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ABSTRACT OF THE DISSERTATION

The multiplicative weight updates method for

evolutionary biology

by ERICK CHASTAIN

Dissertation Director: Eric Allender

A new and exciting direction of recent work in theoretical computer science is the ap-

plication of methods from the field to evolutionary biology. Starting with the work of

Christos Papadimitriou and Adi Livnat, there has been a concerted effort to use these

techniques to analyze such diverse phenomena as: the algorithmic role of recombination

to increase mixability, the evolution of modularity, and the evolution of complex adap-

tations. There is also work by Les Valiant and his students using tools primarily from

learning theory to more broadly analyze evolutionary processes. In parallel, computer

science theory has developed a novel method which has been applied in diverse areas of

algorithms and complexity: the Multiplicative Weight Updates (MWU) method. The

MWU method simply applies the MWU general-purpose online learning algorithm on

problem-specific loss functions. The contribution of this thesis is to apply the MWU

method and the algorithmic lens to make models in evolutionary biology.

The first contribution is a surprising equivalence between the MWU algorithm play-

ing a coordination game and infinite-population genetics models with recombination and

no mutation. By so doing, we resolve analytically a question asked by Papadimitriou

and Livnat: whether mixability is increased in the short-term by recombination.

Other models introduced using MWU as a basic dynamics include a model of the

ii



evolution of animal personality and of tool innovation.

Finally, the thesis presents a novel connection between universal semantic commu-

nication and the Rivoire-Leibler model of population genetics, in addition to infinite

population asexual selection models. MWU is the basic tool used to prove the latter

connection.
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Chapter 1

Introduction

One of the most enduring mysteries in science is the origin of the manifold forms of life.

In the words of Charles Darwin:

“There is grandeur in this view of life, with its several powers, having been originally

breathed into a few forms or into one; and that, whilst this planet has gone cycling on

according to the fixed law of gravity, from so simple a beginning endless forms most

beautiful and most wonderful have been, and are being, evolved.”

All of the diversity of life is accompanied by complex and intricate structures. A

great stimulus for the life sciences is how such complex structures could possibly have

originated. There have been many theories of the origin of complex structures in living

things, but most of them have focused on some kind of of gradual process of development

or evolution. Evolution would operate on a source of variation, and then originate new

forms that gradually increase the rate of reproduction and survival, called fitness. There

are of course many remaining questions, such as how it could be possible for novel forms

to originate with small changes. And moreover, how the sheer vastness of different forms

could have emerged. In particular, in population genetics (PG), there is a population

of different kinds of organisms, and the frequency of the kind with the highest fitness

will tend to increase.

Other mysteries have emerged as well, such as, how could it be that sexual repro-

duction ever got going, given that most living organisms started off as asexual, and

asexual reproduction is the most efficient way to reproduce. Finally, how could the

forms of life occurring in history originate, in other words if one rewound the tape of

history and started it over again, would the same or similar forms of life have come

about? This mystery is referred to as the “arrival of the fittest,” a play on the “survival
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of the fittest.”

Why as a computer scientist am I interested in Evolution? Computer science looks

at algorithmic processes that use and quantify resources such as time and randomness,

which are then levied for the solving of problems. In particular, as computer scientists

we can quantify how much time and how much randomness (or some other resource)

are necessary to solve problems of increasing problem size. So therefore with our tools

we can study the question: what process could have generated all this diversity and

complexity in so few generations? Also, how can we shed light on the question of the

origin of sexual reproduction? Does it really make sense in a broad sense to shuffle

genetic material in order to maximize fitness? If not, what is maximized? What kinds

of algorithms can be so versatile as to solve many different problems, if biological

structures are each formalized as “problems?”

There has been much interest in evolutionary biology from computer scientists in

algorithms and complexity theory, for exactly these reasons. Applying rigorous tools

from theoretical computer science, the community has produced a body of work in this

exciting new interdisciplinary field. First we will discuss the different subdisciplines

of computer science and their interaction with evolutionary biology: learning theory,

optimization theory, and algorithmic analysis.

1.1 Evolution as an Algorithm, or the use of Algorithmic methods in

Evolutionary Biology

The interaction between evolutionary theory and algorithmic thinking is almost as old

as computation itself, with Charles Babbage imagining the origin of species as pro-

gressing according to some gradual algorithm [39]. John Von Neumann too tinkered

with modeling mechanisms in evolution computationally, by thinking up a machine

that could reproduce itself [140]. In the process he invented cellular automata. There

have been many philosophers or evolutionary biologists who have toyed with the idea

of an evolutionary process being algorithmic in some way, including Richard Dawkins
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with his WEASEL program [37], Daniel Dennett with his idea of a “Darwinian algo-

rithm,” [39], and John Maynard Smith applying a kind of dynamical game theory to

the study of evolution and advancing the idea that evolution operates on, and inno-

vates, information-processing structures [92, 133]. Most notably, the work of William

Fontana actually uses a Lambda-calculus formalism to analyze how evolution could

produce innovative new types that replicate themselves [49].

Among all of the evolutionary biology approaches to information-processing, most

of them focus very keenly on the mechanistic nature of natural selection, the means by

which fitness is increased in evolving populations. However, in addition, they have no-

ticed that evolution itself operates on discrete structures which have a kind of computa-

tional logic, and which process information. If one tries to modify algorithms by strange

random additions, one gathers a certain intuition about which algorithms are robust

to changes, and which ones are brittle. These studies have culminated in the analysis

of robustness and evolvability [142, 77]. Also, the very structure of organisms has been

analyzed along the lines of divide-and-conquer algorithms, via modular theories of or-

ganismal structure [143]. There has also been much work making biologically-inspired

algorithms for optimization, such as genetic algorithms.

But within theoretical computer science itself, as an outgrowth of previous ap-

proaches and intuitions, there has been a novel emphasis on growing the seeds planted

by these researchers. The first work to do this in earnest was done by Les Valiant and

his students [138]. The basic idea he had was to view evolution as a kind of learn-

ing algorithm, trying to use noisy samples of a quality function to judge whether an

individual hypothesis that was being modified slowly over evolutionary time was of

increasing quality. If so, then the hypothesis would be retained. And so forth. The

interesting thing about the model was his emphasis on the individual (which is called

strong-selection weak mutation in population genetics), and the vast and robust model

of evolution assumed: almost any mechanism that has been imagined could fit into the

model of evolution proferred. Through this model, it was shown that certain classes

of functions could not ever be realized by evolution in realistic time-scales, such as the

XOR function. Moreover, evolution was shown to be as powerful as a relatively weak
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form of learning called statistical query learning, which is less powerful than conven-

tional machine learning.

In another area of theoretical computer science, algorithmic analysis, Bernard Chazelle

and co-authors have focused on “natural algorithms.” Natural algorithms are algo-

rithms used to model biological function, that are shown to be reasonably optimal by

some performance measures. It is often supposed that Evolution optimizes the function

of such algorithms in some way (which need not be the case). In evolutionary theory,

this fits in trait-based evolutionary biology. The field has seen progress in analyzing

the amount of time a famous model of bird-flocking takes to converge [28], in addition

to another model of biological synchronization [27].

The early history of evolutionary computation was to think of genetics as a means to

optimize some objective function [61]. In that context, strong-selection weak-mutation

regimes (with recombination) for population genetics do give the kind of algorithm

they implement. Such an approach seeks to use population genetics to enable global

optimization. There has been much work in theoretical computer science trying to

understand when, if at all, such a heuristic would work. There have been mixed results

[7, 3].

However there has recently been work by Christos Papadimitriou and co-authors

that has sought to find conditions under which evolution with recombination could be

useful, and others in which it is not so useful [85]. Papadimitriou et. al. do this by

asking whether another quantity, “mixability” is optimized by evolution with recom-

bination, rather than fitness itself. Mixability is basically a quantity that measures

how well a gene performs in a different set of genetic contexts. And finally, note that

there are some problems (specifically, finding satisfying assignments) for which they

have shown that recombination + selection suffices [88].

The general trend in all of these applications of computational complexity and

algorithms is to find the suitable problem that Evolution putatively solves, then show

that it can be used as an algorithm for that problem. For instance, Valiant’s Evolvability

framework looks at learning problems based on noisy queries, and the work on mixability

looks at optimization. For this thesis, we focus fundamentally on a decision-theoretic
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problem, in a setting called on-line learning. We want to decide between different

experts and arbitrate between them based on the quality li of the advice they give—

yielding choices that are close-to-optimal when compared to the best expert in hindsight.

The relation between this basic problem of expert-based learning and Evolution is what

we will study in various parts of the thesis. We also look at a special case in which the

experts are pure strategies in a game (Chapter 3).

The principle algorithm we propose to use in modeling in evolutionary biology is

called the Multiplicative Weight Updates Algorithm (MWUA). The basic principle

behind the MWUA is to trust the advice of an expert with a probability proportionate

to the quality of advice, according to a simple product of the current probability and a

factor directly proportional to the advice quality.

There are many useful properties of MWUA that we use throughout the thesis:

• MWUA works for any set of quality functions, even those that are adversarially

chosen.

• The algorithm chooses a set of probabilities over experts that does as well cumu-

latively as the best expert.

• The algorithm converges very quickly as a function of the total elapsed time T ,

often of order 1/T .

• Because of the exponential/linear form of the probability update, MWUA is “nat-

ural,” or “intuitive.” Therefore, many dynamics/algorithms/gadgets can be ana-

lyzed as a variant of MWUA.

Given all of these properties, the MWUA is very useful for solving a variety of

optimization problems. The application of MWUA to solve an optimization problem

is called the Multiplicative Weight Updates (MWU) method. Specifically, the MWU

method (as introduced by Kale [6]) works as follows:

Apply MWUA with experts and li chosen differently based on the problem class,

for optimization/learning problems. The final mixture over experts must then be used

to give an approximately-optimal solution to the given problem.
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There have been applications so far to solving the following kinds of problems:

• Solving zero-sum games approximately in quadratic time

• Linear program solver

• Convex progam solver

• Learning linear classifiers

• Boosting

Now after showing that the MWU method has had great success in solving a variety

of problems, we show that it is also useful for models in Evolutionary biology. Many

of the tools used in applications of the MWU method to the above problems are used

again to inspire and prove properties of the models.

The principal contributions of this thesis are to show just how versatile the MWU

method is for generating novel models and exciting connections between different fields

of evolutionary biology and computer science theory. In particular, we want to introduce

the MWU as an algorithm to generate dynamics for use in biological modeling.

The general-purpose description for how we can use the MWU method in biological

models centers on biological information. First of all, choose the receivers of biological

information for the target domain as experts. Then choose the appropriate quality

function li proportionate to the value of information for expert i. We will call this the

Expert Information Model (EIM).

Now let’s be more specific about the particular results proven in the thesis using

the EIM, and thus the MWU method.

Here are examples of some things we prove in the thesis using this method, along

with a description of each result:

• Population genetics as MWUA playing a Coordination game (w/ Papadimitriou,

Vazirani, Livnat) (Chapter 4)

Even the most seasoned students of evolution, starting with Darwin himself, have

occasionally expressed amazement that the mechanism of natural selection has
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produced the whole of Life as we see it around us. There is a computational way

to articulate the same amazement: “What algorithm could possibly achieve all

this in a mere three and a half billion years?” In this work we propose an answer:

We demonstrate that in the regime of weak selection, the standard equations of

population genetics describing natural selection in the presence of sex become

identical to those of a repeated game between genes played according to multi-

plicative weight updates (MWUA), an algorithm known in computer science to be

surprisingly powerful and versatile. MWUA maximizes a trade-off between cumu-

lative performance and entropy, which suggests a new view on the maintenance

of diversity in evolution.

According to mixability theory, in the presence of sex and natural selection, al-

leles are favored that perform well across a wide variety of genetic combinations.

This theory was formed as a bridge between evolutionary biology and computer

science, informing both evolutionary theory and evolutionary computation. Re-

cently, the connection between computer science and evolutionary biology has

been extended. It was shown that, in the realm of weak selection, using a haploid

model, the population genetic dynamics in the presence of natural selection and

sex are equivalent to a repeated coordination game between genes, where the loci

are the players, the alleles are the strategies, fitness is utility, and the game is

played according to a surprisingly powerful algorithm known in computer science

as the Multiplicative Weights Update Algorithm (MWUA), and known in other

fields by names including softmax, exponential-family Bayesian updating, and the

Boltzmann distribution. This connection between MWUA and game-theory en-

ables the application of the MWUA no-regret theorem to the population genetic

context. Here, we bring this application to the attention of theoretical biologists,

and provide one interpretation of it in terms of mixability: the cumulative popula-

tion mean fitness is close to the cumulative mixability of the most mixable alleles.

We show that this holds for haploid models with both weak and strong selection,

and for diploid models, extending our analytical understanding of mixability and

suggesting that mixability is an important guide to population genetic dynamics.
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• Link between Universal Semantic Communication [68] and Population genetics

by using EIM (w/ Cameron Smith) (Chapter 7)

Juba and Sudan’s Universal Semantic Communication (USC)[68, 69] is a theory

that models communication among agents without the assumption of a fixed pro-

tocol. We demonstrate a connection, via process information, between a special

case of USC and evolutionary processes. In this context, one agent attempts to

interpret a potentially arbitrary signal produced within its environment. Sources

of this effective signal can be modeled as a single alternative agent. Given a set

of common underlying concepts that may be symbolized differently by different

sources in the environment, any given entity must be able to correlate intrinsic

concepts with input it receives from the environment in order to accurately inter-

pret the ambient signal and ultimately coordinate its own actions. This scenario

encapsulates a class of USC problems that provides insight into the semantic as-

pect of a model of evolution proposed by Rivoire and Leibler [121]. Through this

connection, we show that evolution corresponds to a means of solving a special

class of USC problems, is a special case of the Multiplicative Weights Updates

algorithm, and that infinite population selection with no mutation and no recom-

bination conforms to the Rivoire-Leibler model. Finally, using process informa-

tion we show that evolving populations implicitly internalize semantic information

about their respective environments.

• Evolution of Animal Personality using the EIM, with the MWUA as the base

dynamics (w/ Nina Fefferman) (Chapter 5)

Animal personality traits and the costs and benefits from those traits in dif-

ferent contexts are of contemporary interest, with many recent studies exploring

these topics. In this chapter we propose a general framework to understand the

evolution of personality itself (rather than the individual traits, or small suites of

traits). The framework encompasses the different theories of animal personality

traits so far proposed. We apply the MWU method to study the evolutionary
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benefits of having a ’personality,’ and apply this to cases of interest. Each per-

sonality is a probability over different complex personality bundles. Lastly, we use

this framework to discuss how insights from previous work can, together, describe

the fitness landscape of personalities in different types of environments.

• Evolution of tool-creation using the EIM, with an infinite-expert variant of MWUA

as basic dynamics (w/ Nina Fefferman) (Chapter 6)

Tool innovation by animals is a truly remarkable phenomenon in which genuinely

novel tools are produced from raw materials, seemingly from nothing. Novel work

in New Caledonian crows has shown that tools can be created without any similar

tool previously existing. The evolutionary basis for the development of tool use is

still uncertain, with few theories extant to explain it. We advance a novel theory

of tool innovation and its evolution based on a theory of novelty that draws a tool

from an infinite pool of possible tools. A crucial component in this model is a

novel variant of the MWUA, which draws experts from a distribution with infinite

support. We show how our novel theory unifies previously published hypotheses

and predicts some of the otherwise unexplained observations of tool use, including

regression to caching behavior in rooks.

We will first proceed to give some background information on Evolutionary biol-

ogy in Chapter 2, then proceed to describe the MWU method in Chapter 3. Then,

we outline the applications of the MWU method to Population genetics (Chapter 4),

Evolution of Animal Personality (Chapter 5), Evolution of Tool-innovation (Chapter

6), and Evolution as a population acquiring semantic information (Chapter 7). Finally

we will finish with discussion of interesting related issues and follow-up work in the

literature based on our work, and also future work (Chapter 8).
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Chapter 2

Evolutionary biology and Population Genetics

This chapter describes the fundamentals of Evolutionary theory and Population genet-

ics, with a keen focus on areas of interest for the thesis. In addition to giving a general

over-view of biological evolution (in Section 2.1 ) and how it works, population genetics

terms and equations are given (in Section 2.2) to facilitate reading of the technical parts

of the thesis devoted to population genetics. Note that we do not claim any complete-

ness in the survey of material we present here, and interested readers should consult

appropriate references [9, 14, 103] for more details.

2.1 Biological Evolution

In On the Origin of Species, Darwin proposed two big ideas, which had been proposed

before, but never with as much evidence or mechanism as he marshaled to the task. Af-

ter collecting samples from around the world, either himself or from naturalists abroad,

and trying to synthesize extant theories, Darwin recognized that the current diversity

of life descends from previously existing species. A common ancestor is posited that

all such species descend from. Secondly, the fit of species to their environment is the

result of natural selection, a gradual process by which forms that are better suited

to the environment increase in frequency in a population. Another way to understand

natural selection is as a kind of “sieve” for a population with different forms of life, with

the environment sifting out varieties that are not well-adapted to it. The time that the

population under selection takes to boost the better suited forms ranges from days to

tens of thousands of years, depending on a number of factors, including the strength

of selection, and the reproduction rate of the organisms under study. As a whole, the

two major ideas proposed by Darwin suggest that all of the forms of life around us are
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ever-developing and dynamic. The impact of Evolutionary biology on subfields of biol-

ogy is immense, so much so that renowned biologist Theodosius Dobzhansky remarked

“nothing in biology makes sense except in the light of evolution.” [42]

There are many foundational issues to discuss in Darwin’s account, some of which

have recurred in recent years in both the complex systems and theoretical biology com-

munities. We will return to these later. Keeping this in mind, we proceed in discussing

the exciting science of evolutionary biology. Evolution seeks to find the root causes

of and relationships between all forms of life, as seen through the lens of their many

different manifestations in genetic material, fossil records, morphology, and behavior.

One could say that evolution is like an artist, introducing with every stroke a new

variant of an underlying way of living, all unified by a graspable form. The common-

alities in way of life introduced one can discover via experimentation and observation.

The kinds of data typically used to analyze such things include anatomical, molecular,

genetic, developmental, and behavioral data; and more specifically, DNA sequences,

population composition, and imaging of relevant anatomy. Older approaches to imag-

ing, such as that taken by von Humboldt and Haeckel [139, 56] focused on detailed

anatomical sketches in the natural habitat. And the scoring system to analyze popu-

lation composition focused on different apparent traits of the organisms, and counting

their frequencies in the population. We will return to these traits in the sequel.

Evolutionary biology is the study of the origin, persistence, and manifold variety of

life on Earth for the last 3.5 billion years. A species evolves from its ancestral species,

from which it descended and modifications have occurred. Darwin called this whole

process descent with modification. For example, if we want to understand the

evolution of Homo sapiens, we need to find the ancestral species of primate from which

it descends, and the modifications that happened along the way.

Among causes of modification, the most important is natural selection. We simply

outline briefly here a basic sketch of how selection operates, and leave a more detailed

discussion for later. Genetic mutations, or changes in the DNA sequence, arise rarely,

but continually, due to environmental factors, copying errors, or other unknown causes.
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The mutations, which change the genotype at particular sites (loci) of the DNA se-

quence, in turn change the phenotype — the observable, graspable traits (alleles)

— of organisms. Note that the characteristic phenotype of an organism need not be

any necessary trait to understand that species apart from others, but rather it is a

“tell” or an accidental feature that distinguishes it from the rest. These mutations can

reduce, increase, or keep unchanged the fitness, in which case they are called delete-

rious, beneficial, or neutral (respectively) — where fitness is measured using rates of

reproduction and relative survival. It is quite common for deleterious mutations to

arise in very finely-tuned organisms. To see why, by analogy consider an out-of-place

wire in a wiring diagram for building a circuit board, and its effect on the function of

the manufactured chip. However, it is known that, unlike circuit boards, for things like

metabolism, most often mutations are neutral or even beneficial, increasing energetic

efficiency [123]. So in many ways the effect on fitness of a mutation depends on the

phenotype it is linked to. If a beneficial mutation arises by chance, then it will increase

the rates of reproduction or survival, and thereby increase the frequency of variants

with that mutation. Such a result is called evolutionary change by natural selection.

The beneficial genetic changes, accumulated over many generations, can produce

quite drastic effects within a population. Even small changes, as shown by [123], can

have a lasting effect on the phenotype. The effects either way of these new accumulated

mutations can produce new species (by a process called speciation), genera, families,

and higher taxonomic orders. One proposed mechanism for speciation has focused

on geographic or reproductive isolation due to migration or other factors, in order to

give the population time to diverge from its original population and accumulate the

necessary mutations [93]. Sometimes, in fact, sets of beneficial mutations have led to

major transitions in biological history, such as the evolution of prokaryotes, eukaryotes,

multicellular organisms, et cetera.

The most elementary examples of evolution, and indeed some most inspiring to

Darwin, were based on selective breeding over time. Selective breeding has happened

throughout history for the purpose of food cultivation, with such crops as barley

(Hordeum vulgare), wheat (Triticum), as well as lentils (Lens culinaris), and peas
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(Pisum sativum), for over 10,000 years [54, 153, 1].

In order to understand natural selection, we must first understand selective breeding.

The process of selective breeding by humans, known as artificial selection, is easy to

understand, and thus a good starting point for further examples. For crops, in each

generation the best (in size, survival rate, and flavor) plants are chosen as parents for

the next generation. Artificial selection is related to natural selection. With natural

selection, traits associated with increased survival and reproduction — traits compatible

with flourishing of the organism — increase in frequency. In the case of artificial

selection, traits compatible with human flourishing are selected to increase in frequency.

Food cultivation has produced amazing effects, such as doubling the yields of wheat,

rice, and corn since 1930 [65, 111, 43].

However, sometimes human ingenuity paired with natural selection can work to-

wards unintended consequences that are detrimental to human flourishing. Such is the

case for crop yields. By the use of pesticides, we have been able to increase crop yields

substantially by killing off pests that eat crops. However, because of the much-faster

reproduction rates of the insects, they are able to develop resistance to the pesticide,

and we must continually innovate new pesticides to keep the boost in crop yields that

pesticides afford. How can we say that this is natural selection, instead of artificial selec-

tion, given that humans are using and distributing pesticides? The difference between

artificial selection and natural selection is that the latter involves no deliberate human

choices as to who will reproduce, not whether humans are involved in the process at

all.

All living things have descended from a common ancestor, and over generations

ancestors diversified more and more to yield the impressive variety of life forms we

observe today. Darwin pioneered a way of thinking centered on this conception, by

use of “phylogeny” and rooted trees that visualize descent from the common ancestors.

The parents on such trees are common ancestors, and the children are descendants. All

species living on the Earth in the present or the past are placed on the “tree of life.” Such

trees are also called “phylogenetic trees.” Leaves of the tree of life are species currently

living today or which have gone extinct. Branching points in the tree are “divergence
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events”— events which cause speciation or the arrival of a new kind of organism—

which happen in the past. We have discussed diversity very informally, but now we

can describe it in more detail: phylogenetic diversity is the number of children in a

phylogenetic tree— the number of distinct lineages that are descendants of a particular

species. If one cares about conservation of biodiversity, then one would perhaps want to

set environmental policies that are mindful of how rapidly speciation occurs in a given

branch of the phylogenetic tree. Why would we care about biodiversity? An ecosystem

can be more resilient to environmental changes if there is abundant biodiversity. As

such, not only are there scientific merits to understanding the maintenance of diversity,

but also applications to the “care for our common home” [51].

As a field, evolutionary biology has included both experimental and theoretical

approaches. The latter are not well-known outside of the field. The former include

some of the first results: including the finding of a relationship between dog-like species

like pakicetus and whales, the surprising similarity anatomically between humans and

other primates (stemming from a predicted common ancestor) including such shared

features as the intermaxillary bone [55], and the finding that there is much shared in

the respective DNA sequences that bears out these similarities.

The role of theory in evolutionary biology is to shape and further the research

agenda for the field by analyzing how complicated systems work, allowing for predic-

tions and inferences and synthesizing previous theories (as Darwin did). Theoretical

biology often uses mathematical models, especially for complex biological systems. A

good model distills the essence of the biological system, focusing on only the most

critical components. The most common use of models is to plan for the future and

make predictions. In evolutionary biology, this is especially useful for conservation and

ecology. For instance, when ecologists try to design captive breeding plants, they use

population genetics (which we will introduce in the sequel) to ensure there is enough

diversity in the resulting population. Other applications of models include the use of

models for neutral mutation to predict how long a DNA sequence takes to change, which

has its use in reconstructing phylogenetic trees. Finally, not all models in evolution-

ary biology are used to predict how evolution itself changes the frequency of different
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phenotypes, but rather how biological systems could have evolved to begin with. For

example, a model of how a combinatorial alphabet evolved for humans but not for

primates [79]. The two families of evolutionary models we will study in this thesis are

outlined broadly above:

1. Population genetics: the study of how phenotype frequencies change in a popu-

lation under natural selection.

2. Arrival of the Fittest [49], how did the fittest originate?: the study of how a given

biological system could have evolved, or have arisen as a possible phenotype. This

thesis will focus on the former.

2.1.1 Natural selection

As mentioned in the more general introduction of evolutionary biology, artificial selec-

tion was an important building block for Darwin’s theory of natural selection. Recall

that Darwin’s book introducing natural selection was describing the origin of species.

The contemporaries of Darwin accepted that artificial selection could produce new va-

rieties of pigeons— new behaviors, new feather color/patterning, et cetera. But the

idea that artificial selection could create new species was entirely unheard-of, as then

it raised the possibility of a new and original life-form emerging. Therefore, Darwin

spent much time arguing that species are “strongly marked and permanent varieties.”

Using many examples from selective breeding in animals and plants, Darwin was able

to show that new varieties could arise from a single stock of organisms— using pre-

cursors of phylogenetic trees, with descent and modification. Then, having established

that certain kinds of varieties are species, Darwin could claim that similar processes

generated both. Thus he could claim that a kind of selection process could operate

to produce both varieties and species, and therefore that new species arise from other

species. Having established that artificial selection could possibly lead to changes in

species, Darwin introduces by analogy a new kind of selection process, natural selection,

as what happens to generate natural species in the absence of human selection.

For natural selection, the selective agent is nature (as compared to the human for
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artificial selection), but one should not understand nature as being a conscious agent

in the way that humans are. The traits selected by natural selection are described

by Darwin as follows: “Man can act only on external and visible characters; nature

cares nothing for appearances, except in so far as they may be useful to any being.

She can act on every internal organ, on every shade of constitutional difference, on the

whole machinery of life.” [36] so the process of natural selection favors any variant

that increases the rate of survival or reproduction, even if the change is not easily

perceptible by a human observer. Darwin thought of natural selection as gradual, but

powerful. Over evolutionary time (generations), modifications would accumulate and

cause substantially new forms to emerge. Natural selection could act even on small,

imperceptible traits, if there was any difference in fitness. Moreover, Darwin conceived

of natural selection as acting continuously, throughout all of nature, in a way that was

for the most part imperceptible, befitting a process that could produce all biological life

forms. It seems though that Darwin under-estimated the rate of natural selection, as

we can see under certain circumstances (quickly-reproducing organisms like bacteria),

its effects are detectable in a few years or less.

But for natural selection to operate, there must be many individuals that do not

survive to reproduce. An early contribution of economic theory to evolution is a mech-

anism by which this happens: due to Malthus, it was shown that when there are finite

resources, only a finite population size can be maintained. And so if one assumes the

same for biological organisms, one obtains that there exist many of them which do not

reproduce themselves. It happens that in the work presented in this thesis we also give

contributions of economic theory to evolution.

Pre-Darwinian theories of evolution (like those of Lamarck) were based on a transfor-

mational process, by which the population changes due to the individuals’ coordinated

individual changes. An example would be a potluck, by which each individual brings

their dish, and the group of individuals now has an entire feast. By contrast, Darwin’s

theory is based on a variational process, by which different variants are sorted out at a

population level [81]. For example, to illustrate a variational process, consider a buffet,

in which there are many different foods, and then the guests select their preferred dishes
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from the mix. The remarkable insight that made this possible was a commitment by

Darwin to an ever-changing world, bringing out things “ever ancient, ever new.” [8]

Ernst Mayr [93] points out that in a particularly popular form of Platonism during the

time of Darwin (which inspired some early approaches to taxonomy), there was an idea

that all species must be fixed a priori. Though this static form of Platonic idealism is

not representative of all Platonically-inspired metaphysics—especially in its Aristotelian

form (see Oderberg’s work on the species concept in Aristotle [107])— clearly Darwin

was advancing a theory directly opposed to it. A theory based on continual change.

Principles of Natural Selection

Having covered the Darwinian account of natural selection and all of its relevant as-

sumptions, the contemporary account may be described. Wherever the following are

present, then natural selection operates.

1. Variation. Individuals in a population differ in some ways from one another.

2. Inheritance. These differences are inheritable by descendants (offspring) from

their ancestors (parents).

3. Differential reproductive success. Individuals with certain traits are more

successful than others at surviving and reproducing in their habitat.

How can natural selection operate with just these three conditions? Let us keep

in mind the following four points before we proceed in giving an example. First, an

infrequent but continuous source of variation is mutations, which happen by chance

at a small rate. There are other sources of variation that we will describe later as

well. Second, evolutionary biologists study how perceptible traits evolve over time

in order to find evidence of natural selection. Third, natural selection does not act

on genotypes, but rather on phenotypic differences in the population. Therefore, to

understand natural selection, we must understand how a phenotype is influenced by

the genotype, the environment, and other factors. Fourth, natural selection directly

changes the characteristics of a population, not of an individual.
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Let us consider the example of natural selection acting on coat color for Peromyscus

polionotus. The breed of mouse is commonly found in the Southeast, and preyed upon

by visually hunting predators, including owls. Without variation, there is nothing for

natural selection to act on. For coat color, in natural populations, there is observed vari-

ability within populations [100] in general, and at the Mc1R (melanocortin-1 receptor)

locus associated with coat color. Even more variation is present between populations.

