
APPROXIMATE VERSIONS OF THE

ALTERNATING DIRECTION METHOD OF

MULTIPLIERS

By

YAO, WANG

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Operations Research

written under the direction of

Jonathan Eckstein

and approved by

New Brunswick, New Jersey

October, 2016

ABSTRACT OF THE DISSERTATION

Approximate versions of the alternating direction

method of multipliers

By YAO, WANG

Dissertation Director:

Jonathan Eckstein

Convex optimization is at the core of many of today’s analysis tools for large datasets,

and in particular machine learning methods. This thesis will develop approximate

versions of the alternating directrion of multipliers (ADMM) for the general setting

of minimizing the sum of two convex functions.

The alternating direction method of multipliers is a form of augmented Lagrangian

algorithm that has experienced a renaissance in recent years due to its applicability

to optimization problems arising from “big data” and image processing applications,

and the relative ease with which it may be implemented in parallel and distributed

computational environments.

There are two fundamental approaches for proving the convergence of the ADMM,

each based on a different form of two-way splitting, that is, expressing a mapping as

the sum of two simpler mappings. The first approach is based on Douglas-Rachford

operator splitting theory, and yields considerable insight into the convergence of the

ii

ADMM. The second convergence proof approach is at its core based on the Lagrangian

splitting analysis. We present three new approximate versions of ADMM based on

both convergence analyses, all of which require only knowledge of subgradients of

the subproblem objectives, rather bounds on the distance to the exact subproblem

solution. One version, which applies only to certain common special cases, is based on

combining the operator splitting analysis of the ADMM with a relative-error proximal

point algorithm of Solodov and Svaiter. A byproduct of this analysis is a new, relative-

error version of the Douglas-Rachford splitting algorithm for monotone operators.

The other two approximate versions of the ADMM are more general and based on

the Lagrangian splitting analysis of the ADMM: one uses a summable absolute error

criterion, and the other uses a relative error criterion and an auxiliary iterate sequence.

We experimentally compare our new algorithms to an essentially exact form of

the ADMM and to an inexact form that can be easily derived from prior theory (but

again applies only to certain common special cases). These experiments show that our

methods can significantly reduce total computational effort when iterative methods

are used to solve ADMM subproblems.

iii

Acknowledgments

First and foremost I would like to express the deepest appreciation to my academic

father, Professor Jonathan Eckstein for his constant support and encouragement

in the past six years. I am truly grateful for his contributions of time, ideas and

funding to finish my Ph.D. Professor Eckstein played the most fundamental role in

my study and without his patience and openness, this thesis would never have been

possible. He helped me come up with the thesis topic and guided me through the

most difficult times in my research. He gave me freedom to pursue various projects,

summer internships or personal affairs without objection. He always makes himself

available to me no matter how busy he is and provides insightful discussions about

my research as well as other related results or ideas that could be helpful. His server

is my primary resource for completing my computing tasks, he also makes great effort

on proofreading and editing my papers. In addition to immense knowledge on my

research topic, he is also an expert in many other areas include linguistics, music and

food. It is an pity that I no longer can find the piece of note paper from our very first

meeting, on which he drew an illustrative figure and said something like “...(gradient

iteration, the special case of proximal point method) it seems impossible to solve,

right? ...”, and that was exactly the moment when this journey started.

I gratefully acknowledge the funding sources that made my Ph.D. work. I was

funded by university fellowships for my first two years and by National Science Foun-

dation grant CCF-1115638 for three years, once again thanks to my advisor Jonathan

Eckstein. I also have to thank the members of my Ph.D. committee, Professors An-

drzej Ruszczyński, Adi Ben-Israel, Farid Alizadeh and Kristin Dana for their

helpful advice and suggestions about my research.

iv

I am very thankful to Professors András Prékopa and Endre Boros. Professor

Prékopa first introduce me to the world of operations research, and I still think fondly

of my time as an student in his class. His enthusiasm and love for teaching is very im-

pressive. Professor Boros was very helpful in providing advice on my graduate school

career many times during my first two years at RUTCOR. I also thank RUTCOR staff

Lynn Agre, Clare Smietana, Terry Hart and Katie D’Agosta for their kind

support. They have all been so friendly and personable, making me feel like a family

member of RUTCOR. Dozens of people have helped and taught me immensely at

Rutgers, I would like to express my appreciation to them. Special acknowledgments

go to my college mathematics instructors: Professors Richard Falk, Abbas Bahri,

Michael Beals, Butler Terence, Lisa Carbone, Michael Saks, Eugene Speer,

Michael Vogelius, Richard Wheeden, Jeffry Kahn, Daniel Ocone, Van Vu,

Ted Petrie, Wolmer Vasconcelos, Richard Gundy, Regina Liu, and William

Edward Strawderman. They gave me a good foundation in both theoretical and

applied mathematics, which are essential for building my research background.

My time at RUTCOR was made enjoyable in large part due to many friends.

I am grateful for time spent in the old RUTCOR building with Emre Yamangil,

Jinwook Lee, Tsvetan Asamov, Aritanan Gruber, Mariya Naumova, Anh

Ninh, Matthew Oster, Kunikazu Yoda, Minh Pham, Svetlana Soloveva,

Yu Du, Mohammad Ranjbar, Ai Kagawa and Gyorgy Matyasfalvi (or just

George). We raised about two hundreds dollar to buy a Pingpong table and played

many games in the lounge. I will forever remember our times of study and discussion.

It was such a pleasurable time when we had lunch together at Busch campus center

or Noodle Gourmet, and when we went to Quick Check for coffee and snacks late at

night after a long study sessions.

I also thank my friends for providing support and friendship that I needed. I

especially thank Tong Jin, Yun Jiang, Ou Liu, Bin Guo, Ping Lu, Lu Wang,

v

Qibing Zhou, Jian Li, Ziqing Duan, Jinjun Zhuge for being supportive through-

out my time at Rutgers and for discussing various interesting subjects that are related

to their own research. I own a great debt of gratitude to George Brown and his

mother Francis Brown. George helped me to settle in when I first came to U.S. He

educated me on almost everything about his country and took me to many places.

Francis was a nurse of U.S. Army during World War II. I learned form her why they

are said to come from “the greatest generation”.

I would like to thank my mother Lina Yao for raising me with lots of love and

hard work. My mother sacrificed so much of her life for me. She taught me the

most important things in my life and has been an outstanding inspiration to me.

As a single mother, she experienced tremendous difficulties in the past thirty years.

She came to U.S. with extraordinary courage, and guided me to where I am today.

Without her motivation and strength I would have never had the courage to overcome

the adversities I have faced. She is the main reason for many things I have done, to

make her proud.

I am deeply thankful to my dear wife Yiming Luo for her love, encouragement

and sacrifice. She worked very hard during my Ph.D. years, and gave birth to my

son and daughter. In addition, Yiming has been a true and great supporter and has

unconditionally loved me during my good and bad times. She had faith in me and my

intellect when I struggled. These past several years have not been an easy ride, both

academically and personally. What we both have learned about life, strengthens our

commitment to each other. I truly thank Yiming for standing by my side, even when

I was irritable and depressed. Yiming, my son and daughter have cherished with me

every great moment, they are the most basic sources of my life energy. Special thanks

go to my parents-in-law Xiaomei Luo and Benhong Luo: their support has been

unconditional all these years.

I finish this acknowledgments with my maternal grandmother Shumin Zhang,

whose role in my life was and remains immense. There are no words to convey how

vi

much I love her. She and my maternal grandfather Chengwen Yao never abandoned

me. Only when being with them, could I enjoy the innermost ultimate peace.

Thank you all.

Yao, Wang

Rutgers University

April, 2016

vii

Dedication

I dedicate this thesis to my family,

my wife, Yiming, my mother, Lina,

my beloved Vincent and Kaileen,

and loving memory of my maternal grandmother, Shumin Zhang (1930 - 2007)

for their constant support and unconditional love.

I love you all dearly.

viii

Table of Contents

Abstract . ii

Acknowledgments . iv

Dedication . viii

1. Introduction . 1

1.1. Our main contributions . 3

1.2. Thesis outline . 6

2. Literature Review . 7

2.1. Proximal alternating direction methods 8

2.2. Logarithmic-quadratic proximal ADMM 11

3. Formalizing Approximate Subproblem Solution 14

4. Approximate ADMM Algorithms Derived through Operator Split-

ting Analysis . 17

4.1. A subgradient-based application of [29, Theorem 8] 18

4.2. Background: a relative-error proximal point algorithm 20

4.3. A relative-error variant of Douglas-Rachford splitting 23

4.4. Deriving a partially inexact ADMM from the partially inexact DR

splitting method . 30

5. Approximate ADMM Algorithms Derived from Lagrangian Splitting 37

ix

5.1. A parametric conjugate duality framework 37

5.2. Analyzing the exact ADMM by Lagrangian splitting 43

5.3. Common elements of the Lagrangian splitting analyses 53

5.4. Approximate ADMM with absolute summable error criteria 62

5.5. An approximate ADMM with relative error criteria 72

5.6. Partially inexact ADMM with relative error criteria 79

5.7. Complete form of relative-error algorithm with both minimizations in-

exact . 81

6. Numerical Tests . 88

6.1. Comparison algorithms . 88

6.2. Termination criteria and algorithm parameters 90

6.2.1. LASSO regression . 91

6.2.2. L1-regularized logistic regression 96

6.2.3. Sparse inverse covariance selection 98

7. Conclusion . 106

References . 108

x

1

Chapter 1

Introduction

Many machine learning models and signal processing problems are finding parame-

ters through minimizing the objectieriantve function. Convex optimization plays the

critical role in developing statistical computing algorithms. Let x ∈ Rn denote the

parameter, A ∈ Rm×n be the data matrix and b ∈ Rm represents the response vec-

tor, a general convex model fitting problem very often can be written in the form of

minimizing the sum of two terms:

min l(x;A, b) + λr(x) (1.1)

where l : Rm → R is a convex loss function, such as l1, l2 hinge or logistic loss, while

r is the convex regularization function which enforces a certain property in x and

λ > 0 is a positive regularization parameter. A common example of l is the squared

Euclidean distance and if r(x) = ‖x‖1 or the lasso penalty, which usually is used

to prompt the sparsity in parameter x, then immediately we obtain the LASSO [79]

(least absolute shrinkage and selection operator)

min
x∈Rn

‖Ax− b‖2 + λ ‖x‖1 . (1.2)

Replacing the lasso penalty with Tikhonov regularization or ridge penalty, that is

r(x) = ‖x‖2
2, the consequence is called ridge regression [2, 24, 77]

min
x∈Rn

‖Ax− b‖2 + λ ‖x‖2
2 . (1.3)

Other common examples for r include nuclear norm [84, 89], mixed-norm [91] and

total variation [16,63,82].

2

In many modern applications, the datasets are usually in high dimensions and

contain huge number of training examples and it is challenging to directly solve the

optimization problem like 1.1. Another characteristic these large scale applications

share is that the data is often stored in a distributed manner, thus it is very important

to develop algorithms that capable of handling the complexity of data and suitable to

process huge datasets in parallelized or distributed manner. The alternating direction

method of multipliers (ADMM) [34, 37] is a simple and yet powerful decentralized

algorithms that is well suited for distributed convex optimization problems [15].

To illustrate how ADMM works, consider a general convex optimization problem

min
x∈Rn

f(x) + g(Mx) (1.4)

where f : Rn → (−∞,+∞] and g : Rm → (−∞,+∞] are closed proper convex

functions and M is a m× n matrix. An equivalent formulation is

min f(x) + g(z)

s. t. Mx = z

x ∈ Rn, z ∈ Rm

(P)

Let p ∈ Rm denote the Lagrangian multiplier attached to the constraint Mx = z, the

augmented Lagrangian of P is

Lc (x, z, p) = f(x) + g(z) + 〈p,Mx− z〉+ c
2
‖Mx− z‖2 (1.5)

where c > 0 is a positive scalar. The ADMM for solving (P) consists of the recursions

xk+1 ∈ Arg min
x∈Rn

{
f(x) + g(zk) +

〈
pk,Mx− zk

〉
+
c

2

∥∥Mx− zk
∥∥2
}

(1.6)

zk+1 ∈ Arg min
z∈Rm

{
f(xk+1) + g(z) +

〈
pk,Mxk+1 − z

〉
+
c

2

∥∥Mxk+1 − z
∥∥2
}

(1.7)

pk+1 = pk + c
(
Mxk+1 − zk+1

)
(1.8)

In words, ADMM works as follows. It takes the form of block decomposition proce-

dure, so that the solutions of smaller subproblems (1.6) and (1.7) are used to find

3

global solution of the larger problem. At iteration k, for fixed multiplier pk and zk,

the new point xk+1 is obtained as the exact minimizer of the augmented Lagrangian

with respect to x. Then in a similar fashion, the x component is fixed at xk+1, and

the augmented Lagrangian is minimized with respect to z to obtain zk+1. Finally the

Lagrangian multipliers pk+1 is updated in a simple manner. The process is repeated

until the overall convergence. A key feature of ADMM is that the variables x and z

are updated in a Gauss-Seidel style, i.e., x is updated while z is fixed then the new

value of x is used to find values for z.

Removing constant terms from (1.6) to (1.8), we get the following equivalent

recursion

xk+1 ∈ Arg min
x

{
f(x) +

〈
pk,Mx

〉
+
c

2

∥∥Mx− zk
∥∥2
}

(1.9)

zk+1 ∈ Arg min
z

{
g(z)−

〈
pk, z

〉
+
c

2

∥∥Mxk+1 − z
∥∥2
}

(1.10)

pk+1 = pk + c
(
Mxk+1 − zk+1

)
. (1.11)

Throughout this paper, we refer ADMM to the recursion (1.9) to (1.11). To avoid

pathological special cases, we make the following standing assumption:

Assumption 1. Problem (P) possesses a KKT point, that is, there exists at least

one (x∗, z∗, p∗) ∈ Rn × Rm × Rm such that

−M>p∗ ∈ ∂f(x∗) p∗ ∈ ∂g(z∗) Mx∗ = z∗.

It is easily seen that for any KKT point (x∗, z∗, p∗), then x∗ is a solution of (P).

1.1 Our main contributions

This paper concerns situations in which at least one of the subproblems (1.9) or (1.10)

is solved by some kind of iterative method, either because no simple solution formula

exists, or the problem is too high-dimensional for such a formula to be used practically

(for example, if a solution formula exists, but it involves factoring a very large matrix).

4

In such cases, it seems wasteful to expend great effort solving (1.9) to high precision

early in the solution process, when the values of pk and zk may be far from their final

values; a similar observation applies to (1.10). It is therefore natural to ask whether

it is possible, without disrupting the convergence properties of the algorithm, to

solve the subproblems approximately and gradually increase their precision. It has

been known since [29] that the answer to this question is positive. However, the

subproblem approximation criteria in that result, which we will here refer to as the EB

criteria, involve the distances between the approximate solutions and the respective

true solutions to each subproblem. In the case that M has full column rank (that

is, kerM = {0}), the EB criteria can be used to derive approximation criteria based

on more readily testable quantities, namely subgradients of the objective functions

of the subproblems at the current trial solutions; see Section 4.1 below. In general,

however, upper bounds on the distances to the optimal subproblem solutions may not

be available. In this paper, we develop approximate versions of the ADMM whose

approximation criteria use only subgradients, but apply in the general case.

Another potential drawback of the EB criteria is that they are based on allowable

error sequences that appear in the analysis as external parameters. The associated

convergence theory does not provide any direct guidance as to how to select these

infinite sequences of parameters, other than requiring that they be nonnegative and

summable. While some approximate proximal algorithms use such exogenous error

sequences, others instead use “relative” error criteria which have only a single param-

eter that controls the subproblem error proportionally to other quantities occurring

naturally in the algorithms. For abstract proximal methods, this idea began with [75]

and was followed by [76] and a variety of generalizations. For the classical (non-

alternating-direction) method of multipliers, a similar error criterion was developed

in [30]. In this paper, two of the error criteria we develop are relative, using ideas

from [76] and [30], respectively. The third new method we develop uses absolute

5

summable error criteria with formally exogenous parameter sequences, as in the orig-

inal EB criteria. However, our new absolute approximation criteria do not require M

to have full column rank, or need any other form of strong convexity for the x mini-

mization, and are therefore easier to verify in general. Their analysis uses techniques

inspired by [28].

Convergence of the ADMM has traditionally been proven in two related but dif-

ferent ways. One approach, dating back to [34], uses the monotonicity of the (convex-

concave) subgradient of the Lagrangian function of (P), splitting the Lagrangian into

the sum of two convex-concave functions; we refer to this approach as Lagrangian split-

ting. The other approach, dating back to [37], expresses the subgradient of the dual

function of (P) as the sum of two monotone operators and shows that the ADMM is

equivalent to applying a Douglas-Rachford operator splitting method [57] to this pair

operators. The derivation of our first new approximate ADMM algorithm is based on

this operator-splitting analysis: we start by reformulating Douglas-Rachford opera-

tor splitting as an application of the proximal point algorithm [71] (PPA) as shown

possible in [29]; see also [51]. We then apply the relative-error proximal algorithm

of [76] to this reformulation to obtain a new relative-error version of DR splitting,

which in turn leads to a relative-error variant of the ADMM. This analysis, covered in

Chapter 4, approaches the problem of creating an approximate ADMM by assembling

existing theoretical building blocks in a novel way.

In order to be practical, the algorithm we derive through operator splitting re-

quires that it be possible to solve the second ADMM subproblem (1.10) quickly and

exactly, and therefore it is applicable when only the x minimization (1.9) requires an

iterative solution method. This situation is extremely common, however. A second

potential drawback of our operator-splitting-derived algorithm is that it essentially

requires that the matrix M be the identity, which is also common. The two other

new methods we derive in this paper, however, have neither of these potential draw-

backs: there is no requirement that M be the identity, and both subproblems may

6

be solved approximately if need be. Rather than assembling “modules” from prior

results as in our operator splitting analysis, we derive these methods by modifying

the original Lagrangian-splitting convergence proof of [34] to incorporate ideas used

to develop approximate versions of the classical (non-alternating-direction) method

of multipliers. For one method, we augment the Lagrangian-splitting ADMM conver-

gence proof using techniques developed in [28]: this approach results in a method with

absolute summable error criteria, but based on subproblem subgradients rather than

the distance to the exact solution. For our second method, we instead use techniques

developed in [30], resulting in a method with a relative error criterion which incor-

porates an (easily maintained) auxiliary sequence not present in the exact version of

the algorithm.

1.2 Thesis outline

The thesis is organized as follows. We begin in Chapter 2 with a brief review of existed

inexact traditional (non-alternating) Lagrangian methods and inexact alternating di-

rections algorithms as well as related error criteria. This chapter is intended mainly for

background and can be skimmed. Chapter 3 is dedicated to mathematically model the

approximate solution processes for the ADMM subproblems. Chapter 4 is mainly used

to derive approximate ADMM through exploiting the relationship between ADMM,

Douglas-Rachford splitting, and the proximal point algorithm. In Section 4.1, we

first present an inexact ADMM that is a direct application of [29, Theorem 8], then

a partially inexact ADMM will be given in 4.4. In Chapter 5 we develop two new ap-

proximate ADMM algorithms by modifying the Lagrangian splitting analysis. These

methods are given in Sections 5.4 and 5.5, respectively, with background material

in Section 5.1. Chapter 6 presents some numerical experiments on representative l1

minimization problems, establishing the potential utility of our new algorithms.

7

Chapter 2

Literature Review

ADMM has been extensively studied in recent years due to its ease of applicability

and empirical performance. ADMM was first proposed in 1970’s by Glowinski and

Marroco [38, p. 69] and Gabay and Mercier [36]. It stemmed from the augmented

Lagrangian method (also known as the method of multipliers) [47,67] dating back to

late 1960’s, and its global convergence was soon established in the literature [29,34,37];

also see a more recent tutorial paper [31] for a relatively accessible version of the

convergence proof. As reviewed in the comprehensive paper [15], ADMM can be a

natural fit in the field of large scale distributed optimization. ADMM has been shown

to have an O(1/k) rate of convergence for convex problems [44, 45, 60, 80], where k

stands for the number of iterations. A rate of O(1/k2) has been shown for a modified

version [39]. When the objective functions are strongly convex and Lipschitz, ADMM

has been show to have a linear convergence rate [21,48].

The main topic of this dissertation is approximate versions of ADMM. The first

approximate ADMM dates back to [29], in which Eckstein and Bertsekas developed

an approximate version of ADMM with absolute summable error criteria. Specifically,

let {εk}∞k=0 ⊂ [0,∞) and {τk}∞k=0 ⊂ [0,∞) be two infinite sequences of error tolerances

such that
∑∞

k=0 εk < ∞ and
∑∞

k=0 τk < ∞. Then [29] shows that one may replace

the exact minimizations 1.6 and 1.7 with the approximation criteria∥∥∥xk+1 − arg min
{
f(x) +

〈
pk,Mx

〉
+
c

2

∥∥Mx− zk
∥∥2
}∥∥∥ ≤ εk+1 (2.1)∥∥∥zk+1 − arg min

{
g(z)−

〈
pk, z

〉
+
c

2

∥∥Mxk+1 − z
∥∥2
}∥∥∥ ≤ τk+1 (2.2)

In practice, these conditions may be difficult to verify since they involve bounding the

8

distance to the true minimizer of the subproblems, which are unknown. The other

drawback of these error criteria is that there is no explicit guidance for selecting the

error tolerances sequences {εk} and {τk}.

2.1 Proximal alternating direction methods

In [18], Chen and Teboulle gives an inexact predictor corrector proximal multiplier

with summable error criteria that involves a prediction step (2.3) and a correction

step (2.6). The algorithm they proposeded can be written as

qk+1 = pk + ck(Mxk − zk) (2.3)

xk+1 = arg min

{
f(x) +

〈
qk+1,Mx

〉
+

1

2ck

∥∥x− xk∥∥2
}

(2.4)

zk+1 = arg min

{
g(z)−

〈
qk+1, z

〉
+

1

2ck

∥∥z − zk∥∥2
}

(2.5)

pk+1 = pk + ck(Mxk+1 − zk+1). (2.6)

Here {pk} and {qk} are two different sequences of estimates for the Lagrange multi-

pliers. To solve (2.4) and (2.5) inexactly, the following error criteria are proposed, for

all k, let εk, τk ≥ 0 and
∑∞

0

√
εk <∞,

∑∞
0

√
τk <∞ such that∥∥∥∥xk+1 − arg min

{
f(x) +

〈
qk+1,Mx

〉
+

1

2ck

∥∥x− xk∥∥2
}∥∥∥∥ ≤ εk+1 (2.7)∥∥∥∥zk+1 − arg min

{
g(z)−

〈
qk+1, z

〉
+

1

2ck

∥∥z − zk∥∥2
}∥∥∥∥ ≤ τk+1 (2.8)

Since this method also uses absolute summable error criteria, it suffers from the same

drawbacks we have pointed out for such criteria (however, the subproblem objectives

are necessarily strongly convex, which aids in bounding the distance to the true so-

lution). Li [55] also adopted this kind of two-step structure and developed a more

complicated algorithm. The first step is called the prediction step, and uses the

method developed in [18] to produce a trial triplet (predictor) (x̃k, z̃k, p̃k) of the new

iterate, and then the second step corrects the predictor with a steepest-descent-class

9

step to generate the new iterate (xk+1, zk+1, pk+1). However, there is no computa-

tional evidence showing that this algorithm actually outperforms the aforementioned

algorithm in [18]. In [19, 40, 65], similar methods that consisting of projection and

contraction steps are proposed. For the sake of simplicity, we assume both f and g are

differentiable and their gradients are denoted by ∇f and ∇g. We take the algorithm

found in [19] for example, for given xk ∈ X , zk ∈ Z, the prediction step computes a

trial iterate (x̃k, z̃k, p̃k) by

x̃k = PX
(
xk − βk

[
∇f(xk) +M>pk − cM>(Mx− zk)

])
(2.9)

z̃k = PZ
(
zk − βk

[
∇g(zk)− pk + c(Mx̃k − z)

])
(2.10)

p̃k = pk + c(Mx̃k − z̃k) (2.11)

with the error criteria:

βk
∥∥∇f(xk)−∇f(x̃k)

∥∥ ≤ ν
∥∥xk − x̃k∥∥

βk
∥∥∇g(zk)−∇g(z̃k)

∥∥ ≤ ν
∥∥zk − z̃k∥∥ ,

where 0 < ν < 1 and {βk} > 0 is bounded. When X = Rn and Z = Rm, then the

subproblems (2.9) and (2.10) are equivalent to

x̃k ≈ arg min

{
f(x) +

〈
Mx, pk

〉
+
c

2

∥∥Mx− zk
∥∥2

+
1

2βk

∥∥x− xk∥∥2
}

z̃k ≈ arg min

{
g(z)−

〈
z, pk

〉
+
c

2

∥∥Mx̃k − z
∥∥+

1

2βk

∥∥z − zk∥∥} .
The subsequent correction step moves along a descent direction towards the set of

optimal solutions, but since our main concern here is with approximation criteria, we

do not give the details of the correction step here. This kind of algorithm appears to

require extra computational effort, but still uses traditional error conditions.

Among the family of alternating directions algorithms, and related to the algo-

rithms just discussed, the proximal ADMM was first proposed by Eckstein in [27].

This method regularizes the ADMM subproblems with primal proximal terms, and

10

takes the form

xk+1 = arg min
{
f(x) +

〈
pk,Mx

〉
+
c

2

∥∥Mx− zk
∥∥2

+
r

2

∥∥x− xk∥∥2
}

(2.12)

zk+1 = arg min
{
g(z)−

〈
pk, z

〉
+
c

2

∥∥Mxk+1 − z
∥∥+

s

2

∥∥z − zk∥∥2
}

(2.13)

pk+1 = pk + c
(
Mxk+1 − zk

)
(2.14)

where c, r, s > 0. We denote by xk+1
exact (resp., zk+1

exact) the exact minimizer of (2.12)

(resp., (2.13)), and use xk+1 (resp., zk+1) for an approximate solution to (2.12)

(resp., (2.13)). Based on (2.12)-(2.14), He [43], proposed an inexact proximal ADMM

in which the proximal parameters r, s and the penalty parameter c are replaced with

some sequences of both upper and lower bounded positive definite matrices {Rk},

{Sk} and Hk respectively. The approximate solutions xk+1, zk+1 are obtained by

absolute summable error criteria∥∥xk+1 − xk+1
exact

∥∥ ≤ νk
∥∥zk+1 − zk+1

exact

∥∥ ≤ νk, (2.15)

where {νk} is a nonnegative sequence such that
∑
νk <∞. Yuan [86] further relaxed

these error criteria to ∥∥xk+1 − xk+1
exact

∥∥ ≤ νk
∥∥xk − xk+1

∥∥ (2.16)∥∥zk+1 − zk+1
exact

∥∥ ≤ νk
∥∥zk − zk+1

∥∥ , (2.17)

where
∑
ν2
k < ∞. Compared with (2.15), the error criteria (2.17) is relative in

a sense that the terms
∥∥xk − xk+1

∥∥ and
∥∥zk − zk+1

∥∥ are “self-adapted”. However,

these conditions still involves the unknown exact minimizers, so they are not always

practical. Furthermore, the empirical performance of the proximal ADMM is not

as good as the standard ADMM. For applications of the proximal ADMM, see for

example [62,82,90]. Recently, Shen [74] further developed similar error conditions for

proximal ADMM using the gradients of the (2.12) and (2.13). Suppose we define

ξk+1
x ∈ ∂

{
f(x) +

〈
pk,Mx

〉
+
c

2

∥∥Mx− zk
∥∥2

+
r

2

∥∥x− xk∥∥2
}
x=xk+1

ξk+1
z ∈ ∂

{
g(z)−

〈
pk, z

〉
+
c

2

∥∥Mxk+1 − z
∥∥+

s

2

∥∥z − zk∥∥2
}
z=zk+1

.

11

Then the absolute error criteria proposed in [74] can be expressed by

∥∥ξk+1
x

∥∥ ≤ µk+1

∥∥ξk+1
z

∥∥ ≤ νk+1

with
∑∞

0 µk+1 <∞ and
∑∞

0 νk+1 <∞, and the relative error criteria in [74] are

∥∥ξk+1
x

∥∥ ≤ µk+1

∥∥xk+1 − xk
∥∥ ∥∥ξk+1

z

∥∥ ≤ νk+1

∥∥zk+1 − zk
∥∥

with
∑∞

0 µpk+1 <∞ and
∑∞

0 νpk+1 <∞, and p = 1 or 2. These criteria are somewhat

similar to those proposed in this disseration, but apply to the proximal ADMM, not

the standard ADMM.

