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ABSTRACT OF THE DISSERTATION

Study of two-particle response and phase changes in strongly

correlated systems using Dynamical Mean Field Theory

By BISMAYAN CHAKRABARTI

Dissertation Director:

Prof. Kristjan Haule

The study of strongly correlated materials is currently perhaps one of the most active areas of

research in condensed matter physics. Strongly correlated materials contain localized electronic

states which are often hybridized with more itinerant electrons. This interplay between localized

and delocalized degrees of freedom means that these compounds have highly complex phase dia-

grams which makes these compounds very challenging to understand from a theoretical standpoint.

Computer simulations have proved to be an invaluable tool in this regard with state of the art ab-

initio simulation techniques harnessing the ever-increasing power of modern computers to produce

highly accurate descriptions of a variety of strongly correlated materials. One of the most powerful

simulation techniques currently in existence is Dynamical Mean Field Theory (DMFT). This thesis

describes this powerful simulation technique and its applications to various material systems, as well

as addressing some theoretical questions concerning particular implementations of DMFT.

This thesis is divided into two parts. In part 1, we describe the theory behind DMFT and its

amalgamation with Density Functional Theory (DFT+DMFT). In chapters 2 and 3, we provide the

basic theory theory behind DFT and DMFT respectively. In chapter 4, we describe how these two

methods are merged to give us the computational framework that is used in this thesis, namely

DFT+DMFT. Finally, we round off part 1 of the thesis in chapter 5, which provides a description

of the Continuous Time Quantum Monte Carlo (CTQMC) impurity solver, which is at the heart of

the DFT+DMFT algorithm and is used extensively throughout this thesis.
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In part two of the thesis, we apply the DFT+DMFT framework to address some important

problems in condensed matter physics. In chapter 6, we study the Magnetic Spectral Function of

strongly correlated f-shell materials to understand two important problems in condensed matter

physics, namely the volume collapse transition in Cerium and the valence fluctuating state ground

state of δ-Pu. In chapter 7, we study the contribution of lattice parameters and electronic entropy

to study the decades-old problem of understanding the spin state transition observed in LaCoO3,

where we show how lattice expansion, octahedral rotations and electronic entropy are all essential

in stabilizing the high-spin state at high temperature. In chapter 8, we switch to studying a more

theoretical problem by looking at the problems with using the highly popular constrained Random

Phase Approximation (cRPA) method to estimate the screening of local inter-electronic repulsion in

strongly correlated systems. We show that cRPA systematically underestimates screening in such

systems which makes it an unsuitable method for estimating the repulsion parameter (U) used in

impurity solvers. We then develop an alternate method to estimate the screening using the full

local polarization which overcomes many of these limitations. Chapter 9 contains all the conclusions

obtained in this thesis, followed by references and appendices.
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Chapter 1

Introduction

Condensed Matter Physics involves the scientific study of the properties of macroscopic collections

of particles . In a rich history spanning a century since the birth of quantum mechanics, Condensed

Matter Physics has grown into one of the most active fields of physics and has had a direct role in

enabling the technological revolution that the human species is currently living through. In most

fields of physics, the fundamental concept which underlies most research is that of “Reductionism”,

which is the belief that every phenomenon exhibited by a system can be explained by understand-

ing the fundamental properties of its most elementary constituents. However, the basic philosophy

of condensed matter physics is perhaps best summarized by the oft-quoted phrase coined by P.W

Anderson- ”More is different”. It captures the idea that a macroscopic collection of matter ex-

hibits properties which are hard to predict based on merely the microscopic equations governing

the individual constituents. This idea, which is known as “Emergence”, is the guiding principle

behind the phenomenon that condensed matter physicists strive to understand in the realm of the

quantum properties of materials. Some simple examples of emergent properties (see Fig 1.1) include

water molecules forming complex waves in water bodies and intricately shaped snow flakes in winter,

swarms of living organisms exhibiting behaviors much more complicated than individual members,

or perhaps most stunningly, how a collection of lifeless chemical elements can combine to form some-

thing as complex as a human being. In condensed matter, the study of emergent properties in mate-

rial systems has given us a keen understanding of why materials comprised of very similar chemical

constituents might behave as a metal,insulator, semiconductor, magnet, superconductor or a vari-

ety of other complex phases known to us depending on differences in crystal structure, temperature,

pressure or a variety of other controlling factors. The ability to understand and thereby control these

material properties have resulted in condensed matter physics having a great impact in engineering

and technology, making it a field of physics which has a pronounced real-world impact in society.
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Figure 1.1: Examples of emergent behavior in nature: (from left) 1) swarms of birds displaying

complex behavior. 2) Snowflakes of complex different shapes formed by the same fundamental solid

phase of water 1

Within condensed matter, one of the most active and fascinating fields is the study of strongly

correlated systems. In most materials (like those where the constituent elements only have open s

and p shells), the somewhat naive yet powerful approximation that the electrons in the material act

as independent particles moving in an effective medium, known as the independent electron approx-

imation works surprisingly well. This effect, which is explained by the Landau Fermi Liquid Theory,

occurs due to these extremely mobile itinerant electrons forming bands consisting of ”quasiparti-

cles”, which result in the inter-electronic coulomb repulsion being screened highly effectively. This

success of the Landau Fermi liquid theory and other theoretical approximation schemes has meant

that we have quite a good understanding of the properties of these “weakly correlated systems”

(though some particular systems still remain challenging).

However this approximation usually breaks down in materials with incomplete d and f shells,

because the electrons in these shells are localized to a much greater extent around their parent atoms

(see Fig 1.2). These electrons cannot effectively screen each other, unlike the much more itinerant

s and p electrons and therefore retain some of their atomic properties and become highly correlated

due to the interactions between them. In addition, there is often strong mixing (hybridization)

between them and the outer s and p electrons, leading to a large interplay between itinerant and

localized degrees of freedom. Such materials, commonly known as strongly correlated systems, often

1Sources-1) fuelspace.org 2) Wikipedia
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have highly complex phase diagrams (see Fig 1.3) with many different phases across which transitions

can be tuned by tweaking some external knob such as temperature or pressure. This makes these

systems particularly useful from a material science/engineering standpoint.

Figure 1.2: The Kmetko-Smith diagram showing the trends in increasing electronic correla-

tion/localization across different shells of the periodic table. The elements at the bottom left corner

display the least amount of correlations and form conventional superconductors at low temperatures.

At the other extreme elements in top right corner show extremely high localization and typically

form local moments which give rise to magnetism 2

2Source- Introduction to Many-Body Physics. Piers Coleman (Cambridge University Press)
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Figure 1.3: The phase diagram of a cuprate superconductor showing the multitude of different phases

that can exist in a strongly correlated system 3

Finding a coherent theoretical framework which can capture the essential properties of such

complex materials has proved to be immensely challenging and continues to be an area of active

research. Computational simulations have played an important role in this effort and have enabled

us to study and predict properties of real materials instead of restricting ourselves to model Hamil-

tonians. These developments have been made possible by large improvements in both the hardware

capabilities of modern computers as well as the development of new faster and more powerful sim-

ulation algorithms. In the field of weakly correlated materials, Density Functional Theory (DFT)

has led to a revolution in material simulation, and has given us the power to compute properties

using relatively modest computational resources, which has led to an explosion in research in com-

putational materials physics as well as quantum chemistry. However DFT, while being extremely

powerful, is often completely inadequate when applied to strongly correlated systems as the drastic

approximations it employs contain only rudimentary treatments of the electronic correlations which

are essential to understanding the physics of these compounds (for more details refer to chapters 2

3Source: http://web.mit.edu/~ivishik/www/inna_vishik_files/Page441.htm

http://web.mit.edu/~ivishik/www/inna_vishik_files/Page441.htm
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and 3).

Dynamical Mean Field Theory (DMFT) is one of the most promising theories which aims to

address some of these shortcomings. DMFT provides us a way to simulate strongly correlated

systems using controlled approximations which reduce computational complexity while retaining

most of the essential physics of the system, including the interplay between itinerant and localized

degrees of freedom. This method, which initially became popular as a method to solve model

Hamiltonians such as the Hubbard Model, has proved to be a valuable tool to capture the properties

of d and f shell systems. This has especially been true in the last decade after the successful merger of

DMFT with DFT to yield a framework which is capable of dealing with both the weakly correlated

electrons (which DFT is well suited to) as well as the localized d and f orbital electrons, where

DMFT shines. This approach, known as DFT+DMFT has proved to be one of the most successful

methods in reproducing experimentally verifiable properties of correlated systems and is one of the

methods driving the advancement in human understanding in the field of correlated materials .

As result of these and other highly advanced computational techniques available, computational

condensed matter today is one of the most exiting fields of physics to be part of. The current

algorithms allow us , for perhaps the first time in history, to perform ”computational experiments”

where we can simulate materials which are extremely difficult to realize experimentally in a reliable

and quick manner given sufficient computational resources. It is hoped that soon this would give us

the power to perform computational material design, which is perhaps one of the ultimate aims of

condensed matter physics. We would then be at a stage where we can solve the inverse problem of

having been given a certain set of desired properties, of being able to predict which exact chemical

system would satisfy those requirements from first principles without necessarily having to resort

to actual experimentation. Since strongly correlated materials display some of the most interesting

properties known in nature, it is to be expected that methods such as DFT+DMFT will be at the

forefront of such efforts.

In this thesis, we shall study some of the fundamental theoretical aspects of the DFT+DMFT

method as well as its applications to real material systems. The thesis is arranged in the following

manner: In Part 1 , we shall aim to present a description of the theory behind DFT+DMFT. In

chapter 2 we shall give a brief introduction to Density functional Theory (DFT) and the equations

which govern the method. In chapters 3 and 4, we shall explain the DMFT method, provide details

of the approximations employed in DMFT and explain how the merger of DFT+DMFT is carried out

in practice. In Chapter 5 we shall provide more technical details of the Computational algorithm

which lies at the heart of our implementation of DFT+DMFT, the Continuous Time Quantum

Monte Carlo (CTQMC) impurity solver. Having laid out the major theoretical building blocks of
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our framework, in Part 2 we shall move on to particular problems which have been investigated

in the course of this doctoral study. Chapter 6 details the investigation of the magnetic spectral

function of f-shell compounds such as α Cerium, γ Cerium and δ plutonium. Chapter 7 describes a

study (using DFT+DMFT) of the the importance of structural parameters and electronic entropy

in driving the spin state transition in LaCoO3, which is a problem that has attracted the attention

of condensed matter physicists for decades . Chapter 8 contains the investigation of the inadequacy

of the Constrained Random Phase Approximation(cRPA), one of the most popular methods to

estimate screening in strongly correlated systems and proposes a new way to understand the most

important screening processes that dominate at the local level. Chapter 9 contains the conclusion

and is followed by the Bibliography and Appendices.
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Part I

The DFT+DMFT Method
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Chapter 2

Density Functional Theory

Density Functional Theory(DFT) is one of the most successful theories in the world of modern

physics. Its immense popularity can be gauged from the fact that the seminal papers by Hohenberg

and Kohn [63], and Kohn and Sham [74] are the two most heavily cited papers in modern times.

Density functional theory allows for ab-initio (with no arbitrary tunable free parameters) calculations

of the zero-temperature ground state material properties of the vast majority of weakly correlated

compounds. With the growth of modern algorithms in this field, one can now employ off-the-shelf

packages to obtain highly accurate results for a large variety of experimental observables while

spending very little computational resources. In this section, we shall concentrate on giving a brief

introduction to the principles of DFT, while also mentioning some of the limitations that have led

to the search for more advanced methods.

As a starting point for the discussion, we begin with the ”Theory of Everything” for condensed

matter systems, describing a non-relativistic lattice system of nucleii and the accompanying electrons:

H = − ~2

2me

∑
i

∇2
i −

~2

2Me

∑
I

∇2
I +

1

2

∑
i 6=j

e2

|ri − rj |
− 1

2

∑
i,I

e2ZI
|ri −RI |

+
1

2

∑
I 6=J

e2ZIZJ
|RI −RJ |

(2.1)

In this equation, the first two terms describe the kinetic energy of the nucleii and the electrons re-

spectively while the next three terms describe the inter-nuclear, nuclei-electron and electron-electron

Coulomb interactions, with R (r) denoting the positions of the nucleii (electrons). Note that this

equation neglects relativistic corrections such as spin orbit coupling which can become important

in some systems (and which most advanced DFT packages are able to treat to some degree). We

first simplify this equation by adopting the so-called Born-Oppenheimer approximation, whereby

the nucleii are assumed to be fixed. This is an exceptionally accurate approximation due to the

much higher mass of the nucleii relative to the electrons. This approximation dispenses with the

nuclear kinetic energy term and leaves us with a Hamiltonian for the electrons moving in an effective

field created by the lattice of nucleii. The resulting Hamiltonian becomes:

H = − ~2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj |
+
∑
i

Vext(ri) + Eion (2.2)
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Where Eion is the constant inter-nuclear Coulomb term and Vext is the nucleii-electron repulsion

given by:

Vext(r) =
∑
I

e2ZI
|r−RI |

(2.3)

However, even this simplified many-electron Schrodinger equation is essentially impossible to

solve for more than O(10) electrons due to the extreme computational complexity introduced by the

inter-electronic Coulomb repulsion term. The major breakthrough, first proposed by Hohenberg and

Kohn [63] was to show that, at least for the calculation of ground state properties, it is sufficient to

work with the charge density rather than the electronic wave function itself. Or in other words, the

ground state wavefunction Ψ and other observables are uniquely determined by the charge density-

n(r) = 〈Ψ|ψ†(r)ψ(r)|Ψ〉 (2.4)

Note that this leads to enormous decrease in computational complexity, n(r) is a 3 dimensional scalar

instead of the original 3N dimensional vector Ψ. The result is proved most easily by contradiction.

Let us assume that two different external potentials Vext(r) and V ′ext(r) produce the same charge

density n(r) when plugged into Eq. 2.2. If we denote these two Hamiltonians H and H ′ ,their

ground state wavefunctions Ψ and Ψ′ and the corresponding ground state energies E and E′, then

without loss of generality we can say

E′ = 〈Ψ′|H ′|Ψ′〉 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H + V ′ext(r)− Vext(r)|Ψ〉 (2.5)

where the inequality comes from the fact that Ψ is not the ground state of H ′. From this, we get

E < E′ +

∫
dr (V ′ext(r)− Vext(r))n(r) (2.6)

Since both external potentials give the same charge density, exchanging the primed and unprimed

dummy indices, we get

E′ < E +

∫
dr (Vext(r)− V ′ext)n(r) (2.7)

Adding these two equations, we get the obvious contradiction

E + E′ < E + E′ (2.8)

Which proves that Vext (and therefore H and its ground state wave function Ψ) is uniquely determined

by the charge density.

The other theorem proved by the authors in their paper proves the existence of a universal

functional of the charge density F [n] for which the functional

E[n] = F [n] +

∫
drn(r)Vext(r) + Eion (2.9)
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attains a minimum for the ground state density, and has the value corresponding to the ground state

energy at this point. The proof is relatively simple and can be formulated by identifying F [n] as the

part of the Hamiltonian given by Eq. 2.2 containing the electronic kinetic and Coulomb interaction

terms. Knowledge of the exact formulation of this functional would reduce the solution of any

chemical system (at least the ground state properties) to a minimization problem involving only one

3-dimensional quantity (the charge density). However, the only component of F [n] for which an

exact formulation can be found is the ”Hartree” component. The functional is then redefined as:

F [n] =
e2

2

∫
drdr′

n(r)n(r′)

|r− r′|
+ I[n] (2.10)

Where I[n] contains everything in F [n] not including the Hartree term, including the kinetic energy

and the non-Hartree potential energy contributions. Therefore the central problem of solving any

chemical system is the formulation of an accurate I[n].

The first successful attempt at approximating I[n], without which the findings of Hohenberg and

Kohn would have remained a mere theoretical exercise, was achieved by Kohn and Sham [74] in

their seminal paper. They proposed breaking up I[n] as follows:

I[n] = Ts[n] + EXC [n] (2.11)

where Ts[n] is the kinetic energy of an auxiliiary non-interacting electron system and EXC [n] is

known as the ”exchange-correlation” energy of the interacting system. EXC [n] was approximated

as:

EXC [n] =

∫
drn(r)εXC(n(r)) (2.12)

where εXC(n(r)) is the exchange correlation energy per electron of a uniform electron gas which

can be computed highly accurately using Quantum Monte Carlo simulations. This approximation

of using the charge density of a uniform electron gas is known as the Local Density Approxima-

tion(LDA) and is perhaps single handedly responsible for revolutionizing computational Condensed

Matter Physics.