The variation in phenotype could be due to variations in environment or genotype. But

natural selection can operate only when genetic variability is present. We now explore

why this is the case.

In P. polionotus, selection requires inheritance if it is to alter coat colors’ frequen-

cies in the next generation. Imagine for instance that light-colored mice produce five

offspring on average, and dark-colored mice produce twelve offspring on average. If

the offspring don’t resemble their parents in coat color, then the dark-colored parents

are just as likely to produce dark-colored offspring as light-colored parents. Thus the

effects of differential reproductive success between the two groups will be eliminated

after the parents produce new offspring. The mechanism for inheritance of a pheno-

typic variant is commonly the inheriting of a variant gene, that is correlated with the

phenotypic change. The Mc1R gene is part of a genetic switch that controls the type of

pigment created and incorporated into the hair. Another gene involved in coat color is

called Agouti. The gene functions by having its product bind to the McR1 transmem-

brane receptor (which synthesizes darker pigment) and inhibiting its operation, thereby

allowing for the increase in yellow pigment.

But genetic variation alone is not sufficient for natural selection to operate. Indeed,

the variation must also have fitness consequences. Fitness has the quotidian implica-

tion of something that is well-suited—fit —to its world, but in evolutionary biology

it connotes reproductive success. The fitness of a trait or allele is defined as the av-

erage reproductive success—of an individual who has that allele—relative to others in

the population [48]. In the case of P. Polionotus’ coat color, it impacts the fitness as

follows: by increasing or decreasing visibility against their background. Then for vi-

sual predators, more visible mice are less difficult to find and thus more easily hunted.



19

With both of these conditions combined, the coat color thus can increase or decrease

predation, and thus to survive long enough to reproduce.

The amazing fit between organisms and their environments motivated many of Dar-

win’s predecessors to advance early evolutionary theories. An adaptation is an inherited

trait that makes an organism more fit in its environment—whether abiotic (nonliving)

or biotic (living). Note that something like a horse-shoe, though beneficial to a horse,

is not an adaptation because it is not heritable. To be considered an adaptation, a trait

must be shaped by natural selection to achieve the same primary function or functions

that it has today. For example, the traits which were used for very different functions

in the past as compared to the future, are called an exaptation.

It is important to remember that Evolution does not work in the way that an

artificial selector would: it is a tinkerer, not a designer. Any change introduced will be

very small in most cases. Imagine if you will how difficult it would be to generate a new

operating system from a previous version, with random small changes introduced and

evaluated by a committee for inclusion based on quality metrics. In a way this is how

natural selection works: one can only identify good innovations in retrospect, based

on their fitness. In this sense natural selection lacks foresight: it cannot choose the

next step in any purposeful way. Indeed it is more the mode of variation that is most

common in the population and, as Andreas Wagner points out, the space of possible

phenotypes [141], that regulates the direction of selection. We will see that MWUA

also shares this attribute when it selects between experts on the basis of the quality of

their advice. As shown in the thesis, this resemblance is much more than just informal.

Given the amazing intricate structures that natural selection produces, how could

such an accident-prone mechanism produce such great results? In other words, what

is the mechanism by which natural selection could produce complex structures? For

example, how could we explain the origins of the eye, a structure complex in many

idiosyncratic ways? These questions are important for the thesis in that one of the

papers covers the origin of tool-innovation, which truly requires novelty and the acqui-

sition of incredibly complex skills. One possibility is that there are intermediates that
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are partially-functional which tend towards the present-day form. The second possibil-

ity is that of exaptations, things that are complex but which served a different purpose

before than they do now, in the present-day environment. For the intermediate theory

of complexity, Ernst Mayr fleshed out a proposal by Darwin that the eye evolved from a

layer of photoreceptor cells in molluscs to having a lens, thus explaining both the com-

plexity of the structure and the presence of a blind-spot. For the exaptation theory, an

example is the evolution of feathers. It is thought that feathers originally evolved for

a variety of reasons, including heat retention, shielding from sunlight, signaling, prey

capture, defense, and waterproofing [116]. In the function of retaining heat, feathers

achieve this by acting as an insulator (feather down) and because the air space between

feathers protects animals against temperature change. Especially exaptation is rele-

vant to the origin of tool-innovation in the New Caledonian crow, as we will describe

in Chapter 6.

2.1.2 Variation and Population Thinking

This subsection discusses the basics of genetics, then variation, and finally, population

thinking in evolutionary biology. As mentioned earlier in the chapter, the basic unit of

heredity is DNA, composed of base pairs. The genotype for an organism is the strip

of DNA that it inherits from its parent(s). For natural selection to operate properly

according to the previous section, we need heredity (DNA) but also the ability for the

DNA to affect the fitness of the organism. For the fitness to be affected, it must be

the case that the DNA somehow changes the phenotype. Otherwise, it would not have

any impact on its powers/abilities as an organism [98], and thus would not affect the

way the organism lives in the world—to its advantage or disadvantage. The process of

translation from DNA to phenotypic change starts with transcription from functional

DNA (introns) to RNA. RNA then directs protein synthesis (through mRNA in par-

ticular), by taking amino acids and putting them together in a characteristic sequence.

That all of this is possible is due to a kind of code, that allows for the coding of various

functions, that proteins have, by sequences of amino acids, and ultimately by codons

(triplets of base pairs). The property of the genetic code that makes it so versatile
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is its resilience to small errors through redundancy of amino acids’ correspondence to

proteins. But most of all, the genetic code’s reliance on DNA makes it possible to have

both combinatorial coding power (through the sequence of base pairs) and also the

ability to be easily copied (through the hydrogen bonds in the center and the helical

shape, allowing an “unzipping” for the transcription process).

One current definition of a gene is a sequence of DNA that specifies a functional

product. Different variants of the same gene are called alleles, with the physical loca-

tion(s) of a gene being called a locus(loci). A more rigorous definition of a genotype is

the combination of alleles that an organism has at a given locus, or more generally at all

loci. Organisms have either one copy of an allele at a locus, in which case they are called

haploid, or they have two copies of every allele, in which case they are diploid organ-

isms. Most organisms are diploid, but oftentimes for simplicity in mathematical models

of evolution one assumes an organism is diploid. If diploid individuals have two copies

of the same allele at the same locus, they are called homozygotes, and those with differ-

ent alleles at a locus are called heterozygotes. Fr. Gregor Mendel, O.S.A., discovered

the basics of genetics, introducing the surprising fact that changes in organisms were

discrete and not continuous (contra Darwin). Like Darwin, he was interested in both

the practical aspects of breeding, and also to some extent the metaphysics of species. In

fact, Fr. Mendel viewed his work as investigation of the contribution of hybridization to

the origins of novel organic forms [60], and his view of characters (phenotypes) was that

they emerged in a radically top-down way similar to what is envisioned by Aristotle

in his distinction between potentia and actus [71]. Briefly, whatever is potential in a

given hybrid is whatever could be (and continues to be possible), whereas actus is the

manifested and measurable. In more detail, St. Thomas Aquinas says “something is

found to be in potency... in the sense that the whole can be reduced to act, as it is

possible for this bronze to be a statue, because at some time it will be a statue” [109].

Moreover, Mendel’s notion of dominant vs. recessive characters, and the fact that re-

cessive characters could still be manifested in future generations means that recessive

traits are potential manifestations [71].

As discussed in the last subsection, natural selection requires genetic variation. New
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genetic variation enters a population from many possible sources, including recombina-

tion and mutation. First, we will describe recombination, then briefly explore mutation.

The standard way to introduce recombination is for diploid organisms, which (for

eukaryotic organisms) have a fixed number of chromosomes. The chromosomes usually

come in homologous pairs— pairs whose loci are the same, despite having possibly

different alleles. One copy of each homologous pair of chromosomes comes from each

parent— each contributes a gamete, a haploid cell with one set of chromosomes— in

a process called meiosis. The gametes for the mother in the animal kingdom are eggs,

and are sperm for the father. Mendel’s first law, the law of segregation, states that each

individual has two copies of a gene at each locus and that these gene copies segregate

during gamete production—with only one gene copy making it into each gamete.

A dominant trait is one that if it appears in one copy of the gene at the locus or

the other (inclusive or). A recessive trait appears only when both gene copies at a

locus have that trait. Note then that each gene copy retains therefore its individual

character, whether or note it manifests in any phenotypic change.

Meiosis starts out with one diploid cell; a single round of DNA replication is followed

by two rounds of division which then gives four haploid gametes. When fertilization

occurs (the two gametes from the parents fuse after mating), the resulting product is

again diploid. The offspring will have all the necessary chromosomes, but with one

chromosome in each pair coming from each parent. There are two kinds of reproduc-

tion we will discuss in the thesis: asexual reproduction and sexual reproduction. The

former is what cells do: make a clone, and the latter requires two parents and involves

exchanging genetic material during mating.

What does this have to do with variation? Sexually-reproducing organisms end up

producing high genetic variability during meiosis, by the process of cross-over— the

exchange of segments of DNA. Cross-over is a kind of recombination. During cross-over,

areas of homologous chromosomes are exchanged as follows:

1. The homologous chromosomes are duplicated

2. Sections of one homologous chromosome may swap positions with sections on the
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other homologous chromosome during meiosis. This happens at some fixed rate.

3. The resulting product is four daughter cells, consisting of chromosomes that could

differ from those in the parents.

For haploid organisms, recombination is similarly a kind of shuffling of the genetic

material of the parents. To scale up the effect of recombination to its effect on the

whole population, consider that one should specify the pattern of mating in order

to determine the final make-up of the population. A common assumption is that of

panmixis— random mating pairs taken from the whole population.

Recombination generates new combinations based on the genotypes of parents, but

how can one get a new set of parent genotypes? Mutation is the source of novel genetic

variation. It is the change in the DNA sequence. One can classify the different kinds of

mutations based on their effects on amino acids, for example, missense mutations cause

the production of novel amino acids after a single change in base pair (a so-called point

mutation). For other kinds of mutations, one can also add a base-pair to the DNA

sequence (insertion mutation), and remove a base-pair (deletion mutation). There are

a variety of other kinds of mutations, but this is sufficient to give a crucial intuition

about mutation: it is a very small change to the DNA. But such a small change could

have profound effects in the case of a missense mutation for instance, if the amino

acid changed is crucial for proper functioning of the organism. An important factor

to consider is the relative scarcity of mutations, they typically happen at a rate of

10−6 mutations per generation. The scarcity of mutations makes sources of variation

like recombination more important, because they happen much more often. Luria and

Delbruck [89] showed with an ingenious experiment that mutation happened in a way

that cannot reliably be predicted on the basis of natural selection. The randomness

accorded to the mutation process is important for the generation of new variants.

As mentioned earlier, an essential part of how evolutionary theory works now de-

pends on thinking about a population of organisms changing, rather than individuals.

The frequency of a given allele or genotype gradually changes over time, as the forces

of variation and selection operate on the population. When a genotype dominates the
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population, it is said to have fixated. If there are multiple genotypes in the popula-

tion that are stable under the action of variation and natural selection, this is called

polymorphism. As is clear upon a little reflection, having a finite population leads

to sampling effects—commonly called genetic drift— assuming that one samples the

same number of individuals from the current population’s descendants to choose who

will be in the next generation (with each individual reproducing at a different rate, if

left unchecked, the population size will grow without bound). One could for instance

sample individuals that are by and large of low fitness, and thereby cause fixation of a

deleterious mutant.

2.2 Population Genetics

Best of all in evolutionary biology, there are mathematical models to make rigorous all

of the models described in the last section. First we will describe the simplest model: a

haploid organism which reproduces asexually, with a single locus and no mutation. We

will build up from there to various more complex models, culminating in models with

two loci and recombination.

Consider a single locus with alleles Ai, where i = 1, 2, ..., k, and assume that the

generations happen in discrete time (discrete) and do not overlap (non-overlapping).

What this amounts to is assuming the adults are replaced by their offspring in one

generation. Let the number of offspring that have allele Ai in generation t, be ni(t).

The total number of offspring:

N =
∑
i

ni

must be sufficiently large that we can make the “infinite population size” assumption.

Such an assumption assures that the sampling effects of drift are negligible, and that we

can instead just use the expected number of progeny, rather than the actual, random

number. Let vi be the probability that an Ai offspring survives to reproduce. The

average number of descendants of an Ai adult is fi. These are called viabilities vi

and fertilities fi, which could be a function of time or population numbers ni. The

product wi = vifi is the fitness of an Ai-carrier. There are vini adults of type Ai, which
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contribute wini offspring to the next generation. Therefore, we have:

ni(t+ 1) = wi(t, n)ni(t)

If the allele Ai is lethal, then vi = 0, and if it causes sterility then fi = 0. Otherwise,

the wi will not be too different, and on average will be close to unity for constant

population size. A particular case of this we call weak selection: wi = (1 + s)∆i, with

s → 0 and ∆i is the differential fitness. Let the selection coefficients si be wi − 1.

The particular values of the selection coefficients si for all i are called collectively the

“fitness landscape”. Occasionally, the values of the fitnesses wi themselves are called

the “fitness landscape.” We will have both of these usages in the thesis.

The frequency of the allele Ai is

pi =
ni
N

We obtain from the last three equations the recurrence relation:

N ′ =
∑
i

n′i =
∑
i

wi

(ni
N

)
N = w̄N

where w̄ =
∑

iwipi is the average or mean fitness of the population. The frequencies

satisfy the recurrence:

p′i =
n′i
N ′

wini
w̄N

= pi
wi
w̄

Clearly,
∑

i pi = 1 for all generations, and gene frequencies only depend on the ratios

of the fitnesses. Moreover, the dynamics are unchanged by a multiplicative scaling of

the fitnesses. The difference equation form of the recurrence is given by:

∆pi = p′i − pi =
pi(wi − w̄)

w̄

If the fitnesses are only dependent on time, then:

ni(t) = ni(0)Πt−1
τ=0wi(τ)
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Then the frequencies can be written as

pi(t) =
pi(0)Πt−1

τ=0wi(τ)∑
j pj(0)Πt−1

τ=0wj(τ)

Assuming that the time-scale at which the fitnesses vary are sufficiently slow relative

to the other relevant evolutionary parameters, we can assume that the fitness is constant

over time, obtaining:

ni(t) = ni(0)wti

pi(t) =
pi(0)wti∑
j pj(0)wtj

Let w1 > wi for all i > 1. So Ai is the fittest allele. Then p1(t) → 1 as t → ∞.

Then if the population size remains finite, fixation will happen for A1 and the other

alleles are lost. But of course all the preceding holds as long as p1(0) > 0, when the

allele A1 is initially present in the population. Now we will see how in fact the average

fitness w̄ actually increases over time under some conditions, a result called “Fisher’s

fundamental theorem of Natural Selection,” after Ronald Fisher, a father of population

genetics. For the change in average fitness, we have:

∆w̄ =
∑
i

(p′iw
′
i − piwi)

=
∑
i

[p′i(∆wi + wi)− piwi]

= ∆̄w +
∑
i

wi∆pi

where ∆̄w =
∑

i p
′
i∆wi is the average change in fitness. Via a simple substitution of

the analytic ∆pi into the last expression one obtains:

∆w̄ = ∆̄w + w̄−1
∑
i

piwi(wi − w̄)
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But by the definition of w̄ it holds that

∑
i

pi(wi − w̄) = 0

So we can subtract w̄ from the first wi in the definition of w̄, and then get:

∆w̄ = ∆̄w + w̄−1V

where V =
∑

i pi(wi − w̄)2 is the genic variance in fitness. With constant fitness,

∆̄w = 0, therefore ∆w̄ = w̄−1V ≥ 0, and thus the average fitness is nondecreasing.

Therefore ∆w̄ = 0 only at equilibrium, since V = 0 if and only if pi = 0 or wi = w̄

for all i. Therefore natural selection ends up increasing the average fitness, at a rate

determined by the genic variance. Because it is implausible to suppose that absolute

fitness (actual fitness) will remain constant, it is more profitable to scale the fitnesses

to be relative fitnesses, leaving the dynamics invariant, but then allowing the more

plausible assumption that relative fitnesses remain constant. Doing so we can derive a

similar uptick in average relative fitness given the preceding. To see this, note that we

can take wi = zig(N), with zi constant and wi < 1 for sufficiently large N for all i.

Now let’s explore the significance of the finding to biology. Let A1 be the fittest

genotype as before. Then natural selection minimizes the quantity (w1 − w̄)/w1 =

(z1 − z̄)/z1, the relative reproductive excess of the optimal genotype. Note that the

relative reproductive excess is also called the genetic load by Crow [32]. If the si

are small, then we may choose the relative fitnesses to be close to unity. Then the

average fitness will be close to unity, and its rate of change will be proportionate to

the genic variance V . As it turns out the genetic load is a kind of measure of how well

evolution increases the fitness of the population as compared to the best possible allele

(in retrospect). In decision theory (assuming the fitness is the utility), such a quantity

is called regret. We show that there are algorithms that, in a general-purpose way,

minimize regret. One of them is MWUA.

Now we will discuss the case of two loci, first with just recombination and panmixis

for diploid organisms, then later with selection. Let the alleles at A− and B−loci,
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Ai and Bi, have frequencies pi and qi. Denote the frequency of AiBj gametes in the

gametic output of generation t Pij(t). The gene frequencies are:

pi =
∑
j

Pij (2.1)

qj =
∑
i

Pij (2.2)

but the joint frequencies Pij are no longer properly described by the gene frequencies.

Gametes AiBj and AkBl form the individual AiBj/AkBl. A proportion 1 − r of the

gametes produced by this individual are nonrecombinant (or parental) gametes, 1
2(1−r)

are of type AiBj and 1
2(1 − r) are of type AkBl, a fraction r are recombinant (or

parental), i.e., 1
2r of type AiBl and the same number of type AkBj . When the two

loci are on the same chromosome, r ∈ [0, 1/2], where r is the recombination fraction.

The value of r depends on the position of the two loci and the chromosomal structure.

Assume that r > 0 (as we are not interested here in the single locus case, when r = 0).

For loci on different chromosomes, r = 1/2. Unlinked loci have r = 1/2.

The proportion 1 − r of the gametes in generation t + 1 are produced without

recombination. Thus the expected contribution to the new joint frequencies is (1−r)Pij .

Now with random mating, the expected contribution to the new joint frequencies of the

recombinant events is rpiqj . Therefore, by linearity of expectation:

P ′ij = (1− r)Pij + rpiqj (2.3)

It follows from Equations 2.1 and 2.3 that the gene frequencies are still normalized.

Now let the linkage disequilibria be:

Dij = Pij − piqi

which is a measure of the departure from random combination of alleles within gametes.
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From the definition of linkage disequilibrium combined with Equation 2.3, we obtain:

D′ij = (1− r)Dij (2.4)

and therefore

Dij(t) = Dij(0)(1− r)t

so Dij → 0. The linkage equilibrium Pij = piqj is attained gradually, and faster for

larger values of r. The ordered frequency of genotype AiBj/AkBl is PijPkl. By summing

PijPkl over j and l, or i and k, we derive at each locus the quantity called the Hardy-

Weinberg equilibrium. At linkage equilibrium, PijPkl is (pipk)(qjql), the product of the

single-locus Hardy-Weinberg frequencies.

Now let us describe the same model with selection, using similar notation. The

fitnesses of AiBj/AkBl and AiBl/AkBj are often assumed to be the same, so wij,kl =

wil,kj (which is called a lack of position effect). But we need not assume this. Let

Rij:kl,mn be the probability that AiBj is a gamete produced at random by an AiBj/AkBl

individual. Then

P ′ij = w̄−1
∑
klmn

wkl,mnPklPmnRij;kl,mn (2.5)

with

w̄ =
∑
klmn

wkl,mnPklPmn (2.6)

Let r be the recombination fraction between A and B loci. To calculate R, draw

Ai, and take into account recombination:

Rij;kl,mn =
1

2
δik[(1− r)δjl + rδjn] +

1

2
δim[(1− r)δjn + rδjl] (2.7)

The sum in Equation 2.5 is invariant to swaps between k and m, and l and n.

Therefore the two terms in Equation 2.7 contribute equally. Using this information, we

derive:

w̄P ′ij = Pijwij − rDij (2.8)
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where the linkage disequilibria are

w̄Dij =
∑
kl

(wij,klPijPkl − wil,kjPilPkj) (2.9)

and

wij =
∑
k

lwij,klPkl

is the fitness of a gamete AiBj . The linkage disequilibria satisfy

∑
i

Dij = 0

and ∑
j

Dij = 0

Now we define linkage equilibrium in a similar way as before, the random combination

of alleles within gametes: Pij = piqj for all i, j, where

pi =
∑
j

Pij (2.10)

qj =
∑
i

Pij (2.11)

are the frequencies of Ai and Bj respectively. Given linkage equilibrium, if there are

no position effects, Equation 2.9 yields Dij = 0 for all i and j. Furthermore, in most of

the use of this model, we will assume s << r. Finally, the haploid model is a special

case of this one, in which wij,kl = wijwkl.

2.3 Mixability

A big motivator for mixability theory was the frequent observation that genetic algo-

rithms are not always effective at optimizing functions. The natural question to ask was,

what if genetic algorithms (with recombination) are not optimizing a straightforward

fitness function?

In fact, recombination can sometimes break-up good combinations of alleles, and so
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it can actually move one away from a fitness peak!

What does it maximize then? In the short run, the so-called “transient,” it increases

the frequency of alleles that mix well with a free choice of the allele for the other locus.

In other words, it increases the average marginal fitness of an allele, assuming equal

frequency (uniform distribution) of the alleles in the population.

Livnat and Papadimitriou show using simulations that the advantage to mixability

is only transient, and eventually goes away. This suggests a role for mathematics

to analyze the transient properties of dynamical systems, as typically the Population

Genetics community focuses on the equilibria or long-term behavior.

What kind of thing does mixability measure? It is like hedging your bets on the

stock market. Mixability is choosing an allele that does very well in case there is an

unexpected genetic change.

Mixability was defined in the context of the mystery as to why sexual reproduction

evolved at all. There is a well-known flaw in sexual reproduction relative to asexual

reproduction: that in fact it requires more individuals to produce the same number of

offspring, and could in fact break apart good combinations of alleles, thereby reducing

fitness. So therefore, it isn’t just of interest to those pondering why and how genetic

algorithms fail— but may be fundamental to understanding genetics itself.
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Chapter 3

The Multiplicative Weight Updates method

In this chapter, we describe background information on the Multiplicative Weight Up-

dates Algorithm (MWUA) and also its application to solving computational problems

(the MWU method). Then we will apply the MWU method to solving a zero-sum

game.

3.1 Multiplicative Weight Updates

Consider a most general scenario: we have a set of n decisions and on each round, we

must select one decision from the set. Each decision incurs a cost, determined by nature

or an adversary. Costs are all revealed after decisions are chosen, and the cost of the

decision is incurred at that time. A simple enough strategy is to, in each iteration,

pick a decision at random. The incurred cost will be that of the “average” decision.

Suppose that there are a few decisions that are much better in the long run. Assuming

that nature is relatively stable, then it is easy to see after a short time which decisions

are best based on costs over time. Therefore it is sensible to reward the good decisions

by increasing their probability of being picked in the next round.

Being ignorant about the decisions at the outset, they are selected initially at ran-

dom. The entropy is maximized for this decision rule, as we will prove later. Such an

initial rule signals our lack of information. As it becomes more apparent which decisions

are good and which ones are bad, we lower the entropy to reflect the increase in infor-

mation. It is important to note that there is embedded in this theoretical framework

an assumption that each decision’s outcome actually gives us knowledge about which

one is best in the long run.

Now let us setup a more formal discussion, according to the MWUA as presented by
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Arora et al. [6]. There are n experts providing advice at each of T time steps. Listening

to expert i ∈ n at time step t ∈ T will yield the loss l
(t)
i ∈ [−1, 1]. For example, one can

think of these experts as metereologists predicting the weather, and the loss is their

error. The goal is to find a strategy for paying attention to experts such that, after

many time steps, the strategy will perform almost as well as a strategy that listened to

the expert which gave the best advice over the whole time period, without knowing in

advance the losses of the experts (no assumption is made about the losses, they may

be correlated, or even chosen adversarially).

The expected loss to the algorithm for sampling an expert’s decision i from the

distribution p(t) is

Ei∈p(t) [l
(t)
i ] = l(t) · p(t)

And thus the total expected loss over all rounds is
∑T

t=1 l
(t) · p(t). Our goal is to make

an algorithm which performs well in total expected loss compared to the best decision

in hindsight, viz. mini
∑T

t=1 l
(t)
i .

Such a strategy exists, and the MWUA is it. The MWUA assigns a weight wi to

each expert i. At each time step, an expert is chosen with a probability proportional

to its weight. The vector of advice-following probabilities at time step t is then p(t) =

{w(t)
1 /Φ(t), ..., w

(t)
n /Φ(t)}, where Φ(t) =

∑
iw

(t)
i . The losses of the different experts are

then observed, and the weights are updated according to the following rule: w
(t+1)
i =

w
(t)
i (1− ηl(t)i ), using a fixed η > 0.

The disparity between the total expected loss and that of the best expert in hindsight

is called “regret.” Which we can quantify as:

T∑
t=1

l(t) · p(t) −min
i

(

T∑
t=1

l
(t)
i + η

T∑
t=1

|l(t)i |)

Theorem 2.1 in Arora et al. states that, under the MWUA (when l
(t)
i ∈ [−1, 1] and

η ≤ 1/2), for any agent i:

T∑
t=1

l(t) · p(t) ≤
T∑
t=1

l
(t)
i − η

T∑
t=1

|l(t)i | −
lnn

η
.
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For large T , the last term becomes negligible, and for small η, the second term is small.

Now, since this inequality holds for any expert i, it holds specifically also for the best

expert in retrospect, and thus the performance of the MWUA is close to that of the

best expert in retrospect.

Now we will prove a no-regret version of Kale’s theorem.... The key intuition for

how it works is that one uses a potential function to track progress, and track how it

changes over a single step. Then use the resulting upper- and lower-bounds to relate

the total expected loss and the minimum loss. What makes this work ultimately is

the exponential function converting addition of its arguments into multiplication of the

exponential of each argument separately.

Theorem 1. Using MWUA with l
(t)
i ∈ [−1, 1] and η ≤ 1/2), for any agent i:

T∑
t=1

l(t) · p(t) ≤ min
i

(
T∑
t=1

l
(t)
i − η

T∑
t=1

|l(t)i |

)
− lnn

η

Proof. The proof uses the potential function Φt =
∑

iw
(t)
i , and the fact that p

(t)
i =

w
(t)
i /Φ(t)::

Φt+1 =
∑
i

w
(t+1)
i

=
∑
i

w
(t)
i (1− ηl(t)i )

= Φt − ηΦt

∑
i

l
(t)
i p

(t)
i

= Φt(1− ηl(t) · p(t))

≤ Φt exp(−ηl(t) · p(t))

Then by induction, after T rounds, we have

ΦT+1 ≤ Φ1 exp(−η
T∑
t=1

l(t) · p(t)) = n exp(−η
T∑
t=1

l(t) · p(t)) (3.1)
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Next it is necessary to upper-bound the exponentials with linear functions as follows:

(1− η)x ≤ (1− ηx) (3.2)

if x ∈ [0, 1], and

(1 + η)−x ≤ (1− ηx) (3.3)

if x ∈ [−1, 0]. Since li ∈ [−1, 1], then, for every expert i,

ΦT+1 ≥ w(T+1)
i =

∏
t≤T

(1− ηl(t)i ) ≥ (1− η)
∑
≥0 l

(t)
i · (1 + η)

∑
<0 l

(t)
i (3.4)

where the subscripts “≥ 0” and “< 0” in the summations refer to the rounds t where

l
(t)
i is ≥ 0 and < 0 respectively. By taking logarithms in equations 3.4 and 3.1, it follows

that:

lnn− η
T∑
t=1

l(t) · p(t) ≥
∑
≥0

l
(t)
i ln(1− η)−

∑
<0

l
(t)
i ln(1 + η)

Negating, rearranging, and scaling by 1/η, we get:

T∑
t=1

l(t) · p(t) ≤ lnn

η
+

1

η

∑
/ge0

l
(t)
i ln

1

1− η
+

1

η

∑
<0

l
(t)
i ln(1 + η)

≤ lnn

η
+

1

η

∑
≥0

l
(t)
i (η + η2) +

1

η

∑
<0

l
(t)
i (η − η2)

=
lnn

η
+

T∑
t=1

l
(t)
i + η

T∑
t=1

|l(t)i |

To derive the second inequality the following two inequalities were used:

ln

(
1

1− η

)
≤ η + η2

ln(1 + η) ≥ η − η2

for η ≤ 1/2. Then since the inequality holds for all i, we can choose the i which

minimizes the total loss, whence the result.

Notably, though there are other variants of the MWUA using the exponential form
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exp(−ηx), this variant has the strongest guarantees: the term multiplying η is a loss

which depends on the loss of the best expert in hindsight. Which is crucial for applica-

tions of the algorithm to various domains [6]

There is also a version of MWUA for gains instead of losses:

The Multiplicative Weight Update Algorithm (MWUA) [6] chooses between k dif-

ferent experts, choosing from them according to some probability distribution according

to how poor their predictions are. The quality of the prediction for an expert i at time

t is its gain g
(t)
i . The probability distribution over experts p

(t)
i at time t+ 1 for MWUA

is given by:

p
(t+1)
i = p

(t)
i

1 + ηg
(t)
i∑

j p
(t)
j (1 + ηg

(t)
j )

with η > 0 being the learning rate. In words, the experts with worse predictions are

chosen with a lower probability at time t + 1 than at time t, and this is done more

aggressively when η is larger.

And from this follows:

Corollary 2. The Multiplicative Weights algorithm also guarantees that after T rounds,

for any distribution p on the decisions:

∑
t=1

l(t) · p(t) ≤
T∑
t=1

(l(t) + η|l(t)|) · p+ lnn/η

where |l(t)| is the vector obtained by the taking the coordinate-wise absolute value of l(t).