2.2 Logarithmic-quadratic proximal ADMM

The combination of the ADMM and logarithmic-quadratic proximal regularization

was first proposed in [5] and has been extensively studied in many papers, such

as [3, 4, 42,53,78,88]. The LQP ADMM takes forms of

xk+1 = arg min
{
f(x) +

〈
pk,Mx

〉
+
c

2

∥∥Mx− zk
∥∥2

+ rdk(x, x
k)
}

(2.18)

zk+1 = arg min
{
g(z)−

〈
pk, z

〉
+
c

2

∥∥Mxk+1 − z
∥∥2

+ sdk(z, z
k)
}

(2.19)

pk+1 = pk + c(Mxk+1 − zk+1) (2.20)

where c, r, s are positive scalars and for any z ∈ RN
++, dk(·, ·) is defined by

dk(u
′, u) =

∑N

j=1

[
1
2
(u′j − uj)2 + µk(u

2
j log

uj
u′j

+ u′juj − u2
j)
]
, if u′ ∈ RN

++

+∞ otherwise

and for any u′ ∈ RN
++, we have

∇u′dk(u
′, u) = (u′ − u) + µk

[
u− U2(u′)−1

]
where {µk} ⊂ (0, 1), U := diag(u1, u2 . . . , uN) ∈ RN×N and (u′)−1 is a vector whose

j-th element is 1/z′j. For any u′, u ∈ RN
++, we have d(u′, u) ≥ 1

2
‖u′ − u‖2 [5] and

12

d(u′, u) = 0 if and only if u′ = u. A worst-case O(1/k) convergence rate for LQP

ADMM was established in [78], and more recent convergence analyses can be found

in [54]. Inexact versions of LQP ADMM with similar error criteria to those of the

proximal ADMM have also been developed. We use xk+1 and zk+1 to denote the

approximate solutions of subproblems (2.18) and (2.19) respectively, with exact min-

imizers being denoted by xk+1
exact and zk+1

exact. The inexact LQP ADMM proposed in [11]

uses the following error criteria:

∥∥xk+1 − xk+1
exact

∥∥ ≤ ∥∥xk − xk+1
∥∥ ∥∥zk+1 − zk+1

exact

∥∥ ≤ ∥∥zk − zk+1
∥∥ ,

where {νk} is a nonnegative sequence such that
∑∞

k=0 ν
2
k <∞. One approximate LQP

ADMM proposed in [17] uses the following scheme: obtain xk+1 and ξk+1
x through

solving the variation inequality

f(x)− f(xk+1)

+ (x− xk+1)>
{
−M>

[
pk − c(Mxk+1 − zk)

]
+ r∇d(xk+1, xk) + ξk+1

x

}
≥ 0

and obtain zk+1 and ξk+1
z by solving

g(z)− g(zk+1)

+ (z − zk+1)>
{
−
[
pk − c(Mk+1 − zk+1)

]
+ s∇d(zk+1, zk) + ξk+1

z

}
≥ 0,

where ξk+1
x and ξk+1

z satisfy the approximation criteria

∥∥ξk+1
x

∥∥ ≤ νkr
√

2(1 + µk)
∥∥xk+1 − xk

∥∥∥∥ξk+1
z

∥∥ ≤ νks
√

2(1 + µk)
∥∥zk+1 − zk

∥∥
and the requirements for {µk} and {νk} are tthat 0 < µk < 1 − 2νk, νk ≥ 0 and∑∞

k=0 νk <∞. In [9, 10, 12–14], approximate LQP ADMM methods with prediction-

correction steps for solving variational inequalities with separable structure were pro-

posed. Although their correction steps are different, these algorithms’ error criterion

13

for (2.18) and (2.19) are same: let

ξk+1
x := ∂x

{
f(x) +

〈
pk,Mx

〉
+
c

2

∥∥Mx− zk
∥∥2

+ rdk(x, x
k)
}
x=xk+1

ξk+1
z := ∂z

{
g(z)−

〈
pk, z

〉
+
c

2

∥∥Mxk+1 − z
∥∥2

+ sdk(z, z
k)
}
z=zk+1

.

Then the error criteria can be expressed as

∥∥(1 + µkr)ξ
k+1
x + (1 + µk)sξ

k+1
z

∥∥2 ≤ 1− µk
1 + µk

η2
∥∥(xk, zk)− (xk+1, zk+1)

∥∥2
,

where {µk} ⊂ (0, 1) and η ∈ (0, 1).

14

Chapter 3

Formalizing Approximate Subproblem Solution

In order to formalize our methods clearly, we present a mathematical model of the

approximate solution processes for the subproblems (1.9) and (1.10). All of our

methods will use the following assumption:

Assumption 2. To approximately solve (1.9), we assume the existence of some map-

ping F : Rm×Rm×R++×Rn×N→ Rn×Rn such that if we let (xl, yl1) = F(p, z, c, x̄, l),

we have that

lim
l→∞

yl1 = 0 (∀ l ∈ N) yl1 ∈ ∂x
[
f(x) + 〈p,Mx〉+ c

2
‖Mx− z‖2]

x=xl
.

The idea behind this definition is that F(p, z, c, x̄, l) is the lth iterate produces by the

x-subproblem solution procedure with penalty parameter c, the Lagrange multiplier

estimate pk equal to p, and zk = z, starting from the solution estimate x̄. So, to solve

the subproblem (1.9), we would take iterates of the form (xk,l, yk,l1) = F(pk, zk, c, xk, l)

for increasing l until obtaining a suitably small yk,l1 . The “starting point” argument

x̄ is intended to model the customary computational practive of “warm-starting”

iterative subroutines from the value obtained at the previous iteration, but we do not

require this information to be used in any specific way. For example, F is free to

simply ignore the x̄ argument.

Assumption 2 will suffice in cases for which we assume that the second subprob-

lem (1.10) may be solved exactly. However, we also allow for the case that both (1.9)

and (1.10) are sufficiently difficult to merit iterative solution, in which case we also

need the following assumption:

15

Assumption 3. To approximately solve (1.10), we assume the existence of some

mapping G : Rm × Rn × R++ × Rm × N → Rm × Rm such that if we let (zl, yl2) =

G(p, x, c, z̄, l), we have that

lim
l→∞

yl2 = 0 (∀ l ∈ N) yl2 ∈ ∂z
[
g(z)− 〈p, z〉+ c

2
‖Mx− z‖2]

z=zl
.

Similarly to the previous assumption, G(p, x, c, z̄, l) models the lth iterative approx-

imate solution to the problem of minimizing g(x) − 〈p, z〉 + c
2
‖Mx− z‖2, with the

starting point z̄. The function G may use the starting point information z̄ in an

arbitrary way, which may include simply ignoring it.

In cases for which either (1.9) or (1.10) is easily solved exactly, we may respec-

tively simply take F or G as “jumping” immediately to the exact solution and a zero

subgradient for l = 1, and simply returning the same information for larger values of

l. In the case that it is easy to compute an exact solution of (1.10), for example, we

may take

G(p, x, c, z̄, l) =
(

arg min
z∈Rm

{
g(z)− 〈p, z〉+ c

2
‖Mx− z‖2 }, 0) ∀ l ∈ N,

although in practice it should not be necessary to evaluate G(p, x, c, z̄, l) for l > 1, an

exact solution to the subproblem already having been calculated.

We close this section by establishing some properties of the sequences {xl} and

{zl} generated by F and G respectively. To do so, we first prove a convex-analytic

lemma:

Lemma 4. Let h : Rn → R ∪ {+∞} be closed proper convex, and let {xl}, {yl}

be sequences in Rn such that yl ∈ ∂h(xl) for all l and yl → 0. Then if the set of

minimizers of h is nonempty and bounded, {xl} must be bounded, with all its limit

points being minimizers of h. If h has a unique minimizer, then {xl} converges to

that minimizer.

Proof. By [69, Theorem 27.1(d)], h having a nonempty bounded set of minimizers is

equivalent to 0 ∈ int domh∗, where h∗ denotes the convex conjugate of h. By [69, The-

orem 23.4], we than have 0 ∈ int dom ∂h∗. By the Rockafellar-Veselý theorem [68], the

16

maximal monotone point-to-set map ∂h∗ must then be locally bounded at 0, mean-

ing that for some ε > 0, the set S(ε) = {x ∈ Rn | ∃ y ∈ Rn : x ∈ ∂h∗(y), ‖y‖ < ε} is

bounded. By [69, Theorem 23.5], S(ε) = {x ∈ Rn | ∃ y ∈ Rn : y ∈ ∂h(x), ‖y‖ < ε},

so the convergence of {yl} to zero implies that {xl} is bounded. If we consider any

limit point x∞ of {xl}, with xl →L x∞ for some infinite index sequence L, then we

have yl →L 0 and hence by the closure property of the maximal monotone operator

∂h, we have 0 ∈ ∂h(x∞), and x∞ must be a minimizer of h. In the case that that h

has a unique minimizer x̄, we then have that {xl} is a bounded sequence whose only

possible limit point is x̄, so it must converge to x̄.

This lemma has the following immediate consequences.

Lemma 5. If the set of minimizers of f(x)+〈p,Mx〉+ c
2
‖Mx− z‖2 is bounded, then

the sequence {xl} generated by (xl, yl1) = F(p, z, c, x̄, l) with F as in Assumption 2

must be bounded. If the minimizer of f(x) + 〈p,Mx〉 + c
2
‖Mx− z‖2 is unique, {xl}

must converge to it.

Proof. Immediate from Lemma 4, setting h(x) = f(x) + 〈p,Mx〉+ c
2
‖Mx− z‖2.

Lemma 6. The sequence generated by (zl, yl2) = G(p, x, c, z̄, l), with G as in Assump-

tion 3, always converges to the unique minimizer over z of g(z)−〈p, z〉+ c
2
‖Mx− z‖2.

Proof. We observe that g(z)− 〈p, z〉+ c
2
‖Mx− z‖2 is strongly convex as a function

of z, and therefore has a unique minimizer. The result then follows immediately from

Lemma 4.

With regard to Lemma 5, one condition sufficient for the minimizer of f(x) +

〈p,Mx〉 + c
2
‖Mx− z‖2 to be unique is that M have full column rank, or that the

minimum exist with f being strictly convex.

17

Chapter 4

Approximate ADMM Algorithms Derived through

Operator Splitting Analysis

This chapter presents two approximate ADMM algorithms that may be derived

through the operator-splitting analysis of the ADMM. The first applies in special

cases for which subgradients supply sufficient information to guarantee the distance-

based approximation criteria in the approximate ADMM in [29, Theorem 8]. It uses

absolute error criteria with formally exogenous summable error sequence parameters,

and its analysis is very brief due to the results already present in [29, Theorem 8].

The proof of [29, Theorem 8] is based on the relationship of the ADMM to Douglas-

Rachford (DR) splitting, the equivalence of DR splitting to the proximal point al-

gorithm (PPA), and the application of an approximate PPA using an absolute error

criterion. The remainder of this section considers taking a similar “modular” ap-

proach to deriving an approximate ADMM, but using a relative-error version of the

PPA. The result is a new, relative-error variant of the ADMM. A byproduct of the

analysis is a new, relative-error variant of DR splitting.

The remainder of this chapter derives different subgradient-based approximate

ADMM through a “modular” approach that exploits the relationship between ADMM,

Douglas-Rachford splitting, and the proximal point algorithm, in combination with

a suitable inexact proximal point algorithm (PPA). The advantage of using such a

modular framework is that convergence follows fairly directly from the convergence

of the inexact proximal point algorithm; the main effort in the analysis is in deriving

the correct form of the method from its analytical “building blocks”.

18

4.1 A subgradient-based application of [29, Theorem 8]

Let {εk}∞k=1, {τk}∞k=1 ⊂ R++ be positive scalar sequences such that
∑∞

k=1 εk <∞ and∑∞
k=1 τk < ∞. Using these sequences as parameters, one of the simplest imaginable

way to construct an approximate ADMM based on the mappings hypothesized in

Assumptions 2 and 3 is as follows:

Algorithm 4.1.1 Inexact ADMM with absolute summable error criteria

initialization: Pick c > 0 and initial points p0, z0 ∈ Rm

repeat {for k = 0, 1, 2, . . .}

repeat {for l = 1, 2, . . .}

Improve the solution to xk+1 ≈ arg minx

{
f(x) +

〈
pk,Mx

〉
+ c

2

∥∥Mx− zk
∥∥2
}

by taking (xk,l, yk,l1) = F(pk, zk, c, xk, l)

until ‖yk,l1 ‖ ≤ εk+1

xk+1 = xk,l

yk+1
1 = yk,l1

repeat {for l = 1, 2, . . .}

Improve the solution to zk+1 ≈ arg minz

{
g(z)−

〈
pk, z

〉
+ c

2

∥∥Mxk+1 − z
∥∥2
}

by taking (zk,l, yk,l2) = G(pk, xk+1, c, zk, l)

until ‖yk,l2 ‖ ≤ τk+1

zk+1 = zk,l

yk+1
2 = yk,l2

pk+1 = pk + c
(
Mxk+1 − zk+1

)
until Overall convergence

Throughout this paper, we will leave the “overall convergence” termination criterion

for the outer loops of our algorithms of the algorithm abstract, since the best choice

19

may be application-dependent. A reasonable generic choice, however, would be

∥∥Mxk+1 − zk+1
∥∥ ≤ δ1 (4.1)∥∥yk+1

2

∥∥ ≤ δ2 (4.2)

∃ ȳk+1
1 ∈ ∂x

[
f(x) +

〈
pk,Mx

〉
+ c

2

∥∥Mx− zk+1
∥∥2
]
x=xk+1

:
∥∥ȳk+1

1

∥∥ ≤ δ3, (4.3)

where δ1, δ2, δ3 are small positive scalars. One possible choice of ȳk+1
1 in (4.2) is yk1 .

If one uses an overall convergence test that does not require the sequence {yk2}, then

one can omit the assignment yk+1
2 = yk,l2 from the implementation of the algorithm,

and similarly for {yk1}.

While we cannot guarantee convergence of Algorithm 4.1.1 in the general case,

there are several special cases in which the condition ‖yk,l1 ‖ ≤ εk+1 guarantees a bound

on the distance to the exact solution of the subproblem (1.9), which in turn means that

the algorithm is a special case of the algorithm proved to converge in [29, Theorem

8]. Essentially, we require that the minimand in (1.9) be strongly convex:

Proposition 7. Under Assumptions 2 and 3, the inner loops (over l) in Algo-

rithm 4.1.1 always terminate finitely. Under Assumption 1, if either f is strongly

convex or M has full column rank, then
{

(xk, zk, pk)
}

converges to a KKT point.

Proof. The assertion about finite convergence of the inner loops follows immediately

from Assumptions 2 and 3, combined with the positivity of εk and τk for all k.

Let α be the modulus of strong convexity of f and let κ(M>M) denote the smallest

eigenvalue of the symmetric matrix M>M . For each k, let f̄k(x) = f(x)+
〈
pk,Mx

〉
+

c
2

∥∥Mx− zk
∥∥2

, the minimand in (1.9) expressed as a function of x. Under the hy-

potheses, we have α > 0 or κ(M>M) > 0, so f̄k is strongly convex with modulus

ᾱ = α + cκ(M>M) > 0. It follows that f̄k’s subdifferential map ∂f̄k is strongly

monotone with modulus ᾱ. Letting x̄k+1 denote the exact minimizer of (1.9), the

Cauchy-Schwarz inequality and strong monotonicity of ∂f̄k combine to yield∥∥∥yk,l1

∥∥∥∥∥xk,l − x̄k+1
∥∥ ≥ 〈yk,l1 − 0, xk,l − x̄k+1

〉
≥ ᾱ

∥∥xk,l − x̄k+1
∥∥2
,

20

and hence ∥∥∥yk,l1

∥∥∥ ≥ ᾱ
∥∥xk,l − x̄k+1

∥∥
for all k and l encountered in the algorithm. Combining this result with the termi-

nation condition for the approximate x minimization, we obtain∥∥xk+1 − x̄k+1
∥∥ ≤ εk+1/ᾱ

for all k. Thus, the distance of xk to the exact x-subproblem solution is bounded

above by a summable sequence, namely {εk/ᾱ}.

We next consider the z subproblem (1.10). Its minimand is always strongly convex

with modulus c, so a similar analysis shows that the distance from zk to the exact

z-subproblem solution is bounded above by the summable sequence {τk/c}. All the

remaining claims of the proposition now follow immediately from [29, Theorem 8].

Remark: Although this form is rarely needed in practice, the ADMM is sometimes

presented in the context of the more general problem

min
x,z
{f(x) + g(z) | Mx+Nz = b} ,

where N is an additional constraint matrix and b is some given vector; see for exam-

ple [15]. Generalizing the above result to this case would require the assumption that

g be strongly convex or N have full column rank, in addition to the assumptions on

f and M .

4.2 Background: a relative-error proximal point algorithm

We now embark on the derivation of an algorithm with similar theoretical underpin-

nings to Algorithm 4.1.1, but with a relative error criterion. Our analysis employs

the inexact relative-error proximal point algorithm developed by Solodov and Svaiter

in [76]. This relative-error algorithm allows for general Bregman distance kernels, but

here we use only the special case of the standard squared Euclidean distance kernel

D(x, y) = 1
2
‖x− y‖2 derived from the canonical Bregman function h(x) = 1

2
‖x‖2.

21

An operator T on Rn is called monotone if

〈y − v, x− u〉 ≥ 0

for all v ∈ T (u) and y ∈ T (x). For any real number c and operator T , we let cT be

the operator {(x, cy) | y ∈ T (x)} and if A and B are any operators, then

A+B = {(x, y + z) | y ∈ A(x), z ∈ B(x)} .

A monotone operator T is maximal monotone if there is no other monotone operator

that properly contain T . We do not distinguish an operator T and its graph, thus

expressions of y ∈ T (x) and (x, y) ∈ T are equivalent. Let T be maximal monotone,

a fundamental problem here is finding a zero of T , i.e.

0 ∈ T (z), z ∈ Rn (4.4)

The classical algorithm for solving this problem is the proximal point method. It was

first introduced by Martinet [59] and further developed by Rockafellar [71].

The proximal point algorithm for solving the generic inclusion 0 ∈ T (z), where

T : Rn ⇒ Rn is a maximal monotone operator, involves generating a sequence {zk} ⊂

Rn such that {zk+1} is the solution of

0 ∈ λkT (z) + z − zk (4.5)

for all k ≥ 0, where {λk} is a sequence of scalar parameters with infk≥0{λk} > 0.

Equivalent problems are to find a pair (u, v) such that

v ∈ T (u) λkv + u− zk = 0 (4.6)

or

v ∈ T (u) u = zk − λkv. (4.7)

We now define a notion of an inexact solution of (4.6), specializing [76, Definition 3.1]

to the case of the squared Euclidean distance kernel:

22

Definition 8. Let λk > 0 and σ ∈ [0, 1). We say that a pair (u, v) is an inexact

solution with tolerance σ for the proximal subproblem (4.6) if

v ∈ T (u)
∥∥u+ λkv − zk

∥∥ ≤ σ
∥∥u− zk∥∥ . (4.8)

Observe that when σ = 0, we must have u = zk−λkv, meaning that the proximal

subproblem (4.6) must be solved exactly. We will base our approximate ADMM on

the following inexact proximal point algorithm, which is [76, Algorithm 1] specialized

to the case of the squared Euclidean distance kernel:

Algorithm 4.2.1 Inexact generalized proximal point method

Initialization:

Choose some λ > 0, error tolerance parameter σ ∈ [0, 1), and starting point z0 ∈

Rn.

for k = 0, 1, . . . do

Select any λk ≥ λ, and let (uk, vk) be some inexact solution with tolerance σ of

the subproblem 0 ∈ λkT (z) + z − zk, that is, find some (uk, vk) such that

vk ∈ T (uk)
∥∥uk + λkv

k − zk
∥∥ ≤ σ

∥∥uk − zk∥∥ . (4.9)

Set

zk+1 := zk − λkvk. (4.10)

end for

We may summarize the recursions of Algorithm 4.2.1 as follows:

vk ∈ T (uk)

λkv
k + zk+1 − zk = 0∥∥uk − zk+1

∥∥ ≤ σ
∥∥uk − zk∥∥ .

The behavior of Algorithm 4.2.1 is already established in [76]:

23

Proposition 9. If a solution to 0 ∈ T (z) exists, then {zk} generated by Algo-

rithm 4.2.1 converges to such a solution. In addition, {uk} also converges to this

solution and vk → 0.

Proof. The result follows directly by specializing [76, Proposition 4.4] and [76, Corol-

lary 4.3] to the case of the Euclidean squared distance kernel, whose zone of definition

is C = Rn.

4.3 A relative-error variant of Douglas-Rachford splitting

We will apply the relative-error proximal point algorithm stated in the last section to

the ADMM through a two-step process: first, capitalizing on the analysis in [29], we

will use Algorithm 4.2.1 to derive a relative-error variant of Douglas-Rachford (DR)

splitting method for pairs of maximal monotone operators. In the next section, we

will use this result to derive a relative-error version of the ADMM, using that the

ADMM is a special case of DR splitting as first established in [34].

We now derive a relative-error DR method. The original DR splitting method

of [57] is a method for solving the problem A(x) + B(x) 3 0, where A,B : H ⇒ H

are maximal monotone operators on a real Hilbert space H. Here, we will consider

only the case H = Rn. The goal of the method is to converge to a solution to

A(x) + B(x) 3 0 through a process that evaluates only resolvents (I + γA)−1 and

(I + γB)−1 of the respective individual operators A and B, rather than working

directly with the operator A+B.

Given two set-valued operators A and B on Rn and a scalar γ > 0, the analysis

in [29] defines the splitting operator Sγ,A,B : Rn ⇒ Rn to be the set-valued map

Sγ,A,B =
{

(r + γb, s− r) | (s, b) ∈ B, (r, a) ∈ A, r + γa = s− γb
}
. (4.11)

Here, we do not distinguish between an operator and its graph: a set-valued map

T is considered to be the set of ordered pairs (x, y) such that y ∈ T (x). If both A

24

and B are (maximal) monotone then Sγ,A,B is (maximal) monotone for any scalar

γ > 0 [29, Theorem 4]. There is also an important relationship between the zeros of

Sγ,A,B and those of A + B: letting zer(T) denote the set of all zeros of operator T ,

then by [29, Theorem 5] we have

zer(Sγ,A,B) = {r + γb | b ∈ B(r),−b ∈ A(r)}

⊆ {r + γb | r ∈ zer(A+B), b ∈ B(r)}.

Thus, given that A and B are maximal monotone, one may attempt to use the

proximal point algorithm on Sγ,A,B to find a zero of Sγ,A,B, from which one may

easily calculate a zero of A+B. It is shown in [29, Theorem 6] that the DR splitting

method is equivalent to applying the proximal point algorithm to Sγ,A,B with the

proximal parameter λk always set to 1, that is,

zk+1 = (I + Sγ,A,B)−1(zk). (4.12)

This viewpoint is exploited in [29] to develop approximate versions of the DR splitting

method, by applying an approximate rather than exact version of the PPA to (4.12).

Since the approximate PPA employed in this analysis used an absolute summable

error criterion, the resulting approximate DR method inherited the same kind of

error criteria. Here, we instead consider applying the relative-error inexact PPA in

Algorithm 4.2.1 to Sγ,A,B, obtaining a relative-error inexact variant of DR splitting.

The recursion (4.12) consists of repeatedly applying the mapping

(I + Sγ,A,B)−1 =
{

(s+ γb, r + γb) | (s, b) ∈ B, (r, a) ∈ A, r + γa = s− γb
}
. (4.13)

Repeated application of this mapping may be carried out through the following steps:

DR1. Given some rk, bk ∈ Rn, find (sk+1, bk+1) ∈ B such that sk+1 + γbk+1 =

rk + γbk. Note that this calculation is equivalent to finding sk+1 = (I +

γB)−1(rk + γbk) and setting bk+1 = bk + 1
γ
(rk − wk+1).

25

DR2. Find (rk+1, ak+1) ∈ A such that rk+1 + γak+1 = sk+1 − γbk. Similarly to

the previous step, this calculation is equivalent to finding rk+1 = (I +

γA)−1(sk+1 − γbk) and setting ak+1 = 1
γ
(sk+1 − rk+1)− bk.

DR3. Increment k and return to step DR1.

This procedure is one of the standard formulations of DR splitting. We will henceforth

assume that step DR1 is the more difficult of the two calculations, meaning that for

a given u ∈ Rn some iterative process is required to solve systems of the form

b ∈ B(s) s+ γb = u, (4.14)

We model this iterative process using the following generalization of the techniques

proposed in Section 3:

Assumption 10. There exists a mapping B : Rn×R+×Rn×Rn×N→ B such that

if one defines (sl, bl) = B(u, γ, s̄, b̄, l) for all l ≥ 1, then the sequence
{

(sl, bl)
}∞
l=1

is

convergent and liml→∞ s
l + γbl = u.

Intuitively, we intend (sl, bl) = B(u, γ, s̄, b̄, l) ∈ B to be the lth trial approximate

solution to (4.14) starting from some initial guess (s̄, b̄); however, we do not specify

exactly how the starting point information (s̄, b̄) is incorporated into the calculation,

and it is possible for it to be ignored.

On the other hand, we assume that a set of conditions similar to (4.14) for the

operator A may be solved rapidly, and therefore step DR2 of the above sequence is

relatively easy to carry out exactly. Under this assumption, if one is given any point

(s, b) ∈ B, one can quickly determine a pair in the operator Sγ,A,B by finding (r, a) ∈ A

such that r + γa = s− γb. It then follows from (4.11) that (r + γb, s− r) ∈ Sγ,A,B.

To apply Algorithm 4.2.1 to the operator Sγ,A,B, we need to find inexact solu-

tions of the conditions (4.9) for the case T = Sγ,A,B and λk = 1. Let us call the

iterative procedure abstracted in Assumption 10 the “B-procedure”, and let l be an

26

“inner” iteration index associated with this procedure, we may attempt to execute

each iteration of Algorithm 4.2.1 as applied to Sγ,A,B as follows, starting with l = 1:

S1. Execute one step of the B-procedure, yielding (sk,l, bk,l) = B(zk, γ, sk, bk, l) ∈ B

with sk,l + γbk,l ≈ zk. We call (sk,l, bk,l) a trial point.

S2. Find a corresponding (rk,l, ak,l) ∈ A such that rk,l+γak,l = sk,l−γbk,l. It follows

immediately from (4.11) that (uk,l, vk,l)
def
= (rk,l + γbk,l, sk,l − rk,l) ∈ Sγ,A,B.

S3. Test whether the (uk,l, vk,l) satisfies the conditions on (uk, vk) specified in (4.9).

If not, increment l ← l + 1 and return to step S1 to execute additional steps

of the B-procedure to produce a more accurate trial point. Otherwise, accept

(uk, vk) = (uk,l, vk,l) ∈ Sγ,A,B as a pair satisfying (4.9).

S4. Once we have accepted (uk, vk) = (uk,l, vk,l), set zk+1 = zk − vk, that is, (4.10)

with λk = 1.

We now make step S3 more concrete: substituting (uk,l, vk,l)
def
= (rk,l +γbk,l, sk,l− rk,l)

for (uk, vk) in (4.9), along with and λk ≡ 1 from (4.12), we obtain the condition∥∥rk,l + γbk,l + sk,l − rk,l − zk
∥∥ ≤ σ

∥∥rk,l + γbk,l − zk
∥∥ .

Canceling rk,l from the left-hand side, we obtain∥∥sk,l + γbk,l − zk
∥∥ ≤ σ

∥∥rk,l + γbk,l − zk
∥∥ . (4.15)

Next, we consider the extragradient update zk+1 = zk − vk in step S4 of the above

sequence. Given some k, let us suppose that we have zk = rk + γbk, as is the case in

step DR1 of the DR splitting method. If we wish this same relation to hold for k+ 1

as well as k, the update zk+1 = zk − vk takes the form

rk+1 + γbk+1 = rk + γbk − vk = rk + γbk − (sk,l − rk,l).

If we take rk+1 = rk,l, the above equation becomes

rk+1 + γbk+1 = rk + γbk − (sk,l − rk+1),

27

from which we may cancel rk+1 from both sides to yield

γbk+1 = rk + γbk − sk,l ⇔ bk+1 = bk + 1
γ
(rk − sk,l).

