with the detection network. De-

spite promising results these methods generate, they all require manual annotations of

local regions of objects in images for training. However, the discriminative local regions

for body section recognition are not easy to define, not to mention that the effort to
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build these local detectors might be quite large.

To avoid explicit local region or object annotation, different approaches have been

emerged. Singh et al. [74] used unsupervised clustering method and one-vs-all linear

SVM to train classifier for each cluster to discover the discriminative patches which

can be used as visual words in spatial pyramid based classification. In another pioneer

work, Wei et al. [45] applied an existing objectness detector [75] to produce some local

region proposals from a given image, and used them to train multi-label CNN classifier.

Recently, several studies incorporate multi-instance learning (MIL) [76, 77, 78] with

CNN to better utilize local information in weakly supervised learning fashion. For

example, Wu et al. proposed a deep multi-instance learning framework in a weakly

supervised setting for image classification and auto-annotation based on object and

keyword proposals [79]. Pinheiro et al. combined CNN and MIL to do pixel labeling on

Pascal VOC dataset [80]. However, their methods are built over other existing models.

Here, we present a two-stage multi-instance deep learning framework for fine-grained

body part recognition [40, 46]. Compared with above mentioned approaches, our

method does not require local annotation or any existing model. It only requires “weak”

supervision at a global level, i.e., body part labels at image level. It is designed to dis-

cover the discriminative “local” information by itself. In this way, the annotation efforts

in the training stage are dramatically reduced. This is in particular meaningful for med-

ical image applications, since the annotations in medical images often require clinical

expertise and high cost.

2.3 Methodology

We present a two-stage deep learning framework for slice-based body part recognition

in this section. We start by the problem statement and notation definitions. The first

learning stage is introduced in Sec. 2.3.2, which aims to learn representative local image

features in a supervised multi-instance fashion. Then we describe the second learning

stage in Sec. 2.3.3, in which some discriminative and non-informative local patches are

extracted from images and used to fine-tune a patch-based CNN classifier initialized
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by the first learning stage. In Sec. 2.3.4, we discuss the run-time image classification

strategy using the find-tuned CNN. At last, implementation details are discussed in

Sec. 2.3.5.

2.3.1 Problem Statement

Definitions: Slice-based body part recognition is a typical multi-class image classifi-

cation problem for a learning algorithm. Denote X as the input slice/image, K as the

number of body sections (classes), and l ∈ {1, ...,K} as the corresponding class label

of X. The learning algorithm aims to find a function O : X → l. In traditional image

classification frameworks, O is often defined as C(F(X)), where F(X) and C(.) denote

the feature extractors and classifiers, respectively.

In the context of convolutional neural network (CNN), O becomes a multi-layer

neural network. An example of standard CNN is shown in Fig. 2.2 (similar to LeNet

[60]), it has two convolutional layers (C1, C3), each followed by a max-pooling layer

(S2, S4), one fully connected hidden layer (H5) receiving outputs of the last pooling

layer, and one logistic regression (LR) layer (O6) as the output layer. In CNN, F(X)

becomes multiple nonlinear layers, which aim to extract image features in a local-to-

global fashion. C(.) is implemented by the LR layer, whose output is a K-dimension

vector R(k), k ∈ {1, ...,K} representing the probability of X belonging to each class

k. Mathematically, R(k) can be described as a conditional probability as R(k) =

P(k|X; W). Here, W denote the CNN parameters, including the weights in all layers.

The final predicted label l is determined by the argument of the maximum element

(class with the highest probability) in R.

Given a set of training images T = {Xm,m = 1, ...,M}, with corresponding discrete

labels lm ∈ {1, ...,K}, the training algorithm of CNN aims to minimize the loss function:

L1(W) =
∑

Xm∈T
− log(P(lm|Xm; W)). (2.1)

where P(lm|Xm; W) indicates the probability of image Xm being correctly classified as

class lm using parameters W.
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Figure 2.2: Illustration of one standard CNN architecture and the outputs of each layer.

CNN has shown impressive performance in image classification tasks [44, 45]. In

these successful applications, standard CNN is conducted as a global learning scheme,

which takes the entire image as input. To leverage the local information, more im-

portant, to automatically “discover” the discriminative local patches for different body

sections, we design a two-stage CNN learning framework. It consists of pre-training

and fine-tuning stages, which will be detailed next.

2.3.2 Learning Stage I: Multi-instance CNN Pre-training

In order to exploit the representative features for specific object which is usually located

in a local area of an image, CNN should take discriminative local patches instead of

the entire slice as its input. Here, the key problem is how to automatically discover

these local patches through learning. This is the major task of our first learning stage.

A multi-instance learning strategy is designed to achieve this goal.

Given a training set T = {Xm,m = 1, ...,M}, each training image Xm, with corre-

sponding labels lm, is divided into a set of local patches defined as L(Xm) = {xmn, n =

1, ..., N}. These local patches become the basic training samples of the CNN and their

labels are inherited from the original images, i.e., all xmn ∈ L(Xm) share the same label

lm. While the structure of CNN is still the same as the standard one, the loss function

is adapted as:

L2(W) =
∑

Xm∈T
− log( max

xmn∈L(Xm)
P(lm|xmn; W)), (2.2)
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Figure 2.3: Illustration of pre-train stage. In this stage, the CNN is trained in a
multi-instance fashion. Here, yellow highlighted response of instance x1n from image
X1 and purple highlighted response of instance xMN from image XM are selected to
compute the loss to update the CNN parameters in backward propagation. They are
picked because they have higher response on the correct label than other instances from
the same image. Those local patches which can be easily and correctly classified are
considered as the discriminative information for image classification.

where P(lm|xmn; W) is the probability that the local patch xmn is correctly classified

as lm by CNN with parameters W.

The new loss function is different from Eq. (2.1) by adopting a multi-instance

learning criterion. Specifically, each original slice Xm is treated as a bag consisting of

multiple instances (local patches), {xmn}. The CNN receives a batch of labeled slices

(bags) for training. The loss function Eq. (2.1) is adapted that as long as one local patch

(instance) is correctly labeled, the class of corresponding slice (bag) is considered to be

correct. Thus, within each bag (slice), only the instance with the highest probability

to be correctly classified is counted in the loss function. Such instance is considered

as the most discriminative local patch of the image slice. Let Rmn be the output

vector of the CNN on local patch xmn. The lmth component of Rmn represents the

probability of xmn being correctly classified. As illustrated in Fig. 2.3, for each training

image Xm, only the local patch that has the highest response at the lmth component of

Rmn (indicated by the yellow and purple boxes for two training images, respectively),

contributes to the loss function and drives the update of network parameters W during

the backward propagation. In this way, the pre-trained CNN will be more sensitive

to the discriminative local patches than other local regions. In other words, the most

discriminative local patches for each image class can be automatically discovered after
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Figure 2.4: A synthetic toy example. (a) Synthetic images of two classes. (b) The dis-
criminative and non-informative local patches selected by the pre-trained CNN model.
Note that we never “tell” the algorithm that these two classes are differentiable by
triangle and square.

the CNN training.

We design a toy example to illustrate this discovery ability. As shown in Fig. 2.4(a),

four types of geometry elements, square, circle, triangle and diamond are randomly po-

sitioned and combined to generate two classes of gray images. While circle and diamond

are allowed to appear in any classes, triangle and square are exclusively owned by Class1

and Class2, respectively (ref Sec. 2.4.1 for more details). Fig. 2.4(b) shows the discov-

ered discriminative patches (containing triangle or square) for the image classification

task in toy example. This is exactly in accordance to the fact that these two classes

are only distinguishable by “triangle” and “square”. It proves that our method is able

to discover the key local patches without manual annotation. Of course, this problem

would become trivial if we have the prior knowledge of the discriminative local patches

and build specific classifiers on them. However, in real-world recognition tasks, it is not

easy to figure out the most discriminative local patches for different classes. In addition,

even with adhoc knowledge, annotating local patches and training local classifiers often

requires large effort. The trivial solution thus becomes non-scalable when body-sections

are re-defined or the imaging modalities are changed.

To ensure that the learned CNN will have stable high responses on discriminative

local patches, a spatial constraint is further incorporated into the loss function as:

L3(W) =
∑

Xm∈T
− log( max

xmn∈L(Xm)

∑
x∈N(xmn)

P(lm|x; W)), (2.3)
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Figure 2.5: Illustration of fine-tuning stage. In this stage, CNN architecture is modified
by adding a non-informative class in output layer. The parameters are inherited from
the pre-trained CNN and fine-tuned using the discriminative and non-informative local
regions extracted from each class by the pre-trained CNN.

Here, N(xmn) denotes the local neighboring patches of xmn. Based on Eq. (2.3), for

each training slice, the local patch to be considered in the loss function is not the most

individually discriminative one, but the one whose neighboring patches and itself are

overall most discriminative. In this way, the selected discriminative local patches will

be more robust to image translations and artifacts.

2.3.3 Learning Stage II: CNN Fine-tuning

In the second learning stage, the main task is to fine-tune the pre-trained CNN using

selected local patches, which is illustrated in Fig. 2.5.

The first type of selected local patches are the discriminative ones, i.e., these local

patches on which the pre-trained CNN have high responses at the corresponding classes.

For each image Xm, we select D discriminative local patches as:

Am = argmaxD
xmn∈L(Xm)

P(lm|xmn; Ŵ). (2.4)

Here, Ŵ is the parameter set of the pre-trained CNN. argmaxD(.) is the operator that

returns the arguments of the largest D elements.

We noticed that apart from the discriminative local patches, the remaining re-

gions cannot be completely ignored for two reasons. First, only selecting discriminative

patches to boost classifier may lead to overfitting problems. Second, some “confus-

ing” local patches may mislead the body part recognition. For example, the patches
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containing lung regions (green dashed boxes in Fig. 2.1) appear in both aortic arch

and cardiac sections. For these “confusing” patches, CNN may generate similarly high

responses for both aortic arch and cardiac classes. (Note that since the pre-trained

CNN is only ensured to correctly classify one local patch per slice, the responses of

the remaining patches are not guaranteed.) At run-time, when CNN is applied to the

confusing patches, the high responses on multiple classes may cause wrong body part

identification. Therefore, the algorithm should collect these “confusing” regions as the

second type of local patches in fine-tune stage to suppress their responses for all desired

classes (body sections).

To this end, we introduce a new “non-informative” class (patches in dashed box in

Fig. 2.5) besides the existing training classes. This class includes two kinds of local

patches: 1) local patches misclassified by the pre-trained CNN, and 2) local patches

where the pre-trained CNN has “flat” responses across all classes. Denote P(k|xmn; Ŵ)

as the kth output of the pre-trained CNN on xmn, i.e., the probability of xmn belonging

to class k, the non-informative local patches of a training slice Xm are defined as:

Bm = {xmn| argmax
k∈{1,...,K}

P(k|xmn; Ŵ) 6= lm}

∪{xmn| entropy
k∈{1,...,K}

P(k|xmn; Ŵ) > θ} (2.5)

Recall the toy example, Fig. 2.4(b) shows the selected discriminative and non-

informative local patches. The non-informative patches including circle, diamond or

black background are just common and misleading components for the classification

problem.

After introducing the additional non-informative class, we keep the CNN structure

same as the pre-trained CNN, except adding an additional output (shadowed box in

the rightmost part of Fig. 2.5) in the LR layer and the corresponding connections

to the hidden layer. Since the pre-trained CNN already captured some discriminative

local appearance characteristics, all network layers except the last one are initialized

by inheriting their parameters from the pre-trained CNN. These parameters are fine
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tuned by minimizing Eq. (2.6):

L4(W) =
∑

x∈A
⋃

B

− log(P(l|x; W)), (2.6)

Here, A =
⋃
{m=1,...,M}Am and B =

⋃
{m=1,...,M}Bm denote the discriminative and

non-informative local patches selected from all training images, respectively. Note that

since the non-informative local patches are not belonging to any body section class now,

their responses on any body section class can be effectively suppressed during the CNN

fine-tuning stage.

2.3.4 Run-time Classification

The two-stage CNN learning algorithm is summarized as follows.

Algorithm 1 Two-stage multi-instance deep learning

Input:
Scalars M , N , K, dataset (Xm, lm),∀m ∈ {1, · · · ,M}, CNN architecture

Output:
Fine-tuned CNN parameters Wopt

1: Partition Xm into N overlapping local regions xmn
2: Pre-train CNN on (xmn, lm) using multi-instance loss function (2.3), and obtain

optimized Ŵ
3: Extract Am and Bm according to Eq. (2.4) and (2.5)
4: Assign label lm to each instance of Am, and label K + 1 to each of Bm

5: Modify pre-trained CNN by adding one unit to LR; layers except LR inherit pa-
rameters from Ŵ

6: Fine-tune CNN on image patch set A ∪ B using loss function (2.6), and obtain
optimized Wopt

At runtime, the fine-tuned CNN with parameter Wopt, optimized from Eq. (2.6), is

applied for body part recognition in a sliding window fashion. The sliding window par-

titions a testing image X into N overlapping local patches L(X) = {xn, n = 1, ..., N}.

For each local patch xn, the CNN outputs a response vector with K + 1 components

{P(k|xn; Wopt)}. The class of the local patch xn is then determined as:

c(xn) = argmax
k∈{1,...,K+1}

P(k|xn; Wopt). (2.7)

Since the class K+1 is an artificially constructed non-informative one, local patches

belong to this class are simply ignored in body section determination. The class of the



20

testing slice X can be predicted by its most discriminative patch xn∗ , which has the

most peaky response on some label (excluding the non-informative):

C(X) = c(xn∗), (2.8)

xn∗ = argmax
xn∈L(X);c(xn)6=K+1

P(c(xn)|xn; Wopt). (2.9)

To generate reliable classification of the image X, the effect of possible outlier xn∗

with different prediction of its neighbors can be suppressed by a label fusion of patches

to label the image. We use a simple way by combining the class probabilities in the

neighborhood around the most discriminative patch:

C(X) = argmax
k∈{1,...,K}

∑
xn∈N(xn∗ )

P(k|xn; Wopt), (2.10)

2.3.5 Implementation Details

In this study, we assume one middle level discriminative patch from an image is enough

for the image classification. To discover the patches which are discriminative and rep-

resentative for their image categories, the patch size should not be too small to include

semantic information for the discriminative objects. The image patches are extracted

by fixed-size sliding window with overlapping. The patch size and step size is spec-

ified in experimental settings. We further analyze the sensitivity of patch size later.

In learning stage II, since the patches per image are overlapping, the non-informative

patches are selected with a spatial constraint that they should not appear neighboring

to the discriminative patches. The Eq. 2.9 can be implemented by manually setting

P(K + 1|xn; Wopt) = 0 to make sure all c(xn) 6= K + 1.

In each of the two training stages, we train a CNN model similar to Fig. 2.2.

The following strategies are employed to improve the performance of the learned CNN.

First, Rectified Linear Units (ReLUs) are used to map the neurons’ output in convolu-

tional layers. As shown in [81, 44], ReLUs demonstrates faster convergence and better

performance than sigmoid functions. Second, to incorporate larger variability in our

training samples, hence, increase the robustness of the CNN, we augment data using

label-preserving transformations like in [58]. Specifically, we apply random translation,
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rotation and scaling to increase training data samples. Third, the “dropout” strategy

[82] is employed to reduce the risk of “over-fitting”. Dropout rate is 0.5. It forces half of

the neurons randomly “dropped out” at each training iteration. In this way, the com-

plex correlation of neurons is reduced and more robust features can be learned. Finally,

as the training set may be too large to load into memory at one time, we trained our

model using a mini batch of samples at each iteration. The optimization is implemented

by stochastic gradient descent with a momentum term β [83] and a weight decay term

γ. For a weight ω ∈W, its update at iteration t is defined as

ω(t) = ω(t−1) + ∆ω(t), (2.11)

where

∆ω(t) = β ·∆ω(t−1) − ε · (δω(t−1) + γ ∗ ω(t−1)). (2.12)

δω(t−1) is the gradient of weight based on current batch of samples.

The learning process is conducted on a training subset and a validation subset.

It won’t stop until the error rate on validation subset is smaller than a threshold ξ

or a predefined maximum number of epochs (1000 epochs in both stages) is reached.

Besides, the learning may stop earlier if it cannot reach smaller error since the current

smallest one after a number of patient iterations. Our algorithm is implemented in

Python using Theano library [84]. To leverage the highly parallelable property of CNN

training, we trained our models on a 64-bit desktop with i7-2600 (3.4GHz) CPU, 16GB

RAM and NVIDIA GTX-660 3GB GPU.

2.4 Experiments

The evaluation is conducted on a synthetic data set and a CT data set. Classification

accuracies are reported in terms of recall, precision and F1 score as

recall =
TP

TP + FN
, (2.13)

precision =
TP

TP + FP
, (2.14)

F1 = 2
precision · recall
precision+ recall

, (2.15)
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where TP (true positive) denote the number of samples belonging to class k and cor-

rectly classified; FN (false negative) denote the number of samples belonging to class

k but misclassified; FP (false positive) denote the number of samples not belonging to

class k but misclassified as class k.

2.4.1 Image Classification on Synthetic Data

We first validate our method on a synthetic data set, which has been briefly introduced

as a toy example in Sec. 2.3.2. It is constructed by 4 types of geometry elements:

triangle, square, circle and diamond. Each synthetic image (60 × 60) contains two of

the geometry elements at random positions on black background (intensity value 0).