In practice, DFT is implemented by assuming the following Hamiltonian for N independent

electrons:

H =

N∑
i

[
− ~2

2me
∇2
i + VKS(ri)

]
(2.13)

where VKS is the Kohn-Sham Potential which will be derived later. We then find the N lowest

eigenstates and eigenenergies of this hamiltonian, which we denote by |ψi〉 and |εi〉 respectively.
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These ψi’s allow us to calculate the charge density given by:

n(r) =

N∑
i=1

|ψi|2 (2.14)

Note that this charge density is still the charge density of the auxiliary non-interacting system

defined by Eq. 2.13. This formulation though allows us to calculate Ts[n] for this system using the

auxiliary wavefunctions ψi’s by using the standard expression

Ts[n] = − ~2

2me

N∑
i=1

∫
drψ∗i (r)∇2ψi(r) (2.15)

Now we have to ensure that VKS is chosen such that the ground state energy of the Hamiltonian

defined in Eq. 2.13 corresponds to the stationary value of the Hohenberg-Kohn functional. To ensure

this, we vary the functional against ψ:

δ

δψ∗i

E[n]−
N∑
j=1

εj(ψ
∗
jψj − 1)

 = 0 (2.16)

where εj ensures normalization of the wavefunctions. The solutions to this equation correspond to

Eq. 2.13 as long as the Kohn-Sham potential is defined to be

VKS(r) = Vext(r) +

∫
dr′

e2

|r− r′|
n(r′) +

dEXC(r)

dn(r)
(2.17)

Therefore we have successfully transformed the solution of the original interacting system to

the solution of an auxiliary non-interacting eigenvalue problem. The problem however is nonlinear

due to the implicit dependence of VKS on n(r) and thereby on the eigenfunctions themselves. The

solution is therefore found iteratively, where we perform the following steps till self-consistency:

1. start with an initial guess for the density n(r)

2. use it to construct VKS using Eq. 2.17

3. Solve the eigenvalue problem for the Hamiltonian given by Eq. 2.13 to obtain ψi and εi

4. Construct new n(r) using Eq. 2.14 and go back to step 2

From the converged solution, we calculate the ground state energy by :

E =
∑
i

εi −
e2

2

∫
drdr′

n(r)n(r′)

|r − r′|
+ EXC [n]−

∫
drn(r)VXC(r) (2.18)

It is to be noted that that apart from the ground state, the eigenvalues and eigenfunctions of the

Kohn Sham Hamiltonian are meaningless, strictly speaking. However in practice they are often

found to be in good agreement with experimental bandstructures and are used as such.
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So we see that Density Functional Theory provides us with a valuable tool with which to per-

form ab-initio simulations of real materials. The success of this method is mainly based on its

computational efficiency and ease of implementation, which has resulted in a number of packages

being developed such as VASP [77], Quantum Espresso [38], Abinit [40] and Wien2k [19] which offer

off-the-shelf implementations which enable researchers to perform reliable and fast simulations even

with very limited resources. However DFT fails when applied to materials with strong correlations

because of the relatively naive way it treats electronic correlations with LDA approximation (or

improvements on it such as GGA, PBE, Hybrid Functionals etc.). Therefore, one needs more ad-

vanced methods to simulate such materials, which is exactly where Dynamical Mean Field Theory

(described in the next chapter) comes into its own.
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Chapter 3

Dynamical Mean Field Theory

In the previous section, we looked at Density Functional Theory (DFT), which is the current

workhorse for materials simulation in Condensed Matter Physics. While exceedingly successful in

simulating weakly correlated systems (those with open s and p shells), DFT is known to be deficient

when simulating open d and f shell materials, where the highly localized d and f electrons play an

important role determining the physics of the compound. The main issue is the rather rudimentary

treatment of electronic correlations in DFT. In the last section, we explained the Local Density

Approximation(LDA) where the uniform electron density of a free electron gas is used to estimate

the Exchange Correlation functional. There have been improvements to this approximation where

we include higher order corrections to the exchange correlation kernel or otherwise tweak the func-

tional to include terms which allow better agreement with experiment. We therefore have a wide

variety of functionals such as GGA, PBE, PBESol and Hybrid functionals which are currently the

state of the art in DFT material simulations. Most of the implementations of DFT in off-the-shelf

packages also include treatments of spin orbit coupling and other relativistic corrections as well as

spin-dependent interactions to some degree which allows us to simulate magnetic phases in weakly

correlated systems.

However, all of these treatments are unable to capture the strongly correlated behavior of ma-

terials with highly localized electrons. Mott Physics for example, whereby certain compounds such

as V2O3 become insulators even though they have half-filled electronic shells, is completely beyond

the scope of standard DFT. These effects often stem from the fact that the electrons in these mate-

rials are correlated, i.e- the behavior of one electron depends on that of other electrons in similarly

correlated shells. This effect cannot be described by any scheme which assumes point wise locality

(or some weaker form thereof) like DFT does. In addition, the correlated objects can be more com-

plicated than simple atomic orbitals, they can be dimers or some higher aggregation of atoms like

in V O2 or molecular orbitals in molecules. So we can have electronic correlations appear in a wide

variety of chemical systems where a simple DFT-like treatment is inadequate.

It should be evident that simulations of such highly correlated systems would be highly expensive

because in principle we have to solve the true many body quantum mechanical equation such as



14

Eqn. 2.2, which is computationally intractable as mentioned earlier. One of the most promising

approaches to simulating such systems is Dynamical Mean Field Theory(DMFT). Within DMFT,

we simulate the correlated system as an impurity containing the correlated degrees of freedom,

embedded in a self-consistently determined effective medium which represents the non-correlated

itinerant orbitals (see Fig. 3.1). The approach is mean field in the sense that we freeze out some of

the spatial extent of electronic correlations. However the resulting mean field coupling the impurity

and the bath is still time-dependent, allowing us to preserve dynamic (quantum) fluctuations. The

true power of the method however comes from the ability to employ highly efficient computational

impurity solvers such as Continuous Time Quantum Monte Carlo (CTQMC) described in the next

chapter, which make the formulation computationally tractable. DMFT can also be very efficiently

merged with DFT to create DFT+DMFT, wherein the itinerant bath (which represents the weakly

correlated s and p shells) can be solved using DFT while the correlated subspace of d and f orbitals

is left to the DMFT impurity solvers and self-consistency conditions.

Figure 3.1: Schematic diagram showing the basic DMFT approximation where an interacting lattice
system is mapped to an impurity model hybridized with a self-consistently determined bath 1

1Source : http://www.theorie.physik.uni-muenchen.de/lsschollwoeck/pollet_group/pollet_bilder/web_

bilder_l/dmft_l.jpg

 http://www.theorie.physik.uni-muenchen.de/lsschollwoeck/pollet_group/pollet_bilder/web_bilder_l/dmft_l.jpg
 http://www.theorie.physik.uni-muenchen.de/lsschollwoeck/pollet_group/pollet_bilder/web_bilder_l/dmft_l.jpg
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3.1 Basics of DMFT

The simplest model for studying correlated systems is the famous Hubbard Model-

H = −
∑
〈i,j〉,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ (3.1)

where tij is the hopping between adjacent sites and U is the on-site Coulomb repulsion. We can

write the partition function of this model in the path integral formulation

Z =

∫ ∏
iσ

Dc†iσDciσe
−S (3.2)

Within DMFT, we simplify the problem by introducing an impurity which we label by site 0. We

then rewrite the action S for the lattice problem as an effective action where the on-site fermionic

degrees of freedom on the impurity site are treated exactly. These on-site degrees of freedom are

then coupled to an effective time dependent ”dynamic” Weiss field which captures the hybridization

with the lattice degrees of freedom. This effective action Seff is given by:

Seff =

∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†0σ(τ)G−1
0 (τ − τ ′)c0σ(τ ′) + U

∫ β

0

dτn0↑n0↓ (3.3)

where

G−1
0 (τ) = − ∂

∂τ
−
∑
ij

tj0G
(0)
ij (τ)tik (3.4)

Here G0 plays the role of a bare Green’s function for the effective impurity problem and can

also be thought of as a time-dependent Weiss field. However it is different from the bare Green’s

function for the original lattice model and captures just the interaction between the lattice bath

and the impurity we have constructed. Under this formulation, we can calculate the the impurity

Green’s function under this effective action by :

Gimp(iωn) =

∫ β

0

d(τ − τ ′)Gimp(τ − τ ′)eiωnτ−τ
′) (3.5)

where ωn are the fermionic matsubara frequencies and

Gimp(τ − τ ′) = −〈Tτ c0(τ)c†0(τ ′)〉Seff (3.6)

This part of the process is achieved by applying impurity solvers such as CTQMC which calculate

the impurity Green’s function. Now we write the Green’s function of the original Lattice model as

:

G(k, iωn) =
1

iω − εk + µ− Σ(iωn)
(3.7)

where Σ(iωn) is the self energy. Note that in general the self energy is k-dependent. However within

the DMFT approximation it is approximated to be equal to the local part of the self energy. This
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approximation is at the heart of DMFT. Detailed accounts of when it can be applied can be found

in Ref. [36]. Like most mean field treatments, it becomes exact in the limit of infinite dimensions

or more exactly in the limit of infinite co-ordination number. In order to see this one has to look at

the diagrammatic expansion for the self energy. By looking at the scaling of the Green’s function

as the co-ordination number grows, we see that all non-local diagrams between sites i and j scale

at least as 1/
√
d3
||i−j|| where d||i−j|| is the number of equivalent atoms at a manhattan distance of

||i− j||. However all local diagrams in the self energy scale as 1/
√
d. Therefore as the coordination

number (or the number of dimensions) approaches d→∞, only the local diagrams survive.

Now we have to connect the impurity Green’s function calculated by the impurity Green’s func-

tion to the Lattice Green’s function of the original system. In the infinite dimensional limit, it can

be shown that that G0 in Eq. 3.3 is related to the lattice Green’s function of the original system by:

G−1
0 = iωn + µ−

∑
ij

ti0t0j [Gij −
Gi0G0j

G00
](iωn) (3.8)

where G00 denotes the local (k-summed) Green’s function of the lattice.

G00(iωn) =
∑
k

G(k, iωn) (3.9)

The term subtracted from Eq. 3.4 comes due to the so called ”cavity construction” formulation

where one takes out the impurity and treats it as a ”cavity”, and is one of the simplest ways to

arrive at the DMFT equations (the reader can find a more detailed proof in [58, 36]). Now using

the properties of Fourier transforms, we arrive at the following identities-∑
i

t0iGi0 =
∑
k

εkGk = (iω + µ− Σ)G00 − 1 (3.10)

∑
i

t0iGijtj0 =
∑
k

ε2kGk = (iω + µ− Σ)2G00 − (iω + µ− Σ) (3.11)

Using these expressions, we arrive at the final expression for G0:

G0 = Σ +G−1
00 (3.12)

We can therefore now rewrite the DMFT action in Eq. 3.3 in terms of local quantities of the

original lattice. Therefore for any band dispersion(if necessary from DFT) and Coulomb interaction,

we can calculate the lattice Green’s function by mapping it to an impurity problem and then using

the impurity Green’s function to extract the Local Self energy which is plugged into the lattice

problem. The solution to the problem is usually attempted iteratively, whereby one first chooses a

self energy (zero is often a good starting point or we take a previously converged run for a similar

system) and then the following steps are performed:
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• The Local Green’s function of the lattice is computed by summing over k

G00(iωn) =
∑
k

1

iω − εk + µ− Σ(iωn)
(3.13)

• Compute G0 for the impurity solver by:

G0 = Σ +G−1
00 (3.14)

• Solve the impurity problem using the effective action in Eq. 3.3 using an impurity solver to

obtain G00, the impurity Green’s function

• Calculate the new self energy by using the Dyson Equation:

Σ = G−1
0 −G−1

00 (3.15)

• Go back to the first step and iterate till Σ is converged.

In practice we often think of the auxiliary impurity problem problem as an Anderson Impurity

Model. Then we can rewrite the impurity Green’s function in the form:

G00(iωn) =
1

iωn − Eimp + ∆− Σ
(3.16)

where Eimp is the static energy level of the impurity states and ∆ is the hybridization term

which captures the dynamic hopping between the impurity and the bath. In this formulation,

the DMFT self consistency condition is expressed as the twin assumptions-

1

iωn − Eimp + ∆− Σ
=
∑
k

1

iω − εk + µ− Σ(iωn)
(3.17)

and that the impurity Σ is the same as the (purely local) lattice Σ.

Thus in this section we have outlined the algorithm behind DMFT. Note that the version we have

outlined is what is known as single site DMFT, because we use a single impurity model to model our

system. This method is of course limited by the fact that it considers only purely local site-based

interactions. There are extensions to this scheme where we transform to a a group of impurities,

which gives rise to the ”cluster-DMFT” algorithm. Cluster-DMFT has been at the forefront of a lot

of research into systems where have to take into account correlations beyond a single site and is one

of the most powerful tools in computational condensed matter physics. However the computational

cost grows quickly as one increases the size of the impurity cluster, making large clusters very

computational taxing. We also mention here that there are other methods such DCA (Dynamical

Cluster Approximation) which aim to patch together the self energy in k-space rather than in real
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space and more natively preserves translational symmetry. For more details of such methods, the

reader is directed to [58].

In conclusion, we can say that DMFT is one of the most powerful methods to simulate correlated

systems. However the true power of the method is unlocked when we combine the power of DMFT to

accurately describe the strongly correlated degrees of freedom with the tried and tested accuracy of

DFT in simulating the weakly correlated bands. In the next chapter we shall outline how these two

techniques can be combined to produce DFT+DMFT, the algorithm of choice for the simulations

carried out in this dissertation.
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Chapter 4

DFT+DMFT

In the previous two sections we have outlined the two major theoretical components which form the

core of the simulation algorithm used in this thesis. In chapter 2 we outlined Density Functional

Theory, which excels at simulating weakly correlated materials. In chapter 3 we looked at Dynamical

Mean Field Theory (DMFT), which is well-suited to simulating more localized electrons in the d and

f shells. As mentioned earlier, the development which has revolutionized the field of computational

simulation of strongly correlated systems is the successful merger of these two techniques. This

merger , usually known as ”LDA+DMFT” or more correctly ”DFT+DMFT” (because in general we

can use other exchange correlation functionals than LDA) is what we shall look at in this chapter.

However, before looking at how these two methods are merged, we shall reformulate DMFT in terms

of functionals, which shall allow for a easier way to merge DFT with the DMFT method.

4.1 A functional Reformulation of DMFT

The formulation of any theory in a functional form is an elegant way to understand the basic nature

of the equations governing the theory. The formulation usually involves defining an observable X

and defining a functional Γ[X] which has the following properties:

• Γ[X] is extremized at the true value of X for the physical solution of the system

• At the extremum, Γ[X] attains the value of the Free Energy F of the system.

When X is chosen to be the Green’s function G of the system, the functional so defined is known as

the Baym-Kadanoff functional. In this section we shall formulate the Baym-Kadanoff functional for

a condensed matter system and see how DMFT can be thought of as a particular approximation to

this functional.

We start with rewriting Eq 3.2 in terms of the Free Energy:

e−βF =

∫
D[c†c]e−S (4.1)
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Where the sum over sites and spins is assumed. We also know that the Green’s function is given

by

G(r′τ ′, rτ) = −〈Tτ c(r′τ ′)c†(r′τ ′)〉 (4.2)

We now add a source term for the Green’s function in the expression for the partition function :

e−βF =

∫
D[c†c]exp(−S −

∫
dr′dτ ′drdτc(r′τ ′)J(r′τ ′, rτ)c†(r′τ ′) (4.3)

such that
δF [J ]

δJ
= G[J ] (4.4)

The physical Green’s function is obtained by setting J = 0, and the actual Free energy is F [J =

0] = F (0).

Figure 4.1: (a) The free energy F = F [G], as a functional of the Greens function G, is orignally

generally not stationary at the physical Grren’s function G0 of the system. (b) In contrast, the Baym-

Kadanoff functional Γ[G] obtained after performing the Legendre Transform becomes stationary at

G0 and has the value of the physical free energy Γ[G0] = F 0 at its stationary point

We now perform a Legendre Transform to invert the functional to express the equation in terms

of G rather than J, such that J [G(0)] = 0 at the physical value of G = G(0). Therefore, we get

a formulation in terms of F [J [G]]. The new functional obtained as a result of this is the Baym-

Kadanoff functional(see Fig. 4.1), which has the form:

Γ[G] = F [J [G]]− TrJ [G]G (4.5)

We can easily prove that
δΓ[G]

δG

∣∣
G(0) = J [G(0)] = 0 (4.6)
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and at this point

Γ[J [G(0)]] = F (0) (4.7)

Let us first define the Baym-Kadanoff functional for a non-interacting system. Now for any

non-interacting system, the action is quadratic therefore the Free Energy can be written as F =

Tr(log(−G)). Therefore in the presence of the quadratic Source term, the Free energy F0 for a

non-interacting system is still:

F0 = −Tr(log(−G−1
0 + J)) (4.8)

Where G0 is the non-interacting Green’s function. Now as defined above, by taking a derivative

w.r.t J , we get G[J ] = 1/(G−1
0 − J), or equivalently for the non-interacting source term J0[G]

J0[G] = G−1
0 −G−1 (4.9)

But we know from the Dyson equation that for the physical system, the R.H.S of the above equation

when evaluated using the interacting Green’s function G is equal to the Self Energy Σ of the system.

This allows us to identify that J0[G] = Σ[G] for the non-interacting system. Therefore to sum up,

for the non-interacting system we have formulated the Baym-Kadanoff functional Γ0[G] given by:

Γ0[G] = Tr(log(−G))− TrΣ[G]G (4.10)

Σ[G] = G−1
0 −G−1 (4.11)

In general, in the presence of interactions there will be corrections to this functional. We lump

together all of these into one term denoted as Φ[G], also known as the Luttinger Ward Functional.

So this new interacting Baym-Kadanoff functional is defined by:

Γ[G] = Γ0[G] + Φ[G] (4.12)

By using the basic stationarity properties of Γ[G], we get

δΓ[G]

δG
= G−1 −GδΣ

δG
− Σ[G] +

δΦ[G]

δG
= 0 (4.13)

where using Eq 4.11, we get
δΦ[G]

δG
= Σ[G] (4.14)

Now we know from the formulation of the Dyson equation that the self energy contains all

one particle irreducible diagrams. As the process of taking a functional derivative w.r.t G can be

interpreted as cutting a Green’s function line from a diagram, we see that Φ[G] must contain all
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two-particle irreducible ”skeleton” diagrams. For a diagrammatic representation of φ[G], refer to

Fig 4.2

Figure 4.2: Diagrammatic representation of the full Luttinger-Ward functional containing all the

two-particle irreducible skeleton diagrams

Within this framework, the DMFT can be formulated in an extremely elegant manner: We

restrict Φ[G] to contain only local diagrams, as in all the Green’s function propagators G are replaced

by the local propagators Gii, where i is the lattice site (for the diagrammatic representation, see Fig

4.3.
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Figure 4.3: Diagrammatic representation of the DMFT approximation to the Luttinger-Ward func-

tional with all propagators being replaced by local propagators

Equivalently we can also claim the following result. :

δΦDMFT [G]

δGij
= ΣDMFT 6= 0 iff i = j (4.15)

where i,j are lattice sites. By using Eq. 4.14, we see that this implies that the self energy is purely

local, which was the original DMFT approximation described in the last chapter. Note that that we

have made no appeal to any infinite-dimensional limits. All we require for DMFT to work is that

that dominant terms in Φ are the local diagrams. In practice we map the problem to an impurity

problem by setting ΓDMFT = ΓImp and assume GDMFT
local = Gimp, which ensures ΣDMFT = Σimp.

