
c© 2017

Francesco Bronzino

ALL RIGHTS RESERVED

NAMED-OBJECT BASED SERVICES IN THE
FUTURE INTERNET ARCHITECTURE

by

FRANCESCO BRONZINO

A Dissertation submitted to the

Graduate School–New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Dipankar Raychaudhuri

And approved by

New Brunswick, New Jersey

January, 2017

ABSTRACT OF THE DISSERTATION

Named-Object Based Services in the Future Internet

Architecture

By Francesco Bronzino

Dissertation Director:

Dipankar Raychaudhuri

This thesis presents the results of a study focused around the design and development of

networking techniques aimed at the deployment and support of advanced services in the

future Internet. After many years of constant evolution, the Internet has approached a

historic inflection point where mobile platforms, applications and services are poised to

replace the fixed-host/server model that has dominated the Internet since its inception.

Driven by the strikingly different Internet population of mobile devices and services,

new fundamental communication abstractions are required and the current IP based

Internet fails to meet their requirement in a satisfying fashion. A top-down analysis

of the requirements of such future mobile Internet services is provided, motivating

a comprehensive set of solutions needed to meet them. Moreover, starting from the

recognition that new core technologies will be a core enabling factor of the previously

described evolution, driven by advances such as increased computing power and storage,

as well as the trend towards software-based programmability and virtualization. This

thesis not only aims to describe why such solutions are required, but also develops

a bottom-up analysis of how these new technological advances could be employed to

address the new requirements.

The first chapter of the thesis introduces the reader to the fundamental issues at

stake, discussing the central architectural concept of Named-Object based networking

ii

and the power that lies behind it. Looking at the different architectures presented over

the years, a set of fundamental abstractions are defined, providing a comprehensive

analysis of their properties and how they could be met. This study leads to the pre-

sentation of the MobilityFirst architecture in which the “narrow waist” of the protocol

stack is based on Named-Objects which enable a broad range of capabilities in the net-

work. This is followed up with a specific set of network service APIs that provide full

access to the proposed abstractions supported by MobilityFirst. Using performance

benchmarks and the implementation of representative use cases it is shown that the

abstractions enabled by the new API are flexible and can enable efficient and robust

versions of present and future applications.

The second chapter of the thesis then moves to the set of services that will be re-

quired by the future mobile Internet and that due to different shortcomings are hardly

supported by the current TCP/IP Internet architecture. These include: i) Multicast

services, ii) Content services, iii) In-network compute, and finally iv) Context services.

For each of these services, appropriate abstractions enabled by the Named-Object ar-

chitecture are presented and a use case based prototype evaluation is provided. The

results show the feasibility of providing a broad range of services with good performance

and reasonable protocol overhead.

Starting from the above abstractions analysis and the newly introduced services, the

third chapter of the work, focuses on how such new services are made available to the

end-users of the network. Considering first the expected requirements for such systems,

a new transport layer service is presented. The new designed protocol can seamlessly

support a set of distinctive features based on use of names and in-network reliability

techniques. Using the developed prototype components, experimental results show that

for a few representative scenarios including mobile data delivery, web content retrieval,

and disconnected/late binding service, the new systems can be exploited to reduce the

impact of complex operations improving performance for the end users of the network.

The fourth chapter analyzes how advanced cloud services can be supported in the

proposed Named-Object architecture. In particular, the concept of naming is extended

to natively support virtual network identifiers. It is shown that the virtual network

iii

capability can be designed by introducing the concept of a “Virtual Network Identifier

(VNID)” which is managed as a Named-Object. Further, the design supports the con-

cept of Application Specific Routing (ASR) which enables network routing decisions

to be made with awareness of application parameters such as cloud server workload.

Experimental results show that the new framework provides a clean and simple logic

for defining and managing virtual networks while limiting the performance impact pro-

duced by the additional overhead generated by running such system. Moreover, the

potential of ASR is demonstrated through a based cloud service use case deployment.

The last chapter of the thesis aims to bring together the whole study and provide

considerations on how the different components presented could be merged into a single

end-to-end realization. The designed elements are used in combination to present an

overview of how they could all be joined into a single experimental platform ready to

be employed in various deployment scenarios. Specific prototyping details are given for

several scenarios including advanced computing and context-aware services and how

these have been deployed on a nation wide testbed.

iv

Acknowledgements

Acknowledging people has always been an art I have failed miserably at. I have always

been better at saying awkward “thank yous” than coming up with heartfelt speeches.

But after more than four years of Ph.D. studies, this thesis could not be complete

without mentioning a few people that made this work possible, either by guiding me

throughout my work or by supporting me even during the worst moments. I will be

brief and I am sure I am going to forget somebody. I am deeply sorry about it, but as

always I am late in writing this.

First, I would like to thank the members of my defense and proposal committees,

Professor Gruteser, Dr. Lakshman, Professor Trappe, and Professor Yates, for their

advice and suggestions regarding this thesis. Having them approve the merits of my

work is a personal and gratifying statement that these years were not wasted and

hopefully produced some good work. And if I have to mention people that helped me

shape my work to this form, I could not forgo thanking all my collaborators, starting

from my colleague Kai, and finishing with all the faculty members I had the pleasure

to work with, including Dr. Nagaraja and Dr. Nakauchi, among others.

These acknowledgements could never end without mentioning Ivan Seskar, who after

four years must have grown tired of the sound of my fingers knocking at his door. But

question after question, he never stopped answering me, guiding me through all the

hours I spent working on ORBIT and GENI. You have not obtained a proper Ph.D.

degree from WINLAB if you have not been debugging your ORBIT experiment with

Ivan at 3 AM in the morning.

A special mention has to go to my advisor, Professor Dipankar Raychaudhuri. I

could talk at length about how I grew as a researcher under his guidance; about how

the rest of my career will be influenced by everything he has taught me. But there is

v

one thing that Ray transmitted me above everything else: listen and understand the

person that is in front of you. Ray’s office was always open for me. I tried my best as a

student, in every moment of my carrer, but without his guidance and his understanding

I would probably not be writing these words. I feel this is the most important lesson

an advisor could ever pass on to his students. If I will ever have my own students I will

try my best to do the same.

Among the people that supported me, I will never be more thankful than in this

moment to my family for being who they are. They followed me across the ocean,

sometimes having no clue of what was happening, what I was working on; sometimes

they had to deal with my moody interactions; but they never stopped believing in my

abilities; they never stopped supporting me; I was always comforted by the idea that

whatever happened they would have been there for me. They even watched the entirety

of my thesis defense streamed live over the Internet, this is love.

Finally, talking about support, I would be a fool if I did not conclude by thanking

the closest friends that have accompanied me over these years - Shreyasee, Shubham,

Dragoslav, and Javier. This time would not have been the same without you. You have

seen me go through all the up and downs. You have been there for the moments of joy

and the moments of desperation. You have listened me all the times I thought I could

not handle it anymore. I will never forget all this. I hope our paths cross for all the

years to come.

vi

Dedication

A tutti coloro che mi hanno strappato un sorriso nei momenti piú bui

vii

Table of Contents

Abstract . ii

Acknowledgements . v

Dedication . vii

List of Tables . xii

List of Figures . xiii

1. Introduction . 1

1.1. Evolving Networking Scenarios in the Future Internet 2

1.2. Using New Technologies for Quick Iteration 3

1.3. Organization of the Thesis . 4

2. Name Based Architectures and Service Abstractions 6

2.1. Service Abstractions for the Future Internet 8

2.2. Named-Objects . 12

2.3. A Name Object Based Architecture: MobilityFirst 16

2.4. A New Network API . 18

2.4.1. The MobilityFirst Network API 18

Basic Operations . 19

Content and Service Extensions to the API 20

2.4.2. Implementation . 21

Micro-benchmarks . 21

2.4.3. Use Cases . 22

3. Named-Object Based Services . 25

viii

3.1. Multicast Services . 25

3.1.1. NOMA Design . 29

Multicast Tree Management . 30

Data Forwarding . 32

3.1.2. Evaluation . 32

Tree Generation Algorithms . 33

Comparison to IP multicast . 34

3.2. In-Network Compute Services . 37

3.2.1. In-Network Compute Architecture 39

3.2.2. Overview . 39

Key Components . 40

3.2.3. In-Network Rate Adaptation as an example 42

3.2.4. Implementation . 44

3.2.5. Prototype Evaluation . 47

Deployment on GENI Wide-Area Testbed 47

Evaluation of In-Network Rate-Adaptation 48

3.3. Context Services . 51

3.3.1. Context Service in MobilityFirst 52

3.3.2. Emergency Service Demo . 54

4. Named-Object Based Services for Clients 57

4.1. A Flexible Transport Layer . 57

4.1.1. Requirements for transport layer service for ICN 59

4.1.2. MFTP design . 61

Segmentation, sequencing, and in-order delivery 62

Coordinated End-to-end error recovery and hop-by-hop reliable

delivery . 64

In-network transport proxy . 66

Flow control and congestion control 68

ix

Multicast . 71

4.1.3. Implementation . 72

4.1.4. Case studies and evaluations . 73

Large content delivery over wireless 75

Web content retrieval . 76

Late-binding and storage for disconnection 78

5. Supporting Advanced Services Through Named-Object Based Net-

work Virtualization . 80

5.1. NOVN: A Named-Object Based Virtual Network Design 81

5.1.1. NOVN General Design . 84

5.1.2. NOVN Protocol Details . 86

A Better Virtualization Abstraction 87

Separating Local and Global Tasks 88

Network State Exchange . 89

5.1.3. Application Specific Routing . 90

Introducing Application Performance Index into Service Anycast 91

5.1.4. Prototype and Benchmark Results 92

Click Based Virtual Routers . 93

5.1.5. Micro-Benchmarks . 95

5.2. vMCN: Virtual Mobile Cloud Network 96

5.2.1. vMCN Design . 98

vBS: WiFi Network Virtualization 98

5.3. Protocol Details for Components Coordination 100

5.3.1. Dynamically Configuring a Name-based Virtual Network 100

5.4. Prototyping . 101

5.5. Reduction of the CPS Response Time 103

5.5.1. Experimental Setup . 103

5.5.2. Experimental Results . 105

x

6. An End-to-End Service Realization . 108

6.1. Architecture Validation Approach . 109

6.2. Key Developed Technologies . 110

6.3. Deployment Scenarios . 114

6.3.1. Support at Scale Testbeds and Experimental Research 114

6.3.2. Considerations for Future Adoptability 115

6.3.3. An End-to-End Deployment Realization 117

7. Conclusions . 122

References . 125

xi

List of Tables

2.1. MobilityFirst API . 19

2.2. Latency in ms on 54Mbps WiFi link . 21

2.3. Latency in ms to content severs . 22

3.1. Emerging multicast application and their characteristics 27

3.2. Performance of links on the path from server at Wisconsin to VLC client

at Rutgers. 49

4.1. Different service scenarios’ transport requirements 59

xii

List of Figures

2.1. The Named-Object abstraction applied to core use cases. 13

2.2. MobilityFirst architecture. 15

2.3. Named Object abstraction with clean separation of naming and addressing 17

2.4. Throughput on a 54Mbps WiFi link . 21

2.5. Anycast content retrieval experiment . 22

3.1. Named Object abstraction with clean separation of naming and addressing 27

3.2. Hierarchical tree structure maintained in a name resolution service, with

names of tree nodes recursively mapping to routable addresses 28

3.3. Multicast architecture overview . 30

3.4. Tree building steps comparison of NOMA with IP multicast 31

3.5. CDF of performance in terms of packet hops for different multicast tree

generation algorithms, for 100 node random graph with 20 randomly

chosen destination nodes. 34

3.6. Control packet overhead for tree setup for varying graph sizes 35

3.7. Comparison of average multicast throughput received at a client with

mobility . 36

3.8. Aggregate throughput at a mobile client, with increasing mean mobility

rates; mobility event is determined by an exponential random variable

with the mean . 37

3.9. Overview of rate-adaption use-case showing MobilityFirst’s support for

direct addressing of content and in-network compute services 43

3.10. Prototype components deployed on the GENI testbed 48

3.11. Latency for in-network transcoding vs. segment size 49

3.12. Downlink traffic at client’s WiMAX interface 50

xiii

3.13. Traffic between Rutgers MFR and transcoder 50

3.14. MobilityFirst architecture design and late-binding example. 55

3.15. Service abstractions provided via the client API. 55

3.16. Alert system architecture based on the MobilityFirst context services

framework. Creation and management of context groups based on geo-

graphical location . 56

3.17. Alert system architecture based on the MobilityFirst context services

framework. Dynamic creation of routing information for multicast based

delivery . 56

4.1. Protocol stack and transport layer functionalities 62

4.2. Illustration of transport layer fragmentation and sequencing. Transport

layer fragments a content to be delivered into large blocks of data, i.e.

chunks. Sequential delivery guaranteed for each content, but no strict

ordering maintained for chunks belonging to different contents. 63

4.3. End-to-end signaling to recover from in-network failure 65

4.4. Procedures involved to use in-network transport proxy to handle desti-

nation disconnection and retransmission: the proxy temporarily stores

chunks when the destination disconnects, and transmits to the client

when connectivity is restored as indicated by the name resolution service. 67

4.5. Back-pressure buffer and per-hop sending window. 68

4.6. Multicast data delivery, small scale (left), large scale (right). 71

4.7. Experimental Setup . 74

4.8. Throughput comparison. MFTP is robust in the presence of loss. Aver-

age throughput comparison for 6 different (RTT, loss rate) profiles. . . . 75

4.9. Throughput comparison. MFTP is robust in the presence of loss. In-

stantaneous throughput (per 500ms) for 50ms RTT and 1% loss. 75

4.10. Page Load Times (min, average, and max of 5 runs) for 40 different

webpages. 50ms RTT, no loss . 77

xiv

4.11. Page Load Times (min, average, and max of 5 runs) for 40 different

webpages. 50ms RTT, 1% residual loss 77

4.12. CDF of response times. With 10s disconnection 78

4.13. CDF of response times. With 30s disconnection 78

5.1. NOVN layers of abstraction. 83

5.2. NOVN design. 84

5.3. Packet flow inside a software router. 88

5.4. Separation of local and global scale problems through a distributed co-

ordination plane. 89

5.5. Application Specific Routing (ASR) Concept 92

5.6. Experimental setup . 93

5.7. Packet flow inside the software router 94

5.8. Ping based RTT for different chunk sizes 96

5.9. Iperf experiment . 96

5.10. vMCN Architecture Design . 98

5.11. Concept of WiFi Network Virtualization (vBS) 99

5.12. The control planes of MF-VN and vBS are coordinated for building an

integrated virtual network . 100

5.13. Physical Structure of the vMCN Prototype 102

5.14. Protocol Stack . 103

5.15. Experimental Scenario . 104

5.16. CDF of CPS Response Time (Data Unit Size = 25KB) 105

5.17. 90 Percentile Response Time . 106

5.18. 100ms Delay Violation Ratio . 107

6.1. Realism vs scale provided by different network evaluation methods. . . . 109

6.2. Click router based block diagram. 112

6.3. Client host stack block diagram. 113

6.4. Prototype components deployed on the GENI testbed 118

6.5. Transcoder response time . 119

xv

6.6. Client traffic reduction with transcode 119

6.7. Deployment at five rack sites on the GENI wide-area and edge testbeds

at Rutgers and NYU Poly (shown expanded). 120

6.8. The GUI for the Drop It application showing the message drop and

pickup screens . 120

xvi

1

Chapter 1

Introduction

The Internet today is very different from its original concept when the architecture

and protocols were developed around the abstraction of communications between fixed

end hosts. Growing levels of mobility characterize today’s communications; mobile

wireless devices have outnumbered fixed end hosts and even service end-points have

different levels of mobility (not an uncommon scenario in data centers). Even though

support for seamless mobility is a growing requirement for the Internet as a whole, past

proposals and current solutions are either only applicable within limited environments

(e.g., cellular [1]) or are inefficient when applied to the Internet (e.g., MobileIP [2]). A

few recent scalable approaches to support mobility have been proposed, but these are

not standalone and require changes to the routing plane and/or protocol stack defined

in TCP/IP [3–6]. A few solutions may be applied by patching current systems, but

benefits under fine-grained mobility are still unclear [7, 8].

A second serious shortcoming of the Internet is its host-centricity. Principals such

content, services, and context have over the years gained at least as much importance

as hosts. However, since they are not first-class network objects, they are not directly

addressable. Direct addressability and location-independence, would enable seamless

content/service mobility, and help with building efficient delivery networks without

resorting to DNS-based tricks used by present-day CDNs. Direct addressability is

also important for services offered by the core and edge of the network, not just end-

points. While the clear boundaries of network pipes and compute end-points that

were fundamental to end-to-end transport protocols (e.g., TCP) are starting to fade,

CDNs and hosting platforms are starting to place storage and compute clouds closer

to consumers [9] and this strategy is increasingly being co-opted by ISPs [10] eager to

2

provide value-add services. Direct addressability for these resources and services would

benefit both deployment and access strategies.

A third important consideration for the Internet is the need for supporting efficient

one-to-many communication mechanisms. This need is foremost for the emerging con-

text (e.g., location-aware messaging), collaborative (e.g., multi-player on-line games)

and crowd-sourcing applications. The related aspect of device-level multihoming where

devices may simultaneously attach to two or more networks for performance or robust

connectivity will also benefit from native support for multi-point communication [3].

Finally, along with the exponential growth in size and economic importance of the

Internet, the scale of security threats has grown too. Establishing network trustwor-

thiness and avoiding spoofing and identity hijacking incidents are priorities today that

are not completely met by patched solutions such as IPSEC or DNSSEC, mostly due

to their partial deployment or adoption. A clean approach that ensures uniform de-

ployment at a basic level for all network principals such as the PKI-based self-certified

identifier proposal is a potential solution [11].

1.1 Evolving Networking Scenarios in the Future Internet

This predictable, yet fundamental, shift presents a unique opportunity to re-think how

Internet and mobile networks work and to develop new technologies that could be the

enabling factors of a new wave of advanced network services. Within this environment,

this work focuses on understanding the mechanics behind this evolution and to design

and develop new solutions to create better platforms for enhancing the potential of the

new services that will come out in the future. By looking at how to improve single

components of the protocol stack, but never forgetting the potential impact on the

network as a whole, this study explores ways to simplify and improve the deployment

of these scenarios through network assistance. In doing so, a particular attention is

given to the identification of requirements and needed abstractions of applicable use

cases.

In order to approach this problem a first step is necessary: define a set of basic

3

network service abstractions that can support the needs of the future mobility-centric

Internet applications. The identified abstractions are: name-based services, direct ad-

dressability for content and services, trusted identities, multi-point addressability and

in-network hosting of storage and compute services. Starting from these abstractions

new base and advanced services can be designed.

1.2 Using New Technologies for Quick Iteration

New technologies will be the key enabling factor of the previously described evolution,

driven by advances such as increased computing power and storage, as well as the

trend towards software-based programmability and virtualization. These advancements

have stimulated the creation of new flexible and adaptable frameworks for networking

platforms that allow researchers and industry players to advance the state of the art.

An example of such technologies are:

• Network Virtualization and Software Defined Networks in Internet networks.

• Integration of computing and storage in the network routers.

• Software Defined Radios for access networks.

In this work, technologies such as those listed above will be used to create flexible

platforms for the networking concepts under consideration. Further, the solutions de-

veloped will take advantage of the recent shift towards software defined routing and

switching platforms for realizing new network functions.

At least as importantly toward the experimentation of our designs, a great attention

will be given to the utilized evaluation environments. Our validation of the design of

new tools and architectures spaces across different experimental techniques. This is due

to the different requirements and goals that are part of the process. For performance

verification at scale, simulated environments, such as NS3, have been employed. Moving

toward prototype experimentation, tradeoffs with the scale of the experiments and their

levels of realism will be analyzed. Testbeds of different scale and capabilities will then

be employed, depending on the specific needs of the tool under evaluation.

4

1.3 Organization of the Thesis

This thesis starts with a top-down analysis on how an Internet architecture could evolve

in order to support a variety of advanced services, and then provides specific network

architecture and protocol solutions to realize the vision.

The first chapter of the thesis introduces the reader to the fundamental issues at

stake, discussing the central architectural concept of Named-Object based networking

and the power that lies behind it. Looking at the different architectures presented over

the years, a set of fundamental abstractions are defined, providing a comprehensive

analysis of their properties and how they could be met. This study leads to the pre-

sentation of the MobilityFirst architecture in which the “narrow waist” of the protocol

stack is based on Named-Objects which enable a broad range of capabilities in the net-

work. This is followed up with a specific set of network service APIs that provide full

access to the proposed abstractions supported by MobilityFirst. Using performance

benchmarks and the implementation of representative use cases it is shown that the

abstractions enabled by the new API are flexible and can enable efficient and robust

versions of present and future applications.

The second chapter of the thesis then moves to the set of services that will be re-

quired by the future mobile Internet and that due to different shortcomings are hardly

supported by the current TCP/IP Internet architecture. These include: i) Multicast

services, ii) Content services, iii) In-network compute, and finally iv) Context services.

For each of these services, appropriate abstractions enabled by the Named-Object ar-

chitecture are presented and a use case based prototype evaluation is provided. The

results show the feasibility of providing a broad range of services with good performance

and reasonable protocol overhead.

Starting from the above abstractions analysis and the newly introduced services, the

third chapter of the work, focuses on how such new services are made available to the

end-users of the network. Considering first the expected requirements for such systems,

a new transport layer service is presented. The new designed protocol can seamlessly

support a set of distinctive features based on use of names and in-network reliability

5

techniques. Using the developed prototype components, experimental results show that

for a few representative scenarios including mobile data delivery, web content retrieval,

and disconnected/late binding service, the new systems can be exploited to reduce the

impact of complex operations improving performance for the end users of the network.

The fourth chapter analyzes how advanced cloud services can be supported in the

proposed Named-Object architecture. In particular, the concept of naming is extended

to natively support virtual network identifiers. It is shown that the virtual network

capability can be designed by introducing the concept of a “Virtual Network Identifier

(VNID)” which is managed as a Named-Object. Further, the design supports the con-

cept of Application Specific Routing (ASR) which enables network routing decisions

to be made with awareness of application parameters such as cloud server workload.

Experimental results show that the new framework provides a clean and simple logic

for defining and managing virtual networks while limiting the performance impact pro-

duced by the additional overhead generated by running such system. Moreover, the

potential of ASR is demonstrated through a based cloud service use case deployment.

The last chapter of the thesis aims to bring together the whole study and provide

considerations on how the different components presented could be merged into a single

end-to-end realization. The designed elements are used in combination to present an

overview of how they could all be joined into a single experimental platform ready to

be employed in various deployment scenarios. Specific prototyping details are given for

several scenarios including advanced computing and context-aware services and how

these have been deployed on a nation wide testbed.

6

Chapter 2

Name Based Architectures and Service Abstractions

The basic abstraction for communications over the Internet has always been very simple:

send a message from an interface to a destination address and if an interface is listening

for data on that address it will receive the message at the other end. From an end-

point perspective, this simple concept creates the perception of transmitting data on

top of a virtual link connecting the two interfaces. This is the base of the Berkeley

IP socket layer, the most commonly used network interface. But after many years of

using this simple IP services model, the Internet is now approaching a historic inflection

point where mobile platforms, applications and services are poised to replace the fixed-

host/server model that has dominated the Internet since its inception. While developers

have still managed to create a rich ecosystem of services above the IP network layer, the

reliance on this core interface forced them to develop ad-hoc and sometimes patched

solutions to address even the most common service scenarios.

As the majority of end-points shifted to dynamic and mobile approaches, applica-

tions had to deal with the risk of potential communication failures. This is not only

limited to wireless devices, that are now outnumbering the fixed end-hosts [12], but it

also includes service end-points that are characterized by different levels of mobility -

e.g. cloud migration. Even though support for seamless mobility is a growing require-

ment for the Internet as a whole, past proposals and current solutions are either only

applicable within limited environments (e.g., cellular [1]) or are inefficient when applied

to the Internet (e.g., MobileIP [2]). One-to-many communication applications have

also grown in importance even if no widely available delivery mechanism, e.g. multi-

cast, has been adopted in the Internet. Everyday example applications like multi-player

on-line games and social networks come to mind. Even considering their popularity,

7

they always had to rely on multi point-to-point connections to deploy such services,

forcing huge overhead on the network due to excessive traffic and service development

time. Moreover, as technology evolves, devices are beginning to incorporate multiple

interfaces technologies such as WiFi and 4G/LTE. But even for common scenarios, e.g.

phones with multiple wireless interfaces, it remains difficult to exploit this potential

due to limitations in the underlying network protocols. Even for basic scenarios like

VoIP calling no common solution has been found to avoid calls drop while transitioning

across interfaces. Only exceptions for small and severely limited scenarios have been

deployed to take advantage of this [13].

Acknowledging this markedly different Internet population of mobile devices and

services, the research community has looked over the years at the possibility of defining

new communication abstractions to address the limitations of the IP/TCP as it exists

today. As an evolutionary step, the Host Identity Protocol (HIP) [3], proposed to

introduce a naming layer through the use of a shim layer sitting between classical

transport protocols - i.e. UDP/TCP - and the IP network layer. With the goal of

exclusively requiring modifications in the end host network stack, HIP provides new

tools and functions for future network needs, from supporting seamless host mobility

and multi-homing, to the ability to securely identify previously unknown hosts and

the ability to securely delegate signalling rights between hosts and from hosts to other

nodes. In order to do so, HIP introduces a new name space made of Host Identifiers,

that double as public cryptographic keys. Similar in spirit, SERVAL [5] implements a

new Service Access Layer (SAL) that sits above an unmodified network layer, enabling

applications to communicate directly on service names aimed at supporting Internet

services located at multiple and different locations, while serving clients that are often

mobile and multi-homed.

Using a different namespace to separate names from the addresses of the routing

layer through the use of a name to address mapping service has also been advocated

as a structural change within the network infrastructure itself [4, 14]. For example,

the Locator/Identifier Separation Protocol (LISP) [4] proposed this separation as the

decoupling in two types of addresses: EIDs that identify hosts, and RLOCs that identify

8

network attachment points that are used as routing locators, i.e. are IP addresses. LISP,

with such separation in place and the presence of the name mapping system, is able to

offer native mobility through an extension of its protocol called LISP-MN.

A third clean slate approach is that of content centric networks [15] or named data

networks [16], both belonging to the class of information centric networks (ICN). These

architectures depart from the conventional point-to-point abstraction by having routers

in the network directly operate on content labels making physical network addresses

unnecessary. The Data-Oriented Network Architecture (DONA) [17], was perhaps the

first comprehensive and detailed proposed architecture that relied on the use of self-

certifying names. Content Centric Networking (CCN) [15] and its derivative designs [16,

18] evolved the concept and brought it to prominence within the networking community.

The CCN architecture through an elegant mechanism shifts the networking paradigm

from today’s IP locators - where - to content descriptors - what. This paradigm shift

not only enables efficient delivery of content, but also enables advanced services such

as mobility and multi-homing which are relatively difficult to support in todays IP

networks.

While all these different architectures have advantages and disadvantages, before

looking at potential fundamental solutions, we believe it is important to make a step

back and analyze how to define what abstractions a future Internet architecture should

support.

2.1 Service Abstractions for the Future Internet

We think that a future Internet should support the set of service abstractions given be-

low. The implication of each on the network architecture (NetArch) design is presented

alongside.

A. Name-based Services. Communication with a mobile end-point should be no dif-

ferent than that with a fixed end-point. The current “practical” approach results in un-

desirable asymmetry, where mobile end-points are always responsible for re-establishing

9

connections. The situation is doubly vexing when both end-points are mobile. A basic

service abstraction that allows addressing a network end-point by its unique name and

not its current location will establish a uniform approach to dealing with fixed and

mobile end-points alike, enabling seamless mobility.

NetArch implications: To support a name-based network service that seamlessly

handles mobility, the network requires native support for dynamic and fine-grain loca-

tion resolution. Some have proposed protocol interposition approaches that dynamically

substitute local addresses for end-points with dynamically resolved ones [3, 5]. Effi-

ciency extensions in MobileIPv6 attempt to signal end-points with address updates [19]

to avoid triangular routing through fixed home agents. However, we think that besides

end-hosts, the network routing fabric must also be able to dynamically resolve and

re-bind in-flight packets.

