
TOWARDS AUTOMATIC CONFIGURATION OF ACCESS CONTROL

by
Nazia Badar

A dissertation submitted to the
Graduate school-Newark

Rutgers, The State University of New Jersey
in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

Graduate Program in Management
Information Technology Major

Written under the direction of
Dr. Vijayalakshmi Atluri

Dr. Jaideep Vaidya
and approved by

Newark, New Jersey
October 2016

c© Copyright 2016

Nazia Badar

All Rights Reserved

DISSERTATION ABSTRACT

TOWARDS AUTOMATIC CONFIGURATION OF ACCESS CONTROL

By Nazia Badar

Dissertation Director: Dr. Vijayalakshmi Atluri and Dr. Jaideep Vaidya

Access control provide means to implement organizational security policies to both of its phys-

ical and electronic resources. To date, several access control mechanisms, including Role Based

Access Control (RBAC) and Discretionary Access Control (DAC) have been proposed. Regardless

of which security mechanism an organization adopts, once the system variables such as policies,

roles, and authorizations are defined, continuous configuration management of these systems be-

come necessary in order to ensure that the behavior of implemented system matches with the

expected system behavior. In recent years, configuration errors in access control system have

emerged as one of the key causes of system failure. Traditional access control system lacks the

ability to anticipate potential configuration errors. Therefore, these systems fail to gracefully react

to this problem. Configuration errors often occur either in the form of false positive or false neg-

ative authorizations. It is not trivial to manually identify such misconfigurations, and moreover,

existing methods of analyzing system configuration are not efficient in detecting misconfigurations.

Therefore, there is an acute need of better ways for automatic configuration of access control sys-

tems. This dissertation aims at developing efficient and automatic methodologies and tools for

ii

access control configuration management that are based on data mining technologies. Specifically,

it addresses the following three research issues.

The first research problem is based on using risk estimates for configuration management.

There exist a number of situations in which specific user permission assignments based on the se-

curity policy cannot be a priori decidable. These may include emergency and disaster management

situations where access to critical information is expected because of the need to share, and in some

cases, because of the responsibility to provide information. This dissertation has proposed novel

methodologies for dynamic computation of risk in such situations where preventing an access to a

resource has more deleterious effect than granting it, if the underlying risk is low. Moreover, it has

developed a model that facilitates risk-based access control in both DAC and RBAC cases. Also,

in case of RBAC, it has developed a method to determine situational role for a user. Computational

experiments performed on both synthetic and benchmark realdatasets, even in the presence of

noise, confirms the viability of the proposed approaches.

The second issue is to investigate the configuration management problems that arise as a result

of changes within a system or due to requests from users from collaborating organizations that do

not have explicit access to resources. This dissertation has proposed to exploit attribute semantics

of users to (semi)automate security configuration and management, and has proposed a methodol-

ogy to derive credential requirements for roles having permission to access requested object, based

on local access control policies using existing access control data. The proposed approach is based

on well-known data mining method known as classification. Experimental evaluation shows that

the proposed method has outperformed the previously proposed approach to address this problem.

Finally, the third research issue deals with automating theprocess of identifying and removing

misconfigurations in RBAC and DAC. Towards this end, this dissertation has proposed approaches

iii

to automate the process of detection of exceptionally or erroneously granted or denied authoriza-

tions in access control data. These approaches are based on using multiple classifiers to identify

anomalous assignments. An extensive experimental evaluation has been performed to demonstrate

the accuracy and performance of the proposed approaches.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisors, Dr. Vijay Atluri and Dr. Jaideep

Vaidya. It was not possible for me to thrive in my research without their support. I also wish to

thank my committee members who collaborated with me on this work, Dr. Nabil Adam, Dr. Soon

Ae Chun, and Dr. Basit Shafiq .Their insight was invaluable.

I also want to thank my parents and my siblings I owe them all mygratitude for believing

in me since the beginning, and for always being there for me. Ialso want to thank my husband,

Asad, who supported me with his patience and encouragement.Finally, I would like to thank my

daughter, Emaan - her giggles and little smiles make my worldgo round.

Thank you all!

v

To my parents, to whom I owe the greatest debt.
To my siblings, for their true love and for always believing in me.

To my husband, for his encouragement.
To my daughter, who is the most precious gift that I’ve ever been

given.

vi

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS. .. v

LIST OF TABLES. .. x

LIST OF FIGURES. .. xi

CHAPTER 1. INTRODUCTION .. 1

1.1 Configuration Error Management - Why automated configuration error detection and
resolution is necessary? .. 3

1.2 Problem Statement and Contributions 5

CHAPTER 2. RELATED WORK .. 10

2.1 Risk Based Access Control .. 10

2.2 Break Glass Approaches to Access Control 12

2.3 Coalition Based Access Control Systems 13

2.4 Misconfigurations in Access Control Systems 15

CHAPTER 3. PRELIMINARIES .. 18

3.1 Mandatory Access Control .. 18

3.2 Discretionary Access Control .. 19

3.3 Role Based Access Control .. 19

3.4 Attributes .. 21

3.4.1 User Attributes .. 21

3.4.2 Object Attributes .. 22

3.5 Classification .. 23

3.6 Feature Selection .. 26

vii

3.7 False Positive Assignments(FPs) in Access Control 27

3.8 False Negative Assignments(FNs) in Access Control 28

CHAPTER 4. USING RISK ESTIMATES FOR CONFIGURATION MANAGEMENT 29

4.1 Risk based Access Control .. 30

4.1.1 Risk based Permission Authorization 33

4.1.2 Risk Based Authorization of Roles 35

4.2 Experimental Evaluation .. 38

4.2.1 Risk-based Permission Authorization 40

4.2.2 Risk-based Role Authorization 42

CHAPTER 5. USING ATTRIBUTE SEMANTICS FOR CONFIGURATION MANAGE-
MENT. 45

5.1 Identifying Required Role Attributes using Classification . 46

5.1.1 Building Classification Models to Identify Required Attributes for Roles 48

5.1.2 Selecting Candidate Roles .. 49

5.1.3 Evaluation of Credentials of an External User 49

5.2 Identifying Required Attribute Set using Threshold Value . 50

5.2.1 Framework for Semantics-based Approach 50

5.2.2 Generating Required User Attributes for Roles 53

5.2.3 Semantic Matching of User Attributes to Object Attributes 55

5.2.4 Merging Candidate Attribute-Value Pairs 58

5.2.5 Pruning the Required Candidate User Attributes by Assessing their Significance 60

5.2.6 Checking Requirements Across Roles 61

5.2.7 Evaluation of Access Requests from a New or External Users 62

5.3 Experimental Evaluation .. 64

CHAPTER 6. MISCONFIGURATION DETECTION AND RESOLUTION IN ACCESS
CONTROL SYSTEMS. 76

6.1 Introduction .. 76

6.2 Misconfiguration Detection and Resolution 80

6.2.1 Misconfiguration detection and resolution in role authorization 81

6.2.2 Misconfiguration detection and resolution in permission authorization 82

6.3 Experimental Evaluation .. 94

viii

CHAPTER 7. SUMMARY OF THE CONTRIBUTIONS AND FUTURE RESEARCH. . . . 159

7.1 Summary of Contributions .. 159

7.2 Future Research Plans .. 162

REFERENCES. .. 165

ix

LIST OF TABLES

4.1 Synthetic data sets .. 40

4.2 Average permission risk for real datasets 41

4.3 Average permission risk for real datasets 42

5.1 The significance factor .. 61

5.2 Characteristics of Real Data Sets 68

6.1 Characteristics of Dataset 1. Varying Number of Users, Keeping Everything Else
Constant. .. 98

6.2 Characteristics of Dataset 2. Varying Number of Permissions, Keeping Everything
Else Constant .. 99

6.3 Characteristics of Dataset 3. Varying Number of Roles, Keeping Everything Else
Constant .. 99

x

LIST OF FIGURES

3.1 The Process of Classification .. 22

4.1 Example of UPA, UA and PA matrices 32

4.2 Assessed risk values for permission authorizations considering the UPA matrix of
Figure 4.1(a) .. 35

4.3 Assessed risk values for role authorizations considering the UA and PA matrices
of Figure 4.1(b) and (c) .. 36

4.4 Assessed risk values for user permission assignments assuming the RBAC policy
of Figure 4.1(b) and (c) .. 38

4.5 Average permission risk for synthetic datasets 43

4.6 Average role risk in synthetic datasets 44

5.1 Example Concept Hierarchy for ConceptSoftware . 52

5.2 Component 1 Software Developer Role, Members, and Permissions 56

5.3 Partial Role Hierarchy for LM Systems 59

5.4 Role Attribute Requirement Comparisons 62

5.5 Predictive performance in terms of F-measure for real datasets 70

5.6 Results .. 73

6.1 UA matrix for 10 users and 5 roles .. 84

6.2 PA matrix for 5 permissions and 5 roles 85

6.3 UPA matrix for 10 users and 5 permissions 85

6.4 F measure for DataSet 1, when model construction is CFS based. Threshold = 0.5 . 104

6.5 Recall for DataSet 1, when model construction is CFS based. Threshold = 0.5 105

6.6 Precision for DataSet 1, when model construction is CFS based. Threshold = 0.5 . . 106

6.7 F measure for DataSet 1, when model construction is not CFS based. Threshold =
0.5 .. 107

6.8 Recall for DataSet 1, when model construction is not CFS based. Threshold = 0.5 . 108

xi

6.9 Precision for DataSet 1, when model construction is not CFS based. Threshold = 0.5109

6.10 F measure for DataSet 1, when model construction is CFS based. Threshold = 0.7 . 110

6.11 Recall for DataSet 1, when model construction is CFS based. Threshold = 0.7 111

6.12 Precision for DataSet 1, when model construction is CFSbased. Threshold = 0.7 . . 112

6.13 F measure for DataSet 1, when model construction is not CFS based. Threshold =
0.7 .. 113

6.14 Recall for DataSet 1, when model construction is not CFSbased. Threshold = 0.7 . 114

6.15 Precision for DataSet 1, when model construction is notCFS based. Threshold = 0.7115

6.16 F measure for DataSet 1, when model construction is CFS based. Threshold = 0.9 . 116

6.17 Recall for DataSet 1, when model construction is CFS based. Threshold = 0.9 117

6.18 Precision for DataSet 1, when model construction is CFSbased. Threshold = 0.9 . . 118

6.19 F measure for DataSet 1, when model construction is not CFS based. Threshold =
0.9 .. 119

6.20 Recall for DataSet 1, when model construction is not CFSbased. Threshold = 0.9 . 120

6.21 Precision for DataSet 1, when model construction is notCFS based. Threshold = 0.9121

6.22 F measure for DataSet 2, when model construction is CFS based. Threshold = 0.5 . 122

6.23 Recall for DataSet 2, when model construction is CFS based. Threshold = 0.5 123

6.24 Precision for DataSet 2, when model construction is CFSbased. Threshold = 0.5 . . 124

6.25 F measure for DataSet 2, when model construction is not CFS based. Threshold =
0.5 .. 125

6.26 Recall for DataSet 2, when model construction is not CFSbased. Threshold = 0.5 . 126

6.27 Precision for DataSet 2, when model construction is notCFS based. Threshold = 0.5127

6.28 F measure for DataSet 2, when model construction is CFS based. Threshold = 0.7 . 128

6.29 Recall for DataSet 2, when model construction is CFS based. Threshold = 0.7 129

6.30 Precision for DataSet 2, when model construction is CFSbased. Threshold = 0.7 . . 130

6.31 F measure for for DataSet 2, when model construction is not CFS based. Threshold
= 0.7 131

6.32 Recall for for DataSet 2, when model construction is notCFS based. Threshold =
0.7 .. 132

6.33 Precision for for DataSet 2, when model construction isnot CFS based. Threshold
= 0.7 133

6.34 F measure for for DataSet 2, when model construction is CFS based. Threshold =
0.9 .. 134

6.35 Recall for for DataSet 2, when model construction is CFSbased. Threshold = 0.9 . 135

xii

6.36 Precision for for DataSet 2, when model construction isCFS based. Threshold = 0.9136

6.37 F measure for DataSet 2, when model construction is not CFS based. Threshold =
0.9 .. 137

6.38 Recall for DataSet 2, when model construction is not CFSbased. Threshold = 0.9 . 138

6.39 Precision for DataSet 2, when model construction is notCFS based. Threshold = 0.9139

6.40 F measure for DataSet 3, when model construction is CFS based. Threshold = 0.5 . 141

6.41 Recall for DataSet 3, when model construction is CFS based. Threshold = 0.5 142

6.42 Precision for DataSet 3, when model construction is CFSbased. Threshold = 0.5 . . 143

6.43 F measure for Predictive performance for DataSet 3, when model construction is
not CFS based. Threshold = 0.5 144

6.44 Recall for Predictive performance for DataSet 3, when model construction is not
CFS based. Threshold = 0.5 145

6.45 Precision for Predictive performance for DataSet 3, when model construction is
not CFS based. Threshold = 0.5 146

6.46 F measure for DataSet 3, when model construction is CFS based. Threshold = 0.5 . 147

6.47 Recall for DataSet 3, when model construction is CFS based. Threshold = 0.5 148

6.48 Precision for DataSet 3, when model construction is CFSbased. Threshold = 0.5 . . 149

6.49 F measure for DataSet 3, when model construction is not CFS based. Threshold =
0.5 .. 150

6.50 Recall for DataSet 3, when model construction is not CFSbased. Threshold = 0.5 . 151

6.51 Precision for DataSet 3, when model construction is notCFS based. Threshold = 0.5152

6.52 F measure for DataSet 3, when model construction is CFS based. Threshold = 0.9 . 153

6.53 Recall for DataSet 3, when model construction is CFS based. Threshold = 0.9 154

6.54 Precision for DataSet 3, when model construction is CFSbased. Threshold = 0.9 . . 155

6.55 F measure for DataSet 3, when model construction is not CFS based. Threshold =
0.9 .. 156

6.56 Recall for DataSet 3, when model construction is not CFSbased. Threshold = 0.9 . 157

6.57 Precision for DataSet 3, when model construction is notCFS based. Threshold = 0.9158

xiii

1

CHAPTER 1

INTRODUCTION

Securing organizational resources from illegitimate accesses is a prime concern for organizations.

In order to ensure the security of resources, businesses invest tremendous cost in terms of both

money and time, to implement an effective and efficient access control (AC) system. AC model

is the formal representation of access control policies andtheir functioning. Access control sys-

tem provide means to execute those policies. In simple words, access control policy is set of rules

which defineswho (subject) can access what (object), and access control model bridges the gap be-

tween the policies and the mechanism to enforce them. To date, several access control mechanisms

and their extensions have been proposed in the literature ofinformation security [32]. Mandatory

Access Control (MAC), and Discretionary Access control (DAC), are two classical access control

mechanisms. However, in recent years, Role Based Access Control (RBAC) [23] has gained un-

precedented prominence and has emerged as one of the most robust security model to meet diverse

access control requirements.

RBAC is a policy neutral model. In contrast to traditional MAC and DAC based security sys-

tems, RBAC offers significant reduction of administrative overheads and an additional advantage

of flexibility. Moreover, it provides the ease of administrating subject and object authorizations via

roles. Unlike traditional systems, where authorizations are granted to users directly, the underlying

concept of RBAC is to assign user to a role through which they acquire authorizations which are

necessary to complete an assigned job. Enterprises still employing their old access control systems

2

want to migrate to RBAC.

Top-downapproach takes description of business function, processes, and other security in-

formation into an account when roles are created. While roles are devised using this approach,

difficulty comes from the fact that system engineer usually has little knowledge on the semantic

meanings of user responsibilities and business processes within an enterprise. Therefore, he can

inadvertently introduce errors in the system configurationthrough inconsistent assignments. Alter-

natively,bottom-up approachapproach a.k.arole miningis based on determining roles from exist-

ing user-permission authorization data. In bottom-up approach, choice of role mining algorithm is

a sensitive aspect and plays a key role in RBAC configuration.Since no role mining method so far

is perfect, and that they all come with their own set of benefits and limitations, therefore, it is quite

a challenge to choose the role mining method that matches perfectly with the security needs of a

particular organization. If not chosen appropriately, it turns entire thing into a self-perpetuating

error. Moreover, when ill suited role mining method is adopted, there are high chances that an

appropriate set of roles are not constituted. This affects the overall performance of a deployed sys-

tem negatively, ultimately defeating the sole purpose of implementing access control system. It is

therefore necessary to ensure that system configuration is sound and that it guarantees prevention

against unauthorized access, whilst enable legitimate subjects to gain unhampered access to their

requested resources.

In contrast to RBAC, in DAC, every resource in the system has an owner, and rights to access

any resource are explicitly defined by its owner. Unlike MAC,where system administrator solely

controls assignments of permissions, DAC is relatively easier to implement, and offers flexibility of

delegation of rights i.e. authorized user of a resource can also delegate permission to other users.

However, the administrative overhead of maintaining Access control lists (ACLs), especially in

large organizations, is unreasonably burdensome. User obtain an access to any resource through

3

specific permission request, but there are rarely any revocation requests made in this system.

Each access control mechanism and its extension is focused on particular access control sub-

problem(s), and offers a unique set of functionalities. Their implementation phase is quite chal-

lenging and expensive. In order to realize full benefits of these systems, it is critical to ensure that

their configuration is correct. In one of the benchmark studyperformed on reliability of systems,

Jim Gray [28] notes,

”The top priority for improving system availability is to reduce administrative mistakes by

making self-configured systems with minimal maintenance and minimal operator interaction. In-

terfaces that ask the operator for information or ask him to perform some function must be simple,

consistent and operator fault-tolerant”

Inconsistent access control policies and poor system configuration leads to problems which

ultimately downgrades overall performance of the existingaccess control system. Moreover, once

the system variables such aspolicies, roles, and authorizations are defined, continuous monitoring

of these systems become vital to ensure that the behavior of implemented system matches with the

expected system behavior and that the configuration is up-to-date because an overly compromised

or overly restrictive system becomes a major source of security violations and maintaining such

system is quite a challenge. Ideally, this maintenance activity should be carried out on regular

basis. Unfortunately, however, this issue often gets overlooked.

1.1 Configuration Error Management - Why automated configuration error detection and
resolution is necessary?

Configuration management of access control system is an important research issue. It plays a key

role in making systemavailable. In recent years, system configuration errors have become one of

the main causes of system failures by making those systems unavailable and causing severe service

4

outages and significant downtime. Traditional access control system lacks the ability to anticipate

potential configuration errors. Therefore, these systems fail to gracefully react to this problem.

Moreover, the cost of resolving configuration errors is often tremendous from the aspects of both

money and time. Therefore, many organizations are still reluctant in adopting traditional methods

of access control. The graveness of matter, and cost involved in handling configuration errors

makes it one of the most challenging problems that needs to beaddressed. In recent years, we have

witnessed that a number of large internet and cloud-serviceproviders such as Amazon, Google,

iCloud, LinkedIn, and Microsoft experienced service outages caused due to misconfiguration in

the system [1,3].

Misconfiguration in access control system occurs whenmore than necessaryor less than nec-

essaryauthorizations are assigned to users. These errors manifest themselves in the access control

system as either in the form of false positive or false negative authorizations. In businesses of

large size and of dynamic nature, security misconfigurationusually occurs as a result of frequent

changes in user roles, job responsibilities, addition of more permissions within the system, and

when more users are added in to a system. Moreover, old or unnecessary user assignments are not

revised by security administrators on regular basis. Configuration errors become even more serious

when user accounts are not deleted when they leave an organization. These kind of situations leads

to introduction of undesirable inconsistencies in the deployed access control system. Inadequate

security allows malicious users to gain unauthorized access and perform unintended actions on

sensitive organizational resources. Since configuration spaces are large and complex with several

dependencies and correlated parameters, manually identifying errors in the system configuration

is not trivial task. Even an experienced, well-trained system administrators may make a mistake in

the process. Therefore, there is an acute need of better waysfor automatic configuration of access

control systems. This dissertation aims at developing efficient and automatic methodologies and

5

tools for access control configuration management that are based on data mining technologies.

1.2 Problem Statement and Contributions

In recent years, configuration errors in access control system has emerged as one of the key causes

of system failure. Recently, one of the main services of Google reported configuration errors as

second major issue that contributed towards service-levelfailure [7]. Although its significance

has inspired many research efforts towards developing efficient methods for detecting and fixing

misconfigurations, but literature survey shows that still this issue has not yet gained due attention

from research community.

Given an access control data, problem of configuration management in access control system

is to identify and resolve any inconsistent assignments. Generally, when an access control is im-

plemented in an organization, it is assumed that the access control data has no noise, and that the

existing configuration is good to start with. Problem worsens when it is further assumed by admin-

istrators that the defined assignments in a system are consistent with the intended access control

policy of an organization. As a matter of fact, these assumptions are way too unrealistic. Since ac-

cess control datasets are no exception, and like any other datasets they may possibly contain large

amount of noise. Moreover, access control data is large and complex - having several dependencies

and correlations, therefore, it is not trivial to control configuration errors manually. There are some

approaches introduced in existing literature to address the problem of configuration management.

Those approaches have several limitations which we have discussed later. In this dissertation,

we address those limitations and developed efficient methods to facilitate automatic configuration

management. Below, we briefly discuss our contributions.

We first consider the situations where flexible decision making regarding the access is required.

In many emergency and disaster management situations, access to critical information is expected

6

because of the need to share, and in some cases, because of theresponsibility to provide infor-

mation. Therefore, the importance of situational semantics cannot be underestimated when access

control decisions are made. There is a need for providing access based on the (unforeseen) situ-

ation, where simply denying an access may have more deleterious effects than granting access, if

the underlying risk is small. Traditional access control operates under the principle that a users

request to a specific resource is denied if there does not exist an explicit specification of the per-

mission in the system. These limitations have significantlyincreased the demand for new access

control solutions that provide flexible, yet secure access.In this dissertation, we quantify the risk

associated with granting an access based on the technique ofclassification. The goal is to use risk

estimates for making automatic decisions regarding configuration of existing system. We proposed

two approaches to address the problem at hand. The first approach, considers only the simple ac-

cess control matrix model, and evaluates the risk of granting a permission based on the existing

user-permission assignments. The second assumes role-based access control, and determines the

best situational role that has least risk and allows maximumpermissiveness when assigned under

uncertainty. We experimentally evaluate both approaches with real and synthetic datasets.

In addition to problem discussed above, configuration management issues also arise in situa-

tions where organizations participate in the process of electronic coalition formation. Goal of such

collaboration is to enable sharing of resources across the boundaries. Despite of all the compelling

benefits that coalition formation offers, it is still risky business for organizations to become a part

of such collaborations where participating entities are not long standing partners and they seem

to join or leave the collaboration quickly. Participating entities may not want to share their re-

sources with other organizations in an uncontrolled manner. Instead, they want the local access

control policy to remain applicable when sharing is done with external entities. In multi-domain

environment, fundamental building blocks of access control are not very well defined. Given these

7

administrative difficulties, and multi domain nature of collaboration, having varying definition of

user credentials, roles, and resources several configuration related issues may arise. In this disser-

tation we present an approach to facilitate automatic enforcement of access control policies when

a new user is added to an existing access control system. To evaluate the effectiveness of our ap-

proach we performed extensive experiments on both real and synthetic datasets. We compare the

performance of our approach to an existing approach that to handles a similar problem. Experi-

mental results show that our approach performs very well. Moreover, our approach is relatively

easier to implement.

