
MAPPING INFORMATION LEAKS IN THE ANDROID
OS

By

AJOYKUMAR RAJASEKARAN

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Prof. Janne Lindqvist

and approved by

New Brunswick, New Jersey

October, 2016

ABSTRACT OF THE THESIS

Mapping Information Leaks in the Android OS

By AJOYKUMAR RAJASEKARAN

Thesis Director:

Prof. Janne Lindqvist

Android OS enforces security and privacy by means of sandboxing to isolate the execution

of one application from another and by means of system permissions to restrict access to

sensitive information. Android system permissions are designed to let users decide which

permissions are allowed for an app. In this thesis, we show attacks to retrieve user information

from Android devices by exploiting the Android framework. We also built a classifier for

inferring the everyday activities of the users. This classifier has on average an accuracy of

97.9%, precision of 89.09%, specificity of 98.85%, sensitivity of 88.9%, and an F-score of

88.42%.

ii

Acknowledgments

I would like to express my sincere gratitude to my advisor Professor Janne Lindqvist for

giving me this opportunity, along with his encouragement and continual support in my

pursuit for academic excellence. It was a great experience and a pleasure working under

his guidance and supervision. Without his help this thesis would not have been possible.

I would like to thank and appreciate Hua Deng for all the help and feedback. It certainly

helped me gain a better understanding of the work at hand. I would also like to extend

my gratitude to all of the lab members, who have been a constant support and made this

journey an enjoyable one.

I am ever so grateful to my family and friends for all the belief and support they have

showed in my work. Thank you all.

This research is based upon work supported by the National Science Foundation under

Grant Numbers 1228777. Any opinions, findings, and conclusions or recommendations

expressed in this research are those of the author(s) and do not necessarily reflect the views

of the National Science Foundation.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

1. Introduction . 1

1.1. Overview of Android API . 1

1.2. Android Permission Model . 1

1.3. Motivation . 3

1.4. Problem Statement . 4

2. Related Work . 5

3. Side Channel Attacks . 8

3.1. Inferring Information About Users . 8

3.1.1. Using an Application with Permission to Read External Storage . . 8

Setup . 8

Investigation . 8

Results . 11

3.1.2. Using an Application to Infer User Activity 13

Setup . 13

Application Design . 13

Activity Recognition and Broadcast Events 13

iv

Experimental Methodology . 15

Results . 16

3.1.3. Using Labeled Sensor Data . 19

Setup . 20

Experimental Methodology . 21

Sensor Data Analysis . 22

The Classifier Design . 31

Results . 33

4. Discussion . 36

Investigating system-wide information files 36

Inferring lifestyle of a user . 39

5. Conclusions . 40

References . 41

v

List of Tables

1. Labeled accelerometer sensor data for one of the participants. The trial entry

uniquely identifies one sample from another for each activity. Each activity is

assigned a unique identifier. 22

2. Activities and their corresponding identifiers used in explaining the sensor

data plotting, performance metric plots, and the confusion matrix. 22

vi

List of Figures

1. The figure shows the file contents of a cache file stored in the external storage

by the default email application on Moto G 2nd generation. The cache files

contain the email threads that were synced by the email application. Thus

we can obtain the email contacts of the sender and the recipients. The email

contacts are redacted to preserve privacy of the user who participated in this

study. We can also read the email conversation in plain text by decoding the

content encoded using Base-64. 11

2. This figure shows the application we built to read cache files. The application

has the permission to read external storage and uses a SDK level of 21, thus

the permission to read external storage was granted during install time. The

application reads the Google Maps cache file to display the account name,

which is the email address used to sign up on Google Maps. The application

also reads the Google Camera cache files, and displays the location information

of the user that was stored in the session meta file. 12

3. The user interface of the application that was used to infer user’s activities

using the activity recognition API is shown above. The user has to click

the start/stop activity detection button in the beginning and end of an

experimental session. While the user is performing the activity, the user

is instructed to click the update activity button. This stores the detected

activities in the database. 16

vii

4. X, Y and Z axes are static relative to the smartphone. The motion sensors on

the smartphone measure the sensor values along these axes. If the smartphone

moves along the direction pointed by these axes, then the sensor values will

be positive. For example, when the device is still, and kept facing upwards

on a table then the acceleration read along z axis will be positive and equal

to the value of gravity. 20

5. The application that we built to collect labeled sensor data. The participants

will first select an activity to perform from the drop down menu. Then

the participants will enter his/her name in the text field provided. The

participants were instructed to start the sensor recording before beginning

the activity, and stop the sensor recording after completing the activity by

using the start/stop sensor recording button. The participants were then

instructed to perform each activity for five times. 21

6. Gravity sensor data for activity-0 (picking up the phone from the table) is

plotted against the timestamp for two users. The plot on the left shows that

the user-1 picked up the phone quickly and then the user was holding the

phone steadily for some time before stopping the sensor data collection. The

plot on the right shows that user-2 took as much time as user-1 to pick up

the phone, but stopped the sensor data collection immediately after picking

up the phone. The x-axis plot on the left figure shows that phone was tilted

to the left, then to right, while picking it up. The x-axis plot on the right

figure shows the phone was completely tilted to its left while being picked up. 23

7. Phone orientation while holding it in reading position. We can calculate the

angle at which it is held based on the gravity sensor reading along the y-axis

and z-axis. 24

viii

8. Accelerometer sensor data for activity 0 is plotted against timestamp for

two users. The accelerometer sensor reading is similar to the gravity sensor,

but it has linear acceleration superimposed on it. The above figure shows

the accelerometer sensor data for activity-0 (picking up the phone from the

table). The size of the spikes corresponds to how fast the phone was picked

up. Since the linear acceleration was the highest along the z-axis, we observe

large spikes along the z-axis. 24

9. Gravity sensor data for activity-1 (placing the phone on the table) is shown

for two users. The negative transition of the gravity sensor along the y-axis

and positive transition of the gravity sensor reading along the z-axis indicates

that the phone is being placed on the table. 25

10. The shape of accelerometer sensor data for activity-1 (placing the phone on

the table) for the two users is similar to the gravity sensor data, but it has

linear acceleration superimposed on it. We observe large spikes along z-axis,

since acceleration is greatest along the z-axis for this activity. 26

11. Gravity sensor data for activity-2 (attending a call and then walking). The

peaks at around 1000 ms in both plots indicates the instant the call was

attended by the participants. The peak at around 13000 ms in the left figure

and the peak at 7000 ms in the right figure indicates the instant the call

was disconnected by the participants. The gravity sensor data between the

instants of attending the call and disconnecting the call shows the sensor data

for walking. The negative transition of x-axis gravity in the left figure shows

that user-1 held the phone in his right hand. The positive transition of x-axis

gravity shows that user-2 held the phone in his left hand. 27

ix

12. Linear accelerometer sensor data for activity-2 (attending a call and walking)

is shown for two participants. The large spikes at 1000 ms and 13000 ms

in the left figure shows the instant the call was attended and disconnected

respectively. The large spikes at 500 ms and around 7000 ms in the right

figure shows the instant the call was attended and disconnected respectively.

The small spikes between the instants of attending and disconnecting the call

indicates the steps the participant took while walking. So by counting the

number of spikes, we can calculate the number of steps the participant took. 27

13. Gravity sensor data for activity-5 (attending a call while sitting). The first

spike indicates the instants when the call was attended, and the second spike

indicates when the call was disconnected. The negative value of x-gravity in

the left figure indicates that user-1 was holding the phone in his left hand,

while the positive value of x-gravity in the right figure indicates user-2 was

holding the phone in his right hand. 28

14. Linear accelerometer sensor data for activity-5 (attending a call while sitting).

The first large spike indicates the instants when the call was attended, and

the second spike indicates when the call was disconnected. In between the

two spikes there is almost no acceleration, and there’s only noise indicating

that there was no motion during this time. 29

15. Gravity sensor data for activity-7 (attending a call and sitting down) is similar

to figure 11. There is a peak in the left figure and a trough in the right figure

at around 2000 ms. This corresponds to the sitting motion while on a call.

The negative x-axis gravity in the left figure shows that user-1 was holding

the phone in his right hand. The positive x-axis gravity in the right figure

shows that user-2 was holding the phone in his left hand. 29

16. Linear accelerometer sensor data for activity-7 (attending a call and sitting

down). The positive spike at around 2000 ms corresponds to the sitting

activity performed by the participants. The negative spikes at 500 ms and

3000 ms corresponds to attending the call and disconnecting the call respectively. 30

17. DTW distance of accelerometer sensor data of activity-0 for two users. 31

x

18. DTW distance of gravity sensor data of activity-0 for two users. 31

19. Classifier design that considers the raw sensor data. The motion sensors

available on the Nexus 5 device - accelerometer, gravity sensor, gyroscope,

and linear accelerometer are used to classify an activity. The classifier uses

DTW as the distance metric for a knn based classifier. 32

20. The performance of the three classifiers is compared for k = 2,3,4,5. Classifier-

2 and Classifier-3 shows a steady performance for all values of k. Classifier-1

has the best performance with k = 3 and k = 4, and an average accuracy

of 97.9 % and sensitivity of 88.9 %. DTW distances is calculated between

the testing sensor data and the training sensor data of corresponding motion

sensors. The DTW distances are sorted in increasing order for each sensor.

