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    Complex human-machine systems where human plays controlling roles are highly 

dynamic and complicated making the traditional models and methodologies less 

effective. The operability of such a complex system is affected by the performance and 

inter-relationships of a wide range of both internal and exogenous variables. The dynamic 

nature of such systems makes it necessary to apply probabilistic and stochastic models to 

capture the system variability. In this study, we propose integrated frameworks for two 

such systems, transportation and healthcare, by applying advanced data analytics, 

statistical and stochastics models and machine learning methods to extract important 

knowledge for either prediction or causal analysis. The results can be used for both off-
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line design of better targeted countermeasures and corrective actions or on-line 

monitoring for situational awareness which can in turn assist with well-informed control 

actions. 

For the transportation system, we present a novel approach to formulate the real-time 

traffic safety risk of individual drivers and present data-driven frameworks to predict the 

drivers’ individualized safety risks. In particular, the models take advantage of near-

crashes in addition to crashes and is capable of handling different types of variables. We 

first used the VTTI’s 100-car Naturalistic Driving Study (NDS) data to develop an 

ensemble classifier to classify driving events into the crash and near-crash. We have then 

extended our methodology and developed a model for the Second Strategic Highway 

Research Program (SHRP-2) NDS data which is a more comprehensive study with more 

safety-related variables. Extensive data preparation and feature engineering were 

necessary to make data ready for model building. For the traffic safety risk prediction, we 

have used a weighted regularized regression model, to classify the trichotomous driving 

outcomes in relation to multi-stream safety data. We have further improved the resolution 

of the classes of driving outcomes by decomposing the class of normal driving. The 

developed prediction models can be used in advanced driver assistance systems to warn 

drivers of critical traffic incidents. We have also proposed a hybrid physics/data-driven 

approach to be used in a personalized kinematic-based Forward Collision Warning 

(FCW) system. In particular, we have used a hierarchical regularized regression model to 

estimate the driver’s reaction time in relation to his/her individual characteristics, driving 

behavior and surrounding driving conditions. This personalized reaction time will be then 

plugged into the Brill’s one-dimensional car-following model. We have also developed a 
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simple rule-based algorithm to decide when to use the predicted values in a conservative 

FCW system. 

For the healthcare system, we also develop a quantitative framework to identify the main 

sources of variation in patient flow. Since 1983, under Health Care Financing 

Administration (HCFA)’s system each hospital inpatient is classified into predefined 

Diagnosis-Related Groups (DRGs), and the hospital is paid the amount that HCFA has 

assigned to each DRG. In other words, irrespective of what the hospital charges for, it 

will be paid only a fixed price for each DRG through major reimbursement plans. 

Therefore, it is logical to expect that by reducing the within DRG discrepancies, hospitals 

can cut cost and improve patient safety and satisfaction. In order to reach this goal, the 

first step is to identify the main sources of variations. We have used a mixture of first-

order n-step Markov models to cluster patients into similar groups and then applied the 

well-known random forest classifier to identify significant factors affecting the patient 

sequence among tens or hundreds of potential factors including patient profile and 

hospital-related variables. We illustrated the applicability of our proposed approach by 

using a simulated data based on a real-life case study. 
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 INTRODUCTION 

Complex human-machine systems where human plays controlling roles are highly 

dynamic and complicated making the traditional models and methodologies less 

effective. The operability of such a complex system is affected by the performance and 

inter-relationships of a wide range of both internal and exogenous variables. The dynamic 

nature of such systems makes it necessary to apply probabilistic and stochastic models to 

capture the system variability. These variables or sources of variations can mainly be of 

three types: (i) known controllable variables, (ii) known uncontrollable variables and (iii) 

nuisance factors (sometime called lurking variables). Nuisance factors refer to un-

assignable causes, which are unknown and therefore uncontrollable. Any significant 

reduction in uncontrollable variations will increase system capability and improve the 

process performance, which can be achieved by building a strong model given the values 

of known variables and controlling the controllable variables.  

One example of such a complex system where humans have real-time control is 

transportation. In this system, multiple sources of variation can affect the driving 

outcome, categorized here into crash, near-crash, and normal driving. Driver behavior is 

known to be an essential safety factor in this system. In addition to driver behavior, 

roadway characteristics, vehicle condition, time of day, surrounding externalities (such as 

other roadway users), incidents (accidents, work-zones, etc.), and environmental 

conditions are other potentially contributing variables.  

Another example of human-machine systems is the patient care process in hospitals. In 

these systems, apart from the fact that humans are subjects receiving the service, the 

physicians, nurses, lab technicians, and also hospital administrative staff, each has some 
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level of control over the process, and their behavior must be considered in the models. In 

addition to the human factor, there are generally two sets of variables in patient care 

processes: (a) patient profile which are mainly uncontrollable variables such as patient’s 

age, gender, medical history, and (semi-) controllable factors such as medication; (b) 

hospital related variables which are mostly controllable such as test turn-around times, 

physician practices, nurse level of expertise, etc.  

Another commonality of the above-mentioned systems is the high risk of human errors or 

faults. In transportation, the risk of errors can be a crash with consequences ranging from 

property damage to fatality; similar to the healthcare system where the consequences 

range from loss of time and money due to unnecessary tests to loss of life. The ultimate 

goal is to reduce the risk of unfavorable events in these systems to save lives and reduce 

costs. One way to achieve this is through modeling and learning the relationships 

between potentially contributive factors and the process output. The main objective is to 

construct integrated frameworks by applying advanced data analytics, statistical and 

stochastics models and machine learning methods to extract important knowledge from 

complex human-machine systems for either prediction or causal analysis. The results can 

be used for both off-line design of better targeted countermeasures and corrective actions 

or on-line monitoring for situational awareness which can in turn assist with well-

informed control actions. 

 

1.1 Motivation 

Our motivations behind this work are two-fold: 

1) For the transportation system: 
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During the past decade, the demand for transportation services has increased remarkably 

due to steady increase in population coupled with strong economic growth and this 

increasing trend is likely to continue over the next 25 years [1].  About 1.24 million 

people die each year on the world's roads and between 20 and 50 million sustain non-fatal 

injuries. Studies show that road traffic injuries remain an important public health problem 

despite progress in a number of countries [2].  Among Americans aged 1 to 34, motor 

vehicle crashes are the leading cause of death. According to the National Highway 

Traffic Safety Administration (NHTSA), U.S. motor vehicle crashes in 2010 cost almost 

$1 trillion in loss of productivity and loss of life [3]. The report cites several behavioral 

factors, including drunk driving, speeding, distraction, and seat-belt use, as contributing 

to the huge price-tag of roadway crashes based on the 32,999 fatalities, 3.9 million non-

fatal injuries, and 24 million damaged vehicles that took place in 2010 [4].  According 

to 2015 data released by the National Safety Council (NSC), the one-year percentage 

increase of the death toll in America reached its highest in half a century.  Despite 

tremendous efforts to mitigate the risk of roadway crashes, the US is falling behind peer 

nations in traffic safety. 

The good news is that technology is changing traffic safety and with that vehicle safety is 

progressing beyond basic seatbelts and lighting, to high-tech safety features that can help 

drivers avoid accidents altogether. Three distinct but related streams of technological 

change and development are occurring simultaneously:  

 In-vehicle crash avoidance systems that provide warnings and/or limited 

automated control of safety functions, such as automated emergency braking 
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systems, lane-departure and forward collision warning systems, and electronic 

stability control 

 Connected vehicle technologies—vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communications that support various crash avoidance 

applications; and  

 Fully automated and self-driving vehicle technology. 

The Insurance Institute for Highway Safety have estimated that if all vehicles had 

forward collision and lane departure warning, blind spot assist, and adaptive headlights, 

about 1 in 3 fatal crashes and 1 in 5 injury crashes could be prevented1. Automated 

driving innovations could dramatically decrease the number of crashes tied to human 

choices and behavior.  Experts optimistically estimate that advanced vehicle technology 

can reduce the number of crashes by up to 90% by eliminating the primary cause of 

crashes that is the human error2.  

Although there will be a significant growth in the number of autonomous vehicles by 

2030, non-autonomous cars will make at least 85% of the traffic mix3. Furthermore, in 

vehicles with less than full automation, the system can only drive the car under specific 

conditions, and still the human driver needs to be ready to take back control of the 

vehicle when necessary and drive under difficult conditions. Last but not least, combining 

autonomous and non-autonomous vehicles in a single traffic network will bring about 

                                                 
1 The Insurance Institute for Highway Safety, New estimates of benefits of crash avoidance features on 
passenger vehicles, available from http://www.iihs.org/iihs/sr/statusreport/article/45/5/2 
2 Ten ways autonomous driving could redefine the automotive world, McKinsey & Company Podcast, June 
2015; available from http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-
ways-autonomous-driving-could-redefine-the-automotive-world. 
3 Self-driving Cars and The Future of the Auto Sector, McKinsey & Company Podcast, August 2016; 
available from http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-
cars-and-the-future-of-the-auto-sector. 
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unimaginable traffic safety challenges and the most difficult time is expected to be the 

transition period, while all kinds of cars will share the road before self-driving ones 

predominate. Therefore, it is imperative to enhance the performance of the present Driver 

Assistance Systems for the lower classes of vehicles to ensure a safe and smooth 

transition to the future of transportation. 

Naturalistic driving studies (NDS) are recent research projects intended to observe and 

record drivers’ driving behavior as events happen in real time. The collected data from 

Naturalistic Driving Study projects provide interesting and useful informational data 

about driver behavior, road, vehicle, and weather and traffic conditions in case of a crash, 

near-crash or under normal driving conditions. The 2nd Strategic Highway Research 

Program (SHRP2)’s Naturalistic Driving Study is the largest of its kind whose data was 

released in 2015. We had the opportunity to obtain a portion of this dataset through a 

grant from the U.S. Department of Transportation, Office of the Secretary of 

Transportation (OST), Office of the Assistant Secretary for Research and Technology 

under Grant no. DTRT12-G-UTC16.  

With this background in mind, we are motivated to propose novel frameworks to quantify 

and predict the real-time individualized traffic safety risk of drivers. We have used NDS 

data to illustrate the applicability of our proposed methodologies. In chapter 2, we 

propose a data-driven and learning-based approach to predict the likelihood of crash and 

near-crash events. The proposed prediction models can be used in an Advanced Driver 

Assistance System for situational awareness to primarily alert drivers of critical traffic 

incidents and unsafe situations. With the emerging trends in smart transportation and 

infrastructure, the widespread use of advanced technologies such as sensors, radars, 
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cameras, smartphones, and on-board vehicular devices and advances in big data storage 

and analytics, recording and processing of the required data will be readily available. 

According to the National Highway Traffic Safety Administration (NHTSA), rear-end 

collisions account for approximately 23% of all motor vehicle crashes. In 2012 alone, 

more than 1.7 million rear-end crashes occurred on US roadways, resulting in more than 

1,700 fatalities and 500,000 injured people. The National Transportation Safety Board 

(NTSB) estimated that 80% of the deaths and injuries resulting from rear-end collisions 

could be prevented by collision avoidance systems. 

An effective ADAS is expected to give a safety alert sometime before the driver realizes 

the presence of a rear-end collision’s risk in the hope of shortening the response time and 

evading a crash. Therefore, the use of a personalized reaction time instead of an average 

value for all drivers and under any driving conditions will enhance the performance of the 

ADAS in issuing more timely alerts.  

This has motivated us in chapter 3, to propose a hybrid physics/data-driven approach to 

be used in a kinematic-based Forward Collision Warning system. We propose a 

framework which can be used to customize the FCWS according to individual 

characteristics of drivers such as their demographics, cognitive abilities and risk 

taking/perception behavior. In particular, we have modeled the driver’s reaction time in 

relation to his/her individual characteristics, driving behavior and surrounding driving 

conditions. This personalized estimated reaction time will be then plugged into the 

kinematics model to issue a collision warning. 

 

2) For the healthcare system: 
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Since 1983, under Health Care Financing Administration (HCFA)’s system, generally 

referred to as the Prospective Payment System (PPS), each hospital inpatient is classified 

into one of around 500 Diagnosis-Related Groups (DRGs), and the hospital is paid the 

amount that HCFA has assigned to each DRG. Thus, hospitals will be paid the same 

amount for patients within a particular DRG.  One limitation to this methodology is that 

individual DRG categories often combine subgroups of patients with predictably different 

expected resource costs. HCFA has repeatedly improved the DRG definitions since 1984 

but these enhancements, while necessary, do not fully account for differences in illness 

severity associated with substantial disparities in providers’ costs. 

During their hospital stay, patients may experience redundant steps and procedures that 

may lead to unnecessary excessive expenses, lower Quality of Care (QoC) and customer 

dissatisfaction. The excessive costs are often covered by hospitals or paid by individual 

patients, since insurance companies have standard payment plans ranging from the 

infamous charge master or fee-for-service (FFS) price list to bundled payment systems 

such as diagnosis-related groups (DRGs) with various forms of “discounts off charges” 

and “per diems” somewhere in between. Regardless of who pays for these excessive and 

unnecessary expenses, the adverse societal impacts and negative business consequences 

are immense.  

On the other hand, renewed focus on quality measurement and improvement and on 

medical-error reduction has heightened interest in paying for performance, rather than 

just reimbursing providers for services rendered. Private Pay for Performance (P4P) 

programs for hospitals usually pays bonuses as an incentive above the agreed-upon 

reimbursement rate. A more rational reimbursement system, which rewards quality of 
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care rather than simply doing more to patients, is the short-term goal of paying for 

performance. The longer-term goal is also to make the health care system more efficient. 

It has become clear that under existing reimbursement structures, current market forces 

are insufficient to ensure either higher-quality or more-cost-effective care [5].  P4P 

programs can be seen as additional incentives for hospitals to seek to improve their 

patient flow processes, which can be attained through our variation reduction framework.  

These facts have motivated many researchers and practitioners to pay much attention into 

the development of novel technologies and methods for improving patient flow 

processes. In this study, we are motivated to develop a quantitative framework to identify 

the main sources of variation in patient flow using advanced stochastic models and 

machine learning methods.  

 

1.2 Synopsis of Contributions 

 A Data-Driven Approach To Traffic Safety Risk Prediction (Chapter 2) 

In chapter 2, the main objective is to build a traffic safety risk prediction model in 

relation to traffic safety factors. To do this, we propose building an integrated framework 

which uses data from multiple sources, extract relevant features and/or build new features 

to be used in an advanced statistical model or a machine learning algorithm for real-time 

traffic safety risk prediction. The application of the proposed platform is multifold: 

1- The individualized traffic safety risk can be used in an Advanced Driver 

Assistance System (ADAS) for situational awareness to primarily alert drivers of 

critical traffic incidents and unsafe situations. 
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2- The aggregated traffic safety risks of a cohort of drivers over time and location 

can be integrated into a navigation system to help drivers make informed 

decisions by planning their trips through the safest routes.  

3- It can be used in an advanced decision support system for roadway network 

owners to do network screening and hot-spot analysis using risk based measures. 

In this study, we focus on the first application of this platform. We have used real-world 

datasets from two different Naturalistic Driving Studies (NDS), namely VTTI’s 100-car4 

and The Second Strategic Highway Research Program (SHRP-2)5 NDS data to illustrate 

the use of our proposed data-driven approach. In particular: 

In Part I, we have used 100-car data to develop an ensemble of Breiman’s 

random forest [6] and a newly proposed Multivariate Time Series Random Forest 

[7] to classify driving events into crash and near-crash classes in relation to a set 

of safety factors. The replicated k-fold cross validation is used to evaluate the 

models.  

In Part II, we have extended our methodology and developed a model which can 

better fit SHRP-2 NDS data, a more comprehensive naturalistic driving study, 

with more extensive data fields (variables). First, data preparation and feature 

engineering steps were necessary to make the data ready for model building. For 

traffic safety risk prediction, we have used a weighted regularized multinomial 

regression model [8], to classify the driving outcomes in relation to multi-stream 

safety data. Our selection of this methodology is mainly motivated by its built-in 

mechanism for variable selection and ability for bias/variance trade-off. We have 

                                                 
4 http://forums.vtti.vt.edu/index.php?/files/category/3-100-car-data/ 
5 https://insight.shrp2nds.us/ 
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further improved the resolution of the original trichotomous driving classes by 

decomposing the normal driving state according to driver behavior and secondary 

task involvement. The proposed prediction models can be used in a Basic or a 

Conservative driver assistance system, termed according to their sensitivity to 

critical events and unsafe driving situations. The former system alerts drivers of 

crashes and near-crashes while the latter system warns of unsafe and distracted 

driving situations as well. 

 A Hybrid Physics/Data-Driven Approach for a Personalized Forward 
Collision Warning System (Chapter 3) 

In paper 3, we propose a hybrid physics/data-driven approach to be used in a kinematic-

based Forward Collision Warning system. Our proposed approach utilizes both the laws 

of physics governing moving objects and the supplemental data explaining driver and 

his/her surrounding conditions to assess traffic safety risks. In particular, we have focused 

on an FCW system which uses Brill’s one-dimensional car-following model to calculate 

the critical distance to issue a collision warning. The driver’s reaction time is one of the 

main parameters of the Brill’s model whose value defines whether a critical event would 

turn into a crash. It has been a common practice to use a nominal value, the mean or the 

95th percentile of the reaction time distribution of participants in experimental studies or 

driving simulators. 

In reality, it is well known that individuals react quite differently to the road events. 

There are many factors affecting a driver’s reaction time yet unexplored by the driver 

modeling literature due to the lack of sufficient observational data. To close this gap in 

the literature, we propose building a hierarchical regression model on top of the 
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kinematic model, which can capture the variations attributed to driver characteristics and 

driving behavior. We use SHRP-2’s Naturalistic Driving Study (NDS) data [9], the 

largest and most comprehensive study of its kind, to model the driver’s brake-to-stop 

response time. The results show that the inclusion of driver characteristics improves the 

predictive performance of the reaction time model. The explained variation by the 

driver’s intrinsic characteristics and driving behavior supports the necessity for 

developing personalized Advanced Driver Assistance Systems to enhance the 

performance and increase their acceptance by drivers. We have also proposed a simple 

rule-based algorithm to decide when to use the predicted values by our proposed reaction 

time prediction model in a conservative FCW system. 

 

 Modeling And Clustering Patient Pathways (Chapter 4) 

In this chapter, we propose a novel framework to model patient flow and relate them to 

system covariates for the purpose of process improvement. To do so, we have used a 

mixture of first-order Markov models to cluster patients into similar groups. Next, we 

applied the well-known random forest classifier to identify significant factors affecting 

the patient sequence among tens or hundreds of potential factors including patient profile 

and hospital-related variables. The idea is that by monitoring and controlling the 

important factors we will be able to control the variation in patient pathways which is 

interpreted as a process improvement. We will illustrate the applicability of our proposed 

approach by using a simulated data based on a real-life case study. The DRG under study 

was chest pain and the collected data includes patient pathways and their related 
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variables. Due to limitations in data collection, we used this sample data to generate more 

simulated patients and used them as inputs to our method. 
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 A DATA-DRIVEN APPROACH TO TRAFFIC SAFETY RISK 

PREDICTION 

2.1 Introduction 

With the emerging trends in smart transportation and infrastructure, the widespread use 

of advanced technology such as sensors, radars, cameras, and on-board vehicular devices 

and advances in big data storage and analytics, onboard recording and processing of real-

time driving data will be readily available. It will soon be possible to aggregate the traffic 

safety related data from these sources, overlaid over time and location for a specific 

driver, in order to create a high-resolution insight into the driving events. Furthermore, 

these real-time driving data can be merged with supplementary real-time network and 

weather data, and slow-changing data on driver, vehicle and roadway to build a holistic 

view of events and consequential behavioral patterns and safety factors.  

In this chapter, we define the real-time individualized traffic safety risk as the likelihood 

of a crash or near-crash and model its relationship to safety factors using advanced 

statistical and/or machine learning methods. The proposed approach is a data-driven and 

learning-based algorithm and its performance is expected to improve as the sample size 

increases and quality of data improves. The prediction model can be used in an Advanced 

Driver Assistance System for situational awareness to primarily alert drivers of critical 

traffic incidents and unsafe situations. We have used real-world datasets from two 

different Naturalistic Driving Studies (NDS), namely VTTI’s 100-car6 and The Second 

Strategic Highway Research Program (SHRP-2)7 NDS data to illustrate the use of our 

                                                 
6 http://forums.vtti.vt.edu/index.php?/files/category/3-100-car-data/ 
7 https://insight.shrp2nds.us/ 
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proposed approach. 

The organization of this chapter is as follows: In section 2.2, we will first present the 

background and literature review of the traffic safety risk prediction models. Next, the 

general problem statement will be presented in section 2.3. Then, the chapter will be 

divided into two major parts according to the use of the above-mentioned NDS datasets. 

Each part will contain a particular problem formulation, model evaluation and numerical 

results, and a conclusion. 

In Part I, we have used 100-car data to develop an ensemble of Breiman’s random forest 

[6] and a newly proposed Multivariate Time Series Random Forest [7] to classify driving 

events into crash and near-crash classes in relation to a set of safety factors. The 

replicated k-fold cross validation is used to evaluate the models. This is a relatively short 

part which presents some preliminary results using a small dataset. 

In Part II, we have extended our methodology and developed a model which can better fit 

SHRP-2 NDS data which is a more comprehensive naturalistic driving study with many 

more data fields (variables). First, data preparation and feature engineering steps were 

necessary to make the data ready for model building. For traffic safety risk prediction, we 

have used the elastic net regularized regression model [8], to classify the driving 

outcomes in relation to multi-stream safety data. Our selection of this methodology is 

mainly motivated by its built-in mechanism for variable selection and ability for 

bias/variance trade-off. We have also improved the resolution of the classes of the driving 

outcome by decomposing the class of normal driving. The results can be used in a Basic 

or a Conservative alerting system, termed according to their sensitivity to critical events 

and unsafe driving situations. The former system alerts drivers of crashes and near-
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crashes while the latter system warns of unsafe and distracted driving situations as well. 

