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ABSTRACT OF THE DISSERTATION

Usable security: human factors in mobile authentication

By YULONG YANG

Dissertation Director:

Janne Lindqvist

Text passwords are still the primary authentication mechanism for computers and on-

line systems world-wide. Prior work indicates that they would likely persist in the

foreseeable future, despite alternative proposals. Therefore, it is crucial to examine the

open issues in text passwords. In addition, instead of replacing text passwords entirely,

alternatives could be proposed for use under specific context. Under such premises,

this thesis focused on (1) to demonstrate the field performance of a serious alternative

method for mobile authentication and (2) to propose a systematic experiment design

to study password memorability.

Designed to be used for desktop computers originally, text passwords are not suitable

for modern platforms such as mobile devices. Using text passwords on mobile devices

is a drastically different experience, because of the different form factor and context.

From a between-group lab study comparing passwords usage on different devices, we

learned that the form factor alone already has an effect on aspects of passwords such

as the amount of lowercase letters used per password.

Meanwhile, recent studies suggest that free-form gesture passwords are a viable al-

ternative as an authentication method on touchscreen devices. However, little is known
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about the actual advantages they carry when deployed for everyday mobile use. We per-

formed the first field study (N=91) of mobile authentication using free-form gestures,

with text passwords being the baseline. Motivated by Experience Sampling Method

(ESM), our study design aimed at increasing ecological validity while still maintaining

control of the experiment. We found that, with gesture passwords, participants gen-

erated new passwords and authenticated faster with comparable memorability, while

being more willing to retry. Our analysis of the gesture password dataset indicated the

choice of gestures varied across categories. Our findings demonstrated gesture pass-

words are a serious alternative for mobile context.

A major struggle people have with text passwords is to create ones that are both

secure and memorable. Although there has been research on measuring password secu-

rity, we have yet to systematically discover the factors to affect password memorability.

By combining existing memory findings and password specific contexts, we proposed a

field experiment design centering on two major factors that affect password memorabil-

ity: log-in frequency and password condition. Log-in frequency defines the frequency of

log-in tasks, and password condition defines the condition each password was created.

The result of the experiment revealed that potential effects of our factors exist and

pointed out directions for future studies.
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Chapter 1

INTRODUCTION

1.1 Overview

Text-based passwords remain as the most prevalent method of authentication [69]. In

addition to traditional computers such as desktops and laptops, people increasingly gen-

erate and use passwords with a wide variety of mobile terminals, such as tablets and

smartphones. They also store a large amount of personal and sensitive data (e.g. bank-

ing information, home address) [42,121].

Because interactions on mobile terminals are drastically different from the tradi-

tional computers [99], it is crucial to understand whether such differences affect gener-

ated passwords in a similar way. One of such difference is the text entry method [87],

which consists of those physical (e.g. form factor, display) and software (e.g. virtual

keyboard layout) aspects of an input device that are relevant when entering text. The

design of a text entry method determines how quickly and effortlessly a given character

can be typed. Even small changes in how characters are displayed and organized can af-

fect typing performance [141]. Furthermore, one should see corresponding differences in

the distribution of characters in different methods. For instance, digits are not directly

reachable without changing the layout in the common touchscreen qwerty keyboard on

smartphones – does this affect the generated passwords?

In addition to the text passwords, alternative authentication methods have been

proposed and deployed on mobile platforms, such as PIN, grid-pattern lock and bio-

metrics. However, they suffer from various shortcomings: limited password space [128],

susceptibility to shoulder surfing [38, 133], easily crackable [17, 23, 124], slow entry [37]

and potentially harmful to privacy [35].
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Free-form gesture passwords have been recently proposed as an alternative for mobile

user authentication [29,118]. Free-form gesture passwords allow users to draw any shape

or pattern on a blank touchscreen display using one or more fingers. Previous studies

demonstrated that, for both mobile and non-mobile use, free-form gesture passwords

can be secure and memorable [118, 127]. They potentially provide a large password

space because of their free-form nature. Gesture-based interaction conforms to the form

factor of mobile devices [104] and is faster than typing. Since mobile interactions tend

to be fragmented, frequent and short-term [62, 101], gesture passwords could be more

suitable for authentication on mobile devices. In addition, when used as a password,

free-form gestures improve memorability with the help of visual learning effects [103]

and motor memory [49].

Most work on gesture passwords so far has been carried out in laboratories [36, 54,

105, 118], leaving their performance in the wild as an open research question. Field

studies are important for understanding the user-chosen distribution of gesture pass-

words in realistic settings and how usable and memorable those could be. In addition,

previous work has focused on using gesture-based authentication for a single account or

phone unlocking [36,54,105,113,118], and has not considered it for multi-account con-

figurations. However, people manage multiple accounts at the same time in their daily

lives [50, 68]. Previous work showed multi-account settings affected the authentication

process: a study showed that multi-account interference significantly impacts the ease

of authentication of facial graphical passwords [46]. Therefore, it is crucial to explore

how gesture passwords would be different under the multi-account context.

One of the most mentioned issues of text passwords is the difficulty of generating

secure yet memorable passwords. People utilize many strategies to avoid forgetting

passwords: password reuse, frequently resetting passwords, or end up generating weak

passwords. However, comparing with the extensive research on password security, that

of password memorability remains largely unexplored. Studies have used memorability

as a metric to evaluate authentication schemes or strategies [25, 27, 45, 73, 91, 140], but

seldom examined how exactly each component of such schemes or strategies influences
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the memorability. Here, one of the research challenges is to properly design the ex-

periment to include potential factors from different aspects, such as password-related

(password length, password security), usage-related (log-in frequency, account type)

and behavior-related (password reuse).

We believe it is important to quantitatively understand, in the process of using

a password, what could be the factors to affect its memorability. Such knowledge

could enable us to design authentication schemes with a good balance of security and

memorability. Therefore, as the third part of the thesis, we present an experiment

design that aimed at exploring the memorability of passwords systematically. We then

used two studies to obtain initial results and further refine the design.

1.2 Organization

Chapter 2 describes background and related work on password security, usability, mem-

orability, and mobile authentication research. Chapter 3 presents the laboratory study

in which we explored the effect of text entry methods on passwords. Chapter 4 describes

the field study of mobile authentication where we discovered similarity and difference of

text passwords and free-form gesture passwords. Chapter 5 presents our methodology

to study password memorability. We then conclude the thesis in Chapter 6.

1.3 Contribution

This thesis presents the following contributions:

1. We provided insight into passwords generated by different text entry methods,

as well as how people recalled them. We found that, although the effect of text

entry methods was not as significant as we hypothesized, it did exist in our study:

more lowercase letters were used in passwords on mobile devices.

2. This thesis presented the first field study on memorability and usability of free-

form gesture passwords. We recruited 91 participants who generated 708 pass-

words across two weeks and recalled them at three different points of time.
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3. We found that free-form gesture passwords are more resilient to multi-account

interference than text passwords, and provide better mobile usability than text

passwords. Our analysis of the first field gesture dataset showed that the choice

of gesture passwords by participants were varied.

4. This thesis proposed the first systematic experiment design for password memo-

rability. The design focused on two major factors: log-in frequency and password

condition. Our studies found log-in frequency has strong effect on memorability

while that of password condition is limited. We also identified the effect of other

password-specific factors such as password reuse and password characteristics.
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Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, we review previous literature that motivated our work. Many design

choices in our experiments were inspired from them. Reviews are in the topics of mobile

authentication, and three vital aspects of passwords: security, usability, memorability.

2.1 Mobile Authentication

Many researchers have studied the usability of mobile platforms for passwords. Greene

et al. [59] studied the difference between typing passwords using tablets and smart-

phones in a between-group experiment. They found that the time it took participants

to type and recall passwords significantly varied depending on the source of entry meth-

ods. The time was also different given different passwords. Schaub et al. [107] found

similar significant time differences among different smartphones. In addition, they

found that attackers had significantly different success rates in shoulder surfing pass-

words on those smartphones. Both of the mentioned studies did not ask participants to

create passwords, but provided participants with passwords instead, thusly having little

information on password generation and consequently how password security would be

affected if created using different entry methods.

Few studies have specifically looked at helping people to create passwords on mobile

text entry methods. Haque et al. [60] have studied how to create secure passwords on

mobile devices. They found the entropy of passwords were significantly different across

mobile keyboards. However, only an approximation of Shannon entropy was examined.

An analysis with additional security metrics and password structures could help us gain

more insight into the effects of text entry methods. Jakobsson et al. proposed fastwords,
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which relied on standard error-correcting features for users to create passphrases [73]. It

was designed for non-traditional devices such as mobile handsets, and offered advantages

of speed of entry, and good recall rate.

Recently, Bonneau et al. [13] studied how people chose 4-digit PINs for banking

accounts. Common strategies included birth dates and visual patterns. The reported

presence of visual strategies supported our hypothesis that passwords generated with

different text entry methods, too, may differ.

Free-form gesture passwords have been proposed as a mobile authentication method

and evaluated to be secure and memorable in the lab. Sherman et al. developed an

information-theoretic metric to estimate the security of free-form gesture passwords.

The metric was motivated by a study on information capacity of continuous full-body

movements [100]. They conducted a lab study showing that single-finger gestures and

gestures with many hard angles and turns achieved better security and memorabil-

ity [118]. Another lab study, focusing on user interfaces and not authentication, found

that user-defined gestures demonstrated better memorability than pre-defined ones [92].

Previous study also indicated that free-form gestures were resistant against a major

threat on mobile platforms: shoulder surfing [118].

There are also studies that combine gestures with other factors for authentication:

simple strokes on the mobile device itself [36] and tapping actions [143]. Biometric-

based gesture authentication has been proposed to utilize the unique way each person

performs an identical set of template gestures [105]. Another work extracted features of

users when they performed simple and day-to-day tasks on smartphones such as scrolling

or swiping, and used that to verify users [54]. Although, previous work showed that

brute-force attacks with input data from the general population was able to compromise

biometric-based authentication systems [112]. Another study showed that users lack

originality when generating gestures for HCI tasks [95]. They observed that users often

repeat known gestures or use common ones. In addition to mobile device gestures,

researchers have explored mid-air gestures for authentication [127].

Other alternatives have been proposed as well. A grid-based graphical password has

been proposed for touchscreen devices to overcome the input accuracy issues on such
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platforms [25]. It allows users to continuously draw their passwords by “warping” on

multiple layers, enabling them to generate more complex passwords on a small screen.

A detailed review of the various types of graphical passwords was written by Biddle et

al. [8]. Biometric authentication (e.g. keystroke-based [20] and touch-based [34]) has

also been proposed for mobile platforms.

Finally, there are studies on smartphone unlocking behaviors. Android grid pattern

has been deployed to most modern Android smartphones, where users draw a secret

by connecting dots in a typically 3x3 grid. A study looked at the motivations of why

some users choose to (or not to) employ locking mechanisms for their devices [44].

They reported a strong correlation between the use of locking and users’ risk per-

ceptions, and the likely underestimation of the privacy risks of users. Due to the

design of fixed-position grids, the password space of grid pattern is limited. A large-

scale study (N=105) estimated security of Android Pattern Unlock based on Markov

chains [128]. They discovered that user-chosen patterns were biased to a few pattern

selection strategies. As a result, the estimated security in entropy was less than that of

3-digit randomly-assigned PINs. Another study claimed that it is possible to retrieve

the partial or even complete version of some Android grid patterns based solely on the

smudge traces on the touchscreens [4].

Apple deployed Touch ID, a fingerprint-based biometric authentication scheme.

Three user studies were carried out to demonstrate that Touch ID did not help users

create stronger passcodes to lock their phones [24]. They also found a mismatch be-

tween the expectations from participants towards the security of their passcodes and the

reality. Another work used an online survey to discover that usability is the top reason

why people adopt biometric authentication methods such as Touch ID and FaceUn-

lock in Android [35]. Surprisingly, privacy risk was seldom mentioned by participants

when asked why they not adopt such measures. The work also raised the necessity for

biometric authentication methods to be “socially compatible” in design. Recently, a

gesture-unlocking scheme was proposed. It utilized user input features such as finger

velocity, device acceleration and stroke time [113].
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2.1.1 Experience Sampling Method in Password Study

There have been many field studies on other authentication schemes. A field study on

recognition-based graphical passwords found that, among other results, ease of authen-

tication was significantly impacted by multi-account interference [46]. Alt et al. found

that 51% of image-based passwords from the field could be predicted by human at-

tackers [2]. Egelman et al. showed that the effect of strength meters on passwords

differed for different contexts with a field study followed after a lab study [45]. A field

study comparing the usability of the Android grid-based pattern unlock to PINs has

indicated that participants preferred to use the former despite the latter having higher

input speed and fewer errors [134]. Another study focused on designing and implement-

ing strength meters for pattern unlock and found that it improved the security [122]. A

week-long field study on different graphical password schemes (free-recall, cued-recall,

and recognition) concluded that both of the last two were superior to free-recall, though

users preferred the recognition scheme despite longer login times [125]. Schneegass et

al. used both a lab study and a field study to introduce SmudgeSafe, an authentication

system based on random image transformations for unlocking touchscreen devices [109].

Their system used transformed images (flipped, scaled, rotated) to prevent attackers to

reconstruct correct password based on smudge traces on the touchscreen.

There is, however, limited literature applying ESM to mobile authentication stud-

ies. One study utilized ESM to capture participants’ perceptions towards unlocking

behaviors, revealing the reasonings behind leaving a phone unlocked [62]. Another sim-

ilar self-reporting methodology, diary studies, has been used in recent research. One

diary study on the cost of password policies had 32 staff members record 196 password

events over one week [72]. The study found that existing password policies are often

beyond the capabilities of people who used them. Another study asked participants to

record password events when they log into their accounts using desktop computers or

laptops [68]. A diary study showed that authentication tasks lowered the productivity

of employees in an organization [106].
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2.2 Password Security and Usability

There has been extensive research in the security and usability of passwords.

Shannon entropy [114] has been used to measure password security [19], and has

been criticized by more recent literature [10,137]. Several more recent security metrics

have been proposed. Bonneau et al. proposed a partial guessing metric to estimate

the security of large-scale password distribution [10]. Instead of estimating the guesses

required to crack the entire dataset, the proposed metric, α-guesswork, focused on the

guesses required to crack part of it. Other work reported the password security estimate

based on different cracking algorithms [39,77]. They assumed the threat model of text

passwords to be long-session offline attacks. They computed the number of guesses

various cracking algorithms needed to crack each password, and used that as a security

measurement. Castellucia et al. proposed an adaptive password strength meter that

computed the entropy of a password based on the N-gram and Markov model [22].

Password strength meters have been wildly deployed in the industry to help users

generate passwords. However, previous work examining meters adopted by major web

sites on the Internet showed that most of those vendors did not provide any rationale

for their design choices [21]. One exception was the zxcvbn password meter made by

DropBox, which not only explained its design and logic [41], but also open-sourced the

meter [40]. Similarly, a study examining various password manager softwares and built-

ins found that their designs and policies were significantly different from each other,

and some of which could be easily exploited [119]. Another work states that password

meters lead to stronger passwords only for important accounts [45]. Ur et al. [129] found

that stringently rated password meters led users to make significantly longer passwords

that included more types of characters, and passwords were also more resistant against

cracking algorithms.

