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Let G = (V, E) be a connected, undirected, edge-weighted graph. A subgraph of 

G satisfying a certain criteria will be called an optimal solution if its total edge-weight 

is minimum among all subgraphs satisfying the given criteria. The minimum spanning 

tree (MST) of G is its optimal spanning tree. The constrained forest problem (CFP), a 

more general version of the M ST, is the problem of finding an optimal spanning forest 

in which each tree spans at least m, a given number of vertices. When n = lVI is a 

multiple of m, a variation of the C F P is the exact constrained forest problem (ECFP ), 

where each tree spans exactly m vertices. We shall also refer to EC F P as the m-subtree 

problem. For m = 2, the m-subtree problem reduces to the minimum weight perfect 

matching problem which is the problem of finding an optimal set of edges such that 

each vertex is incident to exactly one edge. 

The traveling salesman problem (TSP) is the problem of finding an optimal tour 

(Hamiltonian cycle) covering all the vertices in V. A more general version of the T S P 

is the constrained cycle problem (CCP}, which is the problem of finding an optimal set 

of vertex-disjoint cycles each covering at least m vertices. For m = 3 the CC P reduces 

to the so-called 2-matching problem and for m = 4 to the triangle-free 2-matching 

problem. When n is a multiple of m, a variation of the CCP is the exact constrained 
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cycle problem (ECCP) where each cycle covers exactly m vertices. We shall also refer 

to the ECCP as them-perfect matching problem. 

Except for the botmdary cases of the above mentioned problems e.g. M ST, the 

perfect matching problem, these problems are N P-hard. A crucial component of the 

thesis is a fast 2-approximate heuristic for the CFP which is proved to be N P-hard 

for m ~ 3. From this heuristic, under the assumption of the triangle inequality, we 

obtain a 4-approximate heuristic for the CC P and a general class of heuristics for the 

ECFP and the ECCP. In addition to the heuristic for the CFP, this general class 

of heuristics is a powerful combination of the Onethird and the hypergreedy heuristics 

for perfect matching. This class of heuristics allows adjustable time complexity and is 

capable of producing approximate solutions within either a constant or a very slowly 

growing function of n times the optimal weight. 
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Chapter 1 

Introduction. 

1 

There are many combinatorial optimization problems for which either exact solutions 

are hard to find, e.g. for NP-complete problems, or an implementation of exact 

polynomial-time solutions is too slow in practice. We will focus in this thesis on general 

approximation techniques for particular classes of graph covering problems, for which 

we will find fast and easy to implement heuristics that produce near optimal solutions 

within guaranteed error bound. By the error of a heuristic algorithm we mean the worst 

case ratio, of the cost of an approximate solution produced by the heuristic to the cost 

of the optimal solution. A heuristic algorithm is said to have performance guarantee of 

a if it produces a solution within an error of a. H additionally the heuristic runs in a 

polynomial time, we call it an a-approximate algorithm. In general we denote the error 

of a heuristic by f(n), a function of the number of vertices nina given graph. 

In this thesis we will deal with families of combinatorial optimization problems on 

undirected edge-weighted graphs. Given an edge-weighted graph K(V), lVI = n and 

a natural number m, a subgraph of K(V) satisfying certain criteria will be called an 

optimal solution it its total edge-weight is minimum among all subgraphs satisfying 

the given criteria. We consider a class of graph covering problems with an optimal 

set of vertex-disjoint connected components which are either trees of cycles satisfying 

certain requirements on their size, i.e. the number of vertices they will cover. H the size 

of each tree and cycle is at least m, we call the problems constrained forest problem, 

(CFP} and the constrained cycle problem, (CCP}, respectively. Form= 3, the CCP 

becomes the so-called 2-matching problem, where a graph is covered with an optimal 

set of cycles, each spanning at least 3 vertices, and form= 4, it reduces to the triangle

free 2-matching problem. Form= n, the CFP becomes the minimum spanning tree 
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problem. 

H the number of vertices in each tree and cycle is exactly m and in addition we as

sume that m divides n, we consider another class ofthe exact constrained forest {ECFP) 

and the exact constrained cycle (ECCP) problems, to which we will refer throughout 

the thesis as the optimal m-subtree problem and the optimal m-perfect matching, re

spectively. For m = 2 the optimal m-subtree problem becomes the minimum-weight 

perfect matching, which is a minimum-weight cover of a graph, where each vertex is 

incident to exactly one edge; and for m = n, it reduces to the minimum spanning tree 

problem. For m = n, the optimal m-perfect matching becomes the traveling salesman 

problem, which is a minimum-weight cycle covering all the vertices in a graph. For 

all these problems our proposed heuristics are capable of producing fast approximate 

solutions, whose worst-case error factors are bounded either by constants or very slowly 

growing functions of n. In some cases we assume that the edge-weights satisfy the tri

angle inequality. Except for the boundary cases of the above mentioned problems e.g. 

M ST and the minimum-weight perfect matching, these problems are N P-hard. 

The minimum-weight perfect matching problem can be solved exactly in polynomial 

time by the original Edmonds' algorithm [17), which was implemented by Gabow [21] in 

O(n3 ) time for dense graphs. The fastest polynomial time implementation of Edmonds' 

algorithm is due to Gabow [23), and its running time is O(n(m + nlogn)), where m 

is the number of edges in the graph. Since the algorithm is too slow in practice, 

for large n, there has been a need for faster and simpler approximate algorithms for 

the problem. There are several heuristics for the minimum-weight perfect matching 

that run faster that the exact algorithm, like Reingold and Tarjan's greedy heuristic 

[47), Papadimitriou's minimum spanning tree heuristic, in [47), Supowit, Plaisted and 

Reingold's hypergreedy heuristic [45), [50), Grigoriadis and Kalantari's Onethird class of 

heuristics [29), and Gabow, Goemans and Williamson's algorithm [24), [27). 

An approximate solution to the traveling salesman problem (TSP), which is NP

complete, can be obtained by using either the well known 2-approximate MST-heuristic 

in O(n2) time [44) or Christofides' (~)-approximate heuristic which runs in O(n3) time. 

The above heuristics for the minimum-weight matching and the traveling salesman 
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problem are designed for single problems, rather than for a class of problems which 

can be solved using the same methodology. We propose in the thesis, general classes of 

heuristic algorithms which produce solutions for a spectrum of constrained forest and 

cycle problems, which includes the minimum-weight perfect matching, 2-matching prob

lem, traveling salesman problem and minimum spanning tree as special cases. In the 

general classes of heuristics, we exploit the techniques used in the two existing heuristics 

for the minimum-weight perfect matching, (specifically the hypergreedy heuristic (45], 

(50), and the Onethird class of heuristics (29]), and a heuristic which we designed for 

the C F P. This combination of the three heuristics, in which the heuristic for the C F P 

plays the crucial role, results in obtaining a methodology for finding approximate solu

tions for the C F P, CC P, optimal m-perfect matching and optimal m-subtree problem. 

For the CFP, which we show is N P-hard form~ 3, we develop a 2-approximate 

heuristic, which runs within the time needed to compute a minimum spanning tree. This 

fast and very simple heuristic is extensively used in obtaining approximate solutions for 

the other families of problems. Even though the heuristic is as simple as the trivial M ST 

heuristic for the traveling salesman problem, proving the error bound of 2 required a 

sophisticated proof. This heuristic gives rise, in linear time, to a 4-approximate solution 

to the CCP. Thus, for m = 3, this becomes a fast 4-approximate algorithm for the 

2-matching problem, and form= 4 a fast 4-approximate heuristic for the triangle-free 

2-matching problem. 

We propose a class of heuristics for the optimal m-subtree problem and the optimal 

m-perfect matching problem called the ( t, k )-heuristic, where t and k are integer pa

rameters ranging from 0 to log n. The ( t, k )-heuristic is a generalization of the Onethird 

class of heuristics for perfect matching by Grigoriadis and Kalantari [29], and in addi

tion uses a combination of the heuristic for the C F P and the hypergreedy by Plaisted, 

Reingold and Supowit (45], (50). We consider a subclass of the (t, k)-heuristic, fork= 1 

and t = flog(;;:)l (form= 2, t = llog3 nJ), called the Generalized Hypergreedy, which 

is a combination of the heuristic for the C F P and the hypergreedy heuristic. Because of 

its relative simplicity and its potential use in other heuristics, the Generalized Hyper

greedy will be treated, throughout the thesis, as a separate class ofheuristics. Therefore 
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we will analyze the error and the time complexity of the Generalized Hypergreedy sep-

arately. This will also allow to understand better the more complex analysis of the 

(t, k )-heuristic. 

The error and the time complexity of the Generalized Hypergreedy for the m-subtree 

problem and the m-perfect matching are shown in the following table: 

Problem Error Time Complexity 

m-subtree problem 2llog3 nJ O(n2 logn) 

m=2 

m-subtree problem 4m~l [flog(~)l] 0( n2 log( ~)) 

3<m<.!!. - - m 

m-perfect matching 2llog3 nJ O(n2 logn) 

m=2 

m-perfect 4m~1 (2~1 + flog(~)l -1) O(n2 log(~)) 

3 < m<.!!. - - m 

For m = 2, the Generalized Hypergreedy, for the m-subtree problem, reduces to 

the hypergreedy heuristic for perfect matching, and runs in 0( n 2 log n) time. For large 

m, (m = ~. ~r ~ •••• ),the Generalized Hypergreedy is a constant-error heuristic, which 

runs in O(n2 ) time, while for small m, it becomes a (logn)-error heuristic running 

in O(n2 logn) time. For m = n the Generalized Hypergreedy reduces to the exact 

minimum spanning tree algorithm and the minimum spanning tree heuristic for the 

traveling traveling salesman problem for the m-subtree problem and the m-perfect 

matching, respectively. 

The (t, k)-heuristic, for given t and k, consists of (k + 1) stages, and we obtain at 

the first k stages an approximate solution, which possibly covers all the vertices in V. 

H after the first k stages, there are nk unmatched vertices, the heuristic uses, at the 

last ( k + 1) stage, an algorithm A, which can be either another heuristic or an exact 

algorithm for the problem. We mean by fA(nk) the error of the algorithm A, applied 
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to a complete graph with nk vertices. The error and the time complexity of the ( t, k )

heuristic for the m-subtree problem and the m-perfect matching are described in the 

following table: 

Problem Error Time Complexity 

m-subtree (2(,:-1) + fA(nk)](a1)k- tm~1 O(tn2 ) 

problem where a1 = 2m~1 (1 + 4t(m~1 )] 

m-perfect (2(:-1) + fA(nk)](a1)k- tm~1 O(tn2 ) 

matching where a1 = 2m~l (1 + 4m~l (m~2 + t)] 

Form= 2, t = llog3 nJ, and k = 1, the (t,k)-heuristic for them-subtree problem, 

reduces to the hypergreedy. For m = 2 and t = 1, the (t, k)-heuristic for m-subtree 

problem, becomes the Onethird class of heuristics. In Fig.l.1 we illustrate the relation

ships between the ( t, k )-heuristic, the Generalized Hypergreedy, hypergreedy and the 

Onethird. 

We show that all our heuristics run considerably faster for Euclidean points in the 

plane, while their error bounds increase only slightly, in some of the cases. The heuristics 

for the C F P and CC P use the algorithm for the Euclidean minimum spanning tree, 

and run in O(nlogn) time. The (t, k)-heuristic and the Generalized Hypergreedy make 

use of approximation of the complete graph K(V) by the Delaunay triangulation of 

V (46). The Delaunay triangulation is a planar graph, which approximates complete 

Euclidean graphs (9), (37}, within a small constant error bound. The best bound on 

this approximation has been shown by Keil and Gutwin (37) to be: 

a= 2.42. (1.1) 

Thus, by using the Delaunay triangulation of V, instead of K(V), the size of the 

input problem reduces from O(n2) to O(n). 

For Euclidean points in the plane, the error and time complexity of the Generalized 

Hypergreedy are described below: 
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0 (t,k)-heuristic form-subtree problem and 0 
and m-perfect matching 

hypergreedy for perfect matching 

Onethird for perfect matching 

heuristic for the CFP 4 • 

'I 

heuristic for the CCP 

\ I \j 

Generalized Hypergreedy -~ t(t,k)-heuristic for perfect matching 

k = 1 and t = log (nlm) m=2 

(form=2 t =log n) 
3 

\V L/ \/ 

hypergreedy for perfect matching Onethird for perfect matching 

m = 2 and t = log n k= I andm=2 
3 

Figure 1.1: Outline of the results of the thesis 
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Problem Error Time Complexity 

m-subtree problem 2allog3 nJ O(nlog2 n) 

m=2 

m-subtree problem 4m~1 [1 + a(flog(~)l -1)] O(nlognlog(~)) 

3<m<11. - - m 

m-perfect matching 2allog3 nJ O(nlog2 n) 

m=2 

m-perfect matching 4m~1[2m~1 + a(flog(~)l-1)] O(nlognlog(~)) 

3<m<11. - - m 

For large m, (m = ~' ~' ~, .. . ),the Generalized Hypergreedy for Euclidean points in 

the plane produces constant-error heuristics in O(nlogn) time. For small m, it becomes 

a (log n )-error heuristic running in 0 ( n log2 n) time. In particular, for m = 2, the 

Generalized Hypergreedy for the m-subtree problem becomes the hypergreedy heuristic 

for perfect matching for points in the Euclidean plane, which runs in O(nlog2 n) time, 

with the error bounded above by 2.42(2Llo~ nJ +1. This heuristic is faster than Vaidya's 

0 ( n log3 n )-time and ( 3log3 ~n )-error heuristic for Euclidean points in the plane [53]. 

For Euclidean points in the plane, the error and the time complexity of the ( t, k )

heuristic for the m-subtree problem and the m-perfect matching 

Problem Error Time Complexity 

m-subtree [2(:-1) + f....t(nk)](a2)k - ~m~1 O(tnlogn) 

problem where a2 = 2m~1 [1 + 4m~1 (1 + a(t -1))] 

m-perfect [2(,:-1) + f....t(nk)](a2)k- ~m~1 O(tnlogn) 

matching where a2 = 2m~1 [1 + 4m~1 (2m~1 + a(t- 1))] 

We introduce two exact dynamic programming algorithms for optimal m-perfect 

matching and the optimal m-subtree problem, which run in 0( m22n+m + 22n-m) and 

0(22n- m) time, form < n, respectively. Form= n, the dynamic programming algo

rithm for them-perfect matching reduces to the O(n22n)-time dynamic programming 
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algorithm for the traveling salesman problem, and the dynamic programming algorithm 

for the m-subtree problem becomes the O(n2 )-time algorithm for minimum spanning 

tree. These heuristics can be used in the last stage of the ( t, k )-heuristic, when the size 

of the problem becomes small enough. 

We develop a heuristic for the minimum-weight perfect matching, called the t

hypergreedy, which is a combination of the hypergreedy heuristic with an exact minimum

weight perfect matching algorithm. In the following table we present the error and time 

complexity of the t-hypergreedy for weights satisfying the triangle inequality: 

Heuristic Error Time Complexity 

t-hypergreedy 2t+ 1 O(maz{tn2 , ~!}) 

For Euclidean points in the plane, the error and the time complexity of the t

hypergreedy are following: 

Heuristic Error Time Complexity 

t-hypergreedy a(2t + 1) O(maz{tnlogn, n2 ;1sn, ~3,}) 

Goemans and Williamson [27] proposed a general approximation technique for graph 

covering problems with a constant error bound and time complexity of O(n2 logn), 

which was recently improved by Gabow, Goemans and Williamson to O(n2Jloglogn) 

[24]. From now on, the Gabow, Goemans and Williamson's algorithm will be referred 

to as the GGW algorithm. Our 2-approximate heuristic for the C F P has the same 

error bound as the GGW algorithm for the problem, and its O(n2 ) and O(nlogn) 

running time, for general weights and for Euclidean points in the plane, respectively, is 

faster than that of the 2-approximate GGW algorithm. Thus our algorithm is superior 

to the corresponding GGW algorithm. Also, the 4-approximate and heuristic for the 

CCP, which runs in the same time as the heuristic for the CFP, is faster than the 

corresponding 2-approximate GGW algorithm. 

We use the GGW algorithm in the last stage of the ( t, k )-heuristic. In the following 
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table we compare other heuristics for the perfect matching with instances of the ( t, k )

heuristic combined with the GGW: 

Heuristic Error Time Complexity 

greedy in0.585 
3 O(n2logn) 

(Reingold and Tarjan) 

MST heuristic n O(n2) 2 

Papadimitriou 

hypergreedy 2log3 ~n O(n2logn 

(Plaisted, Supowit and Reingold) 

GGW, (Gabow, Goemans 2 O(n2y1oglogn) 

and Williamson) 

Onethird with GGW 3(log3 log3 n )0·25 - 1 O(n2) 

( Grigoriadis and Kalantari) 

t = 1 and k = i log3 log3 log3 n 

(t, k)-heuristic with GGW 3(log3 log3 n )0·125 - 1 O(n2) 

t = 4 and k = {6 log3 lo~ lo~ n 

(t, k)-heuristic with GGW ~(log3 log3 log3 n) + 2 0( n2log log log n) 

k = 1 and t = i log3 log3 log3 n 

The ( t, k )-heuristic with the GGW produces similar results for other values of m. 

For example, form= 4: 

Heuristic Error Time Complexity 

GGW 4 O(n2y1oglogn) 

( t, k )-heuristic with GGW 2.66(loglogn)0·27 - .59 0( n2log log log n) 

t = 4 and k = {6 log3 log3 lo~ n 

Finally we present an example of a parallel implementation of a perfect matching 

heuristic. We show that we can implement the basic Onethird heuristic in O(log3 n) 
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time using O(n) processors, for the Euclidean points in the plane; and in O(log2 n)-time 

and using O(n2 ) processors, for general weights satisfying the triangle inequality. 

The organization of the thesis is following. The next chapter contains formal defini

tions of the optimal perfect matching, C F P, CC P, optimal m-subtree and the optimal 

m-perfect matching problems; and include more detailed description of the results. In 

Chapter 3, an analysis of the heuristic for the C F P and CC P is presented. It is also 

shown in the chapter that the C F P is N P-hard for m ~ 3. The construction of the 

t-basic graph is described in Chapter 4. This chapter also contains the analysis of the 

error and time complexity. The implementation oft-basic graph, for the Euclidean case, 

is presented in Chapter 5. The Generalized Hypergreedy heuristic for the m-subtree 

problem and them-perfect matching is described and analyzed in Chapter 6. The fol

lowing Chapter 7 contains the analysis of the ( t, k )-heuristic for the m-subtree problem 

and them-perfect matching. In Chapter 8, two dynamic programming algorithms for 

them-subtree problem and them-perfect matching, respectively, are presented. Chap

ter 9 contains the description and analysis of the t-hypergreedy, a heuristic for perfect 

matching. In Chapter 10 a parallel implementation of the simplest Onethird heuristic 

is presented. The last chapter contains the concluding remarks. 

1.1 Applications. 

We describe here examples of application problems which can be formulated as one of 

the following problems: the minimum-weight perfect matching, the C F P, them-subtree 

problem and the m-perfect matching. We will indicate which of the above optimization 

problems represent an exact solution, and which of the heuristics presented in this thesis 

could be used to obtain an approximate solution. 

Efficient Use of Mechanical Plotter 

Consider the problem of plotting a graph G = (V, E), which represents a street map 

of a city (or VLSI circuits). Each vertex is given by its (z,y) coordinates. Since, in 

general, such a graph does not contain an Euler tour, i.e. a cycle which would visit each 

edge in the graph exactly once, it cannot be drawn without wasted pen movements. 
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Thus the pen has to be moved in the up position to a new location, and the distance 

corresponding to the motion is wasted. A graph is Eulerian if the degrees of all its 

vertices are even. We can make G Eulerian by matching the vertices with odd degrees, 

such that each odd-degree vertex will be incident to exactly one edge in the matching. 

Now we can extract an Euler tour in the graph. We will draw the graph by following 

the tour and lifting the pen every time an edge from the matching will be visited. The 

total cost of the wasted pen movement corresponds to the total weight of the matching 

of the odd-degree vertices in G. H the vertices are matched using arbitrary matching, 

the wasted pen movement can be substantial. H the matching is a minimum-weight 

matching of the odd-degree vertices, the waste would be minimized. Thus we can define 

the wasted pen movements as the minimum-weight perfect matching. Since the size of 

the graph in real life can be very large, in tens of thousands of vertices, we would rather 

use an approximate perfect matching algorithm instead of an exact one. 

Vehicle Routing Problem 

There is a collection of drivers to deliver to a set of n customers, where each driver 

has to serve the same number of m customers, where m divides n. To make a decision 

about which subset of m customers will be assigned to each driver, we want to represent 

the collection of single vehicle problems as the minimum-distance collection of closed 

tours, each covering exactly m customers. The exact solution to this problem problem 

is the m-perfect matching, and we can solve it approximately using the Generalized Hy

pergreedy or the ( t, k )-heuristic. The size of the problem, i.e. the number of customers, 

could be in hundreds. 

Clustering Problem 

Given a black-and-white image, we wish to learn about its shape, by finding first 

clusters of black pixels, where each cluster contains at least a given minimum number 

of pixels. We can formulate the problem as the C F P and use our heuristic to obtain 

a 2-approximate solution. Given the clusters, we can further extract the shape of the 

image. The size of the problem corresponding to a number of pixels in an image, could 

be in range of 218• 

Design of Communication Networks 
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We want to design a collection of local area networks, which would satisfy the 

scalability property, that all the networks will serve a balanced load, i.e. it will serve 

exactly the same number of m workstations. We will assume the topology of each such 

local area network to be either a tree or a cycle. Given a collection of n sites ( m divides 

n), we wish to cover the sites with ~ trees (cycles) of size exactly m, such that the 

total cost of the links between the sites would be minimum. Clearly this problem can be 

formulated as either the m-subtree problem or the m-perfect matching. We anticipate 

that the local area networks can be interconnected, but the cost of these relatively 

unused links connecting the servers in the networks, is irrelevant . 



Chapter 2 

An Extended Description of the Problems and the 

Results. 
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In Section 2.1, we will present the problem of finding the minimum-weight perfect 

matching in a weighted complete undirected graph. Edmonds' algorithm [17] for the 

problem is an example of a successful search for a polynomial-time algorithm for an 

integer programming problem. Because of the application of the minimum-weight per

fect matching in areas, where large-scale problems have to be solved, a number of fast 

and near-optimal perfect matching heuristics have been proposed during last ten years. 

We will describe some of them, especially those which were used in designing of our 

heuristics for the problem. The results obtained by our heuristics will be compared to 

those obtained by the other heuristics. 

There has been little done in the area of developing heuristics for the general class 

of graph covering problems, considered in this thesis. Until the recent result, the GGW 

algorithm by Gabow, Goemans and Williamson [27], [24], there had been no known 

heuristic for a class of weighted graph covering problem. In the subsequent sections, the 

CFP, CCP, m-perfect matching and them-subtree problem will be defined formally. 

The results obtained by our heuristics for the problems would be outlined and compared 

to the corresponding results obtained by the GGW algorithm. 

2.1 Minimum-Weight Perfect Matching. 

Let V be a set of vertices, where n = lVI is an even number, and let K(V) be a 

complete edge weighted graph on V satisfying the triangle inequality, see Fig.2.1. A 

perfect matching of V is a set of edges such that each vertex of V is incident to exactly 

one edge. An optimal perfect matching of Vis a perfect matching with minimum total 
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edge weight, see Fig.2.2. 