There is a corresponding result that bounds the regret for the gains version. One

obtains it by using an identical argument as for the losses case, and plugging in l(t) =

−g(t) into all of the bounds. One obtains:

Theorem 3. Using MWUA with g
(t)
i ∈ [−1, 1] and η ≤ 1), for any agent i, we obtain

the following:

T∑
t=1

g(t) · p(t) ≥ max
i

(
T∑
t=1

g
(t)
i − η

T∑
t=1

|g(t)
i |

)
− lnn

η
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3.1.1 MWUA as a Game dynamics

In a game-theoretic setting, MWU can be used in a setting involving two algorithms

whose losses depend on each other. But first let us review a little bit of game theory.

In a 2-player game, there are players Row and Column. Each player plays a pure

strategy: for row player, a row index i, for column player, a column index j. But also

players could choose a mixed strategy: a probability distribution over pure strategies

for the player. And then the payoffs are associated with a choice of row and column

for each player, with both players having their own payoff matrix. A bimatrix game

is G = (A,B, [n], [m]) where A is the payoff (utility) matrix of the row player, B the

payoff (utility) matrix of the column player, n is the number of possible rows for the

row player, and k is the number of possible columns for the column player. Here are

two examples of bimatrix games:

Coordination games have identical payoff matrices for both players, so A = B and

n = m. Consider Generalized Rock-paper-scissors games. A is


0 −b a

a 0 −b

−b a 0


and B = AT . For zero-sum games A = −B, and dim(A) = dim(B) = n.

The application for MWUA in game theory is an iterative algorithm to get a pair of

mixed strategies that do very well in terms of expected payoff (given the other player’s

mixed strategy). The general form for game dynamics in Bimatrix games is given by:

rit+1 = f(rt, [Ac
T
t ], θ, i)

cjt+1 = f(ct, [r
T
t B], θ, j)

In words, a game dynamics will take the vector of expected payoffs for different pure

strategies and adjust the mixed strategy to increase the probability of choosing that

strategy accordingly.
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For MWUA to be applied as a game dynamics, one just takes

f(v, u, η, i) = vi
1 + ηui∑

j vj(1 + ηuj)

In Algorithms, MWUA is used as a general-purpose optimization algorithm, as a

way to solve many different optimization problems. To use the method, one need only

specify the loss functions and experts in such a way as to solve the problem. We will

describe this method in the following subsection.

3.1.2 The MWU Method and its Applications

The MWU method is the application of the MWUA to a given function problem,

supplying its inputs to the MWUA as experts and a corresponding set of losses for the

experts, such that the output is a solution to the function problem. More formally,

an application of the MWU method supplies a set of experts i ∈ [n], and a set of loss

vectors l(t) for each expert on each time-step. The output of MWUA on the provided

set of experts/losses after a long-enough time will then need to be close-to optimal for

the given problem.

For an example of an application of the MWU method, consider approximately-

solving a 2-player zero-sum game.

Let A be the payoff matrix of a bimatrix 2-player zero-sum game. Recall that the

expected payoff to the column player for choosing a strategy j is A(p, j) = Ei∈p[A(i, j)].

Therefore the best response for the column player is to choose the strategy j which

maximizes this payoff. If the column player chooses his strategy j from a distribution

over the columns is A(i, q) = Ej∈q[A(i, j)]. Thus the best response for the row player

is the row which minimizes the expected payoff (recall B = −A). John von Neumann’s

min-max theorem says that if each of the players choose a mixed strategy to optimize

their worst-case payoff, then the value they obtain is the same:

min
p

max
j

(A(p, j)) = max
q

min
i
A(i, q) (3.5)
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where p, q, vary over all mixed strategies for the row and column players respectively.

Also, i (resp. j) varies over all rows (resp. columns). The common value of both sides

of the equation, λ∗, is called the value of the game. To solve a game up to additive

error ε > 0, we must find mixed row and column strategies p̂ and q̂ such that:

λ∗ − ε ≤ min
i
A(i, q̂) (3.6)

max
j
A(p̂, j) ≤ λ∗ + ε (3.7)

Let us assume that given any distribution p on strategies, we have an efficient way

to pick the best response, e.g. the pure strategy j that maximizes A(p, j), which is at

least λ∗. Call this algorithm Oracle.

Theorem 4. Given an error parameter ε > 0, one can apply the MWU method up

to solve the zero-sum game up to an additive factor of ε using O(log(n)/ε2) time-steps

(and calls to Oracle), with an additional processing time of O(n) per call.

Proof. We consider 3.6 to specify n linear constraints on the probability vector q̂: viz.,

for all rows i, A(i, q̂) ≥ λ∗ − ε. Let the experts be the pure strategies of the row

player. Similar to the MWUA in a game-theoretic setting. Losses are specified by

pure strategies of the column player. The loss for expert i when column player chooses

strategy j is A(i, j).

In each time-step, given a distribution p(t) on the rows, we choose the column j(t) to

be the best response strategy to p(t) for the column player using a call to Oracle. The

loss for expert j is thus the jth column of A. Similar to the MWU in a game-setting,

assuming that the column player always plays the best response.

Since all A(i, j) ∈ [0, 1] by re-normalization, we can apply Corollary 2 to get that

after T time-steps, for any distribution on the rows p, we have

T∑
t=1

A(p(t), j(t)) ≤ (1 + η)
T∑
t=1

A(p, j(t)) + lnn/η
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Dividing by T , and using the fact thatA(p, j) ≤ 1 and that for all t, A(p(t), j(t)) ≥ λ∗,

we obtain:

λ∗ ≤ 1

T

T∑
t=1

A(p(t), j(t)) ≤ 1

T

T∑
t=1

A(p, j(t)) + η +
lnn

ηT

Setting p = p∗, the optimal row strategy, we have A(p, j) ≤ λ∗ for any j. By setting

η = ε/2 and T = d4 ln(n)/ε2e, we get that

λ∗ ≤ 1

T

T∑
t=1

A(p(t), j(t)) ≤
T∑
t=1

A(p, j(t)) ≤ λ∗ + ε (3.8)

Thus, 1
T

∑T
t=1A(p(t), j(t)) is an additive ε-approximation to λ∗. Let t̂ be the round

t with the minimum value of A(p(t), j(t)). We have, from the above,

A(p(t̂), j(t̂)) ≤ 1

T

T∑
t=1

A(p(t), j(t)) ≤ λ∗ + ε

Since j(t̂) maximizes A(p(t̂), j) over all j, we conclude that p(t̂) is an approximately

optimal mixed strategy for the row player, and thus we can set p∗ = p(t̂).

We set q∗ to be the distribution which assigns to column j the probability

|t : j(t) = j|
T

From 3.8, for any row strategy i, by setting p to be concentrated on the pure strategy

i, we have

λ∗ − ε ≤ 1

T

T∑
t=1

A(p(t), j(t)) = A(i, q∗)

which shows that q∗ is an approximately-optimal mixed strategy for the column player.

In fact, one can use a very similar analysis to show that the straightforward appli-

cation of MWUA for games outlined in the previous subsection gives nearly the same

guarantees. There are many other examples given by Kale and co-authors in his review

of applications for the MWU method, including solving convex programming, linear
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programming, classification problems, and some simple graph-theoretic problems [6].
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Chapter 4

Population Genetics and MWUA

In this chapter, we cover joint work with Papadimitriou, Livnat, and Vazirani on an

unexpected connection between population genetics and MWUA playing a coordination

game. The writing in this chapter was done by myself, Papadimitriou, and Livnat.

Technical and modeling contributions were given by all four authors. The primary

content of this paper has been published elsewhere [26, 24], but the last section on

mixability is so far unique to the thesis. Recall the definition of a game. A coordination

game has payoff matrices A,B such that B = AT . Now we will present the basic

connection to MWUA in both genetic and game-theoretic terms. We assume that the

genes (pure strategies) are the experts, and the average fitness for each allele (payoff to

each pure strategy) is −li.

4.1 MWUA and Population Genetics

Precisely how does selection change the composition of the gene pool from generation to

generation? The field of population genetics has developed a comprehensive mathemat-

ical framework for answering this and related questions [21]. Our analysis in this paper

focuses particularly on the regime of weak selection, now a widely used assumption

[101, 105]. Weak selection assumes that the differences in fitness between genotypes

are small, and consequently, through a result due to Nagylaki et al. [104], (see also

[21] Section II.6.2), evolution proceeds near linkage equilibrium, a regime where the

probability of occurrence of a certain genotype involving various alleles is simply the

product of the probabilities of each of its alleles. Based on this result, we show that

evolution in the regime of weak selection can be formulated as a repeated game, where

the recombining loci are the players, the alleles in those loci are the possible actions or
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strategies available to each player, and the expected payoff at each generation is the ex-

pected fitness of an organism across the genotypes that are present in the population.

Moreover, and perhaps most importantly, we show that the equations of population

genetic dynamics are mathematically equivalent to positing that each locus selects a

probability distribution on alleles according to a particular rule which, in the context of

the theory of algorithms, game theory and machine learning, is known as multiplicative

weight updates (MWUA). MWUA is known in computer science as a simple but sur-

prisingly powerful algorithm (see [6] for a survey). Moreover, there is a dual view of this

algorithm: each locus may be seen as selecting its new allele distribution at each gener-

ation so as to maximize a certain convex combination of (a)cumulative expected fitness

and (b) the entropy of its distribution on alleles. This connection between evolution,

game theory, and algorithms seems to us rife with productive insights; for example, the

dual view just mentioned sheds new light on the maintenance of diversity in evolution.

Game theory has been applied to evolutionary theory before, to study the evolution

of strategic individual behavior (see, e.g., [92, 145]). The connection between game

theory and evolution that we point out here is at a different level, and arises not in the

analysis of strategic individual behavior, but rather in the analysis of the basic popu-

lation genetic dynamics in the presence of sexual reproduction. The main ingredients

of evolutionary game theory, namely strategic individual behavior and conflict between

individuals, are extraneous to our analysis.

We now state our assumptions and results. We consider an infinite panmictic popu-

lation of haplotypes involving several unlinked (i.e., fully recombining) loci, where each

locus has several alleles. These assumptions are rather standard in the literature. They

are made here in order to simplify exposition and algebra, and there is no a priori reason

to believe that they are essential for the results, beyond making them easily accessible.

For example, Nagylaki’s theorem [104], which is the main analytical ingredient of our

results, holds even in the presence of diploidy and partial recombination.

Nagylaki’s theorem states that weak selection in the presence of sex proceeds near
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the Wright manifold, where the population genetic dynamics become (SI)

xt+1
i (j) =

1

Xt
xti(j)

(
F ti (j)

)
,

where xti(j) is the frequency of allele j of locus i in the population at generation t, X is

a normalizing constant to keep the frequencies summing to one, and F ti (j) is the mean

fitness at time t amongst genotypes that contain allele j at locus i (see [104] and the

SI). Under the assumption of weak selection, the fitness of all genotypes are close to

one another, say within the interval [1− ε, 1 + ε], and so the fitness of genotype g can

be written as Fg = 1 + ε∆g, where ε is the selection strength, assumed here to be small,

and ∆g ∈ [−1, 1] can be called the differential fitness of the genotype. With this in

mind, the equation above can be written

xt+1
i (j) =

1

Xt
xti(j)

(
1 + ε∆t

i(j)
)
, (1)

where ∆t
i(j) is the expected differential fitness amongst genotypes that contain allele j

at locus i.

We now review the framework of game theory.

A game has several players, and and each player i has a set Ai of possible actions.

Each player also has a utility, capturing the way whereby her actions and the actions

of the other players affect this player’s well being. Formally the utility of a player

is a function that maps each combination of actions by the players to a real number

(intuitively denoting the player’s gain, in some monetary unit, if all players choose

these particular actions). In general, rather than choosing a single action, a player may

instead choose a mixed or randomized action, that is, a probabilistic distribution over her

action set. Here we only need to consider coordination games, in which all players have

the same utility function — that is, the interests of the players are perfectly aligned,

and their only challenge is to coordinate their choices effectively. Coordination games

are among the simplest games; the only challenge in such a game is for the players to

“agree” on a mutually beneficial action.

How do the players choose and adjust their choice of randomized (mixed) actions
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over repeated play? Assume that at time t, player i has mixed action xti, assigning to

each action j ∈ Ai the probability xti(j). The MWUA algorithm [6] adjusts the mixed

strategy for player i in the next round of the game according to the following rule:

xt+1
i (j) =

1

Zt
xti(j)

(
1 + εuti(j)

)
, (2)

where Zt is a normalizing constant designed to ensure that
∑

j x
t
i(j) = 1, so xt+1

i is a

probability distribution; ε is a crucial small positive parameter, and uti(j) denotes the

expected utility gained by player i choosing action j in the regime of the mixed actions

by the other players effective at time t. This algorithm (a) is known to converge to the

min-max actions if the game is two-player zero-sum; (b) is also shown here to converge

to equilibrium for the coordination games of interest in the present paper (see Corollary

5 in SI); (c) is a general “learning algorithm” that has been shown to be very successful

in both theory and practice; and (d) if, instead of games, it is applied to a large variety

of optimization problems, including linear programming, convex programming, and

network congestion, it provably converges to the optimum quite fast.

It can be now checked that the two processes expressed in equations (1) and (2),

evolution under natural selection in the presence of sex and multiplicative weight up-

dates in a coordination game, are mathematically identical (see Theorem 3 in the SI).

That is, the interaction of weak selection and sex is equivalent to the MWUA in a

coordination game between loci in which the common utility is the differential fitness

of the organism. The parameter ε in the algorithm, which, when small signifies that

the algorithm is taking a “longer-term view” of the process to be solved (see SI), cor-

responds to the selection strength in evolution, i.e., the magnitude of the differences

between the fitness of various genotypes.

The MWUA is known in computer science as an extremely simple and yet unex-

pectedly successful algorithm, which has surprised us time and again by its prowess

in solving sophisticated computational problems such as congestion minimization in

networks and convex programming in optimization. The observation that multiplica-

tive weight updates in a coordination game is equivalent to evolution under sex and
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weak selection makes an informative triple connection between three theoretical fields:

evolutionary theory, game theory, and the theory of algorithms/machine learning.

So far we have presented the MWUA by “how it works” (informally, it boosts alleles

proportionally to how well they do in the current mix). There is an alternative way

of understanding the MWUA in terms of “what it is optimizing.” That is, we imagine

that the allele frequencies of each locus in each generation is the result of a deliberate

optimization by the locus of some quantity, and we wish to determine that quantity.

Returning to the game formulation, define U ti (j) =
∑t

τ=0 u
t
i(j) to be the cumulative

utility obtained by player i by playing strategy j over all t first repetitions of the game,

and consider the quantity

∑
j

xti(j)U
t
i (j)−

1

ε

∑
j

xti(j) lnxti(j). (3)

The first term is the current (at time t) expected cumulative utility. The second

term of (3) is the entropy (expected negative logarithm) of the probability distribu-

tion {xi(j), j = 1, . . . |Ai|}, multiplied by a large constant 1
ε . Suppose now that player i

wished to choose the probabilities of actions xti(j)’s with the sole goal of maximizing the

quantity (3). This is a relatively easy optimization problem, because the quantity (3)

to be maximized is strictly concave, and therefore it has a unique maximum, obtained

through the KKT conditions [19] (see Section 4 of the SI):

U ti (j)−
1

ε
(1 + lnxti(j)) + µt = 0.

(Here µt is the Lagrange multiplier associated with the constraint
∑

j x
t
i(j) = 1 seeking

to keep the xti(j)’s a probability distribution, see the SI.) Subtracting this equation from

its homologue with t replaced by t+ 1, and applying the approximation exp(εuti(j)) ≈

(1 + εuti(j)), we obtain the precise equation (2) (the normalization Zt is obtained from

µt and µt+1, see the SI for the more detailed derivation).

Thus, since equations (1) and (2) are identical, we conclude that, in the weak selec-

tion regime, natural selection is tantamount to each locus choosing at each generation
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its allele frequencies in the population so as to maximize the sum of the expected

cumulative differential fitness over the alleles, plus the distribution’s entropy.

This alternative view of selection provides a new insight into an important question

in evolutionary biology, namely: How is genetic diversity maintained in the presence of

natural selection [82]? That the MWUA process enhances the entropy of the alleles’

distribution (while at the same time optimizes expected cumulative utility) hints at

such a mechanism. In fact, entropy is enhanced inversely proportional to s (the quan-

tity corresponding in the population genetics domain to the parameter ε), the selection

strength: The weaker the selection, the more it favors high entropy. Naturally, entropy

will eventually vanish when the process quiesces at equilibrium: one allele per locus will

eventually be fixed, and in fact this equilibrium may be a local, as opposed to global,

fitness maximum. However, we believe that it is interesting and significant that the

entropy of the allele distribution is favored by selection in the transient; in any event,

mutations, environmental changes, and finite population effects are likely to change the

process before equilibrium is reached. This new way of understanding the maintenance

of variation in evolution (selection as a trade-off between fitness and entropy maximiza-

tion) is quite different from previous hypotheses for the maintenance of variation (e.g.,

[41, 76]). Another rather surprising consequence of this characterization is that, under

weak selection, all past generations, no matter how distant, have equal influence on the

change in the allele mix of the current generation.

Mixability and Diversity

Why is mixability advantageous? (Since sex is ubiquitous, there must be an advan-

tage.) One intuitive explanation may be that, by promoting “good mixer genes” (a

phrase by Kimura [33] who had anticipated some of this thinking), it enhances genetic

diversity. But what happens at equilibrium (when the allele frequencies finally stabilize,

as predicted by our results)?1 It would be disappointing — and, by the above intuition,

detrimental to the argument in favor of mixability — if it so happens that, in the end,

1In actual Evolution, of course, nothing ever stabilizes, as new mutations introduce new strategies
in the game, and life goes on. Note that our model does not include mutations.
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natural selection by sex ends up putting all its chips on a single allele per gene (as it

often happened in the simulations in [84]). The question arises: How large is the typical

support of an equilibrium for our population genetics process?

we answer this question in a positive way: there are exponentially many equilibria

whose support contains a significant fraction of the alleles of each gene, see Corollary

4. We do this through a digression to a completely different problem: Let A be an

n×n matrix. What are the chances that the solution to the system Ax = 1 is positive?

Assume that the entries of the matrix are iid from a distribution that is continuous and

symmetric around zero, say uniform in [−1, 1]; in this case, with probability one the

solution exists and has no zero term. Intuitively, the answer is 2−n (each row of the

inverse must have a positive sum). It is not hard to show that this insight is correct.

But suppose that we want both systems Ax = 1 and AT y = 1 to have positive

solutions. What are the chances of that happening? One expects this to be about 2−2n,

but there is dependence now and the calculation is not straightforward. Intuitively the

dependence is favorable, but how does one establish this?

We prove that this probability is at least 2−2n+1 (and thus the dependence is indeed

favorable, see Theorem 2). The proof uses a potential function argument reminiscent

of the Berlekamp switching game [47].

The connection to Evolution is the following: First, one can show that only square

submatrices of the fitness matrix are likely to support an equilibrium of the population

dynamics. A square submatrix of the fitness matrix is the support an equilibrium if and

only if the corresponding submatrix of selections (fitness minus one) has the property

that the solutions to both row and column linear systems with unit right-hand sides are

positive. By showing that this happens with sufficiently high probability we establish

that, in expectation at least, there are equilibria with substantial supports (in fact,

quite a few of them), and thus diversity is not always lost at equilibrium. However,

note that recent results [95] have shown that the diverse equilibria are for the most part

unstable equilibria. This means that diversity in such models is very fragile.

Now let’s discuss the proof. We know that the population genetic dynamics con-

verges, but what is the nature of the equilibria? In particular, are they likely to have
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extensive support? This would imply that diversity is not totally lost in the process,

and considerably strengthen our model as a candidate for the role of sex in Evolution.

To tackle this problem, we need a probabilistic model on the fitness landscape. As

we are assuming weak selection, we postulate that the entries of W are drawn iid from

a continuous distribution on [1−s, 1+s] with no singularities that is symmetric around

1. Equivalently, the entries of ∆ are iid on [−1, 1]. (In fact, our results do not require

that the distributions of the entries be identical.)

At equilibrium, all alleles of a gene must have the same mixability (expected fitness

with respect to the frequencies of the other alleles). Focusing on the two gene case

(here by necessity, because the more general case seems intractable), it must be that

Wx = a1 and W T y = b1 for some real vectors with nonnegative coefficients x, y and

some reals a, b (in fact, it is easy to see that a will be equal to b). An equilibrium is

characterized by the supports of x and y, or, equivalently, by the submatrix defined by

these. Let us call a submatrix A of W an equilibrium if Ax = a1 and AT y = a1 have

nonnegative solutions x, y adding to one, for some a > 1. We require that a > 1 for

this reason: If a < 1, then A is indeed an equilibrium, but one that leads to extinction.

Consider an m × n submatrix A of the fitness matrix. When is A an equilibrium?

First of all, if A is not square, say m < n, then the probability of A being an equilibrium

is zero, because then the system AT y = a1 is overdetermined. So, we shall focus on a

square submatrix A. Under weak selection, we can write A = U + sB.

Lemma 1. A is an equilibrium if and only if B−1 exists and has positive row and

column sums.

Proof. If A is an equilibrium with x, y > 0 the solutions to the linear systems with

right-hand sides a1, then it is easy to see that Bx = 1(a −
∑

j yj) = 1(a − 1) and

similarly BT y = 1(a− 1). Therefore B−1 must exist and have positive row and column

sums. And from any nonnegative solutions of Bz = 1, BTw = 1 we can get back the

solutions of Ax = a1, AT y = a1,
∑

i xi = 1,
∑

j yj = 1, adding up to one: x = z∑
i zi

and

similarly y = w∑
j wj

) with a = 1 + s∑
i zi

> 1.

Thus, to show that there are enough equilibria with large support, we must calculate
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(more precisely, lower bound) the probability that a random matrix B has an inverse

with positive row and column sums. Our main result is the following:

Theorem 2. The probability that A is an equilibrium is at least 2−(2n−1).

Proof. By the Lemma, we must bound from below the probability that B−1 has positive

sums (since B−1 exists with probability one).

Let S ⊆ [n]. By IS we denote the n × n unit matrix with the ith one replaced by

−1 whenever i ∈ S. Notice that ISEIT is E with all columns in S flipped (multiplied

by −1) and all rows in T also flipped (with entries at the intersection of a row in T

and a column in S restored to its original value). Notice that (ISEIT )−1 = ITE
−1IS .

That is, to invert E with some rows and columns flipped, you invert E and then flip

the same columns and rows, with the roles of columns and rows interchanged.

Now take B and consider all possible flippings ISBIT . There are 22n−1 distinct such

matrices, because it is easy to see that ISBIT = I[n]−SBI[n]−T and that all other pairs

of flippings are distinct. We shall argue that one of these flippings must have positive

row and column sums.

Lemma 3. For every B ∈ [−1, 1]n×n there are S, T ⊆ [n] such that ISBIT has non-

negative row and column sums.

Proof. To prove the lemma, start with B and perform the following:

while there is a row or column with negative sum, flip it.

Naturally, after each such flipping other columns or rows, which had positive sums,

may become negative. However, if the sum of the row or column that was flipped was

−σ, notice two things: First, σ ≥ σ0, where σ0 is a constant depending on B; and

second, the total sum of the entries of E increases by 2σ after the flip. Therefore, the

process must end, and this can only happen if the matrix has positive row and column

sums.

The theorem now follows: Consider the domain M = [−1,+1]n×n, and the subset

M+ whose inverse exists and has positive sums. This subset can be defined using
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polynomial inequalities, and is this measurable. By applying the 22n−1 transformations

B 7→ ISBIT to M+, by the Lemma we exhaust all of M . Therefore, the probability

that a matrix in M is in M+ is at least 2−(2n−1).

Corollary 4. The expected number of k×k equilibria in an m×n weak selection fitness

matrix is at least 2
(
mn
4k2

)k
.

Notice that, for k less than half times the geometric mean of m and n, this is

exponential in k.

Proof. Use the approximation
(
n
k

)
≥ (nk )k.

4.2 Supplementary Information

In this section,

• we introduce the detailed modeling assumptions and dynamical model we use for

recombination under selection (Section 4.3);

• we introduce the experts problem from Computer Science, and the multiplicative

weights update algorithm used to solve it (MWUA)

• we point out that the MWUA can be interpreted as an algorithm which at each

step optimizes a convex combination of the cumulative sum of gains and of the

distribution’s entropy;

• we prove the equivalence of the dynamics under weak selection to the MWUA in

Theorem 8 with ε = s, the selection strength.

Note that some of this material is repeated from the MWU chapter, but it was

necessary to re-emphasize in a self-contained way for ease of understanding.

4.3 Population Genetics under selection and recombination

We make several (more or less standard) simplifying assumptions, which are generally

trusted not to change substantially the essence of the evolutionary dynamics. The
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population of genotypes is infinite. We assume that the genotypes are haploid (contain

only one copy of each gene), and that the organisms mate at random to produce a new

generation; further, we assume there is no overlap between generations (as if all mating

happens simultaneously and soon before death). Each offspring’s genome is formed by

picking, for each gene, an allele from one of the two parent genomes, independently and

with probability half each.

Our exposition will be for the case of two genes with m and n alleles respectively,

even though our results can be easily seen to extend to any number of genes. Thus geno-

types are pairs ij. Each genotype ij has a fitness value wij which is the expected number

of offspring the genotype produces (by mating randomly). The matrix W = [wij ], often

called the fitness landscape of the species, entails the basic genetic parameters of the

species (it is a k-dimensional tensor for k genes).

We shall be interested in the statistics of the genotypes in the population. The

frequency of the genotype ij will be denoted pij . The matrix of the pij ’s is the state of

the dynamical system we shall follow. We denote the value of pij in generation t by ptij .

How do the ptij ’s change from one generation to the next? Each pair of genotypes

mates with a probability determined by the frequencies of those genotypes and re-

combines with probability r ∈ [0, 1/2] to produce an offspring, which is then selected.

Accordingly, the expected frequency of the genotype ij at the next generation pt+1
ij , can

be written:

pt+1
ij =

wij
w̄t

((1− r)ptij + r
∑
l

ptil
∑
k

ptkj)

where w̄t is the sum of the numerators for all ij, so that frequencies add up to 1.

Wright Manifold, Weak Selection, and Nagylaki’s Theorem

Besides the pij frequencies, one has the marginal frequencies, one for each allele: xi =∑
j pij and yj =

∑
i pij . Within the simplex of the pij ’s, of particular interest to us

is the Wright manifold on which pij is a product distribution (the matrix pij has rank

one): pij = xi · yj . It turns out that, on the Wright manifold, the population genetic

equations take a much simpler form, expressed in terms of the marginal probabilities
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xi and yj (see Lemma 7).

Life, in general, does not reside on the Wright manifold — that is to say, genotype

frequencies do not in general have rank one. This is called linkage disequilibrium, and

is measured by the distance from the Wright manifold Dij = pij − xi · yj . Intuitively, it

comes about because differences in the fitness of genotypes distort the allele statistics;

just imagine two alleles of two genes whose combination is deleterious. By definition,

Dij is zero on the Wright manifold.

Weak selection is an important point of view on evolution, which postulates that

the entries of the tensor W are all very close to one another relative to recombination.

Differences in fitness are minuscule, and the wij ’s all lie within the interval [1− s, 1 + s]

for some very small s > 0 which we call the selection strength. It is a mathematical em-

bodiment of the neutral theory of Kimura [75], stating roughly that Evolution proceeds

mostly through statistical drift due to sampling error that has no impact on fitness.

There is an important connection between the Wright manifold and weak selection,

best articulated through Nagylaki’s Theorem. Consider the evolution of genome fre-

quencies ptij (or for more that two genes) in a situation in which the fitness values are

within [1 − s, 1 + s] for some tiny s > 0 — that is, weak selection prevails. Consider

also the corresponding time series of linkage disequilibria Dt
ij = ptij − xi · yj .

Theorem 5. (Nagylaki [101, 104]) (1) for any t ≥ t0 = 3 log 1
s and any i, j, Dt

ij =

O(s); and furthermore

(2) for t ≥ t0 there is a corresponding process {p̂ij} on the Wright manifold such

that (a) |p̂tij − ptij | = O(s); and (b) both processes converge and there is one-to-one

correspondence between the equilibria of ptij and the equilibria of p̂tij.

Nagylaki’s Theorem states essentially that, in order to understand a genotype fre-

quency process in the weak selection regime, one can instead follow a closely related

process on the Wright manifold. As we shall see next, it turns out that this brings

about some unexpected connections.
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4.4 The Experts Problem

We now discuss a seemingly completely unrelated problem from Computer Science, and

an important algorithm used to solve it.

Imagine that every day you receive advice from n financial experts, and then you

must select one of them and follow his advice for that day. Following the advice of

expert i in day t results in a net gain (or loss) of gti , a number between −1 and 1. The

gti ’s are arbitrary numbers in this range, and are not known in advance. This process is

repeated for a large number T of days. In the end of the T days, the optimum expert

is the one with the largest cumulative gain Gi =
∑T

t=1 g
t
i ; let i∗ be this expert, and G∗

be this maximum cumulative gain. We wish to come up with an algorithm — possibly

randomized — for selecting an expert on each day so that in the end of the T days our

total gain is in expectation very close to G∗. In other words, we want to achieve, in

the end of the T days, a performance very close to the performance of the expert who

is best in retrospect, even though the gti ’s are unknown and arbitrary — for example,

they could be chosen by an adversary striving to deteriorate the performance of the

algorithm.