Researchers have also studied how password generation policies have affected pass-

word security and usability. Weir et al. [137] claimed that passwords created under com-

mon requirements, such as minimum length and different character set requirements,

were still vulnerable to cracking attacks. Shay et al. [117] found that some policies
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that required longer passwords provided better usability and security compared with

traditional policies. At the same time, a study based on online attacks of web accounts

claimed that it is misguided to require users to generate strong passwords [51]. They

argued that the combined size of username and password space should be considered in

terms of security rather than password space alone. Schechter et al. proposed a novel

password policy system that allows any passwords so long as they are not common

ones [108]. They defined and populated common passwords by calculating their occur-

rences using count-min sketch, a bloom-filter-like algorithm to ensure the upper bound

on the number of times a password appears in the dataset. Forget et al. proposed

a system to place randomly-selected characters into arbitrary positions of the user-

generated passwords, in the purpose of improving password security [53]. Although

their system was found to significantly improve password security, they observed that

participants intentionally chose weak passwords before the randomize mechanism to

compensate memory load. Another study concluded that system-assigned passphrases

did not seem to offer superior performance over system-assigned passwords, in terms of

usability [116]. Zhang et al. designed an efficient framework to search the old password

based on the new password of the same person [142]. They concluded that password

expiration policies are inefficient and fail to meet the designed goal.

Other studies demonstrated that semantic and linguistic patterns affected security

and usability as well. Bonneau et al. found that the choice of phrases for passphrases

is not random [15]. Their results showed that users strongly preferred simple two-

word phrases commonly used in English. Veras et al. demonstrated that there existed

semantic patterns in user-chosen passwords, and one could exploit such patterns to

boost the cracking performance [131]. A study comparing passwords generated by En-

glish and Chinese users found they were different from each other in many aspects [86]:

Chinese passwords contained Pinyins and preferred digits, while English passwords con-

tained English words and preferred lowercase letters. Their Chinese-specific algorithm

increased the cracking efficiency by 34%.

Gaw et al. reported on average 7.8 accounts per undergraduate student using a

combined approach. They first provided a list of web services for participants to choose
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from, and then asked participants to recall additional items on themselves [55]. They

also found that the majority of participants had only three or fewer unique passwords.

A 3-month study obtained password-usage data by a browser plug-in [50]. It showed

that people on average managed seven unique passwords, each of which were used for

about 5.67 different sites. They noted that possible over-counting existed in reported

numbers, and estimated on average 25 accounts per person using a browser client. A 2-

week diary study estimated participants had an average of 11.4 accounts per person [68].

Grawemeyer [58] conducted a diary study and found people had different generation

strategies for different accounts. Such studies indicated that multi-account scenario

would be reasonable in password experiments.

Password re-use has become a common strategy in password management. A study

showed that people categorized their passwords into a limited set of categories, with

varied security. Accounts in higher categories were more important, like financial ac-

counts [61]. They also found it possible to crack passwords from higher categories if

that of lower categories were known, as they were similar to each other. An interview

study revealed that people tend to use weaker passwords for most services even when

they possessed longer passwords [132]. Florêncio et al. stated that password manage-

ment strategies that rule out weak passwords and re-use are sub-optimal [52]. Another

study suggested that a maximum of four or five passwords per person reaches the limit

of most users’ memory capabilities [1].

Finally, Fahl et al. [47] compared real passwords to those generated in an experiment,

finding that about 30% of subjects did not behave as the same as in daily life. However,

the authors concluded that laboratory studies generally create useful data.

2.3 Password Memorability

In previous studies, different metrics have been used to demonstrate password mem-

orability. One commonly-used metric is the log-in success rate, which is commonly

defined as the ratio of successful login tasks over the number of total login tasks for

each participant, or a certain condition or group [9,14,25–28,45,70,91]. One issue with
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log-in success rate is that it is possible for all groups in an experiment to have a very

high and similar success rate, making the comparison among groups difficult. Some

previous studies avoided this by limiting the log-in attempts [26, 27]. Other metrics

include successful log-in duration [125] and log-in attempts [93].

A set of factors has been discovered to pose effect on password memorability. Sev-

eral studies revealed that repetitions helped people memorize passwords. By asking

participants to memorize a secret gradually and repeatedly, a study claimed that 88%

of its participants were able to recall a 56-bit secret code after three days [14]. A me-

dian of 36 log-ins was performed by its participants. Another study also utilized spaced

repetitions to help participants memorize Person-Action-Object (PAO) stories, a pass-

word management scheme that helps people generate strong passwords [9]. 77% of their

participants recalled all of their stories more than four months later, with at most 12

tests needed over that period. The study also found that the majority of forgetting

occurred within the first 12 hours after the generation process. Similar finding were

also stated in another study, in which they found that recalling after a short period of

delay is an effective way to help retention [135].

In addition to repetitions, the frequency of such repetitions also affects password

memorability. A study using a diary study and interviews reported that participants

seldom forgot their passwords if the passwords were used frequently [72].

An analysis of system logs from 386 users found that less password recovery would

have occurred if the authentication system allowed 10 retries instead of three [18],

indicating log-in attempts affect memorability as well.

Password memorability was also found to be dependent on the number of accounts

and passwords a person has. Studies showed that the number of accounts affects the

memorability of many different password types including text passwords [27,46,135].

An online study found that chunking improved memorability of system-generated

PINs [70]. Chunking refers to the method to break a single number into multiple shorter

numbers for easier memorization.

Memorability has also been used as a metric to compare different password types.

A study showed that graphical passwords resulted in a better log-in success rate than
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text passwords in the short term, although the rate of two types were similar in the long

term [27]. 4-digit PINs and graphical passwords were compared as well, with findings

indicating that graphical passwords were more memorable [91]. Another study found

that passwords based on mnemonic phrases were as easy to remember as naively selected

passwords [140]. They also stated that passwords based on mnemonic phrases are as

strong as random passwords in terms of resistance against cracking attacks. Studies

that proposed novel authentication methods often evaluated the memorability of the

proposed methods [25,73].

2.3.1 Existing Memory Theories

The study of memory for verbal materials, like word lists, has been the topic of research

for more than a century [79]. The typical experimental task involves studying materials

and recalling them after a period of intervening activity. This process is called learning,

or relearning if participants have already learned the same material before. Reading

the series audibly once is considered as one trial. One metric to measure the memory

performance is savings, which is defined as the ratio of saved time or number of trials

in relearning compared with the learning process [43]. There have been several major

findings in the memory function of learning process.

The retention effect looks at how much of the material people forget (and retain) over

time. It was discovered that the forgetting occurred rapidly soon after the learning, and

slowed down as the time went on [43]. Two theories have been proposed to explain the

retention and forgetting. Decay theory states that forgetting is only due to the passage

of time [126]. Interference theory argues that forgetting is caused by new events or

materials occur between practice and test of the old material [89].

The practice effect looks at how practices of the material for subsequent relearning

could be reduced after previous learnings. The results showed that despite the constant

retention interval between each two relearnings, the number of practices required for

each individual decreased steadily. Both the retention and practice effect follow a

rapidly-decreasing function, which has been modeled using either the logarithm [43] or

power function [3].
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Other proposed effects include the spacing effect, which states that the performance

of memory is better when the practices of materials to memorize is distributed over a

certain period of time, instead of repeatedly learning in a short span of time. Proac-

tive interference indicates that items learned earlier can interfere with items learned

later [76]. It has also been found that given a list of items to learn, the most recent and

least recent items could be recalled better than items in the middle of the list. Such an

effect is called the serial-position effect [76].
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Chapter 3

TEXT ENTRY METHOD AFFECTS PASSWORD

SECURITY

3.1 Overview of Chapter

In this chapter, we examine whether the design of text entry methods affect the security

of generated passwords. We hypothesize that, depending on the password generation

strategy, users may generate passwords using the characters on the display as generation

cues. More precisely, the difficulty to reach a character from the present layout should

affect the probability of its inclusion in a password. This could manifest both password

structure and password security. Therefore, we aim at discovering possible differences

in both password structure and security.

We first examine whether the structure of generated passwords are different across

text entry methods. Metrics of password structure include password length, the amount

of lowercase letters, uppercase letters, symbols and digits per password. We will also

look at the types of passwords. We define the stype of a password by the types of

characters it contains.

We then explore the question of whether text entry methods affect password security.

We estimate the security of passwords from two aspects: quantitative estimation and

practical cracking attacks. Quantitative estimation included Shannon entropy [88,114],

NIST entropy [19] and a recently introduced Markov-model-based metric (adaptive

password-strength meter [22]). Then we look at how resistant these passwords are

against cracking attacks.

Finally, we study if participants perceive the task with different text entry methods

differently using the NASA Task Load Index assessment (TLX) [63].
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3.2 Method

Our study was conducted in a laboratory to control for confounding factors. A con-

trolled laboratory experiment allowed for choosing the main factor to be considered, in

our case the text entry method. Next, we describe our method in details.

3.2.1 Experiment Design

The experiment followed a between-group design with text entry method types (3 lev-

els) as an independent variable. We divided our participants into three groups based

on the text entry method they used. The participants were randomly assigned into

one of these three groups, and were unaware of the assignments or that other groups

existed. A detailed explanation of the differences between the groups is given in the

next subsection.

The main reason for us to choose between-group was to isolate its effect from any

other undesired effects such as any possible confounding factors that would correlate

with both the variable and the result. We noticed that previous work that involved the

password generation process also had a similar experiment design [27,59,107].

An alternative design would be within-subject, in which one participant would per-

form the same task using three different text entry methods in a sequence. In such a

design, the use of different text entry methods would generate undesired interference

among each other for each participant. In particular, learning and using one text entry

method would interfere with the learning and using of other text entry methods, thus

decreasing or even eliminating the potential effect of both methods. Such interference

is common in paired tasks [6, 16].

Florencio et al. revealed that people manage multiple passwords in reality [50].

To increase ecological validity, we asked participants to manage three different virtual

accounts. However, since the difference within each participant was not in our research

objective, we did not analyze the difference among three passwords created by each

participant. Instead, the mean value of three accounts was taken to represent each

participant in our models.
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3.2.2 Apparatus

Our text entry method variable was defined by the apparatus each group used.

Laptop group (control group)

We provided a common laptop (Macbook Pro 2012 with a 13” display) in the laptop

group. We chose so because the physical laptop keyboard was still the most common

text entry method for password creation.

Tablet group

We provided a Samsung Nexus 10 tablet (Android 4.2.2, 10.1” touchscreen) as the

device used in tablet group. The touchscreen keyboard on the tablet had a common

qwerty layout, as shown in Figure 3.1. Given that the tablet can be held in the hands

in two ways, we asked the participants to keep it in the “landscape” mode.

Smartphone group

We provided a Samsung Galaxy Nexus (Android 4.2.2, 4.5” touchscreen) as the

device used in the smartphone group. The keyboard layout was chosen from several

available designs for smartphone platforms.

The difference between our smartphone keyboard and tablet keyboard was the num-

ber of key presses needed to reach certain keys (see Figure 3.1). To reach uppercase

letters, one needed to press two additional keys from the first layout in a smartphone

group, while only one key press in tablet group. Also, to reach special symbols layout,

three additional key presses were needed in smartphone group while only two in tablet

group. In short, reaching certain keys and switching layouts demanded more effort with

the smartphone keyboard than with the tablet keyboard. The primary reason we chose

our text entry methods so was to differentiate each group in their difficulty of reaching

keys during text entry. All three apparatus still provided common usability for the

particular platform.

Software

The application was implemented in both Python (for laptop group) and Java for

Android (for smartphone and tablet group). It has two main features: password creation

and password recall. In the password creation interface, participants were asked to
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Figure 3.1: The keyboard layout for the devices in the tablet group and smartphone group.

Note that two groups shared the same key positions within each layout, but the structures of

the four layouts were different for each: the tablet group followed the more common structure,

while the smartphone group had a hierarchical structure. To reach the next layout of the

smartphone keyboard, one had to first reach the previous one. Therefore, the smartphone

keyboard had a higher difficulty reaching non-lowercase keys than the tablet keyboard.

create usernames and passwords for three virtual accounts in the same order. Each

virtual account had a different logo, color and short description. In the recall interface,

it asked participants to recall what they created earlier for each account, in a different

order. “Give up” button would show up after four failed attempts for each account.

3.2.3 Procedure

All experiments were conducted in the same office room we setup for this study.

The primary task for participants was to create and recall username and password

for three different types of virtual accounts. We minimized the risk for participants by

advising them not to use their existing passwords, and also keeping data in a safe place.

Our study consisted of two sessions. In session one, we asked participants to create

a username and a secure password for three different accounts given a certain text entry
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method. The detailed procedure was as follows:

1. Introduction to the Study. The participants were introduced to the study,

which included reading and signing the consent form, discussion of their rights

and also compensation.

2. Password Creation. Each participant was given the corresponding text entry

method before the session. They were asked to create usernames and passwords

for three different virtual accounts: bank, email and online magazine. The order

of the accounts was the same for all participants at this step.

3. Subjective Workload Assessment The participants were asked to fill out the

NASA TLX form [63].

4. Distraction. The participants were asked to do a mental rotation task [74] and

count down from 20 to 0 mentally.

5. Password Recall. Participants were asked to recall usernames and passwords

they created in the Password Creation step above. The order of the accounts were

changed with Latin square. For each account, participants were allowed to try as

many time as they wanted, and give up if necessary (showed up after four failed

attempts).

6. Survey. Participants were asked several questions about password generation

and also usual demographic questions.

In session two of our study, which was at least 10 days after session one, participants

were asked to come back to recall the usernames and passwords. The recall procedure

was the same as that in session one. After the recall process, participants were asked

to fill out NASA TLX form and answer a few questions. We included recall sessions

so as to avoid participants creating unrealistic passwords if they knew they would not

need to recall such passwords afterwards.
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3.2.4 Participants

We recruited participants through fliers, mailing lists, and in person at cafeterias. Par-

ticipants were required to be over 18 years old and familiar with touchscreen devices. We

recruited 63 participants in total, between the ages of 18 to 65 (M = 27.2, SD = 9.9).

24 of our participants were male and 39 were female.

All 63 participants completed session one of our study, and 57 of them returned

for session two. As compensation, participants received one $30 gift card each for

completing the whole study. They also participated in a raffle of three $75 gift cards.

We recruited our participants in two batches, 33 in May and 30 during June and

July 2013. The gap between two sessions of the study varied. The mean time gap for

the first batch was 14.53 (SD = 5.81) days and 29.52 (SD = 7.57) days for the second.

The number of participants for the laptop group, tablet group and smartphone group

were 21, 27 and 15, respectively.

Non-equal group sizes are expected after random assignment [110]. The tests applied

in the following sections were applied to the entire sample distribution. To ensure the

validity of results, we randomly sampled our two larger groups so that the size was even

across groups, and then performed the same tests again. The results on the sampled

data were the same, indicating our tests were robust against the unbalanced group size.