Classifier-1 compares the first k DTW distances from all the motion sensors

and classifies an activity based on the minimum DTW distance. Classifier-2

classifies based on the mode of the activities corresponding to the first k DTW

distances of all of the motion sensors. Classifier-3 takes the mode of activities

corresponding to first k DTW distances of each motion sensor, and then takes

the mode of the activities detected by each sensor to obtain the classifier output. 34

21. The confusion matrix for Classifier-1 for k values indicating the best performance. 35

22. Screen shot of /proc/locks file . 36

23. Screen shot of locks.log file when Chrome browser was first started 37

24. Screen shot of locks.log file after restarting the Chrome browser 38

xi

1

Chapter 1

Introduction

1.1 Overview of Android API

Android OS is an open source platform and application environment based on the Linux

kernel. The Android OS consists of a stack of software components, which provides the

application framework used by the application developers. The application framework APIs

provide the functionality to communicate with the system services to access the underlying

smartphone hardware. The Android applications run on the Dalvik virtual machine, and

the application can be installed from a single apk file [1].

The framework APIs are updated such that the new API remains backward compatible.

Every Android platform supports only one API level, with implicit support for older API

levels. During installation the system checks the minSdkVersion and maxSdkVersion in

which it was built to run on. The API level specified allows the system to only install

a version compatible application [2]. The Android framework API consists of packages

and classes, XML elements and attributes for declaring a manifest and accessing resources,

broadcast intents and set of permissions that the applications can request to access the

otherwise restricted system resources.

1.2 Android Permission Model

Every application has an AndroidManifest.XML file, which is used as a control file to tell the

system what components such as broadcast receivers, content providers, etc. and permissions

are requested by the application [1]. The Android applications are run in an application

Sandbox and can only access a limited set of system resources. The Android system manages

and restricts access to resources that, if used incorrectly or maliciously, will result in an

2

adverse impact on the user in the form of a privacy or security breach. On the Android

platform the restrictions are implemented as follows:

• Intentional lack of API to access sensitive functionality. For example, there’s no API

to manipulate a SIM card.

• Enforcing security through separation of roles. For example, every application runs as

a different UID, and has its own isolated storage which cannot be accessed by other

applications.

• Sensitive APIs that provide access to sensitive resources such as Camera, are restricted

to be used by only those applications that explicitly request these resources in the

AndroidManifest.XML file.

Starting with Android 6.0 with API level 23 and later the users are prompted during

runtime of the application to either allow or deny the access to a resource requested by the

application. Once allowed by the user, the system does not prompt the user again about

the use of sensitive resources. But the users can navigate to device system settings to view

the permissions for the installed applications and the user can revoke previously allowed

permissions.

The Android permission model implements privacy by restricting access to sensitive

resources and giving the control of these sensitive resources to users. If the installed

application was targeted for a lower API level, then the user will be prompted during

install time to either accept and install all the applications or to not install at all. But

the users have the choice to revoke any of these permissions in the device settings after

the installation. Thus, even on newer Android versions, users can still be forced to grant

all the permissions during the install time. The Android permissions are not completely

understood by users, but a minority of users have found these permissions useful to avoid

privacy-invasive applications [3].

3

1.3 Motivation

Android system permissions are designed to let users decide which permissions are allowed

for an application. These permissions should restrict access to information that is sensitive

to users. However, we show that these permissions do not compartmentalize the sensitive

information. Android system permissions are divided into several protection levels. The

two most important protection levels to understand are those with normal and dangerous

permissions.

The normal permissions are requested by the application in the AndroidManifest.XML.

The users do not have control over these permissions because Android does not identify the

resources protected by these permissions as sensitive. These permissions cover areas where

the application needs to access data or resources outside of the application’s sandbox but

where there’s very little risk to the user’s privacy or the operation of other applications [2].

For example, permission to turn on the flashlight by any application is a normal permission.

If an application declares that it needs a normal permission, the system automatically grants

the permission to the application. Some of the features requiring normal permissions are:

Network State, Notification, Bluetooth, Flashlight, Internet, and Vibrate.

Dangerous permissions cover areas where the application wants data or resources that

involve the user’s private information, or could potentially affect the user’s stored data or

the operation of other applications [2]. Some of the dangerous permissions include access

to camera, contacts, location, microphone, body sensors (e.g.heart rate sensor), external

storage, etc. If an application declares that it needs a dangerous permission, the user has

to explicitly grant the permission to the application. The broadcast receiver APIs can be

implemented in an application that requires no special permission and we can infer the state

of the smartphone. The results from broadcast receiver can be used to correlate with results

from activity detection to infer the lifestyle of the users. Information from files which can be

accessed globally by all applications can be used to infer user’s personal information. Such a

private information leak will confirm that the system is vulnerable to side channel attacks

on Android.

4

1.4 Problem Statement

If the smartphone is running Android version 5.1 or lower, or if the application’s target SDK

is 22 or lower, the user has to grant all of the requested dangerous permissions to install

the application [2]. The user is only given the choice between installing the applications

allowing all of the permissions or not installing any of the applications. If using a smartphone

with Android version 6.0 or higher and if the application’s target SDK is 23 or higher, the

application will list all of the dangerous permissions in the manifest, and it must request

each dangerous permission during the runtime [2]. In this way the user can install the

application without the hassle of reading the permissions list. When prompted, the user

can deny or allow each permission and the application can continue to run with reduced

capabilities even if the user denies a permission [2]. If the target SDK is lower than 23, then

all of the permissions requested by an application must be granted to install the application,

but the users can still revoke any permission for any application at any time [2].

The hardware compatibility limitations of the devices and curtailed support from the

manufacturers limits the devices from having the latest version of Android OS. Applications

built using a lower SDK can be run on devices having the same or higher OS version, due to

backward compatibility. While building an application, developers can set the minSdkVersion

for the application. Since the developers want to target as many users as possible, they

develop applications with the lowest possible SDK version.

In this work we focus on using APIs provided by the Android framework to perform

side channel attacks and infer private information about the users. We use a broadcast

receiver API to infer information about the state of the smartphone. To infer activities

performed by the user we use the activity recognition API. These APIs were targeted for

SDK level 23 with support for a minimum SDK level of 15. We built an application to read

external storage to show that it is capable of inferring user’s private information such as

contacts, location and email conversation. The results from [4] show that users view and

read the permissions, but these permissions are not understood. The users are unaware of

why some permissions are being requested by the applications. Therefore, APIs that require

permissions can also be exploited for side channel attacks.

5

Chapter 2

Related Work

Every smartphone today has embedded motion sensors that could be exploited for obtaining

user’s private information. These sensors include accelerometer, gravity sensor, magne-

tometer, orientation sensor, proximity sensor, step detector and counter. The data from

these sensors are available without any special system permission. To infer any useful

information from these sensor data, we need to collect the data over a period of time for

a particular activity. This training data is then used to construct a predictive model for

activity recognition [5][6][7][8][9]. A Trojan application could be installed that utilizes

accelerometer and orientation sensor readings. These readings can be used to monitor any

movement and gestures made by the users. It may also stealthily log the passwords of screen

lock or numbers entered during a phone call [5]. Side channel attacks using motion sensors

to track user input is possible because typing different keys on a smartphone’s soft keyboard

has unique associated motions of a smartphone [6]. Motion sensors can be used to detect

much more than activity recognition. Researchers have shown that accelerometers can be

used to extract entire sequences of text entered on the smartphone by using a training data

set of about 2700 key presses [10]. This potentially allows attackers to first infer which page

the user is browsing [11] and then read the passwords typed by users [10]. Activities such

as walking, jogging, climbing stairs, sitting and standing can be easily detected by only

collecting data from an accelerometer [8]. The authors in [12] provide an extensive review

on activity recognition by only using accelerometer in which they provide information using

machine learning algorithms to detect various activities. Results from [13] show that using a

gyroscope sensor in combination with an accelerometer increases the recognition accuracy

by 3.1-13.4%. The experimental results in [44] for a multi-sensor system, report an accuracy

of 97.9% for static activities such as standing, sitting, etc. and 94.0% for dynamic and

6

transitional activities such as walking. The Android framework now provides an activity

recognition API that allows developers to easily infer the user’s activity without the need

for complex algorithms to detect activities. All of the previous research is only focused on

detecting activities such as walking, jogging, running etc., and did not attempt to infer the

lifestyle of the user, e.g. how often does the user charge his or her phone, when does the

user go to sleep and how often does the user unlock the smartphone. In our work we collect

the broadcast receiver events to infer the state of the smartphone, and correlate these events

with physical activities detected by the activity recognition API to have a deeper insight

into the lifestyle of the user. We also present a classifier design and study its performance in

classifying the activities performed by the participants.