The optimal perfect matching can be obtained by the Edmonds' algorithm [17], [21 J, 

in O(n3 ) time, using the well-known augmentation method [44]. For many years the 

heuristics for solving the perfect matching had not received much attention, because it 

was one of the rare combinatorial problems, for which existed a polynomial-time algo

rithm. But in the last decade new developments have occurred in relevant application 

areas (e.g. pen-plotting, VLSI), where for large-size problems even an 0( n3 ) implemen

tation of Edmonds' algorithm is simply too expensive. This has motivated search for 

faster and simpler approximate algorithm for the problem. There are several heuristics 

for the optimal perfect matching problem which run faster than the exact algorithm, 

like Reingold and Tarjan's ~n°·585-approximate and O(nlogn)-time greedy heuristic 

[47], that repeatedly matches the two closest unmatched vertices. The bound on the 

error is shown to be tight. Another algorithm the Papadimitriou's minimum span

ning tree (MST) ~-approximate and O(n2 )-time heuristic, described in [50], starts with 

spanning tree on the vertices, and converts it into a matching by repeatedly matching 

the leaves in the tree. The ~ error bound is asymptotically achievable. Both algorithms 

apply to general non-negative weights. 

Plaisted, Reingold and Supowit [50] and Plaisted and [45] have proposed a 2log3 (in)

approximate hypergreedy heuristic, which runs in 0( n2 log n) time for edge weighted 

graphs satisfying the triangle inequality. For the same class of weighted graphs, Grigo

riadis and Kalantari's have obtained a generic class of heuristics Onethird [29], which 

for each nonnegative integer k ~ log3 n, and for any perfect matching algorithm that 

runs in t A ( n) time and has an error bound of fA ( n) time the optimal weight, produces 

a [G)k(l + fA(3-kn))- !]-approximate heuristic in O(max{n2 , tA(3-kn)}) time. The 

hypergreedy and the Onethird heuristics, will be outlined later. The recent Gabow, 

Goemans and Williamson's ( GGW) algorithm [27), which represents a general approx

imation technique for a class of graph covering problems, finds a perfect matching in 

O(n2y1oglogn) time and within error bound of 2. Grigoriadis and Kalantari showed 

in [28] that any perfect matching heuristic that produces a solution within a finite error 

bound runs in O(nlogn) time. 
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Figure 2.1: K(V)- a complete edge weighted graph with V = n vertices. 
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Figure 2.2: Optimal perfect matching of K(V). 
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There are other exact algorithms which solve the minimmn weight perfect matching 

for weights satisfying certain conditions. The fastest algorithm for the case of Euclidean 

points in the plane, due to Vaidya [51], runs in O(n2·5 log4 n) time. Special cases of 

the problem can be solved faster. For example, Marcotte and Suri [41] proposed an 

0( n log n) time exact algorithm for the case where the points are the vertices of a convex 

polygon. 

We propose two classes of heuristics for optimal perfect matching, one called the 

( t, k )-heuristic, where t and k are integer parameters satisfying 0 :S t, k :S llog3 n J, 
and the other called the t-hypergreedy, where 0 :S t :S llog3 n J. The ( t,k)-heuristic for 

perfect matching is a generalization of the hypergreedy heuristic and the Onethird class 

of heuristics, which will outlined below. The hypergreedy algorithm, which is presented 

here, is our version of the original hypergreedy algorithm: 

The hypergreedy 

Input: K(V), whose weights satisfy the triangle inequality 

Output: a perfect matching of K(V) 

1. Construct a sparse graph of K(V) in llog3 nj steps whose total weight is bounded 

above by llog3. n J times the weight of the optimal solution 

2. In every connected component (which covers an even nmnber of vertices): 

- duplicate the edges 

- extract an Euler tour (a cycle visiting each edge exactly once) 

- convert the tour into a Hamiltonian cycle ( a cycle visiting each vertex exactly 

once) 

2. Find the maximmn cardinality minimmn-weight matching 

The sparse subgraph constructed in the Step 1. of the hypergreedy is obtained in 

llog3 n J stages, by repeatedly finding a nearest neighbor graph of connected components 

which span an odd nmnber vertices. Since we will extend this construction to obtain 

the t-basic graph, which is used extensively in our heuristics, its detailed description is 

presented in Chapter 5. The hypergreedy is a 2llog3 nj-approximate heuristic running 
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in O{n2 logn) time. The following is the outline of the Onethird class of heuristics, 

which consists of k stages, 0 :::; k:::; Llog3 nJ, at at the last (k + 1) stage it uses an 

auxiliary minimum-weight perfect matching algorithm A: 

The Onethird (for weights satisfying the triangle inequality) 

Input: K(V), Vo = V 

Output: a perfect matching of K(V) 

At each stage j, j = 0, ... ,k -1 

1. For each vertex in V; find its nearest neighbor 

2. In every connected component of the nearest neighbor graph: 

- duplicate the edges 

- extract an Euler tour 

- convert the tour into a Hamiltonian cycle 

3. From the union of the Hamiltonians select a partial matching with exactly LlJ edges 

4. All unmatched vertices form set V;+1 and K{V;H)· 

After k stages: If k < log3 n, match the remaining unmatched vertices by an auxiliary 

perfect matching algorithm A. 

For each nonnegative k :::; Llog3 nJ and any existing minimum-weight perfect match

ing algorithm A that runs in t .4 ( n) time and has an error bound of f .4 ( n), the Onethird 

produces a heuristic that runs in 

{2.1) 

time and has an error bound of 

{2.2) 

The ( t,k)-heuristic generalizes the Onethird heuristic and uses some properties of the 

hypergreedy heuristic. This combination results in a class of heuristics, which improve 

the error bounds of the corresponding Onethird heuristics. Similarly to the Onethird, 
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the (t,k)-heuristic consists of (k + 1) stages. At each stage j, 0 s; j s; k- 1, it extracts 

from K(Vj), Vj C V(Vo = V), in t steps, a sparse subgraph, using the same construction 

as in the first part of the hypergreedy. From the sparse graph, it selects the maximum 

cardinality minimum weight perfect matching which forms a partial matching of K(Vj). 

Mter first k stages the heuristic possibly matches all the vertices of V. H this is not 

the case, then in the last ( k + 1 )-th stage the algorithm makes use of an auxiliary exact 

or approximate perfect matching algorithm, A, to match the remaining unmatched 

vertices. 

The error of the ( t,k)-heuristic, for weights satisfying the triangle inequality, is 

bounded above by 

(2.3) 

where f..t(nk) is the error of the algorithm A, applied to a complete graph with 

nk s; (-jr)kn vertices. With appropriate choice of k the time complexity of the (t,k)

heuristic is O(tn2 ). Fort = llog3 nJ and k = 1 the (t,k)-heuristic reduces to the 

hypergreedy and runs in O(n2 logn) time. H t = 1 and 0 s; k s; llog3 nJ, the (t,k)

heuristic becomes the Onethird class of heuristics. One should note that in the (t, k )

heuristic, a simplified version of the Onethird is generalized, therefore fort = llog3 nJ 

and k = 1 the actual error bounds of the ( t,k)-heuristic are slightly higher than than 

the corresponding bounds obtained for the Onethird. In the conclusion chapter tables 

illustrating the behavior of the ( t, k )-heuristic are presented. 

The GGW O(n2Jloglogn)-time algorithm finds a perfect matching whose weight 

is bounded above by 2 times the weight of the optimal perfect matching. Although the 

GGW algorithm has the interesting property of obtaining solutions within a constant 

error of two, one might be interested in obtaining even faster heuristics with reasonably 

small theoretical error. Clearly, on the surface the GGW algorithm is superior to the 

hypergreedy and does not leave any incentive to ever use the latter. In fact using 

the GGW algorithm in the last stage of Onethird, already produces a better heuristic 

than the hypergreedy (see below). As we shall see, the (t, k)-heuristic is more powerful 

than the Onethird, it makes use of the hypergreedy, and in conjunction with the GGW 
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algorithm results in a log3 log3 log3 n-error heuristic which runs in 0 ( n 2 log log log n) 

time. 

More specifically, suppose that in the (k + 1)-th stage the GGW algorithm is used. 

Onethird (the ( t, k )-heuristic with t = 1) with k = tlog3 log3 log3 n, gives a heuristic 

with time complexity of 0 ( n 2 ), and a reasonable error of 3(log3 log3 n )0 ·25 -1. Even this 

heuristic is better than the hypergreedy, both in time complexity and error. The ( t, k )

heuristic with t = 4, k = 116 log3 log3 log3 n, again has the time complexity of 0( n 2 ) 

and the error bounded above by 3(log3 log3 n )0 ·125 - 1, which is even better than that 

of the Onethird. Finally, for k = 1, t = tlog3 log3 log3 n, a solution is obtained, which 

is bounded above by (1.5lo~ log3 log3 n + 2) times the weight of the optimal solution. 

The corresponding time complexity is 0 ( n 2 log log log n), still an improvement over the 

O(n2 yloglogn) time of the GGW algorithm. 

The other heuristic, the t-hypergreedy heuristic [31], which is a generalization of the 

hypergreedy, provides an approximate solution with the error bounded above by 

f(n) = (2t + 1), (2.4) 

and the time complexity of 

(2.5) 

if at the last ( t + 1) stage the exact optimal perfect matching algorithm is used. 

For t = llog3 n J, this heuristic reduces to the hypergreedy. Note that the exact perfect 

matching algorithm can be used at the last stage of the t-heuristic, for any t, because 

the perfect matching is polynomialy solvable. Since this does not apply to the m-perfect 

matching and m-subtree problem, for m 2: 3, it is impossible to obtain a generalization 

of the t-hypergreedy for those problems. 

For Euclidean points in the plane, the t-hypergreedy is modified, such that its error 

is bounded above by a(2t + 1), where a = 2.42 is the constant corresponding to the 

worst case ratio of the weight of the shortest path in the Delaunay triangulation to the 

Euclidean distance in the plane [37] . The time complexity of the heuristic is 



20 

Figure 2.3: G = (V, E)- an undirected edge-weighted graph. 

n 2 logn n3 
T(n) = O(max{tnlogn, 3t , 33t} ). (2.6) 

In particular, fort= llog3 nj the modified t-hypergreedy has error bounded above 

by a(2llog3 nj +1), and it can be implemented in O(nlog2 n) time. This time complexity 

is also favorable with respect to Vaidya's O(nlog3 n) time heuristic [53], for points in 

the Euclidean plane, whose error is bounded above by 3log3 ~n. 

2.2 Constrained Forest Problem. 

Given an undirected edge-weighted graph G = (V, E) on the vertex set V, lVI = n, 

with edge set E, see Fig.2.3, and a natural number 2 ~ m ~ n, the constrained forest 

problem (CFP) is a forest, denoted by F~, of minimum weight (sum of the weights of 

the edges in F~), spanning all the vertices of G and such that each tree spans at least 

m vertices, see in Fig.2.4 the CFP of G(V, E)= K(V), form= 6. 

Analogous to the classical minimum spanning tree problem, CFP finds applications 
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Figure 2.4: Constrained forest problem (F!) form= 6. 

either directly or within the context of approximation algorithms for other combinatorial 

problems. For instance, approximate solutions to F2 obtained from a nearest neighbor 

graph of G have been used within heuristics for minimum-weight perfect matching, see 

e.g. Supowit, Plaisted, and Reingold [50], Plaisted [45], Grigoriadis and Kalantari [29], 

Imielinska and Kalantari [31] [32]. Moreover, form> 2, approximate solutions to F! 

have been considered in Goemans and Williamson [27] and Imielinska and Kalantari 

[33] in order to find approximate solutions for the more general NP-hard version of the 

optimal perfect matching problem, e.g. the optimal m-perfect matching problem and 

optimal m-subtree problem. 

We prove that form ~ 4, CFP is NP-hard. A simple greedy heuristic [33] is pro

posed for this problem, which is a modification of a minimum spanning tree algorithm, 

producing a solution whose weight is at most twice the optimal weight, form< n. For 

m = n, our algorithm reduces to a minimum spanning tree algorithm, i.e. it provides 

an exact solution to the C F P. The time complexity of the algorithm is the same as 
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the time complexity for finding a minimum spanning tree. In particular, our algorithm 

runs in O(IEI + lVI log lVI) time for general edge-weighted graphs, and in O(IVIlog lVI) 

time for Euclidean points in the plane. This 2-approximate heuristic improves the re

sult by Gabow, Goemans and Williamson [27], whose 2-approximate algorithm runs in 

O(IVI 2 + IVIJIEiloglog lVI) time [24]). 

2.3 Constrained Cycle Problem. 

Given a complete undirected edge weighted graph K(V) on the vertex set V, lVI = n, 

whose weights satisfy the triangle inequality, and a natural number 2 ::::; m ::::; n, the 

constrained cycle problem (CCP) is a set of minimum weight, vertex disjoint cycles, 

denoted by c;,., covering all the vertices of G and such that each cycle has at least m 

vertices, see in Fig.2.5 the CC P of graph K(V) from Fig.2.1. It is known that form 2: 5 

CCP is NP-hard (see [43], [55], [14]), polynomialy solvable form= 2 and m = 3 [19], 

and form= 4 is open [27] . When m = 3, the CCP becomes the 2-matching problem, 

and when m = 4, it is the triangle-free 2-matching problem [13]. In the presence of the 

triangle inequality, analogous to the minimum spanning tree heuristic for the traveling 

salesman problem, [44], it is easy to show that a 2-approximate solution of F:n_, in 

linear time gives rise to a 4-approximate solution for the CC P, for 2 ::::; m < n. Thus 

our 4-approximate algorithm which runs in O(n2 ) and O(nlogn) time for the weights 

satisfying the triangle inequality and for points in the Euclidean plane, respectively, is 

faster than O(n2.Jloglogn) 2-approximate GGW algorithm. 

Note, that for m = n, the CCP becomes the traveling salesman problem, and 

our algorithm reduces to the minimum spanning tree 2-approximate heuristic for the 

traveling salesman problem. 

2.4 Optimal m-Perfect Matching. 

Given a complete edge weighted graph K(V), lVI = n, satisfying the triangle inequality, 

and a natural number m, dividing n, the m-perfect matching of K(V) is a set of vertex 

disjoint cycles, of size exactly m, covering all the vertices V. An optimal m-perfect 
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Figure 2.5: Constrained cycle problem ( C;';.) for m = 3. 

matching of K(V), denoted by M;';.(V), is an m-perfect matching with the minimum 

weight, see in Fig.2.6 the optimal 3-perfect matching of K(V) from Fig.2.1. In partie-

ular, each cycle in the optimal m-perfect matching is an optimal Hamiltonian on the 

set of its vertices. 

If m = 2, the optimal m-perfect matching is a duplicated minimum weight perfect 

matching, i.e. the set of minimum weight, vertex disjoint 2-cycles, covering the set of 

vertices V. While for m = n the M;';.(V) reduces to the traveling salesman problem 

(TSP) [44], i.e. the minimum weight Hamiltonian cycle on the vertex set V. 

Unlike the ordinary minimum weight perfect matching, which can be solved, in 

O(n3 ), by Edmonds' algorithm [17], the optimal m-perfect matching is NP-hard for 

m 2: 3 [26]. 

We develop two families of heuristic algorithms for the optimal m-perfect match-

ing, called the (t,k)-heuristic, where t and k are integer parameters ranging from 1 

to log n, and the Generalized Hypergreedy. As is was mentioned in the introduction, 
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Figure 2.6: Optimal m-perfect matching (M~) form= 3. 

the Generalized Hypergreedy is in fact a subclass of the (t, k)-heuristic, but it is ana

lyzed separately in this thesis. Also a dynamic programming algorithm for m-perfect 

matching is introduced, which can be used in the above two classes of heuristics. 

The ( t, k )-heuristic for m-perfect matching is a generalization of the hypergreedy 

and Onethird heuristics for perfect matching, and additionally it makes use of the 

heuristic for the C F P. The heuristic consists of (k+ 1) stages; at each stage j, 0 ::; j ::; 

k- 1, it selects a partial m-perfect matching, which is a set of vertex disjoint m-cycles 

covering a fraction of vertices in Vj, Vj C V. The central structure, at each stage of 

the ( t, k )-heuristic, is the t-basic graph, which is a sparse subgraph of K(Vj ), obtained 

in 0( tn2 ) from a combination of the heuristic for the C F P and an algorithm based on 

the hypergreedy heuristic. The t-basic graph has the property that its edge-weight can 

be related to the weight of the optimal m-perfect matching of K(Vj). 
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H after first k stages of the ( t, k )-heuristic there are some vertices in V left un

matched, it uses an m-perfect matching algorithm A, which can be either the Gen

eralized Hypergreedy, the GGW algorithm, or our dynamic programming m-perfect 

matching algorithm. 

The error of the (t,k)-heuristic, for weights satisfying the triangle inequality, is 

bounded above by by 

(2.7) 

for 2 ~ m ~ ¥ , where nk is the number of unmatched vertices after k stages, f.A.(nk) 

is the error of the algorithm A, applied to a complete graph with nk vertices, and 

m-1 m - 1m-2 
a1 = 2--[1 + 4--(-- + t)]. 

m m m 
(2.8) 

For m = n, the ( t, k )-heuristic for the m-perfect matching problem, reduces to the 

minimum spanning tree, 2-approximate heuristic, for the traveling salesman problem. 

For Euclidean points in the plane, the (t, k)-heuristic uses, at each stage j, 0 ~ j ~ 

k- 1, an approximate t-basic graph, obtained from the Delaunay triangulation of Vj, 

in O(tnlogn) time. The error of the (t, k)-heuristic for Euclidean points in the plane 

is bounded above by 

m k 4 m 
f(n) = [2(m- 1) + f.A.(nk)](a2) - 9 m- 1' (2.9) 

for 2 ~ m ~ ~~ where a2 = 2 171~ 1 [1 + 4 171~1 (2 171~ 1 + a(t - 1))] and a = 2.42. 

Form= n, the (t, k)-heuristic reduces to the 2-approximate minimum spanning tree 

heuristic for the Euclidean traveling salesman problem. 

The time complexity of the (t, k)-heuristic, when k is selected appropriately, is 

O(tn2 ) for weights satisfying the triangle inequality, and O(tnlogn) for the Euclidean 

points in the plane. 

The second class of heuristics, the Generalized Hypergreedy is a combination of 

the heuristic for the C F P and the an algorithm based on the hypergreedy. Its central 

structure is also, as for the (t, k )-heuristic, the t-basic graph (the approximate t-basic 
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graph, for Euclidean points in the plane). The algoritlun constructs the t-basic graph ( 

the approximate t-basic graph) , for such t, that all the resulting connected components 

in the graph admit m-perfect matchings, which form an approximate solution. The 

error of the Generalized Hypergreedy is bounded above by 

f(n) = 2llog3 nJ - 1 (2.10) 

form= 2; and by 

m-1 m-1 n 
f(n) = 4--[2-- + flog(-)l-1] 

m m m 
(2.11) 

for 3 s; m s; ~ . For m = n this heuristic reduces to the minimum spanning tree 2-

approximate heuristic for traveling salesman problem. For m = ~ the error is f( n) = 8, 

form= ~ . ~ the error is f(n) = 12, and form= ~. ~ . ~. ~ the error is f(n) = 16. 

For Euclidean points in the plane, the error of the Generalized Hypergreedy is 

bounded above by 

(2.12) 

for m = 2; and by 

m-1 m-1 n 
f(n) = 4--[2-- + a(flog(-)l- 1)], 

m m m 
(2.13) 

for 3 s; m s; -~ , where a = 2.42. For m = n , this heuristic reduces to the 2-

approximate minimum spanning tree heuristic for the Euclidean traveling salesman 

problem. Form= ~.the error is f(n) = 8, form= ~.~.the error is f(n) = 4(2 +a), 

and form= ~. ~. ~. ~ the error is f(n) = 8(1 +a). 

The time complexity of the Generalized Hypergreedy is 

n 
T(n) = O(n2 log(-)), 

m 
(2 .14) 

for general weights satisfying the triangle inequality and 
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n 
T(n) = O(nlog(-) logn) 

m 
(2.15) 

for the Euclidean points in the plane. For large m = ]; , where k is a small natural 

number dividing n, the Generalized hypergreedy becomes a constant-error heuristic 

for them-perfect matching running in O(n2 ) and O(nlogn) time for general weights 

satisfying the triangle inequality and for Euclidean points in the plane, respectively. 

Both heuristics make use of the t.basic graph, denoted by BGt(W), where W <; V 

and IWI is divisible by m, and 1 ::; t < log n. The t.basic graph is constructed in t stages 

and it is a collection of two classes of sparse connected components, which are trees, 

classified as of type A and type B. A type A connected component contains a multiple of 

m vertices and it can admit an m-perfect matching. Any connected component which 

is not type A, is classified as the type B connected component. Given W, the BG1 (W), 

which is a forest of trees obtained by the heuristic for the C F P, where each tree has size 

at least m. Form::; l.!fl, the total edge weight of BG1(W) is bounded above by 2(mr:l) 

times the weight of M~(W). Form= IWI, the BG1 (W) becomes a minimum spanning 

tree of W and its weight is bounded above by (mr:l) time the weight of M~(W), the 

solution to the traveling salesman problem of K(W). Note that for m = n we can 

construct only the 1-basic graph. For m =/= IWI, the total edge weight of the t.basic 

graph, does not exceed [ (mr: 2) + t] times the weight of the optimal m-perfect matching 

of K(W). At each stage j, 0 ::; j ::; k -1, of the (t, k )-heuristic, for a given t, we extract 

from the t-basic graph an m-perfect matching covering a fraction of vertices in Vj C V. 

The Generalized Hypergreedy constructs the t.basic graph, for 

n 
t = ([log(-)1). 

m 
(2.16) 

Such t-basic graph guarantees that each connected component is of type A and 

admits an m-perfect matching. The union of the m-perfect matchings, obtained from 

all the connected components, forms an approximate solution. 
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For Euclidean points in the plane, the ( t, k )-heuristic and the Generalized Hyper

greedy use approximate t-basic graph, denoted by BGt(W), where each Euclidean dis

tance is replaced by the corresponding shortest path in the Delaunay triangulation, and 

its total weight is bounded above by 

m-1 
(2-- + a(t- 1)) 

m 
(2.17) 

times the weight of M~(W). This modified t-basic graph uses instead of O(n2 ) 

edges of the complete graph K(V), only O(n) edges of the Delaunay triangulation. 

The Delaunay triangulation is a planar graph and provides a good a-approximation 

for the Euclidean distances. Because the Delaunay triangulation can be constructed in 

O(nlogn), using the approximated t-basic graph results in a significant reduction of 

the time complexity of the corresponding heuristics, while their errors are affected only 

by the constant ratio of a. 

The (t,k)-heuristic selects at each stage j = 1, 2, ... , k, a partial m-perfect matching 

from the t-basic graph BGt(Vj) (from the approximate t-basic graph, BGt(Vj), for the 

Euclidean points in the plane), where Vj ~ V. The edge weight of the partial m-perfect 

matching does not exceed 

m-1 m-2 
4--(--+t) 

m m 
(2.18) 

times the weight of the optimal solution, for weights satisfying the triangle inequality 

and 

m-1 m-1 
4--(2-- + a(t- 1)) 

m m 
(2.19) 

times the weight of the optimal solution, for Euclidean points in the plane) times 

the weight of the optimal m-perfect matching of K(Vj). After k stages, an m-perfect 

matching algorithm A is applied to the remaining nk unmatched vertices. The union of 

them-perfect matchings obtained from all the (k + 1) stages forms an m-perfect match

ing of K(V), whose total error, for general weights satisfying the triangle inequality 

and the Euclidean points in the plane, we described above. In the last stage, either 
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Figure 2.7: Optimal m-subtree problem (T~) form= 6. 

our exact dynamic programming algorithm for the optimal m-perfect matching or the 

GGW algorithm can be used. The time complexity of this exact dynamic programming 

algorithm is O(m22n+m + 22n-m), a big improvement over a brute force method which 

would compare all possible m-perfect matchings in O(((m~!l)!)!n!) . 

