AN ANALYSIS OF PEDAGOGICAL MOVES FOR FACILITATING

THE DEVELOPMENT OF IN-SERVICE MIDDLE-SCHOOL

MATHEMATICS TEACHERS' RECOGNITION OF REASONING

By

PHYLLIS J. CIPRIANI

A dissertation submitted to the
Graduate School-New Brunswick
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of
Doctor of Philosophy
Graduate Program in Education
Written under the direction of
Carolyn A. Maher
And approved by

New Brunswick, New Jersey
January 2017

ABSTRACT OF THE DISSERTATION

An Analysis of Pedagogical Moves for Facilitating the Development of Inservice Middle-School Mathematics Teachers' Recognition of Reasoning

By PHYLLIS J. CIPRIANI

Dissertation Director:
Carolyn A. Maher

A constructivist approach for teaching and learning mathematics was the foundation for a longitudinal study at Rutgers University in 1987 (Maher, 2011). One of the objectives of the longitudinal study was to provide an environment where students solve problems in collaborative groups (Maher, 2011). Videos from the longitudinal study are stored in the Video Mosaic Collaborative Repository and are resources to use for professional development programs to gain insight in recognizing students' reasoning (Maher et al., 2010).

A qualitative case study was used to examine the effect of a semester-long course entitled Topics in Mathematics Education: A Lesson Study on Reasoning with ten inservice middle-school mathematics teachers from five districts in the southern region of New Jersey during fall 2013. Findings from this study revealed that (1) teachers' expectations of students' abilities increased, particularly with special education students; (2) teachers showed evidence of growth in their abilities to use non-leading questioning and pedagogical practices; and (3) teachers recognized that attending to students' reasoning is a gradual and continual process. Implications of the study and future research recommendations include comparing the results of the other cohorts.

ACKNOWLEDGEMENTS

To Carolyn Maher, words cannot express the gratitude I have for your support, patience, time, and guidance. You are and will always be an inspiration to me.

To Judy Landis, thank you for the privilege of including me in the journey of both the third and the fourth NJPEMS cohort groups. I truly enjoyed the experience.

To Alice Alston, Lesley Morrow, and Arthur Powell; thank you for agreeing to be a part of my committee and for your thoughtful insights of my work. All of your work has greatly inspired me over the years.

To Marjory Palius, Robert Sigley, and Cheryl Van Ness; thank you for helping me in so many ways over the years. You always have gone the extra mile to help me.

To Erica Wright, Will McGowan, and Victoria Krupnik; thank you for being a part of the team to establish codes and complete the verification studies. I always looked forward to our conference calls and I hope that we continue to check in with each other.

To my mother Evelyn, and my father Ralph Cipriani; thank you for your support and many sacrifices to see that my goals were achieved. I know my late father is proud and smiling; and I miss him dearly.

Without the support of all of you, I would never have been able to accomplish this goal. I cannot thank you enough.

TABLE OF CONTENTS

Abstract of the Dissertation ii
Acknowledgements iii
List of Figures xv
List of Tables xviii
List of Appendices xix
CHAPTER 1 - INTRODUCTION
1.1 The Significance of Attending to Students' Mathematical Reasoning 1
1.2 A Common Core State Standards Approach to Students' Mathematical Reasoning 3
1.3 Professional Development (PD) Challenges 5
1.4 The Longitudinal Study at Rutgers 6
1.5 The Video Mosaic Collaborative Repository (VMC) 7
1.6 The Lesson Study on Reasoning Course 8
1.6.1 New Jersey Partnership for Excellence in Middle School Mathematics 9
1.6.2 PD Intervention Model 11
1.7 Research Questions and Purpose 12
CHAPTER 2 - THEORETICAL FRAMEWORK AND LITERATURE REVIEW
2.1 Theoretical Framework 14
2.2 Literature Review 15
2.2.1 The Role of the Instructor 16
2.2.2 The Learning Environment 20
2.2.3 Professional Development Models 24

CHAPTER 3 - METHODOLOGY

3.1 Research Context 41
3.2 PD Intervention Model 42
3.2.1 Definitions 42
3.2.2 Assessments 42
3.2.3 Cycles of Tasks 43
3.2.3.1 First Cycle 43
3.2.3.2 Second Cycle 44
3.2.3.3 Third Cycle 45
3.2.4 Components 45
3.2.5 Timeline 45
3.3 Participants 46
3.4 Data Sources 47
3.4.1 Beliefs Pre- and Post-Assessment 48
3.4.2 Pre- and Post-Assessment Responses to Gang of Four VMC Video. 49
3.4.3 Videotaped Meetings 50
3.4.4 Reflection Discussion 50
3.4.5 Interviews 50
3.4.6 Teachers' Discussion of Tasks 51
3.4.7 Students’ Work Samples 52
3.4.8 On-line Discussion 52
3.4.9 Final Teacher Projects 52
3.5 Reasoning Strategies Framework for Analysis 53
3.6 Instructor Moves Framework for Analysis 62
3.7 Beliefs Framework for Analysis 66
3.7.1 Categories of Beliefs 67
3.7.2 Intervention Data 68
3.8 Summary 69
CHAPTER 4 - CYCLE 1 SESSION SUMMARY AND ANALYSIS
4.1 Unit 1: Initial On-Campus Meeting 9/7/13 70
4.1.1 Teachers Work on First Cycle Task. 71
4.1.2 Teachers' Discussion of First Cycle Task Solutions 73
4.2 Unit 2: On-line Discussion and In-District Classroom Visit 76
4.2.1 On-line Discussion 9/11/13 to 9/16/13 76
4.2.1.1 First Question Responses 76
4.2.1.2 Second Question Responses 77
4.2.2 In-District Classroom Visit 9/17/13 79
4.3 Unit 3: On-line Discussion 9/18/13 to 9/24/13 85
4.3.1 First Question Responses 86
4.3.2 Second Question Responses 87
4.3.3 Third Question Responses 89
4.3.4 Fourth Question Responses 90
4.4 Unit 4: On-line Discussion 9/25/13 to 10/1/13 91
4.4.1 First Question Responses 93
4.4.2 Second Question Responses 93
4.4.3 Third Question Responses 95
4.4.4 Fourth Question Responses 97
4.5 Unit 5: Regional Meeting and On-line Discussion 98
4.5.1 Part 1: Regional Meeting 10/2/13 Discussion of Students' Work 98
4.5.2 Part 2: On-line Discussion 10/3/13 to 10/8/13 117
4.5.2.1 First Question Responses 117
4.5.2.2 Second Question Responses 119
4.6 Summary 120
CHAPTER 5 - CYCLE 2 SESSION SUMMARY AND ANALYSIS
5.1 Unit 5: Regional Meeting and On-line Discussion 122
5.1.1 Part 3: Regional Meeting 10/2/13 Teachers Work on Cycle 2 Task 122
5.1.2 Part 4: On-line Discussion 10/3/13 to 10/8/13 3rd Question Responses 127
5.2 Unit 6: On-line Discussion10/9/12 to 10/15/13 131
5.3 Unit 7: On-line Discussion 10/16/13 to 10/21/13 135
5.3.1 First Question Responses 136
5.3.1.1 Part 1 First Question Responses 136
5.3.1.2 Part 2 First Question Responses 138
5.3.2 Second Question Responses 138
5.3.3 Third Question Responses 140
5.3.3.1 Part 1 Third Question Responses 141
5.3.3.2 Part 2 Third Question Responses 142
5.4 Unit 8: Regional Meeting 10/22/13 142
5.4.1 Part 1: Discussion of In-District Classroom Visit. 142
5.4.2 Part 2: Discussion of Students’ Work Samples 148
5.5 Summary 164
CHAPTER 6 - CYCLE 3 SESSION SUMMARY AND ANALYSIS
6.1 Unit 8: Part 3: Teachers Work on 3rd Cycle, Regional Meeting 10/22/13 167
6.1.1 Building Three-Tall Towers, Selecting from Three Colors Problem 167
6.1.2 Ankur's Challenge 172
6.2 Unit 8: Part 4: On-line Discussion 10/23/13 to 10/29/13 175
6.2.1 First Question Responses 176
6.2.2 Second Question Responses 177
6.2.3 Third Question Responses 179
6.3 Unit 9: On-line Discussion 10/30/13 to 11/5/13 179
6.3.1 First Question Responses 180
6.3.1.1 Part 1 First Question Responses 180
6.3.1.2 Part 2 First Question Responses 183
6.3.2 Second Question Responses 185
6.4 Unit 10: On-line Discussion 11/6/13 to 11/12/13 187
6.4.1 First Question Responses 188
6.4.1.1 Part 1 First Question Responses 188
6.4.1.2 Part 2 First Question Responses 190
6.4.2 Second Question Responses 192
6.4.2.1 Part 1 Second Question Responses 192
6.4.2.2 Part 2 Second Question Responses 193
6.5 Unit 11: Regional Meeting 11/20/13 and On-line Discussion 194
6.5.1 Part 1: In-District Classroom Visit 11/20/13 194
6.5.2 Part 2: Discussion of Students' Work Samples 200
6.6 Summary 223
CHAPTER 7 -REASONING ANALYSIS
7.1 Heuristics or Strategies 224
7.1.1 Teacher's Task Work 225
7.1.1.1 Teachers' Heuristics Used by Cycle 225
7.1.1.2 Summary of Teachers' Heuristics Used 229
7.1.2 On-line Discussion of Research Students’ Work 230
7.1.2.1 Research Students' Heuristics Used by Cycle 230
7.1.2.2 Summary of Research Students' Heuristics 231
7.1.3 Analysis of In-District Classroom Visits 231
7.1.3.1 Students' Heuristics Used from Classroom Visits by Cycle 231
7.1.3.2 Summary of Classroom Visit Students’ Heuristics 232
7.1.4 Current Students’ Task Work 232
7.1.4.1 Current Students' Heuristics Used by Cycle 233
7.1.4.2 Summary of Current Students' Heuristics 234
7.1.5 Summary of Heuristics 234
7.2 Forms of Argument. 235
7.2.1 Teacher's Task Work 235
7.2.1.1 Teachers’ Forms of Argument Used by Cycle 236
7.2.1.2 Summary of Teachers' Forms of Argument 237
7.2.2 Teachers' On-line Discussion of Research Students’ Work 237
7.2.2.1 Research Students' Forms of Argument Used by Cycle 237
7.2.2.2 Current Students’ Heuristics Used by Cycle 238
7.2.3 Analysis of In-District Classroom Visits 238
7.2.3.1 Students' Forms of Argument Used by Cycle 238
7.2.3.2 Summary of Students' Forms of Argument 239
7.2.4 Current Students’ Task Work 239
7.2.4.1 Current Students' Forms of Argument Used by Cycle 239
7.2.4.2 Summary of Current Students' Forms of Argument 240
7.2.5 Summary of Forms of Argument 240
7.3 Co-Occurring Heuristics and Arguments 241
7.4 Teachers' Evaluation of Arguments 242
7.4.1 Teachers' Evaluation of Arguments of Teachers' Own Work 243
7.4.1.1 Evaluation of Arguments by Cycle of Teachers' Own Work 243
7.4.1.2 Summary of Evaluation of Arguments of Teachers' Work 248
7.4.2 Teachers' Evaluation of Arguments of Research Students' Work 248
7.4.2.1 Evaluation of Arguments by Cycle of Research Students' Work. 249
7.4.2.2 Summary of Evaluation of Arguments of Research Students’ Work 251
7.4.3 Teachers' Evaluation of Arguments of Students' Work from Class Visits 252
7.4.3.1 Evaluation of Arguments by Cycle from Class Visits 252
7.4.3.2 Summary of Evaluation of Arguments from Class Visits 255
7.4.4 Teachers' Evaluation of Arguments of Current Students' Work. 255
7.4.4.1 Evaluation of Arguments by Cycle of Current Students' Work 255
7.4.2.2 Summary of Evaluation of Arguments of Current Students' Work 260
7.4.5 Summary of Teachers' Evaluation of Arguments 260
7.5 Gang of Four Pre- and Post-Assessment 261
7.5.1 Gang of Four Pre-Assessment Case Arguments 263
7.5.2 Gang of Four Pre-Assessment Inductive Arguments 265
7.5.3 Gang of Four Post-Assessment Case Arguments 267
7.5.4 Gang of Four Post-Assessment Inductive Arguments 269
7.5.5 Summary of Gang of Four Pre-and Post-Assessment. 272
7.6 Summary of Reasoning Analysis 272
CHAPTER 8 -INSTRUCTOR MOVES ANALYSIS
8.1 Instructor's Questions 274
8.1.1 Questions Regarding Teachers’ Work 275
8.1.1.1 Questions Regarding Teachers' Work by Cycle 275
8.1.1.2 Summary of Questions Regarding Teachers' Work 277
8.1.2 Questions Regarding Research Students' Work 278
8.1.2.1 Questions Regarding Research Students' Work by Cycle 278
8.1.2.2 Summary of Questions Regarding Research Students' Work 279
8.1.3 Questions Regarding Students' Work from Class Visit 279
8.1.3.1 Evaluation of Arguments by Cycle of Current Students’ Work 279
8.1.3.2 Summary of Questions Regarding Students' Work from Class Visit 280
8.1.4 Questions Regarding Current Students' Work 280
8.1.4.1 Questions Regarding Current Students’ Work by Cycle 281
8.1.4.2 Summary of Questions Regarding Students' Work from Class Visit 282
8.1.5 Summary of Instructor's Questions 282
8.2 Instructor's Pedagogical Practices 284
8.2.1 Pedagogical Practices Regarding Teachers' Work 285
8.2.1.1 Practices Regarding Teachers' Work by Cycle 285
8.2.1.2 Summary of Practices Regarding Teachers' Work 286
8.2.2 Pedagogical Practices Regarding Research Students’ Work 287
8.2.2.1 Practices Regarding Research Students' Work by Cycle 287
8.2.2.2 Summary of Practices Regarding Research Students' Work 291
8.2.3 Pedagogical Practices Regarding Students' Work from Class Visit 291
8.2.3.1 Practices Regarding Students’ Work from Class Visit by Cycle 291
8.2.3.2 Summary of Practices Regarding Students' Work from Class Visits 293
8.2.4 Pedagogical Practices Regarding Current Students' Work 293
8.2.4.1 Practices Regarding Current Students’ Work by Cycle 293
8.2.4.2 Summary of Practices Regarding Current Students' Work 294
8.2.5 Summary of Instructor's Pedagogical Practices 294
8.3 Instructor's Representations Used 296
8.4 Summary of Instructor Moves Analysis 298
CHAPTER 9 -TEACHERS' BELIEFS SUMMARY AND ANALYSIS
9.1 Teachers' Scores for Subset of Beliefs Statements 303
9.1.1 Beliefs Pre-Assessment Score Results 304
9.1.2 Beliefs Post-Assessment Score Results 305
9.2 Teachers' Beliefs by Statement Category 305
9.2.1 Expectations and Abilities 306
9.2.2 Mathematical Discourse 307
9.2.3 Concepts and Procedures 308
9.2.4 Manipulatives 310
9.2.5 Student and Teacher Roles 310
9.2.6 Differentiated Instruction 312
9.3 Stability and Potential Growth of Teachers' Beliefs 313
9.4 Summary of Teachers' Beliefs 318
CHAPTER 10 -NARRATIVES OF TEACHERS
10.1 T 1 319
10.2 T 2 324
10.3 T 3 331
10.4 T4 337
10.5 T 5 343
10.6 T6 348
10.7 T7 354
10.8 T 8 360
10.9 T9 365
10.10 T 10 369
10.11 Summary of Teacher Narratives 374
CHAPTER 11 -FINDINGS
11.1 Teachers' Recognition of Reasoning 376
11.1.1 Findings from Heuristics/Strategies 377
11.1.1.1 Opposites 377
11.1.1.2 Control for a Variable 378
11.1.1.3 Elevator 378
11.1.2 Findings from Forms of Argument 379
11.1.2.1 Case Arguments 379
11.1.2.2 Recursive Arguments 381
11.1.2.3 Inductive Arguments 382
11.1.2.4 Rule Arguments 383
11.1.3 Summary of Teachers' Recognition of Reasoning 383
11.2 Findings from Instructor's Moves 385
11.2.1 Non-Leading Questioning. 385
11.2.2 Reasoning as a Process 387
11.2.3 Summary of Instructor Moves 392
11.3 Teachers' Beliefs 393
11.3.1 Change in Expectations of Special Education Students 393
11.3.2 Teachers' Beliefs Regarding Their Pedagogical Improvement 397
11.3.2.1 Non-Leading Questioning 397
11.3.2.2 Recognition of Convincing Arguments 398
11.3.3 Summary of Teachers' Beliefs 399
11.4 Summary of Overall Findings 399
CHAPTER 12 -CONCLUSIONS
12.1 Conclusion Summary 401
12.2 Implications and Limitations 406
12.3 Further Research Suggestions 409
REFERENCES 412