The basic geometry elements are roughly 20 × 20 with up to 10% variance in height

and width. They have random intensity values in [1, 255]. In constructing the two

image classes, we ensure that the triangle and square are the “distinctive” element and

only appear in Class1 and Class2, respectively. Besides the distinctive element, Circle

or diamond is evenly picked as the second element in each image. (Some examples of

the synthetic images are shown in Fig. 2.4(a).) Overall, we create 2000 training, 2000

validation and 2000 for testing samples (balanced distribution for each class).

A comparison study is conducted using: (1) logistic regression (LR); (2) SVM; (3)

standard CNN, similar to LeNet[60], trained on whole image (SCNN); (4) local patch-

based CNN without boost, i.e., the CNN trained by pre-train stage only (PCNN); (5)

local patch-based CNN refined without additional non-informative class (RPCNN1); (6)

local patch-based CNN refined with both discriminative and non-informative patches

(RPCNN2). Methods (1)-(3) represent conventional learning (using image intensities

directly as features) and deep learning approaches. Methods (4),(5) are two variants

of our proposed one (6), which are presented to verify the effects of each component

of our method. The parameters of LR and SVM are optimized using grid search with

cross-validation. All CNN-related methods use the same intermediate architecture: one

convolutional layer with 10 5 × 5 filters, one max-pooling layer with 2 × 2 kernel, one

hidden layer of 300 nodes, and finally followed by a LR layer to output response. The

patch size for all patch-based CNNs is 30 × 30. There are 36 patches extracted from
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Table 2.1: Classification accuracies (%) on synthetic data set as shown in Fig. 2.4.
Class 1 contains triangle; class 2 contains square.

Triangle and square

Recall Precision F1

Class 1 2 Total 1 2 Total 1 2 Total

LR 78.7 83.4 81.1 82.6 79.7 81.1 80.6 81.5 81.1
SVM 84.5 81.2 82.9 81.8 84.0 82.9 83.1 82.6 82.9
SCNN 84.2 82.4 83.3 82.7 83.9 83.3 83.5 83.2 83.3
PCNN 99.6 99.7 99.7 99.7 99.6 99.7 99.7 99.7 99.7
RPCNN1 98.4 99.7 99.1 99.7 98.4 99.1 99.0 99.1 99.1
RPCNN2 100 100 100 100 99.9 100 100 100 100

each 60× 60 image through a sliding window with 6-pixel step size.

As shown in Table 2.1, standard deep learning method (SCNN) is better than LR,

which indicates deep learning can learn good features from raw data. By leveraging

the local discriminative information, PCNN gets ≈ 16% improvement from SCNN. It

implies that standard CNN does not fully discover and learn the discriminative lo-

cal patches: “triangle” and “square”. On the contrary, the most discriminative and

non-informative local patches are effectively discovered by the proposed CNN with

multi-instance learning as shown in Fig. 2.4(b). Among our local patch-based CNNs

(PCNN, RPCNN1 and RPCNN2), RPCNN1, which is trained on extracted discrimina-

tive (without non-informative) patches, is worse than PCNN due to overfitting (because

the parameters of RPCNN1 are initialized from PCNN, and refined by training with

the extracted discriminative patches only). RPCNN2, similar to RPCNN1 but refined

by training with discriminative as well as non-informative patches, achieves the best

performance.

To further prove the adaptivity of our algorithm, we re-labeled the synthetic data

using Diamond and circle as distinctive elements in class 1 and class 2, respectively

(see Fig 2.6(a)). In other words, although the synthetic data are exactly the same, the

local patches to distinguish the two classes become different. This is in analogy to real-

world problems where the datasets are identical but the classification goal is changed.

After conducting the pre-train algorithm, the extracted local patches from the learned

model are shown in Fig. 2.6(b). Again, the extracted local patches contain the most
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Class 1 Class 2

…… …… …… …… ……

Non-informativeDiscriminative patches

(a) (b)

Figure 2.6: The second toy example. (a) Synthetic images of two classes distinguished
by diamond and circle. Note that we use the same image samples as in Fig. 2.4,
but assign different labels. (b) The discriminative and non-informative local patches
discovered by the pre-trained CNN.

Table 2.2: Classification accuracies (%) on synthetic data set as shown in Fig. 2.6.
Class 1 contains diamond; class 2 contains circle.

Diamond and circle

Recall Precision F1

Class 1 2 Total 1 2 Total 1 2 Total

LR 70.3 62.5 66.4 65.2 67.8 66.5 67.7 65.0 66.5
SVM 69.0 63.1 66.1 65.2 67.1 66.1 67.0 65.0 66.1
SCNN 91.8 94.2 93 94.1 92.0 93.0 92.9 93.1 93.0
PCNN 99.6 100 99.8 100 99.6 99.8 99.8 99.8 99.8
RPCNN1 95.6 100 97.8 100 95.8 97.9 97.8 97.9 97.9
RPCNN2 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

discriminative information, diamond and circle. The classification accuracies are shown

in Table 2.2. Our two-stage learning framework RPCNN2 achieves the best performance

among all comparison methods again. This result demonstrates that our multi-instance

CNN learning can adaptively learn discriminative local regions for specific classification

tasks without any local level annotations.

2.4.2 Body Part Recognition on CT Data

We applied our method in body part recognition of transversal CT slices [40, 46]. As

shown in Fig. 2.1, transversal slices of CT scans are categorized into 12 body sections

(classes). A dataset of 7489 2D transversal images was extracted from whole body CT

scans of 675 patients with very different ages (1-90 years old). The imaging protocols
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were different: 31 different reconstruction kernels, 0.281mm − 1.953mm in-slice pixel

resolution. The images are divided into 2413 (225 patients) training, 656 (56 patients)

validation and 4043 (394 patients) testing subsets. In this experiment, we augment

data by applying up to 10% random translations (relative to the image size) in training

and validation subsets to make them 3 times larger.

The preprocessing includes two different steps: image sub-sampling and image crop-

ping. First, all images are re-sampled to have 4mm×4mm pixel resolution and 90×90

in size. Then, cropping operation extracts 50× 50 local patches from each image with

10-pixel step size. Thus, 25 local patches are extracted per image. Our CNN has similar

structure as in Fig. 2.2. C1 layer has 20 9 × 9 filters. C3 layer has 40 9 × 9 filters.

Two sub-sampling layer, S2 and S4, use 2 × 2 max-pooling. H5 layer has 600 hidden

nodes. The LR layer, O6, has 12 output nodes in pre-train stage, or 13 output nodes

in fine-tune stage.

As shown in the “RPCNN2” row of Table 2.5, our method can achieve the clas-

sification accuracy (F1 score) at 92.23%. Fig. 2.7 shows more detailed classification

performance by the confusion matrix. Most errors appear close to the diagonal line,

which means most mis-classifications happen in the neighboring body sections. Quan-

titatively, the classification error is 7.79%, and ≈ 92% of which are “less-than-one

neighboring class error” (within the red line corridor of Fig. 2.7). In practice, this kind

of errors are already acceptable for some use cases. The remaining gross error (< 0.7%)

can be further suppressed by a simple label smoothing after classifications of a series of

continuous slices for 3D bodypart identification.



26

T
ab

le
2.

3:
C

la
ss

ifi
ca

ti
on

ac
cu

ra
ci

es
on

C
T

d
at

a
in

te
rm

s
of

R
ec

al
l

(%
).

R
ec

al
l

C
la

ss
1

2
3

4
5

6
7

8
9

10
1
1

1
2

O
ve

ra
ll

L
R

1
48

.5
4

63
.6

4
33

.3
3

69
.9

5
39

.0
9

43
.3

7
47

.6
6

81
.4

3
25

.8
2

53
.6

8
41

.6
2

8
8
.7

9
6
3
.3

7

L
R

2
67

.9
6

64
.5

0
42

.5
9

74
.2

4
38

.6
4

42
.1

7
56

.2
5

78
.5

1
37

.0
9

65
.7

9
60

.4
1

9
1
.4

8
6
8
.7

1

S
V

M
1

41
.7

5
64

.0
7

46
.3

0
76

.2
6

36
.3

6
45

.1
8

47
.2

7
78

.6
6

31
.4

6
52

.9
0

50
.2

5
8
8
.5

7
6
4
.6

3

S
V

M
2

76
.7

0
81

.3
9

39
.8

2
79

.5
5

54
.0

9
63

.8
6

69
.9

2
84

.0
6

44
.6

0
64

.4
7

75
.6

4
9
6
.5

3
7
6
.7

5

C
aff

eN
et

71
.8

5
64

.9
4

8
7
.9

6
85

.1
0

74
.0

9
80

.7
2

57
.8

1
94

.5
9

80
.7

5
78

.9
5

85
.2

8
9
7
.5

3
8
4
.7

4

S
C

N
N

84
.4

7
93

.5
1

72
.2

2
88

.8
9

80
.4

6
80

.1
2

86
.7

2
95

.4
7

77
.9

3
77

.6
3

78
.4

3
9
6
.3

0
8
7
.7

3

S
C

N
N

a
81

.5
5

96
.5

4
43

.5
2

92
.6

8
79

.0
9

9
0
.9

6
93

.7
5

88
.4

5
51

.1
7

64
.4

7
9
0
.3

6
9
2
.6

0
8
4
.7

6

P
C

N
N

87
.3

8
92

.2
1

8
7
.9

6
93

.1
8

9
0
.0

0
74

.7
0

9
4
.5

3
95

.4
7

81
.6

9
81

.0
5

9
0
.3

6
9
2
.4

9
9
0
.2

1

R
P

C
N

N
1

54
.3

7
83

.1
2

69
.4

4
9
4
.9

5
75

.9
1

82
.5

3
93

.3
6

95
.0

3
8
4
.9

8
72

.6
3

85
.5

3
9
6
.7

5
8
7
.7

8

R
P

C
N

N
2

8
8
.3

5
9
6
.9

7
80

.5
6

91
.6

7
86

.8
2

87
.3

5
93

.7
5

9
5
.6

1
79

.8
1

8
7
.1

1
87

.8
2

9
9
.3

3
9
2
.2

1

T
ab

le
2.

4:
C

la
ss

ifi
ca

ti
on

ac
cu

ra
ci

es
on

C
T

d
at

a
in

te
rm

s
of

P
re

ci
si

on
(%

).
P

re
ci

si
on

C
la

ss
1

2
3

4
5

6
7

8
9

10
1
1

1
2

O
ve

ra
ll

L
R

1
72

.4
6

63
.0

9
63

.1
6

64
.4

2
55

.4
8

54
.1

4
54

.4
6

72
.1

5
55

.0
0

57
.1

4
47

.4
0

6
7
.8

7
6
2
.2

1

L
R

2
65

.4
2

64
.7

8
61

.3
3

68
.5

3
53

.8
0

46
.3

6
56

.9
2

76
.0

6
59

.4
0

64
.4

3
62

.8
0

7
8
.9

2
6
7
.7

4

S
V

M
1

75
.4

4
61

.9
3

65
.7

9
64

.8
1

53
.6

9
51

.3
7

53
.7

8
74

.0
0

56
.3

0
58

.2
6

49
.6

2
7
2
.1

5
6
3
.7

2

S
V

M
2

89
.7

7
72

.0
3

72
.8

8
72

.2
5

56
.9

4
57

.9
2

72
.7

6
82

.6
2

62
.5

0
70

.8
1

71
.6

4
9
0
.5

4
7
6
.3

9

C
aff

eN
et

98
.6

7
9
8
.0

4
41

.4
9

86
.4

1
9
3
.6

8
83

.2
3

87
.5

7
84

.2
5

66
.1

5
77

.3
2

84
.4

2
9
9
.0

9
8
6
.8

4

S
C

N
N

87
.8

8
87

.4
5

82
.1

1
87

.3
5

87
.6

2
83

.1
3

84
.7

3
92

.3
6

76
.5

0
75

.0
6

83
.5

1
9
6
.7

3
8
7
.7

2

S
C

N
N

a
96

.5
5

78
.8

0
77

.0
5

81
.1

9
89

.6
9

79
.0

6
80

.5
4

94
.3

8
83

.8
5

74
.7

0
66

.1
7

9
8
.3

3
8
5
.7

5

P
C

N
N

96
.7

7
93

.8
3

81
.2

0
87

.8
6

85
.3

5
9
6
.8

8
90

.3
0

95
.3

3
78

.7
3

8
3
.9

2
77

.7
3

9
9
.7

6
9
0
.6

9

R
P

C
N

N
1

1
0
0
.0

0
94

.5
8

54
.7

5
76

.2
7

91
.2

6
93

.2
0

91
.9

2
95

.5
9

77
.6

8
82

.6
4

78
.7

4
9
7
.0

8
8
8
.6

2

R
P

C
N

N
2

96
.8

1
91

.8
0

8
8
.7

8
9
0
.3

0
90

.5
2

89
.5

1
9
1
.9

5
9
5
.7

5
8
0
.9

5
82

.1
3

9
1
.7

8
9
8
.6

6
9
2
.2

5



27

T
ab

le
2.

5:
C

la
ss

ifi
ca

ti
on

ac
cu

ra
ci

es
on

C
T

d
at

a
in

te
rm

s
of
F

1
sc

or
e

(%
).

F
1

sc
or

e

C
la

ss
1

2
3

4
5

6
7

8
9

10
1
1

1
2

O
ve

ra
ll

L
R

1
58

.1
4

63
.3

6
43

.6
4

67
.0

7
45

.8
7

48
.1

6
50

.8
3

76
.5

1
35

.1
4

55
.3

6
44

.3
2

7
6
.9

3
6
2
.7

8

L
R

2
66

.6
7

64
.6

4
50

.2
7

71
.2

7
44

.9
7

44
.1

6
56

.5
8

77
.2

7
45

.6
7

65
.1

0
61

.5
8

8
4
.7

4
6
8
.2

2

S
V

M
1

53
.7

5
62

.9
8

54
.3

5
70

.0
7

43
.3

6
48

.0
8

50
.3

1
76

.2
6

40
.3

6
55

.4
5

49
.9

4
7
9
.5

2
6
4
.1

7

S
V

M
2

82
.7

2
76

.4
2

51
.5

0
75

.7
2

55
.4

8
60

.7
5

71
.3

2
83

.3
3

52
.0

6
67

.4
9

73
.5

8
9
3
.4

4
7
6
.5

7

C
aff

eN
et

83
.1

5
78

.1
3

56
.3

8
85

.7
5

82
.7

4
81

.9
6

69
.6

5
89

.1
2

72
.7

3
78

.1
3

84
.8

5
9
8
.3

1
8
5
.7

8

S
C

N
N

86
.1

4
90

.3
8

76
.8

5
88

.1
1

83
.8

9
81

.6
0

85
.7

1
93

.8
9

77
.2

1
76

.3
3

80
.8

9
9
6
.5

2
8
7
.7

3

S
C

N
N

a
88

.4
2

86
.7

7
55

.6
2

86
.5

6
84

.0
6

84
.5

9
86

.6
4

91
.3

2
63

.5
6

69
.2

1
76

.3
9

9
5
.3

8
8
5
.2

5

P
C

N
N

91
.8

4
93

.0
1

84
.4

4
90

.4
4

87
.6

1
84

.3
5

92
.3

7
95

.4
0

80
.1

8
82

.4
6

83
.5

7
9
5
.9

9
9
0
.4

5

R
P

C
N

N
1

70
.4

4
88

.4
8

61
.2

2
84

.5
9

82
.8

8
87

.5
4

92
.6

4
95

.3
1

8
1
.1

7
77

.3
1

82
.0

0
9
6
.9

1
8
8
.2

0

R
P

C
N

N
2

9
2
.3

9
9
4
.3

2
8
4
.4

7
9
0
.9

8
8
8
.6

3
8
8
.4

2
9
2
.8

4
9
5
.6

8
80

.3
8

8
4
.5

5
8
9
.7

5
9
8
.9

9
9
2
.2

3



28

Predicted class

A
ct

u
al

 c
la

ss

Figure 2.7: Confusion matrix of RPCNN2 on CT data. Values are normalized to
0 ∼ 100 in each row.

For quantitative comparison, tested image classification methods include: (1) LR1,

(2) LR2, (3) SVM1, (4) SVM2, (5) CaffeNet, (6) SCNN, (7) SCNN a, (8) PCNN, (9)

RPCNN1, and (10) our proposed RPCNN2. In LR1 and SVM1 methods, we use bag-

of-word model with dense SIFT features to train logistic regressor and SVM classifier,

respectively. While LR2 and SVM2 methods simply replace SIFT by HOG features.

Same as the previous experiment, the LR and SVM parameters were optimized using

grid search with cross-validation on the same training and validation sets as other com-

parison methods. Then, the optimized models were applied on the same testing set to

produce results for fair comparisons. SCNN method is the standard CNN that takes the

whole slice as input. SCNN a method is the same as SCNN except trained by extra 6

times more augmented data samples by random transformations, rotations and scalings.

Method (8),(9) are two variants of our proposed one (10), which are presented to verify

the effects of each component of our method. Similar network structure is used in all

CNN-based methods, (6)-(10), except different input and output sizes in patch-based

CNNs (8)-(10). CaffeNet [85] has the similar structure as AlexNet [44] with a minor

variation, which is trained on whole images without cropping. We noticed that train-

ing of CaffeNet with 50 × 50 cropping doesn’t converge. This observation shows that
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our proposed method is not merely a kind of data augmentation via image cropping.

