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Completely Automated Public Turing test to tell Computers and Humans Apart or

CAPTCHA, play a pivotal role in governing access to resources made available on the

World Wide Web. In an age where online resources can be exploited by those with

the ability to leverage automation to utilize these resources outside of their intended

use cases, CAPTCHAs provide a method for testing if a particular user who wishes to

conduct an activity or consume a resource is a human or a bot. CAPTCHAs achieve

this security through the use of a hard AI problem as a challenge response to a request

for resources - specifically a task that is easy for a human to solve quickly but diffi-

cult or impossible for a computer to solve in the same amount of time. When used in

conjunction with other methods of online access and form control, CAPTCHAs can

help secure the Web from automated exploitation, bots, spam, and other such abuses.

CAPTCHAs are a perpetually evolving area of research, due in part to their function

as a security method and consequently are forever embroiled in an arms race be-

tween blackhats developing new attacks against best-of-breed CAPTCHAs currently

deployed and whitehats trying to defend their resources against these attacks with

new styles of CAPTCHA and techniques to defeat attack methods. This dissertation

focuses primarily on Image Recognition CAPTCHAs or IRCs, as the CAPTCHA
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of choice to provide reasonable security for the Web while maintaining acceptable

usability for humans.

Two attack methods researched for defeating IRC challenges are discussed, one

which focuses on outright attempts at image classification through the use of a spe-

cialized neural network (HTMs), and another which utilizes web services to exploit

metadata associated with images to circumvent performing the image classification

task and still correctly answer the challenge. Two defensive methods researched and

developed for securing IRC challenges against these types of attacks are also dis-

cussed. The first method focuses on the addition of noise to an image to prevent an

attacker from being able to effectively leverage web services to gather metadata and

other useful data typically needed by computer vision algorithms, such as structure,

patterns, or colors from the image. The second is designed to stop computer vision

(CV) algorithms and web services from being able to extract contextual information

and metadata from an image through the application of a series of image filters, yet

allow a human to still discern this information.

User studies are provided for both defensive methods to test the real world us-

ability of the method in practice on an IRC, as well as the CAPTCHA design style

they were implemented in, of which we provide a number of variations. An in-depth

discussion on CAPTCHA theory and design considerations as well as an overview of

some new, original CAPTCHA designs are presented for the reader. Analysis and

speculation for the future direction CAPTCHAs could develop is provided as well.

Finally, coverage of the design and implementation of a scalable and robust IRC that

relies on a human being able to detect contextual information from an image to solve

the challenge is demonstrated as the culmination of this body of research.

iii



Preface

Dissertation Committee Members

• Dr. Nabil Adam, Rutgers University

• Dr. Vijayalakshmi Atluri, Rutgers University

• Dr. Jaideep Vaidya, Rutgers University

• Dr. Shamik Sural, Indian Institute of Technology Kharagpur

iv



Acknowledgments

First, I would like to thank my dad for providing the foundation to enable all of

this work to be possible. I am truly grateful for the opportunities you have provided

for me in life and the sacrifices you made to make them possible. Second, I would

like to thank Dr. Jaideep Vaidya, for being my guide and mentor on this journey

through research. I will cherish the time we spent contemplating challenging avenues

of research for a lifetime. I will forever appreciate the chance you took on a young

masters student with dreams of research. Third, I would like to thank my committee

members for all of the quality input and guidance you all have provided me over

the years - in particular, I very much appreciated the teaching assistant position and

dissertation fellowships as they provided me with the chance to experience teaching

at a university level and conducting original research. A special thanks to Dr. Nabil

Adam and Dr. Soon ae Chun for the research opportunities for me within the CIMIC

group. It was truly a pleasure to work and study with the CIMIC group, and I

hope to continue to contribute to research into the future. I would also like to thank

assistant dean Goncalo Filipe for his tireless administrative efforts on my behalf, the

work you put in does not go unnoticed or unappreciated. Finally, a special thanks

to all of my friends I made throughout my journey, you all gave me the support and

encouragement I needed to continue my studies and see them to completion.

Special Thanks: Emre Uzun, the Naranjos, Raymond Wong, Amanda Dios,

Max Luebbe, and 1210 Krew

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Human Verification - Strong Identity Vs. CAPTCHAs . . . . . . . . 4

1.2 Problem Statements and Contributions . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 12

2.1 Computer Vision and Machine Learning . . . . . . . . . . . . . . . . 12

2.2 Other CAPTCHA Works . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 CAPTCHA Theory & Design 24

3.1 Design Requirements and Challenges . . . . . . . . . . . . . . . . . . 24

3.1.1 CAPTCHA Design Considerations . . . . . . . . . . . . . . . 24

3.1.1.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Challenges in Designing a CAPTCHA . . . . . . . . . . . . . 27

3.1.2.1 Risk Analysis Based CAPTCHA selection . . . . . . 27

3.1.2.2 Improved Machine Learning Tools . . . . . . . . . . 28

vi



3.1.2.3 An Economic Analysis . . . . . . . . . . . . . . . . . 29

3.1.2.4 The Insurmountable - Solving Services, Farming, &

Mechanical Turks . . . . . . . . . . . . . . . . . . . . 29

3.2 Evaluation of CAPTCHA Styles . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Alternative CAPTCHAs – An Overview of Existing Works . . 32

3.2.2 New HCI, Sensors & Biometrics Opportunities for Bot Detection 39

3.2.3 Future CAPTCHAs - Some Proposals . . . . . . . . . . . . . . 40

3.3 Methodology, Design, and Analysis . . . . . . . . . . . . . . . . . . . 42

3.3.1 Application of Design Criteria to Challenge Ideas . . . . . . . 43

3.3.1.1 Word Change CAPTCHA . . . . . . . . . . . . . . . 43

3.3.1.2 Storyboarding CAPTCHA . . . . . . . . . . . . . . . 44

3.3.1.3 Consequence & Conclusion Image CAPTCHA . . . . 45

3.3.1.4 Pattern Completion CAPTCHA . . . . . . . . . . . 46

3.3.1.5 Pictionary CAPTCHA . . . . . . . . . . . . . . . . . 47

3.3.1.6 Jigsaw Puzzle CAPTCHA . . . . . . . . . . . . . . . 48

3.3.1.7 Cambridge Study CAPTCHA . . . . . . . . . . . . . 49

3.3.1.8 Compound Words CAPTCHA . . . . . . . . . . . . 52

3.3.2 Definitions for Trade-Offs in Design . . . . . . . . . . . . . . . 53

3.3.2.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2.4 Design Criteria Comparison Matrix . . . . . . . . . . 55

4 Attacks on IRCs 57

4.1 Methodology & Design for HTM Based Attack Systems . . . . . . . . 57

4.1.1 Preliminaries and Tools . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 HTM Based Attacks for IRC CAPTCHAs . . . . . . . . . . . 60

4.1.2.1 Experimental Evaluation . . . . . . . . . . . . . . . . 68

vii



4.1.2.2 Experimental Results . . . . . . . . . . . . . . . . . 71

4.1.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.3 Web Services Based Attacks for Image CAPTCHAs . . . . . . 74

4.1.3.1 Preliminaries & Tools . . . . . . . . . . . . . . . . . 75

4.1.3.2 Web Services Attack Methods . . . . . . . . . . . . . 78

4.1.3.3 Experimental Results & Analysis . . . . . . . . . . . 88

4.1.3.4 RIS Results . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.3.5 Limitations & Effective Defensive Measures . . . . . 91

5 Defense of CAPTCHAs 93

5.1 Enhancing Security of Image CAPTCHAs through Noise Addition . . 93

5.1.1 Defense Strategies for IRCs . . . . . . . . . . . . . . . . . . . 93

5.1.2 Defensive Design Methodology . . . . . . . . . . . . . . . . . . 98

5.1.3 Experimental Results and Analysis . . . . . . . . . . . . . . . 109

5.1.4 Experimental CAPTCHA Style Implementations using SIGNAC112

5.1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 SIGNAC Testing & Usability . . . . . . . . . . . . . . . . . . . . . . 120

5.2.1 SIGNAC Usability Study . . . . . . . . . . . . . . . . . . . . . 120

6 EmojiTCHA - An Emotion based IRC 127

6.1 Preliminaries & Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 CAPTCHA Challenge Generation . . . . . . . . . . . . . . . . . . . . 136

6.4 EmojiTCHA Usability Study . . . . . . . . . . . . . . . . . . . . . . 138

6.4.1 EmojiTCHA Study Limitations . . . . . . . . . . . . . . . . . 142

6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

viii



7 Future Work & Conclusions 145

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2.1 Online Tools for Attacks . . . . . . . . . . . . . . . . . . . . . 146

7.2.2 Cryptocurrency as a CAPTCHA . . . . . . . . . . . . . . . . 147

7.2.3 Biometric CAPTCHAs . . . . . . . . . . . . . . . . . . . . . . 148

ix



List of Figures

3.1 Example of word change challenge IMAGE: c©CIMIC Lab - Rutgers

University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Example of storyboard challenge IMAGE: c©ILA/NCTE 2016 . . . . 45

3.3 Example of consequence and conclusion challenge IMAGE: c©CIMIC

Lab - Rutgers University . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Example of pattern completion challenge IMAGE: c©CIMIC Lab - Rut-

gers University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Example of pictionary challenge IMAGE: c©CIMIC Lab - Rutgers Uni-

versity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Example of jigsaw puzzle challenge IMAGE: ASIMO c©Honda Inc. . . 49

3.7 Example of Cambridge study used in image CAPTCHA challenge with

SIGNAC applied IMAGE: c©CIMIC Lab - Rutgers University . . . . 51

3.8 Example of compound words challenge IMAGE: c©CIMIC Lab - Rut-

gers University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Example challenge for SQ-PIX IMAGE: c©Carnegie Mellon University 60

4.2 HTM Based Attack Flow Diagram for SQ-PIX . . . . . . . . . . . . . 61

4.3 Example challenge for ESP-PIX IMAGE: c©Carnegie Mellon University 63

4.4 HTM Based Attack Flow Diagram for ESP-PIX . . . . . . . . . . . . 65

4.5 Example challenge for ASIRRA IMAGE: c©Microsoft Research & PetFinder.com) 66

4.6 HTM Based Attack Flow Diagram for ASIRRA . . . . . . . . . . . . 68

x



4.7 Experimental Evaluation of HTM Network Attacks on IRCs . . . . . 72

4.8 General Attack Method for Image Based Web Services . . . . . . . . 80

4.9 RIS results w/metadata for an extracted image IMAGE: c©TinEye -

Idee Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 RIS results w/metadata for obscured image IMAGE: c©TinEye - Idee

Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 RIS Results w/ obfuscated image - IMAGINATION Stage 1 IMAGE:

c©Google Image Search . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 ALA results generate 15 tags - exact match “train” IMAGE: c©ALIPR

- Penn State University . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 Example second stage challenge for IMAGINATION IMAGE: c©Penn

State University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.14 Google ISS Results - Keyword Airplane IMAGE: c©Google Image Search 87

4.15 ISS Results w/ obfuscated image IMAGE: c©Google Image Search . . 88

5.1 Reverse image search attack with metadata. (a) depicts the CAPTCHA

images without noise, (b) depicts results of a Google image search IM-

AGE: c©Google Image Search . . . . . . . . . . . . . . . . . . . . . . 96

5.2 CV Attack with SIFT and ASIFT IMAGE: c©Ecole Polytechnique . . 98

5.3 Procedure for producing a noised image IMAGE: c©CIMIC Lab - Rut-

gers University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Image generation for CAPTCHA challenge IMAGE: c©CIMIC Lab -

Rutgers University . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Image Analysis for CAPTCHA challenge IMAGE: c©CIMIC Lab - Rut-

gers University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 RIS Engine Probing IMAGE: cat c©Google Image Search . . . . . . . 106

5.7 SIGNAC MATLAB Scripts . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Edge detection tests IMAGE: c©CIMIC Lab - Rutgers University . . 108

xi



5.9 SIFT & ASIFT image matching IMAGE: c©Ecole Polytechnique . . . 109

5.10 Inter-Category Test: Airplanes of a similar build noised IMAGE: c©Ecole

Polytechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.11 Exact Match Test: Original Vs. Noise with false positives IMAGE:

c©Ecole Polytechnique . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.12 Shape Test: Noised image with similar shape image IMAGE: c©Ecole

Polytechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.13 Style #1: Freeform Text Response IMAGE: c©CIMIC Lab - Rutgers

University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.14 Style #2: Four Choice Dropdown IMAGE: c©CIMIC Lab - Rutgers

University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.15 Style #3: Five Choice Dropdown w/Not Here IMAGE: c©CIMIC Lab

- Rutgers University . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.16 Style #4: Select Image from three based on Keyword IMAGE: c©CIMIC

Lab - Rutgers University . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.17 Style #5: Select Image from four Sentence Based Contextual Clues

IMAGE: c©CIMIC Lab - Rutgers University . . . . . . . . . . . . . . 119

5.18 Overall CAPTCHA Response Accuracy - F = Incorrect N = No Re-

sponse T = Correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.19 Image Category Performance - F = Incorrect N = No Response T =

Correct (airplane(1), bird(2), car(3), cat(4), doll(5), fish(6), flower(7),

monkey(8), robot(9), train(10)) . . . . . . . . . . . . . . . . . . . . . 122

5.20 Successful Image Identification Across Styles . . . . . . . . . . . . . . 124

5.21 Statistical Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Example output from Emotion API IMAGE: c©Microsoft Cognitive

Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xii



6.2 Useful information can be produced from default image IMAGE: c©Google

Image Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Example of series of filters applied to image . . . . . . . . . . . . . . 132

6.4 Example output image after alterations . . . . . . . . . . . . . . . . . 133

6.5 No useful information can be extracted from noised image IMAGE:

c©Google Image Search . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6 Twitter Emojis used to represent the 8 emotions IMAGE: c©Twitter

Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.7 Version 2 of EmojiTCHA Challenge . . . . . . . . . . . . . . . . . . . 135

6.8 Emotion Matrix for Run 1 . . . . . . . . . . . . . . . . . . . . . . . . 138

6.9 Emotion Matrix for Run 2 . . . . . . . . . . . . . . . . . . . . . . . . 138

6.10 Image Identification - Run 1 . . . . . . . . . . . . . . . . . . . . . . . 139

6.11 Challenge Response Accuracy - Run 1 . . . . . . . . . . . . . . . . . 140

6.12 Image Identification - Run 2 . . . . . . . . . . . . . . . . . . . . . . . 141

6.13 Challenge Response Accuracy - Run 2 . . . . . . . . . . . . . . . . . 142

xiii



List of Tables

3.1 Tradeoffs between each design criterion . . . . . . . . . . . . . . . . . 56

4.1 Image data for HTM Network Generation . . . . . . . . . . . . . . . 71

4.2 HTM Network Generation Parameters . . . . . . . . . . . . . . . . . 72

4.3 Image Based Web Services - Accuracy Results . . . . . . . . . . . . . 90

5.1 Results of Ordinality Test . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 RIS Engine Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xiv



1

Chapter 1

Introduction

With the pervasiveness of the Internet and the World Wide Web, it is increasingly

advantageous for attackers to begin abusing web services and online forms for personal

and financial gain. Web administrators need a way to curtail or stop the bots’ abuse,

while not restricting their human users from accessing the resources they provide.

Thus, the CAPTCHA was born as a method to discern between a bot and human

user online. The CAPTCHA, which stands for Completely Automated Public Turing

test to tell Computers and Humans Apart, was invented to discern between a bot and

human user online. CAPTCHAs are reverse Turing tests administered by computers

designed to keep bots from abusing web services and online forms made for human

users. CAPTCHAs rely on hard AI problems to provide the challenge question asked

to the user (human or bot). This ensures that the challenge question is one that is

difficult for a computer to perform with a high degree of success, yet still remains easy

for a human to perform quickly [3]. These types of questions provide the foundation

for a vast majority of CAPTCHAs. Fortunately, CAPTCHAs have been reasonably

successful in stopping a majority of bot abuse at the minor inconvenience of users.

CAPTCHAs are now ubiquitously found on the web to ensure that the entity

interacting with a website is indeed human. While CAPTCHAs ensure that abuse of
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online forms is reduced, web users are forced to suffer through increasingly convoluted

and unfriendly CAPTCHAs that negatively impact their user experience. Unfortu-

nately, CAPTCHAs have become a “necessary evil” for online services, especially ones

that are designed for public use or are free in terms of usage cost and/or registration

to the end user. CAPTCHAs are “evil,” in a sense, because they impede service for

a user by requiring them to solve a challenge to continue; in essence, they take up

system resources (CPU time, bandwidth etc.) that could be spent on enhancing the

service they are protecting. Users frequently report becoming angry or not perform-

ing an action, such as posting a comment, if they are forced to solve a CAPTCHA

to perform that action. However, blackhats and bots continue pumping out spam in

all forms: emails, junk comments, link spam etc., whether or not form controls are

implemented.

The real task for any attacker is attempting to either directly solve the hard AI

problem put forth by the CAPTCHA, or find other ways to “work around” the prob-

lem, such as: side channel attacks, mechanical turks, remote farming, exploitable

implementation flaws etc. However, many spambots simply look for low hanging

fruit, that is, online forms that are unsecured or have easily circumvented protections

e.g. ones that have tools that break them automatically. When viewed from an eco-

nomic perspective (often this is the motivation for a majority of spam), this behavior

on behalf of the spambot is logical, as it is not as cost effective expending effort to

break into hardened targets. A vast majority of cybercriminals would not bother de-

veloping advanced attacks against image CAPTCHAs that would presumably require

sophisticated computer vision techniques to attempt to break.

Text-based CAPTCHAs are the most common implementation in use, due to

their scalability, robustness, and ease of implementation. ReCAPTCHA, a formerly

text-based implementation owned and operated by Google, serves as the de facto

standard to which all other text-based CAPTCHAs can be compared. Note that
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as of 2016, the text based CAPTCHA challenges from ReCAPTCHA are now con-

sidered, “legacy CAPTCHA” and the reason for this will be detailed later. While

the difficulty (for users and bots alike) of text based implementations can be scaled

according to how willing the CAPTCHA administrator is to making the CAPTCHA

vulnerable to various attacks, it invariably leads to the age old problem of making

tradeoffs between usability and security. However, given the continued prevalence of

text based CAPTCHA, many techniques have been developed to break them. As a re-

sult, alternative methods of form control and human verification have been sought for

by the security research community. Among the several different modalities that have

been explored, image based CAPTCHAs have emerged as a plausible alternative for

the future, as more suitable for the smartphone/mobile touch-capable environment.

However, image CAPTCHAs come with their own set of problems, particularly in

terms of scalability – it is hard to find large quantities of labeled/tagged images; and

robustness – there is limited variation in the challenge question and vulnerability to

single style of attack.

Very recently, an important shift in enterprise scale CAPTCHA implementations

occurred – Google has begun to move away from text based CAPTCHAs toward image

based CAPTCHAs, as they have discovered that deep-learning neural networks for

vision tasks were exceptionally well equipped to handle the unique challenges of text

based CAPTCHAs [65, 31]. Despite the best efforts to obfuscate the text with tricks

to fool optical character recognition methods and computer vision models (e.g., over-

lapping characters, boundary color distortions, character warping, additional noise in

the form of lines, etc.) the amount of obfuscation required to defeat the deep-learning

model reached a level where the CAPTCHA challenges are now too difficult for a ma-

jority of humans to solve reliably. The regularity and structure of the characters

causes the problem, since at a certain point increasing variation in the structure of

the characters also makes them incomprehensible to a human. CAPTCHA designers
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have since begun to migrate to different forms and styles, and away from text based

challenges. While deep-learning neural network based models remain primarily aca-

demic and exist only in the hands of a small knowledgeable elite, it will not be long

before these tools and techniques reach the computing mainstream, and have already

begun emerging into the marketplace in mid-2016. The shift to an image based model

presents its own set of obstacles to overcome by both the service provider and the

attacker, and soon enough, deep learning models may yet again prove to be powerful

enough to overcome previously challenging computer vision related tasks. There is

already some evidence that this is the case, with the ability to discern emotion [49]

and age [37] from faces, generate image tags based on the content of an image [?], and

identify multiple objects in complex scenes [53]. Furthermore, emerging neuroscience

research has even provided methods to create human–machine interfaces that allow

a computer to read a person’s mind via an analysis of brain waves to determine the

category an image belongs to [50]. It is easy to see there exists the very real possi-

bility that simple cognitive tasks that are easy for a human to perform will become

something that can be accomplished by a computer using a number of different algo-

rithms and learning models to affect this outcome. This leads some in the security

community to believe a change in direction is needed.

1.1 Human Verification - Strong Identity Vs. CAPTCHAs

There has also been a recent shift away from CAPTCHAs toward what is being

termed “strong identity” as a method for providing user privileges and access to online

resources. Strong identity as an online security concept is rooted in the leveraging

of the verifiable “real world”. The intention behind this idea is that using multiple

forms of identification to get a better sense of who the user is and what their behavior

will be like when using the service can be useful from a security perspective [28].
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For example, when signing up for a new account with a service, if the user links

their facebook profile, twitter, linkedin, etc., and allow them to be scanned by an

algorithm that examines user behavior and performs cross validation of content, where

the user will not have to solve a CAPTCHA or wait for an administrator to approve

the creation of the account [14]. Social networking sites stand out in particular as

service providers who are in favor of this security model [33]. Strong identity takes

the form of online service providers encouraging the user to use their real name and

provide truthful, accurate information when creating an account; information that

can be cross referenced to “official” information sources (e.g. SSN, home address,

telephone number etc.) and is unique to an individual.

Socio-behavioral models [62] that correlate with strong identities are also gaining

traction as a new method to identify bot behavior. Behavioral models are based

around the idea that a typical “legitimate” user performs a set of actions that are

considered by the online service provider to be typical of the use of the services

provided. Since bots have a fixed set of actions that are usually designed to maximize

some type of outcome for an attacker, their behaviors online become an outlier that

the service provider can identify and act upon accordingly.

For example, a typical human user of a social network would add or follow some

friends, interact with them by sending messages and comments, share links etc. A

bot would take this behavior to the extreme, perhaps attempting to add or follow 500

or more users upon creation of the account and immediately send a large volume of

messages to users – behaviors that would require beyond human abilities. Another

example of strong identity would be the implementation of two-factor authentication

– some online services are providing a unique text message to a given phone number

to verify identity, a method that is becoming increasingly popular as hackers breach

accounts secured only by traditional passwords.

It is worth noting that strong identity models gain much of their power from
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traditional human social and legal structures that provide feedback to users in the

form of punitive measures for straying from approved behavioral norms and written

laws. If abusive accounts can be linked to a real world human that is within the

reach of litigation that can be brought by the service provider, this is even better

in the eyes of the service provider. Now the disincentive for abusing the service is

much greater, as legal action can be brought upon an individual or group abusing

the service. However, these methods are somewhat limited in that they completely

break down when jurisdiction becomes an issue, (e.g. a foreign sovereign country

may choose not to bring charges against a citizen abusing another countries’ online

services). However, while strong identity models sound great in theory, the use of

real world information online can result in negative consequences if compromised (ID

Theft, stalking/harassment, loss of reputation etc.) and comes at the expense of

anonymity and privacy. Indirectly, CAPTCHAs provide a way to allow users to re-

main anonymous without having to provide real information to prove their humanity.