4.2 Merging DFT with DMFT

Now that we have expressed the DMFT approximation in terms of the the Baym-Kadanoff functional,

we can easily extend the framework to elucidate the DFT+DMFT algorithm. As we have seen, we

can express the Free energy of any system as a functional of the Green’s function as :

Γ[G] = Tr(log(−G))− TrΣ[G]G+ Φ[G] (4.16)

Where Γ[G] and Φ[G] are the Baym-Kadanoff and Luttinger-Ward functional respectively. As we

saw, the DMFT approximation is obtained by restricting Φ[G] to only the skeleton diagrams formed

by the local Green’s function. In order to include DFT within this framework, we need to make Γ

a functional of both the Green’s function and charge density ρ. We reformulate the equation as:

Γ[G, ρ] = Tr(log(−G))− TrΣ[G]G+ Φ[G, ρ] (4.17)
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where the Luttinger ward functional has now been modified to :

Φ[G, ρ] = ΦH [ρ] + ΦXC [ρ] + ΦDMFT [G] + ΦDC [G] (4.18)

In the above equation the Luttinger-Ward functional has been decomposed into its Hartree, Exchange

correlation, DMFT and ”Double Counting” parts. An identical extremization operation as carried

out earlier gives us the following relationships-

Σ− VDC =
δΦDMFT [G]

δG
− δΦDC [G]

δG
(4.19)

Where the derivatives are only non-zero for the local Green’s function, and-

VH + VXC =
δΦH [G]

δρ
− δΦXC [G]

δρ
(4.20)

and the charge density ρ is calculated by summing the Green’s function over all frequencies. It is to

be noted that the G is the total Green’s function. It is only while taking the partial derivatives in

Eq. 4.19 that we we have terms only where G = Gloc. So we see that we can use the Hartree and

Exchange correlation potentials computed with DFT and the self energy computed within DMFT

and merge them in one framework. One of the issues that arises is that we have to take care of the

double counting term , which contains the part of the DMFT self energy which is already accounted

for in the DFT calculations. This issue has been one of the main talking points in DFT+DMFT

research and different groups differ on how exactly to deal with it. [120] [28] . However, recently

Haule [47] has proposed an efficient method to compute highly accurate values of VDC .

Within this new formulation, we still use the impurity Green’s function as our Local Green’s

function and the impurity self energy as the self energy of the system. The energy levels of the

lattice system are expressed as Kohn sham eigen energies, and then the Green’s function of the

lattice system is built up by inserting the Self energy and Double counting corrections .

One of the main challenges involved in formulations of DFT+DMFT is how to go from the

full-lattice system, for which we solve the DFT equations to obtain the Kohn-sham levels, to the

correlated subspace, where we can apply the impurity models from which we obtain the DMFT

self energy. In actual material calculations this would involve formulating a method to project our

Green’s function onto the d or f shell degrees of freedom. Different implementations of DFT+DMFT

differ in their methods of identification of these correlated states. Moreover, they also have different

methods to project the Green’s function on to these localized states (The ”Projection” scheme) and

in how they embed the impurity self energy back into the lattice Green’s function (The ”Embedding”

Scheme). Various Projection functions such as LMTO’s, Nth-order Muffin Tin orbitals, as well as

the highly popular Maximally Localized Wannier functions have been used to accomplish these
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operations. However possibly the most accurate results are obtained by using quasi-localized atomic

orbitals |φm〉, which are defined as:

〈r|φµm〉 = ul(|r −Rµ|)Ylm(r̂ −Rµ) (4.21)

where µ is a lattice site index, ul are the radial solutions to the Schrodinger equation for angular

momentum l and Ylm are spherical harmonics. This formulation has the benefit that it allows us

to solve the Dyson equation in real space where the correlations are actually very localized and

hence the DMFT equations are valid, instead of transforming to an effective Hubbard Model by

downfolding to a few Wannier orbitals, which are not typically localized completely on a particular

correlated atom. Using this definition we can define the DMFT self consistency condition in the

Kohn Sham space as :

∑
k,ij

〈φµm|ψDFTki 〉
(
iω + µ− εk − Σ(k, ω)

)−1

ij
〈ψDFTkj |φµ

′

m′〉 =

(
1

iω − Eµimp − Σµ(iω)−∆µ(iω)

)
mm′

(4.22)

Where ψDFTi are Kohn sham states, k is a reciprocal state vector, and

Σij(k, ω) =
∑
Rµ

〈ψDFTki |φµ
′

m〉(Σ
µ
mm′(iω)− V µDC)〈φµm′ |ψ

DFT
kj 〉 (4.23)

is how the self energy is embedded into the Kohn-Sham space from the correlated subspace. It

is to be noted that the Projection and embedding operators are the same basic operators (or the

same tensors), but we just flip the indices to either go from Kohn Sham space to correlated space

or vice versa.

With all these steps defined, we now present the entire charge self-consistent DFT+DMFT cycle

as implemented in the WienDMFT [52] package, which implements DMFT on top of the Wien2k

DFT package [19].
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Figure 4.4: The DFT+DMFT loop as implemented in the WienDMFT Package

The subparts which make up the loop are-

• The charge self-consistency cycle

– Lapw 0: Takes the electronic charge density ρ(r) of the previous cycle (or an initial guess)

and the external potential (Vext) to calculate the Kohn Sham potential VKS as defined

in Eqn. 2.17

– Lapw 1: Solves the eigenvalue problem using the calculated VKS (and Vext) to obtain the

eigenfunctions and the eigenvalues of the Kohn Sham equations

– Lapwso: Adds spin-orbit corrections if necessary

– DMFT 2: We take the Kohn Sham eigenvalues and the current embedded self energy Σ

as constructed by using the embedding operator defined in Eqn.4.23. We then solve the

eigenvalue problem to obtain the eigenvalues and eigenfuncions by using

(−∇2 + VKS + Σ(iω))|ψk,iωn,i〉 = εDMFT
k,iωn,i |ψk,iω,i〉 (4.24)

where i is the band index. We then calculate the chemical potential µ and new valence

charge density ρval by using

Nval = T
∑
iωn,k,i

1

iωn + µ− εDMFT
k,iωn,i

(4.25)

ρval =
∑
k,ij

ψDFTk,i T
∑
iωn

[
1

iωn + µ− εDFTk − Σ(iω)

]
ij

ψ∗DFTk,j (4.26)
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– core: Adds in the core charge density

– mixer: Admixes the core and valence charge densities to obtain final electronic charge

density ρnew(r)

• The Impurity Solver Cycle

– DMFT 1: Uses the Kohn Sham eigenvalues and eigenfunctions calculated in Lapw 1

above, along with the self energy Σ (or an initial guess) to calculate the local Green’s

Function, Impurity Levels and Hybridization functions. This is all done by projecting to

the local degrees of freedom after constructing the projector as defined in Eqn4.21 and

then using Eqn. 4.22

– Impurity Solver (CTQMC): In this step we take the Hybridization function and impurity

levels calculated by DMFT 1 and use the CTQMC (or some other) impurity solver to get

the impurity Green’s Function GDMFT and impurity self Energy Σ(iω). The details of

the CTQMC impurity solver are presented in the next chapter.

Note that the Lapw steps are taken directly from the Wien2k package, which is considered the

gold standard for DFT calculations in the community. So we see that we now have a completely

charge self-consistent method to factor in local electronic correlations in strongly correlated systems.

This DFT+DMFT method is what we shall use in this thesis to study the properties of a variety of

strongly correlated systems. A much more in-depth review of our implementation can be found in

[53], and also on Prof. Haule’s Web Page 1where the reader may also find tutorials to familiarize

oneself with the DFT+DMFT method developed by our group.

Note that in this chapter and Chapter 3, we have not mentioned the details of the fundamental

part of the DMFT approximation which makes it a computationally tractable method to study

strong correlation, which is the impurity solver. In the next chapter, we shall present details of one

of the most advanced impurity solvers currently in use, the Continuous Time Quantum Monte Carlo

(CTQMC) impurity solver which shall allow us to calculate the impurity Green’s Function and Self

Energy that is required by the DMFT self consistency conditions.

1http://www.http://hauleweb.rutgers.edu/tutorials

http://www.http://hauleweb.rutgers.edu/tutorials
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Chapter 5

Continuous Time Quantum Monte Carlo Impurity Solver

5.1 Introduction

In the previous sections we have seen how DMFT becomes a powerful computational tool because it

allows us to map the strongly correlated lattice problem to an impurity problem. For this purpose,

the impurity model that is used is the Anderson Impurity Model[7]. The Hamiltonian for the model

is given by:

H =
∑
klσ

εl(k)a†σkl a
σ
kl +

∑
klσ

[Vl0(k)a†σkklc
†σ
0 + h.c] + Un0↑n0↓ − µ

∑
σ

c†σ0 cσ0 (5.1)

where a†σkl are non-interacting conduction electrons at wave number k that have a dispersion εl and

which hybridize with the interacting impurity electrons c†σ0 via the hybridization Vl0 (Note that we

have denoted the impurity site by 0)

One of the most involved and computationally challenging parts of the DMFT algorithm is

finding the solution for the impurity Green’s function for the Anderson Impurity model(AIM).

There has been extensive research in this field and over the years there have been a whole range

of analytical and computation methods that have been developed. Some of the important methods

commonly in use are scaling methods [8], the numerical renormalization group[124], applications of

the Bethe ansatz[9], slave bosons in the context of heavy fermion materials[24] and the Hirsch-Fye

quantum Monte Carlo algorithm[61]. However in this paper we describe one of the most powerful

computational methods available today Continuous Time Quantum Monte Carlo (CTQMC) and

in particular its Hybridization expansion (CTQMC-HYB)[121] [43](An exhaustive introduction to

the various CTQMC methods can be found in the review by Gull et al [41]). The advantage of

this algorithm is its computational speed and its generality which allows us to sample very low

temperatures, especially in the strongly interacting limit of Mott Insulators.
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5.2 Details of the Algorithm

The CTQMC-HYB solver (hereafter referred to as CTQMC) relies on expanding the partition func-

tion of the AIM around the atomic limit. The ‘continuous time’ part in its name comes from the

fact that we do not discretize the imaginary time integral into time slices unlike in Hirsch-Fye QMC

algorithm. Neither do we introduce an auxiliary field of spins like we do in the Hirsh-Fye Algorithm.

We begin by separating the AIM Hamiltonian into three parts:

Himp = Un0↑n0↓ − µ
∑
σ

c†σ0 cσ0 (5.2)

Hbath =
∑
kpσ

εp(k)a†σk aσk (5.3)

Hhyb =
∑
klσ

[Vl0(k)a†σkl c
†σ
0 + h.c] (5.4)

From now on we shall suppress spin labels and assume implicit summation over spin indices. The

quantity we are formally interested in is the partition function of the system which is given by:

Z =

∫
D[a†ac†c]e−Simp−Sbath−Shyb (5.5)

In order to express the partition function as terms of the finite impurity degrees of freedom, we first

integrate out the bath electrons which gives us

Z = Zbath.Zimp (5.6)

Zbath =
∏
νkp

β(−ιων + εp(k)) (5.7)

Zimp =

∫
D[c†c]e−Seff (5.8)

The Zbath terms just includes an irrelevant constant to the expression which we shall ignore. The

effective action contains in it all the impurity physics as well as well as the effect of the retarded

interaction of the impurity electrons with the bath and is given by:

Seff = Simp +

∫ β

0

dτ

∫ β

0

dτ ′c†(τ)∆(τ − τ ′)c(τ ′) (5.9)

where we denote the hybridization function, as before by

∆ =
∑
kp

V ∗0p(k)V0p(k)

ιω + µ− εp(k)
(5.10)

The hybridization function encodes in it all the interaction with the bath at different energies. We are

pretty much free to choose any convenient Hybridization function like a semi-circle or a lorentzian.
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Performing a Taylor expansion of the Hybridization term in the impurity action over the Grass-

man variables, we get:

Zimp =

∞∑
k=0

1

k!

∫
D[c†c]e−Simp(−∆S)k (5.11)

= Z0

∞∑
k=0

1

k!

∫ β

0

dτ1 · · · dτk
∫ β

0

dτ ′1 · · · dτ ′k〈Tτ c(τ ′1) c†(τ1) · · · c(τ ′k)c†(τk)〉0.∆(τ1 − τ ′1) · · ·∆(τk − τ ′k)

(5.12)

In this expression we have absorbed the minus sign in ∆S by reordering −c†∆c as cc†∆. The

normalization Z0 denotes the impurity Partition function and the averaging < · · · >0 denotes the

average over the impurity Green’s function.

The current formulation of the integrands in the Hybridization expansion can be both positive

and negative. This would lead to inefficient Monte Carlo evaluation because of the infamous sign

problem. In order to avoid this, we group together all terms at the perturbation order k in the form

of a determinant. To see this we note that at k=2 we get a contribution

1

2!

∫ β

0

dτ1dτ2

∫ β

0

dτ ′1dτ
′
2〈Tτ c(τ ′1)c†(τ1)c(τ ′2)c†(τ2)〉0.∆(τ1 − τ ′1)∆(τ2 − τ ′2) (5.13)

Considering just the unprimed integrals , the idea is to convert the two wedges in the integration

times (W = τ1, τ2 : τ1 > τ2 and vice versa) into just one wedge. However when we do this, the

integrand becomes a sum of two terms. When we swap the the times in the time order impurity

impurity trace, we get a minus sign:

〈Tτ c(τ ′1)c†(τ ′2)c(τ ′2)c†(τ ′1)〉0 = −〈Tτ c(τ ′1)c†(τ ′1)c(τ ′2)c†(τ ′2)〉0 (5.14)

This together with the swap in the arguments of the Hybridization function allows us to express the

contribution as :

1

2!

∫ β

0

dτ1

∫ β

τ1

dτ2

∫ β

0

dτ ′1

∫ β

0

dτ ′2〈Tτ c(τ ′1)c†(τ ′1)c(τ ′2)c†(τ ′2)〉0 (5.15)

.det

∆(τ1 − τ ′1) ∆(τ1 − τ ′2)

∆(τ2 − τ ′1) ∆(τ2 − τ ′2)

 (5.16)

Finally we absorb the 1/2! term by converting the the integral over the primed variables to one over

just a single wedge and recognizing that when when we swap τ ′1 and τ ′2 we get a minus sign both in

the impurity trace and the determinant of Hybridization function. Therefore our formula at second

order is ∫
W

dτ1dτ2

∫
W

dτ ′1dτ
′
2〈Tτ c(τ ′1)c†(τ ′1)c(τ ′2)c†(τ ′2)〉0 · det(∆(τ1, τ2)) (5.17)
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So we can express the full partition function as

Zimp = Z0

∞∑
k=0

∫
W

dτ1 · · · dτk
∫
W

dτ ′1 · · · dτ ′kZ(τ1 · · · τk, τ ′1 · · · τ ′k) (5.18)

where the integration is just over the single wedge in imaginary time W=(τ1 · · · τk : τ1 < · · · τk) and

the integrand is:

Z(τ1 · · · τk, τ ′1 · · · τ ′k) = 〈Tτ c(τ1)c†(τ1) · · · c(τk)c†(τk)〉0 · det(∆(τi, τj) (5.19)

We then apply Monte Carlo sampling to sample the integrand. The space we are sampling

here is the collection of 2k dimensional integral phase spaces. A Monte Carlo configuration here is a

particular collection of 2k times for the creation and annihilation operatorsDk = τ1, τ2...τk, τ
′
1, τ
′
2...τ

′
k.

A step in the Monte-Carlo process corresponds to either adding or removing 2 kinks in the interval

between 0 and β. By doing an analysis of the relative probabilities of adding or subtracting a pair

of operators, we get that

A(Dk → Dk+1) =
β2

(k + 1)2
min

(
1,
Z(Dk+1)

Z(Dk)

)
(5.20)

A(Dk+1 → Dk) =
k2

β2
min

(
1,
Z(Dk−1)

Z(Dk)

)
(5.21)

where Z(Dk) is the contribution from the integrand in Eq. 31 for the hybridization expansion and

A(B→C) indicates the acceptance probability of a move from configuration B to C.

In order to evaluate the Impurity trace, we first explicitly time-order the various creation and

annihilation operators(denoted here by F i).

〈TτF1(τ1) · · ·Fk(τk)〉0 = sgnP · 〈FP(1)(τP(1)) · · ·FP(k)(τP(k))〉0 (5.22)

Where P denotes the permutation required for time ordering the operators. Now since we have a

finite number of degrees of freedom in the impurity, we express the operators in some basis and take

the trace. For example we could expand in the basis of Energy Eigenstates |n〉 and we would get :

〈Fk(τk) · · ·F1(τ1)〉0 = (5.23)∑
n1···nk

[
e−Enk (β−τk)F knk,nk−1

e−Enk−1
(τk−τk−1) · · · e−Enk (τ2−τ1)F 1

n1,n0
e−En0

(τ1)
]

(5.24)

where the matrix elements are denoted by F imn =< m|F i|n >. In practice, the evaluation

evaluation is made faster by constructing superstates of the atomic states on the basis of conserved

quantities and only considering matrix elements for transitions between the members of a particular

superstate.

Thus, by this method we can effectively calculate the partition function of the Anderson Impurity

model effectively. Note that although we have only used a single impurity and and hybridization
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bath, the method is easily generalizable to an arbitrary number of baths by simple extensions [43].

Once we know the Partition function for AIM, we can easily calculate the Green’s function by noting

that the evaluation of the Green’s function

G(τ1 − τ2) = −〈Tτ c(τ1)c†(τ2)〉 (5.25)

is similar to evaluating the impurity trace but with two extra kinks added. So we see how CTQMC

gives us an efficient computational way of solving the AIM and getting the impurity Green’s function.

