
GENERALIZED DISTRIBUTED LEARNING
UNDER UNCERTAINTY FOR CAMERA NETWORKS

By

SEJONG YOON

A dissertation submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Vladimir Pavlovic

And approved by

New Brunswick, New Jersey

October, 2016

ABSTRACT OF THE DISSERTATION

Generalized Distributed Learning

Under Uncertainty for Camera Networks

by SEJONG YOON

Dissertation Director:

Vladimir Pavlovic

Consensus-based distributed learning is a machine learning technique used to find the

general consensus of local learning models to achieve a global objective. It is an impor-

tant problem with increasing level of interest due to its applications in sensor networks.

There are many benefits of distributed learning over traditional centralized learning,

such as faster computation and reduced communication cost. In this dissertation, we

focus on the merit that distributed learning can be performed in a fully decentralized

way, which makes it one step further different from parallel computing approaches.

First, we propose a general distributed probabilistic learning framework based on

distributed optimization using an Alternating Direction Method of Multipliers (ADMM).

We show that it can be applied to computer vision algorithms which have traditionally

assumed a centralized computational setting. We demonstrate that our probabilistic

interpretation of the decentralized processing is useful in dealing with missing values

which are not explicitly handled in prior works. We provide empirical evaluations on a

computer vision problem termed distributed affine structure from motion (SfM).

ii

Second, we propose two useful extensions of the distributed probabilistic learning

framework. We first extend our framework so that it can incrementally update the

learned model in an online fashion. To do this, we propose to use a Bayesian inference

model based on Bregman ADMM (B-ADMM). Next, we show that the distributed

learning tasks can be carried out more rapidly by introducing smart update strategies

to the underlying ADMM optimization algorithm. By adaptively balancing primal and

dual residuals of ADMM, we demonstrate an improved empirical convergence speed in

a fully decentralized setting, without limiting the application range of ADMM-based

optimization.

Finally, we introduce a potential application of consensus-based distributed opti-

mization on the human trajectory estimation problem. We formulate the trajectory

estimation problem as a global optimization issue with constraints encoding various

prior conditions that can be either allowed or forbidden in real world situations. We

show that our method can effectively estimate the noisy, corrupted trajectories from

off-the-shelf human trackers that could assist in human crowd analysis and simulation.

iii

Acknowledgements

First of all, I should mention that I am very fortunate to have Prof. Vladimir Pavlovic

as my doctoral dissertation adviser. I am so much indebted to him in nearly every

aspect of my graduate student life at Rutgers, including, but not limited to, admission,

courses, research, teaching, and even job search. Without his guidance and help, this

dissertation would have never been possible to be completed.

I would like to express my special thank you to Prof. Mubbasir Kapadia, a passion-

ate, intellectual researcher, whose guidance helped me conduct the important last part

of this dissertation. I also would like to thank my committee members, Prof. Dimitris

Metaxas and Prof. Norman I. Badler for their detailed, and insightful comments that

significantly improved this dissertation.

Over the six years of my life at Rutgers, I was able to survive through challenging

times with helps from many people that I cannot list them all here. I would like to

thank Prof. William Steiger, who has been the graduate program director for most of

my graduate years, for his crucial help in the beginning, and at the very end of my

study. It has been my great pleasure to take Prof. Casimir Kulikowski’s courses to

learn insightful history and philosophy of artificial intelligence. I was also fortunate to

get chances to learn about teaching in U.S. higher education from Dr. Sesh Venugopal.

I thank all friends in CS, CBIM, and SEQAM group. I thank and wish the best luck

to all my group-mates: Jongpil, Saehoon, Hai, Cuong, and Behnam. I also thank CS

members of RKGSA community: Daehan, Daeyoung, Changkyu, Jae Woo, and Jay.

I would like to thank professors in Korea for helping me receive my doctorate degree:

Prof. Saejoon Kim, Prof. Jongho Nang, and Prof. Kyung-Whan Oh.

Last, but not least, I would like to deeply thank my parents, Kwang Hak Yun and

Yuna K. Paik for their unlimited support that made this dissertation possible.

iv

Previous Publications. This dissertation, in part, contains works of the author

and collaborators as presented in previous conference and workshop publications [1, 2,

3, 4, 5]. The author is the main contributor of the first and the last contribution of

this thesis [1, 5], in terms of both theoretical and experimental aspects of the papers.

For the first half of the second contribution [3], the author originally thought of the

employment of the Bregman ADMM [6] into the framework, implemented the derived

closed form updates, and conducted some of the experiments. For the other half of the

second contribution [4], the author co-invented two of the three proposed algorithms,

conducted some of the experiments, and wrote the manuscript.

Cliparts. Some cliparts used in figures in this dissertation were obtained from

openclipart.org and I would like to extend my appreciation to the designers who

contributed and shared their artworks for free and released them to the public domain.

v

openclipart.org

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . ix

List of Figures . xi

1. Introduction . 1

1.1. Motivation . 2

1.2. Dissertation Statement and Contributions 5

2. Distributed Learning: Problem Description and Review 7

2.1. Problem Description . 7

2.2. Distributed Optimization and Learning 8

2.2.1. Parallel vs. Distributed Learning 8

2.2.2. Optimization for Parallel and Distributed Learning 9

2.3. Distributed Learning Applications . 14

2.3.1. Distributed Learning in Machine Learning 14

2.3.2. Distributed Learning for Visual Sensor Networks 16

2.3.3. Benchmark Datasets for Camera Networks 17

3. Generalized Distributed Probabilistic Learning 21

3.1. Distributed Probabilistic Learning Model 22

3.1.1. Centralized Setting . 22

3.1.2. Distributed Setting . 23

3.1.3. Decentralized Setting . 23

vi

3.2. Example: Distributed Probabilistic Principal Component Analysis . . . 24

3.2.1. Principal Component Analysis (PCA) 24

3.2.2. Probabilistic PCA (PPCA) . 25

3.2.3. Distributed PPCA (D-PPCA) . 26

3.2.4. Dealing with Missing Values in Input Data 28

3.2.5. Evaluation . 29

3.3. Application: Distributed Computer Vision 31

3.3.1. Affine Structure from Motion . 32

3.3.2. Results on Synthetic Data . 33

3.3.3. Results on Real Data . 34

3.4. Summary . 37

4. Extensions of Distributed Probabilistic Learning 38

4.1. Online Distributed Probabilistic Learning 38

4.1.1. Distributed Bayesian Learning Model 39

4.1.2. Example: Distributed Bayesian PCA 45

4.1.3. Application: Distributed Computer Vision 48

4.2. Faster Optimization for Distributed Learning 51

4.2.1. Need of Faster Convergence for Distributed Learning 52

4.2.2. Improving Empirical Convergence of ADMM Optimization . . . 53

4.2.3. Example: D-PPCA using RB-based Penalty Update Criteria . . 60

4.2.4. Application: Distributed Computer Vision 61

4.3. Summary . 65

5. Applications in Multi-Agent Trajectory Estimation 66

5.1. Crowd Trajectory Estimation . 66

5.2. Related Work . 69

5.3. Global Optimization-based Trajectory Estimation 71

5.3.1. Notaion and Problem Definition 71

5.3.2. Consensus-based Problem Formulation 73

vii

5.3.3. Constraints for Optimal Multi-Agent Trajectory 73

5.3.4. Combined Global Objective Formulation and Optimization . . . 75

5.3.5. Discussions on Message Passing ADMM 78

5.4. Evaluation . 80

5.4.1. Non-convex global optimization 80

5.4.2. Robustness to missing tracklets and noise 81

5.5. Summary . 82

6. Conclusion and Future Work . 90

Appendix A. Alternating Direction Method of Multipliers (ADMM) . 93

Appendix B. Full Derivation of D-PPCA 96

Appendix C. Bregman ADMM (B-ADMM) 105

Appendix D. Message Passing ADMM . 107

References . 109

viii

List of Tables

3.1. Caltech 3D Objects on Turntable dataset statistics and quantitative re-

sults. Green dots indicate feature points tracked with correspondence

across all 30 frames. All results ran 20 independent initializations. MAR

results provide variances over both various initializations and missing

value settings. Numbers are subspace angles between the two denoted

methods, thus the smaller the better. 36

4.1. Results of Caltech dataset. All results ran 20 independent initializations. 51

4.2. Results of Caltech and Hopkins datasets with missing values. 51

5.1. Brief description and snapshot of trajectories of simulation scenarios used

to validate our framework. 83

5.2. Root mean squared (RMS) error (in meters) of reconstructed trajectory

versus ground truth. Please refer to text for more analysis on the results.

For all cases, we compared the performance of the proposed framework

with mean filtering as baseline. When applying the median filters for

missing data, the data was preprocessed to fill in missing parts with linear

interpolation. For noise removal purposes, we additionally compared

with the original corrupted trajectory to demonstrate that our framework

is a significant improvement compared to doing nothing in cases of non-

trivial amounts of noise. Note that for missing value experiments in this

table, we assumed input was noise-free thus the baseline without any

filtering method was not considered. 84

5.3. Performance of our method on simulated crowd data with noisy trajecto-

ries (SNR 50 dB). Reference, noisy trajectories are shown in black (left),

and corresponding reconstructed trajectories are shown in blue (right). . 85

ix

5.4. Performance of our method on simulated crowd data with noisy trajecto-

ries (SNR 50 dB). Reference, noisy trajectories are shown in black (left),

and corresponding reconstructed trajectories are shown in blue (right). . 86

5.5. Input with missing information (20% missing, missing parts marked as

red, left) and reconstructed trajectories (right) 87

5.6. Input with missing information (20% missing, missing parts marked as

red, left) and reconstructed trajectories (right) 88

5.7. Root mean squared error (in meters) of reconstructed trajectory versus

ground truth when both noise and missing information exist. We show

the scenario where our method suffers when compared to the baseline

median filter in Table 5.2. 89

5.8. Noisy input with missing information (20% missing, missing parts marked

as red, left) and reconstructed trajectories (right) for bottleneck-evacuation

scenario. 89

x

List of Figures

1.1. Example problem scenarios in consensus-based distributed learning based

on how input data is distributed. 2

1.2. Example problems in distributed learning for camera networks. 4

1.3. Overview of the dissertation organization 5

3.1. Centralized, distributed and augmented models for probabilistic PCA. . 23

3.2. Comparison between PCA and PPCA. Red cross denotes input data, blue

cross denotes PCA reprojection, black cross denotes PPCA reprojection,

cyan circle denotes estimated one standard deviation from mean estimate

of reprojection. 26

3.3. Convergence trends of D-PPCA. 30

3.4. Average root mean squared error of reconstructions based on PPCA and

D-PPCA results. 31

3.5. Rotating unit cube with multiple cameras. Red circles are camera loca-

tions and blue arrows indicate each camera’s facing direction. Green and

red crosses in the right plot are outliers for centralized SVD-based SfM

and D-PPCA for SfM, respectively. 35

4.1. A graphical representation of the model of Eq. 4.1. Blue-shaded circle

denotes observation. 39

4.2. A graphical representation of the model of D-MFVI. 45

4.3. Average root mean squared error of reconstructions based on PPCA,

D-PPCA, BPCA, and D-BPCA results. 48

4.4. Results for the cube synthetic data (crosses denote outliers). 50

4.5. Centralized and decentralized models for probabilistic PCA. 53

xi

4.6. Centralized, distributed, and proposed learning models in a chain net-

work. The bigger size of ρij means that the corresponding constraint is

more penalized. 56

4.7. The comparison of proposed methods and the baseline ADMM using the

subspace angle error of the projection matrix with (a-c) different graph

size and (c-e) different network topology. Best viewed in color. 62

4.8. The comparison of proposed methods and the baseline ADMM using the

subspace angle error of the reconstructed 3D structure with one object

in the Caltech dataset (Standing). See Figure 4.7 for plot labels. Best

viewed in color. 64

5.1. Overview of proposed global optimization-based trajectory refinement

framework . 69

5.2. Graphical representation of our optimization framework given two tra-

jectories i and j, assuming t-th point is missing in trajectory i. The

connection of point tti (shaded as gray) to energy term Egt(ti) is discon-

nected (red). Therefore, tti will be estimated purely based on other terms

(shaded as yellow). Note that τ does not appear in this figure since the

prior terms are defined within a sensor, not across sensors. 79

5.3. Stability experiments on ADMM algorithm with 2 agents, 5 break points

(frames), and 20 random initializations. As can be seen, approximately

100 iterations and 50-60 seconds, the optimization is complete. Note

that early stops yield premature results. 80

5.4. Scalability experiments on ADMM algorithms with 2, 4, 6, 8, 10 agents,

5 break points (frames), and 1 random initialization. As a typical trend,

number of iterations and computation time increase almost linearly. . . 80

6.1. Potential extensions and applications of proposed generalized distributed

learning framework . 91

xii

1

Chapter 1

Introduction

Advances in sensor technology have made many things that were once considered to

be challenging or expensive to implement become feasible and affordable. For exam-

ple, thousands of surveillance cameras are deployed to monitor different parts of large

cities, hundreds of weather stations are collecting information nationwide, and many

high-precision sensors are continuously monitoring extreme areas such as volcanos and

ocean floors to predict potential natural disasters. The types of sensors are not nec-

essarily limited to fixed devices. Millions of mobile devices are equipped with sensors

such as high resolution cameras, gyroscopes, accelerometers, thermometers, and global

positioning system (GPS) receivers, and are sold around the world everyday.

The aforementioned sensors are input sources of an enormous amount of data that

needs to be processed and analyzed. This large-scale data processing is carried out at

multiple levels. At a low level, this involves continuous recording of raw measurements

from sensors. At a mid level, this involves light weight processing of the raw data, e.g.,

detecting or tracking objects from visual sensors. At a high level, data processing is done

in scale, considering input from multiple sensors at the same time, in order to provide

high level summarized information. These processing tasks, particularly at a high level,

demand significant computational power due to the size of the data. Naturally, it is

desirable to have scalable methods and algorithms to handle such large-scale data both

efficiently and accurately. Note that mid-level and high-level processing also depend on

low-level processing results, thus such methods are required to be robust to individual

sensor failure or noise caused by environmental changes.

In this thesis, we consider some of the important problems in this domain, and show

how distributed machine learning methods can be used to solve those problems.

2

Database Coordinating Node

Computing Nodes

(a) Deliberately / Induced distributed data (b) Inherently / Intrinsically distributed data

Figure 1.1: Example problem scenarios in consensus-based distributed learning based
on how input data is distributed.

1.1 Motivation

There are two different types of large-scale data that are distinguishable based on how

it is obtained and processed. One type of large-scale data is deliberately or induced

distributed data. This is a typical setting in so-called big data analysis problems where

we have enormous amount of data that simply do not fit into the memory of a single

machine. To do any meaningful analysis on this data, one has to divide it into a

manageable size and distribute it into computing nodes, as shown in Figure 1.1a. In

this case, there must be a central coordinating node that maps the data to local nodes

and then aggregates the results back to the coordinating node to obtain the summary.

The movie rating prediction challenge by Netflix [7] and other KDD cup challenges are

good examples of this type of distributed data. While this problem of how to distribute

data and aggregate the result back efficiently and robustly is an important topic, we

are mainly interested in the other type of distributed data in this thesis.

The other type of the large-scale data is inherently or intrinsically distributed data.

For example, suppose we deployed a large set of thermo sensors to monitor a volcano,

as shown in Figure 1.1b. In this case, the measurements collected by each thermo

sensor node are located far apart from other sensor nodes. Thus, the data itself is

distributed over a wide area and hence collected in a distributed way. In this case,

we identify several challenging issues due to this nature of data locality. One such

3

challenge is the communication overhead. If all sensors try to directly connect to

a central server and transmit their measurement information, it requires significant

communication bandwidth and transmission time. The situtation becomes worse if

the communication is to be done through wireless networks. If the monitoring area is

an extreme environment, as in the aforementioned example (large volcano), the issue

becomes more severe because (a) sensors need to establish a direct communication

channel to the server located far away from them, (b) putting repeater towers in such

extreme regions is not desirable and (c) using satelite communication may be expensive

in terms of electric power consumption. The second challenge is the real-time or anytime

processing [8] requirements for large area sensing systems [9]. As many sensor networks

need real-time processing, it may be too late to make any decision only after sending

all local information to the server and processing them. An example of such cases is the

tracking problem. Assume that we have sensors with enough computing power to track

objects. If one tracker starts tracking a target and lost it at some point, it is reasonable

and probably most efficient to begin searching for the target using neighboring sensors.

In such cases, algorithms that can work in a decentralized fashion would have merit

over centralized processing.

In the case of visual sensor networks, i.e., camera networks, there are additional

challenges in addition to those innate from the general sensor networks. Traditional

computer vision algorithms, particularly those that exploit various probabilistic and

learning-based approaches, are often formulated in centralized settings. A scene or an

object is observed by a single camera with all acquired information centrally processed

and stored in a single knowledge base (e.g., a classification model). Even if the problem

setting relies on multiple cameras, as may be the case in multi-view or Structure from

Motion (SfM) tasks [10] as shown in Figure 1.2a, all collected information is still pro-

cessed and organized in a centralized fashion. However, modern computational settings

are becoming increasingly characterized by networks of peer-to-peer connected devices,

with local data processing abilities. Nevertheless, the overall goal of such distributed

camera networks may still be to exchange information and form a consensus interpreta-

tion of the visual scene. For instance, even if a camera observes a limited set of object

4

(a) Multi-Camera Structure from Motion

Camera

1
Camera

2 Camera

3

(b) Vision-Graph mismatch [10]

Figure 1.2: Example problems in distributed learning for camera networks.

views, one would like its local computational model to reflect a general 3D appearance

of the object visible by other cameras in the network. Thus, a distributed learning

approach, where the cameras try to achieve a common goal shared across all cameras,

is desirable in such scenarios.

It is worth noting that in many cases, the cameras may have overlapped views that

are inconsistent with their physical locations as shown in Figure 1.2b. In the figure,

camera 1 and 2 are physically closely located neighbors, thus they should be neighbors

when communicating. In this way, they can reduce the power consumption for informa-

tion transmission during any learning process. However, what camera 1 is monitoring

in fact overlaps with the field of view of camera 3. Thus, there is a discrepency in

the physical connectivity (blue lines) and the visual correlation (orange lines). This

is called vision-graph mismatch [10] and it is the one of the reasons why distributed

learning for computer vision problems are challenging. Moreover, unlike simpler sensors

such as thermometers, it is not trivial to find correspondence between image frames ob-

served from different cameras. There are other factors, such as illumination change or

occulusion, that can fail even state-of-the-art algorithms associated with this problem.

Therefore, it is clearly both desirable and challenging to design distributed learning

methods for large-scale sensor networks, either visual or non-visual. In this thesis,

we formulate this distributed learning as a consensus-based distributed optimization

problem to deal with the challenges. We consider two aspects of learning in this thesis

5

Distributed Probabilistic
Learning
Models

Theoretical Properties of
ADMM

Dynamic Input
Models

Static Input
Models

Multi-Agent Analysis
Distributed

Computer Vision

Figure 1.3: Overview of the dissertation organization

in consensus-based distributed optimization. One is the distributed state estimation,

in which the nodes try to estimate the states of the sensors or targets based on local

observations, while the other is the distributed model estimation, in which the nodes

share a common parametric model as their belief to reach a consensus. Many examples

described earlier, such as the problem of estimating the mean temperature of distributed

thermometers, belong to the category of state estimation. We will see how a parametric

probablistic model can be estimated in a decentralized way for distributed data obtained

by camera networks in the following chapters.

1.2 Dissertation Statement and Contributions

To address the aforementioned problems, we propose a consensus-based, generalized

distributed probabilistic learning framework as a solution. We first define the consensus-

based distributed learning problem we consider in this thesis, then provide a literature

review on related works in Chapter 2. Then we introduce our distributed learning

framework and its extensions and appliations in subsequent chapters. Figure 1.3 depicts

the overview of the dissertation contributions. Specifically, we will be following three

main contributions in this dissertation:

6

• In Chapter 3, we propose a general probabilistic learning framework that can

learn a probabilistic model, which works in a fully decentralized fashion. As an

example application of the framework, we derive a distributed counterpart of

the probabilistic principal component analysis (PPCA) [11]. We show how the

distributed PPCA algorithm can effectively be applied to a distributed computer

vision problem, the distributed affine SfM. We demonstrate that the proposed

distributed algorithm can robustly reconstruct the shared 3D structure in camera

networks even under the presence of noise and missing information, both in the

case of missing at random and missing not at random cases.

• In Chapter 4, we propose two extensions of our framework. First, we extend our

framework to an online algorithm so that it can handle dynamically changing

input data by reformulating it into a distributed Bayesian learning model. With

the Bayesian formulation, we can naturally update the model in an online fashion

and additionally, obtain richer information from the parameters by inferring on

the full posterior distribution rather than the non-Bayesian formulations that have

been typical choices in prior works in distributed learning. Second, we propose

extensions to the underlying distributed optimization algorithm so that it can

empirically converge more quickly. We demonstrate that the proposed extensions

can speed up the empirical convergence of the distributed SfM problem.

• In Chapter 5, we propose a novel, potential application of consensus-based learn-

ing for a crowd analysis problem. Motivated by prior works in multi-agent system

literature [12, 13], we show how consensus-based optimization problem formula-

tion can be used to estimate optimal, desired crowd trajectories with prior con-

straints encoded into a global optimization-based framework. Using simulated

crowd trajectories generated by standard scenarios in crowd analysis literature,

we demonstrate how the proposed consensus-based optimization method can be

used in crowd trajectory analysis problems.

Finally, we draw conclusions and discuss promising future research directions and open

problems in Chapter 6.

7

Chapter 2

Distributed Learning: Problem Description and Review

In this chapter, we first define what we mean by distributed learning in this thesis, and

then introduce related prior works in the literature, focusing on distributed optimization

methods and applications in sensor networks.

2.1 Problem Description

We formally define the type of distributed learning problems we consider in this thesis.

In general, we formulate the problems as a consensus-based optimization problem [14].

A general consensus-based optimization problem can be written as:

arg min
xi

J∑
i=1

fi(xi)

s.t. xi = xj , ∀i 6= j, (2.1)

that is we want to find the set of optimal parameters xi, i, j = 1..J that minimizes the

sum of convex objective functions fi(xi), where J denotes the total number of functions.

This problem is typically a reformulation of a centralized optimization task:

arg min
x

f(x) (2.2)

with a decomposable objective:

f(x) =

J∑
i=1

fi(x). (2.3)

Given the consensus formulation, the original problem can be solved by decomposing

the problem into J subproblems, so that J processors can cooperate to solve the overall

problem by changing the equality constraint to xi = x̄, where x̄ denotes a globally

shared parameter.

8

2.2 Distributed Optimization and Learning

In this section, we review the underlying optimization methods that enable distributed

learning in general, including the consensus-based optimization problem of concern.

2.2.1 Parallel vs. Distributed Learning

In distributed machine learning and optimization literature, the terms parallel and

distributed are sometimes used to imply different meanings. Therefore, it is important

to clarify them at this stage. In some prior works, parallel computation means that

multiple processing nodes reside in a single machine, while distributed computation

implies there are multiple machines that must communicate over the network. Both of

these settings require a central coordinating node to map the data to multiple workers

and aggregate the results back, thus they belong to the induced distributed case based

on our categorization of the problem. On the other hand, there are prior works aimed

for intrinsically distributed case, and they also use the term distributed to refer to

their decentralized methods. Since our focus is on distinguishing between induced

and intrinsically distributed cases, we refer to the former as parallel and the latter as

distributed throughout this thesis.

This classification of terms is consistent with how they are defined in representative

literature on this topic [14], which defines parallel systems as “systems consist of sev-

eral processors that are located within a small distance of each other” and distributed

systems as “(systems with) processors may be far apart, and interprocessor communi-

cation is more problematic and communication delays may be unpredictable and the

communication links may be unreliable.” Most importantly, “they are usually loosely

coupled; there is very little, if any, central coordination and control.” We will use the

term decentralized when we need to emphasize the computation of a distributed setting

can be done in a fully decoupled way.

A significant number of prior works in machine learning and optimization literature

discuss the parallel case involving efforts being made to scale up the amount of data that

can be processed by traditional centralized machine learning methods. Nevertheless,

9

we briefly review those works in the parallel setting, as they will provide precursors for

our distributed framework that functions in a fully decentralized way. In fact, several

algorithmic issues of the two settings are similar and closely related [14].

2.2.2 Optimization for Parallel and Distributed Learning

In optimization literature, finding an optimal solution of a given objective function with

multiple workers has been an active topic for many decades [15]. The parallelization of

an optimization problem can be performed either by the optimization method structure

or by a transformation of the problem structure [14]. To illustrate the former, assume

that we want to minimize

arg min
x=(x1,x2,···xJ)

f(x1,x2, · · · ,xJ)

s.t. x ∈ Ω =
J∏
i=1

Ωi, Ω ⊆ RM , xi ∈ RMi ,
J∑
i=1

Mi = M (2.4)

where f : RM → R is a continuously differentiable cost function and Ωi are closed

convex sets. This is a prototypical example of a (centralized) state estimation problem.

On the other hand, if the variables xi depend on an unknown shared parameter θ that

needs to be found, then the problem becomes a model estimation problem.

For this type of problem, we can apply gradient descent algorithms (Jacobi, Gauss-

Seidel or (approximate) Newton method if f is twice differentiable) to find the x min-

imizing f . Or, we can also use so-called nonlinear block-coordinate descent methods.

The basic idea of these techniques is to iteratively find one variable at a time, fixing

the others. In the case of nonlinear Jacobi, each variable is updated as

x
(t+1)
i = arg min

xi

f(x
(t)
1 , · · · ,x(t)

i−1,xi,x
(t)
i+1, · · · ,x

(t)
J), (2.5)

while in the case of nonlinear Gauss-Seidel, each variable is updated as

x
(t+1)
i = arg min

xi

f(x
(t+1)
1 , · · · ,x(t+1)

i−1 ,xi,x
(t)
i+1, · · · ,x

(t)
J). (2.6)

Thus, nonlinear Jacobi requires information of all other variables’ past states, while

nonlinear Gauss-Seidel requires the update to be carried out sequentially. The order

10

of variable updates in the nonlinear Gauss-Seidel can be different in each iteration.

All these methods are guaranteed to converge to the minimum of f as long as f is

continuously differentiable and convex [14]. They are also methodologically well suited

for parallel computation, since the variable updates can be done simultaneously with a

carefully designed synchronization scheme. Therefore, as long as the problem is in the

form of (2.4), one can obtain a parallel computation algorithm to solve it efficiently.

However, this is not always the case. For example, if the constraint set is coupled so

that it is not in the form of the Cartesian product of simpler sets, the aforementioned

algorithms are not directly applicable. In this case, we need to transform the problem

structure so that it can be solved in a parallel (or distributed) way. One line of such

approaches are the decomposition methods. These methods, based on the duality theory

(details on this theory can be found in [16] or Appendix C of [14]), have been in use

since the 1960s, including Dantzig-Wolfe [17] and Benders decompositions [18]. The

basic idea of these methods is to separate the original problem into several simpler

subproblems, and then coordinate them with a master problem.

The problems to be decomposed need to be in a specific form, and there are two

types of decomposition methods: primal and dual. The former methods are appropriate

when the variables are coupled, with the latter being useful when the constraints are

coupled, although this is not a strict rule [19]. We give an example problem of the dual

decomposition methods here. Comprehensive tutorials on decomposition methods can

be found in [19, 20]. Assume that we are given the following constrained optimization

problem:

arg min
x

J∑
i=1

fi(xi), s.t.

J∑
i=1

Aixi = b, (2.7)

where fi : RD → R, Ai ∈ RD×M and b ∈ RD. One can see that this problem would be

fully decomposable if it were an unconstrained problem. Thus, we use the Lagrangian

relaxation on (2.7) as

arg min
x

J∑
i=1

fi(xi) + λ>

(
J∑
i=1

Aixi − b

)
, (2.8)

11

where λ ∈ RD is the dual variable. Now the problem is separable, as the subproblem

arg min
xi

fi(xi) + λ>Aixi, (2.9)

can be solved easily, and we solve the dual problem

arg max
λ

g(λ) =
J∑
i=1

gi(λ)− λ>b, (2.10)

as the master problem, where gi(λ) is the dual function obtained by minimizing (2.9)

with given λ. The master problem is typically solved by using subgradient methods [20].

Another line of approach transforming the problem structure are the augmented

Lagrangian methods, which also use the duality theory. A benefit of the augmented

Lagrangian methods over simple decomposition techniques is that they are guaranteed

to find a primal solution even when f is not strictly convex [21]. In the previous example,

if functions fi were strictly convex, then there would be a unique primal solution for

(2.9) for given λ. Thus, after finding the solution for the master problem (2.10), we

can find the optimal primal solution in subproblems in this case. In other words, strict

convexity of the objective function implies the differentiability of the dual function [14].

There are ways to solve the problem when the dual is not differentiable [22], but the

augmented Lagrangian methods relax the assumption of strictly convex into a milder

one, i.e., convex.

We begin our introduction of the augmented Lagrangian methods with the method

of multipliers [23, 24]. Consider the constrained optimization problem

arg min
x

f(x), s.t. Ax = b, (2.11)

where f : RD → R is a closed convex function, A ∈ RD×M , x ∈ RM and b ∈ RD. Using

the Lagrangian relaxation and an additional squared penalty term, we can obtain an

unconstrained objective, called the augmented Lagrangian function

Lη(x,λ) = f(x) + λ> (Ax− b) +
η

2
‖Ax− b‖2 , (2.12)

where η > 0 is called the parameter of the augmented Lagrangian. The method of

12

multiplers is the sequential minimization of the two iterative updates

x(t+1) = arg min
x

Lηt(x,λ(t)), (2.13)

λ(t+1) = λ(t) + η
(
Ax(t+1) − b

)
, (2.14)

One can show that the method of multipliers is actually the proximal minimization

algorithm [25, 14]. Since the squared penalty ensures strict convexity, we obtain the

aforementioned benefit.