List of Figures

Figure 3.1 Opposite 4-tall towers 54
Figure 3.2 Cousin 3-tall towers 54
Figure 3.3 Elevator Pattern of 3-tall towers 55
Figure 3.4 Staircase Pattern of 5-tall towers 56
Figure 4.1 First Discussed Student's Work from 9/17/13 Class Visit. 80
Figure 4.2 Tower Drawing, 2nd Discussed Student's Work from 9/17/13 Visit 83
Figure 4.3 Tower Drawing, 3rd Discussed Student's Work from 9/17/13 Visit 84
Figure 4.4 Tower Drawing, 4th Discussed Student's Work from 9/17/13 Visit 84
Figure 4.5 T1's Cycle 1 Student Work Sample 1 99
Figure 4.6 T1’s Cycle 1 Student Work Sample 2 100
Figure 4.7 T1's Cycle 1 Tower Drawing, Student Work Sample 3 101
Figure 4.8 T2’s Cycle 1 Tower Drawing, Student Work Sample 1 102
Figure 4.9 T2’s Cycle 1 Tower Drawing Student Work Sample 3 103
Figure 4.10 T3's Cycle 1 Student Work Sample 1 104
Figure 4.11 T3’s Cycle 1 Tower Drawing Student Work Sample 2 105
Figure 4.12 T3's Cycle 1 Tower Drawing Student Work Sample 3 105
Figure 4.13 T4's Cycle 1 Student Work Sample 1 106
Figure 4.14 T4’s Cycle 1 Tower Drawing, Student Work Sample 2 107
Figure 4.15 T6’s Cycle 1 Student Work Sample 1 110
Figure 4.16 T8’s Cycle 1 Tower Drawing, Student Work Sample 1 113
Figure 4.17 T8's Cycle 1 Tower Drawing, Student Work Sample 2. 114
Figure 4.18 T8’s Cycle 1 Tower Drawing, Student Work Sample 3. 115
Figure 4.19 T10's Cycle 1 Student Work Sample 1 118

List of Figures Continued

Figure 5.1 First Discussed Student's Work from 10/22/13 Class Visit
 143

Figure 5.2 Second Discussed Student's Work from 10/22/13 Class Visit 146
Figure 5.3 List from 2nd Discussed Student's Work from 10/22/13 Visit 147
Figure 5.4 T6's Cycle 2 Pizza Combinations List, Student Work Sample 3 149
Figure 5.5 T1’s Cycle 2 Student Work Sample 1 150
Figure 5.6 T5’s Cycle 2 Student Work Sample 2 152
Figure 5.7 T8's Cycle 2 Drawing, Student Work Sample 1 152
Figure 5.8 T8's Cycle 2 Drawing, Student Work Sample 2 154
Figure 5.9 T8's Cycle 2 Pizza Combinations List, Student Work Sample 3 155
Figure 5.10 T7’s Cycle 2 Student Work Sample 1. 156
Figure 5.11 T7’s Cycle 2 Student Work Sample 2 157
Figure 5.12 T4’s Cycle 2 Student Work Sample 1 158
Figure 5.13 T4’s Cycle 2 Student Work Sample 2 159
Figure 5.14 T3's Cycle 2 Student Work Sample 1 159
Figure 5.15 T3's Cycle 2 Student Work Sample 2 160
Figure 5.16 T2's Cycle 2 Student Work Sample 1 161
Figure 5.17 T2’s Cycle 2 Student Work Sample 2 162
Figure 5.18 T9’s Cycle 2 Student Work Sample 2 164
Figure 6.1 Cycle 3 Three-Tall Arranged Towers, Teachers' Work from T7 \& T8 168
Figure 6.2 Cycle 3 Three-Tall Arranged Towers, Teachers' Work from T2 \& T3 170
Figure 6.3 Cycle 3 Three-Tall Arranged Towers, Teachers' Work from T4 \& T6 171
Figure 6.4 Cycle 3 Ankur's Challenge, Teachers' Work from T9 \& T10 172
Figure 6.5 First Discussed Student Work from 11/20/13 Class Visit 195

List of Figures Continued

Figure 6.6 Second Discussed Student Work from 11/20/13 Class Visit 197
Figure 6.7 Third Discussed Student Work from 11/20/13 Class Visit 199
Figure 6.8 T10's Cycle 3, Three-Tall Tower Problem, Student Sample 1 200
Figure 6.9 T2’s Cycle 3, Three-Tall Tower Problem, Student Sample 1...................... 203
Figure 6.10 T3's Cycle 3, Three-Tall Tower Problem, Student Sample 1 page 1........... 205
Figure 6.11 T3's Cycle 3, Three-Tall Tower Problem, Student Sample 1 page 2........... 205
Figure 6.12 T1’s Cycle 3, Three-Tall Towers Examples, Student Sample 1 208
Figure 6.13 T5’s Cycle 3, Three-Tall Towers Drawing, Student Sample 1.................... 211
Figure 6.14 T5's Cycle 3, Three-Tall Towers Drawing, Student Sample 2 212
Figure 6.15 T8’s Cycle 3, Group 1 Drawing 3-Tall Towers, Student Sample 1 213
Figure 6.16 T8’s Cycle 3, Group 2 Drawing 3-Tall Towers, Student Sample 1 213
Figure 6.17 T8's Cycle 3, Group 3 Drawing 3-Tall Towers, Student Sample 1 214
Figure 6.18 T8’s Cycle 3, Group 4 Drawing 3-Tall Towers, Student Sample 1 214
Figure 6.19 T8’s Cycle 3, Three-Tall Towers, Student-Helper's Sample 3 215
Figure 6.20 T7’s Cycle 3 Groups 1, 2, \& 3 Three-Tall Towers, Student Sample 2 219
Figure 6.21 T7’s Cycle 3 Groups 4 \& 5 Three-Tall Towers, Student Sample 2 220
Figure 7.1 Towers Arranged by T9 and T10 ... 225
Figure 7.2 Towers Arranged by T6 and T7 ... 226