Finally, this part is concluded with a summary of numerical results and a discussion of 

possible model improvements and future works. 

2.2 Background and Literature Review 

According to the National Highway Traffic Safety Administration (NHTSA), U.S. 

motor vehicle crashes in 2010 cost almost $1 trillion in loss of productivity and loss of 

life [3]. The report cites several behavioral factors, including: drunk driving, speeding, 

distraction, and seat-belt use, as main contributors to the huge price-tag of roadway 

crashes based on the 32,999 fatalities, 3.9 million non-fatal injuries, and 24 million 

damaged vehicles that took place in 2010 [4].  Tremendous efforts have been taken to 

mitigate the risk of roadway conflicts in order to alleviate the negative socio-economic 

impacts of roadway crashes including: traditional reactive and systematic approach to 

safety planning; adopting proactive countermeasures such as safe corridors, stricter laws 

for alcohol and under age driving; new strategies such as variable speed limits (VSL) due 

to advances in real-time data collection capabilities; and designing safe cars with 

different crash-avoidance warning systems. With the enormous advances in connected 

vehicles technology and the Internet of Things (IoT), new game changer solutions are 

appearing, and the opportunities for more advanced safety techniques are becoming more 

realizable.  

In order to enhance the overall safety in roadway networks safety management 

approaches must focus more on individual driver’s behavior [10]. Driver’s behavior is a 

major contributor to traffic safety risks. A number of studies in the US report that 

approximately 90% of the light-vehicle crashes involved same type of human error such 
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as impaired conditions, inadvertent errors and risky driving behavior [11], [12]. Driver 

error is also a main reason for approximately 87% of all commercial vehicles crashes 

[13]. Similar studies in other countries, including Japan, report similar conclusions; for 

instance, 40% of accidents in Japan are attributed to judgment errors, 47% to cognitive 

errors and 13% to operation errors [14]. Clearly, safety risks mitigation strategies can 

only be effective if driver behavior along with external conditions and factors, including 

weather, roadway conditions, time of day, traffic flow and density, together with their 

interactions are all accounted for. Advanced technology in image processing and IoT can 

certainly play a major role in such a holistic risk assessment. On another note, real-time 

crash risk prediction models using traffic data collected from loop detector stations have 

been proposed for dynamic safety management systems aimed at improving traffic safety 

through application of proactive countermeasures. The premise of the proactive traffic 

management is that there are certain freeway traffic patterns that are associated with a 

high likelihood of crash occurrence and that they may be detectable in the loop detector 

data [15]. Traffic detectors, singly or in combination, can be used to measure real-time 

variables such as presence, volume, speed, and occupancy.  

Here we group traffic safety models into the following categories: (i) Systematic 

models that use historical crash data (mainly produced from accident reports) in 

conjunction with roadway information data such as the New Jersey Department of 

Transportation’s Straight Line Diagrams (SLD) or similar legacy databases. These 

models range from simple crash frequency models ( [16], [17], [18]) to more advanced 

Poisson regression Poisson-Gamma or Poisson-lognormal/Negative Binomial ( [19], [20], 

[21]) and Poisson and Negative Binomial Zero-inflated models [22]. A list of potential 
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problems and methodological issues are available in [23] and [24].  From a practical 

point of view, Safety Performance Function (SPF) [25], which uses expected average 

crash frequency, is widely used in the US along with the appropriate adjusting Crash 

Modification Factors (CMF).  (ii) Qualitative risk based on systemic safety models which 

focus on similar geometric features of roadway segments in which specific crash types 

have occurred [26]. The main advantage of this approach is revealing the site features 

which are directly associated with high crash risk and implementing countermeasures 

before experiencing several crashes. (iii) Advanced risk based models aiming at more 

rigorous and proactive safety mitigation strategies, and fueled by advances in sensing and 

data collection. In this category we are particularly interested in those models that use 

real time onboard data combined with data from other sources. In [27], the authors 

calculate risk of visual distractions by calculating the rate of gaze in some specific spots 

of the road (mainly road center) using a simple eye tracker and a mono-camera system. A 

study conducted in Germany [28] concludes that the main causes for personal injury 

crashes may significantly be different for different ranges of age. For example, turning 

errors are the most contributing causes for elderly people’s crashes, while inappropriate 

speed is the most important cause for personal injury crashes of younger drivers. Their 

study suggests using age-specific safety assistant devices for different ranges of people. 

An Australian team conducts a simulator-based study to investigate the effect of driver 

inattention in increasing the driver safety risk. Their system is able to identify multiple 

“at risk” mental stats such as daydreaming and fatigue [29].   

Naturalistic driving studies (NDS) are recent research projects intended to observe and 

record drivers’ driving behavior as events happen in real time. The 100-Car Naturalistic 
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Driving Study, sponsored by the National Highway Traffic Safety Administration 

(NHTSA) and the Virginia Department of Transportation (VDOT), was the first 

instrumented-vehicle study undertaken with the primary purpose of collecting large-scale, 

naturalistic driving data in the US. The 100-Car Study was followed by a larger and more 

comprehensive study, the Strategic Highway Research Program 2 (SHRP2) conducted 

from 2006 to 2015.  

In these studies, drivers were given no special instructions, no experimenter was 

present, and the data collection instrumentation was unobtrusive. The collected data from 

Naturalistic Driving Study projects provide interesting and useful informational data 

about driver behavior, road, vehicle, and weather and traffic conditions in case of either 

crash or near-crash events. These studies are our opportunity to better understand crash 

causality by supplementing crash observations with a much larger number of near-crash 

events. 

A near-crash can be defined as a conflict situation requiring a rapid, severe evasive 

maneuver to avoid a crash [30]. In the 100-car study, the near-crashes were detected 

through a two-step data reduction process. First, events were identified using predefined 

trigger criteria values that resulted in a low miss-rate and a high false alarm rate to avoid 

missing valid events. The rule was if the value of at least one of the trigger criteria, 

namely, Lateral Acceleration, Longitudinal Acceleration, forward Time-To-Collision 

(TTC), rear Time-To-Collision (TTC) or Yaw Rate, violated a threshold, or the Event 

Button activated by the driver, then a near-crash was detected.  Reference [30] presents 

detailed information about each of the above mentioned trigger criteria, their definitions, 

descriptions and threshold values, in different Naturalistic Driving Studies. Second, the 
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video data for all the identified events were reviewed by data reductionists to validate the 

event, determine severity, and code the event for a data reduction dictionary [31]. 

The analysis of NDS data reveals correlations between driver behaviors, roadway 

segment and weather conditions in either crash/near or normal situation ( [32], [33], [34], 

[35]). According to FHWA’s HSIP, the frequency of traffic conflicts is sometimes used 

as a rough proxy for safety.  Data from the NDS [34] have been used to evaluate the 

causes of these conflicts and their relationship with actual crashes. One study finds strong 

relationship between the frequencies of contributing factors for crashes and for near-

crashes, and that the combined crash and near-crash data increase the precision of the 

estimates [36]. In a SHRP2 study [37] the authors attempt to determine if crash 

surrogates can be related to actual crashes and use a Bayesian Seemingly Unrelated 

Regression (SUR) to capture the correlation structure between crashes and crash 

surrogates and estimate relative risk (RR) between the two. The model can identify the 

safety factors, which have the same impact on both crashes and near-crashes. This 

analysis was not exhaustive, and was conducted as an exemplar of the method.  

Some has also suggested prediction of real-time risk of crashes using loop detector 

data. These works estimate the likelihood of crash occurrence for a given freeway 

segment over a short time period without taking into account the driver’s personalized 

safety factors contributing to a crash. They rather warn roadway drivers, entering a 

specific highway segment, about a high risk of a potential roadway conflict by using 

traffic flow data. Some of the models include a limited number of roadway characteristics 

but they lack the driver behavior data and target vehicle information ( [38], [39], [40], 

[41], [42] and [43]). The use of sequential logit model to link the likelihood of crash 
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occurrences at different severity levels to various traffic flow characteristics derived from 

detector data was presented in [30].  

In this chapter, we present a novel approach to formulate the real-time traffic safety 

risk of individual drivers and data-driven models to predict the individualized safety 

risks. In contrast to the traditional traffic safety models, our approach can potentially 

include different types of safety factors as mentioned above. In particular, it takes 

advantage of near-crashes in addition to the traditional crashes and is capable of handling 

different types of variables. The details of the model formulation will be explained in 

Section 2.3 and two different prediction models, namely the ensemble classifier and the 

elastic net, presented in Part I and II, respectively. 

2.3 Problem Formulation 

We denote the driving outcome by  for driver, i on his/her trip j at location l, at 

time ∈ . As it can be seen,  has both time and location dimensions and is driver 

specific. We split the driving outcome’s spectrum into discrete categories and assume 

that  has a categorical distribution. A categorical distribution, also known as a 

generalized Bernoulli distribution, is a probability distribution that describes the possible 

results of a random event that can take on one of the C possible outcomes, with the 

probability of each outcome separately specified. We denote these class probabilities by 

, , …	 , . These probabilities are constrained only by the fact that each must be in 

the range zero to one, and all must sum to one. An example would be a trichotomous  

with classes of normal driving, near-crash and crash and class labels of 1, 2 and 3, 

respectively: 
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 (2.1)

Later in this chapter, we will improve the state resolution by further decomposing the 

class of normal driving. In general, one can define a near-continuum spectrum of colors 

as shown in Figure 2.1, where each general state category is associated with many sub-

states or colors. This spectrum ranges from the safest mode (a near-zero chance of 

conflicts) to the riskiest mode of driving (a major fatal crash), and in the mid-range there 

will be mild to significant chances of near-crashes. 

 
Figure 2.1 Spectral driving outcome. 

There can be different approaches to map the driving outcome to the safety risk. In this 

chapter, we will define the safety risk as the likelihood of critical events such as near-

crashes and crashes. We denote the vector of independent safety factors of length p by 

 and define it as follows:  

 
),,,,( ijltxCijltuijltxijxVijxDijltz   (2.2)

where ∘∘ and ∘∘∘ are the static safety factors related to the characteristics of the 

target driver and vehicle, respectively. In this study, we use the term static to refer to both 

the invariant factors such as a driver’s gender or a vehicle’s make and model; and to the 

low-frequency changing factors, such as a driver’s driving experience or a vehicle’s 

maintenance condition which remains constant during a certain trip but may change 
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during longer time intervals of a month, season or year and possibly from one trip to 

another. Vectors  and  contain the vehicle’s kinematics and control variables 

similar to the state and input vectors in the state-space representation of physical systems, 

respectively. Finally,  contains all the other variables defining the context of 

driving, i.e. driver’s dynamic behavior, engineering and dynamic features of the roadway 

network, weather, time and historical crash data. It is worth noting that an engineering 

feature of a roadway network (for example a traffic sign) is a static or very low-frequency 

changing factor from the view of a network owner but is apparently a dynamic real-time 

factor from the view of an individual driver traveling on this network (the sign appears to 

the driver at a certain location and time during a trip).  

Suppose that we have a sample dataset of pairs of , . We want to find a 

function, , that can best model the relationship between the vector of safety predictors, 

, and the outcome of driving, : 

ijltyijltzf :  

For simplicity purposes and in practice for storage capacity considerations, the 

continuous time t, can be replaced by kTs, where k is greater than 0 and Ts is a constant 

time step (sample time). Some of the safety factors such as a vehicle’s kinematic 

variables (for example speed and acceleration) are high-frequency time-varying variables 

while other factors such as weather, number of travel lanes, traffic signs or traffic flow 

changes less frequently and can be assumed to be invariant during a small time horizon, 

NTS, where N is the number of time steps in the horizon or length of the time-series. 

Thus, according to the frequency of real-time changes, we divide safety variables into 

time-series and event variables and denote them as follows: 
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(2.4)

Given the above discrete-time representation and the new categorization of safety 

factors into time series and event variables, we redefine the vector of safety predictors, 

, to an array of vectors and scalars, , , , , as follows: 
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(2.5)

As mentioned before, we define the traffic safety risk as the likelihood of an 

unfavorable outcome and compute it for driver i, at trip j, location l and time step k from 

the following conditional probability: 

 
CrSaforNkLlijzfNkLlijzaijklyaP  );),(),,(()),(),,(|Pr(  (2.6)

where  is the set of critical outcomes. In this chapter, f is a data-driven function. The 

predicted driving outcome given , , ,  can be found as follows: 

 
Ca
aPArgijkly

,,2,1
maxˆ


  
(2.7)

As we mentioned in section 2.1, from this point forward, the chapter is divided into two 

parts each presenting a data-driven prediction model to estimate the real-time traffic 

safety risk of individual drivers. In Part I, the ensemble classifier for the VTTI’s 100-car 

data will be presented followed by the elastic net model for the SHRP-2 NDS data in Part 

II. 
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Part I- Traffic Safety Risk Prediction Using 100-car NDS data  

In this part, we explain the details of the ensemble classifier to calculate ijklŷ , the 

predicted class of the driving outcome, in Equation (2.7). The 100-car NDS data is used 

to illustrate the applicability of the proposed model. 

2.4 Ensemble classifiers 

Ensemble learning is primarily used to improve the (classification, prediction, function 

approximation, etc.) performance of a model, or reduce the likelihood of an unfortunate 

selection of a poor one. An ensemble-based system is obtained by combining diverse 

models (henceforth classifiers). In order to fully and practically appreciate the importance 

of using multiple classifier systems, it is perhaps instructive to look at a psychological 

backdrop to this otherwise statistically sound argument: we use such an approach 

routinely in our daily lives by asking the opinions of several experts before making a 

decision. For example, we typically ask the opinions of several doctors before agreeing to 

a medical procedure, we read user reviews before purchasing an item (particularly big 

ticket items), we evaluate future employees by checking their references, etc. In each 

case, a final decision is made by combining the individual decisions of several experts 

[44]. 

There are several scenarios where using an ensemble-based system makes statistical 

sense; data fusion is one of them [44]. In many applications that call for automated 

decision-making, it is not unusual to receive data obtained from different sources that 

may provide complementary information. A suitable combination of such information is 

known as data or information fusion, and can lead to improved accuracy of the 

classification decision compared to a decision based on any of the individual data sources 
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alone. Sometimes, heterogeneous features, such as the time-series and event variables in 

Equations (2.3) and (2.4), cannot be used all together to train a single classifier (and even 

if they could such a training is unlikely to be successful). In such cases, an ensemble of 

classifiers can be used where a separate classifier is trained on each of the feature sets 

independently. The decisions made by each classifier can then be combined by a 

combination rule. 

Two different types of combining rules exist:  

1. Algebraic (or fixed), 

2. Trained.  

Algebraic rules combine the continuous-valued output of classifiers through an algebraic 

expression, such as minimum, maximum, mean, product, median, majority vote, etc. In 

each case, the final ensemble decision is class j that receives the largest support after the 

algebraic expression is applied to individual supports obtained by each class. Following 

our earlier notations,  the conditional probability of output j obtained by using 

classifier  can be shown as follows: 

 	 Pr | , , , , , , , , ; a ∈ S 	and	i	

	1, 2, … ,m 
(2.8)

where  is classifier i, and m is the number of classifiers. Then,  in Equation (2.6) can 

be calculated as follows: 

 
Pr | , , , , , , ,

rule

∑ rule
 (2.9)

where  gives the combined value of continuous-valued output a over all methods 

(classifiers). Then, the class of event scenario { , , , , , , , } can be 



	
 

	

26

calculated from Equation (2.7). On the other hand, one can train an arbitrary classifier 

using the values of  (for all i  and a) as features in the intermediate space.  Then the 

combining rule is called a trained rule. It is a point of discussion whether it is wise to use 

the posterior probabilities directly for building the intermediate feature space, and it is 

beyond the scope of this study to investigate it. We have only used fixed combing rules in 

this study. 

2.5 Classification Models 

As we explained in section 2.3, we have two different types of safety variables in 

according to the frequency of real-time changes: 

 Time-series variables, ),(),,( NkLlijT , 

 Event variables, ),(),,( NkLlijev . 

In a recent study, Jafari et al. [45] used multinomial logistic regression (MLR) on Event 

variables of VTTI’s 100-car NDS data to classify the driving scenarios. In this study, we 

propose using Breiman’s random forest (RF) [6] to classify Event variables. We have 

conducted a replicated cross validation to test and compare the performances of MLR and 

RF methods in classifying Event data. Furthermore, we have used a recent generalization 

of random forests for multivariate time series by Baydogan et al. [7] to classify the time-

series variables.  

 Classification of Event Data 

First, we briefly introduce the two classification methods: 1-MLR, 2- RF for classifying 

Event data, and then present the performance comparison results.  
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Multinomial Logistic Regression 

Logistic regression technique is designed to estimate the parameters of a multivariate 

explanatory model where the dependent variable is dichotomous (binary), and the 

independent variables are continuous or categorical [46]. Multinomial logistic regression 

is an extension of logistic regression to multiple outcome categories [47]. This fits to our 

trichotomous driving outcome, namely normal-driving (Baseline), near-crash and crash. 

The predicted values from the analysis can be interpreted as probabilities of membership 

to the target groups. 

Multinomial logistic regression uses a linear predictor function to predict the probability 

that observation i has outcome k. It has the following form:  

 
logit	Pr 	| , , , . , , ,  (2.10)

where  ,  is the vector of regression coefficients associated with outcome a. For C 

possible outcomes, C-1 independent binary logistic regression models were built, so that 

one outcome is chosen as a pivot (reference category) and the other C-1 outcomes are 

separately regressed against the pivot outcome. 

When applying an MLR model, there is no need for the independent variables to have 

specific probability distributions or to be statistically independent from each other; 

however, collinearity is assumed to be relatively low, as it becomes difficult to 

differentiate between the impacts of several variables if they are highly correlated. 

Furthermore, MLR classifiers provide linear decision boundaries. Therefore, in cases 

where the above-mentioned assumptions violate, the performance of MLR classifier 

deteriorates. 
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Random Forest 

Random forest (or random forests) is an ensemble classifier that consists of many 

decision trees and outputs the class that is the mode of the class's output by individual 

trees [48]. Regression trees assume a model of the form: 

 
. 1 ∈  (2.11)

Where , … ,  represent a partition of feature space, depicted in Figure 2.2-a and 

Figure 2.2-b. Trees are invariant under scaling and various other transformations of 

feature values, are robust to inclusion of irrelevant features, and produces inspectable 

models. However, they are seldom accurate. In particular, trees that are grown very deep 

tend to learn highly irregular patterns: they overfit their training sets, because they have 

low bias, but very high variance.  

  

Figure 2.2 a: A tree corresponding to the partition of two-dimensional feature space. b: 

The partition of the two-dimensional example in (a) [48]. 

Random forests are a way of averaging multiple deep decision trees, trained on different 
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parts of the same training set, with the goal of reducing the variance. This comes at the 

expense of a small increase in the bias and some loss of interpretability, but generally it 

greatly boosts the performance of the final model. Random Forests grows many 

classification trees. To classify a new object from an input vector, put the input vector 

down each of the trees in the forest. Each tree gives a classification, and we say the tree 

"votes" for that class. The forest chooses the classification having the most votes (over all 

the trees in the forest). 

Some important features of Random Forests are as follows: 

 It is unexcelled in accuracy among current algorithms. 

 It runs efficiently on large databases. 

 It can handle thousands of input variables without variable deletion. 

 It gives estimates of what variables are important in the classification. 

 It generates an internal unbiased estimate of the generalization error as the forest 

building progresses. 

 It has an effective method for estimating missing data and maintains accuracy 

when a large proportion of the data are missing. 

 It has methods for balancing error in class population unbalanced data sets. 

 Generated forests can be saved for future use on other data. 

 Prototypes are computed that give information about the relation between the 

variables and the classification. 

 It computes proximities between pairs of cases that can be used in clustering, 

locating outliers, or (by scaling) give interesting views of the data. 
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 The capabilities of the above can be extended to unlabeled data, leading to 

unsupervised clustering, data views and outlier detection. 

 It offers an experimental method for detecting variable interactions. 

Method Selection Using Cross-Validation  

We used k-fold Cross Validation (CV) to assess the prediction performance of MLR and 

RF classifiers on Event data. Cross-validation is a way to predict the fit of a model to a 

hypothetical validation set when an explicit validation set is not available which is true in 

our problem. In k-fold cross-validation, the original sample is randomly partitioned into k 

equal size subsamples. Of the k subsamples, a single subsample is retained as the 

validation data for testing the model, and the remaining k − 1 subsamples are used as 

training data. The cross-validation process is then repeated k times (the folds), with each 

of the k subsamples used exactly once as the validation data. The k results from the folds 

can then be averaged to produce a single estimation. k is an unfixed parameter, and its 

best value can be determined through experiments. 

As we mentioned before, crashes are rare events and even near-crashes occur less 

frequently compared to the baseline (normal-driving) events. As a result, the traffic safety 

data is highly imbalanced, i.e. the classification categories are not represented 

approximately equally. For example, in the 100-car NDB data, the proportions of 

classification categories are 68 crashes to 760 near-crashes to about 19,000 baseline 

events. In order to take this into account in performing the CV tests, we used stratified k-

fold cross-validation. In stratified k-fold cross-validation, the folds are selected so that the 

mean response value is approximately equal in all the folds. In the case of a classification 

problem, this means that each fold contains roughly the same proportions of each class 
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labels. We performed both k-fold CV and stratified k-fold CV to test the performance of 

MLR and RF on NB’s event data and presented the results in section 2.6. 