Additionally, such strong identity approaches may not be suitable for all types of web

based applications. Thus, it would not be a stretch to say that if you value privacy

online, it is in your best interest to support and develop new CAPTCHAs.

Recent research has also looked into using CAPTCHA generation technology that

leverages hard AI problems to provide a graphical replacement for the traditional

password (CaRP) [77], as passwords are becoming increasingly insecure online due

to various human limitations in remembering unique, long and complex strings of

characters and increases in the speed and power of attacks on password databases

and systems. It will be interesting to see if graphical based challenge systems can

evolve over time to position themselves to provide strong online form and account

security by providing usable, scalable and robust challenges to users for identification

and authentication tasks.

An argument can be made that the true intention of CAPTCHAs is to de-
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incentivize human greed. We define greed in this case to mean, “The desire for

more than the service providers offered fair amount of scarce/finite resources” -

whatever that may be e.g. download link, email account, cloud storage space etc.

CAPTCHA security is provided by removing the ability to automate this greedy be-

havior, with the bot acting as an agent – on behalf of the blackhat. While changing

human behavior is difficult, it can be controlled to a degree with the right incen-

tives and disincentives in place to produce the desired outcomes. Finally, it must

be pointed out that CAPTCHAs should never be used in isolation, they must be a

living component of a comprehensive security system designed to prevent abuse of an

online service. Methods such as invisible fields and random field names on forms, IP

whitelisting/blacklisting, throttling (bandwith use, volume of messages etc.), filtering

(words, links, content etc.) as well as combinations of automated and manual account

inspection have been used successfully to curb abuse in conjunction with CAPTCHAs

[41]. It is important to remember that online form security is a “puzzle,” and all the

pieces must work in conjunction to provide the level of protection the service provider

desires.

1.2 Problem Statements and Contributions

CAPTCHAs are an ever evolving area of research, as their ability to provide security

is dependent upon the current state of the art computer vision algorithms, machine

learning algorithms, and artificial intelligence in circulation at the time of their emer-

gence onto the World Wide Web. As CAPTCHA styles are defeated by new attacks,

the entire landscape must react to the emergence of these new threats. The temporal

nature of the state of affairs in regards to attack and defense in CAPTCHA cannot

be overstated. For example, during the length of time it took to conduct the research

for this dissertation, there has been an active shift away from text based CAPTCHA
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to image based CAPTCHA (in both research literature and online implementations),

especially with the emergence of deep learning neural network models providing ex-

tremely high levels of accuracy in solving even the most difficult text based imple-

mentations. Google offering ReCAPTCHA as a service to web administrators is a

prime example of the shift to IRC, however due to usability issues, Google still offers

the traditional text challenge as a legacy option. However, ironically enough, the

classic text CAPTCHA is still the most widely used form of CAPTCHA, despite its

weaknesses being known. This is most likely due to a number of reasons, namely that

developing scalable IRC’s that can produce unique challenges at extreme volume of

demand in an automated fashion remains a challenging and complex task. Yet even

under these circumstances the text CAPTCHA still provides enough protection that

web administrators deem them useful and continue to implement as a part of their

anti-bot toolbox. The following contributions demonstrate the research path taken

which finally lead to the creation of a scalable IRC CAPTCHA and is demonstrative

of the temporal nature of CAPTCHA research. Each of these contributions built

upon the other and time was required to pass before certain tools and techniques

emerged that made certain functions possible that were most likely not possible be-

fore. Regrettably, this dissertation is something of an anachronism, as some of the

original contributions have been superseded by more advanced techniques (namely

the two attacks), but a number of the defensive methods and models remain useful

to date.

This dissertation seeks to contribute to the existing body of CAPTCHA research

and development through the following original contributions:

1. The development and testing of a new attack on existing IRC implementations

using Hierarchical Temporal Memory, a specialized type of neural network that

attempts to mimic the mammalian neocortex for the express purpose of image

classification and object recognition tasks.
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2. The development and testing of a new attack on existing IRC implementa-

tions that utilizes web services such as Reverse Image Search (RIS), Automated

Linguistic Annotation (ALA), and Image Similarity Search (ISS) that perform

image operations to gather metadata relating to images in order to circumvent

performing an image identification task, yet allow an attacker to still be able

to solve the challenge using the metadata to perform the identification task

accurately.

3. The development and testing of a new defense method that can be added to any

existing IRC to strengthen it against web services attacks and computer vision

attacks while only minimally impacting usability. This is achieved through the

application of noise from specialized noise algorithms to the image so that these

images fail to return meaningful results to an attacker using online tools and

computer vision algorithms.

4. The testing and conducting of a user study of the noise defense method in action

through the development of five basic image recognition CAPTCHAs designed

to test various aspects of usability inherent to simple IRC’s where the central

challenge question asked to the user is an image recognition or categorization

task.

5. The development of an automated system to generate IRC challenges that will

systematically apply noise in increments and test images against web service

based attack tools to ensure they meet a security guarantee that RIS nor ISS

will return meaningful results (zero matches).

6. The testing and development of a new defense method that can be added to any

existing IRC that to strengthen it against web services attacks and computer

vision attacks as well as additional advanced image analysis algorithms. This
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is achieved through the application of image filters to existing images in order

to prevent the extraction of contextual information from the image.

7. The testing and conducting of a user study of a new IRC that is both auto-

mateably scalable and robust against attacks from web services, computer vision

algorithms, and advanced image analysis algorithms. This new CAPTCHA de-

sign asks the user to identify emotions people are expressing on their faces and

match them with an emoji that expresses the same emotion. There are also two

alternative styles of this basic format that leverage the same concepts yet strive

for improved usability.

8. A number of examples of CAPTCHA styles and implementations that use spe-

cific hard AI challenges to increase the security provided by the particular

CAPTCHA challenge. These examples serve to demonstrate the CAPTCHA de-

sign criteria we outline: usability, scalability, and robustness. They also clearly

demonstrate the various tradeoffs in security and usability as a consequence of

design choices.

1.3 Outline

The rest of the dissertation is organized as follows: Section 3 discusses CAPTCHA

general design requirements, discusses challenges faced by designers, outlines criteria

for designing a quality, secure CAPTCHA system, and provides an overview and

evaluation of a number of challenge ideas. Section 4 provides discussion in detail

of the attack methods developed, the first with HTMs for image recognition and

categorization tasks, and the second using web services to leverage image metadata to

solve the challenge without explicitly performing the image recognition/classification

task. Details of the performance of the attacks on a selection of IRCs is provided.

Section 5 describes in detail the SIGNAC method, our noise addition method for
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IRCs to prevent web service and computer vision attacks. Design criteria for a fully

automated secure image production system are provided, as well as details of the

experiments conducted to determine how much noise and of what type was required

to defeat various web service attacks and computer vision attacks. The EmojiTCHA

image filter method, which is in a similar vein to the noise addition method and

seeks the same outcomes, yet can be achieved with a much more streamlined and less

complex system of tools than SIGNAC is also detailed. Section ?? provides coverage

of the user studies conducted to test usability of simple image recognition CAPTCHAs

utilizing the SIGNAC method, as well as usability testing for EmojiTCHA and the

image filter application method. Section 7 provides some ideas for future work that

this body of research has identified, as well as some lessons learned over the years of

working with CAPTCHA.
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Chapter 2

Related Work

In this section we will cover a number of works in the literature whose findings and

methods have consequences that feed into CAPTCHA analysis and design. Some

of these works fall into the computer vision and analysis category, as these papers

focus on techniques and algorithms that achieve a particular task that may be used at

some point to solve a CAPTCHA or defeat a security mechanism within a CAPTCHA

challenge. A section is dedicated to works that use CAPTCHA to achieve other goals

or discuss overarching design criteria or critique existing criteria within a CAPTCHA

type.

2.1 Computer Vision and Machine Learning

Computer vision and machine learning methods drive most of the attacks against

CAPTCHAs of all types, as even text based CAPTCHA have a visual component to

them (display of the characters). As such, understanding the methods, techniques,

and tools that have been developed in these areas of research will go a long way

towards helping to fashion both new attacks, as well as new defensive methods to

protect CAPTCHAs from automated attack methods. As more of computer vision

and machine learning tools become publically available online, their use will increase,
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and a corresponding rise in attacks against styles vulnerable to them can be expected.

A great example of this is the online computer vision tools, provided by CMU [45].

Work by Belongie [5] provides a novel approach to measuring similarity between

shapes for the purpose of object recognition. This method is very well suited to the

challenges of recognizing characters (digits in particular) that have been warped or

distorted by a CAPTCHA, as handwriting differences between people is similar to

how image distortions on a CAPTCHA character would look. After a segmentation

of the characters in the CAPTCHA occurs, this technique can be used to compare

the segmented characters to a template of characters for determining a match based

on a similarity score.

Gao [26] provides a new look at utilizing existing hierarchical ML methods to

provide accurate classifications in a multiclass classification problem (e.g. for mul-

tiple object recognition or scene classification) using a set of binary classifiers in a

hierarchical structure. This is similar in style to the HTM algorithm we use in to try

to break image classification CAPTCHAs, and follows a similar approach.

Work by Mehta [56] on email spam mirrors work on CAPTCHA in many ways, and

the lessons from this experiment illustrate the cat and mouse game played by attackers

and designers of CAPTCHA, especially in regards to image analysis. They note that

even though current email spam detecting software has been gaining a competitive

edge against text based email spam, new advances in spam generation have posed

a new challenge: image-based spam. Image based spam is email which includes

embedded images containing the spam messages, but in binary format. They analyze

the characteristics of image spam to propose two solutions for detecting image-based

spam. The first solution, which uses the visual features for classification, offers an

accuracy of about 98%. SVMs (Support Vector Machines) are used to train classifiers

using judiciously decided color, texture and shape features. The second solution offers

a novel approach for near duplication detection in images. It involves clustering of
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image GMMs (Gaussian Mixture Models) based on the Agglomerative Information

Bottleneck (AIB) principle, using Jensen-Shannon divergence (JS) as the distance

measure. It is worth noting that similarity/duplication detection is used for matching,

as we also leverage this technique for attacks on CAPTCHA.

Work by Chechik [10] presents OASIS, an Online Algorithm for Scalable Image

Similarity learning that learns a bilinear similarity measure over sparse representa-

tions. OASIS is an online dual approach using the passive-aggressive family of learning

algorithms with a large margin criterion and an efficient hinge loss cost. Our experi-

ments show that OASIS is both fast and accurate at a wide range of scales: for a data

set with thousands of images, it achieves better results than existing state-of-the-art

methods, while being an order of magnitude faster. For large, web scale, data sets,

OASIS can be trained on more than two million images from 150K text queries within

3 days on a single CPU. On this large scale data set, human evaluations showed that

35% of the ten nearest neighbors of a given test image, as found by OASIS, were

semantically relevant to that image. This suggests that query independent similarity

could be accurately learned even for large scale data sets that could not be handled

before. This type of machine learning research provides the foundation for image sim-

ilarity search engines and reverse image search, which we demonstrate can be used to

attack CAPTCHAs that use images gathered from an image index online.

Shrivastava [67] has provided a method to find visually similar images even if

they appear quite different at the raw pixel level. This task is particularly impor-

tant for matching images across visual domains, such as photos taken over different

seasons or lighting conditions, paintings, hand-drawn sketches, etc. They achieve

this with a method that estimates the relative importance of different features in a

query image based on the notion of ”data-driven uniqueness” using standard tools

from discriminative object detection in a novel way, yielding a generic approach that

does not depend on a particular image representation or a specific visual domain. It
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demonstrates good performance on a number of difficult cross-domain visual tasks

e.g., matching paintings or sketches to real photographs.

Work by Tsai et. al. [69] is particularly important to the evolution of image

similarity search being able to return a text string “guess” as to what is being depicted

in an image. This work addresses the problem of large-scale annotation of web images.

Their approach is based on the concept of visual synset, which is an organization

of images which are visually-similar and semantically-related. Each visual synset

represents a single prototypical visual concept, and has an associated set of weighted

annotations. Linear SVMs are utilized to predict the visual synset membership for

unseen image examples, and a weighted voting rule is used to construct a ranked

list of predicted annotations from a set of visual synsets. They demonstrate that

visual synsets lead to better performance than standard methods on a new annotation

database containing more than 200 million images and 300 thousand annotations,

which is the largest ever reported. It is worth noting that this research was sponsored

by Google, who has strong image search and annotation tools available through their

search engine, both of which we use in attacks against IRCs as well as test against

for defensive methods.

Datta et. al. [16] have implemented some of the pioneering works in CBIR and

automatic image annotation. This paper in particular provides an excellent overview

of the past, present and future of CBIR and automated image annotation. In this

article, they survey almost 300 key theoretical and empirical contributions in the

current decade related to image retrieval and automatic image annotation, and in

the process discuss the spawning of related subfields. We also discuss significant

challenges involved in the adaptation of existing image retrieval techniques to build

systems that can be useful in the real world. While this paper was published in 2008,

many of the predictions they have made for the future have come true, and now in

2016, automated image tagging and scene recognition tools are available online that
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have a shocking degree of accuracy unthinkable almost slightly under a decade ago.

Jing’s work on[43] the task of identifying ”authority” nodes on an inferred visual

similarity graph is important to the foundational ideas behind image similarity search

engines. They propose an algorithm to analyze the visual link structure that can be

created among a group of images. Through an iterative procedure based on the

PageRank computation, a numerical weight is assigned to each image; this measures

its relative importance to the other images being considered. The incorporation of

visual signals in this process differs from the majority of large-scale commercial-search

engines in use today, as they often solely rely on the text clues of the pages in which

images are embedded to rank images, and often entirely ignore the content of the

images themselves as a ranking signal. This is followed up in 2012 by the work on

Google image swirl [44]. Google Image Swirl demonstrates the first large-scale image

browsing system applied to 200,000 popular queries which utilizes image content to

organize image search results. Given a query, the system extracts image content

features such as color, shape, local features, face signatures and metadata from up

to 1000 image results, and hierarchically clusters them to form an exemplar tree. A

dynamic web-based user interface allows the user to navigate this hierarchy, allowing

fast and interactive browsing. The exemplars of each cluster provide a comprehensive

visual overview of the query results, and allow the user to quickly navigate to the

images of interest. It is easy to see where this leads, as online image search has become

a powerful tool to provide context and analysis for images in an easy to access fashion.

The ramifications for this to IRCs must be considered if robust challenges are to be

created.

Mitra et.al.[57] work on emerging images provides some insight into the human-

computer gap that is often exploited to create strong IRCs. Emergence refers to the

unique human ability to aggregate information from seemingly meaningless pieces,

and to perceive a whole that is meaningful. This special skill of humans can consti-
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tute an effective scheme to tell humans and machines apart. This paper presents a

synthesis technique to generate images of 3D objects that are detectable by humans,

but difficult for an automatic algorithm to recognize. The technique allows generat-

ing an infinite number of images with emerging figures. The algorithm is designed so

that locally the synthesized images divulge little useful information or cues to assist

any segmentation or recognition procedure. As a consequence of this, the computer

vision algorithms are incapable of effectively processing such images. However, when

a human observer is presented with an emergence image, synthesized using an object

they are familiar with, the figure emerges when observed as a whole. The difficulty

level of perceiving the emergence effect can be controlled through a limited set of

parameters. They note that a procedure that synthesizes emergence images can be

an effective tool for exploring and understanding the factors affecting computer vision

techniques. Jian et. al. continue exploring this path by emerging images synthesis

from photographs [42]. They are able to demonstrate a technique that uses a base

photograph to create an emerged image using some anti-computer vision techniques.

Emerging images represents a hopeful new avenue for IRCs to take into the future.

2.2 Other CAPTCHA Works

This section covers a number of papers that are important to CAPTCHA work,

but may not be directly involved in attacks on CAPTCHA and defensive designs

of challenges, but still impact them in a meaningful way. They focus on human

computer interaction and implementation issues, as well as leveraging CAPTCHA

for different purposes beyond a simple form control method. Some literature that

provides how CAPTCHA design has an aspect of cultural dynamics or provides a

human perspective on solving hard AI problems.

Datta et al. continue their work on image processing and CBIR to help design
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stronger CAPTCHAs by exploiting the human machine gap in image recognition for

designing CAPTCHAs[17] they explore the exploitation of this limitation for poten-

tially preventing automated network attacks. While undistorted natural images have

been shown to be algorithmically recognizable and searchable by content to moder-

ate levels, controlled distortions of specific types and strengths can potentially make

machine recognition harder without affecting human recognition. This difference in

recognizability makes it a promising candidate for automated Turing tests which can

differentiate humans from machines. They empirically study the application of con-

trolled distortions of varying nature and strength, and their effect on human and

machine recognizability. While human recognizability is measured on the basis of

an extensive user study, machine recognizability is based on memory-based content-

based image retrieval (CBIR) and matching algorithms. A detailed description of

our experimental image CAPTCHA system, IMAGINATION, that uses systematic

distortions at its core. A significant research topic within signal analysis, CBIR is ac-

tually conceived here as a tool for an adversary, so as to help us design more foolproof

image CAPTCHAs. Using the idea of system duality, Faymonville [22] introduces an

open labeling platform for Computer Vision researchers based on CAPTCHAs, creat-

ing as a byproduct labeled image data sets while supporting web security. For the two

different tasks of annotation and detection, they explore usability issues and discuss

system sustainability issues in the context of a broader ecosystem for the platform.

Yan et. al. provide an in depth review of the idea of CAPTCHA robustness, from a

security engineering perspective [76]. However, the robustness of CAPTCHAs has so

far been studied mainly just in communities such as computer vision, and document

analysis and recognition. This paper motivates a security engineering perspective

of the robustness of CAPTCHAs. Specifically, they demonstrate that a number of

CAPTCHAs that appeared to be secure, including schemes widely deployed by Mi-

crosoft, Yahoo and Google and some other less well-known ones, could be broken
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with a high success rate with simple but novel attacks. In contrast to earlier work

that relied on sophisticated computer vision algorithms, our attacks exploited critical

design errors that we discovered in each scheme (which are text based). The main

lesson is that security engineering expertise and experience, in particular adversarial

thinking skills, can make a unique and significant contribution to the improvement

of the robustness of CAPTCHAs.

Fritsch [24] develop an online attack that uses a fuzzy image recognition algo-

rithm to process the difference in pictures of nature from pictures that are not nature

(the challenge present in the HumanAuth CAPTCHA). To evaluate the attack they

implemented a publicly available tool, which delivers promising results for the Hu-

manAuth CAPTCHA and others of a similar style and challenge task. Based upon

their findings they propose several techniques for improving future versions of image

recognition CAPTCHAs, however most of these methods have been superseded by

advanced image processing tools e.g. TinEye. This work represents a direct attack

on the hard AI problem posed by the challenge. However, implementation flaws can

also provide meaningful ways to attack CAPTCHA as well. Castro et al. propose a

side channel attack on the humanauth CAPTCHA [34] which represents a significant

shortcut to the intended attacking path, as it is not based in any advance in the state

of the art on the field of image recognition. After analyzing the HumanAuth image

database with a new approach based on statistical analysis and machine learning,

they concluded that it cannot fulfill the security objectives intended by its authors.

Then, they analyze which of the studied parameters for the image files seem to dis-

close the most valuable information for helping in correct classification. They also

analyze if the image watermarking algorithm presented by the HumanAuth authors

is able to counter the effect of this new attack. The attack represents a completely

new approach to breaking image labeling CAPTCHAs, and can be applied to many

of the currently proposed schemes. Lastly, they also investigate some measures that
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could be used to increase the security of image labeling CAPTCHAs as HumanAuth,

but conclude no easy solutions are at hand.

Bursztein et. al. present their comprehensive work on how good are humans at

solving CAPTCHAs [8]. This is the first large scale evaluation of CAPTCHAs in the

literature from the human perspective, with the goal of assessing how much friction

CAPTCHAs present to the average user. For the purpose of this study they have

asked workers from Amazons Mechanical Turk and an underground captcha break-

ing service to solve more than 318,000 CAPTCHAs issued from the 21 most popular

captcha schemes (13 images schemes and 8 audio scheme). Analysis of the resulting

data reveals that CAPTCHAs are often difficult for humans, with audio CAPTCHAs

being particularly problematic. They also discovered some demographic trends indi-

cating, for example, that non-native speakers of English are slower in general and less

accurate on English-centric captcha schemes. Evidence from a weeks worth of eBay

CAPTCHAs (14,000,000 samples) suggests that the solving accuracies found in the

study are close to real-world values, and that improving audio CAPTCHAs should

become a priority, as nearly 1% of all CAPTCHAs are delivered as audio rather than

images. Finally the study also reveals that it is more effective for an attacker to use

Mechanical Turk to solve CAPTCHAs than an underground service. In a similar vein,

Fidas [23] created a questionnaire-based survey combined with a real usage scenario

of a native-language CAPTCHA mechanism conducted an experiment in order to

investigate several aspects that affect end-user perceptions related to the quality of

CAPTCHA. A total of 210 participants of age between 19 and 64 participated during

May and July 2010. The survey results validate the common belief that CAPTCHAs

are still difficult for humans to solve. They also provide insights that can be applied

to improve users’ experience on interacting with CAPTCHA systems.

Mori began the work on finding objects in adversarial clutter for the purposes of

breaking a visual captcha [60] They test object recognition techniques on Gimpy and
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EZGimpy, examples of visual CAPTCHAs, which are now quite old and outdated

(text based w/ distortions). At the time, EZ-Gimpy was used by Yahoo. These

CAPTCHAs provide excellent test sets since the clutter they contain is adversarial;

it is designed to confuse computer programs. They have developed efficient methods

based on shape context matching that can identify the word in an EZGimpy image

with a success rate of 92%, and the requisite 3 words in a Gimpy image 33% of

the time. The problem of identifying words in such severe clutter provides valuable

insight into the more general problem of object recognition in scenes. The methods

that we present are instances of a framework designed to tackle this general problem.

Lang et. al. propose a method of secure CAPTCHAs by impeding captcha breakers

with visual decryption [46]. It is introduced as an extra layer of security on top of

existing CAPTCHA implementations. It uses visual encryption to encrypt images,

which are presented to clients like a CAPTCHA. Its purpose is to compress many

sub-images into a small image format that humans can decode visually but is hard for

automated systems due to decrypting overhead, and having to process more images to

find the hidden image. This paper introduces visual encryption as a viable method to

encrypt CAPTCHAs, and tests a prototype to measure how efficiently users can find

them. It also measures whether this method could impede a real CAPTCHA breaker.

Results show humans detect images within 16-33 seconds, and deciphering images

is almost 100%. Estimates on CAPTCHA breaking benchmarks show automated

systems would be slowed significantly, even assuming the image is found and decoded.

As sub-images increase, humans can process the visually encrypted images faster than

automated systems can.