The discriminative and non-informative patches discovered by multi-instance learning

are the keys to success. RPCNN1 is trained on extracted discriminative (without non-

informative) patches from learning stage I. Although the trained classifier focuses more

on discriminative patches, ambiguous local patches across different classes (e.g. up-

holding arms may look similar to neck) are completely ignored and thereby mislead the

classifier at runtime. Thus, the performance of RPCNN1 is worse than PCNN and close

to the SCNN. Compared to its variants, the proposed RPCNN2 achieves the best per-

formance (even better than much deeper CNN, CaffeNet), which proves the necessity

of using all strategies designed in our method.

In addition, we noted that the SCNN a trained with more augmented data is even

inferior to the SCNN due to overfitting (training error: SCNN a 4.4% vs. SCNN 5%;

testing error: SCNN a 14.7% vs. SCNN 12.3%). It shows that the global CNN cannot

learn the anatomy characteristics from more augmented data but overfit them. As

shown in Table 2.5, the overfitting problem is more severe in neck (column 3) and liver

upper (column 9) sections. These two sections happen to have subtle global appearance

differences compared to their neighboring sections and are thus prone to overfitting. It

is proved that the success of the proposed method against the standard CNN does not

result from more augmented training samples but its capability of discovering local

characteristics of different body parts. The online classification time of each method is

about (1) 4ms, (2) 3ms, (3) 5ms, (4) 4ms, (5) 3ms, (6) 4ms, (7) 4ms, (8) 10ms, (9)

11ms, (10) 11ms per image, respectively.

In this application of body part recognition, the discovered discriminative patch

samples and non-informative (kind of misleading) patches for each class in the CT

dataset are shown in Fig. 2.8. From this figure, we observe that the proposed method

“magically” extracts meaningful local patches for each class without any prior informa-

tion, and these representative and discriminative local patches can significantly improve

the classification task comparing with the global image information. It is also noted

that the discriminative patches of liver middle class contain only a small part of the

liver and a narrow band of the left lung bottom. The corresponding non-informative
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1: nose

2: chin/teeth

3: neck

4: shoulder

5: clavicle 
/lung apex

6: sternal

7: aorta arch

8: cardiac

9: liver upper

10: liver middle

11: abdomen 
/kidney

12: ilium 
/femur head

1: nose

2: chin/teeth

3: neck

4: shoulder
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/lung apex

6: sternal

7: aorta arch

8: cardiac

9: liver upper

10: liver middle

11: abdomen 

/kidney

12: ilium 

/femur head

Figure 2.8: Automatically discovered discriminative and non-informative patches from
each class through multi-instance learning.
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patches may contain a large piece of the liver, since it can appear in different classes

(e.g. liver upper and abdomen/kidney). This observation indicates that the proposed

method just finds the discriminative information from the data, and does not guarantee

that some particular “desired” element will be considered as discriminative.

2.4.3 Discussions

To investigate whether the standard CNNs can discover the required discriminative

features at some intermediate layers or they completely miss them, we did extra ex-

periments to train linear SVM classifier on the learned hidden activation on each layer

of the baseline CNN (SCNN). Totally 5 classifiers were learned from features on layers

(C1, S2, C3, S4, H5). The feature sizes are 134480, 33620, 43560, 10240 and 600, re-

spectively. The F1 scores on testing set are 0.75, 0.77, 0.86, 0.86 and 0.88, respectively.

Compared with reported F1 score of SCNN (≈0.88), we conclude that (1) features on

higher layers are better for the classification task; (2) although the learned features in

SCNN are discriminative to some extent, the more representative and discriminative

local features can only be discovered in our proposed patch based learning algorithm.

To evaluate the robustness of the trained models, we apply different scales of ran-

dom linear translation on the testing data and compute the classification error rates.

The Fig. 2.9a shows the results. From the plots, we can see that our proposed method

RPCNN2 has the best robustness regarding to the random translation of testing sam-

ples. Although the training and validation subsets have been augmented using up to

11% random translation, the other approaches do not perform as well as the proposed

method when the testing samples have larger translations. In this situation, retraining

the models on augmented dataset with larger translation could be a solution. However,

the re-training costs cannot be overlooked and fixing it after the fact is not efficient in

practice.

As one of the important parameters in RPCNN2 method, step size of sliding window

testing is investigated regarding to the accuracies (shown in Fig. 2.9b). The running

times for step sizes 1, 5, 10, 15, 20, 25, and 30 pixels are 541.1, 30.6, 11.7, 5.3, 5.2,

3.6 and 3.4 ms per image respectively. Considering the balance of running time and
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Figure 2.9: Performance analyses on the sensitivity of parameters.

accuracy, step size 10 or 15 should be a reasonable choice in this experiment. The effect

of patch size to the classification accuracy is also investigated as shown in Fig. 2.9c.

We can see from the plot that (1) the patch size should not be too small to capture the

discriminative information (size 20 or 30); (2) the performance is not very sensitive to

the local patch size once it is big enough to include discriminative information (sizes

from 40 to 60 in this task).

We also conducted two extra experiments to test other variants of our proposed

method. First, we use Eq. (2.2) with a bit larger patch size (70x70) rather than

the Eq. (2.3) to accommodate for the neighbors information. The final classification

accuracy in terms of F1 score becomes 91.67%, a little worse than that of the proposed

RPCNN2 (92.23%). Second, instead of using the run-time classification strategy by

Eq. (2.10), we can simply use the Eq. (2.8) as in [40], or majority voting of predictions

from all partitioned patches in the slice to predict image classification. The F1 score

drops ≈ 2% and ≈ 4%, respectively.

One limitation of this recognition method is the identical patch size for different

classes. Although the algorithm is not that sensitive to patch size, it requires prior

knowledge to ensure that the chosen patch size is appropriate to include the discrimi-

native information in a fixed size region. It could be better to incorporate strategies like

multi-scale convolution [86] or multi-scale image patch [87] to discover and recognize

different-size discriminative local regions in different classes. Another limitation is the
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sliding-window and multiple stage pipeline. Like the improvement from R-CNN [88] to

fast R-CNN [72] and faster R-CNN [73], it may be possible to simplify the multi-stage

pipeline to single-stage training, and use part of the convolutional features of image for

local regions to avoid the sliding-window strategy in training and testing.

2.5 Summary

In this chapter, we present a two-stage multi-instance deep learning strategy to identify

anatomical body parts by using discriminative local information. The method RPCNN2

does not require annotations of the discriminative local patches. Instead, it automati-

cally discovers these local patches through multi-instance deep learning for the image

classification task. We validate our method on a synthetic dataset and a CT dataset. It

shows clear improvements compared with other state-of-the-art methods. Specifically,

the proposed patch-based CNN (with 938,893 parameters) outperforms the standard

CNN (with 6,218,292 parameters).

This slice based body part recognition algorithm can be trivially applied in 3D

image data by labeling each slice one by one. Considering that no more than 7% error

locating between continuous sections is acceptable in practice, the only gross error (less

than 0.7%) could be easily eliminated by a smoothing filter on the predicted label

distribution. For example, given a CT scan with 200 slices for a lung study, we could

classify each 2D slice and get a 200-long label vector. After label smoothing, the slices

containing the lung (of class 5-9) should be the ROI to initialize the lung-oriented work

flow.



34

Chapter 3

Adaptive Atlas based Medical Image Segmentation

3.1 Introduction

In clinical researches and trials, quantitative assessment of organs or tissues is required

for large data analysis. After proper localization of ROI from the image, robust and

accurate image segmentation is the key step to obtain quantitative measurements. One

of the important applications is the brain structure segmentation. Human brain is

one of the most interested anatomies in clinical studies because any diseases or dis-

function related to the brain could significantly affect people’s life. For example,

Alzhemimer’s disease (AD) is the sixth leading cause of death in the United States.

It is the only disease among the top 10 causes of death in America that cannot be pre-

vented, cured or even slowed. Although deaths from other major causes have decreased

significantly in the last decade, deaths from AD have increased significantly - 71% [22].

Besides of Alzheimer’s, a host of neurological disorders such as Parkinson’s, Hunting-

ton’s, schizophrenia and ventriculomegaly manifest as changes in the size and shape

of multiple structures throughout the brain, such as the thickness of the cortex [89].

Such changes can be quantified after delineating the structures in images captured with

magnetic resonance imaging (MRI). Due to the intense labor and low reproducibility

of manual labeling by expert anatomists, automated delineation methods are desired,

particularly for large clinical studies and clinical trials [21].

Brain structures have complicated geometry and overlapping intensity distributions

in MRI, therefore automated approaches employ priors to regularize the ill-posed task of

structure delineation. Since human brains have high inter-subject variability in healthy

cohorts, and even more so when cohorts with pathologies are studied, the priors should

be appropriately adapted in order to avoid excessive bias in image interpretation. As
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we show in this chapter, even the state-of-the-art methods do not possess sufficient

ability to adapt their priors for cases in which the unseen target has variability not well

represented by the training data. This has motivated our research to develop adaptive

methods that quantify the suitability of the training data for each target subject.

Atlas-based approaches have become the most commonly proposed automated brain

segmentation methods. In medical image segmentation, an atlas is a pair of image data

and its corresponding label map, which is provided manually or semi-automatically by

expert as ground truth. Atlas based methods are commonly used in brain segmentation

because of the fact that despite the variances among different subjects the same anatomy

still has essentially similar characteristics. There are two broad categories of these

approaches. The first is the probabilistic atlas approach that aligns all training data

into a common coordinate system, independent of the target [90, 91]. The second which

is a multi-atlas approach, by contrast, registers the intensity image from each training

subject directly to the intensity image of the target when it arrives [92, 93, 94, 95,

96, 97, 98, 99]. Once the images are aligned by this method, the training subject’s

manual labels can be propagated to the target. Due to errors in the inter-subject brain

registration [100, 101], each voxel has typically more than one label, necessitating the

use of a label fusion procedure to select the best label for each voxel.

Due to the need to resolve label ambiguity, label fusion has become an active area

of research. A particularly vexing, open research problem is the construction of an

adaptive label fusion method that generalizes well to minimize the discrepancy be-

tween training error and test error, when the morphological and intensity variability

of targets are not well represented in the training data. This situation arises often

because it is unrealistic to have a training set that includes images acquired with the

latest technology for all types of pathological variations and even less realistic to have

an expert manual labeling for them as well. An adaptive fusion method would not only

utilize the priors from the training set but also estimate the extent to which those priors

apply. Ideally, it would do so not at the whole atlas level but locally at the individual

voxel level. Furthermore, it would be preferable if such a method would determine the

local relaxation parameters automatically and outperform the leading methods in such
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Healthy appearing brain
(psychiatric/healthy) 

Degenerative brain
(Alzheimer's disease)

Figure 3.1: Our approach allows priors learned from healthy subjects (left) whose labels
are available publicly to accurately parcellate subjects with Alzheimer’s (right) despite
large morphological differences.

situations. The method proposed in this chapter aims to fulfill these objectives.

Our research contributions are three-fold. First we automatically define a target-

specific, spatially variant relaxation map which estimates for each individual voxel

how well the target’s anatomy is represented by the training multi-atlas data. This

map determines where and by how much to relax the priors and is computed for each

target subject based on multi-atlas label entropy1 across the training atlases after high-

dimensional, non-linear registration. To the best of our knowledge, this is the first

development of such functionality. Second, to perform label fusion we use this relax-

ation map to guide an adaptive probabilistic atlas with a GMM of tissue intensities

and spatially varying mixing coefficients. Using the multi-atlas fit, we derive target-

specific intensity priors for the GMM (as in [102]) that do not necessitate the target

be acquired with the same acquisition sequence as the training data, as is assumed

in other methods [103]. To regularize the segmentation we add a Markov Random

Field (MRF) label smoothness prior which also uses the preliminary multi-atlas fit to

make the priors target specific. Third, we solve for the spatially varying mixing coef-

ficients, GMM parameters, and tissue labels by embedding the complete model in an

expectation-maximization (EM) framework. This is achieved by modeling the GMM

mixing coefficients as a random variable drawn from a Dirichlet distribution whose pa-

rameters vary spatially according to the relaxation map and spatial priors. This enables

the weighted regularization of an adaptive, evolving probabilistic atlas with spatially

1Entropy measures the lack of multi-atlas agreement voxel-by-voxel and our use of it is explicitly
quantified in section 3.3.3.
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variant GMM mixing coefficients. Through EM optimization, the target-specific adap-

tive probabilistic atlas evolves to fit the target subject.

We demonstrate, in direct head-to-head comparisons, that our approach outper-

forms current leading methods when labeling an Alzheimer’s disease cohort using pub-

licly available labeled healthy subjects as training data. Our tests include compar-

isons with the best multi-atlas algorithms using patch-based label fusion methods

[100, 104, 105], commonly used probabilistic atlas methods such as FreeSurfer [106],

and methods specifically targeting greater generalization [107, 89]. Additional tests

show that high accuracy levels are maintained when our approach is used to parcellate

healthy subjects.

3.2 Related Work

In recent decades, many approaches have been proposed to segment human organs or

tissues in different modalities [9, 108, 109, 110]. The most interested ones are automatic

techniques, including model based methods [111, 112, 113, 114, 115], learning based

methods [16, 116, 117, 118, 119], atlas-guided approaches [91, 98, 90, 120, 121, 104], and

so on. Usually, learning based approaches require large amount of consistent training

data which could be label intensive in practice. Owing to the variety of data in clin-

ical trials and limited amount of training samples, many learning based segmentation

methods are hardly applied. Deformable model based methods [7, 110] are accurate

but may need to tune parameters case by case. For some specific anatomies, prior

knowledge like shape and topology [122, 123] could be incorporated to gain more ro-

bustness and accuracy. Atlas-guided approaches rely on image registration algorithms

[124, 125, 126, 101] to transfer knowledge from training atlases to the target space and

apply voxel classification to get final segmentation [127, 128].

Among these approaches, atlas based methods are the most commonly used ap-

proaches for brain image segmentation. Given several atlases, there are two ways to

segment a new target image. The first is to learn a single statistical atlas that mod-

els the spatial priors for individual structures. A single probabilistic atlas is fit in a
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Bayesian framework for voxel classification [90, 91]. The second approach is to register

the set of atlases (multi-atlas) to the target image and then compute the final segmen-

tation via a label fusion approach [99, 93, 96, 98]. Due to the errors of non-linear image

registrations [129, 130], atlas-guided methods have limitation in segmenting objects

with different pathological and geometric characteristics.

Generalization of brain segmentation methods has been the subject of recent re-

search. Several categories of methods have been proposed to adapt priors learned during

training to the target. In the probabilistic atlas genre, [97] build multiple probabilistic

atlases a priori and then combine them to form a piecewise, regional probabilistic atlas.

While this increases adaptivity across the brain as a whole, the variation found in each

region must be represented by a subset of the training data and discontinuities between

regional atlases must be smoothed.

In the multi-atlas genre, the original majority voting formulation of label fusion

that applies equal weight to each atlas [92] has been made more adaptive. Several

researchers have proposed locally weighted label fusion methods that derive weights

from the local similarity between atlas and target. Such approaches allow the weights

to vary spatially and have been optimized with expectation-maximization [131, 132, 133,

134, 135] and graph-cuts [102, 103]. Non-local, patch-based label fusion has also been

proposed [136, 137, 105, 138, 100, 139, 104]. These methods extend locally weighted

label fusion by considering multiple points within each atlas in a region around each

voxel to be labeled. Such approaches have attained some of the highest published

segmentation accuracies to date, including the generative model for joint label fusion

[104] and the top two performing methods [100, 105] in the MICCAI 2012 atlas based

brain parcellation challenge [140].

A limitation of the patch-based approaches is its reliance upon a fixed search volume

size. This limits the generalization from the training set to only those target subjects

whose anatomical correspondences differ by less than or equal to the search region

radius. For example, several propsed methods [136, 105, 100, 104] require non-local

patch matches to be between ±3mm to ±5mm from the voxel to be classified. This is

because they use global fixed search windows of limited size, ranging from 7× 7× 7 to
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11× 11× 11 voxels centered on the voxel to be labeled.2 Simply increasing the global

fixed search volume size is not a viable solution because it increases computation time

significantly and can reduce accuracy, particularly for smaller structures, by finding

false matches that are not part of the structure to be segmented.

In practice, however, the morphological variation between conditions such as ven-

triculomegaly or Alzheimer’s compared to healthy brains, can be much greater than

5mm. Such variability is illustrated in Fig. 3.1. Consequently new methods have

been proposed for greater generalization while still obtaining comparable results when

segmenting healthy brains. [107, 89] present two such approaches which assume the

intensities of the target image voxels follow a GMM with spatially varying mixing co-

efficients and solve for the labels using expectation-maximization. Both methods also

use a global fixed relaxation parameter (κ in [107] and Rf in [89]). A limitation in these

approaches is that if the fixed relaxation constants are set too low insufficient adaptivity

will result, because the priors are not adapted sufficiently to the variation present in

the target. This is analogous to patch-based methods which have fixed global search

window sizes that can also result in insufficient adaptivity. If the fixed constants are in-

creased to allow for greater adaptivity, leakage can occur, particularly when attempting

to simultaneously segment 30+ structures. This motivates our research to develop an

adaptive method that handles the simultaneous segmentation of 30+ structures while

spatially regulating the relaxation factor in a anatomically coherent way to reflect the

local suitability of the training data to the target [141, 142].