Letting sk+1 = sk,l for completeness, one possible way to implement the update

zk+1 = zk − vk is therefore

sk+1 = sk,l rk+1 = rk,l bk+1 = bk + 1
γ
(rk − sk,l). (4.16)

If we update the iterates in this manner and start with an arbitrary z0 = r0 + γb0,

then by induction we maintain zk = rk + γbk for all k. Substituting zk = rk + γbk

into (4.15), we obtain

∥∥sk,l + γbk,l − (rk + γbk)
∥∥ ≤ σ

∥∥rk,l + γbk,l − (rk + γbk)
∥∥ . (4.17)

Similarly substituting zk = rk + γbk throughout steps S1-S4 and in (4.17) above, we

arrive at the following algorithm:

Algorithm 4.3.1 A partially inexact primal Douglas-Rachford splitting algorithm

initialization: Choose γ > 0, σ ∈ [0, 1). Initialize s0, b0, r0 ∈ Rn arbitrarily

for k = 0, 1, 2, . . . do

repeat {for l = 1, 2, . . .}

Improve the solution to (sk,l, bk,l) ∈ B and sk,l + γbk,l ≈ rk + γbk by setting

(sk,l, bk,l) = B(rk + γbk, γ, sk, bk, l) (thus incrementally executing a step of the

B-procedure)

Exactly find
(
rk,l, ak,l

)
∈ A such that rk,l + γak,l = sk,l − γbk,l

until
∥∥sk,l + γbk,l − (rk + γbk)

∥∥ ≤ σ
∥∥rk,l + γbk,l − (rk + γbk)

∥∥
sk+1 = sk,l

rk+1 = rk,l

bk+1 = bk − 1
γ

(
sk+1 − rk

)
end for

We summarize the convergence properties of this algorithm as follows.

28

Proposition 11. Suppose that the inclusion 0 ∈ A(x) + B(x) has a solution. Then

there are two possible execution sequences for Algorithm 4.3.1:

1. The outer loop (over k) executes an infinite number of times, with each inner

loop (over l) terminating in a finite number of iterations. Then {sk} and {rk}

both converge to some x∗ for which 0 ∈ A(x∗)+B(x∗), and bk converges to some

b∗ ∈ B(x∗) such that −b∗ ∈ A(x∗).

2. The outer loop executes only a finite number of times, ending with k = k̄,

with the last invocation of the inner loop executing indefinitely. In this case,

liml→∞ s
k̄,l = liml→∞ r

k̄,l = x∗ for some x∗ for which 0 ∈ A(x∗) + B(x∗), while

liml→∞ b
k̄,l = b∗ for some b∗ ∈ B(x∗) such that −b∗ ∈ A(x∗) and liml→∞ a

k̄,l =

−b∗.

Proof. We begin by considering the second case, in which the inner loop fails to

terminate for some k = k̄. By the assumed properties of the B-procedure modeled

by the mapping B, we have that {(sk̄,l, bk̄,l)}∞l=1 ∈ B converges to some limit (x∗, b∗)

with x∗ + γb∗ = zk̄ = rk̄ + γbk̄ as l → ∞. By the closedness properties of maximal

monotone operators, we also have b∗ ∈ B(x∗). From the construction of the points

(rk̄,l, ak̄,l), we have for all l that

(rk̄,l, ak̄,l) ∈ A ak̄,l = 1
γ
(sk̄,l − rk̄,l)− bk̄,l rk̄,l = JγA(sk̄,l − γbk̄,l),

where JγA denotes the resolvent map of the maximal monotone operator A. Taking

limits and using that resolvent maps are continuous, we obtain that (rk̄,l, ak̄,l) con-

verges to the limit (r∗, a∗) =
(
JγA(x∗−γb∗), 1

γ
(x∗−r∗)−b∗

)
, and from the closedness of

the maximal monotone operator A, we also have (r∗, a∗) ∈ A. Now consider the inner-

loop termination condition ‖sk̄,l + γbk̄,l − (rk + γbk)‖ ≤ σ‖rk̄,l + γbk̄,l − (rk + γbk)‖

for iteration k̄. By the assumed properties of the B-procedure, its left-hand side con-

verges to zero as l→∞. Its right-hand side is nonnegative, so in order for the inner

loop to execute an infinite number of times, the right-hand side must also converge to

29

zero. Taking limits, this convergence means that r∗+γb∗ = rk̄ +γbk̄ = zk̄ = x∗+γb∗,

where the last equality was established above. Canceling γb∗ from both sides, we con-

clude that r∗ = x∗ and consequently that a∗ = 1
γ
(x∗ − r∗)− b∗ = −b∗. Thus, we have

b∗ ∈ B(x∗) and −b∗ = a∗ ∈ A(r∗) = A(x∗). Therefore, A(x∗) +B(x∗) 3 −b∗ + b∗ = 0

and all the claims in the second case of the proposition have been established.

To complete the proof, we must consider the first case, in which the inner loop

always terminates and the outer loop executes an infinite number of times. In this

situation, let l(k) be the index of inner iteration that first meets the inner-loop termi-

nation condition for outer iteration k. According to the algorithm’s update rule, we

have sk+1 = sk,l(k) and rk+1 = rk,l(k) for all k. In view of the derivation immediately

preceding Algorithm 4.3.1, we have in this case that {zk} = {rk + γbk} is identical to

the sequence generated by Algorithm 4.2.1 with T = Sγ,A,B and λk ≡ 1. Proposition 9

then implies that zk → z∗ such that 0 ∈ Sγ,A,B(z∗). Next, in view of step S2 above,

we note that the point (uk, vk) ∈ T of Algorithm 4.2.1 may be expressed as

(rk,l(k) + γbk,l(k), sk,l(k) − rk,l(k)) ∈ Sγ,A,B.

Proposition 9 asserts that (uk, vk)→ (z∗, 0), so we conclude that

lim
k→∞

rk,l(k) + γbk,l(k) = z∗ lim
k→∞

sk,l(k) − rk,l(k) = 0.

We next observe that

sk,l(k) + γbk,l(k) = sk,l(k) − rk,l(k) + rk,l(k) + γbk,l(k),

and therefore that

lim
k→∞

sk,l(k) + γbk,l(k) = lim
k→∞

sk,l(k) − rk,l(k) + lim
k→∞

rk,l(k) + γbk,l(k) = 0 + z∗ = z∗.

By construction, bk,l(k) ∈ B(sk,l(k)) for all k so sk,l(k) ∈ JγB(sk,l(k) +γbk,l(k)), where JγB

denotes the resolvent map of the maximal monotone operator B. Once again using

that resolvent maps are continuous, we obtain that

lim
k→∞

sk,l(k) = JγB
(

lim
k→∞

sk,l(k) + γbk,l(k)
)

= JγB(z∗),

30

where the first limit must exist. Define x∗ = limk→∞ s
k,l(k). Since

bk,l(k) = 1
γ

(
(sk,l(k) + γbk,l(k))− sk,l(k)

)
→ 1

γ
(z∗ − x∗),

we ascertain that b∗ = limk→∞ b
k,l(k) exists and z∗ = x∗ + γb∗. By the closure

property of maximal monotone operators, we may take the limit in the inclusion

bk,l(k) ∈ B(sk,l(k)) to obtain b∗ ∈ B(x∗). Since sk,l(k) − rk,l(k) → 0, we deduce that

limk→∞ r
k,l(k) = x∗ and also, using the equation rk,l + γak,l = sk,l − γbk,l from the

algorithm, that limk→∞ a
k,l(k) = limk→∞

(
1
γ
(sk,l(k) − rk,l(k))− bk,l(k)

)
= −b∗. Since we

have ak,l(k) ∈ A(yk,l(k)) by construction, we may take the limit to obtain −b∗ ∈ A(x∗).

In conclusion, we have b∗ ∈ B(x∗), −b∗ ∈ A(x∗) and therefore 0 ∈ A(x∗) + B(x∗),

and all claims in the first case of the proposition are established.

To summarize, the proposition states that Algorithm 4.3.1 must converge to a

solution to A(x) + B(x) 3 0 in one of two ways, either through convergence of its

outer loop with finite termination of each inner loop, or by finite termination of its

outer loop combined with convergence of the last instance of its inner loop. The former

case follows (with some technical manipulation) from convergence of the relative-error

proximal point algorithm on Sγ,A,B, while the latter involves some additional analysis.

4.4 Deriving a partially inexact ADMM from the partially

inexact DR splitting method

We now derive an inexact version of the ADMM from the Algorithm 4.3.1. The

standard dual formulation of the problem (1.4) is

min
p∈Rm

f ∗(−M>p) + g∗(p), (4.18)

where f ∗ and g∗ are the convex conjugate of f and g, respectively. In [37], Gabay

showed that ADMM can be derived by applying the Douglas-Rachford splitting

method to (4.18) with A = ∂[f ∗ ◦ (−M>)] and B = ∂g∗. Unfortunately, these

31

choices of A and B are inconvenient for Algorithm 4.3.1, because verifying the condi-

tion b ∈ B(s) would require an exact minimization involving the function g, precisely

the kind of operation one is trying to avoid.

Instead, we consider the primal splitting approach in which one lets let A =

∂[g ◦M] and B = ∂f . As shown in [26, Section 3.5.6], applying Douglas-Rachford

splitting to this choice of A and B results in the algorithm

sk+1 = arg min
s

{
f(s) +

1

2γ

∥∥s− (rk + γbk)
∥∥2
}

(4.19)

rk+1 = arg min
r

{
g(Mr) +

1

2γ

∥∥r − (sk+1 − γbk)
∥∥2
}

(4.20)

bk+1 = bk + 1
γ
(rk+1 − sk+1). (4.21)

This ADMM-like method is appropriate when the composition of g and M is conve-

nient to work with, so that the minimization (4.20) is not too hard to perform. Since

redefining g ← g ◦M and then M ← I in problem (1.4) results in exactly the same

algorithm when applying (4.19)-(4.21), we may without loss of generality take M = I.

Furthermore, when when M = I, Proposition 3.43 of [26] shows that (4.19)-(4.21)

is identical to the ADMM if one sets c = 1/γ; these ideas are developed somewhat

further in [83].

Fixing M = I, we now consider applying the partially exact Douglas-Rachford

splitting method of Algorithm 4.3.1 with this same choice of A = ∂[g ◦M] = ∂g and

B = ∂f . We now develop an analysis similar to [26, Proposition 3.43], but in the

context of Algorithm 4.3.1: this algorithm requires that resolvent operation in step S2

be carried out exactly, while the resolvent calculation in step S1 may be approximate.

Therefore, the subproblems associated with S1 and S2 are respectively

sk,l ≈ arg min
s

{
f(s) +

1

2γ

∥∥s− (rk + γbk)
∥∥2
}

(4.22)

rk,l = arg min
r

{
g(r) +

1

2γ

∥∥r − (sk,l − γbk,l)
∥∥2
}
. (4.23)

32

Expanding squares and dropping constant terms from the minimands in these calcu-

lations, we equivalently obtain

sk,l ≈ arg min
s

{
f(s)−

〈
bk, s

〉
+

1

2γ

∥∥s− rk∥∥2
}

(4.24)

rk,l = arg min
r

{
g(r) +

〈
bk,l, r

〉
+

1

2γ

∥∥r − sk,l∥∥2
}
. (4.25)

Next, we define some parallel notation for Algorithm 4.3.1 by letting pk = −bk,

pk,l = −bk,l, xk = sk, xk,l = sk,l, zk = rk, and zk,l = rk,l. Using this alternative

notation and letting c = 1/γ, the calculations (4.22)-(4.23) may be expressed as

xk,l ≈ arg min
x

{
f(x) +

〈
pk, x

〉
+
c

2

∥∥x− zk∥∥2
}

(4.26)

zk,l = arg min
z

{
g(z)−

〈
pk,l, z

〉
+
c

2

∥∥z − xk,l∥∥2
}
. (4.27)

We now state the precise form of our proposed algorithm, in which we make the

meaning of the “≈” in (4.26) more specific. The following convergence proof is based

on relating the “F -procedure” assumed to exist in Assumption 2 to the more abstract

B-procedure of Assumption 10 in the case B = ∂f and γ = 1/c.

33

Algorithm 4.4.1 ADMM variant derived from partially exact Douglas-Rachford

splitting

initialization: Choose c > 0, σ ∈ [0, 1). Initialize x0, p0, z0.

repeat {for k = 0, 1, 2, . . .}

repeat {for l = 1, 2, . . .}

Improve the solution to xk+1 ≈ arg minx
{
f(x) +

〈
pk, x

〉
+ c

2

∥∥x− zk∥∥2 }
by

taking (xk,l, yk,l) = F(pk, zk, c, xk, l)

pk,l = pk + c(xk,l − zk)− yk,l1

zk,l = arg minz
{
g(z)−

〈
pk,l, z

〉
+ c

2

∥∥xk,l − z∥∥2 }
until ‖yk,l1 ‖ ≤ σ

∥∥pk,l − pk − c (zk,l − zk)∥∥
xk+1 = xk,l

zk+1 = zk,l

pk+1 = pk + c
(
xk,l − zk

)
until Overall convergence

Proposition 12. Suppose that there exists x∗ such that 0 ∈ ∂f(x∗) + ∂g(x∗) and

F meets the conditions in Assumption 2 for M = I. Then there are two possible

execution sequences for Algorithm 4.4.1:

1. The outer loop (over k) executes an infinite number of times, with each invo-

cation of the inner loop (over l) terminating in a finite number of iterations.

Then {xk} and {zk} both converge to some x∗ for which 0 ∈ ∂g(x∗) + ∂f(x∗),

and {pk} converges to some p∗ ∈ ∂g(x∗) such that −p∗ ∈ ∂f(x∗).

2. The outer loop executes only a finite number of times, ending with k = k̄, with

the last invocation of the inner loop executing indefinitely. In this case, we have

liml→∞ x
k̄,l = liml→∞ z

k̄,l = x∗ for some x∗ such that 0 ∈ ∂f(x∗) +∂g(x∗), while

liml→∞ p
k̄,l = p∗ for some p∗ ∈ ∂g(x∗) such that −p∗ ∈ ∂f(x∗).

Proof. We claim that pk = −bk, xk = sk, and zk = rk for all k ≥ 0 and pk,l = −bk,l,

xk,l = sk,l, and zk,l = rk,l for all k ≥ 0 and l ≥ 1, for Algorithm 4.3.1 as applied

34

to A = ∂g, B = ∂f , γ = 1/c, and a valid form of the B-procedure hypothesized in

Assumption 10.

To establish the claim, we start by setting γ = 1/c, b0 = −p0 and r0 = z0 and then

proceed by induction. Take any k ≥ 0 and assume that pk = −bk and rk = zk. First,

consider the corresponding inner loop over l. Substituting M = I into Assumption 2

and using [69, Theorem 23.8], we obtain that for each l in the inner loop, we have

yk,l1 ∈ ∂f(xk,l) + pk + c(xk,l − zk)

⇔ −pk − c(xk,l − zk) + yk,l1 ∈ ∂f(xk,l)

⇔ −pk,l ∈ ∂f(xk,l)

Therefore, if we set sk,l = xk,l and bk,l = −pk,l, we have (sk,l, bk,l) ∈ ∂f = B. Further-

more,

sk,l + γbk,l = xk,l − 1
c
pk,l

= xk,l − 1
c

(
pk + c(xk,l − zk)− yk,l1

)
= −1

c
pk + zk + 1

c
yk,l1

= γbk + rk + 1
c
yk,l1 .

Since liml→∞ y
k,l
1 = 0, it follows that liml→∞ s

k,l +γb = rk +γbk. This means that the

procedure of taking (xk,l, yk,l1) = F(pk, zk, c, xk, l) followed by pk,l = pk + c(xk,l−zk)−

yk,l1 has exactly the same properties hypothesized for the B-procedure in Assump-

tion 10, for u = rk + γbk = zk − (1/c)pk (we may take the starting point arguments

for B to be s̄ = sk = xk and b̄ = bk = −pk).

Next, from zk,l = arg minz
{
g(z)−

〈
pk,l, z

〉
+ c

2

∥∥xk,l − z∥∥2 }
and [69, Theorem 23.8],

we must have 0 ∈ ∂g(zk,l)−pk,l+c(zk,l−xk,l), and hence pk,l+c(xk,l−zk,l) ∈ ∂g(zk,l).

Therefore, we take ak,l = pk,l+c(xk,l−zk,l) and rk,l = zk,l, and then have (rk,l, ak,l) ∈ A

and

rk,l + γak,l = zk,l + 1
c

(
pk,l + c(xk,l − zk,l)

)
= xk,l + 1

c
pk,l = sk,l − γbk,l.

35

Therefore, we have (rk,l, ak,l) ∈ A and rk,l + γak,l = sk,l − γbk,l, which are the unique

determining conditions for (rk,l, ak,l) in Algorithm 4.3.1. Thus all the steps within

the inner loop of Algorithm 4.4.1 are equivalent to the steps in the inner loop of

Algorithm 4.3.1. We next turn to the termination condition for the inner loop of Al-

gorithm 4.3.1,
∥∥sk,l + γbk,l − (rk + γbk)

∥∥ ≤ σ
∥∥rk,l + γbk,l − (rk + γbk)

∥∥. Substituting

sk,l = xk,l γ = 1/c bk,l = −pk,l = −pk − c(xk,l − zk) + yk,l1 rk = zk bk = −pk

into the expression within the norm on the left-hand side of this condition, we obtain

sk,l + γbk,l − (rk + γbk) = xk,l + 1
c

(
− pk − c(xk,l − zk) + yk,l1

)
− zk − 1

c
(−pk) = 1

c
yk,l1 .

Performing similar substitutions in the expression within the norm on the right-hand

side of Algorithm 4.3.1’s inner-loop termination condition, we obtain

rk,l + γbk,l − (rk + γbk) = zk,l − 1
c
pk,l − zk + 1

c
pk = zk,l − zk − 1

c
(pk,l − pk)

Thus we obtain the following inner-loop termination condition equivalent to that of

Algorithm 4.3.1: ∥∥∥1
c
yk,l1

∥∥∥ ≤ ∥∥zk,l − zk − 1
c
(pk,l − pk)

∥∥ .
Multiplying through by c, we obtain exactly the same inner-loop termination condi-

tion as in Algorithm 4.4.1. Therefore, if one enters iteration k with pk = −bk and

rk = zk, Algorithm 4.4.1 will execute exactly the same number of inner-loop iterations

as Algorithm 4.3.1 with the B-procedure constructed as described above.

Once the inner loop has terminated, Algorithm 4.4.1 performs the updates xk+1 =

xk,l, zk+1 = zk,l, and pk+1 = pk + c
(
xk,l − zk

)
. If we let sk+1 = xk+1, then we have

sk+1 = xk,l = sk,l, the same update as performed by Algorithm 4.3.1. Similarly,

setting rk+1 = zk+1 = zk,l = rk,l yields the same value of rk+1 as in Algorithm 4.3.1.

Finally, if we let bk+1 = −pk+1, we have

bk+1 = −
(
pk + c(xk,l − zk)

)
= −pk − 1

γ
(sk,l − rk) = bk − 1

γ
(sk,l − rk),

36

which is exactly the same value of bk+1 computed by Algorithm 4.3.1. Thus the

induction is complete and the claim is verified.

The claim having been established, the conclusions of the Proposition now follow

directly from Proposition 11.

37

Chapter 5

Approximate ADMM Algorithms Derived from

Lagrangian Splitting

We now develop approximate ADMM algorithms by modifying the Lagrangian split-

ting analysis pioneered in [34]. While the derivations and algorithms are more compli-

cated, the resulting methods are not subject to the restrictive assumptions applying

to the methods derived from operator splitting. In contrast to the methods derived

in Chapter 4, neither the absolute-error algorithm nor the relative-error algorithm

we derive here imposes any restriction on M , and the relative-error algorithm allows

both the x and z minimizations to be approximate.

5.1 A parametric conjugate duality framework

We now introduce a parametric conjugate duality framework specializing the one

described in [69, Chapters 28-30] and [70] to the case of (P). All results, except those

proved explicitly here, follow immediately from results in those references. First, we

define the functions F1, F2 : Rn × Rm × Rm → R ∪ {+∞} as follows:

F1 (x, z, u1) =

f(x), if u1 +Mx = 0

+∞, otherwise

(5.1)

F2 (x, z, u2) =

g(z), if u2 − z = 0

+∞, otherwise.

(5.2)

If f and g are closed and convex, it is easily seen that F1 and F2 are closed and convex.

We next define the parametric objective function F : Rn × Rm × Rm → (−∞,+∞]

38

of (P) to be the infimal convolution [69, page 34] of F1 and F2 with respect to the

last argument, that is

F (x, z, u) = inf
u1,u2

u1+u2=u

{F1(x, z, u1) + F2(x, z, u2)}

=

f(x) + g(z), if Mx− z + u = 0

+∞, otherwise,

(5.3)

where u ∈ Rm represents a perturbation of the constraints Mx = z. It is also easily

seen that F is closed and convex [69, Theorem 5.4]. Within this framework, the

original problem (P) is equivalent to the primal problem

min
x∈Rn

F (x, z, 0) . (5.4)

One obtains the Lagrangian L : Rn × Rm × Rm → [−∞,+∞] of (5.4) by taking the

concave conjugate [69, p. 111] of F with respect to the perturbation argument u:

L (x, z, p) = inf
u∈Rm

{F (x, z, u)− 〈p, u〉}

= inf
u=z−Mx

{f(x) + g(z)− 〈p, u〉}

= f(x) + g(z) + 〈p,Mx− z〉 . (5.5)

This derivation coincides with the usual Lagrangian for (P). Lagrangians L(x, z, p)

derived in this manner are convex with respect to (x, z) and concave with respect

to p (and in this particular case, L is linear with respect to p). Let ∂L denote

its convex-concave subgradient map, that is, ∂L(x, z, p) is the set consisting of all

(y1, y2, u) ∈ Rn × Rm × Rm such that

L(x′, z′, p) ≥ L(x, z, p) + 〈y1, x
′ − x〉+ 〈y2, z

′ − z〉 ∀(x′, z′) ∈ Rn × Rm

L(x, z, p′) ≤ L(x, z, p)− 〈u, p′ − p〉 ∀p′ ∈ Rm.

39

For any p ∈ Rm, the function (x, z) 7→ L(x, z, p) =
(
f(x) + 〈p,Mx〉

)
+
(
g(z)−〈p, z〉

)
is separable with respect to x and z, so we obtain

∂L(x, z, p) = ∂(x,z)L(x, z, p)× ∂p
(
− L(x, z, p)

)
= ∂xL(x, z, p)× ∂zL(x, z, p)× ∂p

(
− L(x, z, p)

)
= {∂f(x) +M>p} × {∂g(z)− p} × {z −Mx}. (5.6)

The following result is now immediate:

Lemma 13. A point (x∗, z∗, p∗) ∈ Rn × Rm × Rn is a KKT point as defined in

Assumption 1 if and only if it is a saddle point of L, that is, (0, 0, 0) ∈ ∂L(x∗, z∗, p∗).

We obtain L1, L2 : Rn ×Rm ×Rm → (0,∞], the Lagrangian functions corresponding

to (5.1) and (5.2), respectively, by taking their concave conjugates with respect to

the perturbation arguments u1 and u2:

L1(x, z, p) = inf
u1∈Rm

{F1(x, z, u1)− 〈p, u1〉} = f(x) + 〈p,Mx〉

L2(x, z, p) = inf
u2∈Rm

{F2(x, z, u2)− 〈p, u2〉} = g(z)− 〈p, z〉

From this derivation, it is immediate that L1, L2 are concave in p and convex in x

and z. Furthermore, we observe that L = L1 + L2. Letting ∂L1 and ∂L2 denote the

respective convex-concave subdifferential maps of these two functions, we obtain

∂L1(x, z, p) = {∂f(x) +M>p} × {0} × {−Mx} (5.7)

∂L2(x, z, p) = {0} × {∂g(z)− p} × {z}, (5.8)

and we have ∂L1 + ∂L2 = ∂L. The point-to-set maps ∂L1, ∂L2 are the respective

partial inverses of the subgradient maps of the closed convex functions F1 and F2, so

they are maximal monotone operators. We call this technique Lagrangian splitting :

we have expressed the maximal monotone operator ∂L as the sum of two simpler

maximal monotone operators ∂L1 and ∂L2. Furthermore, z is only a nominal argu-

ment whose choice has no effect on the value of L1(x, z, p), and similarly x is only a

nominal, ignored argument to L2(x, z, p).

40

The parametric dual function Q : Rn × Rm × Rm → [−∞,+∞] of (P) can be

defined in two equivalent ways: either as the concave conjugate of F jointly with

respect to (x, z) and u, or as the concave conjugate of L with respect to x and z.

Proceeding in the latter manner, we obtain

Q(y1, y2, p) = inf
x∈Rn,z∈Rm

{
L(x, z, p)− 〈y1, x〉 − 〈y2, z〉

}
= inf

x∈Rn,z∈Rm

{
f(x) + g(z) + 〈p,Mx− z〉 − 〈y1, x〉 − 〈y2, z〉

}
= inf

x∈Rn,z∈Rm

{
f(x) + 〈p,Mx〉 − 〈y1, x〉+ g(z)− 〈p, z〉 − 〈y2, z〉

}
= inf

x∈Rn

{
f(x) + 〈p,Mx〉 − 〈y1, x〉

}
+ inf

z∈Rm

{
g(z)− 〈p, z〉 − 〈y2, z〉

}
= inf

x∈Rn

{
L1(x, 0, p)− 〈y1, x〉

}
+ inf

z∈Rm

{
L2(0, z, p)− 〈y2, z〉

}
. (5.9)

Here, we arbitrarily use 0 as the z argument to L1, since z is only a nominal argument

that does not affect the value of the function. Similarly, x does not affect the value

of L2, so we arbitrarily use 0 for its x argument. Using “∗” to denote the convex

conjugate, we define, for all y1 ∈ Rn, y2 ∈ Rm, and p ∈ Rm,

Q1(y1, y2, p) = −F ∗1 (y1, y2, p) = inf
x∈Rm

{L1(x, 0, p)− 〈y1, x〉} = Q1(y1, 0, p) (5.10)

Q2(y1, y2, p) = −F ∗2 (y1, y2, p) = inf
z∈Rm

{L2(0, z, p)− 〈y2, z〉} = Q2(0, y2, p), (5.11)

and note that it follows from (5.9) that

Q(y1, y2, p) = Q1(y1, y2, p) +Q2(y1, y2, p). (5.12)

Note that y2 is a nominal (ignored) argument to Q1 and y1 is similarly an ignored

argument to Q2.

By construction, Q1 and Q2 are closed concave functions. Letting ∂Q1 and ∂Q2

be the subgradient maps of the respective convex functions −Q1 and −Q2, we have

(y1, y2, p) ∈ ∂F1(x, z, u) ⇔ (y1, y2, u) ∈ ∂L1(x, z, p) ⇔ (x, z, u) ∈ ∂Q1(y1, y2, p)

(y1, y2, p) ∈ ∂F2(x, z, u) ⇔ (y1, y2, u) ∈ ∂L2(x, z, p) ⇔ (x, z, u) ∈ ∂Q2(y1, y2, p).

41

We have that (x, z, u1) ∈ ∂Q1(y1, y2, p) if only if

Q1(y′1, y
′
2, p
′) ≤ Q1(y1, y2, p)− 〈x, y′1 − y1〉 − 〈z, y′2 − y2〉 − 〈u1, p

′ − p〉 , (5.13)

and similarly that (x, z, u2) ∈ ∂Q2(y1, y2, p) if only if

Q2(y′1, y
′
2, p
′) ≤ Q2(y1, y2, p)− 〈x, y′1 − y1〉 − 〈z, y′2 − y2〉 − 〈u2, p

′ − p〉 . (5.14)

The point-to-set mappings ∂F , ∂L and ∂Q are all maximal monotone [69, p. 240]

and for all (x, z), (y1, y2) ∈ Rn × Rm and u, p ∈ Rm,

(y1, y2, p) ∈ ∂F (x, z, u) ⇔ (y1, y2, u) ∈ ∂L(x, z, p) ⇔ (x, z, u) ∈ ∂Q(y1, y2, p).

The dual function Q0 : Rm → [−∞,+∞) of (P) is the parametric dual function

evaluated at (y1, y2) = 0, that is,

Q0(p) = Q(0, 0, p)

= Q1(0, 0, p) +Q2(0, 0, p)

= inf
x∈Rn
{f(x) + 〈p,Mx〉}+ inf

z∈Rm
{g(z)− 〈p, z〉}

=
(
− f ∗(−M>p)

)
+
(
− g∗(p)

)
, (5.15)

where “∗” again denotes the convex conjugate. The dual problem corresponding

to (5.4) is that of maximizing Q0(p) over p ∈ Rm, that is,

max
p∈Rm

Q1(0, 0, p) +Q2(0, 0, p). (D)

In view of (5.15), problem (D) is identical to the usual dual problem (4.18) of (P). As

an application of Fenchel’s inequality [69, Theorem 23.5], we have the weak duality

relation Q(0, 0, p) ≤ F (x, z, 0) for all x ∈ Rn, z ∈ Rm, and p ∈ Rm.