Bursztein et al. bring bad news in 2014, with a study on the death of text based

challenges. [7]. They note that over the last decade, it has become well-established

that a CAPTCHAs ability to withstand automated solving lies in the difficulty of

segmenting the image into individual characters. The standard approach to solving
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CAPTCHAs automatically has been a sequential process wherein a segmentation al-

gorithm splits the image into segments that contain individual characters, followed

by a character recognition step that uses machine learning. While this approach

has been effective against particular CAPTCHA schemes, its generality is limited by

the segmentation step, which is hand-crafted to defeat the distortion at hand. No

general algorithm is known for the character collapsing anti-segmentation technique

used by most prominent real world CAPTCHA schemes. The team introduces a

novel approach to solving CAPTCHAs in a single step that uses machine learning

to attack the segmentation and the recognition problems simultaneously. Perform-

ing both operations jointly allows our algorithm to exploit information and context

that is not available when they are done sequentially. At the same time, it removes

the need for any hand-crafted component, making the approach generalizeable to

new CAPTCHA schemes. Their experiments demonstrated that they were able to

solve all the real world CAPTCHA schemes evaluated accurately enough to consider

the scheme insecure in practice, including Yahoo (5.33%) and ReCaptcha (33.34%),

without any adjustments to the algorithm or its parameters. The success against

the Baidu (38.68%) and CNN (51.09%) schemes that use occluding lines as well as

character collapsing leads us to believe that our approach is able to defeat occluding

lines in an equally general manner. The effectiveness and universality of the results of

the new approach suggests that combining segmentation and recognition is the next

evolution of catpcha solving, and that it supersedes the sequential approach used in

earlier works. More generally, our approach raises questions about how to develop

sufficiently secure CAPTCHAs in the future.

CAPTCHAs themselves can now be used as a method of attack for data exfiltra-

tion as done in the work by Gelernter et. al. demonstrates [27]. They present the

malicious CAPTCHA attack, allowing a rogue website to trick users into unknowingly

disclosing their private information. The rogue site displays the private information
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to the user in obfuscated manner, as if it is a CAPTCHA challenge; the user is un-

aware that solving the CAPTCHA, results in disclosing private information. This

circumvents the Same Origin Policy (SOP), whose goal is to prevent access by rogue

sites to private information, by exploiting the fact that many websites allow display

of private information (to the user), upon requests from any (even rogue) website.

Information so disclosed includes name, phone number, email and physical addresses,

search history, preferences, partial credit card numbers, and more. The vulnerability

is common and the attack works for many popular sites, including nine out of the

ten most popular websites. Note that the attack was evaluated using IRB-approved,

ethical user experiments.
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Chapter 3

CAPTCHA Theory & Design

3.1 Design Requirements and Challenges

We first discuss the CAPTCHA design considerations and the key requirements and

challenges faced when developing new CAPTCHAs.

3.1.1 CAPTCHA Design Considerations

We are primarily interested in three major criteria by which a CAPTCHA’s quality

can be judged – usability, scalability, and robustness. Each one of these categories has

effects on how the CAPTCHA manifests itself design-wise, and its ability to provide

form security against various attack methods. It is worth noting that novel methods

for creating CAPTCHAs are fairly straightforward to come up with (e.g., KittenAuth)

[72], as just about any hard AI problem, logic puzzle, mind game or simple cognitive

task can be used as the basis for a challenge. These are guaranteed to have a measure

of success at stopping bot attacks already in use as long as they avoid or alter the

methodology of the CAPTCHA that has failed. We present a number of these types

of novel examples that we have created in Section 3.3.1. Unfortunately, very few of

these challenges (if any) hold up to intensive scrutiny in the face of a tenacious and
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intelligent attacker with a toolbox of machine learning techniques and time on his

side [64, 48, 30, 20, 19, 75, 2]. This fact only becomes more true as newer and more

powerful algorithms and systems are devised over time [9, 58, 29]. Therefore, if there

is ever to be any hope of securing online forms from a bot scourge, a scope analysis

and a quantification of the security provided by a CAPTCHA must be done by the

designer to ensure a realistic outcome and that a reasonable expectation of security

can be maintained by the online service using the CAPTCHA.

To this end, the ReCAPTCHA service can be used to provide the benchmarks for

usability, scalability and robustness for comparison to other CAPTCHAs, since it is

maintained by Google and used across a variety of their own services in addition to

third party sites. No other CAPTCHA can compare to its strengths and variability,

and none of its weaknesses are so great that it fails to uphold form security to an

acceptable degree. Its longevity, mutability (change over time), and adoption as the

standard for online services / form control speaks to its success and the success of

the methods it employs in general.

3.1.1.1 Usability

Usability relates to all of the ways in which a user must interact with the CAPTCHA

challenge and provide the solution. This idea can encompass numerous factors, some

that are easy to quantify and measure, and some that are more qualitative/subjective.

Quantifiable usability metrics include: average user time to solve, average number of

challenges presented before correct response, server CPU time to generate challenge,

etc. Qualitative usability metrics include: user reported ease of use on type of chal-

lenge presented, user/challenge method of interaction etc. Each of them plays an

important role in the overall usability of a particular CAPTCHA implementation,

and the interactions between each of the metrics and how they affect one another as

well as the user must be considered. The critical consideration for usability revolves
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around the subjective question, “How easy is it for the user to solve this CAPTCHA

challenge?” which can be measured quantitatively via a user study.

3.1.1.2 Scalability

Scalability is perhaps the most important factor when creating a strong, secure chal-

lenge for an enterprise scale web service / form. Scalability refers to the ability to

generate a large number of unique, one-off challenges and serve them to users at the

rate deemed necessary to serve the userbase of the service provider. This is important

since otherwise a database of the challenges can be maintained. While this definition

might seem simple, it is perhaps the most challenging criterion to successfully achieve

when designing a CAPTCHA. A question such as, “how easy is it for my CAPTCHA

to generate a unique challenge?” falls within the realm of scalability. For example,

it is relatively easy to see that a text based CAPTCHA can provide unique combi-

nations of characters at a particular length that lends itself to an extremely large

space complexity. Contrast this example with an image based CAPTCHA, which re-

quires a tagged image database (expensive from a time, resource, and computational

standpoint to create and maintain) to serve unique (or semi-unique, as at some point

images must be re-used) challenges to the userbase.

3.1.1.3 Robustness

Robustness is a measure of how well a particular type of challenge holds up against

the various tools and techniques used to break CAPTCHAs. Is the challenge easy to

break with OCR programs? Can a computer vision program accurately classify the

images in a challenge? Would a competent scripter be challenged to write something

clever that could foil the task posed by the challenge? What techniques or logic is

the designer of the CAPTCHA using to hamper or foil these attacks? By logical

extension, robustness also covers the degree to which challenges vary between one
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another within the same category of challenge. This category frequently has the most

“turnover” of the three categories, meaning that what is considered robust today

could easily be defeated by a new system that comes from new research.

3.1.2 Challenges in Designing a CAPTCHA

This section will help elucidate the thought process behind conception, evaluation and

implementation of new and existing CAPTCHAs to secure an online service provider

from bot attacks. We now discuss the various requirements and challenges in building

and deploying CAPTCHAs to secure an online service provider from bot attacks.

3.1.2.1 Risk Analysis Based CAPTCHA selection

The appropriate CAPTCHA to use depends on the environmental context and the

degree of risk inherent in allowing access. The following questions can guide the

CAPTCHA selection process:

1. What type of service is being provided? Can this service be considered “criti-

cal”?

2. What impact will a breach of the form security have on service operations? E.g.

Service downtime, expanded operations costs, loss of goodwill from userbase etc.

3. What impact will a breach of the form security have on service’s users?

4. What is the “cost” of supporting spam accounts? Cost can be measured in

many ways, such as CPU time, bandwidth, account monitoring (automated

and human), etc.

5. What is the level of tolerance built into the service? e.g. system operations-

wise (quantifiable) for dealing with negative factors such as user annoyance at
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CAPTCHA, at spam comments evading controls, loss of service, loss of users

etc.

3.1.2.2 Improved Machine Learning Tools

As time progresses forward, so does technology and algorithms. Computer vision in

particular has made great strides in its general performance capabilities – an area

where it could be considered lacking in the past, and is now providing new threats to

CAPTCHAs. Thanks in part to the rise in GPU computing and cluster computing,

compute power density is at an all time high. One recent example is the results

from the 2014 Large Scale Visual Recognition Challenge which focuses on the task

of image recognition in particular. The visual systems this year were tested in six

categories based on their ability to detect objects, locate specific items in an object,

and classify those images from a labeled dataset of 14 million images already tagged

by humans. The average accuracy of entrants doubled from 22.5% to 43.9% while

the error rate fell from 11.7% to 6.6% [53]. This level of success was achieved by

most teams using an old algorithm – convolutional neural networks, which have been

around for some time but were not practical until GPU computation was cheap and

publicly available. While these systems are still no match for human analysis, it is

easy to see why a CAPTCHA designer should become nervous about these systems.

Indeed, the algorithm used in Google Streetview for recognizing the numbers on a

house to determine the home address, which was based on deep convolutional neural

networks, could equally be used to decipher the hardest category of ReCAPTCHA

challenges they were serving, with 99.8% accuracy. Google’s security blog [65] notes

that they are moving away from text distortions as their primary method of security in

their text based CAPTCHA, and instead have chosen to rely on performing advanced

risk analysis – which they do not elaborate on for obvious reasons.
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3.1.2.3 An Economic Analysis

Motoyama et al.[61] published a seminal paper providing a thorough analysis of

CAPTCHA breakers and their evolution into solving services that pay humans to

solve CAPTCHAs. They make the argument that CAPTCHAs can increasingly be

understood and evaluated in purely economic terms, that is, the market price of

a solution compared to the monetizable value of the asset being protected. They

examine the market-side of this question in depth, analyzing the behavior and dy-

namics of CAPTCHA-solving service providers, their price performance, and the un-

derlying labor markets driving this economy. This analysis and the reality of solv-

ing/farming/mechanical turks as methods to beat CAPTCHAs at a near perfect rate

(by the very definition of CAPTCHA) pose a grave threat to CAPTCHA use and

the services they protect. Thus, Motoyama’s paper successfully demonstrates that

we must begin to look at the problem of online form security from an economic

perspective, instead of a purely computer security perspective.

3.1.2.4 The Insurmountable - Solving Services, Farming, & Mechanical

Turks

CAPTCHA attacks can be abstracted to their logical extreme when an attacker simply

pays a mechanical turk (a human via a web service) for the solution to a CAPTCHA.

As long as the attackers’ costs remain lower than his profits, he will use that method

and by the definition of a CAPTCHA (correct solution to challenge determines hu-

man or bot), this “attack” will succeed, simply because a human is providing the

solution. We can even humor the scenario where the attacker is content to operate

at the break-even point (costs of attack are equal to profits), just to spite the service

provider and antagonize legitimate users – a losing proposition for the defender. After

spending time researching the area of CAPTCHAs, it is easy to fall into a fatalistic

and nihilistic mindset with regards to public online service defense, especially when
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enterprise usability and scalability are critical factors. Given the advances in compu-

tational ability to provide near-human cognition [19, 58, 29, 61, 74], all CAPTCHAs

can and will eventually be defeated by attackers and form security mechanisms will

be forced to evolve into something else yet to be developed, or replaced entirely. How-

ever, until that day arrives, we must be content with utilizing a risk based framework

combined with an economic analysis to select the strongest possible design criterion

for CAPTCHAs and accept that pay to play solutions cannot be realistically stopped,

short of extreme measures on behalf of the service provider.

3.2 Evaluation of CAPTCHA Styles

There are three major styles of CAPTCHA - each with its own unique angle for pre-

sentation to the user and its accompanying underlying methodology. These can then

be subdivided based on various methods of implementation and/or various methods

of testing for user humanity. Note that these methods correspond with 2 of the 5

human senses (sight and sound) that are easy to interact with via a computer. The

omission of smell and taste being somewhat obvious, however touch is quickly becom-

ing a new area of exploration as the technology to support this has recently moved

into mainstream computing.

• Text

This is the defacto standard style of CAPTCHA because it is the easiest to

design, implement and use. It consists of a string of characters (letters, numbers,

and sometimes special characters) that a user must type in to prove they are

human. These are the most common types of CAPTCHA currently in use, due

in part to their scalability (easy to generate) and robustness (uniqueness, space

complexity).

• Image
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These CAPTCHAs utilize images as a method to provide security. More specif-

ically, they ask users to perform cognitive tasks that involve the images, such

as image recognition (e.g. what is being shown in the image) or a categoriza-

tion task (e.g. select all pictures of cats) based on viewing and comprehending

what the images are depicting. These are the second most common type of

CAPTCHA, although they often score high in usability, particular implementa-

tions provide shortcomings in the scalability and robustness category, and are

weak against certain types of attacks. We will demonstrate some of the short-

comings of image CAPTCHAs in these two categories in our design overview.

• Audio

These CAPTCHAs are usually used in tandem with another CAPTCHA (usu-

ally text based) to provide accessibility to blind users. The audio CAPTCHA

speaks the characters out loud so that blind users can understand. They usually

are susceptible to speech to text attacks and can pose some usability problems

- namely the protection used (other garbled noise to disguise the characters) to

make them more secure causes audio CAPTCHAs to become nearly impossible

to decipher for the end user and bots alike. Also, not all computers have speak-

ers or a port accessible for headphones - thus there is no guarantee of sound at

any particular computer terminal.

• Multi-Modal

This method takes two or more existing, for example image and text based

methods, and combines them to provide enhanced usability [12, 4].
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3.2.1 Alternative CAPTCHAs – An Overview of Existing

Works

This section provides a quick overview of existing alternative methods of CAPTCHA

that are designed to be more robust methods beyond traditional simple text, image,

or audio based CAPTCHAs. Many of these styles incorporate nuanced information

contained in text or images into the challenge question to provide stronger security.

• HIP

Human Interactive Proofs - To be effective, a HIP must be difficult enough to

discourage script attacks by raising the computation and/or development cost

of breaking the HIP to an unprofitable level. The purpose of this study was

to find the visual distortions that are most effective at foiling computer attacks

without hindering humans. This was achieved by building segmentation-based

HIPs that are extremely difficult and expensive for computers to solve, while

remaining relatively easy for humans.[11]

• GOTCHA

Generating panOptic Turing Tests to Tell Computers and Humans Apart A

GOTCHA is a randomized puzzle generation protocol, which involves interac-

tion between a computer and a human. Informally, a GOTCHA should satisfy

two key properties: (1) The puzzles are easy for the human to solve. (2) The

puzzles are hard for a computer to solve even if it has the random bits used by

the computer to generate the final puzzle — unlike a CAPTCHA. GOTCHAs

are generated on the fly by a series of mathematical equations and require the

users to describe the resulting image with a phrase. This is primarily used as a

password replacement system.[6]

• POSH

Puzzle Only Solveable by Humans this method has three primary criteria: it
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can be generated by a computer, it can be consistently answered by a human,

and a human answer cannot be efficiently predicted by a computer. The designer

suggests that a POSH does not even have to be verifiable by a computer at all.

Everything that is a CAPTCHA is by definition also a POSH, but not vice versa.

For example, “What is your favorite food?” is not a valid CAPTCHA (there is

no correct answer) but is a valid POSH. The paper explores this space further by

investigating what features make for a desirable POSH, what constraints affect

the POSHes that can be reasonably created, and which POSHes are actually

fun to solve. [15]

• Whats UP

This is an image based CAPTCHA in which the challenge task centers on identi-

fying an image’s upright orientation. Given a large repository of images, such as

those from a web search result, What’s up uses a suite of automated orientation

detectors to prune those images that can be automatically set upright easily.

The application of a social feedback mechanism to verify that the remaining im-

ages have a human-recognizable upright orientation is used to identify the rest

of the challenge images. The main advantages of this CAPTCHA technique over

the traditional text recognition techniques are that it is language-independent,

does not require text-entry (e.g. for a mobile device), and employs another

domain for CAPTCHA generation beyond character obfuscation.[32]

• Image Flip

This CAPTCHA asks a user to correctly choose the orientation of a number

of images by clicking on them presented in a grid that have had distortions

applied to them to. In the proposed technique a composite CAPTCHA image

of a reasonable dimension and resolution is shown to the user. The user has

to identify positions of all embedded images that appear as normal with no ip
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applied to them from the shown composite image. The user needs to click on

every non-ipped embedded image to prove human interaction.[52]

• CORTCHA

Context-based Object Recognition to Tell Computers and Humans Apart - us-

ing images gathered from the internet, the designers note that although an

object that is segmented by a computer might be poor cognitively, but if the

object is surrounded by its original context in the image, then the object is

readily recognizable by humans. By exploiting the context, objects segmented

by computer can be used in an Image Recognition CAPTCHA (IRC). The use

of context solves the dilemma, and an IRC can be designed without labeling

any image. [78]

• SKETCHA

This CAPTCHA uses line drawings of 3D models rotated to a randomized

point of view. The goal of the user is to rotate each image until it is upright,

choosing among four orientations by clicking on the image. Each line drawing

was automatically rendered from a 3D model using a randomized point of view,

providing for many possible images from each model. Solving this challenge

generally requires understanding of the semantic content of the image, which

is believed to be difficult for automatic algorithms. The authors also cover

a process called covert filtering used by the CAPTCHA whereby the image

database can be continually refreshed with drawings that are known to have a

high success rate for humans, by inserting randomly into the CAPTCHA new

images to be evaluated.[63]

• IMAGINATION

IMAge Generation for Internet AuthenticaTION - produces controlled distor-

tions on randomly chosen images and presents them to the user in the form



35

of a mosaic image. The authors recommend the use of a two step verification

process. In the first step, the user clicks near the geometric center of any picture

in the mosaic, which is composed of a number of images of various sizes merged

into a single large image that have had distortions and alterations applied to

the images. In the second step, the user is asked to identify a distorted image

by selection from a list. This two-round click-and-annotate process makes the

CAPTCHA user friendly and very effective.[18]

• Interactive Games

One example of an interactive game CAPTCHA is FunCAPTCHA. It asks the

users to perform two “fun” tasks to prove they are human. These tasks usually

take the form of small games, such as selecting the picture of a woman from 9

pictures and drag it to the middle of the CAPTCHA, or rotate the image until

it is facing up. [35]

• Video CAPTCHA

There are a number of video CAPTCHAs available in the market. NuCAPTCHA

is one of the more popular implementations where a string of characters is pre-

sented to the user within the video. The intention is that encapsulating the

challenge within the video makes it more difficult to access (timing, location of

challenge string etc.) than traditional text based challenges. The other style

(SolveMedia) shows the user an advertisement and asks them to type something

related to the video advertisement that has been shown to them. [38]

• Image CAPTCHA - Real World Distances

This image CAPTCHA scheme is based on a human’s understanding of real

world objects and their relative distances. Solving this CAPTCHA involves

answering questions about the relative distances of objects present in an image.

As an object moves farther away from the point of perception, its size decreases.
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But equipped with only the information on size, a decision cannot be made

on its position from the point of perception. The real world knowledge of the

object dimensions is essential to distinguish between them since both a large and

small object near the perception point will appear similarly sized and cannot

be differentiated. This ability of humans, aided with experience, is a unique

ability and would thus serve to distinguish them from computers. Examples of

the challenge questions are - “who stands behind whom”, “which is nearer” or

“which is larger in real life”.[1]

• ASIRRA

Asirra (Animal Species Image Recognition for Restricting Access) is a HIP that

works by asking users to identify photographs of cats and dogs. At the time of

its creation (2007), this was a challenging task for computer vision and machine

learning to defeat. Asirra surmounts the image-generation problem in a novel

way: by forming a partnership with Petfinder.com, the worlds largest web site

devoted to finding homes for homeless pets. Asirra generates challenges by

displaying 12 images from a database of over three million photographs that

have been manually classified as cats or dogs. Nearly 10,000 more are added

every day by volunteers at animal shelters throughout the United States and

Canada. The size and accuracy of this database is fundamental to the security

provided by Asirra.[21]

• Jigsaw Puzzle

An image is divided into an n (n= 3, 4 or 5, depending on security level) pieces

to construct the jigsaw puzzle CAPTCHA. Only two of the pieces are misplaced

from their original positions. Users are required to find the two pieces and swap

them. Considering the previous works which are devoted to solving jigsaw

puzzles using edge matching techniques, the edges of all pieces are processed
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with a glitch treatment to prevent automatic solving.[25]

• Scene Tagging

This CAPTCHA tests the ability to recognize a relationship between multiple

objects in an image that is automatically generated via composition of a back-

ground image with multiple irregularly shaped object images, resulting in a large

space of possible images and questions without requiring a large object database.

This composition process is accompanied by a carefully designed sequence of

systematic image distortions that makes it difficult for automated attacks to lo-

cate/identify objects present. An experimental study using several widely-used

object recognition algorithms (PWD-based template matching, SIFT, SURF)

shows that the system is resistant to these attacks with a 2% attack success rate,

while a user study shows that the task required can be performed by average

users with a 97% success rate.[54]

• Multiple SEIMCHA

The Multiple SEIMCHA system warps images by using geometric transforma-

tions and a 2D view of the warped image is shown to the user. Users click on

the upright orientation of warped image as a semantic to solve the challenge.

This CAPTCHA also experiments with the idea of “almost right” in that it

evaluates the difficulty of the challenges solved over time and compares them

to a database which stores the historic response rate. The more difficult the

challenge is to solve over time, the more of a break the user gets when solving

the challenge.[55]

• Categorizing CAPTCHA

In this method, a number of objects are chosen randomly and the pictures of

these objects are searched in the Internet and downloaded. The pictures are

then shown to the user and the user is asked to mark the objects which belong
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to a specific category. If the user marks the right objects, it can be assumed

that the user is a human being and not a computer program.[66]

• THINK

This CAPTCHA uses a real time image which will portray some action or show

some object that the user is expected to identify the object and type the answer.

No choices are given to the user thereby eliminating the option of identifying the

answer by probability. Questions are framed related to the picture by the human

and as well the expected answers ie., the keywords. The work of the computer

is to randomly throw these images with questions to the user and compare the

answers given by the users with the key words and conclude whether the user

is a human or a bot based on the answer. [68]

• Dyanmic Image Based CAPTCHA

The authors of this CAPTCHA propose an image CAPTCHA that can be

divided into three separate layers - the layers are 1) Image access layer 2) Image

processing layer and 3) Presentation layer. These layers are designed to provide

security for a typical IRC challenge. The authors of this challenge provide an

in-depth overview of how they created a new challenge consisting of 32 filters

that they can apply to images in a specific order to ensure human usability

while being able to provide protection from bots.[70]

• SEMAGE

SEMAGE (SEmantically MAtching imaGEs), a new image-based CAPTCHA

that capitalizes on the human ability to define and comprehend image con-

tent and to establish semantic relationships between them. A SEMAGE chal-

lenge asks a user to select semantically related images from a given image set.

SEMAGE has a two-factor design where in order to pass a challenge the user

is required to figure out the content of each image and then understand and
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identify a semantic relationship between a subset of them.[71]

• 3D Object CAPTCHA

This CAPTCHA is a novel 3D object based CAPTCHA scheme that projects

the CAPTCHA image over a 3D object. The CAPTCHA is a traditional dis-

torted text based challenge. The challenge question first asks a user to solve

the 3D object rotation problem, similar to Sketcha. Then, a user has to solve

the 3D text CAPTCHA.[73]

3.2.2 New HCI, Sensors & Biometrics Opportunities for

Bot Detection

• HCI – Beyond KB & Mouse (Touch Screens/Pen Input/Haptics)

As computing devices change to suit the needs of the user, we are witnessing

a move towards mobility laptops, tablets, smartphones etc. Many of these

devices have new methods of input beyond traditional keyboards and mice.

These devices feature input like touch sensitive screens and stylus pen input

devices. These provide new opportunities to explore interactive CAPTCHAs

that would have been challenging or impossible with keyboards and mice. For

example, a drawing or tracing CAPTCHA that asks a user to draw random

shapes around random image objects to prove they are human.