3.3 Methodology

3.3.1 Algorithm Overview

Our proposed algorithm is illustrated in Fig. 3.2. It consists of four main steps: (1)

Starting from the center right, we preprocess the target image to prepare the brain

parenchyma for analysis. (2) The multiple atlases are non-rigidly registered to the tar-

get. (3) We define our Bayesian probabilistic model of brain parcellation and construct

2Assuming typical MRI voxels of size 1mm3
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Figure 3.2: Workflow of our proposed method, iMAEASA, integrates a multi-atlas
(top, green label) with our highly adaptive probabilistic-atlas (bottom, green label).
The main steps include: (1) preprocessing, (2) target-specific multi-atlas fitting, (3)
target specific adaptive probabilistic atlas construction, and (4) evolution and fitting
of the probabilistic atlas.

the four primary components of our target-specific, adaptive probabilistic atlas that

guides label fusion. (4) We label the target brain by evolving the target-specific adap-

tive probabilistic atlas to the target using an expectation maximization framework. We

call our method iMAEASA because it combines an Intensity-driven Multi-Atlas with

an Extended Adaptive Statistical Atlas.

In the first step, all MRI volumes are pre-processed. We extract the brain parenchyma

using ROBEX [143], correct intensity inhomogeneity using N3 bias correction method

[144], and align all brains to approximate Talairach space by applying a rigid-body

transform from each volume to the MNI305 template [145, 146].

In the second step, we fit our training data in the form of a multi-atlas to the
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target. This entails non-rigidly registering every training image to the target and warp-

ing the corresponding training labels using the same transformation. This adapts the

multi-atlas to the target. Due to limitations in the registration algorithm and differ-

ences between the training and target subjects, some voxels have high multi-atlas label

agreement, while others have low agreement. Agreement is inversely proportional to

label uncertainty. This spatially varying label uncertainty is a key ingredient in our

construction of a target-specific adaptive probabilistic atlas.

In the next two sections, we describe step three of our approach which is to define

our Bayesian probabilistic model of brain parcellation and to construct the primary

components of our target-specific probabilistic atlas to guide label propagation. In Sec.

3.3.4,

3.3.2 Model of Adaptive Probabilistic Atlas

Let N denote the number of voxels in an observed image, K be the number of neu-

roanatomical structures in the image, xi ∈ RD denote the observed feature vector for

voxel i ∈ 1, . . . , N . Since the MR images we use are T1-weighted images, the feature of

voxel i is its T1-weighted intensity in this chapter. We model each xi as an observable

random variable by a K-component spatially variant gaussian mixture model [147]. We

assume the density function of each tissue type follows a Gaussian distribution:

G(xi|θk) =
1

(2π)D/2σk
exp

(
−(xi − µk)2

2σk2

)
. (3.1)

The tissue intensity model is parameterized by θk ≡ (µk, σk), i.e it denotes the pa-

rameters for the kth Gaussian component where µk is the mean intensity of kth neu-

roanatomical structure and σk is the standard deviation of intensity. Although we

model the intensity of each voxel as a mixture of all tissue types, we need to assign a

discrete label to each voxel. We let zi be the label vector for voxel i corresponding to

one of the standard basis vectors (zi ∈ ek; ek
j=k = 1, ek

j 6=k = 0, 1 ≤ j, k ≤ K). zi
k = 1

means that the estimated label at voxel i is k. We assumed xi and zi are statistically

independent and model the conditional distribution of complete data y ≡ (x, z) as:

P (y|Ψ) =
N∏
i=1

K∏
k=1

[πi
kG(xi|θk)]

zi
k

(3.2)
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where πi
k denotes the mixing coefficient of kth class at the ith voxel (

∑K
k=1 πi

k = 1

and πi
k ≥ 0). The unknown parameters, thus, are Ψ ≡ (π1, · · · , πN , θ1, · · · , θK), where

πi ≡ (πi
1, · · · , πiK). Note that zi is a discrete random variable with probability function

P (zi = ek) = πi
k,∀i, k.

Since brain structure labels are piecewise constant in the spatial space, we impose

label smoothness using a MRF model for the random variable zi [91, 127, 90]. Our

MRF uses a Gibbs distribution:

P (zi) =
1

Znorm
exp {−U(zi)} , (3.3)

where Znorm is a constant normalizer and U(zi) is the prior energy function:

U(zi) =
∑
j∈Ni

zTi V̂ zj . (3.4)

where Ni is the 6-connected neighborhood of voxel i. The matrix V̂ ∈ RK×K has

diagonal values close to 0, and V̂ (l, k) = β(l, k), for all 1 ≤ l, k ≤ K and l 6= k. Here

β(l, k) encodes the probability that any two types of tissues appear at adjacent voxels.

Combining the gaussian mixture model and MRF regularization we have:

P (y|Ψ) =
1

Znorm

N∏
i=1

K∏
k=1

(πi
kG(xi; θk))

zi
k

exp

−∑
j∈Ni

zTi V̂ zj

. (3.5)

3.3.3 Construction of Target-specific Priors

To construct an adaptive probabilistic atlas, we compute several target-specific com-

ponents, including a probabilistic map for individual structures, a relaxation map, and

a MRF prior. The probabilistic maps are used to initialize the EM algorithm by esti-

mating the θk and πi
k. The relaxation map then relaxes the prior learned during the

EM fitting of the target-specific atlas, while the MRF prior ensures label smoothness.

Given the label images non-linearly registered to the target, we estimate a prior

probability map for each structure k at each voxel i using:

pi
k =

1

M

M∑
m=1

δk(L̂
i
m) (3.6)

where function δk(l) = 1 if l = k, otherwise δk(l) = 0.
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Spatially Varied Adaptivity

Next, we devise a measure of the suitability of the training data for the target at every

voxel. We do this so that we may vary the level of atlas adaptivity locally. Concretely,

we define the relaxation map based on the label entropy at each voxel:

Hi =

K∑
k=1

−piklog
(
pi
k
)
. (3.7)

A voxel with larger entropy of multi-atlas labels has greater label uncertainty. In-

tuitively the greater the label uncertainty the more relaxation we should apply. We

employ a sigmoid transfer function to define a smooth mapping from entropy to the

relaxation map ξi :

ξi =
b2 − b1

1 + exp (−Ei)
+ b1, (3.8)

where

Ei = s1(Hi − (s2 ·min (Hi) + (1− s2) ·max(Hi))), (3.9)

b1 and b2 control the lower bound and upper bound, s1 ≥ 1 is a parameter for scaling,

and s2 ∈ (0, 1) is a parameter for shifting the inflection point of the sigmoid curve.

Fig. 3.3 illustrates our process and the plot in the center shows the transfer function’s

parameterization where b1 = 0.0, b2 = 0.5, s1 = 3.0, s2 = 0.1, and 0 ≤ Hi ≤ 20. Since

adaptivity should be mainly applied along the tissue class boundaries, we set these

parameters such that the relaxation is much lower near the center of structures and

higher along their boundaries. Small subcortical structures may have larger uncertainty

compared with larger structures. To overcome such bias, we use a local mapping scheme.

Let Xk = {i|pik > 0} denote the subset of voxels that could belong to the structure k.

We apply the mapping function on each structure individually to compute structure-

based ξi
k = {ξi|i ∈ Xk}. Then we compute the whole relaxation map ξi =

∑K
k=1 ξi

k/ni

where ni is the number of subsets Xk that the ith voxel is contained in.

Structure-level Relaxation

Several structures should receive greater adaptivity due to their geometric complexity.

Thus, our relaxation map is a function of both spatial location and structure k. We
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Figure 3.3: This figure illustrates the computation of relaxation map ξi from multi-atlas
label entropy Hi.

define ξi(k) as:

ξi(k) =



1− α1(1− ξi) if(i ∈ {Xk|∀k ∈ {kGM ′s}})

1− α2(1− ξi) if(i ∈ {Xk|k = kECSF })

1− α3(1− ξi) if(i ∈ {Xk|∀k ∈ {kWM ′s}})

ξi otherwise

(3.10)

where kGM ′s include left and right cerebral and cerebellar cortex, kWM ′s include left and

right cerebral and cerebellar WM, and α1, α2, α3 ∈ (0..1) are empirically determined,

structure-specific relaxation coefficients. For GM, α1 = 1 corresponds to no structure

specific relaxation, while α1 = 0 corresponds to full relaxation.

Pairwise Label Smoothness Prior

To achieve spatially smooth label maps, our atlas includes a MRF model of the proba-

bility of structures l and k appearing at adjacent voxels. We estimate our MRF model

parameters β(l, k) in 3 steps:

1. Compute the class pairwise neighboring probabilities through a whole atlas. Let

PLm(l, k) denote the probability that a voxel with label k appears next to the
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Figure 3.4: Learned neighborhood properties: (a) pairwise structure probabilities
PLm(l, k), note that the matrix is not symmetric because the value at (l, k) is nor-
malized by the size of structure l as in Eq. 3.11; (b) PLm(l = 4, k) for left lateral
ventricle. The detailed label definition can be found in Table 3.1.

voxel with label l in label image Lm. Similar to [106], we define

PLm(l, k) =

∣∣{〈i, j〉|j ∈ Ni, zi
l = 1, zj

k = 1,∀1 ≤ i ≤ N}
∣∣

|{〈i〉|zil = 1,∀1 ≤ i ≤ N}|
. (3.11)

The pairwise probabilities from our atlas are plotted in Fig. 3.4.

2. Average PLm over all training atlases m ∈ {1, . . . ,M}.

3. Map the PLm(l, k) to value β(l, k) ∈ [b3, b4]. A larger PLm(l, k) should be mapped

to a smaller β(l, k), so the corresponding MRF model has a larger probability to

connect the class pair 〈l, k〉. We form the matrix V̂ for our complete brain model

via the mapping function:

β(l, k) = −log(PLm(l, k))
b4 − b3

max∀0≤l,k≤K(−log(PLm(l, k)))
+ b3, (3.12)

where

PLm(l, k) =

 γ if(PLm(l, k) < γ)

PLm(l, k) otherwise
. (3.13)

To keep PLm finite, we impose a minimum, γ. In our training data the number

of voxels per volume is close to 107 therefore we choose γ = 10−7.
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3.3.4 Adaptive Label Propagation

Step four of our approach is to evolve the target-specific, adaptive probabilistic atlas

until it fits the target. The complete data is y ≡ (x, z) however we have observed only

the target intensity volume, x. In this case the MAP estimate of Ψ with latent labeling

z is:

Ψ̂MAP = argmax
ψ∈Ψ

ln p(Ψ|y) = argmax
ψ∈Ψ

{ln p(y|Ψ) + ln p(Ψ)} (3.14)

Since it is difficult to solve this directly, we use the Expectation-Maximization (EM)

algorithm, which makes an initial guess about the complete data including the unknown

parameters in Ψ and solves for the Ψ that maximizes the posterior of Ψ given y.

Let t denote the EM iteration counter. We initialize π(t=0) using the learned prior

information and θ(t=0) using the statistical information in the target image. Then

iterate to update the parameters πi
k and θk and in the process find the labeling z.

E-step: Given our observed data, x, and our current estimate of the distribution

parameters, Ψ(t), we compute how likely the complete data is exactly y by computing

the conditional expectation:

Q(Ψ|Ψ(t)) = Ey|x,Ψ(t){lnP (y|Ψ)} (3.15)

Assuming voxels are independent, we model the log function in Eq. 3.15 as follows:

lnP (y|Ψ) = ln p(x, z|Ψ) = ln p(x|z,Ψ) + ln p(z|Ψ)

=
∑N

i=1
ln p(xi|zi,Ψ) + [−U(z|Ψ)− lnZnorm(Ψ)]

(3.16)

We model the first term in Eq. 3.16 as:

ln p(xi|zi,Ψ) = T (xi|Ψ)zi (3.17)

where T (xi|Ψ) = (ln(πi
1G(xi; θ1)), . . . , ln(πi

KG(xi; θK))). Thus,

Q(Ψ|Ψ(t)) =
∑N

i=1
E{zi|xi,Ψ(t)}T (xi|Ψ) + E{−U(z)− lnZnorm}. (3.18)

We estimate the main component in Eq. 3.18 is E{zi|xi,Ψ(t)} and this posterior prob-

ability using mean field approximation [148]:

E{zik|xi, θ(t)
k } ≡ ω

(t)
ik ≈

p
(
xi|zik = 1, θ

(t)
k

)
p
(
zi
k = 1|E {zj∈Ni}

(t−1)
)

∑K
k=1 p(xi|zik = 1, θ

(t)
k )p(zik = 1|E {zj∈Ni}

(t−1))
(3.19)
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where

p(xi|zik = 1, θ
(t)
k ) = G(xi;µ

(t)
k ,Σ

(t)
k ), (3.20)

p(zi
k = 1|E {zj∈Ni}

(t−1)) =
exp{−

∑
j∈Ni

∑K
l=1,l 6=k β(k, l)ω

(t−1)
jl }∑K

k=1 exp{−
∑

j∈Ni

∑K
l=1,l 6=k β(k, l)ω

(t−1)
jl }

. (3.21)

M-step: We optimize the unknown parameters, θ and π, of our probability distri-

butions. Specifically the M-step maximizes Q(Ψ|Ψ(t)) + ln p(Ψ) over ψ ∈ Ψ to find:

Ψ(t) = argmax
ψ∈Ψ

(Q(Ψ|Ψ(t)) + ln p(Ψ)) (3.22)

Assuming uniform priors on θk, we maximize the Gaussian parameters as:

µ
(t+1)
k =

∑N
i=1 ω

(t)
ik xi∑N

i=1 ω
(t)
ik

(3.23)

σ
(t+1)
k =

√√√√∑N
i=1 ω

(t)
ik (xi − µ(t+1)

k )(xi − µ(t+1)
k )

T∑N
i=1 ω

(t)
ik

(3.24)

Maximizing Eq. 3.22 is achieved by taking the partial derivative with respect to πki :

∂

∂πki
{Q(Ψ|Ψ(t)) + ln p(Ψ) + λ(1−

∑K

k=1
πki )}|

πk
i
(t+1) = 0, (3.25)

where λ is a Lagrange multiplier. We assume πi follows a Dirichlet distribution (inspired

by [107]). In a Dirichlet distribution, the key parameter is the concentration parameter,

which represents the but our model varies spatically. with the relaxation map, ξi:

Dir(π1
i , · · · , πKi ; ξi, p

1
i , · · · , pKi ) =

1

B(1 + (1/ξi − 1)pi)

∏K

k=1
(πki )(1/ξi−1)pki , (3.26)

where B is a Beta function, pki is the prior probability that voxel i is labeled as class k

and ξi is the relaxation value at voxel i. After substituting Eq. 3.18 and Eq. 3.26 into

Eq. 3.25, we have

∂

∂πki
{(ω(t)

ik + (1/ξi − 1)pki ) lnπki − λπki }|πk
i
(t+1) = 0, (3.27)

and thus:

πki
(t+1)

=
ω

(t)
ik + (1/ξi − 1)pki

λ
. (3.28)

Since
∑K

k=1 π
k
i

(t+1)
= 1, we have λ =

∑K
k=1(ω

(t)
ik + (1/ξi − 1)pki ) = 1/ξi. Thus, the

mixing coefficients are updated by:

πi
k(t+1) ≈ ξi(G ∗ ω(t)

ik ) + (1− ξi)pik. (3.29)

Here G is a Gaussian kernel to smooth the parameter distribution.



48

3.4 Materials

3.4.1 Datasets

While our method is largely disease agnostic, to make this study concrete we evalu-

ate the method using four public brain datasets covering subjects with healthy and

Alzheimer’s diseased brains. Three of these datasets contain images of healthy brains:

IBSR, BrainWeb and MICCAI2012. The IBSR dataset3 contains 18 subjects

with bias corrected, T1-weighted intensity volumes, and label volumes delineated by

expert neuroanatomists. Each volume has <1mm voxel resolution in the coronal view

and 1.5mm spacing between coronal slices. Each segmentation has labels for 34 struc-

tures (Table 3.1) encompassing multiple cortical and subcortical structures from each

hemisphere. The BrainWeb dataset [149, 150] contains 12 anatomical labels on 20

T1 intensity images from a simulated spoiled FLASH pulse sequence with TR=22ms,

TE=9.2ms, flip angle=30 degree, and 1mm isotropic voxel size. The discrete labels,

representing the tissue which contributes the most to that voxel, include background,

CSF, gray matter, white matter, fat, muscle, muscle/skin, skull, vessels, dura matter,

and bone marrow. The MICCAI2012 dataset from MICCAI 2012 Grand Challenge

at the Workshop on Multi-Atlas Labeling [140] has 15 T1-weighted structural MRI

training brains and 20 testing brains.4 Each image data has 1mm isotropic voxel size.

The training subjects come from 10 female and 5 male, whose age range from 19 to 34.

The testing subjects come from 10 female and 5 male, whose age range from 18 to 90.

Every image (train and test) has cortical and sub-cortical labels annotated by medical

experts.

The diseased brains are from the AIBL database [151], which contains patients

ranging from mild cognitive impairment (MCI) through fully developed Alzheimer’s

3The IBSR (Internet Brain Segmentation Repository) MR brain datasets and their manual segmenta-
tions were provided by the Center for Morphometric Analysis, http://www.cma.mgh.harvard.edu/ibsr/.

4The MRI scans were obtained from the Open Access Series of Imaging Studies (OASIS)
project (http://www.oasis-brains.org/), and the labels were provided by Neuromorphometrics, Inc.
(http://Neuromorphometrics.com/).
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Table 3.1: The structures our algorithm automatically labels.