Applications such as games with access to a microphone or camera can be used to collect

image captures while the user is interacting with the application [7]. The microphone sensor

can be used to detect touch events, while the camera is used to infer the PIN entered by the

user using the features extracted from the image [7]. The authors in [14] show that keypad

numbers can be inferred with more than 60% accuracy by only using the smartphone camera

to track eye gazes. The microphone sensor can also be used to listen to the background

noise to infer the environment in which the user is present. For example, we can infer if the

user is traveling by listening to airport noise and in-flight announcements can be used to

determine the user’s destination. The drawback of this attack is that it requires the user to

grant access to the microphone and camera.

As the functionality and applications of the smartphone has increased, so has access to

sensitive information about the users [15]. Linux file permissions are used on Android to

protect the private files to one application from being accessed by other applications. The

results from work in [11] show the pervasiveness of the Android side channel attacks. This

attack exploits the information from the /proc/ virtual file system, which is also known

as the process information file system and it contains runtime system information like the

system memory, mounted devices, hardware configuration, etc. Side channel attacks on

Android can be accomplished by a concurrent application that tracks the changes in the

application’s memory footprint [11].

As of March 2016, Android play store has more than 2 million apps [16] and the developers

7

building these applications are more focused towards features and profitability by targeted

advertisements. These developers do not focus on security and privacy issues of applications,

and use poor programming practices which potentially leads to applications being hijacked

by other malicious applications. Each application runs on Android as a unique user to

limit the potential damage of programming flaws [17]. To prevent applications from leaking

information to other applications, each application runs inside a sandbox [18]. To developers

the range of devices provides a huge potential audience for their application [2]. Hence they

support even older devices to reach as many users as possible. Due to space constraints of

the internal storage on older devices, with support to expand memory using a SD card, the

developers tend to store large files on external SD card storage. We use this knowledge and

look into the cache files stored by the default applications in the external SD card storage.

Applications can extend their functionality by dynamically loading classes during runtime

using DexClassLoader API. This can be used to execute code that is not installed as part of

the application [2]. But when developers use external storage to store these class files, which

are also visible to other applications with access to external storage, a malicious application

can inject code or modify the class files to hijack the application [19].

8

Chapter 3

Side Channel Attacks

3.1 Inferring Information About Users

3.1.1 Using an Application with Permission to Read External Storage

Setup

We used a Nexus 5 smartphone running Android - M version 6.0.1. The smartphone had

its Wi-Fi turned on and connected to a network. The location feature was turned on, and

we granted all the permissions requested by the default applications. To inspect the cache

files stored by the system and user applications we used the Android debug shell to pull the

files residing in the sdcard/Android/data/ directory. We then built another application to

show that these files can be accessed by any user level application with permission to read

external storage. To investigate further into private information stored within the cache files

on external storage, we extracted the cache files from a user with a Moto G 2nd generation

phone also using the Android debug shell.

Investigation

The Android permissions are designed to enforce user privacy, by restricting access to

sensitive information to only those applications that explicitly request permissions to sensitive

resources. Only when a user grants permission to these resources can an application use the

corresponding APIs, provided by the Android framework, to access sensitive information.

No application should be able to adversely affect other applications, the operating system or

the user [2]. The application must not be able to read or write the user’s private data such as

contacts or emails, and one application should not be able to read or write other applications

files [2]. While investigating the external storage on the Nexus 5 smartphone, we noticed

9

the directory /sdcard/Android/data/ which contained sub-directories whose names were the

same as the package name of the application which created it. Within these directories we

observed some interesting cache files stored by Google Maps and Google Camera on Nexus

5 smartphone.

We show that by having the permission to read external storage, an application can get

the following information about the users from Google Maps and Google Camera respectively:

• User’s Google account user name which is protected by android.permission.GET -

ACCOUNTS.

• User’s location information such as altitude, longitude and latitude which

is protected by android.permission.ACCESS COARSE LOCATION and an-

droid.permission.ACCESS FINE LOCATION.

The Google Maps application on Nexus 5 stores cache files with the

name cache vts psm GMM.# in the external SD card storage directory /sd-

card/Android/data/com.google.android.apps.maps/cache/. The Google Maps application

creates a new cache file with an incremented number for # in the file name when the user

adds a new account to the application, and all of these files are persistent between system

reboot. We used the Android debug shell to pull these files into a local computer and opened

the files in a text editor to view the file contents. These cache files contain the Google

account name of the user in plain text. When a new account is used a new cache file is

created cache vts psm GMM.2 which now contains the new account name along with the

older account name. These cache files are not cleared by the system and remain between

system reboots. Thus we have shown that the account name of the user can be retrieved

without having the permission android.permission.GET ACCOUNTS.

We now move on to the cache the file stored by Google Camera application in the

external directory /sdcard/Android/data/com.google.android.GoogleCamera/cache/. This

directory contains two sub-directories “TEMP SESSIONS” and “panorama sessions.” The

directory “TEMP SESSIONS” contains a sub-directory with the name format “PANO -

YYYYMMDD #” where # is a unique session number. These directories contain the final

images from the panoramic image capture sessions. The directory “panorama sessions”

10

contains a sub-directory with the name format “session YYYYMMDD #” where # is a

unique session number. These directories contain the individual images that are used to make

up the final panorama image, an orientation.txt file that is used by the camera application

to determine the orientation of the smartphone between individual image captures, and

a session.meta file. The session meta file contains information about the user’s location’s

altitude, latitude and longitude. It also gives information about the time at which the user

captured these images. We have thus shown from our investigation that we can infer user’s

Google account name, and location information from cache files stored in the external SD

card storage. Now we move on to show that any application with permission to read external

storage can access these cache files.

Using the Android debug shell we observed that the directories in /sdcard/Android/data/

corresponding to the Google Camera and Google Maps application belong to the group

“sdcard rw.” Directories which belong to this group can be read and written to by applications

that have the permission to read or write to external storage. Thus an application with

permission to read external storage can read a user’s account name and location information.

We implemented an application which reads these cache files and displays its contents.

For our next side channel attack, we used a Moto G 2nd generation phone. The user was

using the default or the stock Email application for everyday use. This Email application

was using the external directory /sdcard/data/com.android.email/cache/ to cache some of

the recent email threads. The files were stored with .eml extension, a common file format

developed by Microsoft for use with Outlook. The eml file format is very similar to HTML

and we viewed the email contents in the Chrome browser by just changing the extension to

*.mht which is a web page archive file format. We found that the application had stored

close to 200 such cache files.

We investigated the cache files and found that the cache files contain the synced emails

encoded using Base-64 as shown in figure 1. The file contents can be viewed in decoded plain

text using any browser. These cache files contain conversations that the user had in the

email thread. It also gave us the senders and recipients email address. While investigating

further into the email contents, we stumbled upon a link to Google sheets. Any application

having access to this Google sheets link can view the file that was shared using the link.

11

We opened the link and found that it was a file containing emergency contacts of several

students going on a trip. Such sensitive information can be accessed by any application

having permission to read external storage and the information can be used for any malicious

intent such as phishing, spamming and identity theft, thus posing a great privacy risk.

Figure 1: The figure shows the file contents of a cache file stored in the external storage by
the default email application on Moto G 2nd generation. The cache files contain the email
threads that were synced by the email application. Thus we can obtain the email contacts
of the sender and the recipients. The email contacts are redacted to preserve privacy of the
user who participated in this study. We can also read the email conversation in plain text
by decoding the content encoded using Base-64.

Results

The permission to read the user’s contacts is recognized as dangerous permission by [2], and

hence an application needs to explicitly request to access the user’s contact by declaring

the permission android.permission.READ CONTACTS. Also for an application to read the

information about any account and also to obtain the Google account name used to sign in

to Google Maps, it requires the following permission android.permission.GET ACCOUNTS.

We built an application to read the contents of cache vts psm GMM.# and used regular

expression to extract and display only the email addresses. And the application also

displays the contents of the session.meta which gives the user’s location information. During

installation the application requests the user to grant the permission to read contents of USB

storage. We specified a target SDK level of 21 for our application and since the target SDK

12

is lower than 23, the application requests the user to grant the permission during install

time [2]. But what the user does not know is that granting this permission will allow the

application to access the user’s Google account name and user’s location information. The

application that we built was successfully installed with permission to access external storage.

The application is capable of accessing the user’s account name and the location information

as shown in figure 2. Thus we have shown that any application with permission to read

external storage is capable of obtaining user’s account name and the location information.

Figure 2: This figure shows the application we built to read cache files. The application has
the permission to read external storage and uses a SDK level of 21, thus the permission to
read external storage was granted during install time. The application reads the Google
Maps cache file to display the account name, which is the email address used to sign up on
Google Maps. The application also reads the Google Camera cache files, and displays the
location information of the user that was stored in the session meta file.

The Android system permission is designed to prevent unrestricted access to sensitive user

information. An application having permission to access information from a resource should

not be able to get information protected by other permissions. But here we have shown that

if the user grants permission to read external storage, then the malicious application will be

able to read the user’s account name and obtain a user’s location information, which are

explicitly protected by android.permission.GET ACCOUNTS, android.permission.ACCESS -

COARSE LOCATION and android.permission.ACCESS FINE LOCATION.