However, one cannot directly parallelize the squared penalty term even if f is sep-

arable, thus the method of multipliers is not the best option for developing a parallel

or distributed optimization algorithm. Therefore, several modifications to the method

were proposed, with one of them being the alternating direction method of multipliers

(ADMM) [26, 27]. The algorithm solves problems in the form

min f(x) + g(y), s.t. Ax + By = c, (2.15)

where f : RDx → R ∪ {+∞} and g : RDy → R ∪ {+∞} are closed, proper convex

functions, x ∈ RDx and y ∈ RDy are variables and A ∈ RDc×Dx , B ∈ RDc×Dy and

c ∈ RDc are known, with Dx, Dy, Dc denoting the dimension of the corresponding

variables. ADMM solves the problem by iterative updates

x(t+1) = arg min
x

Lη(x,y(t),λ(t)), (2.16)

y(t+1) = arg min
y

Lη(x(t+1),y,λ(t)), (2.17)

λ(t+1) = λ(t) + η
(
Ax(t+1) + By(t+1) − c

)
, (2.18)

where

Lη(x,y,λ) = f(x) + g(y) + λ> (Ax + By − c) +
η

2
‖Ax + By − c‖22 (2.19)

is the augmented Lagrangian. Note that the algorithm is similar to the Gauss-Seidel

block-coordinate descent method we discussed earlier. Theoretical results as well as a

survey on applications of ADMM can be found in [14, 15] and references therein. A

brief introduction is also provided in Appendix A of this thesis.

13

The ADMM algorithm is interesting, as it is highly parallelizable when we apply

it to the separable problems such as (2.1). In order to obtain the parallel algorithm

to solve the consensus problem (2.1), we introduce a globally shared variable z and

reformulate the problem as an equivalent problem [15], as

arg min
xi,z

J∑
i=1

fi(xi), s.t. xi − z = 0, ∀i. (2.20)

This problem can be solved by a series of ADMM updates

x
(t+1)
i = arg min

xi

{
fi(xi) + λ

(t)
j

(
xi − z(t)

)
+
η

2

(
xi − z(t)

)2
}
, (2.21)

z(t+1) =
1

J

J∑
i=1

{
x

(t+1)
i +

(
1

η

)
λ

(t)
i

}
, (2.22)

λ
(t+1)
i = λ

(t)
i + η

(
x

(t+1)
i − z(t+1)

)
. (2.23)

Of course, this algorithm is not a distributed algorithm, since it requires a coordinating

center. It is possible, however, to devise a fully decentralized distributed optimization

algorithm based on the ADMM [28, 21]. Actually, at least two ways of ADMM-based

algorithms have been proposed to devise general distributed learning algorithms. A

good comparative analysis of the two methods, in an average consensus problem [29],

can be found in [28]. Both methods introduce auxiliary variables to ease the derivation.

In the first method [30, 31], the consensus optimization problem (2.1) is formulated as

arg min
xi,zj

J∑
i=1

fi(xi), s.t. xi = zj , ∀i ∈ V, j ∈ Bi (2.24)

where G = (V, E) is the network with the set of vertices V, the set of edges E = {(i, j)},

and Bi denotes the set of one-hop neighbors of node i. In the second method [32, 33],

the same consensus problem is formulated as

arg min
xi,zij

J∑
i=1

fi(xi), s.t. xi = zij , zij = xj , ∀i ∈ V, j ∈ Bi. (2.25)

The key difference is that (2.24) has two variables per edge (i, j) while (2.25) has only

one. This makes the number of communication steps between node pairs per iteration

to be two for the former, and one for the latter [34]. While the numbers of iterations

needed for convergence are nearly equal [28], the latter algorithm is also more resilient

14

to noise than the former [28]. The formulation has also been successfully applied to

distributed classification and clustering [35, 36]. To this end, we employee the second

method to devise the general distributed probabilistic learning framework in this thesis.

There have been other distributed optimization algorithms for consensus-based op-

timization problems, but we omit them here in order to focus on devising the general

distributed probabilistic learning framework with applications in visual sensor networks.

For readers interested in recent advances in the distributed optimization algorithms, [21]

provides a survey and a good list of references, along with an original proposal of com-

munication efficient distributed optimization algorithms based on ADMM, with several

applications including compressed sensing.

2.3 Distributed Learning Applications

The consensus-based distributed learning problem can be found in various forms in dif-

ferent areas. For example, in robotics, the consensus-based distributed learning problem

is termed “consensus problems in multi-agent coordination” [37]. In this section, we

consider related prior works on consensus-based distributed learning applications found

in machine learning and sensor network literature, explained as a high-level overview.

Particularly, we focus on those in visual sensor networks, i.e., camera networks.

2.3.1 Distributed Learning in Machine Learning

In so-called “big data” related machine learning literature, significant efforts have

been made in the context of data mining and knowledge discovery for large-scale

databases [38, 39, 40]. These earlier works, by nature, are for the induced distributed

case, and thus a parallel setting. The trend is similar in a recent comprehensive collec-

tion for large-scale machine learning [41] where the authors used the terms parallel and

distributed to denote the difference in implementation aspect of two parallel settings,

i.e., the distinction is based on whether the algorithm used OpenMP (processors reside

in one machine; multi-threaded applications) or Message Passing Interface (processors

15

reside in multiple machines and need data communication between them). While ad-

vances in large-scale data processing frameworks, including the popular MapReduce [42]

algorithm are important, these methods are designed for parallel processing of induced

distributed data, so we refer interested readers to the recent collection [41] for further

references.

In the context of statistical, probabilistic machine learning, parallel approximate in-

ference methods for latent variable models have gained interest in the past two decades,

mainly due to the increased availability of large-scale text data (via web mining) and

affordable computational power to process the data. Not surprisingly, parallel topic

models [43] have become very popular, and it is easy to find recent studies in this

area, e.g., [44, 45, 46]. However, these approaches are mostly parallel models, as the

approximation algorithm is based on sampling, which is not trivial to perform in a

decentralized way.

On the other hand, distributed algorithms have been studied extensively in the

signal processing and sensor network community. Applications can be found in local-

ization [47], classification and clustering [36] for wireless sensor networks and cognitive

radio [48], or more generally as adaptive networks [49]. The applications for cogni-

tive radio are particularly worth noting, as the distributed cooperative sensing [50, 51]

closely relates to key aspects of distributed learning, although the problem is not nec-

essarily consensus-based.

In terms of probabilistic learning, models such as Gaussian mixture [36] and Kalman

filter [52] for the (average) consensus problem have been proposed in the sensor network

community over the past decade, due to the popularity of those models in the areas’

applications. Still, with a few exceptions that explicitly deal with the distributed setting

(typically in wireless sensor networks, e.g., [9]), many works require one or more fusion

centers that coordinate the processing. Moreover, if we further investigate Bayesian

treatment of the learning models, there are few works that can perform the distributed

learning in a fully decentralized way, since many of those Bayesian models depend on

sampling methods. In chapter 4, we will see how the other approximation method,

variational inference, can be executed in our decentralized probabilistic framework.

16

Lastly, it is worth mentioning the relationship of distributed learning to deep neural

networks. Such networks require a large computational power, in order to find millions

of parameters. Thus, it is inevitable for researchers to delve into the development of

optimization algorithms that can scale. While the major contributions so far have

focused on parallelization of neural networks by partitioning the network [53], it would

be interesting to see how deep learning can be performed in a decentralized way.

2.3.2 Distributed Learning for Visual Sensor Networks

A number of distributed algorithms have been proposed to address the distributed learn-

ing problems in visual sensor networks, such as calibration, pose estimation, tracking,

and object and activity recognition in large camera networks [10, 54, 55, 56, 57]. In or-

der to deal with high dimensionality of vision problems, distributed latent space search

methods, such as decentralized variants of PCA, have been studied in [58, 59]. A more

general framework using distributed least squares [60] based on distributed averaging

of sensor fusions [61] was introduced for PCA, triangulation, pose estimation and SfM.

Similar approaches have been extended to settings such as the distributed object track-

ing and activity interpretation [52, 62, 63]. Even though the methods such as PCA or

Kalman filtering have their well known probabilistic counterparts, the aforementioned

approaches do not use probabilistic formulation when dealing with the distributed set-

ting.

One critical challenge in distributed data analysis includes dealing with missing

data. In camera networks, different nodes will only have access to a partial set of data

features because of varying camera views or object movement. For instance, object

points used for SfM may be visible only in some cameras and only in particular object

poses. As a consequence, different nodes will be frequently exposed to missing data.

However, most current distributed data analysis methods are algebraic in nature, and

cannot seamlessly handle such missing data.

Often, prior works considered the distributed learning problems for camera networks

in a non-Bayesian (often deterministic) fashion. Thus, the data is often assumed to be

complete, i.e., not missing in individual nodes nor across the network. Therefore, such

17

methods usually obtain point estimates of parameters by minimizing some loss function

based on the complete data. However, Bayesian models have benefits of providing

richer information on uncertainty of estimates and are robust to overfitting. Since

these properties are desirable for machine learning methods for sensor networks that

are susceptible to noise and sensor fail, it would be good to have our distributed learning

model to be able to handle data in a Bayesian way.

2.3.3 Benchmark Datasets for Camera Networks

In this section, we briefly introduce what benchmark datasets are available in the con-

text of distributed learning for camera networks. Since the same dataset can be used

for different problems, we first briefly explain what are the goals and challenges in each

of the problems using the cateogorization of [10], before introducing the datasets. We

identify the following seven problems to fall into the category of distributed computer

vision problems. We provide a short description for each of the problems, which are

• Vision-Graph Discovery. In Figure 1.2b, we showed a motivating example

problem in distributed vision. To solve this problem, one has to establish corre-

spondence between features extracted from each camera view.

• Structure from Motion. As introduced in the previous chapter, this problem

involves the reconstruction of the object structure and camera pose, simultane-

ously using image measurements from multiple views. We focus on this problem

in this thesis.

• Camera Localization. This problem is to estimate an individual camera’s rel-

ative pose with respect to other cameras, based on image measurements obtained

from multiple cameras in the network.

• Calibration. The above problems assume the cameras’ intrinsic parameters

(calibration matrix) are known. The problem of calibration is to estimate this

parameter from image measurements. If the cameras are all of the same type,

one may utilize the consensus-based formulation to obtain better estimates of the

parameter.

18

• Object Pose Estimation. Given that cameras in the network are calibrated

and their poses are known, the goal here is to cooperatively estimate the pose of

3D objects in the scene using image measurements from multiple cameras.

• Activity Recognition. Assuming the target is an intelligent moving object

(e.g., person), this problem tries to find the correct activity label of the target’s

behavior. This is not a trivial extension of a single view-based activity recognition

problem, because different views may yield varying activity labels. Thus, one has

to resolve the potential discrepencies of the local algorithm output.

• Object Tracking. This is arguably one of the most active research problems

in the camera network literature. The goal is to track one or more targets, in

real-time, if possible, spanning multiple cameras’ fields of views.

In the following, we introduce a few standard datasets. Some of them were designed

for camera network (i.e., multiple cameras) problems, while others were not originally

intended for the multiple-camera setting, but can be used as a simulated network.

Multi-View datasets. Some computer vision datasets are not originally designed

for multiple cameras or camera-network problems, but they could be used as a simulated

camera network for proof-of-concept experiments. For example, multi-view camera

calibration, object recognition or pose estimation datasets such as Caltech 3D Objects

on Turntable dataset [64] or EPFL Multi-View Car Dataset [65] are such examples.

Both of these datasets have image frames of an object rotating on a turntable more or

less of 360 degrees. One may partition the frames sequentially, i.e., the first 50 frames

to be camera 1, the next 50 frames to be camera 2, etc. to simulate multiple cameras

surrounding the target object in a circle. The EPFL Multi-View Car Dataset contains

20 different cars with image frames taken every approximately 3-4 degrees of rotation.

The photos were taken by a Nikon D70 on a tripod at a motor show. The Caltech 3D

Objects on Turntable dataset has several objects in the dataset, but only a handful

of objects have image frames taken every degree. We use the Caltech dataset in our

experiments in the following chapters1.

1Unfortunately, this dataset is no longer available for download at the time of writing this thesis.

19

Hopkins115 [66] This dataset was not originally intended for the camera network

setting, as it was designed for the motion segmentation problem, where the goal is to

segment feature points extracted from video frames. However, as in the case of multi-

view datasets, this dataset can be used for a simulated camera network configuration.

It has been used for benchmark datasets for the problem of distributed affine structure

from motion [60, 10]. Since we follow the same experimental setting as [60] in this

thesis, we will use this dataset for the experiments.

Indoor Multi-Camera datasets. Some datasets use real multiple cameras, but

the purpose of the dataset was not indended for “camera networks.” For example,

motion capture datasets, e.g., HumanEva [67] or multimodal datasets, e.g., 3DLife [68]

use multiple cameras with overlapping fields of view. Often, cameras are synchronized

and by the nature of the original purpose of the datasets, the datasets are relatively

clean, i.e., have minimum level of noise. Of course, camera configurations in these

datasets are rather unrealistic compared to the real world camera network, so the

experiments using these datasets should be considered as simulated camera networks.

Including a recently introduced dataset, MuHAVi [69], that provides 8 camera views,

datasets in this category can be used for activity recognition problems.

PETS09 [70] This dataset is designed for the multiple pedestrian tracking problem

using real multiple cameras. It is a dataset prepared for surveillance applications that

had long existed as a popular benchmark dataset for the multi-target object tracking

problem for a real multi-camera setting. The dataset contains recordings of 8 cam-

eras taken at different times of the day, with different density and speed of controlled

pedestrians. The dataset also provides camera calibration information.

EPFL [56, 71] This is another dataset for the multiple pedestrian tracking problem,

using real multiple cameras. It contains video sequences captured by 3-4 cameras

in 5 different environments. The pedestrians are controlled, with the exception of a

basketball sequence, filming people playing a basketball game. The groundtruth as

well as the calibration information are provided. Images were captured at 25 frames

per second.

20

CamNeT [72] This dataset was designed for the pedestrian tracking problem un-

der non-overlapping camera networks. It has six scenarios recorded at an university

campus, using 5-8 cameras covering indoor and outdoor scenes. Sequences have vary-

ing conditions, such as illumination changes, complex topographies, and pedestrian

densities and dynamics.

VideoWeb Activity [73] The VideoWeb activity dataset is taken from a long

recording (2.5 hours) of multiple cameras containing dozens of activities with annota-

tions. The sequences have different numbers of views of the activity.

RAiD [74] This dataset is for the pedestrian reidentification problem. 4 cameras

(2 indoor and 2 outdoor) were used and 43 pedestrians were captured in the images.

3DPeS [75, 76, 77] This dataset is a general purpose multi-camera dataset mainly

for human reidentification, but could be used for pedestrian detection, tracking, ac-

tion recognition and trajectory analysis. Unlike other reidentification datasets, this

dataset provides full video frames recorded over several days using 8 surveillence cam-

eras. Pedestrians are notified about the cameras, but not controlled or instructed.

However, the cameras are not synchronized and not all 8 cameras are used in the six

sequences provided in the dataset, and only 1 sequence uses 3 cameras while others use

only 2.

UvA Human Pose Estimation [78, 79] This dataset is for the object (human)

pose estimation problem for overlapping camera networks. There are 3 synchronized

cameras recording at 20 frames per second at VGA resolution. In total, 12 sequences

were recorded and 17 body locations were annotated with 3D markers by human label-

ing. The labeling was done for one subject per sequence.

UvA Multi-Person Tracking [80] This dataset is also designed for multiple

pedestrian tracking and activity / scene recognition problems, using image frames from

overlapping cameras. There are 3 synchronized cameras recording 2 different envi-

ronments at 20 frames per second. Controlled pedestrians and actors enact various

activities. Calibration and ground truth annotations for tracking are provided.

21

Chapter 3

Generalized Distributed Probabilistic Learning

In this chapter, we propose a distributed consensus learning approach for parametric

probabilistic models with latent variables that can effectively deal with missing data.

This is the first example of a distributed model estimation problem we consider.

We assume that each node in a network can observe only a fraction of the data

(e.g., object views in camera networks). Furthermore, we assume that some of the data

features may be missing across different nodes. The goal of the network of sensors is to

learn a single consensus probabilistic model (e.g., 3D object structure) without ever re-

sorting to a centralized data pooling and centralized computation. We will demonstrate

that this task can be accomplished in a principled manner by local probabilistic models

and in-network information sharing, implemented as recursive distributed probabilistic

learning.

In particular, we focus on probabilistic PCA (PPCA) as a prototypical example and

derive its distributed version, the D-PPCA. We then suggest how missing data can be

handled in this setting using a missing-data PPCA, and apply this model to solve the

distributed SfM task in a camera network. Our model is inspired by the consensus-based

distributed Expectation-Maximization (EM) algorithm for Gaussian mixtures [36], and

we extend to deal with generalized linear Gaussian models [81]. Our model does not

depend on any specific type of graphs. Our network, of arbitrary topology, is assumed

to be static with a single connected component. These assumptions are reasonably

applicable to many real-world camera network settings.

In Section 3.1, we first explain the general distributed probabilistic model. Sec-

tion 3.2 shows how D-PPCA can be formulated as a special case of the probabilistic

framework, and proposes the means for handling missing data. We then explain how

22

D-PPCA can be modified for the application in affine SfM. In Section 3.3, we report ex-

perimental results of our model using both synthetic and real data. Finally, we discuss

our approach including its limitations and possible solutions in Section 3.4.

3.1 Distributed Probabilistic Learning Model

We start our discussion by first considering a general parametric probabilistic model in

a centralized setting, and then we show how to derive its distributed form.

3.1.1 Centralized Setting

Let X = {xn|xn ∈ RD} be a set of i.i.d. multivariate data points with the corresponding

latent variables Z = {zn|zn ∈ RM}, n = {1, 2, ..., N}. Our model is a joint density

defined on (xn, zn) with a global parameter θ

(xn, zn) ∼ p(xn, zn|θ),

with

p(X,Z|θ) =
∏
n

p(xn, zn|θ),

as depicted in Figure 1.1b. In this general model, we can find an optimal global parame-

ter θ̂ (in a MAP sense) by applying standard EM learning. The EM follows a recursive

two-step procedure: (a) E-step, where the posterior density p(zn|xn, θ) is estimated,

and (b) M-step: parametric optimization

θ̂ = arg max
θ

EZ|X [log p(X,Z|θ)] . (3.1)

It is important to point out that each posterior density estimate at point n depends

solely on the corresponding measurement xn, and does not depend on any other xk, k 6=

n. This means that even if we partition independent measurements into arbitrary sub-

sets, posterior density estimation is accomplished locally, within each subset. However,

in the M-step all measurements X affect the choice of θ̂ because of the dependence of

each term in the completed log likelihood on the same θ̂. This is a typical character-

istic of parametric models, where the optimal parameters depend on summary data

statistics.

23

(a) Centralized (b) Distributed (c) Decentralized

Figure 3.1: Centralized, distributed and augmented models for probabilistic PCA.

3.1.2 Distributed Setting

Let G = (V, E) be an undirected connected graph with vertices i, j ∈ V and edges

eij = (i, j) ∈ E connecting the two vertices. Each i-th node is directly connected with

1-hop neighbors in Bi = {j|eij ∈ E}. Suppose the set of data samples at the i-th node

is Xi = {xin|n = 1, ..., Ni}, where xin ∈ RD is n-th measurement vector and Ni is the

number of samples collected in the i-th node. Likewise, we define the latent variable

set for node i as Zi = {zin|n = 1, ..., Ni}.

As observed previously, each posterior estimation is decentralized. Learning the

model parameter would be decentralized if each node had its own independent param-

eter θi. Still, the centralized model can be equivalently defined using the set of local

parameters, with an additional constraint on their consensus, θ1 = θ2 = · · · = θ|V|.

This is illustrated in Figure 3.3b where the local node models are constrained using ties

defined on the underlying graph.

3.1.3 Decentralized Setting

The simple consensus tying can be more conveniently defined using a set of auxiliary

variables ρij , one for each edge eij (Figure 3.3c). This now leads to the final distributed

consensus learning formulation, similar to [36]:

θ̂ = arg min
{θi:i∈V}

− log p(X|θ,G)

s.t. θi = ρij , ρij = θj , i ∈ V, j ∈ Bi (3.2)

24

where we marginalized on X. This is a constrained optimization task that can be

solved in a principal manner using the Alternating Direction Method of Multipliers

(ADMM) [82, 83, 15]. A brief review on ADMM is provided in Appendix A. ADMM

iteratively, in a block-coordinate fashion, solves maxλ minθ L(·) on the augmented La-

grangian

L(θ, ρ, λ) = − log p(X|θ1, θ2, ..., θ|V|,G) +
∑
i∈V

∑
j∈Bi

{
λT
ij1(θi − ρij) + λT

ij2(ρij − θj)
}

+
η

2

∑
i∈V

∑
j∈Bi

{
||θi − ρij ||2 + ||ρij − θj ||2

}
(3.3)

where λij1, λij2, i, j ∈ V are the Lagrange multipliers, η is some positive scalar parameter

and ||·|| is the induced norm. The last term (modulated by η) is not strictly necessary for

consensus but introduces additional regularization. Further discussions on this term and

the parameter can be found in [15] and [35]. The auxiliary ρij plays a critical decoupling

role and separate estimation of local θi during block-coordinate ascent/descent. This

classic (first introduced in the 1970s) meta decompose algorithm can be used to devise a

distributed counterpart for any centralized problem that attempts to maximize a global

log likehood function over a connected network.

3.2 Example: Distributed Probabilistic Principal Component Analy-

sis

We now apply the general distributed probabilistic learning explained above to the

specific case of distributed PPCA. We first briefly review the principal component

analysis (PCA) and probabilistic PCA (PPCA). Then we show how to derive distributed

counterpart of the PPCA.

3.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a classic feature selection method that finds a

linear projection that maximizes the variance of projected data, called the principal

component. Finding the projection for the first principal component for a given data

25

matrix X is an optimization problem

w(1) = arg max
w

w>(XX>)w (3.4)

s.t. ‖w‖ = 1. (3.5)

All principal components can be found using eigendecomposition as X = WZ where

columns of W are eigenvectors of XX>. Thus, PCA can be interpreted as a matrix

decomposition method that decomposes a given matrix X into orthonormal W and Z.

It is easy to see that the singular value decomposition (SVD) is a solution to this PCA

problem. To see this, let X = WΣV> be the singular value decomposition result of X.

Then,

XX> = WΣV>VΣW> = WΣ2W> (3.6)

thus columns of W are eigenvectors of XX>. Now,

Z = W>X = W>WΣV> = ΣV>. (3.7)

We will use the centralized SVD result on input X as a baseline PCA in the experiments.

3.2.2 Probabilistic PCA (PPCA)

Traditional centralized formulation of probabilistic PCA (PPCA) [11] assumes that

latent variable zin ∼ N (zin|0, I), with a generative relation

xin = Wizin + µi + εi, (3.8)

where εi ∼ N (εi|0, a−1
i I) and ai is the noise precision. Inference then yields

p(zin|xin) = N (zin|L−1
i WT

i (xin − µi), a
−1
i L−1

i), (3.9)

where Li = WT
i Wi + a−1

i I. We can find optimal parameters Wi,µi, ai by determining

the maximum likelihood estimates of the marginal data likelihood, or by applying the

EM algorithm on expected complete data log likelihood with respect to the posterior

density p(Zi|Xi).

Benefits of this probabilistic treatment are threefold: (a) We can derive an EM

algorithm for the PCA that is computationally efficient, if we are interested in a few

26

-6 -4 -2 0 2 4 6
-10

-5

0

5

10

(a) PCA

-6 -4 -2 0 2 4 6
-10

-5

0

5

10

(b) PPCA

Figure 3.2: Comparison between PCA and PPCA. Red cross denotes input data, blue
cross denotes PCA reprojection, black cross denotes PPCA reprojection, cyan circle
denotes estimated one standard deviation from mean estimate of reprojection.

leading eigenvectors (i.e., latent dim << observation dim), (b) We can naturally obtain

estimates of latent space, and (c) In combination with EM, it can deal with missing

values, which will be discussed more in detail in Section 3.2.4. Figure 3.2, demonstrates

this benefit at a glance. Here, given two-dimensional data X, we want to find the one-

dimensional prinxipal axis. With PCA, we can find a rough linear subspace, as shown in

the center figure. However, PPCA can provide additional information on input variance,

thus we can actually estimate how far each input data point is from its corresponding

subspace projection, as shown in the right figure. One can show that PCA is a special

case of PPCA, when the additive observation noise variance is zero.

3.2.3 Distributed PPCA (D-PPCA)

The distributed algorithm developed in Section 3.1.3 can be directly applied to this

PPCA model. The basic idea is to assign each subset of samples as evidence for the local

generative models with parameters Wi,µi, a
−1
i . The inference is accomplished locally

in each node. The local parameter estimates are then computed using the consensus

updates that combine local summary data statistics with the information about the

model conveyed through neighboring network nodes. Below, we outline specific details

of this approach.

27

Let Θi = {Wi,µi, ai} be the set of parameters for each node i. The global con-

strained consensus optimization now becomes

arg min
{Wi,µi,ai:i∈V}

−F (Θi)

s.t.

Wi = ρij , ρij = Wj , i ∈ V, j ∈ Bi,

µi = φij , φij = µj , i ∈ V, j ∈ Bi,

ai = ψij , ψij = aj , i ∈ V, j ∈ Bi

where F (Θi) =
Ni∑
n=1

log p(xin|Wi,µi, a
−1
i). The augmented Lagrangian is

L(Φi) = −F (Θi)

+
∑
i∈V

∑
j∈Bi

(
λT
ij1(Wi − ρij) + λT

ij2(ρij −Wj)
)

+
∑
i∈V

∑
j∈Bi

(
γT
ij1(µi − φij) + γT

ij2(φij − µj)
)

+
∑
i∈V

∑
j∈Bi

(βij1(ai − ψij) + βij2(ψij − aj))

+
η

2

∑
i∈V

∑
j∈Bi

(||Wi − ρij ||2 + ||ρij −Wj ||2)

+
η

2

∑
i∈V

∑
j∈Bi

(||µi − φij ||2 + ||φij − µj ||2)

+
η

2

∑
i∈V

∑
j∈Bi

((ai − ψij)2 + (ψij − aj)2) (3.10)

where Φi = {Wi,µi, ai,ρij ,φij , ψij ; i ∈ V, j ∈ Bi} and {λijk}, {γijk}, {βijk} with

k = 1, 2 are the Lagrange multipliers. The scalar value η gives us control over the

convergence speed of the algorithm. With reasonably large positive η, the overall opti-

mization converges fairly quickly [36]. We will explore the converging behaviour with

respect to various η in synthetic data experiments.

Similar to a standard EM approach, we minimize the upper bound of L(Φi). Ex-

ploiting the posterior density in (3.9), we compute the expected mean and variance of

latent variables in each node as

E[zin] = L−1
i WT

i (xin − µi), (3.11)

E[zinz
T
in] = a−1

i L−1
i + E[zin]E[zin]T. (3.12)

28

Maximization of the completed likelihood Lagrangian derived from (3.10) yields

W
(t+1)
i =

{
ai

Ni∑
n=1

(xin − µi)E[zin]T − 2λ
(t)
i + η

∑
j∈Bi

(
W

(t)
i + W

(t)
j

)}

·

(
ai

Ni∑
n=1

E[zinz
T
in] + 2η|Bi|I

)−1

, (3.13)

µ
(t+1)
i =

{
ai

Ni∑
n=1

(
xin −WiE[zin]

)
− 2γ

(t)
i + η

∑
j∈Bi

(
µ

(t)
i + µ

(t)
j)

)}
· (Niai + 2η|Bi|)−1 , (3.14)

λ
(t+1)
i = λ

(t)
i +

η

2

∑
j∈Bi

{
W

(t+1)
i −W

(t+1)
j

}
, (3.15)

γ
(t+1)
i = γ

(t)
i +

η

2

∑
j∈Bi

{
µ

(t+1)
i − µ

(t+1)
j

}
, (3.16)

β
(t+1)
i = β

(t)
i +

η

2

∑
j∈Bi

{
a

(t+1)
i − a(t+1)

j

}
. (3.17)

For ai, we solve the quadratic equation

0 = −NiD

2
+ 2η|Bi|a(t+1)

i

2

+ a
(t+1)
i ·

{
2β

(t)
i − η

∑
j∈Bi

(
a

(t)
i + a

(t)
j

)
−

Ni∑
n=1

E[zin]TWT
i (xin − µi)

+
1

2

Ni∑
n=1

{
||xin − µi||2 + tr

[
E[zinz

T
in]WT

i Wi

]}}
. (3.18)

The overall distributed EM algorithm for D-PPCA is summarized in Algorithm 1. Full

derivation can be found in Appendix B.

3.2.4 Dealing with Missing Values in Input Data

Traditional PPCA is an effective tool for dealing with data missing-at-random (MAR)

in traditional PCA [84]. While more sophisticated methods including variational ap-

proximations (cf. [84]) are possible, direct use of PPCA is often sufficient in practice.