ID Structure name ID Structure name

1 Background (ECSF)
2 L-Cerebral-WM 21 R-Cerebral-WM
3 L-Cerebral-Cortex 22 R-Cerebral-Cortex
4 L-Lateral-Ventricle 23 R-Lateral-Ventricle
5 L-Inf-Lat-Vent 24 R-Inf-Lat-Vent
6 L-Cerebellum-WM 25 R-Cerebellum-WM
7 L-Cerebellum-Cortex 26 R-Cerebellum-Cortex
8 L-Thalamus-Proper 27 R-Thalamus-Proper
9 L-Caudate 28 R-Caudate
10 L-Putamen 29 R-Putamen
11 L-Pallidum 30 R-Pallidum
12 3rd-Ventricle
13 4th-Ventricle
14 Brain-Stem
15 L-Hippocampus 31 R-Hippocampus
16 L-Amygdala 32 R-Amygdala
17 CSF
18 L-Accumbens-area 33 R-Accumbens-area
19 L-VentralDC 34 R-VentralDC
20 L-vessel 35 R-vessel

(AD). 28 subjects with AD were randomly chosen. A subset of nine (denoted as Sev-

ereVent AD) were subsequently found to have severely enlarged lateral ventricles, the

remaining 19 patients (denoted as ModerateVent AD) have moderately enlarged lateral

ventricles.5 An expert anatomist manually labeled the brains in SevereVent AD using

3D-Slicer [152].

3.4.2 Method Variants

In order to test the additive value of each aspect of iMAEASA, we constructed variations

of the proposed approach that largely consist of subsets of the full method. These

variants are summarized here.

ASA is the adaptive statistical atlas and it is a naive extension of the method in

[107] that segments additional structures. This is achieved by simply adding

more components to the Gaussian mixture model. Compared to iMAEASA this

method retains the spatially varying mixing coefficients, but lacks the spatially

5Our designations correspond to visible anatomical size of the ventricles which is related to but not
the same as disease severity.
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varying relaxation map, structure specific relaxation and MRF smoothness priors,

and lacks the target-specific spatial priors.

EASA adds the spatially varying relaxation map to ASA based on voxel label uncer-

tainty; however the uncertainty is computed among the training volumes them-

selves. This map is then non-linearly registered to the target. Compared to

iMAEASA, EASA [141] lacks structure specific relaxation and MRF smoothness

priors, and lacks the target-specific spatial priors.

iEASA adds the structure-specific relaxation and pairwise neuroanatomical structure-

specific MRF priors to EASA. Compared to iMAEASA, iEASA lacks the target

specific spatial priors and the MRF priors are computed without regard to the

target. This method is illustrated in (Fig. 3.5). We call this method iEASA

because it is an Intensity-driven Extended Adaptive Statistical Atlas approach.

It has two parts: a target-independent model construction (top of Fig. 3.5) and an

application of model to the target (bottom of Fig. 3.5). In the training step, we

choose one atlas at random as the frame of reference and non-rigidly register all of

the training brains to it. We use these warped atlases to construct the adaptive

probabilistic atlas which includes neuroanatomical structure-specific relaxation

and pairwise structure-specific MRF prior. Note that an average intensity image

needs to be computed from training intensity images, e.g. through a groupwise

registration method [153]. To segment a novel target, we non-rigidly register the

atlas to the target and use EM to fit the atlas to the target.

iMAEASA is our proposed method. It utilizes aspects from both the multi-atlas

genre and the adaptive probabilistic atlas genre. The training atlases are non-

linearly registered to the target and all components of the probability model are

target specific at construction and further evolved to fit the target using EM

optimization.

Among these variants, the first three (ASA, EASA and iEASA) integrate train-

ing information prior to observing the target subject and are hence probabilistic atlas
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Figure 3.5: Workflow of a variant method called iEASA for fast labeling. Significant
speed up is achieved by training offline, before the target arrives.
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based approaches, while iMAEASA, which registers training subjects individually to

the target, is amulti-atlas approach.

3.5 Experiments

3.5.1 Experimental Settings

We conduct several experiments to measure how well our method generates accurate

parcellations in different scenarios. The first scenario tests our method on challenges

faced in the clinic in which the target population contains diseased brains while the

labeled training data does not. In the second scenario, our goal is to measure our

method’s performance when the target population is fairly well represented by the

training data. Though this situation may be less realistic clinically and does not tend

to tax our method’s ability to generalize, it provides a reference point for comparison

with many published results which only explore this situation. In the last experimental

scenario, we explore the effect of the representativeness of training data to the target

population by using different combinations of diseased and healthy brains in the training

data.

We compare our method to seven (7) previously published methods by running

them directly on the same data using the parameter settings recommended by the au-

thors. (1) We compare against the widely used probabilistic atlas method FreeSurfer

[106, 154], which is freely available. Due to its widespread adoption, it has also be-

come a benchmark method for parcellation algorithm development. (2) We compare

against a locally weighted label fusion method, iSTAPLE, [99], which improves upon

the STAPLE [98], by adding target intensities as an additional guidance term. (3-5)

We compare against three patch-based label fusion methods with best reported results.

These include the top two performing methods from the 2012 MICCAI grand challenge:

the first place, joint label fusion method (JLF) [100] and the second place, non-local

STAPLE approach (NLS) [105]. We also compare to the recent generalization of joint

label fusion (gJLF) method by [104]. (6-7) Lastly, we compare against two methods

specifically developed to have good generalization. These include the locally adaptive
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brain segmentation algorithm (LoAd) [89] and a naive extension to the adaptive prob-

abilistic atlas method (ASA) [107] to handle 30+ structures rather than the original 4

structures.

We evaluate the accuracy of the parcellation of the brain structures listed in Ta-

ble 3.1. To measure labeling accuracy we compute the overlapping scores, namely

Dice Similarity Coefficient (DSC), between true and computed label maps A and B

(respectively) as:

DSC(A,B) =
2 |A ∩B|
|A|+ |B|

(3.30)

where |.| denotes set cardinality. For iMAEASA, dice scores are measured when the

EM algorithm converges, which we detect when the relative difference of log-likelihoods

between two successive iterations is less than 0.0005.

3.5.2 From Healthy Brains to Diseased Brains

The first set of experiments tests our method’s ability to handle difficult cases that can

be commonly found in the clinic. These include cases in which the target contains a

brain with visible abnormalities not found in the healthy training data. These tests

measure how well a method can generalize learned priors. We use the 18 healthy brain

IBSR dataset as training and the 28 AD diseased subjects from the AIBL dataset

for testing. We separate the diseased subjects into two subsets: the 9 subject Sev-

ereVent AD and 19 subject ModerateVent AD based on the severity of the ventricular

enlargement.
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Representative results on subjects with severely enlarged ventricles are shown in

Fig. 3.6. From left to right, the columns show: an axial image6 from each subject,

expert’s manually labeled ground truth, and automatically generated labels from our

proposed method, iMAEASA, and from the comparison methods. Each row compares

the results from one subject. There is good agreement between iMAEASA and the

true parcellation. For many regions (circled), iMAEASA performs visually better than

the comparison methods. iMAEASA is the only method able to accurately segment

both the ventricles and cortex of these diseased brains. In particular FreeSurfer and

the multi-atlas methods (iSTAPLE, JLF, NLS, gJLF) are unable to label the diseased

ventricles well. For the cortex, both iMAEASA and LoAd produce visually accurate

cortical segmentations. FreeSurfer tends to under-segment it, and the remaining multi-

atlas methods tend to over-segment the cortex. Note that all the methods use the same

warped multi-atlas7 and ASA method in this section uses the warped multi-atlas to

compute its target-specific probabilistic atlas.

A quantitative comparison is shown in Fig. 3.7. To increase readability, representa-

tive methods from Fig. 3.6 are selected for the plot. For the first 18 bar groups, each

bar shows the DSC statistics for one structure across all subjects in SevereVent AD

for a method. In the last group, each bar shows the average for all structures except

vessels for each method. In terms of the overall mean DSC, our method is better than

all other comparison methods and has the smallest variance. Compared to FreeSurfer,

iMAEASA performs significantly better (p < 0.05) on most structures. Compared to

NLS and JLF, iMAEASA performs better on multiple structures with higher mean and

lower variance, especially on cerebral WM, GM and ventricles. To boost the perfor-

mance of JLF, we tried adding label correction [139] to JLF, however this decreased its

accuracy and suggests that correctors learned from normal brains may not be suitable

for improving diseased brain accuracy.

We further explored the use of machine learning based correction, this time assuming

6Intensity data and parcellations are volumetric

7Since the software for gJLF method requires ANALYZE image format, all input volumes are con-
verted from NIFTI format to ANALYZE format by a public matlab tools for NIfTI and ANALYZE
image.
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the training data is representative of the target population (similar to the the MICCAI

2012 grand challenge). Thus, we ran experiments with 3-fold cross validation using,

in each fold, 6 of the SevereVent AD diseased brains for training and the remaining

3 diseased brains for testing. This increased the overall mean DSC (over all folds) to

0.89 for JLF. We trained learning based correctors using the results from iMAEASA,

and this also increased the overall mean DSC to 0.89. This suggests that when training

data is representative of the target population, the methods (JLF or iMAEASA with

correction) perform similarly well.

We also ran tests on the 19 AD diseased brains in ModerateVent AD which have

moderately enlarged ventricles. We do not have ground truth for this particular dataset

so we conduct a qualitative comparison of the methods by rendering the parcellations

from iMAEASA and the compared methods side-by-side with the input image. Fig. 3.8

shows 5 subjects that are representative of the results. We observe that overall, the

results from iMAEASA appear to have better agreement with the structures visible in

the images than the compared methods.
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Figure 3.8: Visual comparison of results on moderately enlarged ventricles from
FreeSurfer and several multi-atlas based methods. iMAEASA produces reliable results
for most brain regions, and better results for cortex.
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3.5.3 Target Brains Well Represented by Training Data

Traditionally, researchers have conducted experiments with target brains containing

variation (anatomical and/or intensity) that is spanned well by the training dataset.

So that our results are comparable with the literature, we also conduct experiments

that test this situation. Many published methods implicitly assume that the target

population is well represented by the training data and work reasonably well in this

scenario. Since little adaptivity is required in this situation, these experiments actually

test our methods ability to tone down adaptivity automatically.

We extensively evaluate our method on 3 datasets in 3 experiments. First we con-

duct an experiment on the IBSR dataset to quantify how well both our proposed

method, iMAEASA and the variant, iEASA parcellate healthy brains using healthy

brain training data. To achieve this we conduct a leave-one-out cross validation exper-

iment. Table 3.2 lists the results of our proposed iMAEASA and its variant iEASA, as

well as comparison methods including ASA (the naive extension to the method proposed

in [107]), FreeSurfer and iSTAPLE [99].

We observe that iMAEASA works quite well and is comparable to the best methods.

This is in part because the entropy calculation automatically measures the representa-

tiveness of the training data to the target and adjusts the adaptivity accordingly. In

this experiment, the low label uncertainty causes our method to tone down its adaptive-

ness and use the training data more than the adaptivity. Additionally in the table we

observe that (a) iMAEASA and iSTAPLE produce best mean DSC results for individ-

ual structures (boldface) across the database as well as overall mean accuracy across

all structures in all subjects, (b) iEASA performs better than ASA and FreeSurfer; (c)

multi-atlas based methods (iSTAPLE and iMAEASA) tend to have better accuracy

than probabilistic-atlas based methods. Lastly, the table also shows the computation

time. We observe a 100x computation time difference between multi-atlas methods

and probabilistic-atlas methods. This is due to two factors. (1) ASA and iEASA re-

quire only one online registration of a single atlas to the target image rather than the

multiple registrations in iSTAPLE and iMAEASA. (2) ASA and iEASA utilize a GPU
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Table 3.2: Segmentation accuracy (mean DSC) across 18 healthy subjects. ‘Overall’
row shows average score of all structures except vessels. Bottom row shows the com-
putation time per subject. Bold face indicates scores that are best or statistically
indistinguishable from best.

Structure ID ASA iEASA FreeSurfer iSTAPLE iMAEASA

L&R-Cerebral-WM 0.9 0.9 0.88 0.9 0.91
L&R-Cerebral-Cortex 0.88 0.88 0.8 0.89 0.9
L&R-Lateral-Ventricle 0.85 0.85 0.8 0.87 0.87

L&R-Inf-Lat-Vent 0.54 0.52 0.43 0.49 0.61
L&R-Cerebellum-WM 0.88 0.88 0.83 0.89 0.89

L&R-Cerebellum-Cortex 0.88 0.89 0.87 0.91 0.91
L&R-Thalamus-Proper 0.82 0.87 0.85 0.9 0.89

L&R-Caudate 0.80 0.84 0.82 0.85 0.86
L&R-Putamen 0.828 0.88 0.82 0.9 0.9
L&R-Pallidum 0.81 0.82 0.78 0.84 0.84
3rd-Ventricle 0.68 0.73 0.71 0.78 0.76
4th-Ventricle 0.73 0.80 0.77 0.83 0.83
Brain-Stem 0.84 0.88 0.85 0.92 0.9

L&R-Hippocampus 0.76 0.77 0.76 0.82 0.82
L&R-Amygdala 0.72 0.73 0.70 0.76 0.77

CSF 0.49 0.54 0.45 0.63 0.57
L&R-Accumbens-area 0.64 0.68 0.58 0.75 0.75

L&R-VentralDC 0.76 0.80 0.70 0.85 0.83
L&R-vessel 0.29 0.23 0.31 0.38 0.38

Overall 0.77 0.80 0.75 0.82 0.82

Time (minutes) ≈6.5 ≈ 7 ≈ 720 ≈660 ≈667
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Figure 3.9: Dice scores from the proposed iMAEASA approach on the MICCAI12 grand
challenge data for structures throughout the brain including non-cortical structures.
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Figure 3.10: Statistical comparison using the BrainWeb dataset. Dice scores from
three adaptive probabilistic atlas methods for (a) CSF, (b) white matter, (c) gray
matter, and (d) averaged across these structures.

accelerated spline-based method by [155] which is much faster than the more accurate

Symmetric Normalization method with cross-correlation [129] used in iSTAPLE and

iMAEASA.

To compare our method to additional state-of-the-art approaches, we conduct an-

other experiment using the MICCAI2012 data [140]. Our algorithm does not cur-

rently parcellate the functional regions of the cortex whose boundaries are largely in-

visible in structural MRI; therefore we include dice scores for the other structures (e.g.

non-cortical regions) as shown in Fig. 3.9. We use the same train/test split as the chal-

lenge and observe that iMAEASA’s overall mean dice score for non-cortical structures

is 0.81 ± 0.026 over all subjects, while the top ranked method, joint label fusion with

label correction, achieves 0.8377± 0.028.

We also use the BrainWeb dataset of 20 subjects to compare several of the variants

of our approach, iEASA, ASA and EASA, to one another. For the BrainWeb dataset,

we evaluate the accuracy of gray matter, white matter, and CSF. We merge its other

labels to a background label. Fig. 3.10 shows box plots of the dice score distribution

from these methods. On healthy brains, we observe that the iEASA produces the best

results with higher mean accuracy per structure than the other methods. Using a paired

T-test (significance level 0.05), we find that iEASA is statistically significantly better

than ASA for both CSF and for the average accuracy over the three structures.
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3.5.4 Impact of Representativeness of Training Data

So far, we have shown that the proposed iMAEASA outperforms other methods when

parcellating diseased brains using priors learned from publicly available healthy brains.

In the next suite of experiments, we study the impact of varying the training data

to various combinations of healthy and diseased subjects. We do this by constructing

three additional training sets:

H16 contains 16 healthy brains randomly chosen from the 18 brain IBSR set.

M16 contains a mixture of 8 healthy brains and 8 diseased from SevereVent AD set.

D8 contains 8 brains randomly chosen from the 9 brain SevereVent AD diseased brains.

We compare the performance of all 9 combinations of three segmentation approaches:

ASA, iEASA and iMAEASA and these three atlases. For each 〈method × atlas〉 com-

bination we apply leave-one-subject-out cross-validation to compute the test accuracy

across all subjects in the SevereVent AD dataset and then on the IBSR dataset. Our

test results on diseased brains from SevereVent AD are shown in Fig. 3.11. We can

see that there is an upward slope on accuracies for almost all structures. Since the

order of the algorithms corresponds to increasing addition of components (building

up to iMAEASA), this provides evidence of the value of each of the components of

iMAEASA. Specifically, probabilistic initialization (iMAEASA) outperforms determin-

istic (iEASA), and entropy-based, non-stationary relaxation (iMAEASA, iEASA) out-

performs stationary relaxation (ASA). The figure also shows that to segment diseased

brains, the inclusion of some diseased brains in the training set (e.g. M16 or D8) can

slightly improve the accuracy. iMAEASA is better than other two methods. Using

〈iMAEASA × H16〉 as the reference, those combinations which vary significantly (at

the 0.05 confidence level) are shown with an * above the bar. Notably we observe that

for average dice score over all structures (the rightmost group of bars) no significant

difference is found among the 〈iMAEASA × training〉 for the three training datasets

H16, M16, and D8. This supports our previous experimental results showing that

iMAEASA’s adaptivity enables diseased brains to be segmented whether or not the
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Figure 3.11: Quantitative comparison on SevereVent AD dataset using ASA, iEASA
and iMAEASA methods with different atlases. Bar annotation legend: r indicates
the reference (our proposed method) while * indicates those methods with a statically
significant difference (p < 0.05) from the reference.

training data contains many diseased brains. In summary, iMAEASA is better than

other two methods in terms of the accuracy as well as the robustness to the training

data.

3.6 Discussions

3.6.1 Relationship with Patch-based Label Fusion

Aspects of recent patch-based approaches may be useful to improve our approach. For

example, when constructing our relaxation map, we could derive a refined estimate of

label uncertainty by weighting the votes of the posterior before computing its entropy.