Now suppose we are using an iterative method to solve subproblem (1.9), and let

xk+1 denote some approximate solution (rather than an exact one), with

yk+1
1 ∈ ∂x

[
f(x) +

〈
pk,Mx

〉
+
c

2

∥∥Mx− zk
∥∥2
]
x=xk+1

. (5.16)

42

Note that if we were to exactly solve the subproblem, 0 would be a possible value of

yk+1
1 . Employing [69, Theorem 23.8], we have

(5.16) ⇔ yk+1
1 ∈ ∂f(xk+1) +M>pk + cM>(Mxk+1 − zk) (5.17)

⇔
(
yk+1

1 , 0,−Mxk+1
)
∈
(
∂f(xk+1) +M>

(
pk + c(Mxk+1 − zk)

))
× {0} × {−Mxk+1}

⇔
(
yk+1

1 , 0,−Mxk+1
)
∈ ∂L1

(
xk+1, zk, pk + c(Mxk+1 − zk)

)
. (5.18)

Now suppose we have some inexact solution zk+1 to (1.10) and

yk+1
2 ∈ ∂

[
g(z)−

〈
pk, z

〉
+
c

2

∥∥z −Mxk+1
∥∥2
]
z=zk+1

. (5.19)

Much as for (5.16), if zk+1 were an exact solution to (1.10), it would be possible to

choose yk+1
2 = 0 in (5.19). Following a similar development to that of (5.18), we have

(5.19) ⇔ yk+1
2 ∈ ∂g(zk+1)− pk + c(zk+1 −Mxk+1) (5.20)

⇔
(
0, yk+1

2 , zk+1
)
∈ {0} ×

{
∂g(zk+1)−

(
pk + c(Mxk+1 − zk+1)

)}
× {zk+1}

⇔
(
0, yk+1

2 , zk+1
)
∈ ∂L2

(
xk+1, zk+1, pk + c(Mxk+1 − zk+1)

)
. (5.21)

Using the standard multiplier update

pk+1 = pk + c
(
Mxk+1 − zk+1

)
(5.22)

and letting

µk+1 = pk + c
(
Mxk+1 − zk

)
, (5.23)

we observe that µk+1 − pk+1 = c(zk+1 − zk) and we obtain

(5.16) ⇔
(
yk+1

1 , 0,−Mxk+1
)
∈ ∂L1

(
xk+1, zk, µk+1

)
(5.24)

(5.19) ⇔
(
0, yk+1

2 , zk+1
)
∈ ∂L2

(
xk+1, zk+1, pk+1

)
. (5.25)

43

5.2 Analyzing the exact ADMM by Lagrangian splitting

In this section, we present a convergence proof for exact ADMM using Lagrangian

splitting. This proof is largely equivalent to Fortin’s [34, Theorem 5.1] in the case

without overrelaxation, but uses the more modern constructs in Section 5.1. The

exact ADMM that is considered in this section consists of recursions (1.9), (1.10) and

the standard multiplier update step (1.11). Similar analyses can be found in [8, 15].

In [34], besides the assumptions that we have made on f and g, M is also assumed to

have full column rank. In the modified and strengthened proof given here, however,

this assumption is not required for most of our conclusions. We begin with a result

by Alves and Svaiter [1] that is needed in several places in this Chapter.

Lemma 14. [1, Lemma 2] Let W ⊆ Rp1 and V ⊆ Rp2 be nonempty sets and suppose

that
{
sk = (αk, βk)

}
k≥0
⊂ Rp1 × Rp2 is a sequence such that:

1. {‖sk − s‖} is nonincreasing for all s ∈ W × V and

2. Every limit point of {βk} belongs to V .

Then {βk} converges to some element in V .

The main convergence properties of exact ADMM are now given by next two

propositions.

Proposition 15. Under Assumption 1, let {xk}, {zk} and {pk} obey the recur-

sions (1.9), (1.10) and (1.11), then

• {Mxk}, {zk} and {pk} are all bounded sequences.

•
∑∞

0

∥∥Mxk − zk
∥∥2
<∞,

∑∞
0

∥∥zk+1 − zk
∥∥2
<∞,

∑∞
0

∥∥pk+1 − pk
∥∥2
<∞.

• For any KKT point (x∗, z∗, p∗) of (P), the sequence
{∥∥(1

c
pk, zk

)
−
(

1
c
p∗, z∗

)∥∥}
is convergent.

•
{(

1
c
pk, zk

)}
is Fejér monotone to

{(
1
c
p∗, z∗

)
| (x∗, z∗, p∗) is KKT point

}
.

44

Proof. By Assumption (1), there exists a KKT point (x∗, z∗, p∗) of (P), such that

(0, 0, 0) ∈ ∂L (x∗, z∗, p∗) and Mx∗ = z∗. Then

(0, 0, 0) ∈ ∂L (x∗, z∗, p∗) = {∂f(x∗) +M>p∗} × {∂g(z∗)− p∗} × {z∗ −Mx∗} ,

and from L = L1 + L2 and (5.7)-(5.8) we have

(
0, 0,−Mxk+1

)
∈ ∂L1

(
xk+1, zk, pk + c

(
Mxk+1 − zk

))
(0, 0,−Mx∗) ∈ ∂L1 (x∗, z∗, p∗ + c (Mx∗ − z∗))(

0, 0, zk+1
)
∈ ∂L2

(
xk+1, zk+1, pk + c

(
Mxk+1 − zk+1

))
(0, 0, z∗) ∈ ∂L2 (x∗, z∗, p∗ + c (Mx∗ − z∗)) .

since ∂L1 is a monotone operator, we obtain

〈
−
(
Mxk+1 −Mx∗

)
, pk − p∗ + c

(
Mxk+1 −Mx∗

)
− c

(
zk − z∗

)〉
≥ 0.

Expanding this inequality produces

〈
Mxk+1 −Mx∗, pk − p∗

〉
+ c
∥∥Mxk+1 −Mx∗

∥∥2

− c
〈
Mxk+1 −Mx∗, zk − z∗

〉
≤ 0. (5.26)

Using the monotonicity of ∂L2, we have

〈
zk+1 − z∗, pk − p∗ + c

(
Mxk+1 −Mx∗

)
− c

(
zk+1 − z∗

)〉
≥ 0

which we may rearrange into

c
∥∥zk+1 − z∗

∥∥2 − c
〈
Mxk+1 −Mx∗, zk+1 − z∗

〉
−
〈
zk+1 − z∗, pk − p∗

〉
≤ 0. (5.27)

Adding 5.26 and 5.27, we obtain that

c
∥∥Mxk+1 −Mx∗

∥∥− c 〈Mxk+1 −Mx∗, zk+1 − z∗
〉

+ c
∥∥zk+1 − z∗

∥∥
+
〈
Mxk+1 − zk+1, pk − p∗

〉
− c

〈
Mxk+1 −Mx∗, zk − z∗

〉
≤ 0, (5.28)

45

which may be regrouped into

c
∥∥Mxk+1 −Mx∗ −

(
zk+1 − z∗

)∥∥2
+ c
〈
Mxk+1 −Mx∗, zk+1 − z∗ −

(
zk − z∗

)〉
+
〈
Mxk+1 − zk+1, pk − p∗

〉
≤ 0,

that is

c
∥∥Mxk+1 − zk+1

∥∥2
+ c
〈
Mxk+1 −Mx∗, zk+1 − zk

〉
+
〈
Mxk+1 − zk+1, pk − p∗

〉
≤ 0. (5.29)

Rewriting the standard multiplier update step (5.22) as

pk+1 − p∗ = pk − p∗ + c
(
Mxk+1 − zk+1

)
(5.30)

and then squaring both sides yields, after some rearrangement,

2c
〈
Mxk+1 − zk+1, pk − p∗

〉
=∥∥pk+1 − p∗

∥∥2 −
∥∥pk − p∗∥∥2 − c2

∥∥Mxk+1 − zk+1
∥∥2
. (5.31)

By combining (5.29) and (5.31), we obtain

1

c2

(∥∥pk − p∗∥∥2 −
∥∥pk+1 − p∗

∥∥2
)
≥

+ 2
〈
Mxk+1 −Mx∗, zk+1 − zk

〉
+
∥∥Mxk+1 − zk+1

∥∥2
. (5.32)

Next, using that Mx∗ = z∗, we rewrite Mxk+1 −Mx∗ as

Mxk+1 −Mx∗ =
(
Mxk+1 −Mxk

)
+
(
Mxk − zk

)
+
(
zk − z∗

)
,

so that

〈
Mxk+1 −Mx∗, zk+1 − zk

〉
=
〈
Mxk+1 −Mxk, zk+1 − zk

〉
+
〈
Mxk − zk, zk+1 − zk

〉
+
〈
zk − z∗, zk+1 − zk

〉
. (5.33)

46

Applying the identity 〈a, b〉 = 1
2

[
‖a+ b‖2 − ‖a‖2 − ‖b‖2] to the last term in (5.33),

we arrive at

〈
Mxk+1 −Mx∗, zk+1 − zk

〉
=
〈
Mxk+1 −Mxk, zk+1 − zk

〉
+
〈
Mxk − zk, zk+1 − zk

〉
+

1

2

[∥∥zk+1 − z∗
∥∥2 −

∥∥zk − z∗∥∥2 −
∥∥zk+1 − zk

∥∥2
]
.

Rearranging terms in this equation, we obtain

〈
Mxk+1 −Mxk, zk+1 − zk

〉
=
〈
Mxk+1 −Mx∗, zk+1 − zk

〉
−
〈
Mxk − zk, zk+1 − zk

〉
− 1

2

[∥∥zk+1 − z∗
∥∥2 −

∥∥zk − z∗∥∥2 −
∥∥zk+1 − zk

∥∥2
]
. (5.34)

From (5.21) we know that

(
0, 0, zk

)
∈ ∂L2

(
xk, zk, pk−1 + cMxk − czk

)
(
0, 0, zk+1

)
∈ ∂L2

(
xk+1, zk+1, pk + cMxk+1 − czk+1

)
Again, using the monotonicity of ∂L2, we have

〈
zk+1 − zk, pk − pk−1 + c

(
Mxk+1 −Mxk

)
− c

(
zk+1 − zk

)〉
≥ 0.

Since pk − pk−1 = c
(
Mxk − zk

)
, we have

〈
Mxk+1 −Mxk, zk+1 − zk

〉
≥
∥∥zk+1 − zk

∥∥2 −
〈
Mxk − zk, zk+1 − zk

〉
. (5.35)

Substituting (5.34) into (5.35), we obtain

2
〈
Mxk+1 −Mx∗, zk+1 − zk

〉
≥
∥∥zk+1 − z∗

∥∥2 −
∥∥zk − z∗∥∥2

+
∥∥zk+1 − zk

∥∥2
. (5.36)

Adding (5.32) and (5.36), we obtain

1

c2

∥∥pk − p∗∥∥2
+
∥∥zk − z∗∥∥2 −

(
1

c2

∥∥pk+1 − p∗
∥∥2

+
∥∥zk+1 − z∗

∥∥2
)

≥
∥∥Mxk+1 − zk+1

∥∥2
+
∥∥zk+1 − zk

∥∥2
. (5.37)

47

Summing (5.37) for k = 0, . . . , K and canceling “telescoping” terms gives that, for

any K ≥ 0,

K∑
0

∥∥Mxk+1 − zk+1
∥∥2

+
K∑
0

∥∥zk+1 − zk
∥∥2

+
1

c2

∥∥pK+1 − p∗
∥∥2

+
∥∥zK+1 − z∗

∥∥2

≤ 1

c2

∥∥p0 − p∗
∥∥2

+
∥∥z0 − z∗

∥∥2
. (5.38)

From (5.37) and (5.38) we may immediately conclude the following:

• Both {zk} and {pk} are bounded.

•
{∥∥(1

c

(
pk − p∗

)
,
(
zk − z∗

))∥∥2
}

=
{∥∥(1

c
pk, zk)− (1

c
p∗, z∗)

∥∥2
}

is non-increasing.

• Since (x∗, z∗, p∗) was arbitrarily chosen,
{(

1
c
pk, zk

)}
is Fejér monotone to the

set
{(

1
c
p∗, z∗

)
| (x∗, z∗, p∗) is a KKT point

}
.

• Since
{∥∥(1

c
pk, zk

)
−
(

1
c
p∗, z∗

)∥∥} is bounded below by 0 and decreasing, it con-

verges to a finite limit.

• Letting K →∞, it follows from (5.38) that

∞∑
0

∥∥Mxk − zk
∥∥2
<∞

∞∑
0

∥∥zk+1 − zk
∥∥2
<∞.

Because pk+1 − pk = c
(
Mxk+1 − zk+1

)
, we also have

∑∞
0

∥∥pk+1 − pk
∥∥2
<∞.

• It immediately follows from
∑∞

0

∥∥Mxk − zk
∥∥2

< ∞ that Mxk − zk → 0 and

{zk} is bounded, so therefore {Mxk} must be bounded.

Proposition 16. If Assumption (1) is satisfied, let {xk}, {zk} and {pk} obey the

recursions (1.9), (1.10) and (1.11), we have the following convergence results:

• Every limit point of {xk, zk, pk} (if any such points exist) is a KKT point of (P).

• {pk} converges to an optimal solution p∗ of the dual problem (D).

• limk→∞{f(xk) + g(zk)} exists and equals the optimal value of (1.4) and (P).

48

Furthermore, if M has full column rank, then {xk} converges to an optimal solution

x∗ of the original problem (1.4) and zk →Mx∗.

Proof. Since xk+1 and zk+1 are the minimizers of the subproblems (1.9) and (1.10)

respectively, it follows that

−M>pk − cM>(Mxk+1 − zk) ∈ ∂f(xk+1) (5.39)

pk + c(Mxk+1 − zk+1) ∈ ∂g(zk+1). (5.40)

Let (x∞, z∞, p∞) denote any limit point of
{(
xk, zk, pk

)}
, and K ∈ N be a infinite

index set such that (xk+1, zk+1, pk+1) →K (x∞, z∞, p∞). From Proposition 15, we

know that Mxk+1− zk+1 → 0 and zk+1− zk → 0, from which it follows that Mxk+1−

zk → 0. Taking the limit overK, we have Mx∞ = z∞. We can further assert that {pk}

has the same limit over K as {pk+1} does, since c(Mxk+1−zk+1) = pk+1−pk → 0. By

taking the limit over K in (5.39) and (5.40) and using that subdifferentials of closed

functions are closed, we obtain that

−M>p∞ ∈ ∂f(x∞) p∞ ∈ ∂g(z∞). (5.41)

Thus the limit point (x∞, z∞, p∞) is a KKT point for (P).

Although its limit points must all be KKT points, {xk, zk, pk} does not necessarily

have any limit points because {xk} might not be bounded unless we impose some

restrictions on M . Nevertheless, we now show that every limit point of {pk} is a

optimal solution for (D) whether or not {xk} is bounded. We have from (5.7) that(
0, 0,−Mxk+1

)
∈ ∂L1

(
xk+1, zk, µk+1

)
, (5.42)

where µk+1 = pk+c(Mxk+1−zk), as defined in (5.23). Since ∂Q1 is the partial inverse

of ∂L1, we therefore have(
xk+1, zk,−Mxk+1

)
∈ ∂Q1

(
0, 0, µk+1

)
.

From (5.13), we have for all (y′1, y
′
2, p
′) ∈ Rn × Rm × Rm that

Q1(y′1, y
′
2, p
′) ≤ Q1(0, 0, µk+1)−

〈
xk+1, y′1

〉
−
〈
zk, y′2

〉
−
〈
−Mxk+1, p′ − µk+1

〉
.

49

Let {x∗, z∗, p∗} be a KKT point that is hypothesized to exist by Assumption 1. Setting

(y′1, y
′
2, p
′) = (0, 0, p∗) in the previous inequality, we have

Q1(0, 0, p∗) ≤ Q1(0, 0, µk+1)−
〈
−Mxk+1, p∗ − µk+1

〉
. (5.43)

Similarly, from (5.8) and zk+1 being exact minimizer of (1.10), we know that

(0, 0, zk+1) ∈ ∂L2(xk+1, zk+1, pk+1), (5.44)

and ∂Q2 is the partial inverse of ∂L2, so it follows that

(
xk+1, zk+1, zk+1

)
∈ ∂Q2

(
0, 0, pk+1

)
,

and therefore

Q2(0, 0, p∗) ≤ Q2(0, 0, pk+1)−
〈
zk+1, p∗ − pk+1

〉
. (5.45)

According to (5.12), we know thatQ (0, 0, p∗) = Q1(0, 0, p∗)+Q2(0, 0, p∗). Substituting

this equation into the inequality obtained by adding (5.43) and (5.45), we arrive at

Q (0, 0, p∗) ≤ Q1(0, 0, µk+1) +Q2(0, 0, pk+1)

−
〈
−Mxk+1, p∗ − µk+1

〉
−
〈
zk+1, p∗ − pk+1

〉
. (5.46)

Using that µk+1 = pk+1 − c
(
zk − zk+1

)
, we may rewrite (5.46) as follows:

Q (0, 0, p∗) ≤ Q1(0, 0, µk+1) +Q2(0, 0, pk+1)

−
〈
−Mxk+1 + zk+1, p∗ − pk+1

〉
− c

〈
−Mxk+1, zk − zk+1

〉
= Q1(0, 0, µk+1) +Q2(0, 0, pk+1)

+
〈
Mxk+1 − zk+1, p∗ − pk+1

〉
+ c
〈
Mxk+1, zk − zk+1

〉
. (5.47)

Since Proposition 15 asserts that {pk} is bounded and Mxk+1−zk+1 → 0, we conclude

that
〈
Mxk+1 − zk+1, p∗ − pk+1

〉
→ 0. Once again by Proposition 15, we know that

{Mxk} is bounded and zk+1− zk → 0, so
〈
Mxk+1, zk − zk+1

〉
→ 0. Thus the last two

terms in (5.47) both converge to 0.

50

Consider any limit point p∞ of {pk}, and suppose K ⊆ N is an infinite sequence

of indices such that pk →K p∞. Since zk+1 − zk → 0 by Proposition 15, we have

µk − pk → 0, so we also have µk →K p∞. Thus, taking limits over K in (5.47) and

using that Q1 and Q2 are closed (upper semicontinuous) concave functions, we have

f(x∗) + g(z∗) = Q(0, 0, p∗)

≤ lim inf
k→∞
k∈K

{
Q1

(
0, 0, µk+1

)
+Q2

(
0, 0, pk+1

)}
≤ lim sup

k→∞
k∈K

{
Q1

(
0, 0, µk+1

)
+Q2

(
0, 0, pk+1

)}
≤ lim sup

k→∞
k∈K

Q1

(
0, 0, µk+1

)
+ lim sup

k→∞
k∈K

Q2

(
0, 0, pk+1

)
≤ Q1

(
0, 0, lim

k→∞
k∈K

µk+1

)
+Q2

(
0, 0, lim

k→∞
k∈K

pk+1

)

= Q1(0, 0, p∞) +Q2(0, 0, p∞)

= Q(0, 0, p∞)

≤ f(x∗) + g(z∗),

where the last inequality is a consequence of f(x∗)+g(z∗) being the maximum possible

value of Q. Therefore, we obtain Q(0, 0, p∞) = Q(0, 0, p∗) = f(x∗) + g(z∗), meaning

that p∞ is also a dual optimal solution. Now let

V =
{

1
c
p | p is an optimal solution of (D)

}
W = {Mx | x is an optimal solution of (1.4)} .

By [69, Corollary 30.5.1], which essentially states that the set of KKT points of a

convex program is the Cartesian product of the sets of primal and dual solutions, we

may infer that

W × V =
{(
z, 1

c
p
)
| (x, z, p) is a KKT point of of (P)

}
.

From Proposition 15, we therefore know that
∥∥(zk, 1

c
pk)− s

∥∥ is nonincreasing for

every s ∈ W × V . We have also established that any limit point p∞ of {pk} must be

51

an optimal dual solution, that is, that all limit points of {1
c
pk} are in V . Lemma 14

therefore implies that {1
c
pk} converges to a member of V , that is, that {pk} converges

to an optimal dual solution.

To show convergence of objective values, we first add c(zk − zk+1) to both sides

of the inclusion (5.40), regrouping terms to obtain

c
(
zk − zk+1

)
∈ ∂g(zk+1)− pk + c(zk+1 −Mxk+1) + c

(
zk − zk+1

)
= ∂g(zk+1)− µk+1,

From the definition for ∂L2, which is given in (5.8), we then can ascertain that

(
0, c
(
zk − zk+1

)
, zk+1

)
∈ ∂L2(xk+1, zk+1, µk+1). (5.48)

Adding (5.42) and (5.48), and using that ∂L1 + ∂L2 = ∂L, we obtain

(
0, c
(
zk − zk+1

)
, zk+1 −Mxk+1

)
∈ ∂L(xk+1, zk+1, µk+1).

Since ∂L is a partial inverse of ∂F as defined in (5.3), we know that

(
0, c
(
zk − zk+1

)
, µk+1

)
∈ ∂F (xk+1, zk+1, zk+1 −Mxk+1). (5.49)

Recalling that Q is the negative of the convex conjugate of F , combining Fenchel’s

equality [69, Theorem 23.5] with (5.49) produces

F
(
xk+1, zk+1, zk+1 −Mxk+1

)
−Q

(
0, c (zk − zk+1

)
, µk+1)

= c
〈
zk+1, zk − zk+1

〉
+
〈
zk+1 −Mxk+1, µk+1

〉
.

Using the definition (5.3) of F , we have F (xk+1, zk+1, zk+1 −Mxk+1) = f(xk+1) +

g(zk+1). Substituting this identity into the above equation and rearranging, we obtain

f(xk+1) + g(zk+1) = Q
(
0, c (zk − zk+1), µk+1

)
(5.50)

+ c
〈
zk+1, zk − zk+1

〉
+
〈
zk+1 −Mxk+1, µk+1

〉
. (5.51)

The first term in (5.51) converges to zero because Proposition 15 asserts that {zk}

is bounded and zk+1 − zk → 0. Since {pk} is bounded and zk+1 − zk → 0, it follows

52

that {µk+1} is bounded, because µk+1 = pk+1 − c(zk − zk+1). From Proposition 15

we have Mxk+1 − zk+1 → 0, so the second term in (5.51) also converges to zero. Let

K1 ⊆ N be any infinite sequence of indices for which limk∈K1 f(xk+1) + g(zk+1) =

lim supk→∞ f(xk) + g(zk). Since {µk} is bounded, there exists some infinite subse-

quence K′1 ⊆ K1 over which {µk+1} converges to some limit p∞ ∈ Rm. Taking the

limit over K′1 in (5.50)-(5.51), we obtain, since we have established that all the terms

in (5.51) converge to zero, that

lim sup
k→∞

{f(xk) + g(zk)} = lim
k∈K′1

Q
(
0, c (zk − zk+1), µk+1

)
. (5.52)

Because Q is an upper semicontinuous function, zk+1 − zk → 0, and µk →K′1 p
∞, we

must have

lim
k∈K′1

Q
(
0, c (zk − zk+1), µk+1

)
≤ Q(0, 0, p∞). (5.53)

By weak duality, we also have Q(0, 0, p∞) ≤ infx∈Rn{f(x) + g(z)} = f(x∗) + g(z∗).

Combining this observation with (5.52) and (5.53), we obtain

lim sup
k→∞

{f(xk) + g(zk)} ≤ f(x∗) + g(z∗) (5.54)

On the other hand, (x∗, z∗) minimizes the ordinary Lagrangian

L(x, z, p) = f(x) + g(z) + 〈p,Mx− z〉

of (P) with respect to (x, z) for p = p∗, so for any k ≥ 0 we have L(x∗, z∗, p∗) ≤

L(xk, zk, p∗), which is equivalent to

f(x∗) + g(z∗) ≤ f(xk) + g(zk) +
〈
p∗,Mxk − zk

〉
,

which with a minor rearrangement is in turn equivalent to

f(x∗) + g(z∗)−
〈
p∗,Mxk − zk

〉
≤ f(xk) + g(zk). (5.55)

Let K2 ⊆ N be any infinite sequence of indices for which

lim
k∈K2

{f(xk) + g(zk)} = lim inf
k→∞

{f(xk) + g(zk)}.

53

Since the Proposition 15 ensures that
〈
p∗,Mxk − zk

〉
→ 0, we obtain by taking the

limit over K2 in (5.55) that

f(x∗) + g(z∗) ≤ lim inf
k→∞

{f(xk) + g(zk)}. (5.56)

Combining (5.54) and (5.56), we have

f(x∗) + g(z∗) ≤ lim inf
k→∞

{f(xk) + g(zk)} ≤ lim sup
k→∞

{f(xk) + g(zk)} ≤ f(x∗) + g(z∗),

which is equivalent to limk→∞{f(xk) + g(zk)} = f(x∗) + g(z∗).

Finally, if M has full column rank, the boundedness {zk} and Mxk − zk → 0

imply that {xk} is bounded. Therefore, {(xk, zk, pk)} must have a limit point, which

must be a KKT point. This proves the final assertion.

5.3 Common elements of the Lagrangian splitting analyses

We will use the above tools and notation to develop two different approximate versions

of the ADMM. This section develops some common analysis underlying both versions.

Some of these results isolate or generalize specific arguments in the preceeding section.

Lemma 17. Suppose that {xk}, {yk1} ⊂ Rn, and {zk}, {pk}, {yk2} ⊂ Rm obey the

recursions (5.16), (5.19), and (5.22). If it is also true that

Mxk − zk → 0 Mxk+1 − zk → 0 yk1 → 0 yk2 → 0,

then all limit points of the sequence
{

(xk, zk, pk)
}

are KKT points of (P).

Proof. Consider any limit point (x∞, z∞, p∞) of
{

(xk, zk, pk)
}

, along with an infinite

index set K ⊆ N such that (xk+1, zk+1, pk+1)→K (x∞, z∞, p∞). By rearranging (5.17)

and (5.20), which are respectively equivalent to they hypotheses (5.16) and (5.19),

we arrive at

yk+1
1 −M>

(
pk + c

(
Mxk+1 − zk

))
∈ ∂f(xk+1) (5.57)

yk+1
2 +

(
pk + c

(
Mxk+1 − zk+1

))
∈ ∂g(zk+1) (5.58)

54

From (5.22) and the hypothesis that Mxk − zk → 0, we conclude that {pk} has the

same limit over K as {pk+1} does. Using this information and the hypotheses that

yk1 , y
k
2 → 0, we obtain by taking limits over K in (5.57) and (5.58) and using that

subdifferentials of closed functions have closed graphs that

−M>p∞ ∈ ∂f(x∞) p∞ ∈ ∂g(z∞). (5.59)

Since we have assumed that Mxk − zk → 0, it also follows by taking limits over K

that Mx∞ = z∞. In view of (5.59), we conclude that (x∞, z∞, p∞) is a KKT point

of (P).

Note that the lemma does not address the question of whether any limit points of{
(xk, zk, pk)

}
exist. One set of conditions sufficient to guarantee that such limit points

exist is that {xk} possess at least one limit point and that {zk} and {pk} be bounded.

Clearly, any two of the conditions

Mxk − zk → 0 Mxk+1 − zk → 0 zk+1 − zk → 0

are sufficient to imply the remaining one, so we may substitute any two of these

conditions for the assumptions Mxk+1 − zk+1 → and Mxk+1 − zk → 0 in the above

lemma.

We now give another result, similar to Lemma 17, that will prove useful for cases in

which various “inner loops” of the algorithms to be proposed below do not terminate:

Lemma 18. Suppose x̄ ∈ Rn and p̄ ∈ Rm, and that the sequences {x̂i}∞i=1, {ŷi1}∞i=1 ⊂

Rn and {ẑi}∞i=1, {p̂i}∞i=1, {ŷi2}∞i=1 ⊂ Rm conform for all i to the recursions

ŷi2 ∈ ∂
[
g(z)− 〈p̄, z〉+

c

2
‖Mx̄− z‖2

]
z=ẑi

p̂i = p̄+ c
(
Mx̄− ẑi

)
ŷi1 ∈ ∂

[
f(x) +

〈
p̂i,Mx

〉
+
c

2

∥∥Mx− ẑi
∥∥2
]
x=x̂i

.