• Sensor based CAPTCHAs

Smartphones and tablets have a number of different sensors in them, such as

accelerometers, gyroscopes, gps radios, cameras, compass, etc. These can be

used by clever designers to get a user to perform an action that would be difficult

for a computer or have a series of events transpire where the measurements are

taken from each of these devices as a human performs an action in real life

and if they match the challenge action, the user is verified. Special “human
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impossible” actions can be sprinkled in to catch bots if they attempt to feed

information to the sensors to pass the challenges.

• Biometrics

Biometrics are not CAPTCHAs but they have an analogue in that they both

require a human/human input or something that is uniquely human and use it

as a security method. Biometric based CAPTCHAs can become a new field as

biometrics begin to disseminate amongst the public. A prime example is the

new Apple iPhone and iPads having fingerprint sensors that provide verification

for Apple’s services or serving as a password replacement. While biometrics are

not foolproof, as they improve in accuracy they will provide reasonable, easy to

use security.

3.2.3 Future CAPTCHAs - Some Proposals

It is a worthwhile exercise to speculate about the future direction of CAPTCHAs, as

they become more important to the smooth, everyday operation of public websites.

As human-computer interfaces and cybernetic devices advance, we must postulate

on their ramifications to online form security - particularly methods that attempt to

discern human from bot. A natural area to begin a search is with other human senses

that are currently not being used in CAPTCHA challenges today. Many of these ideas

we present here are far-fetched at best - while they are not impossible to implement,

they almost assuredly will fail to meet our three criteria in some capacity. Many of

these ideas blur the line into biometric security and can leverage those technologies

for online form security uses.

• Smell & Taste CAPTCHAs: These CAPTCHAs could be implemented via a

challenge where a small machine containing a number of base chemicals creates a

scent/flavor that a human must smell/taste (think smell-o-vision). For example,
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a smell challenge could consist of a series of 4 or 5 smells produced by the

machine in a random order - at the conclusion of the smell session, an image

can be displayed. The human must select the smell that corresponds with the

image. For a taste CAPTCHA, a flavor can be produced via mist by the machine

for human consumption - at the conclusion of the taste session, a series of images

can be displayed. The human must select the flavor that corresponds to the

correct image. The fun in this machine is that consecutive incorrect responses

to challenges or multiple simultaneous solutions from the same IP could be met

with increasingly foul tastes, discouraging mechanical turks or farming. We can

imagine an attacker with an ”artificial nose/tongue” could detect the ppm of

the various chemicals and map them to various images.

• Eye Movement CAPTCHA: This challenge requires a webcam and specialized

tracking software that analyzes human eye movements. There is a strong pos-

sibility this could run on a smartphone with a front facing camera as well. A

randomized pattern could be displayed on screen that the users eyes must fol-

low. If the program detects the correct eye movements, the user is verified.

A camera flash could be used to attempt to force the user’s pupils to dilate,

which could then be measured by the software accordingly. The random na-

ture of the points and the flashes of light prevents an attacker from using a

pre-recorded video of eyes/eye movements to crack the challenge. However,

the usability requirements mean that some margin of error in the measurement

of eye movements is required that an attacker will probably exploit (hardware

viability notwithstanding).

• Brain Wave CAPTCHA: This challenge requires the user to wear a specialized

piece of equipment on their head or face that can measure their brainwaves.

Imagine a device similar to Google glass but with electrodes on the temples of
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the person and pinhole cameras on the frames facing inward towards the users

eyes. A series of images can be shown to the users that have been shown to

stimulate various parts of the brain and produce alpha, beta, and gamma waves.

These can be randomized by the CAPTCHA so that each time the user needs

to verify, a different unique sequence is provided to them. In the time since we

came up with this idea (Late 2012), the U.S. Army has successfully developed

and implemented this technology in a prototype capacity.

3.3 Methodology, Design, and Analysis

In this section, we have provided a few examples of CAPTCHAs we have thought

about implementing to test out as effective methods of performing reverse Turing

tests. We structure each CAPTCHA by type - providing a brief overview of the

concept and how to solve the challenge, a discussion of its functionality focused on its

usability and its scalability, and its security strengths and weaknesses. Note that while

these CAPTCHAs can work they can only do so on a very small scale and most would

fail in the scalability category for large public facing web services. Our intentions

of providing these is to demonstrate why the text based (especially ReCAPTCHA)

CAPTCHA is unlikely to be replaced anytime soon – at least for enterprise scale,

public websites, despite recently being shown to be vulnerable to deep learning neural

networks.

When “Warping” is referred to in the style analysis tables, it refers to all of the

traditional obfuscations that have been used with text based CAPTCHAs in the past.

Things such as overlapping characters, distortion of the characters via image filters,

additional noise, color blending etc. can all be used to secure text from OCR and

CV attacks, at the expense of usability. While the effectiveness of these techniques at

reducing attacks is coming under increased scrutiny as tools evolve, it is still provides
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an impedance and can provide benefits when combined with other obfuscations.

A brief note about the “Cambridge effect” that is referenced throughout this sec-

tion - this refers to the unique ability for humans, English speakers in particular, to

read words that are misspelled as long as the first and last letters of the word remain in

their correct location within the word. This essentially provides a method to “scram-

ble” words that are 4 or more characters in length, and provide an additional layer

of obfuscation for challenge keywords, phrases or sentences. The “Cambridge effect”

is actually an old internet hoax, as no research at Cambridge University has been

conducted for this topic – nevertheless it serves a useful purpose in our CAPTCHA

design. The following paragraph in italics is the original example of “the Cambridge

effect” in action:

Aoccdrnig to rscheearch at Cmabrigde uinervtisy, it deosn’t mttaer waht oredr the

ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteres are

at the rghit pclae. The rset can be a tatol mses and you can sitll raed it wouthit a

porbelm. Tihs is bcuseae we do not raed ervey lteter by it slef but the wrod as a wlohe.

The following section demonstrates how we apply the CAPTCHA design criteria

and risk analysis framework to various challenge ideas to perform an analysis of

CAPTCHA security. The goal is to demonstrate the process of evaluating ideas from

conception to application of design criteria followed by a risk analysis. This is done

for a number of ideas our research group came up with. Note that security analysis

portion essentially serves as the criteria evaluation for “robustness” as a category of

design.

3.3.1 Application of Design Criteria to Challenge Ideas

3.3.1.1 Word Change CAPTCHA

This CAPTCHA uses 4 words, where each word differs from another by 1 letter,

which alters the meaning of the word. The words are represented by an image. The
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goal is for the user to be able to determine the sequence of the words and come up

with the correct final word.

Usability: Easy to use for those who speak English and can understand the spelling

of the words depicted in the image, so as to understand the change / shift.

Scalability: Somewhat difficult to scale as it requires real words and chaining tech-

niques be used.

Strengths: Difficult for OCR to crack. Image recognition will require large database.

Weaknesses: Small scale means vulnerability to database attacks, as well as lexico-

graphical attacks. Farming attacks are also a problem.

Figure 3.1: Example of word change challenge IMAGE: c©CIMIC Lab - Rutgers
University

3.3.1.2 Storyboarding CAPTCHA

In this CAPTCHA the user is presented with a randomized set of panels from a short

comic. These panels have a definite order and must be placed in this order. The user

needs to drag the panels into the correct order. The CAPTCHA can additionally

benefit from Cambridge effect for increased security and complexity.

Usability: Easy for a user to understand as the story in the comic will not make sense

unless the panels are put in the correct order. Dragging the panels requires that

javascript be used / enabled.
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Scalability: Difficult to scale, as comic strips must be created, segmented, and tagged

to ensure the generation algorithm understands the correct order. Potential for au-

tomation exists via mining old published strips, but is difficult to achieve without

prescreening for meeting requirements. Licensing can also be an issue.

Strengths: Extremely difficult for adversary to comprehend story without advanced

NLP and DL reasoning capabilities.

Weaknesses: Small scale means vulnerability to database attacks, also vulnerable to

farming attacks.

Figure 3.2: Example of storyboard challenge IMAGE: c©ILA/NCTE 2016

3.3.1.3 Consequence & Conclusion Image CAPTCHA

In this CAPTCHA two images are presented that represent an idea where the final

outcome is the result of the two images interacting. Ex: New York City + Hurricane

Irene = Flooded city. The user needs to choose the image that represents the correct

outcome of the interaction.

Usability: The user must make a selection based on their reasoning of what the images
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are trying to communicate. The CAPTCHA is simple in that it requires selecting an

image.

Scalability: The CAPTCHA is difficult to scale, as it requires a large, tagged, rela-

tional database of consequence and conclusion images.

Strengths: Extremely difficult for adversary to comprehend story without advanced

NLP and DL reasoning capabilities. Nothing for OCR to pick up.

Weaknesses: Small scale means vulnerability to database attacks, also vulnerable to

farming attacks.

Figure 3.3: Example of consequence and conclusion challenge IMAGE: c©CIMIC Lab
- Rutgers University

3.3.1.4 Pattern Completion CAPTCHA

This CAPTCHA is designed to act as a method to counteract OCR and Image recog-

nition techniques. The CAPTCHA requires a user to order a random series of images,

words, or numbers in ascending or descending order (also randomized). The user must

correctly order the challenges based on the solution dictated by the CAPTCHA. The

CAPTCHA may additionally benefit from Cambridge effect for increased security and

complexity.
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Usability: The CAPTCHA is difficult from a usability standpoint, as it requires users

to reason through a number of qualifiers (i.e. ascending/descending, ordering from

greatest to least etc.), which might be too complex for some users.

Scalability: Easy to scale as qualifiers can be randomized and the increments gener-

ated at random as well.

Strengths: Multiple layers of security from randomized ascending/descending and

greatest/least ordering.

Weaknesses: Vulnerable to image recognition attacks and OCR attacks, as the indi-

cators can be deciphered with the proper tools and techniques.

Figure 3.4: Example of pattern completion challenge IMAGE: c©CIMIC Lab - Rutgers
University

3.3.1.5 Pictionary CAPTCHA

In this CAPTCHA the user is presented with a series of images that represent a short

English phrase. Ex: I love you communicated by a picture of a human eye, a heart,

and a finger pointing toward the user. The user must correctly decipher the phrase

and select or type the matching answer.

Usability: This CAPTCHA is somewhat difficult to use, in that the images used in

Pictionary must communicate the idea to the user. There is a high probability of

misinterpretation or miscommunication of the idea required to solve the challenge.
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Scalability: Easy to scale, as the ideas represented by the images form a sort of

symbolic language that can be mixed and matched accordingly.

Strengths: Strong against OCR as there are no words to pick up.

Weaknesses: Vulnerable to a combination image recognition and dictionary attack, as

someone could create an equivalency chart for pictures to ideas. Also vulnerable to

farming attacks.

Figure 3.5: Example of pictionary challenge IMAGE: c©CIMIC Lab - Rutgers Uni-
versity

3.3.1.6 Jigsaw Puzzle CAPTCHA

In this CAPTCHA an image is cut into 9 or 12 equal squares and scrambled. The

user is asked to place the pieces into the framework to correctly reassemble the image

within the allotted time. The user must reconstruct the image inside of the frame by

dragging the pieces to their correct places.

Usability: This CAPTCHA has moderate usability as the person must be able to put

the puzzle together in a reasonable amount of time, without making it too easy for

an image processing algorithm to do the same.

Scalability: Easy to scale as it only requires an image that meets a certain set of

criterion, aligned with the purpose of defeating image / edge detection algorithms.

Strengths: Strong against OCR, as there are no words to pick up. Depending on

the level of the implementation sophistication, provides some resistance against edge

detection / segmentation attacks.
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Weaknesses: Vulnerable to tagged image database, image recognition, and reverse

image search.

Figure 3.6: Example of jigsaw puzzle challenge IMAGE: ASIMO c©Honda Inc.

3.3.1.7 Cambridge Study CAPTCHA

This CAPTCHA is based on the above mentioned (apocryphal) Cambridge study

which notes that as long as the first and last letters of a word are in the correct place,

the rest of the word can be scrambled and is still readable to the average English

reader. Ex: Cantaloupe to Cnatalupoe. A randomized number of sentences in En-

glish are collected and scrambled based on this idea. A word is then removed from the

sentences and the user must select the correct word that completes the sentence from

the list. Thus, to solve this CAPTCHA the user must correctly decipher the word

and pick the appropriate word to fill in the blank in the sentence. An alternative to

this is to select and scramble a word and then to present the user with a list of words,

where 3 are similar to the scrambled word (synonyms) and 1 is different (antonym),

now requiring the user to select the three synonyms without selecting the antonym.

Usability: As the study holds true, it should be easy for speakers of English to un-

derstand the words, even when scrambled in this fashion.
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Scalability: Easy to scale, as any word that is 4 or more letters long in the English

language can be scrambled in this fashion and sentences can be pulled from online

libraries, catalogs, etc. Note that the alternative version looks for comprehension of

the word, as opposed to just an unscrambling / word match and can pull words from

dictionary and thesaurus.

Strengths: Strong against image recognition, as it is a word based CAPTCHA. OCR

weakness can be mitigated through warping.

Weaknesses: Vulnerable to lexicographical attacks (i.e. scrabble algorithm looking

for dictionary hits) and OCR. The alternative version is potentially vulnerable to

dictionary attacks and reverse thesaurus lookup (i.e. find the antonym)
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Figure 3.7: Example of Cambridge study used in image CAPTCHA challenge with
SIGNAC applied IMAGE: c©CIMIC Lab - Rutgers University
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3.3.1.8 Compound Words CAPTCHA

This CAPTCHA uses compound words to generate two images that represent the

requisite two words contained in the images. It is flexible in that you can show the

pictures and have the users select the words or show the words and have the users

select the pictures. The goal is to get the idea communicated by the word/images

and match the idea to the answer. Alternatively, the CAPTCHA can also provide a

compound word where the user must select an image associated with another com-

pound word to illustrate the idea of the compound word. Ex: Sunflower represented

as two images featuring sunlight and flowerpot as the main focus. In this case the user

must select the nuanced compound words that communicate the idea in the originally

displayed word.

Usability: The CAPTCHA is easy to use in that it requires the user to select images

or words that match with the idea communicated in the two or more images that

make up the compound word. The alternative version has moderate usability as the

ideas communicated can be too nuanced for the user to easily comprehend. Requires

users to extract a word represented by an image. The user then selects the correct

images with the constituent parts to make the original compound word.

Scalability: Moderate difficulty in scaling, as there are only a finite amount of com-

pound words and tagged images are required for the generation of CAPTCHA.

Strengths: Moderate strength against image recognition attacks, as the combo image

word requires intelligent link Strong against OCR attacks if using the images. The

alternative version has moderate strength (superior than the basic version) against

image recognition attacks, as combo image requires an “intelligent link”. Strong

against OCR attacks if using the images.

Weaknesses: Tagged image database attacks, small list of compound words makes

dictionary attack strong.
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Figure 3.8: Example of compound words challenge IMAGE: c©CIMIC Lab - Rutgers
University

3.3.2 Definitions for Trade-Offs in Design

In this section, we will briefly discuss the meaning and qualifications of the criteria

low, medium, and high for each of the three design categories accordingly.

3.3.2.1 Usability

Low: Users have a difficult time solving challenges. Challenges frequently require sig-

nificant amounts of time to solve (e.g. greater than 45 seconds) and users often fail to

solve the challenge correctly greater than 50% of the time. Security methods used in

the challenge may be too extreme (e.g. too much noise/distortion) that makes com-

prehension for humans difficult. Challenge comprehension is difficult for average tar-

get user in native language, language barriers, and specialized symbol packages/fonts

required. Implementation requires specialized browser plugins/extensions/software

libraries that may not be widely available or have a large installed userbase and/or

could provide security vulnerabilities to users and implementers.

Medium: Users can solve the challenge most of the time (e.g. greater than 75% of

the time). Challenges require a moderate amount of time to solve (30 seconds or less).
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Security methods used in the challenge may occasionally impact comprehension (e.g.

too much noise/distortion in less than 25% of challenges) that makes comprehension

for humans difficult. Challenge comprehension is easy for average target user in native

language, does not require additional fonts/special character packages. Little to no

language barrier (beyond directions). Implementation does not require specialized

browser plugins/extensions/software libraries that are uncommon (i.e. common ones

like javascript are OK).

High: Users have an easy time of solving the challenge quickly (10 seconds or

less) and have a success rate of 90%+ for solving the challenges. Security meth-

ods do not impact challenge comprehension. Comprehension of challenge transcends

languages and cultures and can be easily solved by all humans with a simple expla-

nation in native language. Implementation does not require specialized browser plug-

ins/extensions/software libraries that are uncommon (i.e. common ones like javascript

are OK).

3.3.2.2 Scalability

Low: Challenges must be crafted in part by a human activity (e.g. tagging images,

drawing panels, labeling scenes etc.) that cannot be easily farmed out to a mechanical

turk service. Ability to create a unique challenges is difficult through automation or

number of unique challenges able to be presented to users is very small. Automation

of challenge creation is very difficult.

Medium: Challenges must be crafted in part by a human activity (e.g. tagging

images, drawing panels, labeling scenes etc.), but the core task can be scaled to a

mechanical turk service. Ability to create a unique challenge is directly related to the

ability to farm the core task to the mechanical turk service (e.g. uniqueness is based

on variation in core task). A break even is achieved when the cost of generating a

unique challenge is equal to the cost to pay a solving service to crack it. Degree of
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automation of challenge creation is directly dependent upon mechanical turk service.

High: Challenge generation is fully automated and does not require any human

input. Large number of unique challenges can be created on-demand, and in parallel.

3.3.2.3 Robustness

Low: Challenges are easily defeated using existing computer vision and optical charac-

ter recognition tools. Attacker can successfully solve more than 10% of the challenges

using fully automated tools in under 30 seconds. Core challenge does not require

any higher level reasoning beyond identification task. Challenges are not unique and

repeat frequently.

Medium: Challenges can potentially be defeated by existing computer vision and

optical character recognition tools. Attacker must perform more than one additional

step to defeat security methods in challenge and automation of attacks requires ad-

vanced knowledge of cv algorithms and creation of custom tools. Challenge questions

repeat infrequently and are varied in their composition.

High: Challenges are immune to most/all known computer vision and optical

character recognition attacks. Attacker cannot successfully solve 1% or more in an

automated fashion in under 30 seconds. Large variety in challenges with zero repeated

challenges or a very large challenge database such that repeats happen very rarely.

3.3.2.4 Design Criteria Comparison Matrix

Table 3.1 gives a comparison of all of the above CAPTCHAs in terms of the design

criteria of usability, scalability, and robustness.
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CAPTCHA Type Usability Scalability Robustness

Word Change Medium Medium Medium
Storyboarding High Low High
Consequence and Conclusion High Low High
Pattern Completion Medium Medium Medium
Pictionary Medium Low Medium
Jigsaw Puzzle Medium Medium High
Cambridge Study Medium High Medium
Compound Words High Low Medium

Table 3.1: Tradeoffs between each design criterion
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Chapter 4

Attacks on IRCs

In this section, we will cover the two attacks we have crafted that can be used against

particular implementations of image based CAPTCHAs. As with any security arms

race, these attacks either become more powerful or weaken over time as tools and

security methods improve.

4.1 Methodology & Design for HTM Based Attack

Systems

This section provides an overview of the tools and techniques used to create the

framework for a generalized attack methodology using hierarchical temporal mem-

ory(HTMs) models for use against IRCs. The specifics of each attack will be detailed

in the appropriate section.

4.1.1 Preliminaries and Tools

This section covers the tools and algorithms used to create the attack.
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General Image Processing: General image processing functions are carried out

using the Mathworks Matlab 2012a with the image processing toolbox (IPT) 8.0,

which together provide a comprehensive set of algorithms and tools for image pro-

cessing, analysis, visualization, and algorithm development. The toolbox can perform

image enhancement, image deblurring, feature detection, noise reduction, image seg-

mentation, and image registration. IPT 8.0 is used in the attack on SQ-PIX for image

segmentation and mask generation functions.

Optical Character Recognition: OCR plays an important role in gathering data

for attacking IRCs. The idea is to use OCR to gather “textual” clues that may be

embedded in an image presented for evaluation. While most IRCs keep their keywords

in plain text somewhere within the website sourcecode (a poor design choice), clever

IRCs turn the text into an image or embed the text into the image itself, thwarting

text parsing robots. Some CAPTCHAs can even use a two challenge approach, with

one task being a traditional text based CAPTCHA after performing an IRC task.

Using OCR as a tool helps to offset this risk to the attacker and provides more

information to aid in breaking the CAPTCHA. OCR is utilized in the attacks on

ESP-PIX to gather addtional information to increase the probability of a correct

challenge response.

Hierarchical Temporal Memory (HTM) Networks: HTM networks are a form

of neural networks especially suited to image classification. The core component of

our attacks on IRCs rely on the use of HTM networks as the primary method of

handling image recognition tasks. More specifically, the HTM network gets image

input, performs pre-processing on it, and passes the result through multiple levels of

processing. Each level builds successively more abstract hierarchical representations,

with the highest level representing global image properties and shape. The HTM does

this by converting input patterns into sparse distributed representations. Effectively,
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this means that the image is broken down (the process is termed “sub-sampling” by

Numenta)[39] into a fine grid, and each of the grid squares are analyzed separately.

The entire input is reconstructed at the highest layer. An important property of

sparse distributed representations is that knowing only a few active bits of a repre-

sentation is almost as good as knowing all of them. Copies of entire patterns are not

stored in the HTM cortical learning algorithm at any time. Learning is based on small

subsamples of patterns that, among other things, enable new means of generalization.

Sparse distributed representations have many desirable qualities, including robustness

to noise, high capacity, and the ability to simultaneously encode multiple meanings.

The HTM cortical learning algorithms take advantage of these properties[40]. These

representations allow the network to be invariant to small changes in the input and

increase the robustness of the system. For categorization tasks, these high-level rep-

resentations are fed through a supervised classifier at the top of the network. The

overall system performs static inference, i.e. there is a single upward pass through

the hierarchy. In this network, the first level of coincidences are replaced with Gabor

filters of different orientations. At all levels, the coincidence patterns were restricted

to have spatial receptive fields smaller than that of the Markov chains.

For our attacks, we build upon this replacement network, utilizing it to process

images based on information extracted from the IRC (usually a keyword describing

the images). From this output, we can probabilistically perform the task of image

identification from the similarity search and image classification done by the HTM

network. It is important to note that in the particular implementation used (Numenta

Vision ToolKit V1.7.1), there are no feedback connections, temporal inference, or

attention mechanisms. All image data larger than 200x200 pixel images is down

sampled to this resolution and converted to grayscale images[40]. This downward

resolution resampling turns out to be helpful when processing a variety of images

from different sources, for the reasons described in detail in the following section.
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4.1.2 HTM Based Attacks for IRC CAPTCHAs

We now briefly examine each IRC and the challenges they pose to the user. We also

describe the procedure for attacking each of IRC based on information that can be

gathered from its implementation and design.