This is analogous to the way joint label fusion is computed [100] using an image sim-

ilarity measurement after non-linear registration. Similarly, it is possible that aspects

of our method may be useful to improve the patch-based methods. For example as

shown in Fig. 3.12, when the training data consists of healthy brains and the target

is diseased, the distance from where 50% of the training atlases agree (green pixels)

and the true boundary (of the target’s ventricle) can be 18-20 voxels. This far exceeds

the search volume radius for matches employed by patch-based methods (3-5voxels).
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1
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Figure 3.12: Map of the prior probability (p) for the right lateral ventricle of subject
2 in Fig. 3.6. Color bar shows the plotted color except for p = 0 which is rendered
transparent for anatomical context.

Naively increasing the radius in a fixed global way yields lower performance for patch-

based methods. However, our approach for measuring training suitability locally could

be used to drive a spatially varying search volume radius for patch-based methods (i.e.

increasing it locally where there is label uncertainty and increasing it by how much

uncertainty there is between the multi-atlas training data and target).

3.6.2 Necessity of Components

Target-specific priors are necessary for maximum generalization of training data to

parcellate an unseen target. This is illustrated in Fig. 3.13. The first column shows an

axial image from a diseased target. The training data consists of healthy brains. If a

probabilistic atlas prior is constructed using only the training data and without regard

to the target, as is the case in iEASA, some speed up is afforded because the priors can

be built offline. However, this comes at the price of reduced generalization. As shown

in the third column, iEASA labels part of the ventricle as WM. On the other hand,

iMAEASA delays atlas construction until the target arrives. It constructs priors only

after non-linearly registering the healthy training data to the target. This allows for

more accurate identification of the regions in which the priors need to be relaxed when

parcellating the target. As shown in the fifth column iMAEASA properly adapts the

priors from the same original healthy training data. When examining the relaxation

maps ξi from the two approaches (last two columns), the bright region iMAESA has

identified for further relaxation (in the yellow circle) is absent from ξi for iEASA.

While iMAEASA generates a more adaptive relaxation map because it is target

specific, both structure-specific relaxation (section 3.3.3) and pairwise-structure specific
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Figure 3.13: Advantage of target-specific atlas construction. When the atlas is con-
structed without regard to the target input, iEASA does not adapt sufficiently. The
proposed iMAEASA produces better generalization and accurate parcellation result,
because it constructs target-specific relaxation map ξi which identifies the region re-
quiring additional adaptation (yellow circle).
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Figure 3.14: The need for structure-specific relaxation and pairwise-structure specific
MRF priors. (a) shows the anterior region of mid-axial image, (b) is ground truth, (c)
using neither, (d) only structure-specific relaxation, or (e) both enhancements.

MRF smoothness priors (section 3.3.3) further increase parcellation accuracy. This is

demonstrated in Fig. 3.14. The example in (a) shows the anterior region of a mid-axial

image and (b) is ground truth. Part (c) shows the result without structure-specific

relaxation and MRF smoothness. Here we see the sulci are erroneously filled in. Part

(d) shows the result using only structure-specific relaxation, and we observe erroneous

ventricular CSF labels (purple) and over-segmented cortex. Part (e) shows the much-

improved result using both structure-specific relaxation and pairwise-structure specific

MRF smoothness priors.

3.6.3 Implementation Details

The primary parameters of iMAEASA control atlas construction. Using empirical data,

we set these parameters once and kept them fixed for all our experiments. In particular,

we set the parameters mapping entropy to the relaxation map, ξi, as: b1 = 0.0, b2 = 0.5,

s1 = 3.0, s2 = 0.1, the structure-specific relaxation parameters as: α1 = 0.9, α2 = 0.8,
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α3 = 0.95, and the parameters for MRF-based regularization as: γ = 10−7, b3 = 0.0,

b4 = 1.0. For non-linear SyN registration [129], we use a cross-correlation metric with

window radius 4, weight 1 and gradient step length 0.25. The optimization is performed

on 3 resolutions with a maximum of 70 iterations at the coarsest level, 50 at the next

coarsest and 10 at the full resolution, after the affine registration (200, 100, 50 maximal

iterations respectively). We use a Gaussian regularizer with sigma of 3 that operates on

the similarity gradient and 0.5 on the deformation field. For the comparison methods,

we used the implementation from the authors unless stated otherwise and optimized

the parameters according to the author’s recommendations in the articles, e.g. [139].

3.7 Summary

In the clinic, representative training data for the target population may not be avail-

able in many studies, and plenty of golden standard labeling is usually not realistic. In

this work, we simulated one common situation in which diseased brains need to be seg-

mented while there is only training data of healthy brains available. We propose a novel

brain parcellation algorithm (iMAEASA) that integrates aspects from the multi-atlas

genre with those from the adaptive probabilistic atlas (ASA, EASA, iEASA) genre.

The training atlases are non-linearly registered to the target and a non-stationary re-

laxation map is automatically computed to tune the adaptivity of the multi-atlas. This

is done on a voxel-by-voxel basis, according to the local suitability of the training data

to the target. Then, all of the additional regularization components of its probabil-

ity model are constructed in a target-specific fashion and then the complete model is

further evolved to fit the target using EM optimization. Our approach simultaneously

and accurately segments over 30 individual anatomical structures throughout the brain.

For healthy brains, our method reveals comparable accuracy to the state-of-the-art par-

cellation approaches. For diseases with brain shape deformation such as Alzheimer’s

(with moderate to severe structural malformations), our method yields higher parcel-

lation accuracy in terms of dice score than other leading methods. Other important

diseases such as Huntington’s, Parkinson’s, Schizophrenia, and ventriculomegaly also

have morphological shape changes and may be well served by our approach.
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Chapter 4

Combining Atlas with Deformable Model

4.1 Introduction

In the last chapter, we discuss the adaptive atlas based multi-object segmentation algo-

rithm. In this chapter, we propose a single-object segmentation method by integrating

atlas-based prior information in an improved deformable model, and evaluate it with an

application to liver segmentation in hepatic adipose assessment. The proposed adaptive

atlas based multi-object segmentation method in the last chapter does not suit in this

application, because there is no ground truth for each anatomy except the liver and

so the background contains too complicated intensity distribution to be modeled by a

simple Gaussian.

Fatty liver, also known as hepatic steatosis, is a worldwide common condition char-

acterized by fat accumulation in liver cells. If more than 5% to 10% of the liver’s total

weight is fat, it is called a fatty liver. It is associated with many fatty liver diseases

(FLD), like alcoholic liver disease, non-alcoholic fatty liver disease (NAFLD) and steato-

hepatitis [156, 157]. NAFLD may affect people of any age and progress to end-stage

liver diseases [158]. The prevalence of NAFLD may be as high as 30% in the United

States [159] and 10% to 24% of general population in various countries [158]. Therefore,

the clinical diagnosis of fatty liver disease is very important. The diagnosis procedure

often requires imaging studies. It has been shown that MRI and magnetic resonance

spectroscopy (MRS) [160] are better choices for accurate detection and quantification

of the hepatic fat than ultrasonography and CT. Particularly, MRS is regarded as the

most direct MR-based method to quantify water and fat components in liver. However,

it is not widely applicable across standard clinical imaging centers due to the technical

complexity. Instead, MRI based hepatic fat-fraction measurement is widely used. It
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employs multi-echo chemical shift based methods and computes the fat-fraction image

based on the separation of fat and water [160]. So far, most studies focus on improving

the separation and quantification of fat and water components, while the estimated

fat-fraction images are for the whole abdomen, not liver specific. Thus, automatic liver

segmentation is necessary in generating liver-specific fat-fraction assessment for large

data analysis in clinical trials.

However, there are some challenges in liver segmentation. First, image noises and

artifacts can cause ambiguous object boundaries, which may affect edge-detection based

methods. Second, nearby organs with similar intensity levels may cause misleading

boundaries. Third, the liver morphology and structure may also change due to liver

affecting disorders and diseases. Again, in clinical trials, the collected data have large

variance due to different patients, hardware and protocols. Fig. 4.1 shows several

T1-weighted MRI samples in a FLD clinical trial. They have significantly different

appearances.

Many studies have shown different fully automatic liver segmentation methods in

recent years. Most of these segment liver in CT images [161]. Ling et al. [16] proposed

a hierarchical shape representation and learning based boundary localization technique.

Kainmüller et al. [162] used a statistical shape constrained free form deformable seg-

mentation method. Rikxoort et al. [128] and Linguraru et al. [163] incorporated

atlas-based method into their segmentation for contrast enhanced CT images. How-

ever, CT images, especially those with contrast enhancement, have different appearance

patterns with MR images which makes most algorithms designed for CT images not

suitable for MRI. For liver segmentation in MR images, Massoptier et al. [164] used

graph cut initialized from several carefully designed preprocessing steps. Platero et.al.

[165] applied level set [114] to segment liver after manual selection of ROI. Logeswaran

et.al. [166] proposed a watershed [167] based algorithm to segment liver in 2D MR im-

ages, which may loss 3D spatial constraints. Siewert et.al. [168] proposed an automated

method for contrast enhanced MRI based on edge detection in 2D slices. Considering

the large variety of data set in clinical trials, improving the robustness of automatic 3D

segmentation is still under research.
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Figure 4.1: T1-weighted MR images in a FLD clinical trial. Each column in one row
shows one subject in axial, sagittal and coronal views, respectively.
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Owing to the variety of data in clinical trials and limited amount of training sam-

ples, most learning based segmentations [16, 116, 117, 118, 119] are hardly applied.

Deformable model based methods [7, 110] are accurate but sensitive to initialization

and misleading appearance clues. Huang et al. proposed a Metamorphs model [115]

which combines the edge and region energy terms to make the deformable model robust

to initialization. Some other studies use the deformable models with shape priors, e.g.

Active Shape Model (ASM) [169] and sparse shape composite [122], are shown promis-

ing in cardiac segmentation [116], brain structure segmentation [170] as well as lung

segmentation [171]. Atlas-guided approaches [98, 90, 120, 121, 104] relying on image

registration may not work as well as in the brain since the abdominal section has much

higher variety than the brain. Because the image registration algorithms are solved

to obtain a global matching of target and reference images, there is no guarantee that

the liver area is aligned properly. Despite the limitation, Slagmolen et al. [172] and

Okada et al. [173] demonstrated the atlas-based method can provide a reliable initial

segmentation for refinement procedure.

Based on these previous studies, we propose an robust and automated liver seg-

mentation in clinical environment by incorporating the atlas based prior information

with a shape constrained deformable model. Specifically, a statistical image atlas is

constructed and employed to obtain a rough estimation of liver ROI. Then, a robust

deformable model with shape prior is initialized from this estimation. Energy terms

from edge and region information as well as the atlas prior are combined in this model

for accurate and robust segmentation. Besides, Laplacian mesh representation [174, 175]

is used to preserve surface details. The proposed segmentation method combines the

robust of atlas-based approach with the accuracy of deformable models.

Moreover, the proposed framework could be easily extended to refine segmenta-

tion results interactively. From our observations, the fully automatic framework is not

perfect in terms of segmentation accuracy at some local regions. In practice, clinical

experts would like to have an intuitive way to correct the local mistakes efficiently.

This motivates us to develop an interactive mesh editing tool to refine the segmen-

tation results. Interactive segmentation strategies usually take different types of user
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input to initialize the “editing” process, and then generate intermediate segmentation

results based on automated algorithms. Users can provide or update inputs to correct

the segmentation mistakes iteratively. For example, interactive graph cut [176] utilizes

a user’s input of foreground and background seeds to segment the foreground objects,

based on the intensity statistics and spatial connectivity. The additional user inputs

may affect the global statistics and cause some other places to be mislabeled. Active

learning based interactive segmentation [177] allows a user to delineate a set of 2D

contours of the 3D object in an active learning framework and reconstruct a 3D surface

based on the labeled 2D contours. In general, these existing interactive approaches

apply user inputs implicitly to the segmentation results.

Different from previous approaches, we extend our deformable model to enable 3D

shape editing directly. In fact, 3D shape editing is a classical topic in computer graphics

and is used for animation and visual reality [174, 175]. However, these approaches only

rely on the geometric information. For medical image segmentation, we also need to

incorporate the image context into the interactive mesh editing. Therefore, the para-

metric deformable model is a natural choice, since they represent the object boundary

as a smooth surface model by simplex mesh. Therefore, we extend our deformable

model and design a novel interactive framework to refine the segmentation results by

mesh editing. This framework models the mesh editing process by user-provided control

points as well as the image context. The control points not only specify the locations

where the segmentation errors should be corrected, but also provide reliable landmarks

where the local image information should be emphasized to extract more accurate object

boundaries. With the aid of geometric optimization and image guidance, the proposed

framework allows the doctors or researchers to explicitly edit the segmented shapes in

an intuitive fashion. The refined results could be utilized to do clinical analysis with

high confidence.

We first evaluate this automatic method on a dataset of 14 volumetric MR images

from a FLD clinical trial. Then, we evaluate the editing framework on the same MRI

liver data set and another CT lung data set.
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4.2 Methodology

In this section, we first introduce our framework for liver segmentation and hepatic fat-

fraction assessment. In the second part, the energy terms contributing in the deformable

model are discussed in detail. Then we describe the construction of statistical image

atlas and shape atlas, and the sparse shape prior representation.

4.2.1 Algorithm Framework

The demonstration of our framework is shown in Fig. 4.2. Firstly, through atlas con-

struction, we build a statistical image atlas containing one reference intensity image

and a corresponding spatial probability map (SPM) image for liver. Meanwhile, one

shape atlas is constructed for shape representation model. The SPM and shape model

are in the same reference image domain. After nonrigidly registering the reference im-

age to target image, we deform the SPM and shape model to the target image space

using the same transformation. Then, the deformable model is initialized by the SPM

and evolves to fit the boundary of the target liver. The deformation is based on the

image edge and region information and regulated by the warped SPM as well as the

shape constraint. Finally, a chemical shift method can be applied to assess fat-fraction

distribution in the liver from dual-phase MR images of the same target patient.

The key component of this framework is the robust deformable model, which is

detailed in section 4.2.2. The atlas construction and shape regularization are discussed

in section 4.2.3.

4.2.2 Deformable Model

There are two main categories of deformable model in literatures. One is explicit

parametric models that use parametric representation for deformable curves or surfaces

during the segmentation, such as Snakes or Active Contour Models [111, 113]. The

other one is implicit geometric models [112, 114] that use the level set of a higher-

dimensional scalar function to represent curves or surfaces implicitly. Although differ

in implementation, both model the segmentation as an energy minimization problem
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Figure 4.2: Segmentation Framework.

and rely on edge information to derive external forces. Here, we choose the explicit

model because it is more computationally efficient than the implicit model.

Let x : Λ ⊂ R2 → R3 denote a surface representing object boundary, I ∈ R3

denote a 3D image. The surface model x can be discretized as a simplex triangle

mesh represented by a graph G = (V,E) with vertex V connected by edges E. V =

[vT1 , v
T
2 , . . . , v

T
n ]T , vi = [vix, viy, viz]

T ∈ R3. Let G0 = (V0, E0), Gt = (Vt, Et) denote

the initial and target shape, respectively. We aim to evolve G0 to Gd = (Vd, Ed) which

can best approximate Gt. The segmentation is formulated as an energy minimization

problem:

Etotal = Emodel(G0, Gd) + Eshape(G0, Gd) + Etarget(Gd, Gt). (4.1)

Here, model energy Emodel measures the similarity between G0 and Gd. It preserves the

initial geometric characteristics during the deformation of Gd. Shape energy Eshape is

designed for shape optimization. It constrains the shape’s tension and rigidity to ensure

the global smoothness, while preserving local details as much as possible. Target energy

Etarget reflects the distance between Gd and Gt. It introduces an external force driving

the shape model evolving towards the target shape Gt. In image segmentation, the Gt

represents the boundary of the object of interest. By minimizing these three energies,
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the model will deform to the target boundary while preserving its geometric properties.

At the meantime, it avoids mesh degeneration during the deformation and produces an

optimized one.

All the energy terms above are designed differentiable with respect to the model pa-

rameter (coordinates V ). Thus, according to the Euler-Lagrange Theory the mesh de-

formation can be solved as a dynamic system using gradient descent algorithm. Emodel

and Eshape derive internal forces to preserve and optimize the shape properties. Etarget

derive external (image) forces to attract the model towards the target object boundary.

The minimization is computed in small time steps. In our study, we keep the same

topology of the model and only change the coordinates of V during the deformation.

Now, we discuss all the energy terms in detail.

Internal Forces with Detail-preserved Smoothing

By representing as finite differences in time when G0 deforms to Gd, the model energy

Emodel is defined as:

Emodel = γ‖V (t) − V (t−1)‖2 (4.2)

The shape energy Eshape which controls the smoothness of deformable model is

defined as:

Eshape = α‖LuV (t)
p −WLcV

(t−1)
p ‖2 + β‖L2

uV
(t)
p ‖2 (4.3)

where V (t) are the vertices of the intermediate shape at time t, Vp = [v1p, v2p, . . . , vnp]
T ,

p ∈ {x, y, z} are coordinates along p direction. LuVp and LcVp are uniform and

cotangent Laplacian used to approximate the discretization of Laplace operator to V

[175, 178]. The uniform Laplacian of a vertex is a vector pointing to the centroid of its

neighboring vertices, while cotangent Laplacian is a good approximation of the surface

normal. The first term of Eshape controls the tension (for smoothing) by removing tan-

gential components while keeping the surface details in normal direction. The diagonal

weight matrix W for the cotangent Laplacian can be assigned as in [178] to segment

objects with complex boundary shapes. The second term controls the rigidity of the

shape (avoids oscillations by penalizing high curvatures). α and β are the balancing
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weights.