13

We have shown that email conversations can be read by an application with access to

external SD card storage and we can learn personal information about the user and the

user’s contacts. The permission to read user’s account name, location and contacts is listed

as dangerous permission because they are highly sensitive information that could be used

against the users. But having permission as simple as reading external storage, completely

nullifies the importance of other dangerous permissions. Thus Android system permissions

are not fool proof in compartmentalizing the sensitive information.

3.1.2 Using an Application to Infer User Activity

Setup

We designed and implemented an application on Nexus 5 that used the activity recognition

API to infer physical activities performed by the user. To infer the information about the

state of the smartphone, we receive and collect broadcast events from the smartphone.

Application Design

The application has a start/stop activity detection button that allows us to control the

collection of the detected activity into the SQLite database. On clicking the Update Activity

button the activity detected by the activity recognition API is stored into the database along

with the confidence value provided by the API for each detected activity. The application

collects the broadcast receiver events for the registered intents in the application and activity

detected by the activity recognition API along with the timestamps. The timestamp allows

us to correlate the broadcast receiver events with the detected activities. Here we have

shown how an application running in the foreground can be used to infer user’s activities

with easily available APIs. In an actual scenario the attacker can automate data collection,

and also it could be done in the background as a service without the knowledge of the user.

Activity Recognition and Broadcast Events

We implemented an application that uses the activity recognition API provided by the

Android framework to infer whether the user is Still, On Foot, Walking, Running, On Bicycle,

14

in a Vehicle and if the phone is tilted (facing down). The physical activities detected by the

API are stored in a SQLite database along with the timestamp and confidence value for each

activity. The reason to store all the detected physical activities with their corresponding

confidence value and not just the activity with high confidence is that, if the “On Foot”

activity is detected with highest confidence, then the next highest confidence activity will

tell us if the user was walking or running. The activity recognition by the API is done

periodically by reading short bursts of sensors data, so that the battery consumption of

the application is kept to a minimum. The update interval of the activity recognition is

controlled by an update interval parameter in the methods provided by the API. If any

other application uses this API and requests updates at a faster interval, then the fastest

interval takes precedence [2]. After recording the activity information, we used Android

debug shell pull the database to a local computer and then used SQLite browser to view the

contents of the database.

The application receives the broadcast events to infer the state of the phone. The

application registers for the following broadcast intents:

• Intent.ACTION AIRPLANE MODE CHANGED

By registering for this broadcast intent we can infer when the user

toggles the airplane mode button. But in order to know if it was

turned ON or OFF we check for the returned value of the method Set-

tings.System.getInt(getCOntentResolver(),Settings.System.AIRPLANE MODE -

ON,0). If the return value is ‘0’ then the Airplane mode is OFF, otherwise it is ON

[2].

• Intent.ACTION BATTERY LOW

The application receives this broadcast intent when the battery level of the smartphone

is low [2].

• Intent.ACTION HEADSET PLUG

We can detect toggling of headset plug in/plug out by registering for this broadcast

intent [2]. We keep a toggle counter to keep track of plug-in and plug-out events. A

15

counter value of “1” is for plug-in and “0” for plug-out.

• Intent.ACTION POWER CONNECTED

The application receives this broadcast intent when the user connects the smartphone

to any power supply [2] - wall socket, computer or power bank.

• Intent.ACTION POWER DISCONNECTED

The application receives this broadcast intent when the user disconnects the smartphone

from any power supply [2] - wall socket, computer or power bank.

• Intent.ACTION SCREEN ON

This broadcast events are received when the smartphone wakes up and becomes

interactive [2].

• Intent.ACTION SCREEN OFF

This broadcast events are received when the smartphone goes to sleep and becomes

non-interactive [2].

• Intent.ACTION USER PRESENT

This intent is used to determine when the user successfully unlocks a screen.

Experimental Methodology

We used five participants for an informal outside lab experiment. The participants were

given the Nexus 5 smartphone. The participants were told to open our application, and

turn on the activity recognition using the button provided in the application. We then

informed the participants to manually click the “update activity” button shown in figure

3, every one minute interval. All the participants were from Rutgers University, and were

accustomed to using an Android smartphone. The user activity study was conducted in the

CORE building on the Busch campus in Piscataway, NJ. One participant was allowed to

travel around Busch campus in the University bus. On completion of the study with each

participant, we used the Android debug shell to pull the database and observed the detected

16

physical activities and broadcast events using a SQLite browser. We informed the user of

the detected activities and verified the correctness of activity recognition.

Figure 3: The user interface of the application that was used to infer user’s activities using
the activity recognition API is shown above. The user has to click the start/stop activity
detection button in the beginning and end of an experimental session. While the user is
performing the activity, the user is instructed to click the update activity button. This
stores the detected activities in the database.

Results

We collected and analyzed the detected activities and broadcast receiver events in a SQL

database. The application stores the confidence value of all of the possible activities that

the activity recognition API is capable of detecting. This is done so that if the activity

corresponding to the highest confidence value for a user is on-foot, then based on second

highest confidence value, we can determine if the user was walking or running. We observed

from our collected samples that when the application detected a user to be on-foot, then

it is able to detect whether the user is walking or running with a very high confidence. In

our experiment we were able to detect on-foot activity with a confidence value of 60% to

90%, and for the same activity session we were able to detect walking or running with a

confidence value of 55% to 80%.

We show that the activity recognition API can be used to detect the orientation of the

17

phone. When the recognized activity is “still” we can infer that the user was using the phone

while standing or sitting still. Since the activities are collected along with timestamps, we

were able to infer that immediately after using the phone the user kept the phone on the

table, with the phone facing downwards because the activity recognition API detected that

the phone was tilted and still. We initially deduced that the user was not moving during this

time, because no other activity was detected. Hence, the tilting action was that of placing

the smartphone on the table with the smartphone display facing downwards. But the user

informed us that he was just standing and flipping the smartphone in his hand.

Activity recognition API allows us to detect the physical activities performed by the

user. This API requires the permission com.google.android.gms.permission.ACTIVITY -

RECOGNITION. Although we used the activity recognition API here, it is possible to

recognize the various physical activities by only using the motion sensor measurements

[20][21][8][9][12]. And these sensor measurements do not require any permissions and thus

any application can infer the user’s physical activities without the knowledge of the users.

Here we used the API since it is an easy way to detect physical activities rather than creating

a learning data set from raw sensor readings and then developing predictive models to infer

activity from sensor data. In section 3.1.3 we show how we can infer other activities using

only the motion sensor data.

We can infer if the phone is on charging and for how long by listening to ACTION -

POWER CONNECTED and ACTION POWER DISCONNECTED. If the duration of

charging is longer than six hours and there is no activity detected by the API, we can

infer that the user is likely to be sleeping at that time and not using the smartphone.

Based on the duration of resting and active hours, we can infer the sleep cycle of that

user. ACTION BATTERY LOW intent can be used to infer when the user is alerted of low

battery. If we detect the user to be walking or running before and after power connected

broadcast events, then we can conclude that the user has a power bank.

One of the participants was asked to perform any actions on the smartphone. The

participant was provided with a headset and USB charging cable. Based on the time-

stamped broadcast receiver events, we inferred that the participant performed the following

sequence of actions - unplugged a headset, plugged in the headset, disconnected power, turned

18

on the airplane mode and then connected the power supply again. Using the timestamp,

we looked into the activities detected during this period. We observed that the activity

recognition API detected, with 100% confidence, that the participant was still during this

time. Later, the participant confirmed that he was siting and standing during the experiment

session and only walked inside the room for a short duration. Since the participant did not

perform walking for a significant duration of time the activity recognition API was not able

to detect this activity.

During every broadcast receiver event we collect information based on whether the

smartphone is in vibrate mode, whether vibrate on ring is turned on, and also the brightness

level of the phone. This information is obtained by using the following methods:

• Settings.System.getInt(getContentResolver(),Settings.System.VIBRATE ON, 0)

• Settings.System.getInt(getContentResolver(),Settings.System.VIBRATE WHEN -

RINGING, 0)

• Settings.System.getInt(getContentResolver(),Settings.System.SCREEN BRIGHT-

NESS, 0)

These methods need to be invoked every time to get the information, thus they are

placed inside broadcast receiver methods. Whenever a broadcast event occurs the above

methods will be invoked. From the sequence of broadcast receiver events for one of the

participants, we were able to infer that the participant was constantly locking and unlocking

the while using the smartphone. By using the timestamp of these events we looked into the

physical activities detected during this time and observed that the user was detected to be

on foot and walking. The participant confirmed that he had set the display to sleep after 15

seconds, and that he had to constantly unlock the smartphone to update the activities in

the application while walking in the hallway.

The final participant for this experiment was allowed to go around the campus. From

the broadcast receiver events during his trip we observed that the participant had unlocked

the device, and then connected the device to a power supply to charge the smartphone.

The participant must have connected the phone to a power bank or some other source of

19

power supply. During the time period this broadcast event was received, the participant

was detected to be traveling in a vehicle.

We were able to detect physical activities performed by the participants and correlate

these physical activities with the broadcast receiver events if any, to infer detailed information

about the activities performed by the users. By using broadcast receiver events we were

able to infer the activities performed by the user on the phone as well as motion activity.