 Classification Of Time-Series Data 

Multivariate time series (MTS) classification has gained importance with the increase in 

the number of temporal datasets in different domains (such as medicine, finance, 

multimedia, etc.) [7]. Similarity-based approaches, such as nearest-neighbor classifiers, 

are often used for univariate time series, but MTS are characterized not only by 

individual attributes, but also by their relationships. In this study, we use a Multivariate 

Time Series Random Forest to classify events according to time series variables.  

Multivariate Time Series Random Forest (MTS-RF) 

Baydogan and Runger (2014) provide a classifier based on a new symbolic representation 

for MTS (denoted as SMTS). SMTS considers all attributes of MTS simultaneously, 

rather than separately, to extract information contained in the relationships. Here, an 

equivalent formulation of our time series classification problem according to [7] follows:  

, , , is a p1-attribute time series each of which has  observations where  is the 

mth attribute (safety factor) of series n and  denotes the observation at time step k. 

Time series can be of different sizes and MTS-RF handles this situation, but for the 

purpose of illustration here we assume time series to be of the same length.  MTS 

example  is represented by a  matrix as: 

 
, , … , , … ,  (2.12)

where 



	
 

	

32

 
, … ,  (2.13)

is the time series in column m. There are  training MTS, each of which is associated 

with a class label ∈ 1, 2, … ,  for n = 1, 2, . . . , . Given a set of unlabeled MTS, 

the task is to map each MTS to one of the predefined classes. Instead of extracting 

features from each time series, each row of  is considered to be an instance. This is 

achieved by creating a matrix of instances 	 : 

 
⋯

⋮ ⋱ ⋮
⋯

 (2.14)

Equation (2.14) is basically the concatenation of training examples  in Equation (2.12). 

We assign the label of each instance to be the same as the time series. Then,  is 

mapped to the feature space Φ 	 that adds the following columns: time index, 

first differences for each numerical attribute. The row of Φ for series n at time step k is 

 
, , 1 , … , , 1 	  (2.15)

The differences provide trend information. A tree learner can capture this information if it 

relates to the class. If an attribute is nominal, first differences are not included. A RF tree 

learner is trained on Φ assuming that each instance has the same class label as its time 

series. Each tree of RFins (RF applied to the instances) provides a symbolic 

representation for the time series. Because time is used as a predictor variable, and 

because RFs can effectively handle interactions, complex regions in two-dimensional 

signal space (S) where one class dominates can be detected. In this sense, the time 

ordering of the data is used. RF Ensemble provides a symbolic representation, which 
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includes different views of the same time series mapping them to the high-dimensional 

space of terminal nodes (that correspond to regions in S where one class dominates).  

After the symbolic representation is generated from the trees in RFins, a bag-of-words 

(BoW) approach is used to classify the time series. Each symbol is simply considered to 

be a word and the relative frequency vector of the symbols from each tree are 

concatenated and used to classify the time series by the second RF ensemble. This 

frequency vector from each tree is normalized by the number of instances in the time 

series to obtain the relative frequency vector. We refer the interested reader to [7] for 

more details of the method. The authors have made the codes accessible for researchers 

through: http://www.mustafabaydogan.com/multivariate-time-series-discretization-for-

classification.html. 

2.6 Numerical Results 

In order to examine the performance of our methodology, we used VTTI’s naturalistic 

driver behavior data (http://www.vtti.vt.edu/). VTTI data has been collected over a course 

of 18-month period. The data collection effort resulted in approximately 2,000,000 

vehicle miles of driving, almost 43,000 hours of data, 241 primary and secondary driver 

participants, 12 to 13-month data collection period for each vehicle, five channels of 

video and many vehicle state and kinematic variables. Two databases were created: the 

event database, and the baseline database. The former database consists of crash and 

near-crash events while the latter one consists of normal driving incidents. The number of 

epochs selected per vehicle in the baseline database is proportional to the number of 

vehicle involvement in crashes or near-crashes.  

NDB database includes two major types of data: time series data and event or video-
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reduced data. Time series data include direct readings from on board devices, such as 

radars, sensors, and accelerometers. This data was available for 68 crashes and 760 near-

crashes. For each driving event, the dataset contains time series variables, for example 

gas pedal position and speed vehicle composite, spanning 30s before and 10s after an 

event. Video reduced data contains detailed event, driver state, and driving environment 

information derived from video reduction for the same 68 crashes and 760 near-crashes. 

Time series variables are not yet available for baseline events. Therefore, we present the 

numerical results of our general model for the dichotomous problem of crash and near-

crashes.  

Crash and near-crash events in naturalistic driving are typically identified through the 

detection of unusual vehicle kinematics recorded electronically through accelerometers 

and gyroscopic sensors.  The driver may also highlight a driving event by using an 

"event" button located in the vehicle for this purpose. Kinematics measures such as 

forward and rear Time To Collision (TTC) can be used with vehicle kinematics 

(including measurements of a target vehicle) to identify additional events. Once identified 

kinematically, the events are reviewed through use of forward and face video. They are 

retained if verified as safety-related events and discarded if not. Within each event, 

factors that precipitated the event, that contributed to the event, and that were associated 

with the event are grouped into pre-event maneuvers, precipitating factors, contributing 

factors, associated factors, and avoidance maneuvers. The event begins at the onset of the 

precipitating factors and ends after the evasive maneuvers. Data for the period shortly 

before, during and shortly after the event are then preserved. 

In addition to the kinematic variables discussed above, there are three other sets of data 
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routinely collected in naturalistic driving studies: 

1. Context variables – these are descriptors of the physical features, such as road 

and environment, at the time of the event including geometric alignment and 

environmental factors (e.g. rain or snow; day or night). Some geometric features 

may be obtained by linking on-board GPS to existing geographic information 

systems (e.g. roadway inventory systems maintained by most state highway 

departments). 

2. Event attributes - attributes of the event occurring immediately prior to and 

during event occurrence. Examples include the occurrence of driver distraction 

(sometimes identified by type of distraction) and presence of fatigue. 

3. Driver attributes - typically obtained during subject intake to the study and may 

include age, stated prior driving record, propensity to take risks when driving and 

physiological conditions such as vision and reaction time.  

Table 2.1 presents the list of the 25 (p=25) variables included in our model. From 

this set, fifteen factors are event variables (p1=15) including 5 driver-related, 2 

environmental-conditions, 6 roadway-characteristics, and 2 surrounding-

externalities variables. We also considered 10 time-series variables (p2=10) in the 

model, which are all driver-related safety factors except for Lighting explaining an 

externality. This table also shows the source and type of each variable. 
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Table 2.1 Input variables to the traffic safety risk model. 

Variable Name 
Time 
Dependency 

Group Source Variable Type 

Distraction Snapshot  Driver Internal Categorical 
Driver Behavior Snapshot Driver Internal Categorical 
Driver Seatbelt Use Snapshot Driver Internal Binomial 
Subject age Snapshot Driver Internal Categorical 
Subject gender Snapshot Driver Internal Binomial 
Lighting Snapshot Environmental conditions External Categorical 
Weather Snapshot Environmental conditions External Categorical 
Alignment Snapshot Roadway-characteristics External Categorical 
Locality Snapshot Roadway-characteristics External Categorical 
Relation to Junction Snapshot Roadway-characteristics External Categorical 
Surface Conditions Snapshot Roadway-characteristics External Categorical 
Traffic Control Snapshot Roadway-characteristics External Categorical 
Travel Lanes Snapshot Roadway-characteristics External Integer 
Traffic Density Snapshot Surrounding externalities  External Categorical 
Traffic Flow Snapshot Surrounding externalities  External Categorical 

Gas pedal position Time Series Driver Internal Continuous 

Speed Vehicle Composite Time Series Driver Internal Continuous 

Speed GPS horizontal Time Series Driver Internal Continuous 

Yaw rate Time Series Driver Internal Continuous 

Heading GPS Time Series Driver Internal Continuous 

Lateral acceleration Time Series Driver Internal Continuous 

Longitudinal acceleration Time Series Driver Internal Continuous 

Brake on/off Time Series Driver Internal Binomial 

Turn signal state Time Series Driver Internal Categorical 

Lighting Time Series Environmental conditions External Continuous 
 

Following our proposed methodology, we first used cross validation to compare the 

prediction performances of MLR and RF classifiers on event data. Figure 2.3 and Figure 

2.4 show the results of k-fold CV and stratified k-fold CV for k=2, 3, …, 10, 

respectively. We also performed replicated CV with n=10 to smooth the error-rate values 

over k. These figures suggest that RF classifier performs better on the feature space of the 

dichotomous event data. It also has a pretty robust performance excelling MLR model 

over all values of k with an error rate close to %8. Therefore, we select the RF classifier 
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over the MLR model to classify event data. We used RF to calculate the driver’s risk, i.e. 

the probabilities ’s in Equation (2.8), and set i=1 for the RF classifier given only the 

event data. 

 

 

Figure 2.3 Cross validation (including single and replicated runs) for the case of crash 

and near-crash. 
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Figure 2.4 Stratified cross validation (including single and replicated runs) for the case of 

crash and near-crash. 

Next, we used MTS-RF to classify the dichotomous output of crash and near-crash events 

on the time-series feature space. The best values of number of trees and number of nodes, 

best in term of OOB error rate, were used to grow the forest. After 10 replications of 

MTS-RF, the average OOB error rate was calculated to be and the test error rate to be 

Table 2.2 shows an example of the confusion matrix on a random split of data into %70 

training and %30 test sets while the ration of the number of crashes to near-crashes was 
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kept equal to the original ratio. As it can be seen, the OOB error rate of the model is very 

small equal to 2.42% while the error rate for the class of crashes was 29.8% and the near-

crashes 0%.  

Table 2.2 Confusion matrix for the training dataset 

Predicted Classes 
  Crash Near-Crash Total Class Error 

A
ct

ua
l 

C
la

ss
es

 Crash 33 14 47 0.298 

Near-Crash 0 532 532 0 

 
Then, we run the model on the test data set in order to evaluate the prediction 

performance of our classification model for a new unobserved data point. The total 

accuracy of the model is 0.956. Also, Cohen’s kappa statistic which compares the 

accuracy of the system to the accuracy of a random system was calculated to be 0.6247. 

According to Landis and Koch [49], it falls between 0.61-0.80 and shows a substantial 

agreement in classification. Table 2.3 shows the confusion matrix and class errors of the 

test data set. The error rate of the class of crashes has increased to 52.4% for the test set.  

 
Table 2.3 Confusion matrix for the test dataset 

Predicted Classes 
Crash Near_Crash Total Class Error 

A
ct

ua
l 

C
la

ss
es

 

Crash 10 11 21 0.524 

Near_Crash 0 228 228 0 
 
Table 2.2 and Table 2.3 were presented to show how the overall error rate was distributed 

between classes. In the next step, we are going to combine the results of RF classifier on 

event feature space ( ’s) with the results of MTS-RF on time-series feature space 

( ’s). In doing so, we designed stratified k folds of cases to train RF and MTS-RF 

separately on k-1 folds and calculate ’s and ’s on the left-out kth fold. Then, by 
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applying one of the fixed combining rules of ensemble classifiers introduced in section 

2.4, we calculated the final ’s, i.e. the driving safety risks.  

Figure 2.5, Figure 2.6 and Figure 2.7 show the results of stratified k-fold CV using RF on 

event data and MTS-RF on time-series data and ensemble classifiers with combining 

rules of minimum, maximum, mean, and product for the final decision fusion. For 

illustration purposes, we are only showing the results for k=5 since the same 

interpretations were concluded from all values of k=2,…,10. As it can be seen from these 

figures, MTS-RF has the best performance with the lowest error rate of. 

 

Figure 2.5  Error rates of single and ensemble classifiers per fold, Nfolds=5. 
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Figure 2.6 Error rates of single and ensemble classifiers in separate views for crash, near-

crashes, and overall errors, Nfolds=5. 
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Figure 2.7 Average CV error rates of single and ensemble classifiers for different type of 

error rates, Nfolds=5. 

 
Furthermore, random forests can be used to rank the importance of variables [6]. There 

are two criteria based on which the Breiman’s random forest calculates the importance of 

variables: Gini importance and permutation accuracy importance. The variable 

importance plot gives a relative ranking of significant features. Table 2.4 shows the 

results of variable importance plot for time-series data in a tabular format. 

Table 2.4 Variable Importance List. 

Rank Variable Type Mean Decrease Gini Percentage 

1 Travel Lanes Video reduced 1738.11 0.16 

2 Lighting Time Series 1521.16 0.14 

3 Gas pedal position Time Series 1467.87 0.14 

4 Driver Behavior Video reduced 972.76 0.09 

5 Traffic Density Video reduced 959.37 0.09 

6 Traffic Flow Video reduced 439.40 0.04 

7 Traffic Control Video reduced 402.65 0.04 

8 Locality Video reduced 363.03 0.03 

9 Speed GPS horizontal Time Series 337.86 0.03 

10 Lighting Video reduced 326.48 0.03 

11 Relation To Junction Video reduced 275.13 0.03 

12 Subject age Video reduced 246.63 0.02 

13 Speed .Vehicle composite Time Series 237.54 0.02 

14 Distraction Video reduced 216.00 0.02 
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15 Heading GPS Time Series 205.44 0.02 

16 Alignment Video reduced 203.03 0.02 

17 Weather Video reduced 166.43 0.02 

18 Surface Conditions Video reduced 95.83 0.01 

19 Brake on off Time Series 84.61 0.01 

20 Yaw rate Time Series 71.47 0.01 

21 Subject gender Video reduced 60.75 0.01 

22 Lateral acceleration Time Series 57.81 0.01 

23 Driver Seatbelt Use Video reduced 55.46 0.01 

24 Longitudinal acceleration Time Series 46.66 0 

25 Turn signal state Time Series 16.52 0 

 
In order to build an active safety model, we will feed the updated state vector at each time 

step into our classification model to predict the real time crash risk of an individual 

driver. It can be presented to the driver similar to the on-board safety warning system, 

such as blind spot warning or forward collision warning, through the smart cars’ terminal 

notifying the driver of possible risks of engagement in a near-crash or crash event. For 

convenience, we have color-coded the three safety states as follows: 

State Color Code

Crash

Near-Crash

Safe

 

Figure 2.8 schematically illustrates how the active safety model dynamically compute the 

safety risk (probability of crash/near-crash/normal driving) as the driver travels through 

the network and his state vector changes.  
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Figure 2.8 schematic illustration of our active safety model 

 

Part II- Traffic Safety Risk Prediction Using SHRP-2 NDS data  

2.7 Prediction Models 

In this section, we present our methodology to calculate the real-time traffic safety risk 

of a driver at a specific location and time during a certain trip for the SHRP-2 NDS data. 

We propose using a weighted regularized multinomial logistic regression for 

classification of driving outcomes. In this chapter, we use the elastic net, a regularized 

regression technique, that performs both variable selection and regularization in order to 

enhance the prediction accuracy and interpretability of the statistical model it produces 

[1].  

We use a linear logistic function to model the log-likelihood ratio of driving outcomes, 

∈ 1, 2, … , , as a linear combination of independent variables, i.e. the vector of 

safety factors , , , , as follows: 
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where 1,⋯ , 1  and outcome C is chosen as the pivot. Inverting this 

transformation yields an expression for the conditional probability: 
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To estimate the parameters of the above model, , , we applied Tibshirani and 

Hastie’s proposed regularization model, called elastic net. This model solves the 

following problem: 
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where 0 is a tuning parameter,  is the weight of the th instance and N is the 

total number of instances used for the parameter estimation.  is the elastic-net parameter 

providing a mix between ridge regression and the lasso (least absolute shrinkage and 

selection operator). Equation (2.18) trades off two different criteria. The first part seeks 

coefficient estimates that fit the data well by maximizing the likelihood function, while 

the second term, called a shrinkage penalty, shrinks the coefficient estimates towards 

zero. The intercepts  need not be regularized. The tuning parameter, , serves to 

control the relative impact of these two terms on the regression coefficient estimates. 

 is the elastic net penalty and can be computed from Equation (2.19). ‖ ‖  and 

‖ ‖  are  and  norms, also called Manhattan and Euclidian norms, and can be 

calculated from (2.20) and (2.21), respectively. The elastic net penalty is a compromise 
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between the ridge regression penalty ( 0 ) and the lasso penalty ( 1 ). It is 

particularly useful in ≫  situations, or any situation where there are many correlated 

predictor variables. 
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Ridge regression shrinks the coefficients of correlated predictors towards each other 

while Lasso is somewhat indifferent to very correlated predictors, and will tend to pick 

one and ignore the rest. The lasso penalty corresponds to a Laplace prior, which expects 

many coefficients to be close to zero, and a small subset to be larger and nonzero. Thus, 

lasso can be used for variable selection. 

The elastic net with 1  for some small 0 performs much like the lasso, but 

removes any degeneracies and wild behavior caused by extreme correlations. More 

generally, the entire family  creates a useful compromise between ridge and lasso.  

The first part of (2.18) is simply the log likelihood function of the multinomial logistic 

model and can be written as follows: 
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To solve the maximization problem in (2.22) for , , we have used the R 

package, glmnet [1]. The glmnet algorithms use cyclical coordinate descent, which 
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successively optimizes the objective function over each parameter with others fixed, and 

cycles repeatedly until convergence.  

The use of the elastic net in our problem has the following advantages: 

 Has a built-in mechanism for variable selection. 

 Provides better test prediction via bias/variance trade-off with its continuous 

shrinkage and variable selection. 

 Accepts both numerical and categorical inputs. 

 Offers cost-sensitive learning by applying class-specific weights in the loss 

function, which is paramount for imbalanced data. 

 Deals with highly correlated variables, particularly in a high dimensional 

problem, via grouped variable selection and shrinkage. 

Next, we will discuss the methods for evaluation of the classification model of 

imbalanced traffic safety data. 

 

2.8 Model Evaluation 

A confusion matrix, also known as a contingency table is a popular tool that allows 

visualization of the performance of a supervised learning algorithm. It is a square matrix 

of size c which is the number of classes of a categorical response variable, where element 

(i,j) is the count of instances in class j, predicted by the algorithm to belong to class i. 

Table 2.5 shows the confusion matrix for the classification of the 3-class driving 

outcome. 

 



	
 

	

48

Table 2.5- The Confusion Matrix of The 3-Class Driving output. 

Actual 
Baseline Near-Crash Crash 

P
re

d
ic

te
d 

Baseline 
True Baseline 

 
False Baseline 

|  
False Baseline 

|  

Near-
Crash 

False Near-Crash 
|  

True Near-Crash 
 

False Near-Crash 
|  

Crash 
False Crash 

|  
False Near-Crash 

|  
True Crash 

 

 

Each diagonal element of the confusion matrix represents a true classification, for 

example , read True Crash, is the proportion of Crash events that were correctly 

classified as such while an off-diagonal element represents a misclassification, for 

example | , read False Baseline given Crash, is the proportion of Crash events which 

were wrongly classified as Normal Driving (Baseline). Equations 2.23 and 2.24 show the 

calculations of  and | , respectively.  

 
  j CjyCjyICT )|ˆ(  (2.23)

 
  j CjyBjyICFB )|ˆ(|  (2.24)

I is an indicator function, and 	  is an indicator variable defined as follows: 





.0
,1

)(
otherwise

happensAevent
AeventI  

For example, |  is an indicator variable that equals one if |

 and zero otherwise. Other elements of the confusion matrix can be calculated in a 

similar fashion.  

 Misclassification Error 
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The most common approach for quantifying the accuracy of a classifier is the 

misclassification error rate (here denoted by MCER) or the proportion of mistakes. This is 

actually the average of the off diagonal elements of the confusion matrix. We can apply 

the trained classifier to predict the observations in the train set and calculate the error 

rate, called training error rate denoted by  computed from (2.25). But, we are 

usually interested in the error rates that result from applying the classifier to test 

observations that were not used in training the model. Equation (2.26) shows the formula 

to compute the test error rate, . 

 





trainj
jyjyI

trN
trMCER )ˆ(

1  (2.25)

 




testj

jyjyI
tsN

tsMCER )ˆ(
1  (2.26)

where  and  are the number of instances in the train and test datasets, respectively.  

 Type I and Type II Errors 

The misclassification error rate gives us some information about the overall 

performance of a classifier while we are most often interested in the distribution of errors 

over the classes. Especially, in an imbalanced classification setting where classes have 

unequal frequencies and the class of interest is of a lower frequency; the main objective 

of detecting the minority class is more challenging. Furthermore, in these unbalanced 

settings, usually the associated costs of errors over different classes are different. For 

example, in a driving scenario, the cost of an error in which the ADAS improperly 

indicates no presence of a critical condition when in reality it is present, is higher than the 

cost of an error in which the ADAS improperly alerts while it is actually a normal driving 

situation. The cost of the latter, called type I error, is the driver’s annoyance or 
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discomfort while the cost of the former error, called type II error, ranges from a property 

damage to loss of lives.  

A type I error, also known as an error of the first kind, occurs when the null 

hypothesis (H0) is true, but is rejected. It is asserting something that is absent, a false hit. 

The type I error rate or significance level is the probability of rejecting the null 

hypothesis given that it is true. On the other hand, a type II error, also known as an error 

of the second kind, occurs when the null hypothesis is false, but erroneously fails to be 

rejected. It is failing to assert what is present, a miss. What we actually call type I or 

type II errors depends directly on the null hypothesis. In what follows we present the null 

and alternative hypotheses for our problem. 