Figure 4.1: Example challenge for SQ-PIX IMAGE: c©Carnegie Mellon University

SQ-PIX SQ-PIX is an advanced interactive image recognition CAPTCHA that

requires the user to trace an outline around the keyword focus in the 3 challenge

images. Keyword identification does not need to be handled by OCR, as the word is

available in the web source code of the CAPTCHA. Figure 4.1 gives an example of an

SQ-PIX challenge. Solving the challenge consists of 3 tasks: keyword identification,

image recognition, and tracing the object of interest. Our attack handles each of these

tasks step by step, concluding in generating an image mask that provides a defined

border around the object of interest. This can then be used to solve the challenge

satisfactorily. The attack requires bootstrapping because it must have a minimum

of three keywords to build the first HTM networks in order to perform classification.

Subsequent HTM networks for different categories can be generated automatically by

using the new keyword to gather images from a Bing image search to train and test

it. The HTM networks are then used to perform image classification on the three

images. Classification is achieved through generation of a probability as to whether

the image belongs to category x or not category x, where x is the current keyword
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and not x are all keywords seen excluding x itself. The three images each must be

run through all HTM networks to either positively identify them or eliminate them

as candidates for selection. The best choice or remaining image after elimination is

selected, and passed through an image segmentation algorithm, resulting in a binary

image with filled holes that can be used as a mask. The mask is generated using the

Sobel edge detection method (both horizontal and vertical detections are performed)

to find the border of the object of interest. The outline can then be drawn from the

mask border to the CAPTCHA with a custom javascript. If the submitted challenge

is successful, the image, mask and the keyword, are saved in a database. Subsequent

repeat challenges can be handled via a comparison with the database before this

process is initiated again.

Figure 4.2: HTM Based Attack Flow Diagram for SQ-PIX
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The basic SQ-PIX attack is composed of 5 steps: 1. The attacker extracts

the 3 images from the web page source code using the URL’s for the images, and

the plaintext keyword. 2. The keyword is used to retrieve the (prior built) HTM

network used in classification. The networks are generated with images gathered

from Bing image search. 3. Use the HTM network to identify the word/image combo

via generating probabilities of image likelihood. Take the highest probability image

and use that image to start the process for generating the image mask. 4. Use the

image segmentation process to “trace” the object of interest. The process allows for

either a grayscale image or a binary image. The Matlab script performs the following

steps to generate the image mask and the resulting “outline trace” of the object.

4a. Generate the binary gradient mask from the grayscale image. 4b. Generate the

dilated gradient mask. 4c. Generate the binary image with filled holes. 4d. Use

the binary image with filled holes to draw outline on original image (line in red). 5.

The image mask with the outline can then be used to “trace” the object of interest

to solve the challenge. If the submitted challenge is successful, the image, mask and

keyword are saved in a database. When challenges repeat, time and computational

effort can be saved simply by using the matching information in the database. Figure

4.2 provides a flow diagram of this process in action.

ESP-PIX
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Figure 4.3: Example challenge for ESP-PIX IMAGE: c©Carnegie Mellon University

In ESP-PIX, the challenge is to select the word from the drop down box list that

best describes the four pictures presented in the CAPTCHA frame. This CAPTCHA

is unique in that it sometimes uses text to convey the keyword idea, as opposed

to an image whose composition and structure correlates strongly with the keyword.

This increases the difficulty of a successful attack, because relying solely on HTM

networks is not sufficient, since they cannot use text based images. Figure 4.3 gives

an examples of ESP-PIX. Attacking this CAPTCHA requires a few tools and some

scripting knowledge. The attack relies on a combination of OCR, image recognition

algorithms (HTMs), and some heuristics to increase the probability of a successful

solution. This combination of tools provides the “widest net” to capture the largest

amount of information for determining correct challenge responses. OCR plays a role

in deciphering “textual” clues relating to the keyword by scanning the images for text

that can be converted to strings. OCR is far from perfect, and frequently produces

incomplete strings, or no string at all (cannot convert image text to a string). When

this occurs, the attack relies on the best guess from the HTM networks. String

manipulation acts as a heuristic, since it is possible to use stemming, Levenshtein

distance, and dictionary probability searches to attempt to match any text grabbed
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by the OCR to a keyword from the list.

Image classification is achieved by using the HTM networks for generation of a

probability as to whether the image belongs to category x or not category x, where x is

the current keyword starting at the top of the list and not x is all keywords from the

list excluding x itself. The four images each must be run through all HTM networks

to either positively identify them or eliminate them as candidates for selection. Use

the probabilities along with the result (if any) from the textual scan and comparison

to compute the highest possible probability for the correct response challenge. Submit

the response challenge – if accepted, tag the images with the word solution and store

all images in the database with the string used to solve the CAPTCHA. Otherwise,

discard all information and repeat with a new challenge. Subsequent challenges can

simply match the image against the tagged images stored in the database. This

increases the speed and accuracy of the attack as time progresses.
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Figure 4.4: HTM Based Attack Flow Diagram for ESP-PIX

The basic ESP-PIX attack is composed of the following 7 steps: 1. The

attacker gathers each of the four images for analysis, along with the list of keywords

for the response challenge (These can be extracted from the webpage source code).

2. Generate the HTM networks by using the list of keywords to gather images from

Bing image search for training and testing the networks. 3. The four images are each

run through an OCR program, to see if any textual data is included in the image

that can be extracted for clues to aid in determining the correct challenge response.

If no textual clues can be found, step 4 is skipped. 4. Once the textual data is

extracted and converted to strings, the list of response challenges is compared to

the strings. If there is a match, store the matching word and keep a temporary tag

associated with the images. The OCR does not always return perfect results (if any),
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so edit distance techniques are used to make educated guesses on keywords for the

correct challenge response if an exact match is not found. 5. Use the HTM networks

previously constructed with images based on the keyword challenge response list to

look at the four images. The HTM networks will output the probabilities of matches

for each category. 6. Use the probabilities along with the result from the textual scan

and comparison to compute the highest possible probability for the correct response

challenge. 7. Submit the response challenge - if accepted, tag the images with the

word solution and store all images in the database with the string used to solve the

CAPTCHA. Otherwise, discard all information and repeat 1-5 with a new challenge.

Figure 4.4 provides a flow diagram of this process in action.

Figure 4.5: Example challenge for ASIRRA IMAGE: c©Microsoft Research &
PetFinder.com)

ASIRRA ASIRRA (Animal Species Image Recognition for Restricting Access) is

a new HIP whose user challenge revolves around the selection of cats from a set

of 12 images composed of cats and dogs drawn from a collection of over 3 million

images in the databases at petfinder.com. A correct response to the challenge is

to identify all of the cats and submit the answer. Figure 4.5 shows an example
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challenge for ASIRRA. The reason this CAPTCHA is very strong is that it is quite

difficult to tell the difference between cats and dogs, as they visually share many of

the same structural traits. In addition, each species and/or breed expresses these

traits differently. ASIRRA is unique in that it makes use of an algorithm called

PCA (partial credit algorithm) that allows for mistakes as long as the answers being

provided for evaluation are close enough. Essentially, PCA provides an intermediate

state, instead of just correct or incorrect. While the user is solving the CAPTCHA

by clicking on the images that are cats, the CAPTCHA is evaluating the responses.

From the intermediate state, if the user almost-or completely-solves a subsequent

challenge, the user moves to the verified state; otherwise, the user is returned to the

unverified state. In ASIRRA, the user moves to the intermediate state if exactly one

image (out of 12) is misclassified; from the intermediate state, the user moves to the

verified state if zero or one image is misclassified. The ASIRRA attack relies only

on HTM networks returning a probability for each picture, to see if the image is a

strong candidate for the category “cat” or “dog”. Select the images of cats with the

highest probability returned by the HTM network and eliminate dogs by the same

process. This method provides the best possible probability for the most accurate

guess of which images are cats before the challenge is submitted. Since the number

of cats required to be selected varies each time, the fewer the number of cats required

to be guessed, the stronger the attack is.



68

Figure 4.6: HTM Based Attack Flow Diagram for ASIRRA

The basic ASIRRA attack is composed of 5 steps: 1. The attacker extracts

the 12 images from the CAPTCHA. 2. Retrieve the HTM network built using the im-

ages from the dataset (pick the size that fits your attack best). 3. Run the extracted

images through the HTM network for identification. 4. Use the resulting probabil-

ities generated by the HTM network to select the cats with the highest probability

(eliminate dogs by the same principle). 5. Use the remaining probabilities to make

educated guesses about the remaining images. Figure 4.6 depicts the detailed steps

for the attack.

4.1.2.1 Experimental Evaluation

We now discuss the experimental setup and the evaluation results. The experiments

are structured to test how well each standalone subsystem of the attacks works at its

particular task.



69

SQ-PIX and ESP-PIX HTM Generation The experiments for SQ-PIX and

ESP-PIX are structurally similar in that they both use the core methodology of

generating HTM networks using search engines to gather images based on keywords

provided by the CAPTCHA challenge. There is also some similarity between the key-

words in both CAPTCHAs (for example both have cats and dogs as categories). Dur-

ing testing, SQ-PIX revealed 34 different keyword categories while ESP-PIX presents

all 72 of its keyword categories at the start.

HTM networks were constructed following the category x or not category x method

for generating probabilities. 50 images were gathered for each not category x, giving

33×50 = 1650 images for SQ-PIX and 71×50 = 3550 images for ESP-PIX. 25 images

in each category are used to train while the other 25 are used to test. This results

in 825 images in both training and testing for SQ-PIX and 1775 for ESP-PIX in the

not category x. The category x requires a balanced number of images in comparison,

so around 1600 images are needed for SQ-PIX and 3500 for ESP-PIX. This results in

800 images in both training and testing for SQ-PIX and 1750 images for ESP-PIX.

Tables 4.1a and 4.1b list the data parameters.

Note that this amount of data is required for testing a single category. The process

must then be repeated for every keyword on the list. Since the amount of time required

to train and test the HTM networks for all of the categories would be rather large and

computationally expensive, we selected cat as the category x of choice (also since the

ASIRRA dataset provided 15,000 images of cats). The remaining image data used

in the not category x was gathered from a Bing image search using the keyword list.

The accuracy of the HTM networks for both CAPTCHAs will be reported along with

test cases using the network to identify new cat images, simulating real challenges

from each CAPTCHA.
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ASIRRA HTM Generation The ASIRRA authors provide a large image dataset

for public use to crack their CAPTCHA. It consists of a total of 30,000 images in

JPEG format with 15,000 images each for cats and dogs respectively. This set is

representative of the images from petfinder.com used by the ASIRRA CAPTCHA.

However, one caveat is that the dataset does not contain images that would be con-

sidered unusable in the CAPTCHA. For example, images that are below a certain

resolution, have an aspect ratio that differs too much from 1, or depict animals other

than cats or dogs, are all filtered out. Thus, the ASIRRA dataset contains a random,

unbiased sample of the images that have passed the acceptance criteria.

The HTM’s were created by using the images from the dataset, with a classifier

categorizing images as either a cat or a dog. Experiments were set up with 50, 100,

200, 400, 800, 1600, and 12,500 images used for training and testing. The accuracy

of the HTM was then recorded, along with the training time taken to generate the

network. Table 4.1c gives the data parameters.

The reason for varying the number of images fed into the HTM classifier was to

check if increasing the number of images can generate a more accurate representation

of the general properties that distinguish a cat from a dog, and vice versa. The reason

behind this is because if there is a higher probability of correctly identifying the

animal, the probability of beating the challenge posed by the CAPTCHA increases.
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Table 4.1: Image data for HTM Network Generation

(a) SQ-PIX (# of Imgs)

Category X Not Category X
Training 800 825
Testing 800 825

(b) ESP-PIX (# of Imgs)

Category X Not Category X
Training 1750 1775
Testing 1750 1775

(c) ASIRRA (# of Imgs)

Group Category Training Testing
50 Img Network Cats 50 50

Dogs 50 50
100 Img Network Cats 100 100

Dogs 100 100
200 Img Network Cats 200 200

Dogs 200 200
400 Img Network Cats 400 400

Dogs 400 400
800 Img Network Cats 800 800

Dogs 800 800
1600 Img Network Cats 1600 1600

Dogs 1600 1600
Final Img Network Cats 12500 12500

Dogs 12500 12500

4.1.2.2 Experimental Results

The image datasets discussed before were then used to train and test the HTM net-

works. In each case, the data was run through 4 test cycles: train & test, which trains

the network on the training images, and then checks its accuracy on the test images.

This was performed again with the training options turned on, these options include

additional training to handle shifts, size changes, mirroring, and small rotations. Fi-

nally, two optimization runs were conducted, one with the training options on and one

with the training options off. Optimization finds the best set of parameters for the

network based on the features found in training images, and then tests the optimized

network on the test images for accuracy. Table 4.2 gives the detailed set of system

parameters used in each different run.
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Table 4.2: HTM Network Generation Parameters

Run 1 Run 2 Run 3 Run 4
Action Train and Test Train and Test Optimize Optimize
Shift n y n y
Size Changes n y n y
Mirroring n y n y
Small Rotations n y n y

(a) SQ-PIX Accuracy (b) ESP-PIX Accuracy

(c) ASIRRA Accuracy

Figure 4.7: Experimental Evaluation of HTM Network Attacks on IRCs



73

Figure 4.7 gives the experimental results. Figure 4.7a shows the accuracy obtained

for SQ-PIX. The HTM network has good performance when dealing with distinguish-

ing cats from other images provided by the CAPTCHA. After training for shifts, size

changes, mirroring and small rotations, the HTM network achieved 80.3% accuracy.

Two additional optimization runs provided a final accuracy of 83.9%. Figure 4.7b

shows the accuracy obtained for ESP-PIX. The HTM network has good performance

when dealing with distinguishing cats from other images provided by the CAPTCHA,

but in this case, having nearly twice as many categories and images as the SQ-PIX

HTM network. After training for shifts, size changes, mirroring and small rotations,

the HTM network achieved 82.4% accuracy. Two additional optimization runs pro-

vided a final accuracy of 83.1%. Figure 4.7c shows the accuracy obtained for ASIRRA

for Run 1 (Train & Test). The HTM network has acceptable performance when deal-

ing with distinguishing cats from dogs images provided by the CAPTCHA. The best

performance was achieved by the HTM network using 12,500 images, yielding a 74.4%

accuracy. However, the 100, 400, and 1600 image networks offer comparable perfor-

mance at 64%, 70.1%, and 72% respectively, with significantly fewer images. The

results for the other runs (2, 3, and 4) were comparable, while taking more time.

Since the HTM provides us with an averaged accuracy for a block of images, some

images have a stronger identification probability than others. This means that for a

given challenge, images each have a varying degree of probability on being identified

as such. The HTM provides a probability for whether the image is a cat or a dog.

Our attack revolves around using the cat images with the highest probability of being

cats to build a more correct answer until the CAPTCHA is solved or we are forced to

make an educated guess with images that the HTM had a difficult time classifying as

cat or a dog. Another benefit is that dogs that can be identified with a high degree

of probability can be eliminated from selection, so that the cross section where the

HTM cannot tell whether the image is of a cat or a dog (which is where the guess
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must be made from) is as small as possible.

4.1.2.3 Limitations

While we have obtained results with respect to the category of cats, in general, per-

formance may vary as some image categories have a small amount of variation, while

others have a wider variety of variation. Thus, the accuracy of detecting the correct

category changes with each category and the quality of the images used to train and

test the network. The large number of images required in the primary category to

maintain balance, (especially in the case of ESP-PIX) can prove to be a challenge

to gather, as image search engine results begin to decay rapidly after 1000 images.

In this case, it is best to try multiple services and eliminate duplicates to generate a

dataset, or to search out labeled datasets that match the category. Cats are on the

more difficult end of the spectrum when it comes to detection, thus they made a good

choice for selection in the proof of concept HTM networks with regards to network

accuracy.

Another point worth noting is that when attempting to use image masks on SQ-

PIX, there were several inexplicable failures when tracing the objects of interest.

Manual attempts by a real human at tracing produced less than acceptable results,

leading to the conclusion that the CAPTCHA has some usability issues. There are

also some instances of images misclassified in the CAPTCHA(e.g. a frog in the reptile

category) that cause undue failures in the attack. Nevertheless, our results show that

the CAPTCHAs are vulnerable to even off the shelf attacks, which can be easily

mounted.

4.1.3 Web Services Based Attacks for Image CAPTCHAs

This section details the use of various online image processing services that can be

used to attack image based CAPTCHAs. Note that these services are constantly
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evolving and improving, and may have additional capabilities present today that

they did not have at the time this research was conducted.

4.1.3.1 Preliminaries & Tools

This section provides some background on traditional image CAPTCHA designs as

well as the tools used to create this attack.

Hard AI Problems for Image CAPTCHAs Research conducted by Chew and

Tygar[13] establish the main characteristics of the challenges presented by image

CAPTCHAs that we plan to investigate. While the central challenge to all image

recognition CAPTCHAs (IRCs) is a computer vision task (the true hard AI problem),

being more nuanced in our descriptions of challenge styles serves to differentiate IRCs

from one another. This helps narrow the problem down to manageable areas that are

solvable and/or have working CV functions. We primarily focus on three categories

for image recognition-based CAPTCHAs, as these are vulnerable to attacks from

image based web services. The categories are: 1) Naming images - where the test

subject is asked to identify a word associated with a set of images. 2) Distinguishing

images - asking the test subject to determine if two subsets of images are associated

with the same word or not. 3) Anomaly image - Show the test subject a set of images

where all but one image is associated with a word and asking the test subject to

identify the anomalous image.

IRC Exploitable Vulnerabilities & Design Flaws We would like to emphasize

the fact that any and all CAPTCHAs that use images that are indexed by/scraped/acquired

from a web image search are potentially vulnerable to our attack. Using an image

search to populate a database with images for use in CAPTCHA challenges is a recipe

for disaster from a security perspective. It is now trivial to perform a RIS to find

a specific image used in CAPTCHA that was generated using the aforementioned
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method, making solving the challenge much easier than the author intended. Even

attempts to distort (crop, color adjust, resize, edited or slightly rotate) the image can

be accounted for (to varying degrees of success) by these services. ISS makes finding

related images very easy, and if the CAPTCHA presents multiple images from the

same word category there exists the possibility that an ISS search will find a number

(or potentially all - which can be found by a regular image search once the term is

discovered) of the images used to populate a CAPTCHA database. ALA makes it

possible to attempt to generate useful information in the form of tags via annotation

that can lead to image identification if no other contextual data/metadata can be

gathered from RIS or ISS, and offers a last ditch effort to ascertain what is depicted

in the image.

One important aspect to the success of these web services is they frequently return

filenames within the hyperlink where the image is used on the web. This hyperlink is

also accompanied by related text information, often describing the image or a scenario

depicted by the image. Since a majority of images are used within the context of the

text around them - these two bits of information in particular can give strong clues as

to the content of the image. See figure4.10 for an example of this in action. In the case

of naming images, it presents the challenge of identifying the correct keyword that

describes the series of images. This is best achieved through RIS to attempt to find

other places online that use the image in a contextually accurate situation that relates

directly to how its being used in the challenge, and ISS to find similarly composed

images that fall into a contextual situation that match with the suspected keyword. If

no keywords can be found, ALA provides a chance to generate annotations/tags that

describe the image and are also potential keywords. When these textual clues are

used in conjunction with a related word ontology, either a direct correct answer can

be given (direct keyword) or a probabilistic “best guess” can be made. There exist

three scenarios for distinguishing images - 1) where the keyword is provided directly,
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2) the keyword is provided in a list of keywords, or 3) the keyword is not provided.

When these textual clues are used with the keyword ontology, either a direct correct

answer can be given (direct keyword) or a probabilistic “best guess” (searching the

ontology for related words) can be made. Anomaly images can only be handled by

process of elimination - that is - each image needs to be RIS and/or ALA queried

and the results evaluated against one another. From this, we can determine the “odd

image out” and answer the challenge accordingly. The key idea to remember is that

these image based web services make the lookup time for a response very fast. That

is, it will generally return a response to a query in well under 30s - a key metric of

time as this is considered to be the allowable amount of time for a human to correctly

respond to a CAPTCHA. Therefore, any successful bot attack response must be made

within this time boundary.

Related Keyword Ontologies Related word ontologies provide unique capabili-

ties in that they are designed to find and relate a series of keywords from an image

filename or link that could potentially be a correct response to an image challenge.

They are designed to use domain knowledge of a subject matter in a meaningful way.

For example, if the challenge category word answer is “drinks” and you receive a

filename of “350pxtomcollins.jpg” you want to be able to relate that a Tom Collins

is a type of drink and thus belongs to the “drinks” category - even though the word

“drink” is never explicitly given. The same is true if the link points to a website

URL http://www.nationwidebarcrawl.com the association between barcrawls, bars

and “drinks” can be discerned by the bot attacker using the ontology (our web of

linked data). Utilizing our a priori knowledge of pdictionary, which is a pictoral dic-

tionary of 627 English words designed for illustrations - meaning these words will

likely be the keywords used by CAPTCHAs and thus form a good foundation for the

core words of the related word ontologies (meaning other words are related to these
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627 probable keywords). It is important to note that these ontologies will be orga-

nized in a hierarchical structure, as some CAPTCHAs could potentially use words

that will be subcategories of a core word. For example, a naming images challenge

uses the keyword “horses” - which would be a subcategory of the keyword “animal”.

If the images shown have associated URLs such as “thoroughbredhorseranch.com” the

ontology needs to be able to know that the word “horse” can be a potential candidate

keyword and not choose “animal” as the response. A weighting algorithm designed for

word handling can solve this problem. The algorithm computes the number of images

used in the CAPTCHA challenge along with the frequency of each word appearing in

the return searches from a RIS and an ISS query. So if the keyword “horse” appears

in two of the four images’ RIS and ISS results, the probability that “horse” is the

keyword and not “animal” is strong. The threshold value for deciding on choosing a

core keyword or a subcategory keyword is different for each CAPTCHA, and must be

altered accordingly based on a statistical sampling of challenges. In the event that

the RIS and ISS turn up no textual clues, the ALA can provide guesses in the form

of annotations (tags) as to what the image is depicting. These tags can then be used

by the ontology to guess at the context of the image and provide a keyword to solve

the challenge. Under these circumstances, a core keyword will always be used.

4.1.3.2 Web Services Attack Methods

This section of the paper serves to provide a generalized framework for which an

attack can be created against an image based CAPTCHA using the three aforemen-

tioned web services discussed in the preliminaries. Since there exists a wide variety

of implementations of image CAPTCHAs, each of which would require its own cus-

tomized attack parameters and utilities to handle its unique nuances. In this section

we will instead focus on the core ideas and tools that enable an attack vector against

any implementation that uses indexed images in its generated challenges. The goal
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is to provide the basis for a viable attack model that can then be modified and/or

augmented as needed to defeat the security of an image based CAPTCHA. We leave

it up to the attacker to handle the nuances of a particular example.

The basic attack method consists of the following steps: 1) The image based

CAPTCHA generates a challenge using indexed images and provides it to the attacker.

2) The attacker receives the challenge and extracts the images from the challenge.

3) The attacker then runs the images through each of the three online tools: RIS

(Google& TinEye - each use different indexed databases - so both are required), ISS

(Google), and ALA (ALIPR). 4) The search results are recorded from each of the

tools - with priority given to RIS results, as this tool attempts to find exact matches

and thus the metadata gathered from the results is the most “accurate” of the three.