B. Direct Addressability for All Network Principals. Host-centric abstractions

to network services were a solid building block during the conception and early ad-

vancement of the Internet. Though, other important principals have emerged since

then. While content and services are two established principals (besides hosts), others

such as sensors and actuators, as also more abstract ones such as context are quickly

gaining traction. Since few foresaw today’s usage of the Internet with any accuracy,

allowing for a broader definition should be the path forward. In that vein, direct ad-

dressability for all principals eliminates any unnecessary bindings of one principal with

another. For instance, content should be addressable both directly and independently

of where it may be located physically.

NetArch implications: Allowing for direct addressability for not only content and

services, but also other emerging first class entities requires that the name space be prac-

tically inexhaustible. For instance, 256 bits to encode the name would last us for a long

time to come. To put it in perspective, 2270 is the ballpark for number of atoms in the

observable universe. A larger namespace implies engineering challenges to implementing

network elements - whenever forwarding engines inspect, lookup or classify on names -

and scalability of network support services such as a name-to-address resolution service.

10

C. Trusted Identities. Stronger security and network trust is possible if self-certifying

names were used for addressing principals, as shown in AIP [11]. Present-day ap-

proaches to authenticate and establishing trust is based on principals that maintain

trust credentials (e.g., a PKI certificate) separate from their network identity (an IP

address), and where the credential establishes the linkage of principal’s identity to the

network identifier. The linkage itself is certified by a mutually trusted entity (e.g., a

certificate authority). The adoption today is far from pervasive and particularly chal-

lenging for mobile entities where the conflated network identifier may change. Using a

public-key as the self-certifying identifier to address principals, can ensure both location

independence and greater trust by preventing hijacking and spoofing problems.

NetArch implications: Embedding trust within the network names requires names

to be longer and also to be flat. When using a PKI public key of a reasonable strength

X, would require a minimum of 2X bits (= 256 bits for the current recommended 128-bit

strength) as when using Elliptic Curve Cryptography. Also, since names form the basis

of all network services, there must exist organizations or other easily accessible mecha-

nisms by which names are produced and assigned to network principals in a reasonable

manner. Finally, flat names imply they cannot be aggregated as is for IP addresses,

creating engineering challenges when routing/forwarding operations need be performed

on names.

D. Multi-Point Addressability. With group-based subscriptions (e.g., RSS, over-

the-top video “broadcasts”) and collaborative applications (e.g., teleconferencing, gam-

ing) routine today, need for multi-point addressing is basic. Under this are multicast,

multihoming, and also anycast, a ’one-of-many’ abstraction important for a variety of

reliability and load-sharing uses. Today’s host-centric Internet essentially supports a

point-to-point abstraction. IP-multicast is really an extension that’s enabled by special

interpretation of a small subset of destination addresses. Concerns of scalability means

that multicast is commonly left disabled on network elements. Internet applications

11

therefore regularly resort to multiple unicasts to address groups. In wireless environ-

ments, there is a desire to take advantage of inherent multicast/broadcast medium to

enable efficient point to multi-point delivery services. Multi-homing, where entities

have two or more active network attachments, deserves similar support with a few in-

dependent considerations that allow flexibility on how each attachment can be used

separately or collectively for performance, reliability or other metrics.

NetArch implications: First, the network must have support for creating and man-

aging groups of member identities. These must be dynamically available to the routing

fabric dynamically. Be it as receiver driven multicast trees or some other means, a ba-

sic consideration would be limit per group state within network elements to minimize

set-up procedures for easier and sustained adoption. Since names are flat and uniform,

the service abstraction must provide a means for end-hosts to specify the requested de-

livery service - multicast, anycast, multihoming, broadcast, etc. - that’s interpreted by

the network elements. While network could participate in path choice and scheduling

for multihoming, transport implementations may also be conceived at the end-host [20].

E. En-Route Storage and Compute. The traditional notion of keeping all data

processing at end-points with the network as pipes with routing alone is beginning

to dissolve. For instance, non-ISPs such as Akamai have independently placed com-

pute/storage resources at the edges of the network to reduce access latency. It is not

inconceivable, therefore, for ISPs to open up PoPs for placement of storage and com-

pute services as well [10]. Routers in the request path may service content requests,

or co-located compute resources may shoulder mobile offloaded security functions such

as data encryption. In-network and en-route compute opportunity may hold particular

appeal for mobile devices that are often on a limited resource budget [21] and may

require non-trivial customization of data delivered to them.

NetArch implications: While certain services may be embedded transparently into

the network [22] or be co-located without requiring a tight coupling with the routing

fabric, network architectures with a extensible data plane in the form of a pluggable

computer plane, would benefit from flexible service extensibility in the future.

12

2.2 Named-Objects

While all the solutions presented in the introduction section of this chapter were driven

by one or more use cases, none of them has reached enough maturity to fully replace

the original virtual link interface. This motivated us to consider the design of a more

compelling abstraction which provides the benefits of ICN techniques while maintaining

a higher degree of generality for service creation. We call this abstraction Named-

Objects. At the base of our solution lies a fundamental rethinking of how hosts, devices

and network elements in general are identified and communicate in the network. In

contrast to the current IP based network, which tends to conflate both names and

addresses, we create a new level of separation: names are flat globally unique identifiers

(GUIDs) that are large enough to create a name space practically inexhaustible. The

location of these objects is then resolved through a Name Resolution Service (NRS)

through a dedicated API. While this idea is not completely new and relies on previous

work on name/address separation [3, 4], we take it further down the line, proposing

support for the so called “Named-Objects”: Named-Objects are a new abstraction

meant to represent any network entity that could be abstracted as an addressable

network element. This should cover any possible abstraction: from the original host

based abstraction of a virtual link bridging two interfaces, to recently introduced ones

such as contents, to any potential future abstraction - e.g. context. While name based

approaches have already been addressed in the past, they were mostly focused on either

solving specific issues such as mobility [4] or security [3] or to shift the communication

focus to new entities such as contents [15, 17]. Our target is a more comprehensive

solution that can enable powerful abstractions and services to underpin the Internet

architecture.

Figure 2.1 outlines our approach to defining the Named-Object abstraction through

separation of names and addresses. Separating names (identities) from addresses has

been advocated by the research community [3, 4] for quite some time and has inherent

benefits in handling mobility and dynamism for one-to-one communications. If prop-

erly employed, names can also provide additional advantages to facilitate the creation

13

Figure 2.1: The Named-Object abstraction applied to core use cases.

of new service abstractions that can be used to support advanced applications. Our

approach involves three steps: 1) First, “what” (or “who”) will take part in the com-

munication has to be identified through a unique name that is understandable by all

parties involved, e.g. end points, routing elements. 2) When forwarding is required,

names are then resolved to “where” they are located. While different techniques can be

employed for this purpose, previous proposals [4,14,23,24] demonstrated that the use

of a globally accessible Name Resolution Service is a suitable approach for this goal. 3)

Finally, if the semantical value of such element is known it can be indicated through

the use of a service identifier properly located in a packet header, giving an indication

of “how” such packet should be treated.

Once we move away from the host-centric nature of the IP world, new and different

delivery services can be supported, where routing decisions can be diversified based

on the nature of the referenced object. In order to do so, network elements have to

support hybrid routing schemes, where a service ID (SID in the Figure) can be located

in the networking header to identify the required service. As we will show with the

proposed solutions, we believe that this concept, together with appropriate support

in the different network entities, can be the core at the center of the evolution of

sustainable communication techniques for future networking scenarios. In particular

we address how the name object solution can address the base abstractions presented.

14

Handling Mobility. Assigning permanent names to mobile objects and decoupling

names from addresses has inherent benefits over IP avoiding the need of relying on

triangular routing to solve the hierarchical nature of Mobile-IP routing schemes and

support host mobility [2]. As end-points talk to each other through names, routers can

map these names to current locators of the devices and route packets to them based

on the locators avoiding the need to route packets to the previous location persistent

element (the home agent). End-points are solely responsible for updating the resolution

system with their current locator. Each packet is then routed to the most up-do-date

location, as any other device can query the same system to obtain the current locator.

When occasional inflight packets reach the previous location of a moving device, routing

components can notice that this has moved and perform a new query to obtain the new

location. We call this technique “late-binding”.

Group Based Delivery Devices can often be grouped into sets of devices that require

to efficiently communicate to some or all of them at the same time. Consider for

example IoT based messaging scenarios: a typical query involves sending short messages

to hundreds or thousands of users or application agents, so that scalability becomes

an issue, as multiple unicast messages through an overlay service can easily overload

the network. Mobility of end-devices results in additional complexity, especially for

dynamic environments such as vehicular communications. For example, if a single

warning message needs to be pushed to hundreds of cars and pedestrians in a given area,

multicast groups would need to be maintained across a large number of access networks

in order to efficiently support such one-to-many communication. Using appropriate

multicast routing solutions would help improving network efficiency, while reducing the

complexity and cost of deploying such applications. However, existing network-layer

multicast solutions (e.g., PIM-SM [25], MOSPF [26]) have not been widely adopted due

to fundamental problems that are a by-product of the original Internet design geared

toward static host-centric communication.

Security. A name or GUID assigned to a network object by one of several name

certification services (NCS), is self-certifiable, i.e., end-points claiming a GUID can au-

thenticate each other without the need for third-party certification. When the GUID is

15

Figure 2.2: MobilityFirst architecture.

derived as a cryptographic hash of the object’s public key, the authentication requires

a simple, bilateral challenge response procedure to be executed between the communi-

cating end-points. For content, the GUID may optionally be derived as a cryptographic

hash of the bits of the content. For full non-repudiation, i.e., to verify origin of content,

a signature may accompany the content which could authenticate the principal that

originated the content.

Compute Support. We use name-based communications to implement this abstrac-

tion. Two core pieces of technology are introduced: first, the ability to aggregate

multiple service instances under a single name. This is done by offloading the list of

participant locations under a single name into the name resolution service. Second,

the ability to make compute nodes participate in the routing protocol by sharing their

application state. This could be either implemented through a new interface in the

participating routers, requiring though the introduction of new schemes to identify

participants of the protocol, or by offloading this information to the name resolutions

service.

16

2.3 A Name Object Based Architecture: MobilityFirst

With the above stated network service abstractions in consideration, we have designed

and prototyped a network architecture that addresses the principal goals of support-

ing at-scale and seamless mobility, along with trustworthiness in the future Internet.

Figure 2.2 shows the main components of the MobilityFirst architecture which centers

around the concept of self-certifying, Globally Unique IDentifiers (GUIDs) as names

for all network principals. Below we present key details of the architecture that address

the requirements outlined in the previous section.

Naming and Dynamic Resolution. At the crux of the MobilityFirst architecture is

a new name-based service layer which serves as the ‘narrow waist’ of the protocol stack.

The name-based service layer uses flat GUIDs for all principals or network-attached

objects including hosts, content, and services, making each a first-class network object.

Unlike IP addresses which conflate identity and location, addresses of objects in Mobili-

tyFirst are dynamically resolved using the object’s GUID. This resolution is enabled by

a globally accessible name resolution service (GNRS), which is used by objects to both

announce their latest location/address and lookup end points they wish to communi-

cate with. While a variety of incarnations of the GNRS are possible, we have validated

2 alternate designs that both meet our low resolution latency goals of less than 100ms

on average for lookup operations [23,24].

Trusted Communication. A GUID assigned to a network object by one of several

name certification services (NCS), is self-certifiable, i.e., end-points claiming a GUID

can authenticate each other without the need for third-party certification. When the

GUID is derived as a cryptographic hash of the object’s public key, the authentication

requires a simple, bilateral challenge response procedure to be executed between the

communicating end-points. For content, the GUID may optionally be derived as a

cryptographic hash of the bits of the content. For full non-repudiation, i.e., to verify

origin of content, a signature may accompany the content which could authenticate the

principal that originated the content.

17

Figure 2.3: Named Object abstraction with clean separation of naming and addressing

Storage-Informed Segmented Transport, Edge-Aware Routing. In contrast

to end-to-end transports which perform poorly in wireless conditions [27, 28], Mobili-

tyFirst employs a segmented transport to reliably progress data hop-by-hop. Data is

segmented into large blocks that are cached at each hop, if storage is available, to enable

in-network retransmission under losses. Experiments under a variety of wireless condi-

tions have shown significantly better fairness, throughput, latency and robustness under

the hop-by-hop transport, including an order of magnitude gains in median through-

put [29,30]. Within a domain, a generalized storage-aware routing (GSTAR) combines

link-state routing with DTN elements, and flexibly expands connectivity across wired

and wireless segments, as also occasionally connected partitions [31]. Conditions at the

wireless-edge are further heeded by adopting an edge-aware inter-domain routing (EIR)

approach that scalably gathers (using telescoping or aggregation of updates) and uti-

lizes capacity and load conditions at edge networks to instrument effective multi-path

and multi-home delivery.

Extensible In-Network Services. MobilityFirst proposes a network fabric with na-

tive support for multi-point and multi-path delivery services, with little to no set up

18

control signaling between network elements and minimal state within them. For ex-

ample, group memberships for multi-point delivery are maintained within the GNRS

and retrieved dynamically by source hosts or en-route network elements to determine

forwarding paths. The requested delivery type is specified by end-hosts and encoded

as the service identifier (SID) field within the routing header, and includes multicast,

anycast, multi-path, and multi-home delivery. To support future extensibility of net-

work function, MobilityFirst proposes a pluggable “compute plane” for the network

fabric. Compute services traditionally implemented by end-hosts may be plugged into

the network at strategic points to provide en-route or local services such as content

caching, encryption, VPN, or video transcoding. These instances register their name-

address mappings at the GNRS, and require that end-hosts request their invocation by

specifying a compute-plane SID and the GUID of the particular service. Furthermore,

multiple SIDs may be specified simultaneously within the header invoking any sensible

combination of services on a packet.

2.4 A New Network API

As we transition to the named based world defined by the MobilityFirst architecture

and with it its novel abstractions, a new network network API has been developed to

support advanced name based scenarios [32].

2.4.1 The MobilityFirst Network API

In this section we discuss the specific API we are developing with the goal of supporting

the abstractions presented in Section 2.1. Table 2.4.1 shows the complete set of API

designed to take advantage of the architecture. The parameters therein are a loose

depiction mainly to simplify the presentation. We have divided the operations into three

major groups: basic, content-centric and service-centric operations. By doing so we

want to be able to take advantage of the inherent characteristics of the communication

patterns of these three groups of abstractions.

19

Basic Content Centric Service Centric

open(profile, [profile-opts], [src-
GUID])

get(content-GUID, request, buffer,
[svc-opts])

exec(svc-GUID, request, buffer,
[svc-opts])

send(dst-GUID, data, [svc-opts]) get handle(handle, dst-GUID, re-
quest)

exec handle(handle, dst-GUID, re-
quest)

recv(src-GUID, buffer, [GUID-
set])

get response(handle, data, [svc-
opts])

exec response(handle, data, [svc-
opts])

attach(GUID-set) post(dst-GUID, data, buffer, [svc-
opts])

detach(GUID-set) post handle(handle, dst-GUID,
data)

close() send response(handle, response,
[svc-opts])

Table 2.1: MobilityFirst API

Basic Operations

Basic operations are in charge of: create end points with default stack operations cus-

tomized for applications, support name based message delivery and manage network

presence for the set of application GUIDs.

Endpoint/Socket creation and customization: At the beginning of each commu-

nication session, an application initializes a MobilityFirst socket by invoking the open

operation. During this initialization, the application provides the API layer the in-

formations about the profile of the communication that will occur. With the profile

parameter we allow user to specify the set of elements that characterize the session

such as: communication patterns, resources needed and services required. Additional

extensions to the profile can be provided through a set of optional profile options. The

final parameter is also optional and represents the GUID that the application want to

use as its default identity within the network.

Name-based Messaging: Once the session is initialized, send and recv are used for

the exchange of data messages. While the baseline profile is common for the entire

session, a per-message characterization is possible through the use of service options.

These service options (svc-opts) are used to define the set of network services offered by

the architecture. This set of features spans from the ability of exploiting the computing

layer located at routers, to different delivery systems and security options. Additionally,

20

GUIDs can be used to express intentional data receipt through the use of the optional

GUID-set parameter in the recv operation. Messages from source GUIDs other than

those specified are not delivered to the local end-point.

Management of network presence: To modify the set of GUIDs that an application

wants to be responsible for attach and detach operations can be used. Through these

operations network reachability for specified GUIDs can be announced if not already

established. The utility of these operations can be easily identified in a content delivery

scenario where availability of particular content may be in continuous flux (e.g., chang-

ing news items) and their availability needs to be updated both locally and remotely

on the GNRS.

Content and Service Extensions to the API

As introduced before, GUIDs can represent any network object. While we do not

present here details of how human readable names would get translated into GUIDs,

we assume that from this transaction the semantic relationship between the nature of

the GUID and the network object that it identifies is easily tracked by the programmer.

Starting from this principle that additional information about the nature of the GUID

could be known a-priori, we extended the API to support the following three specific

operations as related to content and service entities: requests for transferring contents

from a remote location (get), transfer of content to a remote location (post) and re-

quests for a service to be invoked at a remote location (exec). The use of type specific

operations translate into different advantages; on the host side this enables the network

stack to select the best transport protocol and allocate in advance the adequate amount

of resources; moreover it allows the user to choose between handling content transac-

tions asynchronously or as atomic operations and use per operation security and data

delivery options. On the network side this enables the usage of specific header SIDs to

provide the network components additional information about the type of data flowing.

All three communication patterns are characterized by a three way transaction rep-

resented as: request (i.e., get, post, exec), handling of the request by the receiving

21

host(i.e. xxx handle) and final response (i.e., xxx response). Handle objects are used to

identify specific requests and characterize the responses that follow them. Additional

informations for the end points involved in the communication can be passed through

the use of the request and response parameters.

2.4.2 Implementation

To gain some experience with our design, we are developing a proof-of-concept prototype

of MobilityFirst’s API and end host protocol stack. The API is implemented as a

system library and can be interfaced both from C/C++ and from JAVA; the stack

implementation takes the form of a standalone, multi-threaded user-level process that

uses pcap for low-level packet capture and injection. As all components are developed

in C/C++ or JAVA with no major library dependencies they can be easily utilized on

x86/ARM platforms running Linux or Android.

Micro-benchmarks

To ensure a reasonable implementation of the API and the protocol stack, we ran basic

latency and throughput experiments to establish the combined API library and stack

performance.

Chunk Size MobilityFirst IP
64B 5.62 ± 3.69 0.55 ± 0.42
256B 4.71 ± 0.75 0.65 ± 0.80
1KB 5.68 ± 0.88 0.81 ± 0.35
4KB 8.93 ± 3.75 3.31 ± 1.00
16KB 20.44 ± 1.78 12.72 ± 1.14

Table 2.2: Latency in ms on 54Mbps WiFi link
Figure 2.4: Throughput on a
54Mbps WiFi link

In Table 2.2 and Figure 2.4 are shown respectively the round trip times and maxi-

mum throughput achieved by two machines with Intel i7 K875 processors and 8GB of

memory directly connected through an Intel 54 Mbps Wi-Fi interface. From the table

is possible to notice that even though the software implementation generates additional

22

computing overhead, the behavior of the average RTTs with increasing packet size fol-

lows the one obtained using ICMP control messages. The graph provides an idea of

the difference of performances achieved by transferring a large file dividing it in chunks

of different sizes. While the performance is not yet comparable to what we get from

using iperf with UDP (21 Mbps on average) and TCP (17.1 Mbps on average), the

behavior of the graph is consistent with what would be expected from the application

of the wireless transport protocol Hop [29] where with additional protocol overhead

better performances are achieved with big chunk sizes.

2.4.3 Use Cases

Figure 2.5: Anycast content retrieval experiment

We now show several examples of how the defined API would support: common

Internet applications, difficult usage scenarios and MobilityFirst specific scenarios.

Content Retrieval. Among the services that would inherently benefit from name

based routing there is content retrieval. The GUID abstraction nicely fits the needs of

this context by allowing two different retrieval methods: by referencing contents with

specific GUIDs or by contacting web servers through their GUIDs. Moreover delivery

options could be exploited to achieve retrieval flexibility and to exploit in-network

services.

WIFI ETH 10 ETH 100

Server 1 23.03 ± 10.52 14.74 ± 1.17 13.15 ± 1.02

Server 2 30.23 ± 8.66 17.58 ± 0.75 15.16 ± 0.81

Table 2.3: Latency in ms to content severs

As a supportive example of the second case we have implemented a small content

23

retrieval scenario where two content servers are located at different distances, in terms

of hops count, from a client. Figure 3 (left) shows the structure of the network. The

core network is based on Ethernet links at 100Mbps or 10Mbps, while we change link L1

from either a 54 Mbps Wi-Fi link, a 10 Mbps Ethernet link or a 100 Mbps Ethernet link.

Table 2.4.3 shows that the latencies in the three cases do not differ much between the two

servers. In this scenario, the end user sequentially requests 20 contents (replicated at

both servers) of size 24 MB sending a request message addressed to a GUID representing

the web service and try to retrieve them using anycast delivery, as reflected in the

following listing:

int downloadFile (char ∗myGUID, char ∗sGUID) {

/∗ b i s the reques t , op t s i s ” anycast ” ∗/

. . .

hdl = open (sGUID , myGUID, NULL) ;

r e t = send (hdl , b , 32 , &opts) ;

while (remSize) {

r e t = recv (hdl , b , MAX−CH,NULL) ;

/∗ process ’ r e t ’ b y t e s o f content ∗/

remSize −= r e t ;

}

. . .

}

After the 10th transfer is completed a failure occurs on the link connecting to S2.

The retrieval times in Figure 3 depict clearly how the routing paradigms embedded in

the GUID abstraction enable the handling of the link failure. In this case the 11th

request is delayed due to the adjusting period of the network. The effect of the failure

would be additionally reduced in case of retrieval of larger contents. Figure 3 (center)

shows the throughput change after the failure occurs.

This same example could be also represented exploiting the other approach where

GUIDs are used to reference contents; in this case contents would be retrieved through

get requests providing inherent support to content location services that nowadays are

achieved through DNS tricks that would not be desirable otherwise [9].

Multihoming receive. While the concept of multihoming is inherently supported in

24

name based routing systems, how to handle multiple interfaces from a network interface

point of view is still an open issue as multiple options are available. We argue that there

should be a two level policy to determine the usage of the available interfaces: one based

on application specific needs and one defined by the user, with the latter having higher

priority. In the proposed API, the user level policy could be then expressed during

the context creation provided by the open operation while the application requirements

would be inherently defined from the context defined. These policies would be then

applied to provide additional information to other network elements by the usage of

header SIDs or entries in the GNRS. These concepts could be applied to the sample

network of Figure 3. While we have analyzed the network behavior in case of failure,

the use of multiple interfaces to the network could be exploited to increase performances

by exploiting content presence on both servers.

In-network services usage. Extensible In-Network Services are a key feature of Mo-

bilityFirst’s architecture that enables en-route or local services such as content caching,

encryption, VPN, or video transcoding. While we do not plan to provide full access

to network services at the application level, we think that a set of content and service

specific features should be addressable through the API. With the proposed API, these

services could be activated on a per message level, allowing enough flexibility to the

developer. As an example, we could consider the on route caching of contents. When

servers or network caches respond to a content request (i.e., get (GUID, ...)) they set a

content response SID in the header with cache options. Other routers in the path can

then decide to cache the response for serving future requests.

25

Chapter 3

Named-Object Based Services

While the name object abstraction provides a perfect framework that can be relied upon,

new networking solutions are required to fully exploit its potential. In this chapter we

introduce three technologies that provide baseline services that we believe should be

part of any evolving network architecture:

• A new multicast routing framework.

• A solution to support compute services in a name based architecture.

• The implementation of a context services framework that exploit the other two

technologies.

3.1 Multicast Services

Internet applications like video streaming, online gaming and social networks, e.g. Twit-

ter, often require dissemination of the same piece of information to multiple consumers

at the same time. While multicast routing protocols have long been available, most of

these applications rely on unicast based solutions that exploit overlay networks aimed

at improving the efficiency of pushing the required data without support from the net-

work. Recent increases in network traffic associated with the growth of mobile devices,

Internet-of-Things (IoT) devices, smart wearables and connected vehicles, motivate the

need for efficient push multicast, a service that is not well-addressed through overlay

solutions. The new smart-objects category is particular interested in this service [33].

Consider for example IoT based messaging scenarios: a typical query involves sending

short messages to hundreds or thousands of users or application agents, so that scal-

ability becomes an issue, as multiple unicast messages through an overlay service can

26

easily overload the network. Mobility of end-devices results in additional complexity,

especially for dynamic environments such as vehicular communications. For example,

if a single warning message needs to be pushed to hundreds of cars and pedestrians in

a given area, multicast groups would need to be maintained across a large number of

access networks in order to efficiently support such one-to-many communication.

Using appropriate multicast routing solutions would help solve these problems by

improving network efficiency, while reducing the complexity and cost of deploying such

applications. However, existing network-layer multicast solutions (e.g., PIM-SM [25],

MOSPF [26]) have not been widely adopted due to fundamental problems that are a

by-product of the original Internet design geared toward static host-centric commu-

nication. These solutions implicitly couple the forwarding path (location) with the

multicast group (name). Whenever a receiver moves to a new location, it has to rejoin

the multicast tree it was previously a part of and the network has to change the tree

structure accordingly. This can cause packet loss during the process and large amount

of distributed control traffic is generated to modify the tree structure. The problem

becomes particularly acute for applications like Twitter where each receiver might have

more than 100 groups to join each time it moves. Secondly, extending these protocols

to inter-domain has achieved mixed results, with issues of scalability and coordination

across domains [34]. For example IP multicast based on PIM-SM [35] relies on ren-

dezvous points (RPs) as the shared root of a tree. However domains are often unwilling

to have RPs for their local groups to be maintained in other domains. This leads to

having RPs in every domain connected in a loose mesh, that require periodic flooding

of control messages for coordination and management. Multicast group address assign-

ment may require a separate protocol altogether, such as the Multicast Address-Set

Claim (MASC) protocol used in conjunction with BGMP [36]. All of these problems

have negative consequences for highly dynamic environments and emerging application

scenarios. For example, in the vehicular use-case previously described, group member-

ship changes rapidly with vehicular mobility. In addition, the context of data-delivery

may change with time as well. An accident or traffic-alert push-notification to a group of

cars in NJ Turnpike is such an example. Table 4.1 describes a sample set of application

27

Application Multicast Type Group Size Group Flux Group Longevity Data Flow Size
IoT commands Push 1000’s Hours Days KB-MB

Accident notification Push 100’s Seconds Minutes KB
Twitter Pull 100’s of 1000 Minutes Months KB-MB
IPTV Pull 1000’s Relatively static Months GB

Multiplayer games Push/Pull 100’s Hours Hours GB

Table 3.1: Emerging multicast application and their characteristics

scenarios that require efficient multicast primitives and their characteristics.

Application layer solutions for multicast have also been explored in this context;

works like SCRIBE [37] and ZIGZAG [38] sought to find scalable and efficient solutions

by building an overlay among the receivers in a tree or mesh structure. These solutions

do address mobility and inter-domain management issues, but due to the lack of topol-

ogy awareness, they may incur high levels of network traffic. In addition, forcing the

end hosts to replicate packets, instead of dedicated routers results in heavy workload

on the end hosts, which may have intrinsic power and computation constraints.

Based on the above considerations, a native network layer multicasting solution is

identified as an important goal for future networks which are increasingly required to

support many-to-many communication modes.

Figure 3.1: Named Object abstraction with clean separation of naming and addressing

We proposed a solution based on named objects and a dynamic name-resolution

service for mapping names to routable network entities. Separating names (identities)

from addresses has been advocated by the research community [3, 14, 39] for quite

some time and has inherent benefits in handling mobility and dynamism for one-to-one

communication. But they also provide additional advantages by facilitating creation

of new service abstractions that can be used to design solutions for multicast services.

28

First, names can be used to represent many different Internet objects; for example, a

cell-phone, a person, or a group of devices, as shown in Fig. 3.1; the latter perfectly

applies in the context of multicast to define participation of end-hosts. Moreover, new

entities can be integrated within these names, not being constrained to end points;

through this, we gain the ability to directly refer to network entities that actively

participate in the formation of a multicast tree, such as routers that implement the

multicast routing protocols.