In designing an ADAS, it is accepted to have a higher type-I error rate (false alarm) in 

exchange of a lower type-II error rate, i.e. missing a true crash. It is worth noting that, in 

long term, an unreasonable high rate of nuisance alert can lead in drivers’ mistrust in the 

system and a potential passive behavior toward an upcoming safety alert [50]. Since, 

false alarms go up with attempts to detect higher percentages of true objects, the success 

of the classification model is a trade-off between type I and II errors. 

In order to compute the type I and II error rates for our multi-class problem, we first 

need to define three sets, denoted by ,  and , to represent all the possible driving 

outcomes, critical outcomes and non-critical outcomes, respectively. We propose an 

Advanced Driver Assistance System (ADAS), which alerts critical outcomes in . For 

example, for a trichotomous driving outcome, these three sets are as follows: 

 
 
 BaselineNCrS

CrashCrashNearCrS
CrashCrashNearBaselineS





,

,,
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The above-mentioned ADAS alerts of Crash and Near-Crash outcomes. Table 2.6 

shows the alert modes of this system. As it can be seen, the ADAS will give different 

visual and voice warnings to the driver. The proposed ADAS in this chapter uses the 

basic information about the driver characteristics, i.e. Age, Gender and Years of Driving, 

and combine it with the driver’s real-time behavior such as Speeding and Impaired 

Driving; the engineering roadway data, such as Locality, Road Alignment, Relation To 

Junction, Traffic Flow; and real-time network data, such as Traffic Density and Weather, 

to predict the outcome of driving. 

 

Table 2.6- Alert modes of the proposed ADAS for the trichotomous driving outcome. 

Class Status 
Visual color 

code 
Voice 
alert 

Crash Crash Red Yes
Near- Near- Orange Yes
Baseline Safe Green No

 

For the proposed ADAS, the hypothesis test is as follows: 





.:1

,:0
otherwiseH

criticalnotisoutcomedrivingTheH
 

Then, the type I and II error rates are defined as follows: 

  
 NCrijklCrijkl SySy

trueisHrejectedisHrateerrorIType



|ˆPr

|Pr 00  (2.27)

  
 CrijklNCrijkl SySy

trueisHrejectednotisHrateerrorIIType



|ˆPr

|Pr 10  (2.28)

Equations (2.29) and (2.30) show the type I and II error rates of detecting a crash in the 

3-class classification problem of driving outcomes using the confusion matrix in Table 

2.5. 



	
 

	

52

 

BFCBFNCBT

BFCBFNC
ERIType

||

||
_




  (2.29)

 

   CTCFNCCFBNCFCNCTNCFB

CFBNCFB
ERIIType






||||

||

_
 

(2.30)

 

To further evaluate the performance of our multiclass classification problem, we 

introduce two new measures, namely the off-diagonal upper triangular error rate and off-

diagonal lower triangular error rate. Figure 2.9 shows the general structure of the 

confusion matrix for classifying the multiclass driving outcomes. As it can be seen, rows 

represent predicted classes and columns represent the actual classes. Furthermore, the 

safety risk of classes from left to right, and top to bottom is increasing.  

 

Figure 2.9 The General structure of the confusion matrix for the classification of spectral 

driving outcomes. 

Equations (2.31) and (2.32) show the formula to calculate these two measures: 
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where N is the total number of classified instances. OLT_ER measures the average 

error rate of misclassifying an instance into a higher-risk class while OUT_ER measures 

the average error rate of misclassifying an instance into a lower-risk class. OLT_ER and 

OUT_ER are general forms of type I and II errors and for that reason lower values of 

OUT_ER are preferable in exchange of higher values of OLT_ER. 

 k-fold Cross Validation 

In order to select the best model, we use the cross-validation method. Considering a 

bias-variance trade-off, performing k -fold cross-validation using k  = 5 or k  = 10 are 

recommended as these values have been shown empirically to yield test error rate 

estimates that suffer neither from excessively high bias nor from very high variance [48]. 

The k-fold cross-validated misclassification error rate takes the form: 
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(2.33)

where Ni is the number of instances in fold i. Table 2.7 shows a list of 5 different error 

rates that we will report on each model in the cross-validated model selection. In the next 

two sections, we will first prepare the data to be used in a regression model and then fit 

the elastic net models with different parameters and select the best model using cross-

validation. 
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Table 2.7- A Summary list of the reported error rates for the cross-validated model 

selection. 

Type of Error Rate k-fold Formula 

Mis-Classification    k
i iMCER
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2.9 Data Preparation and Feature Engineering 

The Second Strategic Highway Research Program (SHRP-2) Naturalistic Driving Study 

(NDS) was the largest and most comprehensive study of its kind. The study included a 

three-year data-collection effort that produced driving data of about 5.5 million trips for 

over 3,000 drivers, including over 1,500 crashes and nearly 3,000 near-crashes in six 

states throughout the United States. It has been the largest study of its kind to investigate 

the role of driver performance and behavior in traffic safety. Detailed information about 

the NDS data is available at [51]. A complete list of publications and projects on SHRP-2 

safety data can be found at [52]. 

The Data Acquisition System (DAS) in the participant vehicles included a forward radar; 

four video cameras, including one forward-facing, color, wide-angle view; 

accelerometers (x, y, and z axes); rate sensors (x, y, and z axes); illuminance sensor; 

passive cabin alcohol presence sensor; incident pushbutton; turn signal state; vehicle 

network information; Geographic Positioning System; onboard computer vision lane 
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tracking, plus other computer vision algorithms; and data storage capability. Data from 

the DAS are recorded continuously while the participant’s vehicle is operating. This 

continuous recording allowed for an exposure-based approach and was central to the 

SHRP-2 safety focus area.  

In addition to the real-time driving- and vehicle-related data collected via the installed 

data acquisition equipment, a variety of non-DAS data, about the driver and vehicle 

characteristics, was also procured. Driver data include basic demographic information, 

functional ability relative to driving safety and risk, vision tests, cognitive assessments, 

physical ability metrics, vehicle information and post hoc crash investigations. These 

non-DAS data streams were obtained through a variety of instruments, including 

questionnaires; assessments of physical acumen, cognitive capacity, and visual acuity; 

and participant interviews. 

For this research work, we have obtained a subset of SHRP-2 data, which required a data 

sharing agreement with Virginia Tech Transportation Institute and an IRB approval from 

The Rutgers University’s Office of Research and Regulatory Affairs. All the analyses in 

this study are performed in R 3.1.2 [53] and the main package for data visualization was 

ggplot2 [54]. The dataset was limited to thirty percent of the complete SHRP-2 data 

containing a total of 8131 events from which 1217 were crashes (15%), 2644 near-

crashes (33%) and 4270 sampled baseline (53%) epochs. The sampled baseline epochs 

come from a pool of 20,000 baselines stratified per driving time with the driver’s speed 

not dropping below five miles per hour for more than two seconds. The additional 

criterion to select the baselines was to select samples whose drivers were also present in 

the set of the crash and near-crash events. Overall, 1250 drivers and 1299 vehicles were 
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included in this dataset. The bar plots in Figure 2.10 shows the distributions of crash 

severity (top) and crash type (bottom). As it can be seen, only 18 percent of crashes were 

severe and/or police reportable and 41 percent of crashes were low risk tire strikes for 

example clipping a curb during a tight turn. The most prevalent type of crashes was the 

road departure with 68 percentages. The conflict with a lead vehicle, and conflict with a 

following vehicle with 7 and 6 percentages are the next two frequent crash types. As we 

discussed, crashes are rare events meaning time is needed to record enough crashes of 

any specific type to analyze. The use of surrogates for collisions, such as near-collisions, 

critical incidents, or traffic conflicts, would greatly increase the power of the field 

studies, because the surrogate events occur much more frequently than crashes and 

without any severe consequences [55]. 

 

Figure 2.10 Severity (top) and type (bottom) distributions of crashes. 

 

SHRP-2 safety data contain four major categories of data: 1- event-detailed, 2- time-

series, 3- driver, and 4- vehicle data. In the SHRP-2 data, the typical length of the time-
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series data is 30 seconds for the crash and near-crash events and 21 seconds for the 

baseline epochs.  

 

Figure 2.11 A Tree structure of SHRP-2 NDS safety data. 

 

Figure 2.11 shows a tree structure of the main data tables with either their fields or sub-

tables in our subset of SHRP-2 safety data. As it can be seen, event detailed data mainly 

include time stamps; event nature, type and severity; precipitating event, pre-incident 

maneuver, maneuver judgment; driver behavior; driver’s secondary task (if any); 

weather, lighting, and surface condition; and finally roadway information data. Time-

series data include vehicle kinematics such as speed and acceleration; status of vehicle 

controls such as brakes, steering wheel, gear and signal position; and time and date 

information.  
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Driver data contain detailed information about the driver characteristics including 

demographics, pre- and exit medical conditions, sleep habits, driving history and 

knowledge, visual and cognitive tests, Conner Continuous Performance Test (a test for 

assessment of attention disorders and neurological functioning), clock drawing score (a 

test score for assessment of dementia or other neurological disorders), Barkley’s ADHD 

screening test, risk perception, risk taking, sensation seeking, past driver behavior. 

Finally, the vehicle data include vehicle types (car, truck, van, etc.), ages, condition and 

technologies and equipment. 

Appendix-1 shows a list of twenty-one variables from the event-detailed and driver tables 

that we included in our model as potential predictors of traffic safety risk. The data we 

received were already pre-processed to be used by researchers but still it needed some 

extra preparation steps specific to our problem. The very first step to prepare the data is 

to make the data readable in R. The structure of data is tested to check if the type, values 

and the range of each variable matches the targets explained in the SHRP-2 data 

dictionaries. Data munging and wrangling are also required to clean the data, remove the 

unnecessary punctuations and to map the semi-raw data to meaningful values according 

to the data dictionaries.  

Data preparation continues by properly handling missing data. Some algorithms such as 

Breiman’s Random Forest [6] have built-in procedures to handle missing values. In fact, 

Random forests has two ways of replacing missing values: (i) A fast way is to replace a 

missing value with the median for numeric variables and with the most frequent level 

(breaking ties at random) for factor variables; (ii) A computationally more expensive 

approach with a better performance is to use missing value proximities to iteratively 
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compute weighted measures to replace the missing values. There are more 

computationally expensive methods to impute missing values such as Multivariate 

Imputation by Chained Equations (MICE) [56].  In this study, we use the fast approach to 

replace the missing values using the randomForest package [57].  

The next step after the preliminary data preparations is feature engineering. Feature 

engineering is the process of transforming raw data into features that better represent 

the underlying problem to the predictive models, resulting in improved model accuracy 

on unseen data. As it can be seen in Appendix 1, the type of all the included variables in 

our model is either categorical or binary requiring especial treatments to enter the 

predictive model.  

 

Build New Binary Variables From Levels of a Categorical Variable with Many 
Levels 
For each crash or near-crash event, there are three variables of Driver_Behavior_1, 

Driver_Behavior_2, and Driver_Behavior_3 that record up to three of the most critical 

driver behaviors i.e. behaviors that most directly caused or contributed to the 

corresponding crash or near-crash event. These categorical variables can accept 58 

distinct values. Similarly, the variables Secondary_Task_1, Secondary_Task_2 and 

Secondary_Task_3, store up to three of the most critical observable driver engagements 

in any secondary task during the event. Distractions include non-driving related glances 

away from the direction of vehicle movement and do not include tasks that are critical to 

the driving task, such as speedometer checks, mirror/blind spot checks, activating 

wipers/headlights, or shifting gears. Each of the Secondary_Task variables has 64 levels. 
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Since these variables have many rare levels, which make them uninformative, we focus 

on some of the most prevalent levels and re-define them as new binary variables. For 

example, the binary variables of  and _  in Table 2.8 are engineered 

features created from the levels of three categorical variables of Driver_Behavior. Table 

2.8 and Table 2.9 show the mapping of the speeding- and low-speed-related levels of 

Driver_Behavior variables to the new binary variables of	  and _ , 

respectively. 

Table 2.8- Mapping of the speeding-related levels of Driver_Behavior variables to the 

new binary variable of Speeding. 

Driver_Behavior level 
New Binary 
Variable, level 

Exceeded safe speed but 
not speed limit 

Speeding, Yes 

Exceeded speed limit Speeding, Yes 
Stop sign violation, 
intentionally ran stop sign 
at speed 

Speeding, Yes 

 

Table 2.9- Mapping of the low-speed-related levels of Driver_Behavior variables to the 

new binary variable of Low-Speed. 

Driver_Behavior level 
New Binary 
Variable, level 

Driving slowly in relation 
to other traffic: not below 
speed limit 

Low Speed, Yes 

Driving slowly: below 
speed limit 

Low Speed, Yes 

 

Similarly, the binary variables of _ _ _ , and _  

were created from the levels of three categorical variables of Secondary_Task_1, 
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Secondary_Task_2 and Secondar_Task_3, which can store up to three distinct secondary 

tasks during a single event. The rest of the variables were readily available either from 

the event-detailed or driver data table.  

Combine Rare Levels  

To avoid redundant levels in a categorical variable and to deal with rare levels, we can 

aggregate levels. There are various methods of combining levels, two common ones are: 

(i) Using business logic, i.e. combining similar levels into similar groups based on 

domain or business experience, (ii) Using frequency or response rate, i.e. combining 

levels by considering the frequency distribution or response rate. To combine levels using 

their frequency, we first look at the frequency distribution of each level and combine 

levels having frequency less than 5% of total observation (5% is standard but you can 

change it based on distribution). This is an effective method to deal with rare levels. One 

can actually look at both frequency and domain knowledge to combine levels more 

effectively. Table 2.10 shows the combined levels of Traffic_Density according to both 

criteria. 

Table 2.10- Combine Levels of The Traffic Density 

Traffic Density: Original Level 
Traffic Density: 
New Level 

Level-of-service D: Unstable flow 
- temporary restrictions 
substantially slow driver

Unstable flow 

Level-of-service E: Flow is 
unstable, vehicles are unable to 
pass, temporary stoppages, etc. 

Unstable flow 

Level-of-service F: Forced traffic 
flow condition with low speeds 
and traffic volumes that are below 

i

Unstable flow 
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Dummy coding 

Finally, in order to include any of these categorical variables with  levels in a multiple 

regression prediction model, 1 dichotomous variables, also called dummy variables, 

must be created. Therefore, after dummy coding of all the categorical predictors in Table 

1, the dimensionality of the problem increases and the total number of binary predictors 

becomes sixty-six (66).  

2.10 Prediction Models 

In order to select the best model, we run the 10-fold cross-validation to calculate mean 

and standard deviation of the error rates, i.e. MCER, conservative and non-conservative 

type I and type II error rates, Off-diagonal Lower Triangular Error Rate (OLT_ER), and 

Off-diagonal Upper Triangular Error Rate (OUT_ER). We do this for ten cases: to select 

the elastic-net parameter 0,0.25,0.5,0.75,1  and the class weights 

1,1,1 , 1,3,5 .  We call  and  hyper-parameters. The weight vector 	 = 1,1,1  

represents equally-weighted classes while 1,3,5  assigns weights of one, three and 

five to the Baseline, Near-Crash and Crash instances, respectively. The assignment of 

smaller weights to the majority class cases and larger weights to the minority class cases 

is one way of dealing with the imbalanced data. The weights were initially set to be 

inversely proportional to the fraction of cases of the corresponding class ( 2,3,7 ). 

But through trial and error of neighboring values, we found 1,3,5  to result in a 

better prediction performance.  Table 2.11 shows the values of the hyper-parameters of 

10 cases for model selection. 
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Table 2.11- Candidate-model parameters to select the best model through cross 
validation. 

Case 1 2 3 4 5 
Weights (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) 
Alpha 0 0.25 0.5 0.75 1 
      
Case 6 7 8 9 10 
Weights (1,3,5) (1,3,5) (1,3,5) (1,3,5) (1,3,5) 
Alpha 0 0.25 0.5 0.75 1 

 

For each case in Table 8, the glmnet algorithm automatically generates a sequence of 100 

values for the tuning parameter, . Then, it estimates the regression coefficients and 

computes MCER at each . We are interested in two values of the tuning parameter:  

which gives the minimum mean cross-validated MCER and  which gives the most 

regularized model such that MCER is within one standard error of the minimum. The 

value of  gives a more regularized (sparse) model than . Therefore, to select the 

best model, we first find  (or ) for each case and then compare the performance 

of these ten best models to select the hyper-parameters (i.e.  and ) 

Since all of the predictor variables in our problem are categorical variables, adding an 

interaction term can significantly increase the size of the design matrix. For example, 

adding an interaction term for “Years Driving” and “Subject Age”, with the highest 

observed correlation, increases the dimension from 66 to 94 (additional 28 binary 

variables). In general, adding interaction terms to the model may initially decrease the 

bias but eventually will increase the variance of the prediction model. Furthermore, the 

elastic net has a way of dealing with highly correlated variables. It simultaneously does 

automatic variable selection and continuous shrinkage, and selects groups of correlated 

variables. Elastic net with strict convexity guarantees the grouping effect in the extreme 
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situation with identical predictors (the case of perfect multi-collinearity). We therefore 

decided not to include any interaction term into our model. 

Figure 2.12 shows the ten-fold cross-validated error rates for ten cases in Table 2.11. The 

x-axis shows the number of classes of the driving outcome, whether the instances were 

weighted or not, and the alpha value, each separated with a dash. Table 2.12 shows the 

same results in a tabular format. Recall that the main objective of an ADAS is to identify 

the critical events properly, that is, to have a smaller type II error in exchange for an 

inevitable larger type I error. As it can be seen, the best weighted model is the elastic net 

with 0.5 with 62 variables. This model gives a Type I error of 0.175, Type II error of 

0.5 and has an overall MCER of 0.384. By introducing the weights into the model, we 

select the weighted elastic net with 0.75  with 63 variables. Comparing to the 

equally-weighted model, this model has slightly a larger MCER (0.419) but it has 

reduced the type II error to 0.106. Since type I and II error rates is a trade off at a fixed 

sample size, the type II error rate has increased to 0.636. As it can be seen there is always 

a tradeoff between type I and II errors, and between OLT_ER and OUT_ER. For any 

given case, the effort to reduce one type of error generally results in increasing the other 

type of error. Therefore, since the main objective of the ADAS is to identify the critical 

events, we select the weighted elastic net model with	 0.75. 
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Figure 2.12 Ten-fold cross-validated estimates of the Miss-Classification Error Rate 
(MCER), conservative Type I and Type II error rates, Off-diagonal Lower Triangular 

Error Rate (OLT_ER), and Off-diagonal Upper Triangular Error Rate (OUT_ER), 
calculated at , for the ten candidate models in Table 2.11 for the 3-class driving 

outcome. 

 
Table 2.12- Ten-fold mean cross-validated error rates and their standard deviations in 
parenthesis calculated at  for the 3-class driving outcome.   

Weights alpha MCER 
Conservative Type 

I 
Conservative 

Type II 
(1,1,1) 0 0.386 0.157 0.529 

(0.012) (0.011) (0.016) 
(1,1,1) 0.25 0.385 0.171 0.510 

(0.007) (0.012) (0.018) 
(1,1,1) 0.5 0.384 0.175 0.500 

(0.010) (0.011) (0.018) 
(1,1,1) 0.75 0.385 0.173 0.507 

(0.007) (0.010) (0.017) 
(1,1,1) 1 0.385 0.170 0.509 

(0.007) (0.012) (0.019) 
(1,3,5) 0 0.423 0.731 0.064 

(0.019) (0.027) (0.010) 
(1,3,5) 0.25 0.420 0.637 0.106 

(0.018) (0.028) (0.015) 
(1,3,5) 0.5 0.420 0.636 0.106 

(0.018) (0.028) (0.015) 
(1,3,5) 0.75 0.419 0.636 0.106 

(0.018) (0.028) (0.015) 
(1,3,5) 1 0.419 0.637 0.107 

(0.019) (0.028) (0.015) 
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 Re-defining The Classes of Driving Outcome 

In order to improve the performance of our model, we re-define the classes of driving 

outcome. In the SHRP-2 NDS data, we are only provided with three tags for the sample 

epochs: “crash”, “near-crash” or “baseline”. If an epoch is not related to a crash or near-

crash event, it is tagged with a “baseline” label, i.e. no significant road incident was 

observed. But, as we discussed it earlier, the driving outcomes and their associated risks 

belong to a spectrum. This led us to break down the class of “baseline” events into three 

new classes according to the driver’s unsafe behavior or involvement in secondary tasks. 

To do so, we used the levels of six categorical variables of Driver_Behavior_1, 

Driver_Behavior_2 and Driver_Behavior_3; and Secondary_Task_1, Secondary_Task_2 

and Secondar_Task_3 and recorded them to up to six new unsafe driving behaviors and 

non-driving tasks or distractions during a specific epoch. The variable “driver behavior” 

has 53 and “Secondary task” 57 distinct levels. Table 2.13 and Table 2.14 show the top 

10 prevalent unsafe driving behavior and secondary tasks, respectively. Figure 2.13 

shows the breakdown of baseline events into three new classes. 

Table 2.13- Top ten prevalent unsafe driving behavior. 

 Unsafe Driving Behavior 
1 Exceeded speed limit 
2 Drowsy, sleepy, asleep, fatigued 
3 Failed to signal 
4 Stop sign violation, "rolling stop" 
5 Driving slowly in relation to other 

traffic: not below speed limit 
6 Exceeded safe speed but not speed 

limit 
7 Driving slowly: below speed limit 
8 Avoiding other vehicle 
9 Improper turn, cut corner on left 
10 Wrong side of road, not overtaking 
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Table 2.14- Top ten prevalent secondary tasks. 