Our study was approved by the Institutional Review Board of Rutgers University.

3.2.5 Password Security Estimation

We describe our password security estimation below.

The first metric we used is Hartley entropy [65]. The entropy is defined in equation

H = L× log2N , in which L is the length of the password, and N is the possible set of

characters. Hartley entropy assumes the probability of every character got chosen to

be in password is the same.

The NIST entropy was a scheme to evaluate human-selected passwords introduced

in the NIST Electronic Authentication Guideline [19]. The scheme took into account

the fact that passwords were chosen by human beings, who tend to choose passwords
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that were easily guessed, and even from a set of a few thousand commonly chosen

passwords. We implemented the scheme by assigning different entropy to characters

at different positions, each password creation rule contributing to a specific amount of

entropy and that the entropy of the policy was the sum of the entropy contributed by

each rule. In addition, we performed a simple dictionary word check (“dic-0294”) to

give the password extra entropy.

The adaptive password-strength meter (APSM) based on Markov models estimated

the strength of a password by estimating the probability of n-grams that composed the

password [22]. N-gram is a contiguous sequence of n characters from a given string.

Probabilities of n-grams are computed based on a large password dataset, therefore, it

introduces certain dependency on the training password dataset. In our implementa-

tion, we used the “Rockyou” password dataset to compute the database of probabilities

for every n-gram. The dataset contained over 32 million real passwords. We chose 4-

gram as the element in our implementation as the original paper did.

There were some other metrics we did not include in our analysis. Bonneau has

proposed several statistical metrics for password security [11]. However, Bonneau’s

metrics were mainly applicable to a large-scale password dataset, while we had a much

smaller one.

3.2.6 Password Cracking Attacks

We performed several actual cracking attacks against our passwords. We used two

popular password cracking tools, John the Ripper [96] and hashcat [66].

Dictionaries

We used various dictionaries that are common in the literature. “dic-0294” is a

English dictionary from outpost9 [102]. “All” is a free public dictionary from open-

wall website [98]. “Mangled” is a paid dictionary from openwall. It is a hand-tuned

wordlist containing four million password candidates generated using various mangle

rules. “Rockyou” includes about 32 million passwords leaked from the website Rock-

You. “Facebook” is a list of names of searchable user from the website Facebook [120].
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“Myspace” contains passwords from a phishing attack against MySpace website. “In-

flection” [111] is a list of words along with their different grammatical forms such as

plurals and past tense.

Our dictionary set included several password databases that were compromised and

disclosed to public by hackers. While they are publicly available, we are aware of

the fact that they contained sensitive information. We treated them confidentially,

and disallowed any unauthorized access. Further, the security community in general

had accepted several papers using such datasets, and thus seemed to consider it as an

appropriate method.

Dictionary attack

First, we applied plain dictionary attacks using combinations of dictionaries. The

first attack with “Words”, which contained common words from different languages,

aimed at easy passwords; the second with “Facebook”, contained the entire directory

from the website, aimed at passwords made with actual names, and popular phrases;

the third attack with “Passwords”, which contained common passwords and real leaked

passwords, aimed at common and naive passwords.

Long session offline attack

We applied two long session attacks, simulating one attack with common resources

and one longer attack with optimal strategies and more resources, respectively.

The first attack involved generating guesses based on a modified “Single mode”

rules, which was originally from John the Ripper, using the “dic-0294” dictionary as

input. The “Single mode” rules contained a set of rules to modify words including

login names and directories to generate guesses [97]. The modified version, made by

Weir [136], was optimized for the English dictionary. We followed the same setup of

Weir et al. [137].

The second attack applied the probability password crack tool developed by Weir

et al. [137,138]. It generated password guesses in the order determined by various rules

derived from training sets. We used a similar model from experiment P4 conducted by

Kelley et al. [78].
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Figure 3.2: The average password length, amount of lowercase letters, uppercase letters,

digits and symbols appeared in single password across groups. Error bars stand for 95%

confidence intervals based on a bootstrap (that is, not assuming normality). The figure shows

notable difference in password length and amount of lowercase letters across groups.

3.3 Results

We collected 189 passwords in total. In the following section we present our analy-

sis results. The results focused on the analysis of password generation and password

security, analysis of the passwords memorability is not included below.

3.3.1 Structures

Figure 3.2 shows the password length and the amount of characters per password clas-

sified by types across groups. It demonstrates a notable difference in password length

and amount of lowercase letters between the smartphone group and other two groups.

For each structure metric, we performed an one-way ANOVA test across three

groups. The text entry method variable had significant effect on the amount of lower-

case letters, F (2, 60) = 3.186, p = .048, η2p = .066. No significant results were found

from other metrics.
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Category Description

loweralpha-num only contains lowercase letters

and digits

loweralpha only contains lowercase letters

mixedalpha-num contains lowercase and upper-

case letters and digits

loweralpha-special-

num

contains lowercase letters, spe-

cial symbols and digits

all contains lowercase and upper-

case letters, special symbols and

digits

mixedalpha only contains lowercase and up-

percase letters

others types other than mentioned ones

Table 3.1: Definition of each category of passwords. All types with low occurrence in our

passwords were aggregated into “others” category.

Next, we examined the categories of passwords each group generated. We defined

the category of a password by types of characters it contained. The category of a

password revealed the complexity in its structures: passwords containing multiple types

of characters had a more complex structure than ones with only one type. Table 3.1

summarizes our definition of categories.

Figure 3.3 shows the distribution of passwords within the defined categories across

groups. For smartphone group, passwords that contained only lowercase letters (low-

eralpha) was most common (31.1%). For other two groups, passwords containing only

lowercase letters and digits (loweralpha-num) were the most common: 30.2% in laptop

group and 38.2% in tablet group, respectively. In addition, there was no passwords con-

taining lowercase letters, special symbols and digits (loweralpha-special-num) in smart-

phone group at all, while both other groups generated passwords in that category.
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Figure 3.3: A comparison of distribution of passwords in different categories for each group.

The most-common category was different across groups, indicating passwords generated by

different text entry methods have different resistance against cracking attacks.

3.3.2 Quantitative Password Security

We estimated the security of our passwords with two common entropy-based password

security metrics, random entropy and NIST entropy, and a more recent Markov model

based metric (APSM). Such metrics provided quantitative measurement of password

security. These metrics were explained in details in section 4.3. The mean scores and

corresponding confidence intervals of the result are shown in Figure 3.4. According to

the graph, scores of passwords from the smartphone group were consistently higher than

that of other two groups. However, most of means stayed within the confidence interval

of the value of other groups, indicating the differences among groups were limited.

We performed one-way ANOVA on the three sets of security measures. However,

the results showed a non-significant effect of text entry method variable on them.

3.3.3 Cracking Attacks

We performed dictionary attacks and long-session offline attacks on our collected pass-

words. Both attacks have been described in details in section 4.4. Table 3.2 shows the

result of plain dictionary attacks. The performance of “Words” and “Facebook” at-

tacks were limited across all groups, except for the “Facebook” attack on passwords in
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Figure 3.4: The mean score of three password security metrics across groups: score from the

Adaptive Password-Strength Meter (APSM), random entropy and NIST entropy. Error bars

stand for 95% confidence intervals based on a bootstrap (that is, not assuming normality).

The figure shows that passwords from different groups share similar estimate by all three

security measurements.
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Name Include Size Laptop (63) Tablet (81) Smartphone (45)

Words “dic-0294”, “all”, “inflection” 4.1M 4 (6.3%) 4 (4.9%) 4 (8.9%)

Facebook “facebook” 37.3M 3 (4.8%) 6 (7.4%) 7 (15.6%)

Passwords “mangled”, “rockyou” 54.8M 15 (23.8%) 12 (14.8%) 8 (17.8%)

Long-session 1 NA 1000M 9(14.2%) 14(17.3%) 7(15.6%)

Long-session 2 NA 20000M 20(31.7%) 23(28.4%) 13(30%)

Table 3.2: Results of both plain dictionary attacks and long-session offline attacks. “Include”

listed all dictionaries we used in each attack. The size was the number of unique entries each

combined dictionary had for dictionary attacks, and the number of guesses generated per

password for long-session offline attacks. Facebook attack performed the best on Smartphone

group, and Password attack worked best on Laptop and Tablet group compared with Words

and Facebook attacks. It suggested passwords of different groups carried different level of

resistance against cracking attacks.

smartphone group. The “Password” attack worked much better compared to the first

two attacks against laptop and tablet group, while it had very limited improvement

over previous attacks against smartphone group.

Figure 3.5 and Figure 3.6 show the results of two long-session offline attacks. Ac-

cording to the figures, although the lower bound of resistance (the number of guesses of

the first cracked password) were different, the percentages of cracked passwords across

groups were similar to each other.

When we combined cracked passwords from all the attacks together, the total num-

ber of cracked passwords for the laptop group, tablet group and smartphone group

were 24 (38.1%), 24 (29.6%) and 16 (35.6%), respectively. Chi-square test had been

performed on the cracked password ratio across groups, but no significant result was

found (χ2(2) = 1.21, p = 0.54).

Figure 3.7 shows the distribution of all cracked passwords into different categories

across groups, in which we saw quite different distributions. Particularly, the category

with the largest percentage of cracked passwords was different for all three groups:

mixedalpha-num (passwords contain uppercase letters, lowercase letters and digits) (10,

15.9%), loweralpha-num (13, 16.0%) and loweralpha (7, 15.6%), respectively.
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Figure 3.5: The percentage of passwords cracked by our first offline attack. The x-axis was in

log10 scale. The final percentage of cracked passwords for laptop group, tablet group and

smartphone group were 14.2%, 17.3% and 15.6%, respectively. The cracking results across

groups were similar.

Figure 3.6: The percentage of passwords cracked by Weir’s algorithm vs. the number of

guess, per group. The x-axis was in log10 scale. The final percentage of cracked passwords for

laptop group, tablet group and smartphone group are 31.7%, 28.4% and 30%, respectively.

The cracking results across groups were similar.
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Figure 3.7: A comparison of percentages of cracked passwords in different categories across

groups. The percentage value shows the percentage of cracked password in total amount of

passwords in each group. We kept the categories and percentage scale as the same as in

Figure 3.3 for better comparison. Cracked passwords here were the combination of cracked

passwords in all our attacks. The most-cracked category was different for each group,

according to the figure, indicating the different resistance each group of passwords possessed.

3.3.4 Task Load

We used TLX forms to evaluate the subjective task load of our study. These questions

revealed participants’ subjective assessment towards tasks in the study. Figure 3.8

shows the mean scores for each question of TLX form for both sessions.

Given individual items in one TLX form were correlated, we applied the MANOVA

test with the text entry method as variable on the six items together, for session one and

two, respectively. The result showed a non-significant effect of text entry method type

on the scores of TLX assessment both for session one, V = 0.21, F (8, 116) = 1.70, p =

0.11, and session two, V = 0.28, F (12, 100) = 1.37, p = 0.19. Therefore, we concluded

that participants in groups did not feel significantly different about the subjective task

load of the experiment they participated in.
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Figure 3.8: Mean score for each item in TLX form in session one and two. Error bars stand

for 95% confidence intervals based on a bootstrap (that is, not assuming normality). The

figure shows three groups have similar ratings across all individual factors.

3.4 Discussion

Our experiment successfully identified significant effect in password structures. In par-

ticular, passwords generated by the smartphone group consisted much more of lowercase

letters per password than the other groups. However, quantitative security estimations,

including random entropy, NIST entropy and score of APSM, did not differ significantly

for passwords from the different groups.

One possible reason for this result could be that while passwords consisted of more

lowercase letters were considered weaker, the smartphone group actually generated the

longest passwords on average (around 12.5, compared to 10 in the other groups, see

Figure 3.2). Extra length made passwords more secure. For example, a 15-character-

long lowercase-only password from the smartphone group scored 101, 28.5 and 48 in

random entropy, NIST entropy and APSM, respectively. All of which are well above

the overall average.

In our study, the smartphone keyboard demanded the most effort in switching the

layouts. As a result, participants switched layouts less often in the smartphone group,
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leading to more lowercase letters in passwords. However, participants still placed suf-

ficient effort on creating passwords, resulting in long passwords. According to Shay et

al. [117], long passwords were generally more secure. Meanwhile, smartphone group

participants did not report a higher load in TLX forms (Figure 3.8).

This is not to deny the fact that the difficulty in reaching non-lowercase letters

affected password security for smartphone group. For two 10-character passwords from

our study, the one with lowercase, uppercase and digits scored much higher than the

one with only lowercase letters in our security estimation.

Therefore, one simple design modification for text entry methods in the smartphone

group could be including digits or some special symbols in the first layout of the key-

board, without sacrificing usability. Such a design could encourage people to choose

non-lowercase characters more often.

Also, the study is conducted as a lab environment, in which participants created

passwords under the watch of experimenters. It is possible that under such conditions,

participants spent extra effort to create passwords that are stronger than usual. For ex-

ample, the average password length of each group in our study is at least 10 characters,

while that of RockYou passwords is below 8.

In addition, whether the quantitative metrics we used reflected the true security of

passwords is still a question. Random entropy and NIST entropy have been criticized in

such a task [11,137], which led us to include one more recent metic (APSM). We found

that APSM could also compute quite different scores for very similar passwords. For

example, “vowelword” and “bonesjones” were both lowercase-only letters consisting of

two English words; however, APSM computed their scores to be 50 bits and 30 bits,

respectively. This could be because APSM is dictionary dependent. Considering the

mean score of APSM of our passwords were only 40 bits, a difference of 20 bits would

be undismissible. Therefore, our study raised the need of a truly comprehensive and

appropriate metric for gauging text password security.

On the other hand, the analysis of password structure and cracking attacks still

showed the effect existed. As mentioned before, the variable had significant effect on

number of lowercase letters in passwords (Figure 3.2). This finding was consistent
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with our experiment design, as the difficulty of reaching non-lowercase keys in the

smartphone group was increased. In addition, we found that passwords cracked in

our attacks are distributed quite differently in categories across groups (Figure 3.7).

Particularly, nearly 50% of cracked passwords in every group belonged to a different

single category compared with each other. Such results indicated different resistance

against cracking attacks across groups.

Limitations.

Our sample size was relatively small, a large-scale study would be desirable in the

future. In addition, our study limited participants to create and recall passwords in a

lab environment, which is not representative of the real scenario when passwords are

used. While a recent study by Fahl et al. [47] showed that laboratory studies generally

create useful data, a field study could be a follow-up on this topic. Also, while in our

study we used common text entry methods, one could include more manipulations to

see how would the effect be changed due to specific manipulations.

3.5 Summary

This chapter presented a randomized controlled laboratory experiment following a

generate-test-retest experiment design. Our experiment discovered significant effect

of text entry methods on the distribution of passwords created from them, and also

their resistance against actual cracking attacks. It also confirmed prior results of how

entropy-based metrics are not adequate to measure password security, including a more

recent approach based on Markov models.
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Chapter 4

FREE-FORM GESTURE AUTHENTICATION IN THE

WILD

4.1 Overview of Chapter

In this chapter, we report the first field study using free-form gestures as a mobile

authentication method, with text passwords as a baseline. The method is inspired

by the Experience Sampling Method (ESM) [32], and includes two password-specific

contexts: multi-account interference and variable recall time.