List of Tables

Table 3.1: Classroom Demographics 46
Table 3.2: Data Sources and Collection Dates 48
Table 7.1: Frequencies of Heuristic/Strategies for Three Cycles 224
Table 7.2: Frequencies of Argument Forms for Three Cycles 235
Table 7.3: Frequencies of Co-Occurrences for Three Cycles 242
Table 7.4: Frequencies of Teachers' Evaluations of Arguments 243
Table 7.5: Comparison of Reasoning Arguments in Gang of Four Assessments 263
Table 8.1: Frequencies of Instructor Moves by Context and Cycle 274
Table 8.2: Frequency of Instructor Moves by Context. 298
Table 8.3: Frequency of Instructor Moves by Cycle 300
Table 9.1: Teachers' Scores for Belief Statement Consistency with the Standards 304
Table 9.2: Teachers' Scores from Beliefs for Expectations and Student Abilities 307
Table 9.3: Teachers' Scores from Beliefs for Concepts and Procedures 309
Table 9.4: Teachers' Scores from Beliefs for Student and Teacher Roles 312
Table 9.5: Teachers' Scores from Beliefs for Differentiated Instruction 313
Table 9.6: Pre- and Post-Assessment Stability of Teachers' Beliefs. 314
Table 9.7: Teachers' Growth Potential on the Beliefs Pre-Assessment 316

List of Appendices

Appendix A: Beliefs Assessment 419
Appendix B: Subset of Beliefs 424
Appendix C: Gang of Four Assessment. 425
Appendix D: Gang of Four Transcript 426
Appendix E: Instructor Interview Questions and Transcript 445
Appendix F: Reflection Discussion Questions 12/7/13 457
Appendix G: Cycle Activities 458
Cycle 1 458
Cycle 2 459
Cycle 3 460
Appendix H: Instructor Moves Framework for Analysis 461
Appendix I: Reasoning Strategies Framework for Analysis. 462
Appendix J: Final Project Samples 463
Appendix K: Descriptions of Recursive Arguments from Gang of Four Assessments 734
Appendix L: Transcripts 735

"Children must be taught how to think, not what to think."
 - Margaret Mead, Ph.D. in cultural anthropology

Chapter 1 - Introduction

1.1 The Significance of Attending to Students' Mathematical Reasoning

As states adopted the Common Core State Standards (CCSS) for Mathematical Content and Practice, teachers in those states were expected to implement the CCSS into their classroom lessons (National Governors Association Center for Best Practices and Council of Chief State School Officers (NGA \& CCSSO), 2010). To successfully implement the mathematical content and practices of the CCSS, teachers must facilitate a technology-rich classroom environment that attends to students' mathematical reasoning (NGA \& CCSSO, 2010). As a result, the development of teachers' beliefs, ideas, practices, and professional knowledge has generated much attention (Ball, Ben-Peretz, \& Cohen, 2014; Battey \& Franke, 2008; Borko, Mayfield, Marion, Flexer, \& Cumbo, 1997; Maher, Landis, \& Palius, 2010).

To meet the needs of teachers and students, effective professional development (PD) intervention programs emphasizing nontraditional pedagogical approaches such as constructivism must be provided. The data from one such intervention program with New Jersey middle school teachers will be analyzed based on a qualitative case study. The results of this case study will potentially fill a gap in research by providing knowledge about effective interventions and insight for facilitating practitioners' knowledge of recognizing students' mathematical reasoning.

Several publications of NCTM have reported that the emphasis on mathematical reasoning has increasingly grown in intensity (NCTM, 1980, 1989, 1991, 1995, 2000, 2007, 2009). One publication from the NCTM (2009) called Focus in High School

Mathematics Reasoning and Sense Making reported that mathematical reasoning "can take many forms, ranging from informal explanation and justification to formal deduction, as well as inductive observations" (p. 4). Although mathematical reasoning is represented in several forms, attending to students' mathematical reasoning shall be defined as the actions or moves incorporated into the lesson which promote and encourage students to actively engage with other students and the teacher to think and reason about a given task.

Debates on attending to students' mathematical reasoning can be traced back as early as the forties when Buell (1944) wrote a commentary in the Mathematics Teacher supporting the idea of teaching mathematics procedurally. Opposing this notion, Wheat (1945) responded by defining meaning in mathematics as "knowing what one does when he does it" (p.100) and made a strong argument for teaching mathematics with meaning. The value of teaching mathematics more meaningfully was also supported by Brownell (1947) who posited that traditional mathematics programs "failed to develop arithmetical competence" (p. 265).

One example of this failure to develop competence in mathematics can be observed in a classic study done by Erlanger (1973) about a sixth grade boy named Benny. Benny was considered to be excelling in a program called the Individually Prescribed Instruction (IPI) (Erlanger, 1973). When Benny was questioned by a researcher, several misconceptions surfaced about the mathematics he was learning such as claiming " $2 / 1+1 / 2$ was equal to one, and $2 / 10$ as a decimal was 1.2 " (Erlanger, 1973, p. 7).

Maher \& Alston (1989) also addressed mathematical misconceptions with a fifth grade student named Ling. Ling was participating in a summer enrichment program and struggled to find half of one- third using division. Ling was unable to connect the meaning to represent the relationship between these numbers symbolically by writing three incorrect division attempts using the wrong procedures (Maher \& Alston, 1989). However, when Ling used manipulatives shaped as hexagons, parallelograms, trapezoids, and equilateral triangles to model the difference, she correctly solved the problem that one-half was bigger than one-third by one-sixth (Maher \& Alston, 1989).

1.2 A CCSS Approach to Learning and Teaching Mathematics

These studies suggest how students can make major errors in learning mathematics when teachers emphasize procedural learning rather than meaningful learning (Erlwanger, 1973, Maher \& Alston, 1989). Making mathematics learning more meaningful promotes reasoning and problem solving emphasized in a CCSS approach to learning and teaching mathematics (NGA \& CCSSO, 2010). A CCSS approach to learning and teaching mathematics, allows for participating schools to be supplied with content standards of the mathematical knowledge necessary to attain success in mathematics for students at the postsecondary level (Achieve, 2015; Achieve the Core, 2015; Cipriani, 2015; Heck, Weiss, \& Pasley, 2011; NGA \& CCSSO, 2010; Rothman, 2011; School Improvement Network (SIN), 2015).

The NGA and the CCSSO collaborated with teachers, school administrators and other consultants to form the CCSS (Achieve, 2015; Achieve the Core, 2015; Cipriani, 2015; Heck et al., 2011; NGA \& CCSSO, 2010). Their mission was to provide students with a framework in order to be prepared for college and work after high school
(Achieve, 2015; Achieve the Core, 2015; Cipriani, 2015; NGA \& CCSSO, 2010; SIN, 2015). This mission involved three main shifts to successfully transition to a CCSS approach to learning and teaching mathematics (Achieve the Core, 2015; NGA \& CCSSO, 2010).

The first shift involves decreasing the number of content standards so that more time and energy is used to form a strong conceptual foundation of understanding (Achieve the Core, 2015, NGA \& CCSSO, 2010). A second shift links topics throughout the grade levels by connecting prior knowledge to newly learned knowledge (Achieve the Core, 2015, NGA \& CCSSO, 2010). The third shift involves rigor where higher expectations of students allows for the application of knowledge in real-world situations to use higher-order reasoning (Achieve the Core, 2015, NGA \& CCSSO, 2010). These shifts are essential in order to implement a CCSS approach to mathematics learning and teaching which emphasizes mathematical reasoning and problem solving (Achieve the Core, 2015, NGA \& CCSSO, 2010).

However, the high-school standards are organized differently from the kindergarten through eighth-grade standards. At the high school level, the standards are not listed as ninth, tenth, eleventh, or twelfth-grade standards (NGA \& CCSSO, 2010). Rather, the standards are divided into content topics which include number and quantity, algebra, functions, geometry, statistics and probability, and modeling (NGA \& CCSSO, 2010). For the kindergarten through eighth-grade standards, each of the grade levels of standards are separately listed (NGA \& CCSSO, 2010).

There are also eight CCSS for Mathematical Practice that teachers are expected to incorporate within their lessons as much as possible (NGA \& CCSSO, 2010). The CCSS
for Mathematical Practice explicitly describe how students should "engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years" (NGA \& CCSSO, 2010, p. 8). The eight mathematical practices include sense-making and persevering to solve problems, abstract and quantitative reasoning, making and judging mathematical arguments, mathematical modeling, using tools in appropriate and strategic contexts, making mathematical arguments precisely, looking for patterns or structure, and evaluating results to see if they are reasonable (NGA \& CCSSO, 2010). This focus on teachers attending to students' reasoning will help to make the teaching and learning of mathematics more meaningful (NGA \& CCSSO, 2010).

1.3 PD Challenges

The idea of making the teaching and learning of mathematics more meaningful has created certain challenges for school administrators. Administrators must now address how to prepare teachers to successfully implement the CCSS by restructuring lessons and classroom environments while facing challenges regarding time and budget cuts (Rothman, 2011). In fact, school districts must purchase new assessments that align to the CCSS (Leinwand, 2012; Rothman, 2011). These assessments come from the Partnership for Assessments of College and Career Readiness (PARCC) and the Smarter Balanced Assessment Consortium (SBAC) (Leinwand, 2012; Rothman, 2011). Because the testing contracts are costly to districts, funding teacher preparation in implementing the CCSS are a major challenge for school districts to overcome (Leinwand, 2012; Rothman, 2011).

Moreover, the CCSS does not provide pedagogical strategies and practitioners still have the freedom to decide the order and way the CCSS are taught (NGA \& CCSSO, 2010). Even with the pedagogical freedom to decide this, the CCSS do not provide specific methods for teaching special education students, limited English-speaking learners, or students performing below their grade level (NGA \& CCSSO, 2010).

Because the CCSS does not provide pedagogical strategies, a plethora of practical issues for both administrators and teachers is created. The practical issues include curriculum, teacher effectiveness, and assessments (Leinwand, 2012). To address practical issues, Rothman (2011) recommended revising curriculum, professional development, and assessments claiming that improved student learning will occur "only when teachers make the Standards part of their everyday classroom instruction, when they are prepared to teach them effectively, when the Standards are aligned with assessments that measure them faithfully, and when higher education institutions integrate the Standards into placement decisions and teacher education programs (and parents understand them)" (p. 119).

1.4 The Longitudinal Study at Rutgers

A longitudinal study that originally started as a PD intervention for mathematics teachers began in 1987 at Rutgers University (Maher, 2011b). The longitudinal study focused on "students building meaning of mathematical ideas and working collaboratively with each other" (Maher, 2011b, p. 5). In this study, students were videotaped participating in solving mathematical problems from first grade through high school (Maher, 2011b). In addition, these students had further discussions with researchers while in college and also after college (Maher, 2011b). Myriad research
studies at Rutgers University originated from the longitudinal study (Alston \& Davis, 1996; Francisco \& Maher, 2011; Francisco, Maher et al., 2005; Maher, 1996, 2011a, 2011b; Maher et al., 2011a, 2011b; Martino \& Maher, 1999; Palius \& Maher, 2011).

One of the math strands for the longitudinal study included investigations in combinatorics tasks (Maher et al., 2010). These tasks differed from the existing school curriculum in that they contained mathematical content that was not previously studied in school and that they evoked justifications for their solutions (Maher, 2011b). The longitudinal study included the use of problems in combinatorics that were open-ended and different from the standard curriculum (Maher, 2011b). The problems used throughout the longitudinal study are listed in Appendix A of the book Combinatorics and Reasoning: Representing, Justifying and Building Isomorphisms (Maher, 2011b). Some of the problems included finding how many different outfits can be made from three different colored shirts and two different colored jeans; finding all possible four-tall towers that could be made selecting from two colors of unifix cubes ${ }^{\text {TM }}$; finding how many different pizza combinations could be made selecting from four toppings; and finding the shortest route and the number of routes to three different points on a grid (Maher, 2011b).