This ambitious goal (which, some would argue, seems intuitively impossible to

achieve) can be attained by a very simple method called multiplicative weight update

algorithm or MWUA. This method has been first discovered in by the economist J. Han-

nan in connection with repeated games [57], then rediscovered by Thomas Cover in rela-

tion to portfolio analysis [30], later it was used in Artificial Intelligence under the name

“Boosting [52], and earlier in a version called “Winnow” [83], until it was recognized as

the common idea underlying several simple and curiously effective optimization algo-

rithms developed by computer scientists to solve linear and convex programming prob-

lems and network congestion problems, among many others, and codified as MWUA

[6].

The MWUA assigns each day t weights, or probabilities, pti > 0 to the experts, and

each day selects at an expert at random among the n with these probabilities. Initially

all weights are, say, equal p1
i = 1

n for all i. Then each day, the weight of the ith expert
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is modified as follows:

pt+1
i =

1

Z̄t+1
pti(1 + εgti) (MWUA)

where the normalization Z̄t+1 =
∑n

i=1 p
t
i(1 + εgti) keeps the weights probabilities, and

ε > 0 is a small constant chosen to balance long-term risk with short-term gains (in the

experts problem, a good choice of ε turns out to be
√

lnn
T ). That is, the probability

of selecting expert i is “boosted” by a small multiple of the expert’s gain that day

(decreased if that gain is negative).

The following result now captures the surprisingly favorable performance of this

simple algorithm:

Theorem 6. The total gain achieved by the MWUA is in expectation at least (1− ε) ·

G∗ − lnn
ε .

To see how favorable is the performance of MWUA as stated by this result, notice

that it comes ε close to the optimum, minus a quantity that does not depend on T . To

put it differently, if we choose ε =
√

lnn
T ), on an average day this algorithm does only

O( 1√
T

) worse than the ex post best expert.

4.5 An Optimization Interpretation of MWUA

In this section we point out that the MWUA can be thought of as a multi-step opti-

mization algorithm which, at each step, strives to optimize a convex combination of (1)

the expected cumulative gain; and (2) the entropy of the experts’ distribution. This

interpretation is implicit in the literature [137, 110].

Let Gti =
∑t

τ=1 g
τ
i be the cumulative gain of expert i in the first t days; thus,

G∗ = max{GT1 , . . . , GTn}. Suppose now that at step t we wish to choose the probabilities

pti so as to maximize the sum of two quantities: The expected cumulative gain so far,

and (some positive constant 1
ε times) the entropy of the distribution pti’s, −

∑n
i=1 p

t
i ln pti.

That is,

max
{pti}

n∑
i=1

ptiG
t
i −

1

ε

n∑
i=1

pti ln pti,

subject to
∑

i p
t
i = 1. Now this is a strictly convex optimization problem, as one term
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is linear and the other strictly concave, and thus it has a unique optimum, which can

be found through the KKT-conditions [19]:

Gti − (1 + ln pti) + µt = 0, i = 1, . . . , n,

where µt is the Lagrange multiplier corresponding to the equality constraint. Similarly,

we can write the same equation for the next generation, with t replaced by t+ 1:

Gt+1
i − (1 + ln pt+1

i ) + µt+1 = 0, i = 1, . . . , n,

Subtracting these two equations and solving for pt+1
i , and recalling that Gt+1

i − Gti =

gt+1
i , we obtain precisely equation (MWUA), where the normalization Z̄t+1 = exp(µt+1−

µt).

4.6 Coordination Games between Genes

We now introduce the basic formalism of Game Theory. In a game each of finitely many

players has a set of strategies, and a payoff function mapping the cartesian product of

the strategy sets to the reals. A game in which all payoff functions are identical is called

a coordination game. In a coordination game the interests of all players are perfectly

aligned, and, intuitively, they all strive to hit the same high value of the common payoff

function. In terms of equilibrium calculations, they are trivial.

Fix a game, and a mixed strategy profile, that is, for each player p a distribution

xp over her strategies. For each player p and each strategy a ∈ Sp one can calculate

the expected payoff of this strategy, call it q(a). How does the player’s strategy change

in time? One possibility is inspired by the MWUA of the previous section. The multi-

plicative weight update dynamics of the game transform the mixed strategy profile {xp}

as follows: For each player p and each strategy a ∈ Sp, the probability xp(a) of player

p playing a becomes

xp(a) · (1 + ε · q(a))

1 + ε ·
∑

b∈Sp
xp(b)q(b)

=
xp(a) · (1 + ε · q(a))

1 + ε · q̄
,
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where by q̄ we denote the expected payoff to p (in a coordination game, to all play-

ers). That is, the probability of playing a is boosted by an amount proportional to

its expected payoff, and then renormalized. It is known that two players following the

multiplicative update dynamics attain the Nash equilibrium in zero-sum games (this

has been rediscovered many times over the past fifty years, see for example [6]), but

not in general games. It follows directly from the results below that it also converges to

the Nash equilibrium in coordination games. Beyond games and portfolio management,

the multiplicative updates dynamics lies at the foundations of a very simple, intuitive,

robust and powerful algorithmic idea of very broad applicability [6].

Going now back to population genetics dynamics, let wij be a fitness landscape

(matrix for two genes, tensor for more) in the weak selection regime, that is, each entry

is in the interval [1− s, 1 + s]. Define the differential fitness landscape to be the tensor

with entries ∆ij =
wij−1
s .

We next point out a useful way to express the important analytical simplification

afforded by the Wright manifold:

Lemma 7. ) On the Wright manifold, the population genetics dynamics becomes

pt+1
ij =

1

w̄t
xti · ytj · wij ,

and similarly for more genes.

Proof. As is shown in ref. [84], we can re-write the population genetics dynamics as:

pt+1
ij =

1

w̄t
wij(p

t
ij − rDt

ij)

where Dt
ij = ptij −xtiyti is the linkage disequilibrium and w̄t is a normalization constant.

Now because Dij = 0, we have:

pt+1
ij =

1

w̄t
wij(p

t
ij)

Finally, because Dt
ij = 0, ptij = xtiy

t
j . The result follows.



58

We are now ready for the main result of this section:

Theorem 8. Under weak selection with selection strength s, the population genetic

dynamics is precisely the multiplicative update dynamics of a coordination game whose

payoff matrix is the differential fitness landscape and ε = s.

Proof. We only show the derivation for two genes, the general case being a straightfor-

ward generalization.

xt+1
i =

∑
j

pt+1
ij =

1

w̄t

∑
j

xtiy
t
jwij =

xti
w̄t

(1 + s
∑
j

ytj∆ij) =
xti · (1 + s

∑
j y

t
j∆ij)

1 + s · ∆̄
.

Here the first equation is the definition of marginal frequencies, the second is the

Lemma, the third uses the definition of ∆ij , and the last one follows from the ex-

pectation of wij being 1 plus s times the expectation of ∆ij . The last expression is

precisely the multiplicative update dynamics, completing the proof.

Finally, we can connect our result to the optimization interpretation of MWUA:

Corollary 9. Under weak selection with selection strength s, the population genetics

dynamics is tantamount to each gene optimizing at generation t a quantity equal to

the cumulative expected fitness over all generations up to t, plus 1
s times the negative

entropy of the allele distribution of the gene at time t.

One interpretation is this: If the optimization of cumulative expected fitness is

sought, then it makes sense at each step, and in view of the uncertainties of future steps,

to balance off cumulative expected fitness so far against the distribution’s entropy (a

well-known measure of dispersion).

Mixability and MWUA

The mathematical theory of population genetics has long attempted to gain a deep

understanding of population genetic dynamics in the presence of natural selection and

thus of how evolution works. However, the common mode of reproduction in nature is
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the sexual one and, from the start, understanding the population genetic dynamics in

the presence of both sex and natural selection has been a complicated task [46, 29].

Mixability theory [84, 87, 86] examines the population genetic dynamics in the

presence of sex and natural selection using the classical population genetic equations.

In that, it follows a century of population genetics research. However, unlike other

theories, it focuses on how well alleles perform across a variety of genetic contexts. It

holds that in the presence of sex, this ability, called “mixability,” is increased [84, 87].

Aside of a brief comment on mixability by Crow and Kimura [33] and a related

simulation study [97], this simple idea has not been part of the mathematical investi-

gation of the basis of evolution. This has been at least partly due to a technical reason

[84]. Selection for mixability occurs when there is genetic diversity across loci, so that

alleles in one gene can be selected based on how well they perform with a diversity

of alleles at other genes. This means that it occurs during the evolutionary transient

[84]. While evolution happens in the transient, mathematical models often examine

equilibria, leaving the less wieldy transient relatively little studied [84].

The first breakthrough in the theoretical study of mixability was due to computer

iterations and the definition of a new mathematical measure that made it possible to

capture selection for mixability and observe it clearly during the evolutionary transient

[84]. Later, Livnat et al. proposed the first theorem of mixability [86]; however, it was

very limited in applicability because it relied on unrealistic conditions for the purposes

of mathematical tractability [86]. Our purpose here is to bring to the attention of the

theoretical biological community as well as clarify a far more powerful result, capturing

analytically and with generality the fact that, during the transient, mixability is favored.

This result is based on a newly founded bridge between theoretical computer science

and evolutionary biology. Recently, we have shown that, in the realm of weak selection,

using a haploid infinite population model, the multilocus population genetic dynamics

in the presence of sex and natural selection can be described as repeated play of a

coordination game, where the genes are the players, the alleles are the strategies, allele

frequencies are the probabilities in the mixed strategies, the utility is the organismal

fitness, and furthermore, the game is played according to a powerful algorithm, known
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in computer science as the Multiplicative Weights Update Algorithm (MWUA) [26].

This new bridge allows us to use results and techniques known in theoretical computer

science—especially here the no-regret theorem of Arora et al. [6]—in evolutionary

theory. In particular, we show that in the presence of natural selection and sex, the

time-averaged population mean fitness is greater or equal to the largest time-averaged

allelic mixability, averaged over loci, minus small terms. This general result means

that mixability is an important guiding principle with which to understand population

genetic dynamics, one which may in turn affect our understanding of the population

mean fitness and more.

Model and theorem

In Chastain et al. [26], a haploid model with two genes was considered, with n1 and

n2 alleles in the first and second loci respectively, where genotype ij consists of alleles

i ∈ {1, ..., n1} and j ∈ {1, ..., n2}; xti and yti are the frequencies of alleles i and j at

generation t; wij and qtij are the fitness and the frequency of genotype ij at generation

t, respectively; and w̄t is the population mean fitness at generation t,
∑

i,j wijq
t
ij . Fur-

thermore, the fitness values were taken to be within the interval [1 − s, 1 + s] where s

is small, and ∆ij was defined as follows: ∆ij = (wij − 1)/s.

In this paper, we will operationalize mixability—the ability of an allele to perform

well across contexts—as the expected fitness of the allele, namely
∑n2

j=1 y
t
jwij for allele

i at the first locus and
∑n1

i=1 x
t
iwij for allele j at the second locus. Using Chastain et

al.’s model, we will prove the following:

1

T

T∑
t=1

n1∑
i=1

n2∑
j=1

xtiy
t
jwij ≥

1

T

T∑
t=1

1

2

 n2∑
j=1

ytjwi′j +

n1∑
i=1

xtiwij′


− s2 1

T

T∑
t=1

1

2

∣∣∣∣∣∣
n2∑
j=1

ytj∆i′j

∣∣∣∣∣∣+

∣∣∣∣∣
n1∑
i=1

xti∆ij′

∣∣∣∣∣
− 1

2T
ln(n1 + n2), ∀i′, j′.

In words: the time-averaged population mean fitness up to generation T (on the left)

is greater or equal to the time-averaged mixability (in the sense of expected fitness) of
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any allele, one for each locus, averaged over loci, minus small terms. In particular, this

is true for the best (most mixable) alleles. Since the population mean fitness cannot be

larger than the mixability of the maximal-mixability allele at either locus, this implies

that the performance of the population as a whole is close to the performance of the

most (cumulatively) mixable alleles.

Proof. We first provide background on the Multiplicative Weights Update Algorithm

(MWUA) [6], and then adjust the MWUA no-regret theorem [6] to the population

genetic context.

Arora et al. [6] present the MWUA as follows. Assume that n experts provide

advice at each of T time periods. Following the advice of expert i ∈ n at time period

t ∈ T will yield the gain m
(t)
i ∈ [−1, 1]. (For example, one can think of these experts

as investment options, each of which can gain or lose up to a certain percentage of

the money investment in them.) The goal is to find an advice-following or investment

strategy such that, after many time periods, the strategy will perform almost as well

as a strategy that would have consistently followed the advice of the expert found to

be best overall in retrospect, even though the gains of the experts are not known in

advance (no assumption is made about the experts performance—the gains may be

correlated, they may depend on past choices, and the experts are even allowed to act

adversarially).

At first sight, such a strategy seems impossible. But the MWUA in fact achieves

it. The MWUA assigns a weight wi to each expert i, being 1 for each expert at the

first time period. At each time period, the expert whose advice is to be followed is

chosen with a probability proportional to its weight. The vector of advice-following

probabilities is then p(t) = {w(t)
1 /Φ(t), ..., w

(t)
n /Φ(t)}, where Φ(t) =

∑
iw

(t)
i . The gains of

the different experts are then observed, and the weights are updated according to the

following rule: w
(t+1)
i = w

(t)
i (1 + ηm

(t)
i ), using a fixed η ≤ 1

2 .

Theorem 2.5 in Arora et al. states that, under the MWUA, for any agent i:

T∑
t=1

m(t) · p(t) ≥
T∑
t=1

m
(t)
i − η

T∑
t=1

|m(t)
i | −

lnn

η
.
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For large T , the last term becomes negligible, and for small η, the second term is small.

Now, since this inequality holds for any expert i, it holds specifically also for the best

expert in retrospect, and thus the performance of the MWUA is close to that of the

best expert in retrospect.

As shown in Chastain et al. (see proof of Theorem 4),

xt+1
i =

1

w̄t

∑
j

xtiy
t
jwij =

xti
w̄t

∑
j

ytjwij =
xti
w̄t

∑
j

ytj (1 + ∆ijs) =
xti
w̄t

1 + s
∑
j

ytj∆ij

 .

Now, replace η with s, pi with xi (same for yi), and mi with dt1(i), where

dt1(i) =

n2∑
j=1

ytj∆ij .

Using Theorem 2.5 in Arora et al., the following holds:

T∑
t=1

n1∑
i=1

dt1(i)xti ≥
T∑
t=1

dt1(i′)− s
T∑
t=1

|dt1(i′)| − ln(n1)

s
,∀i′.

Using the same inequality for the second locus (with dt2(j) =
∑n1

i=1 x
t
i∆ij), we get:

T∑
t=1

 n1∑
i=1

dt1(i)xti +

n2∑
j=1

dt2(j)ytj

 ≥ T∑
t=1

(
dt1(i′) + dt2(j′)

)
− s

T∑
t=1

(∣∣dt1(i′)
∣∣+
∣∣dt2(j′)

∣∣)− ln(n1 + n2)

s
, ∀i′, j′.

Bringing back the detail, we get

T∑
t=1

 n1∑
i=1

n2∑
j=1

ytj∆ijx
t
i +

n2∑
j=1

n1∑
i=1

xti∆ijy
t
j

 ≥ T∑
t=1

 n2∑
j=1

ytj∆i′j +

n1∑
i=1

xti∆ij′


− s

T∑
t=1

∣∣∣∣∣∣
n2∑
j=1

ytj∆i′j

∣∣∣∣∣∣+

∣∣∣∣∣
n1∑
i=1

xti∆ij′

∣∣∣∣∣
− ln(n1 + n2)

s
, ∀i′, j′.
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Multiply by s
2T and add 1, and we get

1

T

T∑
t=1

n1∑
i=1

n2∑
j=1

xtiy
t
j (1 + s∆ij) ≥

1

T

T∑
t=1

1

2

 n2∑
j=1

ytj
(
1 + s∆i′j

)
+

n1∑
i=1

xti
(
1 + s∆ij′

)
− s2 1

T

T∑
t=1

1

2

∣∣∣∣∣∣
n2∑
j=1

ytj∆i′j

∣∣∣∣∣∣+

∣∣∣∣∣
n1∑
i=1

xti∆ij′

∣∣∣∣∣
− 1

2T
ln(n1 + n2), ∀i′, j′,

which is the same inequality as the one we started with.

Note that the fixed fitness components represented by the ∆ij terms can be replaced

with fitness components that vary in time, ∆t
ij , without a change in the proof—the

results hold for a constant as well as for a variable environment, and are thus very

general, with the exception of the limitation to haploids.

Note that the time-averaged mixability of an allele as defined here constitutes one

way of representing the ability of this allele to perform well across a wide variety of

genetic combinations. However, note that this mixability measure is not identical to

the one used in Livnat et al. [84], where the context of the numerical study necessitated

a different measure. Because these two measures both give us a window into the notion

of the ability of alleles to perform well across different genetic contexts (and future

research may find other such measures), we consider both to be measures of mixability.

There are limits to Nagylaki’s theorem, as has been deftly pointed out by [96].

They re-discover regimes in which Nagylaki’s theorem does not apply, which he himself

points out in the full version of the Theorem [101]. They give examples in which the

product distribution is far from the full joint distribution for initial conditions or run-

times outside the interval [t1,K/s] (where t1 ∼ log s/ log(1− r) and for some constant

K > 0) in which Nagylaki’s theorem was shown to hold [101]. They also show that when

one does selection before recombination, Nagylaki’s theorem does not apply. Indeed,

Nagylaki’s theorem was shown for dynamics in which recombination happens before

selection, and our use of it is assuming this kind of dynamics.

In more detail, Equation 53a in Nagylaki[101] gives the conditions necessary for

the product distribution to be approximately equal to the full joint distribution (with
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an error of O(s)). Nagylaki’s theorem only holds for times less than K/s and greater

than initial time t1 ∼ log s/ log(1 − r). Nagylaki says: “If π(t) does not necessarily

converge to some equilibrium point or if π(t1) is on the stable manifold of an unstable

equilibrium, then small perturbations may cause large deviations in its ultimate state.

In this case, the restriction t < K/s in (53) may be necessary” where π(t) is the product

distribution. In one example given by Meir & Parkes [96], the time at which divergence

happens is well before the initial time t1 required for Nagylaki’s theorem to hold (and

by the time it does hold, the product distribution update and the full joint distribution

from the resulting initial condition are trivially close). In another example given by

Meir & Parkes [96], divergence is shown for dynamics in which selection happens before

recombination, for which Nagylaki’s theorem does not apply.

4.6.1 Generalizations: Strong selection and Diploid organisms

In the general case of strong selection, we can derive a similar result as for weak selection,

but with an extra factor taking into account linkage disequilibrium, which we define as

follows:

D
(t)
ij =

ptij
xtiy

t
j

The results of Meir and Parkes for the general case of strong selection uses a different

generalization of mixability to the strong selection case. We will present both side-by-

side and compare. Notably, they don’t use the same quantity, linkage disequilibrium,

in their definition. But first some preliminary definitions.

We define the conditional probability of allele j arising in the population given allele

i arises as:

p(j | i)t = ptij/x
t
i

p(i | j)t = ptij/y
t
j
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Notice that the linkage disequilibrium can be related to both pij and p(j | i):

Dt
ij = p(j | i)t/ytj

Dt
ij = p(i | j)t/xti

For the generalized mixabilities in this setting, we use for allele i,
∑

j D
t
ijy

t
jwij

and, for allele j,
∑

iD
t
ijx

t
iwij . Recall that the original form for the mixability of i

was
∑

j y
t
jwij , and, for allele j,

∑
i x

t
iwij so our generalization of the mixability is

the mixability for the weak-selection case scaled by the linkage disequilibrium. Such a

generalization is then a kind of disequilibrium-adjusted mixability. Meir and Parkes use

a generalized mixability that is of the form
∑

j p(j | i)twij for allele i and
∑

i p(i | j)twij

for allele j. Note that though the two definitions can be shown by probability theory

and the identities above to be mathematically equivalent, our definition is different

conceptually and turns out to be easier to use mathematically to derive novel results.

In particular, using our measure, we are able to prove a novel no-regret result for

the model of recombination used here (recombination before selection), and by their

mathematical identity, also for Meir and Parkes’ mixability measure. Notably, Meir and

Parkes showed a no-regret result using their mixability measure for the selection before

recombination model, and not for the recombination before selection model. Indeed,

Meir and Parkes state that they cannot find this inequality for their mixability measure,

and prove a different inequality instead.

Using these identities, we can write the marginal dynamics as follows:

xt+1
i =

1

w̄t

∑
j

ptijwij =
1

w̄t

∑
j

xtip(j | i)twij =
1

w̄t

∑
j

xtiD
t
ijy

t
jwij =

1

w̄t
xti
∑
j

Dt
ijy

t
jwij

Now for the second locus, allele j:

yt+1
j =

1

w̄t

∑
i

ptijwij =
1

w̄t

∑
i

ytjp(i | j)twij =
1

w̄t

∑
i

ytjD
t
ijx

t
iwij =

1

w̄t
ytj
∑
i

Dt
ijx

t
iwij
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And using a similar proof as before (with Theorem 2.5), using instead of the mixa-

bility,
∑

j D
t
ijy

t
jwij and

∑
iD

t
ijx

t
iwij respectively, we get:

1

T

T∑
t=1

n1∑
i=1

n2∑
j=1

xtiy
t
jD

t
ij (1 + s∆ij) ≥

1

T

T∑
t=1

1

2

 n2∑
j=1

Dt
ijy

t
j

(
1 + s∆i′j

)
+

n1∑
i=1

Dt
ijx

t
i

(
1 + s∆ij′

)
− s2 1

T

T∑
t=1

1

2

∣∣∣∣∣∣
n2∑
j=1

Dt
ijy

t
j∆i′j

∣∣∣∣∣∣+

∣∣∣∣∣
n1∑
i=1

Dt
ijx

t
i∆ij′

∣∣∣∣∣
− 1

2T
ln(n1 + n2), ∀i′, j′,

thus showing that the cumulative product of the mixability and linkage disequilibrium

of the population under the dynamics is close to the pair of alleles which maximizes the

cumulative product of mixability and linkage disequilibrium.

In the diploid case, we can prove an analogous result. Let us look at the definitions of

mixability in the haploid case again. For allele i at the first locus, it is
∑n2

j=1 y
t
jwij . For

allele i at the first locus, it is
∑n1

i=1 x
t
iwij . How would this change in the diploid setting?

We propose the following definitions. For the first locus, we define diploid-mixability

as:
n2∑
j=1

∑
kl

ytjx
t
ky
t
lwijkl

For the second locus, diploid-mixability is:

n1∑
i=1

∑
kl

xtix
t
ky
t
lwijkl
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We will show that

1

T

T∑
t=1

n1∑
i=1

n2∑
j=1

∑
kl

xtiy
t
jx
t
ky
t
l (1 + s∆ijkl) ≥

1

T

T∑
t=1

1

2

∑
jkl

ytjx
t
ky
t
l

(
1 + s∆i′jkl

)
+
∑
ikl

xtix
t
ky
t
l

(
1 + s∆ij′kl

)
− s2 1

T

T∑
t=1

1

2

∣∣∣∣∣∣
∑
jkl

ytjx
t
ky
t
l∆i′jkl

∣∣∣∣∣∣+

∣∣∣∣∣∑
ikl

xtix
t
ky
t
l∆ij′kl

∣∣∣∣∣
− 1

2T
ln(n1 + n2), ∀i′, j′,

We prove this using a similar approach to what was used for the haploid case.

Proof. From the two-locus case of the diploid dynamics [103] (pg. 176 , Eq 8.10 and

8.16):

w̄P t+1
ij = P tijwij − cDt

ij

Where Dt
ij are the linkage disequilibria, and wij =

∑
klwij,klP

t
kl.

Now Dt
ij = 0 for all i, j on the Wright manifold, so this becomes

w̄P t+1
ij = P tijwij

Now P tij = xtiy
t
j , so

w̄P t+1
ij = xtiy

t
jwij

And thus

w̄xt+1
i =

∑
j

P t+1
ij =

∑
j

xtiy
t
jwij = xti

∑
j

ytjwij

And therefore:

w̄xt+1
i = xti

∑
j

ytj
∑
kl

wij,klP
t
kl = xti

∑
j

ytj
∑

klwij,klP
t
kl
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w̄xt+1
i = xti

∑
j

ytj(1 + s
∑
kl

∆ijklP
t
kl)

Again using Nagylaki’s Theorem, we obtain

w̄xt+1
i = xti

∑
j

ytj(1 + s
∑
kl

∆ijklx
t
ky
t
l )

Simplifying,

w̄xt+1
i = xti(1 + s

∑
j

ytj
∑
kl

∆ijklx
t
ky
t
l )

w̄xt+1
i = xti(1 + s

∑
jkl

∆ijkly
t
jx
t
ky
t
l )

And also

yt+1
j =

∑
i

w̄P t+1
ij =

∑
i

xtiy
t
jwij = ytj

∑
i

xtiwij

And by a similar argument as for xti,

yt+1
j = ytj(1 + s

∑
ikl

∆ij,klx
t
ix
t
ky
t
l )

Summarizing the above results, we have for both loci the following:

xt+1
i = xti

1 + s
∑
jkl

ytjx
t
ky
t
l∆ijkl


and likewise for the second locus,

yt+1
j = ytj

(
1 + s

∑
ikl

xtix
t
ky
t
l∆ijkl

)

Now, as in the haploid case, to use the inequality given by Theorem 2.5 in Arora et al.,

replace η with s, pi with xi (same for yi), and mi with dt1(i), where
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dt1(i) =
∑
jkl

ytjx
t
ky
t
l∆ijkl

Using Theorem 2.5 in Arora et al., the following holds:

T∑
t=1

n1∑
i=1

dt1(i)xti ≥
T∑
t=1

dt1(i′)− s
T∑
t=1

|dt1(i′)| − ln(n1)

s
,∀i′.

Using the same inequality for the second locus (with dt2(j) =
∑

ikl xixkyl∆ijkl), we get:

T∑
t=1

 n1∑
i=1

dt1(i)xti +

n2∑
j=1

dt2(j)ytj

 ≥
T∑
t=1

(
dt1(i′) + dt2(j′)

)
− s

T∑
t=1

(∣∣dt1(i′)
∣∣+
∣∣dt2(j′)

∣∣)− ln(n1 + n2)

s
, ∀i′, j′.

Bringing back the detail, we get

T∑
t=1

 n1∑
i=1

∑
jkl

ytjx
t
ky
t
l∆ijklx

t
i +

n2∑
j=1

∑
ikl

xtix
t
ky
t
l∆ijkly

t
j

 ≥
T∑
t=1

∑
jkl

ytjx
t
ky
t
l∆i′jkl +

∑
ikl

xixkyl∆ij′kl


− s

T∑
t=1

∣∣∣∣∣∣
∑
jkl

ytjx
t
ky
t
l∆i′jkl

∣∣∣∣∣∣+

∣∣∣∣∣∑
ikl

xtix
t
ky
t
l∆ij′kl

∣∣∣∣∣
− ln(n1 + n2)

s
, ∀i′, j′.
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Multiply by s
2T and add 1, and we get

1

T

T∑
t=1

n1∑
i=1

n2∑
j=1

∑
kl

xtiy
t
jx
t
ky
t
l (1 + s∆ijkl) ≥

1

T

T∑
t=1

1

2

∑
jkl

ytjx
t
ky
t
l

(
1 + s∆i′jkl

)
+
∑
ikl

xtix
t
ky
t
l

(
1 + s∆ij′kl

)
− s2 1

T

T∑
t=1

1

2

∣∣∣∣∣∣
∑
jkl

ytjx
t
ky
t
l∆i′jkl

∣∣∣∣∣∣+

∣∣∣∣∣∑
ikl

xtix
t
ky
t
l∆ij′kl

∣∣∣∣∣
− 1

2T
ln(n1 + n2), ∀i′, j′,

which is the same inequality as the one we started with.

In words: the time-averaged population mean cumulative diploid-mixability up to

generation T (on the left) is greater or equal to the mean cumulative diploid mixability

of any allele, one for each locus, averaged over loci, minus small terms. In particular,

this is true for the most (cumulatively) diploid-mixable alleles. Since the population

mean fitness cannot be larger than the mixability of the maximal-mixability allele at

either locus, this implies that the performance of the population as a whole is close to

the performance of the most (cumulatively) diploid-mixable alleles.

Discussion

Although in the asexual case, evolution can be represented as a MWUA process with a

single “gene” (representing the entire genome), and in this case is equivalent to replica-

tor dynamics [124], here we have focused on evolution in the presence of recombination,

and thus on mixability [84, 87, 86].

Note that, near equilibrium, the result does not tell us much more than we would

have expected: as diversity decreases and nearly disappears in this haploid model as the

population approaches equilibrium, one allele in each gene comes to be nearly fixed.

Then, the population mean fitness is expected to be close to the right-hand side of

the last inequality above, for the following reason. If there was an allele of near zero

frequency that actually had higher mixability than the dominating allele in its locus

during this period of time, we would have expected it to increase in frequency.
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However, during the transient, the theorem is informative, and captures analytically

and with generality the fact that sex favors mixability. Notice that the last term in

the last inequality, − 1
2T ln(n1 +n2), rapidly decreases with time. Thus, under constant

environment (constant fitness values), the inequality becomes informative after O(log n)

generations and before equilibrium.

The transient may be relevant not only because the number of generations required

to reach equilibrium has not passed, but also for any other reason that prevents the

dynamics from reaching equilibrium. Environmental change is one such reason. Im-

portantly, one useful aspect of the generality of the present results is that, no matter

what temporal change occurs in the fitness values, the last inequality holds. Therefore,

under any kind of environmental fluctuation that maintains genetic diversity, our result

immediately demonstrates the persistence of mixability.

While Livnat et al.’s [84] goal was to compare the population genetic dynamics with

and without sex with respect to mixability, this comparison cannot be done here. With

a slight alteration, the present result can be extended beyond weak selection, which

means that it holds also when recombination is low and even zero. However, the fact

that it applies under any mode of reproduction does not mean that the concept of

mixability does. For asexual dynamics, we know a priori that the selection only favors

the best combination of alleles in a model such as examined here, and any measurement

of mixability does not carry with it the same meaning as it does in the sexual case.