2.5 Optimal m-Subtree Problem. 

Given a complete edge weighted graph K(V), lVI = n, satisfying the triangle inequality, 

and a natural number m, dividing n, them-subtree problem of K(V) is a set of vertex 

disjoint trees, each of size exactly m, covering all the vertices V. An optimal m-subtree 

problem of K(V), denoted by T~, is an m-subtree problem with minimum weight, see 

in Fig.2.7 the optimal6-subtree problem of K(V) from Fig.2.1. In particular, each tree 

in the optimal m-subtree problem is a minimum spanning tree on the set of its vertices. 

It can be proved that the optimal m-subtree problem in NP-hard for 4 s; m s; ~· 

For m = 2 the optimal m-subtree problem becomes the minimum weight perfect 
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matching problem, while for m = n it reduces to the minimum spanning tree problem 

on the vertex set V. 

Similarly to the heuristic algorithms for the optimal m-perfect matching, we intro

duce the same two classes of heuristics for the m-subtree problem, the (t,k)-heuristic, 

with parameters t and k ranging from 0 to log n, and the Generalized Hypergreedy. Also 

an exact dynamic programming algorithm will be presented for this problem. 

The t-basic graph, BGt(W), W C V, (approximate t-basic graph) which is used in 

both, the ( t, k )-heuristic and the Generalized Hypergreedy, has its weight is bounded 

above by 2t and (by 2(1 + a(t- 1))) times weight of T;.(W). 

The (t, k)-heuristic consists of (k+1} stages; at each stage j, 1 ~ j ~ k, it selects a 

partial solution toT;. spanning a fraction of vertices in Vj, Vj C V. After k stages, if 

there are some vertices in V left, which are not spanned, the heuristic uses an algorithm 

A for m-subtree problem, which can be either the Generalized Hypergreedy, the GGW 

algorithm, or an exact dynamic programming algorithm. 

The error of the {t,k}-heuristic, for weights satisfying the triangle inequality, 1s 

bounded above by Equation. 2. 7 for 2 ~ m ~ I, where nk is the number of unmatched 

vertices after k stages, f.A(nk) is the error of the algorithm A, applied to a complete 

graph with nk vertices, and 

m-1 m-1 
a1 = 2--[1 + 4t--]. 

m m 
(2.20) 

For Euclidean points in the plane, the error of the ( t, k )-heuristic is bounded above 

by Equation. 2.9 for 2 ~ m ~ I• where 

m-1 m-1 
a2 = 2--[1 + 4--(1 + a(t -1))]. 

m m 
(2.21) 

The time complexity of the (t, k)-heuristic, when k is selected appropriately, is 

O(tn2 ) for weights satisfying the triangle inequality, and O(tnlog n) for the Euclidean 

points in the plane. 

The error of the Generalized Hypergreedy, for general weights satisfying the triangle 

inequality, is bounded above by 
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(2 .22) 

for m = 2, which it the error of the hypergreedy for perfect matching; and by 

f(n) = 4~1 [flog(;;,)l], for 3 ~ m ~ ~· The time complexity of the Generalized 

Hypergreedy is O(n2 log(;;,)), for general weights satisfying the triangle inequality. 

For m = n, the the heuristic reduces to the exact minimum spanning tree algorithm, 

since the optimal m-subtree problem becomes the minimum spanning tree problem. For 

m = ~the error is f(n) = 4, form= ~,~the error is f(n) = 8, and form= ~, ~, ~, 7} 

the error is f(n) = 12. For all the above values of m, this heuristic runs in O(n2 ) 

time, a better time than that the 0( n2Jlog log n) time of the respective 4-approximate 

GGW algorithm. Form= 2, the Generalized Hypergreedy for them-subtree problem, 

becomes the 0( n 2 log n)-time hypergreedy heuristic for perfect matching. 

For Euclidean points in the plane, the error of the Generalized Hypergreedy is 

bounded above by f(n) = 2allog3 nj, form= 2, which corresponds to the error of our 

implementation of the Euclidean hypergreedy heuristic; and by 

m-1 n 
f(n) = 4--[1 + a(flog(- )l - 1)], 

m m 
(2.23) 

for 3 ~ m ~ ~. The time complexity of the Generalized Hypergreedy for Euclidean 

points in the plane is 0 ( n log(;;-) log n). 

For m = n, this heuristic reduces to the exact Euclidean minimum spanning tree 

algorithm. For m = r; the error of the heuristic is f(n) = 4, form = ~, ~ the error 

is f(n) = 4(1 + a), and for m = ~, ~, ~, 7} the error is f(n) = 4{2 + 2a). For all 

the above values of m, this heuristic runs in O(nlogn) time. Form= 2, the Gener

alized Hypergreedy reduces to our O(nlog2 n)-time implementation of the Euclidean 

hypergreedy. 

A dynamic programming algorithm for optimal m-subtree problem is proposed, 

which is similar to the dynamic programming algorithm for the optimal m-perfect 

matching, and has the time complexity of 22n-m. This algorithm can be used in the 

last stage of the (t, k)-heuristic, when the size of the problem is small enough, O(logn), 
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to improve the overall error of the heuristic. 



Chapter 3 

An Approximation Algorithm For the Constrained 

Forest and Cycle Problems 
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In this chapter we will present an approximation algoritlun for the constrained forest 

problem C F P, and use it to derive an approximation algoritlun for the constrained 

cycle problem CCP. For m 2': 4, we show that the CFP problem is NP-hard. We 

describe a simple 2-approximate greedy heuristic for the C F P that runs within the 

time needed to compute a minimum spanning tree. H the edge weights satisfy the 

triangle inequality, any such a 2-approximate solution, in linear time, can be converted 

into a 4-approximate solution for the CCP. 

3.1 NP-hardness. 

Theorem 3.1.1 Form 2': 4, the CFP is NP-hard. 

Proof: The theorem will be proved form = 4. The proof is easily generalizable for 

m > 4. We reduce the 3-dimensional matching problem to the CFP. Consider a given 

tripartite graph G1 = (V11 E 1 ), where V1 is the union of three disjoint set of vertices A, 

B, and C, each of the same cardinality l. A triplet (a,b,c), where a E A, bE B, and 

c E Cis acceptable if the edges (a,b), (a,c), and (b,c) are in E 1 . The 3-dimensional 

matching problem is to determine if all the vertices in V1 can be covered by vertex 

disjoint acceptable triplets, and it is NP-complete (see [26]). 

Given G1, consider the edge-weighted layered graph G2 = (V2 , E 2 ) with layers, 

where V2 = V1 U D U R; see Fig.3.1. The bottom layer consists of 31 vertices in V1 . 

The middle layer consists of the vertex set D with .6. vertices, where .6. is the number 

of acceptable triplets (a, b, c) in G1 . Each vertex d E D is connected to the vertices 
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R 

vl 

in A, B, and C which define the corresponding triplet by edges of weight 1. The top 

layer R consists of m copies of an auxiliary vertex. Let us assume that all these copies 

are connected to each other by edges of weight zero. In addition one of these copies is 

connected to each vertex in D by an edge of weight 0 < e < k. We assume that G2 is 

connected, i.e. each vertex in V1 is connected to a vertex in D. Otherwise, G1 does not 

admit a 3-dimensional matching. 

Let F:n be an optimal constrained forest of G2 and let w(F:n) denote its total edge 

weight. We claim that w(F:n) = 31 + e(Ll-1) if and only if G1 admits a 3-dimensional 

matching. To prove this let us first prove some facts. 

( i): There do not exist vertices v E Vt, d, d' E D such that the edges ( d, v), ( d', v) 

are in F:n. Otherwise, replacing one of these edges by the two edges ( d, R) and ( d', R), 

results in another feasible forest whose weight is less than w(F:n). 

Let Ds be the set of vertices d E D such that the three edges of the tree connecting 

d to its corresponding triplet (a, b, c) belong to F:n. 

{ii): w(F:n) = 31 + e(Ll- IDsl) ~ 31 + e(Ll- 1). To prove this one can observe that 

since each vertex in V1 is incident to an edge in F:n, the integral part of w(F:n) is at 

least 31. On the other hand w(F:n) is bounded above by {31 +eLl) which is the weight of 

the minimum spanning tree of G2 which in turn is less than {31 + 1 ). Thus, the integral 
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part of w(F~) is exactly 31. Let d be a vertex in D \ Ds. From (i), the edge ( d, R) must 

be in F~. Also, from the optimality ofF~, if dE D3 , then the edge (d, R) is not in F~. 

Hence the fractional part of w(F~) is e(.6.- IDsJ). To prove the lower bound, observe 

that if IDsl > 1, then w(F~) > 3IDsl > (31 + 1), a contradiction. 

Now we prove the claim. Suppose w(F~) = 31+e(.6.-1). From (ii), this implies that 

jD3 j = 1. From (i), the trees ofF~ containing vertices in D3 must contain all the vertices 

of V1 . Hence, the set of the triplets (a, b, c) corresponding to the vertices in D3 give 

a 3-dimensional matching of G1. Conversely, suppose that G1 admits a 3-dimensional 

matching. If in G2 vertices of each triplet are connected, in the 3-dimensional matching, 

to their corresponding vertex in D, there are 1 trees each with m = 4 vertices and of 

weight equal to 3. Next, connecting all the remaining .6.- 1 vertices in D to R, gives a 

tree of weight equal to e( .6. -1). Thus the total weight of these ( 1 + 1) trees is 31 + e( .6. -1) 

which from (ii) implies optimality of the corresponding forest. Clearly, this proof can 

be generalized tom> 4. 0 

Next, we show that the NP-hardness extends to the case where the weights satisfy 

the triangle inequality. 

Corollary 3.1.1 Form~ 4, CFP remains to be NP-hard for complete graphs satisfy

ing the triangle inequality. 

Proof: Consider G2 as in Theorem 2.1, with F~ as its optimal constrained forest. Let 

G2 be the complete graph on V2 whose edge weights are the weights of the shortest paths 

in G2 . Also let F~ be an optimal constraint forest of G2 • Clearly, w(F~) ~ w(F~). 

To prove the opposite inequality, suppose that each edge in F~ is replaced with its 

corresponding shortest path in G2. This results in a subgraph from which a feasible 

constrained forest can be obtained for G2 , with weight not exceeding w(F~). 0 

3.2 A greedy heuristic for CFP. 

In this section we describe a simple heuristic which assumes that a minimum spanning 

tree of G whose edges are denoted by M ST, is at hand. Using the edges in M ST, 
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Figure 3.2: Edges in Ci C G, j = 0, 1, 2, (in bold), incident to a connected component 
c. 

sorted according to their weight, the heuristic selects in a greedy fashion a forest Fm 

such that each of its trees is incident to at least m vertices . 

Algorithm Greedy 

Input: W = MST, Fm = 0 

Output: Fm forest of trees, each spanning at least m vertices. 

begin 

while Fm does not span V do 

if W =P 0 and the shortest edge e E W does not connect two trees 

of size at least min Fm then Fm = Fm U{e}; 

W=W\{e}; 

end 

In the remaining of this chapter we show that the weight of the final spanning forest 

Fm is bounded above by twice the weight of F:n. In order to prove this bound, first we 

will show the existence of a function(* : Fm -+ F:n such that: 

1. the weight of each edge in Fm is bounded above by the weight of its image. 
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2. ~* maps at most two edges in Fm onto each edge in F:;.. 

Let us first give some definitions. For any subgraph C of G, let size(C) be the 

number of vertices incident to the edges in C. If z is a vertex or an edge of C then 

z E C. Let us denote by w( C) the sum of the weights of the edges in C. Let Ci, 

j = 0, 1, 2 be the set of edges in G which are incident to j vertices in C. Note that an 

edge in C 2 is not necessarily in C. Fig.3.2 illustrates a connected component C of the 

approximate solution Fm and some of the edges in Cj C G, j = 0, 1, 2, (in bold). 

Lemma 3.2.1 Let Sk be the set of first k edges selected into Fm by the Greedy algo

rithm. Let C be any connected component of Sk satisfying size( C) < m. If f E C1 , 

then there ezists an edge g E M ST n C 1 satisfying w(g) ::; w(f). 

Proof. Assume f = ( v1. v2), with v2 E C. If f E M ST, then the lemma is obviously 

true. Assume otherwise. Adding f to M ST gives a cycle ( v11 v2, ... , Vj, vt), j ~ 3. By a 

well known property of M ST, the weight of f is greater than or equal to the weight of 

each edge in the cycle. If V3 t/. C, let g = ( v2, v3). Otherwise, if v4 t/. C, let g = (v3, v4), 

and so on. If v3 , v4 , ••• , Vj are all inC then g = ( Vj, v1) is the desired edge, since v1 t/. C. 

0 

Lemma 3.2.2 Let Sk be as in Lemma 3.2.1 and C any connected component of Sk. 

There ezists a mapping ~k: S k -+ F:;. such that 

(i): w(e)::; w(~k(e)) for any e E Sk. 

{ii): Ifsize(C) < m, there exists f E C 1 nF:;., such that l~k" 1 (f)nCI = 0, i.e. ~k does 

not map any edge in.C onto f. 

{iii): Iff E Ci n F:;., j = 0, 1, 2, then l~k" 1 (/) n Cl ::; j I i.e. ~k maps at most j edges 

inC onto f. 

Proof: The lemma is proved by induction on k. 

(Base:) For k = 1, Sk = {e} = C, see Fig.3.3(a). Suppose e E F:;,, let us define 

6(e) = ! = e. If C1 nF:;. = 0, then m = 2 and condition (ii) is void. Also (i) and 

(iii) are satisfied. If C1 n F:;, =J 0 containing say f', (ii) is satisfied, see Fig.3.3(b ). 
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Figure 3.3: St = {e}. 
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f 

f 

Conditions (i) and (iii) are again true. If e ~ F;;., see Fig.3.3(c), then there must be 

at least two edges in C1 n F:'r., say f and f'. Define 6 (e) = f. Since an edge with the 

smallest weight in M ST is necessarily an edge with the smallest weight in the entire 

graph G, then w(e)::; w(f). Condition (ii) is trivially true for f' and (iii) is obvious. 

(Induction:) Assume that ~k exists for a certain k. We show how to construct ~k+l from 

~k· Let ek+l = (a, b) be the (k+l)-th edge selected into Fm by the algorithm. Let Ca and 

cb be the connected components of sk incident to the vertices a and b, respectively. 

Note that by our aigorithm either size(Ca) < m or size(Cb) < m. Assume that 

size(Ca) < m. Let fa E C~ nF;;. satisfy (ii), which exists by the inductive hypothesis . 

Also if size( Cb) < m, let fb E Cl n F;;. satisfy (ii). Let C = Ca U Cb U{ ek+d· 

The following cases are possible: 

case(l}: size(C) ~ m, see Fig.3.4. 

case(2}: size( C)< m and fb E C1 nF;;., see Fig.3.5. 

case(3}: size(C) < m and both fa,fb E c2 nF;;., see Fig.3.6. 

In Fig.3.4 and Fig.3.5 the two copies of fa, solid and dashed, indicate the possibility 

that fa may belong to C1 n F:'r. or C2 n F;;.. We will prove that the function 
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f 
a ---

c b 
a c 

b 

Figure 3.4: size( C) 2: m and Ia E c~ nF;.. 

for any e E Sk (1) 

fore= ek+l 

satisfies the conditions (i) - (iii) of the lemma, for sk+l = sk U{ek+l}, in cases(!) 

and (2). To verify (i) one only has to show that w(ek+1 ) ~ w(fa), since the other 

inequalities follow from the inductive hypothesis for ~k· This inequality is valid because 

otherwise, by Lemma 3.1, there is an edge g E M ST n C~ such that w(g) ~ w(fa), and 

the algorithm would have selected the smallest such an edge instead of ek+l· 

Next it would be shown that condition (iii) is satisfied in cases(!) and (2). Let f 

be an edge in F!. For f =fi fa the set of edges which map onto f stays the same. If no 

edges in S k map onto f, then obviously (iii) still holds for f. If exactly one edge in S k 

maps onto/, then (iii) still holds. If two edges in Sk map onto/, then even if one is in 

Ca and the other is in Cb, which are now joined, (iii) is still satisfied. Since at most one 

edge in Sk map onto fa and no edges from Ca do, one could conclude that (iii) holds 

for f = fa as well. 

Condition (ii) is clearly satisfied by the inductive hypothesis for case(!) (it does not 

apply to C but will apply to other connected components of size less than m). Fore 

case(2), the edge fb satisfies (ii). 
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a --

b 
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b 

Figure 3.5: size( C) < m and fb E C1 n F;;.. 

Now consider case(3). Since size( C) < m, there must exist an edge f* E C1 n F;;.. 

If 1~; 1 (!*) n( Ca U Cb)l = 0, i.e. ~k does not map any edge inCa U Cb onto!*, then ek+t 

defined as in (1) still satisfies (i)- (iii): Clearly (i) is true as before. Also f* satisfies (ii). 

To check {iii), suppose fa:/= fb· Since 1~;1 (fa)nCal = 0, and 1~;1 (fa)nCbl ~ 1, then 

l~k"~1 (fa)ncl ~ 2. If fa= fb, then 1~; 1 (fa)n(caUCb)l = 0. Hence, le;~1 (fa)nCI = 
1. As before for other edges of F;;. the appropriate inequalities will hold. 

Now suppose that 1~;1 {/*)n(caUCb)l = 1, then ~k+t has to be modified. In this 

case let e* be an edge inCa U Cb such that ek( e*) = f*. The ~k+t is defined as follows: 

~k(e), fore E Sk and e :/= e* 

fore= e* (2) 

To verify (i), one can observe that by the construction of the algorithm and Lemma 

3.1, w( e*) ~ w( ek+1 ) ~ min{ w(fa), w(fb)}. The edge f* satisfies (ii). Regardless of the 

equality of fa and fb, (iii) will follow as argued before. 

Theorem 3.2.1 w(Fm) ~ 2w(F;;.). 

Proof: Let ~* : Fm -t F;;., where~* = ~k, for a k for which Sk = Fm· By {i) of Lemma 

3.2, for every e E Fm there is w(e) ~ w(~*(e)). To prove the theorem one only need 
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Figure 3.6: size(C) < m and fa,fb E C2 nF~ . 

to argue that for each f E F~, 1~;1 (!)1 :::; 2. Condition (iii) of Lemma 3.2 for j = 0, 

implies that only edges from connected components of Fm which are incident to f may 

be mapped onto f. H f is incident to two different connected components of Fm, then 

condition (iii), for j = 1 implies that at most one edge from each of the two connected 

component are mapped onto f. Therefore there are at most two edges mapped onto 

f. H f is incident to a single connected component Fm, then condition (iii) for j = 2 

implies that at most two edges of the connected component are mapped onto f. Thus, 

the desired inequality holds. 0 

The time complexity of the heuristic is the same as of the minimum spanning tree 

algoritlun, since in the first stage a minimum spanning tree is built, than in the second 

stage an algorithm is run which is again a modified minimum spanning tree algorithm 

on the edge set obtained in the first stage. Thus the overall time complexity is O{IEI + 
lVI log lVI) {if the Prim's minimum spanning algorithm [12] is used) and O(IVIlog lVI) 

{if the Euclidean minimum spanning tree algorithm [46] is applied) for general weights 

and for Euclidean points in the plane, respectively. This makes our heuristic superior to 

the O(IVI 2 + IVIv'IEiloglog !VI-time GGW algorithm, which provides a 2-approximate 

solution for the C F P. 
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Figure 3.7: An approximate solution to the CFP of K(V) with duplicated edges. 

3.3 Heuristic for CCP. 

Given a complete undirected edge weighted graph K(V) on the vertex set V, !VI = n, 

whose weights satisfy the triangle inequality, the the constrained cycle problem ( CCP), 

denoted by c:n, is the problem of finding a set of disjoint cycles of minimum-weight, 

covering all the vertices of a given graph, so that each cycle covers at least m vertices. 

As it was said before, in the presence of the triangle inequality, given a 2-approximate 

solution to the C F P on K(V), one can construct, in linear time, a 4-approximate 

solution to the CC P, analogous to the minimum spanning tree heuristic for the traveling 

salesman problem [44]. 

First, we will show that the weight of Frn, an approximate solution to the CFP is 

bounded above by two times the weight of a solution to the CCP, i.e. w(Fm) ~ 2w(C:n). 

The solution to the CC P which is a collection of cycles, each of size at least m, after 

removing from each cycle an edge becomes a forest, where each tree spans at least m 

vertices. Thus w(F~) ~ w(C:n) and w(Fm) ~ 2w(F~) ~ 2w(C:n). 
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Figure 3.8: An approximate solution to the CC P . 

Given an approximate solution to the C F P, by converting each tree into a cycle, an 

approximate solution to the CC P is obtained, as follows. The edges are duplicated in 

each tree in Fm, Fig.3. 7 illustrates such duplicated forest, and an Euler tour is extracted 

from each component, which is a cycle which passes through each edge exactly once. 

The weight of the union of the Euler tours is twice the weight of the forest. Now, using 

the triangle inequality, each Euler tour is converted into a Hamiltonian cycle, a cycle 

which passes through each vertex exactly once, whose weight is bounded above by the 

one of the tour. The union of the Hamiltonian cycles, see Fig.3.8, whose total weight 

bounded by 2 the weight of the solution to C F P, forms a 4-approximate solution to 

the CCP. 
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The t-basic Graph 
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The t-basic graph is used by the ( t, k )-heuristic, the Generalized Hypergreedy, and the 

t-hypergreedy. In this section we will describe the construction of the t-basic graph, and 

analyze its time complexity. The weight of the t-basic graph extracted from a complete 

graph would be related to the weight ofthe solution for the optimal m-perfect matching 

and the optimal m-subtree problem, respectively. We will analyze the time complexity 

for general weights satisfying the triangle inequality. 

4.1 The Construction of the t-basic Graph. 

Let W be a subset of vertices in V, let us denote by BGt(W), the t-basic graph of W 

in K(W), where 1 ~ t ~ logn, which is a collection of trees spanning W . The t-basic 

graph is constructed recursively from the {t-1)-basic graph using edges in a complete 

graph K(W). The 1-basic graph, or BG1 (W), is the forest of trees, Fm, obtained by 

our heuristic for the C F P. The main features of the t-basic graph is that it is a forest 

of trees and its total weight is bounded above by a certain factor times the weight of 

the optimal m-perfect matching (and the solution to the optimal m-subtree problem) 

of K(W). The t-basic graph is the key construction in all of our heuristics. 

First, we will relate the weight of the !-basic graph to the weight of M~(W), the 

optimal m-perfect matching of W, and to the weight of T~(W), the optimal m-subtree 

of W. For a graph G, let w(G) be the edge-weight of G. 

Lemma 4.1.1 The weight of the !-basic graph is bounded above by w(BG1(W)) < 

{2m~1 w(M~(W)),w(BG1(W)) ~ 2w(T~(W))}. 