Secondary Task
1 Passenger in adjacent seat
2 Talking/singing, audience
3 Other external distraction
4 Cell phone,
5 Other non-specific internal
6 Cell phone, Holding
7 Cell phone, Texting
8 Adjusting/monitoring radio
9 Eating without utensils
1 Other personal hygiene

 

 

Figure 2.13 Break down of baseline events according to unsafe driving behavior and 

secondary task involvement. 

The definition of  with five classes of driving outcomes is as follows:  
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(2.34)

Figure 2.14 shows the distribution of event types after the break down of Normal 

Driving outcome into three subgroups. Table 2.15 shows the elements of the confusion 

matrix for the 5-class driving outcome.  
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Figure 2.14 Distribution of event types after breaking down the class of normal driving. 

 
Table 2.15 The confusion matrix of the 5-class driving output. 
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We propose two Advanced Driver Assistance Systems (ADAS): 

1. Basic ADAS: this system alerts a driver of crash or near-crash events. This is 

similar to the 3-class ADAS system. 
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2. Conservative ADAS: in addition to the Basic ADAS’s alarms, this system also 

gives warnings for any un-safe or distracted driving behavior (as causes of 

potential crashes or near-crashes). 

Table 2.16 shows the alert modes for the Conservative ADAS. The conservative 

ADAS, as its name implies, may not be favorable for more advanced or aggressive 

drivers. But, parents with teenage drivers or elderly drivers with limited abilities can 

benefit from the timely alerts of un-safe or distracted driving modes. 

 

Table 2.16 Alert modes for the proposed ADAS. 

Classes Status 
Color-
code 

Voice 
Alert 

Crash Crash Red  Yes 
Near-crash Near-crash Orange Yes 
Baseline_3 Un-safe Driving  Amber Yes 

Baseline_2
Distracted 
Driving 

 Yellow Yes 

Baseline_1 Safe  Green No 
 

 

To investigate the performance of the 5-class ADAS, We run ten cases with the elastic-

net parameter set 0,0.25,0.5,0.75,1  and the class weights 

1,1,1,1,1 , 1,1,1,3,5 . The weight vector 	 = 1,1,1,1,1  represents the equally-

weighted case while 1,1,1,3,5  assigns weights of one, one, one, three and five to 

the Baseline-1, Baseline-2, Baseline-3, Near-Crash and Crash instances, respectively. 

Table 2.17 shows the values of the hyper-parameters of ten cases for model selection of 

5-class driving outcome. Figure 2.15 and Table 2.18 show the ten-fold cross-validated 

error rates for ten cases in Table 2.17. 
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Table 2.17 Candidate-model parameters to select the best model through cross validation 

for the 5-class driving outcome. 

Case 1 2 3 4 5 
Weights (1,1,1,1,1) (1,1,1,1,1) (1,1,1,1,1)(1,1,1,1,1)(1,1,1,1,1) 
Alpha 0 0.25 0.5 0.75 1 
      
Case 6 7 8 9 10 
Weights (1,1,1,3,5) (1,1,1,3,5) (1,1,1,3,5)(1,1,1,3,5)(1,1,1,3,5) 
Alpha 0 0.25 0.5 0.75 1 

 

 
Figure 2.15 Ten-fold cross-validated estimates of the Miss-Classification Error Rate 
(MCER), Type I and Type II error rates for the Basic and Conservative ADAS’s, Off-
diagonal Lower Triangular Error Rate (OLT_ER), and Off-diagonal Upper Triangular 

Error Rate (OUT_ER), calculated at , for the ten candidate models in Table 2.17 of 
the 5-class driving outcome. 

 
Table 2.18 Ten-fold mean cross-validated error rates and their standard deviations in 
gray font, calculated at , for the ten candidate models in Table 2.17 of the 5-class 
driving outcome.  

    Conservative 
ADAS 

Basic ADAS 

Case Weights alpha MCER Type I Type 
II  

Type I Type 
II 

1 (1,1,1,1,1) 0 0.508 0.451 0.199 0.336 0.328 
   0.009 0.029 0.014 0.011 0.029 
2 (1,1,1,1,1) 0.25 0.504 0.399 0.225 0.310 0.353 
   0.014 0.030 0.016 0.010 0.027 
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3 (1,1,1,1,1) 0.5 0.506 0.392 0.228 0.312 0.355 
   0.013 0.026 0.017 0.011 0.029 
4 (1,1,1,1,1) 0.75 0.505 0.393 0.227 0.305 0.358 
   0.014 0.034 0.017 0.012 0.028 
5 (1,1,1,1,1) 1 0.505 0.393 0.227 0.305 0.358 
   0.014 0.034 0.017 0.012 0.028 
6 (1,1,1,3,5) 0 0.441 0.964 0.004 0.926 0.011 
   0.013 0.017 0.002 0.013 0.004 
7 (1,1,1,3,5) 0.25 0.436 0.873 0.016 0.825 0.034 
   0.015 0.023 0.004 0.014 0.005 
8 (1,1,1,3,5) 0.5 0.436 0.873 0.016 0.828 0.033 
   0.016 0.021 0.004 0.012 0.005 
9 (1,1,1,3,5) 0.75 0.436 0.872 0.016 0.828 0.033 
   0.016 0.019 0.004 0.011 0.005 

10 (1,1,1,3,5) 1 0.437 0.872 0.016 0.828 0.034 
   0.016 0.017 0.004 0.011 0.005 

 

The best equally-weighted model is the elastic net with 0.25  and the overall 

MCER of 0.504, for the Conservative ADAS: Type I and II error rates are 0.399 and 

0.225; while for the Basic model these rates are 0.310 and 0.353. Since, the Conservative 

ADAS is more sensitive and reacts to any unsafe driving situations, its Type II error 

which is at the expense of a larger Type I error. For the weighted model, the elastic net 

models with 0.25, 0.5,0.75 performs similarly. Among them, the model with 

0.75 is selected since it is the most regularized model with a slightly lower type I error. 

The overall MCER is 0.436 (a decrease from 0.504), for the Conservative ADAS: Type I 

and II error rates are 0.872 and 0.016; while for the Basic model these rates are 0.828 and 

0.033. The best model, a model which can best detect the unsafe driving situations, is the 

weighted elastic net for the 5-class driving outcome.  

Eventually, the complete dataset was used to estimate the coefficients of the best model 

( 0.75, 1,1,1,3,5  and number of classes=5). Figure 2.16 shows the regularized 

regression coefficient paths for this model. There are five coefficient-paths plots in this 
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figure each of which relates to one of the five classes of driving outcome.  The vertical 

dashed lines indicate the point at which the cross-validation MCER is the smallest. The 

colored paths in these plots represent the top twenty predictors that are selected through 

the elastic net algorithm.  

Table 2.19 shows the confusion matrix of this best model. As it can be seen, the 

majority of the misclassifications have populated the lower triangular of the matrix. This 

means that false alarm rate is high but that sixty one (61) percent of crashes and seventy 

six percent (76) of near-crashes were identified correctly.  

 

Figure 2.16 Coefficient paths for the best classification model of the 5-class driving 
outcome. Each plot shows the estimated regression coefficients (paths) of one of the five 

classes in the multinomial logistic model. 
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Table 2.19 Confusion matrix of the best 5-class classification model with . , 
, , , , . 

  Actual 
  Baseline 

I 
Baseline 

II 
Baseline 

III 
Near 
Crash 

Crash 

P
re

d
ic

te
d Baseline I 228 135 1 28 9 

Baseline II 5 332 6 48 34 
Baseline III 0 0 29 6 2 
Near-crash 1029 1050 185 2000 430 
Crash 519 566 185 562 742 

 Sum 1781 2083 406 2644 1217 

 

2.11 Conclusion 

In this chapter, we presented an integrated traffic safety platform to develop a real-time 

individualized risk prediction model to be used in an Advanced Driver Assistance 

System.  We first introduced our methodology to calculate the likelihood of adverse 

driving events. We proposed using the elastic net regularized regression model with a 

built-in variable selection and shrinkage mechanism and a cost-sensitive loss function for 

imbalanced data. We introduced five measures of goodness (lack of goodness) to 

evaluate the performance of the prediction model, namely miss-classification, Type I, 

Type II, Upper Off-diagonal Triangular and Lower Off-diagonal Triangular error rates to 

take into account the sensitivity and specificity of the classifier in identifying cases in 

minority classes.  We used 10-fold cross validation to evaluate the prediction 

performance of the trained models on the testing data.  

We used a subset of SHRP-2 NDS safety data to show the applicability of our platform. 

We presented a detailed explanation of our data preparation and feature engineering to 

prepare this dataset for the training of the proposed prediction model. The prediction 
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model was used in an ADAS to warn drivers of critical event and/or unsafe driving 

situations. In particular, we designed two distinct ADAS’s, called 1-Basic ADAS and 2-

Conservative ADAS, according to their sensitivities to critical driving events. The Basic 

ADAS used the trichotomous driving outcome as its response variable and alerted drivers 

of crashes and near-crashes. The best weighted elastic net model for the Basic ADAS, 

with 0.75 and W=(1,3,5), resulted in an overall MCER of 0.419, and Type I and II 

error rates of 0.636 and 0.106 respectively.    

The Conservative ADAS further broke down the baseline outcomes into three new 

levels according to their incurred risk severities. This system warned drivers of unsafe 

and distracted driving situations in addition to the crash and near-crash events. The 

Conservative ADAS system has a higher sensitivity toward critical events and unsafe 

driving situations. The best weighted elastic net model for the Conservative ADAS, with 

0.75 and W=(1,3,5), resulted in an overall MCER of 0.436, and Type I and II error 

rates of 0.872 and 0.016 respectively.  The Conservative system may not be favorable by 

more experienced or aggressive due to its higher false alarm rates but parents with 

teenage drivers or elderly drivers with limited abilities can benefit from the timely alerts 

of additional un-safe or distracted driving modes. 

For any given case, the effort to reduce one type of error generally results in increasing 

the other type of error. Since the main objective of the ADAS is to identify the critical 

events, we may the increased type I error. One approach to simultaneously reduce type I 

and II errors of the classification model in an imbalanced data setting is to collect more 

data to increase the sample sizes of minority classes.  In fact, in this study we have only 

used one third of the SHRP-2 data. Including more crash and near-crash cases most likely 



	
 

	

75

improve the prediction performance of the prediction model. Another approach to tackle 

this problem is to use re-sampling methods such as bootstrapping which can be the 

subject of a future work. 

 

Disclaimer 

The contents of this chapter reflect the views of the author, who is responsible for the 

facts and the accuracy of the information presented herein. The U.S. Government 

assumes no liability for the contents or use thereof. 

Furthermore, the findings and conclusions are those of the author and do not necessarily 

represent the views of the VTTI, SHRP 2, the Transportation Research Board, or the 

National Academies. 
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 A HYBRID PHYSICS/DATA-DRIVEN APPROACH FOR A 

PERSONALIZED FORWARD COLLISION WARNING SYSTEM 

3.1 Introduction 

In this chapter, we propose a hybrid physics/data-driven approach which utilizes both the 

laws of physics governing moving objects and the supplemental data explaining driver 

and his/her surrounding conditions to assess traffic safety risks. For each type of traffic 

conflicts, there exist a physics-based model, which explains the relationships among 

vehicle’s kinematic and dynamic variables. On the other hand, the parameters of the 

physical model, such as speed, acceleration or the driver’s reaction time are affected by 

the context variables, such as weather, surface condition, daylight; and driver’s intrinsic 

characteristics such as driver’s cognitive abilities and demographics. A driver’s 

demographics, including his/her age and sex can result in different evasive maneuvers to 

avoid a specific type of crash. In particular, we focus on a Forward Collision Warning 

(FCW) technique that uses Brill’s one-dimensional stop-to-break model [58]. The 

parameters of this model are speed and acceleration of the following and lead vehicles 

and the following car’s temporal headway and reaction time. The time of issuing the 

warning alert can be determined from these parameters. The challenge is that these 

parameters are not deterministic and in real-world traffic scenarios, the surrounding 
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conditions, vehicle’s condition, driver characteristics and driving behavior confound their 

values. Stochastic, probabilistic and/or statistical modeling techniques can be used to 

capture the nondeterministic nature of these parameters according to the contributing 

factors.  

The proposed methodology can be used to enhannce the perfomance of Advanced Driver 

Assistance Systems by customizing the alerts according to driver intrinsic characteristics 

and driving behavior. An effective ADAS is expected to give a safety alert sometime 

before the driver realizes the presence of a rear-end collision’s risk in the hope of 

shortening the response time and evading a crash. Therefore, the use of a personalized 

reaction time instead of an average value for all drivers and under any driving conditions 

will enhance the performance of the ADAS in issuing more timely alerts. One can also 

use our model to design impactful countermeasures or mitigation tools focusing on 

human behavioral characteristics. For example, educational and enforcement campaigns, 

for programs targeting drunk driving or seatbelt use, can be modified to frame the 

accepted beliefs about safety within a specific area or region. Ultimately advanced 

knowledge in this area can influence the effectiveness of both behavioral, enforcement 

and infrastructure safety programs. Information can be provided to drivers that improve 

their situational awareness while driving and allow them to make driving decisions based 

on safety risk. Although, the immediate benefit of such real-time information system has 

to be studied in another experiment before implementation.  

There are many factors affecting a driver’s reaction time yet unexplored by the driver 

modeling literature due to the lack of sufficient observational data. For a long time, it has 

been a common practice to use a nominal value, the mean or the 95th percentile of the 
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reaction time distribution of participants in either an experimental study or a driving 

simulator. This research is an effort to investigate the effects of driver characteristics and 

driving behavior on the driver’s stop-to-brake reaction time in real-world driving 

scenarios. In particular, we propose building a hierarchical regression model, which can 

capture the variations attributed to driver characteristics and driving behavior. We use 

SHRP-2’s Naturalistic Driving Study (NDS) data [9], the largest and most comprehensive 

study of its kind, to model the driver’s brake-to-stop response time. The results show that 

the inclusion of driver characteristics decreases the cross-validated mean squared error of 

the reaction time prediction model by an average of 24%. It also increased the precision 

of the model in correctly predicting the longer reaction times (>2.5 seconds) by an 

average of 27%. The explained variation by the driver’s intrinsic characteristics and 

driving behavior supports the necessity of developing personalized Advanced Driver 

Assistance Systems to enhance the performance and increase their acceptance by users. 

The organization of this chapter is as follows: In section 4.2, the background and 

literature review of the problem in hand is presented. In section 4.3, the problem 

statement is presented. Model formulation, including Brill’s model of the car following 

behavior and the statistical model, which predicts the parameters of the kinematic model, 

is presented in section 4.4. Section 4.5 presents the numerical results using SHRP-2 NDS 

data. Finally, conclusions and directions for future research are presented in section 4.6. 

3.2 Background and Literature Review 

According to the National Highway Traffic Safety Administration (NHTSA), rear-end 

collisions account for approximately 23 percent of all motor vehicle crashes [59]. In 2012 

alone, more than 1.7 million rear-end crashes occurred on US roadways, resulting in 
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more than 1,700 fatalities and 500,000 injured people. The National Transportation 

Safety Board (NTSB) estimated that 80 percent of the deaths and injuries resulting from 

rear-end collisions could be prevented by collision avoidance systems. The first 

demonstration of a forward collision avoidance system dates back to 1995 by a team of 

scientists and engineers at Hughes Research Laboratories in Malibu, California. While 

primarily a warning system with various feedbacks, the system did have only a minor 

control of the brakes, which were pulsed to begin a braking action in the event of a 

potential collision, making it also the beginning of avoidance systems. It took almost 20 

years for this technology to reach the consumer marketplace. Since then, these systems 

have evolved significantly from a mere warning system to smart automated braking 

systems. Integrated safety systems for rear-end crashes can be broadly divided into three 

categories [60]: 

1. Forward collision warning (FCW): sensors detect a potential collision and warn 

the driver. 

2. Collision mitigation braking systems (CMBS): sensors detect a potential collision 

but take no immediate action to avoid it. Once the sensing system has detected 

that the collision has become inevitable regardless of braking or steering actions 

then emergency braking is automatically applied (independent of driver action) to 

reduce the collision speed, and hence injury severity, of the collision.  

3. Collision avoidance: Sensors detect a potential collision and take action to avoid it 

entirely, taking control away from the driver.  

The demand for the Advanced Driver Assistance Systems (ADAS), including the forward 

collision mitigation systems, is expected to increase substantially in the coming years. 
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The Insurance Institute for Highway Safety have estimated that if all vehicles had 

forward collision and lane departure warning, blind spot assist, and adaptive headlights, 

about 1 in 3 fatal crashes and 1 in 5 injury crashes could be prevented8.  

The Society of Automotive Engineers’ (SAE) vehicle standards committee has defined 

six levels of driving automation levels, namely L0 to L5 spanning from no automation (as 

in regular cars) to full automation [61]. Automated driving innovations could 

dramatically decrease the number of crashes tied to human choices and behavior through 

technologies that corrects for human mistakes or takes over the full driving responsibility.  

Experts optimistically estimate that advanced vehicle technology can reduce the number 

of crashes by up to 90 percent by eliminating the primary cause of or the contributing 

factor to crashes that is the human error9. Although there will be a significant growth in 

the number of autonomous vehicles by 2030, non-autonomous cars will make at least 

85% of the traffic mix10. Furthermore, in vehicles with less than full automation (i.e., L1 

to L4), the system can only drive the car under specific conditions, and still the human 

driver needs to be ready to take back control of the vehicle when necessary and drive 

under difficult conditions. Last but not least, combining autonomous and non-

autonomous vehicles in a single traffic network will bring about unimaginable traffic 

safety challenges and the most difficult time is expected to be the transition period, while 

all kinds of cars will share the road before self-driving ones predominate. Therefore, it is 

necessary to enhance the performance of the present Driver Assistance Systems for the 
                                                 
8 The Insurance Institute for Highway Safety, New estimates of benefits of crash avoidance features on 
passenger vehicles, available from http://www.iihs.org/iihs/sr/statusreport/article/45/5/2 
9 Ten ways autonomous driving could redefine the automotive world, McKinsey & Company Podcast, June 
2015; available from http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-
ways-autonomous-driving-could-redefine-the-automotive-world. 
10 Self-driving Cars and The Future of the Auto Sector, McKinsey & Company Podcast, August 2016; 
available from http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-
cars-and-the-future-of-the-auto-sector. 
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lower classes of vehicles to ensure a safe and smooth transition to the future of 

transportation. 

According to a study [50] conducted by Delphi Electronics & Safety collision warning 

algorithms use one of the following criteria: time-headway, time-to-contact, or the 

underlying kinematic constraints. Although time-headway (also called temporal 

headway) algorithms offer simplicity and are consistent with current driving-manual 

recommendations for safe driving, they are insensitive to relative velocity. Time-to-

contact (also called Time-To-Collision) algorithms (e.g. [62] and [63]) are based on D. 

Lee’s theory of direct time-to-contact perception [64], and are sensitive to relative 

velocity.  Algorithms based on kinematic constraints offer increased accuracy by 

calculating the moment that the driver must initiate braking, given an assumed reaction 

time and host-vehicle deceleration response.  Because this class of algorithms considers 

both reaction time and the capacity of the host vehicle to decelerate, it offers a more 

comprehensive model than the other two categories. Algorithms of this class are highly 

dependent on assumptions about driver reaction time and braking rate.  

A driver’s reaction time, sometimes called response time, consists of two elements: 

Perception Reaction Time (PRT) and Maneuver Time (MT). Perception Reaction Time is 

the time it takes for the driver to realize that a reaction is needed due to a road condition, 

decide what maneuver is appropriate (in the case of rear-end collision, stopping the 

vehicle), and start the maneuver (taking the foot off the accelerator and depressing the 

brake pedal) [65]. Maneuver Time, also called Movement Time, is the time it takes to 

complete the maneuver (decelerating and coming to a stop). Figure 3.1 shows the 

elements of reaction time as the sequence of events take place in a rear-end collision 
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scenario. In this scenario, the risk becomes present when a lead vehicle starts slowing 

down or coming to a stop. An effective ADAS is expected to give a safety alert sometime 

before the driver realizes the presence of a rear-end collision’s risk in the hope of 

shortening the response time and evading a crash. 

 
Figure 3.1 Sequence of events during a crash or near-crash [66]. 

Although response time vary significantly according to different safety factors, it has 

been a common practice to use a nominal value, usually the mean or the 90th percentile, 

in traffic models especially for accident reconstruction and causal analysis. For example, 

the design standards of the American Association of State Highway and Transportation 

Officials (AASHTO) allow 1.5 seconds for perception time and 1.0 second for maneuver 

time [67]. In fact, many researchers have used the 2.5-second standard for the reaction 

time value. These fixed values are calculated in experimental studies, which are unable to 

capture the effects of driving behavior in most of the real world scenarios and varying 

contexts. Furthermore, despite the fact that response times are skewed to the right, 

measured response times are often reported in the literature as mean values, making it 

difficult to estimate values away from the mean. A few authors have presented response 

times as a distribution. For example, Taoka [67] describes a distribution of brake reaction 



	
 

	

83

times based on work by Sivak et al. [68], and Eberhard et al. [69] provide a summary of 

different distributions.  