If it is also true that

lim
i→∞

ŷi1 = 0 lim
i→∞

ŷi2 = 0 lim
i→∞

Mx̂i − ẑi = 0, (5.60)

55

then all limit points of {(x̂i, ẑi, p̂i)} are KKT points of (P).

Proof. Let (x̂∞, ẑ∞, p̂∞) be any limit point of {(x̂i, ẑi, p̂i)} and K ⊆ N be some infinite

index set such that (x̂i, ẑi, p̂i)→K (x̂∞, ẑ∞, p̂∞). For all i, we then have

ȳi2 + p̂i ∈ ∂g(ẑi) ȳi1 −M>p̂i − c
(
Mx̂i − ẑi

)
∈ ∂f(x̂i) (5.61)

Taking limits over K in (5.61), applying the hypotheses in (5.60), and using that

subdifferentials of closed functions are closed and Mx̂i − ẑi → 0, we obtain

p̂∞ ∈∂g(ẑ∞) −M>p̂∞ ∈ ∂f(x̂∞) Mx̂∞ = ẑ∞, (5.62)

that is, that (x̂∞, ẑ∞, p̂∞) is a KKT point of (P).

The following special case of Lemma 18 will prove useful in cases in which the g

subproblems is easy to solve exactly:

Corollary 19. Suppose x̄ ∈ Rn and p̄, p̂, ẑ ∈ Rm satisfy

ẑ = arg min
z

{
g(z)− 〈p̄, z〉+

c

2
‖Mx̄− z‖2

}
p̂ = p̄+ c (Mx̄− ẑ) ,

and that {x̂i}∞i=1, {ŷi1}∞i=1 ⊂ Rn satisfy the inclusion

ŷi1 ∈ ∂
[
f(x) + 〈p̂,Mx〉+

c

2
‖Mx− ẑ‖2

]
x=x̂i

for all i. If it is also true that

lim
i→∞

ŷi1 = 0 lim
i→∞

Mx̂i − ẑ = 0,

then for every limit point x̂∞ of {x̂i}, we have that (x̂∞, ẑ, p̂) is a KKT point of (P).

Proof. The result follows immediately by applying Lemma 18 in the case that ẑi = ẑ,

ŷi2 = 0, and p̂i = p̂ for all i.

56

We now use the monotonicity of subdifferential mappings such as ∂L, ∂L1 and

∂L2 to derive crucial inequalities that will prove useful in analyzing our proposed

algorithms:

Lemma 20. Suppose that
(
yk+1

2 , zk+1
)

satisfies (5.19),
(
yk2 , z

k
)

satisfies (5.19) with

k replaced by k − 1, and pk+1 = pk + c(Mxk − zk). Then

∥∥Mxk+1 − zk+1
∥∥2

+
∥∥zk − zk+1

∥∥2 ≤
∥∥Mxk+1 − zk

∥∥2
+ 2

c

〈
yk+1

2 − yk2 , zk+1 − zk
〉
.

Proof. Applying (5.25) and its equivalent with k replaced by k − 1, we have

(
0, yk2 , z

k
)
∈ ∂L2

(
xk, zk, pk

)
(
0, yk+1

2 , zk+1
)
∈ ∂L2

(
xk+1, zk+1, pk+1

)
.

Since ∂L2 is monotone [69, Corollary 37.5.2], the above two inclusions imply that

〈
pk − pk+1, zk − zk+1

〉
+
〈
yk2 − yk+1

2 zk − zk+1
〉
≥ 0

⇔
〈
−c(Mxk+1 − zk+1), zk − zk+1

〉
+
〈
yk2 − yk+1

2 , zk − zk+1
〉
≥ 0

⇔ c
〈
Mxk+1 − zk+1, zk − zk+1

〉
−
〈
yk+1

2 − yk2 , zk+1 − zk
〉
≤ 0,

where the first equivalence uses pk+1 = pk+c(Mxk+1−zk+1). Multiplying by 2/c and

expanding the first inner product using the identity 〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2,

we obtain the equivalent inequality

∥∥Mxk+1 − zk+1
∥∥2

+
∥∥zk − zk+1

∥∥2 −
∥∥Mxk+1 − zk

∥∥2 − 2
c

〈
yk+1

2 − yk2 , zk+1 − zk
〉
≤ 0,

which we may rearrange into

∥∥Mxk+1 − zk+1
∥∥2

+
∥∥zk − zk+1

∥∥2 ≤
∥∥Mxk+1 − zk

∥∥2
+ 2

c

〈
yk+1

2 − yk2 , zk+1 − zk
〉

The next two propositions assert that under certain conditions, the sequences

produced by algorithms conforming to (5.16), (5.19), and (5.22) are asymptotically

optimal even when {xk} does not have any limit points.

57

Proposition 21. Suppose that {xk}, {yk1} ⊂ Rn and {zk}, {pk}, {yk2} ⊂ Rm obey

the recursions (5.16), (5.19), and (5.22), and Assumption 1 holds. If the sequences

{Mxk} and {pk} are bounded and we also have

zk+1 − zk → 0 Mxk − zk → 0 yk1 → 0 yk2 → 0
〈
yk1 , x

k
〉
→ 0

〈
yk2 , z

k
〉
→ 0,

(5.63)

then every limit point of {pk} is an optimal solution to the dual problem (D).

Proof. Let (x∗, z∗, p∗) be a saddle point for (P). Defining µk as in (5.23), we have

from (5.24) that
(
yk+1

1 , 0,−Mxk+1
)
∈ ∂L1

(
xk+1, zk, µk+1

)
. Since ∂Q1 is the partial

inverse of ∂L1, we therefore have(
xk+1, zk,−Mxk+1

)
∈ ∂Q1

(
yk+1

1 , 0, µk+1
)
.

From (5.13), we have for all (y′1, y
′
2, p
′) ∈ Rn × Rm × Rm that

Q1(y′1, y
′
2, p
′) ≤ Q1(yk+1

1 , 0, µk+1)

−
〈
xk+1, y′1 − yk+1

1

〉
−
〈
zk, y′2 − 0

〉
−
〈
−Mxk+1, p′ − µk+1

〉
.

Let p∗ be some optimal dual solution, which must exist by Assumption 1. Setting

(y′1, y
′
2, p
′) = (0, 0, p∗) in the previous inequality, we have

Q1(0, 0, p∗) ≤ Q1(yk+1
1 , 0, µk+1)−

〈
xk+1, 0− yk+1

1

〉
−
〈
−Mxk+1, p∗ − µk+1

〉
. (5.64)

Similarly, (5.25) and ∂Q2 being the partial inverse of ∂L2 imply that(
xk+1, zk+1, zk+1

)
∈ ∂Q2

(
0, yk+1

2 , pk+1
)
,

and therefore

Q2(0, 0, p∗) ≤ Q2(0, yk+1
2 , pk+1)−

〈
zk+1, 0− yk+1

2

〉
−
〈
zk+1, p∗ − pk+1

〉
. (5.65)

From (5.12), we know that Q (0, 0, p∗) = Q1(0, 0, p∗) + Q2(0, 0, p∗). Substituting this

equation into the inequality obtained by adding (5.64) and (5.65), we arrive at

Q (0, 0, p∗) ≤ Q1(yk+1
1 , 0, µk+1) +Q2(0, yk+1

2 , pk+1) +
〈
xk+1, yk+1

1

〉
+
〈
zk+1, yk+1

2

〉
−
〈
−Mxk+1, p∗ − µk+1

〉
−
〈
zk+1, p∗ − pk+1

〉
. (5.66)

58

Since pk+1 = µk+1 + c
(
zk − zk+1

)
, we can rewrite (5.66) as follows:

Q (0, 0, p∗) ≤ Q1(yk+1
1 , 0, µk+1) +Q2(0, yk+1

2 , pk+1) +
〈
xk+1, yk+1

1

〉
+
〈
zk+1, yk+1

2

〉
−
〈
−Mxk+1 + zk+1, p∗ − pk+1

〉
− c

〈
−Mxk+1, zk − zk+1

〉
= Q1(yk+1

1 , 0, µk+1) +Q2(0, yk+1
2 , pk+1) +

〈
xk+1, yk+1

1

〉
+
〈
zk+1, yk+1

2

〉
+
〈
Mxk+1 − zk+1, p∗ − pk+1

〉
+ c
〈
Mxk+1, zk − zk+1

〉
. (5.67)

From the hypotheses that {pk} is bounded and Mxk+1− zk+1 → 0, we conclude that〈
Mxk+1 − zk+1, p∗ − pk+1

〉
→ 0. Similarly, the hypotheses that {Mxk} is bounded

and zk+1 − zk → 0, imply that
〈
Mxk+1, zk − zk+1

〉
→ 0. Since we have also assumed

that
〈
yk+1

1 , xk+1
〉
→ 0 and

〈
yk+1

2 , zk+1
〉
→ 0, the last four terms in (5.67) all converge

to 0.

Consider any limit point p∞ of {pk}, and suppose K ⊆ N is an infinite sequence

of indices such that pk →K p∞. The assumption that zk+1 − zk → 0 implies that

µk − pk → 0, so we also have µk →K p∞. Thus, taking limits over K in (5.67) and

using the fact that Q1 and Q2 are closed (upper semicontinuous) concave functions,

we have

f(x∗) + g(z∗) = Q(0, 0, p∗)

≤ lim inf
k→∞
k∈K

{
Q1

(
yk+1

1 , 0, µk+1
)

+Q2

(
0, yk+1

2 , pk+1
)}

≤ lim sup
k→∞
k∈K

{
Q1

(
yk+1

1 , 0, µk+1
)

+Q2

(
0, yk+1

2 , pk+1
)}

≤ lim sup
k→∞
k∈K

Q1

(
yk+1

1 , 0, µk+1
)

+ lim sup
k→∞
k∈K

Q2

(
0, yk+1

2 , pk+1
)

≤ Q1

(
lim
k→∞
k∈K

yk+1
1 , 0, lim

k→∞
k∈K

µk+1

)
+Q2

(
0, lim

k→∞
k∈K

yk+1
2 , lim

k→∞
k∈K

pk+1

)

= Q1(0, 0, p∞) +Q2(0, 0, p∞)

= Q(0, 0, p∞)

≤ f(x∗) + g(z∗),

59

where the last inequality is a consequence of f(x∗)+g(z∗) being the maximum possible

value of Q. Therefore, we obtain Q(0, 0, p∞) = Q(0, 0, p∗) = f(x∗) + g(z∗), meaning

that p∞ is also a dual solution.

Proposition 22. Suppose that {xk}, {yk1} ⊂ Rn and {zk}, {pk}, {yk2} ⊂ Rm obey

the recursions (5.16), (5.19), and (5.22). If the same limits in (5.63) hold and the

sequences {pk} and {zk} are bounded, then

lim sup
k→∞

{f(xk) + g(zk)} ≤ inf
x∈Rn
{f(x) + g(Mx)}. (5.68)

If Assumption 1 is satisfied, then the stronger condition

lim
k→∞
{f(xk) + g(zk)} = inf

x∈Rn
f(x) + g(Mx) = f(x∗) + g(Mx∗) (5.69)

holds, where x∗ is any solution of (1.4).

Proof. Adding c(zk−zk+1) to both sides of the inclusion (5.20), which we know holds

from the hypothesis (5.19), we obtain

yk+1
2 +c

(
zk − zk+1

)
∈ ∂g(zk+1)−pk+c(zk+1−Mxk+1)+c

(
zk − zk+1

)
= ∂g(zk+1)−µk+1,

where µk+1 is defined as in (5.23). From the formula for ∂L2 given in (5.8), we then

ascertain that

(
0, yk+1

2 + c
(
zk − zk+1

)
, zk+1

)
∈ ∂L2(xk+1, zk+1, µk+1). (5.70)

Next, consider (5.24), which is a consequence of the hypothesis (5.16). Since L1 is

independent of its second (z) argument, we may replace zk by zk+1 in (5.24) and

obtain

(
yk+1

1 , 0,−Mxk+1
)
∈ ∂L1(xk+1, zk+1, µk+1) (5.71)

Adding (5.71) and (5.70), and using that ∂L1 + ∂L2 = ∂L, we obtain

(
yk+1

1 , yk+1
2 + c

(
zk − zk+1

)
, zk+1 −Mxk+1

)
∈ ∂L(xk+1, zk+1, µk+1).

60

Since ∂L is a partial inverse of ∂F as defined in (5.3), we know that

(
yk+1

1 , yk+1
2 + c

(
zk − zk+1

)
, µk+1

)
∈ ∂F (xk+1, zk+1, zk+1 −Mxk+1). (5.72)

Recalling that Q is the negative of the convex conjugate of F , combining Fenchel’s

equality [69, Theorem 23.5] with (5.72) produces

F
(
xk+1, zk+1, zk+1 −Mxk+1

)
−Q

(
yk+1

1 , yk+1
2 + c (zk − zk+1

)
, µk+1)

=
〈
xk+1, yk+1

1

〉
+
〈
zk+1, yk+1

2

〉
+ c
〈
zk+1, zk − zk+1

〉
+
〈
zk+1 −Mxk+1, µk+1

〉
.

Using the definition (5.3) of F , we have F (xk+1, zk+1, zk+1 −Mxk+1) = f(xk+1) +

g(zk+1). Substituting this identity into the above equation and rearranging, we obtain

f(xk+1) + g(zk+1) = Q
(
yk+1

1 , yk+1
2 + c (zk − zk+1), µk+1

)
(5.73)

+
〈
xk+1, yk+1

1

〉
+
〈
zk+1, yk+1

2

〉
(5.74)

+ c
〈
zk+1, zk − zk+1

〉
+
〈
zk+1 −Mxk+1, µk+1

〉
. (5.75)

The hypotheses (5.63) directly ensure that the terms on line (5.74) converge to zero.

The first term in (5.75) also converges to zero, because we have assumed that {zk}

is bounded and (5.63) contains the assumption that zk+1 − zk → 0. Since we have

assumed that {pk} is bounded and zk+1 − zk → 0, it follows that {µk} is bounded.

Furthermore, (5.63) contains the assumption that Mxk+1−zk → 0, so the second term

in (5.75) also converges to zero. Let K1 ⊆ N be any infinite sequence of indices for

which limk∈K1 f(xk+1) + g(zk+1) = lim supk→∞ f(xk) + g(zk). Since we have assumed

that {pk} is bounded, which implies that {µk} is bounded, there exists some infinite

subsequence K′1 ⊆ K1 over which {µk+1} converges to some limit p∞ ∈ Rm. Taking

the limit over K′1 in (5.73)-(5.75), we obtain, since we have established that all the

terms in (5.74)-(5.75) converge to zero, that

lim sup
k→∞

{f(xk) + g(zk)} = lim
k∈K′1

Q
(
yk+1

1 , yk+1
2 + c (zk − zk+1), µk+1

)
. (5.76)

61

Furthermore, since Q is an upper semicontinuous function and yk1 → 0, yk2 → 0,

zk+1 − zk → 0, and µk →K′1 p
∞, we must have

lim
k∈K′1

Q
(
yk+1

1 , yk+1
2 + c (zk − zk+1), µk+1

)
≤ Q(0, 0, p∞). (5.77)

By weak duality, we also have Q(0, 0, p∞) ≤ infx∈Rn{f(x) + g(Mx)}. Combining this

observation with (5.76) and (5.77), we obtain (5.68).

Now assume Assumption 1 holds, and let (x∗, z∗, p∗) be any KKT point. Then (5.68)

immediately becomes

lim sup
k→∞

{f(xk) + g(zk)} ≤ inf
x∈Rn
{f(x) + g(Mx)} = f(x∗) + g(z∗). (5.78)

The point (x∗, z∗) minimizes the ordinary Lagrangian L(x, z, p) = f(x) + g(z) +

〈p,Mx− z〉 of (P) with respect to (x, z) for p = p∗, so for any k ≥ 0 we have

L(x∗, z∗, p∗) ≤ L(xk, zk, p∗), which is equivalent to

f(x∗) + g(z∗) ≤ f(xk) + g(zk) +
〈
p∗,Mxk − zk

〉
,

which with a minor rearrangement is in turn equivalent to

f(x∗) + g(z∗)−
〈
p∗,Mxk − zk

〉
≤ f(xk) + g(zk). (5.79)

Let K2 ⊆ N be any infinite sequence of indices for which

lim
k∈K2

{f(xk) + g(zk)} = lim inf
k→∞

{f(xk) + g(zk)}.

Since the hypotheses (5.63) include
〈
p∗,Mxk − zk

〉
→ 0, we obtain by taking the

limit over K2 in (5.79) that

f(x∗) + g(z∗) ≤ lim inf
k→∞

{f(xk) + g(zk)}. (5.80)

Combining (5.78) and (5.80), we have

f(x∗) + g(z∗) ≤ lim inf
k→∞

{f(xk) + g(zk)} ≤ lim sup
k→∞

{f(xk) + g(zk)} ≤ f(x∗) + g(z∗),

which, in view of Mx∗ = z∗, is equivalent to (5.69).

62

5.4 Approximate ADMM with absolute summable error cri-

teria

We are now in a position to develop an approximate ADMM algorithms whose con-

vergence analysis is based on Lagrangian splitting. Our first method uses two given

absolute error sequences, one for the x subproblem, and one for the z subproblem,

and takes the form of a slightly more complicated form of Algorithm 4.1.1 developed

above. However, we are able to prove its convergence without any strong convexity or

matrix rank assumptions. Unlike the method from [29] underlying Algorithm 4.1.1,

the convergence analysis uses only residual subgradient information and does not

require bounds on the distance to the exact subproblem solutions.

Broadly speaking, the analysis here blends the original ADMM convergence proof

in [34] with the techniques developed in [28] for approximate solution of subproblems

in the standard (non-alternating-direction) augmented Lagrangian method. Just as

in Section 4.1, let {εk}∞k=1, {τk}∞k=1 ⊂ R++ be scalar sequences such that
∑∞

k=1 εk <∞

and
∑∞

k=1 τk < ∞. We are free to construct these sequences to fit a particular class

of problems of problem instances. For example, for a relatively difficult x subproblem

we might choose relatively large and slowly decreasing values of εk, whereas if the z

subproblem is easily solved exactly, we might even take τk ≡ 0. We also take β1 > 0

and β2 > 0 to be two arbitrary positive scalars. Our proposed algorithm is as follows:

63

Algorithm 5.4.1 Inexact ADMM with absolutely summable error criteria

initialization: Pick c > 0 and initial points p0, z0 ∈ Rm

repeat {for k = 0, 1, 2, . . .}

repeat {for l = 1, 2, . . .}

Improve the solution to xk+1 ≈ arg minx

{
f(x) +

〈
pk,Mx

〉
+ c

2

∥∥Mx− zk
∥∥2
}

by taking (xk,l, yk,l1) = F(pk, zk, c, xk, l)

until ‖yk,l1 ‖ ≤
εk+1

max{β1, ‖xk,l‖}
xk+1 = xk,l

yk+1
1 = yk,l1

repeat {for l = 1, 2, . . .}

Improve the solution to zk+1 ≈ arg minz

{
g(z)−

〈
pk, z

〉
+ c

2

∥∥Mxk+1 − z
∥∥2
}

by taking (zk,l, yk,l2) = G(pk, xk+1, c, zk, l)

until ‖yk,l2 ‖ ≤
τk+1

max{β2, ‖zk,l‖}
zk+1 = zk,l

yk+1
2 = yk,l2

pk+1 = pk + c
(
Mxk+1 − zk+1

)
until Overall convergence

Remark: When the sequence {yk1} is not needed for the “overall convergence” test,

the assignment yk+1
1 = yk,l1 can be omitted from the algorithm’s implementation, and

similarly for {yk2}, just as in Algorithm 4.1.1. However, the sequences {yk1} and {yk2}

figure prominently in the convergence analysis of Algorithm 5.4.1, so we make sure

to define them above.

Remark: Generally speaking, the parameters β1 and β2 should be chosen to be large

numbers since they play the roles of “safe radii” in which the iterates are ordinarily

expected to be contained. If the iterates stay contained within these radii, that

is ‖xk,l‖ ≤ β1 and ‖zk,l‖ ≤ β2 for all combinations of k and l encountered in the

64

course of the algorithm, then the sequence of iterates produced by the algorithm are

indistinguishable from those produced by Algorithm 4.1.1, with εk replaced by εk/β1

and τk replaced by τk/β2. The sequences {εk/β1} and {τk/β2} remain summable

and thus meet the assumptions of Algorithm 4.1.1, so in this case Algorithm 5.4.1

essentially coincides with Algorithm 4.1.1.

We begin by noting that it is not possible for Algorithm 5.4.1 to become “trapped”

in one of its inner loops, subject to a mild condition of the approximation procedure

modeled by F :

Lemma 23. Suppose that the sequence {(xl, yl1)} = {F(p, z, c, x̄, l)} must be bounded

for any (p, z, c, x̄). Then the inner loops (over l) of Algorithm 5.4.1 always terminate

in a finite number of iterations.

Proof. Fix any k. We begin by considering the first inner loop. Note that we must

have yk,l1 → 0 by Assumption 2, so that the real impact of the boundedness assumption

is to assert that {xk,l}∞l=1 is bounded. Therefore, the right-hand side of the inner-

loop termination condition ‖yk,l1 ‖ ≤ εk+1/max{β1, ‖xk,l‖} is bounded below by some

positive quantity. Since its left-hand side converges to zero by Assumption 2, the

condition must eventually be satisfied for some finite l.

Now consider the second inner loop. From assumption 3, we have liml→∞ y
k,l
2 = 0.

By Lemma 6, {zk,l}∞l=1 must converge to the unique solution to the z subproblem, so

it must be bounded. Since this sequence is bounded, an argument similar to that for

the first inner loop asserts that the second inner loop must also terminate finitely.

Remark: By Lemma 5, the boundedness assumption on F is automatically satisfied

and thus redundant whenever the solution set of the x subproblem is bounded, and

in particular when the x subproblem solution is unique, for example when M has full

column rank.

65

We now prove the convergence of this method. Many of the techniques are adapted

from [28, Sections 3 and 4], but simplified to the special case of the standard Euclidean

distance kernel, as opposed to the more general Bregman distances treated in [28].

Lemma 24. [66, Section 2.2] Suppose {αk}∞k=0, {γk}∞k=0 ⊂ R are sequences such that

{αk} is bounded below,
∑∞

k=0 γk exists and is finite, and the recursion αk+1 ≤ αk + γk

holds for all k ≥ 1. Then {αk} converges to a finite limit.

With an analysis similar to [28, Lemma 5], we prove the following result:

Lemma 25. In Algorithm 5.4.1, we have

∞∑
k=0

∥∥yk1∥∥ <∞ ∞∑
k=0

∥∥yk2∥∥ <∞ ∞∑
k=0

〈
xk, yk1

〉
<∞

∞∑
k=0

〈
zk, yk2

〉
<∞, (5.81)

all these limits being guaranteed to exist.

Proof. The termination condition of the algorithm’s first inner loop guarantees that

for all k ≥ 0, ∥∥yk+1
1

∥∥ ≤ εk+1

max{β1, ‖xk+1‖}
≤ εk+1

β1

. (5.82)

Recalling that
∑∞

k=1 εk <∞, we conclude that
∑∞

k=0

∥∥yk1∥∥ <∞, establishing the first

claim. From the first inequality in (5.82), we also have∥∥yk+1
1

∥∥ ≤ εk+1

max{β1, ‖xk+1‖}
≤ εk+1

‖xk+1‖
. (5.83)

Therefore, ∣∣〈xk+1, yk+1
1

〉∣∣ ≤ ∥∥xk+1
∥∥∥∥yk+1

1

∥∥ ≤ ∥∥xk+1
∥∥ εk+1

‖xk+1‖
= εk+1.

From the summability of {εk}, we immediately deduce that
∑∞

k=0

∣∣〈xk, yk1〉∣∣ <∞ and

therefore we have that
∑∞

k=0

〈
xk, yk1

〉
exists and is finite. The proofs of

∑∞
k=0

∥∥yk2∥∥
and

∑∞
k=0

〈
zk, yk2

〉
are nearly identical to those just presented.

Lemma 26. If
{
zk
}∞
k=1

is bounded in Algorithm 5.4.1, then

∞∑
k=0

〈
yk+1

2 − yk2 , zk+1 − zk
〉
<∞.

66

Proof. By the Cauchy-Schwartz inequality,∣∣〈yk+1
2 − yk2 , zk+1 − zk

〉∣∣ ≤ ∥∥yk+1
2 − yk2

∥∥∥∥zk+1 − zk
∥∥ .

Since {yk2} is summable by Lemma 25, {yk+1
2 −yk2} is also summable. Since {zk} is as-

sumed to be bounded, it follows that the sequence
{
‖zk+1 − zk‖

}
is also bounded. We

may then deduce from the above inequality that the sequence
{ ∣∣〈yk+1

2 − yk2 , zk+1 − zk
〉∣∣ }

is summable, and therefore that the sequence
{ 〈
yk+1

2 − yk2 , zk+1 − zk
〉 }

is summable.

Proposition 27. If Assumption 1 holds, then the sequences {zk}, {pk} and {Mxk}

generated by Algorithm 5.4.1, are all bounded, and
∑∞

k=0

∥∥Mxk+1 − zk
∥∥2
<∞. Fur-

thermore, for any KKT point (x∗, z∗, p∗) of (P), the sequence{∥∥(czk, pk)− (cz∗, p∗)
∥∥} converges to a finite limit.

Proof. Let (x∗, z∗, p∗) be any a KKT point of (P), hypothesized to exist by Assump-

tion 1. Then

(0, 0, 0) ∈ ∂L (x∗, z∗, p∗) = {∂f(x∗) +M>p∗} × {∂g(z∗)− p∗} × {z∗ −Mx∗} ,

and from L = L1 + L2 and (5.7)-(5.8) we have(
yk+1

1 , 0,−Mxk+1
)
∈ ∂L1

(
xk+1, zk, pk + cMxk+1 − czk

)
(0, 0,−Mx∗) ∈ ∂L1 (x∗, z∗, p∗ + cMx∗ − cz∗)(
0, yk+1

2 , zk+1
)
∈ ∂L2

(
xk+1, zk+1, pk + cMxk+1 − czk+1

)
(0, 0, z∗) ∈ ∂L2 (x∗, z∗, p∗ + cMx∗ − cz∗)

Since ∂L1 is a monotone operator, we have〈
xk+1 − x∗, yk+1

1

〉
+
〈
pk − p∗ + cM(xk+1 − x∗)− c(zk − z∗),−M(xk+1 − x∗)

〉
≥ 0

Rearranging this inequality, we obtain∥∥M(xk+1 − x∗)
∥∥2 ≤ 1

c

〈
xk+1 − x∗, yk+1

1

〉
−
〈

1
c
(pk − p∗)− (zk − z∗),M(xk+1 − x∗)

〉
.