The chapter first explains our experiment design and justifications to support our

decisions in the design. We then look at the creation tasks, examining the duration

participants need to generate new passwords. We also analyze the first field gesture

password dataset to understand the rationale when people generate their gesture pass-

words. Next we look at log-in tasks, comparing two authentication schemes under

various contexts with several different metrics, including log-in success rate, duration,

attempts and errors made in failed log-in tasks.

4.2 Method

Our study design follows established practices in ESM studies, using a smartphone

as both the signaling and task performing device. The experiment followed a mixed

design with between-group and within-subject variables. In this section, we describe

our participants, experimental design, apparatus, and procedure.
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4.2.1 Participants

We recruited participants through fliers and mailing lists. Participants were required

to be at least 18 years old, have familiarity with and own an Android smartphone. All

participants received a $30 gift card as compensation, and enrolled in a raffle for three

$75 gift cards.

The study was approved by the Institutional Review Board at Rutgers University.

We recruited 110 participants. Three participants withdrew during the study, and

another 16 participants were excluded from our analysis as they did not complete at

least half of the tasks that the study required. We excluded them to reduce bias in

our analysis. This reduced our sample to 91 participants. Our participation rate was

above average as compared to similar studies [46,91,134]. The remainder of this paper

focuses on these 91 participants.

Our participants’ ages were from 18 to 52 (mean = 23.03, SD = 7.01, Mdn=21).

47 participants were male and 44 were female. 56.04% of them were college students,

23.08% were graduate students, 6.60% were engineering or IT professionals, and 4.40%

worked in management or finance.

Our participants reported to be experienced and frequent smartphone users: 82

(90.11%) have used smartphones for more than one year and 59 (64.84%) for more

than three years; 83 (91.21%) spend at least two hours per day on smartphones and 42

(46.15%) spend four hours or more per day.

We also collected form-factor data — screen resolution data in the format of number

of pixels. The result indicates most participants used modern and up-to-date devices:

65.96% of them used a smartphone of resolution 1080 × 1920, 17.02% used 720 × 1280,

and 17.02% used others.

4.2.2 Experiment Design

Our study consisted of two main tasks: creating passwords for a specific virtual account

and logging into the account with the created passwords. In the experiment, we focused

on comparing two types of passwords and we varied the number of accounts and recall
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interval as well.

Password type is a between-group variable aimed at comparing text and gesture

passwords. Each participant was randomly assigned into either the text or gesture

group. We performed randomized assignments in a way such that each group had equal

or similar sample sizes. The main reason to choose between-group over within-subject

design was to avoid interference effects between the two types. We adopted cues from

previous studies on multiple password interference [27,46,93]. We chose text password

as a baseline comparison, because one of our objectives was to study real-world multi-

account interference with gestures; scenarios such as device unlock (pattern unlock,

PIN) do not require managing multiple accounts.

The number of accounts refers to how many accounts participants had to manage

during the study. We designed this for two purposes: (i) to study the multi-account

interference of the passwords, and (ii) to achieve better ecological validity since people

usually have multiple accounts in the real world [50]. Each participant was asked to

create and recall passwords for two different account sets. All accounts were created for

the purpose of this study. The first set contained two virtual accounts: online banking

and social network. The second set had six accounts: email, online gaming, online

dating, shopping, online course, and music streaming. We chose common services that

were easy to understand and distinguish between, as opposed to something more generic

(e.g. “account A”). Accounts were differentiated from each other by their names, logos,

and colors.

The log-in time interval is the time between the log-in and the creation task: imme-

diate log-in tasks occurred one hour after the completion of a creation task, short-term

and long-term tasks occurred one day and one week later. This design was intended to

study the effect of time on metrics such as memorability.

Our tasks followed the process where people log in to their online services remotely.

In practice, to securely store gesture passwords for the process, we could utilize existing

work that solved similar issues such as fuzzy vaults [75].
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Experience Sampling Method

We incorporated the Experience Sampling Method (ESM) in our field study. ESM is

a research methodology where participants perform tasks at different points of time

during their daily lives. It is usually used to capture the subjective experience of

participants in a natural environment [7, 31,62].

We leveraged ESM in our design in two ways. First, following the idea behind

ESM wherein participants are alerted multiple times per day for self-reporting [31],

we scheduled tasks to arrive at different times of the day. Creating or logging in

with multiple passwords at the same time is far from the actual use case concerning

passwords. Asking participants to use unique passwords at different points of time

improved the ecological validity of the study. This is also suitable for simulating mobile

authentication, where log-ins are frequent and can occur at any time [44,50,62,90,122].

We discuss the schedule of our study in the Procedure section below.

ESM also emphasizes that participants react at the moment they are alerted in

order to collect precise data [7]. We incorporated this concept by setting our tasks to

expire one hour after they arrived. We gained better control over the field study as

participants had to react within the scheduled time frame. The expiration window also

helped maintain the log-in time interval. Different types of log-in tasks (immediate,

short-term, long-term) were differentiated from each other by the time of their arrivals.

Without the expiration window, participants might delay responding to tasks. This

means that the original schedule would be disrupted and the preset log-in time intervals

would become meaningless.

4.2.3 Apparatus

We built an Android application to install on our participants’ devices. It was re-

sponsible for (i) notifying participants based on a preset schedule, and (ii) allowing

participants to complete tasks. The application had two versions, differing only by the

type of password it supported. Participants installed only one version based on which

group they were in. Figure 4.1 shows sample screen-shots of the application.
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(a) Notification

example

(b) Account

description

interface

(c) Gesture

password input

interface

(d) Text

password input

interface

(e) TLX form

Figure 4.1: Sample screen-shot of the application. From left to right: notification, account

description dialog, gesture password input interface, text password input interface and TLX

form. One application had only one password input interface – either gesture or text password.

Accounts were differentiated from each other by their names, logos, colors and descriptions.

Notification appears in the notification drawer to alert participants about incoming tasks.

The notification generated by our application was native and directly viewable on

the device. It remained alive until either participant completed the corresponding task

or it expired. It was generated offline on the phone, so Internet or cellular access was

not required. Figure 4.1a shows a sample screen-shot of our task notification.

Tapping the notification brought participants to the user interface for either a pass-

word generation or log-in task. Both tasks were a common two-step authentication

process wherein a participant first input their username followed by their password.

Every task was followed by a validated NASA subjective Task Load Assessment (TLX)

form [64] to fill out. The form is designed to estimate workloads subjectively using six

individual factors [64]. Participants were asked to give each factor a score based on

their experience of the assessed task, with each score ranging from 0 to 100.

In prior studies, participants have been alerted by email [34,46,125,134]. The email

usually contains a link to a website where participants then perform tasks. However,

our design brings one major advantage that better fits mobile authentication usage:

it is not limited by participant contexts. Our participants could perform the task
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on their smartphones without any need for desktops, internet, or cellular access. As

mobile authentication can occur in various contexts, our design adequately simulated

the process.

Gesture Password Authenticator

Our gesture password authenticator is a modification of Protractor [85] that was ex-

tended [118] for multi-touch gesture support. Protractor is a gesture recognizer that

measures the cosine distance between a stored template of a gesture password and an

input, and uses the reciprocal of that as a similarity score. Discussion of the design and

implementation is beyond the scope of this paper, and has been explained in exhaustive

detail in previous work [85,118].

Authentication success is determined by whether the computed score is greater than

a threshold. Selection of the threshold has not been examined in great detail nor are

there any defined heuristics for computing it in the literature. As such, we derived it

based on existing gesture data. In a previous study, we collected a dataset of over 60

distinct free-form gestures and 1200 generated trials [118]. The average score of all trials

was 2 after rounding, therefore we chose 2 as our threshold. This empirical selection

represented an average case of over 1200 separate scores and was reasonably low enough

to authenticate participants without requiring a taxing amount of accuracy from them,

while high enough to prevent obviously incorrect passwords from being accepted.

4.2.4 Procedure

At first, participants were introduced to the study and asked for consent to participate in

the experiment. After consenting, we installed the application on their smartphones and

demonstrated how it works with a testing device. We also informed participants that

passwords they generate should be secure, easy to memorize, and difficult for others to

guess. Moreover, we emphasized that they should not use their real passwords, nor use

any password managers to help memorization (including writing the password down).

For the next two weeks, participants performed tasks on their devices in their daily

lives. This process is illustrated in Figure 4.2a. In the first week, participants performed
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Account set one (two accounts)

Creation task + immediate login task!
x 2

Short-term login tasks x 2

Long-term tasks x 2

One day later

Six days later

Account set two (Six accounts)

One day later

Creation task + immediate login task!
x 6

Short-term login tasks x 6

Long-term tasks x 6

One day later

Six days later

(a) The 2-week process of our study.

Creation + immediate login tasks!
of!

Account set two (six accounts)

9:30am Creation task - account 3

10:30am Immediate login task - account 3

12:00pm Creation task - account 4

1:00pm Immediate login task - account 4

2:30pm Creation task - account 5

3:30pm Immediate login task - account 5

7:30pm Creation task - account 7

8:30pm Immediate login task - account 7

5:00pm Creation task - account 6

6:00pm Immediate login task - account 6

10:00pm Creation task - account 8

11:00pm Immediate login task - account 8

(b) A sample schedule of creation +

immediate login session for account

set two.

Figure 4.2: The left figure shows the process of the entire study. The right figure shows a

typical schedule of for a day of creation + immediate login tasks for one participant.

tasks for the first account set (of two accounts). On the first day of the week, partici-

pants were asked to create usernames and passwords for the two accounts at different

times. Each creation task was followed by a corresponding log-in task one hour later.

For each account, short-term and long-term log-in tasks arrived one day and one week

after the creation task, respectively. The actual order of tasks of those accounts was

different for each participant. It was based on a latin square arrangement in order to

avoid potential bias from scheduling. In the second week, participants went through a

similar process for the second account set (of six accounts).

To properly distribute tasks within one day, our considerations were two-fold: (1)

the schedule should not disturb participants’ daily life too much; (2) it should cover

the majority of time during which people are likely to use passwords. Previous work

indicates most password usage occurs from 6:30 AM to 10:00 PM [50]. Our range of

time to schedule tasks was 9:30 AM to 11:00 PM. We shifted and stretched the range
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to fit the normal schedule of most people. Inside the time range, we tried to distribute

tasks evenly into equal-length time blocks. Figure 4.2b shows a typical schedule of a

day in our study.

Participants were allowed to withdraw under any circumstances without penalty.

After two weeks, we invited them back for a brief interview and the compensation.

4.2.5 Password Analysis

We performed password cracking attacks to analyze text password security. We used

the popular GPU-based password cracker oclHashcat 1.36 [67] to generate rule-based

attacks. The cracker generates guesses by applying rules to modify words in the dictio-

nary; for example, one rule could be to capitalize the first character in every word.

We generated three attacks. The first two attacks used rule sets that come with

the software by default: “basic64” and “generated2”. The third one used the rule set

designed by KoreLogic [71]. It is a subset of rules they used to generate passwords

for DEF CON’s “Crack Me If You Can” password-cracking contest in 2010 [82]. It

has been found to be effective for password cracking [123]. All attacks used the same

input dictionary, a shuffled combination of different wordlists that included Google 1-

gram English dataset [57], UNIX dictionary [83], RockYou leaked password dataset,

and phpbb leaked password dataset. It contained 38M unique words. We followed the

cracking techniques from recent literature [130] so that the results are interpretable.

We also analyzed unique passwords we collected. While unique text passwords could

be easily determined by comparing the text of two passwords directly, for gestures,

we relied on the score computed by our authenticator. We started with the unique

gesture set as empty and iterated over all our gesture passwords. For each gesture, the

authenticator computed a score of it and every other gesture in the set. If the max

score of them was smaller than our threshold, we determined it as a unique password

and added it to the unique gesture set.
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Security Comparison

To compare the security of two types of password, we calculated the random entropy

for them. The equation for calculating random entropy for text passwords is H =

L× log(N), where L is the password length, and N is the amount of possible characters.

To model gestures similarly, we treated a free-form gesture as points on the touchscreen

connected through one stroke, and the screen as many equal-size cells. A point belongs

to one cell given its location. We define L as the number of points, and A and B to be

the number of cells horizontally and vertically we segment the screen into, respectively.

Then, the number of cells is the equivalent of the possible character size in text password

case (N=AxB). In this model, the more points a gesture has and the more cells a

touchscreen is split into, the more fine-grained a gesture could be, and therefore higher

entropy it contains.

4.2.6 Statistical Tests

For our categorical data, such as the log-in success rate, we used chi-square tests. We

used the non-parametric equivalent of t-test, Wilcoxon rank sum test [139], to compare

the continuous data of two password groups. We chose p < .05 to indicate whether the

test result is statistically significant. When multiple comparisons existed, we used the

adjusted p value based on Bonferroni correction. Bonferroni correction is a common

method to control familywise error rate when dealing with multiple comparisons [48].

For easier reading, we used tables to report the tests for multiple comparisons.

4.3 Results

Table 4.1 shows an overview of the amount of generated passwords and attempted log-

ins. 91 participants generated 692 passwords and performed 2002 password log-in tasks

with a completion rate of 95.05% and 91.67%, respectively.

The average response time to a single task was 7.71 minutes (Mdn=1.27). Response

time is the duration of time from when a task is signaled to the time when the participant

responds to it. 75% of our participants reacted to a task within 10.45 minutes.
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Group Size Creation completed Log-ins completed

Total 91 692 (95.05%) 2002 (91.67%)

Text 44 347 (98.58%) 960 (90.90%)

Gesture 47 345 (91.76%) 1042 (92.38%)

Table 4.1: Study statistics overview. “Creation completed” lists the number of passwords

generated by each group. “Log-ins completed” shows the number of log-in tasks completed by

each group. The percentage after each number indicates the completion rate of the particular

item. The completion rate of an item is the percentage of designed tasks that were eventually

completed by participants. The completion rate was high compared with previous studies.

Below we first present the results of our creation tasks, and then log-in tasks.

4.3.1 Creation Tasks

Duration

We found that the gesture group took less time to generate a new password than the

text group when the number of accounts equaled six, as Figure 4.3 shows. The creation

duration was calculated as the average time needed to create a password for one account.

In two-account settings, the text group spent an average 58.56 seconds (Mdn=43) to

create one password, while the gesture group spent 69.43 seconds (Mdn=41); when the

number of accounts increased to six, the same task took the text group 76.38 seconds

(Mdn=42.08), but only 44.04 seconds (Mdn=30) for the gesture group. According to a

Wilcoxon rank sum test result, the text group used significantly more time than the ges-

ture group in the six-account setting (W = 1281.5, p = .0498, r = −.2056, 95% C.I. =

[3.41 × 10−5, 14.5]). The two groups took similar times to generate a password in the

two-account setting (W = 1088, p = .6709, r = −.04); no statistical significance was

seen. The confidence interval indicates that the text group could spend as much as 14.5

seconds more than the gesture group to create one password.
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Figure 4.3: Duration data, including creation duration, log-in duration and attempt duration.