Most studies have estimated the reaction time based on indoor experiments and driving 

simulators [70]. For example, in the study by Johansson and Rumer [71], 321 subjects 

were instructed to brake pedal as soon as they heard a sound. The estimated reaction time 

varied from 0.4 second to 2.7 seconds with a mean, and standard deviation of 1.01, and 

0.37 seconds. Since the drivers were informed that they were participating in a brake 

reaction study and the use of sound as stimulus, these values may be biased. A recent 

study using both a real driving environment and a simulator [72] shows that the reaction 

time of drivers to an anticipated danger in a real environment has a mean value of 0.42 

seconds and a standard deviation of 0.14 seconds. The same study also shows that the 

mean value of the reaction time distribution to an unanticipated danger by extreme 

braking is about 1.1 seconds and that in a simulator it is about 0.9 seconds. In real traffic, 

the driver reaction to expected and unexpected stimuli are also different [73].  Fambro 

reported that the mean reaction times for unexpected and expected stimuli are 1.3 seconds 

and 0.7 seconds, respectively. Ranjitkar et al. [74] applied the graphical method in 

stability analysis of car-following behaviors, and based on car-following data collected 

on a test track, they estimated that the average driver reaction time for individual drivers 

ranged from 1.27 to 1.55 seconds. 

Chandler et al. [75] developed a linear car-following model using eight male drivers. 

Their estimate of the reaction time was approximately 1.5 seconds. Gipps [76] did not 

estimate the individual reaction time, but instead used constant reaction time of 2/3 

seconds for all drivers. Lerner et al. estimated the reaction time distribution from a 
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sample of 56 drivers in real traffic scenarios [77]. To estimate the brake reaction time for 

unexpected situations (to mimic real driving conditions), subjects were not informed that 

they were participating in a brake reaction time study. When a subject reached the test 

site at 40 mph speed, a large yellow highway crash barrel was released approximately 

200 feet in front of the vehicle. The brake reaction time varied from 0.7 to 2.5 seconds 

with a median, mean, and standard deviation of 1.44, 1.51, and 0.39 seconds, 

respectively. In overall, the current state of the art of reaction time modeling lacks 

thorough studies that relate reaction time variations to individual drivers while 

accounting for driving context factors. 

The present commercial products are designed for an average driver which can be too 

conservative for a more experienced or aggressive driver, or ineffective for a more 

vulnerable driver such an elderly or a young inexperienced driver. This may lead to a 

higher rate of false alarms and consequently a driver’s mistrust in the system. Over the 

past decade, there has been significant research effort dedicated to the enhancement of 

forward collision mitigation systems, intended to improve safety by monitoring the driver 

and the on-road environment. The most recent advances in the collision warning and 

avoidance technologies are the cooperative and predictive driver assistance systems 

which fuses data from additional sources, such as the driver, near-by vehicles or 

infrastructure, in order to enhance the performance of their risk assessment under 

different conditions [78].  For example, one way to enhance a driver assistance system is 

to take into account the characteristics and dynamic behavior of each individual driver for 

a more impactful and personalized warning system. There has recently been a handful of 

researches trying to address this problem. For example, Butakov and Ioannou [79] 
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developed a methodology that learns the characteristics of an individual driver/vehicle 

response before and during lane changes and under different driving environments. They 

have developed a two-layer model to describe maneuver kinematics. The lower layer 

describes lane change as a kinematic model. The higher layer model establishes the 

kinematic model parameter values for the particular driver and represents their 

dependence on the configuration of the surrounding vehicles.  

Our work benefits from a recent large-scale observational SHRP-2 study of driving 

behavior. We build a statistical model to estimate the brake-to-stop reaction time in rear-

end conflict scenarios in relation to driver’s intrinsic characteristics and other additional 

context variables. We show that by including driver characteristics, we can explain some 

of the variations in the driver’s reaction time attributed to individual differences. This 

approach requires drivers to provide information about their demographics, sleep habits, 

driving history and knowledge and cognitive, visual and ADHD test results. We 

demonstrate that our model significantly results in a more realistic estimation of driver’s 

reaction time, which could in turn lead to the design of more effective personalized 

ADAS. 

3.3 Problem Formulation and Preliminaries 

The problem of interest is to build a hybrid physics/data-driven traffic model in relation 

to roadway and driver’s intrinsic characteristics and environmental factors. Figure 3.2 

shows the framework for our proposed model for a personalized collision warning 

system. 
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Figure 3.2 A hybrid physics/data-driven model for a personalized collision warning 

system. 

Our model takes advantage of a causal model (Figure 3.3) that explains the relationships 

among safety factors and driving outcome [80]. In this figure endogenous variables are 

grouped into observed and unobserved variables, where observed (manifest) variables are 

shown inside rectangles, and unobserved variables (latent) inside ellipses. Unobserved 

variables are those variables that are not measured directly but they are rather created as 

constructs of observed variables. For instance, a driver’s dynamic behavior is a product 

of his/her individual intrinsic characteristics in conjunction with his/her interactions with 

the surrounding environment. We can also have relationships among exogenous 

variables, shown by curved arrows, such as the impact of weather and time on roadway’s 

dynamic conditions and other road user’s behavior.  
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Figure 3.3 Causal model of traffic safety incidents. 

 

Some of the exogenous variables have direct impacts on state variables such as vehicle 

make and model and its maintenance condition, grade of roadway, or surface condition 

(friction); while others such as misty weather, a crossing pedestrian, rush hour, or a 

driver’s sleepiness affect the state variables through changing driver’s behavior in 

response to these factors (more cautious driving => slowing down in response to misty 

weather).  State variables together with real-time driver behavior can precipitate a 

potential traffic conflict. At this point, the driver may take some evasive actions, i.e. 

braking, accelerating and steering or a combination of the three, to avoid the conflict. We 

refer to these evasive actions as driver’s response variables. The results of driver response 

in conjunction with state variables will define the driving outcome. Driving outcomes 

have been traditionally classified as either crash or no crash in the past. Naturalistic 

driving studies have made it possible to add another class of driving outcome as the class 

of near-crash. But the reality is that the driving outcome can be seen as a risk spectrum 
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ranging from the safest mode (a near-zero chance of conflicts) to the riskiest mode of 

driving (a major fatal crash), and in the mid-range there will be mild to significant 

chances of near-crashes.  

Referring to our causal model, state and driver response variables can be modeled in 

relation to driver behavior making them customized per individual driver. For example, 

driver’s reaction time is one of the parameters of the kinematic model and space state 

model for trajectory reconstruction. This parameter itself can be regressed against the 

values of the real-time driver’s behavior and his/her intrinsic characteristics under 

varying driving conditions. For example, according to [23], brake reaction to an 

unexpected condition is faster in older drivers than younger drivers. Therefore, depending 

on the age group of the driver, his/her reaction time can assume different values. We will 

use regularized regression models to estimate the parameters of the physical model in 

relation to the context variables. Then, the estimated parameters will be used in the 

physics-based model. 

To illustrate the hybrid physics/data-driven approach, we consider the simple one-

dimensional trajectory model of a rear-end collision (striking) scenario with braking as 

the only evasive maneuver. We will use Brill’s brake-to-stop model originally proposed 

in 1972 [58]. Figure 3.4 shows the parameters of this model. A crash occurs when the 

available distance to stop for the follower vehicle is less than the distance needed to stop 

without striking the lead vehicle [81], i.e.: 

 
	 .
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where  and  are the time epochs at which the lead vehicle and the following vehicle 

push the brakes, respectively. Furthermore, , and  are the initial speed and 

braking deceleration of the lead vehicle;  and  the initial speed and braking 

deceleration of the following vehicle; and  and  are the following driver’s temporal 

headway and braking reaction time, respectively. The variables , ,	 , ,  

and  are referred to as the Brill elements.  

Here is a list of Brill’s elements: 

: time epoch when the lead vehicle’s driver brakes, 

: time epoch when the following vehicle’s driver brakes, 

: time epoch when the lead vehicle stops, 

: time epoch when the following vehicle stops, 

: speed of the lead vehicle when braking begins, 

: speed of the following vehicle when braking begins, 

: the following vehicle’s temporal headway when the lead vehicle brakes, 

: the following vehicle’s braking reaction time, 

: braking deceleration used by the lead vehicle (stopping deceleration), 

: braking deceleration used by the following vehicle (stopping deceleration). 

From this point forward and in accordance with the related literature on reaction time, we 

use the notation, , to refer to the driver’s reaction time of the following car. 
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Figure 3.4 Rear-end collision scenario: parameters of the simple brake-to-stop model. 

We define the driving outcome, based on a quantitative criterion, d, which is calculated 

according to the laws of physics of moving objects [82]. At a higher level, the parameters 

of this physics-based model can be estimated according to the additional information 

obtained from the external surrounding conditions, driver’s characteristics and behavior 

or vehicle’s specifications and conditions. Equation (3.2) shows the calculation of d. 

 
.

2
.

2
 (3.2) 

When d is equal to 0, a rear-end crash happens, and small values of d can suggest a near 

rear-end crash though it should be interpreted in relation to the relative speed of the two 

vehicles and traffic flow. Then, similar to Equation (2.1) in chapter 2, the driving 

outcome at time  and location  of driver  in his or her trip  can be defined as follows: 

 

	

, ,
, 	,

, .
 (3.3) 

Where  and  are the thresholds for near-crash and crash (low-level and high-level 

severity) warnings. By computing  in real time and comparing it to the critical 

thresholds, the driving outcome can be determined at any given time and location for a 

specific driver during his/her trips. To apply this kinematic model in a warning system, a 

method to grading the severity of vehicle interactions needs to be developed to define the 
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thresholds and rules. For example, Smith et al. has developed such a method to support 

evaluation of collision warning systems [83]. Using driver behavior data observed in 

driving simulators and test-track experiments, the parameters’ curves were then used to 

partition the set of possible values into subsets reflecting crash, near-crash, conflict, and 

low-risk situations. Similarly, the values of  and  can be defined according to the 

distribution of  at the onset of critical events compared to values at normal driving 

conditions. This approach can be extended to other types of traffic conflicts, such as a 

collision with an adjacent car or conflict with a following vehicle (struck versus striking); 

and also to more detailed models such as a 2-dimensional trajectory model that can 

account for both braking/accelerating and steering maneuvers. The design of the FCW 

system, i.e. the determination of threshold values and the Human-Machine Interface, and 

the user acceptability are beyond the scope of this work.  Our contribution is to the use of 

additional safety-related data, i.e. the individual driver’s characteristics and surrounding 

driving conditions, to enhance and personalize a kinematic-based FCW system. 

Figure 3.5 shows the use of additional safety data in our proposed hybrid physics/data-

driven model to enhance the collision warning timing. In the Brill’s model, there are two 

components defining whether a critical event would turn into a crash, namely, the 

driver’s response time and the braking deceleration of the following vehicle. A critical 

event where the response time of the driver is longer than his or her following headway 

would lead to a rear-end crash unless his or her braking deceleration is greater than the 

lead vehicle’s. In addition to the individual characteristics, a driver’s reaction time may 

depend on some roadway characteristics such as road’s grade; network condition such as 

traffic density and environmental factors such as lighting, weather and surface condition. 
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Last but not least, a driver’s real-time behavior such as speeding or his/her involvement 

in a secondary task can affect the length of reaction time. The focus of this study is on the 

modeling and prediction of the driver’s response time according to individual 

characteristics and real-time behavior in varying driving contexts. Similarly, a vehicle’s 

response time, varies according to the vehicle and roadway characteristics and conditions 

and affect the actual braking acceleration which can be modeled accordingly and is 

beyond the scope of this work. 

 

Figure 3.5 Breakdown of the elements of a hybrid data-driven/kinematics ADAS. 

It is well known that people vary in all sorts of ways. In predicting the drivers’ reaction 

time, it is reasonable to assume that distributions will vary across individuals. This 

assumption, however, is violated by aggregating data across individuals. It has been 

repeatedly demonstrated that aggregating data across people or items may distort the 

estimate of a functional relationship [84]. There are three approaches to deal with the 



	
 

	

93

individual-level variation. The first approach is to use a multi-level model in which data 

are structured in groups and coefficients can vary by group. This means that the reaction 

time model can have different coefficients for each driver. Equation (3.4) shows a 

varying-intercept, varying-slope multi-level model: 

 
0 .  (3.4) 

where  indexes the driver for event i. For example, if j[35] = 4, then the 35th event in 

the data (i = 35) belongs to driver 4. The first requirement to use this approach is to have 

enough number of drivers and replications per individual driver to build a multi-level 

model. Otherwise, the multi-level regression will reduce to a classical single-level 

regression model. The second approach is the inclusion of categorical predictors using 

indicator variables. This means that if a cohort of J drivers uses the proposed 

personalized ADAS, the model will choose one of the drivers as the baseline and include 

indicator variables for other J-1 drivers. The coefficient for each driver then represents its 

comparison to the baseline individual. Yet again, this approach requires replications per 

individual drivers to correctly estimate the individual-level coefficients of indicator 

variables. The third approach is to include a set of predictors to the model, which can 

collectively explain the behavior of an individual driver. Inclusion of these driver-specific 

variables, if significant, will explain the variation in reaction time due to individual-level 

differences. In this study, we apply the third approach due to the characteristics and 

limitations of the SHRP-2 NDS data. The main limitation is that there are not statistically 

sufficient critical events per individual driver, in particular for the rear-end crash and 

near-crash events. For the rear-end critical events, about 83% of drivers have only one 

event, about 12% have two events and only 5% have more than two and still less than 5 
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events. On the other hand, SHRP-2 NDS data provides very comprehensive driver-

specific variables, which allows us to capture the individual-level variations. 

In the next section, SHRP-2 NDS safety data will be used to model and predict the brake-

to-stop reaction time of drivers in rear-end collision critical events, namely crashes and 

near-crashes through a hierarchical regression modeling, the importance of including 

both the driver and context variables in predicting the reaction time. Then, a preliminary 

result and a simple rule-based approach are presented to demonstrate how applying this 

method in practice can give a driver an extra time to respond to a present rear-end 

collision risk. 

 

3.4 Data Preparation and Reaction Time Modeling 

Our SHRP-2 NDS data subset includes a total of 3,861 critical events including 1,217 

crashes and 2,644 near-crashes. Rear-end crash and near-crashes were extracted by 

filtering the event-detailed variables of INCIDENT TYPE and EVENT NATURE to only 

include “rear-end, striking” and “conflict with a lead vehicle” instances, respectively. 

This immediately reduced the sample size to 1239 consisting of 86 crashes and 1153 

near-crashes. In order to make this subset as uniform as possible in terms of the vehicle’s 

physical movements, we applied two more filters on the variable’s PRE-INCIDENT 

MANEUVER and EVASIVE MANUEVER. PRE-INCIDENT MANEUVER is a vehicle 

kinematic measure based on what the vehicle does (movement and position of the 

vehicle), not on what the driver is doing inside the vehicle. As it can be seen in Table 3.1, 

only the four types of PRE-INCIDENT MANEUVER, “Going straight, constant speed”, 

“Decelerating in traffic lane”, “Starting in traffic lane” and “Going straight, accelerating” 
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were retained. Similarly, for the EVASIVE MANUEVER, i.e. the subject driver's 

reaction or avoidance maneuver in response to the event or incident, only the events with 

“Braked (lockup)” and “Braked (no lockup)” were considered and the rest were discarded 

(Table 3.2). After applying these two filters the number of events reduced to 55 crashes 

765 near-crashes to study the brake-to-stop following behaviors.  

Table 3.1 Levels of the PRE-INCIDENT MANEUVER in rear-end critical events. 

Pre-incident Maneuver 
Number of Near-

crashes 
Number of 

Crashes 

Going straight, constant speed 458 26 

Decelerating in traffic lane 226 21 

Going straight, accelerating 219 11 

Changing lanes 68 4 

Starting in traffic lane 59 16 

Negotiating a curve 53 2 

Turning left 24 1 

Merging 20 3 

Turning right 15 2 

Passing or overtaking another 
vehicle 6 0 

Stopped in traffic lane 4 0 

Making U-turn 1 0 

1153 86 
 

Table 3.2 Levels of the EVASIVE MANUEVER in rear-end critical events. 

Evasive Maneuver 
Number of Near-

crashes 
Number of 

Crashes 

Braked (no lockup) 757 41 

Braked (lockup) 154 24 

Braked and steered right 138 3 

Braked and steered left 81 2 

Accelerated and steered left 6 0 

Steered to right 5 0 

No reaction 4 16 

Steered to left 3 0 

Other actions 2 0 
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Accelerated 1 0 
Accelerated and steered 
right 1 0 

Braked (lockup unknown) 1 0 

Total 1153 86 
 

In order to calculate the reaction time, two time stamps in the EVENT DETAILED 

database were used: EVENT SATRT and SUBJECT REACTION START. The variable, 

EVENT SATRT, is defined as the time stamp, in milliseconds, at which the precipitating 

event begins, that is, the point in the video when the sequence of events defining the 

occurrence of the incident, near-crash, or crash begins. In the case of a rear-end collision 

this is the time when the lead vehicle starts decelerating or slowing down to stop. Table 

3.3 shows the distribution of the PRECIPITATING EVENT in the rear-end crashes. In 

order to adhere to the Brill’s car-following behavior model and to not further complicate 

the human response phenomena, only the first three levels of the PRECIPITATING 

EVENT in Table 3.3 where the lead vehicle either decelerated, slowed down to stop or 

stopped were retained in the data. After applying this last filter, the sample size decreased 

to 776 including 53 crashes and 723 near-crashes. 

 
Table 3.3 Levels of the PRECIPITATING EVENT in the rear-end critical events. 

Precipitating Event  

Number of 
Near-crashes 

Number of 
Crashes 

Other vehicle ahead - decelerating 705 18 
Other vehicle ahead - slowed and 
stopped 2 seconds or less 244 34 
Other vehicle ahead - stopped on 
roadway more than 2 seconds 99 31 
Other vehicle lane change - right in 
front of subject 44 0 
Other vehicle lane change - left in 
front of subject 32 1 
Other vehicle ahead - at a slower 
constant speed 18 1 

Subject lane change - right behind 2 0 
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vehicle 

This vehicle lost control - other 
cause 2 0 

Object in roadway 1 0 
Other event not attributed to 
subject vehicle 1 0 

Other vehicle - making U-turn 1 0 

Other vehicle ahead - accelerating 1 0 
Other vehicle lane change - left 
other 1 1 
Subject in intersection - turning 
right 1 0 
This vehicle lost control - 
excessive speed 1 0 
This vehicle lost control - poor 
road conditions 0 1 

Total 1153 87 
 

SUBJECT REACTION START is the timestamp, in milliseconds after the start of the 

event, when the driver is first seen to recognize and begin to react to the safety critical 

incidents occurring. It is defined as the first change in facial expression to one of alarm or 

surprise or the first movement of a body part in a way that indicates awareness and/or the 

start of an evasive maneuver, whichever occurs first. After applying the necessary filters 

and using the previously explained timestamps, the brake-to-stop reaction time in seconds 

can be computed from Equation (3.5). 

 
	 1000⁄  (3.5) 

Table 3.4lists SHRP-2 NDS driver basic demographic information, functional ability 

relative to driving safety and risk, vision tests, cognitive assessments, and physical ability 

metrics data. For detailed information about each of these data tables, variables and 

descriptions, data dictionaries are available on https://insight.shrp2nds.us/.  
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Table 3.4 Summary table of driver characteristics data. 

 
Data Table 

Total 
Number 

of 
Variables 

Number 
of 

Numeric 
Variables 

Number of 
Categorical 
Variables 

Number of 
Required 
Dummy 

Variables 

Total Number of 
Numeric and 

Required Dummy 
Variables 

1 Demographics 47 11 36 150 161 
2 Medical Conditions 34 3 31 236 239 
3 Sleep Habits 37 6 31 303 309 
4 Driving History & 

Knowledge 
18 2 16 358 360 

5 Visual Cognitive 
Test 

21 13 8 57 70 

6 Conner CPT Clock 
& Draw Score 

14 13 1 6 19 

7 Barkley 7 1 6 24 25 
8 Risk Perception 32 0 32 224 224 
9 Risk Taking 31 0 31 123 123 
10 Sensation Seeking 5 5 0 0 5 
11 Driver Behavior 24 0 24 121 121 
 Total 270 54 216 1602 1656 

 

As it can be seen in Table 3.4, there are eleven main groups of driver variables. The total 

number of these variables is 270 with 51 numeric and 216 categorical variables. But, in 

order to include a categorical variable with  levels in a multiple regression prediction 

model, it needs to be recoded to 1 dichotomous variables called dummy variables. 

After the dummy coding step, the number of required dichotomous variables becomes 

1602, and the dimensionality increases from 270 to 1656. Since the number  of 

instances is 776 and the number of potential predictors, , is 1656, we have a problem 

where the dimension is significantly larger than the sample size. To solve this problem, 

Tibshirani and Hastie’s proposed model for regularization, called elastic net, is used. The 

elastic net solves the following problem: 

 
min
,

1
2

 (3.6)
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where  is: 

 
1

1
2
‖ ‖ ‖ ‖

1
2
1  (3.7)

0 is a tuning parameter and N is the total number of instances used for the parameter 

estimation.   is the elastic-net penalty that is a compromise between the ridge 

regression penalty 0	  and the lasso penalty 1	 . ‖ ‖  and ‖ ‖  are  and 

 norms, also called Manhattan and Euclidian norms. It is particularly useful in ≫  

situations, or any situation where there are many correlated predictor variables. The ridge 

regression shrinks the coefficients of correlated predictors towards each other while 

Lasso is somewhat indifferent to very correlated predictors, and will tend to pick one and 

ignore the rest. The lasso penalty corresponds to a Laplace prior, which expects many 

coefficients to be close to zero, and a small subset to be larger and nonzero. Thus, lasso 

can be used for variable selection. The elastic net with 1  for some small 0 

performs much like the lasso, but removes any degeneracies and wild behavior caused by 

extreme correlations. More generally, the entire family  creates a useful compromise 

between ridge and lasso.  

To estimate the parameters of the model, i.e. , , we have used the  package glmenet 

[8], [85]. The glmnet algorithms use cyclical coordinate descent, which successively 

optimizes the objective function over each parameter with others fixed, and cycles 

repeatedly until convergence. The Gaussian family for linear regression is applied to fit 

the model.  