(5.84)

67

Using the monotonicity of ∂L2, we have

〈
zk+1 − z∗, yk+1

2

〉
+
〈
pk − p∗ + cM(xk+1 − x∗)− c(zk+1 − z∗), zk+1 − z∗

〉
≥ 0

⇔
〈
zk+1 − z∗, yk+1

2

〉
+
〈
pk − p∗ + cM(xk+1 − x∗), zk+1 − z∗

〉
− c

∥∥zk+1 − z∗
∥∥2 ≥ 0,

which we may rearrange into

∥∥zk+1 − z∗
∥∥2 ≤ 1

c

〈
zk+1 − z∗, yk+1

2

〉
+
〈

1
c
(pk − p∗) +M(xk+1 − x∗), zk+1 − z∗

〉
(5.85)

Adding (5.84) and (5.85), we obtain

∥∥M(xk+1 − x∗)
∥∥2

+
∥∥zk+1 − z∗

∥∥2

≤ 1
c

(〈
xk+1 − x∗, yk+1

1

〉
+
〈
zk+1 − z∗, yk+1

2

〉)
+
〈
M(xk+1 − x∗), zk − z∗

〉
+
〈
M(xk+1 − x∗), zk+1 − z∗

〉
+ 1

c

〈
pk − p∗, zk+1 −Mxk+1

〉
(5.86)

= 1
c

(〈
xk+1 − x∗, yk+1

1

〉
+
〈
zk+1 − z∗, yk+1

2

〉)
+
〈
M(xk+1 − x∗), zk − z∗

〉
+
〈
M(xk+1 − x∗), zk+1 − z∗

〉
+ 1

c2

〈
pk − p∗, pk − pk+1

〉
(5.87)

= 1
c

(〈
xk+1 − x∗, yk+1

1

〉
+
〈
zk+1 − z∗, yk+1

2

〉)
+ 1

2

(∥∥M(xk+1 − x∗)
∥∥2

+
∥∥zk − z∗∥∥2 −

∥∥Mxk+1 − zk
∥∥2
)

(5.88)

+ 1
2

(∥∥M(xk+1 − x∗)
∥∥2

+
∥∥zk+1 − z∗

∥∥2 − 1
c2

∥∥pk+1 − pk
∥∥2
)

(5.89)

+ 1
2c2

(∥∥pk − p∗∥∥2
+
∥∥pk − pk+1

∥∥2 −
∥∥pk+1 − p∗

∥∥2
)
, (5.90)

where we use the multiplier update pk+1 = pk + c(Mxk+1 − zk+1) to obtain the

term (5.87), we apply the identity 〈a, b〉 = 1
2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2) to obtain (5.88)-

(5.90), and both (5.86) and the last term in (5.88) use that Mx∗ = z∗. Multiplying

the resulting inequality by 2c2 and rearranging, we obtain

c2
∥∥zk+1 − z∗

∥∥2
+
∥∥pk+1 − p∗

∥∥2
+ c2

∥∥Mxk+1 − zk
∥∥2

68

≤ c2
∥∥zk − z∗∥∥2

+
∥∥pk − p∗∥∥2

+ 2c
(〈
xk+1 − x∗, yk+1

1

〉
+
〈
zk+1 − z∗, yk+1

2

〉)
. (5.91)

We now bound the last term in (5.91), using the termination conditions for the

algorithm’s inner loops:

〈
xk+1 − x∗, yk+1

1

〉
+
〈
zk+1 − z∗, yk+1

2

〉
≤
∥∥xk+1 − x∗

∥∥∥∥yk+1
1

∥∥+
∥∥zk+1 − z∗

∥∥∥∥yk+1
2

∥∥
≤
∥∥xk+1

∥∥∥∥yk+1
1

∥∥+ ‖x∗‖
∥∥yk+1

1

∥∥+
∥∥zk+1

∥∥∥∥yk+1
2

∥∥+ ‖z∗‖
∥∥yk+1

2

∥∥
≤
∥∥xk+1

∥∥ εk+1

‖xk+1‖
+ ‖x∗‖ εk+1

β1

+
∥∥zk+1

∥∥ τk+1

‖zk+1‖
+ ‖z∗‖ τk+1

β2

≤
(

1 +
‖x∗‖
β1

)
εk+1 +

(
1 +
‖z∗‖
β2

)
τk+1.

Substituting this inequality into (5.91), we obtain

c2
∥∥zk+1 − z∗

∥∥2
+
∥∥pk+1 − p∗

∥∥2
+ c2

∥∥Mxk+1 − zk
∥∥2

≤ c2
∥∥zk − z∗∥∥2

+
∥∥pk − p∗∥∥2

+ 2c

[(
1 +
‖x∗‖
β1

)
εk+1 +

(
1 +
‖z∗‖
β2

)
τk+1

]
. (5.92)

Adding this inequality for k = 0, . . . , K and canceling “telescoping” terms yields that

for any K ≥ 0,

c2
∥∥zK+1 − z∗

∥∥2
+
∥∥pK+1 − p∗

∥∥2
+ c2

K∑
k=0

∥∥Mxk+1 − zk
∥∥2

≤ c2
∥∥z0 − z∗

∥∥2
+
∥∥p0 − p∗

∥∥2
+ 2c

(
1 +
‖x∗‖
β1

) K∑
k=0

εk+1 + 2c

(
1 +
‖z∗‖
β2

) K∑
k=0

τk+1.

(5.93)

By assumption, both {εk} and {τk} are summable, so the right-hand side of (5.93)

converges to a finite limit as K → ∞. From this boundedness, (5.93) allows us to

draw the following conclusions:

• {pk} and {zk} are bounded

•
∑∞

k=0

∥∥Mxk+1 − zk
∥∥2
<∞

• Consequently, Mxk+1 − zk → 0

69

• Because Mxk+1 − zk → 0 and {zk} is bounded, {Mxk} must be bounded.

From (5.92), since
∥∥Mxk+1 − zk

∥∥2
is always nonnegative, we have for all k that

c2
∥∥zk+1 − z∗

∥∥2
+
∥∥pk+1 − p∗

∥∥2

≤ c2
∥∥zk − z∗∥∥2

+
∥∥pk − p∗∥∥2

+ 2c

[(
1 +
‖x∗‖
β1

)
εk+1 +

(
1 +
‖z∗‖
β2

)
τk+1

]
. (5.94)

Let αk = c2
∥∥zk − z∗∥∥2

+
∥∥pk − p∗∥∥2

, which is bounded below by 0. Also let

γk = 2c
[(

1 + ‖x∗‖
β1

)
εk+1 +

(
1 + ‖z∗‖

β2

)
τk+1

]
,

from which we can rewrite (5.94) as αk+1 ≤ αk + γk. Since {εk} and {γk} are

summable, we know that
∑∞

k=0 γk <∞, so by Lemma 24, we conclude that

{αk} =
{
c2‖zk − z∗‖2 + ‖pk − p∗‖2

}
=
{
‖(czk, pk)− (cz∗, p∗)‖2

}
converges to a finite limit, and consequently so does

{
‖(czk, pk)− (cz∗, p∗)‖

}
.

Remark: If we take yk+1
1 = 0 and yk+1

2 = 0 for all k, then the inequality (5.91)

reduces to

c2
∥∥zk+1 − z∗

∥∥2
+
∥∥pk+1 − p∗

∥∥2
+ c2

∥∥Mxk+1 − zk
∥∥2 ≤ c2

∥∥zk − z∗∥∥2
+
∥∥pk − p∗∥∥2

.

Under this conditions on yk+1
1 and yk+1

2 , it holds that by Lemma 20

∥∥Mxk+1 − zk+1
∥∥2

+
∥∥zk − zk+1

∥∥2 ≤
∥∥Mxk+1 − zk

∥∥2

Immediately, it follows that

1

c2

∥∥pk − p∗∥∥2
+
∥∥zk − z∗∥∥2 −

(
1

c2

∥∥pk+1 − p∗
∥∥2

+
∥∥zk+1 − z∗

∥∥2
)
≥∥∥Mxk+1 − zk+1

∥∥2
+
∥∥zk+1 − zk

∥∥2
, (5.95)

which is exactly the inequality (5.37) in the convergence analysis for exact ADMM.

70

Proposition 28. If Assumption 1 is satisfied, then the sequences generated by Algo-

rithm 5.4.1 have the properties

∞∑
k=0

∥∥zk+1 − zk
∥∥2
<∞

∞∑
k=0

∥∥Mxk+1 − zk+1
∥∥2
<∞

∞∑
k=0

∥∥pk+1 − pk
∥∥2
<∞.

Proof. By Lemma 20, we know that

∥∥Mxk+1 − zk+1
∥∥2

+
∥∥zk − zk+1

∥∥2 ≤
∥∥Mxk+1 − zk

∥∥2
+ 2

c

〈
yk+1

2 − yk2 , zk+1 − zk
〉

Adding this inequality for k = 1, . . . , K, we obtain that for any K ≥ 0 that

K∑
k=0

∥∥Mxk+1 − zk+1
∥∥2

+
K∑
k=0

∥∥zk − zk+1
∥∥2

≤
K∑
k=0

∥∥Mxk+1 − zk
∥∥2

+
2

c

K∑
k=0

〈
yk+1

2 − yk2 , zk+1 − zk
〉
. (5.96)

Now consider the limit as K →∞. Proposition 27 asserts that the first term on the

right-hand side of the above inequality converges to a finite limit, while Lemma 26

guarantees that the same holds for the last term. Therefore we conclude that

∞∑
k=0

∥∥Mxk+1 − zk+1
∥∥2
<∞

∞∑
k=0

∥∥zk+1 − zk
∥∥2
<∞.

Since the multiplier update formula is equivalent to pk+1 − pk = c
(
Mxk+1 − zk+1

)
,

it follows immediately from the first of these inequalities that
∑∞

k=0

∥∥pk+1 − pk
∥∥2

<

∞.

The following two propositions summarize, respectively, the dual and primal be-

havior of Algorithm 5.4.1.

Proposition 29. Under Assumption 1, the sequences {pk} and {zk} generated by

Algorithm 5.4.1 are bounded and all limit points of {pk} are solutions to the dual

problem (D). Furthermore, if {xk} has at least one limit point, then {pk} converges

to a particular dual solution.

71

Proof. We will use Proposition 21, whose assumptions are that {Mxk} and {pk} are

bounded, along with

zk+1 − zk → 0 Mxk − zk → 0 yk1 → 0 yk2 → 0
〈
yk1 , x

k
〉
→ 0

〈
yk2 , z

k
〉
→ 0.

The boundedness of {Mxk} and {pk} was established in Proposition 27. The first

two limit conditions above follow immediately from stronger results established in

Proposition 28, while the remaining limit conditions similarly follow from stronger

results already established in Lemma 25. Therefore, the hypotheses of Proposition 21

are satisfied, and we conclude that all limit points of {pk} must be dual solutions.

Now suppose that {xk} has at least one limit point x∞. Since Proposition 27

asserts that {pk} and {zk} are bounded, there exist z∞, p∞ ∈ Rm and an infinite set

of indices K for which (xk, zk, pk)→K (x∞, z∞, p∞). We will use Lemma 17 to assert

that (x∞, z∞, p∞) is KKT point. The hypotheses of Lemma 17 are

Mxk − zk → 0 Mxk+1 − zk → 0 yk1 → 0 yk2 → 0.

The condition Mxk−zk → 0 is a consequence of Proposition 28, while Mxk+1−zk → 0

follows from Proposition 27. The last two limit conditions above were established in

Lemma 25. Therefore, Lemma 17 applies and (x∞, z∞, p∞) must be KKT point.

Proposition 27 then asserts that {
∥∥(czk, pk)− (cz∞, p∞)

∥∥} must converge to a finite

limit, but since one of its limit points must be zero, the entire sequence converges

and we deduce that pk → p∞.

Note that since {Mxk} must be bounded by Proposition 27, one possible sufficient

condition for {xk} to have a limit point is that M has full column rank.

Proposition 30. For sequences {xk} and {zk} generated by Algorithm 5.4.1 under

Assumption 1, we have

Mxk − zk → 0 lim
k→∞
{f(xk) + g(zk)} = f(x∗) + g(z∗).

72

Proof. The first (feasibility) claim is, as in the proof of the previous proposition, an

immediate consequence of Proposition 28. In view of Lemma 25, Proposition 27, and

Proposition 28, this second claim is a direct application of Proposition 22.

5.5 An approximate ADMM with relative error criteria

One drawback to Algorithm 5.4.1 above is that it is not inherently clear how to

select the parameter sequences {εk} and {τk}. In the general study of proximal

algorithms, it has become common starting with the work of Solodov and Svaiter

in [75] to replace such absolute, formally exogenous error sequences with relative

error criteria that require a single scalar parameter controlling the ratios of various

algorithmic quantities. Such techniques have the advantage of adapting automatically

to individual problem instances. This section proposes an algorithm similar to the

one in the last section, but using such a relative error criterion and having only a

few parameters. The analysis has much in common with the previous analysis, but

combines the fundamental Lagrangian splitting proof approach dating back to [34]

with the relative error non-alternating augmented Lagrangian techniques in [30], as

opposed to the absolute error techniques in [28]. As in [30], we introduce an auxiliary

sequence into the iterative process, in this case
{

(wk1 , w
k
2)
}∞
k=0
⊂ Rn×Rm. The other

sequences generated by the algorithm, {xk}, {yk1} ⊂ Rn and {zk}, {yk2}, {pk} ⊂ Rm,

play similar roles similar to the corresponding sequences in Algorithm 5.4.1. To

simplify the statement of the algorithm, we define the following notation for all k ≥ 0:

wk =

wk1
wk2

 yk =

yk1
yk2

 xk =

xk
zk

 .
Succinctly, using a single scalar parameter σ ∈ [0, 1), the algorithm starts from arbi-

trary points p0, z0 ∈ Rm and w0 ∈ Rn × Rm and develops sequences conforming to

73

the following recursive conditions for all k ≥ 0:

yk+1
1 ∈ ∂x

[
f(x) +

〈
pk,Mx

〉
+ c

2

∥∥Mx− zk
∥∥2
]
x=xk+1

(5.97)

yk+1
2 ∈ ∂z

[
g(z)−

〈
pk, z

〉
+ c

2

∥∥z −Mxk+1
∥∥2
]
z=zk+1

(5.98)

2

c

∣∣〈wk − xk+1,yk+1
〉∣∣+

∥∥yk+1
∥∥2 ≤ σ

∥∥Mxk+1 − zk
∥∥2

(5.99)

pk+1 = pk + c
(
Mxk+1 − zk+1

)
(5.100)

wk+1 = wk − cyk. (5.101)

Here, (5.97), (5.98), and (5.100) are essentially the same as in Algorithm 5.4.1,

while (5.99) and (5.101) are essentially the same approximation criterion and up-

date proposed in [30]. In fact, applying the algorithm of [30] to (P) with a constant

penalty parameter would result in the same algorithm, except that the sequential

conditions (5.97)-(5.98) would be replace by the single coupled condition

yk+1 ∈ ∂(x,z)

[
f(x) + g(z) +

〈
pk,Mx− z

〉
+ c

2
‖Mx− z‖2

]
(x,z)=(xk+1,yk+1)

.

We will show that the recursions (5.97)-(5.101) converge if (P) has a KKT point, es-

sentially establishing that if one keeps the penalty parameter constant in the algorithm

of [30] applied to (P), one can weaken the condition of approximately minimizing the

augmented Lagrangian jointly with respect to x and z to an approximate minimiza-

tion with respect to x with z fixed, followed by an approximate minimization with

respect to z with x fixed.

Proposition 31. If there exists any saddle point of L, that is, some (x∗, z∗, p∗) ∈

Rn × Rm × Rm such that (0, 0, 0) ∈ ∂L(x∗, z∗, p∗), and σ ∈ [0, 1). Suppose that

{xk}, {yk}, {pk} and {wk} obey for all k ≥ 1 the recursion (5.97)-(5.101), then the

following hold:

– The sequences
{
pk
}

,
{
zk
}

and
{
wk
}

are bounded.

–
(
wk, czk, pk

)
is Fejér monotone to (x∗, cz∗, p∗).

74

–
{∥∥(wk, czk, pk

)
− (x∗, cz∗, p∗)

∥∥2
}

is convergent.

– Mxk+1 − zk → 0, yk → 0 and
〈
xk,yk

〉
→ 0.

–
∥∥(wk+1, czk+1, pk+1

)
− (x, cz∗, p∗)

∥∥ ≤ ∥∥(wk, czk, pk
)
− (x, cz∗, p∗)

∥∥
Proof. As in the previous analysis, we let µk+1 = pk + cMxk+1 − czk. Then for any

k ≥ 1,

∥∥pk − p∗∥∥2
+ c2

∥∥zk − z∗∥∥2

=
∥∥pk − pk+1 + pk+1 − p∗

∥∥2
+ c2

∥∥zk − zk+1 + zk+1 − z∗
∥∥2

=
∥∥pk − pk+1

∥∥2
+ 2

〈
pk − pk+1, pk+1 − p∗

〉
+
∥∥pk+1 − p∗

∥∥2

+ c2
∥∥zk − zk+1

∥∥2
+ 2c2

〈
zk − zk+1, zk+1 − z∗

〉
+ c2

∥∥zk+1 − z∗
∥∥2

=
∥∥pk − pk+1

∥∥2
+ 2c

〈
zk+1 −Mxk+1, pk+1 − p∗

〉
+
∥∥pk+1 − p∗

∥∥2

+ c2
∥∥zk − zk+1

∥∥2
+ 2c

〈
pk+1 − µk+1, zk+1 − z∗

〉
+ c2

∥∥zk+1 − z∗
∥∥2

=
∥∥pk − pk+1

∥∥2
+
∥∥pk+1 − p∗

∥∥2
+ c2

∥∥zk − zk+1
∥∥2

+ c2
∥∥zk+1 − z∗

∥∥2

+ 2c
〈
zk+1 − z∗ −Mxk+1 +Mx∗, pk+1 − p∗

〉
+ 2c

〈
pk+1 − µk+1, zk+1 − z∗

〉
,

where the last equality uses Mx∗ = z∗. Thus,

∥∥pk+1 − p∗
∥∥2

+ c2
∥∥zk+1 − z∗

∥∥2

=
∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2 −

∥∥pk − pk+1
∥∥2 − c2

∥∥zk − zk+1
∥∥2

− 2c
〈
zk+1 − z∗, pk+1 − p∗

〉
− 2c

〈
pk+1 − µk+1, zk+1 − z∗

〉
− 2c

〈
−Mxk+1 +Mx∗, pk+1 − p∗

〉
. (5.102)

Rewriting the last term in (5.102) as

〈
−Mxk+1 +Mx∗, pk+1 − p∗

〉
=
〈
−Mxk+1 +Mx∗, pk+1 − µk+1 + µk+1 − p∗

〉

75

we next obtain, using Mx∗ = z∗ that

∥∥pk+1 − p∗
∥∥2

+ c2
∥∥zk+1 − z∗

∥∥2

=
∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2 −

∥∥pk − pk+1
∥∥2 − c2

∥∥zk − zk+1
∥∥2

− 2c
〈
zk+1 − z∗, pk+1 − p∗

〉
− 2c

〈
−Mxk+1 +Mx∗, pk+1 − µk+1 + µk+1 − p∗

〉
− 2c

〈
pk+1 − µk+1, zk+1 − z∗

〉
=
∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2

− 2c
〈
zk+1 − z∗, pk+1 − p∗

〉
− 2c

〈
−Mxk+1 +Mx∗, µk+1 − p∗

〉
−
∥∥pk − pk+1

∥∥2 − c2
∥∥zk − zk+1

∥∥2
+ 2c

〈
Mxk+1 − zk+1, pk+1 − µk+1

〉
=
∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2

− 2c
〈
zk+1 − z∗, pk+1 − p∗

〉
− 2c

〈
−Mxk+1 +Mx∗, µk+1 − p∗

〉
− c2

[∥∥Mxk+1 − zk+1
∥∥2

+
∥∥zk − zk+1

∥∥2 − 2
〈
Mxk+1 − zk+1, zk − zk+1

〉]
.

The final quantity in brackets is simply
∥∥Mxk+1 − zk

∥∥2
, so it follows that

∥∥pk+1 − p∗
∥∥2

+ c2
∥∥zk+1 − z∗

∥∥2

=
∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2 − c2

∥∥Mxk+1 − zk
∥∥2

− 2c
〈
zk+1 − z∗, pk+1 − p∗

〉
− 2c

〈
−Mxk+1 − (−Mx∗) , µk+1 − p∗

〉
(5.103)

Now we consider
∥∥wk+1 − x∗

∥∥2
. Since wk+1 = wk − cyk+1, it follows that

∥∥wk+1 − x∗
∥∥2

(5.104)

=
∥∥wk − cyk+1 − x∗

∥∥2

=
∥∥wk − x∗

∥∥2 − 2c
〈
wk − x∗,yk+1

〉
+ c2

∥∥yk+1
∥∥2

=
∥∥wk − x∗

∥∥2 − 2c
〈
wk − xk+1,yk+1

〉
− 2c

〈
xk+1 − x∗,yk+1

〉
+ c2

∥∥yk+1
∥∥2

(5.105)

76

Adding (5.103) to (5.105) and grouping terms yields∥∥pk+1 − p∗
∥∥2

+ c2
∥∥zk+1 − z∗

∥∥2
+
∥∥wk+1 − x∗

∥∥2

=
∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2

+
∥∥wk − x∗

∥∥2

− 2c
[〈
zk+1 − z∗, pk+1 − p∗

〉
+
〈
zk+1 − z∗, yk+1

2 − 0
〉

+
〈
0, xk+1 − x∗

〉]
(A)

− 2c
[〈
−Mxk+1 − (−Mx∗) , µk+1 − p∗

〉
+
〈
xk+1 − x∗, yk+1

1 − 0
〉

+
〈
0, zk − z∗

〉]
(B)

− 2c
〈
wk − xk+1,yk+1

〉
(C)

+ c2
∥∥yk+1

∥∥2 − c2
∥∥Mxk+1 − zk

∥∥2
(5.106)

Since(
yk+1

1 , 0,−Mxk+1
)
∈ ∂L1

(
xk+1, zk, µk+1

)
(0, 0,−Mx∗) ∈ ∂L1 (x∗, z∗, p∗) ,

it follows from the monotonicity of ∂L1 that〈
−Mxk+1 − (−Mx∗) , µk+1 − p∗

〉
+
〈
xk+1 − x∗, yk+1

1 − 0
〉

+
〈
0, zk − z∗

〉
≥ 0. (B′)

Similarly, from(
0, yk+1

2 , zk+1
)
∈ ∂L2

(
xk+1, zk+1, pk+1

)
(0, 0, z∗) ∈ ∂L2 (x∗, z∗, p∗)

the monotonicity of ∂L2 yields〈
zk+1 − z∗, pk+1 − p∗

〉
+
〈
zk+1 − z∗, yk+1

2 − 0
〉

+
〈
0, xk+1 − x∗

〉
≥ 0 (A′)

For (C), it is always true that

−2c
〈
wk − xk+1,yk+1

〉
≤ 2c

∣∣〈wk − xk+1,yk+1
〉∣∣ . (C′)

Applying (B′) (A′) and (C′) to (5.106), we obtain∥∥pk+1 − p∗
∥∥2

+c2
∥∥zk+1 − z∗

∥∥2
+
∥∥wk+1 − x∗

∥∥2

≤
∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2

+
∥∥wk − x∗

∥∥2

+ 2c
∣∣〈wk − xk+1,yk+1

〉∣∣+ c2
∥∥yk+1

∥∥2 − c2
∥∥Mxk+1 − zk

∥∥2

(5.107)

77

Multiplying the relative error condition (5.99) by c2 yields

2c
∣∣〈wk − xk+1,yk+1

〉∣∣+ c2
∥∥yk+1

∥∥2 ≤ c2σ
∥∥Mxk+1 − zk

∥∥2
. (5.108)

Combining (5.108) and (5.106), we obtain the inequality that is the key to the con-

vergence analysis:∥∥pk+1 − p∗
∥∥2

+ c2
∥∥zk+1 − z∗

∥∥2
+
∥∥wk+1 − x∗

∥∥2

≤
∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2

+
∥∥wk − x∗

∥∥2

− c2 (1− σ)
∥∥Mxk+1 − zk

∥∥2
. (5.109)

Since (5.109) is true for all k ≥ 1, the following conclusions can be drawn:

– The sequence
{∥∥pk − p∗∥∥2

+ c2
∥∥zk − z∗∥∥2

+
∥∥wk − x∗

∥∥2
}

is non-increasing and

convergent because it is bounded below by 0. Thus Sequences {pk}, {zk} and{
wk
}

are bounded and
(
wk, czk, pk

)
is Fejér monotone to (x∗, cz∗, p∗).

– By [7, Proposition 5.4], we have that
{∥∥(wk, czk, pk

)
− (x∗, cz∗, p∗)

∥∥2
}

is con-

vergent.

– Since (1− σ) > 0, the inequality (5.109) implies that∥∥(wk+1, czk+1, pk+1
)
− (x, cz∗, p∗)

∥∥ ≤ ∥∥(wk, czk, pk
)
− (x, cz∗, p∗)

∥∥
– By summing (5.109) over k, we deduce that {

∥∥Mxk+1 − zk
∥∥2} is a summable se-

quence and hence thatMxk+1−zk → 0. From the relative error condition (5.99),

we know that {
∥∥yk∥∥2} and {

∣∣〈wk − xk+1,yk+1
〉∣∣} are both summable, thus

{
〈
wk − xk+1,yk+1

〉
} is also summable and thus yk → 0,

〈
wk − xk+1,yk+1

〉
→

0.

– Writing 〈
xk+1,yk+1

〉
=
〈
wk,yk+1

〉
−
〈
wk − xk+1,yk

〉
,

we may reason as follows: since
{
wk
}

is bounded and yk → 0, we may

conclude that
〈
wk,yk+1

〉
→ 0. Since we have already established the limit〈

wk − xk+1,yk+1
〉
→ 0, it follows that

〈
xk,yk

〉
→ 0.

78

The role of the sequence {wk} is similar to that of the sequence {wk} in [30]: it may

be considered as accumulating the total subgradient error “drift” over the course of

the algorithm.

Proposition 32. If the sequences {xk}, {zk}, {pk}, and {wk} conform to the recur-

sion (5.97)-(5.101), then

Mxk+1 − zk+1 → 0 zk+1 − zk → 0 pk+1 − pk → 0.

Proof. By Lemma 20, we have∥∥Mxk+1 − zk+1
∥∥2

+
∥∥zk − zk+1

∥∥2 ≤
∥∥Mxk+1 − zk

∥∥2
+

2

c

〈
yk+1

2 − yk2 , zk+1 − zk
〉
.

(5.110)

Expanding the inner product in (5.110), we write〈
yk+1

2 − yk2 , zk+1 − zk
〉

=
〈
yk+1

2 , zk+1
〉
−
〈
yk+1

2 , zk
〉
−
〈
yk2 , z

k+1
〉

+
〈
yk2 , z

k
〉
.

By Proposition 31, {zk} is bounded, Mxk+1−zk → 0 and {yk2} → 0 so we may assert

that ∥∥Mxk+1 − zk
∥∥2

+
〈
yk+1

2 − yk2 , zk+1 − zk
〉
→ 0.

It follows from (5.110) that
∥∥Mxk+1 − zk+1

∥∥2
+
∥∥zk − zk+1

∥∥2 → 0. The first two

claims follow immediately, and the last claim is then a consequence of pk+1 − pk =

c
(
Mxk+1 − zk+1

)
.

Following pattern established in the previous subsection, next we show that all

limit points of {pk} are dual solutions.

Proposition 33. All accumulation points of the sequence {pk} generated by the re-

cursions (5.97)-(5.101) are solutions to the dual problem (D), and all limit points of

{xk} are solutions to the primal problem (P). Furthermore, if (x∗, z∗) is an optimal

solution to (P), we have

lim
k→∞
{f(xk) + g(zk)} = f(x∗) + g(z∗).

79

Proof. By Propositions 31 and 32, we know that the sequences {Mxk} and {pk}

generated by the recursions (5.97)-(5.101) are bounded and

zk+1 − zk → 0 Mxk+1 − zk+1 → 0
〈
yk+1,xk+1

〉
→ 0.

We may then apply Proposition 21 to obtain that every limit point of {pk} is a dual

solution.

We now consider the primal sequence {xk}. From Lemma 17, we conclude that

all its limit points are primal solutions. The final claimed inequality follows from

Proposition 22.

We close this section by showing that the sequence {pk} defined by the recur-

sions (5.97)-(5.101) converges to a dual solution.

Proposition 34. If the set of KKT points for (P) is nonempty, then the sequence

{pk} defined by the recursions (5.97)-(5.101) converges to a solution of (D).

Proof. From Proposition 31, we have∥∥(wk+1, czk+1, pk+1
)
− (x, cz∗, p∗)

∥∥ ≤ ∥∥(wk, czk, pk
)
− (x, cz∗, p∗)

∥∥ ,
so
{∥∥(wk, czk, pk

)
− (x, cz∗, p∗)

∥∥} is nonincreasing. For all k ≥ 0 let αk =
(
wk+1, czk+1

)
and βk = pk, and define V to be the set all solutions of (D). By Proposition 33, we

know that every limit point of {pk} belongs to V . Therefore, Lemma 14 implies that

{pk} converges to a solution of (D).

Propositions 34 and 33 together summarize the convergence properties of the

recursions (5.97)-(5.101). We next consider to the implementation of concrete algo-

rithms that conform to these recursions.