The activity recognition API allows us to infer only activities such as on foot, walking,

on a bicycle, running and still. When the user is performing any other activity the API will

recognize the activity as unknown activity. Thus we cannot rely only on the API to infer

user activities. For this reason we created another application as described in the following

section, that allows us to collect labeled motion sensor data for various activities, and then

use the collected data to build a classifier for activity detection.

The broadcast receiver events allow us collect various events that occur on the smartphone.

These broadcast events alone are very trivial, such as whether the headset is plugged in,

power connected, and if the airplane mode is on or off, etc. But when these events are

correlated with activity detected from the activity recognition API, we can infer private

information about the user such as when the user connects the phone to charge, if the user

uses the phone during this period of time, and if the user constantly walks or runs with

headset plugged in. Such data correlation gives us a deep insight into the lifestyle of a user.

3.1.3 Using Labeled Sensor Data

The drawback of using activity recognition API is that, it can only detect a small set of

activities. To infer more about the activities performed by the users, we collected labeled

sensor data for activities listed in table 2. For each of the above activities we collected

the raw sensor data from the accelerometer sensor, gravity sensor, gyroscope and linear

accelerometer and stored them in a SQLite database under the corresponding sensor table.

The motion sensors detect and return the sensor event values of the device along x, y

and z axes in a static frame relative to the phone as shown in figure 4 [22]. The sensor

measurements are always made along these static axes direction irrespective of the device’s

screen orientation changes.

20

Figure 4: X, Y and Z axes are static relative to the smartphone. The motion sensors on the
smartphone measure the sensor values along these axes. If the smartphone moves along the
direction pointed by these axes, then the sensor values will be positive. For example, when
the device is still, and kept facing upwards on a table then the acceleration read along z axis
will be positive and equal to the value of gravity.

The accelerometer sensor measures the acceleration along the three axes. The acceleration

is measured in m/s2. The measured value includes both the rate of change of velocity of

the device and the force of gravity on the device along that axis. So when the device is in

free fall, acceleration along x, y and z should be close to zero. When the device lies flat on

a table facing upwards and is pushed right, the x acceleration value is positive and the z

acceleration is +9.81. When the device is lifted up the z acceleration is greater than +9.81

[22]. The linear accelerometer measures the linear acceleration of the device along the axes

in m/s2, but the measured value does not include gravity. When the device is at rest the

output along all the axes should be zero [22]. The gravity sensor measures the direction

and magnitude of gravity along the x, y and z axes. It is also measured in m/s2. When the

device is at rest the sensor and accelerometer sensor output should be identical [22]. The

gyroscope sensor reports the rate of rotation or the angular speed around the sensor axes in

rad/s. We collected labeled and time stamped sensor measurements for each of the activities

to build a classifier.

Setup

We built an application to collect labeled sensor data from users and to build a classifier in

order to detect activities that cannot be recognized by the activity recognition API. The

application had a drop down list of the above mentioned activities as shown in figure 5. The

21

start/stop sensor recording button will allow us to collect labeled sensor data for activities

segregated into trials. A start and stop of sensor recording will give us one trial of labeled

sensor data for that activity.

Figure 5: The application that we built to collect labeled sensor data. The participants will
first select an activity to perform from the drop down menu. Then the participants will
enter his/her name in the text field provided. The participants were instructed to start the
sensor recording before beginning the activity, and stop the sensor recording after completing
the activity by using the start/stop sensor recording button. The participants were then
instructed to perform each activity for five times.

Experimental Methodology

We used six participants, for an informal outside lab experiment. The participants were

between the ages 23 to 26. The participants were given the Nexus 5 smartphone and told to

open the application, and enter their name in the text field provided at the bottom as shown

in figure 5. They were told to choose an activity from the drop down list, and then start

the sensor recording before they begin to perform the activity, and then stop the sensor

recording after they have completed the activity. Participants were asked to perform each

activity for five times. An incremental number was shown on the screen to indicate the

number of trials performed. This number allowed us to uniquely distinguish the samples of

each activity. After each participant had performed all the activities, we used the Android

debug shell to pull the database into a local computer for analyzing and running our classifier

on the labeled sensor data.

22

id timestamp x y z activity trial user

342 1464242500450 -2.2027588 2.8791351 7.3841705 0 3 participant1

343 1464242500470 -3.016449 2.543274 6.697647 0 3 participant1

344 1464242500489 -2.9492798 2.811798 8.627319 0 3 participant1

Table 1: Labeled accelerometer sensor data for one of the participants. The trial entry
uniquely identifies one sample from another for each activity. Each activity is assigned a
unique identifier.

ACTIVITY IDENTIFIER

Picking up the phone from the table 0

Placing the phone on the table 1

Attending a call and then walking 2

Holding the phone in hand and standing up 3

Holding the phone in hand and sitting down 4

Attending a call while sitting 5

Attending a call and then stand up 6

Attending a call and then sit down 7

Keep the phone in pocket and sit down 8

Keep the phone in pocket and stand up 9

Keep the phone in pocket and walk 10

Table 2: Activities and their corresponding identifiers used in explaining the sensor data
plotting, performance metric plots, and the confusion matrix.

Sensor Data Analysis

In this section we discuss some of the features that can be observed from the activities

that the participants performed during the informal study. Each participant performed the

activities in their own style. For example, one participant always used their right hand to

pick up the phone, while another participant used their left hand for some trials and right

hand for other trials. A labeled sensor data for the accelerometer is shown in table 1 for one

of the participants. The activity column has the identifier number for the activity performed,

and the trial number distinguishes one sample from another. The identifier for each activity

is shown in table 2, and from now onwards we will refer to activities by their identifier.

Before we move on to the design of the classifier for activity recognition, we will discuss

some of the information that can be inferred directly from the raw sensor data. Consider the

gravity sensor data for activity 0 plotted against the normalized time stamp for user 1 and

user 2 shown in figure 6. The x, y and z components of the gravity sensor corresponds to a

static frame reference as shown in figure in 4. We can infer from the figure that, the spikes

23

and transitions of y and z-gravity at around 1000 ms for both the users occurs while the

phone is just lifted of the table. The positive transition of y-gravity and negative transition

of z-gravity indicates that the phone is being lifted off the table. The small positive spike,

followed by a negative spike, for x-gravity for user 1, indicates that the phone was slightly

tilted to the left then to the right while it was lifted. The small duration of transition,

followed by a smooth x, y and z positioning from 2000 ms onwards, indicates that user 1

lifted the phone rather quickly to its normal reading position. Whereas, for user 2, there is

a large positive spike for x-gravity, indicating that the phone almost completely titled to its

left while being lifted, before holding the phone in reading position from 2500 ms onwards.

While the phone is held in reading position, the x-gravity is due to either noise or slight

tilting of the phone to left or right.

Figure 6: Gravity sensor data for activity-0 (picking up the phone from the table) is plotted
against the timestamp for two users. The plot on the left shows that the user-1 picked up
the phone quickly and then the user was holding the phone steadily for some time before
stopping the sensor data collection. The plot on the right shows that user-2 took as much
time as user-1 to pick up the phone, but stopped the sensor data collection immediately
after picking up the phone. The x-axis plot on the left figure shows that phone was tilted to
the left, then to right, while picking it up. The x-axis plot on the right figure shows the
phone was completely tilted to its left while being picked up.

From figure 7 we can easily calculate the position in which the phone was held based on

the final resting values of either y and z. The angle theta at which the phone is held is given

by sin−1(y − gravity/9.81) or cos−1(z − gravity/9.81). Here, for user 1 the magnitude of

y-gravity is 8 and the magnitude of z-gravity is 5.5 at the final holding position. Thus, user

24

Figure 7: Phone orientation while holding it in reading position. We can calculate the angle
at which it is held based on the gravity sensor reading along the y-axis and z-axis.

1 is holding the phone at approximately 55◦ from the ground. While user 2 is holding the

phone at 45◦. Based on the gravity sensor we can only tell the orientation of the phone

while it is held and during motion. But to understand the motion of the user, whether he

was walking or being still, we need to look into the accelerometer sensor data.

Figure 8: Accelerometer sensor data for activity 0 is plotted against timestamp for two
users. The accelerometer sensor reading is similar to the gravity sensor, but it has linear
acceleration superimposed on it. The above figure shows the accelerometer sensor data for
activity-0 (picking up the phone from the table). The size of the spikes corresponds to how
fast the phone was picked up. Since the linear acceleration was the highest along the z-axis,
we observe large spikes along the z-axis.

25

Figure 9: Gravity sensor data for activity-1 (placing the phone on the table) is shown for two
users. The negative transition of the gravity sensor along the y-axis and positive transition
of the gravity sensor reading along the z-axis indicates that the phone is being placed on
the table.

The accelerometer sensor data for activity 0 is shown in figure 8 in which gravity sensor

data is displayed with linear acceleration superimposed on it. The overall shape of the x, y

and z accelerometer is similar to that of the gravity sensor after the transition has occurred,

except for a small noise like linear transition after 2500 ms which indicates that the phone

was held relatively steady in hand, and the user was not moving.