Only in the sexual case does it imply an increase in the ability of alleles to perform

well across different contexts. In other words, the results reported here show that, even

in the presence of sexual recombination and complex genetic interactions within and

across loci, alleles are favored during the evolutionary transient that perform well with

each other.

Finally, our use of the weak selection assumption builds on Nagylaki’s theorem,

which states that weak selection in the presence of sex proceeds near the Wright man-

ifold [101, 102]. After having extended some but not all of our previous results on

population genetics as MWUA [26] by removing the weak-selection assumption, Meir

and Parkes argued for the importance of removing this assumption in general [96].
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However, since their arguments on this point require specific parameters outside of the

range where Nagylaki’s theorem holds [101, 102], or specific parameters together with

an alternative calculation of the population genetic dynamics not used in [26], in our

principal result we have maintained the weak selection assumption, which provides for

a simple and clear demonstration of mixability principles. The strong selection gen-

eralization of the theorem uses a linkage dis-equilibrium weighed mixability to give a

generalized result, in contrast with the conditional probability used in [96] (which has

a less clear interpretation in terms of genetics). Nonetheless we acknowledge that their

approach to the strong selection case was an inspiration for ours, as we tried to find a

version of their result that was easier to interpret meaningfully in genetics.

Finally, our generalization of the result to the diploid case is interesting from the

perspective of both transient and long-term cumulative diploid-mixability, since the

diversity can remain even asymptotically in this case. As such, the diploid-mixability

will not be the same as fitness asymptotically, and our Theorem thus tells us some-

thing that is informative even asymptotically in the diploid case. Even something like

Fisher’s theorem of natural selection doesn’t tell us anything about asymptotic cumu-

lative mixability in the diploid case, so even in this case the connection between MWU

and population genetics gives us a new kind of tool to analyze the diploid case.
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Chapter 5

Evolution of Animal Personality

We now introduce a model of Animal Personality, and how it could evolve and emerge

as a result of MWU applied to various complex personalities. The writing was done

primarily by myself and Nina Fefferman, and the so too was the modeling work. The

analysis and proofs are my own. How do complexes of such traits evolve? The experts

are personalities, modeled as multi-layer neural networks. li is the expected opportunity

cost in an environment, assuming a simple “personality” is used to predict a noisy, non-

stationary real-valued signal. The animal uses MWUA.

Introduction

Over the past decade, many studies have examined the concept of animal personality

traits (PTs), defined as tendencies in behaviors (e.g. boldness, aggressiveness, socia-

bility, etc.) that are consistent across environments or contexts, but that vary from

individual to individual. These studies have ranged from empirical investigations into

distributions of variation in PTs among individuals in a single population in response to

particular challenges/scenarios [115] to exploration of the likely ecological contexts that

might favor coherent suites of positively correlated PTs (sometimes termed behavioral

syndromes [12, 64]). Conceptual models have been built to explore how individual ex-

periences / life histories might be expected to shape individual PTs [40, 129], and how

to quantify statistical measures that could test resulting conceptual hypotheses from

observations of behaviors/PTs [129]. There have also been efforts to both quantify the

fitness benefits of particular PTs [22, 149] and the benefit to individuals participating

in populations with a diversity of personalities represented [16, 150]. Often the positive
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correlations between different personality traits contribute to the evolution of seem-

ingly maladaptive behaviors, for instance pre-copulatory sexual cannibalism in fishing

spiders [67]. Also, under predation sticklebacks evolve positive correlations between

boldness and aggressiveness [12], but not under other conditions. What conditions reg-

ulate these complex interactions between PT’s? Moreover, there is robust evidence that

the positive correlations between PT’s even affect the nature of interactions between

species and other ecological factors [128], suggesting the necessity for a theory that

ties together ecological effects and the evolution of PT’s. In addition, there has been

interesting work showing that the mixture of different PT’s within the same species

can profoundly affect fitness outcomes, by introducing the possibility of “keystone in-

dividuals” who profoundly change group dynamics [130]. Finally, there has been ample

evidence that animal personalities affect such factors as feeding and mating behaviors

[99, 149] in complex ways that are correlated with other factors, so fitness seems to be

affected in a less straight-forward way than the simplest PT theory would suggest.

While each of these studies have explored a critical piece of the puzzle of how animals

might develop, and then benefit from, their own individual set of PTs, they fall mostly

into three broad categories:

1. Genetically Determined Behaviors — this is the most traditional set of approaches,

in which PTs are encoded in an individual’s genes. Selective maintenance of each

PT is then considered based on the fitness the trait confers in the (potentially

fluctuating) environment, and relative to the fitness of other PT genes represented

in the population. The emergence/maintenance of diversity among PTs can then

be studied using standard techniques from evolutionary game theory [127, 34].

2. Epigenetics — this is the most mechanistic of the approaches, focusing primarily

on how individual life history may critically affect the expression of genetically

determined behavioral traits [118]. In this way, individuals who may all share a

common set of genes will express different consistent PTs due to the impact of

their experiences on the regulation of gene methylation/expression.

3. Life history-based Learning — this is the most nuanced of the approaches, in which
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individuals experiment with particular choices, the results of which either reinforce

or diminish their likelihood of making similar choices in the future [151, 129].

Taken in this way, PTs become a mechanism for behavioral plasticity, allowing

individuals to converge on responses that are beneficial in their environment,

based on their individual experiences, and then behave consistently thereafter.

Each early choice suggests inferences about their environment, the individual’s

relative ability with in that environment, and the individual’s fitness benefits from

making particular choices within that context. Diversity of expressed personalities

can then be explained in a number of different ways: by stochastic sampling of

a fluctuating environment, by differences in individual capability (note: many

studies have assumed consistent differences in productivity across individuals in

the same environment; e.g. [16]), and the order of early behavioral experiments.

Of these three, only the last incorporates a mechanism for active choices, made by indi-

viduals to increase fitness. However, even in discussions of life-history based learning,

the elements of learning have only been applied to developing PTs reflecting particular

behavioral actions (e.g. learning to ’be bold’) and not to underlying algorithms by which

individuals might select among possible actions. Without requiring any assumptions

about animal cognition, there are likely to be underlying algorithms governing decision-

making across contexts. These algorithms can range from those as simple as ‘evaluate

some proximate signal and behave deterministically based on the result’, to those that

rely on actions of conspecifics, such as ’mimic the currently observable actions of others’

(typically premised on the idea that performers of unsuccessful actions are less available

to observe due to active selection), to those that involve simple learning in a juvenile

state, such as ‘mimic actions remembered/learned from parents’, all the way to active,

iterative algorithms that involve learning, such as ‘try something at random to gain life

history experience for a while and then refer to life history experience thereafter’. (Of

course, animals who differ in the underlying algorithm by which they make decisions

could be indistinguishable from animals who learn to take particular actions based on

life-history learning feedback unless experiments are specifically targeted at teasing the

two apart.)
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By shifting the focus in this way, away from PTs or behavioral syndromes, to general

algorithms by which individuals make many types of choices, we can now begin to

discuss personality as the way in which individuals interact with their environment

and arrive at behavioral decisions. This also allows us to abstract our discussion of

the evolution of the capacity for animal personality away from the fitness conferred by

particular PTs themselves and ask how can selection have favored the emergence of the

trait “having a personality?” To the best of our knowledge, no study has yet provided

a unifying theoretical model exploring the evolutionary selective pressures that would

lead to the capability of animals to form more nuanced personalities than those simply

described by “responsive to their environment” vs “unresponsive to their environment”

[150] . We here borrow from an area of Learning Theory in Computer Science called

Multiplicative Weight Updates Algorithm (MWUA) and show how the combination

and interpretation of existing results provide both a natural way to discuss personality

itself and to evaluate the relative fitness of formation of personality. In this way, we

generalize the insight from the literature on life-history based learning favoring the

evolution of particular PTs to the evolution of personality itself.

Results

Model

Many of the questions of interest in the evolution of Animal personality are complex and

multi-faceted, as presented above. Many of the complexities can be viewed as different

facets of one model based on an expanded account of adaptive personalities. In par-

ticular, we consider that correlations between traits in evolutionary time and between

individual (behavioral) variance and average environmental variance, could come about

as a result of a learning process during a (not-necessarily pre-reproductive) “juvenile

state.” Such a model allows us to use the methods of learning theory to make testable

predictions about adaptive personalities. According to the learning model, during the

juvenile state, the organism will be able to try different personalities, and evaluate them

based on their opportunity cost to the organism in a variable environment (defined as
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sub-optimality in relative fitness compared to the optimal fitness). Then the animal

tries out different personalities probabilistically, based on their estimated opportunity

cost. (We assume that the animal is trying to estimate the opportunity cost of the dif-

ferent personalities based on tracking ecologically-relevant signals in the environment.)

Of course, an animal’s estimate of the opportunity cost of a given personality can only

be a noisy estimate, as a result of the following factors:

1. Environmental fluctuations

2. Strength of the signal to noise ratio for the ecologically-relevant signals

3. The ability of the animal to discern appropriate metrics for the signals

4. The efficiency of resource utilization or responsiveness, which could vary between

different animals

The (estimated) opportunity cost of the personality, as experienced during the juvenile

state, then proportionately decreases the probability of choosing that personality. Based

on this model, we can ask how long should the juvenile state last for any given species?

In the animal personality literature, it is mentioned that personality is impacted by

estimated opportunity cost for a fixed period in which environmental challenges occur

[136, 38]. We generalize that insight to characterize how long the juvenile state should

last in order to identify a personality that balances successfully the tradeoff between

the relative cost of continuing to search and the marginal returns on the fitness.

Using such a theory, we should be able to make testable predictions across partic-

ular populations/taxa about how long the juvenile state should be based on statistical

characterizations of fluctuations of their environment/ecosystem. Of course, to test

predictions of any model about the length of juvenile state, there is a trade-off between

the insight gained and the number of experiments necessary to verify the prediction.

Thus the diminishing returns of such experiments, as far as testing these predictions,

must be understood before studying models of the juvenile state, including ours.
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The Learning dynamics

Assume there exists a suite of potential algorithms for decision-making (personalities)

from which an individual can choose probabilistically, inversely proportionate to esti-

mated opportunity cost. For each personality, we can associate an expected opportunity

cost for performance in the environment in which the individual lives, incorporating

noise in the estimated opportunity cost to reflect environmental fluctuations, the sig-

nal/noise ratio of the ecologically-relevant signals, and between-animal variability. Each

personality has an estimated opportunity cost, but so does the individual, based on the

average opportunity cost of the personalities chosen. We model the ecologically-relevant

signal in the environment as a stationary Markov Chain with known mixing coefficients

βa for all a > 0. The model then assumes there is a supervised learning or regres-

sion procedure for each personality, with each personality predicting the next value of

the ecologically-relevant signal from the past history. Assume that each algorithm for

behavioral choice has an inherent associated memory length, d. We assume that the

algorithms used are different kinds of multi-layer feedforward neural networks [4] with

sigmoid transfer functions with l layers, and each unit i has di−1 inputs. Consider these

models of personalities to be a generalization of quantitative phenotypic traits which

also allows for other quantitative models in general. Let N =
∑l

i=1

∑di−1

j=1 di−1 + 1 be

the number of parameters of the neural network.

It is assumed the “juvenile state” is of length n. Let µ and a be constants such

that 2µa+ d ≤ n. Let B be the upper-bound on the average opportunity cost for any

personality with respect to norm q given all likely ecologically-relevant signals in the

environment. There is a training period during the juvenile state, during which the

animal uses the MWUA to adjust the probability of using a mechanism. The estimate

of opportunity cost for personality m based on the experienced states we call l̂m. Let

us define now ε, the total “credence” in the current response of a particular personality,

describing to what degree the model can be shifted in the face of new local information

from the environment:



79

ε =
2Bµτ(q)
√
µ

√
O(N logN) log (1 + 2µ/O(N logN))− log(δ′/8)

where δ′ = δ − 2(µ− 1)βa−d, and τ(q) is a monotonically increasing function of q. The

true opportunity cost for the regression we denote Rn(m), and the estimated average

opportunity cost for m is R̂n(m) (averaged after n data points). Now the following

holds with probability at least 1− δ for all δ > 2(µ− 1)βa−d (see the SI for proof):

R̂n(m) = (1− ε)+θ(Rn(f))

Then it holds that using the MWUA (with temperature η) to determine the mech-

anism usage probability (from a set of mechanisms M), we obtain, with the same

probability as above (see the SI for proof):

T∑
t=1

l(t) · p(t) ≤
∑
t

l(t)m (1− ε)+ + η
∑
t

|l(t)m (1 + ε)+|+ log |M |/η

where m is the personality with the least opportunity cost. So by using the MWUA the

animal personality is close to having minimal opportunity cost, but if ε (the credence)

is large, then the animal’s opportunity cost is large. As the animal is using the MWUA,

the opportunity cost for choosing the best personality type using the MWUA is therefore

the relative fitness of the organism.

The features on which the animal’s opportunity costs rely include: how complex

and multi-layered the response mechanism for the personality is (N); how hard it

is to predict the environment given the memory constraints (βa−d); the number of

personalities (|M |); the responsivity of the animal to evidence that a personality is not

adaptive (1/η); and the the maximum possible opportunity cost given the most likely

states of the environment (B).

Discussion / Conclusion

The MWUA models allow us to unify some concerns in the Animal personality liter-

ature, address some of the unresolved problems, and further allow us to address new,
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previously inaccessible aspects.

A recent evolutionary model [150] for the emergence of responsive personalities gives

circumstances under which personalities might respond to the environment. In our

framework, the general issue is treated by considering and characterizing the animal’s

credence η in its current reaction strategy. The responsivity of a personality is therefore

modeled smoothly by its credence η, and (for instance) one could also add personalities

that are “unresponsive”, for which there is no adjustment to the environment. In

this case, one could show using the relative fitness of the animal personality for our

model that any responsive personality would only be chosen if it does better than

the unresponsive personality (see Remark 1 in the SI). However, we show that there

are many other factors besides the benefits of responding that could affect the use of

responsive personalities, including how multi-layered and complex the personality is.

Broadly speaking the feedback-based personality theory is also treated in this model,

as state-behavior feedback is here treated in the multi-layered models used for each per-

sonality (the internal nodes in the neural network can be viewed as internal states) and

the behavior ends up predicting the environmental cue or not. Some questions posed

in investigations into that theory can also be partially characterized by our framework.

For instance, what is the timescale over which the feedback loops act? We characterize

this using the estimate of how long the juvenile state should last to attain a desired

balance between search time and marginal returns on fitness (see Remark 2 in the SI).

More generally of course the model characterizes how many personalities would

emerge due to the state-behavior feedback (another highlighted issue in the literature),

as the opportunity cost of the animal decreases, in our model the number of possible

personalities chosen increases (see Inequality 1 in the SI for the tradeoff between number

of personalities and the opportunity cost of the animal personality, one is on the RHS

of the inequality, the other is on the LHS).

Finally, we can characterize when positive feedback generates among-individual dif-

ferences in fitness, as opposed to alternative state-behavior combinations with equal

fitness. To see this, consider that we can give circumstances under which the number of

personalities at the end of the juvenile state is larger than one (using the opportunity
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cost estimate again) and also check how this is affected by having state-behavior com-

binations of the same fitness (again see Remark 2 in the SI for the right estimate of the

juvenile state length). In particular, for equally-fit state-behavior combinations, one

would expect that the state-behavior combinations, since they have lower complexity

N , would be more favored when the environment is quickly changing and not much

can be done to predict the changes in the environment (note how the support of the

distribution over pi is affected by the length of the juvenile state under the stated con-

dition). Thus the reduction of loss associated with the increase in complexity N is not

very big. In addition, there is a tradeoff between generation length and juvenile state

length (the volatility of environmental fluctuation and the memory length / sampling

of personalities). For instance, imagine that the environment is not fluctuating, then

the relative cost of choosing the adaptive personality with a juvenile state may be too

forbidding.

Any discussion of the evolution of animal personality must simultaneously address

two issues. The first is: ‘If particular PTs and/or personalities are evolutionarily ben-

eficial, why would selection not favor their uniform adoption?’ Of course, the most

natural answer to this is that environmental and ecological conditions fluctuate rapidly

enough that the ability of individuals to shape their behaviors in response to current

conditions (rather than those that determined the fitness of their parents) confers fit-

ness benefits. The second issue is therefore naturally: ‘If the environment is so highly

variable that particular PTs are not consistently beneficial, how can the existence of

PTs/personality increase fitness rather than the consistency in behavioral choices itself

compromising the ability of the individual to react to the environmental conditions?’

The MWUA models allow us to elegantly and rigorously explore exactly those evolu-

tionary conditions in which these tradeoffs are most successfully balanced by employing

personality as the mechanism for behavioral decision making in response to shifting en-

vironments. We are able to consider selection acting on the lengths of juvenile states,

make predictions about the relative numbers of distinct personality types we should ob-

serve in species depending on the magnitude of impact to fitness expected from adopt-

ing aligned vs. mismatched personalities in the environment, and explore the impact



82

of duration of memory in life-history based learning. Moreover, the MWUA is itself a

mathematical characterization of a process of learning and selection, meaning that the

behavior of such a system is not just a quantitative description, but demonstrates how

evolution could lead to the emergence of personality proper.

5.1 Supplemental Information

We think of the organism choosing between different personalities according to the

Multiplicative Weight Updates Algorithm (MWUA).Theorem 2.5 in Arora et al. states

that, under the MWUA, for any agent i:

T∑
t=1

l(t) · p(t) ≤
T∑
t=1

l
(t)
i − η

T∑
t=1

|l(t)i | −
lnn

η
.

For large T , the last term becomes negligible, and for small η, the second term is small.

Now, since this inequality holds for any expert i, it holds specifically also for the best

expert in retrospect, and thus the performance of the MWUA is close to that of the

best expert in retrospect.

We model each expert i as an animal personality, and the losses l̂i are “performance”

or predicted loss of the animal personality, with the following setup. The loss is the

fluctuation in the environment that influences the fitness payoff from the behavior of

the animal personality in response to a changing environment:

The animal is trying to predict some environmental change with the environment sam-

pled from a stationary markov chain with mixing coefficient βa for all a > 0. During

the juvenile state the organism estimates which distribution over personalities to use,

with each personality being a parametrized multi-layer neural network. The average

empirical loss
∑

t l̂
(t)
i is the average loss of personality i during the juvenile period. The

true loss for a personality is approximated by the average empirical loss associated with

that particular set of parameters for the neural network model given the environmental

interactions during the juvenile period. The loss incurred by the organism at time t is

l(t). The organism is assumed to use MWUA to select the best personality based on

the average empirical loss.
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The critical parameters in the environment that affect fitness are being tracked by

the organism, and are assumed to be real-valued. Assume that each mechanism has

memory length d, pooling observations for that period of time for each data-point. We

assume that the personalities used are different kinds of multi-layer feedforward neural

networks having sigmoid transfer functions with l layers, and each unit i having di−1

inputs. Let N =
∑l

i=1

∑di−1

j=1 di−1 +1 be the number of parameters of each personality’s

neural network.

It is assumed the “learning period” is of length n. Let µ and a be constants such

that 2µa+ d ≤ n. Let B be the upper-bound on the possible error for any personality

with respect to norm q. Let

ε =
2Bµτ(q)
√
µ

√
O(N logN) log (1 + 2µ/O(N logN))− log(δ′/8)

where δ′ = δ−2(µ−1)βa−d, τ(q) = q

√
1
2

(
q−1
q−2

)q−1
is a monotonically increasing function

of q. We assume the following upper-bound on the possible loss for the environmental

model holds. For all f ∈ F and some q > 2:

1 ≤ (EP [(l(f(X), Y )q)])1/q

Rn(f)
< B

Such a bound is more general than a loss that is bounded, and includes even some

heavy-tailed distributions for the loss. The true error for the regression we denote

Rn(i), and the estimated average error for i is R̂n(i) (averaged after n data points).

Now the following holds with probability at least 1 − δ for all δ > 2(µ − 1)βa−d(by

Corollary 6.5 in [94], and that V CD(F ) = O(N logN) [4], and real valued predictions

have an extra degree of freedom):

R̂n(i) = (1− ε)+θ(Rn(i))

which is derived as follows. Corollary 6.5 in [94] states that with probability at least

1− δ for all δ > 2(µ− 1)βa−d
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Rn(i) ≤ R̂n(i)/(1− ε)+

by the def. of Rn, R̂n(i) ≤ Rn(i):

R̂n(i)/(1− ε)+ ≤ Rn(i)/(1− ε)+ ≤ Rn(i)

Then it holds that using Multiplicative weight updates (with temperature η) to

determine the personality usage probability (from a set of personalities M), we obtain,

with the same probability as above (by Theorem 2.5):

T∑
t=1

l(t) · p(t) −

(∑
t

l(t)m (1− ε)+ + η
∑
t

|l(t)m (1 + ε)+|

)
≤ log |M |/η (5.1)

where m is the optimal personality. The negative LHS gives the relative fitness of

that organism. We assume that in the case of zero-loss, the fitness is equal to s, and

the relative fitness is the deviation of our current genotype’s fitness from that of the

(not-necessarily zero-loss) best possible genotype. The following factors increase ε and

thus decrease the relative fitness: the complexity/nonlinearity of the personalities N ,

the rate of decay of correlations (mixing coefficient) βa−d at the time-scale at which

the optimal animal personality experiences and recalls stimuli a − d, the number of

mechanisms |M |, the upper-bound on average error for any personality B, and the

degree of “temerity” 1/η the animal has for choosing the best personality.

Remark 10. As Inequality 5.1 for the relative fitness of the personality shows, the

average loss of the animal personality approaches that of the best personality.

Remark 11. To estimate the length T of the juvenile state necessary for the animal

personality to achieve a fixed level of cumulative relative fitness, one can derive using

the above:

1

T

T∑
t=1

l(t) · p(t) − 1

T

(∑
t

l(t)m (1− ε)+ + η
∑
t

|l(t)m (1 + ε)+|

)
≤ 1

T
log |M |/η
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and set T as a function of |M |,η, and ε to achieve an appropriate desired upper-

bound for the time-normalized regret on the quantity

1

T

(
T∑
t=1

l(t) · p(t) −

(∑
t

l(t)m + η
∑
t

|l(t)m |

))
and by so doing, one can get the final upper-bound on the cumulative relative fitness by

multiplying both sides by T and adding
(∑

t l
(t)
m + η

∑
t |l

(t)
m |
)

to both sides.

For the length of the juvenile state, rather than using a relative fitness optimality

criterion, we look at marginal returns on potential search times. In particular, we con-

sider the marginal benefit of continued search time (as opposed to previous time-points)

instead of the relative fitness. Using marginal fitness as the metric of optimal return.

To be clear, the juvenile state length is not the one which gives the personality with

minimal opportunity cost, just one which appropriately balances the tradeoff between

the relative cost of sampling vs. continuing. Using the above inequalities one can give

estimates of how long the juvenile state needs to be until there are diminishing marginal

benefits of continued search time (e.g. when the cumulative benefit so far is balanced

against the cost of continuing).
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Chapter 6

Evolution of Tool Innovation

We now describe the model for tool innovation and its evolution using the MWU

method. The principal writing in this chapter was done by myself with revisions pro-

posed by Nina Fefferman. The analysis and tools were my own, and the modeling work

was jointly done with Nina. Crow tool-innovation is mysterious because New Caledo-

nian crows come up with completely novel tools. The source of novelty we propose

is an infinite set of possible tools from which the animal samples, a set which is built

up during by playing with similar materials (wood, leaves, etc.) early in life. Every

round of experimentation with materials gives a new sample from this set, which then

is put in the running as a new “expert” in the MWU. The experts are drawn from a

distribution D over the real line with infinite support. The experts are hypotheses h

about interactive properties s of the environment (Example: the bucket is hook-able).

−li is the quality of a hypothesis, modeled as a univariate polynomial over h− s. The

animal uses MWUA.

6.1 Introduction

Over the past decade and a half, many studies have found evidence of tool-innovation

by animals. Studies in the field have included empirical evidence of New Caledonian

(NC) crows’ and rooks’ abilities to create novel tools for extraction of food [147, 15].

There is even evidence that a crow is able to replicate an old tool in new materials

[148]. American crows are also able to use various types of calls as tools to differentiate

between different behavioral contexts, sexes, and many other factors [91, 152]. Sur-

prising findings like these on crow tool-use shed new light on previous work showing

the use of tree branches as tools by chimpanzees to extract termites [45]. Conceptual



87

models exploring the potential mechanisms of evolution of tool use have been proposed,

focusing mostly on advanced precursor behavior [2], social evolution [62, 17, 63], and

combination play/learning [74, 73].

Precursor behavior models tend to focus on behaviors, like food caching, that are

both simple and have direct positive fitness. The precursor behaviors then lead to

availability of materials and behaviors that set the stage for easy accidental discovery

of tool-use. For example, gathering twigs to build a nest uses the same behaviors that

then lead to manipulating twigs for other purposes: e.g. tool-use. Rooks’ tool-use

abilities are explained well by these food caching behaviors.

Social evolution accounts of the evolution of tool-use suggest that behavioral in-

novations may happen in many different individuals and then, due to imitation or

social diffusion, they spread and are combined. Studies have shown that Whale songs

are innovated in this way, with evidence of both social learning/transmission between

populations, and also the gradual change in songs in populations [35, 53, 106, 113].

Evidence of social evolution enabling tool use also includes army ants’ bridge-

building process and Fire ants’ raft construction procedure. Fire ant groups make rafts

to cross bodies of water, made of the ants themselves [50]. Army ants build bridges

made of the ants themselves to cross gaps in the forest floor [119]. Bridge-building and

raft-building with ants involves altruism and behaviors that are good for the colony as

a whole (common processes in social evolution). The fitness benefit of such structures

for those in the colony is due to the bridges/rafts being a structure that allows for

crossing obstacles to gather food. Social evolution in this case enables the formation of

these bridges and rafts, which are tools that enable crossing bodies of water. Among

the Maasai tribe, there is evidence that certain kinds of social risk-pooling behavior

requesting need-based transfers based on cultural practices increases survival rate [58].

Moreover, a model inspired by need-based transfers shows that such social schemes can

introduce great inequality and thus require strong forms of altruism to persist [59].

Finally, theories that emphasize tool use as combination play with learning generally

assume that some propensity for playing with materials and combining them is paired

with an ability to learn that a novel combination is useful. The kind of combination
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play considered includes things like attempts to manipulate materials with the beak

via variations in beak movement/position (in crows; [73]).The kind of learning required

for such accounts of tool-innovation yield more generalization than simple associative

learning. In particular, there is evidence that generalization from one kind of material

to another of the same tool happens very rapidly for the same NC crow with variations

in beak movement/position [148]. Combination play is thought to give “experiments”

that allow spontaneous invention of tools by NC crows when combined with learning.

NC crows form hypotheses about the pliancy properties of the metal, and then combine

those with hypotheses about the appropriate position of the tool relative to the openings

of the object to be moved. All of these things are done in order to receive food, but are

far beyond reinforcement learning [148]. The crow in the generalization experiments

was able to generalize to the new materials by using an entirely novel bending movement

[148]. The studies of the NC crows explicitly suggested the need for a model that would

bring about these novel (for the species and organism’s own experience) behaviors [148].

Persistence over many trials of combination play are necessary for the acquisition of

tool use, and many other corvid species do not seem to exclusively use tools except

as a kind of temporary foray from food-caching (such as the rooks; [15, 74]). Clearly,

therefore, the ability to form hypotheses isn’t itself sufficient to enable the evolution of

tool use. Experiment time is necessary during a learning period.

There are a number of elements in the NC crow studies that present additional

complexities to be resolved by any proposed model. As interpreted by the authors

of the NC crow studies, the learning mechanism used by the NC crows still recruits

trial-and-error learning and doesn’t involve perfect insight, as when the correct kind

of tool is made, it is sometimes still used improperly. We suggest that the right tools

can be made and used improperly for purely exploratory purposes. More specifically,

consider that “inappropriate use” of pre-cursor behavior or “correct” tools for the task

could be of benefit for future tasks, signaling, or social evolution. For the sake of

future tasks, one could engage in improper use of tools to gather information about

the materials available in the environment to “practice” for unforeseen contingencies.

A use of improper tool use for signaling could give novel social cues. Finally, for social
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evolution accounts of tool-innovation, improper tool-use generally (not in the lab) can

be understood as an action supporting social group cohesion, novel group participation,

or identification of an individual animal to others.

Tool use in the NC crow experiments happens gradually over many experiments

[147, 148], and doesn’t always develop or remain prominent for other species. For

example, neither the rooks [15] nor chimpanzees [114] learn the proper use of certain

tools, when NC crows do. For chimpanzees, this is thought to be because they have

more general capacities (general aptitude), predisposing them to generate less relevant

hypotheses and fewer experiments [148].

We add that, due to social imitation in chimpanzees, less individual experimentation

would be expected, but would be done in parallel among different individuals in the

same group, thus combining social evolution and combinatory play/learning accounts.

Social learning and mimicry, for instance, can reduce the number of experimental tri-

als necessary for a population of the same species to develop a tool by allowing for

collaboration and synthesis from a set of disparate tools.

Given the complexities of the different conceptual models, and the specific call in

the existing literature for a more flexible and comprehensive learning model, we provide

a new framework that allows us to study all of these factors’ contributions to tool inno-

vation and how they could evolve. The starting point is, indeed, the view that is held in

common between two of the theories (social evolution and combination play/learning):

learning is important, and so is generation of new behaviors. But equally important is

the view promoted by the pre-cursor and combination play accounts: that opportunities

for experimentation with materials are crucial. We propose that animals evolve tool

innovation by evolving the ability to generate novel hypotheses about the hidden prop-

erties of objects in their environment, and then learning which hypotheses are correct.