Since a response to a collision risk precedes the outcome (crash or near-crash) and the 

fact that near-crashes are more frequent than crashes, we decided to jointly use the crash 
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and near-crash events to model the brake-to-stop response times. In order to do so, it is 

necessary to first check if their distributions are statistically identical. Figure 3.6 shows a 

boxplot of reaction times between crash and near-crash groups.  

 
Figure 3.6 Box plot of reaction time between groups of crash and near-crash events. 

At first glance, there seem to be quite a few outliers and a couple of extreme values. But, 

it is known that human response times are right-skewed [66]. Therefore, those points that 

may look to be outliers actually come from the natural distribution of reaction times. The 

only events that were removed from this dataset were three near-crashes with extreme 

values for reaction times of 0, 12.96 and 14.69 seconds. After removing the extreme 

values, the Shapiro-Wilk normality test was applied to test the normality of reaction 

times. The test resulted in a p-value less than 2.2e-16 concluding that the normality 

assumption is rejected. Since, the reaction times do not follow normal distribution and is 

not symmetric, non-parametric hypothesis tests were used to test whether the 

distributions of reaction times are identical.  

To test the difference in the central tendency, the Wilcoxon–Mann–Whitney two-sample 

rank-sum test was used. Assuming that the rear-end events were independent, the test 

resulted in a p-value of 0.000112 < 0.05 meaning that the distributions in the two groups 
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are not identical. After further exploring the data, it was discovered that the reaction 

times distributions are different according to their PRECIPITATING EVENT. Figure 3.7 

shows the distribution of reaction times according to the PRECIPITATING EVENT in 

only crash, only near-crash and crash and near-crash events together. As it can be seen, 

the distribution of reaction times to detect a decelerating lead vehicle is quite different 

from the distribution of reaction times to detect a stopped vehicle. The Wilcoxon–Mann–

Whitney test further confirmed this finding resulting in a p-value of 2.2e-16 < 0.05. 

Therefore, the decision was made to build a separate model for the events in which the 

driver reacted to a stopped vehicle rather than a decelerating car. The Wilcoxon–Mann–

Whitney test resulted in a p-value of 0.07431 > 0.05 concluding that the distributions of 

reaction times are identical in the retained groups of PRECIPITATING EVENT. The 

Shapiro Wilk test still shows that the reaction times are not normally distributed (p-

value= 2.801e-10). 
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Figure 3.7 Box plot of reaction times according to the Precipitating Event. 

Finally, we test whether the crash and near-crash reaction times have identical 

distributions in the retained data. Levene's test, a non-parametric two-sample test was 

used to assess the equality of variances of reaction times between crash and near-crash 

groups. The Levene's test resulted in a p-value of 0.1491, which is greater than the 

significance level 0.05. Therefore, it is concluded that the assumption of equal variances 

of reaction times cannot be rejected. The Wilcoxon–Mann–Whitney test resulted in a p-

value of 0.1974 < 0.05 meaning that the distributions in the two groups did not differ 

significantly (Mann–Whitney U =4133, n(Crash) = 250, n(Near-Crash) = 38, P > 0.05 

two-tailed). 
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The above pre-processing of reaction times resulted in a smaller sample of 288 rear-end 

events with 250 near-crashes and 38 crashes. In order to use the elastic net model with 

Gaussian errors, the data needs to follow a Normal distribution. To meet this requirement, we 

use the cubic root transformation to normalize the right-skewed reaction times. The 

Shapiro-Wilk normality test on the transformed data resulted in a p-value of 0.576 > 0.05 

concluding that the normality test cannot be rejected. 

Next, preprocessing the explanatory variables was necessary to make them ready for the 

elastic net regression model. The first step was to impute the missing values. We used the 

built-in Breiman’s Random Forest algorithm to handle the missing values. It replaces a 

missing value with the median for numeric variables and with the most frequent level 

(breaking ties at random) for factor variables.  

After the missing value imputation, a very comprehensive feature engineering was 

performed on the driver characteristics variables. In section 2.9, we explained the 

necessary feature engineering treatments to the categorical variables, namely 1- Build 

new binary variables from levels of a categorical variable with many levels; 2- Combine 

rare levels; and 3- Dummy coding. We used these methods on the driving context 

variables in the SHRP-2’s Event Detailed data table such as roadway features, weather 

and driver dynamic behavior. In this chapter, the same treatments are applied to prepare 

the variables in the SHRP-2’s Driver data tables (Table 3.4).  

In addition to the above-mentioned treatments, additional steps were also required due to 

the special nature of driver variables. There were categorical predictors with only a single 

value in the whole dataset. These variables are called zero variance predictors and can 

easily be discarded. Not only they have no information but also some models such as 
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linear regression would find them problematic and is likely to cause an error in the 

computations. The next and most time-consuming step was to treat the survey data. Data 

wrangling for example removing the punctuations, and mapping the codes to actual 

survey answers were necessary. The levels of most of these categorical variables were 

stored in alphabetic or numeric codes. We used the SHRP-2’s online data dictionaries to 

map the codes to their original descriptions for each variable.  

We used the Kruskal-Wallis (on the original reaction time) [86] and one-way ANOVA 

(on the transformed cubic root reaction times) for a preliminary feature screening and 

also for combining the rare levels. The Kruskal–Wallis statistical test is a non-parametric 

test that makes no assumptions about the distribution of the data (e.g., normality) and is 

an alternative to the independent group ANOVA, when the assumption of normality or 

equality of variance may not apply. The larger the test statistic H, the weaker the null 

hypothesis becomes, indicating that the feature under consideration has a high 

discriminating power. The p-value were used as a soft threshold to recode and merge the 

levels of variables. For example, most of the variables in the risk-perception and risk 

taking tables became significant or their p-values decreased (test statistics increased) by 

the following recoding: 

Original level Recoded Level 
1 

Low 
2 

3 

Medium 4 

5 

6 
High 

7 

 



	
 

	

105

After engineering the features, the number of numeric and categorical driver variables 

reduced to 113 (from 270) and more notably the total number of numeric and dummy 

variables reduced to 216 (from 1656). There are potential advantages to reducing the 

dimension of data prior to modeling. For one thing, fewer predictors mean decreased 

computational time and complexity. Furthermore, as it was mentioned a regression model 

would find un-informative variables problematic and its performance may deteriorate.  

After building the feature vector, we are ready to fit the reaction time prediction model 

using SHRP-2 data. The 10-fold cross validation method was run 100 times to calculate 

the mean and standard deviation of measures of goodness in order to select the best 

model, i.e. the non-zero variables and their coefficients in the elastic net model. Two 

measures of goodness were considered: 

1- Mean Squared Error (MSE): It measures the average of the squares of 

the prediction errors or deviations. The cross-validated MSE is a means of 

measuring the actual predictive capability of the selected regression model. The k-

fold cross-validated MSE is calculated according to Equation (3.8):  

 
_

1 ∑ ̂
 (3.8) 

2- Precision of predicting the reaction times greater than 2.5 seconds: It measures the 

fraction of instances that was truly predicted to be greater than 2.5 seconds. 

Equation (3.9) shows the calculation of this measure: 

 
_

1 ∑ ̂ 2.5 & 2.5

∑ ̂ 2.5
 (3.9) 
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As it was mentioned in section 3.2, 2.5-second is the allowed reaction time for a 

typical driver in a brake-to-stop scenario. The main purpose to define this 

measure was to compare the performance of an FCW System which uses the 

proposed reaction time model to an FCW System using the standard 2.5-second 

for all drivers. A kinematics-based FCW with a fixed 2.5-second reaction time is 

not going to be effective for drivers and driving conditions where the actual 

reaction time of drivers would be longer than 2.5 seconds. Instead, using a 

reaction time prediction model with high precision in predicting longer reaction 

times renders a potential safety benefit in that it will give an additional time to 

slower-moving drivers or in more complex collision scenarios. 

Table 3.5 shows the MSE and Precision values of the prediction models. These values are 

the mean of 100 replications of running the 10-fold cross validation. As it can be seen in 

Table 3.5, we started with the null model, i.e. the model with only the intercept, and then 

added the groups of potential safety factors hierarchically. The main objective of this 

study is to predict the value of reaction time in real driving scenarios. Therefore, we only 

compare the mean squared prediction errors through cross validation. At each level of the 

hierarchy, the percentage changes in the MSE and Precision are reported as well. The 

largest improvement, in terms of MSE decrease and precision increase, was achieved by 

introducing the driver characteristics into the previously built model. By average, the 

MSE decreased 24% and the Precision was increased 27%. Once again, by using the 

elastic net regularized regression model, we have benefited from its built-in mechanism 

for variable selection, ability for bias/variance trade-off, ability to deal with highly 

correlated variables and high dimensional problems, and handling of both numerical and 
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categorical input variables. Overall, the results show that including the driving context 

variables together with the driver characteristics in the full model decreased the MSE by 

36% and increased the precision by 57%.  

Table 3.5 MSE and Precision of the reaction time prediction models. 

  MSE Precision 

Nominal value 2.5 sec 0.0802 - 

Null model 0.0800 47% 
Percentage Change -0.2% - 

Roadway and Traffic 0.0740 56% 
Percentage Change -8% 20% 

Roadway and Traffic  & Environment 0.0680 57% 
Percentage Change -8% 1% 

Driver Dynamic Behavior & Roadway and Traffic & 
Environment 0.0665 58% 
Percentage Change -2% 2% 

Full Model (All the above + Driver characteristics) 0.0508 73% 
Percentage Change -24% 27% 

 

Based on the numerical results and in order to not compromise safety for comfort, a 

simple rule-based algorithm for a conservative FCW system is proposed that uses the 

reaction time prediction model. Figure 3.8 shows the steps of the algorithm which are as 

follows: 

 Calculate the driver’s reaction time according to his/her characteristics and real-

time driving context using the elastic net model.  

 If the predicted reaction time is greater than 2.5 seconds, set the reaction time 

value to its elastic net estimate, otherwise use the standard 2.5 seconds.  

 Pass the reaction time value to the kinematics model to calculate the critical 

distance, d.  
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 Compare the critical distance, d, to the thresholds in Equation (3.2), and decide 

whether to issue a Forward Collision Warning. 

 

Figure 3.8 Proposed hybrid algorithm for a conservative Forward Collision Warning 

System. 

The success of the proposed FCW system directly depends on the amount and quality of 

the trained data to build the prediction model. With our limited data of 776 crash and 

near-crash events, the highest achieved precision in predicting reaction times greater than 

2.5 seconds were 73%. It is expected that with more high quality data, the precision of 

the predictions increases and therefore the rate of false alarms will decrease. 
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Next, the process of selecting the best model, i.e. the elastic net non-zero variables and 

their coefficients, for the full model is presented.  Figure 3.9 shows the coefficient paths 

versus the logarithm of λ for the full model. The solutions were computed at 100 values 

of λ, uniformly spaced on the log scale. The values of λ are decreasing from right to left, 

i.e. the far right λ corresponds to the largest penalty. In another word, the null model 

corresponds to the λ at the far right and the full model to the λ at the far left of the plot. 

As λ decreases more new variables enter the model. As it can be seen, due to the 

correlation among predictors, a variable that has entered the model may go out at a later 

phase. The red vertical line in Figure 3.9 crosses the values of coefficient at λmin, i.e. the 

value of λ for which the previously estimated cross-validated error was minimum. Figure 

3.9 shows the 21 selected variables by the best model and their estimated regression 

coefficients. 

 

Figure 3.9 Coefficient paths for the lasso model for the reaction time in rear end crash 
and near-crashes. 
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Table 3.6 Estimated regression coefficients of the best model with the minimum cross-
validated error. 

Predictor 
Coefficient 
Estimate 

 Demographics_wrkStat_code: Full-time 0.0705 

 Demographics_Time_at_Residence: more than 5 years 0.08804 

 Sleep_Habits_Doze_While_Reading: Moderate chance of dozing 0.02419 

 Demographics_Marital_Status: Un-married 0.06462 

 Barkley_Feels_Restless: Sometimes to very Often 0.00645 

 Driver_Behavior_Pass_a_Turning_Vehicle: Occasionally -0.01118 

 Driver_Behavior_Forget_Where_Car_Is_Parked: Occasionally -0.25013 

 Driver_Behavior_Run_Red_Light: Occasionally -0.01408 

 Driver_Behavior_Disregards_Speed_Limits: Quite often or more 0.0858 

 Risk_Taking_First_Off_Line_Past_12month: Sometime or more 0.22918 

 Risk_Perception_Road_Rage: Moderate 0.04577 

 Risk_Taking_Roll_Through_Stop_Sign: Sometimes 0.06574 

 Risk_Perception_Speeding_for_Thrill: Moderate 0.01365 

 Risk_Perception_Speeding_for_Thrill: High -0.0219 

 Risk_Perception_Bad_Weather: level 6 0.11493 

 Risk_Perception_Risk_of_Passing_on_Right: level 6 0.14325 

 Risk_Taking_Road_Rage_Past_12month: Sometimes or more 0.12018 

 Sleep_Habits_Nod_Off_Last_Year_Driving (numeric) 0.01525 

 Visual_Perceptual_Cognitive_Raw_UFOV (numeric) -0.00049 

 ConnerCPT_Clock_DrawScore_General_TScore_Omissions (numeric) -0.0039 

 ConnerCPT_Clock_DrawScore_General_TScore_HitRTIsi (numeric) 0.00087 
 

Furthermore, Figure 3.10 to Figure 3.13 show the boxplots to better visualize the effects 

of each categorical variable and the impact direction (negative or positive signs of 

estimated coefficients) of each variable’s levels on reaction time. For example, Figure 

3.10, top-right panel shows that there is a positive trend between the driver’s sleeping 

habit of dozing while reading: the reaction time increases as the chances of dozing 

increases.  
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Figure 3.10 The relationship between reaction time and four categorical driver 

characteristics of: work status (top-left), chance of dozing while driving (top-right), time 

lived at current residence (bottom-left) and marital status (bottom-right) 
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Figure 3.11 The relationship between reaction time and four categorical driver 

characteristics of: Results of Barkley screening test of feeling restless (top-left), How 

often the driver forgets where the car is parked (top-right), How often the driver passes a 

turning car (bottom-left) and How often the driver runs a red light (bottom-right) 

 

An interesting result from Figure 3.11 is that driver behaviors of 

	 	 	 	 , 	 	 	  and 	 	 	  have 

similar effects on reaction time that is drivers who are  involved in these 

behavior react faster than other drivers but committing these behaviors quite often or 

more increases the reaction time of drivers.  
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Figure 3.12 The relationship between reaction time and four categorical driver 

characteristics of: how often the driver disregards the speed limit (top-left), risk 

perception of road rage (top-right), risk taking to be the first off the line during past 12 

months (bottom-left) and risk taking to roll through stop sign (bottom-right) 

 

Another interesting observation from Figure 3.12 and Figure 3.13 is that those drivers 

whose risk perception of risky behavior are moderate, they have longer reaction times 

comparing to other drivers, and as expected those who have high perception of risk have 

reacted faster to road incidents. 
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Figure 3.13 The relationship between reaction time and four categorical driver 

characteristics of: risk perception of speeding for thrill (top-left), risk perception of 

passing or right (top-right), risk perception of bad weather (bottom-left) and risk taking of 

road rage during the past 12 months (bottom-right). 

 

Finally, from Figure 3.12 and Figure 3.13, when risk taking behavior of road rage and 

roll through stop sign increases the reaction time of the driver increases. Similar positive 

relationships were observed in other risk taking behaviors not reported here. The data 
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shows that in general getting involved in risky behavior would increase the average 

reaction time of drivers. 

3.5 Conclusion 

In this chapter, we presented a hybrid physics/data-driven approach to design an 

Advanced Driver Assistance System in particular a Forward Collision Warning System. 

We focused on a simple one dimensional brake-to-stop physics model for rear-end 

collision scenarios and estimated the driver-intrinsic parameter of this model by using the 

SHRP-2 NDS rich data on driver characteristics. The data analysis showed that contrary 

to the common practice of using an average reaction time value in accident reconstruction 

and driver assistance systems, the driver’s brake-to-stop reaction time in real-world 

forward collision scenarios spanned from .065 to 8 seconds. We used a regularized 

regression model to estimate the reaction time of a driver according to his/her intrinsic 

characteristics and the driving context. The results showed that introducing the driver 

characteristics decreased the mean squared prediction error of the reaction time 

prediction model by 24%. More importantly, the precision of the model in truly predict 

reaction time greater than 2.5 second reached the level of 74%. In another words, using 

the elastic net estimates instead of the prefixed 2.5 second on average gives the system 

1.34 additional seconds to warn those slower-reacting drivers. The explained variation by 

driver’s intrinsic characteristics and driving context supports the necessity for developing 

personalized Advanced Driver Assistance Systems to enhance the performance and 

increase their acceptance by users. Using this estimated reaction times instead of the 

common fixed values for all drivers, can enhance the performance of safety warning 

systems taking into account the differences in human ability to react to road incidents. 
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Overall, the most significant limitation to this study was the sample size and 

representation of different drivers and driving conditions. Only one-third of the full 

SHRP-2 NDS data was made accessible at the time of the data request. It is expected that 

by including a larger dataset of naturalistic driving data the performance of the reaction 

time prediction would increase. This work can be extended in two different ways: 1- to 

use more complex physics model such as 2 dimensional models which considers both 

braking and steering as evasive maneuvers and 2- to use vehicle and roadway 

characteristics data to model the vehicle response time which is out of the control of the 

driver. 

 

Disclaimer 

The findings and conclusions of this chapter are those of the author and do not 

necessarily represent the views of the VTTI, SHRP 2, the Transportation Research Board, 

or the National Academies. 
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 A WHOLE-SYSTEM APPROACH TO IDENTIFY THE SOURCES 

OF VARIATION IN PATIENT FLOW 

4.1 Introduction 

During their hospital stay, patients may experience redundant steps and procedures that 

may lead to unnecessary excessive expenses, lower Quality of Care (QoC) and customer 

dissatisfaction. The excessive costs are often covered by hospitals or paid by individual 

patients, since insurance companies have standard payment plans ranging from the 

infamous charge master or fee-for-service (FFS) price list to bundled payment systems 

such as diagnosis-related groups (DRGs) with various forms of “discounts off charges” 

and “per diems” somewhere in between. Regardless of who pays for these excessive and 

unnecessary expenses, the adverse societal impacts and negative business consequences 

are immense. In this chapter, we focus on the patient flow process in a hospital with DRG 

based payment system for its inpatient claims.  

Renewed focus on quality measurement and improvement and on medical-error 

reduction has heightened interest in paying for performance, rather than just reimbursing 

providers for services rendered. Private Pay for Performance (P4P) programs for 

hospitals usually pays bonuses as an incentive above the agreed-upon reimbursement 

rate. A more rational reimbursement system, which rewards quality of care rather than 

simply doing more to patients, is the short-term goal of paying for performance. The 

longer-term goal is also to make the health care system more efficient. It has become 

clear that under existing reimbursement structures, current market forces are insufficient 

to ensure either higher-quality or more-cost-effective care [5].  P4P programs can be seen 
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as additional incentives for hospitals to seek to improve their patient flow processes, 

which can be attained through our variation reduction framework.  

Since 1983, under Health Care Financing Administration (HCFA)’s system, generally 

referred to as the Prospective Payment System (PPS), each hospital inpatient is classified 

into one of around 500 Diagnosis-Related Groups (DRGs), and the hospital is paid the 

amount that HCFA has assigned to each DRG. Thus, hospitals will be paid the same 

amount for patients within a particular DRG.  One limitation to this methodology is that 

individual DRG categories often combine subgroups of patients with predictably different 

expected resource costs. HCFA has repeatedly improved the DRG definitions since 1984; 

in fact a new DRG system, called Medicare Severity DRGs (MS-DRGs), was adopted in 

October 1, 2007, which replaced 538 DRG system with 745 new MS-DRGs [87].  This 

enhancement, while necessary, does not fully account for differences in illness severity 

associated with substantial disparities in providers’ costs. 

The fact is that only a part of these disparities is attributed to the uncontrollable factors in 

patient profile including his/her demographics, medical history, medication, physical 

exams, and so on.  There are also controllable factors that influence patient’s experience 

from hospital admission to discharge. These include, but not be limited to, the order of 

treatments patient receives, medical procedures, current medications, received resources 

including physicians, nurses, technicians, transporters, and administrative work. These 

sources of variability could severely impact patient safety, QoC, professional satisfaction, 

and hospital revenue. The potential reduction in costs and increase in QoC and patient 

safety and satisfaction will be too rewarding to ignore. All these tools become handier 

especially when the regular normal operation of hospital is affected by an external 
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incident varying from highway crashes to earthquakes and terrorist attacks. It is in such 

situations that having a managed patient flow can be of great value to the hospital 

management to increase patient care and lower the number of fatalities. 

This chapter is organized as follows. Section 2 presents the literature survey. In section 3 

we present the formulation of our problem. The data to test our procedure and the results 

of applying our methodology are discussed in Section 4. Conclusions are presented in the 

final section. 

4.2 Literature Survey 

A number of researchers have used queueing models to study various aspects of the 

patient flow process.  McClean et al. (2005) use phase-type distributions to carry out 

model-based clustering of patients using the time spent by the patients in hospital [88]. 

They cluster patients into classes on the basis of the number of phases involved. Cadez et 

al. (2003) presented a new methodology for exploring and analyzing navigation patterns 

on a web site [89]. They partition site users into clusters such that users with similar 

navigation paths through the site are placed into the same cluster. Their proposed method 

clusters users by learning a mixture of first-order Markov models using the Expectation-

Maximization algorithm. In this chapter, we base our methodology on their results.  