Gravity sensor data for activity 1 is shown in figure 9. Here the negative transition

y-gravity towards zero and positive transition of z-gravity towards 9.81 indicates that the

phone is being placed on the table. Based on x-gravity we can infer that user 1 tilted the

phone slightly to the left, while user 2 tilted the phone to the right. The tilt of phone, while

being placed on the table, indicates that user 1 probably used his right hand to do so, and

user 2 used his left hand.

The accelerometer sensor data for activity 1 is shown in figure 10. The overall shape

of x, y and z accelerometer is similar to that of the gravity sensor after the transition has

occurred, and we can observe that there is almost no linear acceleration indicating that the

phone was kept on a flat, steady surface facing upwards.

26

Figure 10: The shape of accelerometer sensor data for activity-1 (placing the phone on the
table) for the two users is similar to the gravity sensor data, but it has linear acceleration
superimposed on it. We observe large spikes along z-axis, since acceleration is greatest along
the z-axis for this activity.

Gravity sensor data for activity-2 is shown in figure 11. The transition at around 1000

ms indicates the instant the user attended the call and moved the phone towards his ear.

We can observe from y-gravity that both the users were holding the phone at about the

same angle and from the z-gravity data we can infer that the phone was slightly facing

downwards. But negative x-gravity indicates that user 1 held the phone in his right hand,

while the positive x-gravity indicates that user 2 held the phone in his left hand.

27

Figure 11: Gravity sensor data for activity-2 (attending a call and then walking). The
peaks at around 1000 ms in both plots indicates the instant the call was attended by the
participants. The peak at around 13000 ms in the left figure and the peak at 7000 ms in the
right figure indicates the instant the call was disconnected by the participants. The gravity
sensor data between the instants of attending the call and disconnecting the call shows the
sensor data for walking. The negative transition of x-axis gravity in the left figure shows
that user-1 held the phone in his right hand. The positive transition of x-axis gravity shows
that user-2 held the phone in his left hand.

Figure 12: Linear accelerometer sensor data for activity-2 (attending a call and walking)
is shown for two participants. The large spikes at 1000 ms and 13000 ms in the left figure
shows the instant the call was attended and disconnected respectively. The large spikes
at 500 ms and around 7000 ms in the right figure shows the instant the call was attended
and disconnected respectively. The small spikes between the instants of attending and
disconnecting the call indicates the steps the participant took while walking. So by counting
the number of spikes, we can calculate the number of steps the participant took.

28

To determine whether the user was in motion or sitting during the call can be inferred

from the linear accelerometer sensor data for activity 2 as shown in figure 12. For user 1 the

spikes between 2000 ms and 8000 ms indicates the number of steps that the user took while

on the call. For example, we can infer from the graph that user 1 took 6 steps. Similarly,

for user 2 the spikes between 1000 ms and 6000 ms indicates the number of steps that the

user took while on call in which case we can infer that user 2 took 8 steps.

Figure 13: Gravity sensor data for activity-5 (attending a call while sitting). The first spike
indicates the instants when the call was attended, and the second spike indicates when the
call was disconnected. The negative value of x-gravity in the left figure indicates that user-1
was holding the phone in his left hand, while the positive value of x-gravity in the right
figure indicates user-2 was holding the phone in his right hand.

Gravity sensor data for activity 5 is shown in figure 13. Between 0 ms and 6000 ms the

data plot looks similar to figure 11. Thus the user attended a call and moved the phone

towards his ear. Also based on x-gravity values we can infer that user 1 was holding the phone

using his left hand and user 2 was holding the phone using his right hand. To determine

if the user was in motion or still during the call, we will use the linear accelerometer data

shown in figure 14. The first large spikes around 1000 ms indicates the instant when the

users attended the call and moved the phone towards their ear. The second large spikes

around 5000 ms indicates the instant when the users moved the phone away from their ear

and ended the call. The sensor data between these two spikes is relatively steady around 0

m/s2 with some noise like pattern. Thus both the users were still during the call.

29

Figure 14: Linear accelerometer sensor data for activity-5 (attending a call while sitting).
The first large spike indicates the instants when the call was attended, and the second spike
indicates when the call was disconnected. In between the two spikes there is almost no
acceleration, and there’s only noise indicating that there was no motion during this time.

Figure 15: Gravity sensor data for activity-7 (attending a call and sitting down) is similar
to figure 11. There is a peak in the left figure and a trough in the right figure at around
2000 ms. This corresponds to the sitting motion while on a call. The negative x-axis gravity
in the left figure shows that user-1 was holding the phone in his right hand. The positive
x-axis gravity in the right figure shows that user-2 was holding the phone in his left hand.

30

Figure 16: Linear accelerometer sensor data for activity-7 (attending a call and sitting down).
The positive spike at around 2000 ms corresponds to the sitting activity performed by the
participants. The negative spikes at 500 ms and 3000 ms corresponds to attending the call
and disconnecting the call respectively.

Based on the gravity sensor data from figure 15 we can infer that both the users were on

call since the gravity sensor data plot is similar to figure 11. From the x-gravity we can infer

that user-1 was using his right hand and user-2 was using his left hand to attend the call.

At around 2000 ms we can observe a peak and trough in the x-gravity, in the left plot and

right plot of figure 15 respectively. This peak and trough corresponds to the sitting activity

performed by the participants during the call. There is a peak and a trough for the same

sitting motion because the participants were holding the phone in different hands during the

call. Holding the phone to the ear using the right hand and then sitting generates a peak,

while holding the phone in the left hand generates a trough. The positive spike on the y-axis

at 2000 ms according to the linear accelerometer data, as shown in figure 16, corresponds to

this sitting activity. The negatives spikes at 500 ms and 3000 ms in figure 16 corresponds to

attending the call and disconnecting the call receptively.

31

The Classifier Design

In this section we discuss the design of our classifier, that is capable of classifying activities

of users with an accuracy of 97.9% and sensitivity of 88.9%. The classifier utilizes the data

from all of the motion sensors for classification. The classifier was designed using Matlab

on a local computer. We study the performance using the k nearest neighbor classification

method, which uses dynamic time warping (DTW) as the distance metric. The DTW

algorithm is best suited for time series analysis such as the sensor data, which is usually

time shifted. DTW is useful is measuring the similarity between two temporal sensor data

sequences. To understand how DTW works and how it can be used to find the similarity

between two time shifted signals consider figure 17 and figure 18.

Figure 17: DTW distance of accelerometer sensor data of activity-0 for two users.

Figure 18: DTW distance of gravity sensor data of activity-0 for two users.

32

The signals shown in figure 17 and figure 18 are for activity 0, which is lifting the phone

off from a table. The x component of the signal depends on how the phone was titled while

it was lifted, i.e. whether it was tilted to the left or right. Since different users tilt the phone

differently while lifting, the x components of the signal has the maximum DTW distance as

compared to y and z components. As the phone is lifted, the sequence of data for y and z

components of the signal are very similar for the users. The y component of signals here has

the minimum DTW distance compared to the other two components.

Figure 19: Classifier design that considers the raw sensor data. The motion sensors available
on the Nexus 5 device - accelerometer, gravity sensor, gyroscope, and linear accelerometer
are used to classify an activity. The classifier uses DTW as the distance metric for a knn
based classifier.

Based on these observations, we built a classifier that calculates the DTW distance

between the x components of all of the samples of one motion sensor. We then repeated

this for the components between the y-axis and the z-axis. From among the three signal

components, we can find the component that has the minimum distance, and then match the

activity corresponding to that distance in the labeled sensor data. For k nearest neighbors,

we sort the distances in ascending order and take the statistical mode of k activities

corresponding to k minimum DTW distances for each signal component. We then take the

mode of the activities as recognized by the signal components. If the activities recognized

are all unique then we consider the activity corresponding to the minimum distance. The

33

classifier design is shown in figure 19. In the following section we evaluate and compare the

performance of the three classifiers we designed.

Results

We used leave-one-out cross validation to evaluate the performance of our classifier. We

report and compare the confusion matrix, accuracy, Fscore, precision, sensitivity, and

specificity for our classifier design, as shown in figure 19, for different values of K. The

definition of these performance metrics is given below.

• Confusion matrix is the error matrix, that visualizes the performance of our classifier

design. The columns of the confusion matrix represent the predicted activities, and

the rows represent the actual activity.

• Accuracy is the measure of fraction of all the activities that are correctly classified; it

is the ratio of the total number of correct classifications to the total number of correct

or incorrect classification.

• Precision is the fraction of classified activities that are relevant or true positive

classification.

• Sensitivity is a measure of proportion of positives that are correctly classified. Sensi-

tivity is the ratio of the total number of true positive classification to the total number

of false negatives and true positives.

• Specificity is a measure of proportion of true negatives that are correctly classified.

Sensitivity is the ratio of the total number of true negative classification to the total

number of false negatives and true positives.

• Fscore is a measure of the classifier’s accuracy, that considers both the precision and

sensitivity of the classifier.