Crucially, we use a novel strain of learning theory (Multiplicative Weight Updates on

infinite hypotheses) that allows for completely novel hypotheses, and discuss how all

three previously proposed conceptual models are compatible with different regimes of

this new model.
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6.2 Model

Note that, though here described in application to a single individual, the model can

be applied just as readily to any con-specific group of animals. First we will describe

our model of tool-innovation and the assumptions made by us. Then we will lay it out

more formally.

6.2.1 Description and Assumptions

To model the evolution of tool-innovation, we build on the insights of the combination

play literature; in keeping with that literature, we assume that the stimuli available

to the animal are relatively stable and that the animal has the ability to engage in

extensive combination play, attempting many experiments with objects in the envi-

ronment. Further, the environment has some hidden property that can be discovered

by the animal, after which it can be exploited via tool-innovation. In gaining experi-

ence through normal interactions with, and exploration of, its environment, the animal

forms a hypothesis about the exploitable property. During each round of combination

play, the animal draws a new hypothesis from a probability distribution over possible

hypotheses, forming a trial hypothesis (at the disposal of the animal during the task).

After the trial hypothesis is incorporated into the suite of available hypotheses, all of

the hypotheses in the suite are compared to the stimuli, and the best hypothesis is given

more credence. After many rounds of play, the animal is assumed to act in accordance

with the most-believed hypothesis. The hypotheses about exploitable properties in the

environment appropriate to completing the given task can be used by the animal to

select fitting actions for fashioning the raw materials into the proper tool (to exploit

the property identified by the hypothesis). As an example, consider a small lid with

a handle covering a bowl (containing food) placed next to pliable metal strips. The

exploitable properties of this food-gathering task include the pliability of the metal in

the strips and the fact that the lid can be lifted by a hook-like instrument (it is hook-

able). The appropriate actions for such exploitable properties are animal-dependent,

but generally are those that bend the pliable metal strips into a kind of hook, and put
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the hook in the handle, using the other end to lift the hook and thus the lid, giving

access to the contents of the bowl. It is assumed that, before the tool-innovation task,

animals are able to engage in combination play during a long “juvenile period,” during

which the animal builds up a probability distribution over all possible hidden proper-

ties of the stimuli (note that reality suggests the need for unexplored possibilities). We

further assume that the hypothesis distribution involves similar tasks to those faced in

the tool-making scenarios. Furthermore, assume there is a diverse assortment of raw

material available which can be combined to make tools. Critically, there must be some

fitness benefit expected from successful tool-innovation. Crucially, there are assumed

to be an infinite number of trial hypotheses at the animal’s disposal, which is a source

of truly novel hypotheses.

6.2.2 Formal description

The animal keeps a set H of hypotheses in memory, and then gives credence to them

based on a probability distribution, choosing h with probability ph, where h ∈ H.

Let D be the probability distribution over hypotheses over a set of possible hidden

properties, S, which has infinite size. The distribution D is therefore the probability of

the animal guessing a hypothesis h′ ∈ S when first encountering the task. Then, when

an experiment of combination play is initiated in a task, a novel hypothesis s is sampled

from the distribution D, and added to H as an option with a small probability ph of

being chosen (and then with ph appropriately re-normalized). During each experiment,

the animal is assumed to sample a large number of hypotheses according to ph (large

enough for all hypotheses h ∈ H to be sampled). Then for each hypothesis h sampled,

the high quality f(h, s) of h as an approximation to the hidden property s ∈ S is assessed

based on exploratory actions involving the optimal use of raw materials given that h

is the true hidden property explaining the stimuli (roughly speaking, this estimation of

quality is based on the use of trial-and-error with makeshift tools constructed). After

an experiment is over, then the animal is able to get an estimate of the quality of each

hypothesis. Using the estimated quality for each hypothesis h ∈ H, the Multiplicative

Weight Updates are used to update ph. After an experiment, the hypothesis distribution
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D can also be updated, but in most of our use of the model we assume it doesn’t change

(such is the case unless noted otherwise). The quality function f(h, s) is assumed to be

a relatively bumpy function (a polynomial), with peaks and valleys, but still smoothly-

varying. The main factors in determining how many experiments are necessary for

an animal to find a good-enough hypothesis are (1) how many experiments it takes

to sample a good-enough hypothesis from D, and (2) granted that (1) happens, how

many experiments would it take to identify the good-enough hypothesis as being chosen

with high probability ph assuming that the MWU are used to update ph after each

experiment? The complexity of f(h, s) (see the SI for the formal definition) is noted

as deg(f), and gives an estimate of how “rough” the fitness landscape over hypotheses

is. If the distribution D over hypotheses has higher probability in some subset Ω ⊆

S more than elements outside of S (far-from-uniform), then assuming there is some

h′ ∈ Ω that is good-enough in quality compared to the maximum value of fmax =

f(h, s) over all h, the task takes vastly fewer experiments. By this logic, when the

animal is apt to have very well-informed selections for trial hypotheses, then fewer

experiments are needed to get a good hypothesis and thus build appropriate tools for

the task. For the model, if there are only a few or moderately many likely (according

to distribution D) trial hypotheses that are good-enough in quality compared to fmax,

then the number of experiments necessary until a good-enough tool can be reliably

constructed is very large. Alternately, one could have a quality function f that has

high or medium complexity deg(f), and the same holds. To combine the two we could

refer to the effective complexity deg(f̂) as the complexity of the most likely hypotheses

according to D (See the SI for the definition). Naturally, the number of experiments

available for an animal trying to figure out how to construct an adequate tool for

the task is functionally limited. As a result for many tasks, in species with very bad

individual guesses (the distributions D which require many experiments to find a good-

enough tool), the animal could simply fail to construct an optimal tool, or even succeed

in constructing an optimal tool, but eventually end up using some other, less effective

tool instead due to the difficulty of the task or the lack of experimentation time (see

SI Remark 1). Suppose that the distribution DT changes throughout task T , ending
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up with D′T at the end of the task. If some set of hypotheses that are good-enough

for T become too likely as a trial hypothesis from D′T as a result of the change, one

would expect that D′T would be useless for a task completely different from T . Then

of course, in varying environments, where the types of materials available or the task

itself are changing, it makes perfect sense to have a trial-hypothesis distribution D′T

that doesn’t incorporate too much information gained from any one task T .

6.3 Discussion

Given the complexities of outcomes for studies of animal tool-innovation, and the variety

of models for the same, a unified framework for animal tool-innovation is necessary.

Especially considering that there are interesting phenomena that seem to fit somewhere

in-between the immediate applications of the models, our model provides a way of

combining key insights from past models to capture previously elusive outcomes. Recall

for instance the behavior of the rooks and chimpanzees during the tool-innovation tasks.

Our model captures desired features of the system, for example that complicated tool-

innovation tasks are hard to achieve: Consider an animal trying to solve a task of

moderate complexity and moderate effective complexity. Then by the results of the

preceding section, the total number of experiments required to consistently construct

a good-enough tool for the task is too high, resulting in either a failure to make the

right tool at all, or a failure to do so with any reliability. Our model also captures

the results from the experimental results outlined in the Introduction. The case of the

rooks’ regression to caching behavior after finding the correct tool involved much less

combination play as compared to NC crows according to Kenward [74]. In the language

of our model, it is a case in which the correct hypothesis was guessed, but the number

of experiments until it was properly identified as a good-enough hypothesis was too

high to be realized by the rooks, who barely did any combination play at all. Similarly,

recall that isolated chimpanzees failed to complete the tool-making task completed by

the NC crow. If we assume that the chimpanzees have large effective complexity for

the task, the number of experiments necessary to get a good-enough hypothesis to

be considered is too high to be feasible, thus giving the result that chimpanzees fail
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completely to construct the right tool. One important insight that falls naturally from

the perspective taken in our model is that, if there are multiple individuals refining their

set of hypotheses in parallel, but sharing their experiences via social interactions, they

will be able to construct the tool after only a few rounds of experimentation from each

individual. This leveraging of communal exploration would yield the highest gain when

exploratory hypotheses are minimally overlapping between con-specifics, allowing the

fewest number of expected experiments. In this way, social evolution can be considered a

critical part of the evolution of tool-discovery/innovation, so long as social interactions

enable communication about hypotheses and prior experiments or experiences, even

if the task is highly complex and/or the period for experimentation is short. For

instance, in the case of the tool-innovation experiments with chimpanzees, this account

would predict in a social context with other chimpanzees the quick accomplishment of

a tool-innovation task (assuming that they are sufficiently diverse in social standing /

personality traits) in contrast with the dismal performance of the isolated individual.

Another critical set of insights that follow from the logic of our model characterize

the nature of long-term vs. short-term objectives in tool-making, and efficiency trade-

offs in exploration and innovation. The case in which the experiments actually change

how often the different hypotheses are guessed allows us to understand some of the

seemingly excessive use of trial-and-error with the correct tool that has been observed

empirically. Recall that in experiments, NC crows would immediately construct the

right tool, but use it wrongly. In fact, our model suggests that this might be exploratory

behavior for changing the guessing distribution and doing better on future tasks. As

mentioned in the description of the model, if one excludes unfit hypotheses from being

guessed too readily, one can’t hope to do very well in future tasks using that guessing

distribution. There is thus also a trade-off between the number of experiments done

in one task and generalization to doing well in other tasks (assuming that there is

some narrowing of likely guesses after each experiment). In this sense, optimality is

conditional on the expected life history of challenges for which effective tools could be

fashioned/utilized. The reason we use “good-enough” hypotheses rather than “close-

to-optimal” hypotheses for the goal of the animal is that, due to the trade-off outlined
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above, one may stop very far short of constructing the best tool for the task in order

to make better guesses in future tasks. Further, one should be guessing hypotheses

until the outcome is improved relative to the time/effort invested in the continued

experimentation, rather than seeking to find the optimal hypothesis, which could be

too costly or lead to poor generalization. When considering searching for either the

good-enough vs. the optimal hypothesis, finding the good-enough hypothesis should be

understood as finding the optimal hypothesis within a unit of time relative to the best

hypothesis. If there is a change in fitness trade-offs for the amount of search time vs.

the marginal benefit of achieving a better tool, then this affects the definition of ’good-

enough’. As is made clear by our model, selection should favor strategies for innovation

that take into account the long-term benefit of leveraging failed exploration from earlier

tasks in shortening the need for experimentation for new tasks. Selection should also

favor strategies for innovation that take into account the potential for diminishing

returns from additional investment in time spent searching for a tool for each task.

6.4 Conclusion

While many of the results of our model are purely intuitive, previously existing models

have neither explained nor predicted to the same extent these intuitive and observed

outcomes. In addition, we provide a model of tool-innovation that accords with the diffi-

cult constraint of providing an account that goes beyond simple reinforcement learning,

one of the challenges identified by previous work for modeling NC crow tool-innovation.

The first step in advancing our understanding beyond the intuitive outcomes is the cre-

ation of just such a model. Our model is consistent with previous, narrower theories,

and also with empirical observations, but also provides a broad framework that allows

for a deeper discussion of the evolution of tool innovation and its relation to learning.

6.5 Supplementary Information

Recall that in the main text, we introduce a model in which an animal is forming differ-

ent hypotheses h about a hidden property s ∈ S of the environment. For simplicity, the
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environment is assumed to have only one hidden property. The animal keeps its history

of imagined hypotheses H. It is assumed that the animal samples from distribution D

a new hypothesis from S and adds it to H. It is assumed that D has infinite support.

For instance, one could use a suitable real-valued interval for S, and D could have a

sub-interval of S as supp(D). For what follows, let D be a subset of the real-line which

is a subset of [A,B].

The quality of h as compared to s is given by a simple function f(h, s) = g(h− s),

with g : R → R a polynomial of degree d. Now let the maximal value fmax of f(h, s)

be equal to g(0).

Definition 12. Let the degree of quality function f(h, s) be deg(f) = deg(g). The

complexity of the quality function f(h, s) is deg(f). The effective complexity deg(f̂)δ of

the quality function is deg(gδD) where gδD = {h(x) = g(x) for x|pD(x) > δ} where pD(x)

is the density for the distribution D and h(x) is an interpolating polynomial for g at

the values with high enough probability mass. For δ = 0, we simply write deg(f̂).

For complicated distributions D, we can specify δ based on capturing most of the

“interesting” probability mass, but for simple distributions like the uniform distribu-

tions, we can just use δ = 0.

Now recall that we assume each time a hypothesis is sampled from S, then we

model the experiments done by the animal as using a probability distribution over H

generated by the Multiplicative Weight Updates Algorithm.

If the quality function, when evaluated on the set H is dissimilar enough to the func-

tion on S, then it could be that the expert sensing s could lose against a worse expert.

It could be that the true loss function is highly non-linear in potential hypotheses.

In other words, the function being estimated is the true quality function, and each

point sampled is another point from a nonlinear function. The point sampled is a

hypothesis. One could end up sampling only local maxima. Assuming smoothness in

the resulting quality function, if the local maximum is the only thing sampled, and the

global maximum is far away from that and close to a low quality hypothesis, then the

result would be that the best hypothesis would not be chosen.
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Since the quality function is a Lipschitz continuous polynomial of degree d, then we

get d(f(h, s), f(s, s)) < K(d(h − s, 0)) Where K = max[a,b]‖g′(x)‖ and d(x, x′) is the

Euclidean distance metric.

So using Markov’s polynomial inequality [18], we get:

d(f(h, s), f(s, s)) < d2 max
D
‖g(x)‖(d(h, s))

So the higher the degree, the higher the error. We will use this kind of argument

in bounding the case of hypotheses sampled from the uniform distribution D over an

interval [a, b]. Assume that the value of g(s) satisfies g(s) = y∗ED[g(x)].

Then by the Paley-Zygmund inequality,

Pr[g(x) > yE[g(x)]] > (1− y)2 E[g(x)]

E[g(x)2]

Then by the first mean value theorem for definite integrals,

E[g(x)] = 1/(b − a)
∫ b
a g(x)dx = 1/(b − a)[P (b) − P (a)] = 1/(b − a)g(c)(b − a) >

dmin(c, cd) with deg(P ) = deg(g) + 1 And E[g(x)2] = 1/(b − a)
∫ b
a g(x)2dx < 1/(b −

a)[Q(b)−Q(a)]2 < 1/(b− a)[K(b− a)2] < 1/(b− a)[deg(Q)2max[a,b]‖g(x)‖(b− a)] with

deg(Q) = 2deg(g) + 1

Now note that when Pr(g(x) > aE[g(x)]) ≥ θ, with probability θ we are able to

generate a sample with quality at least aE[g(x)]. Then if we sample m points from D,

there will be a sample of quality aE[g(x)] with probability 1− (1− θ)m. If m = log(1/ε)
θ

then since θ ∈ (0, 1), m = log(1/ε)
θ > log(ε)

log(1−θ) and therefore 1− (1− θ)m > 1− ε.

Then with probability at least 1 − ε, within m = dB log(1/ε)/Ω((b − a)(1 − y)2)

samples, we have a sample that has quality at least aE[g(x)]. But by assumption a

solution with quality at least yE[g(x)] is within δ = y∗E[g(x)] − yE[g(x)] = (y∗ −

y)E[g(x)] of g(s). So we have that after m = dB log(1/ε)
Ω((b−a)(1−(y∗−w))2)

we have a w-optimal

quality sample.



98

Repeating the analysis for the effective complexity d̂, one obtains after

m =
d̂B log(1/ε)

Ω((b− a)(1− (y∗ − w))2)

samples we have a w-optimal quality sample in our pool of hypotheses with probability

at least 1− ε.

Even if a good hypothesis is sampled from D, MWUA still takes time to converge.

To see this note that after T experiments, the following holds:

Theorem 2.5 in Arora et al. [6] says under the MWUA, for any agent i:

T∑
t=1

g(t) · p(t) ≥
T∑
t=1

g
(t)
i − η

T∑
t=1

|g(t)
i | −

lnn

η
. (6.1)

For large T , the last term becomes tiny, and for small η, the second term is small. Now,

since this inequality holds for any expert i, it holds also for the best expert. Thus the

performance of the MWUA is close to that of the best expert in retrospect.

Remark 13. As the probability ph of using a bad hypothesis h goes to zero as T →∞,

one could still have a bad hypothesis in supp(pT ) for shorter timescales, as can be seen

in Inequality 6.1. Noting that the number of experts n is actually a linear function of

T , the dynamics will actually never converge to the best hypothesis with probability 1,

and will always add new hypotheses to the pool of ones that are evaluated. So in the end

the fewer experiments that are necessary for the good hypothesis to be in the pool, the

more probability mass will be allocated to trusting the good hypothesis and maintaining

use of any tools that are associated.
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Chapter 7

Process Information and Evolution

We now describe work in which Cameron Smith and I analyzed the Rivoire-Leibler

model of evolution, and in which MWU is used as a primitive to link it to the uni-

versal semantic communication model and population genetics. Thus in this chapter

we establish that evolution in a quantifiable sense allows a population to actually “ac-

quire” semantic information about its environment and its energy sources (e.g. that

the a number of energy sources therein are useful to the organism). The writing for

the chapter was done by both myself and Cameron Smith. The modeling, tools, and

analysis were done by both of us as well.

7.1 Introduction

There is no guarantee that any given collection of systems will be capable of productive

collective interoperation. In the domain of computing, this is due at least in part to

the proliferation of many different man-made systems that have been built by different

people at different times as well as the ever-changing standards for these systems re-

sulting from fluctuations in the amount of data used or applications required of them.

Indeed, everyday experience is consistent with the failure of any ostensible interop-

erability guarantee when operating system upgrades lead to system failure, hardware

drivers break or old software no longer works according to its specification. Therefore,

it is important to understand when interoperability without any fixed standards or

agreed-upon protocols is possible and at what cost.

One can view potential semantic ambiguity as the crux of the problem of interoper-

ability. This is to ask: How can different systems interpret each other’s actions relative

to their own with enough accuracy to reliably succeed in performing their respective
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functions but without having the same background protocol, language, or linguistic

framework to serve as a necessary precondition.

Information theory is a reasonable place to turn in searching for answers to this

kind of question. However, Shannon’s information theory does not capture semantics,

as pointed out by Shannon himself [125] and by Weaver. In particular, Weaver says (as

quoted from [146]):

“The effectiveness of a communications process could be measured by an-

swering any of the following three questions

1. How accurately can the symbols that encode the message be transmit-

ted (‘the technical problem’)?

2. How precisely do the transmitted symbols convey the desired meaning

(‘the semantics problem’)?

3. How effective is the received message in changing conduct (‘the effec-

tiveness problem’)?”

Shannon information specifically addresses item one from this list without referring to

issues related to items two or three.

Semantic communication is addressed by the theory due to Juba referred to as

Universal Semantic Communication (USC) [68]. The conceptual advance put forth in

USC is to associate a common goal to the objective of communication, which combines

items two and three from Weaver’s criteria for effective communication above. Thus the

emphasis shifts from information being a thing to pass on, to being a kind of process,

in which two agents interact and are only successful if they achieve some goal that has

an impact on all agents involved. The common goal may allow for an arbitrary degree

of cooperation: the goal may be common while favoring the overall interests of one

individual over another.

There is much discussion about information-processing in biology in general and

evolutionary theory in particular that requires a theory of semantic information [135,

121]. In biology and evolution, Eigen [44] says the following of Shannon information

with respect to issues it does not resolve that require a theory of semantic information:
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“Information theory as we understand it today is more a communication

theory. It deals with problems of processing information rather than of

‘generating’ information. It requires information to be present ‘ab initio’

in a well defined form; It always requires ‘somebody’ – usually man – to

determine what to call ‘information’ and what to call ‘nonsense.’ This

complementarity between information and entropy shows clearly the limited

application of classical information theory to problems of evolution. It is of

little help as long as information has not yet reached its ‘full meaning’, or

as long as there are still many choices for generating new information. Here

we need a new variable, a ‘value’ parameter, which characterizes the level

of evolution.”

In trying to answer this call for an interpretation of information in biological evo-

lution, Rivoire and Leibler [121] show that under the assumptions (1) No information

is inherited between generations, (2) any information acquired from the environment

is common to all members of the population, and (3) only one type predominates in

each environment, the long-term fitness of the population, if increased, implies gains in

information, in the classical Shannon information-theoretic sense. Furthermore, in the

same work they give a theory of semantic information. The importance of Rivoire and

Leibler’s model is its usefulness to those using Information-theoretic models in biology,

as it shows in some cases mutual information can be equal to fitness. Juba’s USC and

Rivoire-Leibler theory have what appear on the surface to be quite different applica-

tions in mind, it is, however, remarkable how similar the two are in conceptualizing

information as a process whose end point is a kind of statistical learning. We will show

that the two are in fact more than just conceptually related, as there is a particular

type of USC goal toward which a population evolving according to the dictates of the

Rivoire-Leibler model is at least implicitly directed. Moreover, we should note that we

take our example from a very restricted class of USC goals, and thus we show a tight

connection between USC and the Rivoire-Leibler model (as opposed to using a very

general USC model without restrictions, and using the ample degrees of freedom to

embed Rivoire-Leibler evolution).
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Juba shows that general USC (which he calls finding the generic universal user) is

indeed possible, but only with considerable communication overhead. He gives a few

different results for special cases [70, 69]. Here we give a different special case of the

general problem (Theorem 5), and show that this problem is actually solved efficiently

by a kind of population genetic dynamics (Theorem 13).

The connection between a special class of USC problems and evolution is demon-

strated through a particular kind of process-based information in which one agent tries

to translate a signal from the other (e.g. words of a language that may be initially

unique to the sender), assuming the existence of a common interpretation. Our process

information model ends up encapsulating a class of USC problems (Theorem 5), and

also captures what the Rivoire-Leibler model states about semantics. We use this con-

nection to show that the Rivoire-Leibler model can thus provide a solution to a USC

problem. We also generalize prior work on Multiplicative Weights Updates (MWU) and

evolution, in addition showing that MWU is a way of generalizing the Rivoire-Leibler

model of evolution, and using that result to show that infinite population selection with

no mutation and no recombination conforms to the Rivoire-Leibler model (Theorems 9

and 10). Finally, we show that our generalization of the Rivoire-Leibler model, which

uses process information rather than Shannon information, also generalizes their insight

that an evolving population is learning information about its environment (Theorem

11).

The proof of Theorem 11 relies on the following insight: one can use the Rivoire-

Leibler model to make equality comparisons between the fitnesses of different pheno-

types by using the reward function given by the process information model (to construct

a suitable Rivoire-Leibler process). Then one can use the comparators as a primitive

to run through all possible pairs of phenotypes, and find out which phenotypes are in

different equivalence classes. The equivalence classes of fitnesses can then be used to

solve the process information problem, by decoding which word pairs mean the same

thing. One can then further use this kind of information to implement a protocol for

a simple USC problem. The interpretation of Theorem 11 is that the Rivoire-Leibler
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model can simulate the acquisition of process information, with the environment hav-

ing an unknown semantics for which states are compatible with which phenotype, and

the population deciphering equivalent compatibility (environmental meaning) of phe-

notypes.

So, in sum, asexual selection with no mutation or recombination in the weak selec-

tion regime (and strategies for the Rivoire-Leibler model in general) can be interpreted

as an algorithm for learning which phenotypes have equal fitness in which environment

states. That is, we can interpret the information being gained in the Rivoire-Leibler

model as being ”about” the members of these equivalence classes w.r.t. fitness.

7.2 Process information

Before defining process information, we describe some background concepts. Informally,

we assume that there are two agents Alice and Bob who don’t share the same language,

but who have the same collection of concepts associated with the words comprising

their respective languages. The words signify or refer to the concepts (in this model,

what words signify is what they mean). Words of Bob and Alice that signify the same

concept describe some way of answering “what is it?” questions in the world, which

we refer to as forms. This model of language is called the triangle of reference [108, 5].

Examples of forms would be things like colors, dogs, or stones. For instance, a form

would be the color corresponding to human perception of light with wavelength ≈ 475

nm. Alice speaks English and Bob speaks Spanish, so Alice uses the word “blue” and

Bob uses the word “azul.” Both have a concept corresponding to human perception

of light with wavelength ≈ 475 nm which comes to mind when they hear “blue” and

“azul” respectively. The concept of blue then is the concept that Alice and Bob have

of the form blue, based on their experiences of elements possessing that color. The

concept only corresponds to the form if it is accurate, and the two words for the concept

reliably come to mind when the form is shown to Alice and Bob. For simplicity, we

further assume that there is at most one form for every pair of words, and at most one

concept for every pair of words that correspond to the same concept. The relationships
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between words, a form, and a concept can be visualized as:

Form //

��

Bob’s word

��
Alice’s word // Concept.

(7.1)

Each of the arrows in Equation 7.1 we understand as a kind of transformation or process.

The intuitive colloquial conceptual treatment of this diagram is usefully formalized

most generally in the context of category theory. We will, however, use set theory

for this section, as it is the simplest way of introducing our model of semantics (and

all that is necessary for understanding our the connection between Universal Semantic

Communication theory and Evolution). We define the pullback of two functions f :

X → Z and g : Y → Z to be the set X ×Z Y = {(x, y) ∈ X × Y ‖f(x) = g(y)}. We

define the projection maps pX and pY to give copies of the elements in X ×Z Y , only

the first indices for pX and only the second indices for pY .

We assume that both Alice and Bob’s words are sets that are subsets of a universe

C. Alice’s words we denote as A ⊆ C, and Bob’s words we denote as B ⊆ C. Alice and

Bob are assumed to each have a collection of words associated to the same collection

of concepts even though the word that Alice uses for a given concept may be different

from the word that Bob uses for that same concept. The elements of this common

collection of concepts, the collection to be denoted ψ, are also taken to be elements in

C so that ψ ⊆ C. Let Q ⊂ A × B be a set of (w,w′) pairs that refer to or signify

the same concept. To model Diagram 7.1 (for Alice and Bob’s words and concepts),

we assumed that the same concept mapped to multiple words w ∈ A and w′ ∈ B.

Furthermore, we model the other content in Diagram 7.1 by saying for all pairs of

words w ∈ A and w′ ∈ B and (w,w′) ∈ Q there exists some concept c ∈ ψ together

with functions fA : w → c and fB : w′ → c. As there is at most one form for every pair

of words (though not every word pair is associated with a form), one way of modeling

this is to assume that the form F (w,w′) of w,w′ is an element of the pullback of fA

and fB, and since C has pullbacks over C, F (w,w′) always exists for all elements in
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(A ∩ proj1(Q)) ∪ (B ∩ proj2(Q)), and is unique (see Section 7.8).

The relation between w, w′, F (w,w′) and c is given in this diagram:

F (w,w′)
pB //

pA
��

w′

fB

��
w

fA
// c

where pA and pB are the projection functions from F (w,w′) to w and w′ respectively.

Now we assume that w and w′ are publicly available to both Alice and Bob, F (w,w′) is

private but can be revealed, and fA, fB are private to Alice and Bob respectively and

cannot be revealed to the other directly. If Alice wants to communicate what w signifies

(which is c), therefore she can’t show him fA or c, but instead has to communicate in

such a way that Bob can decipher c.

The objective is for Bob to learn all of the associations between the common collec-

tion of concepts and Alice’s words. One way that Alice and Bob can communicate to

achieve this goal is for Bob to use concept-word feedback rc(w,w
′, x), which gives real-

valued feedback about whether there exists a function whose domain includes w ∈ A

and w′ ∈ B and that has as its codomain x ∈ ψ. rc(w,w
′, x) > 0 when there exists a

function in the set of all functions involving elements in C such that w and w′ are in

its domain and c is its codomain, and is 0 otherwise. rc(w,w
′, x) is equal to 1 when it

is positive. In words, rc(w,w
′, x) is positive when functions exist from w and w′ to x

and x = c. If rc(w,w
′, x) = 0 then there does not exist a function between w and x and

likewise for w′ and x. A more general reward function rc(w,w
′, x) will have nonzero

values that are real values generally (not just 1), to encode the extent to which w,w′

are compatible with or describe c.

Consider a process wherein one system, Bob, is provided with information that may

be sufficient to learn all forms for the common terms Q of a pair of systems, Bob and

Alice, using rc(w,w
′, x). Let n = |C|. If we have an algorithm A that one system,

Bob, can use to learn all of the other system’s, Alice’s, words when given access to

rc in m(n) steps, then we say the first system, Bob, can be m(n)-informed, and A is
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said to be m(n)-informing. We say Bob is informed in k steps if there exists an online

algorithm A that Bob can use to learn all of Alice’s words in Q when given access to

rc in k steps. The rate of information from initiation until time t is then measured by

using the number of words we have properly identified thus far. Whether one system

is capable of being informed in this fashion at all and, if so, the number of steps k

required to do so together qualitatively and quantitatively characterize what we refer

to as process information.

More formally:

Definition 14 (Process information). Bob can be informed, in the sense of process

information, in k steps, if there exists an online algorithm with inputs A,B,C and rc

which receives k pairs (w,w′) where w ∈ A, w′ ∈ B, outputs the set of pullbacks for all

pairs (w,w′) ∈ Q, using the pairs when combined with rc, assuming x ∈ C is the signifier

which is given to rc by the Algorithm A each round when given (w,w′)(whenever A uses

rc(w,w
′, x)).

Positive feedback for A we say is a positive reward rc(w,w
′, x) > 0. If the algorithm

A doesn’t change its state at all when it receives positive feedback, then we say A is

conservative. An algorithm A is conservative, in other words, when it guesses correctly

that c is the concept associated with w and w′ and doesn’t change its state. We note

that the notion of a conservative algorithm is vital for our link between a certain class of

USC-protocols inspired by machine-learning applications, and was introduced by those

authors [70]. We simply apply this notion of conservative algorithms to connect a slight

generalization of this class of USC protocols to our notion of process information. The

use of such algorithms is so important because the learning-related USC protocols all

require this kind of algorithm to be simulated [70]. As a natural generalization of this

work, we use a similar simulation technique.