5.6 Partially inexact ADMM with relative error criteria

In many applications of the ADMM, subproblem (1.10) may be solved exactly. For

instance, l1-regularized regression is a very common technique for high-dimensional

80

statistical learning problems, and in problems with l1 regularization one typically has

g(z) = ν ‖z‖1 for some ν > 0. In this case, the exact solution to the g subproblem 1.10

can be easily computed by the soft thresholding operator given by

zk+1
i = sgn

(
M>

i x
k+1
i + 1

c
pki
)

max
{

0,
∣∣M>

i x
k+1
i + 1

c
pki
∣∣− ν

c

}
i = 1, . . . ,m,

(5.111)

where the vector Mi denotes the ith row of the matrix M . In such applications,

inexact computation need not be applied to the second subproblem. We now give a

concrete algorithm that applies (5.97)-(5.101) to such situations:

Algorithm 5.6.1 Partially inexact ADMM with relative error criteria

initialization: Pick scalar parameters c > 0, and σ ∈ [0, 1), along with initial

points w0, p0, z0 ∈ Rm

repeat {for k = 0, 1, 2, . . .}

repeat {for l = 1, 2, . . .}

Improve the solution to xk+1 ≈ arg minx

{
f(x) +

〈
pk,Mx

〉
+ c

2

∥∥Mx− zk
∥∥2
}

by taking (xk,l, yk,l) = F(pk, zk, c, xk, l)

until
2

c

∣∣〈wk − xk,l, yk,l〉∣∣+
∥∥yk,l∥∥2 ≤ σ

∥∥Mxk,l − zk
∥∥2

xk+1 = xk,l, yk+1 = yk,l

zk+1 = arg minz

{
g(z)−

〈
pk, z

〉
+ c

2

∥∥Mxk+1 − z
∥∥2
}

pk+1 = pk + c
(
Mxk+1 − zk+1

)
wk+1 = wk − cyk

until Overall convergence

Proposition 35. Suppose Assumption 1 holds. If the inner loop of (over l) of Algo-

rithm 5.6.1 always terminates in a finite number of iterations, all limit points of the

sequence {(xk, zk, pk)} generated by the algorithm are the KKT points of (P), {pk}

converges to an optimal solution of the dual problem (D), and limk→∞ f(xk)+g(zk) =

f(x∗) + g(z∗), where (x∗, z∗) is any optimal solution of (P). If the inner loop cycles

infinitely over l for some iteration k = k̄, then for all limit points x∞ of {xk̄,l}∞l=1, we

81

have that (x∞, zk̄, pk̄) is a KKT point of (P).

Proof. Consider the case that inner loop always terminates finitely. It is easily verified

that Algorithm 5.6.1 generates sequences conforming to the recursions (5.97)-(5.101)

with yk2 = 0 for all k. The relevant conclusions then follow from Propositions 33

and 34.

The remaining case is that the first loop executes an infinite number of times at

outer iteration k = k̄, in which we must have

lim
l→∞

Mxk̄,l − zk̄ = 0 lim
l→∞

yk̄,l = 0,

and by Corollary 19 all limit points of {(xk̄,l, zk̄, pk̄)} are the KKT points.

Regarding the existence of limit points of {xk̄,l}∞l=1 in the case of the inner loop

running indefinitely, we may appeal to Lemma 5: specifically, if the solution set of

the x subproblem is bounded, then {xk̄,l}∞l=1 is bounded and hence must have limit

points. If the solution of the x subproblem is unique, then {xk̄,l}∞l=1 must converge to

it, so the unique limit x∞ of {xk̄,l}∞l=1 is a solution of (P) by Proposition 35.

5.7 Complete form of relative-error algorithm with both min-

imizations inexact

While the partially inexact Algorithm 5.6.1 covers many applications, it could still be

desirable to consider the possibility of solving both subproblems inexactly. For such

cases, we propose the following algorithm:

82

Algorithm 5.7.1 Inexact ADMM with relative error criteria

initialization: Pick scalar parameters c > 0, σ ∈ [0, 1), τ, α ∈ (0, 1), and β, γ > 0,

along with initial points x1, w1
1 ∈ Rm and p0, z0, w0

2 ∈ Rm, with Mx1 6= z0

repeat {for k = 0, 1, 2, . . .}

l← 0

repeat {for t = 0, 1, . . .}

repeat

l← l + 1

(zk,l, yk,l2) = G(pk, xk+1, c, zk, l)

until 2
c

∣∣∣〈wk2 − zk,l, yk,l2

〉∣∣∣+ ‖yk,l2 ‖2 ≤ αt(1− τ)σ
∥∥Mxk+1 − zk

∥∥2

pk,l = pk + c(Mxk+1 − zk,l)

wk,l2 = wk2 − cy
k,l
2

x̄k,0 = xk+1

repeat {for l′ = 0, 1, . . .}

(xk,t,l
′
, yk,t,l

′

1) = F(pk,l, zk,l, c, x̄k,t−1, l′)

accept ←
(

2
c

∣∣∣〈wk1 − xk,t,l′ , yk,t,l′1

〉∣∣∣+ ‖yk,t,l
′

1 ‖2 < τσ
∥∥Mxk,t,l

′ − zk,l
∥∥2
)

until accept or
(
‖yk,t,l

′

1 ‖2 ≤ β‖yk,l2 ‖2 and ‖Mxk,t,l
′ − zk,l‖2 ≤ γ‖yk,l2 ‖2

)
x̄k,t = xk,t,l

′
; z̄k,t = zk,l; p̄k,t = pk,l; ȳk,t1 = yk,t,l

′

1 ; ȳk,t2 = yk,l2

until accept

xk+2 = xk,t,l
′
; zk+1 = zk,l; pk+1 = pk,l; yk+1

1 = yk,t,l
′

1 ; yk+1
2 = yk,l2 ; wk+1

2 = wk,l2

wk+2
1 = wk+1

1 − cyk+1
1

until Overall convergence

Compared to Algorithm 5.4.1, this algorithm has a somewhat complicated structure.

The reason is that if one simply modifies Algorithm 5.6.1 so that it includes a second

approximation loop in the manner of Algorithm 5.4.1, there are some seemingly un-

likely situations in which one of the inner loops can run indefinitely without converging

83

to a KKT point. In particular, if we were to try to generalize the Algorithm 5.6.1

to include an approximate z minimization, one might at first consider the following

algorithm:

Algorithm 5.7.2 Insert caption here

initialization: Pick scalar parameters c > 0, and σ ∈ [0, 1), along with initial

points w0, p0, z0 ∈ Rm

repeat {for k = 0, 1, 2, . . .}

repeat {for l = 1, 2, . . .}

(xk,l, yk,l1) = F(pk, zk, c, xk, l)

until 2
c

∣∣∣〈wk − xk,l, yk,l1

〉∣∣∣+ ‖yk,l1 ‖2 ≤ σ
∥∥Mxk,l − zk

∥∥2

xk+1 = xk,l, yk+1
1 = yk,l1

repeat {for l = 1, 2, . . .}

(zk,l, yk,l2) = G(pk, xk+1, c, zk, l)

until 2
c

∣∣∣〈wk2 − zk,l, yk,l2

〉∣∣∣+ ‖yk,l2 ‖2 ≤ (1− τ)σ
∥∥Mxk+1 − zk,l

∥∥2

zk+1 = zk,l, yk2 = yk,l2

pk+1 = pk + c
(
Mxk+1 − zk+1

)
wk+1 = wk − cyk

until Overall convergence

Unfortunately, it is conceivable that the second loop over l in the above sequence could

become “trapped” in a situation in an infinite loop if both sides of the termination

condition 2
c

∣∣∣〈wk2 − zk,l, yk,l2 〉
∣∣∣ + ‖yk,l2 ‖2 ≤ (1 − τ)σ

∥∥Mxk+1 − zk,l
∥∥2

converge to zero.

If the prior x minimization were exact, this situation would essentially result in the

infinite inner loop converging to a solution. Unfortunately, however, if the prior

minimization over x may not have been exact. Our strategy in this case is return to

the prior x minimization and tighten its accuracy, and then revisit the z minimization;

if this procedure is managed properly, we are able to show convergence in all cases.

However, to be able to express the algorithm in a conventional block structure, we

84

reorder its components so that it appears to start with the z-minimization step,

resulting in Algorithm 5.7.1. We now establish the convergence properties of the

algorithm:

Lemma 36. If the inner loops of Algorithm 5.7.1 always terminate finitely, the al-

gorithm produces sequences conforming to the recursions (5.97)-(5.101).

Proof. Consider the loop termination conditions

2

c

∣∣〈wk1 − xk+1, yk+1
1

〉∣∣+
∥∥yk+1

1

∥∥2 ≤ τσ
∥∥Mxk+1 − zk

∥∥2
(5.112)

2

c

∣∣〈wk2 − zk+1, yk+1
2

〉∣∣+
∥∥yk+1

2

∥∥2 ≤ αt(1− τ)σ
∥∥Mxk+1 − zk

∥∥2
. (5.113)

Using that τ ∈ [0, 1], α ∈ (0, 1), and t is a nonnegative integer, (5.113) implies that

2

c

∣∣〈wk2 − zk+1, yk+1
2

〉∣∣+
∥∥yk+1

2

∥∥2 ≤ (1− τ)σ
∥∥Mxk+1 − zk

∥∥2
(5.114)

Adding (5.112) and (5.114), we obtain the relative error condition (5.99). Considering

the updates of pk,l and wk,l2 after the completion of the G loop, and the updates to

pk+1 and wk+1 near the end of the outer loop, it may be verified that the algorithm

produces sequences conforming to (5.97)-(5.101).

The best choice of τ is clearly application-dependent and depends on the relative

difficulty of solving the x and z subproblems. In the case that the z subproblem

is easily solved exactly, one could choose τ = 1, but in this case it would be much

simpler to just use Algorithm 6.1.2 instead.

In addition to Assumption 2, we make the following mild assumption, as in

Lemma 23:

Assumption 37. For any p, z ∈ Rm×Rm, c > 0, x ∈ Rn, the sequence
{
F1(pτ , zτ , c, x, l)

}∞
l=1

is bounded.

Note that all sequences {zl} generated by the g approximation scheme G must be

bounded, because they must converge to the exact solution of the subproblem.

85

Lemma 38. In Algorithm 5.7.1, the loop over l always terminates finitely.

Proof. By the initialization step of the algorithm, Mxk+1 − zk is nonzero for k =

0. By assumption it is nonzero for k = 0. In subsequent iterations k ≥ 1, the

previous iteration must have completed with accept becoming true. Due to the

strict inequality in the definition of accept, we must also have Mxk+1 − zk in this

case. Therefore, we have ‖Mxk+1 − zk‖ > 0 for all k, and since the G-procedure

guarantees liml→∞ y
k,l
2 = 0, the termination condition for the l loop must always hold

eventually.

While the l loop must always terminate finitely, it is possible that the loop over

l′ may run indefinitely. In this case, we are in essentially the same situation as in

Algorithm 5.6.1, and we can show convergence of the inner loop to a KKT point

Lemma 39. If the loop over l′ in Algorithm 5.7.1 does not terminate, then (xk,t,∞, pk,l, zk,l)

is a KKT point of (P) for any limit point xk,t,∞ of {xk,t,l′}∞l′=0.

Proof. By the properties of the F -procedure, the l′ loop can run indefinitely only if

yk,l2 = 0 and liml′→∞Mxk,t,l
′
= zk,l. In any other situation, the l′ loop must terminate

finitely because the boundedness of {xk,t,l′}∞l′=0 ensures that the left-hand side of

accept converges to zero, while the condition’s right-hand side is nonnegative and

does not converge to zero. If liml′→∞Mxk,t,l
′
= zk,l but yk,l2 6= 0, then the alternative

conditions ‖yk,t,l
′

1 ‖2 ≤ β‖yk,l2 ‖2 and ‖Mxk,t,l
′ − zk,l‖2 ≤ γ‖yk,l2 ‖2 must eventually hold

for sufficiently large l′.

If yk,l2 = 0, then zk,l is an exact minimizer of last g subproblem. Furthermore, the

condition liml′→∞Mxk,t,l
′

= zk,l forces liml′→∞ y
k,t,l′

1 = 0. For any limit point xk,t,∞

of {xk,t,l′}∞l′=0, Corollary 19 then implies that (xk,t,∞, pk,l, zk,l) is a KKT point.

We may refer to Lemma 5 for conditions under which {xk,t,l′}∞l′=0 must have limit

points or must converge.

86

Next, we consider the scenario that both of the loops over l and l′ terminate

finitely, but the loop over t runs indefinitely. In this case, we again obtain convergence

to a KKT point.

Lemma 40. In Algorithm 5.7.1, if the loop over t runs indefinitely for some k, then

any limit point of {x̄k,t, z̄k,t, p̄k,t}∞t=0 is a KKT point of (P).

Proof. The loop over t terminates finitely unless accept never holds. However, for

the t loop to run indefinitely, then its contained loop over l′ must always termi-

nate finitely, indicating that the alternative l′ termination conditions ‖yk,t,l
′

1 ‖2 ≤

β‖yk,l2 ‖2 and ‖Mx̄k,t,l
′ − z̄k,l‖2 ≤ γ‖yk,l2 ‖2 hold. By construction, we have α ∈ (0, 1)

and αt → 0, so we know that limt→∞ ȳ
k,t
2 = 0. Consequently, the alternative condi-

tion in loop over l′ ensures that limt→∞ ȳ
k,t
1 = 0 and limt→∞Mx̄k,t − z̄k,t = 0. Now,

we know that limt→∞ ȳ
k,t
1 = 0 since {ȳk,t1 }∞t=0 is a subsequence of {yk,l1 }∞l=1, which

must converge to 0. Furthermore, {z̄k,t}∞t=0 must be convergent since it is a subse-

quence of the convergent sequence {zk,l}∞l=1. The convergence of {zk,l}∞l=1 implies the

convergence of {pk,l}∞l=1. The conclusion then holds by Lemma 18.

Finally we are ready to show the convergence of Algorithm 5.7.1.

Proposition 41. Under Assumptions 37, Algorithm 5.7.1 converges to a KKT point

of (P), in one of the following possible ways:

1. The loop over k runs indefinitely, in which case every limit point of the sequence

{(xk, zk, pk)} generated by the algorithm is a KKT points of (P), {pk} converges

to an optimal solution of the dual problem (D), and

limk→∞ f(xk) + g(zk) = f(x∗) + g(z∗), where (x∗, z∗) is any optimal solution

of (P).

2. The loop over l′ runs indefinitely for some k, t, and l. In this case, we have

that (xk,t,∞, pk,l, zk,l) is a KKT point of (P) for any is any limit point xk,t,∞ of

{xk,t,l′}∞l′=0.

87

3. The loop over t runs indefinitely for some k, in which case every limit point of

the sequence {x̄k,t, z̄k,t, p̄k,t}∞t=0 is a KKT point of (P).

Proof. By Lemma 38, the l loop always terminates finitely, so the only possibilities

are infinite loops over k, l′, or t. Lemma 39 guarantees the claimed convergence in the

case of an infinite l′ loop. Similarly, Lemma 40 guarantees the claimed convergence

if the t loop does not terminate finitely. In the case of an infinite k loop, Lemma 36

asserts that the sequences generated by the algorithm obey the recursions (5.97)-

(5.101) for all k ≥ 1 (although not necessarily k = 0, but that is of no consequence),

and therefore we may apply Propositions 33 and 34 to obtain the claimed result.

88

Chapter 6

Numerical Tests

6.1 Comparison algorithms

In summary, we have developed the following three new approximate versions of the

ADMM algorithm:

Version 1. The partially inexact ADMM derived in Chapter 4 by combining opera-

tor splitting theory with a relative-error inexact proximal point algorithm. This

variant requires that the g subproblem be conveniently exactly solvable, and also

essentially requires M = I. We use admm_primDR to denote this variant.

Version 2. The algorithm developed in Section 5.4. This version does not require

M = I and allows both subproblems to be solved inexactly. We derived this

variant by modifying the standard Lagrangian splitting analysis to use abso-

lutely summable error conditions. We will use admm_abssum to denote this

version. So long as
∥∥xk,l∥∥ ≤ β1 and

∥∥zk,l∥∥ ≤ β2 throughout this algorithm, it

coincides with the simpler Algorithm 4.1.1 of Section 4.1. However, the exist-

ing convergence theory for that algorithm requires that both subproblems be

strongly convex; this is guaranteed in our context, for example, if M = I.

Version 3. The algorithm developed in Section 5.5 Like the second version, this

variant is also derived from a Lagrangian splitting analysis . It does not require

M = I and allow both subproblems to be solved inexactly, but with relative

rather than absolute error criteria. We will use admm_relerr to represent this

type of algorithm.

89

On three classes of test problems, we have experimentally studied the performance

of these three kinds of algorithms, as well as that of the “exact” ADMM, which we

denote by admm_exact. For all three classes of test problems, the g minimization is

easy to perform exactly and M = I, meaning that all of our algorithms are applicable.

For the “exact” ADMM, we still use an iterative solver for the f subproblem, resulting

in an algorithm that can be stated as follows:

Algorithm 6.1.1 Exact version of ADMM: admm_exact

initialization: Pick c > 0 and initial points p0, z0 ∈ Rm

repeat {for k = 0, 1, 2, . . .}

repeat {for l = 1, 2, . . .}

Improve the solution to xk+1 ≈ arg minx

{
f(x) +

〈
pk,Mx

〉
+ c

2

∥∥Mx− zk
∥∥2
}

by taking (xk,l, yk,l) = F(pk, zk, c, xk, l)

until Inner loop convergence

xk+1 = xk,l

yk+1 = yk,l

zk+1 = arg minz

{
g(z)−

〈
pk, z

〉
+ c

2

∥∥Mxk+1 − z
∥∥2
}

pk+1 = pk + c
(
Mxk+1 − zk+1

)
until Overall convergence

For admm_primDR, we simply use Algorithm 4.4.1. In the case of admm_abssum, we

specialize Algorithm 4.1.1 to the case that the g minimization is exact, resulting in

the following algorithm:

90

Algorithm 6.1.2 Partially inexact absolute-error ADMM: admm_abssum

initialization: Pick c > 0 and initial points p0, z0 ∈ Rm. Select positive and

summable sequence {εk}

repeat {for k = 0, 1, 2, . . .}

repeat {for l = 1, 2, . . .}

Improve the solution to xk+1 ≈ arg minx

{
f(x) +

〈
pk,Mx

〉
+ c

2

∥∥Mx− zk
∥∥2
}

by taking (xk,l, yk,l1) = F(pk, zk, c, xk, l)

until ‖yk,l‖ ≤ εk+1

xk+1 = xk,l

yk+1 = yk,l

zk+1 = arg minz

{
g(z)−

〈
pk, z

〉
+ c

2

∥∥Mxk+1 − z
∥∥2
}

pk+1 = pk + c
(
Mxk+1 − zk+1

)
until Overall convergence

We are justified in using this version of the absolutely summable algorithm because

M = I, which has full column rank, making the f subproblem strongly convex.

Finally, for admm_relerr, we simply used Algorithm 5.6.1, since we are only test-

ing the case in which the g minimization is exact.

6.2 Termination criteria and algorithm parameters

For all the algorithms and problem classes, we used the same condition for “overall

convergence”, namely

dist∞ (0, ∂x [f(x) + g(Mx)]x=xk) ≤ ε, (6.1)

where dist∞(t, S) = inf{‖t− s‖∞ | s ∈ S}, and ε is a tolerance parameter we set to

10−6. We also imposed a maximum of 10,000 outer iterations. In admm_primDR and

admm_relerr, we use σ = 0.99,. For admm_exact, we used an inner loop convergence

91

criterion of ∥∥yk,l∥∥ ≤ ε

10
, (6.2)

which follows customary practice in general-purpose augmented Lagrangian solvers.

However, we also set a limit of 200 inner loop (l) iterations.

Once admm_relerr nears the eventual solution, it is possible for its inner-loop

termination condition 2
c

∣∣〈wk − xk,l, yk,l〉∣∣ +
∥∥yk,l∥∥2 ≤ σ

∥∥Mxk,l − zk
∥∥2

to be signifi-

cantly more restrictive than (6.2). This phenomenon can lead to an excessive number

of inner iterations and final solutions that are far more accurate than demanded by

our overall termination condition (6.1). In our tests, we avoided this behavior by

using a “hybrid” approach in which we terminated the inner loop of admm_relerr

and admm_primDR as soon as either its relative error criterion or (6.2) holds.

For admm_abssum, we need to select a positive absolutely summable sequence {εk}.

After some experimentation, we selected εk = k−1.5, where k is the outer iteration

counter.

For each class of test problems, we tried admm_exact with various values of the

penalty parameter c and selected the one that appeared to have the best performance

over the class of problems. We then used this same value of c when applying the

inexact algorithms to the same class of problems. For all algorithms, we kept c

constant throughout each run.

6.2.1 LASSO regression

A simple and common problem class that fits readily into the form (1.4) is the

“LASSO” [79] or “compressed sensing” problem. This problem is an L1-regularized

version of linear regression, taking the form

min
x∈Rn

1

2
‖Ax− b‖2 + ν‖x‖1, (6.3)

where A is a p×n matrix, b ∈ Rp and ν > 0 is a given scalar regularization parameter.

The goal of this model is find an approximate solution to the linear equations Ax = b,

92

with a preference for making the solution x ∈ Rn sparse. Letting f(x) = 1
2
‖Ax− b‖2,

g(z) = ν‖z‖1, and M = I the LASSO problem (6.3) may be written as

min f(x) + g(z)

s. t. x = z.
(6.4)

Applying the ADMM to (6.4), the x-minimization subproblem (1.9) reduces to solving

a system of linear equations involving the matrix A>A+ cI:

xk+1 = (A>A+ cI)−1 (A>b+ czk − pk
)
. (6.5)

Note that the A>A+cI is always invertible since c > 0. We use the conjugate gradient

method as given in [64, Algorithm 5.2] to solve the linear system (6.5).

The z-minimization subproblem (1.10) reduces to the soft thresholding opera-

tor (5.111) with M = I:

zk+1
i = sgn

(
xk+1
i + 1

c
pki
)

max
{

0,
∣∣xk+1
i + 1

c
pki
∣∣− ν

c

}
, i = 1, . . . , n. (6.6)

This calculation is straightforward and requires a constant amount of time per element

zk+1
i . The multiplier update pk+1 = pk + c(xk+1− zk+1) has a similar property, so the

x minimization dominates run time of this application if the ADMM if (6.5) is solved

exactly.

As in [15, Section 11.1], we scaled b and the columns of A to have unit `2 norm and

set the regularization parameter ν to 0.1 ‖A>b‖∞. For admm_exact, the termination

condition for the inner loop (6.2) becomes

∥∥(A>A+ cI)xk+1 −
(
A>b+ czk − pk

)∥∥ ≤ 10−7 (6.7)

We performed our LASSO tests on four categories of datasets:

Gene expression: Six standard cancer DNA microarray datasets from [22]. These

instances have dense, wide, and relatively small matrices A, with the number

of rows m ∈ [42, 102], and the number of columns n ∈ [2000, 6033].

93

Figure 6.1: LASSO — number of outer iterations for the cancer datasets.

0

500

1000

1500

2000

2500

3000

3500

4000

brain colon leukemia lymphoma prostate srbct

admm_exact admm_abssum admm_relerr admm_primDR

Single-Pixel Camera: Four dense compressed image sensing problems from [25] with

m ∈ [410, 4770] and n ∈ [1024, 16384].

Finance: A single large dense financial dataset [49] with m = 30465 and n = 216842.

PEMS : A single large, wide, and dense dataset from the California Department of

Transportation [56] with m = 267 and n = 138672.

Figures 6.1, 6.2, and 6.3 show the number of outer iterations each method takes for

each dataset. Generally speaking, admm_abssum takes the most outer iterations to

converge, but in a few cases admm_primDR takes more outer iterations than the other

methods. The admm_relerr and admm_exact algorithms tend to take about same

number of outer iteration to converge.

Figures 6.4, 6.5, and 6.6 depict the cumulative total number of inner iterations for

94

Figure 6.2: LASSO — number of outer iterations for the image datasets.

0

200

400

600

800

1000

Ball64_singlepixcam Logo64_singlepixcam Mug32_singlepixcam Mug128_singlepixcam

admm_exact admm_abssum admm_relerr admm_primDR

Figure 6.3: LASSO — number of outer iterations for PEMS and finance1000.

0

2000

4000

6000

finance1000 PEMS

admm_exact admm_abssum admm_relerr admm_primDR

95

Figure 6.4: LASSO — total number of inner iterations for the cancer datasets.

0

10000

20000

30000

40000

50000

brain colon leukemia lymphoma prostate srbct

admm_exact admm_abssum admm_relerr admm_primDR

Figure 6.5: LASSO — total number of inner iterations for the image datasets.

0

400

800

1200

1600

2000

Ball64_singlepixcam Logo64_singlepixcam Mug32_singlepixcam Mug128_singlepixcam

admm_exact admm_abssum admm_relerr admm_primDR

96

Figure 6.6: LASSO — total number of inner iterations for PEMS and finance1000.

0

30000

60000

90000

120000

finance1000 PEMS

admm_exact admm_abssum admm_relerr admm_primDR

each of the four algorithms. This total number of iterations is roughly proportional

to the total amount of computational effort and run time. All three inexact methods

require significantly fewer total inner iterations than admm_exact, but admm_primDR

consistently requires the fewest. For the cancer and PEMS datasets, the superiority

of admm_primDR is particularly striking.

6.2.2 L1-regularized logistic regression

Logistic regression with L1 regularization has been proposed as a promising method

for feature selection in classification problems [35, 61]. Given a training dataset con-

sisting of m pairs (ai, bi), where ai ∈ Rn is a feature vector and bi ∈ {−1,+1} is the

corresponding label, this problem may be written

min
w∈Rm

v∈R

m∑
i=1

log
(

1 + exp
(
− bi (a>i w + v)

))
+ ν ‖w‖1 . (6.8)

Here, w ∈ Rn represents a weighting of the features vector and v ∈ R represents a kind

of “bias” or intercept. While the w variables carry an L1 regularization penalty, v does

97

not. We may consider the feature input data as forming a matrix A = [a1, . . . , am]>.

We set the problem parameter ν in the same manner as in [15, Section 11.2]. To

apply the ADMM to (6.8), we may formulate it as

min
(v,w)

f
(
(v, w)

)
+ g
(
(v, w)

)
,

where f
(
(v, w)

)
=
∑m

i=1 log (1 + exp (−bi (a>i w + v))) and g
(
(v, w)

)
= ν ‖w‖1. As

an alternative, one could also use M 6= I with M(w, v) = w to drop v from the z

vector (however, doing so would not conform to the convergence-proof assumptions

for admm_primDR). Here, the convex function f is known as the logistic loss function.

We may simplify its form slightly by setting a′i = biai for i = 1, . . . ,m, yielding

f
(
(v, w)

)
=

m∑
i=1

log
(

1 + exp
(
−a′i

>
w − biv

))
(6.9)

We assemble the vectors a′i into a matrix A′ = [a′1, . . . , a
′
m]> which we normalize in the

same manner as for LASSO problems. The inner-loop termination conditions of the

admm_abssum and admm_relerr algorithms require subgradient information about f .

Such information is readily available because the logistic loss function is differentiable.

Using (6.9), we obtain

∇vf
(
(v, w)

)
= −

m∑
i=1

exp
(
−a′i

>w − biv
)

1 + exp (−a′i
>w − biv)

bi = −b>
(

exp (−A′w − bv)

1 + exp (−A′w − bv)

)
,

(6.10)

where the exponentiation, addition, and division operations in the final parenthesized

expression are interpreted as being applied componentwise. Using a similar notation,

we also find that

∇wf
(
(v, w)

)
= −

m∑
i=1

exp
(
−a′i

>w − biv
)

1 + exp (−a′i
>w − biv)

a′i = −A′>
(

exp (−A′w − bv)

1 + exp (−A′w − bv)

)
.

(6.11)

Letting x = (v, w) and defining z and p to have the same dimensions as x, we

obtain that the gradient (and therefore unique subgradient) y of the f subproblem

98

at x = (v, w) is

y = ∇f(x) + p+ c (x− z) =
(
∇fv

(
(v, w)

)
,∇fw

(
(v, w)

))
+ p+ c (x− z) . (6.12)

To approximately solve the f subproblem, we employ the limited-memory BFGS

(L-BFGS) method [58] for unconstrained nonlinear optimization. We solve the second

(g) subproblem exactly using essentially the same soft thresholding operator (5.111)

(applied only to the w component) used in the LASSO problem.

For test data, we selected the cancer datasets from [22] that have bi ∈ {−1, 1} for

all i. In addition, we also used the a9a [33] and Arcene [41] datasets, which are both

are available from the UCI Machine Learning Repository [56] (where a9a is called

adult). Both of these datasets are sparse, and a9a has m = 32,561 and n = 123,

while Arcene has m = 900 and n = 10,000.

Figure 6.7 shows the number of outer iterations for each algorithm, revealing a

pattern similar to that for the LASSO problem. Figure 6.8 shows the cumulative

total number of inner iterations for each algorithm. As with the LASSO problem,

the inexact algorithms all perform less total work than the exact method, although

the savings for two of the cancer datasets are not dramatic. The comparative behav-

ior of the three inexact algorithms, however, is very different than for LASSO: the

admm_primDR method is consistently the slowest method, rather than consistently the

fastest, while admm_abssum gives the best results.