1.5 The Video Mosaic Collaborative Repository

Many of the video-taped hours from the longitudinal study at Rutgers resulted from research funded by the National Science Foundation ${ }^{1}$. A subset of this videotaped data is currently stored in the Video Mosaic Collaborative repository (VMC are available resources for both pre-service and in-service teachers (see: www.videomosaic.org).

[^0]Video-taped data of students' reasoning while engaging in various mathematical tasks from elementary grades through high school can be accessed, along with metadata such as transcripts, written work, and an Analytic tool, also developed from NSF funding ${ }^{2}$.

For this case study, videos from the VMC were used by the instructor in the PD intervention to show teachers how the tasks were implemented in other classes. Video was also collected by this researcher from the PD intervention sessions along with teacher work and the work of their students to trace teachers' recognition of students' reasoning.

1.6 The Lesson Study on Reasoning Course

The purpose of this qualitative case study is to analyze the effect of a PD intervention used in a course for middle-school mathematics teachers at the Rutgers University Graduate School of Education called Topics in Mathematics Education: A Lesson Study on Reasoning. The objective was to help teachers learn to recognize and analyze students' mathematical reasoning in doing mathematics.

The Lesson Study on Reasoning course was an adaptation of the model from Catherine Lewis (2000). In 1993, Lewis (2000) was observing science classrooms in about fifty elementary schools in Japan and observed many similarities in the way science was taught. The Japanese teachers used an interesting activity or problem on a topic and encouraged students to explore the topic with hands-on experiments and topic and encouraged students to explore the topic with hands-on experiments and discussions of their findings. This pedagogy helped to improve the conceptual understanding of the

[^1]topic which spanned over ten to twelve lessons (Lewis, 2000; Linn, Lewis, Tsuchida \& Songer, 2000). This Japanese model was the foundation for Lewis's Lesson Study model which included a full cycle of teachers working collaboratively to plan, observe, analyze and discuss student responses, and revise the Lesson Study model which included a full cycle of teachers working collaboratively to plan, observe, analyze and discuss student responses, and revise instruction (Lewis, 2000; Linn, Lewis, Tsuchida \& Songer, 2000).

The PD intervention studied for this research is a modification of the Lewis model. The PD intervention model was implemented with middle-school mathematics teachers from New Jersey that were participants in a special project. This project was called the New Jersey Partnership for Excellence in Middle School Mathematics (NJPEMSM).

1.6.1 NJPEMSM

The NJPEMSM had the goal of preparing middle-school mathematics teachers from New Jersey to have a deeper understanding of mathematics, to involve their students in more effective engagement in learning mathematics, and to become facilitators of information by sharing their knowledge and experience with students and colleagues (NJPEMSM, 2009) ${ }^{3}$. The program grant was for five years beginning in 2009 adding another cohort of teachers each year. During fall 2013, the participants were members of the fourth cohort of project teachers.

The teachers selected for this program were experienced in-service teachers. Different cohorts of teachers were recruited and offered fellowships to complete all but

[^2]nine credits of a program leading to a master's degree in mathematics education. Participants who completed the NJPEMSM program received a middle-grades mathematics specialization endorsement (NJPEMSM, 2009). For participating in the NJPEMSM (2009), teachers were able to have tuition and student fees waived for seven masters-level courses at Rutgers University, receive stipends after successfully completing summer institutes, and use the courses towards a Master's degree in Mathematics Education after successful admission to the Graduate School of Education.

The required program for teachers lasted twenty months and included seven graduate courses offered by the Graduate School of Education at Rutgers University (NJPEMSM, 2009). One of these seven courses is called Topics in Mathematics Education: A Lesson Study on Reasoning. This course was designed and conducted by researchers at the Robert B. Davis Institute for Learning (RBDIL) in the Graduate School of Education at Rutgers University for the NSF funded research project where a PD intervention was designed to facilitate building teachers' knowledge of recognizing students' reasoning ${ }^{4}$. The goal for the teachers enrolled in this lesson study intervention was to provide a series of experiences based on research where teachers participated in doing the mathematical tasks, implemented the tasks with students, watched VMC videos of the tasks being implemented, and discussed the findings (Landis, 2013).

Twenty-eight teachers registered for the Lesson Study on Reasoning course in 2013 and the teachers were divided into three separate groups. Two groups included the

[^3]teachers in the Northern and central New Jersey regions and were instructed by Dr. Alice Alston. The northern and central regions included eighteen teachers from Berkeley Heights, Carteret, Edison, Elizabeth, Franklin, Linden, North Brunswick, Orange, Plainfield, and Union Township. The third group was the southern region instructed by Dr. Judy Landis.

The southern region of New Jersey included ten teachers from Long Branch, Matawan-Aberdeen, Old Bridge, Sayreville, and Toms River (Landis, 2013). My research data comes from observations of the aforementioned southern region group of ten teachers and the instructor in one section of the fall 2013 course. The southern region group was chosen for my source of data research because I lived in the proximity of the southern region during the time of the intervention, which enabled me to attend all the meetings on time.

1.6.2 The PD Intervention Model

Through the duration of the four month course, the southern region teachers attended were expected to participate in three cycles of tasks. The three cycles of tasks were chosen from the combinatorics field of mathematics. For each of the three task cycles, the participants worked in small groups on mathematical tasks and then discussed their task solutions, made one original online post responding to the assigned questions, VMC videos, and readings from a previous implementation of the same tasks with other students, made at least two additional posts responding to two other participants' original posts, observed and discussed the implementation from the in-district classroom visits with students, implemented the same tasks with their own students, and discussed
examples of student work teachers shared after the implementation of these mathematical tasks in their own classes at the regional meetings.

1.7 Research Purpose and Questions

This qualitative case study will describe the impact of the PD intervention model on the fourth cohort of teachers from the NJPEMSM program. The purpose is to study the obstacles and successes experienced during this PD intervention of ten middle-school mathematics teachers in the southern region of New Jersey by examining how the teachers' identified reasoning forms from their own solutions to the mathematical tasks, their students' solutions to the same tasks, and other students' solutions to the same tasks after viewing VMC videos and reading articles about the research students' work.

The reasoning forms will also be identified and analyzed for any changes from the teachers' pretest responses to the posttest responses to the Gang of Four VMC video. Other analyses for this study will identify any evidence that the instructor's moves during the problem-solving sessions appeared to impact the teachers' knowledge construction while working on the mathematical tasks. Also, any changes in responses from the Beliefs pre and post-tests about the teaching and learning of mathematics will be analyzed.

The study will contribute significant information because relevant opportunities need to be provided that help mathematics educators attend to students' reasoning. Results of this research will provide insight for relevant PD, increased student engagement and achievement, and for making mathematics learning more meaningful. The data sources comprising this research include videos of the meetings, the online discussion course thread, the teacher portfolios, the Beliefs Pre- and Post- Assessment
responses, the Gang of Four Pre- and Post- Assessment responses, instructor interviews, a group interview, and course materials. The following research questions guided the study:

1) What reasoning forms do middle school mathematics teachers identify from the following:
(a) Their solutions to given mathematical tasks during a PD intervention;
(b) Their current students' solutions to the same mathematical tasks implemented in their own classrooms;
(c) The research students' solutions working on the same mathematical tasks from assigned articles to read and VMC videos;
(d) Teachers' pre and post-assessment responses of the reasoning forms used by fourth-grade students to solve mathematical tasks in the Gang of Four VMC video?
2) What pedagogical moves are used by the instructor to facilitate the teachers' knowledge construction about mathematical reasoning as teachers:
(a) Worked on combinatorics tasks;
(b) Attended to research students' reasoning from VMC video and scholarly articles;
(c) Analyzed current students' written task work?
3) In what ways, if any, do the teachers' beliefs about the teaching and learning of mathematics change?

Chapter 2 - Theoretical Framework and Literature Review

2.1 Theoretical Framework

The theoretical lens that frames this case study is based on constructivism. Some views on constructivism as a theory for learning include encouraging students "to hypothesize, try things out, execute mathematical procedures, communicate and defend results, and reflect on the methods selected and the results generated" (Davis, Maher, \& Noddings, 1990, p. 2). Mayer (2004) adds to this description of constructivism by claiming that "educators who wish to use constructivist methods of instruction are often encouraged to focus on discovery learning-in which students are free to work in a learning environment with little or no guidance" (p.14). Other views include students build meaning through the application of prior knowledge and active engagement (Davis, Maher, \& Noddings, 1990). From a more social constructivist perspective, Palincsar (1998) posited that "learning and understanding are regarded as inherently social; and cultural activities and tools (ranging from symbol systems to artifacts to language) are regarded as integral to conceptual development" (p.348).

Early contributions to the constructivist perspective of learning came from Jean Piaget (Noddings, 1990, Tracey \& Morrow, 2012). Noddings (1990) wrote that Piaget had a pragmatic view and "insisted that certain logical structures, developed through the coordination of actions, precede linguistic development and make the construction of linguistic structures possible" (p. 8). An early contributor to social constructivist ideas was Lev Semionovich Vygotsky (Noddings, 1990, Tracey \& Morrow, 2012). Noddings (1990) reported that Vygotsky emphasized that interacting in groups helped to develop
mental ideas. Noddings (1990) also reported that Vygotsky "suggested that children gradually internalize the talk that occurs in groups" (Noddings, 1990, p. 17).

Teaching implications of constructivism include the role of teachers as a facilitator of knowledge where teachers listen to students' thinking without giving specific strategies to use and facilitate discussions by questioning the ideas related to the students' construction of knowledge. Teachers must also arrange the classroom environment to encourage students to share ideas in groups and promote that all students' contributions are valued "with dignity and respect" (Maher, 1996, p. 40).

The framework for this research is based on the PD intervention model which combines constructivist views on teaching and learning mathematics. In the PD intervention, the instructor models how to facilitate participants' recognition of reasoning with particular pedagogical moves so that participants can transform into a facilitator role to implement the same tasks with their own students. The PD intervention model for this research also allows the participants to apply prior knowledge and build on their own conceptual understanding as they provide justifications for their task solutions, view VMC videos and read articles pertaining to the tasks, and to discuss and reflect their ideas with other participants.

2.2 Literature Review

The research on attending to students' reasoning can be grouped in three main sections. The first section that will be discussed is the role of the instructor as a facilitator which involves the moves of the instructor or what the instructor does and says to encourage teachers' reasoning in problem solving. A second section of discussion is the classroom learning environment or how the teacher creates an atmosphere and selects
problems conducive to encouraging students' reasoning in problem solving. The third section discusses several studies that involve PD models structured for attending to students' mathematical reasoning where the role of the instructor and the learning environment are emphasized and significant.

2.2.1 The Role of the Instructor

Noddings (1990) claimed "the cognitive premises of constructivism can dictate only guidelines for teaching" (p. 15). The distinction between constructivism and constructivist teaching is also discussed by Maher (1996). Maher (1996) posited that "the 'constructivist teacher' encourages children to make conjectures and pursue the reasonableness of their ideas by constructing models, comparing them, developing arguments, discussing ideas, and negotiating conflicts while working on problematic situations that either have been presented to them or that they themselves have initiated and extended" (p. 39). To pursue this pedagogical approach, the role of the teacher must transform from a lecturer to a facilitator of knowledge (Maher, 1996).