Finally, this dissertation addresses the problem of automatically detecting and resolving mis-

configurations in a deployed access control systems. We consider both RBAC and Permission

based authorization system. Our proposed technique is based on combining classifiers to facilitate

decision making regarding the inconsistencies in the existing system. Each classifier is considered

as an independent expert and its probability output is takeninto an account to determine whether

a particular user assignment is erroneous or not. The viability of proposed method is assessed by

performing experiments on synthetic data sets. In summary,we have made following contributions

in this dissertation:

Using Risk Estimates for Configuration Management.

1.aWe develop a mechanism for quantifying risk dynamically, inboth RBAC and DAC based

security systems. Dynamic computation of risk is necessaryin situations where preventing an

access has more deleterious effect than granting the access.

1.bWe propose a model based on risk estimates to support configuration management process.

2. We develop a method for identifying situational role for a new user under uncertainty.

3. We address the challenge of incorporating both conflicting features:flexibility andsecurityat

the same time while access control decisions are made.

8

Using attribute semantics for Configuration Management.

1. We develop a methodology to derive credential requirementsfor roles having permission to

access requested object, based on local access control policies using existing access control data.

2. We propose a mechanism to facilitate coalition based accesscontrol.

3. We prove that the secure sharing of resources is possible among collaborating partners while

the local access control policy remains intact.

Detection and Resolution of Misconfiguration in Access Control.

1.a We develop approaches to handle the problem of automatic detection of exceptionally or er-

roneously granted or denied authorizations in access control data in RBAC1.b We develop ap-

proaches to handle the problem of automatic detection of exceptionally or erroneously granted or

denied authorizations in access control data in permissionbased authorization system.

2.aWe present approaches for automatic resolution of misconfiguration in RBAC.

2.b We present approaches for automatic resolution of misconfiguration in permission based au-

thorization system.

Outline

Remaining dissertation is organized as follows. Chapter 3 presents some important prelimi-

naries which are important to understand our work. Chapter 2discusses some work related to our

work. Later in chapter 4, we present our appraoches to tacklethe problem of dynamic computation

of risk. These approaches are for both RBAC and permission based access control. Results for

experimental evaluation are also given. In chapter 5, approaches to facilitate automatic coalition

based access control. Experimental evaluation on both realand synthetic datasets is also included

in this chapter. Chapter 6 present approaches to automate the process of misconfiguration detection

9

and resolution in both RBAC and DAC based security systems. Finally, chapter 7 concludes the

dissertation by summarizing our work and future work direction.

10

CHAPTER 2

RELATED WORK

Development of extensions of access control models is continuously under advancements. While

a lot of effort has been spent on developing solutions to makeaccess control systemsflexibleand

secure, however, not much attention has been devoted tostability andsustainabilityaspects of

deployed systems or in other words,optimizationof deployed system. In this section we review

literature work from four closely related categories: RiskBased Access Control, Break-glass ap-

proaches to access control, coalition based access control, and misconfigurations in access control

systems. Additionally, in this section, we discuss some important issues which remained unad-

dressed in the related work.

2.1 Risk Based Access Control

Limitation of traditional access control models in terms ofrigidity lead to the development of risk-

based decision method for an access control systems. Research in risk based access control is fairly

recent. The idea behind risk based access control system is to allow flexible decision making by

using a non-static authentication system that allows access if the risk associated with the request is

low, but denies the request when the risk associated with therequest is high.

Badar et al. [6], presented a classification based approach to facilitate risk based access control.

In their approach, they utilized estimates generated from random forest based classifier to quantify

risk associated with the requested permission in both DAC and RBAC environments. For DAC,

11

where there is only user permission authorization data, existing set authorizations of requesting

user are evaluated against the requested permission, and ifthe estimated risk is under pre-specified

threshold value, then the access is granted otherwise request to access is denied. For RBAC based

environment, where user acquires permission via role and multiple roles may contain requested

permission, the risk of each role is calculated first. In their work, risk estimate for any role is not

same for all users. Instead, risk for a role is relative to theexisting authorizations of requesting

user. Requested permission is then assigned to a user via least risk role identified by the given

approach.

Sandhu et al. [34] provided a risk adaptive access control(RaDAC) model to adjust security and

access control policies according to operational and situational factors. The given model utilizes

attributes of different components in RaDAC model for reasoning mechanism. Decision making

in the given model is based on attribute risk values however amodel lacks mechanism to compute

risk values. Molloy et al. [42] presented an architecture for Risk Based Access Control based on

Support Vector Machines(SVM) classifiers to compute risk values. Decision outcomes are based

on utility and risk measures. The limitation of the given model is that there is no consideration

for updating risk model. However, risk is non-static in nature and keeps changing. Nissanke et al.

[47] presented an interesting work based on analysing risk of permissions. They consider relative

security risk of permission posed by different access operations when performed by different users.

This work lacks the consideration for method to quantify risk. It is assumed that risk values are

already given in the system. This assumption doesnot hold true in most of the real world situations.

Bertino et al. [46], and Cheng et al. [18] studied the effectiveness of fuzzy approaches to

facilitate risk based access control. These approaches suffer limitation due to an assumption that

the system already has data about risk values i.e. risk is precomputed. [19] proposed a method to

facilitate risk based access control. In their work they determine a situational role for a user in

12

critical situations. Semantic distance between the actualattributes of a user and attributes required

by the situational role. If the distance is acceptable, the situational role is granted to a user.

2.2 Break Glass Approaches to Access Control

Work done in this area was motivated by handling access requests in exceptional situations when

overriding of regular access control policies becomes necessary or in other words, those situations

in which preventing an access to some requested objects has much more deleterious effects than

granting access. Generally, break glass mechanism is integrated into the existing control system as

an additional layer which is activated in emergency situation to allow overriding of access control

policy rules. Break glass approaches were criticized by community of researchers because of the

”dangerously high” level of access flexibility that these approaches offer.

Ferraiolo et al. [25], [24] contributed approaches to integrate Break glass mechanism within

standard Role Based Access Control systems. User may accessthe requested information if he

agrees to the obligations forbreaking the glassand the actions are recorded and monitored by

non-repudiation mechanism. Later, Brucker et al. [13] mainly discusses an architecture to extend a

deployed access control model with break glass mechanism. To resolve the problem of conflicting

policies, Secure UML based approach is given in their work tofacilitate break glass mechanism in

Role Based Access Control system. Secure UML is based on generalized Role Based Access Con-

trol (RBAC) where components and security policies of RBAC are modeled by using UML state

based diagrams. In the given approach, regular policy is exercised under normal circumstances

whereas, refined policy is activated in exceptional situations. Distance between regular and refined

policies plays important role in decision making process. However, in this paper, it is not discussed

that how the distance is actually calculated.

13

2.3 Coalition Based Access Control Systems

Problem of coalition based access control is a well-studiedproblem. However, issues which arises

as a result of misconfiguration in coalition based access control systems is not studied much. Ac-

cess control research in the area of dynamic coalitions was first introduced by Philips et al. [48,49]

by providing motivating scenarios in defense and disaster recovery settings. Cohen et al. [21]

proposed a model that captures the entities involved in coalition resource sharing and identifies

the interrelationships among them. Bharadwaj et al. [10] and Khurana et al. [35] addressed the

issue of automating policy negotiation and [66] addressed the issue of building trust. Warner et

al. [4, 44, 63], proposed a coalition based access control (CBAC) model that facilitates automatic

translation of coalition level policies to the implementation level policies, and vice versa. This

primarily employs credential attributes in accomplishingthe translation, but does not exploit se-

mantics. Access control via attributes simplifies administration because specific users do not have

to be given identities. Instead access rights are determined purely on the basis of attributes and

these attributes can apply to many different users, who would present their attributes through the

use of credentials. Warner et al . [64], further addressed the problem of determining what creden-

tials should be included in a request was addressed, however, it did not address the problem of what

credentials are appropriate to require. Additionally, in [63] a graph pruning method is given to re-

duce the required credential attribute set. The set of required attributes is reduced using frequency

counts and sets of attributes held in common by users assigned to roles. The attribute significance

introduced in this paper is a similar concept, but computed differently. Moody et al. [5] proposed

a similar role-based access control architecture to ours called OASIS where they mapped users via

credentials issues by a third party. However, they did not address how the credential requirements

are determined, which is the main focus of our work. Wang et al. [62] presented attribute based

access control (ABAC) but they also did not give a mechanism for determining which attributes

14

should be used. Li et al. [37, 38] address the problem of present a Role-Based Trust Management

(RT) framework that addresses the issue of discovering credentials needed to map to a role. How-

ever, their algorithm does not address how to select attribute requirements based on existing RBAC

policies. [20] presented a prototype system called ”Situation Role-based Privacy Control model”

that enables a user to control his privacy.

Krishnan et al. [36], presented an approach Group-Centric Secure Information Sharing (g-SIS),

to facilitate secure information sharing and collaboration. In their work, they used the notion of

group which represents refer to users and objects from multiple organizations. Basically group

represents a set of users from multiple organization sharing the same set of objects available to

their respective group. g-SIS based approach is based on first-order linear temporal logic (FOTL).

g-SIS works as a complimentary model for infrastructure of security across organizational bound-

aries when coalitions are formed. User who becomes a member of a particular group can access

all objects available to the remaining users of the group. However, their model does not takes in to

an account the various authorization semantics. When usingthe CBAC framework, one can think

of two extreme cases: If a resource provider (P) requires allthe credentials to be possessed by the

resource requester (R) to access its resources, P’s policies are ensured with the highest level of

security. However, from the perspective of R it is highly restrictive (or less permissive). At the

other extreme, if P does not require any credentials at all for R, then there are no guarantees on

the security. However, R has the highest permissiveness to acquire the resource. Many variations

in between these extremes may exist. Wang et al. [62] presented attribute based access control

(ABAC) but did not give a mechanism for determining which attributes should be used. [4], com-

putes the union of all credential attributes of the users playing a role as the required set to facilitate

coalition we assumed that a user would send all possessed credentials with every request. Also,

it was assumed that the required credentials would match a union of all credentials that anyone

15

who had access to the object possessed. There are two obviousdrawbacks of the approach. First it

required far more credentials than a typical user is likely to have and second it required processing

of many irrelevant credentials. under emergencies among entities of heterogeneous nature. Chen

et al. [17] also presented a framework based on XACML to facilitate secure sharing of resources.

Again, automated discovery of required credentials of roleremains unaddressed.

2.4 Misconfigurations in Access Control Systems

Bauer et al. [8] introduced an approach based on associationrules to predict if there is any mis-

configuration in the implemented access control system. In their work, if the intended request is

similar to the implemented policy and the request is denied,then this indicates that there is a mis-

configuration in a system. In this paper, the problem of identifying and resolving misconfigurations

in access-control system by using data mining technique called association rule mining. Directly

usingconfidenceandsupportmetrics to evaluate the correctness of rule can substantially overes-

timate the benefits of using association rule mining technique in practice, due to their tendency

to reward predictions that can be deduced to be redundant. Also, the presented approach is based

on usingAccess control list(ACLs) as an input to generate predictive rules. However, the given

approach cannot be applied directly to the other fine-grained access-control model, such as exten-

sions ofRole Based Access Control(RBAC), which are designed for the allowing the access on the

basis of principle of least privilege and separation of duty. Performance of their approach suffers

a serious limitation when redundant rules are present in theaccess history patterns. Presence of

these redundant patterns shadows importance of access patterns which are not redundant but are

correct. Later, Bauer et al. [9] gave a method for pruning redundant rules. In both works, [8]

and [9], DAC based systems are considered. Mukkamala et al. [45] presented an approach based

on role mining for identifying potential misconfigurationswithin the RBAC based access control

16

system. Basically, they use the role mining approach given in Vaidya et al. [59] to detect potential

misconfigurations in the deployed system.

Das et al. [22], [51] presented a system for detecting small inconsistencies present in access

privileges of users within the same group. Presented systemuses misconfiguration detection algo-

rithms to discover small inconsistencies in user permission assignments among similar users within

the same organization. However, it is assumed that larger differences in the access control are not

necessarily misconfigurations. Though the matrix reduction step in Baaz is related to role mining

process but still the functionality in the Role Based AccessControl mainly in Hierarchical RBAC

environment, where senior roles delegated rights to the junior role, is unclear. Moreover, the choice

of reference datasets by security administrators affects the results significantly. For example, if a

reference dataset contains fewer reference groups then number of generated potential misconfigu-

rations increases, several of which may be invalid. The reason why it happens is that fewer groups

will yield more approximate results. On the other hand, if the reference dataset contains a large

number of reference groups then the report will contain fewer misconfiguration candidates because

the large number of reference group increases the chances tofind exact cover which usually results

into detection algorithm to miss some valid misconfigurations. Therefore, significant caution and

manual effort is required by the administrator to choose appropriate reference datasets.

Hu et al. [31], proposed model checking based approach to determine whether requested update

is achievable or not. This work considers Role based access control environment. Their ”updat-

ing algorithm” focusses mainly on the problem of resolving misconfiguration and authors assumes

that the misconfigurations are already identified by some other mechanism and only the problem

to decide whether a requested change should be made or not is left for the security administra-

tor. Shafiq et al. [58] gave Integer programming based based approaches to reconfigure deployed

RBAC system. They mainly consider access control problems that arises due to conflicting security

17

policies.

18

CHAPTER 3

PRELIMINARIES

This chapter gives brief review of a early models for access control such as: MAC and DAC

access control models followed by the discussion of more recent model Role Based Access Con-

trol(RBAC). We also discuss some of the research problems associated with these models, which

are not yet adequately addressed.

3.1 Mandatory Access Control

Decision making in MAC is based on the security labels assigned to the subjects and objects

within the system. System administrator is solely responsible for assigning security labels. Under

MAC, if a subject’s security label has clearance to access the requested object then the access is

granted, otherwise the access in not allowed. This type of access control was mainly implemented

in military and civilian government based environments where confidentiality of information is of

prime concern. In order to meet varying security needs, several mandatory access control(MAC)

models were introduced in the literature of access control.Some widely adopted ones includes:

Biba, Chinese Wall, and Bell-la Padula. These models are aimed at preventing unauthorized access

to resources and preserving confidentiality by preventing certain type of user actions such as: no-

read ups and no write downs. MAC has both advantages and disadvantages. Rigidity of this model

in terms of rights delegation is its main short coming. Also,the assignment of security labels to

each users and objects in the system is not feasible especially in large scale organizations. Adding

19

or deleting a user from a system is difficult under MAC based system.

3.2 Discretionary Access Control

In DAC, access rights to an object are explicitly defined by a resource owner. Discretionary access

control(DAC) is also calledIdentity based access controlIBACwhere access control decisions are

based on the identity and ownership of users and resources. Unlike MAC, where system adminis-

trator solely controls assignments of permissions, DAC offers flexibility of delegation of rights i.e.

authorized user of a resource can also delegate permission to other users. Permission authoriza-

tions are maintained in form of access control matrix which is usually called Access Control List

or simplyACLs. ACL consists of rows and columns where there is a row for eachuser and column

for each object. Corresponding matrix entry for any user represents authorizations of that user to

specific object.

Alternative to early models Mandatory Access Control (MAC)and Discretionary Access Con-

trol(DAC), is Role Based Access control RBAC .

3.3 Role Based Access Control

Role Based Access control(RBAC) mechanism has gained unprecedented prominence in the recent

years. RBAC is implemented for enforcing access control in databases and operating systems. Un-

like traditional models where authorizations are granted to users directly, the underlying concept

of RBAC is to assign users torolesthrough which a user gains authorization to execute actionson

organizational resources.Rolesare created to include set of all permissions which are necessary

for a user to perform assigned job function. In this way, RBACdoesnot only simplifies the ad-

ministration of resources and users, but also reduces significantly the overall operational cost [57].

Over the years, several extensions of RBAC have been developed to address varying organizational

20

needs. However, in most of the models it is assumed that the defined policies in the system are

static in nature and the implemented system is error free. Tothe best of our knowledge that the

access control literature still lacks reliable approachesto address problems associated with miscon-

figurations in existing systems. Before moving on to our detailed discussion of research problems

that we intend to address in this thesis, we give brief overview of some important RBAC based

boolean matrices:

• UA ⊆ U × ROLES, a many-to-many mapping user-to-role assignment relation.

• PA is defined asPA ⊆ PRMS×ROLES, a many-to-many mapping of permission-to-role

assignments.

• UPA ⊆ U × PRMS, a many-to-many mapping of user-to-permission assignments.

where,

• U,ROLES,OPS, andOBJ are the set of users, roles, operations, and objects.

• PRMS (the set of permissions)⊆ {(op, obj)|op ∈ OPS
∧

obj ∈ OBJ}.

• PA ⊆ ROLES × PRMS, a many-to-many mapping of role-to-permission assignments.

• assigned users(R) = {u ∈ U |(u,R) ∈ UA}, the mapping of roleR onto a set of users.

• assigned permissions(R) = {p ∈ PRMS|(p, R) ∈ PA}, the mapping of roleR onto a

set of permissions.

• RH ⊆ ROLES × ROLES, is a partial order onROLEScalled inheritance relation.

21

• assigned objects per permission(r, p)→ {o ∈ O |p = (op, o)}, the permission-to-object

mapping which gives the set of objects associated with permissionp for a given role.

• assigned objects(r)→ ∪{assigned objects per

permission(r, p)|p ∈ assigned permissions(r)}, the permission-to-object mapping which

gives the set of all objects associated with any of the permissions assigned to roler.

• RH ⊆ R ×R is a partial order onR called the role hierarchy or role dominance relation.

3.4 Attributes

We assume that both users and objects are associated with specific attributes. Anattributeconsists

of a name and a value pair, (ai:vi) and is referred to by its name,ai. The set of all attributes defined

for an organization isΛ.

3.4.1 User Attributes

User attributes that may be semantically relevant to objects describe what the user is capable of

doing, has done or is assigned to do. Some of these attributesmay be drawn fromcertifiable

credentials [30] possessed by the users indicating, for example, that a user has completed a degree

or a training program. Others may be explicitly assigned internally by the organizations to indicate,

for example, experience the user has had or their current assignments. The set of all user attributes

is denoted as theuser attribute base(UAB). We useuai = {(ai : vi), (aj : vj), . . .} to denote all

the attributes associated with a specific userui.

Example 1.Tom, who works at LM, has the following attribute set:uaTom = {(hasDegree:bachelors),

(performsJob:software), (assignedTo:projectBlue),

(hasExpertiseIn:java), (officeLoc:NVC1)}.

22

Figure 3.1. The Process of Classification

3.4.2 Object Attributes

Objects attributes are either explicitly defined or automatically derived using text analysis as in

[55]. Object attributes might be classified by keywords or content, in terms of their type (e.g.,

executable, spreadsheet), attributes of their author/owner, or in relationship with each other. Object

attributes include object id (oi), attribute name (ai) and attribute value (vi). The set of all object

attributes is denoted as theobject attribute base(OAB). We useoai = {(ai : vi), (aj : vj), . . .} to

denote the set of object attributes associated with a particular objectoi.

Example 2. LM has an object “Component 1 software” (C1) that has the following attribute set:

oaC1 =

{(hasContent:java), (hasContent:financial)

(hasContent:software), (createdUnderProject:Blue)}.

23

3.5 Classification

The problem of classification has long been recognized as oneof the most important data mining

and machine learning problems. It is applicable in a wide range of science and technology do-

mains. The goal of classification is to build a model based on important structural properties of

data with defined class labels and use that model to predict the class label for new or previously

unseen data instances. From the perspective of access control problem that we are addressing

in this dissertation, we are employing classification method to build a model for predicting role

membership status of new users.

Classification model for any role is constructed by using theinformation about credentials of

existing users who have that role, and also the credentials of existing users who don’t have that

role. Figure 3.1 is an example that shows how we are employingclassification method. The input

for building the classification model is the existing accesscontrol data of the users. For any role,

it’s membership status for each user within the existing system is already known. In the given

example, there are eight users and five attributes. Attributes are also called decision variables.

Each row represents a user in figure 3.1. For columns representing attributes, ’1’ in any cell

represents that a user has that attribute and ’0’ representsthat a user doesn’t have that attribute. For

columns representing roles, ’1’ in any cell represents thata corresponding user has that role and

’0’ represents that a user doesn’t have that role. New user can become a member of a role if his

credentials qualify for a role. This is done by using the classification model for a particular role.

For example, in figure 3.1 u10 and u11 are new users and their status for the role membership is

unknown. Therefore, attributes of u10 and u11 are checked against the classification model. Role

membership status ‘0’ is predicted for u11 which means basedon the credentials of u11, he doesn’t

qualify for the role. However, role membership status ‘1’ ispredicted for u11 which means based

on the credentials of u11, u11 qualifies for the role.

24

Some other situations where the classification problem is applicable include: loan granting de-

cisions, credit card fraud detection, network intrusion detection(NIDS), target marketing, medical

diagnosis, speech recognition, hand writing recognition,and document classification.In the docu-

ment classification problem, content within the document isanalyzed to classify by topic. Internet

search engines and organizational intranets are popular examples of environments where document

classification approaches are widely used. Target marketing, is another example of classification

problem that strongly depends on underlying classificationmodels used by firms to identify po-

tential customer segment that can be reached for successfulpromotional activities and business

profitability. The purpose of the classification model in this setting is to predict buying decision of

potential customers on the basis of their past buying behaviors, interests, age group, ethnicity, etc.

Consider an example from the Health care industry. This industry has huge amounts of data. That

data can be of great benefit if it is put to an optimal use. For example, a medical history along with

other clinical variables about a new patient can be used by health care providers for monitoring

health conditions of the patient and for classifying that patient into a known set of diseases or any

other related health problems. Predictive models for such classifications are generated by utilizing

patient data with known classification outcomes. In a banking application, when a bank receives a

new loan request, credentials of a requesting party are evaluated by using predictor variables, such

as: education, age, income, and many more predictor variables to decide, whether a loan should be

granted or not.

Several approaches for carrying out the task of classification have been proposed in the liter-

ature of data mining and machine learning. For example: ID3,C4.5 [54] algorithms are based

on decision tree model for classification. SVM [14], on the other hand, is based on linear model.

PRISM [15] and Decision Tables [26] uses rule based model forclassification. In this disser-

tation, we are testing our classification based approach using J.48 [54] decision trees, Random

25

forest [11], and a meta-learner Support Vector Machine [14]algorithms. Below, we briefly discuss

each of these classification approaches.

We are mainly using following methods for classification based approach: J.48 [54] decision

trees, Random forest [11], and a meta-learner Support Vector Machine [14] algorithms. Below, we

briefly discuss each of these approaches.

Decision Trees

A decision tree consists of root node, internal nodes and leaves. Leaf nodes represents decision

variables, whereas internal nodes represents decision variables. Number of outgoing edged from

each internal node represents number of possible values corresponding attribute can have. The

position of attribute’s node in a decision tree reflects its importance in reducing entropy. Therefore,

an attribute that has minimum entropy is at the root level andsuccessive nodes should be ordered

on the basis of their importance in minimizing entropy. Initially a tree is grown to full size by

including all attributes and possible relations among attributes, later the full size tree is pruned back

to remove any unimportant, redundant or irrelevant branches. The extent of pruning depends on

the desired level of complexity. Classical implementationalgorithms for decision tree construction

are: ID3, C4.5, and C.5 [52], [53]. These algorithms are generally based on divide and conquer

strategy where problem of learning classification structure from known set of observation leads to

a systematic construction of decision tree. In general, a decision tree is constructed in top-down

manner starting from root node and then going all the way downto leaves.