It not only deals with the notorious fermionic sign problem but due to lack of time discretization,

allows us to reach very low temperatures (at least an order of magnitude lower than the Hirsch-

Fye Procedure). Thus with the Green’s function from this method we can,using the DMFT loop

described above, calculate the local Green’s function of the lattice problem and investigate the

properties of our system. Note that the description given above is one of only a class of general

CTQMC methods which are suitable in different interaction strength regimes. As noted earlier, an

exhaustive review can be found in [41], while much more details of our particular implementation of

the DFT+DMFT loop can be found in [53].
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Part II

Applications
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Chapter 6

Calculation of Magnetic Spectral function and Dynamic

Magnetic Susceptibility for f-shell materials

In this section we shall present calculations of the magnetic properties of f-shell materials. As

mentioned earlier, materials with incompletely filled f-shells exhibit strong correlations which make

them particularly challenging to understand from a theoretical standpoint. DFT+DMFT is one

of the very few methods capable of simulating these systems [109, 83]. Here we concentrate on

studies of the magnetic properties of such elements. Out ultimate aim shall be to calculate the

Magnetic Spectral Function S(q, ω), which shall give us complete information about all the magnetic

excitations of the system. In order to calculate this quantity, we shall need to calculate the Magnetic

form factor ~F (q) and the dynamic magnetic susceptibility χ(ω) of these materials. Using these tools,

we shall make important claims about two important problems in condensed matter physics

• The volume collapse (or the α− γ) transition in Cerium

• The valence fluctuating ground state of δ-Plutonium which explains its ”missing magnetism”

In the first three sections of this chapter, we describe in some detail the calculation procedure

for the various components of S(q, ω). After that we shall go on to details of the calculations for

Cerium and Plutonium respectively.

6.1 Details of theory and calculation techniques

6.1.1 The Magnetic Spectral Function S(q,ω)

The magnetic spectral function S(q,ω) gives us information about the the spectrum of all magnetic

excitations of a material. This quantity is especially useful as we can use neutron scattering to

determine S(q, ω). Within the single ion approximation (which amounts to the approximation that

the excitations are mostly limited to the ground state multiplet and that we can approximate the

magnetic susceptibility as a fairly local quantity which does not fluctuate over the first Brillouin
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zone), we can separate out the q and ω dependence of the quantity and express the quantity as:

S(q, ω) = |~FM (q)|2S(ω) (6.1)

where

S(ω) =
1

2

1

1− e−β}ω
Imχloc(ω) (6.2)

is the energy dependent magnetic structure factor dependent on the imaginary part of the local

dynamic magnetic susceptibility χloc(ω) and

~FM (q) =
−1

2µB
〈MT (q)〉 (6.3)

is the magnetic form factor which captures the q-dependence of the spectral function. Note that in

the equation above MT (q) is the Fourier transform of of the component of the magnetic moment of

the material that is transverse to the scattering vector ~q of the incoming neutrons.

6.1.2 The Local dynamic susceptibility χloc(ω)

The magnetic susceptibility χ(q, ω) of a material encodes information about the magnetic fluctua-

tions of a system. In systems with open f-shells, due to the extremely localized nature of the f-shell

electrons which contain the magnetic moment, we can effectively consider the susceptibility to be

equivalent to its local component χloc(ω). We will be especially interested in the imaginary part of

this quantity, whose peaks give us the energy scales for magnetic dissipation in the system which,

as we shall see later, provides us with important insights regarding the physics of these compounds.

Within our DFT+DMFT scheme, we approximate χloc of the lattice system to be equal to

the χImp of the impurity. The CTQMC impurity solver gives us direct access to χImp (or more

accurately its z-z component) because we can calculate:

χzz(iω) =

∫ β

0

eiωτ 〈Mz(τ)Mz(0)〉 (6.4)

directly by Monte Carlo sampling as long as the Magnetic Moment Mz is a good quantum number

for the impurity. Note that for f-shell materials there is significant spin-orbit coupling which means

that instead of Sz, we use Jz as our observable as it is good quantum number.

However CTQMC gives us χloc(iω) on the imaginary (matsubara axis). In order to get χloc(ω),

we have to perform analytic continuation to the real frequency axis. This is accomplished using the

Maximum Entropy analytic continuation method [69]. Further, in order to check the correctness of

the analytic continuation algorithm we use the following well known sum rule for Mz.

1

π

∫
d(ω)n(ω)(Imχ(ω)) = 〈M2

z 〉 (6.5)
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where n(ω) is the Bose-Einstein distribution function. This is useful because we can calculate 〈M2
z 〉

directly from the Monte Carlo probabilities of the various impurity states. Therefore the integral

gives us a way to check the veracity of the analytic continuation. It is to be noted that CTQMC

calculations for elements with a large number of f-shell electrons can be extremely hard to converge.

For example, the calculations for δ-Pu required the use of roughly 1 Million computer hours on the

Titan supercomputer at ORNL, although it is to be noted that χloc(ω) seems to converge quicker

that the self energy for these simulations.

6.1.3 The Magnetic form factor ~FM (~q)

We shall now give details of the Magnetic form factor calculation. The formula for the neutron form

factor is given by

~FM (~q) =
−1

2µB
〈MT (~q)〉 (6.6)

where MT (q) = Mspin
T (q) + Morb

T (q) is the transverse component of the magnetization density

(relative to the incident neutrons) and ~q is the scattering wave vector of the incident neutrons. This

expression can also be written as:

~FM (~q) =
−1

2µB
q̂ ×

∫
unit cell

(
〈M(~r)〉e−i~q.~rd~r × q̂

)
(6.7)

We can express this magnetization density (after making the gauge choice for the transverse current

density that ~J(~r) = c∇×MT (~r)) in terms of the current densities as:

MT (q) = − i
c
~q ×

~J(~q)

q2
(6.8)

where:

~Jorb(~q) =
e

2m

∑
j

~pje
−i~q.~r + e−i~q.~r~pj (6.9)

and

~Jspin(~q) = −2iµBc~q ×
∑
j

~sje
−i~q.~r (6.10)
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are the orbital and spin current densities 1 ,which leads us to:

~FM (~q) =

〈∑
j

{
q̂ × (~sj × q̂) +

i

q
(~pj × q̂)

}
e−i~q.~rj

〉
unit cell

(6.13)

In the calculations carried out in this section for Cerium and Plutonium,we only have one atom

per unit cell. However in general we shall have multiple atoms in the unit cell (which might be

enlarged due to to magnetic order). So in general we can decompose the exponential as

e−i~q. ~rj = e−i~q.(
~Rj+~r) (6.14)

where ~Rj is the vector to the center of the of the jth magnetized atom and ~r is the vector from the

center to a point within the atomic sphere centered around the magnetized atom. We now resort to

the traditional dipole approximation for ease of computation and interpretation. In order to do so ,

we first express the exponential in 6.13 as:

e−i~q.~r =

∞∑
k=0

(2k + 1)(−i)kjk(qr)Pk(q̂.r̂) (6.15)

Now from traditional selection rules for angular momentum, we can derive that for the orbital

angular momentum part , we only need to keep the odd terms in the expansion, while for the spin

part we need the even terms. Further we also know that for bessel functions, we can use the identity

jk(x) =
x

2k + 1
(jk−1(x) + jk+1(x)) (6.16)

to recast odd bessel functions in terms of even bessel functions. Finally under the dipole approxi-

mation, we only retain terms upto dipole order in the expansion. Under these assumptions, we can

derive

~FM (q) =

〈∑
j

ei~q.
~Rj (q̂ × (~sj × q̂)) j0(qr) +

ei~q.
~Rj

2

(
q̂ × (~lj × q̂)

)
{j0(qr) + j2(qr)}

〉
unit cell

(6.17)

Now within our implementation LDA+DMFT we use the LAPW basis set (a comprehensive

review of which can be found in [111]) so within the atomic spheres we can write the Kohn-Sham

states as solutions to atomic-like Schrodinger Equations:

ψkiσ(~R) =
∑
Lκm

AκiLσ(~k)uκL(R)Y mL (R̂) (6.18)

1These two equations come from the fourier transforms of

~Jorb(~r) =
e

2m

∑
j

~pjδ(~r − ~rj) + δ(~r − ~rj)~pj (6.11)

and

~Jspin(~r) = −2µBc~∇×
∑
j

~sjδ(~r − ~rj) (6.12)
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(here κ = 0 corresponds to the solution of the Schrodinger equation ul for a given linearization

energy, κ = 1 corresponds to the energy derivative, and higher values correspond to the different

localized orbitals) while Y Lm represent the spherical harmonics

Moreover within the DMFT framework, any single-particle operator can be expressed as:

〈O〉 = Tr
〈
n̂DMFT Ô

〉
(6.19)

where the density matrix is defined by:

n̂DMFT
αβ = T

∑
ιω

(
1

ιω + µ− εk − Σ

)
αβ

(6.20)

where Σ is the self energy after it has been embedded into the Kohn Sham space following the

procedure developed in Chapter 4 in 4.23.

Now we can write the expression for the form factor as:

~FM (q) =
∑

L′κ′σ′Lκσ

n̂DMFT
L′κ′σ′Lκσ〈L

′
κ
′
σ
′
|
∑
j

e−i~q.
~Rj q̂ ×

(
~lj

2
{j0(qr) + j2(qr)}+ ~sjj0(qr)|Lκσ〉

)
× q̂

(6.21)

where

n̂DMFT
L′κ′σ′Lκσ =

∑
αβ

nDMFT
αβ A∗κ

′

αL′σ′ (
~k)AκβLσ(~k) (6.22)

There explicitly writing out the expression for the form factor we get:

~FM (q) =
∑
j

e−i~q.
~Rj

∑
kαβL′κ′Lκ

nDMFT
αβ A∗κ

′

αL′σ′ (
~k)AκβLσ(~k)

∫
d~ru∗κ

′

L′ (r)uκL(r)

× q̂ ×

〈L′ | ~lj
2
|L〉 {j0(qr) + j2(qr)}+

∑
σ′σ

〈σ
′
|~sj |σ〉j0(qr)

× q̂ (6.23)

where |L > denotes the Y mL part of the basis and |σ > denotes the spin state.The next approxi-

mation which is applied is with regard to the experimental setup which again simplifies the formula.

We assume ( following the most common experimental setup) that an external B field has resulted

in the complete polarization of ~l and ~s in the ẑ direction so it is sufficient to only calculate lz and

sz and also that the scattering vector ~q is perpendicular to the to this polarization axis.

Under these assumptions, the form factor (which we no longer treat as a vector) simplifies to:

FM (q) =
∑
j

e−i~q.
~Rj

∑
kαβL′κ′Lκ

nDMFT
αβ A∗κ

′

αL′σ′ (
~k)AκβLσ(~k)

∫
d~ru∗κ

′

L′ (r)uκL(r)

×

〈L′ | ljz
2
|L〉 {j0(qr) + j2(qr)}+

∑
σ′σ

〈σ
′
|sjz|σ〉j0(qr)

 (6.24)
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This is the final expression we use to calculate our form factor within DMFT.

It is also to be noted that a common tool used to analyze the form factor within the dipole

approximation involves recasting it into the form.

FM =
M

2µB
(〈j0〉+ C2〈j0 + j2〉) (6.25)

where 〈jk〉 is the spatial average of the spherical Bessel function Jk(qr) over the radial solution of

the LAPW basis state wave function u(r) as defined in 6.24, M = −( ~MS + ~ML) is the (negative)

total (spin plus orbital) magnetic moment, and C2 = ~ML/( ~MS + ~ML).

An important implementation detail is that, as stated above, we compute the form factor in the

presence of a magnetic field which results in the polarization of the magnetic moment of the atom.

It is important to note that the B-field is included at the level of the impurity. We also assume

during our calculation of the form factor that the orbital and spin angular momenta are completely

aligned in the direction of the B-field. To ensure that this is the case, we need to choose a large

B-field. Also, the required B-field should become higher with increasing temperature as we need

to ensure that the effect of the Zeeman term is high enough to negate thermal fluctuations which

might end up de-aligning the spin/orbital moments. After a large enough B-field has been chosen,

the effect of the B-field is included in the impurity solver by adding a term to the Hamiltonian:

HB = H − µBB(lz + 2sz) (6.26)

where the old assumption that the B-field is in the ẑ direction is used again. Now, in the presence

of spin-orbit coupling this might lead to a non-diagonal HB . If the off-diagonal terms can be safely

ignored (as is the case in Cerium because the j=
7

2
states can be assumed to be unoccupied) then

we can still use CTQMC as our impurity solver and can include the effect of the B-field as a shift in

the double counting energy (EDC). However in δ-Pu we cannot afford such luxuries and we really

do have to take the entire non-diagonal Hamiltonian with transitions between the j=
7

2
and j=

5

2
multiplets as allowed by Hamiltonian. In that case, we can no longer use CTQMC as it would have

a horrible sign problem with off-diagonal terms, so we resort to other impurity solvers like NCA and

OCA [53]. These solvers would give us the whole (off-diagonal included) self energy and Green’s

functions which we can then use in Eq 6.24.

Note that in either case, the calculation of the additional piece of the Hamiltonian would involve

the use of Clebsch Gordon Coefficients as we have to go from the j,mj , l, s basis to the l,ml, s,ms

basis to evaluate the (l + 2s) term

This concludes our review of the theoretical steps required to calculate S(q, ω). It is very im-

portant to note that this method is exceedingly accurate only when we can accurately approximate
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χ(q, ω) to be a truly local quantity as then the factorization into ~F 2
M (q)Imχloc(ω) is valid. In case

such an approximation cannot be made, as in the case of most non f-shell systems, we have to resort

to a true calculation of χ(q, ω) using the Bethe Saltpeter equation.:

χ−1(q, ω) = χ−1
0 (q, ω)− Γ (6.27)

where χ−1
0 (q, ω) is the ”Bubble” Polarization contribution which is a convolution of the Inter-

acting Green’s function, given by:

χ−1
0 (q, ω) = −T

∑
Q,Ω

G(Q,Ω)G(q +Q,ω + Ω) (6.28)

and Γ is the irreducible two particle vertex. Our current implementation of DMFT allows to calculate

the two particle vertex on the matsubara axis, however analytic continuation of Γ is a challenging

task. However some attempts have been made to use this form to get a more accurate description

of response functions, including in the next section where we study the volume collapse transition

in Cerium, as well as by Yin et.al[126].
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6.2 Applications to Real Materials

6.2.1 Analyzing the Volume Collapse transition in Cerium

Introduction

In this section we shall present the study performed by us on the volume collapse transition in

Cerium, which shall follow very closely the work published in [21], with very minor additions.The

physical mechanism driving the α-γ phase transition has puzzled physicists for many years [76].

Similar to other elements, the temperature versus pressure phase diagram of cerium shows multiple

structural transitions, where the symmetry of the structure changes across the phase transition (see

Fig. 6.1). The α-γ transition is exceptional because it is isostructural, i.e. the atoms retain their

ordering in an fcc structure while the volume collapses by 15% from γ to α phase upon increasing

pressure (see Fig. 6.2). Moreover, the α− γ transition is accompanied by a dramatic change in the

magnetic susceptibility: the α phase shows Pauli-like susceptibility, while the γ phase has Curie-like

susceptibility. Therefore, most of the theoretical work has focused on the hypothesis that electronic

effects are responsible for the transition.

Figure 6.1: The Temperature vs Pressure Phase diagram for Cerium showing the multiple phases of

the material. We shall be concentrating on the volume collapse transition between α-Ce and γ-Ce

Numerous theoretical models were proposed to explain the isostructural transition in Ce. For
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example, in the promotional model [25], the 4f electrons are localized in the γ phase, and are

promoted to the spd conduction band in the α phase. However photoemission spectroscopy shows

little change in the number of the conduction electrons at the transition. Johansson proposed [70]

that the α − γ transition is an example of a Mott transition. Here the 4f electrons undergo a

Mott transition, from a non-bonding localized state in the γ phase to a narrow 4f band in the α

phase, which participates in bonding. The spd electrons remain bystanders during the transition.

Upon increasing pressure, a 4f localization-delocalization transition occurs with a subsequent loss of

moment and decrease of volume. In this model, the 4f electron number remains almost unchanged

with pressure, so this feature is consistent with photoemission results. A different scenario was

proposed by Lavagna et al. [81] and Allen [3], dubbed the Kondo volume collapse theory. Here the

spd electrons are not bystanders as in the Mott scenario. Instead the transition is connected to the

change in the effective hybridization (and thus the Kondo scale) of the spd electrons with the 4f

electrons and so there is a decrease in volume due to the increase of the Kondo temperature TK .

Figure 6.2: Diagram showing the Volume collapse transition between α-Ce and γ-Ce, where the

FCC lattice is retained but unit cell volume decreases

DFT+DMFT allows one to consider structural effects, electronic effects and the physics of strong

correlations from first-principles. It brings the physics of f-electron delocalization and f-spd hy-

bridization into a unified framework. As a result of many studies over several years, different aspects

of the α− γ transition have been considered, including changes in the density of states [130, 59, 86],

in the optical conductivity [50], and in the thermodynamic properties [4].

From the theoretical point of view, the magnetic properties of the volume collapse transition
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have not been adequately addressed so far. Here we shall revisit the α− γ transition from the point

of view of magnetic properties by computing the magnetic form factor FM (q), the local dynamic

susceptibility χ(ω) and the magnetic spectral response S(q, ω). We shall show that the magnetic form

factor shows free ion behavior in both phases, indicating that from the point of view of magnetic

properties, the 4f electrons are strongly correlated both in the α and γ phases. The dynamic

magnetic susceptibility of the two phases is very different. It shows a sharp low energy peak at the

characteristic energy, which scales with the coherence temperature of each phase. Since the coherence

scale is directly connected with the strength of hybridization, this suggests that the hybridization

plays a central role in the α− γ transition in cerium.

Details of method

In this study, we have performed DMFT+DFT calculations in a charge self-consistent implementa-

tion [51]. For the Kohn-Sham potential, we used the GGA functional as implemented in Wien2k

package [19], and continuous-time quantum Monte Carlo (CTQMC) method to solve the auxiliary

impurity problem [44]. We used Hubbard repulsion U = 6.0eV, Hund’s coupling J = 0.7eV, and

temperature T = 116K. The lattice constants of the fcc unit cell are a ≈ 4.82Å and a ≈ 5.16Å for

the α and γ phases respectively.