Figure 3.2: Hierarchical tree structure maintained in a name resolution service, with
names of tree nodes recursively mapping to routable addresses

We exploit names to design a Named Object Multicast (NOMA) [40] solution which

relies on separation of names and addresses using a globally distributed, logically cen-

tralized name resolution service, similar in spirit to an evolved DNS. In NOMA each

multicast group is identified by a unique name across all domains, thus separating

routing logic from group management. NOMA takes advantage of the dynamic name

resolution service to manage the tree, using name recursion, to store the tree topol-

ogy. This is achieved by mapping unique names assigned to participating routers to

their children nodes, as shown in Fig. 3.2. Data forwarding is then performed using

tunnels between participating nodes; end-to-end information is preserved within the

packet, while the information globally available in the name resolution service is used

to identify next hops in the distribution path allowing for quick branching and replicat-

ing decisions. Finally, dynamicity of mobile environments is handled by decoupling the

participants name from their location through the resolution service and periodically

recomputing the multicast tree; the system first needs to translate the name into a list

of host names participating in the multicast group. The routable address (locator) of

29

each host (whether mobile or static) can then be identified by a subsequent query to

the name resolution service.

3.1.1 NOMA Design

NOMA aims to achieve efficient multicast communications through the employment of a

logically centralized, globally distributed name resolution service associated with name

based communications. In order to explain NOMA’s design, we utilize a Global Name

Resolution Service (GNRS) as a network-wide entity that provides an API for inserting

and querying mappings between unique name identifiers and a set of values which can

include network addresses, other name identifiers and related parameters – e.g. node

properties, past locations and more. In spirit, this service is very similar to current

Internet’s DNS, which has already been effectively applied for new service functions

such as load balancing and service replication. Even more interesting services can be

realized with the next generation of global name resolution services such as DMap [23]

and Auspice [24] introduced recently. The key advantage of using a name resolution

service is to achieve a clean separation of network names from addresses.

NOMA’s design, as proposed here, is based on MobilityFirst (MF [39]), which

is a clean-sate network architecture for the next-generation mobile network where

DMap [23] is used to provide resolution of names, that are Globally Unique Identi-

fiers (GUIDs), into routable network addresses (NAs). Moreover, MF incorporates a

hybrid name-address forwarding scheme, in which routing components use availability

of both names and addresses in packet headers to perform forwarding decisions. Note

that even though NOMA is based on MF, the same design concept can be applied to

IP extensions (such as HIP [3]), overlay protocols (such as SCRIBE [37]), or clean-slate

ICN protocols such as NDN [41] and XIA [42] through the use of a similarly designed

name resolution service.

30

Multicast Tree Management

Multicast management consists of two core operations: membership of destination

nodes and building and management of multicast trees. Both operations can be stream-

lined by exploiting the logically centralized, globally distributed, name resolution ser-

vice (GNRS); in particular by using two forms of name indirection. A first unique

name (GMng in Fig. 3.3) is assigned to perform the task of node membership; all

entities interested in receiving data from the multicast flow, can request to join by

inserting their own unique name into the corresponding mapping in the table. This

information is then exploited close to the source by a multicast service manager, which

builds an efficient tree based on the available resources and the size of the required

tree. Recursive mappings are then used to express the tree graph: by assigning to

each branching router a name that exclusively identifies it in the context of the given

multicast flow, we recursively follow the tree structure. For example, in Fig. 3.3, the

root of this tree is identified by the multicast flow unique name mapping to the first

branching router (GMulti → Gr11); this router then maps to its children in the tree

(Gr11 → {Gr21, Gr22}); this continues until the leaves of the tree are reached, where

we identify the leaves as the destination nodes. As time progresses and destinations

join or leave the multicast group, the service manager can rebuild the tree information

contained in the GNRS to trigger the required update.

Figure 3.3: Multicast architecture overview

One of the novelties of NOMA is that it can support push mode of multicast, where a

31

source can send a single packet of multicast data, without the knowledge of the tree and

this can happen even before the tree has been built. On receiving a multicast packet, for

a group Gm, the gateway router at the source domain, acting as the multicast service

manager, will do a membership query to the GNRS. GNRS supports recursive queries

that return the host GUIDs along with the NAs of the domains they are currently

connected to. Having the service manager on the gateway enables the tree computation

to be topology-aware, as unicast path information of the NAs is available at the gateway,

which is then used to build the tree. Once a tree is computed, it is updated in the

GNRS such that downstream nodes do not need to recompute the tree again. This is

quite different than distributed tree management techniques used in IP multicast since

NOMA does not require flooding of multicast control messages (for example, source

active (SA) or Join messages in PIM-SM and MSDP [35]) across domains, as shown

in Fig. 3.4. The latter limits the scalability for traditional multicasting techniques to

small to medium groups, as shown later in Sec. 3.1.2. Also, using unique names to

represent a group, members of the group as well as the multicast tree eliminates the

need of a separate address allocation protocol, similar to MASC required for BGMP [36].

For evaluation purposes, we focused on two categories of multicast tree computation

algorithms, i.e. shortest path trees (SPTs) and Steiner trees. A constraint of having

centralized computation of trees is complexity and hence we opted for SPT and its

modifications, even though our design is not limited to any specific algorithm.

Figure 3.4: Tree building steps comparison of NOMA with IP multicast

32

Data Forwarding

Once the multicast tree is established, data forwarding can exploit the information

contained in the GNRS to efficiently flow through edges between the nodes of the tree.

In order to do so, we exploit address encapsulation, where two pieces of information

are carried in data packets at the same time: Internally (i.e. second field in the green

packets in Fig. 3.3), the encapsulated information carries the source and destination

of the multicast flow, providing valuable information usable by all nodes along the

path to easily identify data streams. Externally, routing information to perform hop-

by-hop forwarding from one branching node to the next is placed. At each branching

node participating in the multicast, forwarding decisions are performed by querying the

GNRS to obtain information on how many next hops it has to forward to, generating

required duplicates and replacing the external routing information with the new hop

source and destination; this process is exemplified in the figure, where node Gr21

generates 2 duplicates for its two children, replacing headers accordingly. Intermediate

nodes along the path forward encapsulated packets based on normal unicast rules. This

reduces complexity of multicast packet processing to only a subset of nodes of the tree.

To reduce the need of continuously involving the GNRS in the forwarding procedure,

mappings can be cached at each hop, avoiding traffic and computational overhead. The

tradeoff for this approach comes at the cost of slower reaction times to tree change

events. More details on how to handle tree restructuring and end points mobility is

provided in the following section.

3.1.2 Evaluation

In this section we present detailed performance evaluation based on a combination

of large scale analytical modeling and fine-grained packet-level simulation on network

simulator (NS3).

33

Tree Generation Algorithms

NOMA provides a framework for managing and deploying multicast communications,

independently from the tree generation algorithm employed. While this is a valuable

feature of the design, it is necessary to study different algorithms and heuristics in the

context of choosing one that can effectively utilize unicast routes, and is lightweight

enough to be able to run at a single router. We looked at two main categories of al-

gorithms for building multicast trees, namely shortest path trees (SPTs) and Steiner

trees. Although Steiner trees provide an optimal solution in terms of overall network

resource utilization, they are NP-hard to compute. Several Steiner heuristics have been

proposed over the years to provide near-optimal solutions [43], with relatively high com-

putation cost. However, computational complexity is a key constraint for our design,

since the tree computation is centralized. We instead opt for the SPT algorithm that

uses inter-domain unicast route information and require no further computation, but

is less efficient compared with a Steiner tree. In SPT, packets are forwarded along the

longest-common path (LCP) to all the destinations, as single copy, until the branching

point is reached, where the packet is copied and delivered towards multiple destina-

tions. This allows all destinations to receive multicast packets across the shortest path

from the source. We also analyzed other heuristics that aimed to further minimize

the overall network traffic with moderate computation. One of these heuristics is the

look-ahead longest-common path (LA-LCP) algorithm. Unlike LCP, which branches

whenever there a divergence of shortest paths to multiple destinations, LA-LCP, com-

pares the overall network cost of branching from the current node and branching from

each of the possible next hops, and decides to branch downstream if the cost is lower

for the latter, thereby deviating from the SPT. This reduces the overall packet hops in

the network, with slight increase in computation complexity.

Fig. 3.5 plots the CDF of total packet hops to reach 20 randomly placed destina-

tions from a single source on a 100 node Erdős-Rényi random graph for each of these

algorithms. As seen from the plot, all the multicast algorithms are much more efficient

than unicast. Although Steiner provides the most efficient trees, it is computationally

34

intensive. In comparison, LA-LCP provides reasonable performance with lower overall

network overhead compared to traditional longest common path.

1

20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

total # of packet hops

C
D

F

Steiner
Longest common path (LCP)
Look-ahead LCP (LA-LCP)
Unicast

Figure 3.5: CDF of performance in terms of packet hops for different multicast tree
generation algorithms, for 100 node random graph with 20 randomly chosen destination
nodes.

Comparison to IP multicast

In this section we compare pull-based multicast of NOMA with IP based inter-domain

multicast, namely, PIM-SM standard coupled with MSDP [35]. Through the results

we highlight two key benefits of using NOMA, namely, 1) lower control overhead for

maintaining a multicast group, and 2) better handling of mobility for data forwarding.

Note that BGMP [36] is another prominent inter-domain IP multicast scheme, however,

it is not well-suited for applications that involve dynamism and fast changes in the tree,

and hence has not been a focus of our evaluation. BGMP allows multicast route updates

to be carried along with inter-domain BGP messages and therefore tree changes occur

at a much slower time-scale than PIM-SM/MSDP (typical BGP updates take about

100 seconds to propagate throughout the network [44]).

Control overhead: The advantage of using unicast routes to build the tree is that

no multicast specific control overhead needs to be exchanged across networks. This is

crucial for inter-domain settings where flooding periodic multicast tree update messages

is not tractable. In Fig. 3.6 we plot the multicast specific messages exchanged for

setting up a tree and forwarding packets for increasing graph sizes, with the topology

being an Erdős-Rényi random graph, and 50% of the nodes being randomly chosen to

have destination clients part of the multicast group. For NOMA this includes 1) the

GNRS insert messages from each of the destination networks for joining a particular

35

multicast group, 2) the GNRS insert from the gateway at the source domain to insert the

generated multicast tree, and, 3) GNRS query and responses during data forwarding at

the branching nodes. The GNRS is implemented as a distributed hashmap, following the

DMap design [23], with the same mapping stored at multiple locations. For evaluation

purposes, 3 GNRS instances were maintained, therefore each insert incurred 3 unicast

messages to 3 specific nodes (determined by a hash function), whereas each query was

anycasted to the nearest of the 3. In comparison, for PIM-SM+MSDP the overhead

numbers comprise of, 1) the flooding of Source-Active (SA) messages from the source

domain throughout the network, and, 2) the Join messages from the domains which

have destinations nodes interested in receiving packet from that particular source. As

seen from the plot, maintaining a multicast tree in the GNRS has higher overhead for

smaller sized graphs (for example, for a 20 node topology, shown in the zoomed in

section of Fig. 3.6), but it scales elegantly with size. Using PIM-SM+MSDP, on the

other hand, becomes intractable as the number of nodes increases. With more than

40 thousand ASes in the Internet today, if every domain was multicast enabled, the

cost becomes too high to maintain a distributed tree. Similar trends were observed

by varying percentage of destination networks for fixed graph sizes and is not included

here for brevity.

1

20 50 100 1000
0

2

4

6

8

10

12
·104

Graph Size

A
ve

ra
ge

pa
ck

et
ho

ps

NOMA
PIM-SM+MSDP

20 50 100
0

500

1,000

Figure 3.6: Control packet overhead for tree setup for varying graph sizes

Handling mobility: NOMA seamlessly handles client mobility and the dynamism

in tree-changes thereof, by periodically recomputing the tree and updating the corre-

sponding GNRS entries. In addition, to counter packet-loss due to mobility, NOMA

36

supports unicast ‘repair’ packets to be sent from a previous edge node to the current

point of attachment of a mobile client, until a tree update restructures the tree. We

performed detailed packet level simulations in network-simulator (ns-3) on a 20 domain

random topology with randomly placed mobile and static clients, for both NOMA and

an IP multicast implementation of PIM-SM + MSDP. Fig. 3.7 plots the fluctuation

in received throughput at a client receiving a multicast stream of 2Mbps on the event

of mobility. A mobility event is characterized by disconnection of a client from its

attachment point and re-association to another node, following a period of association

(uniform random variable U(0, 1) seconds), as highlighted in the figure at t =∼ 77

seconds. NOMA periodically restructures the multicast tree every 10 seconds for this

scenario, whereas, IP multicast restructures following the client explicitly joining the

tree at the new point of association. Therefore, multicast traffic for NOMA falls to 0,

until tree is restructured at t = 80 seconds. However, repair packets are delivered to

counter packet loss and reordering, highlighted by the black trajectory in the figure.

Note that NOMA is based on MobilityFirst (MF) transport, that uses reliable hop-by-

hop delivery of large chunks, and the throughput received by the client is therefore in

steps with the average being 2Mbps. In comparison, for IP multicast, data throughput

falls following temporary disconnection and re-connection, as shown by the red dotted

trajectory.

1

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94
0

0.5

1

1.5

2

2.5

Time(seconds)

T
hr

ou
gh

pu
t(

M
bp

s)

NOMA multicast
IP multicast
NOMA multicast repair

Mobility MF tree
recomputation

PIM-SM rejoin

Figure 3.7: Comparison of average multicast throughput received at a client with mo-
bility

Mobility not only affects the instantaneous throughput at a client, it also leads to loss

of packets during the interval of disconnection, re-association of the client, re-joining

and re-structuring of the multicast tree. Additionally, in a practical setting, for IP

37

multicast, the mobile client will spend a significant amount of time for new IP address

allocation through DHCP, which has not been taken into account for this evaluation.

This packet loss and reduction in overall throughput is highlighted in Fig. 3.8 where

we plot the aggregate throughput at a mobile client for increasing rates of mobility,

that moves randomly with exponential random mean mobility interval of 50, 20 and 10

seconds. As seen from the plot, aggregate throughput for NOMA does not change with

mobility, primarily due to native features of MF such as hop-by-hop reliable delivery

and storage-capable routers to handle temporary disconnections. In comparison, IP

multicast throughput significantly worsens with increasing mobility speeds.

∞(Static) 50 20 10
90

95

100

Mean Mobility Interval (Seconds)

A
g
gr
eg
at
e
T
h
ro
u
gh

p
u
t
(M

b
it
s)

NOMA
PIM-SM+MSDP

Figure 3.8: Aggregate throughput at a mobile client, with increasing mean mobility
rates; mobility event is determined by an exponential random variable with the mean

3.2 In-Network Compute Services

Mobile devices such as smartphones and tablets have overtaken personal computers

to become the primary platform for accessing the Internet. Internet reports caution,

however, that video constitutes a majority of the traffic and will increasingly domi-

nate mobile data in the future [45]. With this growing trend, service providers face

significant challenges in providing quality service while maintaining high network ef-

ficiency. Mobility further complicates the user-experience aspect due to variable link

quality, temporary disconnections, and seamlessness when crossing physical networks.

Service providers commonly adopt short-term strategies of limiting user network ac-

tivity with expensive data plans and bandwidth throttling, and end up with outright

poor or patchy service performance. While better spectrum management and capacity

38

improvements promise to help, we argue that innovation in network protocols and in-

network services can provide large improvements over current data delivery efficiency,

particularly in mobile wireless networks.

Widely deployed middlebox solutions such as content proxies have helped since the

early days of the Internet to opportunistically improve data delivery performance. In

recent years, content delivery networks and cloud platforms boast further gains through

strategic placement and geo-colocation of content and services with end-user. However,

these solutions have often aimed to improve raw server-client RTTs, but do not address

specific challenges of wireless networks or mobile devices in any meaningful way. CDNs

and cloud applications are generally built as overlay services that can react to long-term

differentiation in path qualities. While this may suffice for certain applications and when

end-hosts are on fixed wired networks, wireless networks aren’t similarly benefited. A

mobile device in a wireless network may have vastly different network experience in

a short time span due to location, network load, or the particular access technology

available(e.g., 3G, 4G or WiFi). For wireless networks, it is well understood that

traditional content delivery methods, and in particular, connection-oriented transport

protocols, have not provided satisfactory performance. We think that network-assisted

approaches (e.g., storage and compute as integral components of the network) can

provide a boost for content delivery in mobile wireless networks.

Streaming video, in particular, can benefit from an approach where the video bi-

trate can be dynamically adapted to match available bandwidth at the client access

link using in-network compute resources. It is well known that the last-mile is usually

the bottleneck link, and for wireless clients, the network performance could be highly

variable under mobility. Solutions that address network performance variations to-

day either buffer excessively at the client, or require client-side estimation of available

bandwidth. While over buffering could be wasteful, accurate client-side estimations

of available bandwidth is known to be problematic [46]. Furthermore, recent studies

have shown that a multiplicity of rate-adaptive flows at access networks can lead to

unexpected degradation and instability in delivery performance [47]. To address these

challenges and to enable a host of novel value-add services (e.g., embedding of ads,

39

localized alerts, regional subtitles, etc.), we argue for a network-assisted solution for

rate-adaption. The placement of such an adaptation service close to the edge would

also enable the most accurate estimation of network performance as experienced by the

client. As argued by others as well, we think the wireless service providers could make

use of such in-network adaptation services as a way to effectively manage video flows

at an aggregate level to handle traffic bursts, and to implement fairness, stability, and

efficient delivery in the access network.

3.2.1 In-Network Compute Architecture

To enable future extensions to the network protocol, without expensive hardware re-

placements and disruption, MobilityFirst builds in an optional and dynamically plug-

gable compute plane. Examples of such need are additions of new service types, new

principal types, new addressing structures, or extensions to the end-to-end security

protocol. We envision service providers and network operators to be able to perform

relatively simple upgrades in the form of software updates and addition/replacement

of pluggable hardware modules to extend the data plane functionality. Furthermore,

we also postulate that such extensibility can enable third party application service

providers (via the ISPs) to deploy either service end-points or service adaptors that

are both closely integrated with the delivery path and best located to improve client

experience.

3.2.2 Overview

Consider an end-to-end application service S that requires content delivery to mobile

end-points. For simplicity, let us assume a server-client interaction model with a fixed

server and a mobile client. Under good conditions, when the mobile client has good

connectivity to the network core, the server responds to the client request by delivering

the highest fidelity content (C). Under these conditions MF provides hop-by-hop trans-

port under either unicast or multihomed delivery (e.g., when connected to both 4G and

WiFi) as specified by the delivery service type during a send operation. Short-lived

disconnections or minor variability in the access link can effectively be handled through

40

a combination of in-network store-forward buffers in MobilityFirst routers (MFR) and

contingency buffering at client ahead of actual consumption rate (e.g, video playback).

If access conditions change significantly, however, and remain so for extended periods

of time, it will become hard if not impossible to deliver the original high-fidelity content

to the client in a timely manner. These conditions may occur under a burst of traffic

or when the client moves to outer/poorer coverage area. In these cases, the compute

plane extensions allow an authorized adaptor AS service, regionally co-located with the

client’s network, to intercept and modify original data C to subsequently deliver C’ that

is commensurate to existing bandwidth constraints. A second demonstrative scenario

for an in-transit adaptor service is for delivery content that is context-sensitive (CX -

for context X). Client mobility may redefine context (X’) thus requiring an adaptation

to the delivered content(CX’).

Key Components

Enabling this dynamic adaptation requires compute services to be addressable, applica-

tion providers to be able to deploy these services at appropriate points in the network,

traffic to be correctly steered when beneficial, integrity of content and protocol conti-

nuity to be maintained post adaptation, and finally, applications should be provided a

flexible service interface to invoke these services.

Service Addressing: Generally, the compute layer will host services that are directly

addressable by information contained in the data packet, i.e., the GUID of the service

is explicitly specified in the packet as an extension header. However, service providers

may also invoke specific compute services on packets based on header signatures alone,

e.g., source-destination GUID or NA fields. These transparent services are similar to

middlebox approaches today, which are routinely used to support application-layer

proxies, content caches, traffic steering, and security functions. We allow for both

directly addressable and transparent services (which may also have internally known

GUIDs) in the MF compute plane.

Hosting Platform and Registration: While routing fabric could potentially steer

41

traffic to service endpoints located anywhere, packets will suffer least additional la-

tency when the compute platform is co-located with the routing fabric. We envision

both close hardware integrated solutions, where routers are embedded with a compute

plane composed of general purpose CPUs, GPUs or pluggable accelerators, as well as

co-located compute clusters or smart-sized clouds as possible platforms for hosting com-

puter services. While the latter is less flexible and is challenging to scale, it presents the

least overhead when the computations are limited and do not require access to other

distributed state. Data compression or certain security checks are examples. When the

compute service are more intensive, need to operate across a sequence of packets, or

need access to distributed state, it appears that a co-located cloud is a better fit, as

described in our PacketCloud instantiation [48]. In each case, MFR exports an inter-

face for services to register a GUID addressable service with the forwarding plane. The

attachment of the service instance will also be updated within the GNS to enable data

packets that request the particular compute service to be routed correctly.

Geo-location and Routing: We expect that one or more instances of an in-network

compute service will selectively be deployed at locations seen as beneficial to the appli-

cation provider, primarily due to expenses incurred in running on the platform provider.

Since application services may be consumed by clients across the globe, it implies along

certain paths these in-network adaptation services may be unavailable. Such clients

are either served through end-to-end adaptation only, or alternatively, packets may be

routed through paths that do have registered service instances and do not cause too

much path stretch. This can be done in MF through native tunneling, where packets

are first tunneled to the network hosting the service (known to application provider,

and also registered in the GNS), and following adaptation are then routed to the des-

tination client. In the non-tunneled default case, the packets are routed first to the

target network of the client, where the compute plane service, if available, will act on

the packet. With these, application providers can plan placement of their services ac-

cording to benefits to their end-users, so long as ISPs in those geo-regions provide an

open hosting platform.

42

3.2.3 In-Network Rate Adaptation as an example

In this work [49] we focus our attention on a specific use case providing details on

how the service and content APIs could be jointly used to offer an in-network service

that does rate adaptation when delivering video streams to mobile devices that experi-

ence variable connection quality. Bitrate adaptive streaming protocols have been widely

adopted in most commercial solutions thanks to their flexibility in providing the desired

service given variable network conditions. In particular, Dynamic Adaptive Streaming

over HTTP [50] has been increasingly chosen as the standard go to solution thanks to

its easiness of implementation, as it relies on the already existing HTTP infrastructure

of webservers, proxies and caches. While it is easy to reckon the simplicity behind these

protocols, they all rely on the ability of the client to estimate the available bandwidth,

a task arguably very difficult under normal network conditions [46], and even more

complex under wireless and mobile environments due to the high dynamicity caused by

time-varying fading, shadowing interference and hand-off delays [51, 52]. Introducing

an in-network service to provide the adaptiveness of the video stream behind these

protocols, would allow to off load the task of deciding on the adaptive stream to the

components having the best knowledge about the available resources while maintain-

ing most of the original good properties of these solutions; on the other hand, overly

complicated services would discourage adoption.

To deploy an in-network service, the service developer, which for video streaming

may either be the content distributor or the edge-network service provider, has to de-

ploy, configure, and initialize the service instances at required network locations. To

bring up an in-network service we refer the reader to the PacketCloud framework [48].

Once the service is up, the content server may pass further configuration such as listings

of videos and available bitrates. Such metadata is transferred in the form of Media Pre-

sentation Description (MPD) files specified by the MPEG-DASH standard. To accom-

modate MF naming, we replace the content URLs in the MPD files with corresponding

content GUIDs. Such config could be done out-of-band and apriori in preparation of

handling the server-client flows. Though, the server may embed certain metadata, such

43

as current bitrate, as parameters in the extension headers of the response chunk itself.

Figure 3.9: Overview of rate-adaption use-case showing MobilityFirst’s support for
direct addressing of content and in-network compute services

Leveraging and extending in-network functions: As previously introduced, MF

offers native support for a variety of delivery services through the use of service type

and service options. We have extended the basic set of name-based communication

primitives to support the compute-layer service type and options, allowing application

developers programmatic and in-band access to in-network services deployed on the

compute plane. Figure 3.9 shows the flow of meta-data and data in a video streaming

service implemented using the in-network extensions.

The first step involves the server establish network presence for the content (and hence

direct addressability). It does so by attaching the GUIDs for the video segments to the

network through the client interface (presented later in Section 2.4):

mfattach(sock, GUID-set)

where GUIDs in GUID-set GUIDs will be associated with NA(s) corresponding to the

host’s one or more network attachment points, resulting in GNS mappings.Following

this, the streaming proceeds as sequence of content requests and responses between

client and server, starting with a request for video meta-data, i.e., the MPD file:

mfget(sock, GUID, data buf, size, svc flag, opts)

where GUID is a segment’s GUID retrieved from the MPD file, and the svc flag and

opts encode any special delivery requests such as ‘ANYCAST’. When the server re-

ceives a request (via mfrecv), it replies with the segment using MF’s response API

that matches the response with the corresponding get. To enable in-network rate-

adaptation, the server requests the compute-layer delivery service, specifying the GUID

44

of the transcoder service and the current encoded bitrate:

mfget response(sock, getId, data buf, size, svc flag, opts)

where getId (returned during preceding recv) is used to match the get request, and

svc flag (“COMPUTING”) and opts (in key-value pairs) encode details of the compute

layer service to be invoked on the payload. The server adds the GUID of the compute

service and the current encoded bitrate to the options parameter. Note that the re-

sponse chunk may not always be steered to the compute service before reaching the

client, and the decision will be based on the bandwidth available to the client device

at the time of delivery. This is enabled through a routing-layer service implemented on

the edge router.

3.2.4 Implementation

The in-network compute architecture consists of: a new network stack and socket API

for hosts that implements the service interface used by the end hosts of the system,

a software router that implements the hybrid GUID and NA based forwarding and

storage-aware routing protocols, and a computing engine/platform that presents an

open API for configuring and running in-network services.

Host Stack and API: The host stack has been implemented on Linux and Android

platforms as a user-level process built as an event-based data pipeline. The stack is

composed of a minimal end-to-end transport to provide message level reliability, the

name-based network protocol including the GUID service layer, a reliable link data

transport layer, and a policy-driven interface manager to handle multiple concurrent

interfaces. The device-level policies allow user to manage how data is multiplexed across

one or more active interfaces. The previously introduced socket API is available as a

linkable library and implements the name-based service API which include the primi-

tives send, recv, and get and a set of meta-operations available for instance to bind or

attach a GUID to one or more NAs, configure transport parameters in the stack, or

to request custom delivery service types such as multicast, anycast, multihoming, or

in-network compute. Additionally to the general aspects just presented, the host stack,

45

in coordination with the API interfaces, provides the functionalities to interact with the

in-network service; we introduced in the the previous sections different alternatives to

provide tools for interacting with the network compute services; for this particular im-

plementation, we exploited the option provided by the MF network protocol of flexibly

introducing extension headers in the network header. The host stack is then in charge

of accordingly fill in the fields of the extension header providing information regarding

the carried video segments, such as bitrate and encoding information as passed from the

application layer during the content operations invocations. A full description of the

implementation will be later presented in Section 2.4 where the MobilityFirst network

API is presented in detail.

Video Client and Server: We use the presented host stack and API to implement

a modified DASH system that exploits the in-network service. In order to implement

a DASH video client that can rely on the in-network adaptation instead of implement-

ing bitrate adaptation locally, we took advantage of the VLC-DASH plugin presented

in [53] and modified it to display received segments independently of the delivered rep-

resentation. We’ve implemented a basic DASH webserver using MF network API that

handles requests for content (i.e., video segments and meta files) addressed by their

GUIDs. In order for the plugin to work with the MF network and the implemented

server, HTTP requests are forwarded to a proxy co-located on the same machine that

translates URL request to MF content GUID requests. Mappings from video segments

URLs to GUIDs is implemented using a local data-base, but we plan on developing

a name resolution service for future experiments; a single GUID is used to identify

segments independently from their bitrate.

Router: The software router is implemented as a set of routing and forwarding ele-

ments within the Click modular router. The router implements dynamic-binding using

GNRS, hop-by-hop transport, and storage-aware routing. It integrates a large stor-

age – an in-memory hold buffer – to temporarily hold data blocks when destination

endpoints during short-lived disconnections or poor access connections. For dynamic

in-network binding of GUID to NA, the router is closely integrated with the in-network

46

GNRS. It attaches to a local instance of the distributed service, which is often co-

resident on the physical device, but can also be hosted on separate co-located node.