Proof: Given M~(W), which is a collection of cycles each of size exactly m, after 
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Figure 4.1: Type A and type B connected components in BG1(W), form= 3. 

removing the largest edge from each cycle, the resulting graph is a forest of trees, whose 

edge-weight is (1-!) times the weight of the corresponding cycles. Note that the weight 

of F~ (W), the C F P of W, is bounded above by the weight of the forest. From this 

and by Theorem 3.2.1, it follows that w(BG1(W)) :S 2w(F~(W)) :S 2m~1 w(M;.(W)). 

Similarly, from w(F~(W)) :S w(T~(W)) and by Theorem 3.2.1, it follows that 

w(BG1(W)) :S 2w(T~(W)) D. 

The 1-basic graph, see Fig.4.1, consists of two types of connected components: type 

A, denoted by A1 (W), where each member has a multiple of m vertices, and type B, 

denoted by B1 (W), which are all the other connected components. The components 

will be treated as hypervertices. 

Now we will show one step of the recursive procedure, where the 2-basic graph is 

obtained from the 1-basic graph. To construct BG2 (W) from BG1 (W), for each type B 

hypervertex in B1 (W) its nearest type B hypervertex is found. The two hypervertices 

are connected either by an edge or a set of edges forming a shortest path in K(W), 
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Figure 4.2: The nearest neighbor graph of type B connected components. 

passing through type A hypervertices of At (W). An auxiliary graph is constructed from 

which the nearest neighbor graph of type b hypervertices can be obtained. In particular 

any two hypervertices are connected, type A and type B, by an edge in K {W} , which is 

the shortest edge between them. The new graph, denoted by BGt(W), can be viewed 

as a complete graph on all the hypervertices, of type A and type B. We find a nearest 

neighbor graph of type B hypervertices, where each type B hypervertex is connected 

to its nearest type . B neighbor either by and edge in BGt (W) or a shortest path in 

BGt (W) passing through other type A hypervertices. Fig.4.2 illustrates such a nearest 

neighbor graph, where the thick edges represent the shortest paths. This graph becomes 

the 2-basic graph. The newly obtained connected components are clusters of old type 

A and typeB hypervertices. Also some type A hypervertices in At (W) become type A 

hypervertices in A2(W). Thus BG2(W) contains old and new type A hypervertices, 

forming A2(W), and new type B hypervertices, now in B2(W), see fig.4.3. 

This recursive procedure is repeated until the t.basic graph is formed. In general 
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A 

Figure 4.3: BG2(W) - a collection of old and new type A and new type Bconnected 
components, form= 3. 
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* an edge in M (W) 
m 

Figure 4.4: A connected component in BGi(W) U M~(W). 

given BGi(W), a BGi+l (W) is obtained by finding a nearest neighbor graph of type B 

connected components in Bi(W), repeating the same process, and adding a set of edges 

in K(W). The total weight of the edges is bounded in the following lemma. 

Lemma 4.1.2 For each 1 ::; i < t the total weight of all edges added to BGi(W), to 

form a nearest neighbor graph of its type B hypervertices is bounded above by {w(M~(W)), 2w(T~(W)}. 

Proof: First we will prove the bound with respect to w(M~(W)). Let us consider, for 

a given i, the union of BGi(W) and M~(W). Some of the edges of M~(W) would be 

hidden inside the type A and type B hypervertices of Ai(W) and Bi(W), while the 

other will form connections between the components (treated as hypervertices). We 

observe that each type B hypervertex is connected with its nearest type B hypervertex 

either by an edge or a path passing through type A hypervertices, see Fig.4.4. Hence 

by adding edges from M~(W) to BGi(W), the i-basic graph is partitioned into con-

nected components, whose nodes are type A and B hypervertices, and the connected 

components are themselves of type A. 

Let us denote by M:n(W) the graph BGi(W) U M~(W), where the type B hyperver-

tices are nodes and the edges correspond to the chains between type B hypervertices, 
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Figure 4.5: A type B hypervertex in Mt'n(W) and its nearest type B neighbor. 
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passing through type A hypervertices. The total weight of the edges in Mt'n(W) is 

bounded above by w(M~(W)). Every connected component in Mt'n(W) is of type A 

and there is an even number of edges incident to each node. This comes from the fact 

that M~(W) is a collection of cycles and if a cycle in M~(W) is incident to a node in 

BGi(W)UM~(W) it "enters" and "leaves" the node. Since each node in Mt'n(W) is 

incident to at least one cycle, its degree is even. 

Let b be a node in Mt'n(W) (i.e. a type B hypervertex), there is an even number 

of edges incident to b in Mt'n(W). Without loss of generality we assume that degree 

of each node in Mt'n(W) is exactly 2, i.e. each connected component in Mt'n(W) is 

a cycle (see Fig.4.5). Let bt, be the nearest type B neighbor of b in BGi(W), and 

e = (b, bt) corresponds to a shortest path between them consisting of edges in BGi(W). 

The weight of e is bounded above by the weight of the shortest edge incident to b in 

Mt'n(W), i.e. its weight is less or equal to the weight of any of the two edges incident 

to b. The same is true for any other node in the cycle; the weight of the shortest path 

between the node and its nearest type B neighbor can be bounded by the weight of 

any edge incident to the node in Mt'n(W). We can define trivially one-to-one mapping, 
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Figure 4.6: A connected component in BGi(W) UT~(W). 
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which maps each such shortest path into an edge in M:n(W), and such that the weight 

of the shortest path is bounded above by the weight of its image. Hence the total weight 

of the nearest neighbor graph of type B hypervertices is bounded above by w( M~ (W)). 

Similarly, we w:ill prove the bound with respect to w(T~(W)). Consider graph 

BGi(W) UT~(W), where the edges in T~(W) form connections between the hyper

vertices of BGi(W). Each type B hypervertex, which is incident to at least one 

edge in T~(W), is connected to another type B hypervertex either by an edge or a 

path passing through type A hypervertices. Note that all the connected components 

in BGi(W) UT~(W) are of type A, Fig.4.6 illustrates one of them. Let T:n(w) be 

the graph BGi(W) UT~(W), where paths between type B hypervertices are replaced 

by edges whose weights are equal to those of the corresponding paths. Let p and 

q be nodes in T:n(w), which are connected by an edge e, corresponding to a path 

in BGi(W) UT~(W), see Fig.4.7. Let .Pl. andq1 be the nearest type B neighbors in 
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Figure 4.7: Type B hypervertices in T:n(W) and their nearest type B neighbors. 
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BGi(W) of p and q, respectively, and let e1 = (p,p1) and e2 = (q, q1) correspond to 

shortest paths in BGi(W). The weight of e1 and e2 is bounded above by the weight e. 

Hence the total weight of the nearest neighbor graph of type B hypervertices is bounded 

above by 2w(T!(W)) D. 

At each i-th step, when the irbasic graph is constructed, a number of edges of K(W) 

are added, whose total weight is bounded above by w(M!(W)) and 2w(T!(W)) . This 

is a "penalty" which is paid, for growing the size of each type B hypervertex. We want 

to construct large type B hypervertices and at the same time maintain the weight of 

the irbasic graph as low as possible. The total weight of BGt(W) graph is bounded 

above by the weight of BG1 (W) and the weight of all the edges added in the ( t - 1) 

stages of forming the t-basic graph. Thus 

Theorem 4.1.1 The total edge weight of the t-basic graph Bt(W) of K(W), is bounded 

above by: min{[2(m~l) + (t- l)]w(M!(W)), 2tw(T!(W))} D. 

In particular, when t = llog3IWIJ -1 and m = 2, the t-basic graph is the collection of 

only even connected components (or type A hypervertices in general), and if additionally 
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W = V, this corresponds to the original hypergreedy heuristic by Plaisted, Reingold and 

Supowit [45), [50]. This is the case when the optimal m-subtree problem reduces to 

an optimal perfect matching. In the hypergreedy, the even connected components are 

converted into a perfect matching of the input graph, and the total edge weight of the 

matching does not exceed the weight of the ~basic graph. Thus the ratio of the weight 

of BGt(W) ( in this case W = V) to the weight of M~(W), which is bounded above 

2Llog3IWIJ - 1, is the error of the hypergreedy. 

4.2 Time Complexity. 

In this section, we derive a bound on the worst case time complexity for constructing the 

t-basic graph. The t-basic graph is obtained in t steps using edges in K(W). The time 

complexity of construction of the BG1 (W) graph is O(IWI2 ), for weights satisfying the 

triangle inequality. The time complexity of one step of the recursive procedure, when 

the ( i + 1 )-basic graph is obtained from the i-basic graph, 1 ::; i ::; t can be derived as 

follows. The BGi(W) auxiliary graph is constructed in O(IWI2 ) time, by finding for any 

two hypervertices of type A and type B, the shortest edge between them. We will show 

that although the edge weights of BGi(W) do not satisfy the triangle inequality, the 

subgraph of all nearest type B neighbors selected from BGi(W) can be constructed in 

O(IWI2 ) time, for general weights satisfying the triangle inequality. We find for every 

type B hypervertex in Bi(W) its nearest type B neighbor, using edges in BGi(W). 

Given BGi(W), a structure is built, called the Generalized Voronoi Diagram (GVD) 

which is used for constructing the nearest neighbor graph. The GVD for graph BGi(W) 

relative to the set of type B hypervertices, defined similarly as in [50], is a partition of 

all hypervertices in BGi(W) with respect to which type B hypervertex they are closest 

to (each type B hypervertex is closest to itself), see Fig.4.8. The Generalized Voronoi 

Region (GVR} associated with each type B hypervertex b is a tree with the root at b. 

The remaining nodes in the tree are those hypervertices of type A which are closer to 

b than to any other type B hypervertex. At each node, a distance which is the length 

of a shortest path from the node to bin BGi(W) is stored. Two GVR's are adjacent 

if there is an edge in BGi(W) with endpoints in the two regions, and obviously for 
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Figure 4.8: Generalized Voronoi Diagram. 

K(W), each two GV R's are adjacent. 

Before the worst-case the time complexity of the construction of the t-basic graph 

will be derived, we will consider the problem of constructing the nearest neighbor graph 

of type B hypervertices. 

Theorem 4.2.1 Computing the nearest neighbor graph of type B hypervertices in BGi (W), 

for general weights, can be done in (IWI2 ) time. 

The proof of the above theorem follows from the next two lemmas. 

Lemma 4.2.1 Given BGi(W), the Generalized Voronoi Diagram for graph BGi (W) , 

with respect to the set of type B hypervertices can be constructed in O(IWI2 ) time, for 

general weights. 

Proof: Graph BGi(W) is a complete graph whose vertices are type A and B hyper-

vertices. We find, for each type A hypervertex, the shortest distance to a type B hy

pervertex, and also the name of the predecessor in the shortest path, using a modified 
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Dijkstra's algorithm. 

Initially all the type A hypervertices are in the set UNMARKED, and all the type 

B hypervertices in the set MARKED. We will use a modified Dijkstra's shortest path 

algorithm, see [44], which finds for every hypervertex a in UNMARKED its nearest 

hypervertex b in MARKED, such that they are connected by an edge in BGi(W). In 

order to do this all the edges in BGi(W) have to be examined. 

At any stage there is a set MARKED of type A and type B hypervertices, set 

UNMARKED of type A hypervertices, and labels p(a) for all type A hypervertices, 

such that 

p( a) = shortest distance of any path from a to a type B hypervertex 

using intermediate type A hypervertices in MARKED, if there are any 

The hypervertex a E UNMARKED with the smallest label p( a) is selected. The 

shortest path from a type B hypervertex to this a uses only type A hypervertices in 

MARKED as intermediate vertices. Otherwise the p(a) would not be the smallest. 

The hypervertex a is moved from UNMARKED to MARKED and the labels p( v) 

are updated for all v E UNMARK ED, as follows: 

p(v) = min{p(v),p(a)+w(v,a)} 

This means that the new label of each hypervertex a E UNMARKED is either 

the old label or it is the sum of the shortest distance from type B hypervertex to a, 

which corresponds to the weight of the shortest path passing through type A hyper

vertices in MARKED, and the weight of the edge (v,a). The algorithm stops when 

UNMARKED = 0, and each type A hypervertex a E MARKED has its label p( a) 

which is the weight of the shortest path from a to its nearest type B hypervertex. The 

path can be reconstructed by keeping track at each node of where its label comes from. 

The resulting graph can be viewed as a forest of trees rooted at type B hypervertices 

with shortest paths to all type A hypervertices. More formally, 

Modified Dijkstra's Algorithm for GVD for complete graphs 

Input: A graph BGi(W) with nonnegative weights and two sets of hypervertices, type 

A and B. 
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Output: The shortest path from each type A hypervertex to its nearest type B hyper

vertex. 

begin 

UNMARKED = { all type A hypervertices}; 

MARK ED = { all type B hypervertices }; 

for all v E UNMARKED do p(v) = w(v,b), where bE MARKED; 

while UNMARKED =f: 0 

end 

begin 

find min {p(v);v E UNMARKED}, say p(a); 

MARKED= MARKEDU{a}; 

UNMARKED= UNMARKED\ {a}; 

for all v E UNMARKED do 

p(v) =min {p(v),p(a) + w(v, a)}; 

end 

There are O(IWI) iterations of the algorithm, where each iteration is proportional to 

the number ofhypervertices in UNMARKED. Thus the time complexity of constructing 

GV D of BGi(W) is O(IWI 2 ). o 

The following lemma was proved in [ 45]. We replace in the original lemma "odd 

hypervertex" by "type B hypervertex". 

Lemma 4.2.2 Given a type B hypervertex y and GVR(y), the GVR containing y, 

assume z is nearest type B neighbor of y. Then, there exits an edge (u,v), such that 

shortest path from y to z consists of the path from y to u, u E GV R(y), the edge (u,v), 

v E GV R(z), and the path from V to z. 

By the above lemma, to determine for each type B hypervertex its nearest type 

B neighbor, all the edges in BGi(W) have to be examined, and retained those with 

endpoints in different GV R's. Then for each pair of GV R's such an edge which mini

mizes the length of the shortest path between the corresponding type B hypervertices 

is selected. This takes O(IWI 2 ) operations. 
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Lemma 4.2.3 Given K(W), the construction of the t-basic graph BGt(W) requires, 

for weights satisfying the triangle inequality, O(tiWI 2 ) operations. 

Proof: The graph BGi(W) is constructed from the i-basic graph by joining each its two 

hypervertices by the shortest edge in K(W). This requires O{IWI 2) time. By Lemma 

4.2.2, finding the nearest neighbor graph of type B hypervertices requires O{IWI 2 ) oper

ations. The resulting new type A and type Bhypervertices and old type A hypervertices 

form the {i+ 1)-basic graph, BGi+1 (W) . Therefore constructing the {i+ 1)-basic graph 

from the i-basic graph takes O{IWI 2 ) time. The parameter tis the depth of the recur

sion, thus the total work for constructing BGt(W) is O(t1WI 2 ) D. 
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(a) (b) 

Figure 4.9: (a) Voronoi diagram, (b) Delaunay triangulation. 
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Chapter 5 

An Approximate t-basic Graph for Euclidean Points in 

the Plane. 

In this section we will describe the construction of the approximate t-basic graph for 

the Euclidean points in the plane and analyze its time complexity. The weight of the 

approximate t-basic graph will be related to the weight of solution of the the optimal 

m-perfect matching and the optimal m-subtree problem, respectively. By using the 

approximate t-basic graph in all of the three classes of heuristics, we achieve a dramatic 

reduction in their respective time complexities, while their error bounds are affected 

only by the constant factor of a= 2.42. 

5.1 The construction of an approximate t-basic graph. 

Suppose V is a set of points in the Euclidean plane. In this case all three classes 

of heuristics build an approximate t-basic graph, denoted by BGt(W), where W ~ V, 

which is a subgraph of the Delaunay triangulation [46]. Fori= 1, the subgraph BGt(W) 

coincides with the forest of trees, where each tree has size at least m, constructed by 

the Euclidean heuristic for CFP. For 1 :::; i < t, to obtain BGi+1(W) from BGi(W), 

the nearest neighbor graph of the type B hypervertices with respect to the Delaunay 

triangulation of V is constructed. 

The Delaunay triangulation, which is a sparse graph with O(IWI) edges, is ob

tained from the Voronoi diagram, see Fig.4.9(a). The Voronoi diagram is a partition 

of the plane into Voronoi regions of points closer to one point of W than to others, see 

Preparata and Shamos (46]. The Voronoi region of a point v E W is a set of points in 

the plane closer to v than to any other point u E W, v =J u. Two Voronoi regions are 

adjacent if they share a Voronoi edge. The Delaunay triangulation of W can be derived 
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from the corresponding Voronoi Diagram by joining each two points whose Voronoi 

regions are adjacent, see Fig.4.9(b), in O(IWI) time. Chew [9] and Dobkin and Fried

man and Supowit [16] showed that complete Euclidean graphs can be approximated by 

Delaunay graphs. The best bound on this approximation is due to Keil and Gutwin in 

[37], by proving that the Delaunay triangulation has the property that the weight of 

the shortest path between each pair of vertices is bounded above by a = 2.42 times the 

Euclidean distance between the two vertices. 

Consider a type B hypervertex b. Let b1 be the nearest type B hypervertex of b 

with respect to K(W), and let ( v1, v2), ( va, v4) .. . , ( Vk-1> vk) be the edges of this shortest 

path. From the above, for each edge (vi, Vi+l), there exists a path in the Delaunay 

triangulation whose weight is bounded above by a times the straight line distance 

between Vi and Vi+l· Thus 

Lemma 5.1.1 The weight of the shortest path from a type B hypervertex to its nearest 

type B hypervertex with respect to the Delaunay triangulation, is bounded above by a 

times the weight of the shortest path from that type B hypervertex to its nearest type B 

hypervertex with respect to K{V). 0 

From Theorem 4.1.1 and the above lemma, it follows, for points in the Euclidean 

plane, that 

Corollary 5.1.1 The weight of edges of BGt(W) is bounded above by [2m~l + a(t-

1)]w(M~(W)) and 2[1 + a(t- 1)]w(T~(W)) D. 

5.2 Time complexity. 

In this section we will analyze the time complexity of an approximate t-basic graph, 

BGt(W), for points in the Euclidean plane. 

Given a set of W points in the Euclidean plane, the BGt(W) which coincides with 

BG1(W) is obtained in O(IWilogjWI) time, as follows. First the Voronoi diagram of 

W is constructed in O(IWilogjWI) time, see [46], then the Delaunay triangulation is 

derived from the corresponding Voronoi diagram in O{IWI) time. The edges in the 
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Voronoi edge 

Figure 5.1: Voronoi region of a hypervertex (VRH). 

Delaunay triangulation are used to obtain Bct(W). The Bct(W) graph contains type 

A and type B hypervertices. 

Given Bct(W) and the edges in the Delaunay triangulation, the Bc2(W) is ob

tained in O(IWilogiWI) time. The Generalized Voronoi Diagram (GVD) relative to 

the set of the type B hypervertices is built using edges in the Delaunay triangulation. 

In the GV D, each type A hypervertex is connected to its nearest type B hypervertex 

by a shortest path, possibly passing through other type A hypervertices. A GV D is a 

collection of Generalized Voronoi Regions ( GVR's), and each GV R associated with a 

type B hypervertex, say b, is a tree rooted at b, where the remaining nodes are type 

A hypervertices and the edges come from the Delaunay triangulation. At each type A 

node, the shortest distance from the node to the root (its nearest type B neighbor) is 

stored. For the Euclidean case in the plane, two G VR's are adjacent if there is an edge 

in the Delaunay triangulation with endpoints in the two GVR's. 

Before the time complexity of constructing of the nearest neighbor graph of the type 

B hypervertices is analyzed, we will consider the following problem. Let G = (V, E) 

be a sparse edge-weighted graph with lVI = n vertices and lEI = m edges and whose 

weights are nonnegative. Suppose that V is partitioned into A and B labeled as type 

A and type B, respectively. The GVD is defined as before, i.e as clusters of type A 
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Figure 5.2: Representation of a GV R, as a cluster of V RH's. 

vertices connected to their nearest type B vertices by the corresponding shortest paths, 

then 

Lemma 5.2.1 The GVD ofG = (V,E) can be constructed in O(mlogn}) time. 

Proof: Let A and B contain initially the type A and type B vertices, respectively. 

Consider the following modified Dijkstra's shortest path algorithm (see (44], (45]). 

When the algorithm proceeds, some of the type A vertices would be moved from 

A to B. First let us examine edges between A and B. For each type A vertex q E A 

its nearest type B neighbor o E B is found, if there is an edge ( q, o) E E, and a label 

p(q) = w(q, o) is assigned to it, i.e. the weight of the edge. All the remaining type A 

vertices in q E A will have labels p( q) = oo. 

At any stage there will be labels p( q) for all type A vertices in A, such that 

p(q)= shortest distance of any path from q to an type B vertex 

using intermediate even vertices in B. 
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Figure 5.3: The 1-basic graph for Euclidean points in the plane (m = 2). 

Now select the vertex q E A with the smallest label p(q) is selected. The shortest 

path from a type B vertex to this q uses only type A vertices in B as intermediate 

vertices. Otherwise the p(q) would not be the smallest. 

The vertex q is moved from A to B and the labels p( v) for all v E A are updated 

for which there is an edge ( v, q) E E as follows: 

p( v) = min{p( v), p( q) + w( v, q)} This means that the new label of each vertex 

v E A is either the old label or it is the sum of the shortest distance from a type B 

vertex to q through type A vertices in B and the weight of the edge ( v, q). The algorithm 

stops when A= 0, and each type A vertex q E B has its label p(q) which is the weight 

of the shortest path from q to its nearest type B vertex. The path can be reconstructed 

by tracing the labels in the path. The resulting graph can be viewed as a forest of trees 

rooted at type B vertices with shortest path to all type A vertices, More formally, 

Modified Dijkstra's Algorithm for GVD 
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Input: A sparse graph G = (V, E) with nonnegative edge weights and with V parti

tioned into two subsets A and B, where A= { vertices labeled as typeA } and B= { 

vertices labeled as type B } . Initially each vertex v E A has a label p( v) = oo. 

Output: The weight shortest path from each type A vertex v to its nearest type B 

vertex, possibly passing through intermediate type A vertices, stored in p( v ). Also each 

type A vertex will store the next vertex in its shortest path. 

begin 

for all v E A such that there is an edge (v,o) E E, where o E B do 

p(v) = min{w(v,o) : o E B and (v,o) E E}; 

while Af 0; 

end 

begin find min{p(v);v E A}, say p(q); 

B=BU{q}; 

A=A\{q}; 

for all v E A s. t . ( v, q) E E do 

p(v) = min{p( v ),p(q) + w( v, q)} 

end 

For G = (V, E), which is sparse, all the labels p( v) can be stored on a heap to 

maintain a priority queue which returns and removes the label with the smallest value, 

see [12]. The size of the heap is O(n) and it can be constructed it in O(n) time. The 

algorithm will require m operations on the priority queue where each operation takes 

O(logn) time. Thus the time complexity is O(mlogn). D 

By Lemma 4.2.2, given GVD the nearest type B neighbor for each type B hyper

vertex in BGt(W) with respect to the Delaunay triangulation can be determined in 

O(IWilog IWI) operations. All the edges in the Delaunay triangulation are examined 

and retained only those with endpoints in different GVR's. For each pair of adjacent 

GVR's such an edge is selected which minimizes the length of the shortest path between 

the corresponding type B hypervertices, with respect to the Delaunay triangulation. 

Given GVD, this can be done in O(n) operations. 
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Figure 5.4: GV D with GV R's separated by their Voronoi diagram boundaries. 
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Each vertex from the set W defines its Voronoi region of points closer to it than 

to any other vertex in W. Each hypervertex, type A and type B, of BG1(W), is 

represented by a cluster of Voronoi regions of all the vertices in the hypervertex. Let us 

denote this representation by the Voronoi region of a hypervertex, ( VRH), see Fig.5.1. 