Random Forest

Ensemble based approaches use multiple models to obtain better predictive performance than could

be obtained from any of the constituent models. Recently, these approaches have attracted signif-

icant interest from data mining and machine learning community. Random Forest [11] is one of

these approaches, that has been proved to perform very well in many domains. Random forest is

26

constructed by ensembles of trees that are built from base learners or decision trees. Each tree

depends on the values of a random vector sampled independently and with the same distribution

for all trees in the forest. The output of a decision forest classifier that gets in input a new observa-

tion is the class that is the mode of the classes output by these individual trees. It has been shown

that for many data sets, it produces a highly accurate classifier. One of the main strength of this

classifier is that it is noticeably consistent even in the presence of noise. This makes it particularly

recommended for real world datasets, that usually contain many outliers, missing values, and even

other errors.

Support Vector Machines(SVM)

A Support Vector Machine(SVM) [14] based model is constructed by using high dimension feature

space.Focus on 2-class classification problem, where therearen number of data points, and each

point can belong to any one of the two given classes. In this case, the goal of a classifier is to

establish a two-dimensional space by introducing a boundary line (hyperplane), that separates data

points of a particular class from data points of another class. Whenever a new point with unknown

class label has to be added to this data, its attribute valuesare compared to the attribute values of

existing data points for mapping it to the right side of the hyperplane.

3.6 Feature Selection

Feature selection problem is concerned with finding minimalsubset of features that are repre-

sentative of entire dataset. Two main dimensions for measuring the size of dataset are: number

of instances(m), and number of features(n). Usually, dataset that is inherently high-dimensional

exhibit the curse of dimensionality properties such as presence of redundancies and/or irrelevant

features [39]. Suppose, there is dataset with 200 features.If a classification model has to be con-

structed from this data set, it is not necessary that all 200 features are necessary for classification.

27

Some features could be redundant, noisy and, irrelevant. Features are said to be redundant if they

are highly correlated with any other features in the same space, whereas they are irrelevant when

they do not contain sufficiently discriminative information. Therefore, feature selection process is

employed to identify statistically significant, relevant,and minimal subset of features(from entire

feature space), subsets which best represents the overall dataset.

In data mining and machine learning literature, several algorithmic implementation of fea-

ture selection approaches have been proposed. To name a few,LVF(Las Vegas Filter) algo-

rithm, SFG(Sequential Forward Generation) algorithm, BnB(Branch and Bound) methods [41],

Correlation-based Feature Selection(CFSsubsetEvaluation) method [29], are some examples of

basic techniques available for feature selection. In this dissertation, we are using CFSsubsetEval-

uation technique. For our first approach, purpose of featureselection is to determine a relevant set

of permission that represents a role in RBAC based environment. For our second approach, based

on non-RBAC access control environment, we are using feature selection to identify related set of

permissions inUPA matrix.

3.7 False Positive Assignments(FPs) in Access Control

In a boolean matrix, where0 in a cell corresponds toabsence, and1 corresponds topresenceof

a certain property, a class or a feature,false positive assignmentsare those assignments which are

mistakenly recorded as 1’s. In RBAC based environment, if any role r ∈ ROLES is incorrectly

present inRoles(Ux) (set of existing roles of userUx), then such role assignment is calledFalse

Positive Role Assignment(FPRA). In non-RBAC based environment, if any permission is present

in UPAUx
(existing permission authorizations ofUx), then such assignment is referred asFalse

Positive Permission Authorization(FPPA).

28

3.8 False Negative Assignments(FNs) in Access Control

In contrast to false positive role assignments, role assignment is referred as false negative role

assignment(FNRA) if it is added by mistake to existing roles of a user. In non-RBAC based en-

vironment, if a user does not have permission which a user should have then such assignment is

referred as false negative permission assignment(FNPA).

29

CHAPTER 4

USING RISK ESTIMATES FOR CONFIGURATION MANAGEMENT

Traditional access control operates under the principle that a user’s request to a specific resource is

honored if there exists an explicit policy specifying that the user is allowed to access that resource.

However, there exist a number of situations in which specificuser permission assignments based

on the security policy cannot bea priori decidable. These may include emergency and disaster

management situations where access to critical information is expected because of the ‘need to

share’, and in some cases, because of the ‘responsibility toprovide’ information.

Therefore, there are a number of situations where there is a need to permit users to access

certain needed resources, who otherwise should not have been allowed. Simply denying an access

may have more deleterious effects than granting access, if the underlying risk is small. It is not an

easy task- if not impossible - to envision all possible situations beforehand at the time of security

policy specification, especially when complex processes are involved.

As an example, consider an access control policy pertainingto the operations of a distillation

column in an Industrial system. Under normal operation, theaccess control policy requires that

only the on duty supervisor from a local terminal of the distillation column or from a remote

terminal with IP address 165.230.154.45 is authorized to close the steam valve. However, in an

emergency or if there is a safety concern, other operators may need to be allowed to close the steam

valve even though it is not permitted under the specified security policy. As it can be seen from the

above example, the hard coded policy fails to cater to the dynamics of unexpected situations that

30

arise.

Recently, several break glass approaches [12, 24, 25, 40] have been proposed. Break glass

approaches allow overriding of the existing policies in case of emergency. While traditional access

control is too restrictive since it does not permit any access that has not been pre-specified in the

system, the break glass approaches are too permissive in that they allow all requested accesses

based on the situation at hand. Since both these are at two extremes, a fine balance between

permissiveness and restrictiveness is desirable.

To accomplish this, in our work, we present approaches to quantify the risk associated with

granting an access based on the technique of classification.We propose two approaches for risk-

based access control that determine whether or not to honor requests by computing the associated

risk. The first approach, considers only the simple access control matrix model, and evaluates the

risk of granting a permission based on the existing user-permission assignments (UPA). Essentially,

a classification model is built for every permission in UPA that gives the probability of whether that

permission is assigned to a user or not. When a user requests apermission which is not included

in the UPA, the classification model comprising of the probabilities of the requested permission is

used to compute the risk. The second approach assumes role-based access control, and determines

the best situational role that has least risk and allows maximum permissiveness when assigned

under uncertainty. This will also employ the classificationmodel for risk computation. When the

evaluated risk for granting a (non-existing) permission islower than a given threshold value, the

requested access is allowed.

4.1 Risk based Access Control

In this section, we give a more formal description to the approaches for facilitating risk-based

access control. The first approach,risk based permission authorization, considers a simple access

31

control matrix for policy specification (only the user permission assignment is given). The second

approachrisk based role authorizationassumes that role-based access control is deployed. In both

these approaches, we first quantify the risk associated withthe requested access, and permit access

if it is less than a prespecified threshold value. Depending on the access control model being

considered, the access request and authorization semantics of these approaches are different as

formally stated below:

1. Risk based permission authorization Given an access request(Ui, Pj, {Pi1, . . . , Pim}), where:

• Ui is the user making the access request;

• Pj is the requested permission; and

• {Pi1, . . . , Pim} is the set of permissions for whichUi currently has the authorization.

The access request is granted if the computed risk is lower than the threshold value specified by

the system for the requested permission.

In case of role-based access control, the access request maybe either for a specific role or a

permission. If the request is for a role the risk of the role being assigned needs to be computed.

Otherwise the risk of all roles having the requested permission needs to be computed and the role

with the lowest risk assigned. This is formally specified as below:

2a. Risk based role authorization Given an access request(Ui, Rx, {Ri1 , . . . , Rim}), where

RX is the requested role and{Ri1 , . . . , Rim} is the set of roles for whichUi has the authorization.

The access request is granted by assigningUi to roleRx if the risk associated with the(Ui, Rx)

assignment is lower than the threshold value specified by thesystem for the requested role.

32

P1 P2 P3 P4 P5

U1 1 1 1 0 1

U2 1 1 1 0 1

U3 0 1 1 0 1

U4 0 1 1 0 1

U5 1 1 1 0 0U5 1 1 1 0 0

U6 1 0 1 0 0

U7 1 0 0 1 1

U8 1 1 1 0 1

U9 1 1 1 0 0

U10 1 0 1 1 1

(a) User Permission Assignment
(UPA)

R1 R2 R3 R4 R5

U1 1 1 0 0 0U1 1 1 0 0 0

U2 1 0 1 0 0

U3 0 0 1 0 0

U4 0 0 1 0 0

U5 1 0 0 0 1

U6 0 0 0 0 1

U7 0 1 0 1 0

U8 1 1 0 0 1U8 1 1 0 0 1

U9 1 0 0 0 0

U10 0 0 0 1 1

(b) User Assignment (UA)

P1 P2 P3 P4 P5

R1 1 1 1 0 0

R2 1 0 0 0 1

R3 0 1 1 0 1

R4 0 0 0 1 1R4 0 0 0 1 1

R5 1 0 1 0 0

(c) Permission Assignment
(PA)

Figure 4.1. Example of UPA, UA and PA matrices

2b. Risk based role authorization. Given an access request(Ui, Pj, {Ri1 , . . . , Rim}), where

{Ri1 , . . . , Rim} is the set of roles for whichUi has the authorization. The access request is granted

by assigningUi to roleRx such that:

• (Pj, Rx) ∈ PA;

• Risk associated with the(Ui, Rx) assignment is the minimum over assignment to any other

roleRy for which (Pj, Ry) ∈ PA; and

• Risk associated with the(Ui, Rx) assignment is lower than the threshold value specified by

the system for the requested permission.

The specific approach for each case is discussed below. To illustrate the procedure, we will use

the user permission assignment(UPA) matrix depicted in Figure 4.1(a). When role based access

control is assumed to be deployed, we will use the user assignment(UA) matrix and permission

assignment(PA) matrix depicted in Figure 4.1(b) and Figure 4.1(c), respectively.

33

4.1.1 Risk based Permission Authorization

Given the UPA matrix, in this approach, we first build theclassification model(CM) for each

permission. This process, of building the classification models, is typically carried out at the start,

though the models may be refined (either incrementally or completely recomputed) if the system

state changes significantly. Once models are built for all permissions, these models are then stored

and utilized for future risk assessment. Suppose that userU6 (depicted in Figure4.1(a)) requests

permissionP2. From Figure 4.1(a), it can be seen thatU6 has been assigned permissionsP1 and

P3. Since all the users who have been assigned permissionP2 in theUPA matrix of Figure 4.1(a)

have been assigned either permissionP1 or permissionP3, the risk for granting this access request

is relatively low and it may be secure to assign permissionP2 to U6. We now show how this risk

can be quantified.

Essentially, we can treat the permission request as a new instance to be classified for the appro-

priate model. Thus, if userUi requests permissionPj, then the classifier model forPj needs to be

used. This classification model makes a decision based on theexisting permission set ofUi. Thus,

the permissions ofUi form the new instance which is classified by the model, and theclassifier

returns the probability of that instance belonging to the class of permissionPj or not. Thus, the

output of this classification corresponds to theAssessedRisk value. If this value is lower than the

threshold, then permission can be granted to the requestinguser; otherwise the request is denied.

The procedure consists of the following two steps:

Step 1: Model building for each-permissionIn this step, a classification model is built for each

permission within an organization. This step uses theUPA matrix which represents the user-to-

permission assignments within an organization. For each permission, there is one column inUPA.

A cell value of ‘0’ represents the absence of the permission,while ‘1’ represents presence of that

34

permission in the corresponding user’s permission set. Essentially, if there aren permissions,n

classification models are built - one for each permission. When creating the classification model

for each permission, the column for that permission is denoted as the class, while the remaining

data are used to train the classifier model. The models built for each permission are then stored for

later use. Algorithm 1 gives the formal specifications for this step.

Step2: Classification of requestUser may want to have a permission which was not assigned

to him before. For determining whether a user should be giventhat permission or not, a request

is classified on the basis of existing permission set of a user. This is done by first retrieving a

classification model for a requested permission and then classifying the request. The output of

this classification is the probability that the new instancebelongs to the class (probability that the

access request should be granted). Thus, the inverse gives theAssessedRisk value.

Algorithm 2 gives the formal specifications for access request classification step.

Algorithm 1 BuildPermissionClassificationModel()

Require: User-Permission assignment,UPA
Require: Classification Algorithm,CA

1: CMlist← φ
2: for each permPj do
3: Denote the column forPj in UPA as the class attribute
4: CM ← BuildClassifier(CA,UPA)
5: CMlist← CMlist ∪ CM
6: end for
7: Return (CMlist)

Figure 4.2 shows the risk values for the UPA matrix of Figure 4.1(a). The risk values are

computed for those permissions that have not been assigned to users in the original policy. For

example, the risk value for assigning permissionP2 to userU6 is 0.24. This low risk value is due

to the fact that all the users who have permissionP2 have been assigned either permissionP1, or

permissionP3 andU6 has authorization for both of these permissions. On the other hand, the risk

35

Algorithm 2 PermissionRisk(Ui,Pj)

Require: Perms(Ui) represents existing permission set of userUi

Require: Classification Algorithm,CA
Require: δ, the threshold for classification
Require: CMlist, the list of classification models built from Algorithm 1

1: CM ← Retrieve the classifier model for permissionPj fromCMlist
2: AssessedRisk ← CA(CM,Perms(Ui), Pj)
3: return AssessedRisk

P1 P2 P3 P4 P5

U1 1.0

U2 1.0

U3 0.323 1.0

U4 0.323 1.0

U5 1.0 0.469

U6 0.24 0.8 0.8

U7 1.0 0.308

U8 1.0

U9 1.0 0.469

U10 1.0

Figure 4.2. Assessed risk values for permission authorizations considering the UPA matrix of
Figure 4.1(a)

value of permissionP5 for U6 is 0.8. Intuitively, the reason for this high risk value is that in 5out

of 7 instances ofP5 in Figure 4.1(a),P5 occurs together withP2. The risk values in Figure 4.2 are

computed using the Random Forest classification model.

4.1.2 Risk Based Authorization of Roles

We now discuss the case where role based access control is used. As discussed above, in this case

the user may request a specific role or a specific permission (if so, the user is requesting any role

that allows him to access the requested permission). We again use theUA, PA andUPA depicted

in Figure 4.1(a) to illustrate the approach.

Note that in either approach, classification models have to be built for each permission. This

classification model building follows the same procedure given in Algorithm 1, except that theUPA

36

R1 R2 R3 R4 R5

U1 0.0 1.0 0.0

U2 0.0 1.0 0.0

U3 0.323 0.323 1.0 0.323

U4 0.323 0.323 1.0 0.323

U5 0.469 0.469 1.0

U6 0.24 0.8 0.848 0.96

U7 1.0 1.0 0.308

U8 0.0 1.0

U9 0.469 0.469 1.0 0.0

U10 1.0 0.0 1.0

Figure 4.3. Assessed risk values for role authorizations considering the UA and PA matrices of
Figure 4.1(b) and (c)

matrix used needs to first be constructed from theUA andPA matrices. Therefore, we assume

that the classification models have already been built.

We now examine the case where a specific role is requested. In this case, the risk of the role is

computed on the permissions that are present in the role. Fora permission that is already owned

by the user, the risk is0 (clearly, there is no risk). For the remaining permissions,we can use

thePermissionRisk procedure (Algorithm 2) to determine the risk of assigning that permission

to the requesting user. Now, we simply need to compute the aggregated role risk from individual

permission risks. This can be done as follows:

Assume roleRx consists of permissionsP1, . . . , Pk. Further assume that the risk of permission

Pi for the requesting user is denoted byriskPi
and the risk for roleRx is denoted byriskRx

:

riskRx
= 1− Risk of not assigningRx

= 1− Risk of not assigning (P1, . . . , Pk)

= 1−
∏

∀s

(1− riskPs
) (4.1)

This procedure is formally specified in Algorithm 3.

Figure 4.3 shows the risk values for role authorizations considering the UA and PA matrices of

37

4.1. Similar to Figure 4.2, the risk values for roles are reported for those roles only that have not

been assigned to the user.

In the case when a specific permission is requested, we first determine the roles having that

permission. Next we compute the risk of each of these roles using theRoleRisk procedure (Al-

gorithm 3). Finally, we select the role with the lowest risk value. This is formally specified in

Algorithm 4.

Algorithm 3 RoleRisk(Ui, Rj)

Require: User-Permission assignment,UPA
Require: Permission to role assignment,PA
Require: Classification Algorithm,CA
Require: Perms(Ui) represents existing permission set of userUi

Require: Rj represents requested role
Require: CMlist, the list of classification models built from Algorithm 1

1: for each permissionPk ∈ Rj do
2: if Pk /∈ Perms(Ui) then
3: riskPk

← PermissionRisk(Ui, Pk) (Algorithm 2)
4: else
5: riskPk

← 0
6: end if
7: end for
8: riskRj

← 1−
∏

∀Pk∈Rj
(1− riskPk

)
9: return riskRj

Algorithm 4 RBACPermissionRisk(Ui, Pj)

Require: User-Permission assignment,UPA
Require: Permission to role assignment,PA
Require: Classification Algorithm,CA
Require: Perms(Ui) represents existing permission set of userUi

Require: Pj represents requested permission
1: crlslist← each roleRk in PA havingPj

2: for each roleRk in crlslist do
3: rlRiskk ← RoleRisk(Ui, Rk) (Algorithm 3)
4: end for
5: return (mink rlRiskk, Rk) {Return the Role with the lowest risk}

38

P1 P2 P3 P4 P5

U1 Risk of R4 (1.0)

U2 Risk of R4 (1.0)

U3 Risk of R1 (0.323)

Risk of R2 (0.323)

Risk of R5 (0.323)

Risk of R4 (1.0)

U4 Risk of R1 (0.323)

Risk of R2 (0.323)

Risk of R5 (0.323)

Risk of R4 (1.0)

U5 Risk of R4 (1.0) Risk of R2 (0.469)

Risk of R3 (0.469)

Risk of R4 (1.0)

U6 Risk of R1 (0.24)

Risk of R3 (0.848)

Risk of R4 (0.96) Risk of R2 (0.8)

Risk of R3 (0.848)

Risk of R4 (0.96)

U7 Risk of R1 (1.0)

Risk of R3 (1.0)

Risk of R1 (1.0)

Risk of R3 (1.0)

Risk of R5 (0.308)

U8 Risk of R4 (1.0)

U9 Risk of R4 (1.0) Risk of R2 (0.469)

Risk of R3 (0.469)

Risk of R4 (1.0)

U10 Risk of R1 (1.0)

Risk of R3 (1.0)

Figure 4.4. Assessed risk values for user permission assignments assuming the RBAC policy of
Figure 4.1(b) and (c)

Figure 4.4 shows the risk values for user permission assignments assuming the RBAC policy

with UA and PA matrices depicted in Figure 4.1. As can be seen in Figure 4.1(c), a given permis-

sion can be accessed through multiple roles. The risk value in Figure 4.4 is computed for all the

roles by which the requested permission can be accessed and the role with the lowest risk value is

assigned to the user. For example,U6 can gain permissionP2 through roleR1 with risk value0.24

or through roleR3 with risk value0.848. Since roleR1 has the lowest risk value, it is assigned to

U1 for granting permissionP2.

4.2 Experimental Evaluation

We now present the details of our implementation of the risk-based permission and role authoriza-

tion approach. The experimental implementation uses Weka [65] to build the classification model

and compute the risk for each of the permissions. The risk fora role is computed as per Equation

4.1. Weka, developed at the University of Waikato in New Zealand, is a collection of machine

39

learning algorithms for data mining tasks implemented in Java. Apart from providing algorithms,

it is a general implementation framework, along with support classes and documentation. It is ex-

tensible and convenient for prototyping purposes. We have used the Random Forest algorithm for

building the UPA classification model. We have evaluated therisk based permission authorization

approach with both real and synthetic datasets. The real datasets used are described below [43]:

• Healthcare dataset: This dataset comprises of 46 users and 46 permissions. Overall, there

are 1486 user permission assignments and the density of the UPA matrix is 0.702.

• Domino: This dataset comprises of 79 users and 231 permissions. Overall, there are 730

user permission assignments and the density of the UPA matrix is 0.04.

• Firewall 1: This dataset comprises of 365 users and 709 permissions. Overall, there are

31951 user permission assignments and the density of the UPAmatrix is 0.123.

• Firewall 2: This dataset comprises of 325 users and 590 permissions. Overall, there are

36428 user permission assignments and the density of the UPAmatrix is 0.19.

• APJ: This dataset comprises of 2044 users and 1146 permissions.Overall, there are 6841

user permission assignments and the density of the UPA matrix is 0.003.

• EMEA: This dataset comprises of 35 users and 3046 permissions. Overall, there are 7220

user permission assignments and the density of the UPA matrix is 0.068.

• Customer: This dataset comprises of 10961 users and 284 permissions.Overall, there are

45428 user permission assignments and the density of the UPAmatrix is 0.015.

• Americas-small: This dataset comprises of 3477 users and 1587 permissions.Overall, there

are 105206 user permission assignments and the density of the UPA matrix is 0.019.

40

Table 4.1. Synthetic data sets
NRoles NUsers NPerms MRolesUsr MPermsRole

data1 20 100 200 5 10
data2 20 200 200 5 10
data3 20 300 200 5 10
data4 20 500 200 5 10

• Americas-large: This dataset comprises of 3485 users and 10127 permissions. Overall, there

are 185295 user permission assignments and the density of the UPA matrix is 0.005.

The synthetic datasets were created using the test data generator from Vaidya et al [61]. The

test data generator performs as follows: First a set of rolesare created. For each role, a random

number of permissions up to a certain maximum are chosen to form the role. The maximum

number of permissions to be associated with a role is set as a parameter of the algorithm. Next,

the users are created. For each user, a random number of rolesare chosen. Again, the maximum

number of concurrent roles a user can have is set as a parameter of the algorithm. Finally, the user

permissions are set according to the roles to which the user has been assigned. Table 4.1 gives

the characteristics of the datasets created. Since the effect of large number of users, permissions,

and varying densities has already been studied with the realdatasets, the synthetic datasets were

created with a limited size to enable focused testing of the effect of noise, and of the role risk. As

the test data creator algorithm is randomized, 3 datasets for each combination of parameters are

created, and the results are averaged.

4.2.1 Risk-based Permission Authorization

Table 4.2 and table 4.3 gives the average risk that was computed for each of the real datasets. In

each case, we give the average risk for four discrete cases, as well as the percentage of occurrence

for each case:

41

Table 4.2. Average permission risk for real datasets
Dataset A0-P0 A0-P1
Healthcare 0.96995 (28.1191%) 0.102286 (1.65406%)
Domino 0.990807 (95.8737%) 0.232318 (0.120555%)
Firewall1 0.999191 (87.6113%) 0.235806 (0.0417335%)
Firewall2 0.999905 (80.9961%) 0.283333 (0.00625815%)
APJ 0.998631 (99.1011%) 0.164787 (0.563963%)
EMEA 0.983113 (92.9369%) 0.269579 (0.289841%)
Customer 0.994464 (98.2509%) 0.290119 (0.289728%)
Americas-small 0.999787 (98.0862%) 0.273659 (0.00723088%)
Americas-large 0.999643 (99.4671%) 0.297221 (0.00785151%)

• Risk for permissions that were actually unassigned to a user, and were correctly predicted

by the classifier as not to be assigned (A0-P0).