GUID-to-NA mappings once looked-up are cached by the router until TTL or expiry

values established at the time the binding was created. The access routers implement

a rate monitoring service that tracks the available bandwidth for each attached client.

For the WiMAX network, the rate is obtained from the WiMAX base station which

exports the most recent downlink bitrate allocated to each client by the scheduler based

on a client’s location, client offered traffic, and overall load on the BSS. We have im-

plemented a similar rate monitoring capability for WiFi Access Points using standard

802.11 netlink configuration utilities. The monitored information is then used to select

the eventual necessity invoking the transcoding service; this choice is implemented as a

simple threshold logic where segments are forwarded if their required bitrate is not met

by the available bandwidth. In the case segments need to be transcoded, the router

forwards them to the transcoding service adding the available experienced performance

to the chunk’s extension header.

Cloudlet: Our hosting platform for compute services is based on the PacketCloud

framework [48]. A cloudlet at a minimal is composed of a controller module, a pool of

compute nodes, and a service interface that exposes management API for application

providers to manage the lifecyle of their compute services. The controller can dynam-

ically provision whole compute nodes per service or run them in virtual environments

with clean isolation. For our Linux-based implementation, we use Linux Containers

(lxc) as a light weight VM solution. The controller interfaces with the co-located router

to register/de-register service GUIDs to control traffic steering between the router and

the compute service. In our current implementation, traffic is steered over a TCP link

set up between the software router and a basic TCP server running within the VM

that hosts the service. The interaction protocol encodes the packet payload and some

meta information such as input arguments supported by the compute extension headers.

Lower overhead mechanisms to implement the interface are being considered.

Rate-Adaptor Service: The in-network rate-adaptor service combines both caching

and transcoding functions. Video segments that require transcoding to a different

47

bitrate can either be transcoded in real time, or returned from the cache if a version of

the segment in the target bitrate exists. The cache entries can be populated from both

in-transit video segments as well as those that emerge from a transcoding operation.

Limitations on both storage and compute resources present interesting tradeoffs across

optimal reuse and minimizing the latency of transcoding in real-time. The transcoding

functions are based on the ffmpeg multimedia framework. Once received segments

reach the adaptor they get transcoded based on the statistics obtained from the chunk

extension header, selecting between the different potential encoding bitrates.

3.2.5 Prototype Evaluation

In order to evaluate the use case based on the in-network compute architecture, we

deployed it on the GENI [54] nation wide testbed. The following subsections describe

the experiments performed and the results collected.

Deployment on GENI Wide-Area Testbed

The GENI testbed supports deep programmability by allowing experimenters to run

custom network and software stacks on testbed nodes, and through flexible intercon-

nection specification (incl. layer-2 links) [54]. It provides scale and a large geographic

footprint by stitching together several academic and other non-commercial testbeds us-

ing Internet2’s 10/100 Gbit backbone network and a host of other regional networks

that connect up the individual institutions. The resulting nation-wide testbed with a

variety of wired and wireless segments, aims to emulate, albeit in a limited way, the

heterogeneity of the real Internet.

Experiment Setup. We deployed MF prototypes at seven GENI sites as shown in

Figure 6.4. The routers, naming servers, and applications run on Xen VMs (total 14,

2 VMs per site) each with 1 GB memory and one 2.09 GHz processor core. At the

Rutgers site we also provision a raw node to run the transcoding server. Each MFR

is configured with 1 or 2 interfaces depending on their role as core router or as an

access/edge router, respectively. All routers have a core-facing interface connected to a

layer-2 network that connects all seven sites. This was setup using a multi-point VLAN

48

Figure 3.10: Prototype components deployed on the GENI testbed

feature provided by Internet2’s Advanced Layer-2 Service (AL2S). Routers at three

sites (viz. Wisconsin, Rutgers, NYU) are configured with a second interface connecting

to the local wireless network (WiMAX). Mobile wireless or emulated clients connect to

MF network through this interface. Routers are each configured with 500 MB of hold

buffer space, and have access to a GNS service instance co-located on the same node.

The GNS service runs at all seven sites using a replication factor of k=3, and achieves

a 95th percentile lookup latency of under 80ms.

Evaluation of In-Network Rate-Adaptation

We used the above setup to evaluate the in-network rate-adaptation service for a DASH

video streaming application. The MF-enabled DASH server ran at the Wisconsin site,

while the VLC client at Rutgers connected over WiMAX. Though the Wisconsin site

has a WiMAX client network, we connect the content server over Ethernet to the access

router to reflect the high-bandwidth uplinks for server deployments. Table 3.2 shows

the performance of links along the server-client path, showing clearly that the client

link is the potential bottleneck.

DASH Video Dataset: We use the DASH video dataset generated by Lederer et

al. [55] using their DashEncoder. In particular, we use the DASH-ized files they gen-

erated from a 1080p version of the Big Buck Bunny animated movie available from

here [56]. The DASH version of this video is available in six different segment lengths

(viz. 1, 2, 4, 6, 10 or 15 sec) and at 15 to 20 different bitrate encodings (from 50

49

Link Link Type Bandwidth
(forward /
reverse)

Rtt (ms)

Video Server (Wisconsin) — MFR (Wisconsin) 10G Ethernet (VMs
shared)

4.86 / 2.58
Gbps

0.72 ± 0.11

MFR (Wisconsin) — MFR (Illinois) Ethernet/Fiber 411 / 418 Mbps 8.9 ± 0.10

MFR (Illinois) — MFR (Rutgers) Ethernet/Fiber 83.3 / 92.6
Mbps

78.7 ± 3.95

MFR (Rutgers) — Transcode Server (Rutgers) 10G Ethernet (VMs
shared)

937 / 479 Mbps 0.51 ± 0.04

MFR (Rutgers) — Video Client (Rutgers) WiMAX 9.49 / 1.05
Mbps

54.88 ± 2.87

Table 3.2: Performance of links on the path from server at Wisconsin to VLC client at
Rutgers.

Kbps up to 8000 Kbps) for each segment length. In our experiments we use the fixed

480p resolution dataset with 2 second segment lengths. The fixed resolution allows

fixed playback size and the shorter segment lengths allows for entire segment to be

encapsulated in a single chunk for the hop-by-hop transfer.

Figure 3.11: Latency for in-network transcoding vs. segment size

Microbenchmarks: We measured the latency overhead of steering video chunks to

the in-network transcoding service as the time taken to packetize the chunk received

at the router, transmit it to the service, wait time, time to receive the response, and

to chunkify the payload so it can be forwarded-on to the destination. Figure 3.11

shows the response time in relation to the original chunk size. Since actual transcoding

delays vary substantially with the transcoding profile, we benchmark here the “cached”

transcode operation. Upon receiving a chunk and extracting the the encoded bitrate

and the target bitrate parameters from the headers, the server responds with a pre-

transcoded file of the requested bitrate. Therefore the overheads are primarily due to

the messaging operations at the router and cloudlet server, and the cost to read the

50

transcoded file from disk. In these benchmarks, we warm the cache sufficiently to enable

files to be served from system buffers. As seen from the results for two sets of transcode

operations (2800 to 1900 Kbps, 1900 to 900 Kbps), the overheads are in the order of

few milliseconds to a few 10s of milliseconds for the larger segments. The big part of

the delay is the transmission time, making a case for tighter integration of the compute

service. These substantial delays also emphasize smart choice for segment sizes under

variable client-access conditions, such as with a mobile client.

Figure 3.12: Downlink traffic at client’s WiMAX interface

Figure 3.13: Traffic between Rutgers MFR and transcoder

Emulated Mobility Experiment: We had previously described how the client link

is monitored at the access router via the information exported by the WiMAX base-

station. Any variation in available bandwidth due to mobility or load is available

almost instantaneously at the router. However, for the set of experiments we ran, the

client is fixed and hence sees little variation in its access link properties. We therefore

emulated the client mobility by intentionally modifying the bandwidth reported by

the measurement service to drop below the rate required to support smooth video

streaming at the original encoded bitrate. During playback, the VLC client keeps

51

requesting the server for video segments of the animation video as long as it does not

fill its buffer measured in terms of seconds of video. Under favorable conditions, the

access bandwidth available to the client is sufficient for streaming the highest bitrate

content made available to the user, i.e. 1900 kbps. This is the initial stretch (until

about 30 sec) seen in the client-side traffic plot of Figure 3.12. During this part, the

video segments traverse the server-client path without being steered for in-network

transcoding. Then as we emulate client mobility at about t=30 sec, the lower client

bandwidth triggers steering of traffic to the transcoder, tagged with a target bitrate of

900 Kbps. The steered traffic and the response traffic with transcoded segments at the

router-transcoder link is seen in Figure 3.13. We emulate a second mobility event at

about t=85 sec which once again reduces the traffic on client’s downlink. Note that

since the client’s downlink is actually fine, the reduction is not an artifact of drop in

available bandwidth. Interestingly, however, the reduction during the second event is

less dramatic. The variable bitrate content happens to be of lower size during this

stretch. To handle such cases, it would be help to have an estimate of the required

over-the-air bitrate at a finer granularity, perhaps at the segment level, to enable more

careful steering of segments for transcoding. While we did not quantitatively evaluate

video quality at the VLC client besides bitrate (the quality transitions were noticeable

of course), we can report that we didn’t see any buffering pauses.

3.3 Context Services

Context-aware systems offer entirely new opportunities for application developers and

for end users by gathering context data and adapting systems behaviour accordingly

[57]. Especially in combination with mobile devices these mechanisms are of high value

and are used to increase usability tremendously. Context data, usually identified as

external factors from the network environment, can extend across a wide variety of dif-

ferent fields including for example: environmental conditions, time, location, available

energy, network attachments points, channel conditions, and communicating sources

and destinations. Moreover, human related social states can be part of the analyzed

environment, for example, if a user is in meeting, busy, or free.

52

The MobilityFirst future Internet architecture project represents a clean-slate Inter-

net architecture which provides the necessary abstractions for creating and managing

context-aware services. In particular, the architecture enables dynamic identification

of endpoints based on context attributes through the use of named-object identifiers

and global name resolution [39]. The current Internet primarily supports a primitive

to send data to a specific IP address, which limits applications to cast all communi-

cation intent in those terms. This primitive is inflexible when the network location

of the destination (or even the principals constituting the destination) is not known a

priori. For example, several mobile or Internet-of-Things applications can benefit from

context-aware primitives such as send this message to all taxis in the Times Square

area or request power consumption readings from devices in my living room, which are

cumbersome to implement in IP. In contrast, MF enables context-aware communica-

tion primitives based on attributes more general than just the network location and

dynamically associates a context identifier to its constituent principals.

Our strategy [58] is to develop an architecture where we can name environmental

contexts that change where and how messages are routed and delivered. Application

services could expect from such architecture improvements that span areas including

security, communication efficiency, and energy management. In order to do so we iden-

tify three strategic mechanisms that are required to accomplish the set goals: an easy

way to specify context based on human understandable techniques, i.e. use of names;

an architecture supported management mechanism that allows both to conveniently de-

ploy the service and efficiently provides management capabilities; and a native delivery

system that reduces the tax on the network components and on the overhead cost of

deploying such applications.

3.3.1 Context Service in MobilityFirst

While the MobilityFirst architecture provides the necessary abstractions for creating

and managing context-aware services, new mechanisms are required in order to fully

exploit them. Starting from the three strategic mechanisms defined, i.e. an easy way

to specify context, an architecture supported management mechanism and a native

53

multi-point delivery system, three fundamental technology components are exploited

to design the MobilityFirst based context services framework.

Global Name Resolution Service: Recall that in MobilityFirst, the GUID repre-

sents an abstract endpoint that is independent of the network topology. We leverage this

independence to build contextual networking; our approach is to overload the GUIDs

at many levels of the network. A GUID could thus represent many abstractions; for

example, a cell-phone, a person, or a group that is defined by context. In this sense,

contextual communications are similar to *-cast types networking. For example, we

could overload a GUID that names sending a message to a meeting. The system would

have to first translate the GUID into a list of each person in the meeting. Further

translation would be needed to identify the device each person is currently using. The

Global Name Resolution Service is then the first key enabling technology that allows

us to define context by collecting common set of network entities under a single name

defining the context.

In-network computing capabilities: To enable future extensions to the network

protocol without expensive hardware replacements and disruption, MobilityFirst builds

in an optional and dynamically pluggable compute plane, as presented in Section 3.2. In-

network computing capabilities are perfectly suited to deploy distributed and scalable

management mechanisms to collect contextual information and manage membership.

This last step is fundamental to the success of the architecture; for this purpose in-

network deployed services interact with the GNRS to translate collected contextual

information into context names. In order to best support the distributed nature of the

in-network components, service addressing is of fundamental importance. Generally, the

compute layer will be hosted at key locations, whereas network delivery mechanisms

will allow to select the best located replica of the service.

Multicast Delivery: Multicast protocols have been long studied in the literature

and different protocols and architectures have been proposed to support this type of

delivery mechanisms. While these mechanisms are perfectly suited for static, tree based

communications a different approach might be required for contextual applications. In

particular, given the highly dynamic nature that defines context services, due to their

54

multiple evolving factors, more flexible multicast delivery mechanisms are required. As

importantly, in wireless environments, there is a desire to take advantage of inherent

multicast/broadcast medium to enable efficient point to multi-point delivery services.

The MobilityFirst architecture solves this problem by implement a lightweight multicast

delivery system that, through name grouping in the GNRS, limits per group state within

network elements taking per hop decisions on multicast splitting based on Longest-

common (LC) lookahead techniques (see Section 3.1).

3.3.2 Emergency Service Demo

We use the developed MobilityFirst prototype to implement a context services frame-

work designed around the one described in the previous section. The GNRS and the

native delivery mechanisms, together with the newly implemented in-network context

service, enable the MobilityFirst architecture to efficiently deploy context based ser-

vices improving current architectures in a variety of ways. In order to demonstrate the

mechanisms involved in implementing context based services and to showcase some of

its benefits, we developed and deployed a contextual application that implements an

alert system for vehicles assisting first responders. This service is aimed at providing

ways to quickly and reliably transmit emergency messages to group of receivers identi-

fied by the conveniency of their geographical position or by the autoritative importance

in the emergency matter. To better understand this consider an example where a car

accident occurs on the roads of a metropolitan area; in this case, 3 potential candidates

emerge for providing assistance: first, defined by a very small geographical area, other

close passbyers could be informed in order to provide first assistance; second, based on

a larger area, emergency vehicles such ambulances could be alerted; finally, given the

importance of informing the central authorities, a police station could be included due

to its relevance on emergency matters.

The system architecture deployed, as depicted in Figure 6.3.3, includes, together

with the defining technologies of the MobilityFirst architecture, two core components:

the in-network compute management framework and an Android based application.

55

Figure 3.14: MobilityFirst architecture de-
sign and late-binding example.

Figure 3.15: Service abstractions provided
via the client API.

In-network compute management: A Ruby based context service is implemented

to enable in-network computing capabilities that provide the distributed service de-

scribed in the previous section. This service is then deployed in proximity of favorably

located routers by directly connecting to the Routers API that provides access to the

in-network compute capabilities. Context based operations are provided using web

based APIs (i.e. using REST) and provide the core required management functional-

ities to create and manage context groups and report context information (e.g. users

current location). Moreover, to implement the required management operations, the

GNRS API is exploited to interact with the distributed service. A web interface is also

developed for human based interactions to better understand the presented demo.

Contextual application: We exploit the available network host stack and API to

deploy the context application components. In particular, an Android application has

been developed providing two groups of functionalities: first, the core alert operations

that allow for quickly broadcasting the alert message to the current context and to gen-

erate notifications for received emergency messages. Second, management operations

are allowed, providing ways to interact with the service management framework and

create, join and leave given contexts, by exploiting locally collected GPS coordinates.

The implemented prototype has been presented in the form of a demo [58]. The

demo was be centered around three key operations: 1) creation and management of con-

text groups based on geographical location of active users (Figure 3.3.2); 2) dynamic

creation of routing information for multicast based delivery (Figure 3.3.2); 3) evaluation

56

Figure 3.16: Alert system architecture
based on the MobilityFirst context services
framework. Creation and management of
context groups based on geographical loca-
tion

Figure 3.17: Alert system architecture
based on the MobilityFirst context services
framework. Dynamic creation of routing in-
formation for multicast based delivery

of efficiency in providing the service. The demo will use the GENI nationwide testbed

infrastructure [59] to deploy 3 different locations from where wireless nodes (i.e. An-

droid phones) access via WiFi and WiMax the MobilityFirst architecture. Our current

deployment spans 7 GENI sites across the US. 14 Xen VMs (2 VMs per site) each with

1 GB memory and one 2.09 GHz processor core provide us with the possibility to run

one router per location and use the other node for application or services. All routers

have a core-facing interface connected to a layer-2 network that connects all seven sites.

This was setup using a multi-point VLAN feature provided by Internet2’s Advanced

Layer-2 Service (AL2S).

In order to better understand all the dynamics involved in the demo, a visualization

system has been developed using web-based technologies (e.g. javascript, Google Maps,

etc.). This visualization will provide information about different components state.

In particular it will show the following information: location of mobile devices and

their current status (idle, sending alert, alerted by other nodes), GNRS entries that

enable context management and multicast routing, traffic crossing all the nodes in the

system and finally important general events spanning all the networking layers of the

architecture.

57

Chapter 4

Named-Object Based Services for Clients

As we transition to name based networking, new opportunities arise for end-hosts to

evolve their role in the network. We then re-design two of the fundamental technologies

that are used by these systems to participate in network communications:

• A network API that supports name based communications and advanced services.

• A design and implementation of a new transport protocol for an name based

architectures that are able to exploit names to support new end-to-end services.

4.1 A Flexible Transport Layer

The TCP/IP architecture underpinning the current Internet is based on the end-to-

end principle [60] of minimizing functionality in the network while handling service-

specific requirements such as error and flow control at the end-points. In addition,

the current Internet architecture is based on the concept of routing between IP ad-

dresses requiring a static one-to-one association between hosts and network locators.

While the Internet works well for traditional kinds of communication, emerging mo-

bile content and Internet-of-Things (IoT) services have motivated consideration of

clean-slate Information-Centric Network (ICN) architectures [61,62] which operate on

names rather than addresses. Several distinct architectures for ICN have recently been

proposed including MobilityFirst (MF) [39], Named Data Network (NDN) [63], and

XIA [42]. While there are differences in detail, all the proposed ICN protocols share

some common design elements that need to be considered in the design of transport

protocols to be used for end-to-end services. Specific characteristics of ICN include: (a)

use of names to identify sources and sinks of information; (b) storage of information

58

at routers within the network in order to support content caching and disconnection;

(c) multicasting and anycasting as integral network services; and in the MF case (d)

hop-by-hop reliability protocols between routers in the network. These properties have

significant implications for transport protocol design since the current protocols, TCP

and UDP, were designed based on the end-to-end Internet principle, which typically

assumes end-to-end connectivity during a transfer and uses address based routing with

minimal functionality (i.e., no storage or reliability mechanisms) within the network.

Consider first the implications of name-based routing on transport protocol design.

Communication with named objects, whether content files, devices, groups of devices or

more complex context-based groups is different from conventional TCP connections in

the sense that an object may have multiple end-points because the object may be multi-

homed (i.e., multiple network interfaces to the same device) or multicast (to multiple

devices, each with a different network interface) or multi-copy (i.e., multiple instances

of the same information object can be found at different places in the network). This

indicates that transport protocols need to be designed to provide appropriate service

semantics for retrieving or delivering such named objects, for example, in multicast

where the information object reaches all the named destinations or anycast where the

object is fetched from the “nearest location” [64]. A second important property of

ICN protocols is the fact that routers may store information objects such as content

either for caching or for delay tolerant delivery. This implies the existence of in-network

transport proxies which are in between the source and the destination, and the transport

protocol should be designed to take advantage of the in-network copy to provide the

desired service efficiently. For example, reliable delivery with an ICN transport would

be able to utilize a copy of the information object stored at an intermediate router

and avoid the need for end-to-end retransmission used in TCP. The third feature of

ICN architectures is the fact that in-network storage can be associated with reliable

hop-by-hop transmission of information objects between routers, thus alleviating the

need for strong reliability mechanisms at the transport layer depending on the type of

service desired.

Our contributions [65] in designing and implementing transport protocols for an

59

Service scenarios Fragmentation
& re-
sequencing

Reliable
deliv-
ery

Light
transport

Flow/congestion
control

In-network
proxy

Large file retrieval X X X X
Web content retrieval X X X
M2M communications X X X

Multicast X X X X X

Table 4.1: Different service scenarios’ transport requirements

ICN architecture with explicit locators, such as MF, are two fold: (i) we examine a

representative set of delivery service scenarios, and based on them, define the require-

ment space for transport protocol for any Information Centric architecture; (ii) unlike

ICN architectures with no explicit locators, such as NDN, locator-based architectures

enable richer end-to-end semantics, such as reliability delegation, and in-network re-

transmission. We show that such features are conducive to supporting mobility, and

flexibly and robustly supporting different delivery patterns, through a prototype based

validation with large content and web content deliveries through wireless, and content

delivery with client mobility experiments.

4.1.1 Requirements for transport layer service for ICN

We first consider four common service scenarios that arise in information dissemination.

These are large file transfer, web content retrieval, M2M communication and multicast.

Through systematic analysis of these use cases, we identify the set of transport layer

features for an ICN environment to support each of these scenarios (see the summary

of requirements in Table 4.1).

Large file retrieval: A large file retrieval is abstracted as a get(content name) socket

call [32] in an ICN context. Clients inject a content request, independent of the content

location, with such an operation, and the network will route the request to the location

of the nearest copy of the content. After that, a flow with a large volume which carries

the content is transferred reliably from the server to the requesting client. This is often

referred as anycast.

Key TP functions required: Because of the large amount of data to be delivered, file

transfer requires: (i) fragmentation and sequencing at the source, and reassembly at

60

the sink; (ii) efficient usage of network resources with source rate control so as not

to introduce congestion, both at the network layer along the path and at the destina-

tion. Reliable delivery, flow control, and congestion control becomes more complicated

when the destination is connected to the Internet wirelessly, and especially when it is

mobile. For instance, a wireless connection is susceptible to fading, may introduce ran-

dom losses, and can typically provide a lower transmission rate than the nominal rate.

Further, the imbalance of rates at different segments of an end-to-end path makes it

difficult to perform end-to-end control at high speeds, with small amounts of buffering,

and to deal with transient disruptions. This problem can be alleviated by providing

additional in-network transport services, such as temporary storage for in-transit data

(we call the en-route node with transport services a transport proxy).

Web content retrieval: In a web-browsing application, a sequence of content requests

are sent by the client to the server. Each of the requests is for retrieving a constituent

named object of a webpage. Two characteristics are inherent in web content retrieval: i)

these requested objects are generally small in size, i.e. of tens or hundreds of kB; ii) user

experience dictates that the objects must be received in a timely manner, preferably

no more than several hundred milliseconds, thus making the transfer latency-sensitive.

Key TP functions required: End-to-end error and congestion recovery need to be pro-

vided, but in a lightweight manner, because any significant setup overhead is not amor-

tized easily. Flow control is not required because of the limited amount of data trans-

mitted, in order to avoid unnecessary overhead contributing to increased latency.

M2M communications: In Machine-to-machine (M2M) communications, sensor data

by nature is idempotent. That is, if the PDU is lost (due to bit errors or congestion)

or it is delayed beyond the limits of latency for the data, the transport layer need

not attempt to reliably deliver that PDU. This transfer paradigm is captured in a

send(dst name, content name) API with no explicit reliability preference.

Key TP functions required: In such cases, the transport layer could simply resort to

61

stateless communication (e.g., lightweight transport with no error recovery and no flow/-

congestion control) to minimize overheads. Moreover, due to power constraints in de-

vices, a sensor node may not be on all the time. End-to-end control is not always

possible in this case and delegation of transport service guarantees, such as reliability,

need to be made to other en-route nodes. Thus in-network proxy support is desired.

Multicast: There are a number of popular applications that are based on multicast,

such as group-based subscriptions (RSS), teleconferencing, online gaming, etc. In a

name-based architecture, multicast can be realized with the same send (dst name, con-

tent name) API with the dst name referring to a group of individual endpoints names.

Key TP functions required: Guaranteeing 100% reliability in a multicast session is a

well-known difficult problem. To achieve reliable transport, the source relies on negative

acknowledgement (NACK) from clients to initiate retransmissions. With the number

of subscribers increasing, retransmission has to be implemented in an efficient manner

such that the ACK-implosion (see [66]) is avoided. This may require aggregation of

retransmission requests in the network, and retransmission from within the network.

Thus in-network proxies are desired to handle such aggregation and storage of pieces

of contents for retransmission. On the other hand, when the multicast traffic has tight

latency bounds, a lightweight transport protocol without end-to-end retransmission-

based methods to recover from errors may be preferable, e.g. in a teleconferencing

scenario, which may depend on application-level recovery and error-correction coding.

4.1.2 MFTP design

In this section, we introduce the design of the MFTP protocol. In particular, we

explain how each key requirement, such as in-sequence delivery, end-to-end error and

congestion control, in-network transport proxy and multicast delivery, is supported by

the proposed transport layer components.

MFTP is based on the four characteristics of different ICN proposals mentioned in

the introduction. At a more specific level, MFTP described in this paper has been

62

designed to operate on top of the MobilityFirst networking stack [23,31]. As described

in [39], MobilityFirst is based on a clean separation of names and network addresses

with a logically centralized but physically distributed global name resolution service

(GNRS). The globally unique identifier (GUID) in MF is a flat public key identifier,

i.e. a name, which can be used to represent any network attached object, including

devices, people, groups, content, or context.

LINK LINK

MAC/PHY MAC/PHY MAC/PHY MAC/PHY

NET NET NET NET

TRANSP TRANSP TRANSP

APP APP

Application Logic

Hop-by-hop error &
congestion ctrl

E2E error recovery & flow ctrl

Router with
Transport Proxy

End Host End HostNormal Router

LINK LINK

Storage notification

Flow ctrl
& reTx

Dynamic resolution
GUID-NA

Flow ctrl

Figure 4.1: Protocol stack and transport layer functionalities

Fig. 4.1 shows the major layers in the MF protocol stack and the role of the MFTP

transport layer above the named-object GUID based network layer which is supported

by the GNRS [23, 24]. For additional details on MF, the reader is referred to the

appendix of this paper, and [23,31,32,39].

Segmentation, sequencing, and in-order delivery

A common characteristic across different ICN architectures is named network primi-

tives, e.g. using names to identify a source, sink, content, or even a service. Typically

in ICN, a request for a data is abstracted by an API, get(name, request, buffer, [opts])).

63

Depending on specific architecture, for instance, in NDN, each such request, namely in-

terest, is marked with a relative sequence number, and solicits one segment of a content.

In MF, requestor only sends one request for a piece of content; the server that handles

the request segments the content and assign relative sequence numbers to the segments.

In any case, sequence numbers are bound to the named content, rather than the two

endpoints. This has significant implication for the hop-by-hop transfer and storage

capability in ICN, as we shall see later when other design points are discussed. With

data-centricity, such sequencing scheme works naturally for anycast and multicast. For

example, in an anycast scenario, the forwarding plane decides where the content re-

quest should be handled. The transport layer is oblivious of the server location; rather,

transport’s functionality of providing ordering, and reliability can be fulfilled based on

the knowledge of the data it concerns, using content names and sequence numbers.

Figure 4.2: Illustration of transport layer fragmentation and sequencing. Transport
layer fragments a content to be delivered into large blocks of data, i.e. chunks. Sequen-
tial delivery guaranteed for each content, but no strict ordering maintained for chunks
belonging to different contents.

Consider Figure 4.2 as an illustrative example of this change; in this picture we show

how the transport layer would support the reception of files from different data sources.

As shown in the figure, in-order delivery is strictly enforced among the chunks of a

single transported file. This suggests transport will buffer out-of-order chunk arrivals

while waiting for the missing chunks. On the other hand, only a loose relationship is

maintained across multiple files, because each file has a unique name and there is no

need for strict ordering of delivering the received content based on the order of the

requests. Applications can optionally specify the additional requirement of enforcing

64

ordered delivery across the different files. In general, the only relationship maintained

across different files is based on the available resources: memory management has to

be coordinated to guarantee that buffers are not filled exclusively with partial data

blocking the completion of any single object.