Two VRH's are adjacent if at least one pair of their constituent Voronoi regions, 

each in different VHR, is adjacent. Each GVR is represented as a cluster of VRH's of 

all the hypervertices in the GVR, see Fig.5.2. Two GVR's are adjacent if at least one 

pair of their constituent VRH's, each in different GVR, is adjacent. Given the 1-basic 

graph, see Fig.5.3, and the above representation of its GVD, see Fig.5.4, to find for 

each type B hypervertex its nearest type B hypervertex with respect to the Delaunay 

triangulation, all the edges in the Delaunay triangulation have to be examined. Only 

those edges with endpoints in different (adjacent) GVR's are retained. Then for each 

pair of adjacent GVR's such an edge is selected which minimizes the length of the 

shortest path between the corresponding type B hypervertices. Fig.5.5 illustrates such 

nearest neighbor graph of type B hypervertices. Thus 

Theorem 5.2.1 The nearest neighbor graph of type B hypervertices can be computed 

in and in O(IWilog I WI) time for Euclidean points in the plane with respect to the 

Delaunay triangulation. 0 

To construct BGi(V) from BGi_1 (V), for every type B hypervertex its nearest type 

B hypervertex has to be found. By Theorem 5.2.1, this requires and O(IWilog I WI) 

time for Euclidean points in the plane. Thus 

Corollary 5.2.1 The time complexity of constructing BGt(V) is O(tiWilog IWI) for 

Euclidean points in the plane. 
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Figure 5.5: A nearest neighbor graph of type B hypervertices. 
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Chapter 6 

The Generalized Hypergreedy. 

In the following three sections we will describe the Generalized Hypergreedy heuristic 

and analyze its error and time complexity. 

6.1 Description of the Generalized Hypergreedy. 

The Generalized Hypergreedy heuristic for the m-perfect matching and the m-subtree 

problem is a combination of the heuristic for the C F P and an algorithm based on 

the hypergreedy heuristic for perfect matching. Given K(V), a complete edge-weighted 

graph, whose weights satisfy the triangle inequality, and n = lVI is a multiple of a given 

natural number m, we construct the t-basic graph (the approximate t-basic graph for 

the Euclidean case), where the 1-basic graph is obtained by the CFP heuristic, for 

t = flog(~)l, see in Fig.6.1 such t-basic graph. Each connected component in the t

basic graph (approximate t-basic graph) of K(V), is a tree with a multiple of m vertices, 

i.e. it admits an m-perfect matching and a solution to the m-subtree problem. Each 

such connected component is processed separately: its edges are duplicated, which 

results in an Eulerian graph, from which an Euler tour is extracted; then using the 

triangle inequality, the tour is converted into a Hamiltonian cycle, whose weight does 

not exceed that of the tour, see Fig.6.2. The maximum-cardinality minimum-weight 

m-chain cover is found in the cycle, which covers all its vertices. The union of all such 

covers from all the Hamiltonian cycles forms a solution to the m-subtree problem, see 

Fig.6.3. To obtain a solution to the m-perfect matching problem, each m-chain in the 

m-subtree problem solution is converted into a cycle, by adding a closing edge, whose 

weight is bounded above by that of the chain, see Fig.6.4. The Generalized Hypergreedy 

is a special case of the ( t, k )-heuristic. Because the Generalized Hypergreedy is a simple 
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A 

Figure 6.1: The t-basic graph with all the type A connected components, m = 3. 

(t, k )-heuristic, it can be used in the future for developing new heuristics, in conjunction 

with other techniques, different from the ones used in the ( t, k )-heuristic. 

The Generalized Hypergreedy 

Input: K(V) (V, set of vertices in the Euclidean plane) 

Output: m-perfect matching of K(V) (a solution to them-subtree problem of K(V) ) 

1. Construct the t-basic graph fort= flog(~)l; 

(Construct an approximate t-basic graph fort= flog(_M )l) 

2. In every connected component of BGt(V): 

- duplicate edges 

- extract an Euler tour 

- convert the tour into a Hamiltonian cycle 
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A 

Figure 6.2: Hamiltonian cycles extracted from the duplicated t-basic graph. 

-find the maximum-cardinality minimum-weight m-chain cover 

- (only for m-perfect matching) convert each m-chain into an m-cycle 

6.2 Error. 

In the following two lemmas we will prove the error bounds for them-perfect matching 

and the m-subtree problem. 

Lemma 6.2.1 The error of the Generalized Hypergreedy, which finds an m-perfect 

matching, in a complete edge-weighted graph K(V), for 3 ::::; m ::::; ~' is bounded above 

by 

m-1 m-1 n 
f(n) = 4--(2-- +flog( -)1- 1) 

m m m 
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Figure 6.3: The maximum-cardinality minimum-weight m-chain cover- a solution to 
them-subtree problem, m = 3. 
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for general weights satisfying the triangle inequality, and by 

m-1 m-1 n 
f(n) = 4--[2-- + a(flog(-)l-1)] 

m m m 

for Euclidean points in the plane. 

Proof: From Theorem 4.1.1 and Corollary 5.1.1, for t = flog(~ )l, the weight of the t

basic graph and the approximate t-basic graph is bounded above by (2m~l +flog(;; )l-

1)w(M~(V)) and [2m~l + a(flog(;;;)l - 1)]w(M~(V)), respectively. The edges of the 

t-basic graph (of the approximate t-basic graph) are duplicated, i.e. the weight of 

the graph is doubled. An Euler tour is extracted from each connected component in 

the resulting graph, and the weight of the tour is bounded above by the weight of 

the component. Each Euler tour is converted into a Hamiltonian cycle, and by the 

triangle inequality, the weight the cycle obtained from an Euler tour is bounded above 

by the weight of the tour. The maximum-cardinality minimum-weight m-chain cover 

is selected in the cycle, and the weight of the cover does not exceed m~l times the 

weight of the cycle. A closing edge is added to each ~chain cover, and the weight 

of the edge is bounded above by the weight of the ~chain, to form an ~cycle. The 

union of all such -cycles obtained from all the covers, which has weight twice the weight 

of the Hamiltonians, form an ~perfect matching of V. Thus the total weight of an 

m-perfect matching obtained by the Generalized Hypergreedy, is bounded above by 

4m~1 (2m~l + flog(~)l- 1)w(M~(V)) and 4m~1 [2m~l + a(flog(~)l- 1)]w(M~(V)) 

for general weights satisfying the triangle inequality and for Euclidean points in the 

plane, respectively.D 

For m = n this heuristic reduces to the minimum spanning tree 2-approximate 

heuristic for traveling salesman problem. For large m the error of the heuristic has a 

constant bound. For weights satisfying the triangle inequality, for m = ~ the error is 

f(n) = 8, for m = ~, ~ the error is f(n) = 12, and for m = ~, ~, ~, ~ the error is 

f(n) = 16. 

For Euclidean points in the plane, for m = n, this heuristic reduces to the 2-

approximate minimum spanning tree heuristic for the Euclidean traveling salesman 
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problem. Form= ~'the error is f(n) = 8, form= ~'~'the error is f(n) = 4{2 +a), 

and form= ~' ~' ~' ~ the error is f(n) = 8(1 +a). 

Lemma 6.2.2 The error of the Generalized Hypergreedy, which finds a solution to the 

m-subtree problem, in a complete edge-weighted graph K(V), for 3::; m::; ~' is bounded 

above by 

m-1 n 
f(n) = 4--(llog(-)l) 

m m 

for general weights satisfying the triangle inequality, and by 

m-1 n 
f(n) = 4--[1 +a( flog(- )l - 1)] 

m m 

for Euclidean points in the plane. 

Proof: From Theorem 4.1.1 and Corollary 5.1.1, fort = flog(~)l, the weight of the t

basic graph and the approximate t-basic graph is bounded above by 2( flog(~) l )w( T:,. (V)) 

and 2[1 + a(llog( ~ )l - 1 )]w(T!(V)), respectively. The weight of the Hamiltonians ex

tracted from the duplicated t-basic graph (the approximate t-basic graph) is bounded 

twice the weight of the graph. From each Hamiltonian cycle select the maximum-

cardinality minimum-weight m-chain cover in the cycle, and the weight of the cover 

does not exceed m~l times the weight of the cycle. The union of the cover forms a solu-

tion to them-subtree problem, whose weight is bounded above by 4( flog(~ )l )w(T!(V)) 

and 4[1 + a(llog(~)l -1)]w(T!(V)). D 

For general weights satisfying the triangle inequality, for m = n, the the heuristic 

reduces to the exact minimum spanning tree algorithm, since the optimal m-subtree 

problem becomes the minimum spanning tree problem. Form = ~ the error is /( n) = 4, 

for m = ~' ~ the error is f(n) = 8, and for m = ~' ~' ~' ~ the error is f(n) = 12. 

For m = 2, the Generalized Hypergreedy for the m-subtree problem, becomes the 

hypergreedy heuristic for perfect matching. 

For Euclidean points in the plane, for m = n, this heuristic reduces to the exact 

Euclidean minimum spanning tree algorithm. For m = '; the error of the heuristic is 

f(n) = 4, form= ~'~the error is f(n) = 4{1 +a), and form= ~' ~'~'~the error is 

f(n) = 4{1 + 2a). 
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6.3 Time complexity. 

Theorem 6.3.1 The time complexity of Generalized Hypergreedy is 

T(n) = O(n2log( ~ )) 
m 

for weights satisfying the triangle inequality, and 

n 
T(n) = O(nlog( -)logn) 

m 

for the Euclidean points in the plane 

Proof: From Lemma 4.2.3 and Corollary 5.2.1, the time for t = flog(~)l, the time 

complexity of constructing the t-basic graph and the approximate t-basic graph is 

O(n2log(~)) and O(nlog(~)logn), respectively. All the other steps of the algorithm 

can be implemented in additional O(n) time. 0 

For large m, the Generalized hypergreedy becomes a constant-error heuristic for the 

m-perfect matching and for them-subtree problem, running in O(n2 ) and O(nlogn) 

time for general weights satisfying the triangle inequality and for Euclidean points in 

the plane, respectively. 



Chapter 7 

The (t,k)-heuristic. 
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fu the following sections we will describe the (t,k}-heuristic, derive its error with respect 

to the optimal m-perfect matching and the optimal m-subtree, and analyze its time 

complexity. 

7.1 Description of the (t, k)-heuristic. 

The (t,k}-heuristic, a class of heuristics for the optimal m-perfect matching and for the 

optimal m-subtree problem, where t and k are integer parameters ranging from 0 to 

logn. It consists of (k + 1) stages. At each stage j = 0, 1, ... , k- 1, a complete graph 

K(Vj), where V0 = V, Vj ~ V and IVjl = nj, is processed. Given K(Vj), first the t-basic 

graph, BGt(Vj) (approximate t-basic graph, BGt(Vj) for Euclidean points in the plane), 

is extracted. From the t-basic graph (approximate t-basic graph), which is a forest of 

trees, a partial m-matching ( a partial solution to the m-subtree problem)is selected, 

denoted by S i, which is a collection of vertex disjoint cycles (trees), each of size exactly 

m, covering (possibly) a portion of vertices in Vj. All the vertices matched by Sj are 

removed from Vi, while all the remaining vertices form a complete graph K(Vj+1 ) to 

be processed in the next stage. After k stages, the remaining unmatched vertices (if 

any), in Vk+t, are matched by an m-perfect matching algorithm (an algorithm for the 

m-subtree problem), A, which is either another heuristic or an exact algorithm for the 

problem. 

Let M~(V) and M~(Vj) be an optimal m-perfect matching of graphs K(V) and 

K(Vj), respectively, and w(M~(V)) and w(M~(Vj)), their corresponding edge-weights. 

Let T~(V) and T~(Vj) be the optimal m-subtree problem of of graphs K(V) and 

K(Vj), respectively, and w(T~(V)) and w(T~(Vj)), their corresponding edge-weights. 
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A 

Figure 7.1: The t-basic graph with type A and type B hypervertices. 

More specifically, at each stage j of the (t, k)-heuristic, the t-basic graph, BGt(Vj), (an 

approximate t-basic graph, BGt(Vj), for Euclidean points in the plane) is constructed, 

whose total weight does not exceed (m~2 +t)w(M;.(Vj)) and 2tw(T,;.(Vj)) (for Euclidean 

points in the plane (2m~l + a(t- 1))w(M,;.(Vj)) and 2[1 + a(t- 1)]w(T,;.{Vj))). There 

are type A and type B hypervertices in the t-basic graph (approximate t-basic graph), 

and only the latter admit an m-perfect matching and an m-subtree problem. Fig.7.1 

illustrates the t-basic graph form= 3. 

A partial m-matching ( a partial solution to the m-subtree problem) of K(Vj), 

denoted by Sj, is selected from the t-basic graph. The edges in BGt(Vj) (in BGt(Vj) 

) are doubled which results in a new graph, where each vertex has an even degree and 

each connected component is Eulerian. A graph is said to be Eulerian if there is a 

closed tour, called an Euler tour, which visits each edge exactly once. An Euler tour 

is extracted in every connected component of the duplicated t-basic graph (duplicated 

approximate t-basic graph), and ETj denotes a union of all such tours. Thus 



77 

Figure 7.2: Union of Hamiltonian cycles extracted from each hypervertex in BGt(Vj)· 

Lemma 7.1.1 The weight of the edges in ETj is bounded above by 

m-2 
2(-- + t)w(M~(Vj)) 

m 

and by 

for weights satisfying the triangle inequality, and for Euclidean points in the plane 

by 

m-1 
2[2-- + o:(t- 1)]w(M~(Vj)) 

m 

and by 

4[1 + o:(t- 1)]w(T~(V;)) 

Using the triangle inequality, the Euler tours are converted into Hamiltonian cycles, 

denoted by Hj, whose weight is bounded above by that of the corresponding tours, see 
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Figure 7.3: The maximum cardinality minimum weight m-chain cover of Hj. 

Fig. 7 .2. A Hamiltonian cycle of a connected component is a cycle where each vertex is 

visited exactly once. Thus 

Lemma 7.1.2 The total edge weight of Hamiltonian cycles in Hj, selected by respective 

( t, k )-heuristic for the m-perfect matching and the m-subtree problem, is bounded above 

by the corresponding optimal weights for M~(Vj) and M~(Vj), as follows: 

m - 2 
w(Hj) ::=; 2{-- + t)w(M,:(Vj)) 

m 

for general weights satisfying the triangle inequality, and by 

m-1 
w(Hj)::; 2[2-- + a(t- 1)]w(M,:(Vj)) 

m 

w(Hj) ::=; 4[1 + a(t - 1)]w(T;(Vj)) 

for Euclidean points in the plane. 0 
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Figure 7.4: A partial solution to m-subtree problem of Vj . 

We wish to extract from Hj the minimum weight solution, Sj, to the m-perfect 

matching and the m-subtree problem on each Hamiltonian cycle. The union of such 

solutions will form, respectively, a partial m matching and a partial solution to the 

m-subtree problem for K(Vj). It will cover only a portion of the vertices in Vj, if there 

are any type B connected components in Hj. All the vertices which will not be covered 

at this stage, will form the vertex set Vj+ll to be processed in the next stage. 

First, let us define them-chain to be a chain of m consecutive vertices and (m - 1) 

consecutive edges on a cycle. The weight of an m-chain is the sum of the weights of 

its edges . The maximum-cardinality minimum-weight m-chain cover of a cycle is the 

maximum-cardinality minimum-weight set of vertex disjoint m-chains, which cover the 

cycle. If the cycle is of type A then the m-chain cover is a complete solution to the 

m-subtree problem for the cycle. From each cycle a maximum-cardinality minimum

weight m-chain cover is selected, see Fig. 7 .3. 

Form= 2, when them-subtree problem reduces to the optimal perfect matching, 
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Figure 7.5: A partial m-perfect matching of Vj. 

the union of such maximum-cardinality minimum-weight m-chain covers from all the 

cycles, contains at most half of all the edges in Hj, and their total weight is bounded 

above by the half of the total weight of Hj . We will show that for m = 2, Hj always ad

mits the maximum cardinality minimum weight m-chain cover with at least r t 3~-;- 1 n j l 
edges. The number of edges in such Sj increases with t, since the minimum size of 

the type B conneded components in Hj grows with t. This forms a partial solution 

to the 2-subtree problem, i.e. the perfect matching of Vj, whose weight is bounded 

above by ( t )w(Hj)· To obtain a partial 2-perfect matching, i.e. a partial duplicated 

perfect matching of Vj, each edge in the minimum-weight maximum-cardinality 2-cover 

is closed by an identical edge to form a 2-cycle. The weight of such partial 2-perfect 

matching is bounded above by w(Hj)-

For 3 s; m s; ~. Sj covers a portion of the vertices in Vj, and the number of the 

vertices in Sj depends on the parameters t and m . The size of a type B connected 

component in Hj is bounded below by a function oft, the bigger t the bigger the size 
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of smallest type B connected component. Let Ci be a type B cycle in Hj, it admits an 

m-chain cover with at least 

fl ~ J ICill 
m bt 

(7.1) 

m-chains, where bt is the size of a smallest type B cycle in Hj, which contains a 

multiple of m minus 1 vertices. Such a chain cover forms Sj for them-subtree problem, 

see Fig. 7 .4, which consists of at least 

fl ~ J IVJil 
m bt 

(7.2) 

m-chains, and whose total weight is bounded above m~1 w(H3). 

To obtain Sj for the m-perfect matching, each m-chain is converted, in the maximum-

cardinality minimum-weight m-chain cover of Hj, into a m-cycle, by adding a closing 

edge, whose weight is bounded above by the weight of the chain, see Fig.7.5. The weight 

of such Sj is bounded above by 2m~1w(H3). 

All the remaining vertices in Vj, unmatched by Sj, form a new complete graph, 

K(Vj+t), to be processed in the j + 1 stage, see again Fig.7.4 and Fig.7.5. We repeat 

this procedure, and at the completion of the k-th stage, we apply to the set of 

m-1 k 
nk ~ (-bt-) lVI (7.3) 

unmatched vertices an m-perfect matching (m-subtree problem) algorithm A. 

The central structure of the (t,k}-heuristic is the t-basic graph, and the crucial 

feature of the heuristic is the minimum size of a type B connected component. Form= 

2, every odd connected component has size at least 3t, and the maximum cardinality 

minimum weight 2-chain cover can be selected with at least f(t) 3~-; 1 nj l edges. 

Form :2: 3, let 

bt = pm -1 (7.4) 

be the size of the smallest type B connected component, where pis a natural number. 

This size is a function of parameters t and m, and represents the "worst-case size" of a 
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type B connected component, for which the Sj leaves the largest fraction of urunatched 

vertices. At each stage of construction of the t-basic graph, by finding a nearest neighbor 

graph of type B connected components, the bt grows. Thus, for a given m, the larger 

the parameter t, the more m-chains can be selected in one stage of the ( t, k )-heuristic 

to form Sj, and the smaller is the number of stages of the heuristic. This should lead 

to a smaller overall error of the approximate solution. But one should note that the 

parameter tis restricted by the size of V, and also the time complexity of the (t, k)

heuristic grows with bigger t. 

The time complexity of the ( t, k )-heuristic, when k is selected appropriately, is 

O(tn2 ) for weights satisfying the triangle inequality, and O(tnlogn) for the Euclidean 

points in the plane. 

At stage (k + 1) the (t,k)-heuristic applies an m-perfect matching (an m-subtree 

problem) algorithm A, which is either an exact algorithm (form= 2, the exact perfect 

matching algorithm, and form 2 3, a dynamic programming algorithm) or a heuristic 

algorithm (foe example, the Generalized Hypergreedy and GGW). We always want to 

select such parameter k and t, which would guarantee the overall time complexity of the 

(t,k)-heuristic to be O(tn2 ), for weights satisfying the triangle inequality, and O(tnlogn) 

for Euclidean points in the plane. The parameter k has to satisfy the property, that at 

stage k the number of remaining urunatched vertices, nk. has to be small enough, so 

the time complexity of the algorithm A applied to the restricted problem, would not 

exceed the overall time complexity of stages 0, ... , k- 1. Yet we want to minimize k . 

The ( t, k )-heuristic is presented, more formally, in the following pseudocode: 

( t,k)-heuristic 

Input: K(V), Vo = V (Vo = V, set of vertices in the Euclidean plane) 

Output: an m-perfect matching of K(V) (a solution to the m-subtree problem of 

K(V)) 

At each stage j, j = 0, ... , k- 1: 

1. Construct the t-basic graph. 

( Construct an approximate t-basic graph.) 
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optimal perfect matching 

0 vertices matched by S 

• w· 

• • 

Figure 7.6: SUT~(W), form= 2. 

2. In every connected component of BGt(Vj) (BGt(Vj)): 

- duplicate the edges 

- extract an Euler tour 

- convert the tour into a Hamiltonian cycle 
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3. Find the maximum cardinality minimum weight m-chain cover, which forms a partial 

solution to the m-subtree problem. 

4. (only for m-perfect matching) Add and edge to each m-chain in the cover to 

form a partial m-matching. 

5. All unmatched vertices form K(Vj+1 ) 

After k stages: Match all the remaining vertices, if there are any left, using an 

auxiliary algorithm A form-perfect matching (m-subtree problem of V). 
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optimal m-pertcct matching of W 

• w· 
0 vertices matched by S 

Figure 7.7: SUM~(W). 

7.2 Error Analysis. 

In this section we analyze the error of (t,k)-heuristic. First we introduce a generaliza

tion of Grigoriadis and Kalantari's lemma [29], which relates the weight of an optimal 

perfect matching of K(Vj+1) to the weights of a partial perfect matching, Sj, and an 

optimal perfect matching of K(Vj). We will prove a new lemma which generalizes the 

Grigoriadis and Kalantari's lemma, to describe similar relationship for the optimal m

perfect matching and the optimal m-subtree problem. These two lemmas play a crucial 

role in deriving the overall error of the ( t, k }-heuristic. We will use the results to relate 

the bound on the error obtained for one stage of the ( t, k }-heuristic to that of the next 

stage. Finally, this relationship will allow to bound the overall error f(n). 

The following lemma has been introduced by Grigoriadis and Kalantari [29]. Given 

is a subset W of vertices of K(V). LetS be a partial matching selected from W, and let 
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T:i(W) and T2(W') be the optimal perfect matching of W and W' respectively, where 

W' is the set of unmatched vertices left after selecting S. Let w(T:i(W)), w(T2(W')), 

and w(S) be the respective weights of T2(W), T2(W'), and w(S). In the lemma we 

relate the weights of T2(W'), T2(W) and S. 

Lemma 7.2.1 

w(T;(W')) ::; w(T;(W)) + w(S) 

Proof: (from [29]) Consider SUT2(W), see Fig.7.6. This union consists of a disjoint 

set of edges of T2(W), and of path and cycles whose edges alternate between S and 

T;. No vertex of a cycle in S U T2 (W) can belong to W' since all of its vertices are 

matched by S. Similarly, only the terminal vertices of a path can belong to W'. Let 

P = {(v1 , v2), ... , (vt-1> Vt)} be such path. By triangle inequality we have w(P) ~ w(e), 

where e = ( Vt, Vt)· The set of such edges e, one for each P ~ S U T2(W), and all the 

disjoint edges of T2'(W) in SUT2(W), is a perfect matching M' of W' with weight 

w(T2(W')) ::; w(M') ::; w(S) + w(T2(W)).o 

We generalize the above lemma to the define a similar relationship for the optimal 

m-perfect matching and the optimal m-subtree problem. Given is a subset W of of 

vertices of K{V). Let Sbe a partial m-perfect matching (a partial solution tom-subtree 

problem), selected from W, and let M;,(W) and M;,(W') (again T;,(W) and T;,(W')), 

be the optimal m-perfect matching (optimal m-subtree problem) of Wand W', respec

tively, where W' is the set of unmatched vertices left after selecting S. In the lemma we 

relate the weights of M;,(W') and M;,(W), form-perfect matching, and the weights of 

T;,(W') and T;,(W), form-subtree problem, and S, form~ 3. 