4.3 Technical Approach 

Patient flow is not a single datum but a pattern or a sequence of steps. Unlike classical 

statistics where singular or array of data is used, we need to work with flow patterns and 

ordered data. In this thesis, we use a mixture of first-order Markov models to describe 

patient flow.  Each patient is admitted to an inpatient floor with an initial diagnosis 
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determined by the admitting physician. After patient is discharged, her chart is reviewed 

by coders and a DRG is assigned primarily based on the definitive final diagnosis and 

other diagnoses together with treatments, resources and procedures utilized towards 

treating patient’s condition during her stay. For each DRG certain level of resources 

(treatments, diagnostic tests, procedures, etc.) are assigned and required. From admission 

to discharge, a patient goes through a sequence of steps both in terms of her condition 

and the utilized resources, treatments and procedures. Throughout this chapter we will 

refer to this sequence of steps as patient flow vector and denote it by , defined as 

follows: 

 
 (4.1)

where  is an nm×1 ordered vector with the tth element, , as the state of patient m at 

step t (t=1, 2, …, nm).  nm is the length of the mth sequence and can be different for each 

patient (nm=1,2, …, N).   takes on  values ( ) from among K  possible patient states (

). Therefore the sequence  indicates that patient m first 

was at state , then , and so on. In our model, the last state is always K, which 

denotes the discharged state. The nature and definition of these states can be different 

according to the level of granularity of the problem, i.e. the level of detail at which 

patient flow is observed. They can be as aggregated as generic states that any patient may 

go through during a hospital stay (like the admission, inpatient floor stay, and discharge), 

or they can be very detailed including all the steps in each of the above mentioned high 

level states. 
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As we mentioned earlier there can be several sources of variability that are intrinsic to all 

healthcare delivery systems. We have categorized these sources into three groups:  

(i) Unique characteristics of each patient (patient profile), including demographics, 

medical history and other health conditions upon admission.  defines these 

characteristics: 

 
 (4.2)

where   is a P×1 vector whose pth element, , denotes the pth explanatory variable 

quantifying a characteristic of patient m.  

(ii) Hospital resources, including medical and non-medical (overhead) staff {direct 

(nurse, tech, doctor) and indirect (unit secretary, housekeeping) labor and overhead 

labor}, major equipment, units and their functionalities (hospital factor). We denote these 

characteristics by : 

 
 (4.3)

where  is a Q×1 vector whose qth element, , represents the qth explanatory variable 

quantifying the lqh hospital resource on patient m. Depending on the attribute which they 

quantify,  and  can each be mixture of continuous or categorical explanatory 

variables. 

The covariates of both patient profile and hospital resources can remain fixed during a 

patient stay, for example the patient’s gender; age; or medical history, or can be state-

dependent, which is often the case for hospital resources, for example, the variables 

defined on imaging tests, like an echo test’s turnaround time, accept values only if the 

patient receives the test and after his leaving the corresponding test unit (state).  
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(iii) Random noise denoted by εm are assumed to be i.i.d. random variables with mean 

zero and standard deviation σm. There are always un-assignable causes, which are usually 

grouped under random noise.  Since random noise is statistically un-controllable, it is 

imperative to reduce its effect as much as possible. Any significant reduction in un-

controllable variations will increase “process capability” and improve the process, which 

will in turn lead to significant cost reductions.  

Furthermore, we assume that reentry of patient m to the hospital is a new admission with 

an updated  vector due to the new set of treatments that may be required. Then a 

historical data set of size M, containing M vectors of , , and  defines patient 

pathways, patient characteristics and hospital resources of M observed patients 

categorized under a specific DRG during a given time interval. We intend to find clusters 

of similar patients in term of their pathways, i.e. the vectors of ’s. We assume that the 

number of clusters is known. We also intend to link , and  to  in order to determine 

significant factors that lead to clusters within a DRG. Finally, by controlling the 

important attributes and reducing their variation we expect to see a reduction in the 

variations inherent in the patient flow process. Sections 3.1 to 3.5 explain the steps of our 

algorithms in details. 

The data collection was performed in a 500-bed community hospital with a level II 

trauma center in New Jersey. This general hospital provides a wide range of services with 

a total number of 383 DRGs in 2012. Having met with groups of hospital experts, 

including physicians, head nurses, directors of financial department, and case 

management, we decided to focus on chest pain DRG since it was the second most 

frequent DRG with a very low contribution margin during 2012.  Different pieces of 
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patient information, both medical and personal, had to be mined and mended together to 

obtain ,  and  for each patient as explained previously in the technical approach. 

The data had been scattered in different databases either with some time lags or near real 

time.  Several commercial software packages were used to obtain patient flow (the 

locations that the patient visited chronologically). Another software NTT contains both 

medical (physicians, nurses, tests with their time stamps), and personal information. 

PACS and Xcelera applications were also used for more detailed information, especially 

the exact time and duration, of radiology, CT scan and other imaging test results. The 

next step was to prepare data for analysis, including handling of missing data. For this 

purpose, we used the fully conditional specification (FCS) method, also known as 

multivariate imputation by chained equations (MICE) [56]. The joint distribution of 

covariates and  is not known involving both categorical and continuous variable, thus 

FCS is a better suited alternative to Joint Modeling method which requires a known 

multivariate distribution for data.  

Expert opinion was sought to extract, filter, and transform data into meaningful 

quantifiable variables that we further fed into our statistical engine. For this purpose, we 

built a multidisciplinary team whose members brought different perspectives and 

knowledge about the problem [90]. The core team included physicians, head nurses, 

directors of financial department, and case management who had direct contact with the 

process. The team was brought together in brainstorming sessions for two important 

tasks:  

1. Define the state space of patient flow vector ( ): Medical judgment was used to 

construct states, which both exhibit the necessary independence and make sense in 
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terms of the delivery of care. A state space was constructed in a manner that resulted in 

state definitions, which are mutually exclusive and collectively exhaustive [91]. This 

was essential to ensuring that Markov modeling of patient flow is valid.  

2. Quantify vectors of patient profile and hospital resources ( , and ): To perform this 

task, we identified as many potential variables as possible according to the historical 

data. We used fishbone diagram, also known as cause-and-effect diagram, to identify 

the potential causes of variation [92]. Causes were grouped into major categories to 

identify sources of variation.  

 

We translated the potential causes into quantifiable random variables of either continuous 

or categorical types. For example, patient’s gender was defined as a Bernoulli variable 

with classes of “male” and “female”. The complete list of covariates can be found in 

Appendix 1. 

For sequence clustering, we apply a mixture of first-order Markov models to model 

patient flow sequences. We assume that the flow of each patient in the data set, , is 

generated independently (the traditional i.i.d. assumption). Statisticians refer to such a 

model as a mixture model with R components (R is the number of clusters). We apply 

Expected Maximization (EM) method to train our model. Once the model is trained, we 

can use it to assign each patient to a cluster or fractionally to the set of clusters. A 

mixture model for  with R components has the form: 

  (4.4)
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where cr is the cluster assignment for a given patient, is the marginal probability 

of the rth cluster ( ) and  is the statistical model describing the 

distribution for the variables for patients  in the rth cluster, and θ denotes the parameters 

of the model. We further assume that each model component is a first-order Markov 

model capturing the sequence of steps taken by a patient to some degree. Then, the EM 

method is used to train the parameters of the mixture model with known number of 

components R, given training data  such that the following equation 

holds: 

 
 (4.5)

where are the maximum likelihood or ML estimates of the model parameters.  

In this study, we have used Microsoft Sequence Clustering algorithm (SQL Server 

Analysis Services or SSAS) to carry out the sequence analysis. Microsoft SQL Server 

provides us with the membership assignment of each patient. Therefore, having a training 

data set of size M, we can run the sequence-clustering algorithm and obtain the vector of 

class memberships, denoted by , as follows: 

 
 (4.6)

where Yi is the class membership of patient i, and can accept values of 1, 2, …, R. Later, 

we will feed this vector into the Variable Selection module. 

In this step, we will use a well-known classifier, namely random forest, to identify the 

significant variables which affect the patient flow sequences. Random forest (or random 

forests) is an ensemble classifier that consists of many decision trees and outputs the class 

that is the mode of the class's output by individual trees [6]. The data-set used for training 
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comes in records of the form ( ) for each data-point, where  denotes a vector of 

observed characteristics (also referred as features or factors) and  denotes a group label 

(also called target variable). In our application, is a (p+q)×1 vector of  which 

contains the information of patient profile and hospital resources, i.e. the explanatory 

variables, and  is the vector of class memberships, i.e., the output of the sequence 

clustering algorithm.  

In order to perform the classification task we will use the randomForest package 

available in R software [57]. The input to the software will be feature vector 

 and vector of class memberships . 

Random forests can be used to rank the importance of variables. There are two criteria 

based on which the Breiman’s random forest calculates the importance of variables: Gini 

importance which calculates the mean Gini gain produced by  over all trees, and 

permutation accuracy importance which is the mean decrease in classification accuracy 

after permuting  over all trees. The variable importance plot gives a relative ranking 

of significant features, and absolute values of the importance scores should not be 

interpreted or compared over different studies. We consider, the first B variables as the 

most important variables where B < P+Q. We will refer to the vector of important 

variables as , and define , and  as follows: 

 
 (4.7)
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 (4.8)

where p ≤ p’, and q ≤ q’. 

Monitoring and controlling of important variables is the last step in our model. In the 

previous steps we established a relationship between patient flow sequences and process 

attributes, and identified those attributes that affect the patient flow process significantly. 

In this step we investigate how and why these attributes affected patient flow. For this 

purpose, questions must be asked to find the assignable causes of variations and then a 

proper corrective action must be taken to eliminate them. To maintain the gained 

improvement and be able to detect future assignable variations, advanced statistical tools 

such as single-variable or multivariate control charts can be used. Using control charts is 

an ongoing activity over time to bring continuous improvements to the process. 

4.4 Numerical Experimentation 

In this section, we illustrate the performance of our algorithm using both real and 

simulated data. The data simulation will closely mimic the true real life process. As 

explained in section , we collected ,  and  for 87 patients with primary DRG of 

chest pain admitted during 2012 and 2013. All these patients initially came to the 

emergency room ambulatory, or dropped by a friend/relative or by ambulance. They then 

went through different states according to their personal and medical needs. Fifteen 

distinct states were observed in our sample data which are shown in Table 4.1. We 

discarded patients who left against medical advice. The discharge statuses of all the 87 

patients were discharged to home or another hospital unit. Neither of these patients was 

readmitted for the same cause within 30 days of their discharges.  
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Table 4.1 Distinct States of Patient Flow. 

Code Description 

1 ED 
2 GS 
3 Telemetry Unit 
4 Cardiology 
5 Nuclear Medicine 
6 Radiology 
7 Ultrasound 
8 Vascular Lab 
9 Pulmonary Function Lab 

10 Endoscopy 
11 MRI 
12 Dialysis 
13 CT-Scan 
14 Operation Room 
15 Discharge 

 
According to our collected sample data, patient flow sequences of chest pain DRG can at 

most have fifteen steps (N=15).  Thirty-four factors have been identified as the potential 

causes of variation, nine of which are patient profile-related attributes (P=9), and the rest 

are hospital resources (Q=25). The definitions of these variables can be found in 

Appendix 2. Since our sample size is relatively small (87), comparing to the total number 

of variables and the covariates’ levels, we used this data to simulate additional cases for 

our model verification and validation. To generate a simulated data set, the initial step is 

to use our real sample data, , to generate the covariates, , 

from their empirical distributions. In our case study, the types of all the covariates are 

categorical although in general the model can accept both types of continuous and 

categorical variables.  If Xp follows a categorical distribution, also called generalized 

Bernoulli distribution, then its probability mass function f is: 

 

 
(4.9)

 258798787
)(Re ,,  ZXSd

mn
al


ZX


,

f (xp )   i
I ( xi)

i1

K p





	
 

	

129

where I(.) is the indictor function, and πi is p(xp=i). We have used the MLE parameter 

estimator, i.e. the empirical fraction , to estimate the parameters of the 

distribution, namely . Kp is the number of categories of the pth 

covariate.  Furthermore, in order for the simulated covariates of virtual patients to have 

physiologically reasonable covariate distributions resembling the real patients, we used 

the continuous covariate simulation method proposed in reference [93]. In this proposed 

Continuous method, the parameters of a single multivariate normal distribution (MVND) 

are estimated by treating all categorical covariates as if they are continuous values, a 

procedure seen commonly in statistical simulation. In order to constrain all covariates to 

be positive, typically a lognormal multivariate distribution is assumed. Thus, the MVND 

variance–covariance matrix is defined in terms of the logarithms of the covariate values. 

First, all the categorical variables must be coded to possess positive values. Complete 

patient covariate vectors are then sampled from a single MVND; because the sampled 

values are logarithmic, each component of the vector is then exponentiated to obtain the 

true covariate values [93]. These continuous values are then mapped to discrete 

categorical values, based on a continuous critical value (CrV), according to the following 

equation: 

 
 (4.10)

where μ = mean(ln(Xp)), σ = SD(ln(Xp)), and NORMINV is the invers of the standard 

normal distribution. We then used the Kolmogorov-Smirnov test to test if the distribution 

of the simulated covariates is the same as the distribution of the covariates of real 

patients. We have also conducted the Jennrich test to test if the covariance matrices of the 
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simulated data are statistically equal to the covariance matrix of the real data. Next, in 

order to generate the patient pathways, we need to calculate the initial values of transition 

probabilities, i.e. Pij’s. We assumed that each row of the transition probability matrix of 

patient pathways follows a mixed distribution as follows: 

 

 
(4.11)

  
(4.12)

  
(4.13)

  
(4.14)

  (4.15)

where  is the probability that the mth patient is in state j at step t+1, given 

that he was in state i at step t. This definition comes from our assumption that the patient 

transfer between states follows a first order Markov model. Set 1 in Equation (4.11) is the 

set of states, j’s, to which there have been enough number of transitions from state i so 

that a multinomial logistic model could be fitted. f(.) is a multinomial logit function 

regressing the transition probabilities on the value of covariates up until step t ( ). 

The multinomial logit model is given by: 
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(4.16)

  
(4.17)

We estimated the parameters of the logit model ( ) using the multinom 

function available in the R package nnet. Set 2 in Equation (4.11) is the set of states, j’s, 

to which there has not been enough number of transitions from state i to fit a regression 

model but the patient pathways still show that the transition from i to j is likely to occur. 

Therefore, in order to keep these less frequent transitions, we have used the empirical 

fractions (MLE estimates of the multinomial distribution’s parameters) to calculate the 

Pij’s for  as shown in Equation (4.11).  Following the above-mentioned method, 

we first simulated new covariates of virtual patients. We then conducted the 

Kolmogorov-Smirnov test where the p-values of all the covariates were greater than 

alpha=0.05 showing that their distributions were the same as the distributions of real 

patients’ covariates while preserving the covariance structure. Next, we used the 

Equations (4.11) to (4.17) to generate the patient sequences as a partial function of 

covariates. We kept generating new sequences until Then, we used the simulated data set 

 to test the performance of our variance reduction 

methodology.  

Following the above approach, at each iteration a training data set of 1000 cases was 

generated and fed into the statistical engine. Figure 4.1 show the variable importance 

plots for real data. As it can be seen in this figure, among patient profile variables of 

gender, smoking, and BMI and among hospital resources Attending physician’s group, 
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number of CKMB tests and nuclear stress test’s turnaround time are identified as the 

most important factors. After sharing the results with our team of hospital experts, the 

following concluding remarks were made: 

 Strategic planning: Physician practices have always been a concern in this 

hospital. This study and the numerical results can be an incentive for physicians to 

more religiously follow the evidence-based medicine to reduce patient flow 

variations. 

 Tactical planning: Contribution of nuclear stress test’s turnaround time to 

patient flow variation was associated with unavailability of nuclear tests during 

weekends making it longer for patients staying almost idle on weekends. The 

management decided to extend staff-on-call plan to alleviate this problem. 

In summary, by using the random forest classifier we have been able to identify the 

significant factors that truly impact patient flow. With this valuable information, the 

hospital management should focus their efforts and resources to improve these attributes, 

which can consequently improve and facilitate patient flow in the hospital. Finally, to 

maintain the acquired improvements, the use of multinomial or multiattribute control 

charts is suggested to constantly monitor and control the important attributes and be 

alerted if a disturbance occurs in the patient flow process [94]. 

Note that in our example all the important variables are hospital resource-related 

attributes. In case a patient profile attribute is identified as a significant variable one 

should use other alternative solutions to control the process. One solution would be the 

use of robust optimization methods to control such a process since we cannot control or 

change statistical distributions of patient profile attributes into our favor [95]. 
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Figure 4.1Variable Importance Plot, Real Data Set 

 

4.5 Conclusion 

In this chapter, we have proposed a novel framework to identify the sources of variations 

in the patient flow process. The main idea is that by reducing the variations of these 

single processes we will be able to reduce the variation of patient sequences. Our 

simulated results show that having a statistically large historical data set, the classifier 

can correctly determine the important variables, which truly had relationships with 

patient sequences. We further suggest the use of statistical control charts to maintain the 

gained improvements. The hospital management can use this valuable information to 

improve the quality of its patient flow process which consequently improve patient and 

staff satisfaction and results in a better cost management. 
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APPENDIX 1- LIST OF TRAFFIC SAFETY RISK PREDICTORS 
 
 
 

Variable Name Data Table Subgroup Source 
Variable 
Type 

Number 
of Levels 

Values 

1 Age Group Driver Demographics Internal Categorical 8 Teen, Early20s, Late20s, 30s, 40s, 
50s, 60s, 70Plus.

2 Gender Driver Demographics Internal Binary 2 Male, Female. 

3 Years of Driving Driver Driving Knowledge Internal Categorical 5 
[ 0.0, 3.5), [ 3.5, 7.0), [ 7.0,17.0), 
[17.0,42.0), [42.0,74.0]. 

4 
Passenger In Adjacent 
Seat 

Event-
detailed 

Driver-Secondary 
Task 

Internal Binary 2 No, Yes. 

5 Cellphone Use 
Event-
detailed 

Driver-Secondary 
Task 

Internal Binary 2 No, Yes. 

6 Speeding 
Event-
detailed 

Driver-behavior Internal Binary 2 No, Yes. 

7 Low Speed 
Event-
detailed 

Driver-behavior Internal Binary 2 No, Yes. 

8 Drowsiness 
Event-
detailed 

Driver-behavior Internal Binary 2 No, Yes. 

9 
Alcohol Drug 
Impairment 

Event-
detailed 

Driver-behavior Internal Binary 2 No, Yes 

10 Driver Seatbelt 
Event-
detailed 

Driver-behavior Internal Binary 2 Yes, No. 

11 Travel Lanes 
Event-
detailed 

Roadway Data-
Engineering 

External Categorical 5 0, 1, 2, 3, 4Plus. 

12 Alignment 
Event-
detailed 

Roadway Data-
Engineering 

External Categorical 3 
"Curve left", "Curve right", 
"Straight". 

13 Grade 
Event-
detailed 

Roadway Data-
Engineering 

External Categorical 3 
"Grade Down", "Grade Up", 
"Level". 

14 Relation To Junction 
Event-
detailed 

Roadway Data-
Engineering 

External Categorical 8 

"Entrance/Exit ramp", "Driveway, 
alley access", "Parking lot, Inside", 
"Interchange area", "Parking lot 
entrance/exit", "Intersection-
related", "Intersection", "Non-
junction". 

15 Traffic Control 
Event-
detailed 

Roadway Data-
Engineering 

External Categorical 9 

"School zone related sign", "Yield 
sign", "Slow or warning sign, other", 
"Construction signs/warnings", 
"Traffic lanes marked", "Stop sign", 
"Traffic signal", "No traffic 
control", "Other". 

16 Traffic Flow 
Event-
detailed 

Roadway Data-
Engineering 

External Categorical 5 

"One-way traffic", "Not divided - 
center 2-way left turn lane", "No 
lanes", "Divided (median strip or 
barrier)", "Not divided - simple 2-
way traffic"  

17 Locality 
Event-
detailed 

Roadway Data-
Engineering 

External Categorical 9 

"Bypass/Divided Highway with 
traffic signals", "Church, "Open 
Residential,  Urban", "School", 
"Interstate/Bypass/Divided", 
"Highway with no traffic signals",  
"Moderate Residential", 
"Business/Industrial", " Other". 

18 Surface Conditions 
Event-
detailed 

Roadway Data-
Condition 

External Categorical 3 "Snowy/Icy", "Wet", "Dry". 

19 Traffic Density 
Event-
detailed 

Roadway Network External Categorical 5 

"Flow with some restrictions", "Free 
flow, leading traffic present", "Free 
flow, no lead traffic", "Stable flow, 
restricted maneuverability", 
"Unstable Flow". 

20 Weather 
Event-
detailed 

Weather External Categorical 4 
"Snow or Sleet or Fog", "Mist or 
Light Rain or Fog", "Rain or Sleet 
or Fog", "No Adverse Conditions". 

21 Lighting 
Event-
detailed 

Lighting External Categorical 4 
"Darkness/not lighted", "Dawn or 
Dusk", "Darkness/lighted", 
"Daylight". 
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APPENDIX 2- LIST OF PATIENT PROFILE AND HOSPITAL RESOURCES 

Patient profile variables are as follows:  

Patient’s age,  

Patient’s gender,   

BMI,  

Alcohol,  

Smoking,  

Drug,  

Coronary Artery Disease,  

Heart Failure,  

Hyperlipidemia,  

Hospital resource-related variables are: 

Attending physician group:  

Test Turnaround time,   
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