On the sender side, segmentation of the files is performed following the character-

istics of one of the building blocks for the MF network design: the reliable hop-by-hop

transfer of large blocks of data called “chunks”. Given this guideline, the transport

layer fragments the application data received across the API into large chunks of data,

whose size can be negotiated by the two end-points based on a tradeoff between the

overheads and the fair use of network resources across flows. We allow the chunk size to

go up to the order of megabytes to take advantage of high-bandwidth communication

channels. The link layer fragments a chunk to meet the link MTU requirement, but

still logically maintains the semantics of a “chunk” at each hop. The same concepts of

segmentation and sequential delivery can be applied to multiple semantically different

objects such as application layer messages, contents or service requests.

Coordinated End-to-end error recovery and hop-by-hop reliable delivery

Most transport protocols including TCP, operate on an end-to-end basis. Congestion

control and reliable delivery are between the two endpoints. Detection of loss (whether

due to errors or congestion) or congestion at a link is communicated to the sender after

a feedback delay, possibly quite a few end-to-end RTT’s. After the detection, recovery

mechanisms, such as congestion recovery or retransmission, can incur an unduly large

penalty to the flow. Also, due to queuing at routers, and heterogeneous transmission

technologies employed along the route to destination, spurious, or premature, retrans-

missions are not uncommon [67]. A more efficient way to recover from congestion or

error happening at a particular link is through link level mechanisms. This yields two

benefits: i) congestion and errors can be detected and reacted upon more quickly; ii)

reduces the possibility of spurious retransmissions. Hop-by-hop transfer is suitable for

ICN due in part to the fact that the segment of data being transferred is named; more-

over, the transfer is not connection-oriented; routers have storage capabilities. In NDN,

65

each Data is indeed transferred in a hop-by-hop manner: upon receiving a Data from

the upstream, the router examines whether an interest for the data has been seen be-

fore, and whether it needs to cache the data. MF transport does this by relying on

per-hop error recovery and congestion control whenever the problem can be resolved

locally, and only invokes end-to-end mechanisms when it is absolutely necessary, e.g.,

a router fails and loses all the buffered data. On each hop, after every chunk that is

transmitted, a corresponding control message called CSYN is used to explicitly request

acknowledgement from downstream, which then replies with a bitmap of reception sta-

tus for every packet in that chunk. The transmission for this chunk finishes if there is

no loss, otherwise the lost packets of that chunk are retransmitted locally following the

same procedure until all packets are received.

Figure 4.3: End-to-end signaling to recover from in-network failure

Taking advantage of the hop-by-hop reliability of the network, we seek to have a

parsimonious end-to-end mechanism that has minimal overhead (important in mobile

wireless environments) while primarily seeking to recover from node and link failures.

The end-end error recovery mechanism is built to be flexible to accommodate applica-

tion and sender needs (including don’t care, NACK, ACK). With a Negative-ACK, i.e.

NACK, the transport reduces end-to-end message overhead, and the receiver provides

notification only when a chunk is not delivered over a conservatively long period of

time (as a result of a failure that causes the reliable hop-by-hop mechanism to lose an

acknowledged chunk as shown in Figure 4.3). It is only for short-sessions (e.g., single

PDU delivery) and for latency-sensitive interactions that the sender would enable the

66

use of an end-to-end ACK option. With idempotent data transmissions (e.g, sensor

data which the transport layer sends and forgets), the sender may choose to use the

don’t care option.

This NACK-based design also addresses possible ACK-implosion problems [66] that

may arise in multipoint deliveries: if an ACK is used, then for each data multicast chunk,

there will be as many acknowledgements as the number of receivers in the multicast

group. This will be discussed in a later subsection.

In-network transport proxy

One of the challenges for conventional transport protocols is dealing with the delivery of

large content to mobile devices, where mobility results in intermittent connectivity and

the end-to-end connection experiences frequent disruptions. If the transport protocol

has to re-establish the connection, then the transfer has to re-start and any data already

in transit in the network will have to be discarded. In ICN, as each data transfer centers

around the named data being requested, instead of the connection that delivers the data,

client mobility is inherently supported. For instance, in NDN, each data is solicited by

an Interest; in the case of client moves before obtaining the requested data, it can

re-issue an Interest for the same data, which will be delivered to the new location.

To this end, we postulate having routers (or at least a subset of them) which provide

in-network transport service such that the original source can delegate part of the end-

to-end data transfer responsibility. The router, which we call an in-network transport

proxy, would have substantial amounts of memory, e.g., several GB, to temporarily hold

in-transit chunks when the destination is unreachable. This disruption may be due to:

lack of connectivity to a mobile destination node, until connectivity is subsequently re-

established; alternatively, in M2M communication, when a sensor node is only powered

on intermittently, it may choose to deliver information chunks to the next hop and then

power down.

The mechanisms implemented by such a node are shown in Figure 4.4: when faced

with the impossibility of forwarding chunks with the information available at the net-

work layer (i.e. the router detects that connectivity towards the destination of a chunk

67

Figure 4.4: Procedures involved to use in-network transport proxy to handle destina-
tion disconnection and retransmission: the proxy temporarily stores chunks when the
destination disconnects, and transmits to the client when connectivity is restored as
indicated by the name resolution service.

is disrupted), the router pushes up to the transport proxy layer the relative data chunks.

Two reasons might generate this impossibility of forwarding chunks: (i) the destina-

tion does not have an active network address (NA) binding corresponding to its GUID

entry in the GNRS; (ii) the chunk reaches the destination network given by its most

recent binding, but either the destination has changed its point of attachment or it

has disconnected from the network before the previous NA entry expires in the GNRS

server. As a consequence, the link layer is not able to deliver the chunk despite several

attempts, and corresponding CSYN timeouts. In these cases, the chunk is pushed up

to the proxy layer to be temporarily stored. While this is similar to Delay-Tolerant

Network protocols, the innovation here is the integration of these mechanisms with the

support of dynamic mobility and ICN style named object services.

We limit the amount of content that can be stored for a flow. Each (source GUID,

destination GUID) pair is limited to have buffered content up to size S. When a chunk

for a new flow arrives, the chunk will be stored directly if sufficient space (> S) is

available for the new flow; otherwise, a chunk for the oldest flow is replaced from the

storage by the new chunk. When the chunk is stored, a timer is created to sched-

ule future transmission. Further, a transport layer message, either Store or Drop, is

68

transmitted back to the original source to notify it of the intermediate proxy storing

or dropping the chunk. A stored chunk will be scheduled to retry a GNRS lookup to

bind an updated NA to the destination GUID when its storage timer expires. The

chunk will be pushed out if an NA is found, i.e. destination becomes connected again,

otherwise will be kept in storage. On the other hand, rescheduling of the chunks can

also be initiated by the original source of a chunk. As is shown in Fig. 4.4, when the

source receives a NACK message identifying a chunk as missing, if it is aware that the

corresponding chunk originally destined to the requesting destination is stored in the

network, based on a previously received Store message, it utilizes this in-network copy

and initiates the retransmission from inside the network. This is done by the source

sending a Push message to the in-network proxy to trigger retransmission.

Flow control and congestion control

With the transport using hop-by-hop reliable delivery, we use a combination of hop-by-

hop back-pressure for congestion control and end-to-end window-based flow control for

the congestion and flow management components of the MFTP.

Wostd1
Wostd2

WostdN

FIFO queue of all
recvd chunks

…

Interface 1

Interface N

Back-pressure buffer

sent &
ack-ed

sent & not
yet ack-ed

recvd from upstream

Interface 2

Figure 4.5: Back-pressure buffer and per-hop sending window.

Hop-by-hop congestion control: The hop-by-hop back-pressure scheme is built on top

of a back-pressure buffer (of capacity B packets), that is at every MobilityFirst router.

As illustrated in Fig. 4.5, the back-pressure buffer essentially has all the chunks that are

received from the network and are queued to be transmitted. In addition, between two

69

adjacent routers on a link, the sender maintains a sending window Wostd, i.e., number

of outstanding packets, that is bounded by the receiver’s advertised window, Wad. As

mentioned before, following the transmission of a chunk of data, a CSYN message

is sent, which the downstream node then acknowledges with a CACK message. The

receiver advertised window is piggybacked in the CACK. The number of outstanding

packets, Wostd, is reduced based on the downstream node’s acknowledgement. Also,

whenever the router schedules to transmit on a particular outgoing interface, it attempts

to transmit as many packets as Wad allows.

When the occupancy of back-pressure buffer reaches its capacity, the router drops all

incoming data packets and does not acknowledge reception. Furthermore, it throttles

the advertised window to all of its upstream nodes. This “congestion signal” eventually

propagates back to the original traffic sources in a hop-by-hop manner, thus eventually

limiting the traffic injected into the network. When the congestion is released down-

stream, data already queued at the upstream router will immediately get transmitted.

End-to-end flow control: Hop-by-hop back-pressure deals with congestion at each

router, but is not sufficient to prevent the receiver’s buffer from being overrun by

the sender’s data from an end-to-end perspective. Especially when the size of the

transferred content is large, and the hop-by-hop transfer delivers data to the receiving

node’s transport at a high rate, end-to-end flow control is indispensable. Because MFTP

does not require the receiving side to send frequent reception status update in the reverse

path (it depends only on NACKs), the feedback from the receiver is both parsimonious

and not timely for the sender to detect receiver buffer overflow. We therefore consider

an explicit notification from the receiver. The sender starts at a initial end-to-end

sending window We that is either provided by the receiver in the request, if the receiver

proactively requests the data, or a predefined value that sender considers appropriate

in a pub-sub scenario. For each window’s worth of data chunks, the receiver then sends

one window flow control message, to advise the sender to maintain, increase, or reduce

the sending window to certain value based on the receiver’s buffer occupancy. This

message will be delivered reliably to the sender. Thus, the sender will not send more

70

until a window feedback message is received. Note that the sending window is also the

atomic unit for the end-to-end NACK message, thus the NACK and flow control are

fulfilled by a single message (if a NACK has to be sent, i.e., some chunks are lost).

This can be implemented by sender explicitly marking a chunk as the ‘end-of-sending-

window’, to request a NACK and flow control feedback. In the event that this special

chunk is lost due to a node failure, a NACK timeout at the receiver would trigger the

receiver to proactively notify the sender of the reception status (NACK) and receiver

buffer status (flow control).

Small content transfers are not subject to such end-to-end flow control, mainly

because the content usually is composed of a single chunk and the transfer will be com-

plete even before the flow control notification can be generated. However, small content

transfers are still regulated by per-hop congestion control.

Alleviating head-of-line blocking due to hop-by-hop transfer: A drawback inherent

with hop-by-hop back pressure is the unfairness caused by head-of-line (HOL) blocking

with FIFO queueing [68]. Consider a chunk at the head of the queue blocked from

being transmitted by a back-pressure signal from the downstream node. This can

prevent chunks behind it in the queue that is destined to a different destination that

is not experiencing congestion. An alternative to having HOL blocking is to drop

the chunk being back-pressured, but this has undesirable consequences of requiring

retransmissions when a temporary buffering could overcome the short-term congestion.

Theoretically, per-flow queuing solves this problem, but scheduling with per-flow queues

is difficult to scale and is impractical with large numbers of flows. However, the in-

network transport proxy provides some relief to this situation and alleviates the short-

term unfairness. If a back-pressure signal is received for the chunk at the head of the

sending queue, the transfers of chunks destined to other nodes will thus not be blocked

because chunk at the head of the queue will be removed and pushed up to the transport

proxy layer for temporary storage. The transport proxy will then attempt to transmit

that chunk when the storage timer expires (or is dropped if the chunk is replaced in

the storage buffer because of the replacement policy we described above).

71

Multicast

Multicast is a delivery service naturally supported by name based architectures. In

MobilityFirst, a dynamically formed multicast group is identified by a Globally Unique

Identifier (GUID), which can be mapped into a set of individual clients’ GUIDs or

Network Addresses.

Figure 4.6: Multicast data delivery, small scale (left), large scale (right).

We first analyze a small scale scenario as depicted on the left side of Figure 4.6;

in this case only a handful of nodes are receiving the multicast data. During the

transmission the source of the multicast data marks outgoing chunks with a multicast

service identifier and selects as destination GUID the one identifying the multicast

group. This approach is the basis of the retransmission mechanism that allows us

to achieve reliable multicast communications: multicast clients send NACK messages

over a unicast channel and the multicast source can identify which multicast group a

specific client belongs to. Further, the source aggregates retransmission requests for

the transmitted chunks; it can, either employ multicast again for retransmission when

the number of requestors exceeds a threshold; otherwise retransmitted data chunks can

be sent using unicast destination GUIDs that identify the specific nodes that need the

retransmitted data.

A similar concept can be used to scale this approach to a larger group of multicast

destinations. While for the smaller scenario we used one level of multicast group GUID

to a set of GUIDs mapping for retransmissions, as the number of participants increases

72

we can exploit in-network transport proxies to build multiple levels of such mappings,

in a recursive manner. This scenario is represented on the right side of Figure 4.6. Each

participating transport proxy provides aggregation of retransmission requests that can

be locally fulfilled using stored data. If the corresponding chunk is not available at

the local storage, the request is propagated backward towards the source. In order to

limit potential explosion of unfulfilled requests reaching the original source, transport

proxies can be instructed through proper chunk marking, to discard retransmission

requests that exceed a number of traversed proxies without encountering the missing

chunks.

In a scenario where reliability is not demanded, the source just use the don’t care

option of the reliability preference as described in section 4.1.2 and the forwarding

of multicast data can be carried out using similar recursive approach as the reliable

delivery case.

4.1.3 Implementation

Our implementation of MFTP consists of two parts: end-system transport operations

that are implemented on the MobilityFirst client stack [32], and an in-network transport

proxy implemented as a pluggable module inside a MobilityFirst Click router imple-

mentation.

Host Stack and API: The client host stack has been implemented on Linux as a

user-level process built as an event-based data pipeline. Apart from the MF transport

protocol, the stack contains a name-based network layer and a reliable link layer with

large chunk transfer. Applications interface with the host stack through socket APIs

that are available as a linkable library and include the primitives send, recv, and get,

and a set of meta-operations. Examples of meta-operations include those to bind or

attach a GUID to one or more NAs. By specifying the options field in the API call,

an application is able to configure transport parameters such as the i) desired chunk

size; ii) end-to-end reliability preference; iii) NACK timeout; iv) willingness to use in-

network proxy.

73

Router: The MobilityFirst software router is implemented as a set of routing and

forwarding elements using Click [69]. The router implements MFTP transport proxy

layer, MF network layer including intra-domain routing and dynamic binding using

GNRS, and hop-by-hop reliable transfer. The transport layer (proxy) interacts with

the intra-domain route look up component: if a lookup does not yield a valid next hop,

the chunk is pushed up to the transport proxy. The transport proxy at the router will

hold the data chunk for some time and attempt to rebind the name with one or more

network addresses. When rebinding is successful, the chunk is pushed back down to

the routing layer for forwarding.

Timers: There are two types of timers used in our implementation: one for triggering

the transmission of an end-to-end NACK message, one for storage. For guaranteeing

end-to-end reliability, timers are indispensable because a node has to learn about a

remote node’s failure impacting the end-end path. Previous experience with TCP end-

to-end timers have taught us that timers need to be set loosely so as to reduce number

of false alarms [70, 71], and not have a strict dependence of the transport protocol on

timers for normal operations. In MFTP’s design, it is possible because a NACK timer

is associated with a chunk of data, rather than a single packet. The storage timer is

only used to locally retry lookups, with minimal overhead.

4.1.4 Case studies and evaluations

In this section, we present how MFTP can be used in several different service scenar-

ios, and quantitatively compare it with the performance of conventional HTTP and IP

based protocols.

General experimental testbed setup: We use the ORBIT [72] wireless testbed for

our experimental evaluation. Each machine in our experiment is equipped with Intel i7

2.93GHz processor and with 8GB RAM. In terms of networking capability, each node

has one Gigabit-Ethernet interface and one WiFi interface with Atheros ath5k wireless

74

Figure 4.7: Experimental Setup

driver. Physically all the nodes are connected to a single layer-2 switch; we use VLAN

tags to create desired topology to isolate Ethernet traffic. For wireless traffic, we use

802.11g with the data rate fixed at 54Mbps. Access routers are running hostapd [73]

to operate as WiFi access points. We disable 802.11 authentication and use manual IP

assignment (no DHCP), just to retain nearly the same amount of overhead with both

MFTP and TCP for WiFi connection establishment. We considered a topology shown

in Fig. 4.7, where a client, N4 connects to a server N1 through an access router N3,

which provides WiFi connectivity, and a regular router N2.

Methodology: We evaluate three types of data delivery scenarios to compare MFTP

with the current TCP/IP based architecture, in terms of the mechanisms employed, and

their performance. We emulate the end-to-end RTT’s of local, coast-to-coast and inter-

continental communications, use the emulation tool netem [74] to add 10ms, 50ms,

100ms RTT between the two routers, respectively. To emulate loss in a controlled

manner, we again use netem to introduce 1% loss. With MF, we run the MF Click

router prototype (mentioned in section 4.1.3), and a local GNRS server on both N2

and N3. The MF client stack runs on N1 and N4. For specific use cases, we run

corresponding applications that interface with the client stack through the MF API. In

the case of TCP-based experiments, we run Click IP routers on node N2 and N3. TCP

segmentation offloading is turned off as the basic Click IP router drops TCP packets

with size larger than 1500 bytes. We enabled manual Ethernet header encapsulation

on the Click IP router so no ARP message is triggered during routing. On the two

75

end nodes, the default version of TCP, TCP Cubic, is used. We configured both nodes’

TCP receiver buffer to be 2MB, so that it is not a bottleneck in a high delay-bandwidth

path in any of the experiments.

Large content delivery over wireless

We first look into a large volume data transfer experiment. A 400MB file is requested

and transferred. A simple file retrieval application in MF is running on the two end

nodes. In the case of TCP, we used iperf to generate a flow of equal size with the

maximum packet payload size of 1400 bytes. We repeated this experiment for a num-

ber of network conditions: RTT being 10ms, 50ms, or 100ms, and loss on WiFi link

being 0 or 1%, to explore their effect on both architectures’ goodput (i.e., application

throughput).

Figure 4.8: Throughput comparison.
MFTP is robust in the presence of loss. Av-
erage throughput comparison for 6 different
(RTT, loss rate) profiles.

Figure 4.9: Throughput comparison.
MFTP is robust in the presence of loss.
Instantaneous throughput (per 500ms) for
50ms RTT and 1% loss.

Fig. 4.1.4 shows the average throughput comparisons for the six different network

settings. Both MFTP and TCP’ throughputs are consistently high when there is no

loss, despite varying the end-to-end latency. MFTP is slightly higher in throughput

in the lossless cases. MFTP is significantly more robust in the presence of loss, e.g.,

the throughput degrades by only 10% when there is 1% residual loss, with all 3 RTT

profiles. On the other hand, TCP throughput drops significantly when there is loss.

76

For instance, with 50ms RTT, TCP throughput with loss drops to only a quarter of its

throughput in the lossless case. Fig. 4.1.4 shows a plot of instantaneous throughput

(averaged per 500ms) for 50ms latency and 1% loss. MF’s PDU is a chunk of data, and

in every 500ms, it receives at least one chunk (1MB), even in the presence of loss. With

TCP, throughput fluctuate around 5Mbps. This is because the end-to-end congestion

window is throttled whenever loss is detected. This misinterpretation of loss unrelated

to congestion unnecessarily penalizes the flow. With MFTP, loss is not considered a

signal for congestion, thus the sending rate is not throttled; moreover, loss happening

at the last hop is recovered locally. Note in this experiment, the client suppresses the

NACK messages because all the data has been successfully received.

Web content retrieval

Web applications are ubiquitous and used in many different contexts. Originally devel-

oped to reliably transfer Web pages, HTTP is now used for many different applications

such as video streaming and content delivery. While originally intended as transport

protocol agnostic, with the only specified requirement of reliability, the predominance

of TCP has caused the HTTP protocol to evolve to version 1.1 with features that were

designed specifically for TCP’s characteristics, e.g., persistent connections. This tight

coupling between the two protocols has caused different performance issues, especially

with the recent increase of web access from mobile devices. These performance issues

include: delays derived from connection establishment (still occurs despite persistent

HTTP, with objects being located at various locations), and head of line blocking (hap-

pens when multiple objects are fulfilled by a single TCP connection).

We use the same topology as described before to compare the two alternatives. In

addition to the routers, we run an Apache server (version 2.2.22) on node N1, and a

web browser emulator on node N4 which requests webpages. We reuse the browser

emulator, epload, presented in [75]. We also download the dataset introduced in [75]

which consists of the real webpage objects of the 200 most accessed websites recorded

by Alexa [76] in 2013. Among these we randomly select 40 pages and place them on N1

to be hosted by the Apache server. In each run of the experiment, the browser emulator

77

Figure 4.10: Page Load Times (min, aver-
age, and max of 5 runs) for 40 different web-
pages. 50ms RTT, no loss

Figure 4.11: Page Load Times (min, aver-
age, and max of 5 runs) for 40 different web-
pages. 50ms RTT, 1% residual loss

opens up 6 concurrent TCP connections (default settings in most browsers [75]) and

sequentially request the 40 webpages. For experiments with MFTP, in order to keep the

modifications at the application end-hosts to a minimum, we developed an MF-HTTP-

MF proxy whose main job is translating HTTP request and responses into MobilityFirst

content requests and messages and vice-versa. We colocate 2 instances of these proxies

with the HTTP components of the system, i.e., on the web client and on the server.

For both MFTP and TCP, we performed 5 runs of the experiments with end-to-end

RTT of 50ms, and 0 loss or 1% loss.

Figures 4.1.4 and 4.11 are the plots for average page load times (PLT), i.e. the

time between emitting the first HTTP request to reception of the last byte of last

object, for the experiments with 50ms RTT. Page load time with MFTP is consistently

lower than TCP. In the case of no loss, when there is a smaller amount of data to be

transferred, e.g. page 21, 22, and 23, with TCP the PLT is about 30% higher than

with MFTP. The difference in PLT can be attributed to several features of MFTP: (1)

MFTP is connectionless, and thus there is no overhead due to setting up a connection;

(2) TCP identifies different requested objects by differences in sequence numbers of

that connection, while MFTP differentiates each requested object by a unique name,

therefore HOL blocking does not occur with MFTP; (3) each TCP connection “slow-

starts”, whereas with MFTP, short transfers, such as retrieving web objects, are not

subject to flow control and are regulated only by per-hop back-pressure based congestion

control, which allows sender to transmit at full rate as long as no congestion signal.

As can be seen in Fig. 4.11, loss introduces a great amount of variability with TCP.

78

For instance, for page 21, the minimum PLT is around 1500ms with TCP, but the

maximum is 6000ms, which is several orders of magnitude higher than with MFTP. For

all the pages, MFTP maintains minimal variability in terms of page load time.

Late-binding and storage for disconnection

We evaluate the benefits of using in-network transport proxies for handling client discon-

nections in content retrieval. We consider the same topology as above. The end-to-end

RTT is set to be 50ms, and no loss is added so that difference in performance would

not be incurred by having different mechanisms for error recovery. We use netem to

introduce 100% loss intermittently, so as to emulate client disconnections. In the ex-

periment, WiFi connectivity is on for 10 seconds; then is turned off for d seconds; then

the connection is restored. During the first 10 seconds of connection, the client requests

a 10MB file at a random time. The experiment is repeated 30 times for both MF and

TCP. We compare the distribution of file retrieval response times between MFTP and

TCP.

Figure 4.12: CDF of response times. With
10s disconnection

Figure 4.13: CDF of response times. With
30s disconnection

In Fig. 4.1.4, all the transfers having a response time of less than 10 seconds are

completed before the disconnection. For the transfers that experience the disconnection,

MFTP has at least 3 seconds lower response time (at 60th percentile). With 30 seconds

disconnection, as shown in Fig. 4.13, the difference in response time is about 15 seconds

at 70th percentile. It is worthwhile to understand the difference in the approaches taken

by TCP and MFTP to dealing with disconnection. With TCP, the sender retransmits,

based on a timer whose timeout value increases exponentially when the disconnection

persists. In MFTP, the chunk in-transit is stored at the in-network proxy. A network

79

address and next-hop lookup, rather than retransmission, is triggered when the storage

timer for that chunk expires. Thus the transport proxy takes advantages of the global

name resolution service in MF to learn whether there is a network address binding

update for a client, and retransmits only when client is connected. This results in fewer

retransmission attempts and more accuracy in the knowledge of end-to-end connectivity.

Fig. 4.1.4 and Fig. 4.13 together suggest that MFTP’s reduction in response time is

nearly proportional to the length of the disconnection.

80

Chapter 5

Supporting Advanced Services Through Named-Object

Based Network Virtualization

Network Virtualization has become over the years a fundamental technique can be

exploited to implement advanced services and QoS oriented setups. Its value relies

on four fundamental points: a) it allows for multiple logical networks to be deployed

on top of a single physical network; b) it allows for use of commoditized hardware

to overcome lack of resources, e.g. limited number of ports; c) drives experimental

research via isolation of resources and providing different levels of abstraction on top

of the common physical network; d) allows for Network Function Virtualization.

While these properties are very valuable and have driven the evolution of Virtual

Networking technologies, we still have to live with a set of tradeoffs in designing these

solutions. In particular, to support multi-domain network virtualization, the use of

tunnels has been over-relied upon, providing different levels of abstraction, but intro-

ducing high levels of overhead. SDN solutions overcome this problem, but due to the

fundamental technology they rely upon, they do not scale, especially when looking

at inter-domain scenarios. For this reason they are usually mostly deploy within the

constrains of a cloud network.

We propose a solution based on named objects and a dynamic name-resolution ser-

vice for mapping names to routable network entities. Our system, exploits recursion

in a name resolution service to implement a simple and clean design for Virtual Net-

works. Moreover, our system supports advanced routing algorithms that are able to

exploit application state data to enhance advanced network applications. Finally, this

solution can be integrated into larger systems that can support high performant future

networking scenarios such as Cyber Physical Systems.

81

5.1 NOVN: A Named-Object Based Virtual Network Design

Virtual Networks (VNs) have been traditionally used over the years as a mean of con-

necting resources across the internet, creating the illusion of communicating on top

of a dedicated network hiding the underlying physical infrastructure. Depending on

the purpose, different techniques have been applied at different layers of the networking

stack. Few examples come to mind: Virtual Private Networks (VPNs) have been exten-

sively used to allow users to securely access a corporate intranet while located outside

their offices or to securely connect geographically separated offices of an organization,

creating one cohesive network. Layer 2 virtualization, enabled by 802.1Q VLAN tags,

has been used to provide tools to simplify traffic engineering and differentiation in single

domain networks. Even wireless network resources have been subject to virtualization,

where collection of wireless access points behave as if they were only one - i.e. having

the same MAC address and the same channel - so that wireless clients never need to

do handovers.

Pushed by the ongoing advances in science and engineering that have largely im-

proved computational capabilities allowing for a progressive softwarization of network

technologies and equipment, Network Virtualization has been again adopted as one of

the main enabling technologies across different scopes. Cloud networks have been one

of its main adopters, whereas Virtual Networks techniques are used to abstract the

distribution of resources - e.g. applications, data bases and more - across data centers,

allowing for more flexible management techniques. For example, this approach was

extensively exploited by NVP [77] to implement a network management system, within

an enterprise data center. Attempts to extend similar concepts outside the limits of

single data centers are ongoing, but have mostly focused on point to point connectivity

between cloud locations [78].

With a consistently similar logical approach, Internet Service providers are using

VNs to instrument their access networks with Network Function Virtualization (NFV).

NFV provides ways for network operators to perform network functionalities using

82

cheaper technologies, e.g. commodity hardware, or that would be otherwise too expen-

sive to perform in hardware, e.g. processing of higher layers headers [79]. Within this

context, Virtual Networks are used to connect, or chain in the NFV gergo, these re-

sources on top of the physical network infrastructure allowing switching/routing fabric

to quickly forward packets to the Network Functions invoked. The underlying virtu-

alization techniques are similar to the ones previously presented, scaled to the access

network environment.