Outliers are removed for clear visualization. The log-in duration is the average time needed to

log in to one account successfully. The attempt duration is the time needed to perform one

log-in attempt. The figure is broken down by account settings. One-hour (1hr) log-in, one-day

(1day) log-in and one-week (1week) log-in corresponds to immediate, short-term and

long-term log-in tasks, respectively. The figure shows the gesture group has an overall shorter

duration than the text group in most categories.
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Mean (SD)

Length 9.52 (3.07)

Lowercase 7.35 (3.21)

Uppercase 0.36 (0.78)

Digit 1.64 (1.79)

Symbol 0.16 (0.38)

Attack # Guesses Cracked (%)

Best64 3 × 109 40.19

Generated2 2.5 × 1012 61.72

KoreLogic 1.6 × 1015 68.42

Table 4.2: Text passwords’ number of characters (left), and cracking attack result (right).The

cracked result is similar to that of the weakest category of passwords being cracked under the

similar experiment setup.

Text Passwords Created

Our study generated 347 text passwords of which 209 were unique. We tested the

strength of the passwords with the three cracking attacks described earlier in the

Method section. Table 4.2 shows the results of general statistics and the result of the

attacks. Two of them cracked more than half of the passwords. The result is similar to

that of the weakest category of passwords being cracked in a recent study [130].

Free-form Gesture Passwords Created

Our study collected 345 gesture passwords overall, and 150 of them were unique. Among

them, 22 were drawn with multiple fingers, and 53 were symmetric.

To better understand the collected passwords, we grouped them into six categories

based on our observations. “Shapes” consisted of all passwords that were about real

or virtual objects and geometric shapes. “Letters” contained gestures with letters and

initials. “Symbols” had gestures that used common symbols that appear in e.g. com-

puting or math. “Digit” gestures were those made of single digit numbers. “Lines”

contained gestures that were either single line or a simple combination of several lines –

these gestures were mostly abstract and did not refer to any obvious objects. Gestures

in the “Words” group contained either words or signatures.

We found most passwords were “Shapes” and “Letters”, as shown in Figure 4.4. We

categorized our gesture dataset by both (i) all passwords, and (ii) unique passwords.
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Figure 4.4: The categories of all gesture passwords created by the participants. The analysis

shows the count of both all gestures passwords and only unique gesture passwords. Based on

the figure, “Shapes” and “Letters” were favored by participants.
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Figure 4.5: The five most popular gesture passwords in “Shapes” category. From left to right,

they are: star, square, heart, triangle, and one-stroke, respectively. They take up 37.21% of the

entire password dataset. Within “Shapes” category, participants preferred common shapes.

Overall, the most common category was the “Shapes” (49.28%), following by “Letters”

(24.07%) and “Lines” (15.76%).

Figure 4.5 shows the five most popular gesture passwords in the category “Shapes.”

Most of our popular gesture passwords were common shapes or objects, such as stars

and squares. One of them, what we called “one-stroke” (see Figure 4.5e), could be due

to our gesture authentication system. Our system required participants to draw the

gesture in one stroke without lifting fingers; according to some participants, they chose

“one-stroke” because it was easy to draw in one stroke.

Security Comparison

With the metric we proposed in the Method section, we calculated the entropy a gesture

password could contain given different N (number of cells on the screen), since L (num-

ber of points per gesture) is fixed to 16 in our case. The result is shown in Figure 4.6.
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Figure 4.6: The curve displayed is the entropy of gesture passwords varied by the number of

cells. Number of cells of a screen is defined as the number of cells horizontally (A) times

number of cells vertically (B). The boxplot represents the entropy of our text passwords. The

edge of the box represents first and third quantiles respectively, and the bar inside the box

represents the second quantile (median). Values to the right of the box shows the entropy of

each quantile. The figure shows that modeling the touchscreen to be 3x5 grid of cells matched

the median entropy of our text password.

The figure also includes a boxplot of entropy of our text passwords for comparison.

According to the graph, the median of our text password entropy is 59.13, and is

close to that of gesture passwords when we consider the touchscreen as a 3x5 grid of

cells. It also shows that first quantile (25%) of text password entropy maps between

2x3 and 3x5 grid for gestures, and the third quantile (75%) maps to a grid of 4x6 cells.

4.3.2 Log-in Tasks

Log-in Success Rate

We found the log-in success rate of the two groups to be similar. The success rate is the

number of successful tasks divided by the total number of tasks across all participants.

The overall success rates were 88.53% and 89.60% for the text group and the gesture

group, respectively. Table 4.3 shows the success rate of logging in after one hour, one

day and one week.

The table shows that the gesture group performed slightly better than the text
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Two accounts Six accounts

Log in after Text Gesture Text Gesture

One hour 97.56% 98.90% 97.59% 97.05%

One day 91.77% 93.55% 83.20% 83.57%

One week 88.24% 87.50% 80.42% 84.59%

Table 4.3: Success rate of two password types of each log-in task. Log in after one hour, one

day and one week corresponds to immediate, short-term and long-term log-in tasks,

respectively. The results show that success rate of two groups was mostly similar across

conditions.

group in most of the log-in tasks. However, we applied chi-square tests and found no

statistically significant difference between the rate of two groups in any pairs shown in

the table.

Duration

Successful log-in duration is the time participants needed to log in to a certain account

successfully. We found that the gesture group spent less time in general than the text

group in order to log in successfully. Overall, it took the text group 18.62 seconds

(Mdn=15.8) on average and 16.49 seconds (Mdn=11.5) for the gesture group to log in

to one account. Figure 4.3 shows the duration of each log-in session.

A Wilcoxon rank sum test showed that when number of accounts was six, the effect

of password type on successful log-in duration was statistically significant for all three

log-in sessions (see Table 4.4 for results). In particular, the time used by the text

group increased as the number of accounts increased, while that of gesture group was

relatively constant.

In addition, as time elapsed, the effect of password type on log-in duration was

stronger. This is illustrated by the increase of the confidence interval of the difference

in duration. The interval increased as the log-in task was further away from the creation

task (see Table 4.4). After a week, participants with text passwords could spend two

to eight seconds more than the gesture group in order to log into one account.
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Median (s) Mean (s) Wilcoxon rank sum test

Account set Log in after Text Gesture Text Gesture W p r 95% C.I.

Two accounts

One hour 15.75 13.00 17.15 16.48 1267 .0647 -.1937 [−3.29 × 10−5, 5.00]

One day 13.25 11.50 15.67 19.26 1234 .1120 -.1666 [−0.50, 4.50]

One week 16.00 13.00 18.77 16.22 1220 .0350 -.2210 [0.50, 6.50]

Six accounts

One hour 15.41 11.60 17.20 14.58 1382 .0058* -.2889 [1.13, 6.07]

One day 16.57 10.50 21.84 15.45 1361 .0049* -.2949 [1.55, 7.70]

One week 17.67 11.00 21.17 16.92 1396 .0019* -.3256 [2.00, 8.33]

Table 4.4: Successful log-in duration (seconds) of two password groups. Log in after one hour,

one day and one week corresponds to immediate, short-term and long-term log-in tasks,

respectively. The Bonferroni-corrected threshold p-value is .0083. The result shows the gesture

group spent much less time to log in than the text group when the number of accounts was six.

Attempts

We then looked at the number of attempts tried in each log-in task. Participants were

allowed to retry unlimited times for any log-in task as long as it did not expire.

Overall, two groups retried similar times before they could successfully log in. On

average, it took the text group 1.66 (Mdn=1) attempts, and the gesture group 2.44

(Mdn=1.5) attempts to successfully log in to one account. Table 4.5 shows detailed

results. The attempts tried by the gesture group were slightly higher than that of the

text group. However, the result of the Wilcoxon rank sum test shows that the effect

of the password type on the number of attempts was statistically significant only when

participants tried to log in after one hour in the two-account setting.

On the other hand, the gesture group was found to be faster when performing a

single attempt. On average, it took the text group 11.33 seconds (Mdn=10.5) to perform

a single log-in attempt, as compared to 7.71 seconds (Mdn=6.53) for the gesture group.

We calculated it by dividing the duration of each log-in task by the number of attempts

performed in that task. Because we only study the password usage, we removed the

duration of inputting username from this calculation. Figure 4.3 shows the attempt

duration of each log-in task.

To compare the attempt duration, we did a Wilcoxon rank sum test, and Table 4.6

shows the result of each pair-wise comparison. In all log-in tasks, the gesture group



49

Median Mean Wilcoxon rank sum test

Account set Log in after Text Gesture Text Gesture W p r 95% C.I.

Two accounts

One hour 1.00 1.00 1.24 1.91 755.5 .0081* -0.28 [−0.50,−1.60 × 10−5]

One day 1.00 1.00 1.34 2.22 835.0 .069 -0.191 [−0.50, 4.32 × 10−5]

One week 1.50 1.00 1.70 2.66 1080.0 .70 -0.041 [−4.57 × 10−5, 7.73 × 10−5]

Six accounts

One hour 1.08 1.33 1.34 1.85 761.0 .025 -0.23 [−0.33,−2.66 × 10−5]

One day 1.40 2.00 2.10 2.85 846.5 .13 -0.16 [−0.80, 7.44 × 10−5]

One week 1.50 2.00 2.40 3.71 852.0 .15 -0.15 [−1.00, 2.68 × 10−5]

Table 4.5: Number of attempts tried per log-in task for successful log-in tasks. Log in after

one hour, one day and one week corresponds to immediate, short-term and long-term log-in

tasks, respectively. The Bonferroni-corrected threshold p-value is .0083. The result shows that

participants from the two groups required a similar number of attempts to log into one

account successfully.

performed much faster than the text group in a single attempt. The confidence intervals

show that the gesture group could login two to five seconds faster than the text group

in a single attempt.

Errors

In our study, every time participants made a failed attempt, they generated an error.

We also allowed them to give up on a log-in task at any time. In this subsection we

look at the errors made by them and log-ins they eventually gave up on.

Overall, the gesture group generated more errors: 47 of them generated 1560 errors,

while 44 participants in the text group failed 816 times. Half of the errors occurred in

log-in tasks after one week (text: 52.21%, gesture: 46.92%).

We then categorized the type of errors made by both groups, which is shown in

Figure 4.7. “Wrong account” referred to the case when participants tried to log in one

account with the password of another account, and “wrong account variant” was when

participants used a password from another account but input incorrectly. “Partially

wrong” indicated only part of the input matched the correct password. When partici-

pants tried random inputs, we categorized it as “forgotten”. “Mirrored” and “rotated”

categories was for gesture passwords: in both cases the input was correct, but was either

mirrored in direction, or rotated for a certain number of degrees. “Misspelled” was for
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Median (s) Mean (s) Wilcoxon rank sum test

Account set Log in after Text Gesture Text Gesture W p r 95% C.I.

Two accounts

One hour 13.00 7.50 13.04 8.68 1632 < .0001∗ -.4977 [2.83, 6.00]

One day 11.25 7.00 12.43 8.45 1606 < .0001∗ -.4762 [2.25, 5.25]

One week 11.25 6.75 13.74 8.42 1559 < .0001∗ -.4368 [2.00, 5.42]

Six accounts

One hour 9.92 6.86 11.64 7.69 1558 < .0001∗ -.4358 [1.88, 4.98]

One day 9.75 6.00 8.42 6.66 1656 < .0001∗ -.5178 [2.40, 5.47]

One week 8.54 5.75 8.64 6.25 1696 < .0001∗ -.5511 [2.22, 4.65]

Table 4.6: The attempt duration of the two password groups in seconds. Log in after one

hour, one day and one week corresponds to immediate, short-term and long-term log-in

sessions, respectively. The Bonferroni-corrected threshold p-value is .0083. The result shows

the attempt duration of the gesture group was much less than that of the text group in every

login task.

text passwords only, meaning that the input was correct except for obvious typos.

We found nearly half of the errors both groups made were due to confusing one

account with another (“wrong account” & “wrong account variant”). One exception is

that one hour after creation, less than 30% of the errors made from the gesture group

was due to confusing the accounts. Meanwhile, they made 10% more errors of partially

incorrect inputs than text group. In the other two sessions, their partially-incorrect

errors were similar. We note that errors with mirrored or rotated inputs for gesture

group were nearly 20% after one hour, and decreased continuously thereafter.

On the other hand, two groups gave up a similar amount of tasks. 48 participants

(52.75% of total) gave up on 192 log-in tasks in total. 78 of them (40.63%) occurred

after one day, and another 98 (51.04%) were given up after a week. Text and gesture

groups gave up 99 and 93 log-in tasks respectively.

A more detailed description of given-up tasks is in Table 4.7. The table shows that

the gesture group spent less time but were willing to retry more times than the text

group before they gave up. As the data of given-up log-ins was small, we examined

it by combining data from different account settings and sessions. On average, our

participants spent 64.31 seconds (Mdn=41.50) and tried eight times before giving up.
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Figure 4.7: Categories of reason to fail at log-in tasks. Log in after one hour (1hr), one day

(1dy) and one week (1wk) corresponds to immediate, short-term and long-term log-in tasks,

respectively. Bars with label “T” are for text group and ones with “G” are for gesture group.

In the legend, “wrong account var” stands for wrong account variant. The most notable thing

is that the gesture group made fewer errors of “Wrong account” (and variant) than the text

group in log-in tasks after one hour.

4.3.3 Subjective User Feedback

Exit Interview Questions

In the exit interview, we asked participants to estimate their daily usage of smartphones.

The result shows the participants believed on average they entered passwords 8.93 times

a day (SD=13, Mdn=4). Previous studies reported 8.11 times per day, but indicated

it could be an underestimate [50]. Our study required at most twelve times a day.

Subjective Task Load Assessment

We asked participants to fill the NASA TLX form after every task. We calculated

the average score per task per participant for two groups, with Figure 4.8 showing the

result. A Wilcoxon rank sum test was applied on the TLX scores, and the test result

showed no statistically significant difference in TLX scores between the two groups.
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Duration (seconds) # of attempts tried

Group Mean (Median) Max Mean (Median) Max

Text 67.19 (43.00) 450 5.42 (5) 21

Gesture 61.29 (39.00) 304 10.75 (7) 67

Table 4.7: Descriptive statistics for given-up log-in tasks. Duration is the average time

participants spent on a single login task before they gave up, and the number of attempts is

the retry rate. In general gesture group spent less time while were willing to retry more in

given-up log-in tasks.
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Figure 4.8: The TLX scores of two groups were similar across six individual factors. We

calculated the average of the score of those factors. The ratings were similar between groups.

4.4 Discussion

We presented the first field study of free-form gesture passwords and compared them

to traditional text passwords. We obtained a unique dataset by leveraging the ESM for

a password field study.