This is then followed by the metadata gathered from the ALA analysis of the image

and finally the ISS last. 5) The metadata from the RIS and the ALA can be analyzed

for any potential keyword matches, as this signifies a strong probability of the what

is depicted in the image. 6) From this metadata, a probabilistic guess can be made

for the response to the challenge. This requires the use of the custom generated

ontologies that aid in handling keyword relationships for more accurate guesses. If

the guess is correct, save the images and the keyword(s) in a database for reuse in

the future.
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Figure 4.8: General Attack Method for Image Based Web Services

To demonstrate the effectiveness of the online image based tools, a sampling of

images from popular image based CAPTCHAs were taken to see what types of meta-

data could be gathered in order to get around the requirements of performing an

image classification task. The only assumption the attacker must make is that the

CAPTCHA is using images that are indexed online. If the metadata gathered from

the image search is descriptive enough, this information can be used to “solve” the

classification task.

Reverse Image Search
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Figure 4.9: RIS results w/metadata for an extracted image IMAGE: c©TinEye - Idee
Inc.

Figure 4.9 shows an example result from a Reverse Image Search (TinEye) done

on an image of “cats” provided by an SQ-PIX challenge. The power of the “exact”

match is that RIS tells you where else on the web the image is being used. It also

provides the metadata that accompanies the use of that image (filename, URL, image

properties etc.). Using the “best match” functionality, the second hit in a list of exact

matches has a descriptive filename, “cats.jpg” - a match to the challenge keyword of

“cats”. Note that the file submitted by the attacker has a long and obfuscated

filename (a straight extraction from the challenge HTML) and is a different size than

the resulting matches. The first hit is actually too accurate - the proper name for the

breed of cat depicted in the image - but this requires a related word ontology to be
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able to discern that “Balinese” is indeed a breed of cat. From our experimentation,

SQ-PIX is believed to have approximately 34 different keyword categories from which

challenges are generated, although we have no way of knowing the exact number of

keywords - this figure was derived from a statistical sampling. The accompanying

word ontology can then be generated from this list of keywords with some effort on

behalf of the attacker.

Figure 4.10: RIS results w/metadata for obscured image IMAGE: c©TinEye - Idee
Inc.
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Figure 4.11: RIS Results w/ obfuscated image - IMAGINATION Stage 1 IMAGE:
c©Google Image Search

There have been attempts by some CAPTCHA developers to obstruct and ob-

scure their images with noise to foil attackers that attempt to use image classification

and object recognition tools to discern what is depicted in the image. Unfortunately

for the developers, Tineye is robust against alterations to images, and can find exact

matches of images that have been obstructed, obscured, or altered in a meaningful

way. In Figure 4.10 the image used in this challenge was generated by the IMAG-

INATION CAPTCHA[18] - which is a two stage CAPTCHA. IMAGINATION uses

obfuscation of its images as an added layer of security from automated image recog-

nition/object recognition attacks. The image in the example comes from the second

stage, which is a image classification/object recognition challenge - asking the user

to match the image with the keyword from a list. The first stage has a compelling

attack developed by Zhu et. al.[78], but none have been provided for the second stage

except this one. For an example of the second stage IMAGINATION challenge, see

figure 4.13 in the following section.

It is clear from these experiments that Reverse Image Search is a powerful tool

that can be used by an attacker to gather important information relating to image
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depictions used in CAPTCHA challenges. Based on these examples, we recommend

that designers take note of the possibility of this attack vector and take steps to

protect their image based CAPTCHAs from this tool in particular.

Automated Linguistic Annotation Automated Linguistic Annotation is a use-

ful tool when the metadata gathered by RIS and ISS does not provide any easily

distinguishable clues as to the content contained in the challenge images. Since it

uses advanced algorithms to discern what is depicted in the image, an attacker uses

it as a last resort to attempt to generate some metadata that may be relevant and

lead to the ability to generate a guess against a list of keywords, or just provide a

slightly more accurate random guess. Since we are using ALIPR as the tool for ALA,

it generates 15 tags based on an analysis of the image provided to it. These tags

can then be saved and compared against a keyword list from the CAPTCHA. Figure

4.13 is an example of automated linguistic annotation. One additional benefit is that

images submitted to ALIPR are saved to its index, so that over time it will have more

images with correct tags and more accurate tags provided by humans - allowing for

an increase in accuracy when used by an automated service like this attack bot.

Figure 4.12: ALA results generate 15 tags - exact match “train” IMAGE: c©ALIPR
- Penn State University

It is also worth noting that ALIPR is somewhat robust against noise interfering in

the tag generation process. The image from the example was submitted for evaluation

and it was still able to generate tags for many of the key features contained in the
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image, including the keyword, “train”.

Figure 4.13: Example second stage challenge for IMAGINATION IMAGE: c©Penn
State University

While this seems like a very powerful approach to solving the problem - indeed

from a surface analysis it appears to be a better solution than RIS, it is not without

its shortcomings. ALA is not very accurate - most of the tags generated are too broad

to be of use. Li and Wang[47], the developers of ALIPR, state that the goal of their

automatic annotator is to be able to provide 98% of images with at least one correct

annotation out of the top 15 tags generated. The highest ranked annotation word for

each image is accurate with a rate above 51% (in their experiments with image data

from FLICKR). Knowing this fact, ALA is best used along with RIS for comparison

of metadata and as a generator of metadata when RIS or ISS fails - never by itself

exclusively. However, this research is very interesting and it is easy to imagine that it

will improve in speed and accuracy with time, which should give pause to CAPTCHA

designers who wish to use image recognition/object recognition as a challenge.
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Image Similarity Search Google currently provides the capabilities to upload im-

ages to its search engine and returns images that are similar in color and composition

to the uploaded image. This is useful for attempting to discern information that can

be derived based on some conjectures and statistical sampling. For example, if the

image has a unique, specific structure to it (e.g. a car, a bus etc.) it is likely that

similar images featuring these same properties will show up - this is the composition

component of ISS. The color component plays different role, that of discerning broad

generalities about the image - e.g. if a certain percentage of the image contains large

amounts of certain shades of green or blue pixels - there is a probability it could be

sky, water, grass etc. or if an image contains skin tone shades within a specified range

for people. In addition to this - the metadata for the top results can be gathered and

analyzed against information from the CAPTCHA. In figure 4.14 in the top 16 results

- there is one image featuring an airplane. Depending on how much information the

CAPTCHA provides, a high probability guess can be wagered if used in conjunction

with the related keyword ontology.
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Figure 4.14: Google ISS Results - Keyword Airplane IMAGE: c©Google Image Search

Image similarity search also works to a degree with obscured images. However,

since the similarity algorithm looks at the composition of the image, the distortions

and obfuscations play a role in influencing what images it returns as results. In figure

4.15 the strong features of the grid have influenced the results - however another bus

image is still seen in the top 16 results.



88

Figure 4.15: ISS Results w/ obfuscated image IMAGE: c©Google Image Search

4.1.3.3 Experimental Results & Analysis

In this section we present the results of a few brief experiments to demonstrate the

capabilities of the image based web services in action on real world image CAPTCHAs.

However, we proceed with a few caveats. Unfortunately, many of the CAPTCHAs

(ESP-PIX, SQ-PIX, IMAGINATION) and some of the tools (ALA) are dead - as their

web sites time out, have broken image links or are in some other way unusable before

we could finish authoring this paper. In addition to this, most of the CAPTCHAs
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described in the literature have never been deployed publically or are unavailable

for evaluation. If the authors of the CAPTCHA explicitly mention their method to

populate their image database, it is probably safe to assume that similar results to the

ones we do provide would be achievable by a clever attacker. The greatest loss is that

of the use of ALIPR - we have no other online ALA tool and therefore cannot report

any meaningful results to its use beyond the small number of test cases we performed

for the methodology examples. Fortunately, we did manage to save 82 unique images

from SQ-PIX challenges, 11 distorted first stage images and 13 distorted second stage

images from IMAGINATION while they were still online. We also include a control

group of images that are not indexed / available on the web. The control group

images are immune to RIS and can only be attacked by ISS and ALA. We would like

to make note that the composition of the image directly influences the results of the

ISS e.g. if you take a picture of a cat that is focused primarily on the cat, ISS results

will have pictures of cats in the top 16 results. However, if you compose the shot

so that the cat is part of a larger scene, the results will vary greatly and most likely

will not return an image of a cat in the results (cat is small percentage of overall

composition of the image).

Our two selected CAPTCHAs in particular serve the evaluation purposes suffi-

ciently. SQ-PIX images serve as the clear/free of distortions challenge, and IMAGI-

NATION images serve as the distorted/altered challenge. While we do offer results,

they are to be taken with a grain of salt. The sample size we used is limited and

there exists the possibility that the challenges we received were “easy” in comparison

to what would have been generated in a larger sample. Nevertheless, we believe the

method is strong and our results validate the argument that any and all CAPTCHAs

that use images that are indexed by/scraped/acquired from a web image search are

potentially vulnerable to attacks from image based web services.
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CAPTCHA Type RIS(Google) RIS (TinEye) ISS (Google) Total
SQ-PIX 90% 60% 30% 90%
IMAGINATION Stage 1 25% 25% 12% 37.5%
IMAGINATION Stage 2 30% 30% 12% 38%
Control Images(Not Online) 0% 0% 20% 20%

Table 4.3: Image Based Web Services - Accuracy Results

4.1.3.4 RIS Results

Using our limited data, these were the results generated. Your miliage may vary. We

encourage attackers and design authors alike to test out the tools in the manner we

suggested in the methodology.

IMAGINATION Out of 11 images for RIS on stage 1 - with each image consisting

of 8 smaller images that must be tested individually after segmenting them (88 imgs

total), on average, tineye found 2/8 and google found 2/8 (frequently they would

share the same hit or all hits - each hit can only be counted once), thus the average

combined total for RIS is 25%. Out of 13 images total for RIS on stage 2, tineye found

4/13(cat, tiger, flower, peppers) and google found 4/13(cat, tiger, flower, train) thus

the combined total, counting identical matches once (cat, tiger, flower, peppers, train)

for RIS on stage 2 would be 5/13=38.4%.

SQ-PIX Out of 82 unique images - google was able to find 74/82=90% of the images

we sampled. Tineye was able to find 49/82=60% of the images we sampled. In our

test, every miss was a miss by both tineye and google but every match for tineye was

also a match for google. Thus we end up with an average accuracy of 90% for the

SQ-PIX CAPTCHA.

ISS Results The ISS results are based on whether or not a meaningful result (i.e.

a similar image that was accurate - e.g. a cat picture provides more cat pictures

and not landscapes) could be given from the top 16 hits returned. In the case of
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SQ-PIX, about 24/82=30% images had meaningful results in the top 16 hits. For

IMAGINATION, stage 1 had a 1/8=12% and stage 2 had a 1/8=12% meaningful

result. ISS was more useful on stage 2 than on stage 1, as stage 1 needs an exact

match if there is any hope of finding the geometric center of the image - in this case a

similar image is useless (the challenge solution to stage 1). One shortcoming was that

almost every meaningful result from ISS was with an image that also had a match

from RIS for both SQ-PIX and IMAGINATION - thus the ISS is not as useful as it

seems on the surface.

4.1.3.5 Limitations & Effective Defensive Measures

There are a number of limitations in using these tools to mount an effective at-

tack. However, some of these shortcomings affect both attackers and the designers of

CAPTCHAs. The following list contains the major points for consideration:

• Non-Indexed images - RIS cannot provide any help if the images in question

are not part of its index. Relying on ISS and ALA is not as strong as having

identical matches and their related information to work with, and as such these

images provide strong security against these attack vectors.

• Service Throttling - Free image based web services have a finite amount of

times a user is able to submit queries without paying a fee for premium service

or having their IP banned or throttled for a period of time. This is intentional

in design to discourage abuse of the systems by bots, ironically enough.

• Composite images w/ distortions - composite images provide a challenge for RIS

as they do not have an image fingerprint to find. While they are composed of

other images that may be indexed, finding the original images can prove to be

a difficult - if not impossible - challenge. When distortions and obfuscations are

added this makes it even more difficult. As such, these images provide strong
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security against RIS and ISS. However, if the image is too ”unnatural” in its

composition in that the images added to the base image stand out easily, they

can be identified by ALA or segmented out the image and analyzed individually.

In this case, they provide weak security in the image recognition context.
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Chapter 5

Defense of CAPTCHAs

This section covers the defensive methods that we have created to make attacks on

image based CAPTCHAs more difficult.

5.1 Enhancing Security of Image CAPTCHAs through

Noise Addition

This section details the work conducted on using noise to prevent images from being

recognized by RIS and CV attack algorithms for the express purpose of being used

in an image CAPTCHA.

5.1.1 Defense Strategies for IRCs

The goal of our work is to address several of the security shortcomings of image

CAPTCHAs, and to solve them with a generic approach of adding noise to the image.

We now discuss two particular types of attack – Reverse Image Search (RIS) engine

attacks and Computer Vision (CV) attacks. These are particularly strong against

image CAPTCHAs. Note that although we discussed an RIS attack in the previous

section, by the time this research was performed (Mid-Late 2014), significant upgrades
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to RIS tools had been made by their companies respectively. For example, Google

image search had started to provide a “guess” as to what the image was depicting

in the form of a text string, and Tineye had significantly increased the size of its

search image database (several billion more images). At the time this research was

performed, the Google keyword guess was not very accurate, however it is constantly

improving over time and presents a legitimate and accurate threat as of today (Mid

2016). We also discuss the general defense strategy of adding noise to the image to

make it more robust to these types attacks. As with all CAPTCHAs, we are again

faced with the challenge of balancing security with usability. Since we are utilizing

a noise addition method, the image cannot be altered to the degree that a human

observer loses the ability to recognize the content of the image (rendering it useless

for our purposes).

Stopping Image Search Attacks First, our noise addition algorithms must stop

reverse image search engines from finding image matches indexed online (Google

image search1 and Tineye 2). This is an important security enhancement as image

CAPTCHAs traditionally have problems in defending against database attacks and

tag matching attacks, which can be viewed as a scalability issue (too few unique

images). The following scenario is an example of an RIS attack in action: Imagine

an image based CAPTCHA challenge asking the user to identify which image out of

a set of images depicts a cat as shown in Figure 5.1. The attacker then: 1) Makes

a copy of the images from the CAPTCHA, 2) Runs them through an RIS engine

to find exact matches, 3) Scrapes and stores the metadata from the RIS engine, 4)

Uses Regular Expressions to match the keyword “cat” to the search that locates a

copy of the image used somewhere else online with the filename “cat.jpg”, which

happened to be found on a website with the URL that contains the word “cat” e.g.

1https://www.google.com/img
2https://www.tineye.com/
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http://www.coolcatpics.com.

At this point, the attacker can probabilistically determine which image is most

likely the cat image (or eliminate the other image choices through the same process).

The bad news for those attempting to develop security measures against RIS engine

attacks is that the engines themselves are proprietary (trade secret) and closed source,

forcing the CAPTCHA security developer to devise a set of experiments that attempt

to probe a “black box” to learn its behavior. The good news is that the RIS engines

are available for use by the public with reasonable limits established (50 test images

per day, up to 150 per week), and a security expert with access to or knowledge of

“image fingerprinting” and image processing literature can use this body of knowledge

to provide clues for educated guesses as to the methods that RIS engines are utilizing

to identify matches. The noise generation method we propose works on the premise of

introducing an amount of noise such that the image used for a CAPTCHA challenge

has been altered enough from the original that the various “image fingerprinting”

metrics used to determine matches have been “tricked” - that is they no longer see

the image as a match as its information diverges from the original image beyond their

threshold/similarity metric. Technically speaking, the image returned by the method

is a different image, as the noise changes the values of the pixels in the image. A

distance metric (change from original) is useful to model the noise alterations from

original image to new image. However, the new image (post-noise) is still functionally

depicting the same content as the original, albeit in a degraded fashion. Stopping

RIS engines from finding matches means indexed images can be used as CAPTCHA

challenges again, increasing the sample space of potential usable images significantly.
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Figure 5.1: Reverse image search attack with metadata. (a) depicts the CAPTCHA
images without noise, (b) depicts results of a Google image search IMAGE: c©Google
Image Search
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Stopping Computer Vision Attacks Second, the noise algorithms must be able

to alter the image enough to hinder or stop altogether, general image/object recog-

nition algorithms that would attempt to solve image recognition challenges.

One popular CV algorithm is SIFT [51], which stands for Scale-Invariant Feature

Transform. While it has previously been used in many applications, we are interested

only in its ability to perform object recognition tasks. ASIFT [59], which stands for

affine-SIFT, is an improvement over SIFT. It considers the lattitude and longitude

angles that are ignored by SIFT and then combines that information with SIFT to

provide a more complete analysis than SIFT alone. As such, it significantly outper-

forms SIFT and is more of a challenge to defeat. By adding noise to the image, it

should throw off the keypoints calculations so that when it compares two images,

the noised image does not have the same keypoints and it fails to return a match.

Note that the web application uses grayscales and resizes the images before the CV

algorithm is run.

Another important point to consider is that we used an online service to perform

the SIFT and ASIFT analysis [59]. The above computation could be completed

in approximately 7 seconds through a web form. As more of these services move

online, an attacker no longer needs to run local image matching or CV tools, and

can script a live attack that pipes the CAPTCHA challenge through the appropriate

tools to generate and even submit a correct response. To see the breadth and depth of

online CV tools available to attackers, Carnegie Mellon University’s Calibrated Image

Lab[45] hosts a web portal with links to various online CV tools. While many of the

links are broken/dead, the fact that they exist means that a CAPTCHA designer

must take into account the potential risk of an attacker reading the literature and

re-implementing the method.

For example, in our aforementioned cat image scenario, imagine in this case the

attacker decides to use image/object recognition with a CV toolkit. The attacker has
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Figure 5.2: CV Attack with SIFT and ASIFT IMAGE: c©Ecole Polytechnique

trained and tested their algorithm of choice (e.g., SIFT) on various images of cats

gathered from around the web and can recognize them with a good degree of accuracy.

When he feeds the CAPTCHA challenge image into the algorithm, it returns a high

probability of the image being of a cat. Using the noise generation algorithms, the

image of the cat can be altered enough so that the CV algorithms return a low

probability or cannot determine what the image is depicting, but a human can still

determine it is showing a cat. The intention is to use the noise to distort the edges

of scenes/objects and alter the patterns within the image enough such that various

commonly used CV techniques fail to provide meaningful results for an attacker. Also

image filters can be used to distort and move pixel neighborhoods such that detection

and mapping algorithms fail to achieve matches and/or detect similarity. Figure 5.2

shows that both SIFT and ASIFT can overcome scaling issues (mappings are found

to a smaller, cropped image of the cat), and ASIFT typically provides more mappings

than SIFT.

5.1.2 Defensive Design Methodology

Our method is designed to work with existing image CAPTCHAs that rely on a

database of images for challenges. After application of SIGNAC (our noise addition

process), we demonstrate that the same database of images provides better security

against RIS and CV based attacks. The MATLAB image processing toolbox is used
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to generate the new secure images. The function imnoise is used to add noise to

the images. The test image set contains 100 images in total, 10 images in each of

10 different categories: airplane, bird, car, cat, doll, fish, flower, monkey, robot, and

train. The categories are deliberately made “concrete” instead of abstract, as this

makes it easier to create naming and distinguishing image CAPTCHAs that will be

straightforward for user/usability testing. This also provides the CV algorithms with

an “object” to recognize. The noise functions utilized in the method are the four

generalized noise functions available in the MATLAB IPT3.[36].

Noise Functions The noise functions utilized in the method are the four general-

ized noise functions available in the MATLAB IPT. A brief explanation of how each

noise function operates has been included from the IPT reference manual[36].

Gaussian adds Gaussian white noise of mean m and variance v to the image I.

Speckle adds multiplicative noise to the image I, using the equation J = I+n*I,

where n is uniformly distributed random noise with mean 0 and variance v.

The mean and variance parameters for ’gaussian’ and ’speckle’ noise types are

always specified as if the image were of class double in the range [0, 1]. If the input

image is of class uint8 or uint16, the imnoise function converts the image to double,

adds noise according to the specified type and parameters, and then converts the

noisy image back to the same class as the input.

Salt & Pepper adds salt and pepper noise to the image I, where d is the noise

density. This affects approximately d*numel(I) pixels.

Poisson generates Poisson noise from the data instead of adding artificial noise to

the data. If I is uint8 or uint16, then input pixel values are used directly without scal-

ing. For example, if a pixel in a uint8 input has the value 10, then the corresponding

output pixel will be generated from a Poisson distribution with mean 10.

While noising alone is sufficient to meet the criteria of security, frequently it

3http://www.mathworks.com/help/images/ref/imnoise.html
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requires an amount of noise that is near or exceeds the limits for a human to be able

to comprehend what is depicted in the image. To improve usability, image filters can

be applied to provide additional alterations, lowering the amount of noise required

to meet the security criteria. To this end we use the “motion” filter available in the

fspecial function in the IPT. It returns a filter to approximate, once convolved with an

image, the linear motion of a camera by len pixels, with an angle of theta degrees in

a counterclockwise direction. The filter becomes a vector for horizontal and vertical

motions.

The SIGNAC Approach - System Design & Architecture As discussed

above, SIGNAC is implemented using the MATLAB Image Processing Toolbox. The

script below gives an idea of the method in action. X is the image at the initial

starting point when it is read into the IPT. The images are usually in the .gif, .jpg,

or .png formats. When imported to MATLAB, they are converted to the type uint8

before noise operations are performed. c1 through c5 represent the image at various

stages of its alteration. Note that this example is a multimethod output, as different

noise and filter functions are being used to generate an image at each step. It is

important to note that ordinality plays a large factor in the outcome of the image’s

success or failure in defeating an RIS engine, and will be discussed in the following

section. This script is designed to create the image filter, read in the image file, apply

noise, filter the image, then apply noise 3 more times before writing the image to a

file.

f=fspecial(’motion’,11,3)

x=imread(’1.jpg’)

c1=imnoise(x,’salt & pepper’,0.35)

c2=imfilter(c1,f)

c3=imnoise(c2,’speckle’,0.35)
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c4=imnoise(c3,’gaussian’,0,0.35)

c5=imnoise(c4,’poisson’)

imwrite(c5,’1’, ’jpg’);

This script represents the final script used to create the secure image set used

in our experiments. Salt and pepper noise can be considered the most destructive

type of noise, as it is the most extreme - changing pixel values to 0’s and 1’s. The

motion filter is then applied to the image with a len of 11 pixels and a theta of 3

degrees counterclockwise, which serves to relocate the pixels that were changed with

the addition of the salt and pepper noise to new areas around the image. This aids

in obfuscation of clues about pixel values in a particular neighborhood, i.e., multiple

pixels will now be distorted with values that differ from the original. After the filter

is applied, multiplicative noise in the form of the speckle noise function distributes its

noise in a uniform fashion throughout the image, followed by the addition of white

Gaussian noise. The final step involves using the Poisson noise function, which does

not add artificial noise, instead it generates noise from the image data and then

applies it to the image using a Poisson distribution. This serves to further obfuscate

the artificial noise that was added during previous steps by shifting the pixel values

around.
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Figure 5.3: Procedure for producing a noised image IMAGE: c©CIMIC Lab - Rutgers
University

One interesting aspect of using noise generation algorithms to secure images is that

the images produced by the algorithms we selected are very “grainy” or “pixelated” in

appearance – very similar to a snowy TV picture. The noise introduced is primarily

additive and multiplicative in nature, thus it tends to shift around color values in

various pixels based on a threshold of our choosing. The benefit to this noise is

demonstrated when the image is viewed as a matrix of numbers (as a computer

would “see” the image), the values vary wildly and do not follow the patterns typical

of a structured image. However, when viewed by a human eye (along with a human

mind behind it), the colors blend into an image that is coherent and cognizable (the

“Pointillism effect”). Strangely, this side effect of enhancing security actually does not

impact usability negatively (to a point). In general, this effect is easier to achieve the

further away your eye is from the image, or if the image is small in dimensions (scaled
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down). Figure 5.3 demonstrates this process in action. Note that this example is a

multimethod output, as different noise and filter functions are being used to generate

an image at each step. It is important to note that ordinality plays a large factor in

the outcome of the image’s success or failure in defeating an RIS engine.