• Risk for permissions that were actually unassigned to a user, and were incorrectly predicted

by the classifier as to be assigned (A0-P1). This case corresponds to incorrect over privilege.

• Risk for permissions that were actually assigned to a user, and were incorrectly predicted

by the classifier as not to be assigned (A1-P0). This case correspond to incorrect under

privilege.

• Risk for permissions that were actually assigned to a user, and were correctly predicted by

the classifier as to be assigned (A1-P1).

It is clear that for all of the real datasets, the average riskfor the A0-P0 permissions is very

high (ranging from 0.96 – 0.99), while the average risk for the A1-P1 permissions is very low

(ranging from 0.0001 – 0.18). The risk for A0-P1 is incorrectly low while the risk for the A1-P0

permissions is incorrectly high. However, the combined percentage of such cases is quite low (less

than 4% in all cases). Thus, the results are quite good.

42

Table 4.3. Average permission risk for real datasets
Dataset A1-P0 A1-P1
Healthcare 0.745429 (1.32325%) 0.00772222 (68.9036%)
Domino 0.889158 (1.21651%) 0.0333792 (2.78919%)
Firewall1 0.925063 (0.233012%) 0.00321427 (12.1139%)
Firewall2 0.66037 (0.0140808%) 0.00019505 (18.9836%)
APJ 0.860487 (0.0511018%)0.0269798 (0.283824%)
EMEA 0.871483 (3.67414%) 0.150757 (3.09915%)
Customer 0.813936 (0.795715%) 0.184826 (0.66362%)
Americas-small 0.743298 (0.0280355%)0.00734629 (1.87856%)
Americas-large 0.756415 (0.042754%) 0.0364984 (0.482271%)

Figure 4.5 gives the average risk for the synthetic datasets. The x-axis shows the varying

number of users in the four datasets (since the other parameters are the same), while the y-axis

shows the average risk. As expected, the risk for the permissions that are actually 0 and are

correctly predicted to be 0 is quite high, while the risk for the permissions that are actually 1 and

are correctly predicted to be 1 is quite low. It is clear that the increasing number of users does not

have any deleterious effect on the results.

We also carried out experiments to evaluate the effect of noise on our approach. To do this,

the noise model of [61] was used, and all of the synthetic datasets had noise added to them using

randomly (flipping both 0s to 1s and 1s to 0s). Figures 4.5(b)-4.5(d) gives the results with 7%-20%

noise added. The main result of the noise is to make the classification results imprecise. The effect

can be seen through the lowering risk for the permissions predicted to be0 and the increasing risk

for the permissions predicted to be1.

4.2.2 Risk-based Role Authorization

To evaluate the risk-based role authorization, we used the same synthetic datasets described in

Table 4.1. For each user and each role, the risk was calculated as per Equation 4.1. The risk was

then averaged over all of the users and all of the roles. We carried this process out both without

43

20%

30%

40%

50%

60%

70%

80%

R
is
k A0 P0

A0 P1

A1 P1

0%

10%

20%

100 200 300 500

Number Of Users

A1 P0

(a) With 0% noise

20%

30%

40%

50%

60%

70%

80%

R
is
k A0 P0

A0 P1

A1 P1

0%

10%

20%

100 200 300 500

Number of Users

A1 P0

(b) With 7% noise

20%

30%

40%

50%

60%

70%

80%

R
is
k A0 P0

A0 P1

A1 P1

0%

10%

20%

100 200 300 500

Number of Users

A1 P0

(c) With 10% noise

20%

30%

40%

50%

60%

70%

80%

R
is
k A0 P0

A0 P1

A1 P1

0%

10%

20%

100 200 300 500

Number of Users

A1 P0

(d) With 20% noise

Figure 4.5. Average permission risk for synthetic datasets

noise and after the introduction of noise, as described earlier. The results are depicted in Figure

4.6. Figure 4.6(a) shows that the risk of getting an already authorized role is always 0 regardless

of whether the role is predicted to be0 or 1 (AR1-PR0 or AR1-PR1), since all of the permissions

associated with that role are already held by the user. However, when the role is not authorized,

the risk is quite high if it is predicted to be unauthorized (AR0-PR0) and fairly low if it is predicted

to be authorized (AR0-PR1). The results do not vary much based on the number of users. Figure

4.6(b) shows the results when noise is introduced. In the interest of space, we only depict the

results in the case of data4 (500 users), though they are the same for all of the other datasets too.

It is clear that with the introduction of noise, the risk in all 4 cases increases proportionally to the

level of noise. The risk increase is marginal for AR0-PR0 (where it is already high), while being

significant in all of the other 3 cases.

44

20%

30%

40%

50%

60%

70%

R
is
k AR1 PR0

AR0 PR1

AR1 PR1

0%

10%

100 200 300 500

Number of Users

AR0 PR0

(a) Without noise

20%

30%

40%

50%

60%

70%

R
is
k AR1 PR0

AR0 PR1

AR1 PR1

0%

10%

0% 7% 10% 20%

Percentage of Noise

AR0 PR0

(b) With noise

Figure 4.6. Average role risk in synthetic datasets

45

CHAPTER 5

USING ATTRIBUTE SEMANTICS FOR CONFIGURATION MANAGEMENT

There is an increasing need for dynamic, efficient and securesharing of information resources

among organizations in a coalition or federation. The goal for electronic collaboration in a coalition

is to share specific data and functionality with partners (some of whom are relatively unknown)

while ensuring that resources are kept safe from unwanted access by unauthorized individuals.

Coalitions support voluntary interactions between members in pursuit of collective goals. They

can be geographically dispersed and fluid in membership. Theincreasing formation of coalitions is

driven by a number of applications including emergency and disaster management, peacekeeping,

humanitarian operations or simply in support of common business processes, such as supply chain

or joint marketing. With the connectivity available to companies and organizations today, sharing

of electronic resources can be relatively easily accomplished through virtual networks over the

Internet, the Semantic Web, or via cloud services. However,ensuring the security of the coalition is

not as easily enabled. In particular, controlling access dynamically in terms of allowing maximum

permissiveness to resources needed to meet the coalition goals while protecting resources with

appropriate levels of restrictiveness is an unsolved problem. Access control and authentication

mechanisms exist, but they are administratively difficult to maintain. This is particularly the case in

a federated environment where the entities involved are notlong standing partners. Even when the

entities involved have longer-term agreements, there are dynamic requirements that come into play.

Different resources may be needed at different times, resources may be added, updated or deleted,

46

and reasons for collaboration may change. In addition, entities may not want to share openly with

any member of a partner’s organization. Instead, they are more likely to want to control access to

objects by external individuals in a way that corresponds towhat they do internally for their own

users. That is, a resource should not be accessible

5.1 Identifying Required Role Attributes using Classification

Our approach to identify significant attributes for a role membership relies on classification method.

Classification model constructed from the existing data is later used for testing credentials of a new

user for a role membership by matching them against the classification model of a role. In real life

situations, security administrator doesn’t have understanding of various aspects of role configura-

tion. Therefore, it is highly probable that she may pick ill-suited role for a new user for granting

any requested permission in RBAC security environment. An ill-suited role is a role through which

a user may getlesser than necessary permissionsor extra permissions than necessary permissions.

When more than necessary permissions are given to a user, security configuration errors are intro-

duced in the deployed system leaving the security loop holesopen for attack by malicious users.

On the other hand, if less than necessary permissions are given to a user, the task assigned to a user

cannot be completed.Our approach based on classification isto ensure that the addition of a new

user to an existing system is in compliance with the access control policies that are governing the

deployed system.

In RBAC based security system, user acquire a permission to access a resource via role [27].

In our approach to facilitate coalition based access control, we are assuming that for ensuring the

enforcement of security policies, RBAC is already deployedin the resource owning organization.

For identifying the set of required user credentials for a role, we first build classification model for

each role by using user attribute base(UAB), and role assignment data(UA). UAB andUA are

47

discussed in section 3.4.1 and in section 3.3. Each role’s model is computed by using theUAB of

all users regardless of their role membership status. Note that our classification based approach is

not sensitive to the choice of classification algorithm. Once the classification model for each role

is constructed, these models are then stored and are later used for determining whether a new user

qualifies for a particular role or not.

Credentials of a new user are tested against the classification model for a role through which

a user can acquire a requested authorization. Generally, toprevent misuse of any organizational

resources, established local access control policies allows only those users, to access a particular

resource who possess attributes comparable to the attributes of a resource. When a new user is

added as a result of coalition formation, organization wants similar policies to be exercised while

sharing resources with external users takes place. Therefore, it is important to check that external

user also possesses required credentials to access a requested resource.

The overall process to add a new user to existing system involves following three steps:

STEP 1. Building Classification Model for each RoleThis step is executed to build separate

classifier for each rolerm ∈ R, whereR represents set of roles that are locally deployed within

the organization. This step can be executed just once, as shown in 5 All models are then stored for

later use. Note that if any changes in the configuration of anyrole are observed, then the model for

that role can be updated either incrementally or by rebuilding a model.

STEP 2. Selecting Roles Having Requested PermissionWhen an access request is received

from a new user to access particular object, or set of objects, this step is executed to identify set

of all roles though which a permission can be granted. Note that we are assuming that RBAC is

in place, therefore permissions are acquired by a user through role. All those roles through which

a user may acquire a permission to access requested object are stored incandidateRoles list, as

48

shown in Algorithm 6.

STEP 3. Classifying external user’s attributes for RolesThough there could be multiple roles

through which a permission to access requested object can begranted to a new user, but it is

important to ensure that the user should be assigned to a rolethat he qualifies for. To determine a

secure role for a new user, his credentials are checked against the model of each role retrieved in

candidateRoles. If there is any role in the list ofcandidateRoles for which he qualifies on the

basis of his credentials then that role is assigned to new user. However, if he doesn’t qualify for

any role in a list ofcandidateRoles, access request would be denied .

The details of three steps are given in following subsections.

5.1.1 Building Classification Models to Identify Required Attributes for Roles

This step is carried out just once. Essentially, we need attributes classification model for each role

to begin with. Classification model for all roles are generated and stored for future use at this step.

Algorithm 5 shows how this step is executed.

Given a rolerm ∈ R, goal of attributes classification model is to identify combination of

attributes which are important for categorizing user into the rolerm. Having an RBAC system

in place, local user acquire permission to access any objectthrough role. Thus. ifPermOj is

requested by a user, to access objectOj, we assume that there would be atleast one role that has

permission to access objectOj . Generally, in RBAC based environment, it is possible to have

roles with overlapping permissions. Therefore, if credentials of an external user don’t match with

required credentials for one particular role then they are tested for remainingcandidateroles. By

candidateroles, we mean those roles which contains permission to access requested object.

49

5.1.2 Selecting Candidate Roles

When an access request of an external user is received, all roles through which a requested per-

mission could be assigned are stored incandidateRoles list. However, out of allcandidateRoles,

user is assigned to a role that has a match with attributes of that user. This matching is done at

next step. Recall thatcandidateRoles has only those roles which contains permission requested,

therefore if any role fromcandidateRoles is assigned to a user automatically a user will acquire

requested permission through it. Algorithm 6 shows how thisselection is done.

5.1.3 Evaluation of Credentials of an External User

Once the set ofcandidateRoles is identified, attribute set of external user has to be categorized into

a role. If a given request isaux, P ermobjy, whereaux represents credentials of an external userux

andPermobjy is thepermission requested by a userux to accessobjy, userux’s credentialsaux

are checked against the attribute classification models of roles containing permissionPermobjy.

If aux qualifies for membership into any role that has permission toaccessobjy, then that role is

assigned to an external userux. Essentially,ux would getPermobjy via assigned role. However,

if aux don’t qualify for any of the roles havingcandidateRoles, then the request is denied.

Algorithm 5 Building Classifiers

Require: CA, represents Classification Algorithm.
Require: UA, represents column of UA having role assignments for rolen.
Require: UAB, represents Users Attributes Base.

1: RARMlist ← φ
2: {Building classifier for each Role inUA}
3: for each roler in UA do
4: {set columnr of UA asclassAttribute}
5: RARMr ← classifierBuilding(CA,UAB, classAttribute)
6: RARMlist ← RARM ∪RARMr

7: end for
8: return RARMlist

50

Algorithm 6 Selecting Candidate Roles for New User

Require: Perm(Oj), represents requested permission to access objectj.
Require: PA, represents permission role assignments.

1: candidateRoles← φ
2: {to discover all roles having permissionPermOj to access objectOj}
3: for each rolerl in PA do
4: if rl hasPermOj then
5: candidateRoles← rl
6: end if
7: return candidateRoles
8: end for

5.2 Identifying Required Attribute Set using Threshold Value

In this section, we present the basic framework and description of approach to which we are com-

paring our work with. This approach uses object and user attribute semantics for determining user

attribute-value pairs orcandidate attributes of users(caursignificant) that characterize a role. In our

work, we refer to this approach as semantics based approach.

5.2.1 Framework for Semantics-based Approach

In this section we present some preliminary concepts that are unique to semantics-based approach.

Concept Hierarchy

Semantics based approach employ concept hierarchies tolink the different attributes and compare

their values. A concept hierarchy is a graphical notation for representing knowledge using inter-

connected nodes and arcs. In a concept hierarchy, a more specific concept(s) is represented as a

descendant(s) of its more general concept(s).

A concept hierarchy,Ci, consists of a partially ordered (≺) set of concepts. Given two concepts

c1, c2 ∈Ci the following four possible relationships are considered between them:subClass(c1) =

c2 for the relationship wherec2 is a more specialized concept;eq(c1) = c2 wherec1 andc2 are

51

equivalent concepts (synonyms);sup(c1) = c2 wherec2 is the next more general concept thanc1

(i.e., separated by only one link in the concept hierarchy);andcom(c1) = (c2) wheresup(c1) =

sup(c2). This latter relationship means thatc1 and c2 are compatible. Note that several other

relationships among concepts are defined in [2]. Discussed approach utilizes only the relationships

specified above. Note that the concepts can be either the attribute names or their values.

Figure 5.1 shows an example concept hierarchy for the general conceptsoftware. From

the figure,sup(Financial) = Functions andeq(Financial) = Fiscal are examples of

relationships. Note that when two concepts are synonyms they are enclosed in a box. Finally,

com(Financial) = Display indicating that these two concepts representing have a common

parent and thus represent more specific aspects of the same general concept.

Definition 1. We say an attributeai is associated with (or belongs to) a concept hierarchyCj,

denoted asai → Cj if its valuevi is an included concept inCj.

It is assumed that every attribute inΛ with a non-numerical attribute value must be associated

with one or more concept hierarchies. For example, the values for user attributesperformsJob

andhasExpertiseIn are concepts in the concept hierarchy for the conceptsoftware. Like-

wise, the values for the object attributeshasContent or hasKeyword are also concepts in the

concept hierarchy for the conceptsoftware. Note that the degree of specialization of a node

increases with its distance from the root. For example in Figure 5.1,Java Code is more special-

ized thanCode which in turn is more specialized thansoftware.

Attribute Linking

For the comparison of two attributes and their associated values, semantics based approach need to

know if the attributes use the same vocabulary. It is achieved by associating attribute names with

52

Software

Code

SW Design

Test

Scripts

Libraries Functions Interfaces

Java Code C++ Code

UML

DisplayFinancial

Component

Test Scripts

System Test

Scripts

Fiscal

Figure 5.1. Example Concept Hierarchy for ConceptSoftware

concept hierarchies where the association indicates the concept hierarchy from which the attribute

values are drawn. Attributes are comparable if they are associated with attribute values that are

from the same concept hierarchy. Therefore, if any attributes are comparable attributes they are

alsolinked.

Semantics based approach requires two types of linking: (1)referential linkingthat links a user

attribute name and an object attribute name when associatedwith the same concept hierarchy; (2)

synonymous linkingthat links two user attribute names that are synonyms.

Whether it is referential or synonymous linking, the approach uses⊤(ai, aj) to represent the

linking between two attribute namesai andaj . The linking relationship is transitive. That is, if

⊤(ai, aj) and⊤(aj , ak), then⊤(ai, ak).

Definition 2. ⊤(ai, aj) is a referential linkingif ai is a user attribute andaj is an object attribute

such thatai → Ci ∧ aj → Ci.

Definition 3. ⊤(ai, aj) is a synonymous linkingif both ai and aj are user attributes such that

eq(ai) = aj.

53

Referential linking is used to compare user and object attribute values to extract the necessary

attribute-value pairs for a role.

Synonymous linking is used to link a user attribute-value requirement to an attribute-value received

from a new user or external user, This is done when when the attribute name in the credential is

not exactly that used by the resource owning organization but is a synonym of an attribute name

that is used.

5.2.2 Generating Required User Attributes for Roles

This approach assumes that the user should be authorized to access only those objects within the

organization which matches semantically with the user attributes. Semantic matchsemantic match

is defined as:

Definition 4. [Semantic Match] [User-Object Attribute Semantic Match] There exists asemantic

matchbetween a user attributeai and an object attributeaj iff (⊤(ai, aj)) ∧ ((eq(vi) = vj) ∨

(subClass(vj) = vi)).

Example 3. For example, the object “Component 1 Software” has the attributehasContent

which draws its values from the concept hierarchy forsoftware shown in Figure 5.1. A user,

Elise, has an attributehasExpertiseIn whose values are also drawn from the concept hier-

archy forsoftware. Thus, the object attribute and the user attribute are linked. Now suppose

the value of the object attribute,hasContent, is functions. Suppose also that the value of

Elise’s

hasExpertiseIn attribute isfinancial, then there is a semantic match between the two at-

tributes because Elise’s attribute value is a subclass of the Component 1 Software’s attribute value

in the software concept hierarchy. Note that if Elise’s attribute value forhasExpertiseIn had

54

also beenfunctions, there would have also been a semantic match between the two attributes.

However, if Elise’s attribute value forhasExpertiseIn had beensoftware, there would

be no semantic match becausesubClass(function) 6= software. The inclusion ofsubClass

is to allow, for example, users withhasExpertiseIn in Java code to access objects with

attributesCode or Software.

However, there is more to the process than simply performingsemantic matches. To determine

attribute requirements for a role, the following four step process is executed. This overall process

is briefly defined below.

STEP 1.Discovering User Attributes that are Semantically Relatedto Object Attributes:

For each user who is currently a member of the role, consider each of their attribute-value pairs

contained in the UAB. This is thecandidate attribute-value pair setfor that user. For each attribute-

value pair, determine if there is a semantic match between itand an attribute of any of the objects

to which the role has privileges. If there is no semantic match, remove the attribute-value pair from

consideration by taking it out of the candidate-value pair set for that user.

STEP 2.Merging candidate attribute-value pair sets:

This part of the process involves combining user candidate attribute-value pair sets that are the

same or similar. The similarity is determined by finding pairs that have the same attribute names

but different attribute values. The values are compared andif there is a relationship as per the

concept hierarchy associated with the values, they may be merged.

STEP 3.Pruning attribute-value pair sets by assessing significance of attribute-value pairs:

For each candidate attribute value pair set, determine if itis significantfor that role. An attribute-

value pair is significant if it is a characteristic of a high percentage of members of the role and is a

characteristic for only a small number of non-members of therole. Only those attribute-value pairs

55

that are significant for the role are kept for further consideration. The result is a set of candidate

attribute-value pair sets that aresignificantto the role.

STEP 4.Checking Attribute Requirements Across Roles:

Finally, the candidate attribute-value pair sets of all roles are tested if they obey certain rules when

considering the role hierarchy, which involves ensuring that related roles meet certain attribute

requirements rules. This is a semi-automated process. Notethat new attribute-value pairs may be

added during this step.

The details of the four steps are presented in the following subsections.

5.2.3 Semantic Matching of User Attributes to Object Attributes

This step involves extracting and semantically matching user attributes (and their values) for role

members to object attributes (and their values) for objectsfor which the role has some permission.

To derive the attribute requirements for membership in roler, we need the set of objects for which

permissions are assigned to the role, such objectsassigned objects(r) and the set of users assigned

to the role,assigned users(r) as per definition given in section 3.3.

Definition 5. [Candidate Object Attributes] Thecandidate object attribute setfor a roler, coar =

{∪aoi|oi ∈ assigned objects(r)}.

Essentially, for each of the objectoi ∈ assigned objects(r), all the attributes associated

with that objectaoi in OAB are extracted. The union of all the attributes for all the objects in

assigned objects(r) make up the candidate object attribute setcaor for role r.

Definition 6. [Candidate User Attributes] Thecandidate user attribute setfor userui of role r,

cauri = {aj|aj ∈ aui ∧ ui ∈ assigned user(r) ∧ aj has a semantic match to someok ∈ caor}.

56

Ass
ig

ned to

Elise:

performs Job: software

hasExpertiseIn: financial

functions

assignedTo: Blue

Tom:

performsJob: software

hasExpertiseIn: java

assignedTo: Blue

hasDegree: Computer Sci

hasExpertiseIn: C++

Assigned to

Assigned to

Harry::

performs Job: test

assignedTo: Gold

Component 1 Code:

hasContent: software

hasContent: java

createdUnder Project: Blue

hasContent: financial

functions

Ethics Statement:

hasContent: ethics

hasContent: code of

conduct

purpose: practices

type: document

Has Permissions

H
a
s
 P

e
rm

is
s
io

n
s

Role C1SD

Component 1 Software

Developer

Figure 5.2. Component 1 Software Developer Role, Members, and Permissions

For each of the usersui ∈ assigned users(r), extract user attribute set,aui. For each of the

attributesai ∈ aui, check whether there is a semantic match (as per Definition 4)between it and

any of the object attributes incaor. If there is a semantic match, the attributeai and the valuevj

of the matching object attribute are added to the candidate user attribute requirement set for user

ui under roler, cauri . If a user has no semantic matches to any of the object attributes, that user

is flagged since they may be incorrectly assigned to the role.Likewise, if there is an object whose

attributes have no semantic matches to any of the users assigned to the role, it is also flagged as an

inappropriate object for the role.

Definition 7. [Candidate Role Attributes] Thecandidate role attribute setfor role r,

caur = {∪cauri |ui ∈ assigned users(r)}

Example 4. Figure 5.2 shows a role,Component 1 Software Developer, which is a specializa-

tion of the roleSoftware Developer(see Figure 5.3). This role has three members, Tom, Elise,

and Harry and is assigned permission for all files forComponent 1 code. The attributes of Tom,

Elise, and Harry as well as theComponent 1 Code object are shown in the figure. When

comparing Tom’s attributes to those ofComponent 1 Code, there are referential links be-

57

tween the user attributeperformsJob and the object attributehasContent, the user attribute

hasExpertiseIn and the object attributehasContent, and the user attributeassignedTo

and thecreatedUnderProject object attribute. Therefore, the candidate attribute set when

just looking at Tom as the first user assigned to the software developer role would becauSD =

{(performsJob:software), (assignedTo:Blue),

(hasExpertiseIn:java)}. Tom’s attributes,hasDegree:

Computer Science andhasExpertiseIn:C++, were removed from consideration since

there is no semantic match between those attributes and attributes of the objects.

For Elise, there is a match between her attribute

performsJob and the object attributehasContent, the user attributehasExpertiseIn

and the object attributehasContent, the user attributeassignedTo and thecreatedUnderProject

object attribute.

Harry has no attributes which match the attributes of the objects. This should be a concern since

it appears that Harry may not belong to the role. Harry’s lackof semantically matched attributes

should be flagged for further analysis. The empty set is not added as a candidate.