Interestingly, the above semantic communication model can be generalized beyond

Set theory to Category theory. The generalization is detailed in Section 7.9. Such a

generalization allows us to talk about communication over structured representations

that are more complex than simple sets. The background concepts from category theory
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we apply in describing the generalization are reviewed in Section 7.8.

7.3 Process information and universal semantic communication

Aside from sharing the conceptual underpinnings of the primacy of process, goal-based

notions of communication, and semantics, process information and USC can be formally

related. The setting of process information resembles that of online learning, which is

not so surprising, since the relation between USC and online learning [70] is very similar

to the relation of USC and process information that we demonstrate. What follows is

a very brief guide to USC (see [70, 68] for a more complete account), followed by a

result that process information as we have defined it corresponds to a certain kind of

universal user within the USC framework.

The basic idea behind USC is to have a user and a server accomplish some goal

together while interacting with their environment. User, server, and environment each

have some internal state, and they are each joined by a (two-way) communications

channel that also has a fixed state on each round. User, server, and environment have

a strategy that specifies a distribution over new internal states and outgoing messages

for the following round, given the entity’s current state and incoming messages. Given

strategies for each of the entities, the system as a whole is modeled by a discrete-time

Markov process with a state space Ω. The resulting stochastic process is given by the

infinite sequence of random variables X1, ..., Xt, ... where Xt is the state of the system

in round t. See Section 7.7 for more details about the USC framework.

A goal G is a pair (E,R), where E is a non-deterministic environmental model and

R is a referee that classifies whether the goal is achieved. A user strategy u ∈ U is

S-universal with respect to a goal G if, for every server strategy s ∈ S, (u, s) robustly

achieves the goal (achieves it for all E and from all initial conditions). Also define for

states a size parameter function sz : Ω → N, and a bound B : U × N → N, taking

a user strategy and a target error rate and giving a bound on the number of rounds

needed to realize rate ε. Using sensing functions (see definition in Section 7.7), USC

can guarantee that either B(u, ε) errors will occur or the referee is 0 (safety), or the
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referee is 1 (viability) for the achievement of a goal G. More specifically, in USC, one

has v-viability for G for a sensing function V if there is a user strategy u ∈ U such that

for all e ∈ E, σ1 ∈ Ω, V after v(sz(σ1)) rounds evaluates to 1 in every subsequent round

in the execution of the protocol (where σ1 is an initial state used by the execution of the

protocol) with probability 1. V is s′-safe for G if for all e ∈ E, user strategies u ∈ U ,

starting states σ1, whenever R′(σ1) = 0, then s′(sz(σ1)) errors will occur, or for some

t ≤ s′(sz(σ1)), V evaluates to 0 in some state Xt. The aim of USC is to give a good

class of users, called the generic universal users, that achieve the goal in a robust sense:

Definition 15. For a class of goals in infinite executions G, a class of user strategies

U , we say that u ∈ U is a B-error (U, s′, v)-generic universal user for G if for all g ∈ G,

any server s, and any sensing function V that is s′-safe and v-viable with s with respect

to U for G when u ∈ U is provided the verdicts of V as auxiliary input, (u, s) robustly

achieves G with minUS∈{U | US v-viable with s}B(US , ·) errors.

For the result that follows, additional information about the USC model is available

in Section 7.7. We prove that process information and a special case of USC are linked

by the following result, showing that a solution to a process-information problem gives

a generic universal user for a specific class of goals:

Theorem 5. Let GC be a class of one-round multi-session goals in which the user’s

incoming messages on each round are drawn from a set S of sets in C (S ⊂ C), and

its outgoing messages are from the set of sets P ⊂ C. Let U be a class of functions

{f : S → P} with a size parameter n : U → N . Then a conservative m(n)-informing

algorithm for U is a m′-error generic universal user over U with 1-viable and 1-safe

sensing functions for GC for error bound m′(U, n′) = m(n(U)) + 1

Proof. See Section 7.7

Theorem 5 indicates the necessary conditions for a process to support the faithful

transmission of semantic information via USC in the sense of process information. In

what proceeds we review the connection between online learning and evolution in order

to show that the relationship between USC and process information demonstrated in
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this section extends to models of evolutionary processes where semantic information is

at stake.

The broad outline for the result is that one can use the algorithm that solves process-

information in a white-box way, able to set and access the internal order of the pairs

of words given to the algorithm, and other internal variables, besides the standard

inputs. Then the white-box use of the algorithm allows one to take incoming messages

as proposed word-pair inputs for the algorithm, and the outputs of the sensing function

as the reward rc(w,w
′, x) and so forth.

7.4 Online learning, Multiplicative Weight Updates, and Evolution

Online learning protocols are described as follows [23]. At all time steps t = 1, 2, ..., T :

• Choose action at ∈ A

• Simultaneously an adversary (or Nature) selects zt ∈ Z

• Receive loss l(at, zt)

• Observe zt

The objective of these protocols is to choose a sequence of actions at that minimize

the cumulative regret:

RT =
T∑
t=1

l(at, zt)− inf
a∈A

T∑
t=1

l(a, zt)

with |A| = n.

Definition 16 (Online Learning). An online learning protocol achieves no-regret when

limT→∞
1
TRT ≤ 0.

The Multiplicative Weights Updates (MWU) are an online learning protocol that

selects actions probabilistically according to the following scheme:

pt(i) =
pt−1(i)(1− εl(ai, zt))∑|Π|
j=1 pt−1(j)(1− εl(aj , zt))
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where ε ∈ (0, 1/2] and l(a, z) ∈ [−1, 1]. For gains we simply take the losses to be

negative gain, and then the updates become

pt(i) =
pt−1(i)(1 + εg(ai, zt))∑|Π|
j=1 pt−1(j)(1 + εg(aj , zt))

The regret bound for MWU is [6]:

Theorem 6. Assume all losses l(ai, zt) ∈ [−1, 1] and ε ∈ (0, 1/2], then the Multiplica-

tive Weight Updates algorithm guarantees that after T rounds, for any decision i, we

have:
T∑
t=1

∑
i∗

l(ai∗ , zt)pt(i
∗) ≤

T∑
t=1

l(ai, zt) + ε
T∑
t=1

|l(ai, zt)|+
log n

ε

And for MWU with gains the same bound holds, with the LHS lower-bounded by

the RHS and losses replaced by gains [6]. From the above bound it follows that MWU

is no-regret.

Recent work [26] has shown that infinite population selection with recombination

and no mutation (and fitness values that are very close together, a regime called weak

selection) is equivalent to MWU when used to play a coordination game (for a version

of MWU that uses gains instead of losses). If one takes the limit of the same population

genetics equations as used in [26] with no recombination (asexual reproduction) then

one obtains

pt+1
i =

wi
w̄t

(pti)

where wi is the fitness and w̄t is the average fitness according to distribution pti. When

wi ∈ [1− s, 1 + s] with s→ 0 (the weak-selection regime), and ∆i = wi−1
s gives us:

pt+1
i =

1

w̄t
pti(1 + s∆i)

which is just MWU with gains. We conclude that

Lemma 7. Infinite population asexual reproduction with weak selection is MWU with

gains.

Now we will describe recent work giving an information-theoretic model of evolution,
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and show how certain equations from population genetics are related to that family of

models.

7.5 Process Information and Evolution

Evolution can be viewed as a process of communication between organism and envi-

ronment [131, 121, 122, 120, 78]. Rivoire and Leibler sought to model evolution in a

changing environment, and derive some relations between that setting and information

theory including both the quantities, such as mutual information, and the mathemat-

ical formalism behind the theory. In the Rivoire and Leibler model [121], σt is the

phenotype of which there are nσ, xt is the state of the environment of which there

are nx, yt is a noisy signal of xt, and f(σt, xt) is the multiplication rate (the expected

number of offspring, or “fitness function”) for phenotype σt in environment xt. In one

special case of the model, f(σ, xt) = f(xt) when xt = σt and 0 otherwise, and it is

said to be diagonal. This special case refers to a situation in which each organism is

capable of having a non-zero fitness only when its phenotypic state is equivalent to the

state of the environment. Since organismal states are empirically almost always differ-

ent from environmental states, the case of diagonal f is then considered to be rare as

opposed to common. Even under a more abstract interpretation that treats the states

as indices into sets of states with different meanings, this interpretation implies that an

environmental state is associated to a single viable phenotypic state, which is also vio-

lated empirically. As the environment in the Rivoire-Leibler model is time-varying, it

uses a discrete-time and discrete-state Markov chain to model how xt varies over time,

and further assumes its ergodicity and stationarity. The inherited information is the

phenotype σt−1. Note in what follows we also call the time-evolution of the quantities

in the Rivoire-Leibler model the Rivoire-Leibler process.

The strategy for changing the phenotype, called in information theory a communi-

cation channel [31], is transition matrix π(σt|σt−1, yt), with π(σt|σt−1, yt) ≥ 0 for all

σt, σt−1, yt, and Σσtπ(σt|σt−1, yt). Such a transition matrix is a communication channel

with input (σt−1, yt) and output σt. It is worth noting that π is a dynamics for updating

the frequency of the phenotypes σ. The environment state xt gives rise to a noisy cue
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x′t according to the communication channel qenv(x
′
t|xt) and the cue gives rise to the

noisy signal yt according to the channel qin(yt, x
′
t). Noiseless channels qin give perfect

information about the cue, and are represented by the identity transition matrix δ such

that δ(yt|xt) = 1 if yt = xt, and 0 otherwise.

For example, let us consider a population of bacteria. xt would give the chemicals

constituting the medium at time t, x′t the subset of those chemicals for which the

bacteria have a sensor, and yt the chemicals that a bacterium actually detects at time

t, which may vary from bacteria to bacteria due to imperfect sensors. The difference

between xt, the state affecting the multiplication rate f(σt, xt), and x′t , the cue, could

model the delay between sensing and reproduction.

The fitness is a long-term growth rate for the number of organisms with the same

phenotype given a particular π. In order to analyze how the population changes

over time, Rivoire and Leibler introduce a vector Zt with Zt(σ) being the frequency

of individuals of type σ in the population, and the norm |Zt| =
∑

σ Z(σ) being

the total population size. Zt is a random vector, as it depends on the sequence

x̄ = ((x1, x
′
1), ..., (xt, x

′
t)), and given x̄ it is also subject to randomness generated by

transition matrices π and pin. To represent the average conditionally to the environ-

mental sequence x̄ they use 〈Zt(σ)〉, and E[〈Zt〉] for the average over environmental

sequences. Let Nt(σ) = 〈Zt(σ)〉 be the average taken for a given x̄. Then the following

recursion holds:

Nt(σt) = f(σt, xt)
∑

σt−1,yt

π(σt|σt−1, yt)pin(yt|x′t)Nt−1(σt−1)

The recursion can also be written using linear algebra as Nt = A(t)Nt−1, with

A
(t)
σ′σ = f(σt, xt)

∑
yt

π(σt|σt−1, yt)pin(yt|x′t)

where A(t) is shorthand for A(xt,x′t), and the current environment (xt, x
′
t) is fixed inde-

pendently of the dynamics π of the population. This is to say that A(t) is, in effect,

a stochastically-chosen matrix whose randomness is induced by the stochasticity of
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the environment. We initially make the following assumptions, which we subsequently

relax:

1. No information is inherited between generations, π(σt|σt−1, yt) = π(σt, yt)

2. Any information acquired from the environment is common to all members of the

population, so pin = δ, and thus yt = x′t.

3. The multiplication rates have a diagonal form (see above).

Then if our objective is to consider only the long-term growth of the total population

size, the fitness can be defined as:

Λ
(penv ,pin)
q;f = lim

t→∞

1

t
log |Nt|

We want to choose π to maximize the growth rate for Nt. If one chooses π̂ to maximize

Λ
(penv ,pin)
q;f , then π̂ outcompetes all other time-varying π’s [121], in other words, the

following holds with probability 1:

lim sup
t→∞

1

t
log
|Nt(π)|
|Nt(π̂)|

≤ 0. (7.2)

Rivoire and Leibler quote a result by Kelly which implies that with probability 1,

Λ
(penv ,pin)
q;f = lim

t→∞

1

t
E[log |Nt|]

where

lim
t→∞

1

t
E[log |Nt|] =

∑
x,x′

penv(x
′|x)ps(x) log

(∑
σ,y

f(σ′, x)π(σ′|y)pin(y|x′)

)

and ps(x) is the stationary probability of the state x for the Markov chain modeling

the states of the environment. If the environmental state is drawn i.i.d from D instead

of from a Markov chain, then instead of ps(x) we will have pD(x).

The intention of the model is to show that the value of the information conveyed

by penv and pin is related to information-theoretic quantities. A way of modeling the
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value of information is

Λ̂
(penv ,pin)
q;f − Λ̂

(ν,ν)
q;f

where Λ̂ means the fitness for π̂ and ν is an “informationless channel” ν(y|x) = ∗

where ∗ signifies no output. It is shown that Λ̂
(penv ,pin)
q;f − Λ̂

(ν,ν)
q;f = I(Xt, Yt) where

I(Xt, Yt) is the mutual information between the state of the environment (Xt is a

random variable taking values xt) and the signal (Yt is a random variable taking values

yt). They furthermore show that the reduction of uncertainty Λ̂
(δ,δ)
q;f − Λ̂

(penv ,pin)
q;f (where

δ is a noiseless channel) is equal to H(Xt|Yt). They furthermore show that there

are generalizations of these quantities that upper-bound the value of information and

reduction in uncertainty when Assumptions (1)-(3) do not hold.

It has been shown however that one of the special cases of Equation 7.2 (when the

state xt is drawn i.i.d from some distribution) is merely the regret when using the log-

loss function [23]. The optimal estimate π̂ is solved for by Kelly and Cover explicitly

[72, 31], and quoted by Rivoire and Leibler. But the optimality measure given by the

equation is regret, and indeed, if one attains 0 regret as t→∞ with probability 1, one

has a solution that is of the same quality as π̂ since it is only optimal in the limit as

t → ∞. So a no-regret estimate π̂ is what Rivoire and Leibler give an approach for

finding. The relation between no-regret and optimal prediction has been shown in [23],

interpreting classic results by Cover on log-optimal portfolios. Thus we can use the

connection to prove the following:

Theorem 8. Assuming the actions a ∈ Π are elements of the nx simplex for finite set

Π, the Rivoire-Leibler model gives a no-regret protocol π with probability 1, when Nature

selects zt according to an i.i.d process with l(a, z) = − log(aT z) being the loss for each

action and z having exactly one non-zero component which is equal to f(xt) for a fixed

function known to the learner.

One can alternatively give a no-regret sequence of π that vary over time, and such a

sequence can be generated by the multiplicative weight updates, regardless of whether

the environment is Markov which we will show. MWU applied to this setting will have

a finite set Π of a’s, with π̂ ∈ Π, and is given by the following protocol:
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pt(i) =
pt−1(i)(1 + ε log(aTi zt−1))∑|Π|
j=1 pt−1(j)(1 + ε log(aTj zt−1))

for all i ∈ |Π|, where pt(i) is ith index of the strategy and pt is the probability vector for

choosing the different actions in Π. This update can either be viewed as the gains version

of MWU or the loss version with the log-loss − log(aT z). The connection between

the Rivoire-Leibler model and online learning is not only interesting as a connection

between regret and long-term measures of fitness, but also gives a connection between

the Rivoire-Leibler model of evolution and population genetics. As a simple corollary

of Theorem 8 and Lemma 7, it follows that infinite population asexual haploid selection

with no mutation has comparable growth rate (e.g. both have comparable long-term

fitness) to the population with the initial probability for the experts set to p0(x) = ps(x).

Theorem 9. There exists a set of fitnesses of the form wi = −log(aT z)/M such

that Infinite population asexual selection with no mutation gives a π with Λ
(penv ,pin)
q;f −

Λ̂
(penv ,pin)
q;f ≤ 0 with probability 1 when Assumptions (1)-(3) hold and the state of the

environment is chosen i.i.d.

Proof. See Section 7.6

And so Rivoire and Leibler’s model, stated in the abstract, actually describes the

behavior of a classic model in population genetics. We can also take these dynamics and

run them on non-diagonal multiplication factors (drop Assumption (3)). The closed

form for the non-diagonal multiplication factors is not given by Rivoire-Leibler and

seems difficult to derive. But we don’t have to solve for the optimal estimate! The

good news is that we can have an estimate which is asymptotically accurate but based

on something other than the optimal estimate. Such an estimate will be the set of

probabilities pt(i) over time given by MWU. We will detail how one could use MWU

to calculate an asymptotically-optimal π. But first we will discuss why exactly non-

diagonal multiplication rates are so important.

According to Rivoire and Leibler, “When f(σt, xt) isn’t diagonal, the environmental

states have no longer an exclusive meaning, in the sense that the same environment
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can be beneficial to different types, and different environments to the same type.” Of

course this situation happens quite often. Many examples exist, but one is the fact that

seven distinct Anolis lizard species share common food needs (mainly insects).

More generally, this phenomenon gives rise to competition over food resources, with

implications for multiplication rates. Non-diagonal fitness functions also arise in a

frequency-dependent fitness landscape, in which for instance the fitness of phenotype

σ is dependent on the current frequency pt(σ
′) of phenotype σ′ in the population [126].

For instance, if the fitness of σ is proportionate to the frequency pt(σ
′) at time t of σ′ in

the population and vice-versa (called positive frequency dependence), then f(σ, xt) =

kpt(σ
′) and f(σ′, xt) = k2pt(σ) and thus generically over frequencies of both σ and σ′ the

fitnesses are both positive at the same time, and thus f(σ, xt) has positive off-diagonal

terms for positive frequency-dependence when it has positive diagonal terms.

In the following result, we show that for non-diagonal multiplication rate one can

use MWU to make an online learning protocol which is no-regret as compared to the

optimal growth rate, thus by Theorem 8 giving a protocol for this case that improves

the Rivoire-Leibler result. Moreover, our result not only holds for the Markov chain

model of the environment, but also could hold for adversarially-chosen environments

(if one suitably generalizes the definition of long-term fitness). We do not provide this

generalized long-term fitness for the sake of space constraints, but it is not too difficult

to derive. The key insight for this result is that z for non-diagonal multiplication rate

has more than one positive entry:

Theorem 10. There exists a set of fitnesses of the form wi = − log(aTi z)/M such

that Infinite population asexual selection with no mutation gives a π with Λ
(penv ,pin)
q;f −

Λ̂
(penv ,pin)
q;f ≤ 0 when Assumptions (1)-(2) hold for the Rivoire-Leibler process.

Proof. See Section 7.6

The environmental states having the same “meaning” due to equality of multiplica-

tion rate seems to be rooted in an intuition that if one can’t distinguish the two with

respect to information, then they are the same. This at its core is an intuition about
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information. According to papers on functional information, a proper measure of in-

formation for biology should take into account that different RNA sequences can have

the same function. That is, there is tremendous functional redundancy (for instance,

in RNA sequences and things like the synthesis of catalysts and aptamers) [134]. To

model this, one would have to use relational information, and in particular, synonymy

to the same concept/function. We quoted Rivoire and Leibler before on how they would

approach this. Let’s flesh their model out a bit:

“The source of meaning, encapsulated in the values of the multiplication rates of the

individuals, needs to be taken explicitly into account in the measure of information”

For this to make sense, we have to couple the multiplication rate of individuals to

the meaning somehow (besides just defining it to be the values of the multiplication

rates themselves).

Let us assume that rather than f(σ, x) giving us only a multiplication rate, it gives

us a measure of compatibility, by which we say σ is compatible with x to some degree

(as was suggested by Rivoire and Leibler). Recall that the concept-word feedback

function from process information rc(σ, σ
′, x) plays a similar role, giving a measure

of compatibility between σ and x, but also quantifying to what degree σ′ is just as

compatible as σ to x. Say rc(σ, σ
′, x), when nonzero, gives a measure of how compatible

both are to x, and if rc(σ, σ
′, x) = 0 then both are not equally compatible. Then when

rc(σ, σ
′, x) > 0, f(σ, x) = f(σ′, x) = rc(σ, σ

′, x) and otherwise f(σ, x) 6= f(σ′, x). Then

by the definition of rc, equality of multiplication rates for different phenotypes is entirely

determined by whether σ and σ′ considered as sets in some universe C have associated

functions that have x ∈ C as a codomain. Now recall that the pullbacks are just the

sets which make each of these equal. So the pullbacks are sets of all equal meaning

phenotypes and states. Then the pullbacks are themselves sets and we can apply a

function to these sets to get the equal meaning phenotypes and the equal meaning

states. What this shows is that the equal multiplication rate condition corresponds to

finding a form. We will use this insight algorithmically.

We will show that there is a way to use maximization of growth rate to test whether

a pair of phenotypes σ, σ′ satisfy f(σ, x) = f(σ′, x). Then we show that this can be
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used to predict the pullbacks of all n phenotypes with only poly(n) different evolving

populations. Thus the evolving population of phenotypes in a Rivoire-Leibler model

will be able to decipher which phenotypes are compatible with which states of the

environment, and whether they are equally so. The evolving population according

to Rivoire and Leibler’s model thereby possesses process information relevant to the

environment.

Theorem 11. Bob can be informed, in the sense of process information, using O((|A|+

|B|)2|ψ|) Rivoire-Leibler process optima for a Rivoire-Leibler process with i.i.d states

of the environment, drawn uniformly at random. Furthermore the algorithm used is

conservative.

Proof. See Section 7.6. In outline, we first show how one can use a Rivoire-Leibler

growth rate maximum π̂ to decipher whether a pair of phenotypes have the same mul-

tiplication rate for a fixed environment. Then we show how to use this to recover all

the pullbacks of the set. Finally, we show, in particular, that this can be accomplished

using O((|A|+ |B|)2|ψ|) Rivoire-Leibler process optima.

Based on the connection between MWU and the Rivoire-Leibler model optima,

and using a similar argument as the previous results (Theorem 10) showing that the

population genetics dynamics attain the Rivoire-Leibler growth optima for some fitness

function, we obtain:

Theorem 12. Bob can be informed, in the sense of process information, using O(|A|+

|B|)2|ψ|) runs of no-mutation infinite population asexual selection dynamics for a Rivoire-

Leibler process with i.i.d states of the environment, drawn uniformly at random.

Then Bob can be m(n)-informed, where m(n) = O(4n3), since (2|U |)2|U | = O(|A|+

|B|)2|ψ|). The algorithm used was conservative. Thus we can conclude by using Theo-

rem 5 that:

Theorem 13. Infinite population asexual selection with no mutation (on the appropri-

ate inputs) gives a (U, 1, 1)-generic universal user for GC for error bound m(n(U)) + 1

where m(n) = O(4n3).
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Finally, Rivoire and Leibler’s model has been applied as a justification for making

information-theoretic models of biological systems, as then the fitness function is in

some sense proportionate to information theoretic quantities (see, for example, [80]).

But the foundations for this identification are unclear, since in order to apply the

analysis we have to have some idea about what the information processed by the system

is about [135]. Thus one could use the generalization of the Rivoire-Leibler model we

have proposed here to give a better foundation for the use of information theory in

modeling biological systems, by using a version of communication theory that takes

semantics into account. We leave a more detailed pursuit of this goal for future work.
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7.6 Proofs of Evolutionary theory and MWU Results

In this section we give the proof of major results relating Evolutionary theory, the

Rivoire-Leibler model, and MWU.

Proof of Theorem 9. Without loss of generality, we can re-scale f(x), the multiplication

rate or fitness function, to be in the interval [−1, 1] by dividing by maxx |f(x)|, and

since Π is finite, we can rescale the log-loss, dividing it by the maximum of − log(aT z)

over all a ∈ Π to be in the interval [−1, 1]. Then we use Lemma 7 on the resulting

fitness function (which is in the weak-selection regime) and apply Theorem 6, therefore

obtaining that the resulting dynamics are no-regret. When we take the time-average of

all the losses, asymptotically the resulting quantity is exactly E[log(aT z)] w.p. 1, by

the weak law of large numbers, so by showing that the dynamics are no-regret, we have

shown that Λ
(penv ,pin)
q;f − Λ̂

(penv ,pin)
q;f ≤ 0 asymptotically w.p. 1 for the dynamics.

Proof of Theorem 10. First we will show that we can construct a fitness function for the



120

population genetics dynamics such that MWU on the appropriate losses is simulated.

Then we will show that when we use actions a ∈ Π such that Π is a finite set of

elements of the nx simplex, MWU gives an optimal growth rate learning protocol π

with probability 1, when Nature selects zt according to an i.i.d process for λ = (x, x′)

for p(λ) = penv(x
′|x)p(x) with l(a, z) = − log(aT z) being the loss for each action and

z having components which are equal to f(a, xt)pin(y|x′) for a fixed function known to

the learner.

For each yt we can do a separate evolution process (which corresponds to MWU for

each yt), then we will have an optimal growth population conditioned on each yt, and

thus for all yt.

So conditioned on a particular yt: Without loss of generality, we can re-scale f(σ, x)

to be in the interval [−1, 1], and since Π is finite, we can rescale the log-loss, dividing

it by the maximum of − log(aT z) over all a ∈ Π to be in the interval [−1, 1]. Then we

use Lemma 7 on the resulting fitness function (which is in the weak-selection regime)

and apply Theorem 6, therefore obtaining that the resulting dynamics are no-regret.

When we take the time-average of all the losses, asymptotically the resulting quantity is

exactly Ep(λ)[log(aT z)] w.p. 1, by the weak law of large numbers, so by showing that the

dynamics are no-regret, we have shown that Λ
(penv ,pin)
q;f − Λ̂

(penv ,pin)
q;f ≤ 0 asymptotically

w.p. 1 for the dynamics.

Proof of Theorem 11. The sets of Alice are some subset PA of phenotypes, and the sets

of Bob are some subset PB of phenotypes, and the concept sets are the states SC of the

environment. Let the set of all phenotypes P be P = PA∪PB. Let the feedback function

rc give the multiplication rate function f(i, x) as follows: the words are phenotypes (as

we saw above) and the states of the environment are concepts, so f(w, c) = f(w′, c) =

rc(w,w
′, c) if rc(w,w

′, c) > 0 and f(w, c) is set as follows: Let Oij = f(j, i) be the

matrix of multiplication rates, and D, with Dij = δij(
∑

k(O
−1)ki)

−1. Set the entries of

O so that D is a positive matrix. We will see an example of such a case below.

We will first show how one can use a Rivoire-Leibler growth rate maximum π̂ to
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decipher whether a pair of phenotypes have the same multiplication rate for a fixed

environment. Then we will show how to use this to recover all the pullbacks of the set.

LetOij = f(j, i) be the matrix of multiplication rates, D, withDij = δij(
∑

k(O
−1)ki)

−1

be a positive diagonal matrix, and p be a vector containing the probability p(x) of the

state of the environment x for all x. Then the optimal growth rate estimate π̂ assuming

that yt = xt is given by π̂ = O−1Dp [117]. We will use the above formulas to create a

gagdet for the reduction.

To figure out whether for a state x a pair of phenotypes i and i′ are equal in

multiplication rate, one can make the matrix O′ of multiplication rates for a Rivoire-

Leibler process which has entries

O′ =

 f(i, x) b

f(i′, x) f(i, x)2/b


where b will be chosen in accordance with D being positive, which gives us f(i, x) >

b > 0, and all positive entries.

Without loss of generality, let’s assume f(i, x) 6= 0 (one can re-scale all of the

multiplication rates additively and re-do the argument accordingly). For convenience,

let a = f(i, x), c = f(i′, x) and d = a2/b. Then D11 = 1/d− c and D22 = 1/a− b.

Since we assumed in the reduction that the entries of O were set such that D is

positive, d > c > 0 , a > b > 0. This ensures that c 6= d even when a 6= c, which

preserves ac = bd as the key criterion for the equality test to succeed, and that at least

as long as a is nonzero, a− b is also nonzero, and furthermore when a = c, c− d is also

nonzero. All of these properties are important for the positivity of O′−1Dp and for the

validity of the test we propose for testing equivalence of growth rate.

Now the matrix O′ is a 2 by 2 matrix that when a = c has (by the above inequalities

given by the positivity of D):

det(O′) = ad− bc > 0

When f(i, x) = f(i′, x), O′−1 is given by:
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O′−1 =
1

a(d− b)

 d −b

−f(i′, x) f(i, x)


Note that, Dp = 〈D11p1, D22p2〉

Take the Rivoire-Leibler process to have multiplication rate matrix O′, and to have

xt be drawn uniformly at random, then pi = pj for all i, j, and we obtain:

O′−1Dp = [dD11p1 − bD22p2, aD22p2 − cD11p1]/det(O′)2

O′−1Dp = [p1(dD11 − bD22), p1(aD22 − cD11)]/a2(d− b)2

O′−1Dp = [p1(d/(d− c)− b/(a− b)), p1(a/(a− b)− c/(d− c))]/a2(d− b)2

π̂(x,i,i′)(1) = p1(d/(d− c)− b/(a− b))/a2(d− b)2

π̂(x,i,i′)(2) = p1(a/(a− b)− c/(d− c))/a2(d− b)2

And note that since a(d−b) > 0 (and thus a2(d−b)2 > 0), these probability vectors

are positive, as required. It turns out that if

1

det(O′)2
[d/(d− c)− b/(a− b)] =

1

det(O′)2
[a/(a− b)− c/(d− c)]

if and only if

ac = bd

But when a = c, then ac = a2 and bd = b(a2/b) = a2 (as b 6= 0), and therefore

ac = a2 = bd. Thus when a = c, π̂(x,i,i′)(1) = π̂(x,i,i′)(2).

So if the multiplication rate is the same between phenotypes in environmental state

x, π̂(2) = π̂(1).
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Let the equality test “succeed” if π̂(x,i,i′)(1) = π̂(x,i,i′)(2) and both π̂(x,i,i′)(1) and

π̂(x,i,i′)(2) exist.

Let’s check whether the equality test implies that f(i, x) = f(i′, x). If the asymptotic

probabilities exist (that is, O′ is invertible), then:

π̂(x,i,i′)(1) = p1(d/(d− c)− b/(a− b))/ det(O′)2

π̂(x,i,i′)(2) = p1(a/(a− b)− c/(d− c))/ det(O′)2

Note that these probability vectors too are positive, since as we showed above,

det(O′) = ad− bc > 0 and thus det(O′)2 > 0.