Hence, we adopt D-PPCA as a method to deal with missing data in a distributed

consensus setting.

Generalization to missing data D-PPCA from D-PPCA is straightforward and fol-

lows [84]. From the perspective of ADMM-based learning, the only modifications come

29

Algorithm 1 Distributed Probabilistic PCA (D-PPCA)

Require: For every node i initialize W
(0)
i ,µ

(0)
i , a

(0)
i randomly and set Lagrange mul-

tipliers for the parameters to zero, i.e., λ
(0)
i = 0,γ

(0)
i = 0, β

(0)
i = 0.

for t = 0, 1, 2, ... until convergence do
for all i ∈ V do

[E-step] Compute E[zin] and E[zinz
T
in] via traditional inference.

[M-step] Compute W
(t+1)
i , µ

(t+1)
i , a

(t+1)
i , via (3.13), (3.14) and (3.18).

end for
for all i ∈ V do

Broadcast W
(t+1)
i ,µ

(t+1)
i , and a

(t+1)
i to all neighbors of i ∈ Bi.

end for
for all i ∈ V do

Compute λ
(t+1)
i , γ

(t+1)
i , and β

(t+1)
i via (3.15), (3.16) and (3.17)

end for
end for

in the form of adjusted terms for local data summaries. For instance, in (B.4) the data

summary term

Ni∑
n=1

(xin −WiE[zin]) (3.19)

becomes ∑
n∈Oi,f

xi,n,f −wT
i,fE[zin], (3.20)

where f = 1, . . . , D is the index of feature, Oi,f is the set of samples in node i that have

the feature f present, xi,n,f is the value of the present feature, and wT
i,f is the f -th row

of matrix Wi. Similar expressions can be derived for other local parameters. Note that

(3.15-3.17) incur no changes.

3.2.5 Evaluation

We first demonstrate the empirical convergence properties of the D-PPCA. Note that

the general convergence properties are implied by the Augmented Lagrangian opti-

mization algorithm. Additionally, in a distributed network setting the convergence will

depend on the connectivity structure of the network, which in turn depends on the

spectral properties of its graph Laplacian. We generated 100 50-dimensional random

samples from N (0, 0.2·I). We assigned 20 samples equally to each node in a 5-node net-

work connected with ring topology to find a 5-dimensional subspace. Our convergence

30

10
0

10
1

10
2

0

2000

4000

6000

8000

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

η=16
η=12
η=10
η=8
Centralized

Centralized
Solution

(a) Impact of η

10
0

10
1

10
2

0

2000

4000

6000

8000

10000

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

N=10
N=8
N=5
N=2
Centralized

Centralized
Solution

(b) Impact of number of nodes

10
0

10
1

10
2

0

2000

4000

6000

8000

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Ring
Star
Chain
Centralized

Centralized
Solution

(c) Impact of topologies

Figure 3.3: Convergence trends of D-PPCA.

criterion is the relative change in objective of (B.1) and we stop when it is smaller than

10−5. In real settings, one can monitor local parameter updates instead. We initialized

parameters with random values from a uniform distribution. Alternative choices of

starting points may lead to faster convergence. If not explicitly mentioned otherwise,

all our results are averaged over 20 independent random initializations.

Figure 3.3a shows the convergence curve of D-PPCA for various η values. As one

can easily see, all η values lead to convergence within 102 iterations. Moreover, the

value they converge to is equivalent to a centralized solution, meaning we can achieve

the same global solution using the distributed algorithm. This behavior matches results

reported in [35]. Figure 3.3b shows convergence curves as a function of the number of

nodes in a network. In all cases, D-PPCA successfully converged within 102 iterations.

Similar trends were observed with networks of more than 10 nodes. We also conducted

experiments to test the effects of network topology on the parameter convergence.

Figure 3.3c depicts the results for three simple network types. In all cases we considered,

D-PPCA reached near the stationary point within only 10 iterations, regardless of any

of the aforementioned factors.

One of the main benefits of employing probabilistic formulation of PCA is the flex-

ibility of allowing missing values. Here, we consider two possibilities of missing values;

the case when values are missing at random (MAR) and the case when values are miss-

ing not at random (MNAR). In [84], it has been shown that probabilistic formulations

of PCA can deal with missing values, doing this particularly well in the MAR setting.

31

1.00 5.00 10.00 20.00 30.00
Missing Rates (%)

0.75

0.8

0.85

A
ve

ra
ge

 R
M

S
 e

rr
or

PPCA
D-PPCA

(a) Missing At Random

1.00 5.00 10.00 20.00 30.00
Missing Rates (%)

0.75

0.8

0.85

A
ve

ra
ge

 R
M

S
 e

rr
or

PPCA
D-PPCA

(b) Missing Not At Random

Figure 3.4: Average root mean squared error of reconstructions based on PPCA and
D-PPCA results.

The same conclusion holds for D-PPCA. To demonstrate, we prepared a similar dataset

with 500 samples, each with 20-dimensional input data to find a 5-dimensional subspace.

Input variance is the same as before (0.2). The network has 5 nodes connected as a

ring shape. We generated a band matrix to simulate the MNAR case, i.e., we removed

the given ratio of off-diagonal feature values from the input data matrix. As shown in

Figure 3.4a, D-PPCA can effectively reconstruct the original measurement comparable

to its centralized counterpart under different amounts of missing values. This fact also

holds for the MNAR case, although the error tends to be slightly larger than in the

MAR case, as shown in Figure 3.4b. The difference between centralized and distributed

is due to outliers over different initializations, and we will see how Bayesian approach

can mitigate this issue in the next chapter.

3.3 Application: Distributed Computer Vision

We now show that the modified D-PPCA can be used as an effective framework for

distributed affine SfM. We first show results in a controlled environment with synthetic

data, and then report results on data from real video sequences. We assume that

correspondences across frames and cameras are known. For the missing values of the

MNAR case, we either used the actual occlusions to induce missing points, or simulated

consistently missing points over several frames.

32

3.3.1 Affine Structure from Motion

In this section, we consider a specific formulation of the modified distributed probabilis-

tic PCA for application in the affine Structure from Motion problem. Structure from

Motion (SfM) is a computer vision problem, involving the desire to reconstruct the 3D

structure of the scene and camera motion simultaneously, given two or more camera

views observing a common scene [85]. There are two assumptions in this problem: (a)

2D points observed from cameras are of a rigid object, and (b) points’ correspondence

across the cameras is known. The affine SfM, adds an additional assumption that the

3D-2D relationship is always an affine transformation. It is possible to relax these

constraints, but we maintain these assumptions in order to focus on our purpose of

demonstrating D-PPCA’s ability to decentralized computation.

Formally, our goal is to estimate the 3D location of N points on a rigid object based

on corresponding 2-D points observed from multiple cameras (or views). The dimension

D of our measurement matrix is thus twice the number of frames each camera observed.

A simple and effective way to solve this problem is the factorization method [85]. Given

a 2D (image coordinate) measurement matrix X, of size 2 · #frames × #points, the

matrix is factorized into a 2 · #frames × 3 motion matrix M and the 3 × #points

3D structure matrix S. In the centralized setting this can be easily computed using

SVD on X. Equivalently, the estimates of M and S can be found using inference and

learning in a centralized PPCA, where M is treated as the PPCA parameter and S is

the latent structure. There we obtain additional estimates of the variance of structure

S, which are not immediately available from the factorization approach, although, they

can be found.

However, the above defined (2 · #frames × #points) data structure of X is not

amenable to distribution of different views (cameras, nodes), as considered in Sec-

tion 3.2.3 of D-PPCA. Namely, D-PPCA assumes that the distribution is accomplished

by splitting the data matrix X into sets of non-overlapping columns, one for each node.

Here, however, we seek to distribute the rows of matrix X, i.e., a set of (subsequent)

frames is to be assigned to each node/camera.

33

Hence, to apply the D-PPCA framework to SfM we need to swap the role of rows

and columns, i.e., consider modeling of X>. This, subsequently, means that the 3D

scene structure (which is to be shared across all nodes in the network) will be treated

as the D-PPCA parameter. The latent D-PPCA variables will model the unknown and

uncertain motion of each camera (and/or object in its view).

Specifically, we will consider the model

X
>
i = W · Zi + Ei (3.21)

where Xi is the matrix of image coordinates of all points in node (camera) i of size

#points × 2 · #frames in node i, W is the #points × 3 3D structure (D-PPCA pa-

rameter) matrix and Zi is the 3× 2 ·#frames motion matrix of node i.

One should note that we have implicitly assumed, in a standard D-PPCA manner,

that each column of Zi is i.i.d. and distributed as N (0, I). However, each pair of

subsequent Zi columns represents one 3× 2 affine motion matrix. While those columns

are not truly independent, our experiments (as demonstrated in Sections 3.3.2 and 3.3.3)

show that this assumption is not detrimental in practice. The final task is simply

following the same process we carried out to derive D-PPCA.

Missing data in SfM will be handled using the formalism presented in Section 3.2.4.

Strictly speaking, the model of data missing-at-random is not always applicable to SfM.

The reason is that occlusions, the main source of missing data, cannot be treated as a

random process. Instead, this setting corresponds to data missing-not-at-random [84]

(MNAR). If treated blindly, this may introduce bias in the estimated models. However,

as we demonstrate in experiments, this assumption does not adversely affect SfM when

the number of missing points is within a reasonable range.

3.3.2 Results on Synthetic Data

We first generated synthetic data with a rotating unit cube and 5 cameras facing the

cube in a 3D space, similar to synthetic experiments in [60]. The cube is centered

at the origin of the space and rotates 30◦ counterclockwise. We extracted 8 cube

points projected on each camera view every 6◦, i.e., each camera observed 5 frames.

34

Cameras are placed on a skewed plane, making an elevation along the z-axis, as shown

in Figure 3.5a. For all synthetic and real SfM experiments, we picked η = 10 and

initialized Wi matrix with feature point coordinates of the first frame visible in the

i-th camera with some small amount of noise. The convergence criterion for D-PPCA

for SfM was set as 10−3 relative error. To measure the performance, we computed

maximum subspace angle between the ground truth 3D coordinates and our estimated

3D structure matrix. For comparison, we conducted traditional SVD-based SfM on the

same data. In the noise-free case, D-PPCA for SfM always yielded the same performance

as SVD-based SfM with near 0◦.

We also tested D-PPCA for SfM with noisy and missing-value cases. First, we

generated 20 independent samples of all 25 frames with 10 different noise levels. Then

we ran D-PPCA 20 times on each of the independent samples, and averaged the final

structure estimates. As Figure 3.5b shows, we found that D-PPCA for SfM is fairly

robust to noise and tends to stabilize even as the noise level increases. The mean

subspace angle tends to be slightly larger than that estimated by the centralized SVD

SfM, however both reside within the overlapping confidence intervals. Considering MAR

missing values, we obtained 1.66◦ for 20% missing points averaged over 10 different

missing point samples. In the MNAR case with actual occlusions considered, D-PPCA

yielded, a relatively larger, 20◦ error. Intuitively, this is because the missing points in

the scene are naturally not random. However, we argue that D-PPCA can still handle

missing points, given the evidence in the next section.

3.3.3 Results on Real Data

For real data experiements, we first applied D-PPCA for SfM on the Caltech 3D Objects

on Turntable dataset [64]. The dataset provides various objects rotating on a turntable

under different lighting conditions. The views of most objects were taken every 5◦

which make it challenging to extract feature points with correspondence across frames.

Instead, we used a subset of the dataset which provides views taken every degree.

This subset contains images of 5 objects. To simulate multiple cameras, we adopted

a setting similar to that of [60]. We initially extracted the first 30◦ images of each

35

0
1

2
3

4
5

0

1

2

3

4

−0.5

0

0.5

1

1.5

2

(a) Camera Setting

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Noise level (%)

S
ub

sp
ac

e
an

gl
e

(d
eg

re
e)

0 1 2 3 4 5 6 7 8 9 10

D−PPCA

Centralized
SVD−based

SfM

(b) Subspace Angle vs. Ground Truth

Figure 3.5: Rotating unit cube with multiple cameras. Red circles are camera locations
and blue arrows indicate each camera’s facing direction. Green and red crosses in the
right plot are outliers for centralized SVD-based SfM and D-PPCA for SfM, respectively.

object. We then used KLT [86] implementation in Voodoo Camera Tracker1 to extract

feature points with correspondence. Lastly, we sequentially and equally partitioned the

30 images into 5 nodes to simulate 5 cameras. Thus, each camera observes 6 frames.

Table 3.1 shows the 5 objects and statistics of feature points we extracted from the

objects. We used η = 10 and convergence criterion 10−3. Due to the lack of the ground

truth 3D coordinates, we compared the subspace angles between the structure inferred

using the traditional centralized SVD-based SfM and the D-PPCA-based SfM. Results

are shown in Table 3.1 as the mean and variance of 20 independent runs. 10% MAR

and MNAR results are also provided in the table.

Experimental results indicate the existance of differences between the reconstruc-

tions obtained by the centralized factorization approach, and that of D-PPCA. However,

the differences are small, depend on the object in question, and almost always include,

within their confidence, the factorization result. Qualitative examination reveals no

noticable differences. Moreover, reprojecting back to the camera coordinate space re-

sulted in close matching with the tracked feature points, as shown in videos provided

in supplementary materials.

We also tested the utility of D-PPCA for SfM on the Hopkins155 dataset [66]. We

1http://www.viscoda.com/index.php/en/products/non-commercial/voodoo-camera-tracker

http://www.viscoda.com/index.php/en/products/non-commercial/voodoo-camera-tracker

36

Table 3.1: Caltech 3D Objects on Turntable dataset statistics and quantitative results.
Green dots indicate feature points tracked with correspondence across all 30 frames.
All results ran 20 independent initializations. MAR results provide variances over both
various initializations and missing value settings. Numbers are subspace angles between
the two denoted methods, thus the smaller the better.

Object BallSander BoxStuff Rooster Standing StorageBin

Points 62 67 189 310 102
Frames 30 30 30 30 30

Centralized SVD SfM vs. D-PPCA (degree)

Mean 1.4848 1.4397 1.4767 2.6221 0.4463
Variance 0.4159 0.4567 0.9448 1.6924 1.2002

Fully observable centralized PPCA SfM vs. D-PPCA with MAR (degree)

Mean 6.2991 2.1556 5.2506 7.6492 2.8358
Var.(init) 4.3562 0.1351 3.8810 6.6424 1.3591
Var.(miss) 0.5729 0.0161 0.1755 0.7603 0.0444

Fully observable centralized PPCA SfM vs. D-PPCA with MNAR (degree)

Mean 3.1405 6.4664 5.8027 9.2661 3.7965
Variance 0.0124 3.1955 2.4333 2.9720 0.0089

adopted a virtually identical experimental setting as in [60]. We collected 135 single-

object sequences containing image coordinates of points, and we simulated a multi-

camera setting by partitioning the frames sequentially and almost equally for 5 nodes,

and the network was connected using ring topology. Again, we computed maximum

subspace angle between centralized SVD-based SfM and distributed D-PPCA for SfM.

We chose the convergence criterion as 10−3. The average maximum subspace angle

between D-PPCA for SfM and SVD-based SfM for all objects was 3.97◦ with variance

7.06.

However, looking into the result more carefully, we found that even with substan-

tially larger subspace angle, 3D structure estimates were similar to that of SVD-based

SfM, only with an orthogonal ambiguity issue. Moreover, more than 53% of all objects

yielded a subspace angle below 1◦, 77% of them below 5◦ and more than 94% were less

than 15◦. With 10% MAR, we obtained the mean 20.07◦ with variance 27.94◦ with

37

approximately 18% of them below 1◦, 56% of them below 5◦ and more than 70% of

them less than the mean. We could not perform MNAR experiments on Hopkins as

the ground truth occlusion information is not provided with the dataset.

3.4 Summary

In this chapter we introduced a general approach for learning parameters of traditional

centralized probabilistic models, such as PPCA, in a distributed setting. Our synthetic

data experiments showed that the proposed algorithm is robust to choices of initial

parameters and, more importantly, is not adversely affected by variations in network

size, topology or missing values. In the SfM problems, the algorithm can be effectively

used to distribute computation of 3D structure and motion in camera networks, while

retaining the probabilistic nature of the original model.

Despite its promising performance, D-PPCA for SfM exhibits some limitations.

In particular, we assume the independence of the affine motion matrix parameters in

(3.21). The assumption is clearly inconsistent with the modeling of motion on the SE(3)

manifold. However, our experiments demonstrate that, in practice, this violation is not

crucial. This shortcoming can be amended in one of several possible ways. One can

reduce the i.i.d. assumption of individual samples to that of subsequent columns (i.e.,

full 3x2 motion matrices). Our additional experiments, not reported here, indicate no

discernible utility of this approach. A more principled approach would be to define

priors for motion matrices compatible with SE(3), using e.g., [87]. While appealing,

the priors would render the overall model non-linear, and would require additional

algorithmic considerations, perhaps in the spirit of [60].

38

Chapter 4

Extensions of Distributed Probabilistic Learning

In this chapter, we introduce two effective extensions of the distributed learning frame-

work we proposed in the previous chapter. First, we investigate how our framework can

be extended to adapt to dynamically changing input data, i.e., in an online learning

setting. This is a further generalization of the distributed model estimation problem

we discussed in the previous chapter. Next, we investigate how one can improve the

speed of convergence of the underlying ADMM optimization algorithm that can benefit

not only our framework but also, potentially, other ADMM-based methods.

4.1 Online Distributed Probabilistic Learning

Online learning in machine learning means that the model can be adaptively updated

based on dynamically changing input data. The change can be either in the form of

streaming (i.e., retrieve small chunks of data at a time) or in the form of a batch (i.e.,

incrementally add new data, but learning is done from scratch everytime). The ability

to handle such data in an online fashion is crucial in large data analysis, as the data

can easily outfit the physical memory size. Therefore, it is one of the essential aspects

desirable for any distributed learning methods.

Our consensus-based distributed probabilistic learning framework can be extended

to handle dynamic input data by reformulating it as a Bayesian learning framework.

There are a number of benefits of the employment of the Bayesian framework. First,

it can naturally learn and update the probabilistic model in an online fashion. In

addition, unlike the maximum likelihood estimation approaches we performed in the

previous chapter, we can obtain the full posterior distributions of parameters which

gives richer information of the learned model. Finally, it can help avoid overfitting.

39

Figure 4.1: A graphical representation of the model of Eq. 4.1. Blue-shaded circle
denotes observation.

4.1.1 Distributed Bayesian Learning Model

We first explain a general parametric Bayesian model in a centralized setting. Then,

we extend it into a distributed form.

Centralized Setting. We consider a data set X of N observed D-dimensional

column vectors X = {xn ∈ RD}, n = 1..N with the corresponding local latent variables

Z = {zn ∈ RM}, a global latent variable W ∈ RD×M , and a set of fixed parameters

Ω = [ΩZ,ΩW]. We consider the family of probabilistic models as the joint distribution

of the observations and both the global and local variables. A key assumption here is

that the joint distribution can be fully factorized into a global term and a product of

local terms as

p(X,Z,W|Ω) = p(W|ΩW)
N∏
n=1

p(xn|zn,W)p(zn|ΩZ). (4.1)

Figure 4.1 depicts the graphical representation of the family of probabilistic models of

this type. The goal is to compute the posterior distribution of the latent variables,

p(W,Z|X,Ω). It is often mathematically convenient to assume that the conditional

distributions of a latent variable, given the observation and the other variables, follow

an exponential family distribution. Specifically, let ΘW = {X,Z,ΩW} and Θzn =

{xn,W,ΩZ}. Then the conditional distributions can be written as

p(W|X,Z,ΩW) = h(W) exp
{

Ψ (ΘW)> T (W)−AW (Ψ (ΘW))
}
, (4.2)

p(Z|X,W,ΩZ) =
N∏
n=1

h(zn) exp
{

Ψ (Θzn)> T (zn)−AZ (Ψ (Θzn))
}
, (4.3)

40

where h(.) is the base measure, A(.) denotes the log partition function, and Ψ(·) is the

natural parameter, and T (·) denotes the sufficient statistics. Many well known statis-

tical models make similar assumptions. For example, Bayesian PCA and Bayesian

Mixture of PCA [88], Latent Dirichlet Allocation [89], Bayesian Gaussian Mixture

model [90], and Hidden Markov model [91, 92] belong to this class of models. Com-

puting the exact posterior distributions of the latent variables, given observations, are

often intractable even with the exponential family assumptions. A typical workaround

is to use approximate inference algorithms.

Variational Inference (VI). VI is an inference method that approximates the

true distribution over the latent variables with a simpler distribution indexed by a set

of free parameters that is the closest in Kullback-Leibler (KL) divergence to the true

posterior distribution [93, 94]. There are two merits of VI over other approximation

methods such as sampling. First, with appropriate choices of the simpler distributions,

we can derive the closed-form solution for the posterior computation that could run

more quickly. Second, it is unclear how to sample in a decentralized setting. There

are some recent works such as parallel stochastic Markov Chain Monte Carlo [95], but

sampling in a decentralized way remains an open problem that is not trivial to solve.

In VI, we first pick a family of distributions over the latent variables with its own

parameters, e.g.,

p(W|X,Z,ΩW) ≈ q(W|λW) (4.4)

where the new parameter λW is called the variational parameter and the q(·) is termed

variational distribution. The goal is to find the best set of parameters that makes the

chosen q(·) to be as close as possible to the true density. For the closeness measure

between the two distributions, we use the KL divergence [96, 97]. Using the above

example, the KL divergence of p(W|X,Z,ΩW) from q(W|λW) is defined as

KL(q(W|λW)‖p(W|X,Z,ΩW)) = Eq
[
log

q(W|λW)

p(W|X,Z,ΩW)

]
. (4.5)

However, exact minimization of the KL divergence is not easy, so we use a function

41

that is equal to it up to a constant. To see this, we can rewrite (4.5) as

KL(q(W|λW)‖p(W|X)) = Eq
[
log

q(W|λW)

p(W,X)

]
+ log p(X) (4.6)

where we omitted given Z,ΩW for notational brevity and focus on W,X. Equivalently,

log p(X) = KL(q(W|λW)‖p(W|X))− Eq
[
log

q(W|λW)

p(W,X)

]
. (4.7)

The second term on the right hand side is called the negative evidence lower bound

(ELBO) or negative variational free energy because it is the negative of the lower

bounding of the marginal evidence log p(X) as one can see from the derivation:

log p(X) = log

∫
W
p(X,W)

= log

∫
W
p(X,W) · q(W)

q(W)

= log

(
Eq
[
p(X,W)

q(W)

])
≥ Eq [log p(X,W)]− Eq [log q(W)] . (Jensen’s inequality) (4.8)

Since the marginal log p(X) is fixed with respect to the variational distribution, min-

imizing the KL divergence in (4.7) is equivalent to maximizing the ELBO. In other

words, tight lower bound of marginal evidence means that the KL divergence becomes

small, and thus the true p(·) and the chosen q(·) are similar.

Mean Field Variational Inference (MFVI). MFVI is a kind of VI that assumes

the variational family factorization, i.e., all latent variables are independent of each

other. Specifically in our problem formulation, we assume that the variational joint

distribution over the latent variables can be fully factorized as

q(Z,W) =

N∏
n=1

q(zn|λzn)q(W|λW), (4.9)

where q(W|λW) and q(zn|λzn) are set to be in the same exponential family as the

conditional distributions p(W|X,Z,ΩW) (4.2) and p(Z|X,W,ΩZ) (4.3). Here, λW

and λZ = {λzn , n = 1..N} are the variational parameters. These parameters can

be determined by maximizing the ELBO which is equivalent to minimizing the KL

divergence, i.e., KL(q(Z,W)‖p(Z,W|X,ΩZ,ΩW)). Specifically, one can decide the

42

parameters by applying the coordinate ascent algorithm to the following objective, i.e.,

iteratively optimizing each variational distribution fixing the others:

L(λZ, λW) = Eq [log p(X,Z,W|ΩZ,ΩW)]− Eq[log q(Z,W)]

=

N∑
n=1

Eq(zn,W) [log p(xn|zn,W)]

+

N∑
n=1

Eq(zn) [log p(zn|ΩZ)] + Eq(W) [log p(W|ΩW)]

−

{
N∑
n=1

Eq(zn)[log q(zn|λzn)] + Eq(W)[log q(W|λW)]

}
. (4.10)

Decentralized Setting and Distributed MFVI (D-MFVI). For the decen-

tralized version of the problem, we consider the similar configuration and notations as

in the non-Bayesian setting from the previous chapter. The whole sensor network is

represented as a graph G = (V, E) where i, j ∈ V denote vertices and eij = (i, j) ∈ E de-

notes the edge between the two vertices. Each i-th node has its own set of observations

Xi = {xin|n = 1..Ni} and local latent variables Zi = {zin|n = 1..Ni}. In addition, each

node maintains a local copy Wi of the global latent variable W.

Each node approximates the posterior distributions over both global and local latent

variables using the locally available information. Computing the posterior over local

latent variables, Zi is similar to the non-Bayesian case in the previous chapter, since

they only depend on the corresponding local observations Xi and are independent from

observations in the other nodes, given that the global latent variable Wi is fixed. On

the other hand, finding the posterior over the local copies of the global latent variable

Wi is a little bit different. In a non-Bayesian setting, the global latent variable was a

parameter, thus the point estimates can be obtained by imposing consensus constraint,

i.e., a series of equality constraints W1 = W2 = · · · = W|V| on the global objective, as

shown in (3.2). However, in Bayesian formulation, the parameters are random variables

thus the notion of equality is replaced with one of the several notions of random variable

equivalence, e.g., strict equality, equality in mean, almost sure equality, or equality in

distribution. Here, we use the notion of equality in distribution, i.e., two random

variables are equal if their cumulative distribution functions are equal.

43

Using the equality in distribution, the distributed MFVI (D-MFVI) can be formu-

lated by imposing consensus constraints on the variational parameters of the posterior

distributions over the local copies of the global variable as λW1 = λW2 = · · · = λW|V|

on the objective (4.10). Note the difference from the non-Bayesian case, where we are

directly imposing consensus constraints on the local copies of the global parameter Wi.

The constrained optimization problem is to find the variational parameters by solving

[λ̂Z, λ̂W] = arg min
λZi

,λWi
:i∈V

− {Eq [log p(X,Z,W|ΩZ,ΩW)]− Eq [log q(Z,W)]} ,

s.t. λWi = ρij , ρij = λWj , i ∈ V, j ∈ Bi, (4.11)

where we introduced the auxiliary variables ρij for each each eij to fully decentralize

the computation, similar to the non-Bayesian approach. In the previous chapter, we

employed ADMM to solve similar constrained optimization problems efficiently. As

explained in the previous chapter and Appendix A, we derive augmented Lagrangian

with a linear and a quadratic penalty terms of the objective, then apply coordinate

descent with respect to each variable.

However, there are issues in generalizing this approach to the Bayesian formulation

we are considering. First, even if we use the conjugate exponential family for prior

and likelihood distribution choices, it is possible that the squared norm difference of

(λWi −ρij) in penalty terms may result in non-analytic updates for λWi , which lead to

inefficient computation1. Second, it is unclear whether the simple squared Euclidean

norm between variational parameters is enough to ensure the equality in distribution.

We need a stronger justification or other evidence to ensure the equivalence.

To this end, we employee Bregman ADMM [6] (B-ADMM) rather than the standard

ADMM for the optimization of the D-MFVI. Here, the global parameters are now the

natural parameters of the exponential family distributions, and we propose to use the

log partition function AW of the global parameter as the Bregman function, essentially

replacing the quadratic norm difference term. These choices solve the two issues we

discussed above. First, we can ensure that the base measureAW to be strictly convex, as

1Note that the updates for local latent variable λZi can be done in closed form since they do not
need the equality constraints.

44

required by the definition of Bregman divergence, explained in Appendix C. It is worth

noting that the log partition function AW is not a strictly convex function in general.

However, we can make it strictly convex by ensuring that the exponential family is

minimal2 with reparameterization. With the strictly convex AW, it can be shown that

the coordinate updates for the variational parameters and Lagrange multipliers have

an analytic solution. Second, by introducing the Bregman function, we can obtain

additional theoretical support for our method. It is well known that the Bregman

divergence between two parameters λWi , λWj of the same minimal exponential family,

say pAW
(·), using the log partition function as the Bregman function, is equivalent to

the reversed KL divergence between the exponential families [98, 99], i.e.,

BAW
(λWi , λWj) = KL(pAW

(Wj)||pAW
(Wi)) ≈ KL(qAW

(λWj)||qAW
(λWi)). (4.12)

If we assume that the auxiliary variable ρij is the natural parameter of the same ex-

ponential family as q(Wi), then penalizing the difference between λWi and ρij using

the Bregman divergence BAW
(λWi , ρij) can be an approximate way of minimizing the

difference between the approximated posterior q(Wi|λWi) and q(·|ρij) in a KL sense.

Therefore, we can now derive the analytic update formula solution for B-ADMM

based D-MFVI problem (4.11) as follows:

[λ
(t+1)
Z , λ

(t+1)
W] = arg min

λZi
,λWi

:i∈V
−
|V|∑
i=1

Ni∑
n=1

Eq(zin,Wi) [log p(xin|zin,Wi)]

−
|V|∑
i=1

N∑
n=1

Eq(zin) [log p(zin|Ωz)]

− 1

|V|

|V|∑
i=1

Eq(Wi) [log p(Wi|ΩW)]

+

|V|∑
i=1

Ni∑
n=1

Eq(zin)[log q(zin)] +
1

|V|

|V|∑
i=1

Eq(Wi)[log q(Wi)]

+
∑
i∈V

∑
j∈Bi

(
γ

(t)
ij1
>(λWi − ρ

(t)
ij) + γ

(t)
ij2
>(ρ

(t)
ij − λWj)

)
+ η

∑
i∈V

∑
j∈Bi

BAW
(λWi , ρ

(t)
ij) (4.13)

2An exponential family is minimal if the functions ψ(.) and the statistics T (.) each are linearly
independent.