4.4.1 Usability

Our main finding in usability was that gesture passwords were faster in many aspects of

authentication than text passwords. In our study, the gesture group took less time to

both generate a new password and log in successfully when there were six accounts. On
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average, the gesture group spent 22% less time logging in, and 42% less time generating

passwords than the text group. Also, performing a log-in attempt with a gesture

required two to six seconds less than with text for most cases. This result matches

intuition: drawing is faster than typing.

This is an important result for mobile platforms, given that the interactions are

known to be fragmented and fast and as such may only last a few seconds [62, 101,

128,134]. In this scenario, the authentication speed becomes pivotal for improving user

experience; faster authentication allows for faster access to services on mobile devices

while demanding less attention from the user during interaction. This speed advantage

makes gesture passwords more suitable for mobile authentication.

This speed advantage does not necessarily come with the trade-off of complexity.

We computed the similarity score between gestures from the same participant, and

found that over 62% of participants had an average score below 2, indicating within-

participant gesture reuse was limited. In addition, we found some gesture passwords

were obviously complex and involve multiple fingers, words, signatures, and foreign

language symbols. Still, the time people spent creating them was less than the average

time amongst the gesture group.

We found gesture passwords were easier to use. Participants with gesture passwords

were willing to retry as much as 46 more times than those with text passwords before

they gave up on a log-in task. This might be because of the faster operation the former

offered. Even with more retries, the time the gesture group spent on those tasks was

six seconds less than that of the text group on average.

Participants found that getting used to gesture passwords was not trivial. There

were several aspects showing that a learning curve existed for participants using ges-

tures. First, the duration needed by the gesture group to create passwords or log-in

decreased over time, while that of the text group either remained the same or increased.

Second, a large portion of errors made by the gesture group shortly after the creation

task was partially wrong, and such errors were reduced greatly over time. It is possible

that at first participants were not familiar with the concept and our authenticator,

therefore even if they knew the password they still failed. They essentially used such
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errors as training, and generated much better attempts for proceeding log-ins.

As a result, for a novel authentication scheme such as free-form gesture passwords,

explicit practice sessions are desirable. During the introduction phase of our study, we

suggested participants to practice their passwords during creation tasks until they feel

comfortable, so long as the tasks have not expired. However, it is possible that in a field

study as ours, where nobody was watching, participants did not put too much effort in

practicing, but tried to complete tasks as quickly as possible. Consequently, they did

not get familiar with gesture passwords before they proceeded.

4.4.2 Memorability

Gesture passwords provided good memorability with a log-in success rate over 83%

after a week with six accounts. Considering the “learning curve” issue discussed above,

this result demonstrated that gesture passwords were at least similarly memorable as

text passwords.

We also discovered gesture passwords provide better distinction between multiple

accounts: the gesture group was less confused with different accounts. In particular,

participants with gesture passwords made 20% less “wrong account” errors than those

with text passwords one hour after creation (see Figure 4.7). The text group, on the

other hand, maintained a consistent percentage of such errors over time.

Gesture passwords had their own novel memorability issues. One hour after the

creation process, participants tended to confuse the angle of their password. As a

result, 18.12% of their errors were due to mirroring or rotating of the correct passwords

(see Figure 4.7). To compare, the text group made 16.67% of their errors at the same

time interval due to mistyping. The portion of mirrored or rotated errors was even

larger than that of the mistyping errors made by the text group. Understanding the

novelty effect and reducing corresponding errors could be a key part in significantly

improving the memorability of gesture-based authentication systems.
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4.4.3 Security

We presented the analysis of the first free-form gesture password set collected in the

field. Comparing with a study on shortcut gestures on mobile platforms [104], we found

gesture passwords were different from shortcut gestures. The shortcut gestures study

had half of the collected gestures as letters and only 10% were shapes. In contrast, in

our field study dataset, nearly 50% were shapes. Both letter-shaped gesture passwords

in our study and theirs were relatively simple; typically, the first letter of the account

name (e.g. ‘m’ for music). This makes sense for shortcut gestures, but they are easy

passwords to guess and repeat. As such, we postulate that our participants preferred

shapes over letters for security reasons.

Interestingly, when comparing to a lab study where participants were also asked to

create “secure and memorable gestures” [118], there were major differences in gesture

creation: roughly half of the passwords generated in the previous study were with

single finger, whereas 93% of our passwords were using one finger. There are three

possible conjectures for this. First, the previous study did not involve multi-account

interference as our study: each participant of that study generated only one password,

while each of our participants generated eight. Second, it could be that people tend

to overestimate the security of gesture passwords [118]. It is crucial to understand the

gap between the security of novel authentication schemes and the perception of it from

users. Third, it is possible that participants generated weaker passwords in a field study

than lab study. Previous studies reported similar observations between a lab and a field

study [2, 47, 122]. The text passwords created in our study were weaker than usual as

well: most of them were easy, consisted of very few non-lowercase letters, and highly

crackable (see Table 4.2).

Our proposed security metric also compared the entropy of our text and gesture

passwords. For the grid of cells the screen is split into, 4x6 is still considered “low

resolution”, but our analysis (Figure 4.6) showed it already contained similar entropy

as the third quantile of our text passwords. This indicated that our gesture and text

passwords were comparable in terms of security. Based on this metric and its model,
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we could also derive a naive guessing attack for gestures by generating points to fall

into any of the cells of the screen, and connect the points to form a guess. Although

cracking attacks of free-form gestures are beyond our scope, it could be an interesting

future topic.

4.4.4 Completion Rate

The completion rate of our study was similar to that of a previous study on multi-

password interference [46]. However, our participants completed more tasks per person

(8 creation + 24 log-in), our expiration time was shorter (every task expired in one

hour), and our exclusion rule was more strict (we only included participants who com-

pleted at least half of the designated tasks). To compare, the previous work mostly set

the expiration time as one day or more [46, 134]. Our better completion rate is likely

due to: (1) our expiration time was shorter, and (2) our notifications were native to

the phone, and required no Internet or cellular access. Such a design lowered the effort

for participants to complete tasks.

Limitations

In our experiment, we provided the same general instructions for generating passwords

for both groups, which might lead to weaker passwords compared to specific policies.

However, free-form gestures have no established composition policies so far, because it

is a recently proposed approach. Also, not giving specific instructions allowed us to

collect data on how people would use such a novel scheme in the wild. This data can

then potentially shed light on how to design policies.

Our methodology is limited by common issues of a field study: lack of complete

control over participants and the experiment. However, using ESM in the experiment

design allowed us to have control over aspects such as task schedules and the amount

of tasks each participant received. We believe our study maintained better control

compared to conventional field studies while still collecting real-world data.

Our security metric is based on random entropy, which has been criticized for its
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bias [11]. Therefore, the result obtained should be interpreted only for relatively com-

paring security of the two, not measuring the absolute security of passwords.

4.5 Summary

In this chapter, we presented the first field study of free-form gesture passwords as

mobile authentication method, with text passwords as the baseline. We reported a

91-participant field study, with 347 text passwords, 345 gesture passwords, and 2002

completed log-in tasks generated.

We found that gesture passwords demonstrated better usability over text passwords.

In general, participants with gesture passwords spent less time both generating new

passwords and logging in. The difference between the two groups was statistically

significant under multi-account interference. In addition, participants with gesture

passwords were more willing to retry before giving up. Text and gesture passwords

showed similar memorability, but gesture passwords performed better under multi-

account settings in the short term. We also proposed a metric to compare the security

of the two passwords types uniformly. We found that the collected gesture passwords

carried comparable and possibly higher entropy than the text passwords.

This chapter also presented the analysis of the first gesture password dataset from

the field. We found user-chosen gesture passwords were varied, with preferred categories

being shapes (49.28%) and letters (24.07%).

Our findings contextualized the existing research on gesture passwords as well as

challenge previous findings from lab studies.
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Chapter 5

FACTORS IN PASSWORD MEMORABILITY

5.1 Overview of Chapter

In this chapter, we present the first systematic experiment design to study the mem-

orability of passwords. Our design is centered on two variables: log-in frequency and

password condition.

We first describe the experiment design and our procedure. We used an iterative

design method. We ran a pilot study with the first version of our design. Based on the

feedback and data collected, we modified the study design, and ran the formal study

with the updated design. We include a subsection in the method section to explain

what was revised based on the pilot study.

In the results section, we first examine data collected from the pilot study, to support

the decisions to revise the study design for the formal study. Then, with the data we

collected in the formal study, we examine the effect of our two variables on memorability.

To measure the memorability, we look at both log-in success rate and log-in duration.

We also examine whether two classic memory effects (retention effect and practice effect)

exist in the memorization process of passwords.

In addition, we explore specific factors in password context to see their effect on

memorability, including password reuse and password security.
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5.2 Method

5.2.1 Experiment Design

Our primary objective was to study the process of people memorizing passwords. The

experiment followed a common password study paradigm [26]: participants generate

passwords for several accounts under different conditions, and were asked to recall mul-

tiple times at different points of time afterwards. Participants performed tasks online

using a web application, instead of coming to lab. Such a design allowed participants to

perform tasks at any time and anywhere, which fits the real usage of passwords better,

and results in a better ecological validity.

The experiment is a 4 x 2 within-subject design with two variables: log-in frequency

and password condition. Each combination of the level of the two variables would be

represented as a virtual account. All participants follow the same experiment structure

to manage these eight accounts. Within-subject design brought several advantages:

(1) matched the password usage in realistic settings (multi-account [50] and varied log-in

frequency for different accounts [68]); (2) ensure statistical power given a relatively small

sample size. Note that we did not inform participants about the password conditions

at all.

Controlled Variable

The log-in frequency variable is a within-subject variable indicating how frequently

a participant needed to log in to a particular account. Previous study showed that

people accessed their passwords in various frequencies [68], and log-in frequency played

an important role in password memorability [72]. The variable has four levels: once a

day, once three days, once five days and once a week. Each account would be assigned

with one log-in frequency. Previous studies utilized different log-in frequency from once

per hour to once per two weeks [14,25,27,43]. We chose a similar frequency within the

range of the previous studies.

The password condition variable controlled the conditions how the passwords were

created. It has already been shown that people purposefully generate passwords with
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different levels of security and behave differently for different accounts [5, 61, 94]. The

purpose of this variable was to study whether such a difference exists in the memora-

bility of passwords as well.

The password condition variable has two levels: simple and strong. The levels

were differentiated with each other by two major factors: category of the account the

password belonged to and security requirement the account had.

We used the account categories proposed in previous literature: identity and finan-

cial sites for strong, and content sites for simple condition [12,61]. This categorization

provided a reasonable separation of different accounts, and has been shown to match

the subjective perception of importance people have regarding their accounts [61]. We

have eight accounts in total, and four in each category. We designed a unique name,

description, color, and interface for each account. The list of our accounts and their

detailed description can be found in the appendix.

The security requirement of each account included: password meter score, naive

check, and similarity to passwords of other accounts. The conditions had different

requirements on each element of these security requirements. A detailed description of

these requirements are shown in the next subsection.

The primary objective of including password condition as a variable is to study the

effect of accounts on memorability. To the best of our knowledge, there has not existed

any systematic study of such an effect. Therefore, in the setup of condition levels,

we intend to make the contrast between the “simple” and “strong” level as large as

possible, so that it would be easier for us to detect an effect if any.

Instead of treating account type and password security as two separate variables, we

combined them into one as password condition. The variable of account types studies

the effect of importance of each password has on memorability, and variable of password

security is for the effect of password security. Our rationale of combining them is that

password security is coupled with account types at a certain level [5,61]. We also benefit

from the combination to maintain a reasonable amount of levels in our experiments and

the simplicity of the design. One interesting future work could be examine passwords

created for same account type under different security requirements (e.g. bank account).
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Password Strength Meter

Password strength meters are well-studied, and have been revealed to have observable

impact on password security as well as user behavior [45, 81, 115,129]. Also, they have

been widely deployed in use [33]. Therefore, participants are familiar with them and

their behaviors are controllable. Commonly, a password-strength meter gives real-time

feedback such as “Weak”, “Good”, “Strong” to users to indicate the security level

of the password. The meters generate feedbacks based on a chosen algorithm which

computes a security score. Every time they receive the update password, they display

the feedback given the security score the algorithm generates for the password.

We used the password meter mechanism to enforce three security requirements for

our password conditions. The first requirement was a strength score computed by

the zxcvbn password strength estimator built by Dropbox [41]. Passwords of each con-

dition need to at least meet the required by corresponding condition. The reason to

use this particular estimator is two-fold. It is open-sourced, and has been deployed in

many practical applications including Dropbox itself [40, 56]. Also, the previous study

showed that compared with other implementations that primarily focus on character

sets and length requirement, the zxcvbn meter measures the security based on the struc-

ture of passwords, and found to be consistent against most publicly-available password

datasets [33]. The estimator computes a score based on their estimated entropy of a

password. The score ranges from 0 to 4.

Our password strength meter also performed two security checks on each generated

password. The naive check detected if a password of an account was the same as

the corresponding account name, username and passwords of other accounts. The

purpose of the naive check was to first eliminate identical passwords across accounts.

Multi-account interference already has been shown to have an effect on memorability,

therefore, to avoid its bias on our results, we need to ensure every participant create

eight different passwords. Also, using username or account name would render the

log-in tasks meaningless, which the naive check could prevent from occurring.

We did another check only for strong account category: computed edit proportion of
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Level Account category Required meter score Naive check Similarity check

Simple Identity and financial 4 Yes No

Strong Content 0 Yes Yes

Table 5.1: Password strength meter setup for the two password conditions. The naive check

disallowed the exact same password across multiple accounts, and the similarity check set a

threshold for password reuse based on edit distance.

the password and each password of his/her other created accounts. The edit proportion

was calculated as follows: 100 multiplied with edit distance, and then divided by the

length of the base password. The value ranges from 0 to 100, and indicates the size of

the portion a password needs to be edited in order to be the same as the other password

it is compared against. The smaller the portion is, the more similar the password and

the other one are. We disallowed passwords that had a score smaller than 25. We

performed the same check with account name and username as well for similar reasons.

To compare, half of major sites inspected by another work deployed similar checks [21].

We chose the value to discourage participants creating very similar passwords across

accounts, but still allowed them to partially reuse their passwords, as password reuse is

a common password management mechanism in daily life [55, 72]. We believe it plays

a crucial role in the way people memorize their passwords.

Table 5.1 shows the password strength meter setup for each condition.

We realize password meters carry their own caveats. For one, they only control the

lower bound for password security, and segment security into only a few levels. While

it is desirable to control password security in a more granular fashion, it is difficult to

achieve that level of control without harming the external validity of the experiment.

We believe a password-strength meter based on a reasonable scoring algorithm strikes

a balance between our research purpose and the ecological validity of the study. To

compensate, we included more detailed analysis on password security after we collected

the data.

We noticed there exists many other security metrics and implementations that could
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be used as the scoring algorithm. Alternatives include password guidance and persua-

sive mechanisms [80, 115]. While they provide control over password security as well,

they are rarely adopted in practical use. We argue that because we focus on under-

standing the memorability of passwords, it is very important for our experiment design

to match the users’ expected scenario of using passwords, as their behavior, and conse-

quently memorability could be easily affected by extra mechanisms which do not exist

in practical password usage scenarios.