Magnetic Form Factor

As mentioned earlier, the magnetic form factor FM (q) is the Fourier transform of the spatial distri-

bution of the electronic magnetic moment, here mostly contributed by 4f electrons. Thus it is an

ideal observable for determining the nature of the 4f electrons. In particular, the magnetic form

factor can determine whether 4f electrons are localized or itinerant, as suggested in Ref.[62]. The

idea is the following: band formation results in the quenching of the 4f magnetic moment, espe-

cially the orbital component relative to the spin component. Thus, if the volume collapse is due to

a localization-to-delocalisation transition, there should be a dramatic change between the shape of

the magnetic form factor between the α and γ phases. For γ cerium, the measured magnetic form

factor has free ion behavior, which is in good agreement with the computed ionic Ce3+ magnetic

form factor [113]. On the other hand, for the α cerium, electronic structure calculations predict

metal-like behavior for the magnetic form factor [62]. However, these calculations are in striking

contrast with recent high-energy neutron inelastic measurements by Murani et al. [90], which show

free ion behavior for the magnetic form factor of α cerium as well.
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Figure 6.3: Momentum transfer dependence of the normalised magnetic form factor F2
M (Q) of α-Ce

and γ-Ce. Blue circles show experimental data taken from Ref.[90].

α-Ce γ-Ce

µs −2.3079× 10−3 -0.03468

µL 9.3668× 10−3 0.13841

C2 1.327 1.334

Table 6.1: Values of the orbital (µL) and spin (µS) magnetic moment as obtained in our DFT+DMFT

calculations under a magnetic field of 10T. The coefficient C2 = µL/(µL+µS) determines the shape

of the form factor in the dipole approximation and has similar value in both phases.

Following the formalism described in Ref.[99], we compute the magnetic form factor within the

DFT+DMFT framework. Figure 6.3 shows the magnetic form factor squared F 2
M (q) in presence

of an external magnetic field for both α and γ cerium. The curves are close to each other and

display free ion behavior, typical of a correlated state. This is a consequence of the electron-electron

Coulomb repulsion, and cannot be captured solely by electronic band structure effects. Our results
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Figure 6.4: Imaginary part of the local dynamic magnetic susceptibility, Imχ(ω), for α and γ
cerium (yellow dotted and red dashed lines respectively). The inset shows the static susceptibility
χ(q, ω = 0) of α cerium as a function of q in the first Brillouin zone. Note that the q goes from the
points (0,0,0) to (1,1,-1) in 12 uniform steps.

are in good agreement with the measured magnetic form factor of α cerium of Ref. [90], and show

that electronic structure calculations, when combined with the dynamical mean-field theory, have

the predictive power to capture the magnetic response of the 4f electrons, and therefore to reconcile

theory and neutron scattering experiment.

To gain a deeper understanding of these results, we resort to dipole approximation, FM =

µ(〈j0〉+C2〈j2〉), where 〈jk〉 =
∫
dr u(r)Jk(qr) is the spatial average of the spherical Bessel function

Jk(qr) over the atomic cerium wave function u(r), µ = µS + µL is the total (spin plus orbital)

magnetic moment, and C2 = µL/(µS + µL). As shown in Table 6.1, µL and µS have opposite

sign because of third atomic Hund’s rule (that is because of spin-orbit coupling and nf < 1), and

µL > µS , thus C2 > 0. The coefficient C2 determines the shape of FM (q) and remains basically

unchanged across the α− γ transition. It is close to the one expected for a free Ce3+ ion, implying

that there is a localized 4f electronic density for both α and γ cerium.
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Dynamic Magnetic Susceptibility

The magnetic form factor indicates that both α and γ phase are strongly correlated phases, which

is compatible with both Mott and Kondo volume collapse scenarios, but eliminates the promotional

model. In the Mott scenario, the two phases are correlated because they lie on slightly opposite

sides of the delocalisation-localisation transition, while in the Kondo volume collapse picture, the

two phases are correlated because the 4f electron moment remains stable across the transition.

However, the Kondo volume collapse scenario differs from the Mott scenario because it does not

consider the spd electrons to be mere bystanders, but emphasizes their role in the screening of

the local magnetic moments, via the Kondo effect. Therefore, the dynamic magnetic susceptibility,

which measures the spatial and temporal distribution of the magnetic fluctuations, can indicate

whether the hybridization plays a key role at the transition.

In our calculations, we used the CTQMC impurity solver to obtain the local dynamic susceptibil-

ity χ(iωn) of α and γ cerium as a function of Matsubara frequencies. We then analytically continued

the data using maximum entropy method to obtain Im χ(ω) along the real frequency axis. In Figure

6.4 we show Im χ(ω) for both phases. At small frequencies, Im χ(ω) for γ cerium shows a narrow

and intense magnetic peak centered at approximately 10 meV. This feature has to be expected from

the local moment character of electrons in γ cerium. The position of this peak gives a measure of

the Kondo temperature TK . For α cerium, this peak shifts to higher frequency, around 180 meV.

Thus, in going from γ to α phase, there is a shift of magnetic intensity from low to high energy,

signaling a change (precisely, an increase) in TK . This is one of the central results of our work. We

emphasize that, at large frequencies, the overall intensity of Im χ(ω) in the α phase is larger than

in the γ phase, reflecting the increased hybridization of electrons in the former phase.

In order to ascertain the nature of the different peaks in the dynamic susceptibility of α cerium, we

performed simulations of the α phase with different values of spin-orbit coupling (not shown). Upon

increasing spin-orbit coupling, the peak at low frequency (≈ 180 meV) moves towards ω = 0. This

is a feature of the fact that by increasing the spin-orbit coupling, the effective Kondo temperature

of the system is reduced. Hence this peak is a feature of the Kondo coherence energy of the system.

This trend has to be expected because of the hybridization between the conduction electrons and

the f electrons. By increasing the spin orbit coupling, the energy splitting between the 5/2 and 7/2

states increases, therefore fluctuations are hampered and 7/2 states are less occupied. It follows

that the hybridization with conduction electrons decreases as well. The importance of the spin-orbit

coupling has also been emphasized in the cerium compounds CeIn3−xSnx and CePd3 [92, 91, 18].

The second peak (≈ 600 meV) however does not show sensitivity to the spin-orbit coupling. To
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further ascertain the origin of the second peak, we performed simulations with altered values of

Hunds Coupling J (not shown). The second peak is always roughly centered at ω = J indicating

that it represents an excitation of the the f-electrons in the (non-zero) doubly occupied sector of

f-electron occupancy.

Notice that to crosscheck the validity of our analytic continuation procedure, we benchmarked

our results against a well-known sum rule for Imχ(ω). It is known that
1

π

∫∞
−∞ n(ω)Imχ(ω)dω = 〈µ2

z〉

where n(ω) is the Bose distribution function and µz is the magnetic moment along the z axis, which

can be independently extracted in our simulation without need of analytic continuation. A good

quantitative agreement is obtained in both phases.

In addition, we have verified that the local dynamical susceptibility χ(ω) is a good representative

of the behavior of the susceptibility χ(q, ω) within the first Brillouin zone. This is important, because

it verifies the so-called ”single-ion form factor dependence” often used to analyze experimental

data [90], where the dynamical structure S(q, ω) is factorized into momentum dependent form factor

FM (q)2, and energy dependent structure factor S(ω) = 1
2

1
1−e−β~ω Imχ(ω), i.e, S(q, ω) = FM (q)2S(ω).

To verify the quality of this approximation, we have computed the static susceptibility χ(q, ω = 0)

of α cerium within the first Brillouin zone using a two particle vertex method, developed in Ref.[98].

We calculate χ(q) using the Bethe-Salpeter equation χ(q) = (χ−1
0 (q) − Γ)−1, where Γ is the two

particle irreducible vertex, which we sample within DMFT, and χ0 is the RPA susceptibility, which

we compute using the full k-dependent LDA+DMFT green’s function. Note that within DMFT,

the two particle irreducible vertex Γ is local. The inset of Figure 6.4 shows χ(q, ω = 0). We can see

that there is no significant variation in the static susceptibility within the first Brillouin zone, which

validates the ”single-ion form factor formula”.

Magnetic spectral Function S(q, ω)

We then use this formula to compute frequency dependent S(q, ω) of both phases. Figure 6.5

shows the difference between the α and γ magnetic spectral response (Sα(q, ω) − Sγ(q, ω)). In

the lower panel we show the experimental spectrum [90]. There is a good agreement between the

two, particularly in the position of the broad peak assigned to the Kondo screening in the α-phase.

Note that the spectrum displayed in Fig. 6.5 becomes negative in the low energy region where γ-Ce

susceptibility has sharp peak due to local moment character (see Fig. 6.4). This region has been

left out of theoretical (as well as experimental) plot so as to enable better visualization of the other

features.
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Figure 6.5: Difference of S(q, ω) between α and γ phase : Left panel shows DFT+DMFT results.
Right panel shows high energy neutron inelastic measurements, taken from Ref [90].

Conclusions

In summary, we showed theoretically that the neutron magnetic form factor FM (q) has a free ion

behavior in both phases, indicating that the 4f electrons remain strongly correlated across the α-γ

transition. On the other hand, the local dynamical susceptibility χ(ω) and the magnetic spectrum

S(q, ω) show dramatic changes across the transition, with an energy shift from lower to higher

frequencies, a direct consequence of the increase of the Kondo temperature TK in the α cerium.

Therefore, our data shows that the physics of the volume collapse α-γ transition in cerium is con-

trolled by the hybridization between the localized 4f and the spd electrons and also establishes the

importance of using different probes and observables to understand different aspects of the volume

collapse transition in cerium.
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6.2.2 The valence fluctuating ground state of Plutonium

Introduction

Plutonium (Pu) is well-known due to the radioactive instability of its nucleus which makes it an

important material for nuclear fission. However, the electronic properties of Pu have also attracted

a lot of attention due to the presence of multiple degenerate configurations due to it’s position in the

periodic table.Pu is an actinide and therefore has an incomplete 5f electronic shell. Among the first

few members of the actinide series, there is a volume contraction which is observed with increasing

atomic number, due to the excess screening provided by the comparatively delocalized nature of the

5f electrons being added . However in the last few members of the actinide series, one observes an

increase in atomic volume with increasing Z because at this point the 5f electrons are highly localized

and do not screen the nuclear charge. Plutonium sits at the cusp of these two different subgroups of

Actinides and therefore has an exceeding complex electronic structure due to the complex interplay

between localized and itinerant electronic degrees of freedom. This has resulting in this element

being the subject of intense study for more than six decades. This complexity also manifests itself

in the highly complex phase diagram exhibited by Pu, with six competing allotropic phases with

unusually large volume differences between then of up to 25% accompanied by large variation in

mechanical properties (see Fig 6.6 (a)) . In this particular study we shall study the properties of

the delta phase (δ-Pu), following closely the study published in [68], with very few additions.

The face centered cubic (fcc) δ-Pu (see Fig 6.6 (b)) displays Pauli-like magnetic susceptibility

(like α-Ce) as well as an anomalously highly Sommerfeld coefficient of the specific heat due to its

unique combination of itinerant and localized electronic states [80, 101, 125]. This, coupled with its

uses in nuclear technology makes it an extremely interesting problem to study in strongly correlated

materials, as it is far away from the well understood limits of completely itinerant or localized

electronic structures . This inability to describe the exact electronic structure properties has resulted

in a lot of disagreement between theory and experiment, with theories that can accurately predict

the volume and structural fluctuations concurrent with the phase transitions exhibited by Pu being

completely unable to reproduce the lack of a static magnetic moment, as is required by the Pauli-

like susceptibility shown by δ-Pu, and confirmed by experiments [56]. This is known as the missing

magnetism problem of δ-Pu which is what we shall aim to address in this study.
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Figure 6.6: a) The Volume vs Temperature Phase diagram for Plutonium showing the multiple

phases of the material. b) The FCC unit cell of δ-Pu

However, this kind of electronic structure problem where there is an interplay between local-

ization/delocalization is exactly the domain where DFT+DMFT comes into its own. In order to

correctly capture the physics of this material, we need to preserve the quantum mechanical fluctu-

ations present, which result in the material fluctuating between multiple different atomic valency

states, with the main ones being 5f4 (Pu 4+), 5f5 (Pu 3+), and 5f6 (Pu 2+). Since we preserve

all local quantum fluctuations in DFT+DMFT, we can accurately model these virtual valence fluc-

tuations. An extremely sensitive and important tool to capture this effect is the magnetic spectral

function S(q, ω), because the magnetic form factor ~FM (q) displayed by δ-Pu is markedly different

than the one displayed by any calculations which neglect valence fluctuations. In addition, any

accurate simulation of S(q, ω) would also have to be display a susceptibility without a strong peak

at very low frequencies, in order to rule out a static magnetic moment. In addition neutron scat-

tering experiments, similar to Cerium, would provide an experimental verification of our theoretical

predictions . Plutonium being a radioactive element, performing experiments on it can be extremely

difficult. However recently experiments were performed at Los Alamos National Labs which have

verified our calculations and which were published in Ref [68]. We shall present the results below but

for more details the reader should refer to the reference. However it is to be noted that our theoret-

ical results preceded the experiment, thereby showing the predictive power of DMFT when it comes
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to properties of strongly correlated systems which cannot be simulated by most other methods.

Details of Method

In our calculations, we performed DFT+DMFT calculations with a Hubbard U of 4.5 eV and a

Hunds J 0.512 eV. All calculations were performed at an electronic temperature of 232 Kelvin. As

noted earlier for calculations of the magnetic form factor we have to use the NCA impurity solver

due to the sign problem faced by CTQMC in the presence of off-diagonal hybridization introduced

by the magnetic field used in form factor calculations.For calculations of the magnetic susceptibility,

we used CTQMC. In order to obtain highly converged converged results, simulations were performed

on the Titan supercomputer at Oak Ridge National Lab. Of the order of 500 DFT and 30 DMFT

cycles (totaling 10 million core hours) were used for high quality runs, which can be analytically

continued to real frequencies using maximum entropy. Spin orbit corrections were incorporated in

all the simulations since spin-orbit corrections are very important in 5f materials.

Magnetic form factor

The magnetic form factor obtained by us is shown in Fig 6.7 (taken from our published paper [68]).

The figure also provides the experimentally obtained form factor and the form factors that would

have been obtained by considering a pure 5f4 or 5f5 valence, as well as a admixture of the two

that is empirically close to the experimental results. Our DMFT simulations also predict significant

mixed valence being present, with a resulting nf being predicted which is good agreement with

core-hole photo-emission spectroscopy results [117] ( refer to Table 6.2).

δ-Pu 5f state f4 f5 f6 Total nf

CHPES (%) 6 66 28 5.21

DMFT (%) 12 66 21 5.12

Table 6.2: Comparison of the probabilities of different occupations of the 5f orbital predicted by

CHPES and DMFT
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Figure 6.7: The DMFT form factor obtained by our simulations for δ-Pu, together with neutron

scattering results at 250 and 500 meV incident neutron energies and the form factors that would

have been obtained by considering a pure 5f4 or 5f5 valence, as well as a admixture of the two

As we see, DMFT is successful is capturing the correct form of the form factor. We see that the

5f5 form factor is also a reasonable fit with experiment. However a pure 5f5 state would have a

magnetic moment and is hence not suitable to reproduce the Pauli-like suceptibility we observe. It

is to be noted that at low Q, the experimental errors are very large due to experimental limitations.

Therefore the discrepancies with experiment are not considered very relevant . However we clearly

see that DFT+DMFT is successful in capturing the correct spatial dependence of S(q, ω) through

the magnetic form factor.
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Dynamic Susceptibility and S(q, ω)

Figure 6.8: The imaginary part of the local dynamic susceptibility for δ-Pu compared to neutron

scattering experiment. The red line shows an experimental fit performed by the experimental col-

laborators. To location of the Kondo peak is marked by the dashed black line. (Taken from [68])

The dynamic magnetic susceptibility calculated for δ-Pu is given in 6.8. In the figure, we also see

the experimental results from [68]. As we see, DMFT is able to capture the correct location of the

peak in the dynamic susceptibility at 84 meV, which gives us the relevant scale for spin excitations.

It is to be noted that these results predict a Kondo Temperature of ∼800 K (in agreement with

results obtained by Haule et. al [109] ) which explains why at room temperature the moment of

the 5f state is screened by the Kondo screening cloud of antiparallely aligned conduction electrons

, which screen the magnetic moment (see Fig. 6.9).This is central to the resolving the problem of

missing magnetism and is perhaps the most important result in the paper. By using the sum rule

in Eq. 6.5 we obtain a fluctuating moment of ∼ 0.8 µB per atom which is also in good agreement

with experiment [68]. Finally we note that for any static local moment phase, we would have seen a
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Curie-like susceptibility which is characterized by a peak in the imaginary part of χ(ω) at very low

frequencies, analogous to γ-Cerium. However no such peak is observed. Therefore we can see that

we have no local moment behavior in this material, further strengthening our claims.

Figure 6.9: Illustrative figure showing how the magnetic moment is screened by the Kondo screening

cloud below the Kondo temperature TK . Taken from [68]

Finally we show in Fig 6.8 the S(q, ω) for δ-Pu using DFT+DMFT as well as by neutron scat-

tering. As we can see (and as can be expected from the fact that both the form factor and the

susceptibility are in good agreement with experiment) we can very good agreement between theory

and experiment. Therefore we can claim that using DFT+DMFT, we can obtain an exceedingly

accurate description of the magnetic spectrum of δ-Pu and get very important clues which shall help

us in understanding the true nature of this compound.
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Figure 6.10: The Magnetic Spectral Function S(q, ω) for δ-Pu compared to neutron scattering

experiment [68]. The dashed lines on the experimental figure denote the Q and ω values used to

obtain the form factor and the susceptibility. The peak position corresponding to kBTK is also

marked

Therefore in conclusion, we have shown that we have developed a robust method to calculate the

magnetic spectrum of correlated systems. We have used our method to understand the magnetic

structure of both Cerium and Plutonium and have obtained very accurate experimentally verifiable

results. Therefore we believe that in the future we can use our method to understand the magnetic

properties of a large class of strongly correlated systems.
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Chapter 7

Spin State Transition in LaCoO3

7.1 Introduction

The spin state transition in LaCoO3 has been the subject of intensive investigation for decades.[57,

93, 102].At low temperature, this compound is known to be a to be a narrow bandgap insulator

with Pauli-like magnetic susceptibility. However between 90-150 K, it transitions to a local moment

phase with a Curie-Weiss like susceptibility which reaches its peak around 150K. It also undergoes

a gradual closing of the insulating gap and is known to be metallic above 600K [17, 31, 106].