45

Node Node

Figure 4.2: A graphical representation of the model of D-MFVI.

ρ(t+1) = arg min
ρ

η
∑
i∈V

∑
j∈Bi

BAW
(ρij , λ

(t+1)
Wi

)

+
∑
i∈V

∑
j∈Bi

(
γ

(t)
ij1
>(λ

(t+1)
Wi

− ρij) + γ
(t)
ij2
>(ρij − λ(t+1)

Wj
)
)
, (4.14)

γ
(t+1)
ijk = γ

(t)
ijk + η(λ

(t+1)
Wi

− ρ(t+1)
ij), (4.15)

where i ∈ V, j ∈ Bi and γijk with k = 1, 2 are the Lagrange multipliers. The overall

iterative algorithm runs in coordinate descent fashion, similar to the non-Bayesian case.

The learning rate parameter η should be predetermined [15]. The Bregman divergence

induced by AW is denoted as BAW
(·, ·) and formally, we define it as

BAW
(x, y) = AW(x)−AW(y)− 〈x− y,∇AW(y)〉, (4.16)

where x, y can be replaced with the parameters of the exponential family distributions.

Figure 4.2 shows an overlook of the D-MFVI formulation.

It should be noted that the Bregman divergence is not necessarily convex in the

second argument. Thus, we cannot use BAW
(λ

(t+1)
Wi

, ρij) for the Bregman penalization

term in Eq. 4.14. Instead, we use the reversed Bregman divergence (BAW
(ρij , λ

(t+1)
Wi

)) as

proposed by Wang and Banerjee[6]. They also proved the convergence of the new update

formula. A brief review on Bregman divergence and Bregman ADMM is provided in

Appendix C.

4.1.2 Example: Distributed Bayesian PCA

In this section, we derive a distributed counterpart of Bayesian PCA [88] as an example

of the proposed D-MFVI.

46

Bayesian PCA (BPCA). We start from the Probabilistic PCA (PPCA) from the

previous chapter, using the same notataion. In PPCA, we assume a local latent variable

zn ∼ N (zn|0, I), with a generative relation

xn = Wzn + µ + ε, (4.17)

where ε ∼ N (ε|0, a−1I) and a is the noise precision. The likelihood and the posterior

inference are, similarly to (3.9),

p(xn|zn) = N (xn|Wzn + µ, a−1I), (4.18)

p(zn|xn) = N (zn|L−1WT(xn − µ), a−1L−1), (4.19)

where L = WTW + a−1I. Then we find the set of optimal parameters W,µ, a by

searching the maximum likelihood estimates of the marginal data likelihood, or by

applying the EM algorithm on expected complete data log likelihood with respect to

the posterior density p(Z|X). In the Bayesian formulation of PCA, we first introduce

a prior distribution p(W,µ, a) over the parameters of the model. Then, we compute

the corresponding posterior distribution p(W,µ, a|X) by multiplying the prior by the

likelihood function Eq. 4.18 and normalizing it.

To do the BPCA inference, we need to make two important decisions: (a) the choice

of the prior distribution, and (b) a tractable algorithm for computing the posterior

distribution. In BPCA, we typically assume that the parameters are independent from

each other as

p(W,µ, a) = p(W)p(µ)p(a) (4.20)

and we further assume that the noise precision a is a fixed but unknown parameter

for simplicity. We define an independent Gaussian prior over each row of the global

parameter W as

p(W|α) =

D∏
d=1

(αd
2π

)M/2
exp

{
−αd

2
·
(
w>d − w̄>d

)
·
(
w>d − w̄>d

)>}
, (4.21)

where w>d is the d-th row of W. w̄d and αd, d = 1..D are the mean and the precision

hyperparameters, respectively. We consider another Gaussian prior for µ as

p(µ) = N (µ̄, τ−1I), (4.22)

47

where µ̄ and τ are the mean and the precision hyperparameters, respectively. Since

computing the exact posterior distribution is intractable, we use MFVI. We assume a

fully factorizable posterior of the form

q(W,Z,µ) =
D∏
d=1

M∏
m=1

q(wdm)
N∏
n=1

q(zn)
D∏
d=1

q(µd). (4.23)

Since we employed conjugate priors for W,Z and µ, the posterior distributions are also

Gaussian. We denote the mean and precision of the posterior distributions as

q(wdm) ∼ N (mw
dm, λ

w
dm) (4.24)

q(zn) ∼ N (mz
n, λ

z
n)) (4.25)

q(µd) ∼ N (mµd , λ
µ
dm). (4.26)

Distributed BPCA (D-BPCA). It is straightforward to apply D-MFVI to the

BPCA model. We have two global latent variables W,µ and a local latent variable

zn. As in D-PPCA, we distribute samples across the nodes in the network G = (V, E)

and the inference is done by each node and its local communications between one-hop

neighbors. We define the local set of model parameters as

Ξi =
{

(mw
dm)i , (λ

w
dm)i ,

(
mµd
)
i
,
(
λµdm

)
i
, (mz

n)i , (λ
z
n)i
}
. (4.27)

Then, the D-MFVI optimization problem can be written as

Ξ̂ = arg min
Ξi:i∈V

−
|V|∑
i=1

{
Eq
[

log p(Xi,Zi,Wi|a, α, τ, µ̄, w̄d)
]
− Eq [log q(Wi,µi,Zi)]

}
s.t. (mw

dm)i = (ρw
dm)ij , (ρw

dm)ij = (mw
dm)j ,

(λw
dm)i = (γw

dm)ij , (γw
dm)ij = (λw

dm)j

(mµd)i = (ρµd)ij , (ρµd)ij = (mµd)j ,

(λµd)i = (γµd)ij , (γµd)ij = (λµd)j ,

where i ∈ V, j ∈ Bi, d = 1..D and {(ρw
dm)ij , (γ

w
dm)ij , (ρ

µ
d)ij , (γ

µ
d)ij} are auxiliary variables

of edge (i, j). Note that we plug in the same hyperparameters to all nodes, and this

can be determined in advance. The full derivation of the coordinate descent update

formula for solving the above optimization problem can be found in the extended version

48

1.00 5.00 10.00 20.00 30.00
Missing Rates (%)

0.8

0.81

0.82

0.83

0.84

0.85

A
ve

ra
ge

 R
M

S
 e

rr
or

PPCA
D-PPCA
BPCA
D-BPCA

(a) Missing At Random

1.00 5.00 10.00 20.00 30.00
Missing Rates (%)

0.8

0.81

0.82

0.83

0.84

0.85

A
ve

ra
ge

 R
M

S
 e

rr
or

PPCA
D-PPCA
BPCA
D-BPCA

(b) Missing Not At Random

Figure 4.3: Average root mean squared error of reconstructions based on PPCA, D-
PPCA, BPCA, and D-BPCA results.

of the prior publication [3]. Generalizing our distributed BPCA (D-BPCA) to deal with

missing data is straightforward and follows the prior work [84], as we described in the

previous chapter.

The empirical convergence property of D-BPCA is similar to that of D-PPCA,

robust to number of nodes, η value choice, and the graph topology [3]. We provide

experimental results on synthetic data with missing values here. We generated 500

samples of 20-dimensional input data to find 5-dimensional subspaces. As before, we

conducted experiments using 20 different initializations and took the average. Figure 4.3

shows the comparison of PPCA, D-PPCA, BPCA, and D-BPCA methods. One can

see that both centralized and distributed Bayesian methods outperform non-Bayesian

counterparts. Moreover, the difference between centralized and distributed methods

becomes smaller in the Bayesian case, which demonstrates the additional benefit of the

Bayesian approach in the distributed setting.

4.1.3 Application: Distributed Computer Vision

We apply our model to a set of Structure from Motion (SfM) problems. We compared

our distributed algorithm with traditional SVD, Centralized PCA (PPCA) [11], Dis-

tributed PPCA (D-PPCA) [1], and Centralized BPCA (BPCA) [84]. We used the same

experimental setup as in the D-PPCA case from the previous chapter.

49

The estimates of W and Z can be found using the D-BPCA, where W is treated as

the latent, common 3D structure, and Z is the latent local camera motion. It is worth

noting that D-PPCA can only provide the uncertainty around the motion matrix Z,

while D-BPCA can obtain additional estimates of the variance of the 3D structure W

as a consensus among cameras. We show that our D-BPCA can be used as an effective

framework for the distributed affine SfM problem. For all SfM experiments, the network

has five nodes connected with a ring topology, and η = 10.

Following [60], we equally partitioned the frames into the five nodes to simulate five

cameras. The algorithm stops when there is no more than 10−3 relative change in the

objective of (4.11). For the quantitative measure, we computed the maximum subspace

angle between the ground truth 3D coordinates (in case of synthetic data experiments)

and the estimated 3D structure matrix W to compare performance of the algorithms.

For the BPCA and D-BPCA, we used the posterior mean of the 3D structure matrix

to calculate this subspace angle.

Results on Synthetic Data Similar to the synthetic experiments conducted in the

previous chapter, we used the environment containing one unit cube rotating around

the origin for the target object, with 5 cameras facing the cube in a 3D space. However,

unlike the setting for D-PPCA, we rotated the cube every 3◦ over 150◦ clockwise in

order to obtain additional views necessary for our online learning evaluation. Therefore,

each camera observed 50 frames in this setting. Figure 4.4a shows the performance

comparison of different models in the case of noisy data. We ran 20 independent runs

with different initializations, each with 10 different noise levels. As shown in the figure,

D-BPCA consistently outperforms D-PPCA for noisy input data, thanks in part to

improved robustness to overfitting.

For the MAR experiment, we randomly removed 20% of data points over 10 inde-

pendent trials. The average subspace differences between D-PPCA versus the ground

truth and D-BPCA versus the ground truth were 1.41◦ and 1.01◦, respectively. The

same set of experiments was done for the MNAR case, with the missing data gener-

ated by the realistic visual occlusion. The subspace angle differences were 17.66◦ for

D-PPCA and 14.12◦ for D-BPCA, respectively. Again, D-BPCA performed better than

50

Noise level (%)

1 2 3 4 5 6 7 8 9 10

S
u

b
s
p

a
c
e

 a
n

g
le

 (
d

e
g

re
e

)

0

0.2

0.4

0.6

0.8

1

SVD

PPCA

BPCA

D-PPCA

D-BPCA

(a) Noisy data experiment

50 75 100 125 150 175 200 225 250
0

0.05

0.1

0.15

0.2

0.25

0.3

#frames

S
u
b
s
p
a
c
e
 a

n
g
le

 (
d
e
g
re

e
)

BPCA

Online BPCA

D-BPCA

Online D-BPCA

(b) Online data experiment

Figure 4.4: Results for the cube synthetic data (crosses denote outliers).

D-PPCA, although the error rates were higher in the more challenging MNAR case.

One particular advantage of the D-BPCA over D-PPCA and the SVD is its ability

to naturally conduct online Bayesian estimation in the distributed setting. We first used

10 frames in each camera as the first batch of the data. Then, we added 5 more frames to

each camera, repeatedly. Results over 10 different trials with 1% input noise are shown

in Figure 4.4b. PPCA models are omitted because their non-Bayesian nature obstructs

an easy application to the online setting. Figure 4.4b demonstrates that the subspace

angle error of the online D-BPCA closely follows centralized BPCA in accuracy.

Results on Real Data We demonstrate the usefulness of the proposed D-BPCA

for real data using the Caltech 3D Objects on Turntable dataset [64] and Hopkins155

dataset [66]. Following [1], we selected 5 objects from the Caltech dataset. For the

Hopkins155 dataset, we selected 90 single-object sequences. For both datasets, we

used the same setup as described in [1]. The subspace angles between the structure

estimated using the centralized SVD-based SfM, and the distributed algorithms for the

Caltech dataset, are summarized in Table 4.1. For this case, we ran 20 independent

initializations to obtain the mean and the variance. 10% MAR and MNAR results are

also provided in the left two columns of Table 4.2. They are averaged over all 5 objects

we tried. As one can see, the D-BPCA’s performance was consistently better than

the D-PPCA’s. The right two columns of Table 4.2 shows the results for the Hopkins

dataset. Numbers are averages of maximum subspace angles between D-PPCA and

51

Table 4.1: Results of Caltech dataset. All results ran 20 independent initializations.

Object BallSander BoxStuff Rooster Standing StorageBin

Points 62 67 189 310 102
Frames 30 30 30 30 30

Subspace angle between centralized SVD SfM and D-PPCA (degree)

Mean 1.4934 1.4402 1.4698 2.6305 0.4513
Variance 0.4171 0.4499 0.9511 1.7241 1.2101

Subspace angle between centralized SVD SfM and D-BPCA (degree)

Mean 0.9910 0.9879 1.3855 0.9621 0.4203
Variance 0.0046 0.0986 0.0080 0.0033 0.0044

Table 4.2: Results of Caltech and Hopkins datasets with missing values.

Caltech Hopkins
MAR MNAR No-missing MAR

D-PPCA Mean 4.0609 9.4920 3.9523 13.4753
Variance 1.2976 5.9624 3.3119 12.9832

D-BPCA Mean 2.2012 7.2187 0.7975 6.4372
Variance 1.3179 5.2853 0.5684 5.0689

D-BPCA versus SVD-based SfM, for all 90 objects. We also provide results with 10%

MAR. We did not conduct MNAR experiments on Hopkins because the ground truth

occlusion information is not provided with the dataset. We ran 5 independent trials.

Again, D-BPCA consistently performs better than D-PPCA. It should be noted that

although the subspace angle difference is large for the MAR case for D-PPCA and

D-BPCA, estimated 3D structures were similar to that of SVD up to the orthogonal

ambiguity.

4.2 Faster Optimization for Distributed Learning

So far, we have considered the probabilistic modeling aspect of distributed learning.

These models depend on EM-like algorithms to optimize, and these are iterative by

nature. Thus, it is desirable to have the algorithm converge as quickly as possible. To

52

this end, we investigate another aspect of our distributed learning framework in this

section: improvement of the distributed optimization convergence speed.

4.2.1 Need of Faster Convergence for Distributed Learning

The need for algorithms and methods that can handle large data in a distributed setting

has grown significantly in recent years. For both induced and instrically distributed data

scenarios we explained in Chapter 1, several parallel and distributed learning approaches

have been proposed to meet these needs, as introduced in Chapter 2. In particular, the

ADMM is an optimization technique that has been widely used in computer vision and

machine learning to handle model estimation and learning, in either of the two large

data settings [100, 101, 102, 103, 104, 105, 106, 107].

In the distributed optimization setting, the distributed nodes process data locally by

solving small optimization problems and aggregate the result by exchanging the (pos-

sibly compressed) local solutions (e.g., local model parameter estimates) to arrive at a

consensus global result. However, the nature of distributed learning models, particu-

larly in the fully distributed setting where no network topology is presumed, inherently

requires repetitive communications between the device nodes. Therefore, it is desirable

to reduce the amount of information exchanged and simultaneously improve computa-

tional efficiency through faster convergence of such distributed algorithms. Our meth-

ods can be applied to any arbitrary distributed settings as well as parallel computation

that requires a certain centralized connection (e.g., a star topology).

To this end, the contributions of this section are threefolds:

• We propose variants of ADMM for the consensus-based distributed learning that

are faster than the standard ADMM. Our method extends an acceleration ap-

proach for ADMM [108] by an efficient variable penalty parameter update strat-

egy. This strategy results in improved convergence properties of ADMM, and also

works in a fully distributed fashion.

53

(a) Centralized (b) Distributed

Figure 4.5: Centralized and decentralized models for probabilistic PCA.

• We extend our proposed method to automatically determine the maximum num-

ber of iterations allocated to successive updates by employing a budget manage-

ment scheme. This strategy results in adaptive parameter tuning for ADMM,

removing the need for arbitrary parameter settings, and effectively induces a

varying network communication topology.

• We apply the proposed method to a prototypical vision and learning problem,

the distributed PPCA for structure-from-motion, and demonstrate its empirical

utility over the traditional ADMM.

4.2.2 Improving Empirical Convergence of ADMM Optimization

Recall the consensus-based distributed optimization problem we introduced in Chap-

ter 2.1. As explained in the previous chapter, the optimization can be approached

efficiently by exploiting the ADMM. Restating it, the optimization problem can be

written as

arg min
θi

J∑
i=1

fi(θi) s.t. θi = θj , ∀i 6= j. (4.28)

The above consensus formulation is particularly suitable for many optimization prob-

lems that appear in computer vision. For instance, since fi(θi) can be any convex

function, we can also consider a probabilistic model estimation problem with the joint

negative log likelihood fi(θi) = − log p(xi, zi|θi) between the observation xi and the

corresponding latent variable zi. Assuming (xi, zi) are independent and identically dis-

tributed, finding the maximum likelihood estimate of the shared parameter θ̄ can then

54

be formulated as the optimization problem we described above for many exponential

family parametric densities. Moreover, the function need not be a likelihood, but can

also be a typical decomposable and regularized loss that occurs in many vision problems

such as denoising or dictionary learning.

It is often very convenient to consider the above consensus optimization problem

from the perspective of optimization on graphs. For instance, the centralized i.i.d.

Maximum Likelihood learning can be viewed as the optimization on the graph in Fig-

ure 4.5a. Edges in this graph depict functional (in)dependencies among variables, com-

monly found in representations such as Markov Random Fields [107] or Factor Graphs

[109]. In this context, to fully decompose f(·) and eliminate the need for a process-

ing center completely, one can introduce auxiliary variables ρij on every edge to break

the dependency between θi and θj [36, 1], as shown in Figure 4.5. This generalizes to

arbitrary graphs, where the connectivity structure may be implied by node placement

or communication constraints (camera networks), imaging constraints (pixel neighbor-

hoods in images or frames in a video sequence), or other contextual constraints (loss

and regularization structure).

In general, given a connected graph G = (V, E) with the nodes i, j ∈ V and the

edges eij = (i, j) ∈ E , the consensus optimization problem becomes

min
∑
i∈V

fi(θi) s.t. θi = ρij , ρij = θj , j ∈ Bi. (4.29)

Solving that problem is equivalent to optimizing the augmented Lagrangian

L(Θ) =
∑
i∈V
Li(Θi) = fi(θi) +

∑
j∈Bi

{
λ>ij1(θi − ρij) + λ>ij2(ρij − θj)

}
+
η

2

∑
j∈Bi

{
‖θi − ρij‖2 + ‖ρij − θj‖2

}
, (4.30)

where Θ = {Θi : i ∈ V}, Θi = {θi, ρi, λi} are parameters to find, λi = {λij1, λij2 : j ∈

Bi}, λij1, λij2 are Lagrange multipliers, Bi = {j|eij ∈ E} is the set of one-hop neighbors

of node i, η > 0 is a fixed scalar penalty constraint, and ‖ · ‖ is induced norm. The

ADMM approach suggests that the optimization can be done in a coordinate descent

fashion, taking the gradient of each variable while fixing all the others.

55

Residual Balancing (RB) : The currently known convergence rate of ADMM is

O(1/T), where T is the number of iterations [110]. Even though O(1/T) is the best

known bound, it has been observed empirically that ADMM converges more quickly in

many applications. Moreover, the computation time per each iteration may dominate

the total algorithm running time. Thus many speed-up techniques for ADMM have

been proposed that are application specific. One way is to develop a predictor-corrector

step for the coordinate descent [111], using some available acceleration method, such

as the accelerated gradient method [112]. This guarantees quadratic convergence for

strongly convex fi(·). Another way is to replace the gradient descent optimization with

a stochastic one [113, 114]. This approach has recently gained attention as it greatly

reduces the computation per iteration. However, these methods usually require the

coordinating center node, and thus may not be readily applicable to the decentralized

setting. Moreover, we want to preserve the application range of ADMM and avoid

introducing additional assumptions on fi(·).

One way to improve convergence speed of ADMM is through the use of different

constraint penalty in each iteration. For example, a variant of ADMM with self-adaptive

penalty [108], called Residual Balancing (RB) [115], improved the convergence speed

as well as made its performance less dependent on initial penalty values. The idea is

to change the constraint penalty, taking account of the relative magnitudes of primal

and dual residuals of ADMM, as follows:

ηt+1 =


ηt · (1 + τ t) , if ‖rt‖2 > µ‖st‖2

ηt · (1 + τ t)−1 , if ‖st‖2 > µ‖rt‖2

ηt , otherwise

(4.31)

where t is the iteration index, µ > 1, τ t > 0 are parameters, rt and st are the primal

and dual residuals, respectively. The definitions of these residuals can be found in

Appendix A. The primal residual measures the violation of the consensus constraints

and the dual residual measures the progress of the optimization in the dual space. This

update converges when τ t satisfies
∑∞

t=0 τ
t <∞, i.e., we stop updating ηt after a finite

number of iterations. A typical choice for parameters are suggested as µ = 10 and

56

(a) ADMM (b) ADMM-VP (c) ADMM-AP / ADMM-NAP

Figure 4.6: Centralized, distributed, and proposed learning models in a chain network.
The bigger size of ρij means that the corresponding constraint is more penalized.

τ t = 1 at all t iterations.

The strength of this approach is that conservative changes in the penalty are guar-

anteed to converge [116, 15]. However, similar to other ADMM speed-up approaches

mentioned above, this update scheme relies on the global computation of the primal

and the dual residuals, and requires the ηt stored in nodes to be homogeneous over the

entire network. Thus, it is not a fully decentralized scheme, as depicted in Figure 4.6a.

Moreover, the choice of parameters, as well as the maximum number of iterations,

require manual tuning.

ADMM with Varying Penalty (ADMM-VP) : Throughout the chapter, the

superscript t in all terms with subscript i denote either the objective function or pa-

rameter at the t-th iteration for node i. In order to extend the update strategy of (4.31)

for a fully distributed setting, we first introduce ηti , the penalty for the i-th node at the

t-th iteration. Next, we need to compute local primal and dual residuals for each node

i. In the fully decentralized learning framework of [36, 1], the dual auxiliary variable

vanishes from derivation. However, to compute the residuals, we need to keep track

of the dual variable, which is essentially the average of local estimates, explicitly over

iterations. The squared residual norms for the i-th node are defined as

‖rti‖22 = ‖θti − θ̄ti‖22, ‖sti‖22 = (ηti)
2‖θ̄ti − θ̄t−1

i ‖
2
2, (4.32)

where

θ̄ti =
1

|Bi|
∑
j∈Bi

θtj . (4.33)

57

Note the difference from the standard residual definitions for consensus ADMM [15],

used in (4.31), where the dual variable is considered as a single, globally accessible

variable, θ̄t instead of local θ̄ti . This allows each node to change its ηti based on its own

local residuals. The penalty update scheme is similar to (4.31) but ηt, ‖rt‖2 and ‖st‖2

are replaced with ηti , ‖rti‖2 and ‖sti‖2, respectively. Lastly, the original adaptive penalty

ADMM [108] stopped changing ηt after t > 50. However, in ADMM-VP, if we stop

the same way, we end up with heterogeneously fixed penalty values, which impact the

convergence of ADMM by yielding heavy oscillations near the saddle point. Therefore,

we reset all penalty values in all nodes to a pre-defined value (e.g., η0, the initial

penalty parameter) after a fixed number of iterations. As we fix the penalty values

homogeneously after a finite number of iterations, it becomes the standard ADMM

after that point, thus the convergence of ADMM-VP update is guaranteed. Figure 4.6b

depicts ADMM-VP and also contrasts with the standard RB method in Figure 4.6a.

ADMM with Network Adaptive Penalty (ADMM-NAP) : We propose fur-

ther extensions of the ADMM-VP. We replace ηi by introducing a bi-directional graph

with a penalty constraint parameter ηij specific to directed edge eij from node i to

j, as depicted in Figure 4.6c. The modified augmented Lagrangian Li is similar to

(4.30), except that we replace η with ηij . The penalty constraint controls the amount

each constraint contributes to the local minimization problem. The penalty constraint

parameter ηij is determined by evaluating the parameter θj from node j with the local

objective function fi(·) of node i as

ηt+1
ij =


η0 · (1 + τ tij) , if t < tmax

η0 , otherwise

(4.34)

where tmax is the maximum number of iterations for the update as proposed in [108],

τ tij =
κti(θ

t
i)

κti(θ
t
j)
− 1 , (4.35)

κti(θ) =

(
f ti (θ)− fmini

fmaxi − fmini

+ 1

)
, (4.36)

fmaxi = max{f ti (θti), f ti (θtj) : j ∈ Bi} , (4.37)

fmini = min{f ti (θti), f ti (θtj) : j ∈ Bi} . (4.38)

58

In each iteration t, each i-th node will evaluate its local objective using its own estimate

of θti , and the estimates from other neighboring nodes θtj . Here, we use ρtij instead of

actual θtj to retain locality of each node from the neighbors. Then, we assign more weight

to the neighbor with a better parameter estimate for the local fi(·) (i.e., larger penalty

ηtij if fi(θj) < fi(θi)) with the above update scheme. We refer to this extension as the

ADMM-AP (adaptive penalty), and the intuition behind the ADMM-AP update is to

emphasize the local optimization during early stages and then deal with the consensus

update at later, subsequent stages. If all local parameters yield similarly valued local

objectives fi(·), the onus is placed on consensus. This makes ADMM-AP different from

pre-initialization, which performs the local optimization using the local observations

and ignores the consensus constraints.

Note that unlike the update strategy of (4.31), we do not need to specify τ t man-

ually and the weight is automatically chosen according to the normalized difference in

the local objective evaluation among neighboring parameters and the local parameter

at node i. The proposed algorithm also emphasizes the objective minimization over

the minimization that solely depends on the norms of primal and dual residuals of con-

straints. The hope is that we not only achieve the consensus of the parameters of the

model but also a good estimate with respect to the objective.

On the other hand, the convergence property of [108] still holds for the proposed

algorithm. Following Remark 4.2 of [108], the requirement for the convergence is to

satisfy the update ratio to be fixed after some tmax <∞ iterations. Moreover, the pro-

posed update ensures bounding by ηt+1
ij /ηtij ∈ [0.5, 2], which matches with the increase

and decrease amount suggested in [108, 15]. One may use tmax = 50, as in [108].

We propose a further extension of ADMM-AP so that it can automatically decide

the maximum number of penalty updates, i.e., the number of ADMM iterations with

penalty updates. We change the algorithm (4.34) into

ηt+1
ij =


η0 · (1 + τ tij) , if

∑t
u=1 |τuij | < T tij

η0 , otherwise.

(4.39)

In addition to the adaptive penalty update, the inequality condition on the summation

59

of τuij , u = 1..t encodes the spent budget when the edge eij changed ηij . All nodes have

their budget’s upper bound T tij , and everytime a node makes a change to ηij , it has to

pay exactly the amount they changed. If the edge has changed ηij too much, or too

often, the update strategy will block the edge from changing ηij any more.

The update scheme is guaranteed to convergence if T tij is simply set to constant T

for all i, j, t or if τ tij = 0 for t > tmax. However, with a different objective function

and varying network connectivity, a different upper bound should be required. This is

because a given upper bound T or maximum iteration tmax could be too small for a

certain node to fully take advantage of our adaptation strategy, or they could be too

big so that it converges much more slowly due to the continuously changing ηtij . To

this end, we propose an updating strategy for T tij as

T t+1
ij =


T tij + αnT , if

∑t
u=1 |τuij | ≥ T tij and

∣∣fi(θti)− fi(θt−1
i)

∣∣ > β

T tij , otherwise

(4.40)

where T 0
ij is set by an initial parameter T and α, β ∈ (0, 1) are parameters. Whenever

T t+1
ij > T tij , we increase n by 1. Once

t∑
u=1

|τuij | ≥ T tij (4.41)

but its objective value is still significantly changing, i.e.,
∣∣fi(θti)− fi(θt−1

i)
∣∣ > β, T t+1

ij

is increased by αnT . Note that the independent upper bound T tij for each ηtij update

on the edge eij makes it sensitive to the various network topologies, but it still satisfies

the convergence condition because

lim
t→∞
T tij ≤

∞∑
n=1

αn−1 T =
1

1− α
T . (4.42)

We refer to this penalty update scheme as ADMM-NAP (network adaptive penalty).

One can see that ADMM-AP is a special case of ADMM-NAP.

Combining and Choosing Criteria to Use : Observing (4.31) and the proposed

update schemes (4.34) and (4.39), one can easily develop a combined update strategy

by replacing τ t in (4.31) with τ tij . Based on preliminary experiments, we found that this

60

replacement yields little utility. Instead, we suggest another penalty update strategy

combining ADMM-VP and ADMM-AP as

ηt+1
ij =


ηtij · (1 + τ tij) · 2 , if ‖rti‖2 > µ‖sti‖2

ηtij · (1 + τ tij) · (1/2) , if ‖sti‖2 > µ‖rti‖2

ηtij , otherwise

(4.43)

which we denote as ADMM-VP + AP. We reset ηtij = η0 when t > tmax. In order to

combine ADMM-VP and ADMM-NAP, we consider the summation condition of τ tij , as

in (4.39). We denote this strategy as ADMM-VP + NAP.