34

Figure 20: The performance of the three classifiers is compared for k = 2,3,4,5. Classifier-2
and Classifier-3 shows a steady performance for all values of k. Classifier-1 has the best
performance with k = 3 and k = 4, and an average accuracy of 97.9 % and sensitivity of 88.9
%. DTW distances is calculated between the testing sensor data and the training sensor
data of corresponding motion sensors. The DTW distances are sorted in increasing order for
each sensor. Classifier-1 compares the first k DTW distances from all the motion sensors
and classifies an activity based on the minimum DTW distance. Classifier-2 classifies based
on the mode of the activities corresponding to the first k DTW distances of all of the motion
sensors. Classifier-3 takes the mode of activities corresponding to first k DTW distances of
each motion sensor, and then takes the mode of the activities detected by each sensor to
obtain the classifier output.

35

Based on the classifier performance metrics defined above, we can observe from figure 20

that classifier-1 has the best performance over the other two classifier designs. Classifier-2

and classifier-3 show a steady performance throughout. This is because their design does not

consider the value of K, since these two classifiers only consider the activity corresponding

to the minimum DTW distance. We observe that for k = 3 and k = 4, classifier-1 has the

best overall performance. Thus taking the mode of activities determined by the motion

sensors gives the best overall classification results. For k = 3 and k = 4, the classifier-1 on

an average has an accuracy of 97.9%, precision of 89.09%, specificity of 98.85%, sensitivity

of 88.9%, and an Fscore of 88.42%. The confusion matrix for Classifier-1 for values of k = 3

and k = 4 and is shown in figure 21.

Figure 21: The confusion matrix for Classifier-1 for k values indicating the best performance.

36

Chapter 4

Discussion

In this section, we first discuss the work that we pursued in the beginning towards exploiting

the system-wide information. We then discuss the implications of our work in inferring the

lifestyle of a user using results from motion sensor and broadcast receiver API.

Investigating system-wide information files

Android OS is based on the Linux kernel, and it inherits the /proc virtual filesystem from

Linux. The /proc filesystem is also referred to as process information pseudo-file system,

which contains runtime system information such as system memory, hardware configuration,

etc. We investigated the /proc/locks file which displays the files that are currently locked by

the kernel. The lock file contents are as shown in figure 22.

Figure 22: Screen shot of /proc/locks file

Column 1: Each lock on a file has a unique number. 1, 2 etc. Column 2: POSIX

represents the new POSIX locks from the lockf system call. Column 3: Advisory means that

the lock on that file does not prevent other processes from accessing the data, but it prevents

37

attempts to lock onto that file. Column 4: Indicates whether the lock has Read or Write

access to the file. Column 5: indicates the process ID that holds the lock. Column 6: This is

the ID of the locked file. The format is as follows: Major Device:Minor Device:Outnumber.

The inum or inode number is an integer associated with a file. Whenever a new file is

created, a unique integer number is generated in sequence and associated with the file. This

number is a pointer to the inode structure which contains the meta data of the file. An

inode number is used by the operating system to refer to the file during all the processes

involving the file. Column 7 and 8: indicates the start and end of the files locked region.

The following commands were used in the Android debug shell to log the /proc/locks and

also the output from the “top” command was logged so that we can get the process name

that corresponds to the process ID from column 5 in /proc/locks.

watch -n 1 ’adb shell cat proc/locks — sed -e ”s/ ˆ / $(date -R) /” 〉〉 locks.log’

watch -n 1 ’adb shell top — sed -e ”s/ˆ/$(date -R) /” 〉〉 top.log’

Figure 23: Screen shot of locks.log file when Chrome browser was first started

A part of locks.log is shown in figure 23, which was obtained when the Chrome browser

was started. Logs shown in figure 24 were obtained after closing and restarting the Chrome

browser. The process ID 7254 and 8317 corresponds to the Chrome browser. The blue box

in figure 24 shows some of the write locked files and the red box shows the read locked

files. After the Chrome browser was re-spawned with a new PID, we observe from the inode

38

Figure 24: Screen shot of locks.log file after restarting the Chrome browser

number that it obtains a lock on same files. It should be the same file because no two

files can have the same inode number and the inode numbers are generated in sequence.

Based on the files accessed by a process we can infer the behavior of an application and

what operation it is performing at any given time. Also, if the files that are accessed by

the application are from its own internal directory, then those files would be private to that

application alone and obtaining the locks on files would be redundant. Thus most of these

files must be residing in external storage. If any of these files are residing in external storage

and are classes that the application loads using DexClassLoader API, then these classes

could be modified or injected with malicious code by other applications since files in external

storage are public to all the applications [19].

We only have the knowledge of an inode number of the files that are being accessed.

Research of this section to determine where these files are actually residing, whether internal

or external storage, is left for future work.

39

Inferring lifestyle of a user

By combining broadcast events with results from activity recognition, we can tell how often

the user charges his smartphone and what the user does during that time. We can infer if the

phone was kept tilted on the table during charging, and if the user constantly unlocked his

phone during this time. If the smartphone is on charge and undisturbed for long hours we

can infer that the user is sleeping. Based on the intervals of timestamps, we can infer if any

of these events or users activities are routine events. During the study participants expressed

concern that Android applications can potentially invade their privacy, if any application

is using sensors to infer their daily activities. They were surprised to know that Android

applications do not need any special permission to utilize the smartphone sensors and also

the applications do not disclose their use of sensors during installation. Thus sensors on

smartphones, that do not require any special permission, can be used as a side channel for

inferring the daily activities of the smartphone users.

40

Chapter 5

Conclusions

We have shown here that by having permission to read external storage we were able to

obtain information about the Google account used by the user and the user’s location.

Similarly, while investigating the default applications on Moto G, we found that the default

email application stores email conversations in the external storage. The email conversations

can be used to extract contact information and other personal information about the users.

Since the exploited applications were the default applications on these devices, all of the

users owning these devices are prone to this side channel attack.

Previous research on activity recognition does not tell much about users lifestyle or

surroundings other than simple activities like walking, running, sitting or standing. We show

that by using broadcast receivers we can infer events such as whether Airplane mode is on

or off, when a user successfully unlocks the screen and interacts with the smartphone, when

the smartphone is going to sleep due to inactivity, when the smartphone battery is low,

when the user is plugging the smartphone in for charging and for how long by listening to

the plug out event and when the user plugs in headset. We can use the timestamp of these

broadcast events to look into the database where we collected the detected physical activities,

to infer if the user was walking, or being still during that time. Thus, by combining results

of broadcast receivers with activity recognition we can infer the lifestyle of users.

We then present a classifier that utilizes the sensors data from all of the motion sensors

available on the Nexus 5 smartphone. The classifier was evaluated using leave-one-out cross

validation, and we were able to achieve a 98% classification accuracy on an average, thus

we show that by having a labeled sensor data, we can build sensors models for recognizing

complex activities performed by other users.

41

References

[1] Android Source, https://source.android.com

[2] Android Developer, http://developer.android.com/index.html

[3] Felt, Adrienne Porter, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. ”Android permissions: User attention, comprehension, and
behavior.” In Proceedings of the Eighth Symposium on Usable Privacy and
Security, p. 3. ACM, 2012.

[4] Kelley, Patrick Gage, Sunny Consolvo, Lorrie Faith Cranor, Jaeyeon Jung,
Norman Sadeh, and David Wetherall. ”A conundrum of permissions: installing
applications on an Android smartphone.” In Financial Cryptography and Data
Security, pp. 68-79. Springer Berlin Heidelberg, 2012.

[5] Xu, Zhi, Kun Bai, and Sencun Zhu. ”Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors.” In Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and Mobile Networks,
pp. 113-124. ACM, 2012.

[6] Cai, Liang, and Hao Chen. ”TouchLogger: Inferring Keystrokes on Touch Screen
from Smartphone Motion.” HotSec 11 (2011): 9-9.

[7] Simon, Laurent, and Ross Anderson. ”PIN skimmer: inferring PINs through
the camera and microphone.” In Proceedings of the Third ACM workshop on
Security and privacy in smartphones & mobile devices, pp. 67-78. ACM, 2013.

[8] Kwapisz, Jennifer R., Gary M. Weiss, and Samuel A. Moore. ”Activity recogni-
tion using cell phone accelerometers.” ACM SigKDD Explorations Newsletter
12, no. 2 (2011): 74-82.

[9] Shoaib, Mohammed, Hans Scholten, and Paul JM Havinga. ”Towards physical
activity recognition using smartphone sensors.” In Ubiquitous Intelligence and
Computing, 2013 IEEE 10th International Conference on and 10th International
Conference on Autonomic and Trusted Computing (UIC/ATC), pp. 80-87. IEEE,
2013.

[10] Owusu, Emmanuel, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang.
”ACCessory: password inference using accelerometers on smartphones.” In Pro-
ceedings of the Twelfth Workshop on Mobile Computing Systems & Applications,
p. 9. ACM, 2012.

[11] Jana, Suman, and Vitaly Shmatikov. ”Memento: Learning secrets from process
footprints.” In Security and Privacy (SP), 2012 IEEE Symposium on, pp. 143-157.
IEEE, 2012.

42

[12] Incel, Ozlem Durmaz, Mustafa Kose, and Cem Ersoy. ”A review and taxonomy
of activity recognition on mobile phones.” BioNanoScience 3, no. 2 (2013):
145-171.