There is considerable debate regarding the mechanism of this transition, mainly due to the

uncertainty regarding the multiplet of the Co3+ ion which characterizes the excited state of the

compound. The cobalt ion in LaCoO3 is commonly considered to have a formal valence of 3+ and

to be in the d6 state. The scale of the crystal field splitting is comparable to the Hunds coupling

energy scale. As a result, one would expect that as temperature is increased, there would be an

entropy-driven transition from the low spin (LS) S = 0 state with a fully filled t2g shell(t6e0) to

an S = 2 high spin (HS) state (t4e2)[102]. Indeed there is experimental evidence to support such a

scenario. Electron spin resonance[105], neutron scattering [100], X-ray absorption spectroscopy and

magnetic circular dichroism experiments[55] point towards a transition to an HS state. In addition,

no inequivalent Co-O bond is found in EXAFS experiments, which also supports the formation of an

HS state due to the HS state not being strongly Jahn-Teller active [115]. However, it has been noted

that in order to explain the XAS experimental data, one would have to assume that the crystal

field grows with temperature, which is counter-intuitive.[30, 55] This led to some authors suggesting

that there is an LS-HS alternating structure , which forms as a result of breathing distortions in the

lattice [16] [102] and interatomic repulsion between the HS atoms.[79, 30]

A competing explanation, whereby the excited state is the S = 1 intermediate spin (IS) state

(t5e1), has also become popular[57, 103], mainly because of LDA+U results which show that the

IS state is lower in energy compared to the HS state.[75, 97, 94] The stability of the IS state has

been justified by the large hybridization of the Co 3d electrons with neighboring O 2p electrons.

This causes charge transfer between the ions resulting in the Co ion having a d7 structure according
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to the Zaanen-Sawatzky-Allen scheme,[127] which in turn would cause stabilization of the IS state.

The intermediate spin state hypothesis also seems to explain experimental findings such as Raman

Spectroscopy, X-Ray photoemission, other XAS and EELS spectroscopies, as well as susceptibility

and thermal expansion measurements. [106, 1, 85, 73, 129, 39, 84, 119].

To summarize, there has been significant debate regarding the true nature of the spin state

transition in LaCoO3 (see Fig 7.1). Interest in this compound has also been enhanced in light

of recent discoveries of ferromagnetism induced by Sr (hole) doping [78, 67, 15, 95], as well as

experiments reporting strain induced magnetism in epitaxially grown thin films.[35, 33, 104, 32, 34,

60, 64].Additionally, there have been reports of the emergence of a striped phase in thin films with

alternating LS and HS/IS regions.[22] Low temperature ferromagnetism has also been reported in

experiments on LaCoO3 nanoparticles[29]. Hence, there is great interest in understanding the true

behavior of this material.

Figure 7.1: Schematic illustration of the two different scenarios for the the spin state transition in

LaCoO3

In this chapter (which has been submitted for peer-review and whose prperint can be found on
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arxiv [20]), we use Density Functional Theory + Dynamical Mean Field Theory (DFT+DMFT) to

analyze the spin state transition of bulk LaCoO3. As mentioned earlier in the methods section,

Our implementation extremizes the DFT+DMFT functional in real space, thereby avoiding the

downfolding approximation and uses the numerically exact CTQMC impurity solver[54, 45]. Even

though there are multiple recent studies that use DFT+DMFT on this compound [27, 128, 72], to

our knowledge none of them provide a comprehensive analysis of all of the factors governing the

transition such as octahedral rotations and electronic entropy. We show that i) LaCoO3 has large

charge fluctuations and it is not possible to explain the spin state with a single multiplet at any

temperature, ii) The crystal field splitting very sensitively depends on the details of the crystal

structure, and taking into account not only the thermal expansion but also the oxygen octahedral

rotations is very important, and iii) It is possible to stabilize an insulating phase (without orbital

order) at intermediate temperatures where local moments are present, thereby showing that the

metal-insulator transition is distinct from the spin state transition in this compound. We also show

that iv) Electronic entropy difference between the high and low temperature states is necessary for

the stabilization of the different spin states, which is a fact overlooked in various first principle

studies so far.

7.2 Crystal Structure of LaCoO3

LaCoO3 is a perovskite, which has the rare earth La on the A-site and Co on the B-site , which

corresponds to the center of the oxygen octahedron (see Fig 7.2). However, like most of the per-

ovskites, LaCoO3 has oxygen octahedral rotations (Fig. 7.3) which involves the oxygen octahedra

rotating out-of-phase around the [111] axes of the undistorted cubic highsymmetry structure. The

rotation pattern in Glazer notation is a−a−a−, which corresponds to the space group R3̄c (#167).
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Figure 7.2: Conventional cell for a perovskite with no octahedral rotations (a0a0a0 structure). In

LaCoO3, the green atoms would be La, the red atoms O and the blue atom Co. The figure also

shows the octahedra formed by the oxygen atoms around the Co atom

As noted by Thornton et. al. [116], LaCoO3 has large thermal expansion and the octahedral

rotation angle also changes with temperature. In our study, we used four different crystal structures

to isolate and study the effect of different lattice parameters on the spin state transition. We used

the two different experimental structures observed at 1143K and 4K, which we denote by HTa−

and LTa−. Comparing the electronic structure for these two crystal structures provides a means to

study the temperature evolution of the electronic structure. In addition to these two, we also built

two crystal structures with the same strain state (unit cell vectors) as them, but with no octahedral

rotations. These structures, denoted by HTa0 and LTa0, enabled us to isolate the effect of oxygen

octahedral rotations on the strain state of LaCoO3.
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Figure 7.3: A depiction of the pattern of octahedral rotations that is present in LaCoO3. Each of

the oxygen octadra rotates in opposite direction to all nearest neighbour octahedra by the same

amount relative to all three coordinate axes (a−a−a− structure).

7.3 Density of States

In Fig 7.4 we show the density of states for all 4 structures, calculated at both low temperature

and high temperature (116K and 1160K) using DFT+DMFT. Unlike DFT, which always predicts

a metallic state, our calculations correctly reproduce an insulating ground state at low temperature

for all the structures. The t2g orbitals are below the fermi level whereas the eg orbitals are above

the fermi level.

The charge gap closes continuously with increasing temperature, and as a result, there is a large

overlap in energy between the t2g and eg orbitals at high temperatures. This overlap, however, is

much smaller if the structures without rotations are simulated. (See Fig. 2b).

The HTa0 structure shows some overlap at high temperatures, and the LTa0 structure almost

remains an insulator for the entire range of temperature studied, with a small overlap developing

above 900K.
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Figure 7.5: (a) Evolution of |Sz| with temperature for all four structures. (b) Evolution of Density
of states at fermi level with temperature for all four structures.

This shows clearly that octahedral rotations play a large role in decreasing the strength of the

crystal field splitting. This can be explained by a combination of factors. The rotation of the oxygen

octahedra causes misalignment of the crystal field of the O atoms with that of the La atoms, which

normally reinforce each other in a perovskite with no octahedral rotations. This leads to an overall

reduction of the effective crystal field which reduces the charge gap between the t2g and eg orbitals.

In addition, this trigonal distortion also leads to a splitting of the t2g orbitals into 2+1 orbitals,

thereby again reducing the gap with the eg orbitals (Note that in Fig 7.4 we have clubbed together

all of the 2+1 orbitals into one single ”t2g” group because the splitting is small compared to the

t2g− eg splitting and doing so makes the figure clearer). The combination of these two effects seems

to overcome the expected decrease in the bandwith of the eg orbitals caused by the bending of the

Co-O-Co bond.Finally, note that there is a considerable overlap in energy of the O 2p orbitals with

the Co 3d orbitals, which is very important in producing charge fluctuations on the Co ion, making

it highly mixed-valent.
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7.4 The spin state transition

In order to focus on the spin state of the Co ion, we calculate the expectation value of the magnitude

of z-component of the spin 〈|Sz|〉. Note that all our calculations are in the paramagnetic state and

hence the value of 〈Sz〉 = 0. The results are presented in Fig. 7.5(a) as a function of temperature.

Note that the quantitative value of the transition temperature is overestimated in our calculations.

This can be explained by the fact that DMFT does not take into account finite wavelength fluctua-

tions, and as a result, has a tendency to overestimate order like many other mean field methods. The

largest value of |Sz| at 1160K is seen for the HTa− structure, followed by the LTa− structure. This

is in line with the stronger crystal field in the LTa− structure due to the smaller lattice constant.

We also observe that the spin state transition starts at a higher temperature for the LTa− structure

(∼580K) compared to the the HTa− (∼380K). This is also consistent with the the low temperature

structure having higher stability for the LS state. The structures without rotations consistently show

lower buildup of higher spin states than the ones with rotations. The HTa0 structure displays a spin

state transition, but with an eventual high temperature value of |Sz| that is lower. On the other

hand, the LTa0 structure shows almost no transition. This shows that the role that the octahedral

rotations play in the reduction of the crystal field is essential for the spin state transition.

Figures 7.5(a) and 7.5(b) also show that the spin state transition and the charge gap closing

occur at different temperatures, which is a trend that has been observed in experiment but has not

been captured in earlier DMFT simulations. For example, Fig 7.5(b) shows that both the HTa−

and the LTa− structures show a complete closure of the charge gap at ∼ 600K whereas Fig 7.5(a)

shows that the spin state transition in the two structures occur at very different temperatures.

Note that while calculating the density of states(DOS) at ω = 0 for the different structures at

different temperatures, we ensured that their Fermi energies were adjusted such that the energy

levels for the oxygen densities of states lay at the same energy values. This was required because

there was an ambiguity in the value of the chemical potential at temperatures where the structure

gave rise to an insulating band-gap and we believe an accurate comparison can only be made if

some features of the DOS are held fixed. This procedure required a shift in the chemical potential

of some of the simulations of the order of 0.1 eV. The results we plot in Fig 7.5(b) are obtained

after these shifts are put in. Figure 1 on the other hand plots the densities of states before any

such post-processing has been done. This leads to small differences between the two figures. Instead

of fixing the Oxygen levels, we also tried fixing the Lanthanum f levels and this gave rise to very

similar results. We firmly believe that our results displayed in figure 7.5(b) are robust and it is

merely the relevant magnitudes of the y-axis values at high temperatures that fluctuate by a small
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amount (depending on which features are held fixed) and not the actual temperature at which the

charge-gap closure takes place. We also do not plot the DOS at ω = 0 but the average of the DOS

at five points around ω = 0 as this takes care of some of the numerical noise that creeps into our

calculation due to both Monte Carlo noise and the errors in analytic continuation. We also tested

our results by averaging over different number of points and no significant changes take place that

would affect our claims.

7.5 Nature of the excited spin state

Because of the large hybridization between Co and O, the d orbitals of Co have large charge fluc-

tuations and all the four structures have an effective d-shell occupation of nd ∼ 6.6. Therefore any

analysis of the spin states in terms of the LS, IS and HS states of the d6 configuration of the Co

ion is necessarily inadequate. In fact, our calculations show that the d7 configuration has a higher

occupation probability than d6 (∼ 47% vs ∼ 42%), and there are also significant probabilities for d5

and d8

Fig. 7.6 shows the evolution of the occupation probabilities for the different values of |Sz| with

temperature. Even at high temperatures, |Sz| = 0 and |Sz| = 0.5 (the LS states for the even and

odd occupancy sectors of the d orbital) remain the states with the highest probability. However,

with the increase of temperature, the weight of the higher spin states increases. At the onset of the

transition, the initial change in the value of the spin state is predominantly caused by the excitation

of the |Sz| = 2 and the |Sz| = 1.5 multiplets. The |Sz| = 1 multiplet sees an increase in probability

at higher temperatures (above 500K) and also follows a similar trend for all the structures except the

LTa0 structure, where all changes are very small. Therefore, the initial signature of the transition

is best seen in the behavior of the |Sz| = 2.0 and |Sz| = 1.5 multiplets, which can be said to be the

HS multiplets for the d6 and d7 occupancies respectively.

In Fig. 7.7, we show the occupancy histograms below and above the transition (at 116K and

1160K).(CTQMC gives us access to the state space probability for each of the 1024 states of the

d orbital. However, in order to aid visualization, we only show states which have an occupation

probability above 0.001 in any of the structures at any temperature.) This figure displays clearly

how the transition is marked by the excitation of states in the higher spin multiplets. We see that

the low temperature state for all of the structures is marked by the presence of a few states with

large probability (mainly corresponding to the |Sz| = 0 and |Sz| = 0.5 states).
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Figure 7.6: Evolution of occupation probabilities for all the spin states for the four structures with

temperature.
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As the spin state transition sets in, a large number of higher spin states get excited and the

LS spin states lose weight. Note that the high spin states are highly degenerate so there is no one

large peak for the high spin states, but a multitude of lower peaks. This supports the idea that

the transition is primarily an entropy driven transition. We can also get a good idea of the relative

strengths of the transition for the different structures: The largest change occurs in the HTa−

structure, and the smallest one happens in the LTa0.

7.6 Contribution of Electronic Entropy

According to the entropy driven transition scenario, which is supported by calorimetric measurements[114],

LaCoO3 favors higher spin multiplets at elevated temperatures because of the associated gain in elec-

tronic entropy as a result of the high degeneracy of these high spin states - a point missed by first

principles calculations at the level of DFT. Access to higher spin states is also made easier by a

larger lattice constant due to the reduced crystal field, so the gain in electronic entropy could also

be a driving factor for the large thermal expansion seen in this material.

Figure 7.8: A depiction of the switch in stability between the LTa− and HTa− structures due to

the impact of electronic entropy.

We calculated the contribution of the electronic entropy to the free energy using our state of

the art DFT+DMFT implementation[48]. In particular, we evaluated the Free Energy and the

Electronic Entropy for both the 4K and 1143K structures (LTa− and HTa−) at 1160K to predict if

the structural changes make a considerable difference. The HTa− structure is indeed much higher

in electronic entropy compared to the LTa− structure at 1160K; the difference in T · S between

these two structures is ∼ 110 meV per formula unit. This unusually large difference emphasizes the

importance of electronic entropy to the transition.We also calculate the energy difference between the
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HTa− and LTa− structures to be ∼ 70meV at 1160K with the LTa− being lower in energy. Thus

we see that when the entropy is taken into account and the Free Energy (F=E-TS) is calculated, the

high temperature structure HTa− becomes more stable purely due to the contribution of electronic

entropy (see Fig 7.8). This result therefore confirms the structural phase transition that is observed

as a function of temperature. So, we can conclude that the electronic entropy, which has been ignored

in many first-principles studies of this material, is a leading factor in creating an anomalously large

thermal expansion and driving the material to a high spin state.

7.7 Summary

We studied the spin state transition of LaCoO3 using state of the art fully charge self consistent

DFT+DMFT. By using different experimental and hypothetical crystal structures, we disentangled

the effect of different components of the crystal structure and showed that both the thermal ex-

pansion and the presence of oxygen octahedral rotations have tremendous effect on the spin state

transition of LaCoO3. Our single site DMFT approach reproduced not only the spin state transition

but also the intermediate phase which has nonzero magnetic moment but is insulating. This shows

that the spin state and the metal-insulator transitions occur at different temperature scales and

that the magnetic-insulating phase can be reproduced without necessarily involving cell doubling

via mechanisms such as breathing distortions of spatially inhomogenous mixed spin states. Our

results emphasize the importance of charge fluctuations on the Co ion due to hybridization with

the O anions, and thus point to the inadequacy of a simple spin state picture with only one formal

valence. While the spin state transition is concurrent with a sudden change in occupation in the

high spin multiplets, low and intermediate spin states also have significant occupation in the whole

temperature range. Finally, our work is the first calculation of the electronic entropy of LaCoO3 and

it points to the fact that the difference of the contribution of entropy to the free energy is significant

and is large enough to drive the spin state transition in this material.
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Chapter 8

Investigation into the inadequacy of cRPA in reproducing

screening in strongly correlated systems

8.1 Introduction

As we have seen in earlier chapters, achieving a truly ab initio description of materials with strongly

correlated electrons is one of the prime objectives of condensed matter physics today. To recap,

these compounds attract interest as they often have very complicated phase diagrams displaying

a variety of interesting phenomena such as metal-Mott insulating transition(MIT), unconventional

superconductivity, non-trivial magnetic order, charge/spin density waves etc[66]. These phenomena

cannot be explained by free electron-based approximations and often lie beyond the scope of density

functional theory(DFT),the workhorse for predicting properties of solids from first principles[71].

As we know, Dynamical Mean Field Theory (DMFT) seeks to overcome some of the difficulties

of studying these systems by mapping the lattice problem to a numerically tractable auxiliary im-

purity problem coupled to a bath which is determined self-consistently. Various implementations

of DFT+DMFT are currently available[11, 82, 5, 52, 2, 49],which mainly differ in i)the choice of

how to project to the localized impurity degrees of freedom and ii)the energy window used while

embedding the impurity self-energy into the DFT lattice eigensystem .Though the relative merits

of a particular scheme might be dependent on the problem at hand, a common issue facing all of

them is the determination of the material-specific effective interaction parameters like the Hubbard

U and Hunds J for the correlated subspace. The lack of a reliable prediction procedure is one of the

primary reasons this method cannot yet be considered truly ab initio, even though in the previous

chapters we have been referring to it as such.

This well-known problem was pointed out soon after the introduction of the Hubbard model and

early attempts to estimate the Hubbard U in real materials were made by Cox et.al [26]. Subsequent

advances led to development of a method based on the Local Density Approximation(LDA) called

cLDA (constrained LDA), in which the Hubbard U is calculated from the energy difference between

different occupations of the localized orbitals after cutting off all hopping from the correlated orbitals

to the itinerant states[87, 65, 10]. However, this method tends to overestimate U since a lot of
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physical screening channels are eliminated when the hoppings are cut off (Note that there have

been recent attempts to improve cLDA by incorporating linear response [23]). Recently, another

approach based on the Random Phase Approximation(RPA) called constrained RPA (cRPA)[112, 13]

has gained popularity as it is material-specific and provides a clear picture of the physical screening

channels which are taken into account. cRPA has been applied to a variety of strongly correlated

systems such as transition metals and their oxides[14, 88, 118, 108, 107],early lanthanides[96, 6]

and high-Tc superconductors[89, 123]. However,the Hubbard U predicted by cRPA is generally not

in good agreement with the value required by DMFT impurity solvers to achieve agreement with

experiment. One notable example [6] is elemental Cerium for which the U predicted by cRPA is

about 1eV, which is far smaller than the value of around 6eV used in practice, and which was used

by us to obtain excellent experimentally verified results in chapter 6 . This is not surprising since

the Ce f orbital is more localized than the transition elements’ d orbital and cRPA (due to its use of

RPA-like screening processes) is suspected to be inadequate for such strongly correlated systems. In

spite of this, there has been little theoretical investigation into exactly why cRPA fails in the strongly

correlated regime. Instead most of the recent research on cRPA has focused on the energy window

to be used in the cRPA procedure and the definition of the many-body model using the effective U

predicted by cRPA [107, 89]. In view of the above, we firmly believe that further investigation is

required into the root causes of the failure of this method when strong correlations are present.