Maher (1996) gave an example from a classroom session that was part of the longitudinal study where ten-year olds worked on a problem called "Guess My Tower" (p. 30). This problem was structured as a game where the winner had to choose one of four choices and then correctly match this choice with a tower picked from a box that was covered (Maher, 1996). Inside the box were all of the possible three-tall towers that can be made selecting from two colors of red and yellow unifix cubes ${ }^{\text {TM }}$ (Maher, 1996). The four possible winning towers included towers where the colors were all the same, towers with one red only, towers with exactly two reds, and towers with at least two yellows
(Maher, 1996). Students were asked about the choice they made and why their choice would be best as compared to other tower choices (Maher, 1996).

Maher (1996) also discussed six episodes of video data from this problem-solving session that "illustrate the complexity of learning and teaching from a constructivist perspective" (p. 31). The first and second episode involved two students, Matt and Stephanie (Maher, 1996). ${ }^{1}$ In these episodes, the teacher listened and questioned Matt and Stephanie about their ideas to find how many four-tall towers can be made selecting from two colors (Maher, 1996). Questions included why the students were convinced their tower ideas would work and whether there was a more convincing argument for another idea (Maher, 1996).

The third and fourth episodes involved two different students, Milin and Michelle working on the same task of finding how many four-tall towers can be made selecting from two colors (Maher, 1996). During these episodes, the teacher asked Michelle about her understanding of Milin's idea and whether Milin's explanation made sense (Maher, 1996). Milin explained an inductive argument of how he took two of the three-tall towers and removed one unifix cube ${ }^{\mathrm{TM}}$ off each tower (Maher, 1996).

In the fifth episode, the teacher extended the problem to five-tall towers and asked Milin to show that his idea still works (Maher, 1996). The teacher asked if Milin and Michelle would like to share what they learned with Matt and Stephanie and Michelle communicated Milin's idea (Maher, 1996). In the sixth episode, Stephanie had the opportunity to explain to the whole class why the pattern of doubling worked (Maher, 1996). From these episodes, teaching from a constructivist perspective encouraged

[^4]teachers to "facilitate discussions and probe for better understanding of student thinking through appropriate questioning that is related to the students' constructions" (Maher, 1996, p. 39).

Research by Martino and Maher (1999) also emphasized the significance of the questioning and listening by the teacher to promote students' to generalize and justify their mathematical ideas. Generalizing and justifying mathematical ideas were facilitated by the teacher by creating a classroom environment where students explored mathematical tasks and discussed possible solutions with other students (Martino \& Maher, 1999). As the students explored and discussed the solutions to the mathematical tasks, teachers asked questions related to the ideas that students discovered as they participated in the tasks (Martino \& Maher, 1999).

One hundred fifty one students in third, fourth, and fifth grade classrooms including urban, blue collar, and suburban New Jersey school sites were given the opportunity to explore and discuss solutions with other students (Martino \& Maher, 1999). The students from these schools were given two isomorphic tasks during 1992 to 1993 (Martino \& Maher, 1999). The first task included having the students find all possible four-tall towers that could be made using two colors of unifix cubes ${ }^{\mathrm{TM}}$ by working in pairs to convince their partner of their solution (Martino \& Maher, 1999). For the second task, students were asked to find how many different pizza combinations could be made with four toppings (Martino \& Maher, 1999).

Although the third, fourth, and fifth grade students participated in this study, only the data from the third and fourth grade students are analyzed in the paper by Martino and Maher (1999). Martino and Maher (1999) analyzed data from four different episodes of
the third and fourth grade students participating in the tasks. The analyzed data from these examples showed "strong relationships between (1) a teacher's monitoring the progress of a student's constructions of a problem solution and (2) the teacher's posing a timely question which invites or challenges students to revisit earlier thinking, revise it in the light of new experience, and, if appropriate, move forward to deeper, stronger understanding" (Martino \& Maher, 1999, p. 74).

2.2.2 The Learning Environment

According to Schorr and Amit (2005), learning environments are comprised of the classroom atmosphere and the problem-solving activities experienced by the students. The classroom atmosphere and the problem-solving activities experienced by the students result in reasoning or sense-making when students are given the opportunity to "talk about their ideas, reflect on the reasonableness of their solutions (orally and in writing), listen to the solutions of others, discuss different representations of the same problem and the relationship among representations, and share, defend and justify their solutionsorally and in written form" (Schorr \& Amit, 2005, p. 138). Students' thoughts and reflections are valued in this type of classroom environment (Schorr \& Amit, 2005).

A central goal of the Schorr and Amit (2005) research was to study students' modeling cycles. A model is "a system for describing, explaining, constructing or manipulating a complex series of experiences" (Schorr \& Amit, 2005, p. 138). Although a main purpose of the Schorr and Amit (2005) research was to study students' modeling cycles, a problem-solving activity needed to be chosen that had "the potential to elicit a thoughtful, sensible solution" (Schorr \& Amit, 2005, p. 138) and be presented in a valued environment.

All eight students who participated in this study had just completed twelfth grade from local urban high schools (Schorr \& Amit, 2005). Students were given a problem to solve called the "Radio Problem" (Schorr \& Amit, 2005, p. 139). The problem is as follows:

The editors of Consumer Reports want to make a new consumer guide for products that is important to teenagers. The first items that they want to rate are portable radio cassette players with headsets. They need your help to develop a rating system... The editors want a rating system that readers can use to rate any model (even if it is not listed on the attached list), and compare the models to determine which are the "best buys". The editors have also gathered the attached information for some models. They plan to use these as examples to show readers how to use the rating system. To help the editors, please: I) Develop a rating system for these players. Be sure that the system can be used to identify overall "best buys" which take into account the factors that the survey indicates are important. Also, readers should be able to use the rating system with ANY other players, including those not listed in the guide, so include any tables or charts that are part of your system. II) Write clear step-by-step instructions that make it easy for readers to use your rating system. III) Write a letter to the editors explaining why you decided on your rating system and describe its advantages and disadvantages. (Schorr \& Amit, 2005, p. 139-140)

To solve this problem, students were given a chart of eleven radio brand choices and were warned that there could be several different solutions (Schorr \& Amit, 2005). The students had a choice of working alone or with another person (Schorr \& Amit, 2005).

The modeling cycles in solving the radio problem of one student named James was analyzed for this study (Schorr \& Amit, 2005). James started with a first model by making and rating a checklist of the advantages and disadvantages of the radios (Schorr \& Amit, 2005). For the second model, James used "a multi-dimensional approach in which he selected information from the data (table), intentionally ignored some of the other information (such as brand name), and then defined ranges of "good" with associated numerical values" (Schorr \& Amit, 2005, p. 141). The third model involved James revising his checklist and scaling system (Schorr \& Amit, 2005). In the fourth
model, James accounted for the price and weight of any radio and made a table with including all of the qualitative and quantitative variables (Schorr \& Amit, 2005). A list of advantages and disadvantage was also included along with "a 'key' so that the user could easily discern how to use the point value" (Schorr \& Amit, 2005, p. 142).

Solving the problem required having James progress through a number of cycles (Schorr \& Amit, 2005). By using a problem that had a real-world application and designing the problem to be open-ended, James was able to reflect on his prior work (Schorr \& Amit, 2005). James was also able to make necessary revisions to solve a problem that he initially thought was unsolvable (Schorr \& Amit, 2005).

Although classroom atmosphere and problem-solving activities are important factors of the learning environment, the teacher also has a responsibility to create a learning environment that builds a mathematical community (Davis et al., 1990). It is also important to note that "the role of the community-other learners and teacher-is to provide the setting, pose the challenges, and offer the support that will encourage mathematical construction" (Davis et al., 1990, p. 3). Encouraging mathematical knowledge through collaborative activities allows students to build and revise knowledge within a mathematical community (Davis et al., 1990).

A mathematical community can be created within the classroom that promotes learning from a constructivist perspective (Davis et al., 1990). This constructivist perspective of learning allows for the community of the teacher and students to support and challenge each other in constructing mathematical knowledge by forming, questioning, and revising mathematical arguments (Davis et al., 1990). However,
practitioners should note that "constructivist premises imply that there are many roads to most instructional endpoints" (Noddings, 1990, p. 16).

Teachers can create these roads or opportunities by allowing students to work on open-ended problems in small group collaborations (Noddings, 1990). Research by Boaler (2006) provided evidence that social activeness in a community can have a central effect on learning mathematics. In this four year longitudinal study, Boaler (2006) created a community in a detracked mathematics classroom at an urban high school in California. Teachers created an environment where students respected and valued each individual's contribution regardless of social class, race, gender, ethnicity or the skill levels possessed (Boaler, 2006).

The classroom activities were highly structured in multidimensional tasks where open-ended problems were used in collaborative group work (Boaler, 2006). In this community, the learning of each individual group member became the responsibility of the entire student group (Boaler, 2006). All students were provided a safe environment to share their ideas which resulted in improved assessments on group tests, an occasional rating on group conversation quality, and random calls of any person in the group (Boaler, 2006).

Small group collaborations are also encouraged and mandated in order to be certified by the National Board for Professional Teaching Standards (NBPTS, 2014). Although this certification does not replace the mandatory state certification, it is a nationally recognized ten year teaching credential (NBPTS, 2014). To be certified in early adolescence or adolescence and young adulthood for mathematics, teachers must show documented accomplishments in four portfolio entries where one entry includes a
fifteen minute video of small-group collaboration. The other entries include a fifteen minute video of whole-class discourse, an analysis of a mathematical activity for two students, and documented artifacts showing that the teacher has experience in three main categories which include the teacher as a learner, the teacher as a partner with the student's family and the community, and the teacher as a collaborator or leader at the local, state, or national level (NBPTS, 2014). In addition, teachers are required to pass a six part test on mathematical content (NBPTS, 2014). However, this PD opportunity is costly and not mandatory (NBPTS, 2014).

2.2.3 PD Models

Several studies at Rutgers University have focused on PD with an emphasis on teachers attending to students' mathematical reasoning from a constructivist perspective of learning (Alston \& Davis, 1996; Francisco \& Maher, 2011; Francisco, Maher, Powell, \& Weber, 2005; Maher, 1996, 2011a, 2011b; Maher et al., 2010; Martino \& Maher, 1999; Palius \& Maher, 2011). One PD model of attending to students' reasoning from a constructivist perspective of learning was done by Maher et al. (2010) where twenty middle-school classroom and special-education teachers from two New Jersey middleschools participated in a one year PD workshop intervention.

Similar to the intervention previously described in this paper for my research on studying teachers' recognition of reasoning, the PD workshop intervention also used videos located in the VMC that can be publicly accessed (see www.videomosaic.org) (Maher et al., 2010). The videos show children participating in solving combinatorics problems by sharing and justifying their solutions with other students and teachers.

These videos were used within the PD intervention for the middle-school mathematics teachers and special-education teachers (Maher et al., 2010).

Maher et al., (2010) described how the videos in the PD intervention were used to study any effects that the videos of students' reasoning had on the beliefs of teachers. However, studying the effects on students' reasoning was not enough (Maher et al., 2010). Teachers were also required to participate in the various mathematical tasks as learners to "improve their mathematical reasoning skills so that they are better prepared not only to study the videos of children's reasoning, but also to promote and evaluate the mathematical reasoning of their own students" (Maher et al., 2010, p. 4).

An objective of this study was to trace how the beliefs of teachers were modified after the PD intervention (Maher et al., 2010). During the intervention, three cycles of tasks were administered that included four parts (Maher et al., 2010). These parts included "(1) teachers doing mathematics, (2) teachers studying videos of children doing mathematics, (3) teachers implementing in their classrooms, and (4) teachers analyzing their students' work" (Maher et al., 2010, p. 4). The same task cycles were used for my research for recognizing students' reasoning with the omission of the second cycle halftopping pizza combination problems.