Now π̂(x,i,i′)(1) = π̂(x,i,i′)(2) implies that d/(d− c)− b/(a− b) = a/(a− b)− c/(d− c)

and thus ac = bd for a 6= 0.

We will now prove by contradiction that the equality test, if it succeeds, would never

imply that a 6= c:

Assume that the equality test succeeds and a 6= c. The equality test succeeds only

if ac = bd. But bd = a2, by the definitions of b and d, since b 6= 0. Therefore, ac = a2,

and thus c = a. But we assumed that a 6= c. Thus the claim holds.

Therefore if the equality test succeeds, the only way it could succeed is if a = c and

thus f(i, x) = f(i′, x).

Now when we run the Rivoire-Leibler process with the above parameters, if we run

the equality test and it succeeds, at any entry, this is a test for sharing the same form

for i and i′ given some state of the environment x. Say that this test is denoted as

Ψ(π̂(x,i,i′)) and outputs a set of 3-tuples of the form (i, i′, x) such that f(i, x) = f(i′, x).

We can run a different process for each state x in the set S of environmental states and

obtain the set of estimates for the pair of phenotypes i, i′ : F (i, i′) = {∪x∈SΨ(π̂(x,i,i′))}.

Finally, we can run these Rivoire-Leibler processes for other possible pairs of phenotypes

besides i and i′ in the set of possible phenotypes P . Then we take F = ∪i,i′∈PF (i, i′).

Then F is a set of all forms associated with the phenotypes in P and the states in S.

Clearly the algorithm to calculate F only eliminates tuples when rc(w,w
′, c) = 0 and is
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thus conservative. To calculate F , we must run
(|P |

2

)
|S| Rivoire-Leibler processes. This

simplifies to O(n2
σnx) Rivoire-Leibler processes, which gives the result, since we can use

F to give the forms for all phenotypes and nσ = |P | = |PA ∪ PB| ≤ |PA|+ |PB|.

7.7 Proofs of Process information and USC Results

What follows is a more detailed brief summary of USC followed by a proof of Theorem

5. For more information on the particular version of USC we use, see [70]. The table

that follows summarizes all of the terms used in the model:

notation meaning

U user strategy set

S server strategy set

E non-deterministic environmental model

k session length

E1 start-session states

Ek end-session states

R′ : Ek → 2 temporal decision function evaluating end-session states

R referee determines verdict according to R′

G goal = (E,R)

Ω state space X ≡ (u, s, e) ∈ Ω for some u ∈ U, s ∈ S, e ∈ E

X1, . . . , Xt, . . . stochastic process over Ω

Recall that USC has a user and a server accomplish some goal together while inter-

acting with their environment. User, server, and environment each have some internal

state, and they are each joined by a (two-way) communications channel that also has a

fixed state on each round. User, server, and environment have a strategy that specifies

a distribution over new internal states and outgoing messages for the following round,

given the entity’s current state and incoming messages. Given strategies for each of the

entities, the system as a whole is modeled by a discrete-time Markov process with a state

space Ω. We call an execution the infinite sequence of random variables X1, ..., Xt, ...
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where Xt is the state of system in round t. An execution produced by the interaction

between a user strategy u, a server strategy s, and an environment strategy e will be

denoted by (e, u, s). An execution started from state σ1 is an execution condition on

X1 = σ1. We denote the internal states of the user, server, and environment by Ω(u),

Ω(s), and Ω(e) respectively, and for i, j ∈ {u, e, s} the state of the communication chan-

nel from i to j is a member of Ω(i,j). Given a state of the system σ, we will let the

respective superscripts denote the projection of σ onto the respective components (so

σ(s,e) is the server’s outgoing message to the environment in σ).

A goal G = (E,R) where E is a non-deterministic environmental model and R is a

referee that classifies whether the goal is achieved. A user strategy u ∈ U is S-universal

with respect to a goal G if for every server strategy s ∈ S (u, s) robustly achieves the

goal (achieves it for all e ∈ E and from all initial conditions). We will discuss how to

assure the robust achievement of a goal when we discuss sensing functions.

A goal G = (E,R) is said to be a k-round multi-session goal if the following hold:

1. The system’s states Ω are partitioned into k sets Ω
(e)
1 , ...,Ω

(e)
k Ω

(e)
1 are the start-

session states, and Ω
(e)
k are the end-session states. Each of the states is a pair

consisting of an index and a contents.

2. When in an end-session state, the environment (non-deterministically) moves to

a start-session state with index incremented (and the target state is independent

of the end-session state).

3. When the environment is in some state (j, σ) ∈ Ω
(e)
i for i 6= k, E(j, σ)(e) is a

distribution over Ω
(e)
i+1 with every element in its support having index j. The

distribution is independent of the index and the environment’s strategy.

4. There is a temporal decision function R′ giving boolean verdicts for end-session

states, and R is satisfied with an infinite execution iff R′ evaluates to zero at most

finitely many times, and the number of times this happens is called the number

of errors.

Let G = (E,R) be a fixed-length multi-session goal with temporal decision function
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R′ and size parameter function sz : Ω → N, let s ∈ S be a server strategy, and U be

a class of user strategies. Sensing functions in USC are boolean functions taking all

events in a series of interactions between the server and user and giving goal-specific

feedback. In USC, one has v-viability for G for a sensing function V if there is a user

strategy u ∈ U such that for all e ∈ E, σ1 ∈ Ω, V after v(sz(σ1)) rounds evaluates to 1

in every subsequent round in the execution of the protocol (where σ1 is an initial state

used by the execution of the protocol) with probability 1. V is s′-safe for G if for all

e ∈ E, user strategies u ∈ U , starting states σ1, whenever R′(σ1) = 0, then at most

s′(sz(σ1)) errors will occur, or for some t ≤ s′(sz(σ1)), V evaluates to 0 in some state

Xt of the execution (e, u, s) started from σ1 with probability 1.

Definition 17. For a class of goals in infinite executions G, a class of user strate-

gies U , and bound B : U × N → N taking a user strategy and a target error rate

and giving the number of rounds necessary to attain that, we say that u ∈ U is a B-

error (U, s′, v)-generic universal user for G if for all g ∈ G, any server s, and any

sensing function V that is s′-safe and v-viable with s with respect to U for G when

u ∈ U is provided the verdicts of V as auxiliary input, (u, s) robustly achieves G with

minUS∈U :US v-viable with sB(US , ·) errors.

Proof of Theorem 5. U is the set of functions mapping from a word to its signifier.

Suppose we are given white box/full access (not just black-box input/output access,

but access to all internal variables) to the operations of a m(n)-informing process infor-

mation algorithm A for U . Again, and more specifically, we assume that the simulation

of the USC protocol involves using and setting variables / functions internal to the al-

gorithm itself during its execution. We show that A is a generic universal user. Suppose

that we are given a goal G ∈ GC , a server s ∈ S, and a sensing function V that is 1-safe

with s for G and 1-viable with s with respect to U for G.

By the 1-viability of V , there is a US ∈ U s.t. if the user sends the same messages

as US , after one round V will give a positive indication on every round.

Each round of the execution corresponds to a triplet (w,w′, x) for the process infor-

mation algorithm A. Recall that pairs of words (w,w′) are given to A each round and
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then the input to rc includes w,w′ and an associated state x.

Suppose we provide the incoming messages to A as the words w,w′ for each triplet

(providing to A a pair of words (w,w′) rather than some other pair), and take the

outgoing messages as the signifier x of A’s associated triplet (as determined by A’s

chosen x to be used in any call of rc(w,w
′, x) itself associated with the desired pair of

words (w,w′)), and provide the verdict of V on the following round as the reinforcement

function rc(w,w
′, x) for that round.

If A’s associated triplet (w,w′, x) contains the same x as is sent in the outgoing

message as US , the sensing function will give to the triplet of A a positive indication,

which we take as positive feedback for the triplet associated with A. If V produces

a negative indication, then the triplet associated with A must not have contained the

same x as US would have sent on the incoming messages in that round. V may also

produce positive indications when the outgoing message from A’s associated triplet dif-

fers from what US would have sent, but since A is conservative, the state of A does not

change. Now, since A is a m(n)-informing algorithm for U , it only receives negative

reinforcement m(n) times in any execution.

As GC is a 1-round multi-session goal, R′ becomes 0 or 1 on each round; when 0,

the 1-safety of V implies either that is the only error that will occur, or that V evalu-

ates to 0 in the current round. V thus can only evaluate to 1 if an error occurs once,

so the overall strategy makes at most m(n) + 1 errors.

7.8 Category Theory

A category C is given by a collection Obj(C) of objects and a collection Morph(C) of

morphisms which have the following structure (see [90, 132] for a general introduction

to category theory):

Each morphism has a domain and a codomain which are objects, writing f : X → Y

or X
f−→ Y if X is the domain of the morphism f , and Y is its codomain. Also often

used notationally is X = dom(f) and Y = cod(f). Given two morphisms f and g



128

such that cod(f) = dom(g), the composition of f and g, written gf , is defined and has

domain dom(f) and codomain cod(g):

(X
f−→ Y

g−→ Z) 7→ (X
gf−→ Z)

Composition is associative, so given f : X → Y , g : Y → Z, and h : Z → W ,

h(gf) = (hg)f . For every object X there is an identity morphism idX : X → X

satisfying idXg = g for every g : Y → X and f(idX) = f for every f : X → Y . A

morphism f : X → Y in C is an isomorphism if there is another morphism g : Y → X

in C such that gf = idX and fg = idY . Two objects X and Y are isomorphic if there

exists an isomorphism f with dom(f) = X and cod(f) = Y .

Example: Set is the Category in which Obj(Set) contains sets, and Morph(Set)

contains functions.

Given morphisms f : X → Z and g : Y → Z, the pullback of f and g consists of an

object P and two morphisms p1 : P → X, p2 : P → Y for which the diagram

P
p2 //

p1
��

Y

g

��
X

f
// Z

commutes. In other words, fp1 = gp2. The pullback if it exists is unique up to

isomorphism. For the category Set, the pullback is a set (X ×Z Y ) = {(x, y) ∈ X ×

Y |f(x) = g(y)} together with the projection maps p1 : (X ×Z Y ) → X and p2 :

(X ×Z Y ) → Y . We say that a category C has pullbacks if for all pairs of morphisms

f and g in Morph(C) there always exists a pullback.

7.9 Category-Theoretic Process Information

The background concepts from category theory we apply here are reviewed in Section

7.8. The basic generalization of the Process Information model is replaces functions

with morphisms and sets with objects. The universe C is replaced by an ambient

category C. Rather than using the projection functions and pullbacks defined for sets,
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we use the more general notions from Category Theory given in Section 7.8.

We assume that both Alice and Bob’s words are objects in the same category

C which has pullbacks. Alice’s words are Obj(A) ⊆ Obj(C), and Bob’s words are

Obj(B) ⊆ Obj(C). Alice and Bob are assumed to each have a collection of words asso-

ciated to the same collection of concepts. The elements of this common collection of con-

cepts are also taken to be objects in C as well, which are the objects Obj(ψ) ⊆ Obj(C).

Let Q ⊂ Obj(A) × Obj(B) be a set of (w,w′) pairs that refer to or signify the same

concept. To model Diagram 7.1 (for Alice and Bob’s words and concepts), we assumed

that the same concept mapped to multiple words w ∈ Obj(A) and w′ ∈ Obj(B). We

also model the other content in Diagram 7.1 by saying for all pairs of words w ∈ Obj(A)

and w′ ∈ Obj(B) and (w,w′) ∈ Q there exists some concept c ∈ Obj(ψ) together with

morphisms fA : w → c and fB : w′ → c. As there is at most one form for every

pair of words (though not every word pair is associated with a form), one way of mod-

eling this is to assume that the form F (w,w′) of w,w′ is the pullback object of fA

and fB, and since C has pullbacks over Obj(C), F (w,w′) always exists for all objects

in (Obj(A) ∩ Q) ∪ (Obj(B) ∩ Q). Moreover it is unique up to isomorphism, by the

uniqueness of pullbacks up to isomorphism.
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Chapter 8

Conclusion

We have shown in this thesis a variety of applications of the MWU method and other

tools from theoretical computer science to deriving new models in evolutionary biology.

Naturally, there are many issues and future directions that have been unearthed by this

investigation. First we will discuss particular domain areas, then we will discuss more

general issues.

8.1 Population Genetics and MWU

Les Valiant [138] was the first to point out a connection between Evolution and Learn-

ing: The class of traits which are achievable by a species through random mutations

constitute a specialized kind of learnability (a subcase of statistical learning, actually).

Here we point out a different connection between these two fundamental computational

categories: On the Wright manifold (that is, when linkage disequilibrium can be disre-

garded), Evolution is in fact learning through multiplicative updates — a well-known

learning algorithm of very broad appeal. The same reasoning establishes Evolution as a

coordination game between genes. Genes are the players, alleles are the strategies, and

the mixed strategies are the allele statistics in the population. Notice how the organism

is sidelined in this viewpoint: Evolution is an interaction between the genes (acting in a

seemingly strategic manner) and the population (which stores the system’s state). This

is consistent with the gene-centric view of evolution, by which much can be explained

by just focusing on evolution of and interaction between genes rather than organisms

or species [133].

There is an important difference between Valiant’s work and our point of view:
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Valiant’s evolvability is concerned with understanding random mutations. We are con-

cerned in the ways in which sex and recombination nudge allele frequencies in the di-

rection of high mixability (expected fitness); mutations are only implicit in our model,

they are the (much slower) background process that creates the diversity exploited by

recombination. Evolution and coordination games are not to be thought of as identi-

cal, however. A key difference between Evolution and coordination games is this: In

a coordination game, a player may switch to a strategy which is currently not in the

player’s support (is being played with probability zero), once it becomes favorable. In

Evolution, once an allele becomes extinct it never comes back (except through a new

mutation, at a time scale far bigger than our current concerns). That is why the equi-

librium of the process may not be a Nash equilibrium of the original game (but it is a

mixed Nash equilibrium of the subgame defined by the support).

Starting with Darwin, researchers have often expressed an instinctive sense of disbe-

lief that all Life we see around us could have come about through the rather rudimentary

processes envisioned by Evolution. Connecting Evolution with multiplicative updates

may help a little in this cognitive/cultural difficulty; after all, the multiplicative updates

algorithm has surprised us time and again with its seemingly miraculous performance

and applicability.

This work leaves open a variety of questions. Besides weak selection, for which other

classes of fitness landscapes is the present analysis applicable? It is known that product

landscapes (the fitness of a genotype is the product of fitness values, one for each allele

present in the genotype) have the property of staying on the Wright manifold, once

they are started there, but are not in general attracted to it [20]. It would be very

interesting to come up with a combinatorial characterization of the fitness landscapes

that converge to the Wright manifold (like the weak selection landscapes) and of those

which at least stay there (like the multiplicative landscapes).

Secondly, in the context of the diversity proof in Chapter 4, consider the following

computational problem: “flip the rows and columns of a given nonsingular square

matrix such that the inverse has nonnegative row and column sums.” The existence

proof through a potential function places this problem in the class PLS [66]. Is it
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PLS-complete?

Finally, we would love to extend our diversity result (Corollary 4) to three or more

genes. Unfortunately, in this more general case the equations become multilinear, and

such equations are very hard both to solve and to argue about. Our simulations,

however, show that large equilibria exist in the multi-gene setting as well.

Our discussion has focused on the evolution of a fixed set of alleles; that is, we

have not discussed mutations. Mutations are, of course, paramount in evolution, as

they are the source of genetic diversity, and we believe that introducing mutations to

the present analysis is an important research direction. Here we focus on the selection

process, which is rigorously shown to exploit the diversity created by mutations to

enhance expected fitness, while at the same time also maintaining this diversity.

We can now note a simple yet important point. Since MWUA only operates in

the presence of sex, the triple connection uncovered in this paper is informative for the

“queen of problems in evolutionary biology,” namely the role of sex in evolution [13, 10].

The notion that the role of sex is the maintenance of diversity has been critiqued [112],

since sex does not always increase diversity, and diversity is not always favorable. The

MWUA connection sheds new light on the debate, since sex is shown to lead to a

tradeoff between increasing entropy and increasing (cumulative) fitness.

The connection between the three fields, evolution, game theory, and learning al-

gorithms, described here was not accessible to the founders of the modern synthesis,

and we hope that it expands the mathematical tracks that can be traveled in evolution

theory.

The recently established bridge between evolutionary biology and theoretical com-

puter science has proven productive within a short time-span. While evolutionary

theory was founded on the mathematical tools of physics and statistics, it actually

shares much with the younger field of theoretical computer science, namely an inter-

est in complexity and performance, or “fitness.” The discovery of mixability led to a

pursuit of a mixability-based maximization principle for evolution [26], which then led

to the finding of a maximization principle for evolution in the realm of weak selection

[26]. As Barton et al. [11] noted, “the close analogy between MWUA and population
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genetics is a first step” in the process of a fruitful transfer of knowledge between these

two fields, and indeed, this analogy allowed us to recognize the applicability of the

MWUA no-regret theorem in population genetics. There has already been tremendous

progress in applying these methods to population genetics, with Ioannis Panageas and

co-authors resolving an open conjecture dating from the 1970’s using these tools [95]

(showing that haploid populations will end up not having any diversity asymptotically).

Using the learning perspective that we have advanced for population genetics, others

have followed-up and considered how learning algorithms could be the basis for the

study of genetics in a broader sense [144]. The full impact and interpretation of this

theorem is yet to be seen.

Some additional things we would like to work on in the future include:

• Is the diploid population PG dynamics (infinite population selection with recom-

bination) also the MWUA in a suitable game? We also would like to see a similar

result for the finite population case....

In particular, note that in the Diploid case there is a form of MWU that de-

scribes the dynamics for the marginal frequencies of the alleles. However, the

quality function −li ends up being something other than the expected value for

the payoff of a pure strategy in a game, though it is the product of the ex-

pected payoff with the probability of choosing that pure strategy. For the finite

population case, first one would need to extend Nagylaki’s theorem to the finite

population case. It is currently only for an infinite population setting. An ex-

tension of Nagylaki’s theorem to a finite population setting would require serious

work in Markov Chain theory, as the typical model for finite population evolu-

tion (Wright-Fisher or the Moran Process model) would be a Markov Chain. In

addition to the extension of Nagylaki’s theorem, one would have to extend the

connection between MWU and Game theory too. If one observes the form of the

Moran process, it looks very much like the MWU. Could that connection be used

to show an analogous result for a coordination game assuming weak selection?
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• A more general theory for MWU on coordination games, for instance providing

convergence times for different coordination games. Such would give us insights

into the kinds of fitness landscapes that lead to fast convergence.

8.2 Evolution of Animal Traits

Besides the application of the MWUA to Population Genetics, we also showed that the

MWU method could be used for modeling the Evolution of Animal Personality and

Tool-innovation.

The new model of tool-innovation is very rich, and has many different unexplored

issues. Most of these have to do with the complexities of analysis relating to random

sampling of polynomially-valued functions. We would like to see whether we can expand

the elementary analysis based on the mean-value theorem to non-uniform distributions

over subsets of the real line, and thereby give a more interesting characterization of

when tool-innovation would evolve and when it wouldn’t. To do this, one would need

to give a new set of inequalities for the expected value of the difference between a

sampled point’s value and the maximum value.

We also want to analyze more properties of the Tool-innovation model for quality

functions that are multi-variate polynomials. We have so far considered only univariate

polynomials, but for complex tool-innovation tasks one would expect a satisfiability

problem to be a more useful framework, and that necessitates the use of multivariate

polynomials. However the current analytic tools all assume ordinary univariate polyno-

mials.... Perhaps one could use a suitable multi-variate generalization of the mean-value

theorem?

For the animal personality model, could we apply some of the ideas there developed

to give constraints on when no animal personality at all would evolve? How rare is such

an eventuality, or is it actually quite common in the model that animal personality will

emerge? Some of the counter-examples to animal personality emerging seem to come

from very predictable environments. How many of these are there, combinatorially

speaking?
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8.3 Over-arching themes

The idea of Multiplicative Weight Updates being so useful as a way of generating models

for evolutionary biology brings up a few general questions:

• Are there other multi-purpose online learning algorithms that are generally useful

for evolutionary modeling, or is MWUA in some sense special?

• Could the versatility of the MWUA approach to modeling biological dynamics

be related in some formal way to the success of approaches in Neuroscience,

Psychology, and Machine Learning that use Bayesian probability updating as a

basic modeling framework?

• Are there other algorithmic tools or complexity-theoretic tools that could be useful

for population genetics or evolutionary theory?

• Is there something special about algorithmic or computational kinds of models in

biology, or is it a coincidence that MWUA is so useful in this field? Could there

be some kind of base model, for instance, that allows us to make more structured

models using algorithmic theory than simple bean-bag genetics would allow?

Importantly, the tools that computational complexity, discrete analysis (of boolean

functions), and other similar tools from theoretical computer science study how small

changes in problem representation or specification could lead to dramatic changes in

encoded functions. Such analysis could be related to small changes in “hardware”

leading to dramatic changes in “software.” In a similar way, one could use the same

tools to analyze rigorously and predict large changes in phenotype based on small

changes in genotype.

In fact, the broader questions of how major transitions in evolution happen, or

major changes occurs in phenotype. Some of the work in this thesis was focused on

this question in more particular domains, applying computational thinking to various

population genetics and ecology questions involving major transitions (evolution of

sex, and animal cognition among others). Now a new direction would be to find out



136

how biological information-processing mechanisms could arise and change radically and

irreversibly with small genetic changes. Could it be perhaps that using something

like “invariance principles” one could show that major transitions in evolution occur by

virtue of something like the central limit theorem applied to the effects on the phenotype

of different subsets of alleles?

Recall one of the kinds of models in Evolutionary biology was “arrival of the fittest”:

Would the same varieties recur if evolution were replayed again from the same initial

condition? An interesting sub-theme of this question of arrival of the fittest is to analyze

the “bias” and “variance” of evolution. By that I mean, the expected divergence from

the current trajectory, and the variance of the divergence from the current trajectory.

To do this, one would try to analyze various population genetics models from the

perspective of learning theory, with evolutionary dynamics being considered learning

algorithms. The work outlined in this thesis has explored some of these themes, but I

would like to continue to see in what way we could for instance apply statistical learning

theory or online learning to understand these questions.
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under correlated attacks. PloS one, 10(5):e0125467, 2015.

[60] Daniel L Hartl and Vitezslav Orel. What did Gregor Mendel think he discovered?
Genetics, 131(2):245, 1992.

[61] John H Holland. Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. U Michi-
gan Press, 1975.



141

[62] Jennifer C Holzhaider, Gavin R Hunt, and Russell D Gray. The develop-
ment of pandanus tool manufacture in wild New Caledonian crows. Behaviour,
147(5):553–586, 2010.

[63] Gavin R Hunt and Russell D Gray. Diversification and cumulative evolution
in New Caledonian crow tool manufacture. Proceedings of the Royal Society of
London B: Biological Sciences, 270(1517):867–874, 2003.

[64] Jennifer M Jandt, Sarah Bengston, Noa Pinter-Wollman, Jonathan N Pruitt,
Nigel E Raine, Anna Dornhaus, and Andrew Sih. Behavioural syndromes and
social insects: personality at multiple levels. Biological Reviews, 89(1):48–67,
2014.

[65] Peter R Jennings and Jose de Jesus. Studies on competition in rice I. competition
in mixtures of varieties. Evolution, 22(1):119–124, 1968.

[66] D. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local search?
Journal of computer and system sciences, 37(1):79–100, 1988.

[67] J Chadwick Johnson and Andrew Sih. Precopulatory sexual cannibalism in fishing
spiders (Dolomedes triton): a role for behavioral syndromes. Behavioral Ecology
and Sociobiology, 58(4):390–396, 2005.

[68] Brendan Juba. Universal semantic communication. Springer Science & Business
Media, 2011.

[69] Brendan Juba and Madhu Sudan. Efficient semantic communication via compat-
ible beliefs. 2011.

[70] Brendan Juba and Santosh Vempala. Semantic communication for simple goals
is equivalent to on-line learning. In Algorithmic Learning Theory, pages 277–291.
Springer, 2011.

[71] Hans Kalmus. The scholastic origins of Mendel’s concepts. History of science,
21(1):61–83, 1983.

[72] John L Kelly Jr. A new interpretation of information rate. Information Theory,
IRE Transactions on, 2(3):185–189, 1956.

[73] Ben Kenward, Christian Rutz, Alex AS Weir, and Alex Kacelnik. Development of
tool use in New Caledonian crows: inherited action patterns and social influences.
Animal Behaviour, 72(6):1329–1343, 2006.

[74] Ben Kenward, Christian Schloegl, Christian Rutz, Alexander AS Weir, Thomas
Bugnyar, and Alex Kacelnik. On the evolutionary and ontogenetic origins of tool-
oriented behaviour in New Caledonian crows (Corvus moneduloides). Biological
Journal of the Linnean Society, 102(4):870–877, 2011.

[75] M Kimura. The Neutral Theory of Molecular Evolution. Cambridge University
Press, 1985.

[76] Motoo Kimura. Evolutionary rate at the molecular level. Nature, 217(5129):624–
626, 1968.



142

[77] David C Krakauer and Joshua B Plotkin. Redundancy, antiredundancy, and
the robustness of genomes. Proceedings of the National Academy of Sciences,
99(3):1405–1409, 2002.

[78] Edo Kussell and Stanislas Leibler. Phenotypic diversity, population growth, and
information in fluctuating environments. Science, 309(5743):2075–8, 2005.

[79] Michael Lachmann and Carl T Bergstrom. The disadvantage of combinatorial
communication. Proceedings of the Royal Society of London B: Biological Sci-
ences, 271(1555):2337–2343, 2004.

[80] Andre Levchenko and Ilya Nemenman. Cellular noise and information transmis-
sion. Current opinion in biotechnology, 28:156–164, 2014.

[81] Richard Levins and Richard C Lewontin. The dialectical biologist. Harvard Uni-
versity Press, 1987.

[82] RC Lewontin and JL Hubby. A molecular approach to the study of genic heterozy-
gosity in natural populations. II. Amount of variation and degree of heterozygosity
in natural populations of Drosophila pseudoobscura. Genetics, 54:595–609, 1966.

[83] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine learning, 2(4):285–318, 1988.

[84] A. Livnat, C. Papadimitriou, J. Dushoff, and M.W. Feldman. A mixability theory
for the role of sex in evolution. Proceedings of the National Academy of Sciences,
105(50):19803–19808, 2008.

[85] Adi Livnat, Christos Papadimitriou, Jonathan Dushoff, and Marcus W Feldman.
A mixability theory for the role of sex in evolution. Proceedings of the National
Academy of Sciences, 105(50):19803–19808, 2008.

[86] Adi Livnat, Christos Papadimitriou, and Marcus W Feldman. An analytical
contrast between fitness maximization and selection for mixability. Journal of
theoretical biology, 273(1):232–234, 2011.

[87] Adi Livnat, Christos Papadimitriou, Nicholas Pippenger, and Marcus W Feldman.
Sex, mixability, and modularity. Proceedings of the National Academy of Sciences,
107(4):1452–1457, 2010.

[88] Adi Livnat, Christos Papadimitriou, Aviad Rubinstein, Gregory Valiant, and
Andrew Wan. Satisfiability and evolution. In Foundations of Computer Science
(FOCS), 2014 IEEE 55th Annual Symposium on, pages 524–530. IEEE, 2014.

[89] Salvador E Luria and Max Delbrück. Mutations of bacteria from virus sensitivity
to virus resistance. Genetics, 28(6):491, 1943.

[90] Saunders Mac Lane. Categories for the working mathematician, volume 5.
Springer Science & Business Media, 1978.

[91] Exu Anton Mates, Robin R Tarter, James C Ha, Anne B Clark, and Kevin J Mc-
Gowan. Acoustic profiling in a complexly social species, the American crow: caws
encode information on caller sex, identity and behavioural context. Bioacoustics,
24(1):63–80, 2015.



143

[92] J Maynard-Smith. Evolution and the Theory of Games. Cambridge University
Press, 1982.

[93] E Mayr. Animal Species and Evolution. Belknap Press, 1963.

[94] Daniel J McDonald. Generalization error bounds for time series. Carnegie Mellon
University Doctoral Dissertation for the Department of Statistics, 2012.

[95] Ruta Mehta, Ioannis Panageas, and Georgios Piliouras. Natural selection as an
inhibitor of genetic diversity: Multiplicative weights updates algorithm and a
conjecture of haploid genetics [working paper abstract]. In Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science, pages 73–73.
ACM, 2015.

[96] Reshef Meir and David Parkes. On sex, evolution, and the multiplicative weights
update algorithm. In Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pages 929–937. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2015.

[97] Dusan Misevic, Charles Ofria, and Richard E Lenski. Sexual reproduction re-
shapes the genetic architecture of digital organisms. Proceedings of the Royal
Society of London B: Biological Sciences, 273(1585):457–464, 2006.

[98] George Molnar and Stephen Mumford. Powers: A study in metaphysics. Oxford
University Press on Demand, 2003.

[99] Pierre-Olivier Montiglio, Tina W Wey, Ann T Chang, Sean Fogarty, and An-
drew Sih. Multiple mating reveals complex patterns of assortative mating by
personality and body size. Journal of Animal Ecology, 85(1):125–135, 2016.

[100] Lynne M Mullen and Hopi E Hoekstra. Natural selection along an environmental
gradient: a classic cline in mouse pigmentation. Evolution, 62(7):1555–1570, 2008.

[101] T. Nagylaki. The evolution of multilocus systems under weak selection. Genetics,
134(2):627–647, 1993.

[102] T. Nagylaki, J. Hofbauer, and P. Brunovskỳ. Convergence of multilocus sys-
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