6.2.3 Sparse inverse covariance selection

The covariance selection problem was first introduced in [20], which suggested that the

covariance structure of a multivariate normal population can be simplified by setting

elements of the inverse covariance matrix to zero. The graphical interpretation of

this covariance selection model is called the Gaussian graphical model [32,50]. It has

become a popular statistical tool in reverse engineering of genetic regulatory networks,

where individual genes are represented by the nodes of a graph and the conditional

99

Figure 6.7: Logistic regression — number of outer iterations.

0

1000

2000

3000

4000

5000

6000

7000

colon leukemia prostate a9a arcene

admm_exact admm_abssum admm_relerr admm_primDR

100

Figure 6.8: Logistic regression — total number of inner iterations.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Colon Leukemia Prostate a9a arcene

admm_exact admm_abssum admm_relerr admm_primDR

101

dependencies between their expression profiles are indicated by graph edges.

In this problem, we are given a dataset of vectors a1, . . . , am ∈ Rn which we

model as being samples from a multivariate normal distribution N (0,Σ) for some

unknown positive definite covariance matrix Σ. We believe the inverse of Σ to be

sparse, but with an unknown sparsity pattern. Letting S = (1/m)
∑m

i=1 aia
>
i be the

empirical covariance matrix of the sample and using Sn++ to denote the cone of positive

n× n matrices, we attempt to estimate Σ−1 by the solution X of the sparse inverse

covariance selection problem

min
X∈Sn++

Tr (SX)− log detX + ν ‖X‖1 , (6.13)

where ‖X‖1 =
∑n

i=1

∑n
j=1|xij|. The model’s goal is to minimize the negative log-

liklihood of the sample, combined with an `1 regularization term promoting sparsity

of the solution [6]. Note that − log detX = log 1
detX

= log det (X−1).

If one lets f(X) = Tr (SX)− log detX+ν ‖X‖1 and g(X) = ν ‖X‖1, then (treat-

ing the unknown X as a vector) problem (6.13) fits the standard ADMM problem

form with M = I, that is, minX{f(X) + g(X)}. Applying the ADMM, we obtain the

the recursions

Xk+1 = arg min
X∈Sn++

{
Tr (SX)− log detX + c

2

∥∥X − Zk + 1
c
P k
∥∥2

F

}
(6.14)

Zk+1
ij = sgn

(
Xk+1
ij + 1

c
P k
ij

)
max

{
0,
∣∣Xk+1

ij + 1
c
P k
ij

∣∣− ν
c

}
i, j = 1, 2, . . . , n. (6.15)

P k+1 = P k + c
(
Xk+1 − Zk+1

)
, (6.16)

where ‖·‖F denotes the Frobenius norm of a matrix and the Lagrange multiplier

estimates P k are members of Sn, the vector space of n× n symmetric real matrices.

We uniformly set ν = 0.5, as suggested in [52]. For some examples of applying ADMM

to SICS, see [73] and [87], the latter showing that ADMM outperforms other methods

for this problem.

It is possible to develop an analytical solution to subproblem (6.14). First, we

102

know that

∂TrSX = ∂ 〈S,X〉 = {S}

∂ (− log detX) =

{
− 1

detX
∇ detX

}
=

{
− 1

detX
detX

(
X−1

)>}
=
{
−X−1

}
.

Using the first order optimality condition for the convex problem (6.14), whose solu-

tion must lie in the interior of the open cone Sn++, we obtain

0 ∈ ∂
{

Tr (SX)− log detX + c
2

∥∥X − Zk + 1
c
P k
∥∥2

F

}
(6.17)

⇔ 0 = S −X−1 + P k + c
(
X − Zk

)
. (6.18)

Rearranging (6.18), we obtain

cX −X−1 = cZk − P k − S. (6.19)

Thus, Xk+1 can be obtained by solving (6.19) for X. Next we take the orthogonal

eigenvalue decomposition of the symmetric matrix on the left-hand side of (6.19),

obtaining some diagonal matrix Λk+1 = diag(λk+1
1 , . . . , λk+1

n) and orthogonal matrix

Qk+1 such that

cXk+1 −
(
Xk+1

)−1
= Qk+1Λk+1

(
Qk+1

)>
. (6.20)

Multiplying by
(
Qk+1

)>
from the left and by Qk+1 from the right on both sides

of (6.19), we obtain

cX̃k+1 −
(
X̃k+1

)−1

= Λk+1, (6.21)

where X̃k+1 =
(
Qk+1

)>
Xk+1Qk+1. We now can construct a diagonal solution X̃k+1

of (6.21). To find each entry X̃ii on the diagonal of X̃k+1, we need to solve cX̃k+1
ii −

1/X̃k+1
ii = λk+1

i , and because all the X̃ii must be nonnegative, we have

X̃k+1
ii =

λk+1
i +

√(
λk+1
i

)2
+ 4c

2c
. (6.22)

103

At this point, one can see that the solution of equation (6.19), Xk+1, is

Xk+1 = Qk+1X̃k+1
(
Qk+1

)>
. (6.23)

The g minimization (6.15) is the same soft thresholding operation as in (6.6),

applied throughout a symmetric matrix. Clearly, the most time-consuming part

of (6.14)-(6.16) is the eigenvalue decomposition (6.20) required by the x minimiza-

tion (6.14). In our numerical experiments, we used the Jacobi iterative method

from [72] to perform this calculation. At iteration (k + 1), this method produces

successively improving (over l) estimates Qk,l, Hk,l of Qk+1 and Λk+1, respectively.

The convergence properties of Jacobi method guarantee that liml→∞Q
k,l = Qk+1 and

liml→∞H
k,l = Λk+1. For each l, we produce a second approximation Λk,l of Λk+1 by

taking the projection of Hk,l onto the linear subspace of n×n diagonal matrices, that

is, Λk,l is obtained by setting all non-diagonal elements of Hk,l to zero. Since this

operation is the application of a continuous function that fixes Λk+1, it follows that

liml→∞ Λk,l = Λk+1. Using the respective estimates Hk,l and Λk,l of Hk+1 and Λk+1,

we may derive an approximation Xk,l of Xk+1 by solving the following modification

of (6.20):

cX̃k,l −
(
X̃k,l

)−1

≈ Qk,lΛk,l
(
Qk,l

)>
. (6.24)

This equation may be solved using appropriate modifications of of (6.22) and (6.23),

namely

X̃k,l
ii =

λk,li +

√(
λk,li

)2

+ 4c

2c
Xk,l = Qk,lX̃k,l

(
Qk,l

)>
, (6.25)

where λk,li denotes the ith diagonal element of Λk,l. The resulting estimate Xk,l de-

pends continuously on Qk,l and Λk,l, and hence on Qk,l and Hk,l. Therefore, it con-

verges to the exact value of Xk+1 given in (6.23). Finally, since Qk,l is orthogonal, it

is easy to evaluate the inverse of Xk,l, and therefore straightforward to compute the

gradient of f , much as in (6.14).

104

We tested our implementation on five gene expression network datasets that have

been widely used in the model selection and classification literature, as for example

in [52]:

Lymph node status (Lymph): This dataset is derived from [23], and preprocessed

using the procedure described there. The covariance matrix S has dimension

n = 587 and rank 147.

Estrogen receptor (ER): This preprocessed dataset is again from [23]. The rank of

the covariance matrix S is 157 it has dimension n = 692.

Arabidopsis thealiana (Arabidopsis): This gene network data set was obtained

from [81]. S has dimension n = 843 and its rank is 117.

Leukemia (Leukemia): A gene expression data set from [85] that has dimension

n = 1255 and rank 71.

Hereditary breast cancer (Hereditarybc): This data set is from [46]. Its dimension

is n = 1869 and the rank of S is 21.

The S matrices for all these datasets are dense. The work of Li and Toh [52] and

references therein contain more detailed descriptions of datasets, and discussion of

how they were selected.

The computational results for the various ADMM algorithms are displayed in

Figures 6.9 and 6.10. Figure 6.9 depicts the number outer iterations, which show

very little variation between the various ADMM variants. Figure 6.10 shows the

cumulative total iterations of the Jacobi method, which is proportional to overall

computational effort. It shows that the inexact methods are all significantly faster

than the exact ADMM, with a consistent pattern of admm_primDR being fastest. These

results are broadly similar to those for LASSO problems, although the difference

between admm_primDR and the other inexact methods is less pronounced.

105

Figure 6.9: SICS — number of outer iterations.

0

100

200

300

400

500

600

Lymph Leukemia ER Arabidopsis Hereditarybc

admm_exact admm_abssum admm_relerr admm_primDR

Figure 6.10: SICS — total number of inner iterations.

0

2000

4000

6000

8000

10000

12000

Lymph Leukemia ER Arabidopsis Hereditarybc

admm_exact admm_abssum admm_relerr admm_primDR

106

Chapter 7

Conclusion

ADMM was developed over three decades ago, and it has attracted renewed attention

recently due to its applicability to various machine learning and image processing

problems. Its applications can be found in distributed and cloud computing systems,

massive high-dimensional datasets, and the associated large-scale applied statistical

problems. Some characteristics of ADMM include:

• It appears to be well suited to the modern regime, and has the important benefit

of being quite general in its scope and applicability.

• The ADMM can take advantage of the structure of those problems which involve

optimizing sums of convex functions.

• It is often relatively easy to implement the ADMM in a distributed-memory,

parallel manner. This property is important for “big data” problems in which

the entire problem dataset may not fit readily into the memory of a single

processor.

In practice, it is very often that we need to use some iterative method to solve one

or both ADMM subproblems, either because there is no simple analytical solution or

the problem is too high-dimensional for such a formula to be used. In such cases, it is

wasteful to expend great effort in solving subproblem(s) to high precision in the early

stage of solution process. Naturally, a method that allows for solving subproblems

inexactly and gradually increasing their precision without disrupting the convergence

properties is highly desirable. However, the traditional convergence proofs of ADMM,

107

both operator splitting and Lagrangian splitting, are based on solving all subproblems

exactly. The existence of inexact ADMM methods was unknown until [29], in which

Eckstein presented an approximate ADMM with the absolute summable error bound

criteria. However, one drawback of this version is that, unless some other condition

is satisfied (such as M being full column rank matrix), it is not practical because we

have to bound the distance between the approximate solutions and the true solutions

of the subproblems.

To address this issue, we developed three new criteria for approximate minimiza-

tion of ADMM subproblems that only use subgradient information. They do not

require any primal regularization terms. The approximate ADMM derived from gen-

eral inexact proximal point algorithm and operator splitting theory is actually a

partially inexact ADMM, since it requires one subproblem to be solved quickly and

exactly, which is very common in many l1 normalized applications. It also essentially

requires that M be the identity matrix. The two new methods that are developed

from Lagrangian splitting have neither of these restrictions.

This dissertation tested all three methods with three representative l1 normalized

models against the classical ADMM. Its numerical results show that all three new

approximate versions of ADMM effectively reduce overall computing effort, although

the preferred method depends on the application.

108

References

[1] M. Marques Alves and B. F. Svaiter. A note on Fejér-monotone sequences in
product spaces and its applications to the dual convergence of augmented La-
grangian methods. Math. Program., 155(1-2):613–616, 2016.

[2] Roger W. Hoerl Arthur E. Hoerl, Robert W. Kennard. Practical use of ridge
regression: A challenge met. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 34(2):114–120, 1985.

[3] Alfred Auslender and Marc Teboulle. Lagrangian duality and related multiplier
methods for variational inequality problems. SIAM J. Optim., 10(4):1097–1115
(electronic), 2000.

[4] Alfred Auslender and Marc Teboulle. Entropic proximal decomposition methods
for convex programs and variational inequalities. Math. Program., 91(1, Ser.
A):33–47, 2001.

[5] Alfred Auslender, Marc Teboulle, and Sami Ben-Tiba. A logarithmic-quadratic
proximal method for variational inequalities. Comput. Optim. Appl., 12(1-3):31–
40, 1999.

[6] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model se-
lection through sparse maximum likelihood estimation for multivariate Gaussian
or binary data. J. Mach. Learn. Res., pages 485–516, 2008.

[7] Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone
operator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de
Mathématiques de la SMC. Springer, New York, 2011. With a foreword by Hédy
Attouch.

[8] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation:
numerical methods. Prentice-Hall, Inc., 1989.

[9] Abdellah Bnouhachem. On LQP alternating direction method for solving vari-
ational inequality problems with separable structure. J. Inequal. Appl., pages
2014:80, 15, 2014.

[10] Abdellah Bnouhachem, Suliman Al-Homidan, and Qamrul Hasan Ansari. New
descent LQP alternating direction methods for solving a class of structured vari-
ational inequalities. Fixed Point Theory Appl., pages 2015:137, 11, 2015.

109

[11] Abdellah Bnouhachem, Hafida Benazza, and Mohamed Khalfaoui. An inexact
alternating direction method for solving a class of structured variational inequal-
ities. Appl. Math. Comput., 219(14):7837–7846, 2013.

[12] Abdellah Bnouhachem and Abdelouahed Hamdi. Parallel LQP alternating direc-
tion method for solving variational inequality problems with separable structure.
J. Inequal. Appl., pages 2014:392, 14, 2014.

[13] Abdellah Bnouhachem and Abdelouahed Hamdi. A hybrid LQP alternating di-
rection method for solving variational inequality problems with separable struc-
ture. Appl. Math. Inf. Sci., 9(3):1259–1264, 2015.

[14] Abdellah Bnouhachem and M. H. Xu. An inexact LQP alternating direction
method for solving a class of structured variational inequalities. Comput. Math.
Appl., 67(3):671–680, 2014.

[15] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn., 3(1):1–122, January 2011.

[16] Raymond H. Chan, Min Tao, and Xiaoming Yuan. Constrained total variation
deblurring models and fast algorithms based on alternating direction method of
multipliers. SIAM J. Imaging Sci., 6(1):680–697, 2013.

[17] Caihua Chen, Min Li, and Xiaoming Yuan. Further study on the convergence
rate of alternating direction method of multipliers with logarithmic-quadratic
proximal regularization. J. Optim. Theory Appl., 166(3):906–929, 2015.

[18] Gong Chen and Marc Teboulle. A proximal-based decomposition method for
convex minimization problems. Math. Programming, 64(1, Ser. A):81–101, 1994.

[19] Zhongming Chen, Li Wan, and Qingzhi Yang. An inexact alternating direc-
tion method for structured variational inequalities. J. Optim. Theory Appl.,
163(2):439–459, 2014.

[20] Arthur P. Dempster. Covariance selection. Biometrics, pages 157–175, 1972.

[21] Wei Deng and Wotao Yin. On the global and linear convergence of the general-
ized alternating direction method of multipliers. Journal of Scientific Computing,
pages 1–28, 2015.

[22] Marcel Dettling and Peter Bühlmann. Finding predictive gene groups from mi-
croarray data. J. Multivariate Anal., 90(1):106–131, 2004.

[23] Adrian Dobra. Variable selection and dependency networks for genomewide data.
Biostatistics, 10(4):621–639, 2009.

[24] Norman R. Draper and R. Craig Van Nostrand. Ridge regression and James-
Stein estimation: review and comments. Technometrics, 21(4):451–466, 1979.

110

[25] Marco F. Duarte, Mark A. Davenport, Dharmpal Takbar, Jason N. Laska, Ting
Sun, Kevin F. Kelly, and Richard G. Baraniuk. Single-pixel imaging via com-
pressive sampling: Building simpler, smaller, and less-expensive digital cameras.
IEEE Sig. Proc. Mag., 25(2):83–91, 2008.

[26] Jonathan Eckstein. Splitting methods for monotone operators with applications to
parallel optimization. PhD thesis, Massachusetts Institute of Technology, 1989.

[27] Jonathan Eckstein. Some saddle-function splitting methods for convex program-
ming. Optimization Methods and Software, 4(1):75–83, 1994.

[28] Jonathan Eckstein. A practical general approximation criterion for methods of
multipliers based on Bregman distances. Math. Program., 96(1):61–86, 2003.

[29] Jonathan Eckstein and Dimitri P. Bertsekas. On the Douglas-Rachford split-
ting method and the proximal point algorithm for maximal monotone operators.
Math. Program., 55(3):293–318, 1992.

[30] Jonathan Eckstein and Paulo J. S. Silva. A practical relative error criterion for
augmented Lagrangians. Math. Program., 141(1-2):319–348, 2013.

[31] Jonathan Eckstein and Wang Yao. Understanding the convergence of the alter-
nating direction method of multipliers: Theoretical and computational perspec-
tives. Pac. J. Optim., 11(4):619–644, 2015.

[32] David Edwards. Introduction to Graphical Modeling. Springer Texts in Statistics.
Springer-Verlag, New York, second edition, 2000.

[33] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using
second order information for training support vector machines. J. Mach. Learn.
Res., 6:1889–1918, 2005.

[34] Michel Fortin and Roland Glowinski. On decomposition-coordination methods
using an augmented Lagrangian. In M. Fortin and R. Glowinski, editors, Aug-
mented Lagrangian methods: Applications to the numerical solution of boundary-
value problems, volume 15 of Studies in Mathematics and its Applications, pages
97–146. North-Holland Publishing Co., Amsterdam, 1983.

[35] James Franklin. The elements of statistical learning: data mining, inference and
prediction. Math. Intelligencer, 27(2):83–85, 2005.

[36] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear varia-
tional problems via finite element approximation. Computers and Mathematics
with Applications, 2(1):17–40, 1976.

[37] Daniel Gabay. Applications of the method of multipliers to variational inequal-
ities. In M. Fortin and R. Glowinski, editors, Augmented Lagrangian methods:
Applications to the numerical solution of boundary-value problems, volume 15
of Studies in Mathematics and its Applications, pages 299–331. North-Holland
Publishing Co., Amsterdam, 1983.

111

[38] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet
non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér.
Rouge Anal. Numér., 9(R-2):41–76, 1975.

[39] Tom Goldstein, Brendan O’Donoghue, Simon Setzer, and Richard Baraniuk.
Fast alternating direction optimization methods. SIAM J. Imaging Sci.,
7(3):1588–1623, 2014.

[40] Guoyong Gu, Bingsheng He, and Junfeng Yang. Inexact alternating-direction-
based contraction methods for separable linearly constrained convex optimiza-
tion. Journal of Optimization Theory and Applications, 163(1):105–129, 2014.

[41] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of
the NIPS 2003 feature selection challenge. In L.K. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing Systems 17, pages 545–552.
MIT Press, 2005.

[42] Bing-sheng He, Li-zhi Liao, and Xiao-ming Yuan. A LQP based interior
prediction-correction method for nonlinear complementarity problems. J. Com-
put. Math., 24(1):33–44, 2006.

[43] Bingsheng He, Li-Zhi Liao, Deren Han, and Hai Yang. A new inexact alternat-
ing directions method for monotone variational inequalities. Math. Program.,
92(1):103–118, 2002.

[44] Bingsheng He and Xiaoming Yuan. On non-ergodic convergence rate of Douglas-
Rachford alternating direction method of multipliers. Numer. Math., 130(3):567–
577, 2015.

[45] Bingsheng He and Xiaoming Yuan. On the convergence rate of Douglas-Rachford
operator splitting method. Math. Program., 153(2):715–722, 2015.

[46] Ingrid Hedenfalk, David Duggan, Yidong Chen, Michael Radmacher, Michael
Bittner, Richard Simon, Paul Meltzer, Barry Gusterson, Manel Esteller, Mark
Raffeld, et al. Gene-expression profiles in hereditary breast cancer. New Engl.
J. Med., 344(8):539–548, 2001.

[47] Magnus R. Hestenes. Multiplier and gradient methods. J. Optimization Theory
Appl., 4:303–320, 1969.

[48] Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. Convergence analysis of
alternating direction method of multipliers for a family of nonconvex problems.
In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International
Conference on, pages 3836–3840. IEEE, 2015.

[49] Shimon Kogan, Dimitry Levin, Bryan R. Routledge, Jacob S. Sagi, and Noah A.
Smith. Predicting risk from financial reports with regression. In Proceedings

112

of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, NAACL
’09, pages 272–280, Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics.

[50] Steffen L. Lauritzen. Graphical Models, volume 17 of Oxford Statistical Science
Series. The Clarendon Press, Oxford University Press, New York, 1996. Oxford
Science Publications.

[51] Jim Lawrence and Jonathan E. Spingarn. On fixed points of nonexpansive piece-
wise isometric mappings. Proc. London Math. Soc., 55(3):605–624, 1987.

[52] Lu Li and Kim-Chuan Toh. An inexact interior point method for L1-regularized
sparse covariance selection. Math. Program. Comput., 2(3-4):291–315, 2010.

[53] Min Li. A hybrid LQP-based method for structured variational inequalities. Int.
J. Comput. Math., 89(10):1412–1425, 2012.

[54] Min Li, Xinxin Li, and Xiaoming Yuan. Convergence analysis of the generalized
alternating direction method of multipliers with logarithmic-quadratic proximal
regularization. J. Optim. Theory Appl., 164(1):218–233, 2015.

[55] Min Li and Xiao-ming Yuan. An improved proximal-based decomposition
method for structured monotone variational inequalities. Appl. Math. Mech.
(English Ed.), 28(12):1659–1668, 2007.

[56] Moshe Lichman. UCI machine learning repository, 2013.

[57] Pierre-Louis Lions and Bertrand Mercier. Splitting algorithms for the sum of
two nonlinear operators. SIAM J. Numer. Anal., 16(6):964–979, 1979.

[58] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large
scale optimization. Math. Program., 45(3):503–528, 1989.

[59] B. Martinet. Brève communication. Régularisation d’inéquations variationnelles
par approximations successives. ESAIM: Mathematical Modelling and Numerical
Analysis - Modélisation Mathématique et Analyse Numérique, 4(R3):154–158,
1970.

[60] Renato DC Monteiro and Benar F Svaiter. Iteration-complexity of block-
decomposition algorithms and the alternating direction method of multipliers.
SIAM Journal on Optimization, 23(1):475–507, 2013.

[61] Andrew Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational in-
variance. In Proceedings, Twenty-First International Conference on Machine
Learning, ICML 2004, pages 615–622, 2004.

[62] Michael K. Ng, Fan Wang, and Xiaoming Yuan. Inexact alternating direction
methods for image recovery. SIAM J. Sci. Comput., 33(4):1643–1668, 2011.

113

[63] Michael K. Ng, Pierre Weiss, and Xiaoming Yuan. Solving constrained total-
variation image restoration and reconstruction problems via alternating direction
methods. SIAM J. Sci. Comput., 32(5):2710–2736, 2010.

[64] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer Series
in Operations Research and Financial Engineering. Springer, New York, second
edition, 2006.

[65] Zheng Peng and Wenxing Zhu. A partial inexact alternating direction method
for structured variational inequalities. Optimization, 63(7):1043–1055, 2014.

[66] Boris T. Polyak. Introduction to Optimization. Translations Series in Math-
ematics and Engineering. Optimization Software, Inc., Publications Division,
New York, 1987.

[67] M. J. D. Powell. A method for nonlinear constraints in minimization problems.
In Optimization (Sympos., Univ. Keele, Keele, 1968), pages 283–298. Academic
Press, London, 1969.

[68] R. Tyrrell Rockafellar. Local boundedness of nonlinear, monotone operators.
Michigan Math. J., 16:397–407, 1969.

[69] R. Tyrrell Rockafellar. Convex Analysis. Princeton Mathematical Series, No.
28. Princeton University Press, Princeton, N.J., 1970.

[70] R. Tyrrell Rockafellar. Conjugate Duality and Optimization. Society for Indus-
trial and Applied Mathematics, Philadelphia, Pa., 1974.

[71] R. Tyrrell Rockafellar. Monotone operators and the proximal point algorithm.
SIAM J. Control Optim., 14(5):877–898, 1976.

[72] Heinz Rutishauser. The Jacobi method for real symmetric matrices. Numer.
Math., 9(1):1–10, 1966.

[73] Katya Scheinberg, Shiqian Ma, and Donald Goldfarb. Sparse inverse covariance
selection via alternating linearization methods. In John D. Lafferty, Christopher
K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors,
Advances in Neural Information Processing Systems, volume 23, pages 2101–
2109, 2010. Proceedings of “Neural Information Processing Systems 2010”.

[74] Li Shen and Shaohua Pan. Inexact indefinite proximal ADMMs for 2-block
separable convex programs and applications to 4-block DNNSDPs. ePrint
1505.04519, ArXiv, 2015.

[75] Mikhail V. Solodov and B. F. Svaiter. A hybrid projection-proximal point algo-
rithm. J. Convex Anal., 6(1):59–70, 1999.

[76] Mikhail V. Solodov and B. F. Svaiter. An inexact hybrid generalized proximal
point algorithm and some new results on the theory of Bregman functions. Math.
Oper. Res., 25(2):214–230, 2000.

114

[77] Benee F. Swindel. Geometry of ridge regression illustrated. The American Statis-
tician, 35(1):12–15, 1981.

[78] Min Tao and Xiaoming Yuan. On the O(1/t) convergence rate of alternating
direction method with logarithmic-quadratic proximal regularization. SIAM J.
Optim., 22(4):1431–1448, 2012.

[79] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy.
Statist. Soc. Ser. B, 58(1):267–288, 1996.

[80] Huahua Wang and Arindam Banerjee. Online alternating direction method
(longer version). ePrint 1306.3721, arXiv, 2013.

[81] Anja Wille, Philip Zimmermann, Eva Vranová, Andreas Fürholz, Oliver Laule,
Stefan Bleuler, Lars Hennig, Amela Prelic, Peter von Rohr, Lothar Thiele, et al.
Sparse graphical Gaussian modeling of the isoprenoid gene network in arabidopsis
thaliana. Genome Biol., 5(11):R92, 2004.

[82] Yun-Hai Xiao and Hui-Na Song. An inexact alternating directions algorithm for
constrained total variation regularized compressive sensing problems. J. Math.
Imaging Vision, 44(2):114–127, 2012.

[83] Ming Yan and Wotao Yin. Self equivalence of the alternating direction method
of multipliers. CAM Report 14-59, UCLA, 2014.

[84] Junfeng Yang and Xiaoming Yuan. Linearized augmented Lagrangian and al-
ternating direction methods for nuclear norm minimization. Math. Comp.,
82(281):301–329, 2013.

[85] Ka Yee Yeung, Roger E. Bumgarner, and Adrian E. Raftery. Bayesian model
averaging: development of an improved multi-class, gene selection and classifi-
cation tool for microarray data. Bioinformatics, 21(10):2394–2402, 2005.

[86] XiaoMing Yuan. The improvement with relative errors of He et al.’s inexact al-
ternating direction method for monotone variational inequalities. Math. Comput.
Modelling, 42(11-12):1225–1236, 2005.

[87] Xiaoming Yuan. Alternating direction method for covariance selection models.
J. Sci. Comput., 51(2):261–273, 2012.

[88] Xiaoming Yuan and Min Li. An LQP-based decomposition method for solving
a class of variational inequalities. SIAM J. Optim., 21(4):1309–1318, 2011.

[89] Xiaoming Yuan and Junfeng Yang. Sparse and low-rank matrix decomposition
via alternating direction method. Pac. J. Optim., 9(1):167–180, 2013.

[90] Yuhua Zeng, Yufei Yang, and Zheng Peng. A line-search-based partial proximal
alternating directions method for separable convex optimization. Journal of
Applied Mathematics, 2014.

115

[91] Xin Zhang, Duc-Son Pham, Svetha Venkatesh, Wanquan Liu, and Dinh Phung.
Mixed-norm sparse representation for multi view face recognition. Pattern Recog-
nition, 48(9):2935–2946, 2015.

	Abstract
	Acknowledgments
	Dedication
	Introduction
	Our main contributions
	Thesis outline

	Literature Review
	Proximal alternating direction methods
	Logarithmic-quadratic proximal ADMM

	Formalizing Approximate Subproblem Solution
	Approximate ADMM Algorithms Derived through Operator Splitting Analysis
	A subgradient-based application of [Theorem 8]eckstein1992douglas
	Background: a relative-error proximal point algorithm
	A relative-error variant of Douglas-Rachford splitting
	Deriving a partially inexact ADMM from the partially inexact DR splitting method

	Approximate ADMM Algorithms Derived from Lagrangian Splitting
	A parametric conjugate duality framework
	Analyzing the exact ADMM by Lagrangian splitting
	Common elements of the Lagrangian splitting analyses
	Approximate ADMM with absolute summable error criteria
	An approximate ADMM with relative error criteria
	Partially inexact ADMM with relative error criteria
	Complete form of relative-error algorithm with both minimizations inexact

	Numerical Tests
	Comparison algorithms
	Termination criteria and algorithm parameters
	LASSO regression
	L1-regularized logistic regression
	Sparse inverse covariance selection

	Conclusion
	References