Therefore, the candidate attribute user sets for theComponent 1 Software Developer role

(C1SD)can be expressed as:cauC1SD = {{(performsJob:software),(assignedTo:

Blue), (hasExpertiseIn:java)}; {(performsJob:

software), (hasExpertiseIn:financial functions),

(assignedTo:Blue)}}. Note that the “;” represents “or”. A set of users in the role have either

of the sets of attribute-value pairs.

Now suppose the roleComponent 1 Software Developeralso has access to anethics statement,

also shown in the figure. This file has no attributes that are linked to the user attributes of Tom,

58

Elise or Harry. As such, it does not add or detract from the candidate attribute requirements for the

role. However, it can be flagged as a object that may not belongto the role since it does not appear

to be semantically related.

5.2.4 Merging Candidate Attribute-Value Pairs

The second step for deriving the user attribute requirements for a role involves merging the sets

of unique attribute-value pairs,as(i), contained incaurall if there is more than one set of attribute-

value pairs. If all the users in the role had exactly the same attribute-value pairs, there would only

be one unique set. However, it is very likely that different users have different attribute-value pairs.

In Step 1, we have a set of attribute-value pairs of every userwho is a member of a role. These

sets are reduced to the number of sets such that only members of a role who were assigned for

distinct reasons are represented by different sets. This isdone through merging of the candidate

attribute-value pairs when users have the same attributes but different values for these attributes.

Merger begins by comparing every pair of sets withincaurall, as(i) andas(j), that have exactly

the same attribute names but different attribute values. Let the unequal values bevi andvj . If

vi = sup(vj) or vj = sup(vi) then the sets can be merged as one set with the equal pairs being

included along with eithervi or vj respectively. Ifcom(vi) = vj , and ifvi andvj represent all the

children ofsup(vi), then the value ofak is replaced withsup(vi). If vi andvj do not represent all

the children ofsup(vi), then the value ofak is replaced with a concatenation of the valuesvi and

vj , (ak : [vi, vj]) which represents that eithervi or vj are acceptable values for attributeak.

Example 5. An example would beas(1) andas(3) whereas(1) = (a1 : v3, a3 : v5) andas(3) =

(a1 : v1, a3 : v5). Both as(1) and as(3) have the same attributes (a1 and a3) but the values

of a1 are different. The merger proceeds pairwise between sets ofthis type. Let us say that

com(v3) = v1, thenas(1) andas(3) can be merged with a new set that includes the multiple

59

Component 1 SW

Developer

Component 2 SW

Developer

SW Tools Engineer

Software Developer

Software Developer –

Project Blue

Software Developer –

Project Red

Software Developer –

Project Gold

Figure 5.3. Partial Role Hierarchy for LM Systems

values fora1 that are acceptable. For example,as(3) is removed fromcaur andas(1) is replaced

by as(1) = (a1 : [v1, v3], a3 : v5).

For example, suppose we have aProject Managerrole for Project Blue, a software

project. Some members might be part of that role because theyhave a college degree and project

management experience while others might be part of the rolebecause they have project manage-

ment certification and have worked on software projects. Theattribute and value pairs,(hasDegree:bachelors)

and(hasExpertiseIn:project management) are different from(hasCertificate:Project

Management Institute) and

(hasExpertiseIn:software) and cannot be combined or merged.

Example 6. For LM, theComponent 1 Software Developerrole, after merger, would have the fol-

lowing attribute sets,cauC1SD = {(performsJob:software), (assignedTo:

Blue), (hasExpertiseIn:[java,financial])}. The more generalsoftware devel-

operrole (see the partial role hierarchy in Figure 5.3) has the attribute set,cauSD = {(hasDegree:

[bachelors,masters]),(performsJob: software),

(assignedTo:[Blue,Gold,Red]), (hasExpertiseIn:

[UML,Code])}.

60

5.2.5 Pruning the Required Candidate User Attributes by Assessing their Significance

To assess the significance of required candidate user attributes, the significance of each attribute-

value set as a whole is considered and each attribute-value pair individually in order to judge what

combination of attributes would be the most likely to represent the users who belong in the role

and not those who do not have the qualifications of the role. The significance of an attribute-value

setas(i) ∈ caurunique can be measured by using the number of users in roler that possess all

the attributes and values inas(i) versus the number of users that are not inr but still possess the

attributes and values inas(i).

The Attribute-Value Set Significance Factorφc as(i) ∈ cau
r, is computed as follows:

φc =
(|ψr

as(i)|/|assigned users(r))|

(|ψqr

as(i)|/|(U−assigned users(r)|))
,

whereψr
as(i) = {uj|uj ∈ (assigned users(r)) ∧ ∀(ai : vi) ∈ as(i), ai is an attribute ofuj}, and

ψqr
as(i) = {uj|uj ∈ (U − (assigned users(r))) ∧ ∀ai ∈ as(i) | (ai : vi) is an attribute ofuj}.

Example 7. For the software developer role, let us say that our final merged candidate attribute set

is:cauSD = {(performsJob:software),(assignedTo:[Blue,Gold,Red]), (hasExpertiseIn:[UML,Code])

LM has 500 employees and 20 are currently assigned to the software developer role. All of those

assigned to the role have attributes that match the candidate attribute-value pair set and 4/480 users

who are not assigned to the software developer role have the attributes and their required values.

The significance factor is thus (20/20)/(4/480) = 120. If we set the threshold value ofφc to 100

(it is a hundred times more likely for a software developer tohave the attributes than for someone

other than a software developer to have those attributes), then the attribute set is relevant.

61

Attribute and its Values ψr
i ψqr

i φa

performsJob:software 20/20 52/480 9.23
hasExpertiseIn:[UML,Code] 20/20 55/480 8.73
assignedTo:[Blue,Gold,Red] 20/20 130/480 3.69

Table 5.1. The significance factor

5.2.6 Checking Requirements Across Roles

The final step is a post-processing step that evaluates the usability of the required candidate user

attributes,caursignificant. This step is to ensure that attribute-value pairs are semantically relevant

and significant for the role.

Given a role hierarchy,RH, if two roles,ri andrj are such that

ri is a more specialized role thanrj, then (1)cauruniquei 6= cauruniquej and (2) the values of

attributes held in common incauruniquei andcauruniquej must have the relationshipSubClass(vj) =

vi wherevi is an attribute value of a required user attribute forri andvj is an attribute value of a

required user attribute forrj.

The above is a formal way of expressing the following. A member of a more specialized

role should have a more specific range of values for an attribute. For example, if an electrical

engineering degree is needed to have the roleelectrical engineer, then a stricter requirement that

can be imposed for the rolesenior electrical engineeris that a person has a masters degree in

electrical engineering.

Example 8. Figure 5.4 shows how the concepts from this step are applied.The more special-

ized C1SD role has more stringent set of required user attributes thanthat of theSoftware

Developer - Project Blue role (i.e., the C1SD Role must have expertise in a specific

type of Code -java or financial). TheSW Developer - Project Blue role, like-

62

Component 1 SW

Developer

Component 2 SW

Developer

Software Developer

Software Developer –

Project Blue

SD attribute requirements:

performsJob: software

assignedTo: Blue, Gold, Red

hasExpertiseIn: UML, Code

SDBlue attribute requirements:

performsJob: software

assignedTo: Blue

hasExpertiseIn: UML, Code

C1SD attribute requirements:

performsJob: software

assignedTo: Blue

hasExpertiseIn: java, financial

C2SD attribute requirements:

performsJob: software

assignedTo: Blue

hasExpertiseIn: java

Figure 5.4. Role Attribute Requirement Comparisons

wise, has more stringent required user attributes than the generalSW Developer role (i.e., the

SDBlue role requires assignment to ProjectBlue). Thus hierarchically, the attribute require-

ments are appropriate. However, the two sibling roles,C1SDandC2SDrequire reexamination.

This is because, the required user attributes forC2SDare a subset of those forC1SD. Unless it is

deemed appropriate that anyone who is in theC1SDrole with java expertise can also gain access

to theC2SDrole, additional required user attributes must be added forC2SD. Let us say that a

new attribute is defined to make theC2SDthe required user attribute set unique. The new required

attribute ishasExpertiseIn:display becausecomponent 2includes display functionality.

The members ofC2SDare then rechecked to see if it is appropriate to assign them this attribute

and if so the attribute and value are added to theUAB for those users.

5.2.7 Evaluation of Access Requests from a New or External Users

Once required attributes are determined, they can be used todecide whether to grant or disal-

low access to requested objects. Access decisions are made purely on the basis of the submitted

attribute-value pairs.

Example 9. Suppose Lara Werner from HU is sending a request that she would like access to

resources of typeUML that are associated withProject Blue. Her request would be pre-

sented as follows:〈〈 HU433 〉 〈 (objectContains:UML), (project:Blue) 〉 〈 lwerner,

(title:software engineer), (project:Blue), (expertise:UML) 〉〉.

63

There are several steps in processing a request:

STEP 1. If the request is made in terms of object attributes, a selectquery is made to the OAB with

the specified attributes and values to determine the objects(if any) whose object attributes match

the request. Requested objects,ro, are the set of all objects that meet the request. An object meet

the request by having equivalent attribute names to those inthe request and associated attribute

values which are equal, equivalent, or where the requested value has the subClass relationship

with the object value. The roles that have permission to access the object(s) are then identified by

locating the objects inassigned objects(r).

Example 10.In this example, the object is described by attributes:{(objectContains:UML),(project:Blu

Objects with those attributes areo526 ando989. Assuming the only operation allowed on these ob-

jects is “read”, we consult the permission to role assignment relationship,PA per Definition 3.3,

to discover which roles have access to the object(s) that match the request. Both objectso526 and

o989 are assigned to theSDBlue role.

STEP 2Next, the requester’s user attributes are examined and compared to the attribute require-

ments for the role(s),aur, that have permission to access the requested object(s).

If there are no other roles to test, a denial message is returned to the requester with (optionally)

a reason given that the request did not include sufficient credentials.

Example 11.For our example, the roleSDBlue has the following attribute requirements:{performsJob:software,

assignedTo:Blue, hasExpertiseIn:[Code,UML]}. Our requester has the attributes

{title:software engineer,

project:Blue, expertise:UML}.

If the requester does not submit appropriate credentials covering all attribute requirements for

access to the requested object, it is assumed that the accessis simply denied.

64

5.3 Experimental Evaluation

In order to compare the performance of both approaches, we conducted an experimental study. This

section discusses the details of experimental study. Validation methods that we have employed to

study the performance of models are also discussed in this section. Performance evaluation is

done by using both real data sets, and the synthetic data sets. Experimental results are evaluated

by considering theF-measureandLift of the resulting models. We conclude this section with the

summary and analysis of results.

The purpose of conducting experimental study was to answer the following questions:

- What is the the overall performance of each of our approaches?

- What is the impact of choosing different threshold values on the performance of our first ap-

proach?

- What is the impact of different classification algorithms on the performance of our second ap-

proach?

- What is the impact of changing organizational parameters,such as: number of users, number of

attributes and number of roles on the performance of our approaches? All experiments were ran

on an Intel P-IV machine with 4GB memory and 2GHz dual processor CPU. In order to test the

performance of classification based method for facilitating coalition based access control, we are

using following three well known classification algorithms:

1. J.48 Decision tree, which is an extension of C4.0 [52],

2. Support Vector Machines(SVMs) [14], and

3. Random Forest [11].

The code for these algorithms are adapted from the Weka machine learning open source repos-

itory [65]. Weka is an open source software suite developed at University of Waikato. For SVM

65

algorithm, we are using libSVM which is a wrapper class of weka [16].

Semantics-based approach is implemented in Java. This approach requires tuning of threshold

value for identifying necessary attributes for a role. We ran our experiments with several threshold

values. However, in our dissertation, we are including results obtained from models that are built

with two threshold values:0.2 and0.7. The reason for not including results of additional models

is that we are getting more or less the same range of results.

Validation Methods: To study the quality of produced models, we are using two performance

evaluating metrics:

1. F-measureand

2. Lift.

Brief discussion about these measures is done below.

F-Measure. F-measureis a harmonic mean ofprecisionandrecall [50]. Precision corresponds

to the number of true positive instances retrieved by the model out of total true instances. Equation

5.1 shows how the precision is computed. Total true instances correspond to thesum of true

positive and false positive instances. True positive instances are those instances which are correctly

classified as belonging to the positive class. On the other hand, false positive instances are those

instances which are incorrectly classified as belonging to the positive class.

Precision = Rtp/Atp+ Afp (5.1)

Where,

Rtp = Retrieved number of true positive instances,

Atp = Actual number of true positive instances,

Afp = Actual number of false positive instances.

66

Recall, on the other hand is the proportion of instances which are actual positives to the number

of instances which are correctly identified by the model as positive instances, as given in equation

5.2.

Recall = Rtp/Atp+ Afn (5.2)

Where,

Rtp = Retrieved number of true positive instances,

Atp = Actual number of true positive instances,

Afn = Actual number of false negative instances.

Lift . Lift represents the performance of a particular model in identifying the targeted data in-

stances [65]. It is a ratio between the number of targeted data instances identified when a particular

model is employed vs the number of targeted data instances identified when no model is employed.

High lift is an indicator of good performance of a model. Liftis computed by first sorting all data

instances into descending order of theirprobability score. Theprobability scorerepresents degree

of confidence with which an instance is assigned to a particular class. Arranged data is then evenly

divided into certain number of chunks(usually 10 chunks). Lift value is then computed for each

chunk. Lift value of a chunk is obtained by dividing the number of positive cases within that chunk

to the total number of positive cases within the data set. Cumulative lift curve serves as a useful

tool for visualizing the performance of a model and is constructed by usingprobability scores.

It is generally used to estimate how well the model is at predicting the class than using random

predictions alone on the same dataset. On the graph, the x-axis has cumulative number of data

instances and y-axis has cumulative number of true positives instances. True positive instances are

those instances which are correctly classified by the predictive model.

67

Real Data sets:We used 4 real data sets. Important characteristics of the real data sets are

given in table5.2.

Synthetic Data sets:The synthetic datasets were created using the test data generator from

Vaidya et al [60]. The test data generator performs as follows: First a set of roles are created.

For each role, a random number of permissions up to a certain maximum are chosen to form the

role. The maximum number of permissions to be associated with a role is set as a parameter of the

algorithm. Next, the users are created. For each user, a random number of roles are chosen. Again,

the maximum number of concurrent roles a user can have is set as a parameter of the algorithm.

Finally, the user permissions are set according to the rolesto which the user has been assigned.

Tables 5.2(a), 5.2(b),5.2(c) gives the characteristics ofthe datasets created. As the test data creator

algorithm is randomized, 5 datasets for each combination ofparameters are created, and the results

are averaged. Overall, we performed our experiments using 15 synthetic data sets.

Methodology for Creating Synthetic Data Sets. For creating synthetic data sets, first a set

of roles are created. For each role, a random number of attributes up to a certain maximum are

chosen to form the role. The maximum number of attributes to be associated with a role is set as a

parameter to the algorithm. Next, the users are created. Foreach user, a random number of roles

are chosen. Again, the maximum number of concurrent roles a user can have is set as a parameter

to the algorithm. Finally, the user attributes are set according to the roles the user has. In some

cases, the number of roles randomly chosen is 0 indicating that the user has no roles and therefore

no attributes.

Since the test data creator algorithm is randomized, we ran it 5 times on each particular set of

parameters to generate the data sets. Both approaches were tested on each of the created data sets.

All results reported for a specific parameter set are averaged over the 5 runs.

- Varying Number of Users with fixed Number of Attributes and Roles: In the first set of experi-

68

numRoles numUsers numAttribs
Real Dataset1 121 130 116
Real Dataset2 241 141 494
Real Dataset3 593 358 716
Real Dataset4 158 104 149

Table 5.2. Characteristics of Real Data Sets

ments, we kept the number of attributes and roles constant, while changing the number of users. It

is important to note that number of attributes and roles are kept constant to ensure that results of

each synthetic dataset within this set of experiment are comparable. Characteristics of data sets for

set1 are given in Table 5.2(a).

- Varying Number of Attributes with fixed Number of Users and Roles: In the second set of experi-

ments, we kept the number of users and roles constant while varying the number of attributes(and

correspondingly, the number of attributes per role). Again, the number of users and roles are kept

constant to ensure that results of each synthetic dataset within set2 are comparable. Characteristics

of data sets for set2 of experiment are given in Table 5.2(b).

- Varying Number of Roles with fixed Number of Users and Attributes: In the third set of exper-

iments, we kept the number of users and number of attributes constant while varying number of

roles. Now, the number of users and attributes are kept constant to ensure that results of each syn-

thetic dataset within set3 are comparable. Characteristics of data sets for set3 are given in Table

5.2(c).

Results on real data sets. Data sets are partitioned into training and testing data. Training data

has 2/3rd of the data instances and test data consist of remaining 1/3rd of the data instances. Train-

ing data is used to build predictive models whereas, test data is used to evaluate the performance

of the model. For our first approach, 2 predictive models are built through approach discussed in

section 5.1 using two different threshold values: 0.7 and 2.0. For testing the performance of clas-

69

(a) Parameters for synthetic datasets when varying number of users, keep-
ing everything else constant

numRoles numUsers numAttribs
Synthetic Dataset1 200 300 500
Synthetic Dataset2 200 500 500
Synthetic Dataset3 200 1000 500
Synthetic Dataset4 200 2000 500
Synthetic Dataset5 200 5000 500

(b) Parameters for synthetic datasets when varying number of attributes,
keeping everything else constant

numRoles numUsers numAttribs
Synthetic Dataset1 150 1500 100
Synthetic Dataset2 150 1500 250
Synthetic Dataset3 150 1500 500
Synthetic Dataset4 150 1500 1000
Synthetic Dataset5 150 1500 2000

(c) Parameters for synthetic datasets when varying number of roles, keep-
ing everything else constant

numRoles numUsers numAttribs
Synthetic Dataset1 80 1500 500
Synthetic Dataset2 150 1500 500
Synthetic Dataset3 250 1500 500
Synthetic Dataset4 400 1500 500
Synthetic Dataset5 500 1500 500

70

Figure 5.5. Predictive performance in terms of F-measure for real datasets

sification based approach, we are using following three classification algorithms: SVMs, Decision

Trees and Random Forests, as discussed in section 3.

1) Performance in terms of F-Measure: Figure 5.5 shows the performance of obtained models

in terms of F-measures. Each model has a separate performance curve on the graph. We observe

that the classification based method using Random forest outperforms all other models overall with

the minimum F-measure 0.13 and maximum 0.4.

Semantics based method has poor performance on real data sets with no F-measure greater

than 0.03. Also, we observe that performance of Semantics based method is actually worst for the

larger data sets, whereas it slightly improves for relatively smaller data sets. It is also interesting

to note that for real data sets, change in the threshold valueused for Semantics based method has

little or no impact on the F-measures. On the other hand, for classification based method, choice

of classification algorithm has significant effect on the performance. For example, SVM has worst

performance. In fact, SVM performs better than semantics based method for just one dataset, but

for the remaining three data sets its performance is no better than that of Semantics based method.

71

(a) Predictive performance in terms
of lift for Real Dataset1

(b) Predictive performance in terms
of lift for Real Dataset2

(c) Predictive performance in terms
of lift for Real Dataset3

(d) Predictive performance in terms
of lift for Real Dataset4

However, the performance of decision trees is close to that of random forests.

2) Performance in terms of Lift: Figure 5.6(b), 5.6(c), 5.6(d) show performance of our ap-

proaches in terms of lift for real dataset1, real dataset2 and real dataset3, respectively. The area

between the baseline curve and the lift curve for any model shows how much a predictive per-

formance can be improved by using that model as opposed to when no model is used. We have

separate graph for each real dataset. The lift curves on eachgraph show that classification based

method using Random Forest Algorithm outperforms all othermodels in terms of lift. Lift curve of

a decision tree shows that it is the second best model. The performance of SVM is actually worst

among all three classification algorithms that we used.

Lift curve for semantics based models shows that these models perform poorly. Their lift curves

are also showing that the model that is created with lower threshold value performs slightly better

than the one built with higher threshold value.

72

(e) F-measures, synthetic Data set1(f) F-measures, synthetic Data set2(g) F-measures, synthetic Data set3

Results on synthetic data sets.

1) Performance in terms of F-Measure: Figures 5.6(e), 5.6(f) and 5.6(g) shows performance of

models on synthetic data sets in terms of F-measure.

On synthetic data sets, decision tree has overall best performance in terms of F-Measure. Variation

in number of users and number of attributes has little or no effect on the performance on Decision

tree. However, the change in number of roles affects the performance. The increase in number of

roles while keeping other parameters constant improves theperformance of Decision tree.

In case of synthetic data sets, Random forest also performs well, and is the second best model in

terms of F-measure. Its performance improves with the increase in number of users, while keeping

other parameters constant. Its performance also improves with increase in number of attributes

while keeping other parameters constant. Finally, increasing the number of roles while keeping

everything else constant has a positive impact on the performance of decision tree.

F-measures for semantics based approach are lowest which means it performs poorly on synthetic

data sets. Performance of the model built with threshold 0.7declines significantly when the num-

ber of attributes are increased while other parameters are kept constant. Performance of the model

built with threshold 2.0 show no change in response to changein number of users. We also observe

that the performance of model built with threshold 2.0 is better than that of SVM based model when

number of attributes and number of roles are changed, as seenin 5.6(f) and 5.6(g).

73

(h) Lift curves and baseline for syn-
thetic data 1

(i) Lift curves and baseline for syn-
thetic data 2

(j) Lift curves and baseline for syn-
thetic data 3

Figure 5.6. Performance of models on both real and syntheticdata sets

2) Performance in terms of Lift: Figures 5.6(h), 5.6(i) and 5.6(j) show performance of models

in terms of lift.

Decision tree outperforms all other models in terms of lift.Random forest also performs well and

is the second best model. SVM has the worst performance amongall the classification algorithms

used. Varying parameters has little or no impact on the performance of classification based models.

Lift curves for semantics based approach models show that these models do not perform well.

In fact, their lift curve is same as baseline curve which means that results based on these models

are no better than results obtained from random predictions.

Summary and analysis of results. Based on the experimental results on both real data sets

and synthetic data sets, we demonstrated performance of twomethods discussed in this disserta-

tion. The main goal of both approaches is to identify the set of necessary attributes of a user for a

role. Results were evaluated in terms of both F-measure and Lift. For the semantic based method,

we used two different threshold values to create models based on it. For the classification based

method, we used three well known classification algorithms:Support Vector Machines(SVMs),

Decision tree, and Random Forests for building classification models. Experimental results indi-

cate that the performance of classification based method is significantly better and consistent as

74

compared to the performance of semantics based approach. Specifically, Random Forest and Deci-

sion tree models are two best performing models to address the problem of coalition based access

control. It is interesting to note that decision tree performs better than random forest when synthetic

data sets are used, whereas random forest performs better when real data sets are used. Overall

the performance of random forest algorithm is quite robust in presence of noise, and decision tree

performs better when the data for building classification model is clean. Determining significant

attributes through Semantic based approach is quite complex and lengthy process. It involves steps

like discovering user attributes that are semantically related to object attributes, forming referential

and synonymous linking, and merging candidate attribute-value pair sets. Moreover, the tuning of

threshold value is not easy. If the threshold is set to some higher value then very few attributes

would be included in the set of necessary attributes for a role. When this identified set of attributes

is used to classify new user for a role, false positive errorsin the system would increase signif-

icantly because many necessary attributes would not be added to a set of significant attributes.