Figure 5.4: Image generation for CAPTCHA challenge IMAGE: c©CIMIC Lab -
Rutgers University

One of the more challenging aspects to generating secure images is that the level

of noise required to prevent the RIS engine from returning a match varies with each

individual image. As such, we have devised a system to handle the testing of images

created with the noising process to ensure that any image used in a challenge will

return zero RIS matches. The image testing engine provides feedback to the noising

engine when generating the challenge images by submitting the noised image to an

RIS engine and seeing if any matches are returned. The noising engine generates
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images in a stepwise manner (starting from 0.10 mean noise), incrementing the mean

noise in the image by +0.05 each time until zero matches are achieved or a value

of 0.45 mean noise is reached (the image is discarded if it goes higher, as humans

will be unable to understand it). If desired, the image testing engine can have the

noising engine stepwise decrements the mean noise by -0.01 until a match is returned

again and then increase that value by +0.01 - providing the finest granularity for the

minimum amount of noise required to defeat the RIS engine for that image. This

gives the human user the best chance at comprehending the image while still meeting

the security requirements. Figure 5.4 demonstrates such a system in action.

SIGNAC Demonstration Scenario For our live demonstration scenario, we pro-

vide an example security and usability analysis of an image found online using an im-

age search engine with our image challenge testing script (this script is analogous to

the image testing engine described in the previous system architecture section). This

script is designed to interact with MATLAB and Tineye to test prospective images to

be used as challenges in one of the four CAPTCHA schemes. The script is designed

to provide a quick visual overview of the incrementalism required in testing various

images against the “zero matches” security requirement to stop reverse image search

attacks and hinder computer vision attacks. One benefit to having a script such as

this is that it allows image CAPTCHA researchers to test and look for features, styles,

and composition in various images that lend themselves better for security use. This

method of presentation also makes it easier to have a mechanical turk or other human

method of verification provide answers to the “usability” of a particular noised image.

RIS Engine Probing Figure 5.6 shows an example of a single image test working

against the RIS engine Tineye. For the original figure (5.6a), Tineye provides exact

match results.
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Figure 5.5: Image Analysis for CAPTCHA challenge IMAGE: c©CIMIC Lab - Rutgers
University

Single Noise Function, Single Stage Currently, the initial image returns 16

exact matches from across the web. These results were gathered using a single image

noise function in a single step on the original image to produce an image that returns

0 exact matches. Note that these values are unique to this image, and vary based on

the image properties.
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(a) RIS Probe Test Im-
age

(b) Gaussian Noise with
0.2 Mean

(c) Salt & Pepper Noise
with 0.3 Mean

(d) Speckle Noise with
0.4 Mean

Figure 5.6: RIS Engine Probing IMAGE: cat c©Google Image Search

Ordinality Test This test demonstrates the ordinality of noise functions. These

tests were run with the default settings of each noise generation function to see if the

order in which the functions are applied affects the results. Table 5.1 gives the results

with the different orders. Note that these results were obtained using the original cat

image, and these results apply only to that image.

Table 5.1: Results of Ordinality Test

Primary
Noise
Function

Permutations # of Results Primary
Noise
Function

Permutations # of Results

Gaussian
(G)

GKPS
GKSP
GPKS
GPSK
GSKP
GSPK

10
10
11
10
10
10

Speckle
(K)

KGPS
KGSP
KPGS
KPSG
KSGP
KSPG

09
11
10
10
11
11

Salt &
Pepper (S)

SGKP
SGPK
SKGP
SKPG
SPGK
SPKG

11
11
09
10
11
09

Poisson
(P)

PGKS
PGSK
PKGS
PKSG
PSGK
PSKG

10
09
10
10
10
09

From these results, it is clear that order makes a difference as the range for matches

is +-2 matches, with a high of 11 matches and a low of 9 matches. We then further

investigate the chain of methods that produce the least amount of matches.



107

x=imread(’cat.jpg’)

c1=imnoise(x,’salt & pepper’,0.11)

c2=imnoise(c1,’poisson’)

c3=imnoise(c2,’speckle’,0.11)

c4=imnoise(c3,’gaussian’,0,0.11)

imshow(c4)

(a) Minimal Equal Noise via (SPKG)

x=imread(’cat.jpg’)

c1=imnoise(x,’salt & pepper’,0.11)

c2=imnoise(c1,’poisson’)

c3=imnoise(c2,’speckle’,0.05)

c4=imnoise(c3,’gaussian’,0,0.05)

imshow(c4)

(b) SPKG Current Working Minimum

Figure 5.7: SIGNAC MATLAB Scripts

Threshold Determination After deciding on an appropriate ordinality for noise

methods, it must be determined the minimum threshold at which zero matches are

reached - the key to our anti-RIS security criterion. A rough metric is used first, in-

crementing each mean value by 0.1 until zero matches are found. Then it decrements

by 0.05 until a match and then increments or decrements by 0.01 until the minimal

value is reached with zero matches. Figure 5.7 shows two scripts that embody these

principles in action. Note that both scripts provide zero matches, however, the sec-

ond script produces a clearer image because less noise overall is added during the

application of additional functions. This is important for usability reasons - as the

clearer the image is, the easier the chance a real human will have in recognizing what

it depicts.

However, the values are extremely sensitive. For example, decrementing the mean

in the initial noise function of the previous script by 0.01 to 0.1 produced 5 matches.

Decrementing both means c3 and c4 by 0.01 each produced 8 matches. It is a painstak-

ing and involved process to tune each image for a working minimum. Unfortunately,

this process must be done for each image on an individual basis and cannot be gener-

alized beyond offering a rough threshold for which any series will return zero matches,

and this threshold is usually quite high and may impact usability.

As such, this script serves as the endpoint for security against RIS engines, as

zero matches are returned with these values. Computer vision based attacks are an

entirely different subject, and there are no guarantees that this RIS minimum will
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(a) Original Image Edge Detection (b) Edge Detection after Noising

Figure 5.8: Edge detection tests IMAGE: c©CIMIC Lab - Rutgers University

have any impact on the ability of CV tools to perform recognition tasks.

Noise for Anti-Computer Vision While stopping RIS engines was the primary

challenge, CV tools are powerful and have been successfully used to defeat image

based CAPTCHAs in the past. Thus, we aim to make it as difficult as possible to

use them in performing object recognition tasks. One such CV attack case is that

of edge detection. This is a key component of object recognition, and being able to

foil it will go a long way in stopping any CV attacks from performing this task on an

image recognition CAPTCHA challenge.

In Figure 5.8a, we can see the results of a Sobel edge detection run on the test

image. It clearly depicts a cat, while also picking up some of the wrinkles in the

sheet behind the cat. Enough detail of the cat comes through that a CV algorithm

could make a decision about what is depicted in the image. Note that when edge

detection is performed, the image is first converted from RGB to grayscale, and then

to binary (hence the black & white) after the edge detection algorithm is run. Figure

5.8b shows the same Sobel edge detection method run on the image of the cat that

has been noised. It can be seen that the cat has completely disappeared - only white

dots on a black background appear. No useful information can be gained from this

image.
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In Figure 5.9, we can see that when we compare a clear image to the noised image,

it does not return any keypoint matches. Note that the noise significantly increases

the number of detected keypoints (more than double the clear image), suggesting that

the noise is effective in throwing off attempts to match the two images.

Figure 5.9: SIFT & ASIFT image matching IMAGE: c©Ecole Polytechnique

5.1.3 Experimental Results and Analysis

We now describe the experimental evaluation to test image security against both

RIS engine attacks and CV attacks using the aforementioned online tools. We have

gathered 100 random indexed images from 10 categories and applied the method

described in Section 4. Note that the image filter values did not change during the

course of the experiments, only the mean values of the noise functions.

RIS Engine Testing The goal of this experiment was to establish a baseline for

which a set of noise functions can provide zero exact matches against both Google

(G) and Tineye’s (T) reverse image search engines. As mentioned in the Methodology

section, the approach we use is more conservative from the security perspective, in

that many of the images are no longer returning matches at much lower levels of noise

overall. We consider even 1 match a failure - thus we do not report specific numbers of

matches for each image failure. The number following the search engine designation

is the number in the set of 10 for that category, e.g., car contains 10 images total,
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Table 5.2: RIS Engine Testing

CategoryID Category Noise Functions at 0.25 Mean Noise Functions at 0.30 Mean
Pass Fail Pass Fail

1 airplane T,G T,G
2 bird T,G T,G
3 car G T22 T,G
4 cat T G32 T,G
5 doll T,G T,G
6 fish T G57 T,G
7 flower T,G T,G
8 monkey T G77,G79 T,G
9 robot T84,T85,G81,G84,G85 T84,G84
10 train T,G T,G

numbered 21-30 - T22 means that image 22 failed to produce zero matches as matches

were found on Tineye (but not Google).

Table 5.2 shows that at 0.25 mean noise, we have 8 out of 100 unique images

returning matches. Tineye has one unique hit (T22) and Google has five unique

hits (G32,G57,G77,G79,G81). There is overlap on image 84 and 85 as both engines

returned matches. This means that out of our random sample of 100 indexed images,

92 out of 100 returned zero matches. At 0.30 mean noise, we have 1 out of 100

unique images returning a match. Tineye and Google both return matches for the

same image. This means that out of our random sample of 100 indexed images, 99

out of 100 returned zero matches. At 0.35 mean noise, we have achieved our goal of

returning zero matches for our test group of 100 random indexed images.

Computer Vision Testing In this section, we evaluate the effectiveness of SIFT

and ASIFT to provide object detection and image matching. The key takeaway is to

fool the keypoints calculator into examining incorrect correspondences by inflating the

number of keypoints in an image or not finding any matches due to an insignificant

matching value. Figure 5.9 demonstrates failure to find matching keypoints on an

exact image match (original clear image vs. noised image).
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Figure 5.10: Inter-Category Test: Airplanes of a similar build noised IMAGE: c©Ecole
Polytechnique

Figure 5.11: Exact Match Test: Original Vs. Noise with false positives IMAGE:
c©Ecole Polytechnique
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It may be observed from Figure 5.11 that SIFT has returned zero matches, but

ASIFT has returned 31 matches. However, upon further investigation, we can see that

some of the matches are false positives. More specifically, we can see that some of the

points provided are incorrect, as it seems the noise has been mistaken for keypoints.

However, in both cases, SIFT has returned zero matches, and caused enough doubt

in the ASIFT responses, thus discouraging potential attackers.

Figure 5.12: Shape Test: Noised image with similar shape image IMAGE: c©Ecole
Polytechnique

In Figure 5.12, we can see that ASIFT was fooled by a similarly shaped image.

In this case the fish and the hat have a similar shape, and it was enough to return

matches, even though clearly the two images are quite different. It is worth noting

that in this example, as we scaled the size of the hat image, the ASIFT results dropped

to zero. Note that the ASIFT and SIFT engines are sensitive to slight changes in

any images (noised or otherwise), and thus generalizing the results to all images will

require more study.

5.1.4 Experimental CAPTCHA Style Implementations using

SIGNAC

A design perk of using noise to obfuscate an image is that it makes image fingerprint-

ing a significantly more challenging task. Each time the algorithm outputs an image,

since the noise is randomly generated and applied to the image in multiple layers,

each image comes out, for all intents and purposes, as unique. In truth, the sample
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space complexity for possibilities is quite large, as it is the size of the image in pixels

times the color depth in the RGB channels. Note that this sample space complexity

changes with each image. Simple hashing comparisons demonstrate that the same

algorithmic process outputs enough variety in images via randomness in the noise

methods that the same base tagged image can be used in multiple challenges as long

as its run through the noising engine each time a challenge is generated. The second

beneficial outcome of using noise is that the image produced after the application

of the noise algorithms is essentially a “new image”, meaning that when comparison

methods for reverse image search are used, there is enough of a delta between the

original image and the noised image that no matches will be returned by the search

engine. The third beneficial outcome of using this method is that it helps to obfus-

cate patterns and features depicted in the image by introducing noise throughout the

image. This helps to stop methods like edge detection methods and scale invariant

feature transformations for aiding attackers in determining features about what is

depicted in the image scene.

An in-depth discussion of the design choices for our experimental image based

CAPTCHAs follows. The goal is to provide an overview of different options avail-

able within a single style, such as image based CAPTCHAs. To serve as the tagged

image database, 100 noised images were generated in total, 10 images gathered from

a web search in each of 10 different categories. The 10 image categories were cho-

sen to be “concrete”, to lower ambiguity for the user (airplane(1), bird(2), car(3),

cat(4), doll(5), fish(6), flower(7), monkey(8), robot(9), train(10)). All 5 styles have

the option to click a link to serve up a new CAPTCHA if the user cannot under-

stand/decipher/solve the one they have been given. This is tallied as “no response”

by our database. To test the usability of the noise method on human users, we

designed 5 different styles of image CAPTCHA with varying degrees of difficulty.

Style 1 displays an image and asks the user to describe it by entering a description
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(freeform text response). Style 2 displays an image and provides a dropdown box

with 4 responses, with 1 of the 4 choices being the correct answer. Style 3 displays a

dropdown box with 5 responses, 4 choices and not here. Style 4 asks the user to select

the image from 3 images that best represents X, where X is an image category. Style

5 uses a sentence with the “Cambridge effect” applied to it to provide contextual

clues for the missing keyword that would complete the sentence that is related to an

image depicted in the CAPTCHA challenge. In our opinion, the order of difficulty is

(1,5,3,2,4) from most difficult to least difficult. One final security measure included in

our challenges is that the default response is always “Please Select”, which evaluates

to an incorrect response if a bot simply tries to guess the first available response and

submit it over and over to pass the challenge. A time-to-live is also available (e.g.

please solve the challenge within 30 seconds or another challenge will be presented)

as an option.

Figure 5.13: Style #1: Freeform Text Response IMAGE: c©CIMIC Lab - Rutgers
University
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Figure 5.13 demonstrates an example of an image based CAPTCHA with little to

no clues provided by the challenge. The only clue is that the challenge is a classifica-

tion task, based on the instructions asking the user to provide a descriptive category

using a single word in a text box. SIGNAC provides a noised image so that attackers

cannot easily use a reverse image search engine and must expend extra effort on spe-

cialized computer vision algorithms to attack it. This makes it more difficult for an

attacker to use clever tricks to circumvent the task, as there is minimal information

disclosure in its challenge presentation (i.e. not multiple choice). However, from a

user perspective, this particular presentation of the style is perhaps the most challeng-

ing, due to the fact that the user must guess what we are asking for as the category

of the solution to the challenge. When designing a freeform text response, effort must

be expended on behalf of the designer to provide reasonable accommodations to the

correct solution. For example, the image shown in 5.13 could reasonably have the

following category labels: car, automobile, auto, Porsche, sports car etc. If we are

only accepting car as the correct response, the user would most likely get this wrong

and become frustrated if they offered one of the other answers. Case sensitivity and

spelling also present problems that must be addressed by the designer using freeform

text response if decent usability is to be achieved. This is a prime example in the

trade off between secure design and usability.

Figure 5.14 demonstrates our easiest implementation of the image based CAPTCHA.

A dropdown box with four possible options available - one of which is the correct an-

swer. The dropdown box in this implementation is populated at random by categories

from the image database, along with the correct response that correlated to the chal-

lenge image. An attacker can exploit this over time to gather all of the categories

used in the image database and increase their chances of a successful attack. While

the classification task remains the same as in 5.13, the contextual clues provided by

the dropdown box help narrow the scope of the classification task down for the user.
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Figure 5.14: Style #2: Four Choice Dropdown IMAGE: c©CIMIC Lab - Rutgers
University

If the user perhaps cannot identify the noised image just by looking at it alone, seeing

what choices are available can aid in answering the challenge correctly. The choice of

the number of options has a direct effect on security – the number of options is directly

correlated with the chance of a successful guess. 3 choices (33.3%), 4 choices(25%),

and 5 choices(20%) are all options we explore. One option to consider is to populate

the list with a large number of choices to reduce the chance of a successful guess,

perhaps even having a list of words that are never used as image category just to

confuse an attacker. However, this most likely will also have a negative impact on

usability, as now people are forced to spend more time on the challenge considering

all of the options, and perhaps incorrectly choosing from the categories that are not

used.

Figure 5.15 demonstrates the addition of a unique option to style # 2 - the choice

of “Not Here”. “Not here” can have several interesting applications – for example

it can be used in conjunction with a weighting algorithm to provide a bonus points
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Figure 5.15: Style #3: Five Choice Dropdown w/Not Here IMAGE: c©CIMIC Lab -
Rutgers University

to a scoring algorithm that determine series performance over time. Imagine asking

a user to solve a series of challenges in this style, where progressive correct answers

yield a higher score of humanity. A correctly identified “not here” can be weighted

higher after a series of correct answers from the user,perhaps allowing them access to

the service or form without having to solve more challenges. However if “not here” is

not correctly identified, the penalty can be increased to a level higher than a regular

incorrect response and force more challenges to be provided before access is granted.

The intention of “not here” as an answer choice is to force the challenge evaluater to

guess or perform the categorization task, which can then be dealt with accordingly.

Figure 5.16 demonstrates the use of a keyword in the instructions for the solution.

In this case, it asks the user to identify which of 3 images best describes “bird”.

While this provides an attacker with the correct category, they must perform the the

categorization task of evaluating three images. The images are labeled in sequential

order from left to right (1,2,3). Users have an easier time with this style, as the
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Figure 5.16: Style #4: Select Image from three based on Keyword IMAGE: c©CIMIC
Lab - Rutgers University

keyword allows them to evaluate the images according to their notions of what the

keyword should depict. In this way, it guides the answer without disclosing too much

information to help an attacker. It is worth noting that this method is scalable, in

that you can display multiple images in a grid and ask for multiple correct responses

(with the correct number changing each time you serve the challenge) for a particular

image category. You can also have a parallel database of garbage images used to fill

out the challenge image grid to make it harder for an attacker to build a database

of challenges (SIGNAC also helps keep the correct solutions secure as well). This

particular implementation is the most basic form of this idea. Note that Google new

image based CAPTCHA uses a form similar to this style.

Figure 5.17 represents our latest and most advanced form of image based CAPTCHA.

The goal of this style is to provide obfuscated contextual clues for the keyword in the

form of a sentence that help a human gain an edge over a machine when attempting

to solve the challenge. The extra complexity is designed to slow down a machine,

however a human should have no problem getting through it. The final version of
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Figure 5.17: Style #5: Select Image from four Sentence Based Contextual Clues
IMAGE: c©CIMIC Lab - Rutgers University

this style would be an automated system that can use random sentences pulled from

various sources and select keywords that match an image in a tagged image database

and present it as a challenge while still maintaining enough context in the sentence

that a user can complete it. This style leverages the “Cambridge effect” on a sentence

with the keyword omitted to help obfuscate the keyword from attackers and uses the

SIGNAC method to provide secure images.
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5.1.5 Limitations

As with all noise generation functions, there exists the possibility that their alterations

to the image can be significantly decreased with smoothing functions/image filters or

reversed entirely by an appropriate function. Sufficiently advanced attackers with

image processing experience may be able to reverse some of the distortion effects

that come as a result of the noise generation to the degree that the image becomes

vulnerable to RIS or CV attacks. We attempt to minimize this weakness by using

randomness in the function when applying the algorithms to the images, as well as

using image specific properties to provide alterations within the image. We believe

the method has enough merit to be explored further and that the CAPTCHA security

community will provide the appropriate level of vetting of our methodology in due

time.

Secondly, there exist images that cannot be satisfactorily “noised”, more specifi-

cally, the image will either fail to be recognizable by a human due to the excessively

high level of noise added to the image to provide the security guarantee, or it will

be recognizable to a human but fail to meet the security guarantee because the noise

level is too low. This occurs when the image does not have colors (e.g. it is mostly

composed of black and white.)

5.2 SIGNAC Testing & Usability

This section covers the usability study conducted to test SIGNAC usability on our

series of basic image recognition CAPTCHAs.

5.2.1 SIGNAC Usability Study

This user study is the culmination of our various lines of research into different aspects

of CAPTCHA challenge design and security, specifically around issues relating to
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image based CAPTCHAs. This experiment serves as a way to gather real world usage

data for our methods and designs. The user study aims to test both the usability of

the SIGNAC method, as well as the usability of the design methodology of the five

styles. We presented these challenges to approximately 100 undergraduate students

in enrolled in courses across the business school. The challenge style and images used

were selected at random by the CAPTCHA server when it generated the challenge.

Figure 5.18: Overall CAPTCHA Response Accuracy - F = Incorrect N = No Response
T = Correct

Figure 5.18 demonstrates the overall responses gathered from the students, divided

into three groups. The F group is incorrect responses related to the challenge of each

style. Not surprisingly, the freeform text response (style 1) performed the worst, with

the highest number of incorrect answers. Style 4 performed the best with the lower

number of incorrect answers. The N group represented when users could not solve
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the challenge so they clicked the link available at the bottom to get a new challenge

– what we termed “No Response”. Again, we see an extreme outlier in the freeform

text response(style 1) - more people were unable to answer it than were able to answer

it correctly. Somewhat interesting is that style 3, which is not significantly different

in design from style 2 has a higher rate of incorrect responses simply by adding in

“not here” and introducing ambiguity. Surprisingly, style 5 seems to be on a similar

path to style 1, in that it has a large number of no repsonses and incorrect responses.

We speculate this is because we do not provide an explanation of the “Cambridge

effect” in the challenge, the user is simply presented with a scrambled sentence and

must make sense of it.

Figure 5.19: Image Category Performance - F = Incorrect N = No Response T =
Correct (airplane(1), bird(2), car(3), cat(4), doll(5), fish(6), flower(7), monkey(8),
robot(9), train(10))

Figure 5.19 shows how well each image category did overall in the experiment. This
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helps us see which “concrete” categories work well and which ones perform poorly.

Three categories that stand out as performing poorly are birds(2), monkeys(8), and

robots(9). We speculate that this is due in part to many of the images chosen for

this category depict birds and monkeys whose bodies are designed to blend into their

natural environments. Thus, when the noising algorithm is applied, it can make it

very difficult to discern the animal from the overall background image. The failure

of the robots category is most likely due in part to the wide range of styles that a

robot can come in - too much ambiguity. We can see that these categories had more

no responses than they did correct or incorrect answers. Three categories that did

well were cars(3), flowers(7), and trains(10). We suspect these categories did well

because of the structured nature their designs - cars and trains do not change shape

much, and flowers share similar shapes and come in bright and eye catching colors.