External Forces with Atlas-based Potential

The external forces are derived from ETarget:

ETarget = κ1

∫
Λ
PExt(x)dΛ = κ1

∫
Λ
Pedge + κ2Pregion + κ3PatlasdΛ (4.4)

Here, PExt : R3 → R is the potential field induced by three parts which are detailed in

the following paragraphs. κ1, κ2 and κ3 are all scalar parameters used as balances of

these potential terms.

The edge potential term Pedge can be defined using gradient magnitude map or edge

distance map or GVF [111, 113]. The region potential term Pregion is defined similar

to the ROI-based balloon term in [115] that allows flexible model initialization:

Pregion(x) = ΦΛ(x)ΦROI(x) (4.5)

Here, ΦΛ(x) is the signed distance transform of the current model’s surface, ΦROI(x) is

the signed distance transform of the predicted liver boundary. Given the transformed

SPM, both foreground (object) and background statistics are estimated. By applying

Bayesian rule, we can compute a binary image representing the most likely object

regions. Basically, this term computes current model-interior intensity statistics to

predict objet boundary, which can overcome some misleading boundaries from the edge

detection. Here, we only compute it once based on SPM before the model evolution.

Atlas-based energy. To better suppress possible side effects caused by image ar-

tifacts and noises, which may down-grade the edge- and region-based energy potentials,

we introduce the third potential term Patlas into the external force field. This potential

function comes directly from the transformed SPM learnt from atlas construction:

Patlas(x) = ΦSPM (x)2 (4.6)

where ΦSPM (x) is a signed distance map to the boundaries of SPM = θ (θ ∈ (0, 1)

is determined empirically). This term keeps the model from shrinking too small to

nothing and dilating too big to leak to background. The motivation of such a term is
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from the observations that the transformed SPM always overlaps nicely with the major

part of the target liver even the nonrigid registration is not that accurate.

4.2.3 Construction of Image and Shape Atlases

In the atlas construction, we build one statistical image atlas and one shape atlas.

The statistical image atlas contains one mean intensity image representing a group

of training images, and one probabilistic liver map encoding the spatial distribution

and variance of liver in the training samples. This statistical image atlas is used as

initialization as well as a constraining energy term of the deformable model. The shape

atlas is a set of surface meshes built from training data which is used to represent the

shape prior of liver.

Image Atlas

Park et al. [179] built a liver probabilistic atlas based on landmarks. Observing the

atlas construction is sensitive to the choice and accurate localization of landmarks,

Xiong et al. [180] used a landmark-free method based on dense volumes to construct

a linear unbiased liver atlas from CT images. Here we propose a strategy to build

the probabilistic liver atlas from MR images similar to [180] by using a state-of-the-art

symmetric diffeomorphic normalization (SyN) method [129]. SyN is shown to be one

of the top-ranking methods with the best and most consistent accuracy in MRI brain

registrations [101]. Let ω (I,D(x),J ) → Î denote a nonrigid transformation ω from

source image I to target image J by deformation field D(x), resulting in a warped image

Î in the image space of J . SyN method solves the registration problem symmetrically

to get the deformation field D(x) and its inverse D−1(z) at the same time, where x, z

are spatial coordinates in images I and J .

Given M training simple atlases, our statistical atlas is built following the algorithm

2. The Ii and Si denote the ith image and its golden standard label image, respectively.

As the output, Ī is the mean image and S̄ is the liver probabilistic map. Ī is the

unbiased representative of the training images. S̄(x) represents the probability of liver

tissue appearing at x. Note that we do not preprocess the training dataset to normalize
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them into a common size and spacing. Instead, the normalization is implicitly done

after the first iteration since all the images are transformed to the normalized template

Ī(0). The result of our atlas construction is shown in Fig. 4.3.

Algorithm 2 Build statistical atlas

Input:
The training simple atlases {Ii,Si}, i ∈ {1, . . . ,M};

Output:
The statistical atlas {Ī, S̄};

1: k = 0
2: pick an arbitrary m, where m ∈ {1, . . . ,M}
3: re-sample Im to get isotropic voxel size 1mm× 1mm× 1mm
4: initialize template Ī(0) by normalized Im
5: Ii(0) = Ii, Si(0) = Si
6: while k < MAX ITERATION do
7: for i = 1 to M do
8: compute Di(k) to get warped image: ω

(
Ii(k),Di(k), Ī(k)

)
→ Ii(k+1)

9: end for
10: update template: Ī(k+1) = AverageMi=1 Ii(k+1) 1

11: k = k + 1
12: if Ī(k+1) converge, break
13: end while
14: for i = 1 to M do
15: compute Di(k): ω

(
Ii(k),Di(k), Ī(k)

)
→ Îi

16: warp label image: ω
(
Si(k),Di(k), Ī(k)

)
→ Ŝi

17: end for
18: Ī = AverageMi=1 Îi
19: S̄ = 1

M

∑M
i=1 Ŝi

During the construction, each nonrigid (deformable) registration is performed after

an affine registration. We use mutual information (MI) similarity metric in affine reg-

istration, and cross-correlation (CC) as the similarity metric for nonrigid registration.

Shape Atlas

Traditional shape models represent shape distributions by the mean and major varia-

tions, for example Active Shape Models (ASM) [169]. These statistical shape models

do not handle gross and sparse errors well. In many cases, the initial segmentation is

1The Average of images are calculated using function AverageImages in Advanced Normalization
Tools (ANTs) software [181].
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Figure 4.3: The mean image and liver probabilistic atlas are shown in axial, sagittal
and coronal views. The brightness of red color is proportional to the probability of a
voxel belonging to liver tissue.

relatively good and deformable model is reliable at most positions, only sparse gross

errors instead of Gaussian errors may be observed during the model evolution. Thus,

we incorporate a sparse shape composite model [122, 171] into our method for more

accurate and effective results.

Having the statistical image atlas, a binary template label image can be estimated

by thresholding S̄ after smoothing and morphological operations. Then a high-quality

surface mesh [182] is built in the template domain. Similarly, all the training label

images are converted to high-quality mesh models. To build the shape prior model,

we first pre-aligned all the training shapes to the reference shape based on the gen-

eralized Procrustes analysis [183] to make sure they are all in the same coordinate

space. Then the one-to-one correspondence of vertices on different meshes is obtained

by registering the reference mesh to all the training shapes. Here, we employ the

mesh quality-preserved deformable models to create the one-to-one correspondence

[182]. This method is adapted from the adaptive focus deformable model (AFDM)

[184] by registering shapes instead of images.

The sparse shape composite model used to incorporate with deformable model is

defined as:

argmin
c,e

‖T (y)−Ac− e‖22 + λ1‖c‖1 + λ2‖e‖1 (4.7)
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where y ∈ RDN is the vector representing all the vertices Vd in the deforming mesh,

D is the degree of freedom, N is the number of vertexes in the mesh model, T (y)

is the transformation (i.e. Procrustes transformation) from target domain to training

template domain, e ∈ RDN is the sparse error vector, A ∈ RDN×M is the matrix

of training shapes, c ∈ RM is the sparse coefficient vector. The optimized shape

representation is Ac−e, which can be transformed back to input space with the inverse

transformation of T .

4.2.4 Implementation Details

In the construction of statistical image atlas, the nonrigid registration in each iteration

requires about M × 40 minutes. In [180], the authors showed that the convergence for

a 15-sized dataset start after 3 iterations. Considering the high cost of computation,

we set MAX ITERATION = 3 in algorithm 2.

The initialization of deformable model is based on one nonrigid registration from

atlas mean image to target image. When a unseen target image comes, we compute the

deformation field DT from Ī to target IT. Then target specific liver SPM is estimated

by the warped probabilistic map ω
(
S̄, DT, IT

)
→ S̄T. An initial liver segmentation SInit

is computed by thresholding Gσ ∗ S̄T with a scalar value θT, where Gσ is a Gaussian

smoothing filter with scale size σ. This target specific SInit is used to build the initial

surface mesh for deformable model. The vertex correspondence between the target

mesh and the reference shape is computed using the shape registration method in [182].

To improve the computational speed of the deformation DT, an online atlas-to-

target registration method proposed by [155] is used. This method is based on cubic

B-spline interpolation and NMI similarity metric with GPU acceleration. It is much

faster than the SyN method at the cost of losing some accuracy. Although the simple

registration method produces less accurate transformation, the initialization is refined

by deformable model afterwards.

To summarize, the evolution of deformable model with shape constraint is described

in algorithm 3. After registering and warping the image atlas to the target domain, we

construct the initial surface model by extracting an isosurface from the warped SPM.
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Then the energy terms and force fields are computed for the deformable model before

its evolving. Each energy term is described in detail in section 4.2.2. To keep up the

efficiency of the evolution, the shape regularization is conducted every τ iterations.

The evolution is stopped when the deformation is small enough. At last, the 3D surface

model is converted to binary mask image as the segmentation result.

Algorithm 3 Segmentation framework

Input:
The target image, trained statistical image atlas and shape atlas

Output:
The binary mask of segmented liver in target image

1: compute initial surface model y(0) based on image atlas registration
2: compute internal and external forces
3: t = 0
4: repeat
5: t = t+ 1
6: deform model y(t−1) to y(t) using FEM
7: if mod(t, τ) == 0 then

8: optimize y(t) using Eq. 4.7 to get y
(t)
refined

9: y(t) = y
(t)
refined

10: end if
11: until deformable model converges
12: convert the surface model y(t) to mask image

4.2.5 Intuitive Segmentation Refinement

We keep the same notation for the deformable model as in section 4.2.2. Given a

deformable mesh either from an initialization or a segmentation result with mistakes, we

can conduct the interactive mesh editing (segmentation refinement) by setting control

points in the local area. The control points introduce constraints into internal force and

provide supplemental external force to ensure the correct estimate of the target model.

Internal Forces with Control-point Constraint

Let C be the set of control points (landmark points) defined by user. cj , j ∈ C denotes

the coordinates of the points. vk, k ∈ V denotes the coordinates of those points selected
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to respond the control of cj . The shape energy Eshape is redefined as:

Eshape = α‖LuV (t)
p −WLcV

(t−1)
p ‖2 + β‖L2

uV
(t)
p ‖2 +

∑
j,k

ω2
kj |v

(t)
kp − cjp|

2 (4.8)

The first two terms are the same as in Eq. 4.3, while the third term is the additional

soft geometric constraint introduced by control points. ωkj encodes the strength of the

attraction from cj to vk regulated by the distances

ωkj =
1− ˆdistkj∑
k 1− ˆdistkj

, (4.9)

where ˆdistkj ∈ [0, 1] is the normalized distances from vk to control point cj .

External Forces with Control-point Enhancement

From Eq. 4.4 (may not have the atlas-based potential in practice), we can derive the

image force FExt. However, due to ambiguous edges and low contrast in medical images,

the traditional image forces may lead to inaccurate segmentation result. The intuitive

goal of interactive aids is to emphasize the desired object boundaries to overcome mis-

leading appearance cues in local image regions. The internal constraints (in Eq. 4.8)

can pull vertices towards the desired position geometrically, but limited number of con-

trol points may cause sharp spines (Fig. 4.4 (b)). To overcome such limitation and

improve the efficiency of user inputs, we utilize the local image information indicated

by control points to form a new external force field FC as a local enhancement to FExt:

F̃Ext = FExt + λFC (4.10)

where λ is the weight of the force field generated based on control points. Let Is be

local image patch with control point as the center and window size s, we define FC as:

FC = K(x, y, z) ∗ |∇[Gσ ∗ Is]|2 (4.11a)

K(x, y, z) =[−x/(r + ε)3,−y/(r + ε)3,−z/(r + ε)3] (4.11b)

Here, Gσ is a 3D gaussian function with standard deviation σ. K(x, y, z) is a 3D Vector

Field Convolution (VFC) kernel [185] in which all the vectors point to the kernel origin

(r =
√
x2 + y2 + z2 is the distance to the kernel origin). Comparing with other force



81

-10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

(a) (b) (c) -10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

(d)

Figure 4.4: Example of interactive CT lung segmentation. (a) shows the initial seg-
mentation (red) and user specified control point (blue); (b) shows the editing result
(yellow) with only geometric constraint by control point; (c) shows the editing result
(green) with both geometric constraint and image force FC ; (d) shows an axial image
patch and the force field FC .

field (e.g. gradient vector field), VFC has larger capture ranges, is more robust and

computationally efficient. The radius of the kernel K is set to s/4.

Combining all the energy terms via shape optimization, image context and control

points, the matrix representation of the overall minimization problem is formed as a

very sparse and over-determined linear system: A

diag(
∑

j ωkj)Ik

V (t)
p =

f̂p(t−1)

ΩCp

 (4.12)

A = γI − αLu + βL2
u (4.13)

f̂p
(t−1)

= γV (t−1)
p + κF̃Ext(V

(t−1)
p )− αWLcV

(t−1)
p (4.14)

Ω is a matrix formed by putting weight ωkj at position (k, j); each row in Ik is the

indicator vector eTk . F̃Ext(V
(t−1)
p ) is the column vector representing p-axis force values

at vertices V (t−1) by trilinear interpolation. γ, α, β and κ are the balancing weights of

each force. This linear system can be solved efficiently in a least squares fashion.

4.3 Experiments

In this section, we first evaluate the fully automatic liver segmentation, then conduct

experiments for interactive segmentation refinement. At last, we discuss some issues
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and limitations observed in the experiments. All the methods were implemented in

Matlab, tested on 3.4 GHz Intel Core i7 computer with 8G RAM and 1GB GPU.

The quantitative and statistical comparisons are conducted by leave-one-out cross

validation. Each time we choose one sample as the testing and the remaining as the

training set. We report the mean and standard deviation of overlapping score DSC

(defined in Eq. 3.30), accuracy (ACC) and relative error (RE) referred to the ground

truth. Let TP , TN , FP and FN denote the number of voxels correctly identified,

correctly rejected, incorrectly identified, and incorrectly rejected as liver tissue, respec-

tively. The DSC can be reformulated as DSC = 2TP
2TP+FP+FN . The ACC and RE are

defined as the following:

ACC =
TP + TN

TP + TN + FP + FN
(4.15)

RE =
FP + FN

TP + FN
(4.16)

We also measure the symmetrical surface distance error and Hausdorff distance [186]

between the surfaces of segmentation results and those of the ground truth. Let X

and Y denote point sets of ground truth surface mesh and segmentation result mesh,

respectively; pX be an arbitrary point in X and pY be an arbitrary point in Y . Eq.

4.17 represents pX ’s closest point(s) in Y . On the contrary, Eq. 4.18 represents the

point set in Y whose closest point in X is pX . The symmetrical surface distance error

at pX is defined as Eq. 4.19.

S
X→Y

(pX) = {pY |‖pX − pY ‖2 ≤ ‖pX − p′Y ‖2,∀pY , p′Y ∈ Y } (4.17)

S′
Y→X

(pX) = {pY | S
Y→X

(pY ) = pX ,∀pY ∈ Y } (4.18)

Errsurf (pX) = max
pY ∈{ S

X→Y
(pX), S′

Y→X
(pX)}

(‖pX − pY ‖2) (4.19)

The forward Hausdorff distance from X to Y is defined in Eq. 4.20, and we report the

symmetrical Hausdorff distance as max{d(X,Y ), d(Y,X)}.

d(X,Y ) = max
pX∈X

min
pY ∈Y

‖pX − pY ‖2 (4.20)
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4.3.1 Automatic MRI Liver Segmentation

An anonymized dataset of abdominal MR volumetric scans from 14 subjects is used for

evaluation.2 Each subject has one pair of OP/IP scans taken in a single breath-hold, and

one T1-weighted MR scan acquired separately. We choose the T1-weighted MR images

to segment liver, whose ground truths were manually labeled by experienced experts.

Because the T1-weighted MRI may locate in different coordinate space from that of

the corresponding OP/IP scans, we compute a rigid-only registration from T1 MRI to

OP or IP MRI and apply the same transformation on the label image. Then hepatic

fat-fraction distribution is assessed using IP and OP images with liver mask. Here, we

only focus on the evaluation of liver segmentation from T1 MRI. In this dataset, image

resolution ranges from 0.78 to 1.87mm in the axial slices with slice thickness from 3.5 to

7mm. The number of slices is from 30 to 104. The range in Z axis varies from 210mm

to 364mm. The intensity level varies from 178 to 32767. Some of the samples are shown

in Fig. 4.1.

We compare the proposed method with our implementations of two other methods.

One is the atlas based registration method [172] (denoted as ATLAS), the other one

is automatic graph cut method based on probabilistic atlas [187] (denoted as AGC).

To make a fair comparison, all three methods use the same image atlas constructed in

section 4.2.3. The atlas-to-target nonrigid registration is also same. The graph cut is

based on the min-cut/max-flow algorithm [188] assuming 6-neighborhood connectivity.

Before comparing with different approaches, we first show the effect of the de-

formable model and the shape constraint in our proposed method. As shown in Fig.