In this chapter (which shall soon be submitted for publication in an almost identical form),we

investigate the accuracy of cRPA using a class of model Hamiltonians based on models used to

study strongly correlated materials. This allows us to study the fundamental causes for the failure

of cRPA in strongly correlated systems in general, instead of merely making predictions about a

specific compound. In all of our models, we include strong hybridization between localized and

itinerant bands as the accuracy of cRPA is particularly questionable in such systems. Our models

are two dimensional and we retain all density-density Hubbard interactions, reminiscent of the

models used to study typical transitional metal oxides. We use DMFT to compute the spectra and

quasiparticle residues of both the full multi-orbital model as well the effective one-orbital model

using parameters obtained from cRPA. We show that i) cRPA has a tendency to systematically

overestimate screening in the system. ii) We also find that for a large range of parameters, inter-

orbital and weakly correlated orbitals’ U parameters have little effect on the spectrum, thus negating

the fundamental screening mechanisms used in cRPA. iii) Instead, we study a far more accurate form

of W and U using the DMFT local Polarization bubble which exactly includes all local interactions.

Using this new method, we show that the true screening is far less than predicted by cRPA/RPA

and that the actual U predicted by this method has little frequency dependence. iv) We also study
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the fully screened interaction(W) evaluated using RPA and our new method and show that the RPA

W is unable to capture the Mott transition and also shows no signatures of local screening processes,

which are present in in the W evaluated using our new method. Since local interactions are treated

exactly in DMFT, this success of the local Polarization method clearly shows that DMFT takes into

account all the predominant screening processes in strongly correlated systems which are missing

from RPA-based approaches.

8.2 Models and Methods

8.2.1 Model Hamiltonians

We start by introducing the two models, which we name dp model (for the two-band model) and

dps model(for the three-band model). For the dp model, we parameterize the tight-binding part of

our Hamiltonian using a two-component field ψ†kσ = [d†σ(k), p†σ(k)] in which d†σ(k) [p†σ(k)] creates a

d (p) electron with spin σ and wave vector k. The Hamiltonian is given by :

Hdp
0 =

∑
kσ

ψ†kσ

 εd(k)− µ tdp(k)

tdp(k) εp(k)− µ

ψkσ (8.1)

where

εm(k) = Em + tmm
(

cos(kx) + cos(ky)
)

m ∈ {p, d}

tdp(k) = tdp
(

sin(kx) + sin(ky)
)

This parameterization is motivated by recent research [42] investigating the significance of Udp on the

opening of the gap for the undoped cuprates and it describes electrons hopping on a two-dimensional

lattice with two orbitals per site.The band dispersion and the one-electron thermal non-interacting

Green’s function matrix are given by:

E±(k) = ε+(k)±
√
ε2−(k) + t2dp(k)− µ (8.2)

Ĝ(k) =
[iωn + µ− ε+(k)]1̂ + tdp(k)τ̂1 + ε−(k)τ̂3

[iωn − E−(k)][iωn − E+(k)]
(8.3)

where τ̂i denotes Pauli matrices and ε±(k) =
(
εd(k)± εp(k)

)
/2.

In Fig. 8.1(a) and (c) we show the non-interacting density of states(DOS) and band structure

of the model with the parameters Ep = −2.0, Ed = 0.0, tdp = 1.0, tdd = 0.2 (in units of tpp).Unless

specified otherwise,all the calculations in this chapter have been performed at a fixed total electron

number per site n = 3 and at an inverse temperature of β = 100.We note that there are several

Van-Hove singularities in the DOS due to the extrema in the energy spectrum. We can also see from
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the from the orbital-resolved DOS that there is some mixture of d and p states around the chemical

potential.

Figure 8.1: (a)-(b):orbital-resolved dos of dp model with µ = 0.28, np = 1.78, nd = 1.22 and dps

model with µ = 0.038, np = 1.70, ns = 0.14 and nd = 1.16.(c)-(d):band structure showing orbital

characters of dp model and dps model. The dashed line denotes the chemical potential µ.

Next we turn to the dps model, in which we add a third band to the dp model with the aim

of enhancing the particle-hole screening excitations in the system.The tight-binding part of the dps
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model could be written using a three-component field φ†kσ = [d†σ(k), p†σ(k), s†σ(k)]:

Hdps
0 =

∑
kσ

φ†kσ


εd(k)− µ tdp(k) tds(k)

tdp(k) εp(k)− µ 0

tds(k) 0 εs(k)− µ

φkσ (8.4)

For simplicity,the parameterization used is similar to dp model

εα(k) = Eα + tαα
(

cos(kx) + cos(ky)
)

α ∈ {p, d, s},

tdp(k) = tds(k) = tdp
(

sin(kx) + sin(ky)
)
.

Here we choose tps(k) = 0 with two considerations in mind: i)Physically,it is reasonable to take

it to be zero as these two bands are well-separated in energy; ii) It is helpful in reducing the sign

problem in our CTQMC impurity solver used while solving the DMFT equations,which are discussed

in detail in section 8.2.3.

Fig. 8.1 (b) and (d) show the calculated DOS and band structure of the dps model with Ep =

−1.7, Ed = 0.0, Es = 2.2, tdd = 0.2, tss = 0.5, tdp = 1.0 (in units of tpp). The basic structure of DOS

resembles that of dp model except that there are more Van-Hove singularities in the dps model and

more appreciable mixture of d and p,s states around the chemical potential.

For the interacting part of the Hamiltonian, we only retain all possible on-site density-density

interactions and ignore exchange interactions such as Hunds Coupling. The interaction Hamiltonian

is given by:

H
dp(s)
U =

∑
i

(∑
m

Ummn̂im↑n̂im↓ +
1

2

∑
m 6=o

Umon̂imn̂io

)
(8.5)

Here i labels the lattice site, m, o ∈ {p, d, (s)} , {Udd, Upp, Uss} represent the intra-orbital interaction

strengths and {Udp, Uds, Ups} the inter-orbital interaction strengths.As the d band is taken to be the

most correlated one,we place the added constraint that Udd is the greatest of all the U parameters.

8.2.2 constrained Random Phase Approximation(cRPA)

In this section, we describe the cRPA scheme used in this paper. In cRPA[13],the Hubbard ucRPA

of the effective model is obtained by factoring in screening by the degrees of freedom involving the

itinerant bands in an RPA-like fashion. We rewrite the total polarization function P as P = Pr+Pd,

where Pd is the polarization function within the d subspace and Pr contains all other terms. Using

this definition, the effective ucRPA can be written as:

ucRPA(q) = V (1− Pr(q)V )−1 (8.6)
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with Pr approximated by only the particle-hole(RPA)“bubble” diagrams.The fully screened inter-

action WRPA can be also evaluated using RPA by factoring in the screening effect of Pd on u

WRPA(q) = ucRPA(q)(1− Pd(q)ucRPA(q))−1 (8.7)

The Feynman diagrammatic illustration for the summation procedure of the bubble diagrams used

to calculate WRPA or ucRPA is shown in Figs. 8.3 and 8.2.

Figure 8.2: The Polarization bubble used in the RPA approximation. Note that the variables ~k and

Ω are summed over as per usual Einstein summation convention.

Figure 8.3: a) Figure showing the RPA screening process to obtain the fully screened interaction

W from the unscreened interaction V. b) Figure showing the cRPA process to obtain the partially

screened u from the unscreened interaction V.

Since we keep only density-density interactions in the model, the polarization function P in

orbital basis depends on two orbital indices instead of four in general. The bubble polarization

function is given by

Pmn(q, ω) =
∑
k,λ,β

am∗λ,ka
n
λ,ka

m
β,k−qa

n∗
β,k−q

f(Eβ,k−q)− f(Eλ,k)

ω + Eβ,k−q − Eλ,k + iδ
(8.8)

and interaction matrix V in the two models are given by (V )mn = Umn defined in Eq. [8.5],where

m,n ∈ {p, d, (s)} and wavefunction anλ,k in λ band is 〈n,k|λ,k〉.
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8.2.3 DMFT calculations

In order to solve our lattice models,we employ the DMFT method which maps them onto an impurity

problem subject to the following self-consistency condition[37]:∑
k

(iω1− h0(k) + ΣDC − Σ(iω))−1 = (iω1− Eimp − Σ(iω)−∆(iω))−1 (8.9)

Here h0(k) is the kernel of the two tight-binding models H
dp(s)
0 , ∆ is the frequency-dependent

hybridization of the impurity with the bath and Σ is the impurity Self Energy, which is approximated

within DMFT to be equal to the (local) Self Energy of the system.The double counting(DC) term

ΣDC is needed to subtract the part of the correlation that is overcounted in our tight-binding models

and the DMFT solution.We used the form for the DC term given in Eq. [8.10] which generalizes

the standard DC correction to multi-band systems with interorbital interactions[12]. Note that the

orbital occupancies used in the equation are obtained from the solution of the non-interacting model

as that accurately gives us the Hartree shifts already taken into account by our model before DMFT

corrections are put in. This is also in the spirit of the Double Counting corrections usually used in

LDA+DMFT calculations where the atomic occupancies are used to calculate the Double Counting.

ΣmDC =
∑
o6=m

Umono + Umm
nm
2

(8.10)

The quantum impurity model is solved using the numerically exact continuous-time quantum Monte

Carlo method[122, 46]. CTQMC is known to have a sign-problem when large off-diagonal terms

exist in ∆ or Σ. However, for the dp and dps models considered here it can be proved that most

off-diagonal terms in Σ terms vanish. We prove this using Eq. [8.9].In the case of dp model,the off-

diagonal hybridization function ∆pd ∝
∑

k
tdp(k)

det(iω−h0(k)+ΣDC) in the first iteration by setting Σ = 0

in Eq. [8.9].This turns out to be zero because tdp(k) is odd in k and the determinant is even in k.This

says that ∆ is diagonal in the first iteration.After solving the impurity model using diagonal ∆,the

impurity self energy is also diagonal. Utilizing Eq. [8.9] again,one finds that ∆ remains diagonal for

nonzero but diagonal self energy.Similar analysis of dps model leads to Eq. [8.11]:

Σ =


Σdd 0 0

0 Σpp Σps

0 Σps Σss

 (8.11)

The lattice self-energy and Green’s function are obtained by iterating our equations to self-consistency.

As noted earlier, the chemical potential in all our simulations is adjusted such that the total electron

occupancy is 3. As our DMFT scheme provides us with quantities on the imaginary (matsubara)

axis, in order to obtain physical quantities on real frequency axis we use the maximum-entropy
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analytical continuation method[69]. Additionally, in order to estimate the degree of correlations

present in our model in different simulations, we calculate the quasiparticle residue which (within

the of DMFT approximation) is given by:

Zm =

(
1− ImΣm(iω)

ω
|ω→0

)−1

(8.12)

where m is the orbital index.

8.3 Results

8.3.1 Density of states

In this section,we compare the densities of states(DOS) obtained for three different scenarios near

the Metal-Mott insulator transition (MIT) for both the dp and the dps models using DMFT. The

three scenarios we study are: 1) Full two-orbital(dp) or three-orbital(dps) DMFT with all on-site

interactions factored in, which we dub the “2-orb/3-orb” scenario, 2)one orbital DMFT where we

fix the value of the effective udd to the same value as full model (thereby neglecting any screening)

, which we name the “1-orb bare” scenario and 3)one orbital DMFT with an effective udd on the

correlated orbital calculated using cRPA, dubbed the “1-orb cRPA” scenario. We emphasize here

that the number of bands are the same in all three scenarios considered and the differences lie in

the choice of correlated orbitals and value of the interaction in these subspace.The values for the

interaction parameters used in our simulations are summarized in Table 8.1 These parameters give

appreciable screening by cRPA and are therefore suitable to investigate its accuracy. With these

sets of U, we find that in “2-orb/3-orb” scenario the critical U for the MIT for the dp model is

UMIT
dd ∼ 3.2, while for the dps model UMIT

dd ∼ 4.5. For the “2-orb/3-orb” scenario,though there

exist Hubbard-like interaction terms in the p or s orbitals, the self energies in these orbitals are

normally negligible compared to that in the d orbital, as shown in Fig. 8.4 for dp model with

Udd = 4.5 and dps model with Udd = 6.0. This clearly shows that an effective one orbital model can

be defined which reproduces the physics of the full model in both cases.

2-orbital (dp) model 3-orbital (dp) model

Upp = 0.2Udd Upp = Uss = Ups = 0.1Udd

Upd = 0.8Udd Upd = 0.6Udd

Uds = 0.3Udd

Table 8.1: Table containing interaction parameters used for the two different Hamiltonians in use in

our simulations
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Figure 8.4: Comparison of ImΣ in all orbital channels in “2-orb/3-orb” scenario for (a) dp model

with Udd = 4.5 and (b) dps model with Udd = 6.0.

In order to calculate the effective interaction parameters predicted by cRPA, we obtained the

screened frequency-dependent u and W for the critical values of Udd for the two models given earlier.

As shown in Fig. 8.5, cRPA predicts a static value of ucRPAdd (ω = 0) = 2.91 for the dp model and

ucRPAdd (ω = 0) = 3.26 for the dps model.These correspond to about 35.3% and 45.7% screening for

the dp and dps models respectively. We also note that within an energy window 0−3eV , u is almost

flat in both models, which means effective u will be very close to the static value even if one adopts

a scheme accounting for frequency dependent u within a finite energy window. Therefore we believe

that our static u based DMFT is more than adequate for these calculations.
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Figure 8.5: ucRPAdd and WRPA
dd of the dp(dps) model predicted by (c)RPA is shown in red (blue).The

dark dashed horizontal line denotes the bare value of Udd used in dp and dps model. Note that both

ucRPAdd and WRPA
dd approach the bare value in the limit of high frequency as expected(not shown

here).

Next we present the central result in this section: comparing the spectral functions of the three

scenarios for both models .We compare only the d-orbital DOS as the dos of other orbitals share

similar trend. As shown in Fig. 8.6,we find that for both dp and dps models with the critical

parameters defined above, the “1-orb cRPA” scenario is metallic,in sharp contrast to the Mott-

insulating “2-orb/3-orb” and “1-orb bare” scenarios. This shows that in the models we considered

the bare scenario is a much better approximation to the original many-orbital model compared to

cRPA . cRPA grossly overestimates the amount of screening that is present in these models near

MIT. The fact that the “1-orb bare” scenario accurately reproduces the spectra also shows that

Udp and Upp treated dynamically have very little effect on the system, which further negates the

fundamental screening mechanisms used in cRPA.
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Figure 8.6: Comparison of dos of d orbital (d-DOS) within three scenarios for (a) dp model with

Udd = 4.5 and (b) dps model with Udd = 6.0.

8.3.2 Quasiparticle Residue

In order to further illustrate the inaccuracy of cRPA, we shall now show how the “1-orb cRPA”

scenario deviates from the other two for a broad range of Udd by comparing the quasiparticle residue

Zd of the d-band (calculated using Eq. [8.12]) in the three scenarios for both models. Zd gives us

the extent of the correlations present in the correlated band and (within the DMFT approximation)

is the inverse of the effective mass of the quasiparticle excitations. So a value of 1 would denote lack

of correlation, whereas Zd ∼ 0 would signal proximity to an insulating solution with Zd becoming

zero at the critical U . From the results shown in Fig. 8.7, we see that cRPA always overestimates

screening, with the discrepancy getting more pronounced as the Udd approaches the critical value

for the MIT.
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Figure 8.7: Comparison of the quasiparticle residue of the three scenarios varying Udd in (a) dp

model with Upp = 0.2Udd, Upd = 0.8Udd and (b) dps model with Upp = Uss = Ups = 0.1Udd, Upd =

0.6Udd, Uds = 0.3Udd.

We also notice that “1-orb bare” is closer to the “2-orb/3-orb” scenario than the “1-orb cRPA”

scenario, and in the range Udd ∼ 2.7 − 3.4eV ,we observe dubious antiscreening effect in “2-orb”

scenario if it is compared to“1-orb bare” scenario in dp model. We claim that this comparison is

not physical in strict sense because low energy physics is not the same in these two scenarios .To

demonstrate this, we investigated the behavior of occupancy of d orbital nd in these two scenarios as

shown in Fig. 8.8. One notices that there is a tiny difference of nd in these two scenarios, showing that

low-energy physics in d orbital channel is not the same.Besides, the onset point of “antiscreening”

is concurrent with the crossing point in Fig. 8.8 where nd in “1-orb bare” starts to outweigh that

in “2-orb” scenario. From this we claim that the dubious “antiscreening” effect is caused by the

difference in nd and thus it is not a true effect here. However, these results establish the fact there is

little screening on the most correlated orbital by the remaining orbitals in the dp and dps model and

that it could be more accurate to factor in no screening at all rather than use cRPA as a predictive
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mechanism. These results are also in agreement with those in Sec. 8.3.1 and suggest that in the

strongly correlated regime with large hybridization between bands, the RPA bubble diagrams are

not the most relevant ones when one is describing screening by non-correlated bands. It also suggests

that in such cases, we should go beyond cRPA and consider a different screening mechanism,which

is discussed in Sec. 8.3.3.

Figure 8.8: Occupation of d orbital (nd) in dp model varying Udd with Upp = 0.2Udd, Upd = 0.8Udd

of 1-orb bare and 2-orb scenario. MIT(1-orb bare) and MIT(2-orb) are transition points inferred

from the quasiparticle residue results.

8.3.3 Estimation of Screening using Local Polarization

We shall now explain a new formulation for estimating the screening in strongly correlated systems.