A series of statistical metrics has been introduced recently [11,22]. The major issue

with them is that they rely on a large password dataset, making them not suitable

for our case. Another popular category is crack-ability. They often use the number of

guesses a particular offline password cracking algorithm needs to crack it to estimate

how secure a password is [78]. While they demonstrated important aspects of the

specific attack model – un-throttled offline attack model, we need a tool that could

measure password security in a broader sense.

We need to point out several limitations for choosing the zxcvbn password strength

estimator. The estimator itself has blind spots in terms of measuring password security:

it has been found to fail to capture some insecure patterns in passwords such as word

reversing (e.g. ehcsroP for Porsche) and some keyboard patterns like 1a2s3d4f5g [33].

Tasks

Our tasks included creation and log-in tasks. Participants generated a password for

one account per day, regardless of which log-in frequency each account was assigned

to. For each password generated, the corresponding log-in tasks were scheduled based

on the log-in frequency. We designed it so that both creation and log-in tasks were

differed according to their account by the interface, color and layout. The screenshot

of our tasks can be found in the Appendix.

In our study, a log-in task required participants to log in their accounts with the

passwords they created. Our log-in tasks did not have any limit on number of attempts

participants could try, but it provided a “Give up” option for them after five consecutive

failed attempts. After participants gave up a log-in task, they went through a password
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recovery process in which we would show them the correct password. We realized the

security issue of storing and displaying plain password text on our server; however, if we

allowed participants to reset their passwords during the study, the we can not treat the

memory process of new passwords generated as the same as the old ones, and therefore

adding complication to the analysis. We added designs to ensure the security of the

recovery process, which we will describe in the apparatus section.

Schedule

Because each participant managed multiple accounts, they performed tasks in a certain

order. Letting participants create passwords sequentially provides better ecological

validity than creating multiple passwords within a short amount of time. One potential

drawback is it would take a much longer time for participants to complete the study in

this way.

Because we have eight different accounts, there could be many different ways of

ordering the incoming accounts. According to recency effect and primacy effect, if

we keep a fixed order for all participants, they would likely performed better on the

first and last few accounts. To avoid such bias, we generated all possible orders to

form a candidate pool. Whenever a participant started the study, we picked one order

randomly from the pool for this participant, and removed it from the pool.

Another common way to minimize the ordering effect is to apply latin square shuf-

fling to the study. Latin square shuffling intends to distribute participants equally into

different orderings. In our case, our sample size is much smaller than the possible ways

of ordering, therefore latin square shuffling would not work.

Proactive Interference

Proactive interference is the effect of items learned previously on the current items [76].

Because we were studying passwords, the real passwords and accounts participants

already have might affect the study result, which is potentially proactive interference.

Therefore, it is useful to know (1) how many accounts participants already manage;

(2) how many passwords they already have.
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To collect such data for our study, we included relevant questions in the survey

we sent to participants at the end of the study. We asked them to count the number

of accounts and number of passwords they had in real life. To help them count, we

displayed a list of account types, so that they could count per type.

5.2.2 Apparatus

We designed and built a web application for participants to perform required tasks. The

application was written in Javascript, using Meteor framework. The application had an

administration page where it showed all participants info and their tasks progress. It

also provided options for researchers to send tasks given schedules of the participants.

The application generated different emails depends on the type of the task. In addition,

for each task, the application generated and sent a reminder email automatically if the

participant had not finished it after three hours. Screenshots of the application are in

the appendix.

Each task generated has an unique id. Each link participants used to access their

tasks was based on its unique id. By making the link unique, and attaching a status

flag to it, we controlled when participants could access each task. Each link expired 24

hour after it was sent to participants. The email recovery link also followed the same

fashion. Each recovery email participants received contained a unique link. By clicking

it, participants were able to see their correct password for the corresponding account.

The recovery link expired after one hour. In such way, we ensured only participants

themselves could proceed in their recovery process, unless they shared their emails with

others. Also, expiring in one hour prevented participants from relying on the recovery

process for log-in tasks.

Although we explicitly informed participants not to use any auto-save or auto-fill

features to store their passwords, we added features to the application to detect and

disable auto-fill password function of web browsers and password managers. The first

feature was to turn the password input field to read-only, as some web browsers would

only auto-fill the field if the fields are write-able. In addition, each time a page was

loaded, the application checked if the password field was already filled with texts. If so,
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it is likely participants were using the auto-fill function, and we alerted the participants

and recorded the occurrence. Our application was not able to disable and detect all

possible auto-fill functions, but we intend to minimize such behavior.

5.2.3 Procedure

At first, participants were introduced to the study and asked for consent to participate

in the experiment. After consenting, we asked participants to watch the introduction

video, and ask questions if any. The video explained the study and how to perform

tasks using the web application.

For the next month, participants would receive emails to notify them new tasks.

Each email contained a link for them to access the web application. Links expired

after 24 hours, so that to ensure they respond in time. Each link was unique and

assigned to one participant, and participants could only access tasks through valid links.

Participants performed tasks during their daily lives. The task was either registration

or log-in.

A registration task asked participants to create username and password. We re-

quired them (1) not to use their real passwords; (2) create a secure password; (3) not

to write down or store passwords. We have no specific requirement on passwords cre-

ated, although password condition variable was applied to ensure the level of security

as mentioned previously.

A log-in task required participants to log in the account with the password they

created. The study did not limit the time or the amount of attempts one could spent

on each log-in task. As mentioned in an earlier section, we provided a “Give up” option

for participants after five consecutive failed log-in attempts, which would offer them a

chance to see their correct passwords and memorize them again.

Upon the end of the study, we sent out an online survey to collect feedback, and they

came in again for a brief interview for the experience of the tasks, and got compensated.
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Revisions Based On Pilot Study

As mentioned previously, we followed an iterative methodology to improve our exper-

iment design. We ran a pilot study to collect feedback and revised our initial study

design. After the pilot study, we ran our formal study in two batches. The first batch

used the revised design after the pilot study, with the aim of exploring if our designed

variables were properly explained the memory effect, or do we need to include more

possible variables. Based on the result of first batch study, we would again revise the

study design, and derive the model eventually. Here we describe the revisions we made

for the formal study, and justify such revisions in the discussion section.

The major difference between the pilot and the formal study was that, in pilot study,

we did not add the requirement of naive check and similarity check in the password

condition variable. We added it to the formal study because of what we found from the

pilot study. In addition to the password check, we made a few other minor modifications.

In pilot study, emails of different accounts and tasks had same title. We modified our

system such that each account had a set of unique email templates, and each email

contained a unique timestamp to distinguish from each other.

5.2.4 Analysis

To examine password reuse, we used edit proportion, which is a normalized version of

edit distance [84]. For two passwords, we calculated first the edit distance, and then

normalized it by dividing it using the length of the longer one. The edit proportion

ranges from 0 to 100. The larger the value, the less similar the two passwords are.

Because participants created the set of accounts in an order, and each account has a

different frequency, accounts of each participant had different amounts of log-in tasks.

Accounts that were created earilier or with a higher log-in frequency resulted in more

log-in tasks than others. The difference in the amount of tasks could possibly bias

our results. Therefore, for some studies, we need to select only the first few tasks of

each account within each participant. We created a dataset called equal-task-amount

dataset, where we only selected the first two log-in tasks of each account. We describe
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the detail of this dataset for our studies in the result section, and mention it specifically

if the analysis is done with it instead of the entire dataset.

In addition to the security estimation of the password meter we deployed, we per-

formed several cracking attacks to measure the password security. Similar to the pre-

vious chapter, we used the GPU-based password cracker oclHashcat [67] to generate

rule-based attacks, based on four popular sets of rules: “T0XlCv1”, “rockyou-30000”,

“generated2” and “dive”. These rule sets were generated by community experts based

on previously-leaked password datasets. For input dictionary, we added crackstation

human-only passwords [30] to the wordlists used in the previous chapter, resulting in

an input dictionary of 150M unique words. To compare the cracking performance rel-

atively, we repeated the same four attacks on several datasets: two password datasets

from this study (one from pilot, one from formal study), one dataset from chapter three

and one dataset from chapter four. Additionaly, we repeated one more time on the fro-

mal study dataset with the variations of account names of our study (37 unique entries

in total) being included into the input dictionary. Because our study introduced eight

virtual accounts with distinct names and designs, we would like to see the resistance of

our dataset against such targeted attacks.

5.2.5 Participants

For the pilot study, we recruited seven participants from our department, or people we

have known. Four of them are male and three are female, with an average age of 28

years old (Std = 4.31,Mdn = 27). Three hold a Bachelor degree, while the other four

hold a graduate degree.

For the formal study, we recruited participants by posting fliers, sending emails to

campus mailing lists, and posting in online forums. Participants were required to be at

least 18 years old, and were familiar with web services.

We have recruited 10 participants for the first batch of formal study. 55.56% are

female and 44.44% are male. The average age of participants is 25 years-old (Std =

3.28,Mdn = 23). 44.44% of them have a Bachelor degree, 44.44% have a graduate

degree and 11.12% have an Associate degree.
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5.3 Results

5.3.1 Pilot Study

Our seven pilot participants created 56 accounts, and performed 486 log-in tasks. The

overall completion rate is 86.31%, with 86 tasks expired. The average response time

to a task is 4 hours 36 minutes, with a minimum of 21 seconds and a maximum of 22

hours 54 minutes.

The duration needed to create passwords under two password conditions differed for

our pilot. The overall average creation duration was 49.94 seconds (Std = 43.05,Mdn =

35.44). That of simple and strong condition were 40.64 (Std = 26.87,Mdn = 32.63)

and 58.91 seconds (Std = 53.31,Mdn = 42.85), respectively.

We found participants reused passwords, and that affected memorability. As men-

tioned in an early section, we did not check for the password reuse case in creation

tasks. Therefore, among the 56 passwords, there were 47 unique passwords. There

were two participants who reused their passwords entirely: one used the same password

for all accounts, the other one used six passwords for eight accounts. Even for partici-

pants that created eight distinct passwords, some of them reused part of the passwords:

the average edit proportion per participant was only 59.31%. As described in method

section, edit proportion of a pair of passwords was the proportion of a password needed

to be changed to match the other password. Moreover, we found accounts with an edit

proportion smaller than 50% have a higher log-in success rate on average (96%) than

those with a larger proportion (81%).

We found that both frequency and password condition have effects on the log-in

success rate. We used the equal-task-amount dataset for this analysis. It contains

51 accounts of seven participants, and 102 log-in tasks. The log-in success rate of

simple and strong condition were 98.07% and 81.63%, respectively. Figure 5.1 shows

the detailed success rate and duration per frequency and condition. The trend in both

figures are observable: success rate decreases when frequency becomes lower, while it

decreases when password condition is strong, compared with simple condition.

The data from the pilot study did not reveal an observable retention effect or practice
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(a) (b)

Figure 5.1: The plot of log-in success rate of different log-in frequency (a) and password

condition (b). Both two factors show a visible effect on log-in success rate. In both figures

blue lines indicate the success rate, with the Y-axis being on the left; the red boxplots indicate

log-in duration data, with the Y-axis being on the right. For duration boxplots, the black

squares indicate the mean value. According to the figure, the log-in success rate decreased

when the log-in frequency became lower, or the password condition changed from simple to

strong.
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Figure 5.2: Log-in success rate of the first log-in task for all accounts grouped by frequency

(retention effect, left figure), and log-in success rate of all the log-in tasks in order as

repetitions (practice effect, right figure). Neither curves show an obvious pattern, indicating

no retention effect or practice effect in our data.

effect of password memorability. Figure 5.2 shows both curves, with the metric being

log-in success rate. Both curves were oscillating without any obvious pattern. The

retention effect did not seem to apply on the password memorability, according to this

result. The practice effect showed that the success rate converged to 100% after 10

consecutive repetitions.

Seven participants responded our mid-point feedback survey, and their subjective

rating of task difficulty was 4.57 out of 10 in average. To compare, in exit survey, they

rated 3.57 for the same question.

Six of them answered “Yes” to the question “Do you find it easy and fast to identify

our emails and access our tasks”. The remaining one explained the reason he chose

“No”: “the tasks are bundled together in one thread...after a while I lose track of which

task I completed, since the links look the same to me”. Relevant to easier recognition

of the email, another participant suggested that “the appearance of the email should

be tailored for each task”.

Six indicated they were aware of the feature that every task expires 24 hours after

arrival. One participant explained why he missed tasks: “read the email when I don’t

have time to do the study, then later on forget to check the read email”.

According to the exit survey, one participant admitted to using password manager,
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another to using web browser to save passwords, and no participants wrote passwords

down. Only 42.9% (3) of them agreed that “passwords with stronger requirements

harder to memorize”, and 71.4% (5) agreed that “more frequently used passwords were

easier to memorize”.

We also asked questions regarding participants’ password usage in their daily life,

outside of the study. 71.4% (5) of them admitted they reuse passwords in daily life.

According to the exit survey, 42.9% (3) chose “once per day” as the frequency of their

most-frequently-used account, and 57.1% (4) chose “less than once per month” as that

of their least-frequently-used account.

5.3.2 Formal Study

In the formal study, 10 participants created 80 accounts and performed 614 log-in tasks

in total. The overall completion rate was 96.39%. Each account in our study generated

8.0 tasks in average (Std = 7.17,Mdn = 4), and each participant completed 72.0 tasks

on average (Std = 8.54,Mdn = 74). Tasks sent in the formal study have an average

response time of three hours 52 minutes, with a range from 22.8 seconds to 23 hours 57

minutes. 35.59% of tasks triggered the reminder email function as they have not been

completed three hours after arrival.

Creation

The average duration participants needed to generate a password under simple and

strong condition were 71.95 (Std = 76.53,Mdn = 47.09) and 108.81 seconds (Std =

98.20,Mdn = 82.32), respectively. Figure 5.3 shows a distribution of creation duration

for both conditions.

Our participants created 80 unique passwords. Table 5.2 shows a detailed descrip-

tion of our passwords. Figure 5.4 shows the boxplot of character counts per password

for two password conditions. The results indicates that our passwords are non-trivial

passwords with complex structures.

We found the security measure of our passwords by the password meter were not

very different between the two conditions. The average score for strong condition is
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Figure 5.3: The boxplot of creation duration for two password conditions. Red squares

indicate the mean value. It shows that participants spent more time in generating passwords

under strong condition than the simple condition.

Length Lowercases Uppercases Digits Symbols

Mean 14.05 9.83 0.93 2.84 0.45

Std 3.68 4.37 1.51 2.79 1.25

Mdn 13.5 10.5 0 3 0

Table 5.2: General password statistics, including password length, amount of lowercase letters,

uppercase letters, digits and symbols per password. The results show that passwords

generated in our study are non-trivial ones with complex structure.
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Figure 5.4: The boxplot of password length and characters count for two password conditions.

The characteristics of passwords in two conditions are not very different from each other.