4.5, red lines are ground truth boundaries, blue lines are the initial segmentations, and

the green lines are the final results from our proposed approach. We observe that de-

spite its inaccuracy, atlas-based registration provides reliable initialization for the finer

segmentation. With the automatic initialization, the deformable model refines the seg-

mentation to fit the real object boundary accurately. Since the right kidney is very

close spatially and has similar intensities to the liver region, the deformable model can

2This dataset for FLD clinical trial is provided by BioClinica Inc. through the Center for Dynamic
Data Analytics (NSF I/UCRC).
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(a) Subject 1 (b) Subject 2

Figure 4.5: Visual comparison of initial and final segmentations in an axial slice from
two samples. The blue dotted lines are the surfaces of initializations. The green dotted
lines are the surfaces of final segmentation results. And ground truth delineations are
represented by the red solid lines.

(a) (b)

(c) (d)

Figure 4.6: Visual comparison of proposed deformable model with or without the shape
constraint. (a) is ground truth segmentation; (b) is the initial segmentation from atlas
registration; (c) is the result from proposed deformable model without any shape prior;
(d) is the result from proposed method with the sparse shape prior.
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Table 4.1: Quantitative comparison of segmentations in overlapping measurement.
Here, µ is the mean value and σ is the standard deviation of the measurements.

Method Dice score Accuracy Relative error
µ σ µ σ µ σ

ATLAS 0.70 0.13 0.82 0.07 0.63 0.39

AGC 0.71 0.30 0.84 0.14 0.52 0.49

Initial 0.76 0.13 0.84 0.08 0.58 0.47

Ours 0.86 0.05 0.91 0.05 0.29 0.08

easily leak to the kidney region. In Fig. 4.6, it demonstrates that the sparse shape

representation can help to exclude the over-segmented region (i.e. the kidney or heart)

effectively.

After showing the effectiveness of our proposed deformable model, we compare the

quantitative performances of different approaches. Quantitative comparisons are shown

in Table 4.1. This table shows that our proposed method produce the best performance

with respect to the overlapping measurements. It has larger average dice score and ac-

curacy, smaller relative error, as well as smaller variances (σ). The ATLAS approach

has relatively small variance but the lowest average performance. The AGC approach

is little better than ATLAS in the average performance, but the worst in the variance.

Our atlas-based initialization is comparable to ATLAS method, which provides good

initialization for our deformable model. The comparison results indicate that the pro-

posed method is accurate and robust comparing with the other two approaches. Similar

observations are shown in the Fig. 4.7. In this figure, we also plot the proposed method

without shape constraint (denoted as OursN) besides the above three methods. Com-

paring the OursN and Ours method, we observe a slightly better average performance

and less variance in the method with shape constraint. As shown in Fig. 4.6, the dif-

ference is not big because over-segmentation of deformable model only appear in small

areas where nearby anatomies (e.g. kidney or heart) have similar intensities. With more

shapes in the training dataset, the sparse shape composition should be more accurate.

Due to the limited training samples in our application, the sparse shape composition

may not be beneficial to every testing case.

Fig. 4.8 compares segmentation results in an axial slice for two subjects. The red
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Figure 4.7: Statistical comparisons of dice scores (a), accuracies (b) and relative errors
(c). In each plot, the four boxes are for ATLAS result, AGC result, OursN result
(proposed method without shape constraint), and Ours result (proposed method with
shape constraint), respectively.

(a) Subject 1 (b) Subject 2

Figure 4.8: Visual comparison of ATLAS results (blue lines), AGC results (yellow lines)
and our proposed results (green lines) against manual delineations (red lines) in an axial
slice from two subjects.



87

lines are ground truth boundaries, and the green lines are the segmentation results from

our proposed method. The ATLAS results (blue) are not accurate mainly due to the

approximate registration we use for the atlas-to-target transformation. The inaccuracy

of AGC results may due to the inaccurate initialization and the image inhomogeneities.

Fig. 4.9 shows visual comparisons in 3D view. The surface distance errors are plotted

for three subjects (three columns). Fig. 4.9(a)-(c) show the surface distances between

ground truth and ATLAS method, while Fig. 4.9(d)-(f) show the error map for AGC

approach. Results by our proposed method are shown in the last row (Fig. 4.9(g)-(i)),

which demonstrate the least errors. The mean surface errors of the segmentations are

17.95mm, 19.02mm and 7.07mm for ATLAS, AGE and Ours method, with standard

deviations 16.14, 24.23 and 6.68, respectively. This figure shows that the proposed

method has the best performance with regard to the surface distance errors. With

robust liver segmentation results, we can further conduct the hepatic fat-fraction as-

sessment in clinical trials by using a magnitude-based chemical shift method as shown

in [189].

4.3.2 Intuitive Segmentation Refinement

We validate methods on two data sets. The first one is the data set of T1-weighted

MR scans for liver described in the Sec. 4.3.1. The second one includes 10 3D CT

chest scans from which we segment the right lungs. The CT chest images have 0.98mm

in-plane resolution and 3mm between-slice resolution. The in-plance sizes are 512×512,

the number of slices range from 97 to 148.

We first use TurtleSeg software [177] to obtain all the initial segmentations with no

more than 7 labeled contours per subject. The initial segmented objects are exported as

surface meshes and binary mask images for different interactive methods to refine. Since

it is hard to measure the interaction efforts during the refinement, we limit different

methods to only edit or correct labels at roughly same location in the same amount of

slices. Then we compare the refined segmentation results. The graph cut is conducted

with 26-neighborhood connectivity in down-sampled input images due to the large

memory consumptions. Our model is initialized by decimated surface meshes. And the
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Figure 4.9: Visual comparison of surface distance errors for three subjects. Each column
is for one subject. First row is for ATLAS segmentations; second row is for AGC results;
the third row is for our proposed method.
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Figure 4.10: Statistical comparison of Hausdorff distance for segmentation results by
ATLAS, AGC and our proposed method.
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(a) Case 1: MRI liver (b) Case 2: CT lung

Figure 4.11: 2D visual comparison of refined results by different methods. The objects
of interest are masked. Red lines are initial models; yellow, green and blue lines are our
model, AL and GC refinement, respectively.

parameters are tuned for one data and applied to all the others in our data sets. γ = 1,

α = 0.15, β = 0, κ = 1 and λ = 1. We first analyze the improvements generated by

control points in our framework. Then we qualitatively and quantitatively compare the

refinements with two interactive methods in [176] and [177]. Dice Similarity Coefficient

(DSC), surface distance error and Hausdorff distance are reported.

Since our interactive framework is integrated in a parametric deformable model

approach, the traditional matrix A and the internal constraints by control points are

assembled once before the iteration. In each iteration, only f̂ (t−1) is updated and new

V (t) is solved efficiently. In our cases, the surface meshes have about 2000 vertices,

and the online computation is fast, about 5 frames per second, which allows real-time

feedbacks of the interactive controls.

Before comparing different approaches, we first show the difference between our

method with or without local image context information. In Fig. 4.4, (b) shows the

refined model by editing with only geometric constraint (3rd term in Eq. 4.8), but

without FC ; (c) shows the result by editing with both geometric constraint and local

image force FC . In this case, only one control point easily correct the segmentation

error in the initial model. And we can observe that only geometric editing is not enough

for desired object boundary. By combining both geometric and image forces, it achieves

better improvement.
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Table 4.2: Quantitative comparison of segmentations in overlapping measurement and
Hausdorff distance. Initial means the initial models. CG and AL stand for Graph Cut
and Active Learning-based refinement, respectively.

MRI Liver

Method Global DSC Local DSC Local Hausdorff
µ(%) σ µ(%) σ µ(mm) σ

Initial 84.61 0.07 44.35 0.19 8.41 4.29

GC [176] 81.89 0.09 65.87 0.10 7.84 4.20

AL [177] 86.31 0.06 67.14 0.05 7.91 4.71

Ours1 86.69 0.06 65.84 0.16 5.45 3.50

Ours2 87.27 0.06 71.79 0.12 5.12 2.24

Table 4.3: Quantitative comparison of segmentations in overlapping measurement and
Hausdorff distance. Initial means the initial models. CG and AL stand for Graph Cut
and Active Learning-based refinement, respectively.

CT Lung

Method Global DSC Local DSC Local Hausdorff
µ(%) σ µ(%) σ µ(mm) σ

Initial 90.08 0.03 24.63 0.27 10.50 7.2

GC [176] 87.28 0.05 74.05 0.28 4.14 4.13

AL [177] 90.89 0.03 71.48 0.14 4.51 2.49

Ours1 92.21 0.02 83.20 0.03 4.08 2.28

Ours2 92.43 0.02 85.00 0.03 3.96 2.26

After showing the effectiveness of our proposed interactive framework, we compare

the qualitative and quantitative performances of different approaches. Fig. 4.11 shows

visual comparisons for two cases in 2D view. The yellow contour produced by the

proposed method fit to the object boundary nicely. For the surface distance errors,

the mean for initial model, Active Learning result, Graph Cut result, and our results

in MRI liver data set are 8.30, 7.65mm, 10.28mm and 7.42mm, respectively. The

mean distance errors in CT lung data set are 5.61mm, 5.13mm, 6.24mm and 4.21mm,

respectively. A detailed 3D visual comparisons can be found in [190].

Quantitative comparisons of overlapping accuracies and Hausdorff distances are

shown in Table 4.2 and Table 4.3. Here we interactively refine initial segmentations

in no more than three 2D slices using different methods and summarize all the refined

results. Ours1 are results with only geometric editing (without FC). Ours2 are results

using all information from geometry and image. Since the overall overlapping measure-

ment may not reflect the local refinement clearly, we measure local performances in a
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small ROI containing the interaction site. It shows that all the methods except GC

improve the global dice scores, because graph cut may need much more background

labels to avoid mislabeling. In both global and local measurements, Ours2 produces

the best performance, demonstrating the efficacy of our method.

4.3.3 Discussions

1) For the online automatic segmentation, most of the time is spent on the nonrigid reg-

istration from trained statistical atlas to a testing sample (around 4 minutes). Besides

of the registration, ATLAS method uses about 1 minutes per subject, AGC method and

the proposed method need about 4 minutes. Note that the cost of memory and time

increase dramatically as the image size increases in graph cut algorithm. If the test-

ing subject is re-sampled to 1mm× 1mm× 1mm resolution (needed in some isotropic

measurement), the memory cost of AGC could boost to around 6GB in some cases in

our experiment, while the memory and time cost is relatively stable in the proposed

method, since our deformable model has small number of vertexes independent to the

image size.

2) All the parameters used in the automatic methods, including nonrigid registra-

tion, deformable model and sparse shape constraint, are tuned experimentally for one

case and then apply for all the testing samples. Thus, the above comparison results

indicate that our proposed approach has better and robust performance. As discussed

before, the atlas based prior knowledge (including image and shape) can help the ini-

tialization and evolution of the deformable model. Thus, the proposed method does

not require a large number of consistent training samples and ad-hoc designed features

in learning based approaches. This is a very important feature which can benefit in

other segmentation tasks in clinical researches.

3) For segmentation refinement, GC approach requires users to provide seeds to con-

strain the weak or misleading appearance cues and correct mislabeled regions. However,

the additional user inputs also affect the global statistics and may cause some other

places to be mislabeled. In the AL approach, the users can only edit the segmentation



92

result by adding or editing 2D contours and re-generating the 3D surface. On the con-

trary, our approach can intuitively and directly edit the shape at local region to refine

the segmentation result.

4.4 Summary

In this chapter, we present an automatic 3D medical image segmentation method incor-

porating atlas prior with the deformable model. It can be easily extended for segmenta-

tion refinement by utilizing the Laplacian-coordinate-based geometric information and

local image texture information indicated by the user specified control points. The

constraints and supplemental force field introduced by control points are integrated to

form a unified framework. The matrix representation is efficient to compute. From the

experimental results, we observe accuracy improvement both qualitatively and quanti-

tatively, compared to baseline methods. Our refinement approach requires fewer user

interaction and provides real-time results, and thus has the potential to improve work

efficiency in many clinical applications.
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Chapter 5

Conclusions

In this thesis, we present developments of automatic and robust anatomy recognition

and segmentation algorithms for medical image analysis. Our contributions are sum-

marized as follows.

1. First, we present a two-stage multi-instance deep learning based algorithm to iden-

tify anatomical body parts in medical image slices. The proposed method does

not require annotations of the discriminative local patches. Instead, it automat-

ically discovers these local image patches through multi-instance deep learning

for image classification task. The method is evaluated on a synthetic data set

and CT data set, and shows > 4% improvements in terms of F1 score compared

with other methods, including conventional learning and standard CNN. Since no

manual annotations are required to label the local patches, this weakly supervised

discriminative patch discovery and classification method could be easily applied

to other image classification tasks where local information should be leveraged

but no prior knowledge provided. It may benefit radiological workflow in differ-

ent aspects. For example, it could make the planning of the scanning range in

topogram or scout scans be conducted on-the-fly to significantly save scanning

time. It could also serve as an initialization module for other higher level medical

image interpretation tasks, e.g. anatomy segmentation, to make the work flow

more efficient in clinical studies.

2. Second, we propose an adaptive probabilistic atlas based algorithm for multiple

brain structure segmentation. In medical image segmentation, an atlas is a pair

of image data and its corresponding label map as ground truth. The probabilistic

atlas approach aligns the training multi-atlas into a common coordinate system
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to extract prior information to guide target segmentation. Our adaptive method

utilizes the priors from the training set but also estimate the extent to which

those priors apply on the target. The adaptivity is finely controlled by a non-

stationary prior relaxation map, which determines the local relaxation parameters

automatically in the individual voxel level and structure level. The adaptive atlas

model and the label-smooth MRF are constructed in a target-specific fashion and

the complete model is further evolved to fit the target by EM optimization. This

method can finely adapt the learned priors from the training set to new testing

cases, even if the testing case is not well represented by the training population.

In a battery of tests, we find that our approach simultaneously and accurately

segments over 30 individual anatomical structures throughout the AD brain using

healthy training brains. Due to the finely controlled adaptivity, our method yields

higher parcellation accuracy (> 2% in terms of overall dice score) than other

leading methods, including FreeSurfer, iSTAPLE, non-local Staple and joint label

fusion approaches. Therefore, it could be used in similar voxel labeling tasks for

large-scale clinical researches where the available training samples are limited.

3. Besides multi-object segmentation, we develop a deformable model based algo-

rithm by utilizing atlas-based priors for single-object segmentation. This method

utilizes symmetric diffeomorphic image registration to learn a statistical image

atlas, and uses mesh quality-preserved deformable model to build shape atlases

from a limited number of training samples. The statistical image atlas provides

a reliable initialization, and contributes in the external potential energy for the

deformable model. The learnt shape atlas is used to generate a constraint for the

deformation by sparse shape composition model. We validate this method in a

dataset of 3D abdominal MR scans to segment liver. Compared with baseline

methods, our approach is more robust to various anatomical shapes and diverse

data sources coming from different scanners with inconsistent imaging protocols

and scanning parameters. We anticipate that an automated robust algorithm can

benefit quantitative analysis in clinical trials.
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4. To better control segmentation accuracy, we extend our deformable model to

enable intuitive result refinement by interactive mesh editing. This mesh editing

method combines Laplacian detail-preserving geometric information and image

context information for the local boundaries to correct local mistakes on the

segmentation surface. It only requires few user interaction (sparse control points)

and updates the surface mesh in real time. This tool is very useful for clinical

experts who would like to correct the automatic results to obtain more accurate

quantitative assessments.

Large-scale and fine-grained medical image analytics is important and attract more

attentions these years [191, 192, 193, 194, 195]. Although there are more and more

medical images collected in clinical researches, few methods are able to analyze large-

scale medical image databases in real-time, not to mention incorporating user-provided

domain knowledge interactively. Our approaches are developed towards bridging the

gap between large medical image data and limited training samples.

In future, there are some opportunities revealed from our work to help towards large-

scale medical studies and data analytics in healthcare. For instance, our deep learning

based anatomy recognition method could enable scalable content-based image retrieval

[38, 39] by learning a similarity measurement of the learned hierarchical features (from

CNN classification) to improve the PACS systems. The retrieval results could help

to annotate more medical images. If sufficient 3D training data available, it would

be straight forward to extend this method to handle 3D cases directly by replacing

the 2D filters with 3D filters in the convolutional layers of CNN. It is also possible to

extend it to multi-modal deep learning [196, 197]. It is not limited in just multiple image

modalities [198]. Since shape prior models have shown the benefits in many applications,

the geometric information should be able to act as a complementary modality besides

visual appearance to be incorporated in deep learning frameworks [199, 200].

In terms of the anatomy segmentation, the proposed atlas-based segmentation meth-

ods does not require expensive training or prior knowledge of pathological variance. This

feature is very important in many clinical trials which may only have limited training
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samples. We could apply the multi-object segmentation framework to other tasks. One

example is muscle and fat segmentation in the thigh for knee osteoarthritis analysis

[201]. Since different muscle blocks and types (subcutaneous, inter-muscular and intra-

muscular) of adipose tissues may only be differentiated by the spatial prior knowledge,

it is similar to the application of brain segmentation. One major limitation of this

method is the pre-defined number of structures. It would be very interesting to ex-

tend the method to handle new or missing structures not explained by the model. The

missing structures could be handled by introducing some latent variables to represent

the absence of structures, while the new structure, such as lesions not present in our

training data, could be detected and segmented separately [202, 203]. Our single-object

segmentation approach could be easily extended to handle multi-modality images for

more accurate segmentation by incorporating more comprehensive boundary features

from different modalities into the energy term of the deformable model. With the

help of the interactive result refinement, researchers can better control the quality of

automatic segmentation results. Those accurate results are expected to benefit many

higher-level medical data analytics for more reliable outcomes, including population

health analytics, disease classification or disease stage prediction.
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