Lemma 7.2.2 

w(M~(W')) ::; 2(m- 1) [w(M~(W)) + w(S)] 
m 

w(T~(W')) ::; 2(m- 1) [w(T~(W)) + w(S)] 
m 

Proof: The union of S U M;,(W) ( the union of S U T;,(W)) is a collection of connected 

components, such that each of them is either a disjoint cycle (a disjoint tree) of M;, (W) 
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• w 

Figure 7.8: SUT~(W) m 2: 3. 

(ofT~ (W)), of size exactly m, or a combination of cycles (a combination of trees) of size 

m which alternate between those of M~(W) (those of T~(W)) and S, see Fig.7.7 ( see 

Fig.7.8). All the vertices matched by cycles (trees) in M~(W) (in T~(W)), but not by 

S, belong toW', the set of vertices to be matched later. We observe that any connected 

component of S U M~(W) (any connected component of S U T~(W)) contains either 

none or a multiple of m vertices in W'. Also, there is no vertex in S U M~ (W) (no 

vertex in S U T~ (W)) which is matched only by S, but not by. 

To prove the lemma, first the Euler tours will be extracted from the connected com-

ponents of SUM~(W) and SUT~(W). The graph SUM~(W) is Eulerian, because 

each of its vertices which is matched either by one cycle of M~ (W) or two cycles: one 

in M~(W) and one inS, has an even degree. Thus an Euler tour can be extracted, 

from each connected component, without duplicating edges in the graph. The graph 

S U T~(W) is not Eulerian, therefore to obtain Euler tours from its connected compo

nents, its edges have to be duplicated. 
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Figure 7.9: A connected component in SUM~(W). 
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d 

Figure 7.10: A Hamiltonian cycle obtained from a connected component inS U M~(W) . 
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First we will prove the lemma for the optimal m-perfect matching. Let us assume, 

without loss of generality, that there is just one connected component in SUM:,. (W), 

see Fig. 7.9, and we extract from it a single Euler tour, then using the triangle inequality 

we convert it into a Hamiltonian cycle on the set of vertices W, whose weight is bounded 

above by that of the tour, see Fig.7.10. Next, we retain in the cycle only those vertices 

in W', and replace chains between each two consecutive vertices in W' by an edge 

whose weight is equal to that of the chain. The new cycle has the same weight as that 

of the original Euler tour and all its vertices are in W', see Fig.7.11. Let us denote 

by E and w(E) the cycle and its weight, respectively, and let mp be the number of 

vertices in the cycle, where p is a natural number. We show that maximum-cardinality 

minimum-weight m-chain cover of the cycle, denoted by M', has the weight bounded 

above by (m~l)w(E), and the weight of the minimum-weight m-perfect matching of E, 

obtained from the cover, is bounded above by 2(m~l)w(E). 

Let L be the complement of M' in E. Hence L is a collection of p single disjoint 

edges, see in Fig.7.12. We observe that there are mp distinct m-chains in all distinct 

maximum-cardinality m-chain covers of the cycle, and whose total weight is equal to 

(m- 1)w(E). There are exactly p m-chains in M'. Moreover there are m distinct 

maximum-cardinality m-chain covers in E, say M(l), M(2), ... , M(m). We associate with 

each such m-chain cover M(i) its unique complement L(i), i = 1, 2, ... , m, and the 

following can be said about L(i). 

m u L(i) = E 
i=l 

and L(i) n L(j) ={no common edges} for i =/:- j and i, j = 1, 2, ... , m 

m 

Also Lw(L(i)) = w(E) and w(L) = w(L(1)) ~ w(L( 2)) ~ ••• ~ w(L(m)) 
i=l 

Therefore, L with the biggest weight satisfies w( L) ~ w~), and the weight of its 

complement, the corresponding maximum-cardinality minimum-weight m-chain cover, 

M', is bounded above by w(M') :=; (1- .!Jw(E) = m~1 w(E). The M' is converted 
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Figure 7.11: A modified Hamiltonian cycle with vertices in W'. 



maximum cardinality miJJimum weight m-cbain cover 

L- its complement 

Figure 7.12: The maximum cardinality minimum weight m-chain cover. 
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into a minimum-weight m-perfect matching of the vertex set W', by adding to each 

m-cycle in M' a closing edge whose weight is bounded by the weight of the cycle. The 

weight of the m-perfect matching is bounded above by 2(m~1)w(E) . Consequently, 

since E = SUM~(W) and w(M~(W')):::; 2("::1>w(E) = 2(m~1>[w(M~(W)) + w(S)] 

To prove the lemma for the m-subtree problem, we will consider, as before, a single 

connected component in S UT~(W), see Fig.7.13. Since S UT~(W) is not Eulerian, 

we duplicate its edges, see Fig.7.14, extract and Euler tour from such a duplicated 

graph, and convert it into a Hamiltonian cycle whose weight is bounded by the weight 

of the tour, see Fig.7.15. We retain in the cycle only those vertices which are in W', 

and replace chains between each two consecutive vertices in W' by an edge whose 

weight is equal to that of the chain. The new cycle, denoted as before by E, has the 

weight bounded above by the weight of the Euler tour, which is twice the weight of 

SUT~(W), see again Fig.7.11. We find the maximum-cardinality minimum-weight m

chain cover of E, see Fig.7.12, which is an optimal solution to them-subtree problem 

of W'. Thus since E is the duplicated SUT~(W) and w(T~(W)) ::=; (m~1)w(E), then 

w(T~(W)):::; (m~1)w(E) = 2(":: 1>[w(T~(W)) + w(S)]. o 

At each stage j = 0, 1, ... , k -1, of the {t,k)-heuristic, a partial solution Sj is selected 

from K(Vj). We will derive bounds on w(Sj) for them-perfect matching and the m

subtree problem: We will obtain this bound with respect to w(T2(Vj)), i.e. the weight 

of minimum-weight perfect matching, separately. First, we will show how many edges 

we can select into Sj. 

Lemma 7.2.3 At each stage j = 0, 1, ... , k - 1 of the (t, k )-heuristic for T~(V), for 

m = 2, we can select from K ( Vj) a partial matching S i containing at least f t 31
31 i nil 

edges. 

Proof: First we claim that the size of each odd hypervertex in the t-basic graph is at 

least 3t. Clearly, this is true for t = 1. For t > 1, we only need to observe that an 

odd hypervertex in the t-basic graph is created from at least 3 odd hypervertices in the 

(t - 1)-basic graph. Let C1 , C2 , ... , Cz be the odd cycles, and let C1+1 , ... , Cq be the even 

cycles in Hj. There are IC;J-1 ~ 3121 , i = 1, ... , l, and ~' i = l + 1, ... , q, edges in any 
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Figure 7.13: A connected component in SUT~(W). 

Figure 7.14: A duplicated connected component in SUT~(W). 
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maximum cardinality matching of each odd and even cycle, respectively. Thus we can 

select from each cycle at least f3 '21 ~l, i = 1, ... , q, vertex disjoint edges. The proof 

of the lemma is now immediate from the following inequalities 

r!.(at -1)n·l <~rat -1ICil1. 0 
2 at 3 - ~ 2 at 

•=1 

For m 2:: a, we will show what is the minimum number of edges which always can 

be selected into a maximum-cardinality minimum-weight m-chain cover of Hj, at each 

stage j, j = 0, 1, ... , k- 1, of the heuristic, where bt is defined in Equation. 7 .4. 

Lemma 7.2.4 At each stage j = 0, 1, ... , k- 1 of the (t, k)-heuristic, form 2:: a, a 

maximum-cardinality minimum-weight m-chain cover of Hi can be selected from K(Vj), 

containing at least ( m - 1) f L~J nil edges. 

Proof: Given the size of the "worst-case" type B component of Hi, bt = pm- 1, where 

p is a natural number, let C11 C2 , ••• , Cz be the type B cycles, and let Cl+11 .• • , Cq be 

the type A cycles in Hi. There are at least ( m - 1 H L~J I Gill = ( m - 1 H p!'n!1 ICill, 

i = 1, ... , l, and (m-1)~, i = l + 1, ... , q, edges in any maximum-cardinality minimum

weight m-chain cover of each type B and type A cycle, respectively. Thus at least 

( m - 1 H p!'n21 I Ci ll , i = 1, ... , q, edges can be selected from each cycle into the cover. 

The proof of the lemma is now immediate from the following inequalities 

LhJ p-1 q p..:.1 
(m-1)f mb nil= (m-1)f nil:::; L(m-1)f !Gill 0 

t pm-1 . pm-1 
•=1 

Lemma 7 .2.5 The partial matching Si selected at each stage j, j = 0, 1, ... , k - 1 of the 

(t,k)-heuristic for the perfect matching, and for general weights satisfying the triangle 

inequality, has weight bounded above by 

w(Si) :::; 2tw(T2(Vi)) 

Proof: The partial matching Si is selected from Hi. The total weight of Hi is bounded 

above by 4tw(T2(Vj)), twice the weight of the t.basic graph of K(Vj). We find the 

maximum cardinality minimum weight matching in each Hamiltonian cycle, and the 

eight of the matching is bounded above by half the weight of the cycle. From the 
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Figure 7.15: A Hamiltonian cycle obtained from a duplicated SUT~(W). 

previous lemma, there could be at least f! 3~j1 nj l edges selected into the maximum 

cardinality minimum weight matching of Hj, and those edges form a partial matching 

Sj. Clearly, w(S3) ::; !w(Hj)· Hence, we have w(S3)::; 2tw(T2(Vj)). 0 

Lenuna 7.2.6 The partial matching Sj selected at each stage j, j = 0, 1, .. . , k- 1, of 

(t,k)-heuristic for perfect matching, has weight bounded above by: 

w(S3)::; 2[1 + a(t- 1)]w(T;(Vj) 

for Euclidean points in the plane. 

Proof: The proof is identical to the proof of previous lemma. The factor a in the bound 

comes from the fact that the w(Hj) ::; 4[1 + a(t- 1)]w(T2(Vj), and the Hamiltonian 

cycles are obtained from an approximate t-basic graph of K(Vj). 0 

Now we will prove similar bounds on the weight of Sj, form 2: 3, with respect to 

the weight of the optimal m-perfect matching and the optimal m-subtree problem. 
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Lemma 7.2. 7 A partial m-perfect matching selected at each stage j, j = 0, 1, ... , k -1, 

of (t,k)-heuristic, for 3 ~ m < n, has weight bounded above by: 

m-1 m-2 
w(Sj) ~ 4--[-- + t]w(M~(Vj)) 

m m 

for general weights satisfying the triangle inequality, and by 

m-1 m-1 
w(Sj) ~ 4--[2-- + a(t- 1)]w(M~(Vj)) 

m m 

for Euclidean points in the plane. 

Proof: We select in each cycle Ci, i = 1, ... , q, in Hj, a maximum-cardinality minimum

weight m-chain cover whose weight is bounded above by m~1 w(Ci)· To obtain Sj, we 

convert each m-chain in the union of the maximum-cardinality minimum-weight m

chain covers obtained from all the Hamiltonian cycles, into a cycle by adding a closing 

edge. Thus 

~ m-1 m-1~ m-1 
w(Sj) ~ L;2--w(Ci) = 2--.L.;w(Ci) = 2--w(Hj) 

i=l m m i=l m 

and from Lemma 6.1.1, we have w(Sj) ~ 4m~l [m~2 + t]w(M~(Vj)), for general 

weights satisfying the triangle inequality, and w(Sj) ~ 4m~l [2m~l +a(t-1)]w(M~(Vj)), 

for Euclidean points in the plane. 

Lemma 7.2.8 A partial solution to the m-subtree problem, selected at each stage j, 

j = 0, 1, ... , k- 1, of (t,k}-heuristic, for 3 ~ m < n, has weight bounded above by: 

m-1 
w(Sj) ~ 4t--w(T~(Vj)) 

m 

for general weights satisfying the triangle inequality, and by 

m-1 
w(Sj) ~ 4--[1 + a(t- 1)]w(M~(Vj)) 

m 

for Euclidean points in the plane. 
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Proof: Proof of this lemma is similar the proof of the previous lemma. 

The ( t, k )-heuristic produce, in the first k stages, an approximate solution, which is 

the union of the partial solutions, Sj, j = 0, 1, ... , k- 1. At each stage of the heuristic 

we are able to describe the error for the stage with relation to the error in the next 

stage. This important relationship will allow to derive the overall error of the heuristic. 

We will Let Mj be a solution for the graph K(Vj) produced by the (t,k)-heuristic. Mj 

is a union of partial solutions produced at stages j, j + 1, ... , k. 

k 

Mj = U Sj 
i=j 

The ratio of the weight of Mj to the weight of the optimal solution for K(Vj), i.e. 

M~(Vj), for the optimal m-perfect matching and T~(Vj), for the optimal m-subtree 

problem, bounds above the error for the stage j. The error for each stage j is denoted 

w(Mj) . * 
f(nj) = w(T~(Vj)), if w(Tm(Vj)) =/; 0 

For a degenerate case, when w(M~(Vj)) = 0 and IVil =I 0 (when w(T~(Vj)) = 0 and 

IVil =/; 0), i.e. Vj can be viewed as a set of points, each of multiplicity m, and the distance 

between each two within a group of m such points is 0, the solution M' produced by the 

(t,k)-heuristic, is identical to M~(Vj) (identical to T~(Vj)), and f(nj) = 1. H IVil = 0 

then f( nj) = 0, for Vj = nj. In the following lemmas we relate errors in two consecutive 

stages. 

Lemma 7.2.9 The error for each stage j, j 

m-perfect matching is bounded above by: 

0, 1, ... , k - 1, of (t,k)-heuristic for 

m-1 m-2 m-1 m-1 m-2 
f(n·) ~ 4--(-- + t) + 2--[1 + 4--(-- + t)]f(n·+l) 

3 m m m m m 3 

for general weights satisfying the triangle inequality, and 
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m-1 m-1 m-1 m-1 m-1 
f(nj)::; 4--[2-- + a(t -1)) + 2--[1 + 4--(2-- + a(t -1)))f(ni+l) 

m m m m m 

for Euclidean points in the plane. 

Proof: From Lemma 6.2.2, w(M~(Vj+t)) ::; 2m;l [w(M~(Vj))+w(Sj)], and from Lemma 

6.2.7 w(Sj) ::; 4~1 (m;2 + t)w(M~(Vj)), for general weights satisfying the triangle 

inequality, and w(Sj) ::; 4m;l [2m;l + a(t- 1)], for Euclidean points in the plane. It 

gives 

w(M~(Vj+t)) m-1[ m-1(m-2 )] 
w(M~(Vj)) ::; 2---;;-- 1 + 4---;;-- ---;;-- + t 

for general weights satisfying the triangle inequality, and 

for Euclidean points in the plane. 

The (t,k)-heuristic produces m-perfect matchings, Mj and Mj+1 for K(Vj) and 

K(Vj+1 ), respectively, and w(Mj) = w(Sj) + w(Mj+l). The substitution of w(Sj) gives 

for general ·weights satisfying the triangle inequality, and 

w(Mj) ::; 4 m- 1 [2m- 1 + a(t- 1))w(M~(Vj)) + w(Mj+1 ) 
m m 

for Euclidean points in the plane. The proof of the lemma, for general weights 

satisfying the triangle inequality, follows by dividing by w(M~(Vj)), writing 

w(Mj) 4m- 1 (m- 2 ) w(Mj+1 ) w(M~(Vj+1 )) 
----=-- < -- --+ t + ----"-'--- --'--:-.=....:..-:-"-'--:-7--'--
w(M~(Vj)) - m m w(M~(Vj+l)) w(M~(Vj)) 

and using the bound of the last ratio. Similarly, for Euclidean points in the plane, 

we prove the lemma by replacing the last ration in the following expression, 
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Lemma 7.2.10 The error for each stage j, j = O, 1, ... , k- 1, of (t,k)-heuristic for 

m-subtree matching is bounded above by: 

m-1 m-1 m-1 
f(ni)::; 4t-- + 2--[1 + 4t--]f(nj+l) 

m m m 

for general weights satisfying the triangle inequality, and 

m-1 m-1 m-1 
f(ni) ::; 4--[1 + a(t- 1)] + 2--[1 + 4--(1 + a(t- 1))]f(ni+l) 

m m m 

for Euclidean points in the plane. 

Proof: Similar to the proof of previous lemma. 

The overall error of the (t,k)-heuristic can be expressed by the ratio f(n) = f(n0 ) = 
w(.j~{Jo)), for them-perfect matching and by the ratio f(n) =/(no)= w('?tfi,!)), for the 

m-subtree problem, where M~ is a solution for K(V), produced by (t,k)-heuristic, and 

M~(Vo) and T~(Vo) is an optimal m-perfect matching and optimal m-subtree problem 

of K(V). We obtain the overall error formula, recursively, from the error bound formula 

defined for one stage of the (t,k)-heuristic. 

Theorem 7.2.1 The error of (t,k)-heuristic, which finds a solution to them-subtree 

problem and the m-perfect matching, for 2 ::; m < n, in a complete edge-weighted graph 

K(V), whose weights satisfy the triangle inequality, is bounded above by: 

for general weights satisfying the triangle inequality, where f.A(nk) is the error of an 

auxiliary algorithm A for the problem; and a1 = 2m~l [1 + 4tm~1 ] and a 1 = 2m~l [1 + 
4~1 (m~2 + t)] for them-subtree problem and them-perfect matching, respectively. 

Proof: Let us write the error bound for each stage j, from Lemma 7.2.9 and Lemma 

7.2.10, for weights satisfying the triangle inequality, in the following form: f(n3) ::; 

A+ Bf(ni+l), where B = a1, and A = 4tm~l m~t for the m-subtree problem and 

A= 4~1 (~2 + t) for them-perfect matching. We show that the number of vertices 

at stage j is bounded above by ni ::; (mb~1 )in. After k stages either or the vertices are 
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matched or there are nk vertices to be matched by a M-perfect matching algorithm A. 

We apply recursively Lemma 7.2.9 (Lemma 7.2.10) and obtain the overall error bound 

f(n): 

k-1 
f(n) :SA L)B)i + (A)k f...t(nk) 

i=O 

A k z A A A k-1 . k 
f(n) :S --~)B) +-----:L(B)' +(B) f...t(nk) 

B-1 B-1 B-1 B-1. 
1=1 t=O 

A k A 
f(n) :S ( B _ 1 + f...t(nk)](B) - B _ 1 

We can show that ~ m~1 < B~1 :S 2(:_1) · D 

Theorem 7.2.2 The error of (t,k)-heuristic, which finds a solution to the m-subtree 

problem and the m-perfect matching for 2 :S m < n, for Euclidean points in the plane 

is bounded above by: 

where f...t(nk) is the error of an auxiliary algorithm A; a 2 = 2m~1 (1 + 4~1 (1 + 
a(t- 1))] and a2 = 2m~l (1 + 4~1 (2m~l + a(t- 1))] for them-subtree problem and 

the m-perfect matching, respectively. 

Proof: Same as the proof of the above theorem. 
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Lemma 7.2.11 The number of vertices nj to be processed in each stage j 1 j = 0, 1, ... , k-

1, of the (t, k)-heuristic, for given m and t, is bounded above by 

m-1 · 
n· < (--)3n 

3 - bt ' 

where bt is defined in Equation. 1.4. 

Proof: We showed in Lemma 6.2.4, that we select from K(Vj), IV;I = nj, a maximwn

cardinality minimwn-weight m-chain cover, with at least (m -1)1 L~J nj l edges, where 

bt = pm- 1 and pis a natural nwnber. This means that we match in nj at least 

mr L~J nj l vertices, and the remaining ni+1 , which will be processed in the next stage 

satisfy 

We can express l~Jnj =btl- r, where 1 and 0 ~ r ~ bt- 1 are integers . Thus 

Since 1 = l~Jn · +.!.. we get 
m 3 b1 ' 

bt r lpm,:1 J m(p-1) m-1 
nj+l = nj - ml-Jnj- m-b ~ nj[1- m b ] ~ nj[1- b ] = -b-nj 

m t t t t 

From the above formula we can derive a bound on nj 

m-1 · 
nj ~ (-b-t -)Jn.D 

t 1 . In particular_, for m = 2, bt = 3 and nj ~ ( 3T )Jn. For m ~ 3, an exact formula on 

bt can't be provided, but one can show that bt ~ m2t and nj ~ ( <:;fl )jn. 

In the following corollaries we will describe special cases of Theorem 6.2.1 and 

Theorem 6.2.2. First we will show the error bounds for the cases where we do not use 

the auxiliary algorithm in the last ( k + 1) stage of the ( t, k )-heuristic, i.e. the heuristic 

finds a complete solution in the first k stages, if k is selected appropriately. 
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Corollary 7.2.1 Let K(V) be a complete edge weighted graph with n vertices, the error 

of (t,k)-heuristic form-perfect matching, where m 2: 3, k = tlog ~~ and 1, 2, ... ,logn 

is bounded above by: 

m n 1 4 m 
f(n):::; [ + 1]( -)tal - ---

2( m - 1) m 9 m - 1 

for general weights satisfying the triangle inequality, and 

m n 1 4 m 
f(n):::; [ + 1]( -)ta2 - ---

2(m-1) m 9m-1 

for Euclidean points in the plane, where a1 = 2m~l [1 + 4m~l (m~2 + t)] and a2 = 
2m~1[1 + 4m~1(2m~l + a(t -1))] 

Corollary 7.2.2 Let K(V) be a complete edge weighted graph with n vertices, the error 

of (t,k)-heuristic form-subtree problem, where m 2: 3, k = tlog ~~ and 1, 2, ... ,logn is 

bounded above by: 

m n 1 4 m 
f(n):::; [ + 1]( -)tal - ---

2(m-1) m 9m-1 

for general weights satisfying the triangle inequality, and 

m n 1 4 m 
f(n):::; [ + 1]( -)ta2- ---

2(m-1) m 9m-1 

for Euclidean points in the plane, where a1 = 2m-l [1 + 4t!!!.=.l] and a2 = 2m-l [1 + . m m m 

4m~1 (1 + a(t- 1))] 

Corollary 7.2.3 Given is a complete edge weighted graph K(V), the error of the (t, k )

heuristic for perfect matching, (T~(V) form = 2}, fort = 1, 2, ... , llo& nJ and k = 

llog3 , n J , is bounded above by: 

for general weights satisfying the triangle inequality, and 

for Euclidean points in the plane. 
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Fort= 1, such (t, k)-heuristic becomes the weakest Onethird heuristic. 

We show that if at the last ( k + 1) stage of the ( t, k )-heuristic the GGW algorithm 

is applied, the error of the resulting heuristic is a slowly growing function of n, and its 

time complexity is of O(tn2 ). 