The key difference between ADMM-AP and ADMM-NAP is that the latter does

not require tmax to be decided in advance. If the best tmax is known for a certain

application, there is no significant benefit of ADMM-NAP over ADMM-AP. However,

in many real-world problems, tmax is not known, and ADMM-NAP can be an effective

option, as demonstrated in Figure 4.8c.

4.2.3 Example: D-PPCA using RB-based Penalty Update Criteria

In this section, we show how our method can be applied to an existing distributed learn-

ing framework in the context of distributed probabilistic principal component analysis

(D-PPCA). D-PPCA can be viewed as a fundamental approach to a general matrix

factorization task in the presence of potentially missing data, with many applications

in machine learning.

As explained in Chapter 3, the distributed extension of PPCA (D-PPCA) can be

derived by applying ADMM to the centralized PPCA model above. Each node learns its

local copy of PPCA parameters with its set of local observations Xi = {xin|n = 1..Ni},

where xin denotes the n-th observation in the i-th node, and Ni is the number of

observations available in the node. Then, they exchange the parameters using the

Lagrange multipliers and impose consensus constraints on the parameters. The global

constrained optimization is

min
Θi

− log p(Xi|Θi), s.t. Θi = ρΘ
ij , ρ

Θ
ij = Θj , (4.44)

61

where Θi = {Wi,µi, ai} is the set of local parameters and ρΘ
ij = {ρW

ij , ρ
µ
ij , ρ

a
ij} is the

set of auxiliary variables for the parameters.

The augmented Lagrangian applying the proposed ADMM-NAP is similar to D-

PPCA except that η becomes ηij with λi, γi, βi being Lagrange multipliers for the

PPCA parameters for node i. The adaptive penalty constraint ηtij controls the speed

of parameter propagation dynamically so that the overall optimization empirically con-

verges more quickly than the standard ADMM-based D-PPCA. One can solve this

optimization using the distributed EM approach [36]. The E-step of the D-PPCA is

the same as the centralized counterpart [11]. The M-step is similar to D-PPCA except

we use separate ηij for each edge. The update formulas for the three parameters are sim-

ilar and provide an example update for µi. Once all the parameters and the Lagrange

multipliers are updated, we update ηij and Tij using (4.39) and (4.40), respectively.

4.2.4 Application: Distributed Computer Vision

For evaluation, we use the similar set of experiments we used so far in the earlier

chapters. We generate a noisy Gaussian dataset for the synthetic data experiments,

and use the Caltech Turntable and the Hopkins155 on the distributed affine structure

from motion problem for real data experiments.

Results on Synthetic Data : We first analyze and compare the proposed meth-

ods (ADMM-VP, ADMM-AP, ADMM-NAP, ADMM-VP + AP, ADMM-VP + NAP)

with the baseline method, using synthetic data. Next, we apply our method to a dis-

tributed structure from motion problem using two benchmark real-world datasets. For

the baseline, we compare with the ADMM-based D-PPCA denoted as ADMM with

fixed penalty ηt = η0. Unless noted otherwise, we used η0 = 10. To assess convergence,

we compare the relative change of (4.44) to a fixed threshold (10−3 in this case) for the

D-PPCA experiments, as in Chapter 3.

We generated 500 samples of 20-dimensional observations from a 5-dim subspace

following N (0, I), with the Gaussian measurement of noise following N (0, 0.2 · I). For

the distributed settings, the samples are assigned to each node evenly. All experiments

62

0 5 10 15 20 25 30 35 40

10
1

10
2

iteration

s
u
b
s
p
a
c
e
e
rr
o
r

(a) 12 nodes (complete)

0 20 40 60 80 100 120

10
1

10
2

iteration

s
u
b
s
p
a
c
e
e
rr
o
r

(b) 16 nodes (complete)

0 20 40 60 80 100 120 140 160

10
1

10
2

iteration

s
u
b
s
p
a
c
e
e
rr
o
r

(c) 20 nodes (complete)

0 5 10 15 20 25 30 35

10
1

10
2

iteration

s
u
b
s
p
a
c
e
e
rr
o
r

(d) 20 nodes (complete)

0 10 20 30 40 50 60

10
1

10
2

iteration

s
u
b
s
p
a
c
e
e
rr
o
r

(e) 20 nodes (cluster)

ADMM AP

ADMM

ADMM

ADMM

ADMM

ADMM

Figure 4.7: The comparison of proposed methods and the baseline ADMM using the
subspace angle error of the projection matrix with (a-c) different graph size and (c-e)
different network topology. Best viewed in color.

are run with 20 independent random initializations. We measured the number of iter-

ations to convergence and the maximum subspace angle error versus the ground truth

defined as the maximum of subspace angles between each node’s projection matrix,

and the ground truth projection matrix. We examined the impact of different graph

topologies and different graph sizes. We tested three network topologies: complete, ring

and cluster (a connected graph consists of two complete graphs linked with an edge).

For the graph size, we tested on settings using 12, 16, and 20 nodes.

The top three plots in Figure 4.7 depict results over varying number of nodes while

fixing the graph topology as the complete graph. We plot the median result out of the 20

independent initializations. We observed that the speed up with the proposed method,

particularly for ADMM-VP and its variants, becomes more significant as the number

of nodes increases. This suggests that the proposed method can be of particular use as

the size of an application problem increases. Figure 4.7c to 4.7e show the performance

in the context of different network topologies. Our proposed methods converge more

63

quickly or at the same rate as the standard ADMM. In some cases, either the standard

ADMM or our methods could converge to a local optima, e.g., some of our methods in

Figure 4.7c prematurely converged, however, they still have very good performance that

is less than 2 degrees of subspace angle. The proposed method works most robustly

in the complete graph setting. In other words as the graph connectivity increases, the

convergence property of the proposed method improves. Note also that ADMM-VP

works best in the complete graph while ADMM-AP / NAP are better than the ADMM-

VP in weakly connected networks (e.g., a ring which exhibits the sparsest connectivity

resulting in long (error) propagation effects and, subsequently, a great deal of variable

behavior). This makes sense as ADMM-VP depends on residual computation, and the

proposed local residual computation becomes less accurate compared to the complete

graph when the global residual can be computed.

Results on Real Data : We tested the performance of our method on five objects

of Caltech Turntable [64] and Hopkins 155 [66] datasets, as in [1]. The goal here is to

jointly estimate the 3D structure of the objects as well as the camera motion, however

in a distributed camera network setting. The input measurement matrix is defined as

2×F by N , where F denotes the number of frames and N denotes the number of points.

By applying PCA, we can decompose the input into the camera pose Wi and the 3D

structure E[zin], n = 1..Ni. For the detailed experimental setting, refer to [60, 1]. As a

performance measure, we used the maximum subspace angle error versus the centralized

SVD-reconstructed structure. The network setting assumes five cameras on a complete

graph.

Figure 4.8 shows the result on the Caltech Turntable dataset. First, we compare

Figure 4.8a and 4.8b. One can see that when the graph is less connected (Figure 4.8a),

the proposed adaptive penalty method can boost ADMM-VP which cannot utilize the

full residual information of a fully connected case (Figure 4.8b), as explained in synthetic

data experiments. Next, we compare Figure 4.8b and 4.8c. The network topologies

are the same (complete) but the tmax value required for ADMM-VP, ADMM-AP, and

ADMM-VP + AP is different in these two groups of experiments. When tmax = 50

(Figure 4.8b), all methods can accelerate throughout the iterations. However, when

64

0 5 10 15 20 25 30

10
1

10
2

iteration

s
u
b
s
p
a
c
e
e
rr
o
r

(a) tmax = 50 (ring)

0 10 20 30 40 50 60 70

10
1

10
2

iteration

s
u
b
s
p
a
c
e
e
rr
o
r

(b) tmax = 50 (complete)

0 10 20 30 40 50 60 70

10
0

10
1

10
2

iteration

s
u

b
s
p

a
c
e

 e
rr

o
r

(c) tmax = 5 (complete)

Figure 4.8: The comparison of proposed methods and the baseline ADMM using the
subspace angle error of the reconstructed 3D structure with one object in the Caltech
dataset (Standing). See Figure 4.7 for plot labels. Best viewed in color.

tmax = 5 (Figure 4.8c), the methods that depend on tmax cannot accelerate after 5

iterations, thus showing behavior similar to the baseline ADMM. On the other hand,

ADMM-NAP-based methods can accelerate by adaptively modifying the maximum

number of penalty updates. Note that one can choose any small value of T , and Tij

is increased automatically using (4.40). More results on the other four objects in the

Caltech dataset can be found in supplementary materials of [4].

For the Hopkins 155 dataset, we compared methods on 135 objects using the same

approach as [1]. For each method considered, we computed the mean number of it-

erations until convergence. Since some objects in the dataset are point trajectories of

non-rigid structure, it is inevitable for simple linear models to fail for those objects.

Thus, we omitted objects which yielded more than 15 degrees when calculating the

mean. For each object, we tested 5 independent random initializations. For ADMM-

AP, ADMM-NAP and ADMM-VP + NAP, we found no significant speed up over the

baseline ADMM. For ADMM-VP and ADMM-VP + AP, we could obtain 40.2% and

37.3% speed up, respectively, if we use the complete network. In the ring network, the

amount of improvement becomes smaller. This small or no improvement of speed is

mainly due to the fact that the baseline ADMM converges rapidly enough (typically

< 100 iterations), thus there is little room for the proposed methods to speed up the

optimization. As observed from the synthetic experiments and the Caltech dataset, the

acceleration of the proposed methods occurs at the earlier iterations of the optimization.

65

Thus, if one can develop a better convergence checking criterion depending on the ap-

plication, the proposed methods can be a very viable choice due to their parameter-free

nature.

4.3 Summary

In this chapter, we introduced two extensions of our distributed probabilistic learning

framework. In the first part, we introduced a general approximate inference approach

using MFVI for learning parameters of traditional centralized probabilistic models in a

distributed setting. The main idea is to split the data into different nodes, impose con-

sensus constraints on the posterior parameters of each node, and solve the constrained

variational inference using Bregman ADMM. We illustrated this approach with D-

BPCA for distributed SfM applications. Experimental results showed that Bayesian

approaches show substantial and consistent improvements over the traditional maxi-

mum likelihood-based approach, with an additional benefit of it being a natural way to

devise an online learning framework.

In the second part, we introduced novel adaptive penalty update methods for

ADMM that can be applied to consensus distributed learning frameworks. Contrary to

previous approaches, our adaptive penalty update methods, ADMM-AP and ADMM-

NAP do not depend on parameters that require manual tuning. Using both synthetic

and real data experiments, we showed the empirical effectiveness of the proposed meth-

ods over the baseline. In addition, we found that the performance of ADMM-VP

decreases with weakly connected graphs, and in those cases, ADMM-AP and ADMM-

NAP can be useful. These methods do leave some room for improvements. For the

problems when the standard ADMM can converge quickly enough, the proposed meth-

ods may show less than significant gains. A better convergence criterion may help stop

the proposed algorithms at earlier numbers of iterations (e.g., a criterion that can stop

algorithms to remove long tails in Figure 4.7b or 4.7c would be useful).

66

Chapter 5

Applications in Multi-Agent Trajectory Estimation

In this chapter, we consider an application of the consensus-based distributed learning

framework. So far, we only considered the problem in terms of visual sensor networks,

i.e., with cameras being the nodes of the network, then imposed the consensus con-

straints on model parameters estimated by the cameras. Now, we will consider another

type of consensus imposed on a different aspect of each camera’s local information, i.e.,

a consensus-based state estimation problem. To see this, we consider the problem of

crowd trajectory estimation as a global optimization of multiple agents.

5.1 Crowd Trajectory Estimation

The modelling, simulation, and analysis of crowds [117] has received widespread inter-

ests from many disciplines, including computer vision and graphics. Tracking of the

movement of individuals in crowds is an indispensable component to crowd modelling

and analysis, with applications in surveillance, crowd management, security and dis-

aster prevention, crowd evacuation studies, as well as data-driven animation for visual

effects and games. Crowd tracking is uniquely challenging since tracking must often

be performed over large spatial areas, where multiple sensors need to be used to ob-

tain sufficient coverage. However, there are several challenging issues to robustly track

trajectories or even reconstructing human motion from tracked tracklets (partial trajec-

tories) in multiple stages of the tracking process. We start our discussion by identifying

what the crowd tracking problem is, and potential challenges.

The crowd tracking problem, in terms of scale, can be divided into three groups:

macroscopic, mesoscopic, and microscopic approaches [118, 119]. The macroscopic ap-

proaches [120] track very dense crowds when each individual is not easy to identify.

67

These approaches typically consider the flow of a crowd and are usually applied on

highly dense crowd movement simulations. The mesoscopic approaches are used for

tracking groups of people. These approaches consider groups as crowd blobs. The

microscopic approaches [121] consider the case when individuals can be identified and

tracked separately. In this case, the crowd tracking problem becomes a multi-target

object, or specifically a pedestrian tracking problem. An extensive amount of research

on this problem has been carried out within the computer vision community. Among

them, methods based on human behavior modeling, starting from a variant of Discrete

Choice Model [122] or Social Force (SF) [123] models, have been proposed with applica-

tions in robotics, e.g., [124]. Our work is complementary in nature and seeks to address

the problem of reconstructing crowd movement, tracked using multiple, noisy sensors.

The microscopic crowd tracking problem, using multiple visual sensors, is an open

problem and a very active area of research. It starts with object detection and tracking

at the local sensor level, then tracklets obtained from sensors are collected into a central

processing node (or server). At this level, tracklets of the same subject are linked to

build the global trajectory of the target. Typical crowd (or any object) trackers takes an

iterative refinement approach, i.e., first estimate the global trajectory based on available

tracklets, then refine the detection results of individual points within tracklets based

on the estimated global trajectory, and reiterate the global estimation process.

However, current iterative refinement-based crowd tracking methods encounter chal-

lenges in multiple, large camera network settings. We identify three major issues here.

First, the information provided by these visual sensors (or the results of the local

tracking algorithms) may be noisy, and the combination of the sensors may not have

complete coverage, resulting in missing or incomplete traces. Second, as the motivating

example mentioned in Chapter 1, real-time processing is crucial in crowd tracking, and

in large camera networks, running time-consuming centralized iterative processing may

not result in a timely output. Third, the tracklet matching process described above is a

well known, challenging problem, and doing this in a camera network setting is another

important problem that is not trivial to solve, although some correspondence matching

methods for distributed cameras have been proposed [125].

68

To this end, in this chapter, we focus on the first two issues, i.e., we propose a

consensus-based, distributed, global optimization framework that can reconstruct the

holistic crowd motion from multiple, noisy sensors, with incomplete coverage. We

formulate the problem as follows: Consider tracked information from multiple visual

sensors, with incomplete coverage, where sensor observations may be arbitrarily noisy.

We assume that we get tracklets from each sensor, using existing pedestrian tracking

solutions. We assume that the traces of individuals in the crowd across sensors have

correspondence which can be uniquely identified, using existing methods (e.g., using

the Hungarian algorithm). The outcome trajectories often have missing or noisy in-

formation due to sensor inaccuracies, algorithmic (tracking or matching) failure, or

insufficient coverage due to the limited field of view (FOV) of the sensors. Our goal

is to reconstruct the holistic view of microscopic crowd motion, and we want the re-

construction to be robust to noise and missing tracklets, while satisfying the properties

desired for most people.

To address the challenges described above, we propose a global optimization-based

trajectory refinement framework using ADMM. In particular, our framework leverages

a recently introduced message passing optimization method for multiple multi-agent

trajectory planning [12]. We formulate our global optimization problem as two input

positions (initial and goal) per person (agent), with modular energy functions to min-

imize. These energy functions encode various desirable properties of individuals in a

crowd, including physical constraints (e.g., maximum possible speed for a person), so-

cial constraints (e.g., efficient travel path, avoid colliding with others) or environmental

constraints (e.g., avoid colliding with static obstacles such as walls). The overview of

the entire process is depicted in Figure 5.1.

The efficacy of our method relies on two central contributions. First, we propose

a global trajectory refinement method, based on ADMM [15], for crowd trajectory es-

timation, that is inherently suitable to handle noisy and missing information. To the

best of our knowledge, we are the first to extend and apply the ADMM-based method

for the crowd trajectory estimation and refinement problem in this manner. Second, we

69

Figure 5.1: Overview of proposed global optimization-based trajectory refinement
framework

formulate the crowd trajectory estimation problem as a modular objective global opti-

mization problem using a set of modular energy terms that encode physical, social, and

environmental constraints. We validate our framework on synthetic data with increas-

ing amounts of noisy and missing information, showcasing significant reconstruction

improvements over baseline methods.

In the following section, we first briefly review related prior work on the crowd tra-

jectory estimation problem. Next, we formally define the problem and show how it can

be understood as a consensus-based distributed optimization problem. Then we explain

how this formulation can be converted into the proposed global optimization-based tra-

jectory estimation framework. Then, we show our experimental results to demonstrate

that our framework can smooth out trajectories with noise and missing tracklets. Fi-

nally, we discuss limitations of our approach and potential future extensions.

5.2 Related Work

There is an extensive amount of research in the modelling, simulation, and analysis

of crowds [126, 117, 127] at varying scales that capture both the macroscopic and

microscopic aspects of crowd flow. We refer readers to comprehensive surveys in crowd

tracking [118, 119], and focus on trajectory estimation for individuals in crowds.

As a precursor to pedestrian tracking, it is common to provide (or learn) a motion

prior, which can be used to guide and improve tracking accuracy, which has been

addressed from different perspectives [128, 120, 129]. A notable contribution is the

work in [121, 130], which introduces the popular Social Forces model [131] to model

70

the dynamic social behavior of individuals in a crowd, to serve as motion prior in

order to improve tracking accuracy. This work is extended in [132], by proposing a

multi-target tracking model that succeeds in uniformly including different sources of

information. They include appearance, physical constraints, and the social behavior of

walking people, and are amenable to further extensions. The model is built using a

Conditional Random Field framework. As the model cannot be globally optimized, it

adopts an approximate inference strategy.

Bera and Manocha [133, 134] introduced a real-time algorithm for trajectory esti-

mation in medium-density crowds using adaptive particle filtering, while relying on a

multi-agent motion model based on velocity obstacles [135]. The central idea behind

their approach is to separate tracking from waypoint estimation, and utilize a motion

model for estimation. This work is extended in the AdaPT [136] framework to pro-

vide real-time adaptive tracking for crowded scenes. In comparison to model-based

approaches [121, 134] which rely on a synthetic simulator to provide motion priors for

crowd tracking, our approach estimates crowd movement directly from the data by

enforcing constraints on the estimated trajectories.

Alahi, et al. [137] proposed a global optimization approach with origin-destination

prior, along with a novel social affinity feature map (SAM) that encodes behavioral

patterns of a group of pedestrians learnt from large pedestrian data, and hence helps

in the association of broken tracklets. We are interested in different types of behavioral

patterns, which are characterized by the overall environment and a much wider range

of groups of people, which may not necessarily be within the vicinity of one another.

Due to the inherent limitations of single camera trackers when applied to dense

crowds, new approaches attempt to fuse the data from multiple cameras. The work

in [138] alleviates the single camera tracking problem by using multiple overlapping cam-

era sensors, and are able to handle severe and persistent occlusions in dense, crowded

scenes. Our motivations are different, and seek to address the problem of multi-sensor

crowd tracking with missing and incomplete information. The work in [119] uses a mod-

ified SF model to estimate movement in unobserved areas for target re-identification.

For tracking and activity recognition works for camera networks in computer vision

71

including tracking by consensus-based methods [63], we refer readers to a survey [60]

and references therein.

Complementary to the crowd trajectory estimation problem, which is the focus of

this chapter, is the simulation of crowd movement, with many proposed solutions hav-

ing been published by the graphics community [127]. As described previously, crowd

tracking, trajectory estimation and simulation are tightly coupled, where crowd simu-

lators [131, 135] may be used as motion priors to improve tracking accuracy, and the

output of crowd trackers may be used to train data-driven models for crowd simula-

tion [139].

5.3 Global Optimization-based Trajectory Estimation

We now define the trajectory estimation problem and show how it can be considered

as a consensus-based optimization problem, then as a global optimization problem.

5.3.1 Notaion and Problem Definition

Consider sets of 2D trajectories D. As a general notation for such sets, we use D =

{(Oi, li),Z}, ∀i ∈ (1,M), where M denotes total number of trajectories in the set. The

trajectories Oi are derived from multiple sensors using pedestrian trackers. Since we

have multiple views of the trajectories, essentially these are tracklets without identity

li ∈ {1, ..., P} of the agent whose trajectory is obtained from, where P is the maximum

number of unique agents in D. Therefore, we need to solve the reidentification (or

mapping) problem over multiple cameras by using, e.g., [119]. Still, our trajectory may

include noise and potentially missing information. Each

Oi = {(xti, yti , uti)}, ∀t ∈ (1, Ni), xti, y
t
i ∈ R

denotes a set of track points consisting of observed horizontal and vertical positions of

the person of i-th trajectory at time t. Ni denotes the number of track points available

for the trajectory i. As a notational shortcut, we denote the track point at time t for

i-th trajectory as oti = (xti, y
t
i). To represent the potential uncertainty of information

accompanied with each ti, we use uti ∈ [0, 1], where 0 means uncertain or missing

72

and 1 means absolutely certain. This uncertainty measure can be a real value in [0, 1]

estimated by the tracker, or simply a binary variable indicating the tracker has observed

the point or it is missing.

Z = {(ztk,x1 , z
t
k,x2 , z

t
k,y1 , z

t
k,y2)}, ∀k = (1, Nk)

denotes the environmental configuration that D was observed where ztk,x1 , z
t
k,x2

de-

note horizontal minimum and maximum bound of k-th linear obstacle at time t, and

ztk,y1 , z
t
k,y2

are defined similarly for the vertical dimension. All obstacles in the envi-

ronment are considered as a combination of these linear obstacles. For example, a

rectangular wall is a set of four linear obstacles. While it is possible to consider dy-

namic obstacles with this definiton, we consider static obstacles only. Similary to oti,

we define ztk = (ztk,x1 , z
t
k,x2

, ztk,y1 , z
t
k,y2

).

As mentioned in the earlier section, we assume that the tracklet matching (reiden-

tification) can be done fairly well with available methods, with some potential room

for refinement, which is the focal point of the proposed method. Note that since we

assume that the tracklet matching is known, it is possible to omit li from D so that

there is only one trajectory for each individual, by linking all tracklets in D belonging

to the same individual. In this case, the index i denotes the index of an individual, i.e.,

i ∈ {1, ..., P}.

The goal here is to reconstruct and refine Ti, i.e., the true state of agent i, which

is essentially the set of 2D coordinates tti = (x̂ti, ŷ
t
i) on a calibrated plane common

to all sensors. In other words, we consider the camera observed, and tracker output

oti as a noise-corrupted representation of tti. One can consider an analogy of tti as

the latent state variable zin and oti as the observation xin we discussed in previous

chapters, although we do not explicitly model parameters (θ in previous chapters),

and the samples are temporally linked. We make the following assumptions: (1) The

environmental configuration (obstacles) is known and static, (2) The true initial (x̂1
i , ŷ

1
i)

and estimated goal positions (x̂Ni
i , ŷNi

i) for each trajectory are known and reliable, (3)

The identities of trajectories tracked by trackers are known, although it is possible that

multiple parts of a trajectory can be missing. The identities across sensors are known.

73

5.3.2 Consensus-based Problem Formulation

Suppose we have J sensors in the surveillance environment Z we are monitoring. LetDm

be the set of trajectories observed by m-th sensor, where m = 1..J . For all Dm, there

are P pedestrian trajectories, although not all sensors have all trajectory information,

obviously. For those missing parts, corresponding uti = 0. Now, the goal of the global

crowd state estimation problem we described in the previous section can be considered

as the following consensus-based optimization problem

arg min
T

f(T |D) =
J∑

m=1

f(T m|Dm)

s.t. Tm
i = τmnij , τmnij = Tn

j , ∀m,n = 1..J,m 6= n (5.1)

where Tm
i and Tn

j are state trajectories of observed trajectories Om
i and On

j such that

Om
i ∈ Dm, On

j ∈ Dn, li = lj . We use T m = {Tm
i , i = 1..P} to denote local copy of

global state trajectory set T for the m-th node. Restating in words, this means that the

estimated state trajectories should be the same across different sensors if they are from

the same identity (i.e., agent or pedestrian). Note that the state trajectories are not

necessarily in the measurement space (i.e., image frame coordinates). These trajectory

points reside in the calibrated world coordinate that is shared (and known) across the

sensors. This is not too strong an assumption if the sensors are static and pre-installed,

which is typical in surveillance scenarios. The cost function f(·) can be a collection of

different prior constraints that are desirable for optimal state trajectories as

f(T m|Dm) =

P∑
i=1

fp(T
m
i |Dm) +

P∑
i=1

fe(T
m
i |Z) +

∑
∀(i,j),i 6=j

fs(T
m
i ,T

m
j) (5.2)

where fp denotes a unary constraint that only depends on individual trajectory, fe

denotes the binary constraint that depends on each trajectory against the environmen-

tal obstacles, and fs denotes the social constraints between different agents. We will

describe these constraints in detail below.

5.3.3 Constraints for Optimal Multi-Agent Trajectory

Given the trajectory data extracted from multiple sensors above, the goal is to transform

Om
i → Tm

i , ∀i which minimizes noise and uncertainity. We consider a model that each

74

track point of each agent (pedestrian) is determined by minimizing the summation of

energy functions that defines constraints on prior knowledge of the human trajectories.

For the prior terms, we drop superscript m from tti for notational brevity. This should

not incur confusion as the prior terms are defined within same node.

Tracker output : Since our goal is to refine the given tracker output, it is reason-

able to take current trajectory estimates with high confidence into account. To do this,

we consider Gaussian prior over the initial tracker output on estimated trajectories as

Egt(t
t
i|Dm) = uti‖tti − oti‖2 (5.3)

where oti is the tracker output and uti acts as a precision parameter. Note that if the

point is missing, i.e., uti = 0, this prior is disabled.

Kinetic energy : As a reasonable assumption, we consider agents are trying to

reach the goal position as soon as possible following the minimum travel distance. This

constraint can be encoded as kinetic energy, i.e.,

Ekn(tti, t
t+1
i) = ckn‖tt+1

i − tti‖2 (5.4)

where ckn is the expected mass of one agent. We typically set ckn = 1. If we sum up

all Ekn for an agent, that is the total distance agent i travelled along the trajectory.

Physical constraint - Maximum velocity : Physical constraints of the human

body put limits on the maximum walking speed of an agent. Thus, we can consider

a constraint-only function, that encodes this maximum possible distance an agent can

travel within unit time frame as

Emv(t
t
i, t

t+1
i) =


0 if ‖tt+1

i − tti‖ ≤ cmv,

∞ otherwise.

(5.5)

This sets an upper bound on the velocity of agent movement with cmv of which value

is decided by the frame rate of the trajectory and physical constraint of an average

human. Note that unlike [12], we do not consider minimum velocity bound, since

humans can stop time to time during their travel.

Social constraint - Collisions with other agents : Collisions are typically what

we want to avoid. This is particularly important as initial tracker output can easily

75

contain collisions between trajectories, even though there was no actual collision due

to occlusions.

As in the maximum velocity case, we consider a constraint function as

Cs(t
t
i, t

t
j , t

t+1
i , tt+1

j , ri, rj) =


0 if ‖α(tt+1

i − tt+1
j) + (1− α)(tti − ttj)‖

≥ (ri + rj), ∀α ∈ [0, 1]

∞ otherwise

where ri, rj are radius of agents i and j. This function is minimized if the two agents i

and j are at least ri + rj apart at all times between t and t+ 1.

Environmental constraint - Collisions with walls : Another type of collisions

is that between agents and the environment, i.e., obstacles. As mentioned, we consider

static obstacles only. Let the two coordinates of linear obstacle k at time t as ztk1 =

(ztk,x1 , z
t
k,y1

) and ztk2 = (ztk,x2 , z
t
k,y2

). Then, we can consider a constraint function for

the wall collision as

Ce(t
t
i, t

t+1
i , ri, z

t
k1 , z

t
k2) =


0 if ‖(αtt+1

i + (1− α)tti)− (βztk1 + (1− β)ztk2)‖

≥ ri, ∀α, β ∈ [0, 1]

∞ otherwise

thus the agent i will not cross the linear obstacle at all times between t and t+ 1. As

one can see, Cs and Ce has the useful relationship that

Cs(t
t
i, t

t
j , t

t+1
i , tt+1

j , ri, rj) = Ce(t
t
j − tti, t

t+1
j − tt+1

i , ri + rj , 0, 0) (5.6)

so if we know how to solve Ce, Cs can be solved by converting it into Ce. For details

on this proximal operator, refer to [12].