[13] Wu, Wanmin, Sanjoy Dasgupta, Ernesto E. Ramirez, Carlyn Peterson, and
Gregory J. Norman. ”Classification accuracies of physical activities using smart-
phone motion sensors.” Journal of medical Internet research 14, no. 5 (2012):
e130.

[14] Al-Haiqi, Ahmed, Mahamod Ismail, and Rosdiadee Nordin. ”The eye as a new
side channel threat on smartphones.” In Research and Development (SCOReD),
2013 IEEE Student Conference on, pp. 475-479. IEEE, 2013.

[15] Kenworthy, Gary, and Pankaj Rohatgi. ”Mobile Device Security: The case for
side channel resistance.” (2012).

[16] Kenworthy, Gary, and Pankaj Rohatgi. ”Mobile Device Security: The case for
side channel resistance.” (2012).

[17] Enck, William, Machigar Ongtang, and Patrick McDaniel. ”Understanding
Android security.” IEEE security & privacy 1 (2009): 50-57.

[18] Miller, Charlie. ”Mobile attacks and defense.” Security & Privacy, IEEE 9, no.
4 (2011): 68-70.

[19] Fernandes, Earlence, Bruno Crispo, and Marco Conti. ”Fm 99.9, radio virus:
Exploiting fm radio broadcasts for malware deployment.” Information Forensics
and Security, IEEE Transactions on 8, no. 6 (2013): 1027-1037.

[20] Anjum, Ashiq, and Muhammad Usman Ilyas. ”Activity recognition using smart-
phone sensors.” In Consumer Communications and Networking Conference
(CCNC), 2013 IEEE, pp. 914-919. IEEE, 2013.

[21] Viet, Vo Quang, Gueesang Lee, and Deokjai Choi. ”Fall detection based on
movement and smartphone technology.” In Computing and Communication
Technologies, Research, Innovation, and Vision for the Future (RIVF), 2012
IEEE RIVF International Conference on, pp. 1-4. IEEE, 2012.

[22] https://source.android.com/devices/sensors/sensor-types.html

[23] Lin, Jialiu, Shahriyar Amini, Jason I. Hong, Norman Sadeh, Janne Lindqvist,
and Joy Zhang. ”Expectation and purpose: understanding users’ mental models
of mobile app privacy through crowdsourcing.” In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, pp. 501-510. ACM, 2012.

[24] Zhang, Nan, Kan Yuan, Muhammad Naveed, Xiaoyong Zhou, and XiaoFeng
Wang. ”Leave me alone: App-level protection against runtime information
gathering on Android.” In Security and Privacy (SP), 2015 IEEE Symposium
on, pp. 915-930. IEEE, 2015.

[25] Markmann, Tobias, David Gessner, and Dirk Westhoff. ”Quantdroid: Quantita-
tive approach towards mitigating privilege escalation on Android.” In Commu-
nications (ICC), 2013 IEEE International Conference on, pp. 2144-2149. IEEE,
2013.

43

[26] Zhou, YongBin, and DengGuo Feng. ”Side-Channel Attacks: Ten Years After
Its Publication and the Impacts on Cryptographic Module Security Testing.”
IACR Cryptology ePrint Archive 2005 (2005): 388.

[27] Sarwar, Golam, Olivier Mehani, Roksana Boreli, and Mohamed Ali Kaafar.
”On the Effectiveness of Dynamic Taint Analysis for Protecting against Private
Information Leaks on Android-based Devices.” In SECRYPT, pp. 461-468. 2013.

[28] Chen, Qi Alfred, Zhiyun Qian, and Z. Morley Mao. ”Peeking into your app
without actually seeing it: Ui state inference and novel Android attacks.” In
23rd USENIX Security Symposium (USENIX Security 14), pp. 1037-1052. 2014.

[29] Hutter, Michael, and Jrn-Marc Schmidt. ”The temperature side channel and
heating fault attacks.” In Smart Card Research and Advanced Applications, pp.
219-235. Springer International Publishing, 2013.

[30] Genkin, Daniel, Adi Shamir, and Eran Tromer. ”RSA key extraction via low-
bandwidth acoustic cryptanalysis.” In Advances in CryptologyCRYPTO 2014,
pp. 444-461. Springer Berlin Heidelberg, 2014.

[31] Wei, Michael, Benedikt Heinz, and Frederic Stumpf. ”A cache timing attack
on AES in virtualization environments.” In Financial Cryptography and Data
Security, pp. 314-328. Springer Berlin Heidelberg, 2012.

[32] Cai, Liang, and Hao Chen. ”On the practicality of motion based keystroke
inference attack.” Springer Berlin Heidelberg, 2012.

[33] Orthacker, Clemens, Peter Teufl, Stefan Kraxberger, Gnther Lackner, Michael
Gissing, Alexander Marsalek, Johannes Leibetseder, and Oliver Prevenhueber.
”Android security permissionscan we trust them?.” In Security and Privacy in
Mobile Information and Communication Systems, pp. 40-51. Springer Berlin
Heidelberg, 2011.

[34] Felt, Adrienne Porter, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
”Android permissions demystified.” In Proceedings of the 18th ACM conference
on Computer and communications security, pp. 627-638. ACM, 2011.

[35] Ferreira, Denzil, Vassilis Kostakos, Alastair R. Beresford, Janne Lindqvist, and
Anind K. Dey. ”Securacy: an empirical investigation of Android applications’
network usage, privacy and security.” In Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, p. 11. ACM, 2015.

[36] Lei, Lingguang, Yuewu Wang, Jian Zhou, Daren Zha, and Zhongwen Zhang.
”A threat to mobile cyber-physical systems: Sensor-based privacy theft attacks
on Android smartphones.” In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2013 12th IEEE International Conference on, pp.
126-133. IEEE, 2013.

[37] Xu, Zhi, and Sencun Zhu. ”SemaDroid: A Privacy-Aware Sensor Management
Framework for Smartphones.” In Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy, pp. 61-72. ACM, 2015.

44

[38] Wang, Qinglong, Amir Yahyavi, Bettina Kemme, and Wenbo He. ”I know what
you did on your smartphone: Inferring app usage over encrypted data traffic.”
In Communications and Network Security (CNS), 2015 IEEE Conference on,
pp. 433-441. IEEE, 2015.

[39] Ohmura, Ren, and Wataru Takasaki. ”Response time improvement in
accelerometer-based activity recognition by activity change detection.” In Pro-
ceedings of the 13th international conference on Ubiquitous computing, pp.
589-590. ACM, 2011.

[40] http://www.appbrain.com/stats/number-of-android-apps

[41] bin Abdullah, Mohd Fikri Azli, Ali Fahmi Perwira Negara, Md Shohel Sayeed,
Deok-Jai Choi, and Kalaiarasi Sonai Muthu. ”Classification algorithms in human
activity recognition using smartphones.” International Journal of Computer and
Information Engineering 6 (2012): 77-84.

[42] Guiry, John J., Pepijn van de Ven, John Nelson, Lisanne Warmerdam, and Heleen
Riper. ”Activity recognition with smartphone support.” Medical engineering &
physics 36, no. 6 (2014): 670-675.

[43] Wu, Wanmin, Sanjoy Dasgupta, Ernesto E. Ramirez, Carlyn Peterson, and
Gregory J. Norman. ”Classification accuracies of physical activities using smart-
phone motion sensors.” Journal of medical Internet research 14, no. 5 (2012):
e130.

[44] Gao, Lei, A. K. Bourke, and John Nelson. ”Evaluation of accelerometer based
multi-sensor versus single-sensor activity recognition systems.” Medical engi-
neering & physics 36, no. 6 (2014): 779-785.

[45] Krishnan, Narayanan C., and Diane J. Cook. ”Activity recognition on streaming
sensor data.” Pervasive and mobile computing 10 (2014): 138-154.

[46] Al-Haiqi, Ahmed, Mahamod Ismail, and Rosdiadee Nordin. ”Keystrokes In-
ference Attack on Android: A Comparative Evaluation of Sensors and Their
Fusion.” Journal of ICT Research and Applications 7, no. 2 (2013): 117-136.

[47] He, Yi, and Ye Li. ”Physical activity recognition utilizing the built-in kinematic
sensors of a smartphone.” International Journal of Distributed Sensor Networks
2013 (2013).

[48] Al-Haiqi, Ahmed, Mahamod Ismail, and Rosdiadee Nordin. ”A new sensors-
based covert channel on android.” The Scientific World Journal 2014 (2014).

[49] Zhu, Jiang, Pang Wu, Xiao Wang, and Juyong Zhang. ”Sensec: Mobile security
through passive sensing.” In Computing, Networking and Communications
(ICNC), 2013 International Conference on, pp. 1128-1133. IEEE, 2013.

[50] Su, Xing, Hanghang Tong, and Ping Ji. ”Activity recognition with smartphone
sensors.” Tsinghua Science and Technology 19, no. 3 (2014): 235-249.

45

[51] Subramanian, Venkatachalam, Selcuk Uluagac, Hasan Cam, and Raheem Beyah.
”Examining the characteristics and implications of sensor side channels.” In
Communications (ICC), 2013 IEEE International Conference on, pp. 2205-2210.
IEEE, 2013.