As we have shown, RPA-like non-interacting bubble diagrams are inadequate in explaining the

screening present in these systems. In an effort to modify this formalism and yet preserve the

mathematical simplicity of the method, we shall replace the non-interacting Polarization bubble

used in RPA/cRPA with the full local Polarization bubble within DMFT approximation PLoc.

Similar to cRPA, we shall also define PLoc = PLocd + PLocr , where PLocd is the localized polarization

in the d -subspace. We shall use this local Polarization to calculate the effective interaction in dp
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model using the following equations

ucLoc = V Loc(1− PLocr V Loc)−1 (8.13)

WLoc = ucLoc(1− PLocd ucLoc)−1 (8.14)

The local polarization bubbles PLoc here are constructed from the local two-band impurity charge

and spin susceptibilities which are easily calculated using the CTQMC impurity solver [21]. These

polarization inclusions include all the local interactions exactly and thus go far beyond the RPA-like

prescription (For details on the exact procedure please refer to Appendix A). Note that this new

procedure also obeys the Pauli exclusion principle , which is known to be a major failing of the

cRPA method. [110]. Also note that ucLoc and WLoc give us the screened interaction parameters in

all the orbital and spin channels separately. However as our major interest here is the interaction

between electrons with opposite spins in the correlated (d) orbital,we shall concentrate only on this

particular channel. Using this new procedure we estimate the new screened interaction parameters

WLoc and ucLoc for two sets of parameters, one in the correlated metallic regime with Udd = 3.0

and one in the Mott insulating regime with Udd = 4.5. The results are shown in Fig. 8.9. The

comparison between the static values of ucRPAdd and ucLocdd is given in Table 8.2. As we can see, cRPA

predicts vastly larger screening compared to our method (3 times larger in the metallic case and

52 times larger in the insulating case). We performed single orbital DMFT runs using the values

predicted by our new method. We see that for Udd = 3.0, our method still predicts slightly too much

screening as evidenced by the enhanced metallicity of the ”1-orb cLoc” run compared to the full 2-

orb run. However the result is a large improvement on the cRPA result. For the insulating case, our

method successfully reproduces the Mott transition, which cRPA fails completely in achieving. Our

method yields a value of screened udd which is almost identical to the bare Udd, again showing that

there is very little inter-orbital screening near the MIT . We see that ucLocdd has very little frequency

dependence, which also negates the need for inclusion of more complicated frequency dependent u

in our impurity solvers.

bare U ucRPAdd screening(|1− u
U |) ucLocdd screening

3.00 2.25 25.0% 2.76 8.00%

4.50 2.91 35.3% 4.47 0.67%

Table 8.2: Comparison between static values of ucRPAdd and ucLocdd for different values of bare U in

the dp model.
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Figure 8.9: Plot showing the ucLoc and WLoc for Udd = 2.5 (top) and Udd = 4.5 (bottom) using the

Local Polarization method. The RPA WRPA and cRPA ucRPA for both sets of parameters is also

shown for comparison. Note: For both runs Upp = 0.2Udd;Udp = 0.8Udd. Inset shows a magnified

portion of the plot for ucRPA and ucLoc near ω → 0.
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Figure 8.10: Plot showing the p orbital and d-orbital density of states using two-orbital DMFT (“2-

orb”) and effective one-orbtial DMFT using the Local Polarization method(“1-orb cLoc”) and cRPA

(“1-orb cRPA”). The top two figures are for Udd = 2.5 whereas the bottom two are for Udd = 4.5.

The results for the fully screened W show that RPA had predicts a very small W ∼ 0.5 for

both the metallic and insulating cases, while our new method yields a static WLoc
dd around 2.0, thus
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showing much reduced screening in all channels . We also see that as we go to the insulating case,

WLoc
dd displays sharper features at very low energies and has a larger static value. This pronounced

low-frequency behavior is characteristic of local Kondo-like screening processes which are seen for

example in the magnetic susceptibility of γ Cerium [21]. Thus we see that our new prescription not

only allows us to obtain values of u which are much more accurate in reproducing the spectra in

strongly correlated regime when using effective one-orbital models but also show clearly that local

screening is by far the most dominant contribution to screening processes in these systems. It is to

be noted however that our method cannot be used for prediction of effective one-orbital parameters

as we would need to perform multi-orbital DMFT in order to obtain the required susceptibilities

to construct the local polarization. However, this procedure clearly shows that the physics of these

systems is very different from RPA and that the local inclusions to the Polarization negate some of

the overscreening inherent in cRPA. Therefore we believe that any predictive method should include

some treatment of local processes in order to be successful and that by calculating more accurate

Polarization functions, we may be able to successfully account for screening in strongly correlated

systems.

8.4 Discussion and Conclusion

In this paper,we investigate the validity of cRPA as a method for predicting the Hubbard U for

strongly correlated systems.To this end we study two different models, each of which have one

strongly correlated band strongly hybridized with other weakly correlated band/s. We compare

three scenarios derivable from the original lattice models and show that the full and the “1-orb

bare” scenarios have very similar spectral functions for a wide region of interaction parameters.On

the other hand,the cRPA “1-orb cRPA” scenario with an effective on-site Hubbard U calculated

using cRPA has the tendency of being more metallic. We also compare the quasiparticle residue

Zd of the three scenarios and show that cRPA gets progressively worse as the on-site Udd of the

correlated band increases.These results together clearly show that cRPA has a pathological tendency

to overestimate screening in strongly correlated systems. This, we believe, is simply due to the fact

that the RPA-like bubble diagrams are not the exclusive leading order terms in the screening of local

Coulomb repulsion. This systematic overscreening adds to other known deficiencies of cRPA, such

as its violation of Pauli principle (note recent attempts to address this by Shinaoka et. al [110]).

The extent of over-screening produced by cRPA is also hard to estimate and seems to depend on

the exact dispersion of the system in question. This leads us to believe that such a mechanism is

not suitable for predicting the effective screened Hubbard U for DMFT impurity solvers, except
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as a lower bound for any other method. In addition, we show that in our models the interorbital

interaction parameters such as Udp and Upp have very little screening effect in our model and that

it is possible to stabilize a Mott Insulating phase without necessarily having large inter-orbital

interactions.This is not compatible with the result obtained by Hansmann et. al [42] in which they

find a finite Udp is necessary to have a stable charge-transfer insulting phase. Our results seem to

predict that εp− εd and Udd are the important parameters which define the physics of such systems,

instead of Udp.Though our models have a different dispersion from theirs,it would be interesting

to see whether treating Udp dynamically in their models would change their predictions. Finally

we propose a new way to account for screening by using the local Polarization instead of the non-

interacting Polarization bubble. We show that our new method predicts values of Hubbard U which

are more accurate in reproducing the spectra of the full model, especially near the Mott Transition.

Moreover the new WLoc also shows reduced screening compared to RPA and also indicates that

highly localized Kondo-like screening in the correlated orbital is the dominant screening process,

while the WRPA calculated using RPA fails as expected in capturing any such signatures.
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Chapter 9

Conclusion

In this thesis we have studied various aspects of strongly correlated systems using DFT+DMFT.

We started the thesis with a details of the theoretical building blocks of the DFT+DMFT method,

namely Density functional Theory (DFT), Dynamical Mean Field Theory (DMFT) and the proce-

dure to combine them into one comprehensive algorithm (DFT+DMFT). We then looked at some

details of the impurity solver used in most of the DMFT simulations, the Continuous Time Quantum

Monte Carlo (CTQMC) impurity solver. After building up the framework to be used in our simu-

lations, we moved on to specific applications which have been the subject of my graduate research.

We start off in Chapter 6 by describing the simulations of the magnetic spectral function S(q, ω)

for strongly correlated f-shell materials. We first outlined the theory for the calculation by describing

the method to calculate the magnetic form factor and the dynamic magnetic susceptibility (which

contain the q-dependence and the ω-dependence respectively) and to combine them into S(q, ω)

under the single ion approximation.

We then used this computational machinery to study two important problems in condensed

matter. We first studied the volume collapse transition in Cerium between α-Ce and γ-Ce. By

confirming that the magnetic form factor FM (q) is identical across the transition, we confirmed

that the f-electrons remain correlated in both phases, ruling out the promotional scenario for the

transition. We then showed that the dynamic magnetic susceptibility shows an increase in the Kondo

Temperature as we go across the transition into the α-phase. This showed that the hybridization

and increase in Kondo temperature are important drivers for this transition. Finally we combined

these two pieces to get the S(q, ω) for the transition which showed excellent agreement with neutron

scattering experiments performed by Murani et. al [90].

Next we used the same technique to study the valence fluctuations in δ-Pu. The magnetic form

factor obtained by us for the material not only achieved good agreement with experiments but

also showed that we can understand the ground state of δ-Pu as a quantum mechanical mixture of

different valence states. We then showed using the dynamic susceptibility that the compound does

not show local moment behavior thus addressing the problem of missing magnetism in δ-Pu. We

obtained a Kondo Temperature of ∼ 800K which explains how the moment in δ-Pu gets screened
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the by Kondo screening cloud at low temperature. Finally we again obtained S(q, ω) which is in

good agreement with neutron scattering experiments performed by Janoschek et al at Los Alamos

National Lab.

The next problem we address in this dissertation is the decades-old problem of explaining the

spin state transition in LaCoO3. In this system there has been a long debate about whether the

Intermediate Spin (S=1) or the High Spin (S=2) state is dominant at high temperatures after

the spin state transition has set in. In addition, there is also a non-concurrent metal-insulator

transition that occurs in the compound at a different temperature scale. In our simulations, we used

four different crystal structures (two physically present structures and two hypothetical structures)

to isolate and study the effect of the (abnormally large) lattice thermal expansion and octahedral

rotations in driving the spin state transition. Our simulations were successful in obtaining a spin state

transition as a function of increasing temperature in the system. In addition we also obtained the

non-concurrent metal-insulator transition at a completely different temperature than the spin state

transition. By studying the four different structures, we ascertained that both thermal expansion

and octahedral rotations aid the spin state transition by reducing the crystal field splitting in the

compound. By using the spin state probabilities given to us by CTQMC, we showed that the high-

temperature is a mixture of both the Intermediate and High spin states with both states gaining in

probability as temperature is increased. We also showed that there are large valence fluctuations in

the compound which make any description in the terms of spin states of the d6 state inadequate.

However we also see importantly that at the onset of the spin state transition, we see a jump in

the occupation probability of the High spin multiplet. Interestingly we also noted that the metal-

insulator transition is rather insensitive to the lattice parameters and happens at almost the same

temperature for all four structures. Finally we used our state of the art Free Energy calculation

algorithm to show that the electronic entropy gained by the spin state transition is enough to stabilize

the Higher Spin state structure at high temperatures.

In chapter 8, we study the validity of the constrained Random Phase Approximation (cRPA)

in estimating the screening of Hubbard U in strongly correlated systems with large hybridization

between correlated and non-correlated orbitals. We showed, using simple yet general two and three

orbital model hamiltonians that cRPA systematically underestimates screening in these systems,

which can lead to pathological misrepresentation of the amount of correlations present. By comparing

the simulations of the spectra and the quasiparticle residues of the full model and effective one orbital

models with zero screening and screening estimated by cRPA, we showed that it is often more

accurate to factor in no screening at all rather than the RPA-like screening used by cRPA. This

showed that the RPA diagrams which are relevant in the q → 0 limit, are not the most important
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diagrams in local screening. In addition we show that the interorbital repulsion parameters which

are fundamental to the screening diagrams in cRPA, have very little effect on the spectra thereby

further calling into question the cRPA method, which seems to incorporate these parameters to

overestimate screening to an unpredictable degree. Finally we address some of these concerns by

postulating a new method to estimate screening which involves the full local polarization bubble

(constructed using the local spin and charge susceptibilities) instead of the RPA polarization. Using

this local polarization, which includes a much larger class of diagrams, we estimate the screening

much more accurately than cRPA and are much more successful in reproducing spectra and the

Mott-like metal-insulator transition in these models. The screened repulsion calculated using this

method also shows very little frequency dependence, which seems to suggest that factoring in the

frequency dependence of U is not very important in describing the physics of these systems.

Therefore in this dissertation, we have studied different aspects of the physics of strongly cor-

related systems using DFT+DMFT. We firmly believe that we have built up a robust framework

which shall serve as an invaluable tool in studying the properties of real strongly correlated materials

in time to come. It is hoped that by harnessing the full power of techniques like DMFT, we shall

soon have the power to fully understand the physics of these notoriously difficult materials, which

in turn will open up new horizons for mankind in engineering and technology.
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Appendix A

Details of the calculation of Local Screening

In this appendix,we sketch out the method to evaluate the partially screened ucLoc and fully screened

WLoc and elaborate how the local polarization bubbles are evaluated using impurity solver ctqmc.

. Since our method takes into account spin degrees of freedom explicitly, we need to reformulate

the interaction matrix to factor in the spin degree of freedom. Also note that due to the Pauli

principle (which was ignored by the RPA method), we cannot have two fermions with the same

spin in the same orbital therefore we set the diagonal components of the interaction matrix to zero.

The interaction matrix, which we name V Loc, is now given (in terms of the Hubbard U parameters

defined in Chapter 9) by :

V Loc =

d ↑ d ↓ p ↑ p ↓

d ↑ 0 Udd Udp Udp

d ↓ Udd 0 Udp Udp

p ↑ Udp Udp 0 Upp

p ↓ Udp Udp Upp 0

(A.1)

The basic quantitiy we want to measure here is the local Polarization bubble PLoc, whose matrix

elements shall henceforth be denoted for notational efficiency by P̃αβ , which will be calculated from

the fourier transform of :

Figure A.1: Diagrammatic Representation of a general matrix element of the local Polarization

bubble. The blue shading indicates that we take into account all interaction processes inside the

impurity. α and β are condensed spin and orbital indices. It is to be noted that we only calculate

the local (impurity) bubble hence there is no q dependence
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The CTQMC impurity solver gives us access to the impurity spin and charge susceptibilities χc

and χs which measure the charge and spin autocorrelation functions given by-

χs(iω) =

∫ β

0

∑
αβ

eiωτ 〈Sαz (τ)Sβz (0)〉 (A.2)

χc(iω) =

∫ β

0

∑
αβ

eiωτ 〈nα(τ)nβ(0)〉 (A.3)

Where α and β are condensed spin and orbital indices. Now in order to get P̃ matrix elements from

these susceptibilities, we first set the spin observable of each electron artificially to ±1 instead of ±1

2
as that allows us to get rid of factors of 4 in denominator which would have otherwise been present.

Note also that since our Hamiltonian has spin symmetry in the paramagnetic phase, we can define

new variables a . . . f using the relationships: P̃ d↑d↑ = P̃ d↓d↓ = a, P̃ p↑p↑ = P̃ p↓p↓ = b,P̃ d↑d↓ = P̃ d↓d↑ = c,P̃ p↑p↓ =

P̃ p↓p↑ = d,P̃ d↑p↑ = P̃ d↓p↓ = P̃ p↑d↑ = P̃ p↓d↓ = e,P̃ d↑p↓ = P̃ d↓p↑ = P̃ p↑d↓ = P̃ p↓d↑ = f . Adopting these definitions, we

see that that the new impurity charge and spin susceptibilities calculated by CTQMC obey:

χc = 2(a+ b+ c+ d) + 4(e+ f) (A.4)

χs = 2(a+ b− c− d) + 4(e− f)

In order to get the individual variables, we further calculate the single orbital charge and spin

susceptibilities using CTQMC. These give us the following identities:

χ(d)
c = 2(a+ c), χ(d)

s = 2(a− c)

χ(p)
c = 2(b+ d), χ(p)

s = 2(b− d) (A.5)

By solving these equations we can obtain {a . . . f} from the sampled χs,χc,χ
(α)
c ,χ

(α)
s (α = p, d) to

get:

a =
χ

(d)
c + χ

(d)
s

4
, c =

χ
(d)
c − χ(d)

s

4
(A.6)

b =
χ

(p)
c + χ

(p)
s

4
, d =

χ
(p)
c − χ(p)

s

4
(A.7)

e =
1

8
(χc + χs)−

1

2
(a+ b) (A.8)

f =
1

8
(χc − χs)−

1

2
(c+ d) (A.9)
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Now we have all of the quantities defined to calculate the local Polarization matrix P̃ given by:

PLoc =


P̃ d↑d↑ P̃ d↑d↓ P̃ d↑p↑ P̃ d↑p↓

P̃ d↓d↑ P̃ d↓d↓ P̃ d↓p↑ P̃ d↓p↓

P̃ p↑d↑ P̃ p↑d↓ P̃ p↑p↑ P̃ p↑p↓

P̃ p↓d↑ P̃ p↓d↓ P̃ p↓p↑ P̃ p↓p↓

 (A.10)

In order to define a cRPA-like algorithm, we now define PLocd as the top 2x2 submatrix of PLoc

PLocd = P̃ dsds′ , (s, s
′ = ↑, ↓) (A.11)

We then complete the formalism by defining:

PLocr = PLoc − PLocd (A.12)

Now, having obtained the Polarization matrix, we use a cRPA like expansion to obtain the

new partially screened uLoc and WLoc by the same diagrammatic expansion as used in the RPA

procedure, but with the new PLoc as shown in Fig A.2

Figure A.2: Diagrammatic representation of the procedure to calculate the new screened interaction

parameters using the local Polarization

or explicitly, we get:

ucLoc = V Loc(1− PLocr V Loc)−1 (A.13)

WLoc = ucLoc(1− PLocd ucLoc)−1 (A.14)

So in this section we have obtained an alternative method to estimate screening of coulomb

interaction between electrons within the impurity. As mentioned before, the accurate results ob-

tained using this process is an illustration of the fact that RPA is inadequate. This method cannot

provide us with apriori knowledge of screening because we need to run the impurity solver before

we obtain these polarization bubbles which precludes this method being used as a predictive tool.
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Moreover the calculation of all the orbital-specific polarizations requires multiple impurity solver it-

erations to be performed with specific inputs, which is a time consuming process. However, the fact

that we have obtained more accurate results using this screening procedure, which predicts much

reduced screening compared to cRPA shows that DMFT already contains most relevant screening

processes (hybridization screening) and the RPA diagrams are not the dominant ones when it comes

to estimating local screening.
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