Fish(6), doll(5), cat(4) and airplane(1) were in the middle of the pack with reasonable

performance. Figure 5.20 shows the successful rate of identification of an image across

all styles. Note that total response includes no response.

Finally in Figure 5.21 we provide a statistical overview of the performance of each

style under different circumstances. We provide two scenarios for your contemplation

- one where we have classified no response as a “correct” response and one where

we have classified no response as an “incorrect” response. Imagine a scenario where

a CAPTCHA is guarding a resource that is extremely valuable to the user - for

example, their personal email account. Under these circumstances, the user will

continue to answer CAPTCHAs until they can gain access to their user account due

to the level of importance it has to them. It doesn’t matter if they get frustrated with

no responses because they will keep on trying challenges until they gain access. Under

these circumstances, by allowing ourselves to classify no response as a success, the

rate of success for the various styles increases significantly, with style 4 even reaching

90% success. Now imagine the converse scenario, where the CAPTCHA is guarding
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Figure 5.20: Successful Image Identification Across Styles

a resource that has little to no value to a user, for example, a comment section on a

popular news article. When a user is faced with a CAPTCHA challenge, they will be

disincentivized to post a comment, because now doing so requires more effort than

the user is willing to expend. Under these circumstances, a no response can be viewed

in a negative light, the same as a failure. If you are a service provider that wants

comments, you will be less likely to use a CAPTCHA like this to secure that service.

With failure rates above 50%, very few, if any comments will be posted as users will

be too frustrated to bother. Ironically enough, if the CAPTCHA is too severe it

could possibly make people comment more to complain about the difficulty in solving

the CAPTCHA. Laslty, a review of the no response to total response ratio is worthy

of review. Style 1 is quickly approaching 50% chance of a response - terrible from a

usability perspective. The styles 2-4 all have somewhat reasonable rates between 20%
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Figure 5.21: Statistical Summary

and 26% respectively, however style 5 has a high rate of no response 33% in spite of

the small sample size of tests we recorded for it.

SIGNAC Study Limitations All of the statistics generated from the user study

presented in the previous section are meant to be somewhat “tongue-in-cheek’, as

straight usability tests like the one conducted here do not capture the true nuances of

the human response to form security. One can argue that without actually providing

a scarce resource, any user behavior that is observed isn’t an accurate representation
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of how it would be approached in the wild. Without proper context, it is difficult to

accurately gauge the performance in usability of any particular CAPTCHA approach.

For example, our test users reported that after they answered a number of challenges

for each of the different styles, their accuracy improved once they understood what

to look for. Another point to consider is when students were given the “pointillism”

pointer, that is, to stand further away from the computer monitor to let your eye

blend the pixels in the image so its easier to see, reported an increase in the ability

to correctly identify categories. CAPTCHA design is equal parts science and art.

We have seen from the many examples we offer the tradeoffs within the three major

categories, as well as other implementation based security concerns. Every method

will have some failures, and the longer a method remains static, the greater the chance

a database attack can be generated or a new technique/algorithm developed to defeat

it. In this case, it is best to just enumerate all of the possibilities that exist at the time

and create a grid that shows the strengths and weaknesses of each method eliminating

the ones that fail to meet whatever set of predefined criteria the service provider has

decided upon and quantify them accordingly. This is the best advice we can give to

an online service provider that wants to generate a form protection method to guard

resources from bots and blackhats.

Another point worth noting was that the SIGNAC method used to generate the

images was going to have an impact on usability - however this was intentional. We

deliberately used a high noise threshold to provide a security guarantee of zero RIS

matches, since the images were gathered from online image search engines. This

means that the images were significantly more noisy than they needed to be, thus

the somewhat unsurprising affected usability performance of the CATPCHA styles.

Finally, the users were only able to solve challenges for a short time maybe 5 to 10

minutes. It would be a worthwhile exercise to compare first run results to the same

group of users trying the challenges again after they are familiar with all of the styles.
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Chapter 6

EmojiTCHA - An Emotion based

IRC

In this section we will cover the core components and tools used to construct the

CAPTCHA challenge that allows for the design to be usable, scalable, and robust -

providing a reasonable level of security for online form it is protecting.

6.1 Preliminaries & Tools

EmojiTCHA is a complete Image CAPTCHA implementation that evolved out of the

work done on SIGNAC. It uses the same image distortion principles as SIGNAC but

applies them through the use of destructive and additive filters designed to prevent

RIS and CV attacks against an image of face(s) depicting emotion. This is particularly

important in the case of EmojiTCHA as it uses automated CV tools to generate the

challenges at scale. The following section describes the toolchain used to create the

challenges for this CAPTCHA.

Microsoft Project Oxford Microsoft’s project Oxford is a collection of easy to use

artificial intelligence based vision, speech, and language APIs that are cloud accessible
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and can be used in applications by developers. In our CAPTCHA design, we utilize

the Face API and the Emotion API. The Emotion API takes an image as an input,

and returns the confidence across a set of emotions for each face in the image, as well

as bounding box for the face, using the Face API. If a user has already called the Face

API, they can submit the face rectangle as an optional input. The emotions detected

are anger, contempt, disgust, fear, happiness, neutral, sadness, and surprise. These

emotions are understood to be cross-culturally and universally communicated with

particular facial expressions.

Project Oxford’s Emotion API is a REST API provided by Microsoft and can

be interacted with online. This tool is what provides the critical functionality that

delivers the scalablity capabilities within our CAPTCHA design. It provides an auto-

mated method to accurately and consistently identify and tag emotions within images

that contain people’s faces. The output of the Emotion API can then be stored in a

database along with the image and subsequently used in a challenge served to a user

which asks them to identify the emotions depicted in the image. The power of this

service is that the algorithm can easily scale with demand on the CAPTCHA chal-

lenge service, e.g. instances can be run in parallel to produce the requested volume of

tagged output as required by the challenge service i.e. number of unique challenges

that need to be served at a particular rate. In order to prevent the use of this tool

against the CAPTCHA, image noise is added to ensure failure to identify emotion or

faces on images used in challenges. The process of using and applying image noise

will be described in more detail in the GIMP section. More details of the Emotion

API can be located at https://www.projectoxford.ai/emotion.

Emoji Character Set The emoji character set is a UNICODE character set de-

signed to convey complex ideas and emotions in the form of small ideograms and/or

pictograms. The cross-cultural nature of emojis enhances the usability as it removes
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specific language and alphabets as a barrier to usability. The beauty of using emojis

in a CAPTCHA challenge comes from a usability perspective. Our challenge asks a

user to match emotions of people in an image with an emoji that conveys the same

emotion, providing a solid basis for a simple CAPTCHA challenge task that is easy

for humans to understand. Since this character set consists of images instead of text,

techniques used to provide noise to the images will also work on the emoji characters,

which can be scaled based on font size and noised to thwart attackers further. In our

sample design for testing, we have decided to use the twitter emoji set as it has been

open sourced for public consumption.

GIMP: GNU Image Manipulation Program GIMP is an open source image

manipulation program that provides the ability to alter an image based on a set of

commands that are applied in a specific sequence. We use this tool to automate the

addition of noise and other image alteration/distortion techniques through scripting

to change the image used in the challenge. This process is what provides security for

the image from attacks by the very tools used to create the CAPTCHA, in essence,

providing a “one way” challenge generation function that is very difficult, if not

impossible, to reverse.

6.2 Methodology

In this section, we will discuss the design choices that were made in order to ensure

the usability, scalablity, and robustness of our CAPTCHA while demonstrating the

security it provides from potential attacks.

Image Processing Figure 6.1 provides an example of the Microsoft Emotion API

in action. Using a sample face that is smiling (a depiction of the emotion “happiness”),

the API provides the coordinates for a faceRectangle, which is a bounding box based
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on the area in the image (in pixels) where the Face API detected a human face. It

then provides a probability score for each of the eight emotions that it can detect

in the form of a percentage out of 100%. These two pieces of information provide

the ability to generate a CAPTCHA challenge where the user is asked to identify a

face in an image (via the faceRectange), and then answer what emotion that face is

expressing. In our implementation, a python script is used to interact with the API

online and save the results it returns to a local SQL database, along with the image.

Figure 6.1: Example output from Emotion API IMAGE: c©Microsoft Cognitive Ser-
vices
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Figure 6.2: Useful information can be produced from default image IMAGE: c©Google
Image Search

Figure 6.2 depicts an example of the test image served without noise or filters into

Google’s reverse image search. Note that the results of the search include the image

at other dimensions , a keyword guess for what is depicted in the image (e.g. “dental

smile”), and a number of visually similar images that all depict “dental smiles”, which

if one were to ask a person what emotion was being expressed, most likely “happiness”

would be the response. Without introducing noise, distortions and filters to the image,

an attacker will be able to answer the challenge question without much difficulty.
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Figure 6.3: Example of series of filters applied to image IMAGE: c©GNU Image
Manipulation Program

Figure 6.3 depicts an example chain of filters applied in a specific order to achieve

the goal of altering the image enough that RIS, ISS, and CV attacks cannot determine

what is depicted in the image. The key is to introduce the minimal amount of

distortions such that the tools used to create the challenges are stopped from returning

meaningful results. Note that each filter often has multiple parameters that can be

adjusted along a range to introduce variability into their output and how they affect

the image. For the purposes of our testing, we have determined a series of fixed

values for the filters that provide the level of distortion we required to stop the CV

attack while still maintaining a reasonable level of usability / ease of understanding

the image. Figure 6.4 is an example of an image that meets the RIS, ISS, and CV

security requirements.
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Figure 6.4: Example output image after alterations IMAGE: c©CIMIC Lab - Rutgers
University

Figure 6.5 demonstrates how the appropriate level of distorts can “trick” the ISS

engine into returning bogus results. Notice that the addition of the “canvas” filter

effect influenced the ISS results towards needlepoint/grid based images - none of

which focus on facial features. Also notice that there is no keyword provided as well

as no images of other sizes. For all intents and purposes, this image is unique to the

search engine, despite being indexed and tagged by it.
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Figure 6.5: No useful information can be extracted from noised image IMAGE:
c©Google Image Search

Figure 6.6: Twitter Emojis used to represent the 8 emotions IMAGE: c©Twitter Inc.
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Figure 6.7: Version 2 of EmojiTCHA Challenge IMAGE: c©CIMIC Lab - Rutgers
University
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Figure 6.6 is an example of the twitter emoji set we used to map to the 8 emotions

provided by the Microsoft Emotion API. The initial build of the CAPTCHA included

all 8 emotions. Microsoft noted that contempt and disgust were experimental emo-

tions, and thus were usually not read as accurately as the other 6 emotions. After a

round of user testing, we decided to decrease the number of emotions that could be

selected to the five emotions depicted in figure 6.7 in an effort to remove confusion

and increase success. This is an example of the version 2 EmojiTCHA challenge.

6.3 CAPTCHA Challenge Generation

This section focuses on the process flow within the toolchain that is used to generate

the CAPTCHA challenges. A step by step discussion of the process to generate a

unique challenge is included as follows:

1. Gather images involving one or more people whose faces are clearly visible

expressing one of the following eight emotions: anger, contempt, disgust, fear,

happiness, neutral, sadness, or surprise. These images can be gathered from

anywhere - e.g image search engine, downloaded from a camera, etc. They do

not need to be tagged as the Emotion API will provide that information.

2. Each image is run through the Microsoft Project Oxford Emotion API to detect

the number of faces expressing emotions in the image and the facial expressions

that fall into one of the eight emotional categories. If at least one clear face is

not found or no emotion can be read from the face by the algorithm, the image

is discarded. If at least one clear face expressing one of the eight emotions is

found, the image is kept and stored in a database.

3. The output of the Emotion API is recorded in the database along with the stored

image. The output from the algorithm includes the face bounding box # (which
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face in the image the emotion information is from), the emotion expressed by

the face, and the level of confidence as a percentage for the emotion expressed

by the face.

4. The image is then run through a series of filters and manipulations from GIMP

to distort/warp/alter the image to protect it against reverse image search at-

tacks and computer vision attacks. The number, type, and values for each of

the filters used can be varied at random for each individual image produced

to make it very difficult for attackers to filter the alterations. This step is im-

portant as it prevents using the tools that generate the challenge from being

exploited by attackers. The images can then be tested against image search

engines to ensure that no matches are returned. Additional noise is added until

the image returns no matches. The final altered image is then stored in the

database with the corresponding information used to create it.

5. A set of emojis are selected where a subset of these emojis match the emotion

recorded from the Emotion API, with the remaining emojis not matching the

emotions i.e. they would be incorrect/nonexistent responses.

6. The challenge is generated and the user is presented with an image of one or

more distorted faces and a corresponding set of emojis. The user must match the

the correct emoji to the correct facial expression in the image to complete the

challenge. The CAPTCHA evaluates the correctness of the response by querying

the database for facial bounding box information along with its corresponding

expressed emotion.



138

6.4 EmojiTCHA Usability Study

The goal of this section is to demonstrate the effectiveness and ease of use of the

new CAPTCHA EmojiTCHA. We conducted user trials with 30 participants and

asked them to solve as many challenges as they could in 10 minutes. The first run

included all eight emotions from the emotion engine. The user was served a challenge

at random and asked to match the corresponding emoji to the emotion depicted on

the face displayed. Each of the emotion categories had 10 images that were selected

by hand and are able to be tagged and identified by the Emotion API. The image

filters were applied at random until the image no longer returned a match from the

Emotion API, thus some images were more distorted than others.

Figure 6.8: Emotion Matrix for Run 1

Figure 6.9: Emotion Matrix for Run 2

Figure 6.8 demonstrates the emotional guess matrix for the first run with the

complete set of emotions. The totals on the horizontal axis represent the number of

times a challenge with the correct response being the emotion in green was served
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whereas the totals on the vertical axis represent the number of times that a particular

emotion was given as a response for a challenge with the correct answer in green.

Figure 6.9 demonstrates the same ideas but for the second run with the reduced set

of emotions as options.

Figure 6.10: Image Identification - Run 1
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Figure 6.11: Challenge Response Accuracy - Run 1

Figures 6.12 and 6.13 demonstrate the percentages that were obtained from an

analysis of the matrix for each of the categories. The emotions from best performing

to worse performing on image identification are: neutral(96%), happiness(91%), sur-

prise(87%), anger(76%), fear(67%), sadness(61%), contempt(59%), and disgust(47%).

The emotions from best to worse performing on challenge response are: happi-

ness(83%), contempt(81%), surprise(80%), fear(77%), anger(76%), neutral(73%), sad-

ness(72%), and disgust(45%). Note that disgust was the worst performing emotion in

both cases. It was expected that the more abstract of the universal emotions might

be more difficult to discern for humans, eg. disgust and contempt. For image iden-

tification, these emotions performed the worst, scoring significantly lower than top

three emotions. Strangely enough, for challenge accuracy contempt was the second

best emotion recognized, although the scores for the challenges were somewhat lower

than the scores for image identification, they were much more consistent across emo-
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tions, with disgust being the outlier. One aspect is the overlap of emotions that are

consistently mistaken for another emotion that may appear similar. For example,

we see that disgust was mistaken for anger 26 times. It is easy to imagine that a

disgusted face can take a similar shape to an angry one. We also see this in contempt

and anger being mistaken for disgust as well at 26 and 15 times respectively. More

user testing will need to be conducted so that any set of emotions served to the user

in a challenge will be ones that are not easily mistaken for each other. However,

this can also provide a way to make it more difficult for machines - if a competing

emotion detection algorithm is ranking a facial expression it is possible that it will

score and categorize it differently than the MS Emotion API. Further work is needed

to determine the best approach.

Figure 6.12: Image Identification - Run 2
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Figure 6.13: Challenge Response Accuracy - Run 2

Figures 6.12 and 6.13 demonstrate the percentages that were obtained from an

analysis of the matrix for each of the categories. The emotions from best perform-

ing to worse performing on image identification are: happiness(97%), anger(95%),

neutral(94%), surprise(94%), sadness(81%). The emotions from best to worse per-

forming on challenge response are: surprise(99%), anger(95%), happiness(94%), sad-

ness(92%), neutral(83%). The performance for all scores in both categories increased

significatly in limiting the number of choices for the user to select.

6.4.1 EmojiTCHA Study Limitations

The images that were chosen for use in the challenges were hand curated to ensure that

the desired emotion was demonstrated in the image. Work is currently in progress

to tune the image scraper and the Emotion API checker to accept an “emotion”

threshold score as a percentage to ensure that there is a high degree of confidence
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in any particular emotion expressed in a face. Any images that have emotions that

register below the threshold can be discarded accordingly. Additional work must be

done to determine the optimal “co-emotions” to display with one another to ensure

there is minimal mixup by between the emotions displayed on the screen. Our goal

is to reintroduce all 8 emotions but have them operate more effectively by optimizing

what other emotions they are displayed with. These will all be addressed in future

iterations of the study.

6.5 Limitations

In our current implementation, we only use a single emotion from a single face per

challenge. Mutli-face, multi emotion challenges are currently under development.

We are also currently developing ordinality rules for filter application to minimize

the number of rounds of filter applications that are required to ensure the security

guarantees that CV attacks and RIS attacks will not be successful. The test images

used in the experiments for the user study only provide the security guarantee for

emotion API attacks - they do not ensure RIS or ISS attacks are not successful,

although many of the images do indeed stop these attacks in their current form.

6.6 Future Work

In the future, additional work around new form types and challenge questions will

be experimented with. For example, testing out multiple emotions in a single image

and having a user identify all of the emotions - a multi-answer CAPTCHA. Another

example would be asking the user to identify the opposite emotion of that depicted in

an image (e.g. pick sad if the image is showing a happy face). Additional work around

creating a challenge with an “emotional mix” where a random set of 4 or 5 choices

are selected for the challenge from the 8 possible choices. Finally, experimenting with
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a “not here” answer may be worthwhile to increase the security against a random

guess being correct.
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Chapter 7

Future Work & Conclusions

This section speculates on the future work that can be conducted as a result of this

work and the conclusions drawn from the body of work conducted for this dissertation.

7.1 Summary of Contributions

In this dissertation, a number of contributions to the field of CAPTCHA research have

been made. A broad review of the ideas and concepts surrounding CAPTCHA design

and illustrations of how selecting and implementing a hard AI problem can present a

number of challenges for the CAPTCHA author to overcome if they want their design

to score highly within the three major design criteria. We present two attack methods

that are effective against IRC’s that do not use noise/distortions/filters to protect

their images from computer vision and other types of attacks. We also demonstrate a

security method named SIGNAC which utilized noise to allow image CAPTCHAs to

use images from tagged online databases and remain safe from reverse image search

and other tools that allow attackers to circumvent performing the challenge task.

Finally, we also present a new image CAPTCHA, called EmojiTCHA, that is a fully

automated, scalable, and robust image CAPTCHA that relies on contextual data

within the image as its central challenge question. Thanks to new tools made available
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to the public, we have been able to obtain the “holy grail” of building an IRC. User

studies have also been conducted on our defensive methods to ensure that usability

remains a top priority while also simultaneously providing a strong guarantee of

security under a variety of attack circumstances.

7.2 Future Work

Since CAPTCHA attack and design is an eternal arms race, there are plenty of avenues

worthy of exploration in the future as the tools and algorithms available continue to

evolve and improve.

7.2.1 Online Tools for Attacks

One area worth exploring in the future is that of online image annotation services.

Although the idea is not new, these recently developed tools have evolved out of the

significant leaps forward that CV and machine learning techniques have made that are

now being applied to datasets at scale. The ability to leverage the web to gather large

numbers of images makes developing these types of systems easier, as there is more

data to use in training and testing advanced models and methods of image analysis.

Another point worth considering is the rise in the availability of high quality im-

age sensors propagating throughout the population via smartphone adoption. When

combined with the rise in the use of social media, which provides constant streams

of new data that contain important metadata produced by humans (e.g. image tags,

hashtags, scene descriptions etc.) these datastreams/datasets provide excellent op-

portunities to develop online computer vision and machine learning interfaces that

could potentially be used to defeat image recognition CAPTCHAs. For example,

IBM Alchemy leverages the neural networks of Watson to perform advanced image

scene analysis and can provide probabilistic guesses as to what is depicted in an im-
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age. There are number of these services beginning to emerge online, and many have

strikingly accurate results and have been demonstrated to be effectively leveraged to

attack IRC’s. As with any online tool, they are still susceptible to noised images,

as they were not designed to handle this type of challenge and assume a clean input

to operate upon. However, a deep learning model with a large training dataset and

an accurate idea of how noise and/or what noise algorithms are used on a particular

image may be able to eventually discern the image as well as contextual clues and be

able to solve IRC challenges. This is one avenue we plan on pursuing in the future

for attacks against IRCs that use noised images.

7.2.2 Cryptocurrency as a CAPTCHA

As CAPTCHA increasingly becomes defined in economic terms and as CV algo-

rithms improve, it may be worthwhile to investigate the use of a cryptocurrency as

a way to “paywall” scarce services that are to be made available online. A user who

wishes to access the account/information/whatever is being protected can use their

CPU/GPU/etc. to perform some task that is useful to the administrator of the scarce

resource. If there is no task, the generation of a monetary unit that can be spent

elsewhere will also suffice for the purposes of the exchange of goods and services. In

order to prevent market flooding and ambushing of services, the difficulty of mining

a particular CAPTCHA coin could be increased at a rate that would allow the ad-

ministrator to throttle the available currency in the marketplace to match the rate of

service he can provide. The blockchain data structure which is implemented in the

form of a distributed database, provides many unique opportunities to prevent abuse

of online services through demonstrating that work or a particular transaction that

serves as “work” within the ecosystem has taken place and that this work cannot

be altered or revised. This is a potentially exciting avenue of research as computer

hardware has advanced to the point where large scale public online ecosystems could
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utilize computational resources to solve interesting problems in a distributed fashion

as a method of verification of work and blockchains could be used to verify the work.

One aspect to this “quantification” of work worth considering is that it essentially

removes the reverse Turing test aspect of CAPTCHA and simply treats the service in

terms of units of work - it no longer matters if it is done by a human or a bot. This

can be viewed from the economic perspective as a direct result of solving farms - and

also ironically enough, provides a solution to the problem of sentient bots - as now

the online service is governed by cost functions and alternative methods to dissuade

abuse of the service must be found.

7.2.3 Biometric CAPTCHAs

As discerning between human and bot becomes increasingly difficult, turning to new

sensors and emerging methods to track human bodies may provide the best and

easiest path forward in CAPTCHA design. Fingerprint readers, cameras, and fitness

trackers have become somewhat ubiquitous in the modern age as people begin to use

trackers to measure and quantify various aspects of their lives. There is potential for

these to be used in various methods of CAPTCHA to ensure that a human is present

and not a bot just performing a clever attack on a sensor to act human. This avenue

is worth exploring in the future as smartphones and intelligent wearables (e.g. fitness

trackers, smartwatches, Google Glass etc.) begin to become part of everyday life.

However, using these methods presents a number of security and privacy challenges

that will need to be addressed accordingly. One challenging issue with biometrics

is the security implications surrounding a breach of the database used for biometric

sensor verification. Since biometric data is extremely personal and unique (at least

for now you cannot change your fingerprints, irises, vein paths etc.) losing this data

means that it can no longer be easily used to verify you, as you can only lose it once

to have it lost forever. Part of the reason CAPTCHA development is important is
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that it provides a somewhat anonymous way of verifying that a user is human without

delving too deep into unique aspects of that humanity.
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