Moving away from single domain scenarios, Virtual Networks have been adopted

as the main tool for enabling networking research on a single physical network infras-

tructure. GENI [80] is one of the most recent efforts toward this goal. GENI’s testbed

provides access to routing and computing resources on top of a single nation-wide

Layer 2 network, that is sliced using L2 VLANS to provide the perception of accessing

a dedicated network. Multi domain testbeds have also been extended for this purpose:

starting from the foundation provided by the PlanetLab testbed [81], VINI [82] de-

veloped an experimental framework where software routers are deployed on top of an

overlay - i.e. on top of UDP - based virtualized network.

Looking at these different use cases, four evident limitations arise: 1) Most virtual-

ization techniques are limited to single domain scopes, e.g. a data center or an access

network. 2) When extended to support larger networks, they either need full control

of the network environment, e.g. GENI, or 3) they rely on overlay solutions that ar

costly due to the generated overhead and lack any access to the underlying network

environment, e.g. VINI. Finally 4) all these solutions provide limited exchange of in-

formation between the virtualized environment, the applications that run on top and

the underlying network, limiting the attractiveness for service providers to exploit net-

work virtualization to enhance their solutions, where applications might benefit from

affecting routing decisions based on custom metrics and cross layer optimization [83,84].

Acknowledging these needs we present NOVN, a Virtual Network framework that

exploits the concept of Named-Objects to implement a logically clean, easily deployable

virtual networking framework. Named-Objects are a powerful abstraction achieved

through the use of a dynamic Name Resolution Service (NRS) for mapping names

83

to routable network entities. Separating names (identities) from addresses has been

advocated by the research community [3, 4, 39] for quite some time and has inherent

benefits in handling mobility and dynamism for one-to-one communication. We extend

this base concept to achieve the additional advantage of facilitating creation the new

service abstractions. First, names can be used to represent many different Internet

objects; for example, a cell-phone, a person, or a group of devices; the latter perfectly

applies in the context of network virtualization, allowing NOVN ’s solution bases its to

define participation of network elements to the logical network.

Figure 5.1: NOVN layers of abstraction.

NOVN exploits Named-Objects to create clean partitions across logical layers, as

shown in Figure 5.1. First, the NRS is used to map physical network resources to

their names, eliminating the need of perpetually keeping track of routers addresses

and possible configuration changes. A second layer of abstraction then maps network

elements to the participants of the Virtual Network, creating a logical network on top of

the infrastructure. As this network view is made available to all participants via access

to the NRS, forwarding across domains is implemented through a form of tunnelling

that uses names to address traversed routers on a hop-by-hop manner.

Building on top of this core framework, NOVN implements a novel technique that

allows applications to push small snapshots of status data into the virtual routing fabric;

84

we call this concept Application Specific Routing. Imagine a mobile edge cloud scenario

where the application goal is to connect mobile devices to the “best” cloud server. While

in a normal networking environment “best” might correspond to the “nearest”, in highly

distributed environments varying computing loads might change this. Through ASR,

NOVN supports this advanced anycast delivery service allowing virtualized routers

to consider the application status and perform custom routing decisions. Inspired by

active networks [85], ASR can be easily implemented exploiting software based fabric

and the Named-Object abstraction.

5.1.1 NOVN General Design

NOVN addresses the fundamental issues of Virtual Network management and deploy-

ment support through the use of Named-Objects and the reliance on information of-

floading to the NRS. A set of core design operations are at base of the framework.

We go through each one of them referring to Figure 5.2 for clarity. In this Section we

keep into account three core assumptions: 1) the availability of a globally accessible

NRS capable of storing mappings from names to values (in this case either network

addresses or other names for indirection); 2) ;3) the flexibility of accessing names and

addresses as part of a network header to enable hybrid routing, similar in spirit to the

one employed in the MobilityFirst architecture [39].

Figure 5.2: NOVN design.

85

Logically Define a VN Network Through Names. NOVN simplifies the definition

of the virtualized logical layer through information offloading to the NRS. This is done

as a three step process: 1) first, a unique identifier is assigned to the VN and a mapping

from such name to all participating resources is stored in the naming service (red box

in the Figure); reference resources are identified with a name that has meaning only

within the limits of the Virtual Network Logic - i.e. they are unique and no shared

across different VN instances; this provides the double function of simple access and

distributed information recovery. 2) Each VN resource name, is then mapped into two

values: a) the name identifying the resource the virtualized element is running on top

and b) the list of its neighbors. 3) Finally, name resources are mapped into physical

Network Addresses allowing for normal forwarding operations. Points 1 and 2 together

define the higher abstraction level shown in Figure 5.1 and their mapping into the

mid-layer, while point 3 provides the last translation to the bottom one.

Bootstrap Process & Management. As the topology information is made available

at a global scale through the NRS and can be dynamically retrieved from participating

resources, the scope of what information is required to share at each layer of the network

infrastructure is limited in comparison to other solutions. This allows two core issues to

be handled separately: the local problem of mapping virtual to physical resources, that

could be handled in a network-by-network basis by a centralized authority, and the global

problem of coordinating the virtualized logic across domains, offloaded to the NRS. To

this end, the bootstrap process in NOVN is then limited to allocating on participating

nodes instructions on how to retrieve the VN topology, i.e. the VN unique identifier used

to query the NRS, and the information about the physical resources that are required.

Similarly, management operations, e.g. migration, of resources can handled through

NRS offloading too, whereas local changes are reflected into the globally accessible

service and dynamically resolved at forward time.

Routing & Forwarding. Providing full flexibility for different routing configurations,

NOVN does not constrain VN users to employ specific routing protocols. Routing

information is exchanged across nodes exchanging control packets encapsulated to reach

participating nodes. Similarly, data forwarding happens on a hop-by-hop manner across

86

routers participating in the Virtual Network. When a data chunk reaches one of these

routers and a routing decision is taken, the chunk is encapsulated as shown in Figure 5.2

where the external network header contains information to reach the next VN router.

While crossing nodes not participating in the protocol, normal routing decisions are

taken using the external network header. As names are used to identify hops, forwarding

can happen independently from the physical network configuration.

Application Oriented Routing. Once the core abstraction layer of the NOVN

framework has been established, virtualized routing resources can be exploited to eas-

ily deploy more advanced services aimed at supporting network applications. Two core

pieces of technology are required and introduced into the framework: first, the ability

to aggregate multiple service instances under a single name, a natural extension of the

Named-Object abstraction. This is done by offloading the list of participant locations

under a single name into the name resolution service. Second, the ability to make ap-

plication nodes participate in the routing protocol by sharing their application state.

This can be either implemented through a new interface in the participating routers,

requiring though the introduction of new schemes to identify participants of the pro-

tocol, or by offloading this information to the name resolutions service. An example of

how this application state information could be used in a routing algorithm is shown

in Figure 5.2, where thresholds based on service load and distance are merged into a

single decision process.

5.1.2 NOVN Protocol Details

The NOVN framework, as described in Section 5.1.1, provides a clean way to define

a Virtual Network topology through the use of the Named-Object abstraction. While

using this tool it is possible achieve the purpose of providing the high level mechanisms

that characterize our system, additional details are required to provide a better sense

of how NOVN can fully overcome the issues presented and how it could be deployed

on top of the current IP/TCP Internet architecture.

87

A Better Virtualization Abstraction

Traditional network virtualization techniques have always suffered from the fundamen-

tal shortcomings of the IP architecture and address structure, limiting their flexibility

and increasing deployment complexity. Consider the case of overlay based solutions

(e.g. VINI [82]) where virtual router interfaces are assigned private IP addresses and

then mapped to public ones that can be used to tunnel packets across participating

resources. Due to the nature of IP addresses, any configuration change due to failure

or resource migration requires the tunnel to be reconfigured, the new information to

be propagated across all the participating resources, causing all ongoing traffic to be

lost. This is due to packets not being able to carry the necessary information to self-

correct temporary errors. Approaches to reduce this impact have been explored [86],

but require the creation of dedicated control channel to maintain persistent traffic flow.

NOVN exploits Named-Objects to solve this issues by creating clean partitions

across logical layers, as previously shown in Figure 5.1. This is obtained by recursively

mapping from VN dedicated names, to network elements names and finally to the phys-

ical addresses. This different layers of abstraction are critical in allowing a separation

of management issues. Consider for example the case of virtual routers migration. In

NOVN, the process is simplified by limiting the impact of the migration to remapping

resources between the top two layers. Once the required migration process is defined,

the entry mapping the VN element to the network element is re-written to the new lo-

cation. If on-flight packets are forwarded while the transfer process is occurring, names

allow for simple recovery without need of end-to-end retransmission, by resolving the

delivery location through the NRS. Similarly, if a physical machine needs to be replaced

due to failure or an address change is required, a new can be instantiated and the state

transfered.

One could argue that the employment of multiple layers of abstraction can introduce

additional overhead due to the resolution costs of crossing the different logical layers

through name resolution and due to the additional headers employed. The impact of

these can be reduced by employing two separate techniques: 1) While name resolution

88

Figure 5.3: Packet flow inside a software router.

can become costly if performed for each forwarding decision, this is not required as

for the majority of the time the resources do not change; hence, information can be

pre-cached on the participating routers and only once notified of changes resources re-

update their mappings by querying the NRS. 2) SDN based approaches [77] have shown

that matching multiple fields in hardware is a feasible task and the presence of the full

information. Figure 5.7, shows the simple logic employed where 3 matching fields (e.g.

the SID, the VNID, and the destination name) can be mapped to easily take forwarding

decisions at the virtualized layer.

Separating Local and Global Tasks

The management of resources in virtualized environments increases in complexity when

extended to multiple domains. This is true for overlay approaches, where resources need

to be coordinated and communicated potentially across multiple networks in order to

coordinate, and it is mostly untreatable for tag based solutions that are mostly opti-

mized for small domains, e.g. a data center or an access network. This is a consequence

of the complexity of assigning coherent resources across multiple domains that can be

managed by different commercial entities.

NOVN aims to approach the problem by creating a distinction between the lo-

cal problem of assigning network and computing resources and the global problem of

providing coordination mechanisms across domains. The NRS and the Named-Object

abstraction are the key elements employed to provide ways for eliminating the complex-

ity as they provide the globally accessible infrastructure to offload the sharing of the

89

virtualized topology and the mapping to the underlying elements. With this, network

administrators can then focus on: first, deploying techniques that and second, introduce

and maintain update the mappings of requested resources to the available underlying

network components.

Figure 5.4: Separation of local and global scale problems through a distributed coordi-
nation plane.

Fig. 5.4 outlines the resource allocation process when a hierarchical set of service

coordinators are employed. In this example, each network domain exposes an interface

that services deploying a multi-network VN can invoke to allocate resources that span

across the participating networks. While this example employs the concept of a single

service interface per network with a centralized controller for requesting and coordinate

resources across networks, the same tools can enable more distributed mechanisms for

allocating and deploying Virtual Networks.

Network State Exchange

Similar in spirit to previous attempts of providing full control of the deployed routing

protocols on top of the virtualized network [82], NOVN has been designed to offer a

routing independent network abstractions. In other words, virtualized elements can

independently choose which routing protocol better suits their needs as long as they

have ways of learning the underlying network conditions, e.g. virtual links cost. This

90

problem could be approached in multiple ways: a) recurring to overlay approaches

where the in built measurements tools are used to extract the information, as done in

VINI; b) by allowing routing information sharing across layers, through the use of APIs

exposed by the underlying networking logic.

The current NOVN design uses the second approach: we exploit a software based

router prototype implementation to support APIs, that are used by the virtual layer

to extract link state information. The extracted information is then exchanged by

employing a Link State like Protocol, where routers distribute through flooding the

aggregated cost view of each virtualized link.

5.1.3 Application Specific Routing

In order to support advanced mobile edge cloud scenarios where the goal is to connect

mobile devices to the “best” or “nearest” cloud server the NOVN framework was de-

signed to further support anycast delivery services. While basic anycast services have

been implemented over the years through the employment of DNS based techniques

or through application based overlays, providing it as an integrate abstraction of the

networking components would highly benefit system performance, by reducing expe-

rienced latency of the system. This is of fundamental importance in highly dynamic

environments required for example by mobile edge clouds where the location of the

service often migrates to closely follow moving users. Moreover, the concept of anycast

could be further extended to allow different definitions of “best” destination. Recent

studies [83,84] demonstrate how allowing applications to affect routing decisions based

on their own metric, e.g. server load for load balancing, can have a positive impact

both in terms of application and network performance. A clean-slate design should

aim at taking advantage of the opportunity and provide enough flexibility to support

coordination across application and network logic.

Again, in this scenario, the name-object abstraction allows network resources to

take more informed decisions. Considering the example in Figure 5.2, the black map-

ping represents how a service name could be be bound to its participants allowing the

91

forwarding fabric to obtain the potential desired destination. With the provided any-

cast service, the client solely needs to specify the name of the service and will be routed

to the best destination site. While this abstraction is powerful. In most cases, the

definition of the best service replica to select can vary, depending on the nature of the

application. For this reason, we use our Virtual Network design to support Application

Specific Routing (ASR). ASR allows the application components to proactively provide

information regarding the status of the service to the routing components. This infor-

mation, expressed in the form of a single or multiple metric values, can be integrated

into the routing algorithms to take more informed decisions.

Introducing Application Performance Index into Service Anycast

While a name based architecture, like MobilityFirst, is well suited to provide the right

abstractions for Anycast based services, when in need of meeting strict application

performance requirements, additional control over routing decisions might be desired

[83, 84]. In order to do so, we developed a concept called Application Specific Routing

(ASR). ASR allows routing decisions to be based both on network and application

metrics. Consider the scenario shown in Figure 5.5 where a service Y is distributed

across three locations A1, A2 and B1. When receiving a data packet from client

S, classic routing protocols would forward such packet based solely on network level

information, e.g. bandwidth, latency, hop counts, etc. Through ASR, we provide a

framework that allows not only to consider classic L3 metrics, but also application

layer ones, such as cloud workload/latency for the edge-cloud scenario.

ASR is implemented as an integrated function of the virtualization layer, whereas

participating routers can be configured to support different metrics and forwarding

logics. Current ASR’s implementation is based on two core operations:

Application Metric Dissemination. When ASR is active, cloud nodes participate

in the routing protocol by sending Application State Packets to the edge router they

are attached to; the routers then re-distribute the state information across the other

participant routers by inclusion of the metrics and related information (e.g. name of

92

Figure 5.5: Application Specific Routing (ASR) Concept

the server) into the routing packets exchanged within the Virtual Network.

Forwarding Decisions. The routing information exchanged is used to compute two

tables: 1) the classic routing table used for normal networking decisions and 2) a

service table that contains the current state (i.e. cloud server load) for the different

cloud service locations. When receiving data packets with destination the service, i.e.

Y, the Application Specific Routing logic is used to select the next hop. The current

implementation supports a basic threshold based logic, as shown in Figure 5.5, where

potential destinations are divided into a decision space in which different regions have

higher priority based on desired behavior. For example Region II could be preferred

over Region III if network metrics have higher importance over server load; they could

be swapped otherwise. Our framework could be easily extended to support different

decision logics.

While the current ASR implementation supports basic threshold based routing logic,

our design allows for future extensions supporting more complex algorithms based on

the collected state information.

5.1.4 Prototype and Benchmark Results

In order to understand the potential, the achievable performance and most importantly

the feasibility of the proposed framework, we developed a full prototype of the proposed

93

design. The components on top of which the framework is built, lay their foundation on

the MobilityFirst future Internet architecture prototype [39, 87]. Thanks to the clean

separation of names and addresses provided by the GNRS, MobilityFirst provides all

the necessary components to natively deploy our design.

We deployed our prototype on the ORBIT testbed [72], a two-tier wireless net-

work emulator/field trial designed to achieve reproducible experimentation. ORBIT’s

main facility is the radio grid testbed which uses a 20x20 two-dimensional grid of pro-

grammable radio nodes. While originally designed for wireless experimentation, ORBIT

also provides a full wired 1Gbit ethernet connection between all nodes, creating a sin-

gle L2 network. This provides experimenters with a fully customizable network to run

wired experiments. Selecting 18 nodes out of the 200 available, we deployed the network

shown in picture 5.6, using L2 VLANs to isolate traffic creating point to point connec-

tion between software routers. All selected nodes are equipped with Intel i7 processors,

16GB of memory and a single 1Gbps ethernet port, and run Ubuntu 14.04 LTS.

Figure 5.6: Experimental setup

After first introducing in the next subsection the design of the core components of

the employed prototype, we will present initial benchmark results.

Click Based Virtual Routers

The MobilityFirst prototype is composed of three core components: a Java based Global

Name Resolution Service that uses DMap’s [23] log to implement entries distribution,

94

a software router implementing MF’s name based logic and a host API and network

stack to run applications on the architecture; a more detailed description of the base

MobilityFirst prototype has been provided; here we will focus on the changes made to

support the NOVN design.

Routers: The software router is implemented as a set of routing and forwarding ele-

ments within the Click modular router [69]. The router implements dynamic-binding

using GNRS, hop-by-hop transport, and storage-aware routing. It integrates a large

storage, an in-memory hold buffer, to temporarily hold data blocks when destination

endpoints during short-lived disconnections or poor access connections. A particu-

lar instance of this system, implements what we call a MobilityFirst access router, a

router providing access connectivity to clients. We extend the base router to introduce

the Virtual Network logic; three fundamental new logic blocks are introduced: 1) a

VN manager that handles the initialization of the required classes and contains the

required information for each VN instance; 2) the ASR service block, which collects

application state date and compute the necessary algorithms to maintain it; 3) finally,

the routing/forwarding that uses the information pulled from the routing layer and the

ASR service block to compute forwarding tables. Multiplexing between normal traffic

and the different VNs is handled based on Service IDs and Names available in the MF

routing header as shown in Figure 5.7; this simple field base multiplexing exploits VN

native concepts, i.e. integrated in the network header, minimizing processing overhead.

Figure 5.7: Packet flow inside the software router

Clients: The host stack has been implemented on Linux and Android platforms as

95

a user-level process built as an event-based data pipeline. The stack is composed of

a flexible end-to-end transport to provide message level reliability, the name-based

network protocol including the GUID service layer, a reliable link data transport layer,

and a policy-driven interface manager to handle multiple concurrent interfaces. The

device-level policies allow users to manage how data is multiplexed across one or more

active interfaces. A novel socket API [32] is available both as C/C++ and JAVA

libraries and implements the name-based service API which include the primitives send,

recv, and get and a set of meta-operations available for instance to bind or attach a GUID

to one or more NAs, configure transport parameters in the stack, or to request custom

delivery service types such as multicast, anycast, multihoming, or for our scenario, VN

traffic.

5.1.5 Micro-Benchmarks

In order to understand the basic overhead introduced by running our Virtual Network

logic on top of the base MobilityFirst prototype, we performed two sets of experiments

on the ORBIT testbed, comparing both to the baseline MF implementation: first, a

latency evaluation using a ping-like application that collects Round Trip Times (RTTs)

for varying chunk sizes; second, using a port of iPerf [88] that uses our API and stack

to transmit data, we estimate achievable bandwidth. For both scenarios we use the

network shown in Figure 5.6, but we limit traffic generation to VN-2 (blue color).

Latency: We measure the average and standard deviation of RTT times between the

client and servers belonging to VN-1, with varying chunk sizes. The collected results

are shown in Figure 5.8 from which we can observe how the deviation from the baseline

scenario is minimal in most cases.

Bandwidth: The same setup is used for the second case where iperf is used to evaluate

the total achievable bandwidth. We run the experiment for 60 seconds for three different

chunk sizes, 1500B (i.e. a single packet), 10KB and 100KB. Experienced bandwidth is

collected every 10 seconds. Figure 5.1.5 shows the obtained results; as in the latency

scenario, no evident differences are experienced in comparison to the baseline scenario.

We can conclude that, when a single Virtual Network is used with no additional

96

Figure 5.8: Ping based RTT for different
chunk sizes Figure 5.9: Iperf experiment

traffic, performance is not affected in comparison to the baseline MF implementation,

confirming the minimal overhead of our implementation.

5.2 vMCN: Virtual Mobile Cloud Network

The emerging network services connecting and controlling machines, vehicles and other

objects in the physical world often referred to as the Internet-of-Things (IoT) or cy-

ber physical system (CPS), represent an important set of future requirements for the

network research community. Unique technical challenges associated with the IoT and

CPS scenarios include scaling the Internet architecture to support a very large number

of objects including wireless/mobile devices, information, network addresses, virtual

machines, etc., efficient integration of cloud computing services necessary to serve CPS

systems, designing appropriate security and trust models, and achieving fast response

for real-time/closed-loop applications. Fundamentally new architectural approaches to

networking will be required to address the emerging needs of IoT and CPS scenarios.

In this study, we look at how to properly support mobile real-time CPS applications,

such as Augmented Reality (AR) based navigation and self-driving cars. The first key

challenge to realize real-time CPS is scaling to billions or trillions of objects, which are

connected to networks or other devices, or whose meta data or statuses are handled

in applications software. The second key challenge is low latency in applications. For

97

example, Glass device based AR applications require less than 100 ms response time,

while self-driving cars require 10 ms order of magnitude. Such extreme requirements

cannot satisfied by the current mobile network systems.

In order to meet the described requirements, we propose a virtual mobile cloud

network (vMCN) architecture for emerging scalable, real-time CPS applications. The

idea is to create a single virtual network (or “slice”) for a given cloud service, which

provides the illusion of a local network with uniform authentication of devices and ser-

vices, seamless mobility of devices/users, dynamic migration of BS and cloud resource

and state, coordinated with some level of managed wireless resource allocation. Novel

network virtualization techniques are introduced that exploit the “named-object” ab-

straction provided by a fast and scalable global name service. The first challenge of

scaling to billions or trillions of objects is addressed by the presence of the global name

resolution service (GNRS), a key stone of the MobilityFirst (MF) architecture [39] that

serves as the networking foundation for vMCN, which is designed to provide fast dy-

namic binding 100B-1T object names (globally unique identifiers known as GUIDs) and

their current network locators. The second key challenge of achieving low latency is

achieved by the two following novel mechanisms: first, cloud service addressability and

anycast capabilities enabled by the name base routing available in MF and enhanced

through virtualization techniques deployed into the network; second, the prioritization

of a specific service in wireless access enabled by dynamic assignment and migration of

virtualized BS resources supported by the foundation of the MF GUID service layer.

The design of vMCN architecture lays its foundations on the three core technology

components and coordination techniques among them: a) GNRS, b) NOVN, presented

in the previous Sections; finally c) vBS, a virtual network framework in WiFi networks

[89, 90]. The initial proof-of-concept prototype of the vMCN was developed based on

the integration of the NOVN prototype on the ORBIT testbed, and the vBS prototype

system developed by NICT. Through a set of experiments on the vMCN prototype, the

impact on the reduction of CPS response time was evaluated. The experimental results

reveal the vMCN can support up to about 94% CPS cycles under the set goal of 100

ms, outperforming the baseline system by almost two times.

98

5.2.1 vMCN Design

The designed architecture exploits two fundamental technologies developed at Rutgers

and NICT: a Virtual Network designed on top of the name based Future Internet

architecture MobilityFirst (NOVN) [39] for inter domain support of the applications and

the virtual Base Station (vBS) for local domain support [89]. The two components are

merged into an architecture that is aimed at supporting a variety of services, including

the trillion-order scalability CPS applications with less than 100 ms response time. The

comprehensive architecture, as shown in Figure 5.10, relies on four main characteristics:

1) a fast and scalable global name resolution for user mobility through a Global Name

Resolution Service (GNRS), 2) a virtual network with dynamic configuration of wired &

wireless resources and inter-domain migration, and 3) a network-assisted service anycast

routing service for supporting edge cloud services. As the first two components have

already been presented in this work, the following paragraphs will focus on the second

components and on how NOVN integrates vBS to implement the vMCN architecture.

ID!

Query Packet

(2) VN & vBS on the
move

(3) Service Anycast

& Dynamic Migration

Scalability
Real-time
response

VN Routing layer

Name resolution layer

Virtual base station (vBS)

CPS slice

(1) Name-based
virtual network

Figure 5.10: vMCN Architecture Design

vBS: WiFi Network Virtualization

Figure 5.11 shows a basic concept of WiFi network virtualization [89]. WiFi network

virtualization is a technique in which physical WiFi network infrastructure resources

and physical radio resources can be abstracted and shared by multiple independent and

customizable logical (virtual) WiFi networks through isolating each other, and can be

99

considered as an example of wireless network virtualization [89, 91–95]. We call a set

of physical WiFi network infrastructure resources and physical radio resources as a BS

resource for simplicity. In Figure 5.11, a set of isolated BS resources is presented as a

vBS. A vBS behaves as a logical multi-channel BS organized by multiple physical BS

resources. We define a vBS that dedicates all its own BS resources to a target service

as a service-specific vBS [96, 97]. In the current design, intra-domain migration of the

vBS is supported [90].

Virtual BS

(vBS) !

Physical BS!

Terminal!

vBSA!

TA!

vBSB!
vBSC!

TB!

TC!

vBSi : vBS for Service i
Ti : Terminals of Service i!

BS Resource

Pool!

Figure 5.11: Concept of WiFi Network Virtualization (vBS)

To make a vBS logically behave as a single BS, a logical layer-2 network spanning

across physical BSs that organize the vBS is configured in the backhaul. In addition, all

the BSs are configured with the same MAC address in a wireless interface, and hence

with the same BSSID. In the same way, the same ESSID are configured at all the BSs.

These configurations make it possible to separate BS selection and handover decisions

from BSs and terminals and put them together into a centralized controller.

The distinct advantage of the architecture is that all the decisions on BS selection

and handover can be fully managed regardless of the differences in the vendor-specific

BS selection and handover algorithms implemented in terminals. The association and

handover procedures naturally go together with layer-2 routing (re)configurations in

the backhaul for the terminals, so that OpenFlow [98] is exploited for this purpose.

Reducing handover latency and avoiding packet drops during handover can be also

100

achieved by cooperative and fast layer-2 path reconfiguration.

5.3 Protocol Details for Components Coordination

In order to implement the comprehensive vMCN architecture, NOVN and vBS tech-

nologies have to be integrated to dynamically coordinate resources to create a single

virtual network (or “slice”) for a given cloud service.

5.3.1 Dynamically Configuring a Name-based Virtual Network

The three core technology components previously described represent the foundations

required to achieve a scalable architecture to support the real-time CPS. In order to

achieve a fully functional architecture a series of coordination techniques are required

among those components. The key integration point is a mechanism for building an

integrated virtual network by bridging a MF-based virtual network (MF VN) and a

corresponding vBS. In this paper we propose a mechanism to coordinate the MF’s

control plane and the vBS’s one for that purpose.

Cloud
Service

vBS1

MF-VN

vBS
(WiFi VN)

MF Central
Coordinator

VR1 (Ingress)

VR2

(1) Initial MF-VN setup &
 Initial vBS setup request:

-  VN description (Virtual GUID)

-  vBS description: incl. flow match rule

(SID or dst E2E GUID)

(3) MF-VN Association:
-  Clients’ GUID is registered

-  Clients’ MACaddr is registered

GUID: A1

MAC addr: a1

ServiceGUID: Y

(2) Initial vBS setup:
- BS resource is reserved

BS-SW

VNCS
 (4) vBS re-association request:
-  MACaddr - VN mapping is updated

(1) !

(2)!
(3) !

(1)!

(4) !

VN Setup

Client Association

Common
vBS

(5)!

 (5) vBS re-association:
-  Initiating handover to the

corresponding vBS

(1) !

 (5) Handover to vBS1

Figure 5.12: The control planes of MF-VN and vBS are coordinated for building an
integrated virtual network

Figure 5.12 shows a procedure of building an integrated virtual network based on

the coordination between the MF resource manager (called central controller in the

101

picture) and the vBS’s controller, namely VNCS. The procedure can be divided into

two parts: the first part is the VN setup phase (step (1) and (2)) and the latter one is

the client association phase (Step (3) – (5)).

In the VN setup phase, the MF resource manager initiates the MF-VN setup by

pushing to the participating nodes the definition of requested resources and the unique

identifier that characterize the Virtual Network(Step (1)). Note that an original process

is added that the coordinator requests the VNCS to create a corresponding vBS using

the northbound VNCS API [89]. A unique tag, called Service ID, or alternatively the

E2E communication GUIDs, corresponding to the MF-VN is also notified to enable the

VNCS to identify the GUID packets of the VN. Then, the VNCS creates the requested

service-specific vBS (vBS1) by configuring the physical BSs and the BS switch (BS-SW)

in the BS backhaul (Step (2)).