The first cycle included the task of having the teachers work to find all possible four-tall towers that could be made selecting from two colors of unifix cubes ${ }^{\mathrm{TM}}$ (Maher et al., 2010). After working on the problem, teachers shared their solutions and arguments (Maher et al., 2010). When the discussion of the first task solutions was finished, teachers were shown the video of two students named Stephanie and Dana that worked together to build sixteen four-tall towers selecting from two colors of unifix cubes ${ }^{\text {TM }}$
(Maher et al., 2010). After teachers watched this video, a discussion followed comparing the reasoning strategies used by the children and the teachers (Maher et al., 2010). Teachers were then given the task of predicting how many possible three-tall towers could be made selecting from two colors of unifix cubes ${ }^{\mathrm{TM}}$ and then watched two additional videos after making their predictions (Maher et al., 2010).

One video involved a student named Meredith who removed a cube from the top of the four-tall tower and initially predicted that there would be the same number of 3-tall towers (Maher et al., 2010). Another video included third-grade students named Stephanie and Dana and their argument that there would be more 3-tall towers because the blocks that were removed could be used to build more towers (Maher et al., 2010). In both videos, the students were asked to investigate their arguments (Maher et al., 2010). After teachers watched both of these videos, teachers were asked to predict how many five-tall towers could be made selecting from two colors and then were asked to use the unifix cubes ${ }^{\mathrm{TM}}$ to find the total number of five-tall towers (Maher et al., 2010). Teachers worked in small groups to complete the task (Maher et al., 2010).

Teachers then discussed their solutions and then watched two more videos. One video involved Stephanie and Dana a year older in the fourth grade building five-tall towers selected from two colors and finding a total of thirty-two towers (Maher et al., 2010). Discussion about the comparison of the strategies and solutions between the teachers and students occurred and then teachers watched the final video in the first cycle (Maher et al., 2010). In this video, another student named Milin shared his inductive approach to solving how many five-tall towers could be made selecting from two colors (Maher et al., 2010). However, the cycle was not completed until teachers implemented
the tasks of the first cycle with their own students and shared students' work during the next workshop with the other teachers in the PD intervention (Maher et al., 2010).

Once teachers finished their discussion of students' work from the first cycle, teachers began the second cycle (Maher et al., 2010). The second cycle involved tasks that invited students to explore finding the number of pizzas that could be made with a given number of toppings available (Maher et al., 2010). Because of the complex solutions that resulted from the longitudinal study, Maher et al. (2010) suggested using the following order:

Cycle II, task 5. A local pizza shop has asked us to help them design a form to keep track of certain pizza sales. Their standard "plain" pizza contains cheese. On this cheese pizza, one or two toppings could be added to either half of the plain pizza or the whole pie. How many choices do customers have if they could choose from two different toppings (sausage and pepperoni) that could be placed on either the whole pizza or half of a cheese pizza? List all possibilities. Show your plan for determining these choices.
Convince us that you have accounted for all possibilities and there could be no more.
Cycle II, task 6. The local pizza shop was so pleased with your help on the first problem that they have asked us to continue our work. Remember that they offer a cheese pizza with tomato sauce. On this cheese pizza, one or more of the following toppings could be added to either half of the plain pizza or the whole pie: peppers, sausage, mushrooms, and pepperoni. How many choices does a customer have? List all the possible choices. Find a way to convince each other that you have accounted for all possible choices. (Maher et al., 2010, p. 10)

Cycle II, task 7. Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select form the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have?
List all possible choices. Find a way to convince each other that you have accounted for all possibilities. (Maher et al., 2010, p. 11)

After completion of these tasks, teachers discussed their solutions and then watched a video that involved fifth grade students working on the same pizza problems and a video interview with a student named Brandon in which Brandon recognizes the isomorphism between the towers and the pizza problems (Maher et al., 2010). Teachers then were given the opportunity to implement the pizza problems in their own classes
(Maher et al., 2010). At the next workshop, teachers shared and analyzed students' work (Maher et al., 2010).

The third cycle included finding all possible three-tall towers that could be made selecting from three colors of unifix cubes ${ }^{\mathrm{TM}}$ with the extended task of finding all fourtall towers selecting from three different colors of unifix cubes ${ }^{\mathrm{TM}}$ using at least one of each color called Ankur's Challenge since it was designed by Ankur, a participant in the study (Maher et al., 2010). After working on these tasks, teachers were given an opportunity to discuss their solutions (Maher et al., 2010). Then teachers watched one video showing five students in tenth grade working to solve Ankur's Challenge (Maher et al., 2010). Teachers then implemented the problems in their own classrooms and brought back students' work samples to share at the next workshop (Maher et al., 2010).

One objective of this study was "to track changes, if any, in teacher held beliefs during the course of the intervention" (Maher et al., 2010, p. 14). Before and after this PD workshop intervention, a Beliefs Inventory pre-test and post-test was given assessing how students learn, situations for teaching effectively, and the possible influences affecting students' learning of mathematics (Maher et al., 2010). Findings from earlier studies showed significant change in beliefs" (Maher et al., 2010).

Palius and Maher (2011) also described two models that helped teachers to attend to students' reasoning that used the available resources found in the VMC. Palius and Maher (2011) first described a model for pre-service teachers used in a semester course at Rutgers University before beginning their internship experience. Elementary pre-service teachers worked in pairs on tasks emphasizing place-value, counting, and fractions using Cuisenaire Rods and secondary pre-service teachers focused on combinatorics using
unifix cubes ${ }^{\text {TM }}$ (Palius \& Maher, 2011). Pre-service teachers were shown videos of students performing the same tasks and participated in discussions about the videos and their experiences (Palius \& Maher, 2011).

Palius and Maher (2011) also described a second model for in-service teachers that included all aspects of the pre-service model. However, there was an addition of implementing the tasks in the classroom and bringing samples of their students' work to analyze and discuss with the other teachers (Palius \& Maher, 2011). Both models include the teachers participating in solving the problems (Palius \& Maher, 2011). This research was based on a constructivist perspective where students were encouraged to explore their mathematical ideas and provide convincing arguments to each other during the tasks (Palius \& Maher, 2011).

Constructivism was also the foundation for another study using a pre-service model which included "thirty-five experimental pre-service teachers and twelve comparison pre-service teachers" (Maher, 2011a, p. 87). All participating teachers were taught by the same instructor at a private New Jersey university (Maher, 2011a). Both pre-service groups worked on and discussed solutions of the exact same tasks in about a three to four week time span (Maher, 2011a). However, the pre-service comparison group did not watch the videos of the children participating in the solving of the tasks (Maher, 2011a).

Twenty-two New Jersey middle and special education teachers participated in the in-service model that lasted five months (Maher, 2011a). The assessments were comprised of a pre and post-assessment twenty minute video with open-ended questions
(Maher, 2011a). For the open-ended questions, teachers responded in writing about the students' reasoning they observed (Maher, 2011a).

Maher (2011a) reported that overall growth and a comparison each type of argument such as argument-by-cases, induction, contradiction and generalization were calculated using ANOVA tests with the in-service experimental group as well as both the comparison and experimental pre-service groups (Maher, 2011a). The results suggest that studying videos about students' reasoning helped teachers to recognize reasoning forms in students' problem solving (Maher, 2011a). The average growth for the inservice teacher group was 59.7%; the pre-service experimental teacher group had an average growth of 35.8%; and the pre-service comparison group had an average growth of 4.9% (Maher, 2011a).

Another study by Francisco and Maher (2011) supported the hypothesis that "effective teaching requires knowledge of students' mathematical reasoning" (p. 2) where two elementary teachers, four middle school mathematics teachers, and three mathematics coaches from various schools in the same district voluntarily participated for one year as interns in the Informal Mathematical Learning Project (IML). ${ }^{2}$ The IML was an after-school project designed for urban, low-income, and minority middle school students (Francisco \& Maher, 2011). The IML provided a voluntary opportunity for the twenty-four sixth-grade students to develop convincing arguments in mathematical explorations with other students (Francisco \& Maher, 2011).

[^5]The mathematical explorations included one task of building all possible three-tall towers selecting from three different colors of unifix cubes ${ }^{\mathrm{TM}}$ (Francisco \& Maher, 2011). Other tasks involved using Cuisenaire Rods to answer questions about fractions (Francisco \& Maher, 2011). To complete the tasks, students worked together and made convincing arguments of their mathematical ideas to other students (Francisco \& Maher, 2011). The interns usually observed the students in groups of two or three but occasionally four to six students sat at a table.

The mathematical explorations included one task of building all possible three-tall towers selecting from three different colors of unifix cubes ${ }^{\mathrm{TM}}$ (Francisco \& Maher, 2011). Other tasks involved using Cuisenaire Rods to answer questions about fractions (Francisco \& Maher, 2011). To complete the tasks, students worked together and made convincing arguments of their mathematical ideas to other students (Francisco \& Maher, 2011). The interns usually observed the students in groups of two or three but occasionally four to six students sat at a table (Francisco \& Maher, 2011). In addition, the interns minimized interaction with the students so as to not have any influence on the direction of the students' thoughts (Francisco \& Maher, 2011). Although the researchers facilitated problem solving, they did not offer solutions to the problems but rather sought justifications from the students (Francisco \& Maher, 2011).

In this study, the debriefing meetings were salient because it provided an opportunity for the researchers to discuss how teachers attended to students' mathematical reasoning (Francisco \& Maher, 2011). The meetings were videotaped and transcribed which provided a substantial dataset (Francisco \& Maher, 2011). Students' work was also an important part of the dataset (Francisco \& Maher, 2011).

Five themes emerged from this study that included conceptual understanding, reasoning forms, communication of mathematical ideas, justifying mathematically, and necessary supports regarding students' growth with mathematical reasoning (Francisco \& Maher, 2011). The themes contributed to providing insight to teachers in attending to students' reasoning (Francisco \& Maher, 2011). From the IML experience, teachers observed that their students can be successful in providing convincing mathematical arguments (Francisco \& Maher, 2011).

Another PD model that stemmed from the IML project involved having teachers attend to students' reasoning with reflections that impacted their teaching (Francisco et al., 2005). For this PD model, there are three nonlinear and intersecting phases (Francisco et al., 2005). The first phase involved having the teacher-researchers attend to the students' thoughts by observing and documenting students' reasoning during mathematical investigations (Francisco et al., 2005). The second phase was comprised of three modalities which included reflecting after the research sessions, studying the mathematical tasks in order to plan the future direction of the lesson, and describing the videotaped data (Francisco et al., 2005). The third phase involved implementing the intervention in their classrooms the following year with a different student group (Francisco et al., 2005).

For this particular research study, the focus was on the first modality of the second phase with the purpose of using the reflection sessions to provide evidence of teachers attending to students' mathematical reasoning (Francisco et al., 2005). Although the project lasted three years, the data for this study came from the first year (Francisco et
al., 2005). Thirty sixth-grade students participated in the research study in 2003 but only two episodes were discussed (Francisco et al., 2005).

In one episode, students were asked to find all the possible pizzas that could be made from four available toppings (Francisco et al., 2005). Three students named Channel, Kori, and Nia correctly found sixteen possible pizzas and then the teacherresearcher asked how many pizzas would there be if onions were added to the possible toppings (Francisco et al., 2005). Nia asked if multiplying could be used and the teacherresearcher asked if Nia could find a way to use multiplication to solve the problem (Francisco et al., 2005). Teachers discussed their observations of Nia, Channel, and Kori in the reflection session (Francisco et al., 2005).