Corollary 7 .2.4 The error of the ( t, k )-heuristic, which finds an m-perfect matching 

of K(V), satisfying the triangle inequality, for m ~ 3 t = 1, 2, ... ,~log log log n, k = 

it log log log n, is bounded above by: 

m 1 1 4 m 
f(n) :S; [ + 2){loglogn)il oga1 - ---

2{m-1) 9m-1 

where a1 = 2m~l [1 + 4 m~l ( ~2 + t)], and form= 2, t = 1, 2, ... , ~ log3 log3 log3 n, 

k = it log3 log3 log3 n, the error is bounded above by: 

Proof: Let T,..t(n) be the time complexity of any perfect matching algorithm A used in 

the last stage of the (t, k)-heuristic. We want the parameter k to satisfy O(T...t(nk)) = 

O(tn2 ), which would guarantee the overall time complexity of the resulting heuristic to 

remain to be O(tn2 ) time. The GGW algorithm which runs in O(n\/loglogn) time 

is the fastest algorithm for the m-perfect matching with a constant error bound. We 

will use the algorithm to match the remaining nk vertices, after k stages of the (t, k)

heuristic. In order to find the appropriate choice for parameters k and t, the following 

has to be satisfied: 

for m ~ 3, and by 

for m = 2. Recall that nk ::; (mb~1 )kn. It is to check that this is satisfied for 

m ~, when k = 1t log log log n and 1 ::; t ::; ~ log3 log3 log3 n; and for m = 2 when 

k = ~ log3 log3 log3 n and 1 ::; t ::; ~ log3 log3 log3 n. Thus the rest of the proof follows 

from the error formula in Theorem 6.2.1. 0 
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We obtain a similar result for the m-subtree problem in the following corollary: 

Corollary 7 .2.5 The error of the ( t, k )-heuristic, which finds a solution to the m

subtree problem of K(V), form 2: 3 t = 1,2, ... ,!logloglogn, k = ~logloglogn, is 

bounded above by: 

m 1 1 4 m 
f(n) :S [ + 2](loglogn)4i oga1 - ---

2(m -1) 9m- 1 

h 2mm-1 [1 + 4tmm-1 ], d I. 2 t 1 2 1 1 1 1 k were a1 = an Jor m = , = , , ... ,4 og3 og3 og3 n, = 

~ log3 log3 log3 n, the error is bounded above by: 

For example, for m = 2, from the above corollary we can obtain the following 

heuristics for perfect matching. The (t, k)-heuristic, fort = 1 (it becomes a Onethird 

heuristic) and k = !log3 log3 log3 n, gives a O(n2 )-time heuristic with a reasonable 

error of 3(log3 log3 n )0·25 - 1. This heuristic is better than the hypergreedy, both in 

time and error. The ( t, k )-heuristic with t = 4 and k = 116 log3 log3 log3 n, gives also 

a 0( n 2 )-time heuristic with the error bounded above by 3(log3 log3 n )0·125 - 1, which 

is even better than that of the Onethird. Finally, for k = 1, t = !log3 log3 log3 n, 

we obtain a solution bounded above by (1.5log3 log3 log3 n + 2) time the weights of 

the optimal solution. The corresponding time complexity is 0 ( n2 log log log n), still an 

improvement over the 0 ( n2 Jiog3 log3 n) time of the GGW algorithm. 

We can derive similar bound for other values of m. For example, form= 4, t = 4 

and k = 116 logloglogn, the (t, k)-heuristic gives a O(n2 )-time heuristic form-subtree 

problem with a reasonable error of 2.66(loglogn)0 ·27 - .59, a faster heuristic than the 

GGW algorithm. 

7.3 Time Complexity. 

In this section we derive a bound on the worst case time complexity for the (t,k)

heuristic. 
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2 

8 7 

Figure 7.16: One of 11 maximum cardinality m-chain covers of a cycle of size 11, for 
m=2. 

Theorem 7.3.1 The time complexity of the (t,k)-heuristic, for weights satisfying the 

triangle inequality is T( n) = 0 ( tn2 ), and for the Euclidean points in the plane is T( n) = 
O(tnlogn). 

Proof: For j = 0, 1, .... , k - 1, from Lemma 4.2.3 and Corollary 5.2.1, the t-basic 

graph and the approximate t-basic graph of K(Vj) can be implemented in O(tn3) and 

O(tn3logni) time, respectively. From the ~basic graph (approximate t-basic graph), 

we construct a collection of Euler tours, then Hamiltonian cycles, in O(n3) time. We 

show that finding a maximum cardinality minimum weight matching of a Hamiltonian 

cycle is linear in the size of the cycle. Let the sequence (0, 1, ... , q- 1) correspond to the 

edges in a cycle of size q, in the order they appear. Without loss of generality we will 

show it form= 2. If q is even, then there are 2 distinct maximum-cardinality 2-chain 

covers, each of size!, and we compute each of them and select the one with the smaller 

weight. For q odd, there are q different maximum cardinality 2-chain covers, each of 

size q;l. We can view the cycle as a circular list of q edges and each of its maximum 

cardinality 2-chain cover as a list of ~ edges, see Fig 7.16. First we generate the 
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maximum cardinality 2-chain cover starting with the first list (0, 2, 4, ... , q- 3) of the 

consecutive vertex disjoint edges. We compute the weight of this cover in O(q) time. 

We remove the first edge from the list (the edge 0), add the vertex disjoint edge in the 

cycle following the last edge in the list (the edge (q- 1)), and compute in a constant 

time the weight of the resulting new cover accordingly. We repeat the process O(q) 

time and obtain the weight of all the maximum cardinality 2-chain covers from which 

we select the one with the smallest weight. 

The union of the maximum cardinality minimum-weight m-chain covers of all the 

Hamiltonian cycles, becomes a partial solution, Sj (form-perfect matching, we convert 

all the m-chains into cycles in total O(nj) time). Therefore one stage of the (t,k)

heuristic can be implemented in O(t(nj)2 ) and O(tnj lognj) time, for general weights 

satisfying the triangle inequality and for Euclidean points in the plane, respectively. 

Since nj ~ (mb~ 1 )jn, the overall time complexity of the (t, k)-heuristic, for the general 

weights satisfying the triangle inequality, is bounded above by 

The overall time complexity of the (t,k)-heuristic for the Euclidean points in the 

plane is bounded above by, 

k-1 1 
T(n) = O(tnlogn ~.:)mb- )j) = O(tnlogn) D. 

j=O t 
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Chapter 8 

The t-Hypergreedy heuristic 

The t-hypergreedy is a generalization of the hypergreedy algorithm for minimum 

weight perfect matching on a complete edge weighted graphs whose weights satisfy 

the triangle inequality. Since the t-hypergreedy uses the exact algorithm for perfect 

matching, we couldn't extend the heuristic to get a solution to them-perfect matching 

and the m-subtree problem, for any m. 

8.1 Description of the t-hypergreedy. 

Let K(V) be a complete edge weighted graph with an even number, n = lVI, of vertices. 

We assume that the edge weights satisfy the triangle inequality. We show that for 

points in the Euclidean plane the error of a modified t-hypergreedy is bounded above 

by a(2t + 1), where a = 2.42, and its time complexity is 0( max { tn log n, n2 ;~gn, ;:, } ) . 

In particular, fort = llog3 nJ the modified t-hypergreedy has error bounded above by 

a(2llog3 nJ + 1) and it can be implemented in O(nlog2 n) time. This time complexity 

is also favorable with respect to Vaidya's O(nlog3 n) time heuristic [53), for points in 

the Euclidean plane, whose error is bounded above by 3log3 ~n. 

We now describe the t-hypergreedy heuristic. First, we construct the t-basic graph, 

BGt(V) ( approximate t-basic graph, BGt(V) for the Euclidean case). This graph 

contains even and (possibly) odd hypervertices. If there are any odd hypervertices 

in the t-basic graph, we match them using an optimal perfect matching algorithm. 

This requires a preprocessing which consists of the computation of the shortest paths, 

possibly passing through even hypervertices, between every pair of odd hypervertices. 

Each shortest path is replaced by an edge which has the same weight as the weight 
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of the path. This gives a complete graph whose nodes are the odd hypervertices. 

Next we compute an optimal perfect matching on the reduced graph. This type of 

problem reduction was exploited in Grigoriadis and Kalantari (29). The matching is 

then replaced by the corresponding set of paths. The edges in the paths are added to 

BGt(V). The new graph contains only even connected components. Each component 

admits a perfect matching and is processed separately. The matching is obtained in 

a similar fashion as the minimum spanning tree heuristic for the traveling salesman 

problem: The edges in each connected component are doubled. This results in a new 

graph, where each component is Eulerian. We extract an Euler tour in every connected 

component. Using the triangle inequality, Euler tours are replaced with Hamiltonian 

cycles of lesser weight. Each Hamiltonian cycle is the union of two disjoint perfect 

matchings. We select the one with the smaller weight. The union of the selected 

perfect matchings of the components forms a perfect matching of V. The weight of the 

optimal perfect matching of the odd hypervertices is bounded above by w(T2(V)). To 

show it, we consider, n a similar fashion, as in the proof of Lemma 4.1.2, the union of 

the t-basic graph and T2(V). This union gives even cycles on the the odd hypervertices. 

Now it is easy to argue that in each cycle the total weight of edges from the optimal 

perfect matching of the odd hypervertices is less than equal to the total weight of edges 

from T2(V). Thus 

Theorem 8.1.1 The error of the t-hypergreedy for weights satisfying the triangle in

equality, is bounded above by (2t + 1), for 1 ~ t ~ Llog3 nJ. D 

Theorem 8.1.2 The error of the approximate t-hypergreedy for points in the Euclidean 

plane is bounded above by a(2t + 1), for 1 ~ t ~ Llog3 nJ. 

8.2 Time Complexity. 

We now analyze the time complexity of the second stage of the t-hypergreedy, i.e. the 

time needed to find the optimal perfect matching of the odd hypervertices either in 

BGt(V) or BGt(V). There is an even number of odd hypervertices in BGt(V) or 

BGt(V), if any. Having found an optimal perfect matching of the odd hypervertices, 
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we add the corresponding edges. This will result in a graph with hypervertices which 

are even only. 

For each t, the number of vertices in each odd hypervertex of BGt(V) or BGt(V) 

is at least 3t. This follows from the fact that at each stage a new odd hypervertex is 

formed by an odd number of odd hypervertices (at least 3 of them); thus the number 

of vertices in an odd hypervertex grows by a factor of at least 3. In particular, when 

t = llog3 nJ the heuristic reduces to the hypergreedy heuristic. For this t, there could 

be at most two remaining odd hypervertices. Otherwise, the graph would have at least 

3Liog3 nj+l vertices, which is impossible. Thus, for this t, the construction of the second 

part of the t-hypergreedy, i.e., the construction of the optimal perfect matching of the 

odd hypervertices is essentially the construction of the shortest path between the two 

odd hypervertices. This can be done in O(n2 ) time for general weights and O(nlogn) 

time for the Euclidean case. 

Given BGt(V), where odd and even hypervertices are treated as nodes, the fr 

hypergreedy proceeds as follows. We form a graph with those edges in K(V), whose 

endpoints are in different hypervertices. In this graph, for all its 0(~) odd nodes, the 

shortest paths between every pair of vertices is found. This can be done in 0(~!) time 

by applying the shortest path algorithm of Dijkstra 0( ~) times. We replace each such 

shortest path by an edge whose weight is equal to that of the path, and we match 

odd hypervertices in the complete graph using an exact perfect matching algorithm, in 

0(~) time. Now all the connected components are even. The construction of Euler 

and Hamiltonian cycle requires O(n) time. Each Hamiltonian gives rise to two different 

perfect matchings on its vertices, and the better of the two is selected. Thus we have 

Theorem 8.2.1 The time complexity of the t-hypergreedy is T(n) = O(max{tn2 , ~!}), 

where 1 ::; t ::; llog3 nJ . 0 

Given BGt(V) for points in the Euclidean plane, the second part of the modified 

trheuristic is implemented as follows . We form a graph where nodes are all even and 

odd hypervertices of BGt(V), and they are connected by those edges in the Delaunay 

triangulation whose endpoints are in different hypervertices. In this graph for each odd 
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hypervertex we find a shortest path to all other odd hypervertices in 0 ( ~~ log n) time 

using Dijkstra's shortest path algorithm 0(~) times. As before, we form a complete 

graph whose nodes are all the odd hypervertices and edges correspond to the shortest 

paths between the hypervertices, followed by the computation of an optimal perfect 

matching. Thus we have 

Theorem 8.2.2 For points in the Euclidean plane, the time complexity of the modified 

• 21 3 
t-hypergreedy ts T( n) = 0( max{ tnlog n, n 3lgn, frr} ), where 1 ::; t ::; Llog3 n J. D 
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Chapter 9 

Dynamic Programming Algorithms for Graph Covering 

Problems. 

In this chapter we will present dynamic programming algorithms for the optimal m

perfect matching and optimal m-subtree problem, which can be used in the last stage 

of the (t, k)-heuristics, form ~ 3. When the size of the problem in the last stage of 

the (t, k)-heuristic is small enough, the exact dynamic programming algorithm can be 

applied to obtain better error bound of the heuristic. 

9.1 A Dynamic Programming Algorithm for the Optimal m-Perfect 

Matching. 

Let K(V) be a complete edge weighted graph, satisfying the triangle inequality, with 

lVI = n vertices, where n is a multiple of m. Let Sm, S2m, ... , Sn, be any subsets of V 

with m, 2m, ... , and n vertices, respectively. The m-MATCH(V) is an optimal17lrperfect 

matching of K(V). 

The problem can be represented as a dynamic programming problem, as follows: 

where C( Vt, ... , vm) is a cycle of size m. We select the best t1lrperfect matching 

of V, i.e. m-MATCH(V) provided we know all the best 17lrperfect matchings of m

MATCH(V \ {vt, ... ,vm}) for every subset of V of size lVI- m. The number of 

computations necessary to find m-MATCH(V) is obtained as follows. Let us consider 

the following steps of the algorithms. 

STEP.l: Take ( : ) choices of m points. For each choice Sm compute m-M ATC H( Sm ), 
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I.e. solve the traveling salesman problem on Sm, using a dynamic programming algo-

rithm. The cost offinding m- MATCH(Sm) is O(m22m), i.e. the cost of a dynamic 

programming algorithm for finding the best Hamiltonian cycle, given m nodes, [44]. 

STEP.2: Now consider finding of the two best m-cycles for each subset of V of size 

2m, i.e compute m- MATCH(S,m) for ( 2:) choices. The cost of finding the 

m- MATCH(S2m) is: 

The total number of computations for finding m-MATCH(V) is obtained recursively, 

( ) k=..!!.. ( ) ( ) ( ) ( ) k=..!!.. ( ) 
n m n km n m m n- m 

T(n) = m22m + L . = m22m + . L 
m k=2 km m m n k=2 ( k - 1 )m 

The expression is bounded by: 

Form< n this gives: 

For m = n, the time complexity reduces to T(n) = O(n22n), the running time of 

the dynamic programming algorithm for the traveling salesman problem. 

In general, our dynamic programming algorithm is a big improvement over a brute 

force method which would compare all possible m-perfect matchings of K(V) in 0(( (m~!l)!)!n!) 

time. 

9.2 A Dynamic Programming Algorithm for the Optimal m-Subtree 

Problem. 

Let K(V) be a complete edge weighted graph, satisfying the triangle inequality, with 

lVI = n vertices, where n is a multiple of m. Let Sm, S2m, ... , Sm be subsets of V 
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with m, 2m, ... , and n vertices, respectively. The m-FOREST(V) is an optimal m

subtree problem of K(V). The problem can be represented as a dynamic programming 

problem, as follows: 

w(m-FOREST(V)) = min<vt, ... ,vm>{w(T(vl! ... ,vm))+w(m-FOREST(V\{vl! ... ,vm}))} 

where T( v1, ... , vm) is a spanning tree of size m. The best solution to the m-subtree 

problem of V is selected, i.e. m-TREE(V) provided we know all the best solutions 

for the m-subtree problems of m - TREE (V \ { v1, ... , Vm}) for every subset of V of 

size lVI- m. To find the number of computations necessary to obtain m-MATCH(V), 

consider the following steps of the algorithms. 

STEP.!: Take ( : ) choices of m points. For each choice Sm compute m-FOREST( Sm), 

i.e. solve the minimum spanning tree problem on Sm in O(m2 ) time. 

STEP.2: Now consider finding of the two best m-trees for each subset of V of size 

2m, i.e compute m- FOREST(S2m) for ( 2:) choices. The cost of finding the 

m- FOREST(S2m) is: 

The total number of computations for finding m-FOREST(V) is obtained recur-

sively, 

n m n km n m m n-m 
T(n)- m2 + L . - m2 + .. L ( ) k=..!!. ( ) ( ) ( ) ( ) k=..!!. ( ) 

m k=2 km m m n k=2 ( k - 1 )m 

The expression is bounded by: 

T(n) ~ ( :) (m2 + 2•-m) 

Form< n this gives: 
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Form= n, the time complexity reduces to T(n) = O(n2 ), the running time of the 

minimum spanning tree algorithm, for a complete edge-weighted graph with general 

weights. 
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Chapter 10 

Parallel Implementation of a Perfect Matching Heuristic. 

We give an example of a parallel implementation of a perfect matching heuristic. We 

hope that in the future we would be able to implement the other heuristics presented 

in the thesis. 

We assume the following model of parallel computation. It is a parallel random ac

cess machine (PRAM), where the processors communicate through a common memory 

in constant time. In the exclusive-read exclusive-write (EREW) PRAM model, both 

read and write access is disallowed by more than one process to the same memory lo

cation. In the concurrent-read exclusive-write (CREW) PRAM, simultaneous reading 

from the same memory location is allowed, but not simultaneous writing [3]. 

By "fast" parallel algorithm using "small" number of processors we mean a paral

lel algorithm running in polylog O((logn)k) time and using a polynomial number of 

processors. This class is called NC. Karp and Widgerson [36], showed that the max

imal matching problem is in NC. They proposed a parallel algorithm which runs in 

O((logn)4 ) parallel time and uses 0(( 1o~n)3 ) processors. 

In this paper we describe a parallel implementation of the simplest Grigoriadis and 

Kalantari's Onethird heuristic, which we call Onethird-parallel, for k = Llog3 nJ, The 

algorithm runs in O((logn)3 ) and O((logn)2 ) time and uses O(n) and O(n2 ) proces

sors for Euclidean points in the plane and the weights satisfying triangle inequality, 

respectively. We use the CREW PRAM model. 

In the following section, we outline the Onethird, next we describe the parallel im

plementation of the algorithm and we analyze the time complexity of the parallel im

plementation of one stage of the algorithm for Euclidean weights and weights satisfying 

the triangle inequality, respectively. Finally, we obtain the overall time complexity. 
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10.1 Outline of the Algorithm 

We denote a complete edge weighted graph K(V), satisfying the triangle inequality, 

with lVI = n, an even number of vertices. For an edge e E K(V), we denote by w(e) 

the weight of e. ForS ~ K(V), w(S) is the total weight of its edges. Our heuristic 

algorithm finds a perfect matching Tv of K(V) in (k + 1) stages, where k = llog3 nJ 

or k = llog3 n -log3 log3 (~)J. In each stage it selects a partial matching Sj of K(Vj), 

where Vj is the set of all-so-far unmatched vertices. Sj consists of l( ~ )niJ edges, no two 

of which are incident upon the same vertex, where ni = IVjl. Also w(Sj) is not greater 

than a certain portion of the optimal weight. We discard all the vertices matched by Sj, 

and the remaining unmatched vertices, denoted by Vj+b form K(Vj+t) to be processed 

in the next stage. We repeat the same process (k -1) times. Fork= llog3 nJ a perfect 

matching of K(V) is found. Fork = llog3 n -log3 log3 (~)J and the Euclidean points 

in the plane, when IVk+tl ::; llog3 nJ, we apply Edmonds' serial algorithm for optimal 

perfect matching to obtain a perfect matching of Vj+l· 

At each stage j of the algorithm we do the following. For the Euclidean points 

in the plane, first we find, in parallel, a Voronoi Diagram of Vj. Next we extract a 

nearest neighbor graph, which is a forest of trees. In each tree we duplicate edges, and 

find an Euler tour, which visits each edge exactly once. Each tour is further reduced 

to Hamiltonian cycle, which visits each node exactly once, and whose weight does not 

exceed that of the Euler tour. For each Hamiltonian cycle a maximum cardinality 

minimum weight matching is selected (or any matching whose weight does not exceed 

half of the weight of the Hamiltonian). Then all the matched edges in the union of the 

Hamiltonians are sorted by weight and exactly l(~)niJ shortest edges are selected to 

form a partial matching Sj. For weights satisfying the triangle inequality, first we find 

a nearest neighbor graph of Vj, then proceed with the steps described above. 

One of the differences between serial Onethird and Onethird-parallel is that we have 

to fix the parameter k, which is k = llog3 n J and k = log3 n -log3 log3 ( ~ )J for weights 

satisfying the triangle inequality and for Euclidean points in the plane, respectively. In 

the original algorithm k could be chosen as any integer between 1 and llog3 nJ, and in 



117 

the (k + 1) stage an optimal perfect matching of graph K(Vk+1 ) is found using other 

perfect matching algorithm. Thus the worst case error bound and the time complexity 

of the algorithm depend on the choice of k; the smaller k the smaller worst case error 

bound and the higher time complexity. Since there is no fast parallel algorithm for 

exact minimum weight perfect matching, we are not able to match K(l'J+t), for an 

arbitrary k, using other parallel perfect matching algorithm. When the size of the 

problem becomes nk+1 ::; llog3 nJ, we can apply Edmonds' serial algorithm which runs 

in O((lognk+1 ) 3 ) time, i.e. in time which does not exceed overall time complexity of 

the first k stages of our algorithm. But this applies only to points in the Euclidean 

plane. 

10.2 The Algorithm Onethird. 

procedure Onethird 

INPUT: a complete edge weighted graph K(V) satisfying the triangle inequality. 

OUTPUT: a approximate perfect matching of K(V). 

j +-- 0, Vj +-- v 
STEP.l (omitted if the input is not a set of Euclidean points in the plane) 

Find Voronoi diagram of Vj. 

STEP.2 Find a nearest neighbor graph of K(Vj). 

STEP.3 For each connected component find an Euler tour. 

STEP.4 Reduce each tour to a Hamiltonian cycle. 

STEP.5 Select a partial matching Sj with l(!)njJ edges whose weight does not 

exceed one third of the weight of the Hamiltonians. 

STEP.6 Remove from Vj all the vertices matched by Sj and form a new complete 

graph K(Vj+t) from the remaining l'J+1 vertices; go to STEP.l. 
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10.3 Parallel Implementation of Onethird for Euclidean Weights. 

In this section we show a parallel implementation of one stage of Onethird-parallel, for 

the Euclidean points in the plane. 

procedure Onethird-parallel 

INPUT: A set V of n Euclidean points in the plane. 

OUTPUT: a perfect matching of V . 

Result: an O((logn)3 ) time parallel algorithm using O(n) processors and O(n) space 

for the CREW PRAM. 

j ._.... 0, Vj ._.... V. 

Implementation of STEP.l: 

Aggarwal et. all [1] proposed a parallel algorithm for Voronoi Diagram, running in 

O((lognj)3 ) time and using O{nj) processors. The more recent, improved, result has 

been obtained by Dadoun and Kirkpatrick [15]. Their algorithm, which we choose for 

the implementation, runs in O((lognj)2 ) time and uses O(nj) processors and O{nj ) 

memory. 

Implementation of STEP 2: 

A nearest neighbor graph of Vj is a subgraph of a Delaunay triangulation, which is 

a dual graph of the Voronoi diagram. We find the nearest graph as follows . Given a 

Voronoi diagram of Vj, we assign one processor to every edge in the Voronoi diagram. 