In the client association phase, a MF client is associated with the MF-VN first, and

then associated with the service-specific vBS. While the client WiFi interface is active,

the client periodically looks for a MF ingress router using broadcast messages. The

MF-VN association is completed when the client receives the acknowledgement from

the ingress router (Step (3)). The GUID and MAC address of the client are registered

in the ingress router. Note that at this step, the MF client is associated with a common

vBS instead of the service-specific vBS.

Then the ingress router notifies the VNCS of MAC address – VN mapping infor-

mation (Step (4)). This information is required for the VNCS to identify which MAC

address should be bound with which vBS. The Step (4) is also original in the proposed

integration mechanism. Finally, the VNCS initiates the handover of the target client

to the service specific vBS (Step (5)).

5.4 Prototyping

The initial proof-of-concept vMCN prototype system was developed by integrating the

two prototypes of vBS and NOVN. The MF-VN prototype was developed by imple-

menting the NOVN logic described in Section 5.1.4 on the MobilityFirst foundation in

102

MF nodes.

The vBS prototype consists of (1) VNCS (Virtual Network Control Server) that

mainly manages vBS creation, radio resource assignment, client association, and han-

dover, (2) virtualization-capable BS, where 22 IEEE 802.11a/b/g/n WiFi modules are

equipped and at most 22 WiFi BSs can be run independently at a time, and (3) BS-SW,

which is an OpenFlow switch. The BS-SW was implemented using Open vSwitch in

this integrated prototype.

Service
GUID 1331

VNCS &
OFS & MM

vBS
172.21.0.254

NA: 172.21/16 NA: 172.25/16 NA: 172.27/16

VR1

VR2

Non-CPS/CPS
Traffic Generator

vBS Prototype MF-VN Prototype

VR3

CPS Terminal
(MF-enabled)

GUID 21

Cloud
Server1

Cloud
Server2

GUID 22

MF Central
Coordinator

Figure 5.13: Physical Structure of the vMCN Prototype

Figure 5.13 shows the physical structure of the vMCN prototype. The MF-VN part

consists of three MF routers and two cloud servers. These five servers as well as a

GNRS node were built on the ORBIT testbed in the Rutgers University. Then the

BS-SW (OFS) is connected to the MF ingress router (VR1). The VNCS and the MF

central coordinator were run on the BS-SW and VR1, respectively.

For integrating these two prototypes, the function of dynamically configuring a

virtual network among vBS and MF-VN was implemented. Specifically, the function

of calling an initial vBS setup request (Step (1) in Figure 5.12) was implemented in

the MF central coordinator. This function is embedded into the existing initial MF-

VN setup procedure. The function of calling a vBS re-association request (Step (4) in

Figure 5.12) was implemented in the MF ingress router. This function is invoked just

after the MF-VN association procedure.

The above new functions require communications with the VNCS, and a software

103

MF Cloud
Server MF Terminal vBS

802.11
(WLAN)

HOP

GUID Layer

E2E Transport

VN Ctr/Data

Emulated Cloud
Application

MF Router vBS Switch
(OFS)

BS Virtualization

802.11 802.3

BS Virtualization

802.3

802.3
(Ethernet)

HOP

GUID Layer

E2E Transport

VN Ctr/Data

802.3
(Ethernet)

HOP

GUID Layer

E2E Transport

VN Ctr/Data

Emulated Cloud
Application Coordinated VN

management

Figure 5.14: Protocol Stack

module for calling the northbound API of the VNCS, namely VNCS API [89], was

installed in the MF central coordinator and the ingress router. The VNCS API provides

a series of methods, such as SliceAdd, vBSAdd, and vBSAttachBS for creating a vBS.

These methods are used in Step (1), and the EnvHandover method is used in Step (4).

Figure 5.14 shows the protocol stack implemented on the vMCN prototype system.

The vBS stack is working as a layer-2 protocol, and a MobilityFirst GUID packet

encapsulated by the IEEE 802.3 or IEEE 802.11 header can be routed on the vBS

and BS-SW as it is. The interaction between the BS virtualization layer and the VN

control/data layer denotes the process of dynamically configuring a virtual network.

5.5 Reduction of the CPS Response Time

5.5.1 Experimental Setup

A first batch of results showcasing the potential of the vMCN architecture has been

obtained by experiments on the prototype system. Figure 5.15 shows the basic exper-

imental scenario, which can evaluate both the individual effects of the vBS on vWiFi

and ASR on MF-VN and the marginal one.

We generated loosed-loop (round-trip) UDP traffic and one-way UDP traffic at ter-

minals to emulate a real-time CPS service and a non-CPS best-effort one, respectively.

The CPS-specific vBS and the best-effort common vBS on the virtualization capable

BS (vcBS), respectively, and a physical BS configured with IEEE 802.11 n/a mode and

65 Mbps transmission rate is assigned to each vBS. The channel 36 and 48 in the 5 GHz

104

MF VN

Server#1

BS#1

Server#2

Non-CPS

terminals

CPS

Terminals

T!

Server Load !

T!

Server Load!

Figure 5.15: Experimental Scenario

band are assigned to these vBS, respectively. When these vBSs are activated, CPS and

non-CPS traffic are completely isolated, and the CPS response time can be reduced.

On the other hand, without the vBSs, i.e. in the normal WiFi mode, the interference

causes the increase of the response time.

In the could servers, dynamic server load are configured. Every 10 seconds, each

server randomly chooses the server load from the preconfigured parameter set {0.2,

0.4, 0.6, 0.8}, and linearly increased latency of {20, 40, 60, 80} ms is injected before

responding to the received CPS data unit. The server load is announced every 2 seconds

to the MF routers, and then the ASR routing table is updated accordingly. When the

ASR is activated on the MF-VN and servers, the ASR routes the CPS traffic to the

less-loaded server, and the CPS response time can be reduced. On the other hand,

without the ASR, i.e. in the normal GNRS mode, the CPS traffic are always routed

to Server#1, and the response time is significantly affected during the high server load

period.

To evaluate the application-level CPS performance instead of the packet-level one,

we generate a large size data unit assuming a picture frame. For example, in the case of

50 KB data unit and 1500 Byte MTU, a packet train including 37 MF-formatted packets

is generated. We generated a CPS data unit every second at each CPS terminal. The

response time is defined as the time from the generation of a data unit to the reception

of the last packet of the packet train. If any packet in the train is lost, we consider the

data unit is lost.

105

We setup three CPS terminals and 12 non-CPS ones per physical BS. We configure

two physical BSs, and 30 terminals are configured in total. This means that when

vBSs are activated, the CPS-specific vBS accommodates 6 CPS terminals and the

remaining 24 non-CPS terminals are accommodated by the non-CPS vBS, when vBSs

are activated. On the other hand, without vBSs, each physical BS accommodates 3

CPS terminals and 12 non-CPS ones. We generated the non-CPS traffic with 100KB

data unit every 1 second at each non-CPS terminal, and the load offered by 12 non-CPS

terminals is 9.65 Mbps. We implemented the CPS traffic generator, named ßmfping,

on a Linux laptop to measure the CPS response time. The other CPS and non-CPS

terminals are configured on the IXIA WiFi terminal emulator. All the terminals are

connected to the vcBS using coaxial cables to eliminate the interference from the other

wireless systems using the ISM band.

5.5.2 Experimental Results

Figure 5.16 shows the cumulative distribution function (CDF) of CPS response time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Response Time (ms)

vBS=on, ASR=on
vBS=on, ASR=off
vBS=off, ASR=on
vBS=off, ASR=off

Figure 5.16: CDF of CPS Response Time (Data Unit Size = 25KB)

300 data units with 25KB size are generated in this experiment. Apparently the

combination of vBS and ASR outperforms the other three cases. As we target the

response time less than 100ms, we focus on how many data units meet the requirement.

In the case of vMCN, i.e. (vBS, ASR) = (on, on), 94% data units achieves less than

100ms response time. On the other hand, in the case of (vBS, ASR) = (off, on),

106

(on, off), and (off, off), the value decreases to 85%, 74%, and 46%, respectively. These

results show ASR has larger impact to lift up the CDF line, We can conclude the vMCN

can support up to 94% CPS cycles under the set goal of 100 msec, and outperforms the

baseline system by almost two times.

The specific percentile response time is also an important performance index to

evaluate a real-time system. We evaluate the performance in the congested WiFi envi-

ronment, we determines to evaluate 90 percentile response time. In the case of (vBS,

ASR) = (on, on), the 90 percentile response time is 80 ms. On the other hand, in the

case of (vBS, ASR) = (off, on), (on, off), and (off, off), the value increases to 106 ms,

105 ms, and 113 ms, respectively. These results show vBS and ASR have the same level

of impact. We can conclude the vMCN can achieve less than 100 msec for 90 percentile

response time for 25KB CPS data units.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

9
0
%

ile
 R

e
sp

o
n
se

 T
im

e
 (

m
s)

Data Unit Size (KByte)

vBS=on, ASR=on
vBS=on, ASR=off
vBS=off, ASR=on
vBS=off, ASR=off

Figure 5.17: 90 Percentile Response Time

Figure 5.17 shows the impact of data unit size on the 90 percentile response time.

We measured 10 times (obtained 10 sets of 300 samples) for each parameter set. The

average values with the range between the minimum and maximum ones are plotted in

the figure. In all the cased, the larger data unit size has larger impact on the response

time. The slope on each graph is almost the same, and the effects are common for

all the cases. We can conclude the it is difficult for vMCN to keep the 90 percentile

response time less than 100 ms for data units with larger than 50KB. Note that the

107

non-CPS traffic is static, and the ratio of CPS traffic becomes larger for larger CPS

data unit size. For example, the load offered by three CPS terminals is 4.0 Mbps when

the CPS data unit size is 150 KB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

1
0
0
m

s
V

io
la

tio
n
 R

a
tio

Data Unit Size (KByte)

vBS=on, ASR=on
vBS=on, ASR=off
vBS=off, ASR=on
vBS=off, ASR=off

Figure 5.18: 100ms Delay Violation Ratio

Figure 5.18 shows the impact of data unit size on the 100 ms violation ratio. The

100 ms violation ratio is expressed as 1 − Nsuccess
Nall

, where Nall and Nsuccess denote the

total number of generated data units and the total number of data units that meet the

response time of less than 100 ms, respectively. In the case of (vBS, ASR) = (on, on),

the 100 ms violation ratio is 0.10 and 0.12 for 25 KB and 50 KB data units, respectively.

When the unit size is 50 KB, the 100 ms violation ratio in the case of (vBS, ASR) =

(off, on), (on, off), and (off, off) is 0.24, 0.42, and 0.45, respectively. When the unit

size is larger than 100 KB, the ratio significantly increases. We can conclude the it is

difficult for vMCN to keep the 100 ms violation ratio less than 0.1 for data units with

larger than 50KB.

108

Chapter 6

An End-to-End Service Realization

Throughout this thesis, different solutions and technology components have been pre-

sented, targeted at solving piece by piece the requirements of each new problem pre-

sented. After starting from a top-down analysis of the network requirements, experi-

mental results have been presented to support the case for our solutions. This chapter

aimes to complete this discussion, presenting a comprehensive analysis of all the tech-

nologies implemented throughout this study and show how they can merge together to

realize a comprehensive experimental end-to-end realization of name based services for

the future Internet.

Key aspects that have characterized this experimental work are presented:

• First, a description of the approach taken at designing and implementing the

software components that are part of the architecture prototype used to evaluate

and distribute the presented concepts.

• Second, the base technologies developed, giving an overview of how they can be

used as the base for more advanced services and applications.

• Third, an overview of the experimental testbeds used for architecture evaluation,

including considerations on different approaches for incremental deployment to

simplify adoptability of the platform.

• Finally, two examples of how such technologies could be deployed on a nation

wide testbed to analyze an end-to-end service built on top of the architecture

features.

109

6.1 Architecture Validation Approach

Validating the design of a novel architecture such as MobilityFirst requires a compre-

hensive effort that spaces across different experimental techniques. This is due to the

different requirements and goals that are part of the process. In order to understand

the value of alternative experimental testbeds it is indeed important to identify the

particular functional aspects (scale, performance, protocol validity, etc.) that need to

be evaluated. In many cases, performance verification at scale is still best suited for

simulated environments, such as NS3. This approach applies well to classical network

problems such as aggregate routing evaluations looking at different metrics such as pro-

tocol overhead and achievable throughput. A tradeoff with the scale of the experiments

can be desirable in order to obtain higher levels of realism. Performance critical systems

and elements of the architecture might require this approach in order to validate their

feasibility. Finally, even higher levels of realism can be obtained by means of deploying

the architecture with real end-users that can interact with the network and the deployed

services through specific application.

Re
al
ism

(

Scale((#(Nodes)(

Emulator)
Testbeds)

(ORBIT,)Emulab))

Proof8of8Concept)
Prototype)

Large8Scale)
Numerical)SimulaCon)

NS83)
Simulator)

GENI)
Experiment)

GENI)
Deployment)
w/)end8users)

Large8Scale)
Federated)
Deployment)

Low)

High)

1) 10) 100) 1000) 10000)

Figure 6.1: Realism vs scale provided by different network evaluation methods.

Figure 6.1 summarizes realism and scale achieved by different evaluation method-

s/testbeds, and the typical sequence of simulation to testbed evaluation to large-scale

user trials. The focus of this works falls in the right side of such graph. Starting from

110

the initial validation of the architecture routing protocols that were performed through

simulation models [23, 31], we developed the main components that constituted our

protocol stack implementation that has been the basis of experiments performed on

two different testbeds: ORBIT and GENI.

A set of key guidelines have been followed throughout the development of the tech-

nologies that will be presented:

1. Develop from scratch: in order to maximize the adaptability of the software

to different deployment scenarios, it was decided to avoid reliance on current IP

infrastructure and support for both independent and overlay architecture deploy-

ments.

2. High portability: as technologies and operating systems quickly evolve, it was

aimed to achieve the lowest level of dependency from specific components, mini-

mizing dependence from system specific software libraries.

3. Adaptability to multiple environments: supporting the widest possible set of

devices (e.g. laptops, smartphones) and communication technologies (e.g. WiFi,

LTE) to provide deployment flexibility.

4. Easy control and results collection: implement a cohesive control framework

integrated in all components, that could enable architecture-wide collection of

networking data and statistics and enable real-time visualization of system events.

6.2 Key Developed Technologies

In order to move towards testbed based experimentation we needed to develop a pro-

totype that included the main components that are part of the designed architecture.

As the MobilityFirst project addresses the feasibility of building systems and networks

in a clean-slate design, it requires the development of such components from scratch.

The result of this efforts consisted in three main tools: a GNRS implementation based

on DMap’s design [23], a Click [69] based software router and a multiplatform pro-

tocol stack and network API for clients. Applications and network services can be

111

implemented as extensions of these basic elements. Moreover, we developed the neces-

sary support to automate experimentation using the OMF [99] framework and provide

statistic collections through OML [100].

Global Name Resolution Service. A GNRS implementation has been written in

Java to provide a hardware and operating system agnostic implementation. Wher-

ever possible, standard libraries are utilized to provide the required functionality, and

only the application logic needed to be written by hand. The server is organized into

several individual modules: network access, GUID mapping, persistent storage, and

application logic. The application logic serves as a central point of coordination within

the framework of the GNRS server daemon. The network access component ensures

that the GNRS server is able to operate over any networking layer/technology without

changes to the core code. This replaceable component currently supports IPv4 and MF

routing. The GUID mapping module, relying partly on a networking implementation,

enables the server to determine the remote GNRS hosts responsible for maintaining the

current bindings of GUID values. Persistent storage is handled independently from the

rest of the server and exposes only a very simple interface, mapping to the application

messages available in the protocol. A BerkeleyDB provides both in-memory and on-disk

storage for GUID bindings.

Routers. Software routers are implemented as a set of routing and forwarding elements

within the Click [69] modular router. The router implements dynamic-binding using

GNRS, hop-by-hop transport, and storage-aware routing. It integrates a large storage,

an in-memory hold buffer, to temporarily hold data blocks when destination endpoints

during short-lived disconnections or poor access connections. For dynamic in-network

binding of names (GUIDs) to network addresses (NA), the router is closely integrated

with the in-network GNRS by attaching to a local instance of the distributed service,

which is often co-resident on the physical device, but can also be hosted on separate

co-located node. A particular instance of this system, implements what we call a

MobilityFirst access router, a router providing access connectivity to clients. Access

routers also implement a rate monitoring service that tracks the available bandwidth

for each attached client. For WiMAX networks, the rate is obtained by querying the

112

WiMAX base station when possible which exports the most recent downlink bitrate

allocated to each client by the scheduler based on a client’s location, client offered

traffic, and overall load on the BSS. A similar rate monitoring capability is implemented

for WiFi Access Points using standard 802.11 netlink configuration utilities. Thanks

to the modular structure of Click, we are able to extend the software implementation

with additional logic modules to support programmable network services. The router

software also collects statistics at different layers of the protocol stack that can be

reported through the use of an OML-based monitor that runs within the router and

periodically transmit data to a remote (or local) server. Figure 6.2 provides an abstract

representation of the data processing pipeline inside the router.

Figure 6.2: Click router based block diagram.

Host Stack and API. The host network protocol stack has been implemented on

Linux and Android platforms as a user-level process built as an event-based data

pipeline. The stack is composed of a flexible end-to-end transport to provide message

level reliability, the name-based network protocol including the GUID service layer,

a reliable link data transport layer, and a policy-driven interface manager to handle

multiple concurrent interfaces. The device-level policies allow the user to manage how

data is multiplexed across one or more active interfaces. The previously introduced

socket API [32] is available both as C/C++ and JAVA libraries and implements the

113

name-based service API which include the primitives send, recv, and get and a set of

meta-operations available for instance to bind or attach a GUID to one or more NAs,

configure transport parameters in the stack, or to request custom delivery service types

such as multicast, anycast, multihoming, or in-network compute. Similarly to the router

implementation, the protocol stack collects and optionally reports traffic and resource

statistics to a OML backend data repository.

Figure 6.3: Client host stack block diagram.

Other Services. All the other services described throughout this work, have been

implemented as extensions of the these core three components. A few key examples

are: 1) the NOVN framework has been implemented as a set of Click elements that

naturally fit into our router prototype; allowing for quick processing of virtual network

control and data packets. 2) The same applies for the NOMA multicast design, that

has now been integrated into the Click based software. 3) The API and network stack

were used as the based for implementing a variety of applications including but not

limited to a port of the iperf tool, content and context applications and a variety of

demos [58,101–106].

114

6.3 Deployment Scenarios

While Section 6.1 outlined how all these components have been designed with flexibility

in mind trying to reduce dependency from specific systems to a minimum, it is impor-

tant to understand how they could be used in a variety of scenarios. Throughout the

development of the described technologies, two large scale testbeds, i.e. ORBIT [72]

and GENI [59], have been used to deploy the different components and provide a thor-

ough evaluation. This Section will describe the deployment process on such testbeds,

together with some considerations on how the same software pieces could be incremen-

tally deployed on top of the current infrastructure.

6.3.1 Support at Scale Testbeds and Experimental Research

In an effort to provide openly available tools for researchers to experiment with the

prototype of the MobilityFirst architecture, we organized all the developed material

over the project years under a unique prototyping framework. This framework includes

the following components: a) all the prototype source code available both as open

source software both as ready-to-run Debian packages; b) documentation organized in

the form of wiki to support the understanding of the available material in connection to

the concepts at the base of the architecture; c) automated tools to deploy and perform

experiments in multiple research testbeds, including ORBIT and GENI; d) a web based

tool to be used to track experiments through live monitoring of important events or

post-processing statistics experienced during prototype runs.

The two aforementioned testbeds, i.e. ORBIT and GENI, provide a perfect platform

for experimenters to have high control on different possible deployment setups for the

presented software.

ORBIT. The Orbit testbed is a two-tier wireless network emulator/field trial designed

to achieve reproducible experimentation. Its main facility is the radio grid testbed

which uses a 20x20 two-dimensional grid of programmable radio nodes which can be

interconnected into specified topologies both using reproducible wireless channel models

allowing fine grained control over connectivity resources, both using a fully connected

115

1Gbit ethernet based layer 2 network. Thanks to its large set of resources it provides a

perfect environment to support realistic evaluation of protocols and applications up to

medium scale.

GENI. The GENI nationwide testbed offers an infrastructure with Internet2 and NLR

backbones connecting several university campuses. The wide area hosts, interconnected

by a Layer 2 1/10 Gbit core network allows for a realistic deployment and evaluation of

MobilityFirst architecture and protocols. The GENI network has been used extensively

for validation and evaluation of the MobilityFirst protocol stack. GENI provides the

necessary scale and geographic distribution necessary to test key design features such

as name resolution and inter-domain routing. GENI also makes it possible to transition

from technical experiments to service trials by bringing in opt-in users in different cam-

pus networks across the country. Several GENI sites, including the site at Rutgers, have

wireless deployments which are equipped to support real-world mobility experiments

over a variety of access technologies including WiFi, WiMax and LTE.

While the two testbeds provide different capabilities, both testbeds played a key

role in evaluating the presented components. ORBIT was fundamental for evaluating

different scenarios that required fine grained control over the wireless resources; GENI

provided the right at scale environment for more realistic deployment scenarios. In an

effort to provide details on how end-to-end services could be deployed, the focus of the

remaining part of the chapter will be given to how the presented components have been

deployed on top of the GENI infrastructure.

6.3.2 Considerations for Future Adoptability

Throughout this work, it has been presented how the different components design could

be employed to deploy a Named-Object based architecture, starting from the assump-

tion that each packet network header provide space for accessing the names, addresses

and service identifiers that enable hybrid routing. While this simplifies the framework

design, and allows operating without the need for any additional overlay protocols, a

few considerations have to be taken on how this could be done on current networks.

Three different approaches that could be used to incrementally deploy the framework

116

on top of the existing infrastructure have been considered.

Overlay. Fully overlay approaches represent a flexible way for deploying experimental

networks and protocols on top of the existing infrastructure. Through encapsulation

of network packets on top of UDP packets and tunneling across participating nodes,

they allow for the quickest solution to implement experimental protocols on top of

the existing infrastructure. With this solution, flexibility and simplicity come at the

cost of additional overhead. The named-object abstraction helps taking advantage of

the abstraction layers presented to simplify the implementation requirements for such

solutions. First, as the network address that represent tunnels are overloaded into the

GNRS, no need to define a-priori tunnels is required, leaving forwarding decisions to be

dynamically resolved at running time, as needed. This approach is similar in spirit to

LISP [4], where multiple encapsulated headers can be used to traver networks and reach

participating routers, but extends the base name space to provide the more advanced

named-object abstraction.

Header Tags. Tag based approaches exploit flat unique identifiers placed at different

layers of the network stack to uniquely identify packet flows. Example of this are VLANs

and MPLS. The core issue with these solutions is the limited scope of application in

which they can be exploited, as the employed tags are limited in size and have validity

only within a single network. For this reason they can mostly be used to support single

domain solutions. Even with this limitation in mind, VLAN like solutions, for example,

could be used to implement cut through switching to implement fast traversing of single

domain networks [107].

SDN Based. Originally presented as a tool for network experimentation [98], Software

Defined Networking can be a technology enabler for a native solution to the Mobility-

First architecture deployment. Current OpenFlow [108] based solutions are still strictly

binded to the TCP/IP protocol stack and would require approaches similar to the ones

just presented in the previous paragraphs (e.g. overlay). But as new SDN solutions

as [109] become commercially available or as the OpenFlow protocol is extended to

support different classes of network, MobilityFirst could be incrementally deployed,

starting from single SDN enabled islands interconnected using overlay solutions.

117

Following the spirit of flexible deployability on top of multiple experimental scenar-

ios, the implemented technologies have been enabled with interface abstractions that

can smartly adapt to different networking environments. Recalling Figures 6.2 and 6.3,

both technologies have been designed to provide interchangeable Interface classes that

can implement different deployment scenarios. These include: a) native support of

the MobilityFirst protocols on top of a L2 network and overlay support both on top

of b) barebone IP network or c) a ful overlay solution on top UPD. Thanks to this

support for a wide range of overlay modes, it was possible to deploy the components on

top of different access and network technologies, such as the GENI WiMax and LTE

infrastructure.

6.3.3 An End-to-End Deployment Realization

The GENI nationwide testbed offers an infrastructure with Internet2 and NLR back-

bones connecting several university campuses. The wide area hosts, interconnected by

a 1/10 Gbit core network allows for a realistic deployment and evaluation of Mobility-

First architecture and protocols. Participation from access networks and mobile clients

at collaborating campuses when combined with deployments at the GENI core can es-

tablish reasonably large size networks of the order 10s to a few hundred nodes with

realistic wide-area network conditions.

Experimental Setup. A long-running deployment of the architecture was set up on

a GENI slice (virtual network) starting in 2013 and is still being used for evaluations

at the time of this writing. As part of this effort, the prototype components were

deployed at seven GENI sites as shown in Figure 6.4. The routers, naming servers, and

applications run on Xen VMs (total 14, 2 VMs per site) each with 1 GB memory and

one 2.09 GHz processor core. At the Rutgers site we also provision a raw node to run

the transcoding server. Each router was configured with 1 or 2 interfaces depending

on their role as core router or as an access/edge router, respectively. All routers had a

core-facing interface connected to a layer-2 network that connected all seven sites. This

was setup using a multi-point VLAN feature provided by Internet2’s Advanced Layer-2

Service (AL2S). Routers at three sites (viz. Wisconsin, Rutgers, NYU) were configured

118

with a second interface connecting to the local wireless network (WiMAX). Mobile

wireless or emulated clients connected to network through this interface. Routers were

each configured with 500 MB of hold buffer space, and had access to a GNRS service

instance co-located on the same node. The GNRS service run at all seven sites using a

replication factor of k=3, achieving a 95th percentile lookup latency of under 80ms.

Figure 6.4: Prototype components deployed on the GENI testbed

Exploiting the deployed network, different experimental setups have been deployed

over the years to showcase the features of the architecture [58,101–106]. As part of this

work, two representative application deployments are presented.

In-Network Transcoding as a Compute Service. Traffic from mobile wireless

networks has been growing at a fast pace in recent years and poses significant chal-

lenges to service providers in scale and efficiency of data delivery. Streaming video,

in particular, is a perfect example of a service that could benefit from our approach.

At the current state, most used protocols (e.g. DASH) rely on the ability of a client

to estimate the available bandwidth, a task arguably very difficult, especially under

wireless and mobile environments. By having an in-network service that would dynam-

ically adapt the encoded bitrate of delivered content according to available bandwidth

at the access link would provide a system to move the adaptation logic where that

information is more easily accessible. Section 3.2 introduced our solution to natively

support in-network computing resources using the named-object abstraction. A real-

ization of such service was designed to implement an in-network service that does rate

119

adaptation when delivering video streams to mobile devices that experience variable

connection quality. The in-network compute architecture consisted of: a new network

stack and socket API for hosts that implements the service interface used by the end

hosts of the system, a software router that implements the hybrid GUID and NA based

forwarding and storage-aware routing protocols, and a computing engine/platform that

presents an open API for configuring and running in-network services.

Figure 6.5: Transcoder response time
Figure 6.6: Client traffic reduction with
transcode

To evaluate our solution, we used the long-running GENI deployment described

above to run the in-network rate-adaptation service for a DASH video streaming ap-

plication, as shown in Figure 6.4. In order to do so, we modified the VLC DASH

plugin to use the novel network API presented. The DASH-enabled content server

was run at the Wisconsin site, and the client ran at the Rutgers WiMAX network.

The rate-adaptation service run within a cloudlet co-located with the Rutgers edge

router and was instantiated using the PacketCloud [110] framework. Figure 6.5 shows

the overhead in introducing in-network processing for a video stream under 2 different

rate-adaptations. While the overhead can be reduced by making right hosting choices

for the compute layer, it can also be traded off against the edge bandwidth conditions

to dynamically decide benefit of rate-adaptation. In our scheme, the clients access link

is monitored using a routing layer service at the access router and the rate-adaptation

is dynamically invoked if the access bandwidth drops below the server encoded rate.