In the second episode, students used a computer-based simulation tool to infer by sampling the number of marbles of each color in a bag containing one hundred marbles (Francisco et al., 2005). Evidence of teachers attending to students' mathematical reasoning included an observation where one group of students used an extremely big sample size and teachers questioned the purpose of the larger sample size number (Francisco et al., 2005). Other evidence of teachers attending to students' reasoning included the clarification and development of students' ideas during the mathematical activity (Francisco et al., 2005).

The development of students' ideas and reasoning during mathematical activity was also studied by researchers outside Rutgers University (Ball, Ben-Peretz, \& Cohen, 2014; Grossman, Compton, Igra, Ronfeldt, Shahan, \& Williamson, 2009; Kazemi, Franke, \& Lampert, 2009; Lampert, Franke, Kazemi, Ghousseini, Turrou, Beasely, Cunard, \& Crowe, 2013; Leong, Leong, Tay, Toh, Quek, \& Dindyal, 2011; Pólya, 1945;

Sample-McMeeking, Orsi, \& Cobb, 2012). George (György) Pólya (1945) in his classic book How to Solve It, encouraged students to solve problems using four stages including understanding the problem, making a plan, implementing the plan, and looking back or reflecting on the plan. A recent study focused on Pólya's fourth stage which included "the consideration of alternative solutions and representations, the re-examination of the solution for a more efficient strategy, and the extension of the solution to other related problems" (Leong et al., 2011, p. 182).

This particular PD program was implemented in an independent, secondary school in Singapore to analyze the teachers' thoughts of Pólya's fourth stage in problem solving and how they promoted this in their classrooms (Leong et al., 2011). The purpose of the PD program was to help teachers specifically implement the fourth stage in their pedagogy (Leong et al., 2011).

The PD program included three different components (Leong et al., 2011).
The first component included revising the curriculum (Leong et al., 2011). Within this first component, a four-page worksheet was created that included a practical problem where students had to apply Pólya's four stages. The final page of the worksheet emphasized using the fourth stage and the task was not considered to be successfully completed until the fourth page was completed (Leong et al., 2011).

The second component involved five ninety-minute PD meetings (Leong et al., 2011). For these meetings, Leong et al. trained the teachers with a guidebook of their creation which contained "an overview of Pólya's stages, a set of problems, and a recommended module plan to implement the teaching of these problems, and details for each lesson within the module" (Leong et al., 2011, p. 184). The training was given to
teachers in an independent Singapore Secondary school with the purpose to "provide teachers with time to experience problem-solving themselves and to help teachers develop problem solving habits" (Leong et al., 2011, p. 185).

The third component involved implementation within the classroom from the same person instructing the teachers (Leong et al., 2011). Twenty-one students participated in a ten hourly lessons which mirrored the teachers' experience but was modified for students' needs (Leong et al., 2011). After the three components of the program were complete, three teachers were expected to implement the lessons with 164 students using the resources from the training (Leong et al., 2011). However, only two teachers named Raymond and William attended the second and third components of the training (Leong et al., 2011).

Researchers came back to the school to observe the teachers implementing the program but "the main sources of data were (1) the reflections of Raymond and William about their lessons preparation and implementation; and (2) the classroom activities of these two teachers" (Leong et al., 2011, p.185). Leong et al. (2011) reported that teachers liked how Pólya's fourth stage helped students see relationships with other problems that allowed for exploration beyond the original problem. In addition, Leong et al. (2011) posited "that unless teachers 'buy-in' to the scheme and have developed relevant skills to carry out the plans chances of success in such efforts to change practices are slim" (p. 184). Major reforms to PD including changing thought processes involved with mathematical problem-solving were proposed supporting why there is a need to study students' reasoning in today's classrooms and reexamine the essential elements that must be included for successful professional development of teachers (Leong et al., 2011).

However, one might ask whether participation in a PD program for teachers leads to higher student achievement in mathematics. Sample-McMeeking et al. (2012) studied the effect that a PD program had on student achievement in mathematics. In this particular study, one hundred twenty-eight middle- school mathematics teachers participated in a five-year PD project in Colorado called the Rocky Mountain Middle School Math and Science Partnership (RM-MSMSP) (Sample- McMeeking et al., 2012). The RM-MSMSP was funded by the NSF to bring together both teachers from seven districts and faculty from four universities and "increase the subject-matter content knowledge and pedagogical content knowledge of elementary and middle school mathematics and science teachers" (Sample-McMeeking et al., 2012, p. 160).

The project goal was to have teachers use the knowledge from this PD project to improve mathematics achievement for students in grades five through eight (SampleMcMeeking et al., 2012). For this study, a standardized test called the Colorado Student Assessment Program (CSAP) was used as the assessment to measure the effect of the project on students' mathematical achievement (Sample-McMeeking et al., 2012). The assessment scores of students from the year before the PD project were compared to the assessment scores of the students after the teachers participated in the program using a generalized linear mixed model for analysis (Sample-McMeeking et al., 2012). According to Sample-McMeeking et al. (2012), "results showed that students' odds of achieving a score of Proficient or better increased with teacher participation in the PD program" (p. 156) which provides evidence that successful PD can lead to increased achievement in mathematics.

If successful PD can lead to increased achievement in mathematics, would it be of interest to know whether a specific pedagogical knowledge base exists to prepare teachers to be effective? Ball, Ben-Peretz, and Cohen (2014) suggest the idea that records of practice have the potential to build a foundation of salient knowledge regarding learning and pedagogy. Records of practice are defined by Ball et al. (2014) as "a collection of primary materials that represent core elements of an experience, an event, or an interaction" (p. 321).

Ball et al. (2014) reported three records of practice examples. The first example discussed the experience of an educator from Norway named Hartwig Nissen (Ball et al., 2014). Nissen visited several elementary schools in Scotland in 1852 (Ball et al., 2014). From these visits, Nissen made written records that included the school's appearance, educational resources used, and observations about the educational processes (Ball et al., 2014).

A second example of a record of practice included a collection of records from a third- grade public school mathematics class. The various records were collected for one year. The records included items such as "mathematics lessons - video and audio recordings of each day, copies of the children's scribbles, drawings, notes, and work, as well as the teachers' notes (Ball et al., 2014, p. 323).

Ball et al. (2014) reported a third example of a record of practice from a teacher named Sarah who taught a regular instructed class and an English-language development class (ELD) which was instructed in English. During her first two years, Sarah reported that "when her teaching was in Spanish, her students were lively and engaged, but they were quiet during ELD lessons" (Ball et al., 2014, p. 324). In her third year, Sarah
decided to use both Spanish and English for her ELD and wrote records of practice which included "narratives created explicitly for documenting and reflecting on her teaching, lesson plans, assignments, assessments and student work" (Ball et al., 2014, p. 324).

Using the three examples, Ball et al., (2014) analyzed commonalities and differences. The commonalities of the three examples included their personalized structure and specific detail and differences included the mediums of the records of practice which varied from hand-written records to video and audio data (Ball et al., 2014). Ball et al. (2014) claimed that "records make possible a special kind of study of practice, a kind of work that can lead to the generation of professional knowledge" (p. 328). According to Ball et al. (2014), this collective professional knowledge creates opportunities for the improvement of practice.

Lampert et al. (2013) posited two challenges of improving practice with new elementary mathematics teachers. The challenges included "preparing beginning teachers to actually be able to do teaching when they get into classrooms, and preparing them to do teaching that is more socially and intellectually ambitious than the current norm" (Lampert et al., 2013, p. 226). To address these challenges, Lampert et al. (2013) analyzed ninety videos that incorporated a specific pedagogical approach called "rehearsal" (227).

They define rehearsal as "a social setting for building novices' commitment to teach ambitiously" (Lampert et al., 2013, p. 227). The rehearsal videos were used to study the Master's level methods courses at the University of California, University of Michigan, and the University of Washington (Lampert et al., 2013). The methods courses were designed on the basis that "mathematics teachers need to learn to elicit,
observe, and interpret student reasoning, language, and arguments and adjust their instruction to promote learning" (Lampert et al., 2013, p. 227).

The activities used during mathematics instruction included choral counting, games, computational problems involving sequencing, and having students share strategies of computation and word problems (Kazemi, Franke, \& Lampert, 2009; Lampert et al., 2013). Cycles of enactment and investigation (CEI) were implemented with the new teachers (NT) (Lampert et al., 2013). Each CEI began with the NT watching a video of an instructional activity (IA) or observing a live demonstration of an IA (Lampert et al., 2013).

After this first phase, a teacher educator (TE) facilitated a discussion with the NT about their observations (Lampert et al., 2013). The next phase has the NT practice the same IA with their peers (Grossman et al., 2009; Lampert et al., 2013). Upon finishing the rehearsal with their peers, the NT implemented the IA with classroom students (Lampert et al., 2013).

Lampert et al. (2013) coded ninety rehearsal videos with Studiocode© videoanalysis software to observe "what was worked on (the substance of the interaction) and how it was worked on (the structure of the interaction)" (p. 230). Four items were used to categorize interaction structure which included making suggestions, making critiques, role-playing as the teacher or student, or facilitating discussion (Lampert et al., 2013). Fifteen items categorized the substance interactions including elicit and respond, representation, engagement, attending to the IA, content goals, thinking, mathematics, student error, orienting students, process goals, IA launch, managing space, body and voice use, and closing the IA (Lampert et al., 2013).

According to Lampert et al., (2013) the mean TE/NT interactions for each rehearsal was fourteen and " 22% of the TE/NT exchanges were initiated either by the rehearsing NT (e.g., to ask about how many different student ideas to elicit) or by another NT (to raise a question, for example, about how to deal with an ongoing interaction)" (p. 233). Results for substance coding revealed that 36% of the TE/NT interactions were coded for elicitation and response to students in 95% of the rehearsal videos. Although more than 70% of the rehearsal videos involved attending to students' mathematical thinking and mathematics, comparatively a small percent of TE/NT interactions were coded, 14% and 12% respectively. From the results, Lampert et al. (2013) reported that rehearsal allowed higher-level pedagogical approximations to help novice teachers adapt their pedagogical approaches as they developed regarding their identity, skill, and knowledge (Lampert et al., 2013).

This rehearsal idea is similar to the University of Colorado Assessment Project (Borko et al., 1997; \& Putnam \& Borko, 2000). For the University of Colorado Assessment Project, teachers worked on tasks, implemented the tasks in their own classrooms, and discussed any experiences from participating in the project (Borko et al., 1997; \& Putnam \& Borko, 2000). The University of Colorado Assessment Project is similar to this research project along with many studies from Rutgers University but missing one additional aspect. This additional aspect involved having the teacher participants view, analyze, and discuss VMC videos of students working on the same mathematical tasks as the students in the video.

Chapter 3-Methodology

3.1 Research Context

Rutgers researchers at the Robert B. Davis Institute of Learning (RBDIL) designed a PD intervention to facilitate building teachers' knowledge of recognizing students' mathematical reasoning as a component of two NSF funded projects. ${ }^{1}$ The PD intervention was implemented with teachers in the first project, the New Jersey Partnership for Excellence in Middle School Mathematics. The NJPEMSM initiative sought to prepare teachers to have a deeper understanding of mathematics, engage students more effectively in learning mathematics, and give support and encouragement for teachers to become facilitators of student mathematical learning (NJPEMSM, 2009).

Publications about student learning and video data of students working on and discussing solutions to mathematical tasks were produced through the second NSF project and used in the RBDIL PD intervention. Videos used in the intervention were obtained from the longitudinal study at Rutgers University with funding from the NSF (Awards MDR-9053597, REC-9814846, REC-0309062, and DRL-0723475) and can be accessed from the VMC (Award DRL-0822204) ${ }^{2}$.