4.0, and that for simple condition is 3.25 (Std = 0.98,Mdn = 4). More than half of

passwords in simple condition (55.0%) have the same meter score as that of strong

condition. In addition, the average entropy of the simple and strong condition were

10.28 bits (Std = 3.51,Mdn = 10.44) and 12.07 bits (Std = 1.96,Mdn = 11.79).

We found that passwords generated using this experiment design were much more

resistant against password cracking attacks, compared with that generated from pre-

vious studies. Figure 5.5 shows the result of four different cracking attacks on four

password datasets: pilot study, formal study, text entry and field study. The first two

were from memorability experiments, and the other two were from chapter three and

four, respectively. A detailed description of the cracking attacks setup and datasets can

be found in the method section. One can see that, cracked percentage of datasets from

the memorability design were below 30%, while that of others were above 50% with the

highest reaching beyond 70%.
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Figure 5.5: The result of our cracking attacks. X-axis represents different cracking methods

and their total guesses, and each line represents a password dataset. “Field study” is from

chapter four, “TextEntry” is from chapter three. “Pilot” and “Formal” are from this chapter.

“Formal+name” used the same dataset as “Formal”, but adding variations of account names

in our study to the input dictionary to create a targeted attack, as mentioned in the method

section. The figure shows that datasets from this study have better resistance against cracking

than others, and our targeted attack cracked nearly 10% more of the “Formal” dataset than

the regular attack.
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The formal study did not have naive password reuse case as mentioned in the method

section. The average edit distance between passwords for each participant was 9.58

(Std = 2.49,Mdn = 9.32), and edit proportion was 73.03% (Std = 22.95%,Mdn =

79.33%). To provide context, the average length per password was 14.05 in our study.

Log-in

Our 10 participants gave up 49 tasks, with an overall log-in success rate of 92.02%.

The average duration one spent on single log-in task was 28.36s (Std = 53.65,Mdn =

15.3), 23.67s for successful log-in tasks and 97.17s for tasks that they eventually gave

up. The equal-task-amount dataset for the formal study contained 78 accounts of 10

participants, and 156 log-in tasks. The log-in success rate for this dataset was 80.12%,

and log-in duration was 46.59s on average (Std = 91.87,Mdn = 23.44).

Figure 5.6 shows the detailed success rate and duration for each log-in frequency

and password condition. The figure was computed using equal-task-amount dataset.

From the figure, we can see a trend of decreasing success rate as the log-in frequency

decreases, but the password condition seems not have a clear effect on the change of

rate. In addition, there did not seem to exist any observable effect of the two variables

on log-in duration.

We found a possible practice effect from our data, although the retention effect was

less obvious. Figure 5.7 shows both curves, with the log-in success rate as the metric.

The practice curve converges to 100% after 18 repetitions. However, retention curve

remains nearly flat, and does not seems to be affected by the log-in frequency.

Exit Survey

In their exit survey, participants rated the tasks with an average difficulty of 4.44/10

(Std = 1.59,Mdn = 5). None of them reported to write down passwords, or use

password manager or browswer auto-save functions. We asked them to estimate their

own log-in success rate, and the average estimation was 83.33%.

When asked about strategies or patterns they used to memorize passwords in our
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(a) (b)

Figure 5.6: Figure (a) is the log-in success rate and duration of different log-in frequency;

Figure (b) is that for different password conditions. In both figures blue lines indicate success

rate, with Y-axis being on the left; red boxplots indicate log-in duration data, with Y-axis

being on the right. For duration boxplots, the black squares indicate the mean value. The

figure shows a decreasing trend in success rate when log-in frequency lowers, but no visible

effect of password condition on the rate.

Figure 5.7: Log-in success rate of the first log-in task for all accounts grouped by frequency

(retention effect, left figure), and log-in success rate of all the log-in tasks in order as

repetitions (practice effect, right figure). The retention effect in the left figure is very subtle,

and we can see a visible practice effect in the right figure.
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study, 44.44% mentioned their passwords included the name of accounts. Two partici-

pants reported one of their passwords in the study was similar or same to the ones they

have in the daily life, outside of the study. Another participant reported two in the

same question. Others did not have such cases.

Only 33.33% of participants believed different strengths of passwords would affect

their memorability, and 66.67% agreed different log-in frequency would have effect on

memorability.

Regarding their daily-life password usage, participants reported they manage 13.3

accounts and 7.4 unique passwords on average. 88.89% of them admitted they reused

passwords in daily life. 55.56% of participants reported “Multipe times per day” as the

most-frequent access of their accounts, and 55.56% of them reported “Less than once

per month” as the least-frequent access.

Factors To Affect Memorability

In this section we examine the relationship of different factors with password memora-

bility, which is represented as the log-in success rate or binary log-in status (succeed or

failed). We computed the result using the equal-task-amount dataset.

We found several per-account factors that affected memorability. We computed the

Pearson correlation coefficient r for each factor we found in the study with password

memorability. Table 5.3 shows the detailed results. Factors of log-in tasks (attempts,

duration, task completed) showed strong effects, as well as the experiment variable

log-in frequency. However, we did not observe the effect of password condition variable.

We also found a few per-task factors that have an effect on memorability. Table 5.4

shows the detailed correlation of each per-task factor and log-in task status (succeed or

not). Attempts and duration of each task are shown as strong factors, as well as log-in

frequency. The sequence number of the task also affected the outcome: the later the

task is, the greater the chance of a successful log-in could be.
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Factor r p

Log-in attempts* -0.43759 0.00006

Creation duration* -0.24352 0.03168

Log-in duration* -0.24205 0.03276

Guesses needed to crack -0.21581 0.07065

zxcvbn entropy 0.13849 0.22658

Log-in frequency -0.13005 0.25644

Num of uppercase letters 0.09898 0.38860

Task completed 0.09552 0.40547

Elapsed time since last log-in -0.09505 0.40780

Num of digits 0.09296 0.41821

Is cracked -0.07598 0.50851

Accounts -0.07242 0.52861

Password length 0.06860 0.55063

zxcvbn crack time 0.06655 0.56267

Account order 0.06413 0.57697

zxcvbn score 0.04926 0.66843

Num of symbol -0.04595 0.68957

Password condition 0.03357 0.77047

Edit distance 0.03103 0.78740

Num of expired tasks 0.02513 0.82716

Num of lowercase letters -0.02015 0.86097

Edit proportion -0.01210 0.91628

Table 5.3: Table of Pearson’s correlation coefficient r and corresponding p value computed

between each per-account factor and the log-in success rate. Factors such as num of symbols

are the amount of characters in a single password. Factors such as log-in attempts are the

average value of each account. Factors with prefix “zxcvbn” were computed by the zxcvbn

password strength meter. As indicated, attempts and duration factors show strong correlation

with log-in success rate.
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Factor r p

Attempts* 0.55567 0.00000

Duration* 0.39068 0.00000

Frequency* 0.28786 0.00000

No. of the task* -0.23331 0.00000

Time since creation* -0.10601 0.00862

Time since last log-in task* 0.09879 0.01441

Password condition 0.01018 0.80142

Account -0.00977 0.80929

Table 5.4: Table of Pearson’s correlation coefficient r and corresponding p value computed

between each per-task factor and the log-in status of the task. “No. of the task” refers to the

order of this task. “Account” differentiates accounts from each other. Attempts, duration, the

order of the task and log-in frequency show strong correlation with log-in status.

5.4 Discussion

5.4.1 Limitations

Our study only focused on user-chosen passwords, excluding other password types such

as system-assigned passwords. The memory process of system-assigned passwords is

different from user-chosen ones, because generation effect is applied when people gen-

erate their own passwords [135], while not the case if passwords are assigned to people.

Consequently, new methodologies might be required. Therefore, while it would be in-

teresting to explore the memorability of system-assigned passwords, it is beyond the

scope of this work.

5.4.2 Pilot Study

We observed a very high log-in success rate from the pilot study: 94.44% overall and

98.07% for simple condition. This might due to the fact that tasks were easy in our pilot

design (subjective rating of task difficulty was 4.6/10 on average), and thusly creating

a ceiling effect on our variables.

It is likely that password reuse made log-in tasks easier for participants according
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to our analysis. We even had pilot participants that used only one password for all

eight accounts. Reusing passwords also ignored our study design, in which we aimed

at exploring the multi-account interference of eight different accounts. Therefore, we

first disallowed entire password reuse for all accounts. In addition, we prevent the naive

partial reuse for accounts of the strong condition, by requiring the password created

has a minimum edit proportion of 0.25 with other accounts.

The completion rate of pilot study was also low (86%). Based on the mid-way

survey feedback from the pilot study, it is likely that participants sometimes did not

finish tasks immediately after reading the email, and then just forgot about it later on.

Therefore, we added a reminder function to each task in the formal study: sending a

reminder email to participants for each task that was still not complete after three hours.

As a result, the completion rate increased to 95% in formal study. Participants had

complained in the survey that emails of different tasks were bundled together because

they had the same title, making it difficult to differentiate tasks and know whether

each task was completed or not. Therefore, we modified it so that emails from different

accounts and tasks had unique title and content.

More importantly, we did observe that there exists such an effect of log-in frequency

and password condition on log-in success rate. In particular, accounts of the strong

condition have an overall higher log-in success rate than that of simple condition, and

tasks with lower frequency (e.g. seven-day-login ) have a lower success rate than ones

with a higher frequency. However, such effects are not observable for log-in duration.

5.4.3 Formal Study

Our study results shows that the log-in frequency has a strong effect on password

memorability, both in terms of a password and a single log-in task. In particular,

per-account log-in success rate fell to 70% from 90% when the frequency was reduced

to three days from one day (Figure 5.6a), which then remained largely flat for lower

frequencies. Such results suggested that the effect might primarily exist in higher

frequencies, and largely disappears once frequency reduces to several days per log-in.

Consequently, it means people remember the frequently-accessed accounts the best,
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but for accounts with lower log-in frequencies, different frequencies would not affect the

likelihood of them forgetting the password much. It also suggests that in future studies

we could further expand the range of our log-in frequency variable, to be even more

frequent such as multiple times per day, or less frequent such as once per two weeks.

The other variable, password condition, did not show effect on memorability. One

of the major design issues which might cause this was noticed from both the pilot

and formal studies: the password strength meter did not provide sufficient control

over password security. The reason is that they only allow control on the lower-bound

of password security: participants were asked to generate passwords with a password

meter score larger than the minimum requirement of each password condition. There is

no upper bound requirement, meaning that even for the simple condition participants

were free to generate complex passwords. This is understandable in real world scenarios

because their purpose is usually to prevent users generating weak passwords. However,

the purpose of our study was to enforce different levels of security for different password

conditions so that we can compare their effect on memorability. As a result, we found

passwords in different conditions were not necessarily different from each other in terms

of security. Therefore, it is important to have a proper control of upper-bound of

password security in our future design, while maintaining the ecological validity.

In addition, our design included eight distinct accounts, and assigned different con-

ditions to them based on the previous findings that people categorized their accounts

mentally [61]. Participants in our study were not informed that there existed differ-

ences of any kind for those accounts. Therefore, it is possible that participants did

not treat the eight accounts differently, and thusly generated similar passwords for all

accounts. One evidence was that our security estimates were similar between condi-

tions and across accounts. Another possible clue was that while our requirement of

meter score for simple condition was 0, half of the passwords in the simple condition

were scored 4 - the highest score of the password strength meter. Therefore, includ-

ing the subjective perception of each account and password as a factor in password

memorability could be one of the future studies.
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The behavior of password reuse also did not pose any effect on the password mem-

orability. Neither edit distance nor proportion had notable correlation with the log-in

success rate. However, in the pilot study, reuse metrics did have an effect on the log-

in success rate, that is smaller edit distances and proportions associated with higher

success rate. We postulate that the effect we observed from pilot study came from

naive reuse cases, because we disallowed that in the formal study. Naive reuse cases

included either reusing the entire password, or same password with minor modification.

Such results indicated that the effect of password reuse on password memorability is

limited to the cases of naive reuse. Considering password reuse is a common practice

in password management, it is useful to study the naive reuse cases in mode details.

For example, could there be a quantitative metric to compute the memorabilty given

the level of password reuse?

5.5 Summary

This chapter presented an experimental methodology to systematically examine factors

that influence password memorability. In addition, two studies were designed and

executed in an iterative fashion to study password memorability as well as refine the

experiment design.

We found that both log-in frequency and naive password reuse affected password

memorability, when log-in success rate was used as a metric. However, the effect of

password-related factors (password condition, security estimate, password characteris-

tics such as length) were found to be very limited. Our results provided initial results

for more future research to eventually quantify the memorability of passwords.
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Chapter 6

CONCLUSIONS

The fundamental topic that this thesis focused on is to understand issues of usable

security in mobile authentication experiences.

We first examined how the experience differed for mobile and traditional platforms.

Mobile-specific issues such as switching keyboard layouts altered participants’ behavior

and consequently the passwords generated. Our results suggest that it is necessary to

consider mobile platforms separately in terms of authentication design, instead of just

migrating the legacy design from traditional computers.

As the next step, our field study explored the strength of mobile-specific alternative

as an authentication scheme on mobile platforms. Free-form gesture passwords were

considered not only natural to touchscreen interactions from the aspect of form factors,

but also suitable for the fast and frequent mobile contexts. Our findings revealed that

the core advantage it carries is the speed: creating passwords and authenticating faster.

Saving several seconds is critical when the duration of mobile interactions are also a

matter of seconds sometimes.

Finally, we looked at a rarely-studied topic of passwords: quantifying the factors

of passwords memorability. In our results, frequency-related factors showed notable

effect. Surprisingly, our results indicated that password-related factors have limited

effect on memorability: long passwords or ones with a higher entropy estimate did not

necessarily have a lower log-in success rate. Such observations might be the key to

find the balance between security and memorability for passwords. As our two studies

were conducted in a relatively small scale, larger studies with a longer time frame are

necessary to confirm our findings.
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Appendix A

Memorability study

A.1 Application Screenshots

Figure A.1 and A.2 shows the sample screenshots of the web application we used in the

study.

A.2 Accounts

We have eight accounts, four were designed to be simple accounts, and other four were

strong accounts. The naming and description of the accounts were shown in Table A.1.

Name Type Description

Pacificx Bank Strong Online Banking account allows you to view your balance, withdraw or deposit cash.

YaMail Strong YaMail is the new email vendor that allows you to communicate easier and faster.

DealsMoon Simple DealsMoon has all the hot and popular deals that save you money!

FaceNote Strong THE world NO.1 social network site that let everybody knows what you are doing.

Artsy eCommerce Strong Start your business today.

Trut Weather Simple Provide you the daily-updated accurate weather of your place.

Old-fashion news Simple Your daily source of news.

Hifi Music Simple Streaming the music of best quality to everybody.

Table A.1: The account information of our memorability study. For some accounts we used

the description to help participants better understand the type of the acocunt.
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Figure A.1: A screenshot of our web application. It shows the creation interface for one of the

accounts.

Figure A.2: A screenshot of our web application. It shows the log-in interface for one of the

accounts.
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