For the demonstrations, the drops in access bandwidth were emulated by adjusting

bandwidth reports, to simulate link quality variation from client mobility. Figure 6.3.3

120

shows the reduction in client traffic with transcoding.

Figure 6.7: Deployment at five rack sites on
the GENI wide-area and edge testbeds at
Rutgers and NYU Poly (shown expanded).

Figure 6.8: The GUI for the Drop It appli-
cation showing the message drop and pickup
screens

Context Based Communications. A contextual messaging application – Drop It

– was developed using name-based networking abstractions provided by MobilityFirst,

which allows users to drop messages at particular locations, and to pick up messages

left by others at the same location. Our context services solution allows locations (con-

texts, in general) to be assigned unique names (a GUID globally unique ID) which

help identify them for network operations such as send, recv or get (for named content

retrieval). Locations in physical space can be defined (or fenced) by a set of GPS coor-

dinates, for example, and a persistent GUID can be assigned to them by a well-known

service. Next, by maintaining meaningful address mappings for a location GUID in the

GNRS, endpoints can send and receive messages to/from this context. For instance, a

mapping of location GUID to the set of all phones that dropped messages at that par-

ticular location can enable a pure peer-to-peer realization of the contextual messaging

service, where the “pick-up” can implemented as an efficient multicast request to each

of the phones by using MobilityFirsts get API. It is also possible to realize alternate

approaches to pure p2p, where in-network message caches could enable a more robust

operation when phones go offline.

The demonstration was run across five of the seven sites within the long-running

121

network deployment (shown in Figure 6.7). The two edge sites at NYU Poly and

Rutgers WINLAB, hosted both WiFi and GENI WiMAX access networks that were

connected back to the GENI core. Ten Android phones (some with dual WiFi/WiMAX

interfaces), each running the network protocol stack and the “Drop It” application

(shown in Figure 6.3.3) were carried around by volunteers (except two which were

static at Rutgers and remotely accessible) who performed message drop and pick-up

operations at the several preset locations on the demo floor. Each location was marked

with a QR-code tag that encoded the locations GUID and was directly scanned by the

app to retrieve the context GUID. We used QR codes to identify locations primarily

due to the difficulties of using GPS indoors at the demo floor.

122

Chapter 7

Conclusions

The aim of this thesis work has been to design and develop new networking techniques

aimed at the deployment and support of advanced services in the future Internet. Much

of the effort has been dedicated to the development of different protocol components

that enhance and simplify service creation in the future Internet, starting from the

introduction of the central architectural concept of Named-Object based networking and

the power that lies behind it. Looking at the different architectures presented over the

years, a set of fundamental abstractions have been defined, providing a comprehensive

analysis of their properties and how they could be met. This was centered around the

MobilityFirst architecture in which the “narrow waist” of the protocol stack is based

on Named-Objects which enable a broad range of capabilities in the network. This

was followed up with a specific set of network service APIs that provide full access to

the proposed abstractions supported by MobilityFirst. Using performance benchmarks

and the implementation of representative use cases it was shown that the abstractions

enabled by the new API are flexible and can enable efficient and robust versions of

present and future applications.

The work then moved to the set of services that will be required by the future

mobile Internet and that due to different shortcomings are hardly supported by the

current TCP/IP Internet architecture. These included: i) Multicast services, ii) Content

services, iii) In-network compute, and finally iv) Context services. For each of these

services, appropriate abstractions enabled by the Named-Object architecture have been

presented and a use case based prototype evaluation has been provided. The results

show the feasibility of providing a broad range of services with good performance and

reasonable protocol overhead.

123

Starting from the above abstractions analysis and the newly introduced services,

the third chapter of the work, focused on how such new services can be made available

to the end-users of the network. Considering first the expected requirements for such

systems, a new transport layer service has been presented. The new designed protocol

can seamlessly support a set of distinctive features based on use of names and in-network

reliability techniques. Using the developed prototype components, experimental results

show that for a few representative scenarios including mobile data delivery, web content

retrieval, and disconnected/late binding service, the new systems can be exploited to

reduce the impact of complex operations improving performance for the end users of

the network.

It was then analyzed how advanced advanced cloud services can be supported in

the proposed Named-Object architecture. In particular, the concept of named-objects

has been extended to natively support virtual network identifiers. It has been shown

that the virtual network capability can be designed by introducing the concept of a

“Virtual Network Identifier (VNID)” which is managed as a Named-Object. Further,

the presented design supports the concept of Application Specific Routing (ASR) which

enables network routing decisions to be made with awareness of application parameters

such as cloud server workload. Experimental results show that the new framework

provides a clean and simple logic for defining and managing virtual networks while

limiting the performance impact produced by the additional overhead generated by

running such system. Moreover, the potential of ASR was demonstrated through a

based cloud service use case deployment.

The last chapter of the work bridged together the whole study and provided con-

siderations on how the different components presented could be merged into a single

end-to-end realization. As part of this effort, several scenarios including advanced com-

puting and context-aware services have been deployed on a nation wide testbed. While

this led to demonstrate that the developed prototype and the protocols that it imple-

ments are capable of providing a sustainable framework, future research will be key to

further analyze how the named-object abstraction could be the innovative factor that

will push the future Internet. In particular, incremental deployment scenarios will have

124

to be identified to provide an approachable release timeline for the architecture. A

potential solution will be to focus on edge access networks, where services such as in-

network computing and context and multicast services for IoT will have a fundamental

role in the future of network communications, providing the perfect environment for

island deployments.

125

References

[1] A. G. Valkó, “Cellular ip: a new approach to internet host mobility,” ACM
SIGCOMM Computer Communication Review, vol. 29, no. 1, pp. 50–65, 1999.

[2] “Ip mobility support for ipv4,” http://tools.ietf.org/html/rfc3344.

[3] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “Host identity protocol,”
RFC 5201, April, 2008.

[4] D. Farinacci, D. Lewis, D. Meyer, and V. Fuller, “The locator/id separation
protocol (lisp),” 2013.

[5] E. Nordstrom et al., “Serval: An end-host stack for service-centric networking,”
Proc. 9th USENIX NSDI, 2012.

[6] J. Su et al., “Haggle: Seamless networking for mobile applications,” in UbiComp
2007: Ubiquitous Computing. Springer, 2007, pp. 391–408.

[7] A. C. Snoeren and H. Balakrishnan, “An end-to-end approach to host mobility,”
in Proceedings of the 6th annual international conference on Mobile computing
and networking. ACM, 2000, pp. 155–166.

[8] B. Y. Kimura and H. C. Guardia, “Tips: wrapping the sockets api for seamless
ip mobility,” in Proc. of Applied computing. ACM, 2008.

[9] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform
for high-performance internet applications,” ACM SIGOPS Operating Systems
Review, vol. 44, no. 3, pp. 2–19, 2010.

[10] A. V. Abhigyan Sharma and R. Sitaraman, “Distributing content simplifies isp
traffic engineering,” in Proc. of ACM SIGMETRICS, 2013.

[11] D. G. Andersen et al., “Accountable Internet Protocol (AIP),” in Proc. ACM
SIGCOMM, August 2008.

[12] C. V. Mobile, “Cisco visual networking index: global mobile data traffic forecast
update, 2015–2020,” San Jose, CA, vol. 1, 2016.

[13] B. Hesmans, H. Tran-Viet, R. Sadre, and O. Bonaventure, “A first look at real
multipath tcp traffic,” in International Workshop on Traffic Monitoring and Anal-
ysis. Springer, 2015, pp. 233–246.

[14] J. Pan, R. Jain, S. Paul, and C. So-In, “Milsa: A new evolutionary architecture
for scalability, mobility, and multihoming in the future internet,” Selected Areas
in Communications, IEEE Journal on, vol. 28, no. 8, pp. 1344–1362, 2010.

http://tools.ietf.org/html/rfc3344

126

[15] V. Jacobson et al., “Networking named content,” in Proceedings of the 5th inter-
national conference on Emerging networking experiments and technologies. ACM,
2009, pp. 1–12.

[16] L. Zhang et al., “Named data networking,” ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 3, pp. 66–73, 2014.

[17] T. Koponen et al., “A data-oriented (and beyond) network architecture,” in ACM
SIGCOMM Computer Communication Review, vol. 37, no. 4. ACM, 2007, pp.
181–192.

[18] M. Mosko, I. Solis, E. Uzun, and C. Wood, “Ccnx 1.0 protocol architecture,”
http:// www. ccnx. org/ pubs/ CCNxProtocolArch itecture. pdf, Tech. Rep.,
2015.

[19] “Mobility support in ipv6,” http://www.ietf.org/rfc/rfc3775.txt.

[20] R. Stewart and C. Metz, “Sctp: new transport protocol for tcp/ip,” Internet
Computing, IEEE, vol. 5, no. 6, pp. 64–69, 2001.

[21] M. S. Gordon et al., “Comet: Code offload by migrating execution transparently,”
in Proceedings of the 10th USENIX conference on Operating Systems Design and
Implementation. USENIX Association, 2012, pp. 93–106.

[22] J. Erman et al., “Network-aware forward caching,” in Proceedings of the 18th
international conference on World wide web. ACM, 2009, pp. 291–300.

[23] T. Vu et al., “Dmap: a shared hosting scheme for dynamic identifier to locator
mappings in the global internet,” in Distributed Computing Systems (ICDCS),
2012. IEEE, 2012, pp. 698–707.

[24] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and A. Yadav,
“A global name service for a highly mobile internetwork,” in ACM SIGCOMM,
2014.

[25] D. Farinacci, C. Liu, S. Deering, D. Estrin, M. Handley, V. Jacobson, L. Wei,
P. Sharma, D. Thaler, and A. Helmy, “Protocol independent multicast-sparse
mode (pim-sm): Protocol specification,” 1998.

[26] J. Moy, “Rfc 1584–multicast extensions to ospf,” SRI Network Information Cen-
ter, 1994.

[27] S. Farrell et al., “When tcp breaks: Delay- and disruption- tolerant networking,”
IEEE Internet Computing, vol. 10, no. 4, pp. 72–78, 2006.

[28] M. C. Chan and R. Ramjee, “Tcp/ip performance over 3g wireless links with rate
and delay variation.” Wireless Networks, pp. 81–97, 2005.

[29] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani, “Block-switched net-
works: a new paradigm for wireless transport,” in Proc. of NSDI, 2009.

[30] S. Gopinath, S. Jain, S. Makharia, and D. Raychaudhuri, “An experimental study
of the cache-and-forward network architecture in multi-hop wireless scenarios,”
in Proc. of LANMAN, 2010.

http://www.ietf.org/rfc/rfc3775.txt

127

[31] S. C. Nelson, G. Bhanage, and D. Raychaudhuri, “GSTAR: generalized storage-
aware routing for mobilityfirst in the future mobile internet,” in Proc. of Mo-
biArch. ACM, 2011, pp. 19–24.

[32] F. Bronzino, K. Nagaraja, I. Seskar, and D. Raychaudhuri, “Network service
abstractions for a mobility-centric future internet architecture,” in Proceedings
of the eighth ACM international workshop on Mobility in the evolving internet
architecture. ACM, 2013, pp. 5–10.

[33] F. Bronzino and D. Raychaudhuri, “Abstractions and solutions to support smart-
objects in the future internet,” in SmartObjects 2016. ACM, 2016.

[34] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment
issues for the ip multicast service and architecture,” Network, IEEE, vol. 14, no. 1,
pp. 78–88, 2000.

[35] D. Meyer and B. Fenner, “Multicast source discovery protocol (msdp),” 2003.

[36] P. Radoslavov, D. Estrin, R. Govindan, M. Handley, S. Kumar, and D. Thaler,
“The multicast address-set claim (masc) protocol, rfc-2909,” Tech. Rep., 2000.

[37] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron, “SCRIBE:
A Large-Scale and Decentralized Application-Level Multicast Infrastructure,”
JSAC, pp. 1489–1499, 2002.

[38] D. A. Tran, K. Hua, and T. Do, “ZIGZAG: An Efficient Peer-to-Peer Scheme for
Media Streaming,” in INFOCOM, 2003.

[39] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “Mobilityfirst: a robust
and trustworthy mobility-centric architecture for the future internet,” ACM SIG-
MOBILE Mobile Computing and Communications Review, vol. 16, no. 3, pp.
2–13, 2012.

[40] S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achiev-
ing scalable push multicast services using global name resolution,” IEEE, 2016.

[41] V. Jacobson et al., “Networking Named Content,” in CoNEXT, 2009.

[42] D. Han, A. Anand, F. R. Dogar, and Others, “Xia: Efficient support for evolvable
internetworking.” in USENIX NSDI, 2012.

[43] K. Bharath-Kumar and J. M. Jaffe, “Routing to multiple destinations in computer
networks,” Communications, IEEE Transactions on, 1983.

[44] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet routing
convergence,” ACM SIGCOMM Computer Communication Review, vol. 30, no. 4,
pp. 175–187, 2000.

[45] “Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2013-2018,” http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white paper c11-520862.pdf, 2013.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf

128

[46] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Confused,
timid, and unstable: picking a video streaming rate is hard,” in Proceedings of
the 2012 ACM conference on Internet measurement conference. ACM, 2012, pp.
225–238.

[47] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chiang,
“A scheduling framework for adaptive video delivery over cellular networks,” in
Proceedings of the 19th annual international conference on Mobile computing &
networking. ACM, 2013, pp. 389–400.

[48] Y. Chen, B. Liu, Y. Chen, A. Li, X. Yang, and J. Bi, “Packetcloud: an open
platform for elastic in-network services,” in Proceedings of the eighth ACM inter-
national workshop on Mobility in the evolving internet architecture. ACM, 2013,
pp. 17–22.

[49] F. Bronzino, C. Han, Y. Chen, K. Nagaraja, X. Yang, I. Seskar, and D. Ray-
chaudhuri, “In-network compute extensions for rate-adaptive content delivery in
mobile networks,” in International Workshop on Computer and Networking Ex-
perimental Research using Testbeds (CNERT 2014)4.

[50] T. Stockhammer, “Dynamic adaptive streaming over http: standards and design
principles,” in Proceedings of the second annual ACM conference on Multimedia
systems. ACM, 2011, pp. 133–144.

[51] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic adaptive
streaming over http in vehicular environments,” in Proceedings of the 4th Work-
shop on Mobile Video. ACM, 2012, pp. 37–42.

[52] H. Riiser, H. S. Bergsaker, P. Vigmostad, P. Halvorsen, and C. Griwodz, “A
comparison of quality scheduling in commercial adaptive http streaming solutions
on a 3g network,” in Proceedings of the 4th Workshop on Mobile Video. ACM,
2012, pp. 25–30.

[53] C. Müller and C. Timmerer, “A vlc media player plugin enabling dynamic adap-
tive streaming over http,” in Proceedings of the 19th ACM international confer-
ence on Multimedia. ACM, 2011, pp. 723–726.

[54] “Global environment for networking innovations (GENI),” http://www.geni.net.

[55] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming over http
dataset,” in Proceedings of the 3rd Multimedia Systems Conference. ACM, 2012,
pp. 89–94.

[56] “Big Buck Bunny movie,” http://bigbuckbunnymovie.org/.

[57] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware systems,”
International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp.
263–277, 2007.

[58] F. Bronzino, D. Raychaudhuri, and I. Seskar, “Demonstrating context-aware ser-
vices in the mobilityfirst future internet architecture,” in Proceedings of the First
International Conference in Networking Science and Practice (ITC) 28. IEEE,
2016.

http://www.geni.net
http://bigbuckbunnymovie.org/

129

[59] “Global environment for networking innovations (GENI), NSF program solicita-
tion,” http://www.geni.net, 2006.

[60] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system
design,” ACM TOCS, 1984.

[61] B. Ahlgren and et Al, “Design considerations for a network of information,” in
ACM CoNEXT, 2008.

[62] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox,
“Information-centric networking: Seeing the forest for the trees,” in ACM Hot-
Nets. ACM, 2011.

[63] V. Jacobson et al., “Networking named content,” in ACM CoNEXT. ACM,
2009.

[64] S. Paul, R. Yates, D. Raychaudhuri, and J. Kurose, “The cache-and-forward
network architecture for efficient mobile content delivery services in the future in-
ternet,” in Innovations in NGN. First ITU-T Kaleidoscope Academic Conference.
IEEE, 2008.

[65] K. Su, F. Bronzino, K. Ramakrishnan, and D. Raychaudhuri, “Mftp: A clean-
slate transport protocol for the information centric mobilityfirst network,” in Pro-
ceedings of the 2nd International Conference on Information-Centric Networking.
ACM, 2015, pp. 127–136.

[66] A. Erramilli and R. P. Singh, “A reliable and efficient multicast for broadband
broadcast networks,” in ACM Workshop on Frontiers in Computer Communica-
tions Technology, 1988.

[67] S. Mukherjee, K. Su, N. B. Mandayam, K. Ramakrishnan, D. Raychaudhuri, and
I. Seskar, “Evaluating opportunistic delivery of large content with tcp over wifi
in i2v communication,” IEEE LANMAN, 2014.

[68] M. Gerla and L. Kleinrock, “Flow control: A comparative survey,” IEEE Trans-
actions on Communications, 1980.

[69] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click modular
router,” in ACM Transactions on Computer Systems. Citeseer, 2000.

[70] L. Zhang, “Why tcp timers don’t work well,” in ACM SIGCOMM, 1986.

[71] I. Psaras and V. Tsaoussidis, “Why tcp timers (still) don’t work well,” Computer
Networks, 2007.

[72] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh, “Overview of the orbit radio grid testbed
for evaluation of next-generation wireless network protocols,” in Wireless Com-
munications and Networking Conference, 2005 IEEE, vol. 3. IEEE, 2005, pp.
1664–1669.

[73] hostapd, http://wireless.kernel.org/en/users/Documentation/hostapd.

http://www.geni.net
http://wireless.kernel.org/en/users/Documentation/hostapd

130

[74] netem: network emulation tool, http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem.

[75] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall, “How
speedy is spdy,” in USENIX NSDI, 2014.

[76] Alexa: the top 500 sites on the web, http://www.alexa.com/topsites.

[77] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson et al., “Network virtualization in
multi-tenant datacenters,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), 2014, pp. 203–216.

[78] T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe, “Cloudnet: dy-
namic pooling of cloud resources by live wan migration of virtual machines,” in
ACM Sigplan Notices, vol. 46, no. 7. ACM, 2011, pp. 121–132.

[79] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization:
Challenges and opportunities for innovations,” IEEE Communications Magazine,
vol. 53, no. 2, pp. 90–97, 2015.

[80] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the internet
impasse through virtualization,” Computer, vol. 38, no. 4, pp. 34–41, 2005.

[81] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman, “Planetlab: an overlay testbed for broad-coverage services,” ACM
SIGCOMM Computer Communication Review, vol. 33, no. 3, pp. 3–12, 2003.

[82] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In vini veritas:
realistic and controlled network experimentation,” ACM SIGCOMM Computer
Communication Review, vol. 36, no. 4, pp. 3–14, 2006.

[83] V. Valancius, N. Feamster, J. Rexford, and A. Nakao, “Wide-area route control
for distributed services.” in USENIX Annual Technical Conference, 2010.

[84] X. Wu and J. Griffioen, “Supporting application-based route selection,” in Com-
puter Communication and Networks (ICCCN), 2014 23rd International Confer-
ence on. IEEE, 2014, pp. 1–8.

[85] K. Psounis, “Active networks: Applications, security, safety, and architectures,”
IEEE Communications Surveys, vol. 2, no. 1, pp. 2–16, 1999.

[86] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford, “Virtual
routers on the move: live router migration as a network-management primitive,”
in ACM SIGCOMM Computer Communication Review, vol. 38, no. 4. ACM,
2008, pp. 231–242.

[87] F. Bronzino, D. Raychaudhuri, and I. Seskar, “Experiences with testbed evalua-
tion of the mobilityfirst future internet architecture,” in 2015 European Confer-
ence on Networks and Communications (EuCNC).

[88] “iperf - the network bandwidth measurement tool,” https://iperf.fr/.

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.alexa.com/topsites
https://iperf.fr/

131

[89] K. Nakauchi and Y. Shoji, “WiFi Network Virtualization to Control the Connec-
tivity of a Target Service,” IEEE Transactions on Network and Service Manage-
ment, vol. 12, no. 2, pp. 308–319, June 2015.

[90] ——, “vbs on the move: Migrating a virtual network for nomadic mobility in wifi
networks,” in Computer Communications Workshops (INFOCOM WKSHPS),
2016 IEEE Conference on. IEEE, 2016, pp. 277–282.

[91] S. Paul and S. Seshan, “Virtualization and Slicing of Wireless Networks,” GENI
Design Document 06-17, GENI Wireless Working Group, September 2006.

[92] X. Wang, P. Krishnamurthy, and D. Tipper, “Wireless Network Virtualization,”
Proc. ICNC ’13, January 2013.

[93] F. Fu and U. C. Kozat, “Stochastic Game for Wireless Network Virtualization,”
IEEE/ACM Transactions on Networking, vol. 21, no. 1, February 2013.

[94] C. Liang and F. R. Yu, “Wireless Network Virtualization: A Survey, Some Re-
search Issues and Challenges,” IEEE Comm. Surveys and Tutorials, vol. 16, no. 3,
July 2014.

[95] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos, “Software-Defined
and Virtualized Future Mobile and Wireless Networks: A Survey,” Mobile Net-
works and Applications, September 2014.

[96] Y. Shoji, M. Ito, K. Nakauchi, Z. Lei, Y. Kitatsuji, and H. Yokota, “Bring Your
Own Network – A Network Management Technique to Mitigate the Impact of
Signaling Traffic on Network Resource Utilization –,” Proc. MobiWorld 2014,
January 2014.

[97] K. Nakauchi, Y. Shoji, M. Ito, Z. Lei, Y. Kitatsuji, and H. Yokota, “Bring Your
Own Network – Design and Implementation of a Virtualized WiFi Network –,”
Proc. IEEE CCNC’14, January 2014.

[98] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communications Review, vol. 38, no. 2,
April 2008.

[99] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “Omf: a control and man-
agement framework for networking testbeds,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 4, pp. 54–59, 2010.

[100] M. Singh, M. Ott, I. Seskar, and P. Kamat, “Orbit measurements framework and
library (oml): motivations, implementation and features,” in Tridentcom 2005.
IEEE, 2005, pp. 146–152.

[101] S. Banerjee et al., “Public safety focus: Connected vehicles assisting first respon-
ders,” https://www.us-ignite.org/apps/bRzcwAY6mtPENpFqvFFQTd/, 2015.

[102] A. Babu, F. Bronzino, D. Raychaudhuri, and I. Seskar, “Cloud services
enhancements through application specific routing in mobilityfirst fia,”

https://www.us-ignite.org/apps/bRzcwAY6mtPENpFqvFFQTd/

132

http://groups.geni.net/geni/wiki/GEC22Agenda/EveningDemoSession#
CloudServicesEnhancementsThroughApplicationSpecificRoutinginMobilityFirstFIA,
2015.

[103] F. Bronzino, P. Karimi, and I. Seskar, “Introduction to the mobilityfirst fia proto-
col suite,” http://groups.geni.net/geni/wiki/GEC21Agenda/MobilityFirst, 2014.

[104] F. Bronzino, C. Han, Y. Chen, K. Nagaraja, X. Yang, I. Seskar,
and D. Raychaudhuri, “In-network compute layer in mobilityfirst future
internet architecture fia,” http://groups.geni.net/geni/wiki/GEC20Agenda/
EveningDemoSession#MobilityFirst, 2014.

[105] F. Bronzino, K. Alimole, K. Nagaraja, D. Raychaudhuri, and I. Seskar, “Context
services in mobilityfirst fia,” https://www.geni.net/?p=2924, 2013.

[106] F. Bronzino, K. Nagaraja, D. Raychaudhuri, and I. Seskar,
“Mobilityfirst network api use in mobile applications,” http:
//groups.geni.net/geni/wiki/GEC16Agenda/EveningDemoSession#
MobilityFirstNetworkAPIuseinMobileApplications, 2013.

[107] A. Lara, B. Ramamurthy, K. Nagaraja, A. Krishnamoorthy, and D. Raychaud-
huri, “Cut-through switching options in a mobilityfirst network with openflow,”
in 2013 IEEE International Conference on Advanced Networks and Telecommu-
nications Systems (ANTS). IEEE, 2013, pp. 1–6.

[108] “Openflow switch specification, version 1.5.0,” https://www.opennetworking.
org/images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.0.noipr.pdf, 2014.

[109] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn through a
future-proof forwarding plane,” in Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. ACM, 2013, pp. 127–
132.

[110] Y. Chen, B. Liu, Y. Chen, A. Li, X. Yang, and J. Bi, “Packetcloud: an open
platform for elastic in-network services,” in ACM MobiArch. ACM, 2013.

http://groups.geni.net/geni/wiki/GEC22Agenda/EveningDemoSession#CloudServicesEnhancementsThroughApplicationSpecificRoutinginMobilityFirstFIA
http://groups.geni.net/geni/wiki/GEC22Agenda/EveningDemoSession#CloudServicesEnhancementsThroughApplicationSpecificRoutinginMobilityFirstFIA
http://groups.geni.net/geni/wiki/GEC21Agenda/MobilityFirst
http://groups.geni.net/geni/wiki/GEC20Agenda/EveningDemoSession#MobilityFirst
http://groups.geni.net/geni/wiki/GEC20Agenda/EveningDemoSession#MobilityFirst
https://www.geni.net/?p=2924
http://groups.geni.net/geni/wiki/GEC16Agenda/EveningDemoSession#MobilityFirstNetworkAPIuseinMobileApplications
http://groups.geni.net/geni/wiki/GEC16Agenda/EveningDemoSession#MobilityFirstNetworkAPIuseinMobileApplications
http://groups.geni.net/geni/wiki/GEC16Agenda/EveningDemoSession#MobilityFirstNetworkAPIuseinMobileApplications
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Evolving Networking Scenarios in the Future Internet
	Using New Technologies for Quick Iteration
	Organization of the Thesis

	Name Based Architectures and Service Abstractions
	Service Abstractions for the Future Internet
	Named-Objects
	A Name Object Based Architecture: MobilityFirst
	A New Network API
	The MobilityFirst Network API
	Basic Operations
	Content and Service Extensions to the API

	Implementation
	Micro-benchmarks

	Use Cases

	Named-Object Based Services
	Multicast Services
	NOMA Design
	Multicast Tree Management
	Data Forwarding

	Evaluation
	Tree Generation Algorithms
	Comparison to IP multicast

	In-Network Compute Services
	In-Network Compute Architecture
	Overview
	Key Components

	In-Network Rate Adaptation as an example
	Implementation
	Prototype Evaluation
	Deployment on GENI Wide-Area Testbed
	Evaluation of In-Network Rate-Adaptation

	Context Services
	Context Service in MobilityFirst
	Emergency Service Demo

	Named-Object Based Services for Clients
	A Flexible Transport Layer
	Requirements for transport layer service for ICN
	MFTP design
	Segmentation, sequencing, and in-order delivery
	Coordinated End-to-end error recovery and hop-by-hop reliable delivery
	In-network transport proxy
	Flow control and congestion control
	Multicast

	Implementation
	Case studies and evaluations
	Large content delivery over wireless
	Web content retrieval
	Late-binding and storage for disconnection

	Supporting Advanced Services Through Named-Object Based Network Virtualization
	NOVN: A Named-Object Based Virtual Network Design
	NOVN General Design
	NOVN Protocol Details
	A Better Virtualization Abstraction
	Separating Local and Global Tasks
	Network State Exchange

	Application Specific Routing
	Introducing Application Performance Index into Service Anycast

	Prototype and Benchmark Results
	Click Based Virtual Routers

	Micro-Benchmarks

	vMCN: Virtual Mobile Cloud Network
	vMCN Design
	vBS: WiFi Network Virtualization

	Protocol Details for Components Coordination
	Dynamically Configuring a Name-based Virtual Network

	Prototyping
	Reduction of the CPS Response Time
	Experimental Setup
	Experimental Results

	An End-to-End Service Realization
	Architecture Validation Approach
	Key Developed Technologies
	Deployment Scenarios
	Support at Scale Testbeds and Experimental Research
	Considerations for Future Adoptability
	An End-to-End Deployment Realization

	Conclusions
	References