Whereas, if the threshold value is set to lower value then many unnecessary attributes would be

included in the set of required attributes even when they arenot actually significant for a role mem-

bership. When this identified set of attributes (which may also include unnecessary attributes) is

used to classify new user for a role, false negative errors inthe system would increase because

many unnecessary attributes would be required from a user tobecome a member of a role.

Classification based method on the other hand is relatively straightforward and easier to imple-

ment. Simply,UAB andUA matrices are used to generate the classification models. No linking

of attributes, merging attribute value pairs, or tuning of threshold value are required. More impor-

tantly, semantic based approach is rigid in a sense that it returns a fixed set of required attributes

for a role. User should have all the required attributes to become a member of a role. On the other

hand, Classification model allows flexibility and is based onalternative sets of required attributes.

75

Moreover, the significance value of each attribute is used topredict the membership status of a new

user. If few attributes of lesser significance are missing from new user’s attributes set and most of

the attributes with higher significance value are present inuser attributes set, then the role mem-

bership is given through classification method. We believe that this is a realistic way of assessing

user credentials for assigning a particular role.

76

CHAPTER 6

MISCONFIGURATION DETECTION AND RESOLUTION IN ACCESS CONTROL
SYSTEMS

6.1 Introduction

Securing organizational resources from any illegitimate access is a prime concern for organiza-

tions. Therefore, businesses invest tremendous cost and money to implement an efficient access

control (AC) system. AC model is the formal representation of access control policies and their

functioning. Access control system provide means to execute those policies. In simple words,

access control policy is set of rules which defineswho (subject) can access what (object), and ac-

cess control model bridges the gap between the policies and the mechanism to enforce them. To

date, several access control mechanisms and their extensions have been proposed in the literature

of information security [32]. Mandatory Access Control (MAC), and Discretionary Access control

(DAC), are two classical access control mechanisms. However, in recent years, Role Based Access

Control (RBAC) [23] has gained unprecedented prominence and has emerged as one of the most

robust security model to meet diverse access control requirements.

RBAC is a policy neutral model. In contrast to traditional MAC and DAC based security sys-

tems, RBAC offers significant reduction of administrative overheads and an additional advantage

of flexibility. Moreover, it provides the ease of administrating subject and object authorizations via

roles. Unlike traditional models, where authorizations are granted to user directly, the underlying

concept of RBAC is to assign users to a role through which theyacquire authorizations which are

necessary to complete an assigned job. Enterprises still employing their old access control systems

77

want to migrate to RBAC. To accomplish the migration, the first phase is to define a good role set.

While the role defining problem is seemingly straightforward, it has been recognized as one of the

costliest phases in the implementation of RBAC, and poses a great challenge to the system engi-

neers [57]. There are mainly two approaches for identifyingset of roles; (i.)top-down approach,

and (ii.) bottom-up approach. Both approaches have their own set of advantages and limitations.

Top-downapproach takes description of business function, processes, and other security infor-

mation into an account while defining roles. While roles are devised using this approach, difficulty

comes from the fact that system engineer usually has little knowledge on the semantic meanings

of user responsibilities and business processes within an enterprise. Therefore, he can introduce

errors in the system configuration through inconsistent assignments. Alternatively,bottom-up ap-

proachapproach a.k.arole mining is based on determining roles from existing user-permission

authorization data. In bottom-up approach, choice of role mining algorithm is a sensitive aspect

and plays a key role in RBAC configuration. Since no role mining method so far is perfect, and

that they all come with their own set of benefits and limitations, therefore, it is quite a challenge

to choose the role mining method that matches perfectly withthe security needs of a particular

organization. If not chosen appropriately, it turns entirething into a self-perpetuating error. More-

over, when ill suited role mining method is adopted, there are high chances that an appropriate set

of roles are not constituted. This affects the overall performance of a deployed system negatively,

ultimately defeating the sole purpose of implementing access control system.

On the other hand, in DAC, every resource in the system has an owner, and rights to access

any resource are explicitly defined by its owner. Unlike MAC,where system administrator solely

controls assignments of permissions, DAC is relatively easier to implement, and offers flexibility of

delegation of rights i.e. authorized user of a resource can also delegate permission to other users.

However, the administrative overhead of maintaining Access control lists (ACLs), especially in

78

large organizations, is unreasonably burdensome. User obtain an access to any resource through

specific permission request, but there are rarely any revocation requests made in this system.

Each access control mechanism and its extension is focused on particular access control sub-

problem(s), and offers a unique set of functionalities. Their implementation phase is quite chal-

lenging and expensive. But, in order to realize full benefitsof these systems, it is critical to ensure

that their configuration is correct. Furthermore, once the system variables such aspolicies, roles,

and authorizations are defined, continuous monitoring of these systems become vital to ensure that

the behavior of implemented system matches with the expected system behavior and that the con-

figuration is up-to-date. Ideally, this maintenance activity should be carried out on regular basis.

Unfortunately, however, this issue often gets overlooked.

Given, an access control data, the problem of detecting and resolving misconfigurations refers

to the process of identifying those inconsistent assignments in the system which are either mis-

takenly granted (over-assignment) or denied(under-assignment), and correcting them. This issue

has not yet gained due attention from the research community. In most of the related work, it is

assumed that the access control data has no noise, existing configuration is good to start with, and

defined assignments in the system are consistent with the access control policy of an organization.

As a matter of fact, these assumptions are way too unrealistic since access control datasets are no

exception and like any other datasets they may possibly contain large amount of noise.

In recent years, configuration errors in access control system has emerged as one of the key

causes of system failure. Recently, one of the main servicesof Google reported configuration er-

rors as second major issue that contributed towards service-level failure [7]. If a system is compro-

mised through erroneous security configurations, organizational resources can be stolen or altered

gradually over time, and it can be very expensive (in terms ofboth money and time) to recover

them. Therefore, ensuring that the security settings are configured correctly, and they are audited

79

frequently is crucial to protect an organizational assets.Traditional access control system lacks an

ability to anticipate potential misconfigurations. Therefore, these systems fail to gracefully react

to configuration errors. Hence, resulting in to many severe service outages and downtime.

There are many ways in which configuration errors can be introduced in access control system,

but human error, and system error are considered as two main causes. Typically, a system ad-

ministrator(SA) or security officer(SO) is considered responsible for analysis and management of

system configurations but their knowledge about access control data is limited as they rely mainly

on technical support manuals for making any configuration related decisions. Their job is to ensure

that any unauthorized access should be prevented whereas, legitimate access should be granted to

the user. But they have little or no understanding of semantics behind the authorizations i.e. why a

particular access is given to certain user while some othersdon’t have that access. Therefore, while

carrying out the task of assigning or un-assigning authorizations, administrators could make mis-

takes. For instance, they might add extra permission authorization to a user (over assignment) or

they might even sometimes forget to add a legitimate authorizations (under assignment). Moreover,

there are situations in which user’s role or nature of a job changes and their previously assigned au-

thorization (which are no longer necessary) should be revoked and new set of permissions should

be assigned to that user, SA may not perform such tasks efficiently and promptly. Ultimately, im-

portance of configuration management process gets undermined, turning the entire access control

system into a completely useless system.

Furthermore, like any other policies, most of the organizational access control policies also

evolve over a period of time and the deployed security systemmust reflect any policy changes

that takes place within the organization. It is quite challenging for system administrator to keep the

system configurations up-to date in dynamically changing environments. Also, it is extremely error

prone for administrators to carry out these tasks manually.In small scale organization, manual

80

analysis and management is somewhat possible. However, in large scale organizations, where

access control data is fairly large in size, it is not feasible to manually perform this task. As a result,

either the change remains undefined in the system for a long period of time or re-engineering of a

whole new set of rules or a model becomes essential. Frequentre-building of configuration model

is not a pragmatic solution because model building and its implementation are highly expensive

procedures especially, when changes are significant, and rapid. If left unaddressed, these type

of issues can cause serious configuration problems and make sensitive organizational resources

vulnerable to serious security threats. Therefore, an acute need of better ways for configuration

management of access control systems has arisen. In one of the benchmark study performed on

reliability of systems, Jim Gray [28] notes,

”The top priority for improving system availability is to reduce administrative mistakes by

making self-configured systems with minimal maintenance and minimal operator interaction. In-

terfaces that ask the operator for information or ask him to perform some function must be simple,

consistent and operator fault-tolerant”

In following sections, we present approaches to automate the process of configuration man-

agement mainly in RBAC and DAC based security systems. Our approaches rely mainly on data

mining method known as classification. We are integrating classification outcome of multiple clas-

sifiers to detect any configuration errors. The main reason for using output of multiple classifiers

is to leverage strength of each classifier, and to reduce the impact of classification errors made by

an independent classifier.

6.2 Misconfiguration Detection and Resolution

In this section, we give more formal description of the approaches for facilitating automation of

misconfiguration detection and resolution process in deployed access control systems. Our first

81

approach,Misconfiguration detection and resolution in role authorization, considers that role

based access control(RBAC) is already in-place within an organization. Therefore, user-to-role

authorization (UA) data, and permission-to-role (PA) authorization data is maintained by the or-

ganization. Moreover, user-permission authorization matrix (UPA) in this situation can be derived

by using both (UA) and (PA) matrices. Our second approach,Misconfiguration detection and

resolution in permission authorization, considers simply Access control Lists (ACLs) maintained

by an organization.ACL mainly contain existing user permission authorizations (UPA) data. For

both of our approaches, we further assume that the authorization data is maintained in a form of

boolean matrices.For misconfiguration detection, output of multiple classifiers is used. If more

thann number of classifiers classify a user’s assignment to a particular role or a permission, then

the assignment is considered as apotentialmisconfiguration. Misconfiguration score is then

computed for the potentially misconfigured assignment by using the output of multiple classifiers.

On the basis of computed misconfiguration score, a decision regarding the addition or revocation

of role or a permission authorizations is done.

6.2.1 Misconfiguration detection and resolution in role authorization

1a. Given a role authorization(Ui, Rx, {Ri1 , . . . , Rim}), whereRX is the role that the user does

not have authorization, and{Ri1 , . . . , Rim} is the set of roles for whichUi has the authorization.

The role authorization is granted andRx therefore, is added to the existing roles of a user such that:

• Ui is the user within a system who should potentially have an additional role authorization(under-

assigned user);

• (Rx) 6∈ Roles(Ui);

82

• (Rx) ∈ UA

• Computed misconfiguration score for the(Ui, Rx) assignment is greater than the specified

threshold value.

Based on the computed misconfiguration score, roleRx is therefore, added to the existing set of

roles (Roles(Ui)) of a userUi.

1b. Given a role authorization(Ui, Rj, {Ri1 , . . . , Rim}), whereRj is an over assignment and

{Ri1 , . . . , Rim} is the set of roles for whichUi has the authorization. The role authorization is

revoked from the existing roles of a user such that:

• Ui is the user with in a system who has potentially an extra role authorization(over-assigned

user);

• (Rj) ∈ Roles(Ui);

• (Rj) ∈ UA

• Computed misconfiguration score for the(Ui, Rj) assignment is greater than the specified

threshold value.

Based on the computed misconfiguration score, roleRj is therefore, removed from the existing

set of roles(Roles(Ui)) of a userUi.

6.2.2 Misconfiguration detection and resolution in permission authorization

2a. Given a permission authorization(Ui, Px, {Pi1, . . . , Pim}), where:

• Ui is the user with in a system who may potentially need an additional permission(under-

assigned user);

83

• Px is the permission which is not available toUi; and

• {Pi1, . . . , Pim} is the set of permissions for whichUi currently has the authorization.

• Computed misconfiguration score for the(Ui, Px) assignment is greater than the specified

threshold value.

Based on the computed misconfiguration score, permissionPx is added to the existing permission

set(Perms(Ui)) of the userUi.

2b. Given a permission authorization(Ui, Pj, {Pi1, . . . , Pim}), where:

• Ui is the user with in a system who may potentially has an extra permission(over-assigned

user);

• Pj is the permission which is should not be available toUi; and

• {Pi1, . . . , Pim} is the set of permissions for whichUi currently has the authorization.

• Computed misconfiguration score for the(Ui, Pj) assignment is greater than the specified

threshold value.

Based on the computed misconfiguration score, permissionPx is removed from the existing per-

mission set(Perms(Ui)) of the userUi.

Below we discuss more details of our proposed approaches. Inorder to illustrate the procedure,

we will use the user assignment (UA) matrix, permission assignment (PA) shown in figure (6.1),

and figure (6.2), specifically when (RBAC) based security environment is assumed, and derived

user permission assignment (UPA) matrix, as shown in figure (6.3). For our second approach,

Misconfigurationdetectionandresolutioninpermissionauthorization, the sameUPAmatrix

which is shown in figure (6.3) is used for the purpose of illustration of procedure.

84

Misconfiguration Detection and Resolution in Role Authorization

In this case, we assume that (RBAC) is deployed within the organization. As mentioned in section

6.2, our approach to detect misconfigurations in a deployed system relies on classification method.

Essentially, multiple Classification models are constructed by using access control matrices and

their outcome are integrated to make configuration decisions. Once the classifications models are

built, they are stored and are later used for testing purposeof the current and new configurations of

the access control system. Below we discuss the details of the entire process that we We useUA,

andUPA matrices depicted in figure 6.1, 6.3 to illustrate the approach.

Multiple classification models are built for each role whichis defined within the deployed ac-

cess control system. Algorithm 7 shows how they are built. After the model building and storing

step, assignment is tested if it is potentially a misconfiguration. Misconfiguration Score is then

computed for any assignment that qualifies as a potential misconfiguration. For instance, if assign-

mentRn(Um) is under the consideration, whereRn represents a role which a userUm may or may

not have. To check whether the availability or unavailability of this role to a user is correct or not,

misconfiguration detection process gets activated. This isa two step process. Firstly,p percent or

more classifiers must predict that the existing class value is erroneous. If this condition is satisfied,

then the assignment is considered aspotentialmisconfiguration. Else, it is left unchanged. This

step is shown in algorithm 8. Assignment which is identified asPotentialmisconfigurations is

further analyzed by computing a misconfiguration score. This score is based on the probability

R1 R2 R3 R4 R5

U1 0 1 0 1 0

U2 1 0 1 0 0

U3 0 0 0 1 1

U4 0 0 0 1 0

U5 1 0 0 0 0

U6 0 1 1 1 0

U7 0 0 1 0 1

U8 1 0 0 0 1

U9 0 1 0 0 0

U10 0 0 0 0 1

Figure 6.1. UA matrix for 10 users and 5 roles

85

P1 P2 P3 P4 P5

R1 1 1 0 0 0

R2 0 0 1 0 0

R3 1 1 1 0 0

R4 0 0 1 1 0

R5 1 0 0 0 1

Figure 6.2. PA matrix for 5 permissions and 5 roles

outcome of multiple classifiers with which each classifier predicts the class attribute of a user. This

step is shown in algorithm 9. In this particular case, by class attribute, we mean presence or absence

of a role in a given set of roles of a user. If the computed misconfiguration score is greater than

the pre-specified threshold value, this assignment is considered as anactualmisconfiguration,

and for any assignment which is identified as anactualmisconfiguration, step for its resolution

is performed as shown in algorithm 10.

Misconfiguration resolution step handle false positive cases and false negative cases differently.

If a misconfiguration is due to false positive assignment (user is not supposed to have that role but

due to an error it is assigned to a user), all the permissions associated with that role are removed

from permission set of a user except those which the user acquired via roles. On the other hand, if

a misconfiguration is due to false negative assignment (useris supposed to have that role but due

to an error it is not assigned to a user), all the permissions associated with that role are added to the

permission set of the user. Overall process of misconfiguration detection and resolution has four

steps. Description of each step along with illustrative example is given below.

P1 P2 P3 P4 P5

U1 0 0 1 1 0

U2 1 1 1 0 0

U3 1 0 1 1 1

U4 0 0 1 1 0

U5 1 1 0 0 0

U6 1 1 1 1 0

U7 1 1 1 0 1

U8 1 1 0 0 1

U9 0 0 1 0 0

U10 1 0 0 0 1

Figure 6.3. UPA matrix for 10 users and 5 permissions

86

Step 1: Building n classifiers for each role.

Our approach to automate misconfiguration detection process utilizes classification outcome of

multiple classifiers. At first step, model building process takes place. Mainly at this stepx number

of classification models are constructed for each role. Algorithm 7 shows how it is done. This

step is typically carried out at the start, though the modelsconstructed at this stage may be refined

(either incrementally or completely recomputed) if the system state changes significantly. List of

classification algorithms is given as an input to construct multiple models. Once they are built for

each role, these models are then stored and utilized for future misconfiguration detection.

For building a classification model of a roleRx, access control matricesUPA andUA are

used as an input to the classification algorithm. When any instance or data point is tested against

the classification model, it returns the predictedclass attribute value, and theprobability. Class

attribute in our case is arole, sayRx, and theprobabilityoutcome is the confidence with which a

classifier decides whether a user should have roleRx or not. Since our approach requires output

of multiple classifiers, therefore, if userUi’s role assignmentRjx needs to be checked, then the

outcome ofx number of classifiers forRj is needed.

Step 2: Identifying potential misconfiguration.

At this step, role assignment of a user, say userUi, is tested for possibility of erroneous role

assignment. Suppose, we want to perform assessment of userUi’s assignment to roleRx. At step

2, this assignment (Ui, Rx) will either be classified as non-erroneous assignment or asa potential

misconfiguration. Algorithm 8 shows how this is done.

At this step, classification models constructed at step 1 forroleRx are retrieved. Essentially, we

can treat the given role assignment of user as a new instance to be classified. Classification model

make a decision based on the existing permission set ofUi. As an output, each model returns the

87

Algorithm 7 BuildingAllClassificationModels()

Require: Matrix ≡ User-Permission assignment matrix,UPA.
Require: Matrix ≡ User-role authorization matrix,UA.
Require: Set of roles defined within the deployed access control system,ROLES.
Require: List of Classification Algorithms,CAlist.

ROLES(CMSlist)← {}
for eachRx ∈ ROLES do
CMlist(Rx)← φ
for eachCAi ∈ CAlist do

Denote the column forRx in UA as theClass Attribute.
CMCAi

(Rx)← buildClassifier(CAi, UPA)
CMlist(Rx)← CMlist(Rx) ∪ CMCAi

(Rx)
end for
ROLES(CMSlist)← ROLES(CMSlist) ∪ CMlist(Rx)

end for
Return (ROLES(CMSlist))

predicted class (in terms of Class Attribute Value), and probability with which userUi is assigned

to that class by a classifier. In our case,Class Attribute Valuecan be either0 or 1; where,0 means

a user should not have roleRx, and1 means a user should have roleRx.

At step 2, ifp% or more classifiers predicts that the existing assignment isan error thenRx(Ui)

is considered as a potential misconfiguration. For instance, if initial UA{Ri, Ui} = 0, p = 50, and

3 out of 5 classification models decides thatUi should haveRx (i.e.UA{Ri, Ui}predicted = 1), then

Rx is a potential misconfiguration. Algorithm 8 returns the potentially misconfigured assignment

and the misconfiguration status. On the other hand, if less than p% predicts a class assignment

different from the initial assignment, then no changes are needed for such assignment.

Step 3: Identifying actual misconfiguration.

User to Role assignment which is identified as potential misconfiguration at step 2 is tested

further to determine whether it is an actual misconfiguration or not. Therefore, misconfiguration

score is computed for the user-role assignment identified aspotential misconfiguration at previous

88

Algorithm 8 potentiallyMisconfiguredRole(Ui, Rx)

Require: Role assignment of a user,Rx(Ui).
Require: Matrix ≡ User-role authorization matrix,UA.
Require: Permission authorizations ofUi.Perms(Ui).
Require: List of classification models constructed using algorithm 7, ROLES(CMSlist).
Require: List of classification algorithms,CAlist.
Require: Pre-specified threshold percentage of minimum number of classifiers having same class

attribute decision,p%.
CMS(Rx)← Retrieve classification models for roleRx fromROLES(CMSlist)
countErrors = 0
notErrors = 0
for eachCAi ∈ CAlist do
classAttrV al ← CAi(CMCAi

(Rx), P erms(Ui), Rx)
if classAttrV al = = UA{Ui, Rx} then
noErrors+ = 1

else ifclassAttrV al != UA{Ui, Rx} then
countErrors+ = 1

end if
end for

potentialMisconfigScore =
countErrors

CMS(Rx).count
∗ 100

if potentialMisconfigScore >= p% then
potentialMisconfigStatus = TRUE
return (potentialMisconfigStatus,Rx(Ui))

else
return 0

end if

89

step. If this score is greater than or equal to the predefined threshold, then the assignment is

considered as an actual misconfiguration. However, if the computed misconfiguration score for

any assignment is less than the predefined threshold value, that assignment does not qualify as a

misconfiguration and therefore, no modifications are neededfor it. The process of classifying any

assignment as an actual misconfiguration is given in algorithm 9.

Algorithm 9 MisconfiguredRole(Rx, Ui)

Require: Role assignment identified as a potentially misconfigured assignment in algorithm 8,
Rx(Ui).

Require: Matrix ≡ User-role authorization matrix,UA.
Require: Permission authorizations ofUi. Perms(Ui)
Require: List of classification models constructed using algorithm 7, ROLES(CMSlist).
Require: List of classification algorithms,CAlist.
Require: θ, pre-specified threshold value.
Require:

CMS(Rx)← Retrieve classification models for roleRx fromROLES(CMSlist)
RxScore = 0
for eachCAi ∈ CAlist do
RxPCP ← CAi(CMCAi

(Rx), P erms(Ui), Rx)
classAttrV alpredicted ← CAi(CMCAi

(Rx), P erms(Ui), Rx)
if classAttrV alpredicted = = UA{Ui, Rj} then
RxScore += 1− RxPCP

else
RxScore +=RxPCP

end if
end for

RxAvgScore =
RxScore

CMS(Rx).count
if RxAvgScore ≥ θ then

Misconfiguration Status = TRUE
return (Misconfiguration Status,Rx(Ui))

else
Leave the assignment unchanged.

end if

Misconfiguration Score is based on the probability with which each classifier decides whether

a role should be assigned to a user or not. If a decision made bya classifier is not the same as

90

that of an actual role assignment status, probability with which a classifier assigns a different class

value is counted towards the computation of misconfiguration score. Once the scores from each

classifier are obtained, their average is computed to obtainthe actual misconfiguration score. If

this score is greater than or equal to the predefined threshold value, then the class attribute value

for that assignment is considered as configuration error.

Step 4: Resolving misconfiguration.

This is the final step of the process where the detected misconfiguration is resolved from the

existing access control system. As discussed earlier, we assume that there are two possible type of

configuration errors in access control system; False positive assignment, and false negative assign-

ment. Both cases are handled differently by our approach. Algorithm 10 shows how the resolution

of misconfiguration of each of these errors is done. Since, weare considering RBAC, therefore, if

a user-role assignment identified by 9 falls under the category of false positive assignment, then all

the permissions associated with the identified role are removed from the permission authorizations

of a user, except those permissions which a user has acquiredthrough his other roles. Note that

the permissions associated with a particular role are obtained fromPA matrix. On the other hand,

if an identified user-role assignment falls under the category of false negative assignment, all the

permissions associated with that role are added to the existing permission authorizations of a user.

At the end of this step, permission authorization set and therole status gets updated in the existing

system.