There are no more than 3nj - 1 edges in a Voronoi diagram (see [46]). We form nj 

classes, each class associated with one vertex in Vj, i.e. with one Voronoi region. Since 

each Voronoi edge is shared by two Voronoi regions, every processor belongs to two 

different classes. We solve the following minimum selection problem for each class. Let 

v be a vertex in Vj; a Voronoi region containing v is bounded by t edges, which are 

shared with t neighboring Voronoi regions, each containing one vertex of Vj. A processor 

assigned to each of the t edges computes a distance between v and the corresponding 

Voronoi neighbor of v. Since each processor stores exactly one distance between v and 
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its neighbor, finding a nearest neighbor of v is equivalent to finding the minimum of t 

elements. We can do it in O(loglogt) parallel time, using O(n) processors, ([48], [54]). 

Since any vertex in Vj has at most n3 - 1 Voronoi neighbors, finding a nearest neighbor 

graph in V3 requires, in the worst case, O(loglogn3) parallel time and O(n) processors. 

Implementation of STEP 3: 

We identify all the connected components in the nearest neighbor graph of Vj using 

Shiloah and Vishkin's parallel connectivity algorithm [49), which runs in O(logn3) 

parallel time and uses O(n3) number of processors and O(n3) memory. We double edges 

in each connected component and construct an Euler tour using Atallah's algorithm 

[6]. Finding all the Euler tours in the connected components requires O(logn3) parallel 

time using O(n3) processors and O(n3) memory. 

Implementation of STEP 4: 

Let us assign directions to the edges in an Euler tour. The tour enters each vertex 

through an in-edge and leaves it through an out-edge. A vertex has in- and out-degree 

which is the number of in- and out-edges incident to it, respectively. The in- and out

degree of each vertex is the same. Each vertex, which appears in the tour more than 

once has out-degree greater than 1. Let v be a vertex in an Euler tour and ( v, k) be 

the k-th copy of the vertex, when the tour visits it for the k-th time. We can view 

the tour as a cycle with k, 1 ~ k ~ out - degree( v) copies of each vertex v, which 

appear in the order they are visited by the tour. We represent the Euler tour by a 

double circular linked list, so that each vertex will know its unique predecessor and 

successor. To reduce an Euler tour to a Hamiltonian cycle we have to retain exactly 

one occurrence of each vertex in the cycle, let say we keep its (v, 1) copy and discard all 

{( v, k) I 2 ~ k ~ out- degree( v)} copies, and we do not change the order of appearance 

of the retained copies. Since the vertices in the Hamiltonian cycle will stay in the same 

relative order as in the original Euler tour, the weight of the Hamiltonian cannot exceed 

that ofthe Euler tour. This step requires O(logn3) parallel time using O(n3) processors 

and 0 ( n3) memory. 
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Implementation of STEP 5: 

To select a partial matching, first we find maximum cardinality minimum weight 

matching for every Hamiltonian cycle. Next we sort all the matched edges, by their 

weights, in the union of the Hamiltonians and select L(i}njJ shortest edges to form a 

partial matching. Let t be the number of vertices in a Hamiltonian cycle and e1 , e2 , ... , et 

be the edges in the cycle in the order they appear. 

If t is even, then there are two substrings of edges, each of size ( ~ ), which form a 

matching. We have to compute the weight of the two matchings, and choose the one 

which is smaller. We can find a sum oft numbers in O(logt) parallel time using O(t) 

processors and O(t) memory, see Akl [3]. 

For t odd, finding the maximum cardinality minimum weight mat ching is more 

complex, but we are able to do it within the same time complexity. There are t different 

matchings, in a cycle of size t, each containing L~J edges. We compute the weights of 

the t matchings and select the one with the smallest weight . We don't have to find the 

weight of every matching separately. First we find the following groups of partial sums. 

LfJ-k t 

Sk = I: w(e2i-1), k = 0, ... , L -J- 1 
i=1 2 

LfJ-k 
t 

Zk = L w( e2i), k = 1, ... , L2J - 1 
i=1 

LfJ 
rk = L w(e2i+1), 

i=LfJ-k+t 

Each group of the partial sums ( St, ... , slfJ-1 ), (Pl., ... , PLfJ ), (zt, ... , zlfJ- 1), (rt, ... , rlfJ) 

can be computed in O(logt) parallel time with O(t) processors and O(t) memory. Now 

using a simple arithmetic we can compute in 0(1) parallel steps the weights of the t 

matchings. Let denote by w(mo), w(m1), ... ,w(mt-1) the weights oft different matchings 

of a Hamiltonian cycle of odd size t. 
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w(mo) =so 

The maximum cardinality minimum weight matching of an odd cycle, which is the 

matching with the smallest weight, can be found in O(loglogt) parallel time. The 

largest cycle can have size 0( nj ), therefore the worst case time complexity of this step 

is ®O(lognj}· 

There are at least L !!f J and at most L T J matched edges in the union of the Hamilto

nians. We sort the matched edges by the weights in O(lognj} parallel time using O(nj) 

processors, see [11]. Then we choose 0( L !!f J shortest edges to form a partial matching 

Sj. We'll show later that the weight of the partial matching does not exceed a certain 

portion of the optimal matching of the union of the Hamiltonians. 

implementation of STEP 6: Removing all the vertices matched by Sj from Vj can 

be executed in 0(1) parallel steps. 

The overall time complexity The implementation of one stage of the Onethird

parallel , for Euclidean points in the plane, requires O((lognj}2 ) parallel time (time 

complexity of STEP 1), using O(nj) processors and O(nj) space. 
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10.4 Parallel Implementation of Onethird for Weights Satisfying the 

Triangle Inequality. 

In this section we show a parallel implementation of Onethird for weights satisfying the 

triangle inequality. The implementation starts with STEP 2 of the Onethird algorithm. 

We also omit description of those steps of the Onethird-parallel algorithm which are 

identical to the algorithm for the Euclidean case. 

procedureOnethird-parallel 

INPUT: A complete edge weighted graph K(V) satisfying the triangle inequality. 

OUTPUT: A perfect matching of K(V). 

Result: O((logn)2 ) time algorithm using O(n2 ) processors on CREW-PRAM model. 

j +-- 0; Vj +-- v 

implementation of STEP 2: 

We assign one processor to every edge in K(Vj). We are able to find a nearest neighbor 

graph of Vj in O(loglogn;) parallel time using O((n;)2 ) processors, [48]. 

Implementation of STEPS 3-6 is identical to the one for the Euclidean case. The 

time complexity of one stage of the Onethird-parallel for weights satisfying the triangle 

inequality is O(logn;) using O((n;)2 ) processors. 

10.5 Analysis of the Worst-case Error 

In the implementation of STEP 5 of the Onethird-parallel we find the maximum cardi

nality minimum weight matching for every Hamiltonian cycle, then sort all the matched 

edges and select L i J shortest edges to form a partial matching. In the original Onethird

parallel algorithm, all edges are sorted in the union of all Hamiltonians, instead, and 

L i J shortest edges are selected such that no two of them are incident upon the same 

vertex (they are vertex-disjoint). Such selection of LiJ vertex disjoint edges is strictly 
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serial (to select the next shortest edge which does not share a vertex with any of so

far-selected edges, we have to know in advance all these edges). We can show that the 

problem is P-complete, by reducing it to lexicographically minimum solution, [5]. This 

is why we had to replace STEP 5 of Onethird-parallel with something else. 

In the implementation of STEP 5, we find maximum cardinality minimum weight 

matching in the union of the Hamiltonians, denoted by W;, then select l ¥ J shortest 

matched edges. We will show in Lemma 1 that the total weight of the l~J selected 

edges is bounded above by L ~ J w(W;) . Since the weight of W; is no bigger than the 
L 2 J 

half of the total weight of all the Hamiltonians ( each optimal matching of a cycle has 

weight at most half of the weight of the cycle), then the weight of the partial matching 

S;, selected by our algorithm satisfies the Lemma 2 from Grigoriadis and Kalantari's 

paper, [29]. This lemma says that at any stage of the algorithm the weight of the 

selected partial matching is no bigger than one third of the total weight of the union of 

all Hamiltonians. 

Lemma 10.5.1 For every stage j = 1, ... , k the set of edges S; is a partial matching of 

K(Vj), satisfying: 

Proof: Let l ¥ J = p and l ¥ J = q. Vector MATCH-EDGE contains q ordered numbers 

p 

w(S;) = L:a• 
i=l 

q 

w(W;) = Lai 
i=l 

p 

Let w(S') = L at+ (q- p)av = w(S;) + (q- p)av ~ w(W;) 
i=l 

w(S') 
w(S') 

w(S;) + (q- p)av 
w(S') 



D. 

1 = w(S3) + (q- p)ap 
w(S') w(S') 

w(Sj} = 1 _ (q- p)ap < 1 _ (q- p)ap = !!. 
w( S') w( S') - qap q 
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Let denote by w( M) the weight of an approximate perfect matching produced by 

our algorithm, and by w(M*) the weight ofthe optimal perfect matching of K(V). We 

can express the error of the approximation as the ratio f( n) = ::(ff}). At each stage j of 

our algorithm we match L ¥ J edges which form a partial matching Sj . In the following 

lemma we show a relation between the weight of an optimal matching of any complete 

graph K(Vj) to the weights of a partial matching Sj and of an optimal matching of 

a complete graph K(Vj+l) · Graph K(Vj+l) is a subgraph of the graph K(Vj) after 

removal of all vertices matched in the set Sj and all edges incident upon them. Let 

w(MJ} and w(MJ+1 ) be the weights of the optimal perfect matchings of K(Vj) and 

K(Vj+1 ), respectively. Then 

Lemma 10.5.2 (Lemma 1 in {29]} 

w(Mj+l) ::; w(Mj} + w(S;); j = 0, 1, ... , k- 1 

Proof: see [29] . 

Now we will summarize the worst case error analysis from [29]. Before we derive a 

bound on /( n), we find the worst-case error for every stage of our algorithm. We denote 

by Mj = L:f=j S; the matched edges selected in stages j through k of our algorithm; 

those edges form a perfect matching of K(Vj). Thus M0 = M is a perfect matching of 

K(V), produced by our algorithm. The error for each stage of the algorithm is a ratio 

f(n;) = :f!i~~, if w(MJ) f 0, otherwise M; will be an optimal matching of K(V;), and 
J 

the error we say is f( n;) = 1. In the following lemma we relate the worst case error at 

a stage to the error in the next stage. 
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Lenuna 10.5.3 (Lemma 3 in {29}} 

Proof: To prove Lemma 3 we use Lemma 1 and Lemma 2. For detailed description 

see [29]. 

d L h w(MJtl) 7 In h f, 11 • h Using Lemma 1 an emma 2 we get t at w(Ml) ~ 3· t e o owmg t eorem 

we derive a bound on the error f(n): 

Theorem 10.5.1 (theorem 1 in {29} 

In our algorithm we fix the number of stages k. If k = llog3 n J, then by Theorem 

1 the worst-case error bound for the approximate perfect matching, produced by the 

algorithm is f(n) :S 2G)log3n- 1 ~ 2n°·771 - 1. For Euclidean points in the plane we 

can achieve a slight improvement on the ratio f(n) by decreasing the number of stages 

of Onethird-parallel. The second choice of k is based upon the observation that at each 

stage of our algorithm the size ofthe problem is reduced to approximately one third of its 

size at the previous stage. At stage j, the size of the problem has a bound n3 ~ ( i)3n+2, 

for j = 1,2, ... ,k. We can show that after at most k = llog3 n -log3 log3(~)J stages 

the size of the problem is bounded by llog3 nJ. Then an optimal perfect matching is 

extracted (using serial Edmonds' algorithm), in the last ( k + 1 )-st stage, which produces 

no error, and the ratio /( n) has slightly better bound over the one for k = llo~ n J. 

10.6 Time Complexity 

At each stage j of our algorithm, the size of the problem n3 is equal at most one third 

of its size in the previous stage, i.e. nj ~ (i)jn + 2, for j = 1, 2, ... , k, see Lemma 4 in 

[29]. 

Theorem 10.6.1 Onethird for Euclidean points in the plane can be implemented in 

O((logn)3 ) parallel time using O(n) processors and O(n) space. 
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Proof: 

As we have shown in section 4 Onethird-parallel finds a partial matching of a set 

V of points in the Euclidean plane in O((logn3)2) parallel time using O(n3) processors 

and O(n3) space. We find the overall time complexity as follows: 

D. 

k 

T(n) ~ c · ~)logn3)2 , where no= n 
i=l 

k k 

T(n) ~ c ·logn · L)ognj = c ·logn · log[Il ni] 
i=l i=l 

1 • 1 k 
T(n) ~ c·logn·log[(-)2 ·n2 ·n] 

n 

k 1 
T(n) ~ c · ( 2 + 2) · (logn)2 ~ (logn)3 

Theorem 10.6.2 Onethird-parallel for weights satisfying the triangle inequality can be 

implemented in 0 ((log n )2 ) parallel time using 0 ( n 2 ) processors. 

Proof: Similar to the proof of Theorem 2. 
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10.7 Comparison with other heuristics 

Onethird-parallel which is a parallel implementation of Onethird has the same worst

case error bo1md as Onethird fork = Llog3 nJ and (for the Euclidean points in the plane) 

k = Llog3 n -log3 log3(~)J. The worst case error bo1md for kllog3 nJ is 2n°·7713 - 1 

and, fork= llog3 n -log3 log3 (!!:.3 )J is 2[~n _ ]0 ·7713 -1. The second bo1md increases 
•0 g3\ 9 I 

slower in f1mction of n than the first one. 

Now let us compare Onethird with the other known simple heuristics for perfect 

matching. The greedy heuristic which has the worst-case error bo1md of ( ~ )n°·585 , 

performs better than Onethird with k = Llog3 nJ or k = llog3 n -log3 log3(~ )J stages. 

In the greedy, two nearest unmatched vertices are repeatedly matched and the process 

seems to be strictly serial. Also Vaidya's heuristic for Euclidean points in the plane, 

is superior (as far as the worst-case error bo1md) to the Onethird but does not have 

the simplicity of the Onethird. The same we can say about the hypergreedy, and the 

( t, k )-heuristic, which consist of some strictly serial steps. The open problem is whether 

one can replace the strictly serial parts of other heuristics, which provide better error 

bo1mds than the simplest Onethird heuristic, and implement them in parallel. 
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We presented in this thesis families of heuristics for spectra of graph covering problems. 

The 2-approximate heuristic for the C F P problem, a problem which we also proved 

to be N P-hard, plays a crucial role in designing of other classes of heuristics. The 

heuristic for the CFP, which works for any weights, and runs within the time needed 

to compute a minimum spanning tree, is superior to the corresponding 2-approximate 

and GGW algorithm, because of the same error bound and faster t ime complexity. 

Even though the heuristic for the C F P is as simple as the trivial M ST heuristic for 

the traveling salesman problem, showing that its error is bounded by 2 required a 

sophisticated proof. From this heuristic, we obtained, under the assumption of the 

triangle inequality, a 4-approximate heuristic for the CC P which has the same time 

complexity. It is faster than the corresponding 2-approximate GGW algorithm for the 

problem. In the following table we show the error and the time complexity of the GGW 

algorithm for all the four classes of problems: 

Problem Error Time Complexity 

CCP 2 O(n2 y'1oglogn) 

CCP 2 O(n2 y'1oglogn) 

perfect matching 2 O(n2 y'1oglogn) 

m-subtree problem 4 O(n2 y'1oglogn) 

m-perfect matching 4 O(n2 y'1oglogn) 

The error and the time complexity of the Generalized Hypergreedy for the m-subtree 

problem and the m-perfect matching, for weights satisfying the triangle inequality, are 
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shown in the following two table, for selected m: 

Generalized Hypergreedy for the m-subtree problem: 

(general weight satisfying the triangle inequality) 

m Error Time Complexity 

2 2lloSa nJ O(n2 logn) 

(hypergreedy) 

n n n n 12 O(n2 ) 5'6'7' 8 
n n 8 O(n2 ) 3,4 
n 4 O(n2 ) 2 

n 1 O(n2 ) 

exact MST alg. 

For m = ~ the Generalized Hypergreedy is better than the corresponding 4-approximate 

and O(n2Jloglogn)-time GGW algorithm. 

Generalized Hypergreedy for them-perfect matching: 

(general weight satisfying the triangle inequality) 

m Error Time Complexity 

2 2lloSa nJ O(n2 logn) 

n n n n 16 O(n2 ) 5'6'7'8 
n n 12 O(n2 ) 3,4 

n 8 O(n2 ) 2 

n 2 O(n2 ) 

MST heuristic for TSP 

For Euclidean points in the plane the error and time complexity of the Generalized 
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Hypergreedy, for selected m, are described in the following two tables for the Euclidean 

m-subtree problem and them-perfect matching, respectively, where a= 2.42: 

m 

2 

n n n n 
5'6'7'8 
n n 
3,4 

n 
2 

n 

m 

2 

n n n n 
5'6'7'8 
n n 
3,4 

n 
2 

n 

Generalized Hypergreedy for the m-subtree problem: 

(Euclidean points in the plane) 

Error Time Complexity 

2allog3 nJ O(nlog2 n) 

(Euclidean hypergreedy) 

4(1 + 2a) O(nlogn) 

4(1 +a) O(nlogn) 

4 O(nlogn) 

1 O(nlogn) 

exact Euclidean MST alg. 

Generalized Hypergreedy for the m-perfect matching: 

(Euclidean points in the plane) 

Error Time Complexity 

2allog3 nJ O(nlog2 n) 

8(1 +a) O(nlogn) 

4(2 +a) O(nlogn) 

8 O(nlogn) 

2 O(nlogn) 

MST heuristic for Euclidean TSP 

The Generalized Hypergreedy for the the m-subtree problem and the m-perfect 

matching, for Euclidean points in the plane, runs much faster than the corresponding 

GGW algorithm. 
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The error and the time complexity of the ( t, k )-heuristic for the m-subtree problem 

and them-perfect matching, for selected m will be shown in the following tables. The 

results are self explanatory. 

t 

1 

5 

10 

Llog3 nJ 

( t, k )-heuristic for the m-subtree problem: 

(general weight satisfying the triangle inequality) 

m = 2 and k = log3 ,n stages of the algorithm 

Error Time Complexity 

2no.771- 1 O(n2), (Onethird) 

2no.435 _ 1 O(n2) 

2n0.277 _ 1 O(n2) 

2Llog3 nJ O(nlog2 n) (hypergreedy) 

In the above table we see that the (t, k)-heuristic, form= 2, spans the Onethird and 

the hypergreedy. The adjustable time complexity depends on the choice of t, provided 

that k was selected appropriately. In the following table, the exact algorithm is applied 

at the last stage of the (t, k)-heuristic, form = 2. This is a theoretical results, since 

the implementation of the exact Edmonds' algorithm is not trivial: 

( t, k )-heuristic for the m-subtree problem, m = 2: 

(general weight satisfying the triangle inequality) 

an exact perfect matching algorithm is used at stage k = (it) log3(!f) 

t Error Time Complexity 

1 2no.2s1 _ 1 O(n2), (Onethird) 

5 2( ~ )0.145 - 1 O(n2) 

10 2( fo )0.092 - 1 O(n2 ) 

Llog3 nJ 2Llog3 nJ 0 ( n log2 n) (hypergreedy) 
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Applying an exact algorithm for carefully selected k and t results in improved error 

bounds for growing t. We have to note that even though for t = 10 the asymptotic 

error decreases considerably, the constant in the time complexity, which is proportional 

to t, grows. Finally, we present the best, so far, combination of the ( t, k )-heuristic with 

an auxiliary heuristic, which is the combination of the (t, k)-heuristic with the GGW 

algorithm. 

t 

1 

2 

3 

4 

10 

(t, k)-heuristic for them-subtree problem, m = 2: 

(general weight satisfying the triangle inequality) 

the GGW algorithm is used at k = Ctt) lo~ log3log3 n 

Error Time Complexity 

3(log3log3 n )0·25 - 1 O(n2), (Onethird) 

3(log3log3 n )0·183 - 1 O(n2) 

3(lo~ log3 n )0.0.147 - 1 O(n2) 

3(lo~ log3 n )0·125 - 1 O(n2) 

3(lo~ log3 n )0.o7 - 1 O(n2) 

t log3log3log3 n ~ (lo~ log3log3 n) + 2 O(n2logloglogn) 

From this table we observe that the combination of the (t, k)-heuristic with the 

GGW algorithm, results in an O(n2)-time heuristics whose error bounds are very slowly 

growing functions of n. These heuristics are faster than the GGW algorithm, and their 

error is relatively small, even for a large-size problems. The last 0( n2log log log n) 

heuristic in the above table is also faster the GGW algorithm with a logloglogn-error. 

We obtain a similar results for other m. For example: 

( t, k )-heuristic for the m-subtree problem, m = 3: 

(general weight satisfying the triangle inequality) 

the GGW algorithm is used at stage k = ( ft-) log log log n 
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t Error Time Complexity 

1 2. 75(1og log n )0 ·57 - .66 O(n2 ) 

2 2. 75(log log n )0 ·38 - .66 O(n2 ) 

3 2. 75(log log n )0 ·29 - .66 O(n2 ) 

4 2.75(loglogn)0 ·21 - .66 O(n2 ) 

10 2.75(loglogn)0 ·13 - .66 O(n2 ) 

We introduce two exact dynamic programming algorithms for optimal m-perfect 

matching and the optimal m-subtree problem, which run in O(m22n+m + 22n-m) and 

0(22n-m) time, form< n, respectively. Form= n, the dynamic programming algo

rithm for them-perfect matching reduces to the O(n22n)-time dynamic programming 

algorithm for the traveling salesman problem, and the dynamic programming algorithm 

for the m-subtree problem becomes the O(n2 )-time algorithm for minimum spanning 

tree. These heuristics can be also used in the last stage of the (t, k)-heuristic, when the 

size of the problem becomes small enough. 

We develop a heuristic for the minimum-weight perfect matching, called the t

hypergreedy, which is a combination of the hypergreedy heuristic with an exact minimum

weight perfect matching algorithm. In the following table we present the error and time 

complexity of the t-hypergreedy for weights satisfying the triangle inequality: 

Heuristic Error Time Complexity 

t-hypergreedy 2t + 1 O(maz{tn2 , ~!}) 

For Euclidean points in the plane, the error and the time complexity of the t

hypergreedy are following: 

Heuristic Error Time Complexity 

t-hypergreedy a(2t + 1) O(maz{tnlogn, n2 ;1gn, ~31 }) 

Our O(nlog2 n) implementation of the Euclidean hypergreedy is a special case of 
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the t-hypergreedy for t = llog3 n J, whose error is bounded by 2a llog3 n J, a = 2.42. It 

is the fastest heuristic for the Euclidean perfect matching with a log n-error. 

We may consider, in the future, the following extensions of the results presented in 

the thesis: 

• Developing of a t-Generalized Hypergreedy, which would be a generalization of 

the t-hypergreedy for any m. This would apply only to large m. 

• Finding better error bound of the heuristic for the CC P. The conjecture is that 

the bound should be 2 instead of 4. The bound of 4 which we have obtained is 

not tight. 

• Defining other graph covering problems, which can be solved using a variation 

of the (t, k)-heuristic, e.g. we may cover an edge-weighted graph with other 

connected components than trees and cycles. 

• Implementation of all of our heuristics and comparison of their performance to 

the performance of other algorithms that have been implemented. 

• Finding which of the heuristics can be implemented in parallel. 
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