5.3.4 Combined Global Objective Formulation and Optimization

For each i-th agent, the three partial objective terms in (5.2) can be defined as

fp(T
m
i |Dm) =

Ni∑
t=1

Egt(t
t
i|Dm) +

Ni−1∑
t=1

Ekn(tti, t
t+1
i) +

Ni−1∑
t=1

Emv(t
t
i, t

t+1
i) (5.7)

76

fe(T
m
i |Z) =

Ni∑
t=1

∑
∀(i,k)

Ce(t
t
i, t

t+1
i , ri, z

t
k1 , z

t
k2) (5.8)

fs(T
m
i ,T

m
j) =

Ni∑
t=1

∑
∀(i,j),i 6=j

Cs(t
t
i, t

t
j , t

t+1
i , tt+1

j , ri, rj) (5.9)

where t1
i , t

Ni
i are given and fixed. Thus, we only determine t2

i , · · · , t
(Ni−1)
i . Note that

when optimizing Tm
i , all Tm

j ∈ Dm that may have the possibility of collision with Tm
i

should be considered as well due to Cs. For each m-th local node, we minimize all

trajectories available in the node, thus the local objective, by minimizing

arg min
T m

f(T m|Dm) =
P∑
i=1

fp(T
m
i |Dm) +

P∑
i=1

fe(T
m
i |Z) +

∑
∀(i,j),i 6=j

fs(T
m
i ,T

m
j). (5.10)

Recall that our global objective (5.1) is

arg min
T m,∀m∈V

J∑
m=1

f(T m|Dm)

s.t. Tm
a = τmnab , τmnab = Tn

b , ∀m,n = 1..J,m 6= n (5.11)

where Tm
a and Tn

b , la = lb. We can consider the augmented Lagrangian as

arg min
T m,∀m∈V

J∑
m=1

f(T m|Dm) +
∑

∀(a,b),la=lb

{
λ>ab1 (Tm

a − τmnab) + λ>ab2 (τmnab −Tn
b)
}

+
∑

∀(a,b),la=lb

{η
2
‖Tm

a − τmnab ‖
2 +

η

2
‖τmnab −Tn

b ‖
2
} . (5.12)

It is important to note the notational difference between (i, j) and (a, b) that the index

pair (i, j) is the pair in (5.10) between trajectories within a sensor data T m, while the

index pair (a, b) in (5.11) denotes the pair between trajectories across two sensor data

T m and T n, m 6= n. However, we will see that these terms can be expressed using one

index notation i. To see this, we expand the cost f(·) as

arg min
T m,∀m∈V

J∑
m=1

(· · ·) +
∑

∀(i,j),i 6=j

fs(T
m
i ,T

m
j)

+
∑

∀(a,b),la=lb

{
λ>ab1 (Tm

a − τmnab) + λ>ab2 (τmnab −Tn
b)
}

+
∑

∀(a,b),la=lb

{η
2
‖Tm

a − τmnab ‖
2 +

η

2
‖τmnab −Tn

b ‖
2
} (5.13)

77

where we suppressed the unary and environmental constraints to focus on the social

constraint term. There are two important observations here. One is that Tm
a ∈ T m,

Tm
i ∈ T m and Tm

j ∈ T m. The other is that the trajectories Tm
a and Tn

b have the

condition that la = lb while li 6= lj . This means that every trajectory in T m should have

the penalty terms imposed, and essentially, the indexing of i and a are for independent

summation terms, thus we can use the same index i for all summations. Therefore, we

can rewrite (5.13) as

arg min
T m,∀m∈V

J∑
m=1

(· · ·) +
∑

∀(i,j),i 6=j

fs(T
m
i ,T

m
j)

+
∑

∀(i,k),li=lk

{
λ>ik1 (Tm

i − τmnik) + λ>ik2 (τmnik −Tn
k)
}

+
∑

∀(i,k),li=lk

{η
2
‖Tm

i − τmnik ‖
2 +

η

2
‖τmnik −Tn

k‖
2
} , (5.14)

where Tn
k ∈ T n and of course m 6= n. Since we assumed that (copies of) all state

trajectory information is available in each sensor, all summations using index i are

the summation of the terms with i in range of 1..P . It can be seen clearly now that

the global objective (5.14) can be computed in a distributed way, as we have done in

previous chapters.

However, the direct minimization of the global objective (5.14) is not easy. Partic-

ularly, collision constraint terms fe and fs are nonconvex. To solve this, we utilize a

message passing interpretation of alternating direction method of multiplier [12, 13].

We provide a brief review on the message passing ADMM in Appendix D. Using the

message passing ADMM, the global objective (5.14) can be solved as a consensus opti-

mization problem of many different energy terms with a common set of latent variables,

and which is the state trajectories Tm
i of all agents. One can consider this as additional

consensus imposed both within each node in addition to the consensus across the nodes.

Specifically, we can consider the state trajectory tti used in each energy term as a

local copy of a globally shared trajectory t̄ti which we initialize with tracker output. Our

goal is to minimize (5.14) while imposing consensus constraint tti = t̄ti for all Tm
i ∈ Dm.

Let S be the total number of energy terms we need to minimize and each term is

78

indexed by s = 1..S. We denote a set of terms that shares the same tti as Θt
i. Let ρts,i

be the learning rate ρ in ADMM update for the optimization of term s with respect

to tti. Similarly, we denote µts,i as Lagrange multiplier of term s with respect to tti.

To avoid confusion, we use (·)ts to denote local variable for term s at iteration t in the

ADMM update below. The message passing ADMM can optimize each term, e.g., Egt,

by following the sequence of updates

nts,i = (̄tti)
t
s − µts,i (5.15)

(tti)
t+1
s = arg min

tti

(
uti‖tti − oti‖+

ρts,i
2
‖tti − nts,i‖2

)
(5.16)

mt
s,i = (tti)

t+1
s + µts,i (5.17)

(̄tti)
t+1
s =

∑
Θt

i
ρts,im

t
s,i∑

Θt
i
ρts,i

(5.18)

(µts,i)
t+1 = (µts,i)

t +
(
(tti)

t+1
s − (̄tti)

t+1
s

)
. (5.19)

It is important to note that the squared penalty in update (5.16) must be applied to

each of tti in each energy term. If the energy term requires two or more variables, the

number of squared penalty terms also matches to the number of variables. It is easy

to see that the globally shared trajectory points t̄ti will essentially become a weighted

average of estimates from all energy terms that involves tti in its local minimization.

The overall optimization is iterative updates as above on all energy terms we introduced

in the previous section. For details on local minimization of (5.16) for different types

of energy terms, please refer to [12].

5.3.5 Discussions on Message Passing ADMM

A major benefit of the framework proposed in this chapter is that it can consider un-

certainty or missing information from the tracker output, as explained in Section 5.3.3.

This can be intuitively interpreted as disconnecting edges between the pair wise distance

energy function Egt for the missing point, and the function that aggregates the infor-

mation from energy functions and imposes consensus constraint from message passing

structure in [12], although the authors did not consider handling the missing values of

79

Trajectory

Trajectory

Figure 5.2: Graphical representation of our optimization framework given two trajec-
tories i and j, assuming t-th point is missing in trajectory i. The connection of point
tti (shaded as gray) to energy term Egt(ti) is disconnected (red). Therefore, tti will be
estimated purely based on other terms (shaded as yellow). Note that τ does not appear
in this figure since the prior terms are defined within a sensor, not across sensors.

input data. Figure 5.2 shows an example graphical description of our missing value

handling scheme.

One may wonder at this point about whether the distributed probabilistic models

we introduced in previous chapters can utilize the message passing ADMM algorithm.

While it is possible to apply the algorithm to the problems we discussed earlier, e.g.,

distributed probabilistic PCA, there is not much benefit over our proposed approach

from previous chapters for two reasons. First, in this chapter, we employed the message

passing ADMM because the derivation of closed form update for (5.14) was not easy, so

we wanted to utilize the proximal operators provided by [12, 13]. For the problems in

previous chapters, there is not much benefit of using off-the-shelf local optimizer, since

it is possible to derive the closed form solution for the parameter updates. Second, the

message passing ADMM is more like the consensus formulation of (2.20), i.e., parallel

setting, unlike decentralized consensus formulation of (2.25), which we used throughout

the thesis including the problem formulation part of this chapter until (5.14). It would

be an interesting future direction to derive proximal operators using (2.25).

80

Number of Iterations

21 31 41 51 61 71 81 91 101 111

F
re

q
u

e
n

c
y

0

2

4

6

8

10

12

(a) # of iterations

Computation Time

0 10 20 30 40 50 60 70

F
re

q
u

e
n

c
y

0

1

2

3

4

5

6

7

8

9

(b) Comput. Time

Objective Value

0 50 100 150 200 250 300 350 400

F
re

q
u
e
n
c
y

0

2

4

6

8

10

12

14

16

18

(c) Obj. value

Figure 5.3: Stability experiments on ADMM algorithm with 2 agents, 5 break points
(frames), and 20 random initializations. As can be seen, approximately 100 iterations
and 50-60 seconds, the optimization is complete. Note that early stops yield premature
results.

Number of Agents

2 4 6 8 10

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

0

5

10

15

20

25

30

35

(a) # of iterations

Number of Agents

2 4 6 8 10

C
o

m
p

u
ta

ti
o

n
 T

im
e

0

50

100

150

200

250

(b) Comput. Time

Number of Agents

2 4 6 8 10

O
b

je
c
ti
v
e

 V
a

lu
e

0

50

100

150

200

250

300

350

400

450

(c) Obj. value

Figure 5.4: Scalability experiments on ADMM algorithms with 2, 4, 6, 8, 10 agents,
5 break points (frames), and 1 random initialization. As a typical trend, number of
iterations and computation time increase almost linearly.

5.4 Evaluation

To demonstrate the utility of the proposed method, we conducted experiments on var-

ious standard synthetic crowd simulation scenario trajectories. We used the popular

Social Forces model [131] to generate the simulation data.

5.4.1 Non-convex global optimization

ADMM, a convex optimization algorithm, is known to give reasonably good solution

efficiently for many non-convex problems in practice. Here, we show the stability of the

ADMM framework on a non-convex problem that is closely related to what we want

to tackle. Following [12], we conducted experiments on the concentric circle (CONF1)

scenario, in which agents will change their positions with agents at antipodal positions.

81

Figure 5.3 and 5.4 show CONF1 scenario experimental results with varying number

of agents and initializations. We report number of iterations, computation time and

objective values. As one can see, the proposed framework converges reasonably well in

the majority of cases, although the problem is non-convex.

5.4.2 Robustness to missing tracklets and noise

To demonstrate the robustness of our framework to missing values and noise, we con-

ducted experiments on synthetic crowd simulation scenarios. We considered 6 environ-

ment benchmarks, illustrated in Table 5.1. The trajectories of the crowd for each bench-

mark were generated synthetically using the Social Forces crowd simulation model [131].

We simulated 3000 frames per scenario using 30 - 40 agents, and then sub-sampled the

trajectories so that the duration of the trajectory is approximately 100 frames.

Noisy Trajectories. Table 5.2 (left hand side) shows the reconstruction perfor-

mance against the ground truth trajectory, with synthetically added noise. To demon-

strate our reconstruction robustness to noise, we considered additive white Gaussian

noise (AWGN) with different amounts of signal-to-noise ratio (SNR), ranging from 30,

50, and 70 dB. As a baseline comparison, we used a median filter. For noisy data

experiments, we considered an additional baseline of no-filter, meaning that the origi-

nal corrupted signal was without any noise removal process having been applied. We

used root mean squared error for the measure. As shown in Table 5.2, the proposed

method effectively improves the reconstruction performance over a näıve median filter

by a significant margin. Table 5.3 and Table 5.4 visually compares the noisy trajecto-

ries (SNR 50 dB) and the corresponding reconstructed trajectories, using our method

on the different environment benchmarks. Confirming our quantitative results in Ta-

ble 5.2, the reconstructed trajectories are noticeably smoother, lack discontinuities, and

are collision-free. Our method is thus able to effectively reconstruct trajectories while

removing artifacts introduced as a result of noise.

Trajectories with Missing Information. Table 5.2 (right hand side) shows the

reconstruction performance against the ground truth trajectory, where portions of the

trajectory were artificially removed. We removed between 10 - 30 % of the trajectories

82

of each agent to evaluate the robustness of our method. The qualitative results shown

in Table 5.5 and Table 5.6, confirm our quantitative results. Our method is able to

effectively reconstruct large portions of the missing information in the trajectories,

while ensuring trajectories are artifact-free (without collisions and discontinuities), and

still preserving the original essence of the crowd dataset.

An interesting observation to note is that the proposed method shows strong recon-

struction performance over the baseline method when congestion exists (e.g., bottleneck-

evacuation-2 and bottleneck-squeeze, hallway-two-way). In case of bottleneck-evacuation,

since the goal is far away from the exit, congestion is not heavy for the agents. For

the hallway case, two-way has more chance to collide than four-way since we have the

somewhat small number of agents of 32 (8 per way). This phenomenon naturally makes

sense as the simulated trajectory will show complex turns when there is congestion, thus

linear interpolation or simple median filtering is prone to failure.

Noise and Missing Information. As a more realistic case, we considered the

situation when both the noise and missing information exist in the trajectories. Ta-

ble 5.7 shows the result on some exemplary combinations of the cases. We picked the

bottleneck-evacuation scenario, since our method found it most challenging. As shown

in the table, the general trend is similar to Table 5.2, providing additional support for

the robustness of the proposed method. Visual comparisons between the original and

reconstructed trajectories can be seen in Table 5.8.

5.5 Summary

In this chapter, we have introduced a global trajectory estimation method to reconstruct

a holistic view of the movement of individuals in a crowd, tracked using multiple noisy

sensors with incomplete coverage. Experiments using synthetic data show that our

framework is robust to arbitrary amounts of noise and missing trajectory information,

and is able to reconstruct complete trajectories that satisfy movement, collision, and

energy constraints, while inheriting the behavioral characteristics of the original crowd.

83

Table 5.1: Brief description and snapshot of trajectories of simulation scenarios used
to validate our framework.

bottleneck-evacuation bottleneck-evacuation-2 bottleneck-squeeze

concentric-circles hallway-two-way hallway-four-way

There are many aspects of our framework that can be further improved. The frame-

work is currently offline, as the computational complexity of our optimization approach

is combinatorial with the number of individuals in a crowd. However, our method is

fundamentally operable in a real-time setting, as it does not require the provision of

future positions of individuals. Subsequent algorithmic improvements, including the in-

vestigation of decentralized strategies, as well as parallelization, are promising avenues

of future exploration. Another aspect is the fact that our framework operates in an

unsupervised way. While this is beneficial in certain circumstances, it is a promising

direction to investigate the use of prior knowledge which can be used to train models

for improving the efficacy of our method, both in terms of accuracy and computational

complexity. In particular, we would like to use synthetic data obtained using crowd

simulation methods for training models for tracking refinement methods.

84

T
a
b

le
5.

2:
R

o
o
t

m
ea

n
sq

u
ar

ed
(R

M
S

)
er

ro
r

(i
n

m
et

er
s)

of
re

co
n

st
ru

ct
ed

tr
a

je
ct

or
y

ve
rs

u
s

gr
ou

n
d

tr
u
th

.
P

le
as

e
re

fe
r

to
te

x
t

fo
r

m
or

e
an

al
y
si

s
on

th
e

re
su

lt
s.

F
o
r

al
l

ca
se

s,
w

e
co

m
p

ar
ed

th
e

p
er

fo
rm

an
ce

of
th

e
p

ro
p

os
ed

fr
am

ew
or

k
w

it
h

m
ea

n
fi

lt
er

in
g

as
b

as
el

in
e.

W
h

en
ap

p
ly

in
g

th
e

m
ed

ia
n

fi
lt

er
s

fo
r

m
is

si
n

g
d

a
ta

,
th

e
d

at
a

w
as

p
re

p
ro

ce
ss

ed
to

fi
ll

in
m

is
si

n
g

p
ar

ts
w

it
h

li
n

ea
r

in
te

rp
ol

at
io

n
.

F
or

n
oi

se
re

m
ov

al
p

u
rp

os
es

,
w

e
a
d

d
it

io
n

al
ly

co
m

p
a
re

d
w

it
h

th
e

or
ig

in
al

co
rr

u
p

te
d

tr
a

je
ct

or
y

to
d

em
on

st
ra

te
th

at
ou

r
fr

am
ew

or
k

is
a

si
gn

ifi
ca

n
t

im
p

ro
ve

m
en

t
co

m
p

a
re

d
to

d
o
in

g
n

o
th

in
g

in
ca

se
s

of
n

on
-t

ri
v
ia

l
am

ou
n
ts

of
n

oi
se

.
N

ot
e

th
at

fo
r

m
is

si
n

g
va

lu
e

ex
p

er
im

en
ts

in
th

is
ta

b
le

,
w

e
as

su
m

ed
in

p
u

t
w

a
s

n
oi

se
-f

re
e

th
u

s
th

e
b

as
el

in
e

w
it

h
ou

t
an

y
fi

lt
er

in
g

m
et

h
o
d

w
as

n
ot

co
n

si
d

er
ed

.
N

oi
se

(S
N

R
,

d
B

)
M

is
si

n
g

V
al

u
e

(%
)

S
ce

n
a
ri

o
(e

n
v
ir

o
n

m
en

t
w

id
th

x
h

ei
g
h
t)

70
50

30
10

20
30

b
ot

tl
en

ec
k
-e

va
cu

at
io

n
(2

0
0
×

16
0
)

0
.1

1
±

0
.0

0
0
.3

0
±

0
.0

1
0
.9

3
±

0
.0

3
0
.2

1
±

0
.0

4
0
.9

9
±

0
.1

8
3.

27
±

2.
68

(m
ed

ia
n

fi
lt

er
)

2.
34
±

0.
11

2.
37
±

0.
11

2.
54
±

0.
10

2.
34
±

0.
11

2.
38
±

0.
14

2
.5

3
±

0
.1

8
(n

o
fi

lt
er

in
g)

0.
15
±

0.
00

0.
47
±

0.
01

1.
48
±

0.
05

b
ot

tl
en

ec
k
-e

va
cu

at
io

n
-2

(1
0
0
×

8
0
)

0.
13
±

0.
00

0.
15
±

0.
01

0
.3

0
±

0
.0

1
0
.1

4
±

0
.0

0
0
.3

4
±

0
.0

2
0
.5

9
±

0
.0

3
(m

ed
ia

n
fi

lt
er

)
1.

34
±

0.
03

1.
35
±

0.
03

1.
38
±

0.
04

1.
34
±

0.
03

1.
38
±

0.
03

1.
48
±

0.
03

(n
o

fi
lt

er
in

g)
0
.0

4
±

0
.0

0
0
.1

4
±

0
.0

0
0.

45
±

0.
02

b
ot

tl
en

ec
k
-s

q
u

ee
ze

(2
00
×

2
00

)
0
.1

1
±

0
.0

0
0
.2

7
±

0
.0

1
0
.8

3
±

0
.0

1
0
.1

5
±

0
.0

2
0
.7

3
±

0
.1

2
1
.7

8
±

0
.1

5
(m

ed
ia

n
fi

lt
er

)
2.

42
±

0.
15

2.
44
±

0.
15

2.
57
±

0.
14

2.
41
±

0.
15

2.
43
±

0.
15

2.
49
±

0.
17

(n
o

fi
lt

er
in

g)
0.

13
±

0.
00

0.
42
±

0.
01

1.
33
±

0.
03

co
n

ce
n
tr

ic
-c

ir
cl

es
(2

0
×

2
0)

0.
06
±

0.
00

0.
07
±

0.
00

0
.1

1
±

0
.0

0
0
.0

6
±

0
.0

0
0
.1

6
±

0
.0

0
0
.4

5
±

0
.0

0
(m

ed
ia

n
fi

lt
er

)
0.

64
±

0.
00

0.
64
±

0.
00

0.
65
±

0.
00

0.
63
±

0.
00

0.
65
±

0.
00

0.
81
±

0.
00

(n
o

fi
lt

er
in

g)
0
.0

1
±

0
.0

0
0
.0

5
±

0
.0

0
0.

14
±

0.
00

h
a
ll

w
ay

-t
w

o-
w

ay
(2

00
×

20
0
)

0
.1

4
±

0
.0

1
0
.4

1
±

0
.0

2
1
.2

8
±

0
.0

4
0
.1

9
±

0
.0

1
0
.4

4
±

0
.0

4
1
.2

3
±

0
.0

6
(m

ed
ia

n
fi

lt
er

)
1.

82
±

0.
12

1.
87
±

0.
12

2.
19
±

0.
10

1.
82
±

0.
12

1.
87
±

0.
11

2.
09
±

0.
09

(n
o

fi
lt

er
in

g)
0.

21
±

0.
01

0.
65
±

0.
02

2.
06
±

0.
07

h
a
ll

w
ay

-f
ou

r-
w

ay
(2

0
0
×

20
0
)

0
.1

4
±

0
.0

1
0
.4

3
±

0
.0

2
1
.3

2
±

0
.0

5
0
.1

9
±

0
.0

1
0
.5

4
±

0
.0

7
1
.5

2
±

0
.0

8
(m

ed
ia

n
fi

lt
er

)
1.

78
±

0.
11

1.
83
±

0.
12

2.
17
±

0.
10

1.
78
±

0.
11

1.
82
±

0.
11

2.
04
±

0.
10

(n
o

fi
lt

er
in

g)
0.

21
±

0.
01

0.
68
±

0.
02

2.
13
±

0.
08

85

Table 5.3: Performance of our method on simulated crowd data with noisy trajectories
(SNR 50 dB). Reference, noisy trajectories are shown in black (left), and corresponding
reconstructed trajectories are shown in blue (right).

bottleneck-evacuation

bottleneck-evacuation-2

bottleneck-evacuation-squeeze

86

Table 5.4: Performance of our method on simulated crowd data with noisy trajectories
(SNR 50 dB). Reference, noisy trajectories are shown in black (left), and corresponding
reconstructed trajectories are shown in blue (right).

concentric-circle

hallway-two-way

hallway-four-way

87

Table 5.5: Input with missing information (20% missing, missing parts marked as red,
left) and reconstructed trajectories (right)

bottleneck-evacuation

bottleneck-evacuation-2

bottleneck-evacuation-squeeze

88

Table 5.6: Input with missing information (20% missing, missing parts marked as red,
left) and reconstructed trajectories (right)

concentric-circle

hallway-two-way

hallway-four-way

89

Table 5.7: Root mean squared error (in meters) of reconstructed trajectory versus
ground truth when both noise and missing information exist. We show the scenario
where our method suffers when compared to the baseline median filter in Table 5.2.

Medium Noise (SNR 50 dB)

Missing Rate (%) 10 20 30

bottleneck-evacuation 0.24 ± 0.04 1.00 ± 0.18 2.36 ± 0.17
(median filter) 2.35 ± 0.11 2.38 ± 0.14 2.53 ± 0.18

Heavy Noise (SNR 30 dB)

Missing Rate (%) 10 20 30

bottleneck-evacuation 0.10 ± 0.03 1.50 ± 0.20 2.91 ± 0.16
(median filter) 2.53 ± 0.09 2.57 ± 0.12 2.70 ± 0.15

Table 5.8: Noisy input with missing information (20% missing, missing parts marked
as red, left) and reconstructed trajectories (right) for bottleneck-evacuation scenario.

SNR 50 dB

SNR 30 dB

90

Chapter 6

Conclusion and Future Work

In this chapter, we summarize and restate the contributions of the thesis followed by

potential future research directions. First, we claim the following three major contri-

butions:

• We proposed distributed learning models and the generalized learning framework.

We showed its ability to convey strengths of probabilistic learning models in a

distributed fashion, including dealing with missing values and robustness to noise.

We also showed that our framework can be effectively applied to a distributed

computer vision problem.

• We introduced extensions of our framework. First, we showed that this framework

can be extended to naturally adapt the learnt model to dynamically changing data

in an online fashion, by reformulating the framework into a Bayesian learning

model. Second, we proposed a general extension of the underlying distributed

optimization algorithm so that it empirically converges more quickly than the

standard counterpart. We demonstrated the effectiveness of these extensions using

similar sets of experiments as with the original proposed framework.

• We showed that the consensus-based optimization framework can potentially be

useful in global optimization-based crowd trajectory estimation problems. Based

on a prior work on a multi-agent trajectory estimation method, we showed that

the framework can be used to find the optimal set of trajectories for trajectories

obtained by human crowds, and it also may be useful for simulation analyses.

In summary, we proposed the general distributed learning modeling framework,

91

Distributed Probabilistic
Learning
Models

Theoretical Properties of
ADMM

Dynamic Input
Models

Static Input
Models

Multi-Agent Analysis
Communication

for WSN
(efficiency, ad-hoc)

Distributed
Computer Vision

Irrational Behavior
Representation Learning
from Complex Real World

Security

Figure 6.1: Potential extensions and applications of proposed generalized distributed
learning framework

showed examples that can handle either static or dynamic input data, extended an un-

derlying optimization algorithm, and showed potential applications in computer vision

and graphics. A pictorial description of the contributions is given in Figure 6.1. The

next question is, what other applications / extensions can be done with the proposed

framework. We suggest the following potential directions as a guideline:

• Throughout the thesis, we have not shed light on rather traditional issues of

distributed learning in sensor networks. One important aspect of those is the

communication overhead. Since the optimiztion algorithm we use is essentially it-

erative in nature, it requires many communications between local neighbors. This

may not be a significant issue if the convergence is reasonably fast and the distance

from local nodes to the processing center is very far, thus there is merit in doing

multiple local communication compared to single long distance communication to

92

the central node. Still, it is desirable to have a bounded guarantee on the number

of communications needed. Another important aspect is our assumption that the

network is static. Wide area networks, particularly in extreme areas, are often

wireless, and are frequently connected to ad hoc neighbors. Thus, it is desirable

to see how our framework can be extended to such an ad hoc environment.

• Security over the sensor network is an important concern in many cases. If our

framework can provide a way to secure communication and still preserve the

desired properties of decentralized learning, it would be beneficial to many appli-

cations, e.g., smart home / city for healthcare applications.

• In this thesis, and in most works in the distributed learning literature, little in-

terest is given to the problem of finding the best representation of the distributed

data before distribution. The problem is trivial in induced distributed cases, since

we can always preprocess the data. However, for intrinsically distributed data, it

is an important open problem that will become more and more important as the

quality of the sensors improves. This is because the amount of data sensors can

collect, and the communication cost, have an unavoidable trade-off relationship.

In other words, the more we collect data from high quality sensors, the more

information we have to send over the network if we do not know the proper rep-

resentation with minimal loss of information. Therefore, (automatically) finding

a good, if not the best, representation for distributed data is an important next

step for distributed learning.

• Finally, it is worth noting that there is a significant gap between distributed

learning and real human group learning. If one wants to utilize the proposed

distributed learning framework to make a multi-agent system mimicking human

groups, one has to deal with a lot of issues in terms of psychological aspects

of human group behaviors. Humans can make highly varied, and sometimes

irrational decisions, compared to a group of ideal individuals. While these are

all interesting topics for future research, there is much work to be done prior to

being able to achieve these goals.

93

Appendix A

Alternating Direction Method of Multipliers (ADMM)

In this appendix, we briefly review the Alternating Direction Method of Multilpiers

(ADMM) and provide defintions of primal and dual residuals. More detailed explana-

tion with examples can be found in survey [15]. Formally, we want to solve optimization

problems in the form

min f(x) + g(y)

s.t. Ax + By = c, (A.1)

where f : RDx → R ∪ {+∞} and g : RDy → R ∪ {+∞} are closed, proper convex

functions, x ∈ RDx and y ∈ RDy are variables and A ∈ RDc×Dx , B ∈ RDc×Dy and c ∈

RDc are known with Dx, Dy, Dc denote the dimension of the corresponding variables.

As the constraint is equality constraint, we can consider the Lagrangian for A.1 as

L(x,y,λ) = f(x) + g(y) + λ> (Ax + By − c) , (A.2)

where λ ∈ RDc is called Lagrange multiplier (or dual variable). To find optimal values

for the variables, we can use the dual ascent method, i.e., iterative updates

(xt+1,yt+1) = arg min
x,y

L(x,y,λt) (A.3)

λt+1 = λt + αt
(
Axt+1 + Byt+1 − c

)
, (A.4)

where αt > 0 denotes a step size at iteration t. The augmented Lagrangian meth-

ods provide robustness to the dual ascent method by introducing additional, squared

regularization term as

Lρ(x,y,λ) = f(x) + g(y) + λ> (Ax + By − c) +
ρ

2
‖Ax + By − c‖22, (A.5)

94

where ρ is a fixed parameter that defines the amount of regularization. By applying

the dual ascent to this augmented Lagrangian, we obtain iterative updates of so-called

method of multipliers [23, 24] as

(xt+1,yt+1) = arg min
x,y

Lρ(x,y,λt) (A.6)

λt+1 = λt + ρ
(
Axt+1 + Byt+1 − c

)
. (A.7)

The ADMM algorithm has a similar form, but instead of jointly update x and y, it

updates one variable at a time, either sequantially or alternatingly as

xt+1 = arg min
x

Lρ(x,yt,λt) (A.8)

yt+1 = arg min
y

Lρ(xt+1,y,λt) (A.9)

λt+1 = λt + ρ
(
Axt+1 + Byt+1 − c

)
. (A.10)

The necessary and sufficient optimality conditions for the problem (A.1) are primal

feasibility

Ax̂ + Bŷ − c = 0 (A.11)

and dual feasibility

0 = ∇f(x̂) + A>λ̂ (A.12)

0 = ∇g(ŷ) + B>λ̂ (A.13)

where x̂, ŷ are feasible solutions and ∇ is the gradient of functions f, g thus here we

assume f, g are differentiable. The primal residual at iteration t + 1 is defined as the

primal feasibility, i.e.,

rt+1 = Axt+1 + Byt+1 − c (A.14)

since if ‖rt+1‖22 = 0, (A.11) is satisfied. For the dual residual, we need to see what

needs to be reduced in order to satisfy (A.12) and (A.13). By the iteration (A.9), yt+1

95

minimizes Lρ(xt+1,y,λt). Taking derivative with respect to yt+1 on (A.5), we get

0 = ∇g(yt+1) + B>λt + ρB>
(
Axt+1 + Byt+1 − c

)
(A.15)

= ∇g(yt+1) + B>
{
λt + ρ

(
Axt+1 + Byt+1 − c

)}
(A.16)

= ∇g(yt+1) + B>λt+1 (A.17)

thus we see that yt+1 and λt+1 satisfy (A.13). Similarly, xt+1 minimizes Lρ(x,yt,λt)

and we can see that

0 = ∇f(xt+1) + A>λt + ρA>
(
Axt+1 + Byt − c

)
(A.18)

= ∇f(xt+1) + A>
{
λt + ρ

(
Axt+1 + Byt − c

)}
(A.19)

= ∇f(xt+1) + A>
{
λt + ρ

(
Axt+1 + Byt+1 − c

)
+ ρ(Byt −Byt+1)

}
(A.20)

= ∇f(xt+1) + A>λt+1 + ρA>(Byt −Byt+1). (A.21)

Therefore, we can define the dual residual at iteration t+ 1 as

st+1 = ρA>(Byt+1 −Byt) (A.22)

since ‖st+1‖22 = 0 corresponds to satisfying (A.12).