Misconfiguration Detection and Resolution in Permission Authorization

We now discuss the case where we assume that the access control is implemented through (DAC)/ACLs.

Our approach to detect misconfigurations requires to build multiple classification models and uti-

lize their outcome to classify an assignment for a misconfiguration status. These classifiers are

91

Algorithm 10 resolveMisconfiguration(Rx, Ui)

Require: Matrix ≡ User-role authorization matrix,UA.
Require: Misconfigured role assigment of a userUi identified in algorithm 9,Rx(Ui)
Require: Existing roles of a a userUi, Roles(Ui).
Require: Existing permissions of a a userUi, Perms(Ui).
Require: Permissions associated with roleRx. Perms(Rx).

1: if Rx(Ui) ∈ Roles(Ui) then
2: Perms(Ui)updated ← Perms(Ui)− Perms(Ui) ∩ Perms(Rx)
3: Roles(Ui)updated = Roles(Ui)− Rx

4: else ifRx(Ui) 6∈ Roles(Ui) then
5: Perms(Ui)updated ← Perms(Ui) ∪ Perms(Rx)
6: Roles(Ui)updated ← Roles(Ui) ∪ Rx

7: end if
8: return (Perms(Ui)updated,Roles(Ui)updated)

constructed for each permission.UPA matrix is used as an input to the classifier and the column

for the permission for which classifiers are constructed is treated as aclass attribute. Once all

the models are constructed for each permission, they are then stored for later use. Resolution of

misconfiguration is relatively easy for these systems. If any permission authorization is detected

as a misconfiguration, only that particular authorization is changed in theUPA. Below we give

the details of a process.

Step 1: Building n classifiers for each permission

At step 1,n classifiers are constructed for each permission. Algorithm11 shows how this is

done. This step requiresUPA matrix, and list of classification algorithms as an input. Classi-

fiers for each permission are stored in a list from where they can be retrieved later for testing the

assignments. This step is typically carried out at the start, though the models constructed at this

stage may be refined (either incrementally or completely recomputed) if the system state changes

significantly.

Step 2: Identifying potential misconfiguration

92

Algorithm 11 BuildingClassificationModelsPerms()

Require: Matrix ≡ User-Permission assignment matrix,UPA.
Require: List of Classification Algorithms,CAlist.

Perms(CMSlist)← {}
for eachPj ∈ PERMS do
CMlist(Pj)← φ
for eachCAi ∈ CAlist do

Denote the column forPj in UPA as theClass Attribute.
CMCAi

(Pj)← buildClassifier(CAi, UPA)
CMlist(Pj)← CMlist(Pj) ∪ CMCAi

(Pj)
end for
Perms(CMSlist)← Perms(CMSlist) ∪ CMlist(Pj)

end for
Return (Perms(CMSlist))

At step 2, an assignment will either be classified as non-erroneous assignment or as a poten-

tial misconfiguration. Algorithm 12 shows this process. Suppose in a givenUPA, there is an

assignmentUPA{Ui, Pj} that could possibly be a misconfiguration. At this step, all the classi-

fiers constructed at step 1 for this permission would be retrieved. Basically, we can treat the given

permission assignment of user as a new instance to be classified. Each classification model for

permissionPj would make a decision based on the existing permission set ofUi. As an output,

each model returns the predicted class (in terms of Class Attribute Value), and probability with

which userUi is assigned to that class by a classifier. In our case,Class Attribute Valuecan be

either0 or 1; where,0 means a user should not have a permissionPj, and1 means a user should

have permissionpj.

If p% or more classifiers predicts that the existing assignment isan error thenPj(Ui) is consid-

ered as a potential misconfiguration. For instance, if initial UPA{Pj, Ui} = 0, p = 50, and 3 out

of 5 classification models decides thatUi should havePj (i.e. UA{Pj , Ui}predicted = 1), thenPj

is considered as a potential misconfiguration. On the other hand, if less thanp% predicts a class

assignment different from the initial assignment, then no changes are needed for such assignment.

93

Algorithm 12 potentiallyMisconfiguredPerm(Ui, Pj)

Require: Permission authorizations ofUi. Perms(Ui).
Require: List of classification models constructed using algorithm 11,Perms(CMSlist).
Require: List of classification algorithms,CAlist.
Require: Pre-specified threshold percentage of minimum number of classifiers having same class

attribute decision,p%.
CMS(Pj)← Retrieve classification models for permissionPj from Perms(CMSlist)
countErrors = 0
noErrors = 0
for eachCAi ∈ CAlist do
classAttrV al ← CAi(CMCAi

(Pj), P erms(Ui))
if classAttrV al = = UPA{Ui, Pj} then
noErrors+ = 1

else ifclassAttrV al != UPA{Ui, Pj} then
countErrors+ = 1

end if
end for

potentialMisconfigScore =
countErrors

CMS(Pj).count
∗ 100

if potentialMisconfigScore >= p% then
potentialMisconfigStatus = TRUE
return (potentialMisconfigStatus,Pj(Ui))

else
return 0

end if

94

Step 3: Identifying actual misconfiguration.

User-permission assignment which is identified as potential misconfiguration at step 2 is tested

further to determine whether it is an actual misconfiguration or not. Therefore, misconfiguration

score is computed for an assignment which is identified as potential misconfiguration at previous

step. If this score is greater than or equal to the predefined threshold, then the assignment is

considered as an actual misconfiguration. However, if the computed misconfiguration score for

any assignment is less than the predefined threshold value, that assignment does not qualify as a

misconfiguration and therefore, no modifications are neededfor it. The formal specification of

classifying any assignment as an actual misconfiguration isgiven in algorithm 13.

Step 4: Resolving misconfiguration.

As discussed earlier, we assume that there are two possible type of configuration errors in

access control system; False positive assignment, and false negative assignment. Both cases are

handled differently by our approach. Algorithm 14 shows howthe resolution of misconfiguration

of each of these errors is done. Since, we are considering permission based authorization system,

therefore, if a user-permission assignment identified by 13falls under the category of false positive

assignment, then that permission is removed from the permission authorizations of a user and

UPA is updated accordingly. On the other hand, if an identified user-permission assignment falls

under the category of false negative assignment, that permission is added to the existing permission

authorizations of a user, andUPA is updated accordingly.

6.3 Experimental Evaluation

We have performed extensive experimentation for evaluating the performance of our proposed

approach to automate the process of misconfiguration detection in the deployed RBAC based se-

95

Algorithm 13 MisconfiguredPerm(Pj, Ui)

Require: Permission authorization identified as a potentially misconfigured assignment in algo-
rithm 12,Pj(Ui).

Require: Permission authorizations ofUi. Perms(Ui)
Require: List of classification models constructed using algorithm 11,Perms(CMSlist).
Require: List of classification algorithms,CAlist.
Require: θ, pre-specified threshold value.
Require:

CMS(Pj)← Retrieve classification models for permissionPj from Perms(CMSlist)
PjScore = 0
for eachCAi ∈ CAlist do
PjPCP ← CAi(CMCAi

(Pj), P erms(Ui))
classAttrV alpredicted ← CAi(CMCAi

(Pj), P erms(Ui), Pj)
if classAttrV alpredicted = = UPA{Ui, Pj} then
PjScore += 1− PjPCP

else
PjScore += 0

end if
end for

PjAvgScore =
PjScore

CMS(Pj).count
if PjAvgScore ≥ θ then

Misconfiguration Status = TRUE
return (Pj(Ui))

else
return 0

end if

Algorithm 14 resolveMisconfigurationPerm(Pj, Ui)

Require: Existing permissions of a a userUi, Perms(Ui).
Require: permission assignment identified as actual misconfiguration in algorithm 13,Pj(Ui).

if Pj(Ui) ∈ Perms(Ui) then
Perms(Ui)updated ← Perms(Ui)− Pj

else ifPj(Ui) 6∈ Perms(Ui) then
Perms(Ui)updated ← Perms(Ui) ∪ Pj

end if
return (Perms(Ui)updated)

96

curity system. All experiments were ran on an Intel P-IV machine with 4GB memory and 2GHz

dual processor CPU. In order to test the performance of classification based method for facilitating

coalition based access control, we are using following fourstate-of-the-art algorithms in machine

learning:

1. J.48 Decision tree, which is an extension of C4.0 [52],

2. Naive Bayes [?],

3. Random Forest [11], and

4. Rotation Forest [?].

The code for these algorithms are adapted from the Weka machine learning open source reposi-

tory [65].The experimental implementation uses Weka for model building purpose, and computing

misconfiguration score for authorizations data.

An outcome of classification make each assignment fall underone of the following four categories:

- True Positive (TP). This is a case when actual class attribute value of tested instance is ”1” and

the classifier also predicts it as ”1”.

- True Negative (TN). This is a case when actual class attribute value of tested instance is ”0” and

the classifier also predicts it as ”0”.

- False Positive (FP). This is a case when actual class attribute value of tested instance is ”0” and

the classifier predicts it as ”1”.

- False Negative (FN). This is a case when actual class attribute value of tested instance is ”1” and

the classifier predicts it as ”0”.

False Positive and False Negative assignments are considered as an error in the access control

data, therefore, we evaluate how well our approach works in detecting these two type of errors.

Validation Methods:

97

Performance of our approaches is done by using three type of measures: (1) Recall, (2) Preci-

sion, and (3) F measure.F-Measure. F-measureis a harmonic mean ofprecisionandrecall [50].

Precision corresponds to the number of true positive instances retrieved by the model out of total

true instances. Equation 6.1 shows how the precision is computed. Total true instances correspond

to thesum of true positive and false positive instances. True positive instances are those instances

which are correctly classified as belonging to the positive class. On the other hand, false positive

instances are those instances which are incorrectly classified as belonging to the positive class.

Precision = Rtp/Atp+ Afp (6.1)

Where,

Rtp = Retrieved number of true positive instances,

Atp = Actual number of true positive instances,

Afp = Actual number of false positive instances.

Recall = Rtp/Atp+ Afn (6.2)

Where,

Rtp = Retrieved number of true positive instances,

Atp = Actual number of true positive instances,

Afn = Actual number of false negative instances.

Recall, on the other hand is the proportion of instances which are actual positives to the number

of instances which are correctly identified by the model as positive instances, as given in equation

6.2.

98

numRoles numUsers numPermissions
Data 1 15 100 80
Data 2 15 250 80
Data 3 15 350 80
Data 4 15 500 80

Table 6.1. Characteristics of Dataset 1. Varying Number of Users, Keeping Everything Else Con-
stant.

Datasets

Availability of real life data for access control is not easy. When an availability of represen-

tative data is a problem or when their properties are hard to modify for testing purpose, synthetic

data becomes an appealing alternative. Therefore, we use synthetic datasets to study how the

performance of our proposed approach is affected by varyingorganizational, and other relevant

parameters. Synthetic datasets were created using the testdata generatorCreate Test Datafrom

Vaidya et al [61]. The test data generator performs as follows: First a set of roles are created.

For each role, a random number of permissions up to a certain maximum are chosen to form the

role. The maximum number of permissions to be associated with a role is set as a parameter of the

algorithm. Next, the users are created. For each user, a random number of roles are chosen. Again,

the maximum number of concurrent roles a user can have is set as a parameter of the algorithm. Fi-

nally, the user permissions are set according to the roles towhich the user has been assigned. Table

6.1, 6.2,6.3 gives the characteristics of the datasets created. The effect of large number of users,

permissions, and varying densities are studied. As the testdata creator algorithm is randomized, 5

datasets for each combination of parameters are created, and the results are averaged. Overall, we

performed our experiments using 12 synthetic data sets.

Additional Parameters

For the potential misconfiguration detection step, we usep = 50% (minimum percentage for

99

numRoles numUsers numPermissions
Data 1 80 250 50
Data 2 80 250 80
Data 3 80 250 110
Data 4 80 250 150

Table 6.2. Characteristics of Dataset 2. Varying Number of Permissions, Keeping Everything Else
Constant

numRoles numUsers numPermissions
Data 1 10 150 50
Data 2 20 150 50
Data 3 25 150 50
Data 4 30 150 50

Table 6.3. Characteristics of Dataset 3. Varying Number of Roles, Keeping Everything Else Con-
stant

number of classifiers agreeing on a particular decision). Wealso study how the choice of threshold

at actual misconfiguration detection step would impact the performance of our approach. Essen-

tially, this threshold value is used to decide regarding theconfidence with which each classifier

assigns a class attribute value to a user. We use following 3 values for the threshold:0.5, 0.7,

and0.9. When0.5 is used as a threshold value, it means even if a classifier’s confidence level is

50%, its probability output would still be counted towards computation of misconfiguration score.

Whereas, choice of0.9 for the threshold value means that the probability output ofthe classifier

will not be counted towards the computation of final misconfiguration score unless its confidence

level is 90%.

Finally, we also evaluate how the overall performance of ourapproach is affected by incorpo-

rating feature selection method at classification model building step. In other words, we want to test

if a model based on feature selection has any advantage, in terms of performance, over the model

which is built without using it. We useCorrelation based Feature Selection (CFS)method [29] for

feature selection.

100

Addition of Noise

Noise in access control data essentially means that the existing boolean matrix is different from

the intended boolean matrix. Misconfiguration can be thought of as a noise or an error in a given set

of configurations.RBAC data consist of the user-role-assignment matrix (UA),and permission-

role-assignment matrix (PA). InPA boolean matrix,1 signifies that the permission is associated

with a corresponding role, and a0 denotes absence of permission. Similarly, inUA boolean matrix,

1 signifies that a user has a corresponding role, and a 0 denotesabsence of that role in the set of

roles of a user. In our experiments, we introduce 7%, 12%, 15%, 20% noise into the datasets in

order to measure robustness of our approach in identifying the noisy assignments. Percentage of

noise refers to flipping of assignment bits. For instance, when 7% noise is introduced, it means 7%

bits inUPA are flipped from either0 to 1 (to test false positive detections) or from1 to 0 (to test

false negative detections). Noise in data is generated by using algorithm given in [?].

Results

As discussed earlier, we study the performance of our approach from various aspects. Three main

categories of evaluation are based on varying following organizational parameters;

1. Number of users,keeping everything else constant.

2. Number of permissions, keeping everything else constant.

3. Number of roles, keeping everything else constant.

Under each of these categories, we also evaluate how the threshold value, varying level of noise,

choice of role mining algorithm, and feature selection based model building affects the overall

performance of our approach. Below we discuss results for each category;

101

1. Effect of changing number of users, keeping everything else constant.

Table 6.1 give parameters that we use for studying the impactof varying number of userson

performance of our approach.

Models based on feature selection.Figure 6.4(a),6.5(a),6.6(a), 6.4(b),6.5(b),6.6(b) shows perfor-

mance in terms of F-measure, recall, and precision when threshold is 0.5, figure 6.10(a),6.11(a),6.12(a),

6.10(b), 6.11(b), 6.12(b), when threshold is 0.7, and figure6.16(a), 6.17(a), 6.18(a), 6.16(b),

6.17(b), 6.18(b) when threshold is set to 0.9. Note that their classification models were based

on feature selection technique (CFS).

Models constructed without feature selection. Performance of models for this case, which are

constructed without employing feature selection are shownin figures 6.7(a), 6.8(a),6.9(a), 6.7(b),

6.8(b),6.9(b), 6.13(a), 6.14(a), 6.15(a), 6.13(b),6.14(b),6.15(b), 6.19(a), 6.20(a), 6.21(a), 6.19(b),

6.20(b), 6.21(b).

X-axis showsvarying levels of noise, and y-axis shows theF measure. Each Line on a graph

represents one set of data. At different threshold values, we observe the following:

At threshold level0.5, we observe in figures 6.4(a), and 6.7(a) that the increase innoise level causes

fmeasure for false negative to slightly drop. On the other hand, f measure for false positive either

improved or remained consistent with the increase in level of noise, as shown in figure 6.4(b), and

6.7(b). When comparing results for CFS-based models and non-CFS based models we observe

that our approach works well with both type of models and there is little or no difference in its

performance. Overall at threshold level 0.5, both type of models performed consistently in case

when the number of users increases.

At threshold level0.9, we observe in figures 6.16(a), and 6.19(a) that the increasein noise level

causes f measure to slightly drop. Whereas; f measure for false positives remained consistent with

the increase in level of noise, as can be seen in figure 6.16(b), and 6.19(b). When comparing results

102

for CFS-based models and non-CFS based models we observe that f measure for false negatives in

data 1 significantly dropped at 15% noise. Although it started improving gradually at next level but

not at the rate with which it dropped. No such fluctuation in performance is observed in remaining

data. Overall at threshold level 0.9, both type of f measureseither improved or remained consistent

with the increase in number of users.

Moreover, we observe that the f measures declines in both false positive and false negative cases

when threshold value increased from0.5 to 0.9. This is because the instances which were classified

as misconfiguration with the probability less than0.9, were not picked as errors by the algorithm.

Therefore, lower the threshold value is, better would be theperformance of our approach.

103

2. Effect of changing number of permissions, keeping everything else constant.

Models based on feature selection.Figure 6.22(a),6.23(a),6.24(a), 6.22(b),6.23(b),6.24(b)

shows performance in terms of F-measure, recall, and precision when threshold is 0.5, figure

6.28(a),6.29(a),6.30(a), 6.28(b), 6.29(b), 6.30(b), when threshold is 0.7, and figure 6.34(a), 6.35(a),

6.36(a), 6.34(b), 6.35(b), 6.36(b) when threshold is set to0.9. Note that their classification models

were based on feature selection technique (CFS).

Models constructed without feature selection. Performance of models for this case which

are constructed without employing feature selection are shown in figures 6.25(a), 6.26(a),6.27(a),

6.25(b), 6.26(b),6.27(b), 6.31(a), 6.32(a), 6.33(a), 6.31(b),6.32(b),6.33(b), 6.37(a), 6.38(a), 6.39(a),

6.37(b), 6.38(b), 6.39(b).

Table 6.2 give parameters that we use for studying the impactof varying number of permissions

on performance of our approach. At various noise levels, it can be clearly seen in figure 6.22,

6.23, 6.25, 6.26, 6.28, 6.29, 6.31, 6.32, 6.34, 6.35, 6.38 and 6.37 that its variation does not affect

performance significantly. However, by increasing in number of permissions, f measure and recall

for false positive detection is affected somewhat negatively as can be seen in figure 6.22(b), 6.23(b),

6.25(b), 6.26(b), 6.34(b),6.35(b), and 6.37(b), 6.38(b).Still the f measure and recall does not

decrease significantly. On the other hand, f measure and recall for false negative detection either

improved or remained consistent with the increase in numberof roles as can be seen in figure

6.22(a), 6.23(a), 6.25(a), 6.26(a) and 6.37(a), 6.38(a). Precision, however in each case is not

impressive but still it improves with the increase in numberof users.

Performance of our approach in this case remains unaffectedfor both CFS and non CFS based

models. Remaining parameters have not shown any impact on performance either in this case.

There is no major fluctuation in performance observed in any case. In general, the performance of

our approach improves with the increase in number of permissions.

104

(a) F measure for false negative detections at varying noiselevels

(b) F measure for false positive detections at varying noiselevels

Figure 6.4. F measure for DataSet 1, when model constructionis CFS based. Threshold = 0.5

105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(a) Recall for false negative detections at varying noise
levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(b) Recall for false positive detections at varying noise
levels

Figure 6.5. Recall for DataSet 1, when model construction isCFS based. Threshold = 0.5

106

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.6. Precision for DataSet 1, when model construction is CFS based. Threshold = 0.5

107

(a) F measure for false negative detections at varying noiselevels

(b) F measure for false positive detections at varying noiselevels

Figure 6.7. F measure for DataSet 1, when model constructionis not CFS based. Threshold = 0.5

108

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(a) Recall for false negative detections at varying noise
levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(b) Recall for false positive detections at varying noise
levels

Figure 6.8. Recall for DataSet 1, when model construction isnot CFS based. Threshold = 0.5

109

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.9. Precision for DataSet 1, when model construction is not CFS based. Threshold = 0.5

110

(a) F measure for false negative detections at varying noiselevels

(b) F measure for false positive detections at varying noiselevels

Figure 6.10. F measure for DataSet 1, when model construction is CFS based. Threshold = 0.7

111

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(a) Recall for false negative detections at varying noise
levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(b) Recall for false positive detections at varying noise
levels

Figure 6.11. Recall for DataSet 1, when model construction is CFS based. Threshold = 0.7

112

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.12. Precision for DataSet 1, when model construction is CFS based. Threshold = 0.7

113

(a) F measure for false negative detections at varying noiselevels

(b) F measure for false positive detections at varying noiselevels

Figure 6.13. F measure for DataSet 1, when model construction is not CFS based. Threshold = 0.7

114

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(a) Recall for false negative detections at varying noise
levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(b) Recall for false positive detections at varying noise
levels

Figure 6.14. Recall for DataSet 1, when model construction is not CFS based. Threshold = 0.7

115

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.15. Precision for DataSet 1, when model construction is not CFS based. Threshold = 0.7

116

(a) F measure for false negative detections at varying noiselevels

(b) F measure for false positive detections at varying noiselevels

Figure 6.16. F measure for DataSet 1, when model construction is CFS based. Threshold = 0.9

117

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(a) Recall for false negative detections at varying noise
levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(b) Recall for false positive detections at varying noise
levels

Figure 6.17. Recall for DataSet 1, when model construction is CFS based. Threshold = 0.9

118

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.18. Precision for DataSet 1, when model construction is CFS based. Threshold = 0.9

119

(a) F measure for false negative detections at varying noiselevels

(b) F measure for false positive detections at varying noiselevels

Figure 6.19. F measure for DataSet 1, when model construction is not CFS based. Threshold = 0.9

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(a) Recall for false negative detections at varying noise
levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

R
e
c
a
ll

Noise

Data 1 Data 2 Data 3 Data 4

(b) Recall for false positive detections at varying noise
levels

Figure 6.20. Recall for DataSet 1, when model construction is not CFS based. Threshold = 0.9

121

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.21. Precision for DataSet 1, when model construction is not CFS based. Threshold = 0.9

122

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.22. F measure for DataSet 2, when model construction is CFS based. Threshold = 0.5

123

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.23. Recall for DataSet 2, when model construction is CFS based. Threshold = 0.5

124

(a) Precision for false negative detections at varying noise lev-
els

(b) Precision for false positive detections at varying noise lev-
els

Figure 6.24. Precision for DataSet 2, when model construction is CFS based. Threshold = 0.5

125

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.25. F measure for DataSet 2, when model construction is not CFS based. Threshold = 0.5

126

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.26. Recall for DataSet 2, when model construction is not CFS based. Threshold = 0.5

127

(a) Precision for false negative detections at varying noise lev-
els

(b) Precision for false positive detections at varying noise lev-
els

Figure 6.27. Precision for DataSet 2, when model construction is not CFS based. Threshold = 0.5

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.28. F measure for DataSet 2, when model construction is CFS based. Threshold = 0.7

129

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.29. Recall for DataSet 2, when model construction is CFS based. Threshold = 0.7

130

(a) Precision for false negative detections at varying noise lev-
els

(b) Precision for false positive detections at varying noise lev-
els

Figure 6.30. Precision for DataSet 2, when model construction is CFS based. Threshold = 0.7

131

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.31. F measure for for DataSet 2, when model construction is not CFS based. Threshold =
0.7

132

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.32. Recall for for DataSet 2, when model construction is not CFS based. Threshold = 0.7

133

(a) Precision for false negative detections at varying noise lev-
els

(b) Precision for false positive detections at varying noise levels

Figure 6.33. Precision for for DataSet 2, when model construction is not CFS based. Threshold =
0.7

134

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.34. F measure for for DataSet 2, when model construction is CFS based. Threshold = 0.9

135

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.35. Recall for for DataSet 2, when model construction is CFS based. Threshold = 0.9

136

(a) Precision for false negative detections at varying noise lev-
els

(b) Precision for false positive detections at varying noise lev-
els

Figure 6.36. Precision for for DataSet 2, when model construction is CFS based. Threshold = 0.9

137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.37. F measure for DataSet 2, when model construction is not CFS based. Threshold = 0.9

138

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.38. Recall for DataSet 2, when model construction is not CFS based. Threshold = 0.9

139

(a) Precision for false negative detections at varying noise lev-
els

(b) Precision for false positive detections at varying noise lev-
els

Figure 6.39. Precision for DataSet 2, when model construction is not CFS based. Threshold = 0.9

140

3. Effect of changing number of roles, keeping everything else constant.

Table 6.3 give parameters that we use for studying the impactof varying number of roleson per-

formance of our approach.