96

Appendix B

Full Derivation of D-PPCA

In this appendix, we provide the full derivation of the proposed D-PPCA algorithm.

This derivation was previously published as a part of supplementary materials for the

author’s conference paper [1]. First, we provide a quick reference to notations like

following.

• G = (V, E): Undirected connected graph with vertices in V and edges in E

• i, j ∈ V: Node index

• eij = (i, j) ∈ E : Edge connecting node i and node j

• Bi = {j; eij ∈ E}: Set of neighbor nodes directly connected to i-th node

• Ni: The number of samples collected in i-th node

• zin: n-th M dimensional latent variable at node i where n = 1, ..., Ni

• xin: n-th D dimensional column vector at node i where n = 1, ..., Ni

• Zi = {zin;n = 1, ..., Ni}

• Xi = {xin;n = 1, ..., Ni}

• Wi, µi, ai: PPCA model parameters

In the distributed probabilistic model setting, we impose consensus constraints on pa-

rameters for each node. With the introduction of auxiliary variables, we can assure that

all parameters reach consensus only by local optimizations. Using this idea, Forero, et

al. proposed an iterative EM algorithm for the Gaussian mixture model [36]. Using

a similar approach, we derive an iterative EM algorithm for PPCA. In the centralized

97

setting, the local optimization problem using expectation on the complete data log

likelihood with respect to the posterior of the latent variable is

min
{fZi

,Wi,µi,ai:i∈V}
−F (fZi ,Wi,µi, ai) = −EfZi

[
Ni∑
n=1

log p(xin, zin|Wi,µi, a
−1
i)

]

where fZi = p(Zi|Xi)
1. If we impose the consensus constraints on this, the constrained

local optimization problem becomes

min
{fZi

,Wi,µi,ai:i∈V}
− F (fZi ,Wi,µi, ai)

s.t. Wi = ρij , ρij = Wj i ∈ V, j ∈ Bi

µi = φij , φij = µj i ∈ V, j ∈ Bi

ai = ψij , ψij = aj i ∈ V, j ∈ Bi (B.1)

where ρij ,φij , ψij are auxiliary variables. If we solve this local optimization problem,

we also solve global optimization since global optimization is simply the summation of

local ones given consensus constraints meet. The augmented Lagrangian of (B.1) is

L(Φi) = −F (fZi ,Wi,µi, ai)

+
∑
i∈V

∑
j∈Bi

(
λ>ij1(Wi − ρij) + λ>ij2(ρij −Wj)

)
+
∑
i∈V

∑
j∈Bi

(
γ>ij1(µi − φij) + γ>ij2(φij − µj)

)
+
∑
i∈V

∑
j∈Bi

(βij1(ai − ψij) + βij2(ψij − aj))

+
η

2

∑
i∈V

∑
j∈Bi

(||Wi − ρij ||2 + ||ρij −Wj ||2)

+
η

2

∑
i∈V

∑
j∈Bi

(||µi − φij ||2 + ||φij − µj ||2)

+
η

2

∑
i∈V

∑
j∈Bi

((ai − ψij)2 + (ψij − aj)2) (B.2)

where Φi = {fZi ,Wi,µi, ai,ρij ,φij , ψij ; i ∈ V, j ∈ Bi} and {λijk}, {γijk}, {βijk} with

k = 1, 2 are the Lagrange multipliers. η is a positive scalar and || · || denotes the induced

1In main chapter, we defined the optimization using marginal distribution to make it consistent
with our general distributed probabilistic model. However, one can optimize the expected value of the
completed log likelihood with respect to posterior as shown here.

98

norm. We cyclically minimize L(Φi) over its parameters, then follow a gradient ascent

step over the Lagrange multipliers. The iterates, using t as iteration index, are

f
(t+1)
Z = arg min

fZ

L(fZ,W
(t)
i ,µ

(t)
i , a

(t)
i ,ρ

(t)
ij ,φ

(t)
ij , ψ

(t)
ij), (B.3)

W
(t+1)
i = arg min

Wi

L(f
(t+1)
Z ,Wi,µ

(t)
i , a

(t)
i ,ρ

(t)
ij ,φ

(t)
ij , ψ

(t)
ij), (B.4)

µ
(t+1)
i = arg min

µi

L(f
(t+1)
Z ,W

(t+1)
i ,µi, a

(t)
i ,ρ

(t)
ij ,φ

(t)
ij , ψ

(t)
ij), (B.5)

a
(t+1)
i = arg min

ai
L(f

(t+1)
Z ,W

(t+1)
i ,µ

(t+1)
i , ai,ρ

(t)
ij ,φ

(t)
ij , ψ

(t)
ij), (B.6)

ρ
(t+1)
ij = arg min

ρij
L(f

(t+1)
Z ,W

(t+1)
i ,µ

(t+1)
i , a

(t+1)
i ,ρij ,φ

(t)
ij , ψ

(t)
ij), (B.7)

φ
(t+1)
ij = arg min

φij

L(f
(t+1)
Z ,W

(t+1)
i ,µ

(t+1)
i , a

(t+1)
i ,ρ

(t+1)
ij ,φij , ψ

(t)
ij), (B.8)

ψ
(t+1)
ij = arg min

ψij

L(f
(t+1)
Z ,W

(t+1)
i ,µ

(t+1)
i , a

(t+1)
i ,ρ

(t+1)
ij ,φ

(t+1)
ij , ψij), (B.9)

λ
(t+1)
ij1 = λ

(t)
ij1 + η

[
W

(t+1)
i − ρ

(t+1)
ij

]
,∀i ∈ V, j ∈ Bi, (B.10)

λ
(t+1)
ij2 = λ

(t)
ij2 + η

[
ρ

(t+1)
ij −W

(t+1)
j

]
,∀i ∈ V, j ∈ Bi, (B.11)

γ
(t+1)
ij1 = γ

(t)
ij1 + η

[
µ

(t+1)
i − φ

(t+1)
ij

]
, ∀i ∈ V, j ∈ Bi, (B.12)

γ
(t+1)
ij2 = γ

(t)
ij2 + η

[
φ

(t+1)
ij − µ

(t+1)
j

]
,∀i ∈ V, j ∈ Bi, (B.13)

β
(t+1)
ij1 = β

(t)
ij1 + η

[
a

(t+1)
i − ψ(t+1)

ij

]
,∀i ∈ V, j ∈ Bi, (B.14)

β
(t+1)
ij2 = β

(t)
ij2 + η

[
ψ

(t+1)
ij − a(t+1)

j

]
,∀i ∈ V, j ∈ Bi. (B.15)

Computing (B.3): Omitting t notations, the first term of (B.2)

−F (fZi ,Wi,µi, ai) =

Ni∑
n=1

{
M

2
log(2π) +

1

2
tr
[
E[zinz

>
in]
]
− D

2
log(2πai)

+
ai
2
||xin − µi||2 +

ai
2
tr
[
E[zinz

>
in]W>

i Wi

]
− aiE[zin]>W>

i (xin − µi)

}
(B.16)

is the only term dependent on fZi . Thus, if all other parameters and multipliers are

fixed at the t-th iteration, (B.3) can be computed using the expected values of the

latent variables as we did in the E-step of the centralized setting. By using the posterior

99

distribution of the centralized PPCA, we compute

E[zin] = L−1
i W>

i (xin − µi) (B.17)

E[zinz
>
in] = a−1

i L−1
i + E[zin]E[zin]> (B.18)

and we plug (B.17) and (B.18) into (B.16).

Computing (B.7)-(B.15): Auxiliary variables, ρij ,φij , ψij are independent from

(B.16). Thus (B.7)-(B.9) are linear-quadratic optimization with respect to these vari-

ables and we can find a closed-form solution for these variables. For (B.9), this yields

∂L(Φi)

∂ψij
=

∂

∂ψij

{∑
i∈V

∑
j∈Bi

(
β

(t)
ij1(a

(t+1)
i − ψij) + β

(t)
ij2(ψij − a(t+1)

j)
)

+
η

2

∑
i∈V

∑
j∈Bi

((a
(t+1)
i − ψij)2 + (ψij − a(t+1)

j)2)

}

0 =
∑
i∈V

∑
j∈Bi

{
−
(
β

(t)
ij1 − β

(t)
ij2

)
− η

(
a

(t+1)
i + a

(t+1)
j

)
+ 2ηψij

}

Since the Lagrange multipliers, parameters and η are all zero or positive values, we get

ψ
(t+1)
ij =

1

2η

(
β

(t)
ij1 − β

(t)
ij2

)
+

1

2

(
a

(t+1)
i + a

(t+1)
j

)
(B.19)

Using the same technique on (B.7) and (B.8), we get

ρ
(t+1)
ij =

1

2η

(
λ

(t)
ij1 − λ

(t)
ij2

)
+

1

2

(
W

(t+1)
i + W

(t+1)
j

)
, (B.20)

φ
(t+1)
ij =

1

2η

(
γ

(t)
ij1 − γ

(t)
ij2

)
+

1

2

(
µ

(t+1)
i + µ

(t+1)
j

)
(B.21)

respectively. Plugging (B.20) into (B.10) and (B.11), (B.21) into (B.12) and (B.13),

(B.19) into (B.14) and (B.15), we get

λ
(t+1)
ij1 =

1

2

(
λ

(t)
ij1 + λ

(t)
ij2

)
+
η

2

(
W

(t+1)
i −W

(t+1)
j

)
, (B.22)

λ
(t+1)
ij2 =

1

2

(
λ

(t)
ij1 + λ

(t)
ij2

)
+
η

2

(
W

(t+1)
i −W

(t+1)
j

)
, (B.23)

γ
(t+1)
ij1 =

1

2

(
γ

(t)
ij1 + γ

(t)
ij2

)
+
η

2

(
µ

(t+1)
i − µ

(t+1)
j

)
, (B.24)

γ
(t+1)
ij2 =

1

2

(
γ

(t)
ij1 + γ

(t)
ij2

)
+
η

2

(
µ

(t+1)
i − µ

(t+1)
j

)
, (B.25)

β
(t+1)
ij1 =

1

2

(
β

(t)
ij1 + β

(t)
ij2

)
+
η

2

(
a

(t+1)
i − a(t+1)

j

)
, (B.26)

β
(t+1)
ij2 =

1

2

(
β

(t)
ij1 + β

(t)
ij2

)
+
η

2

(
a

(t+1)
i − a(t+1)

j

)
(B.27)

100

where ∀i ∈ V and j ∈ Bi. As in Appendix B of [36], we observe that at iteration

t, λ
(t+1)
ij1 = λ

(t+1)
ij2 ,γ

(t+1)
ij1 = γ

(t+1)
ij2 , β

(t+1)
ij1 = β

(t+1)
ij2 if we assume initial value of each

Lagrange multiplier was set to zero. Thus, it suffices to find only one of the two. We

define this one value as λ
(t)
ij := λ

(t)
ij1 = λ

(t)
ij2, γ

(t)
ij := γ

(t)
ij1 = γ

(t)
ij2 and β

(t)
ij := β

(t)
ij1 = β

(t)
ij2.

Moreover, if we define

λ
(t)
i :=

∑
j∈Bi

λ
(t)
ij , γ

(t)
i :=

∑
j∈Bi

γ
(t)
ij , β

(t)
i :=

∑
j∈Bi

β
(t)
ij ,

then (B.22)-(B.27) reduce to

λ
(t+1)
i = λ

(t)
i +

η

2

∑
j∈Bi

{
W

(t+1)
i −W

(t+1)
j

}
, (B.28)

γ
(t+1)
i = γ

(t)
i +

η

2

∑
j∈Bi

{
µ

(t+1)
i − µ

(t+1)
j

}
, (B.29)

β
(t+1)
i = β

(t)
i +

η

2

∑
j∈Bi

{
a

(t+1)
i − a(t+1)

j

}
. (B.30)

Computing (B.6): We tackle ai first. Omitting t temporarily for notational

brevity, the derivate of L(Φi) with respect to ai is

∂L(Φi)

∂ai
=

∂

∂ai

[
Ni∑
n=1

{
− D

2
log(2πai) +

ai
2
||xin − µi||2 +

ai
2
tr
[
E[zinz

>
in]W>

i Wi

]
− aiE[zin]>W>

i (xin − µi)

}

+
∑
i∈V

∑
j∈Bi

(βij1(ai − ψij) + βij2(ψij − aj))

+
η

2

∑
i∈V

∑
j∈Bi

((ai − ψij)2 + (ψij − aj)2)

]

∂L(Φi)

∂ai
=

Ni∑
n=1

{
− D

2
a−1
i − E[zin]>W>

i (xin − µi)

+
1

2

{
||xin − µi||2 + tr

[
E[zinz

>
in]W>

i Wi

]}}

+
∑
j∈Bi

(βij1 − βji2) +
∂

∂ai

η∑
j∈Bi

{
(ai − ψij)2 + (ψji − ai)2

}
= Qai(fz,W

(t+1)
i ,µ

(t+1)
i , ai)

+
∑
j∈Bi

(βij1 − βji2) + 2η
∑
j∈Bi

(ai − ψij) (∵ ψij = ψji) (B.31)

101

where we temporarily suppressed the first summation term asQai(fz,W
(t+1)
i ,µ

(t+1)
i , ai)

for clearer presentation. Putting t back while plugging (B.19), the closed form solution

of ψij , into (B.31), we get

∂L(Φi)

∂ai
= Qai(fz,W

(t+1)
i ,µ

(t+1)
i , ai) +

∑
j∈Bi

(
β

(t)
ij1 − β

(t)
ji2

)
+ 2η

∑
j∈Bi

(
ai −

{
1

2η

(
β

(t−1)
ij1 − β(t−1)

ij2

)
+

1

2

(
a

(t)
i + a

(t)
j

)})
= Qai(fz,W

(t+1)
i ,µ

(t+1)
i , ai) +

∑
j∈Bi

(
β

(t)
ij1 − β

(t)
ji2

)
+ 2ηa2

i |Bi| − η
∑
j∈Bi

(
a

(t)
i + a

(t)
j

)
(B.32)

since β
(t−1)
ij1 = β

(t−1)
ij2 if we assume their initial values are zeros. Here again, we can

further simplify (B.32) using the following property.

Proposition 1. (Forero, et al. [36]) Given β
(0)
ij = 0, β

(t)
ij = −β(t)

ji .

Proof. We have observed that β
(0)
ij1 = β

(0)
ij2 = 0 =⇒ β

(t)
ij1 = β

(t)
ij2 by applying induction

on (B.26) and (B.27). Thus, if we define β
(t)
ij := β

(t)
ij1 = β

(t)
ij2,

β
(t+1)
ij1 =

1

2
(β

(t)
ij1 + β

(t)
ij2) +

η

2
(a

(t+1)
i − a(t+1)

j) =
1

2
(β

(t)
ij1 + β

(t)
ij1) +

η

2
(a

(t+1)
i − a(t+1)

j)

= β
(t)
ij1 +

η

2
(a

(t+1)
i − a(t+1)

j)

∴ β
(t+1)
ij = β

(t)
ij +

η

2
(a

(t+1)
i − a(t+1)

j).

Therefore, given β
(0)
ij = β

(0)
ji = 0, β

(1)
ij = −β(1)

ji . If we continue iterations,

β
(2)
ij = β

(1)
ij +

η

2
(a

(t+1)
i − a(t+1)

j)

β
(2)
ji = β

(1)
ji +

η

2
(a

(t+1)
j − a(t+1)

i) = −β(1)
ij −

η

2
(a

(t+1)
i − a(t+1)

j)

= −β(2)
ij .

By induction, β
(t)
ij = −β(t)

ji .

Therefore, if we define β
(t)
i =

∑
j∈Bi

β
(t)
ij , (B.32) becomes

∂L(Φi)

∂ai
= Qai(fz,W

(t+1)
i ,µ

(t+1)
i , ai) + 2β

(t)
i + 2ηai|Bi| − η

∑
j∈Bi

(
a

(t)
i + a

(t)
j

)

102

Setting this to zero while substituting Qai(fz,W
(t+1)
i ,µ

(t+1)
i , ai) back into its original

form and simplifying for ai, we get

0 =

Ni∑
n=1

{
− D

2
(ai)

−1 − E[zin]>W>
i (xin − µi)

+
1

2

{
||xin − µi||2 + tr

[
E[zinz

>
in]W>

i Wi

]}}

+ 2β
(t)
i + 2ηai|Bi| − η

∑
j∈Bi

(
a

(t)
i + a

(t)
j

)

= −NiD

2
(ai)

−1 −
Ni∑
n=1

E[zin]>W>
i (xin − µi) + 2β

(t)
i + 2ηai|Bi| − η

∑
j∈Bi

(
a

(t)
i + a

(t)
j

)

+
1

2

Ni∑
n=1

{
||xin − µi||2 + tr

[
E[zinz

>
in]W>

i Wi

]}
= −NiD

2
+ 2η|Bi|(ai)2

+ ai

{
2β

(t)
i − η

∑
j∈Bi

(
a

(t)
i + a

(t)
j

)
−

Ni∑
n=1

E[zin]>W>
i (xin − µi)

+
1

2

Ni∑
n=1

{
||xin − µi||2 + tr

[
E[zinz

>
in]W>

i Wi

]}}
. (B.33)

as we omitted t in z
(t+1)
in , W

(t+1)
i and µ

(t+1)
i for notational brevity. This is a quadratic

function of ai for which we can find an algebraic solution.

Computing (B.5): We cannot simply use the closed form solution of the central-

ized PPCA, i.e., µ = µ̄. We could use this result in the centralized setting but we

cannot use it in the distributed model due to the auxiliary variable constraints. Again,

we omit t temporarily for brevity.

∂L(Φi)

∂µi
=

∂

∂µi

[
Ni∑
n=1

{
− D

2
log(2πai) +

ai
2
||xin − µi||2 +

ai
2
tr
[
E[zinz

>
in]W>

i Wi

]
− aiE[zin]>W>

i (xin − µi)

}

+
∑
i∈V

∑
j∈Bi

(
γ>ij1(µi − φij) + γ>ij2(φij − µj)

)

+
η

2

∑
i∈V

∑
j∈Bi

(
||µi − φij ||2 + ||φij − µj ||2

)]

103

=

Ni∑
n=1

{
− ai(xin − µi) + aiWiE[zin]

}

+
∑
j∈Bi

(γij1 − γji2) +
∂

∂µi

η∑
j∈Bi

{
||µi − φij ||2 + ||φji − µi||2

}
= −ai

Ni∑
n=1

xin +Niaiµi + ai

Ni∑
n=1

WiE[zin]

+
∑
j∈Bi

(γij1 − γji2) + 2η
∑
j∈Bi

(µi − φij) (B.34)

If we substitute the closed form solution of φij , i.e., (B.21) into (B.34) while taking t

notations back, we get

0 = −ai
Ni∑
n=1

xin +Niaiµi + ai

Ni∑
n=1

WiE[zin] +
∑
j∈Bi

(γij1 − γji2)

+ 2η
∑
j∈Bi

(
µi −

{
1

2η
(γij1(t− 1)− γij2(t− 1)) +

1

2
(µ

(t)
i + µ

(t)
j)

})
= −ai

Ni∑
n=1

xin +Niaiµi + ai

Ni∑
n=1

WiE[zin] +
∑
j∈Bi

(γij1 − γji2)

+ 2η
∑
j∈Bi

(
µi −

1

2
(µ

(t)
i + µ

(t)
j)

)
(∵ γ

(t)
ij1 = γ

(t)
ij2)

= (Niai + 2η|Bi|)µi

− ai
Ni∑
n=1

xin + ai

Ni∑
n=1

WiE[zin] +
∑
j∈Bi

(γij1 − γji2)− η
∑
j∈Bi

(
µ

(t)
i + µ

(t)
j)
)

∴ µ
(t+1)
i = (Niai + 2η|Bi|)−1

·

ai
Ni∑
n=1

(xin −WiE[zin])− 2γ
(t)
i + η

∑
j∈Bi

(
µ

(t)
i + µ

(t)
j)
) (B.35)

if we define γi =
∑
Bi

γij and apply Proposition 1.

Computing (B.4): We can apply the same approach to find the update for Wi.

We will use following properties of trace of matrix:

∂tr[ABA>]

∂A
= A(B + B>), (B.36)

∂tr[A>B]

∂A
= B. (B.37)

104

Now,

∂L(Φi)

∂Wi
=

∂

∂Wi

[
Ni∑
n=1

{
ai
2
tr
[
E[zinz

>
in]W>

i Wi

]
− aiE[zin]>W>

i (xin − µi)

}

+
∑
i∈V

∑
j∈Bi

(
λ>ij1(Wi − ρij) + λ>ij2(ρij −Wj)

)

+
η

2

∑
i∈V

∑
j∈Bi

(||Wi − ρij ||2 + ||ρij −Wj ||2)

]
.

By applying the properties (B.36) and (B.37), we get

0 =
∂

∂Wi

[
Ni∑
n=1

{
ai
2
tr
[
E[zinz

>
in]W>

i Wi

]
− aiE[zin]>W>

i (xin − µi)

}]

+
∑
j∈Bi

(λij1 − λji2) + 2η
∑
j∈Bi

(
Wi −

1

2
(W

(t)
i + W

(t)
j)

)

=

Ni∑
n=1

{
aiWiE[zinz

>
in]− ai(xin − µi)E[zin]>

}

+
∑
j∈Bi

(λij1 − λji2) + 2η
∑
j∈Bi

(
Wi −

1

2
(W

(t)
i + W

(t)
j)

)
(B.38)

∴ W
(t+1)
i =

ai
Ni∑
n=1

(xin − µi)E[zin]> − 2λ
(t)
i + η

∑
j∈Bi

(
(W

(t)
i + W

(t)
j)
)

·

(
ai

Ni∑
n=1

E[zinz
>
in] + 2η|Bi|I

)−1

(B.39)

as we define λi =
∑
Bi

λij and apply Proposition 1.

105

Appendix C

Bregman ADMM (B-ADMM)

In this appendix, we briefly review a generalization of the ADMM algorithm using

Bregman divergence [140] proposed by Wang and Banerjee [6]. The Bregman divergence

is defined as following.

Definition 1. (Bregman [140], Banerjee, et al. [98]) Let φ : Ω → R be a real-valued,

continuously differentiable, strictly convex function where Ω being a closed convex set.

Then, the Bregman divergence between two points p,q ∈ Ω is defined as

Bφ(p,q) = φ(p)− φ(q)− 〈φ(q),p− q〉 (C.1)

where 〈·, ·〉 denotes the inner product.

When φ(p) = 〈p,p〉, the Bregman divergence becomes squared Euclidean dis-

tance [98]. When φ is the negative entropy, i.e., φ(p) =
∑Dp

d=1 pd log2 pd, where pd

denotes d-th element of p ∈ RDp and
∑Dp

d=1 pd = 1, the Bregman divergence becomes

Kullback-Leibler divergence [96].

As explained in Appendix A, we use squared norm for ensuring strict convexity in

the standard ADMM optimization. In Bregman ADMM [6], we replace the squared

norm with the Bregman divergence. We assume Bφ(c −Ax,By) is well defined. It is

straightforward to see that the squared Euclidean norm is a special case of Bregman

divergence when φ(p) = 〈p,p〉 as

Bφ(c−Ax,By) = 〈c−Ax, c−Ax〉 − 〈By,By〉 − 〈c−Ax−By, 2By〉 (C.2)

= 〈c−Ax, c−Ax〉+ 〈By,By〉 − 2 · 〈c−Ax,By〉 (C.3)

= ‖c−Ax−By‖2 (C.4)

= ‖Ax + By − c‖2. (C.5)

106

The augmented Lagrangian A.5 becomes

Lρ(x,y,λ) = f(x) + g(y) + λ> (Ax + By − c) + ρBφ (c−Ax,By) . (C.6)

However, we cannot optimize C.6 alternatingly as in the standard ADMM case since

the Bregman divergence is not necessarily convex in the second argument. Specifi-

cally, one can minimize Lρ(x,yt,λt) with the term Bφ
(
c−Ax,Byt

)
with respect to

x, but it can be challenging to minimize Lρ(xt+1,y,λt) with respect to y because

Bφ
(
c−Axt+1,By

)
is not necessarily convex in y. Wang and Banerjee [6] proposed to

use the reverse of the parameters, i.e., Bφ
(
By, c−Axt+1

)
to resolve this issue. The

Bregman ADMM (B-ADMM) algorithm alternatingly minimizes using the following

update steps:

xt+1 = arg min
x

f(x) + λt>
(
Ax + Byt − c

)
+ ρBφ

(
c−Ax,Byt

)
(C.7)

yt+1 = arg min
y

g(y) + λt>
(
Axt+1 + By − c

)
+ ρBφ

(
By, c−Axt+1

)
(C.8)

λt+1 = λt + ρ
(
Axt+1 + Byt+1 − c

)
. (C.9)

Futher generalization of the B-ADMM algorithm can be found in [6].

107

Appendix D

Message Passing ADMM

In this appendix, we briefly explain the message passing interpretation of the ADMM

optimization algorithm [141, 142, 143]. The standard ADMM algorithm can be used

to solve the following consensus-based convex optimization problem

arg min
x,z

f(x) + g(z)

s.t. x = z (D.1)

where x, z are variables and f , g are proper convex functions. Then the augmented

Lagrangian will be

Lρ = f(x) + g(z) + y>(x− z) +
ρ

2
‖x− z‖2 (D.2)

where y is the Lagrange multiplier and one can solve this with updates as

xt+1 = arg min
x

(
f(x) + yt>x +

ρ

2
‖x + zt‖2

)
(D.3)

zt+1 = arg min
z

(
g(z)− yt>z +

ρ

2
‖xt+1 − z‖2

)
(D.4)

yt+1 = yt + ρ(xt+1 − zt+1). (D.5)

The message passing ADMM further modifies the objective (D.2) as

Lρ = f(x) + g(z) + u>ρ(x− z) +
ρ

2
‖x− z‖2 (D.6)

by introducing a scaled dual variable u = y/ρ. Then the linear penalty term in the

updates of ADMM can be incorporated into the squared regularizer term as

xt+1 = arg min
x

(
f(x) +

ρ

2
‖x− nt‖2

)
(D.7)

zt+1 = arg min
z

(
g(z) +

ρ

2
‖z−mt‖2

)
(D.8)

ut+1 = ut + (xt+1 − zt+1). (D.9)

108

where we defined messages at iteration t as

mt = xt + ut (D.10)

nt = zt − ut. (D.11)

This is because the extra term −(ρ/2) · ‖ut‖2 remained after completing the square can

be ignored when minimizing with respect to x and z. Note that by defining the mes-

sages, we can fully separate each coordinate update step for xt and zt to be independent

from the other variable.