Models based on feature selection.Figure 6.40(a),6.41(a),6.42(a), 6.40(b),6.41(b),6.42(b) shows

performance in terms of F-measure, recall, and precision when threshold is 0.5, figure 6.46(a),6.47(a),6.48(a),

6.46(b), 6.47(b), 6.48(b), when threshold is 0.7, and figure6.52(a), 6.53(a), 6.54(a), 6.52(b),

6.53(b), 6.54(b) when threshold is set to 0.9. Note that their classification models were based

on feature selection technique (CFS).

Models constructed without feature selection. Performance of models for this case which

are constructed without employing feature selection are shown in figures 6.43(a), 6.44(a),6.45(a),

6.43(b), 6.26(b),6.27(b), 6.31(a), 6.32(a), 6.33(a), 6.49(b),6.50(b),6.51(b), 6.55(a), 6.56(a), 6.57(a),

6.55(b), 6.56(b), 6.57(b). In this case, f measure and recall for false positive detection improves

when classification model is based on feature selection method, as can be seen in 6.40(b), 6.41(b),

6.53(b) and 6.52(b). Although with increase in number of roles the rate of detection starts to drop

but still the rate goes no lower than 70%, which is quite good,as can be seen in figure 6.40, 6.43,

6.46, 6.49, 6.52 and 6.55.

141

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.40. F measure for DataSet 3, when model construction is CFS based. Threshold = 0.5

142

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.41. Recall for DataSet 3, when model construction is CFS based. Threshold = 0.5

143

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.42. Precision for DataSet 3, when model construction is CFS based. Threshold = 0.5

144

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.43. F measure for Predictive performance for DataSet 3, when model construction is not
CFS based. Threshold = 0.5

145

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.44. Recall for Predictive performance for DataSet3, when model construction is not CFS
based. Threshold = 0.5

146

(a) Precision for false negative detections at varying noise lev-
els

(b) Precision for false positive detections at varying noise lev-
els

Figure 6.45. Precision for Predictive performance for DataSet 3, when model construction is not
CFS based. Threshold = 0.5

147

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.46. F measure for DataSet 3, when model construction is CFS based. Threshold = 0.5

148

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.47. Recall for DataSet 3, when model construction is CFS based. Threshold = 0.5

149

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.48. Precision for DataSet 3, when model construction is CFS based. Threshold = 0.5

150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.49. F measure for DataSet 3, when model construction is not CFS based. Threshold = 0.5

151

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.50. Recall for DataSet 3, when model construction is not CFS based. Threshold = 0.5

152

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.51. Precision for DataSet 3, when model construction is not CFS based. Threshold = 0.5

153

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.52. F measure for DataSet 3, when model construction is CFS based. Threshold = 0.9

154

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.53. Recall for DataSet 3, when model construction is CFS based. Threshold = 0.9

155

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.54. Precision for DataSet 3, when model construction is CFS based. Threshold = 0.9

156

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(a) F measure for false negative detections at varying
noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7% 12% 15% 20%

F
 m

e
a

s
u

r
e

Noise

Data 1 Data 2 Data 3 Data 4

(b) F measure for false positive detections at varying
noise levels

Figure 6.55. F measure for DataSet 3, when model construction is not CFS based. Threshold = 0.9

157

(a) Recall for false negative detections at varying noise levels

(b) Recall for false positive detections at varying noise levels

Figure 6.56. Recall for DataSet 3, when model construction is not CFS based. Threshold = 0.9

158

(a) Precision for false negative detections at varying noise levels

(b) Precision for false positive detections at varying noise levels

Figure 6.57. Precision for DataSet 3, when model construction is not CFS based. Threshold = 0.9

159

CHAPTER 7

SUMMARY OF THE CONTRIBUTIONS AND FUTURE RESEARCH

7.1 Summary of Contributions

This chapter concludes the dissertation by discussion of contributions. We also briefly discuss

some future research direction of this work.

In this dissertation, we have addressed the key challenge ofautomating configuration management

process in access control systems. Security configuration is constantly required and is critical in or-

der to optimize the protection of organizational resourcesand blocking perspective attacks. Since

the configuration search space is huge, performing this taskmanually is not trivial. Moreover,

the security and functionality interferes with the process. The difficulty further comes from the

fact that a system administrator usually has little knowledge on the semantic meanings of user re-

sponsibilities and business processes within an enterprise. Therefore, the likelihood of introducing

errors in to a system gets higher. Ultimately, incorrect resolution leads to drastic consequences

with potentially many severe service outages and downtime.Traditional access control systems

lack an ability to anticipate potential errors in system configuration. Therefore, these systems fail

to gracefully react to configuration management issues.

We demonstrated that the automatic mechanism to analyze system configuration can signif-

icantly alleviate the task of system administrators. In oureffort to systematically analyze the

existing configuration of access control system, we have proposed approaches based on data min-

ing techniques. We have also described efficient algorithmsto implement our strategy. Below, we

160

discuss highlights of three research issues that are addressed in this work.

Using Risk Estimates for Configuration Management.

Traditional access control is too restrictive since it doesnot permit any access that has not been

pre-specified in the system, the break glass approaches are too permissive in that they allow all

requested accesses based on the situation at hand. Since both of these models are at extreme, a fine

balance between permissiveness and restrictiveness is desirable. This dissertation has proposed

novel methodologies for dynamic computation of risk in situations where preventing access has

more deleterious effect than granting it, if the underlyingrisk is low. Moreover, it has developed

a model that facilitates automatic risk-based access control configuration in both DAC and RBAC

cases. In both approaches, we first quantify the risk associated with the requested access, and per-

mit access if it is less than a pre-specified threshold value.Also, in case of RBAC, it has developed

method to determine situational role for a user. Our approaches to quantify the risk associated

with granting an access are based on the technique of classification. The first approach, evalu-

ates the risk of granting a permission based on the existing user-permission assignments (UPA),

whereas second approach estimates risk associated with requested role or all such roles through

which a user can acquire requested authorization. We have shown that the risk estimates can be

used for facilitating automatic configuration of RBAC and DAC. Computational experiments us-

ing both synthetic and benchmark real datasets confirm the viability of our approaches to facilitate

automated risk based access control.

161

Using attribute semantics for Configuration Management.

In this dissertation, we also investigated the configuration management problems that arise due

to a requests from users of collaborating organizations that do not have explicit access to resources.

This dissertation has proposed an efficient methodology to derive credential requirements for roles

having permission to access requested object, based on local access control policies using existing

access control data. Data mining techniques are employed toautomate the process of determining

credential requirements for external user to facilitate coalition based access control. Moreover,

comparison of our approaches to existing method is also performed and proposed approach is

supported by extensive experiments on both real and synthetic data.

Detection and Resolution of Misconfiguration in Access Control

Finally, we proposed approaches to automate the process of misconfiguration detection and

resolution in deployed RBAC and DAC. Traditional access control system lacks an ability to antic-

ipate potential misconfigurations. Therefore, these systems fail to gracefully react to configuration

errors. Given, an access control data, our proposed methodologies facilitate the automated process

of identifying inconsistent assignments in the system which are either mistakenly granted (over-

assignment) or denied (under-assignment). Moreover, we have proposed methods to rectify them.

Our proposed approaches rely on combining multiple classifiers to compute a misconfiguration

score for a particular assignment. Computed score is then used to determine whether a given as-

signment is a misconfiguration or not. The goal of combining output of multiple classifiers is to

leverage strength of each classifier, and to reduce the impact of classification errors made by an in-

dependent classifier. We have shown that the automated approaches for configuration management

significantly alleviates the burdensome task of system operators to maintain the system configura-

tion on regular basis. This may further prevent many severe service outages and downtime.

162

7.2 Future Research Plans

There are several possible future directions of this work. However, we plan to extend our proposed

approaches to address limitations of our existing work, andto offer efficient solutions to more

advanced access control problems. Specifically, we plan to work on the following:

Incorporating Attributes Data to Quantify Risk.

Our approaches to quantify risk are based on following assumptions:

(i.) The user submitting an access request is local,

(ii.) Either the RBAC or permission based authorization system is deployed within an organiza-

tion.

(iii.) Existing permissions of a user are used to assess the risk associated with the authorization

requested.

For future work, we plan to extend our approaches for handling access requests when a user be-

longs to an inter domain organization and existing permissions of user are either not known or

they are not relevant. In such situation, credentials of a user may serve as useful information for

determining whether a user qualifies for a requested authorization or not. It will be interesting to

develop an efficient and multidimensional model that takes object-attributes data, user-attributes

data, and permission authorizations of local user into an account while risk is computed. This

can be done by employing our dynamic risk computation methodwithin attribute based access

control (ABAC) mechanism [56], [33]. And, while the work on configuration management was

underway, research on cloud based security become more prevalent. Rapidly increasing interest

of businesses in adoption of cloud deployments, compel us toextend our work to address security

configuration challenges in cloud based environment where the argument around conflict among

security and privacy issues often comes up. It will be interesting to apply our work in distributed

163

and collaborative environments where users may belong to aninter-domain organization.

Extension of method to automatically detect and resolve misconfiguration in access control.

In our existing work, we assume that core RBAC is implementedwithin an organization. As

a part of future work we plan to extend our approaches to handle more complex extensions of

RBAC, one of which is Hierarchical RBAC. Though it is quite challenging because of the inherent

structural complexity in hierarchical RBAC, but we first plan to look in to an effective method to

convert hierarchical RBAC into flat RBAC without loosing theinformation about the relationship

among entities, and then applying our existing work to automate the error detecting and removal

process. Moreover, we also plan to study how the optimal mix of classifiers can be selected. We

also plan to look into the methods which help system administrators to select suitable threshold

values for tasks of different nature.

In our existing work, we assume that inconsistent assignments present in either UA matrix orUPA

matrix. We are not considering a possibility of inconsistencies present inUA or PA matrices. In

order to overcome this limitation, we plan to incorporate these two matrices as well to our model.

We also plan to evaluate the performance of our proposal presented in chapter 6 using real data sets.

Updateable security models.

Our main goal for future work is to extend our existing modelsto facilitate automatic update

of access control system. Survey of literature shows that approaches to automatically incorporate

updates in access control are still missing. For example, inmost organizations, role engineering

process is considered as one time process. Although, over a period of time, there could be need of

new set of roles, or even existing roles might need new set of configuration. Traditional systems

lacks an ability to incorporate such changes automatically. We plan to address these issues in our

164

future work.

REFERENCES

[1] Google drive, dropbox, box and icloud reach the top 5 cloud storage security

breaches list. https://psg.hitachi-solutions.com/credeon/blog/

google-drive-dropbox-box-and-icloud-reach-the-top-5-cloud-storage-securi

note = Nov 20, 2014 8:00:00 AM.

[2] Owl web ontology language guide. available at http://www.w3.org/tr/owl-guide/.

[3] Why gmail went down: Google misconfigured load balancingservers (updated).

http://arstechnica.com/information-technology/2012/12/

why-gmail-went-down-google-misconfigured-chromes-sync-server/.

12/11/2012, 4:25 PM.

[4] V. Atluri and J. Warner. Automatic enforcement of accesscontrol policies among dynamic

coalitions. InInternational Conference on Distributed Computing and Internet Technology,

December 2004.

[5] J. Bacon, K. Moody, and W. Yao. A model of oasis role-basedaccess control and its support

for active security.ACM Transactions on Information and System Security, 5(4):492–540,

November 2002.

[6] N. Badar, J. Vaidya, V. Atluri, and B. Shafiq. Risk based access control using classification.

In 5th Symposium on Configuration Analytics and Automation (SafeConfig 2012).

165

166

[7] L. A. Barroso, J. Clidaras, and U. Hlzle.The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines, Second Edition. 2013.

[8] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy misconfigurations in

access-control systems. InSACMAT, pages 185–194, 2008.

[9] L. Bauer, Y. Liang, M. K. Reiter, and C. Spensky. Discovering access-control misconfigu-

rations: new approaches and evaluation methodologies. InProceedings of the second ACM

conference on Data and Application Security and Privacy, CODASPY ’12, pages 95–104,

New York, NY, USA, 2012. ACM.

[10] V. Bharadwaj and J. Baras. A framework for automated negotiation of access control policies.

Proceedings of DISCEX III, 2003.

[11] L. Breiman. Random forests.Mach. Learn., 45:5–32, October 2001.

[12] A. Brucker and D. Hutter. Information flow in disaster management systems. InAvailability,

Reliability, and Security, 2010. ARES ’10 International Conference on, pages 156 –163, feb.

2010.

[13] A. D. Brucker and H. Petritsch. Extending access control models with break-glass. InPro-

ceedings of the 14th ACM symposium on Access control models and technologies, SACMAT

’09, pages 197–206, New York, NY, USA, 2009. ACM.

[14] C. J. Burges. A tutorial on support vector machines for pattern recognition.Data Mining and

Knowledge Discovery, 2:121–167. 10.1023/A:1009715923555.

[15] J. Cendrowska. Prism: An algorithm for inducing modular rules. International Journal of

Man-Machine Studies, 27(4):349 – 370, 1987.

167

[16] C.-C. Chang and C.-J. Lin. Libsvm: A library for supportvector machines.ACM Trans.

Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.

[17] B. Chen and L. He. An Extensible Framework for RBAC in Dynamic Ad-Hoc Coalitions. In

International Conference on Network Computing and Information Security, 2011.

[18] P.-C. Cheng, P. Rohatgi, C. Keser, P. Karger, G. Wagner,and A. Reninger. Fuzzy multi-level

security: An experiment on quantified risk-adaptive accesscontrol. InSecurity and Privacy,

2007. SP ’07. IEEE Symposium on, pages 222 –230, may 2007.

[19] S. A. Chun and V. Atluri. Risk-based access control for personal data services.Algorithms,

Architectures and Information Systems Security, 3:263, 2009.

[20] S. A. Chun, J. H. Kwon, and H. Lee. Situation role-based privacy control using dynamic

credentials for emergency health services.SIGHIT Rec., 2(1):5–5, Mar. 2012.

[21] E. Cohen, W. Winsborough, R. Thomas, and D. Shands. Models for coalition-based access

control (cbac).SACMAT, 2002.

[22] T. Das, R. Bhagwan, and P. Naldurg. Baaz: A system for detecting access control misconfig-

urations. InUSENIX Security Symposium, pages 161–176. USENIX Association, 2010.

[23] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli. Proposed nist standard

for role-based access control.TISSEC, 2001.

[24] A. Ferreira, D. W. Chadwick, P. Farinha, R. J. C. Correia, G. Zhao, R. Chilro, and L. F. C.

Antunes. How to securely break into rbac: The btg-rbac model. In ACSAC, pages 23–31,

2009.

168

[25] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha, E. Oliveira-Palhares, D. W. Chadwick,

and A. Costa-Pereira. How to break access control in a controlled manner. InProceedings of

the 19th IEEE Symposium on Computer-Based Medical Systems, CBMS ’06, pages 847–854,

Washington, DC, USA, 2006. IEEE Computer Society.

[26] D. L. Fisher. Data, documentation, and decision tables. Commun. ACM, 9(1):26–31, Jan.

1966.

[27] K. Frikken, M. Atallah, and J. Li. Attribute-based access control with hidden policies and

hidden credentials.Computers, IEEE Transactions on, 55(10):1259–1270, 2006.

[28] J. Gray. Why do computers stop and what can be done about it?, 1985.

[29] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning. PhD thesis,

University of Waikato, Hamilton, New Zealand, 1998.

[30] R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509public key infrastructure certificate

and certificate revocation list (crl) profile.RFC 3280, April 2002.

[31] J. Hu, Y. Zhang, R. Li, and Z. Lu. Role updating for assignments. InProceedings of the 15th

ACM symposium on Access control models and technologies, SACMAT ’10, pages 89–98,

New York, NY, USA, 2010. ACM.

[32] V. C. Hu, D. Ferraiolo, D. R. Kuhn, I. T. L. N. I. of Standards, and Technology).Assessment

of access control systems [electronic resource] / Vincent C. Hu, David F. Ferraiolo, D. Rick

Kuhn. U.S. Dept. of Commerce, National Institute of Standards and Technology [Gaithers-

burg, Md.], 2006.

[33] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell, A. Schnitzer,

K. Sandlin, R. Miller, K. Scarfone, V. C. Hu, D. Ferraiolo, R.Kuhn, A. R. Friedman, A. J.

169

Lang, M. M. Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone, and S. Cybersecurity.

Guide to attribute based access control (abac) definition and considerations (draft), 2013.

[34] S. Kandala, R. Sandhu, and V. Bhamidipati. An attributebased framework for risk-adaptive

access control models.Availability, Reliability and Security, International Conference on,

0:236–241, 2011.

[35] H. Khurana, S. Gavrila, R. Bobba, R. Koleva, A. Sonalker, E. Dinu, V. Gligor, and J. Baras.

Integrated security services for dynamic coalitions.Proc. of the DISCEX III, 2003.

[36] R. Krishnan, J. Niu, R. Sandhu, and W. H. Winsborough. Group-centric secure information-

sharing models for isolated groups.ACM Trans. Inf. Syst. Secur., 14(3):23:1–23:29, Nov.

2011.

[37] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-management

framework. InIEEE Symposium on Security and Privacy, pages 114–130, 2002.

[38] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery in trust

management.Journal of Computer Security, 11(1):35–86, 2003.

[39] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining.

Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[40] S. Marinovic, R. Craven, J. Ma, and N. Dulay. Rumpole: A flexible break glass access

control model.SACMAT, 2011.

[41] L. C. Molina, L. Belanche, and A. Nebot. Feature selection algorithms: A survey and ex-

perimental evaluation. InProceedings of the 2002 IEEE International Conference on Data

Mining, ICDM ’02, pages 306–, Washington, DC, USA, 2002. IEEE Computer Society.

170

[42] I. Molloy, L. Dickens, C. Morisset, and P.-C. Cheng. Risk based access control decisions

under uncertainty.Report on Risk Based Access Control March, 2011.

[43] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo. Evaluating role mining algorithms. In

B. Carminati and J. Joshi, editors,SACMAT, pages 95–104. ACM, 2009.

[44] R. Mukkamala, V. Atluri, and J. Warner. A distributed service registry for resource sharing

among ad-hoc dynamic coalitions. InLecture Notes in Computer Science. IFIP, December

2005.

[45] R. Mukkamala, V. Kamisetty, and P. Yedugani. Detectingand resolving misconfigurations

in role-based access control (short paper). InProceedings of the 5th International Confer-

ence on Information Systems Security, ICISS ’09, pages 318–325, Berlin, Heidelberg, 2009.

Springer-Verlag.

[46] Q. Ni, E. Bertino, and J. Lobo. Risk based access controlsystems built on fuzzy inferences.

ASIAACCS, 2010.

[47] N. Nissanke and E. J. Khayat. Risk based security analysis of permissions in rbac. InPro-

ceedings of the 2 nd International Workshop on Security In Information Systems, Security In

Information Systems, pages 332–341. INSTICC Press, 2004.

[48] C. Philips, E. Charles, T. Ting, and S. Demurjian. Towards information assurance in dynamic

coalitions.IEEE IAW, USMA, February 2002.

[49] C. Philips, T. Ting, , and S. Demurjian. Information sharing and security in dynamic coali-

tions. SACMAT, 2002.

171

[50] D. M. W. Powers. Evaluation: From Precision, Recall andF-Factor to ROC, Informedness,

Markedness & Correlation. Technical Report SIE-07-001, School of Informatics and Engi-

neering, Flinders University, Adelaide, Australia, 2007.

[51] R. B. Prasad Naldurg and T. Das. Understanding policy intent and misconfigurations from

implementations: Consistency and convergence. 2011.

[52] J. Quinlan. Induction of decision trees.Machine learning, 1(1):81–106, 1986.

[53] J. Quinlan. Improved use of continuous attributes in c4. 5. arXiv preprint cs/9603103, 1996.

[54] J. R. Quinlan. Induction of decision trees.Mach. Learn, pages 81–106, 1986.

[55] M. Sanderson and W. B. Croft. Deriving concept hierarchies from text. InSIGIR, pages

206–213, 1999.

[56] R. Sandhu. Attribute-based access control models and beyond. InProceedings of the 10th

ACM Symposium on Information, Computer and CommunicationsSecurity, ASIA CCS ’15,

Singapore, April 14-17, 2015, page 677, 2015.

[57] R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model for role-based access control: towards

a unified standard. InProceedings of the fifth ACM workshop on Role-based access control,

RBAC ’00, pages 47–63, New York, NY, USA, 2000. ACM.

[58] B. Shafiq, J. Vaidya, A. Ghafoor, and E. Bertino. A framework for verification and optimal

reconfiguration of event-driven role based access control policies. InSACMAT, pages 197–

208, 2012.

[59] J. Vaidya, V. Atluri, and Q. Guo. The role mining problem: Finding a minimal descriptive

set of roles. InIn Symposium on Access Control Models and Technologies (SACMAT, pages

172

175–184, 2007.

[60] J. Vaidya, V. Atluri, and J. Warner. Roleminer: mining roles using subset enumeration. In

Proceedings of the 13th ACM conference on Computer and communications security, CCS

’06, pages 144–153, New York, NY, USA, 2006. ACM.

[61] J. Vaidya, V. Atluri, J. Warner, and Q. Guo. Role engineering via prioritized subset enumer-

ation. Dependable and Secure Computing, IEEE Transactions on, 7(3):300 –314, july-sept.

2010.

[62] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute based access

control. InFMSE’04, October 2004.

[63] J. Warner, V. Atluri, and R. Mukkamala. An attribute graph based approach to map local

access control policies to credential based access controlpolicies. InICISS, pages 134–147,

2005.

[64] J. Warner, V. Atluri, and R. Mukkamala. A credential-based approach for facilitating auto-

matic resource sharing among ad-hoc dynamic coalitions. InIFIP, August 2005.

[65] I. H. Witten and E. Frank.Data Mining: Practical Machine Learning Tools and Techniques

with Java Implementations. Morgan Kaufmann, San Francisco, Oct. 1999.

[66] T. Yu, M. Winslett, and K. Seamons. Supporting structured credentials and sensitive poli-

cies through interoperable strategies for automated trustnegotiation.ACM Transactions on

Information and System Security, 6(1):1–42, February 2003.