109

References

[1] S. Yoon and V. Pavlovic, “Distributed probabilistic learning for camera networks
with missing data,” in Bartlett et al. [144], pp. 2933–2941. v, 48, 50, 54, 56, 63,
64, 96

[2] B. Babagholami-Mohamadabadi, S. Yoon, and V. Pavlovic, “Mean field vari-
ational inference using Bregman ADMM for distributed camera network,” in
Proceedings of the 9th International Conference on Distributed Smart Camera,
Seville, Spain, September 8-11, 2015 (R. Carmona-Galán and Á. Rodŕıguez-
Vázquez, eds.), pp. 209–210, ACM, 2015. v

[3] B. Gholami, S. Yoon, and V. Pavlovic, “Decentralized Approximate Bayesian
Inference for Distributed Sensor Network,” in Schuurmans and Wellman [145],
pp. 1582–1588. v, 48

[4] C. Song, S. Yoon, and V. Pavlovic, “Fast ADMM algorithm for distributed opti-
mization with adaptive penalty,” in Schuurmans and Wellman [145], pp. 753–759.
v, 64

[5] S. Yoon, M. Kapadia, P. Sahu, and V. Pavlovic, “Filling in the blanks: recon-
structing microscopic crowd motion from multiple disparate noisy sensors,” in
2016 IEEE Winter Applications of Computer Vision Workshops, WACV 2016
Workshops, Lake Placid, NY, USA, March 10, 2016, pp. 1–9, IEEE Computer
Society, 2016. v

[6] H. Wang and A. Banerjee, “Bregman alternating direction method of multipliers,”
in Advances in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada (Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, eds.), pp. 2816–2824, 2014. v, 43, 45, 105, 106

[7] J. Bennett and S. Lanning, “The Netflix Prize,” in In KDD Cup and Workshop
in conjunction with KDD, 2007. 2

[8] S. Zilberstein and S. Russell, “Anytime sensing, planning and action: A prac-
tical model for robot control,” in International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1402–1407, 1993. 3

[9] G. B. Giannakis, Q. Ling, G. Mateos, I. D. Schizas, and H. Zhu, “Decentralized
learning for wireless communications and networking,” in Splitting Methods in
Communication and Imaging, Science and Engineering (R. Glowinski, S. Osher,
and W. Yin, eds.), Springer, Mar. 2015. 3, 15

[10] R. Tron and R. Vidal, “Distributed Computer Vision Algorithms,” IEEE Signal
Processing Magazine, vol. 28, pp. 32–45, 2011. 3, 4, 16, 17, 19

110

[11] M. E. Tipping and C. M. Bishop, “Probabilistic Principal Component Analysis,”
Journal of the Royal Statistical Society, Series B, vol. 61, pp. 611–622, 1999. 6,
25, 48, 61

[12] J. Bento, N. Derbinsky, J. Alonso-Mora, and J. S. Yedidia, “A message-passing al-
gorithm for multi-agent trajectory planning,” in Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Process-
ing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States. (C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q.
Weinberger, eds.), pp. 521–529, 2013. 6, 68, 74, 75, 77, 78, 79, 80

[13] J. Bento, N. Derbinsky, C. Mathy, and J. S. Yedidia, “Proximal operators for
multi-agent path planning,” in Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. (B. Bonet
and S. Koenig, eds.), pp. 3657–3663, AAAI Press, 2015. 6, 77, 79

[14] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods. Prentice Hall, 1989. 7, 8, 9, 10, 11, 12

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimiza-
tion and Statistical Learning via the Alternating Direction Method of Multipli-
ers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010.
9, 12, 13, 24, 45, 56, 57, 58, 68, 93

[16] R. Rockafellar, Convex Analysis. Princeton University Press, 1970. 10

[17] G. B. Dantzig and P. Wolfe, “Decomposition Principle for Linear Programs,”
Operations Research, vol. 8, pp. 101–111, 1960. 10

[18] J. F. Benders, “Partitioning procedures for solving mixed-variables programming
problems,” Numerische Mathematik, vol. 4, pp. 238–252, September 1962. 10

[19] D. P. Palomar and M. Chiang, “A Tutorial on Decomposition Methods for Net-
work Utility Maximization,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 8, 2006. 10

[20] D. Bertsekas, Nonlinear Programming. Athena Scientific, 2nd ed., 1999. 10, 11

[21] J. Mota, Communication-Efficient Algorithms For Distributed Optimization. PhD
thesis, Universidade Técnica de Lisboa Instituto Superior Técnico and Carnegie
Mellon University, 2013. 11, 13, 14

[22] M. Balinski and P. Wolfe, eds., Nondifferentiable Optimization, vol. 3 of Mathe-
matical Programming Studies. Springer Berlin Heidelberg. 11

[23] M. R. Hestenes, “Multiplier and Gradient Methods,” Journal of Optimization
Theory and Applications, vol. 4, no. 5, pp. 303–320, 1969. 11, 94

[24] M. J. D. Powell, “A method for nonlinear constraints in minimization problems,”
in Optimization (R. Fletcher, ed.), pp. 283–298, Academic Press, 1969. 11, 94

[25] R. Rockafellar, “Augmented Lagrangians and applications of the proximal point
algorithm in convex programming,” Mathematics of Operations Research, vol. 1,
no. 2, pp. 97–116, 1976. 12

111

[26] R. Glowinski and A. Marroco, “Sur l’approximation, par lments finis d’ordre un,
et la rsolution, par pnalisation-dualit d’une classe de problmes de Dirichlet non
linaires,” ESAIM: Mathematical Modelling and Numerical Analysis - Modlisation
Mathmatique et Analyse Numrique, vol. 9, no. R2, pp. 41–76, 1975. 12

[27] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear vari-
ational problems via finite element approximation,” Computers & Mathematics
with Applications, vol. 2, no. 1, pp. 17 – 40, 1976. 12

[28] T. Erseghe, D. Zennaro, E. DallAnese, and L. Vangelista, “Fast consensus by the
alternating direction multipliers method,” IEEE Trans. Signal Processing, vol. 59,
no. 11, pp. 5523–5537, 2011. 13, 14

[29] M. DeGroot, “Reaching a consensus,” J. American Statistical Association, vol. 69,
no. 345, pp. 118–121, 1974. 13

[30] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc WSNs with noisy
links - Part I: Distributed estimation of deterministic signals,” IEEE Trans. Signal
Processing, vol. 56, no. 1, pp. 350–364, 2008. 13

[31] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and A. Ribeiro, “Consensus in
ad hoc WSNs with noisy links- Part II: Distributed estimation and smoothing of
random signals,” IEEE Trans. Signal Processing, vol. 56, no. 4, pp. 1650–1666,
2008. 13

[32] H. Zhu, G. Giannakis, and A. Cano, “Distributed in-network channel decoding,”
IEEE Trans. Signal Processing, vol. 57, no. 10, pp. 3970–3983, 2009. 13

[33] S.-J. Kim, E. DallAnese, and G. B. Giannakis, “Cooperative spectrum sensing
for cognitive radios using Kriged Kalman filtering,” IEEE J. Selected Topics in
Signal Processing, vol. 5, no. 1, pp. 24–36, 2011. 13

[34] J. Mota, J. Xavier, P. Aguiar, and M. Puschel, “D-ADMM: A communication-
efficient distributed algorithm for separable optimization,” IEEE Transactions on
Signal Processing, vol. 61, no. 10, pp. 2718–2723, 2013. 13

[35] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-Based Distributed Sup-
port Vector Machines,” Journal of Machine Learning Research, vol. 11, pp. 1663–
1707, 2010. 14, 24, 30

[36] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed Clustering Using Wire-
less Sensor Networks,” IEEE Journal of Selected Topics in Signal Processing,
vol. 5, August 2011. 14, 15, 21, 23, 27, 54, 56, 61, 96, 100, 101

[37] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in
multi-agent coordination,” in Proceedings of the 2005, American Control Confer-
ence, 2005., pp. 1859–1864 vol. 3, June 2005. 14

[38] M. J. Zaki and C.-T. Ho, eds., Large-Scale Parallel Data Mining. Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2000. 14

[39] H. Kargupta and P. Chan, eds., Advances in Distributed and Parallel Knowledge
Discovery. The MIT Press, 2000. 14

112

[40] A. A. Freitas and S. H. Lavington, Mining Very Large Databases with Parallel
Processing. Advances in Database Systems, Springer US, 2000. 14

[41] R. Bekkerman, M. Bilenko, and J. Langford, eds., Scaling up machine learning :
parallel and distributed approaches. Cambridge University Press, 2012. 14, 15

[42] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” in Sixth Symposium on Operating System Design and Implementation
(OSDI), 2004. 15

[43] D. Newman, A. Asuncion, P. Smyth, and M. Welling, “Distributed Algorithms
for Topic Models,” Journal of Machine Learning Research, pp. 1801–1828, 2009.
15

[44] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P. Xing, “On Model
Parallelization and Scheduling Strategies for Distributed Machine Learning,” in
Advances in Neural Information Processing Systems 27, 2014. 15

[45] H.-F. Yu, C.-J. Hsieh, H. Yun, S. Vishwanathan, and I. S. Dhillon, “A Scalable
Asynchronous Distributed Algorithm for Topic Modeling,” in Proceedings of the
24th International Conference on World Wide Web, WWW ’15, (New York, NY,
USA), pp. 1340–1350, ACM, 2015. 15

[46] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing, T.-Y. Liu, and
W.-Y. Ma, “LightLDA: Big Topic Models on Modest Computer Clusters,” in
Proceedings of the 24th International Conference on World Wide Web, WWW
’15, (New York, NY, USA), pp. 1351–1361, ACM, 2015. 15

[47] S. Zhu and Z. Ding, “Distributed cooperative localization of wireless sensor net-
works with convex hull constraint,” IEEE Transactions on Wireless Communi-
cations, vol. 10, pp. 2150–2161, July 2011. 15

[48] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for cognitive
radio networks by exploiting sparsity,” IEEE Transactions on Signal Processing,
vol. 58, pp. 1847–1862, March 2010. 15

[49] A. H. Sayed, “Adaptive Networks,” Proceedings of the IEEE, vol. 102, no. 4, 2014.
15

[50] B. Wang and K. J. R. Liu, “Advances in cognitive radio networks: A survey,”
IEEE Journal of Selected Topics in Signal Processing, vol. 5, pp. 5–23, Feb 2011.
15

[51] W. Jouini, C. Moy, and J. Palicot, “Decision making for cognitive radio equip-
ment: analysis of the first 10 years of exploration,” EURASIP Journal on Wireless
Communications and Networking, 2012. 15

[52] R. Olfati-Saber, “Distributed Kalman Filtering for Sensor Networks,” in Decision
and Control, 2007 46th IEEE Conference on, pp. 5492 –5498, dec. 2007. 15, 16

[53] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng, “Large scale
distributed deep networks,” in Bartlett et al. [144], pp. 1232–1240. 16

113

[54] A. Yang, S. Maji, C. Christoudias, T. Darrell, J. Malik, and S. Sastry, “Multiple-
view Object Recognition in Band-limited Distributed Camera Networks,” in Dis-
tributed Smart Cameras, 2009. ICDSC 2009. Third ACM/IEEE International
Conference on, 30 2009-sept. 2 2009. 16

[55] R. J. Radke, “A Survey of Distributed Computer Vision Algorithms,” in Handbook
of Ambient Intelligence and Smart Environments (H. Nakashima, H. Aghajan,
and J. C. Augusto, eds.), Springer Science+Business Media, LLC, 2010. 16

[56] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multi-camera people track-
ing with a probabilistic occupancy map,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 30, pp. 267–282, February 2008. 16, 19

[57] M. Taj and A. Cavallaro, “Distributed and decentralized multicamera tracking,”
IEEE Signal Processing Magazine, vol. 28, pp. 46–58, May 2011. 16

[58] A. Wiesel and A. Hero, “Decomposable Principal Component Analysis,” Signal
Processing, IEEE Transactions on, vol. 57, no. 11, pp. 4369–4377, 2009. 16

[59] S. V. Macua, P. Belanovic, and S. Zazo, “Consensus-based Distributed Principal
Component Analysis in Wireless Sensor Networks,” in Signal Processing Advances
in Wireless Communications (SPAWC), 2010 IEEE Eleventh International Work-
shop on, pp. 1–5, June 2010. 16

[60] R. Tron and R. Vidal, “Distributed Computer Vision Algorithms Through Dis-
tributed Averaging,” in IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 57–63, June 2011. 16, 19, 33, 34, 36, 37, 49,
63, 71

[61] L. Xiao, S. Boyd, and S. Lall, “A Scheme for Robust Distributed Sensor Fu-
sion Based on Average Consensus,” in International Conference on Information
Processing in Sensor Networks, pp. 63–70, April 2005. 16

[62] X. Wang and S. Wang, “Collaborative signal processing for target tracking in
distributed wireless sensor networks,” Journal of Parallel and Distributed Com-
puting, vol. 67, no. 5, pp. 501 – 515, 2007. 16

[63] B. Song, A. Kamal, C. Soto, C. Ding, J. Farrell, and A. Roy-Chowdhury, “Track-
ing and Activity Recognition Through Consensus in Distributed Camera Net-
works,” Image Processing, IEEE Transactions on, vol. 19, pp. 2564 –2579, oct.
2010. 16, 71

[64] P. Moreels and P. Perona, “Evaluation of Features Detectors and Descrip-
tors based on 3D Objects,” International Journal of Computer Vision, vol. 73,
pp. 263–284, July 2007. 18, 34, 50, 63

[65] M. Ozuysal, V. Lepetit, and P.Fua, “Pose Estimation for Category Specific Multi-
view Object Localization,” in Conference on Computer Vision and Pattern Recog-
nition, (Miami, FL), June 2009. 18

[66] R. Tron and R. Vidal, “A Benchmark for the Comparison of 3-D Motion Segmen-
tation Algorithms,” in IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1–8, June 2007. 19, 35, 50, 63

114

[67] L. Sigal, A. O. Balan, and M. J. Black, “HumanEva: Synchronized Video and
Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated
HumanMotion,” International Journal of Computer Vision, vol. 87, no. 1, pp. 4–
27, 2009. 19

[68] S. Essid, X. Lin, M. Gowing, G. Kordelas, A. Aksay, P. Kelly, T. Fillon, Q. Zhang,
A. Dielmann, V. Kitanovski, R. Tournemenne, N. E. O’Connor, P. Daras, and
G. Richard, “A multimodal dance corpus for research into real-time interaction
between humans in online virtual environments,” in ICMI Workshop On Multi-
modal Corpora For Machine Learning, (Alicante, Spain), Nov. 2011. 19

[69] M. Alcântara, T. Moreira, and H. Pedrini, “Real-Time Action Recognition Based
On Cumulative Motion Shapes,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014. 19

[70] J. Ferryman and A. Shahrokni, “Pets2009: Dataset and challenge,” in 11th IEEE
International Workshop on Performance Evaluation of Tracking and Surveillance
(PETS), 2009. 19

[71] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple Object Tracking using
K-Shortest Paths Optimization,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2011. 19

[72] S. Zhang, E. Staudt, T. Faltemier, and A. Roy-Chowdhury, “A Camera Net-
work Tracking (CamNeT) Dataset and Performance Baseline,” in IEEE Winter
Conference on Applications of Computer Vision, 2015. 20

[73] G. Denina, B. Bhanu, H. Nguyen, C. Ding, A. Kamal, C. Ravishankar, A. Roy-
Chowdhury, A. Ivers, and B. Varda, “VideoWeb Dataset for Multi-camera Ac-
tivities and Non-verbal Communication,” in Distributed Video Sensor Networks
(B. Bhanu, C. Ravishankar, A. Roy-Chowdhury, H. Aghajan, and D. Terzopoulos,
eds.), Springer, 2010. 20

[74] A. Das, A. Chakraborty, and A. Roy-Chowdhury, “Consistent Re-identification
In A Camera Network,” in European Conference on Computer Vision, vol. 8690,
pp. 330–345, 2014. 20

[75] D. Baltieri, R. Vezzani, and R. Cucchiara, “3D Body Model Construction and
Matching for Real Time People Re-Identification,” in Proceedings of Eurographics
Italian Chapter Conference 2010 (EG-IT 2010), (Genova, Italy), Nov. 2010. 20

[76] D. Baltieri, R. Vezzani, and R. Cucchiara, “SARC3D: a new 3D body model for
People Tracking and Re-identification,” in Proceedings of the 16th International
Conference on Image Analysis and Processing, (Ravenna, Italy), pp. 197–206,
Sept. 2011. 20

[77] D. Baltieri, R. Vezzani, and R. Cucchiara, “3DPes: 3D People Dataset for Surveil-
lance and Forensics,” in Proceedings of the 1st International ACM Workshop on
Multimedia access to 3D Human Objects, (Scottsdale, Arizona, USA), pp. 59–64,
Nov. 2011. 20

115

[78] M. Hofmann and D. Gavrila, “Multi-view 3D Human Upper Body Pose Estima-
tion combining Single-frame Recovery, Temporal Integration and Model Adapta-
tion,” in IEEE Conference on Computer Vision and Pattern Recognition, 2009.
20

[79] M. Hofmann and D. Gavrila, “Multi-view 3D Human Pose Estimation in Complex
Environment,” International Journal of Computer Vision, vol. 96, no. 1, pp. 103–
124, 2012. 20

[80] M. C. Liem and D. M. Gavrila, “A comparative study on multi-person tracking
using overlapping cameras,” in International Conference on Computer Vision
Systems (ICVS), vol. 7963 of Lecture Notes in Computer Science, pp. 203–212,
2013. 20

[81] S. Roweis and Z. Ghahramani, “A Unifying Review of Linear Gaussian Models,”
Neural Computation, vol. 11, pp. 305–345, 1999. 21

[82] A. R. Conn, N. I. M. Gould, and P. L. Toint, “A globally convergent aug-
mented Lagrangian algorithm for optimization with general constraints and sim-
ple bounds,” SIAM J. Numer. Anal., vol. 28, pp. 545–572, February 1991. 24

[83] R. M. Lewis and V. Torczon, “A Globally Convergent Augmented Lagrangian
Pattern Search Algorithm for Optimization with General Constraints and Simple
Bounds,” SIAM J. on Optimization, vol. 12, pp. 1075–1089, April 2002. 24

[84] A. Ilin and T. Raiko, “Practical approaches to principal component analysis in
the presence of missing values,” Journal of Machine Learning Research, vol. 11,
pp. 1957–2000, 2010. 28, 30, 33, 48

[85] C. Tomasi and T. Kanade, “Shape and motion from image streams under or-
thography: a factorization method,” International Journal of Computer Vision,
vol. 9, pp. 137–154, 1992. 10.1007/BF00129684. 32

[86] C. Tomasi and T. Kanade, “Detection and Tracking of Point Features,” Tech.
Rep. CMU-CS-91-132, Carnegie Mellon University, April 1991. 35

[87] Y. Chikuse, Statistics on Special Manifolds, vol. 174 of Lecture Notes in Statistics.
Springer, 1 ed., Feb. 2003. 37

[88] Z. Ghahramani and M. Beal, “Variational inference for Bayesian mixtures of
factor analysers,” in Advances in Neural Information Processing Systems (NIPS),
2000. 40, 45

[89] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” Journal of Machine
Learning Research, vol. 3, pp. 993–1022, Jan 2003. 40

[90] H. Attias, “A variational Bayesian framework for graphical models,” in Advances
in Neural Information Processing Systems (NIPS), 2000. 40

[91] E. Fox, E. Sudderth, M. Jordan, and Willsky, “A sticky HDP-HMM with appli-
cation to speaker diarization,” Annals of Applied Statistics, vol. 5, pp. 1020–1056,
2011. 40

116

[92] J. Paisley and L. Carin, “Nonparametric factor analysis with beta process priors,”
in International Conference on Machine Learning (ICML), 2009. 40

[93] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduction to varia-
tional methods for graphical models,” Machine Learning, vol. 37, no. 2, pp. 183–
233, 1999. 40

[94] M. Hoffman, D. Blei, C. Wang, and J. Paisly, “Stochastic Variational Inference,”
Journal of Machine Learning Research, vol. 14, pp. 1303–1347, 2013. 40

[95] S. Ahn, B. Shahbaba, and M. Welling, “Distributed Stochastic Gradient MCMC,”
JMLR: W&CP, vol. 32, 2014. Proceedings of The 31st International Conference
on Machine Learning. 40

[96] S. Kullback, Information Theory and Statistics. John Wiley & Sons, 1959. 40,
105

[97] D. J. MacKay, Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003. 40

[98] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with bregman
divergences,” Journal of Machine Learning Research, vol. 6, pp. 1705–1749, Dec.
2005. 44, 105

[99] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-theoretic
metric learning,” in International Conference on Machine Learning (ICML),
(Corvalis, Oregon, USA), pp. 209–216, June 2007. 44

[100] R. Liu, Z. Lin, F. De la Torre, and Z. Su, “Fixed-rank representation for unsu-
pervised visual learning,” in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pp. 598–605, 2012. 52

[101] L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, and N. Yu, “Non-negative low rank
and sparse graph for semi-supervised learning,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, 2012. 52

[102] E. Elhamifar, G. Sapiro, A. Y. Yang, and S. S. Sastry, “A Convex Optimization
Framework for Active Learning,” in IEEE International Conference on Computer
Vision, (ICCV), pp. 209–216, 2013. 52

[103] Z. Zeng, S. Xiao, K. Jia, T. Chan, S. Gao, D. Xu, and Y. Ma, “Learning by associ-
ating ambiguously labeled images,” in Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pp. 708–715, 2013. 52

[104] C. Wang, Y. Wang, Z. Lin, A. L. Yuille, and W. Gao, “Robust estimation of 3d
human poses from a single image,” in Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on, pp. 2369–2376, 2014. 52

[105] K.-T. Lai, D. Liu, M.-S. Chen, and S.-F. Chang, “Recognizing complex events in
videos by learning key static-dynamic evidences,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2014, vol. 8691 of Lecture Notes in
Computer Science, pp. 675–688, 2014. 52

117

[106] H. Boussaid and I. Kokkinos, “Fast and Exact: ADMM-Based Discriminative
Shape Segmentation with Loopy Part Models,” in Computer Vision and Pattern
Recognition (CVPR), IEEE Conference on, 2014. 52

[107] O. Miksik, V. Vineet, P. Pérez, and P. H. S. Torr, “Distributed Non-Convex
ADMM-inference in Large-scale Random Fields,” in British Machine Vision Con-
ference (BMVC), 2014. 52, 54

[108] B. He, H. Yang, and S. Wang, “Alternating Direction Method with Self-Adaptive
Penalty Parameters for Monotone Variational Inequalities,” Journal of Optimiza-
tion Theory and Applications, vol. 106, pp. 337–356, August 2000. 52, 55, 57,
58

[109] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006. 54

[110] B. He and X. Yuan, “On the O(1/n) Convergence Rate of the Douglas-Rachford
Alternating Direction Method,” SIAM Journal of Numerical Analysis, vol. 50,
no. 2, pp. 700–709, 2012. 55

[111] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast Alternating
Direction Optimization Methods,” SIAM Journal of Imaging Science, vol. 7, no. 3,
pp. 1588–1623, 2014. 55

[112] Y. Nesterov, “A method of solving a convex programming problem with conver-
gence rate o(1/k2),” Soviet Math. Dokl., vol. 27, pp. 372–376, 1983. 55

[113] H. Ouyang, N. He, L. Tran, and A. Gray, “Stochastic alternating direction method
of multipliers.,” in In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML), 2013. 55

[114] T. Suzuki, “Dual averaging and proximal gradient descent for online alternating
direction multiplier method,” in Proceedings of the 30th International Conference
on Machine Learning (ICML), 2013. 55

[115] Z. Xu, M. A. T. Figueiredo, and T. Goldstein, “Adaptive ADMM with spectral
penalty parameter selection,” CoRR, vol. abs/1605.07246, 2016. 55

[116] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM
Journal on Control and Optimization, vol. 14, p. 877, 1976. 56

[117] S. Ali, K. Nishino, D. Manocha, and M. Shah, Modeling, Simulation and Vi-
sual Analysis of Crowds: A Multidisciplinary Perspective. Springer Publishing
Company, Incorporated, 2013. 66, 69

[118] B. Zhan, D. Monekosso, P. Remagnino, S. Velastin, and L.-Q. Xu, “Crowd anal-
ysis: a survey,” Machine Vision Applications, vol. 19, pp. 345–357, 2008. 66,
69

[119] R. Mazzon and A. Cavallaro, “Multi-camera tracking using a Multi-Goal Social
Force Model,” Neurocomputing, vol. 100, pp. 41–50, 2013. 66, 69, 70, 71

[120] S. Ali and M. Shah, “Floor Fields for Tracking in High Density Crowd Scenes,”
in ECCV, 2008. 66, 69

118

[121] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll Never Walk Alone:
Modeling Social Behavior for Multi-target Tracking,” in IEEE International Con-
ference on Computer Vision, 2009. 67, 69, 70

[122] G. Antonini, S. Martinez, M. Bierlaire, and J. Thiran, “Behavioral priors for
detection and tracking of pedestrians in video sequences,” International Journal
of Computer Vision, vol. 96, pp. 159–180, 2006. 67

[123] A. J. D. Helbing, L. Buzna and T. Werner, “Self-organized pedestrian crowd dy-
namics: Experiments, simulations, and design solutions,” Transportation Science,
vol. 39, no. 1, pp. 1–24, 2005. 67

[124] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People Tracking with Hu-
man Motion Predictions from Social Forces,” in IEEE International Conference
on Robotics and Automation, 2010. 67

[125] S. Avidan, Y. Moses, and Y. Moses, “Centralized and distributed multi-view
correspondence,” Int. J. Comput. Vision, vol. 71, pp. 49–69, Jan. 2007. 67

[126] J. Jacques Junior, S. Raupp Musse, and C. Jung, “Crowd analysis using computer
vision techniques,” Signal Processing Magazine, IEEE, vol. 27, pp. 66–77, Sept
2010. 69

[127] M. Kapadia, N. Pelechano, and J. Allbeck, Virtual Crowds: Steps Toward Behav-
ioral Realism. MORGAN & CLAYPOOL, 2015. 69, 71

[128] M. Hu, S. Ali, and M. Shah, “Learning Motion Patterns in Crowded Scenes Using
Motion Flow Field,” in ICPR, 2008. 69

[129] M. Rodriguez, S. Ali, and T. Kanade, “Tracking in Unstructured Crowded
Scenes,” in ICCV, 2009. 69

[130] S. Pellegrini, A. Ess, M. Tanaskovic, and L. V. Gool, “Wrong turn - no dead end:
a stochastic pedestrian motion model,” in International Workshop on Socially
Intelligent Surveillance and Monitoring (SISM), 2010. 69

[131] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Phys.
Rev. E, vol. 51, pp. 4282–4286, May 1995. 69, 71, 80, 81

[132] S. Pellegrini and L. V. Gool, “Tracking with a mixed continuous-discrete condi-
tional random field,” Computer Vision and Image Understanding, January 2013.
70

[133] A. Bera and D. Manocha, “Realtime Multilevel Crowd Tracking using Reciprocal
Velocity Obstacles,” in 22nd International Conference on Pattern Recognition,
2014. 70

[134] A. Bera, S. Kim, and D. Manocha, “Efficient Trajectory Extraction and Param-
eter Learning for Data-Driven Crowd Simulation,” in Graphics Interface, 2015.
70

[135] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal Velocity Obstacles for
Real-Time Multi-Agent Navigation,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2008. 70, 71

119

[136] A. Bera, N. Galoppo, D. Sharlet, A. Lake, and D. Manocha, “AdaPT: Real-time
adaptive pedestrian tracking for crowded scenes,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pp. 1801–1808, May 2014. 70

[137] A. Alahi, V. Ramanathan, and L. Fei-Fei, “Socially-aware large-scale crowd fore-
casting,” in Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Con-
ference on, pp. 2211–2218, June 2014. 70

[138] R. Eshel and Y. Moses, “Tracking in a dense crowd using multiple cameras.,”
International Journal of Computer Vision, vol. 88, no. 1, pp. 129–143, 2010. 70

[139] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example.,” Comput.
Graph. Forum, vol. 26, no. 3, pp. 655–664, 2007. 71

[140] L. M. Bregman, “The relaxation method of finding the common points of convex
sets and its application to the solution of problems in convex programming,”
USSR Computational Mathematics and Mathematical Physics, vol. 7, pp. 200–
217, 1967. 105

[141] J. S. Yedidia, “Message-passing algorithms for inference and optimization,” Jour-
nal of Statistical Physics, vol. 145, no. 4, pp. 860–890, 2011. 107

[142] J. S. Yedidia, Y. Wang, and S. C. Draper, “Divide and concur and difference-map
BP decoders for LDPC codes,” IEEE Trans. Information Theory, vol. 57, no. 2,
pp. 786–802, 2011. 107

[143] N. Derbinsky, J. Bento, V. Elser, and J. S. Yedidia, “An improved three-weight
message-passing algorithm,” CoRR, vol. abs/1305.1961, 2013. 107

[144] P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
eds., Advances in Neural Information Processing Systems 25: 26th Annual Con-
ference on Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States, 2012. 109, 112

[145] D. Schuurmans and M. P. Wellman, eds., Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA, AAAI Press, 2016. 109

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Motivation
	Dissertation Statement and Contributions

	Distributed Learning: Problem Description and Review
	Problem Description
	Distributed Optimization and Learning
	Parallel vs. Distributed Learning
	Optimization for Parallel and Distributed Learning

	Distributed Learning Applications
	Distributed Learning in Machine Learning
	Distributed Learning for Visual Sensor Networks
	Benchmark Datasets for Camera Networks

	Generalized Distributed Probabilistic Learning
	Distributed Probabilistic Learning Model
	Centralized Setting
	Distributed Setting
	Decentralized Setting

	Example: Distributed Probabilistic Principal Component Analysis
	Principal Component Analysis (PCA)
	Probabilistic PCA (PPCA)
	Distributed PPCA (D-PPCA)
	Dealing with Missing Values in Input Data
	Evaluation

	Application: Distributed Computer Vision
	Affine Structure from Motion
	Results on Synthetic Data
	Results on Real Data

	Summary

	Extensions of Distributed Probabilistic Learning
	Online Distributed Probabilistic Learning
	Distributed Bayesian Learning Model
	Example: Distributed Bayesian PCA
	Application: Distributed Computer Vision

	Faster Optimization for Distributed Learning
	Need of Faster Convergence for Distributed Learning
	Improving Empirical Convergence of ADMM Optimization
	Example: D-PPCA using RB-based Penalty Update Criteria
	Application: Distributed Computer Vision

	Summary

	Applications in Multi-Agent Trajectory Estimation
	Crowd Trajectory Estimation
	Related Work
	Global Optimization-based Trajectory Estimation
	Notaion and Problem Definition
	Consensus-based Problem Formulation
	Constraints for Optimal Multi-Agent Trajectory
	Combined Global Objective Formulation and Optimization
	Discussions on Message Passing ADMM

	Evaluation
	Non-convex global optimization
	Robustness to missing tracklets and noise

	Summary

	Conclusion and Future Work
	Appendix A. Alternating Direction Method of Multipliers (ADMM)
	Appendix B. Full Derivation of D-PPCA
	Appendix C. Bregman ADMM (B-ADMM)
	Appendix D. Message Passing ADMM
	References