The RBDIL PD intervention model was implemented as a one-semester graduate course: Lesson Study on Student Reasoning. Rutgers eCollege and Sakai were the

[^6]websites where teachers posted on-line responses to weekly questions, completed preand post-assessments, and the end of the course survey.

3.2 Professional Development Intervention Model

3.2.1 Definitions

Definitions to describe the people and work in the PD intervention model follow:
Teachers: The teachers enrolled in the fall 2013 course, Lesson Study on Student Reasoning.
Instructor: The teacher of the Lesson Study Course on reasoning who assigned tasks, readings, and videos and facilitated discussion.
Current Students: Students of the teachers enrolled in the course.
Research Students: Students captured on video in research problem-solving sessions provided video data and samples of students' work to be studied as assignments.
Intervention: The section of the course "Lesson Study on Reasoning" being studied. The intervention used a similar set of combinatorics tasks in each cycle. (McGowan, 2016)

3.2.2 Assessments

For this PD intervention model, teachers were required to take pre- and postassessments. One of these required assessments was a Pre- and Post- Beliefs Assessment about the teaching and learning of mathematics. The Beliefs Assessment can be found in Appendix A.

Teachers also completed a Pre- and Post- assessment after watching a VMC video called The Gang of Four of fourth-grade research students Jeff, Michelle, Milin, and Stephanie participating in a small group interview facilitated by Researcher, Carolyn Maher. The research students had available paper and pencil and were asked to share their solutions to the three-tall towers problem, selecting from 2-colors. Participating teachers were asked to describe and give evidence from the interview of each example of reasoning that was offered by the students, whether or not the reasoning was valid, and
whether the argument was convincing, indicating why or why not they were convinced.
Teachers' responses were evaluated on their recognition of children's arguments, assessment or not about the children's reasoning, evidence to support claims, and whether the claims are partial or complete. The Gang of Four Assessment can be found in Appendix C along with a transcript of the video found in Appendix D.

3.2.3 Tasks

In addition to the assessments, teachers were required to participate in three cycles of tasks chosen from the combinatorics strand of mathematics. For each of the three task cycles, the participants worked in small groups on mathematical tasks; made one original online post responding to the assigned questions, VMC videos, and literary articles about previous implementations of the same tasks with research students; made at least two additional posts responding to two other teachers' original posts, observed and discussed the in-district classroom visits with current students, and discussed examples of students' work after the implementation of these mathematical tasks in the teachers own classes at the regional meetings.

3.2.3.1 First Cycle Tasks

For the Cycle 1 tasks, participants were instructed to work in pairs to find a solution to the following task:

Building 4-tall towers, selecting from 2 colors

You have two colors of unifix cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them all. (Maher et al., 2010, p. 5)

A detailed framework and timeline for the Cycle 1 intervention can be found in Appendix
G. In addition to this task, extension problems were provided after the completion of the
four-tall tower task, selecting from two colors. The following tasks were provided:

Extension: Predicting 3-tall, 5-tall towers, selecting from 2 colors

Make a prediction about a solution for finding all possible towers 3 cubes high (without building them) [selecting from 2 colors]. Do you think there will be more, fewer, or the same number of possible towers as you found for towers that were 4 cubes high? [Why do you think that?]
Make a prediction about a solution for finding all possible towers 5 cubes high (without building them) [selecting from 2 colors]. Do you think there will be more, fewer, or the same number of possible towers as you found for towers that were 4 cubes high? [Why do you think that?] (Maher et al., 2010, p. 7)

Extension: Building 5-tall towers, selecting from 2 colors

You have two colors of unifix cubes to build towers. Your task is to make as many different looking towers as possible, each exactly five cubes high. Find a way to convince yourself and others that you have found all possible towers five cubes high, [and that you have no duplicates. Record your towers below and provide a convincing argument why you think you have them all. (Maher et al., 2010, p. 8)

3.2.3.2 Second Cycle Tasks

For the Cycle 2 tasks, participants were instructed to work in pairs to find a solution to the following task:

The Pizza Problem

Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities. (Maher et al., 2010, p. 11)

A framework and timeline for the Cycle 2 intervention can be found in Appendix G.

3.2.3.3 Third Cycle Tasks

For the Cycle 3 tasks, participants were instructed to work in pairs to find a solution to the following task:

Building Towers Three Colors

Find all possible towers that are three cubes tall, selecting from cubes available in three different colors. In the space below, show your solution and provide a convincing argument that you have found them all. (Maher et al., 2010, p.12)

A framework and timeline for the Cycle 3 intervention can be found in Appendix G.
In addition to this task, an extension problem was provided after the completion of the three-tall tower task, selecting from three colors. The following task was provided:

Building Towers Three Colors Extension

Find all possible towers that are four cubes tall, selecting from cubes available in three different colors, so that each of the resulting towers has at least one of each color. Show your solution and provide a convincing argument that you have found them all. (Maher et al., 2010, p.13)

3.2.4 Components

Four components of the PD intervention model were experienced by the teachers. In the first component, teachers worked on and discussed solutions to the mathematical tasks as learners. For the second component, teachers had a discussion after reading articles and watching videos of children working on the same tasks. For the third component, teachers implemented the same mathematical tasks with their own students. In the fourth component, teachers discussed the reasoning forms of their students' work.

3.2.5 Timeline

The intervention activities occurred during two on-campus meetings [9/7 and 12/7/13] and regional meetings at respective school sites. The on-campus meetings were attended by the northern and southern cohort teacher groups and held at Rutgers

University Graduate School of Education (GSE). The southern region cohort group attended three regional meetings $[10 / 2,10 / 22$, and $11 / 20$]. There were also three indistrict classroom visits [9/17, 10/22, and 11/20]. Detailed activities and timelines for each cycle are located in Appendix G.

3.3 Participants

Data for this research came from ten teacher participants from the fall 2013 southern New Jersey school regions. The five regions were Long Branch, Sayreville, Matawan-Aberdeen, Old Bridge, and Toms River. Each of the five regions had two teacher participants. The ten participants implemented the three cycles of mathematical tasks in the following grade levels:, three in sixth grade, four in seventh grade, and three in eighth grade. The tasks were implemented with regular, advanced, and special education classes as shown in table 3.1.

Table 3.1
Classroom Demographics

| Grade | $\begin{array}{l}\text { Regular } \\ \text { Education }\end{array}$ | $\begin{array}{l}\text { Advanced } \\ \text { Education }\end{array}$ | $\begin{array}{l}\text { Special Education } \\ \text { Alternate } \\ \text { School }\end{array}$ | | $\begin{array}{l}\text { In-Class } \\ \text { Support }\end{array}$ | $\begin{array}{l}\text { Resource } \\ \text { Pull-out }\end{array}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{l}Self-

Contained\end{array}\right]\)
*Non-classified
**One Mildly Cognitively Impaired (MCI) and One Language Learning Disabled (LLD) Sources: Teachers' final projects, video transcripts 9/7, 9/17, 10/2, 10/22, 11/20

One of the sixth-grade classes and two of the eighth-grade classes were described by the teachers as regular education, according to Webster (2015), as the standard education experienced by children. Another teacher described one of the sixth-grade
classes as Pinnacle or gifted, consisting of students who had previously demonstrated advanced ability in all subjects on state standardized tests.

Students from the other six classes from this study were described as specialeducation students. In one of the eighth-grade self-contained special education classes, students were classified as mildly-cognitively-impaired. Four of the seventh grade classes from this study consisted of three resource classes and one self-contained class. Teachers of the three resource classes described their classes as pull-out where students are removed from regular education to receive instruction designed specifically for special education students, as described by Mastropieri \& Scruggs (2010). One class was classified as an in-class support (ICS) special education class but consisted of both regular and special education students and was taught with an instructor and a paraprofessional as the in-class support. This class is also referred to as an inclusion class.

3.4 Data Sources

Data from the participants were collected from nine sources. The data sources for this study are the beliefs pre- and post-assessments about the teaching and learning of mathematics, the pre- and post-video assessments from the Gang of Four video on identifying students' reasoning, instructor interviews, video data with transcriptions of all on-campus and regional meetings of the teachers discussion and participation in solving the mathematical tasks, and the weekly responses to questions provided by the instructor and posted on the eCollege online discussion threads about required readings and videos relating to the mathematical tasks (Landis, 2013). Other data sources also included final teacher projects, final reflections at the last meeting, and samples of task work from
students and teacher participants. Table 3.2 below shows the data sources and dates of data collection.

Table 3.2
Data Sources and Collection Dates

Data Sources	Collection Dates
Beliefs Pre-\&Post Assessments	Before $9 / 7 / 13 \&$ After 12/7/13
Pre-\&Post Gang of Four Video Assessments	Before 9/7/13 \& After 12/7/13
Students' Work Samples	$9 / 17 ; 10 / 2 ; 10 / 22 ; 11 / 20 / 13$
Discussion Threads Online	$9 / 13$ to $12 / 13$ Weekly
Final Projects	$12 / 7 / 13$
Videos:	
Transcripts of Regional Meetings	$9 / 7 ; 9 / 17 ; 10 / 2 ; 10 / 22 ; 11 / 20$
Reflection Discussion	$12 / 7 / 13$
Instructor Interviews	$10 / 2 / 13 \& 11 / 3 / 13$ (Audio only)
Teachers' Task Work Discussion	$9 / 7 ; 9 / 17 ; 10 / 2 ; 10 / 22 / 13$

3.4.1 Beliefs Pre- and Post-Assessment

The pre- and post-assessments on teachers' beliefs about the learning and teaching of mathematics were given at the beginning and the ending of the PD intervention respectively and are located in Appendix A. Although the test is comprised of thirty-four items, a twenty-two statement subset of this assessment that is pertinent to this study has been analyzed. The twenty-two items that correspond to students' reasoning regarding the mathematics, the learning of mathematics, and the teaching of mathematics are located in Appendix B. The response categories use a 5-point Likert scale for each item, ranging from strong agreement (e.g. 1) to strong disagreement (e.g. 5).

Both the beliefs pretest and posttest have been analyzed using the methods for the PD project [DRL-0822204, directed by Carolyn A. Maher]. Specifically, the tests from the ten participants from the southern regions are descriptively analyzed. The purpose is
to analyze the data for any changes from the Pre- to the Post- assessments in the teachers' beliefs regarding the teaching and learning of mathematics.

3.4.2 Pre- and Post-Assessment Responses to Gang of Four Video

Teachers were required to complete a pre-video assessment to identify students' reasoning after watching a VMC video called The Gang of Four (www.videomosaic.org) before participating in the PD intervention. The Gang of Four video showed a group of four, fourth-grade students discussing their solutions of constructing all the possible 3-tall towers that can be made selecting from two colors of unifix cubes ${ }^{\mathrm{TM}}$. The video had the students in a small group sharing and justifying their solutions to the aforementioned task as well as discussion from one student's approach to the towers task.

After watching the video, the in-service teachers were asked to provide responses identifying students' reasoning and determine whether the reasoning was a valid and a convincing argument by providing evidence from the video. The responses were evaluated according to the recognition of children's justifications, the validity of the arguments, the supportive evidence, and whether the cited evidence was partial or complete. The forms of reasoning shown in the video were reasoning by cases, contradiction, and induction. After the PD intervention, the teachers completed a postvideo assessment using the same Gang of Four video.

From the responses, any changes from pre- to post-test are noted and comparisons will be made between the teachers' solutions and what the teachers recognized from watching the fourth graders in the videos. The pretest/posttest and the video transcripts are located in Appendix C and D respectively.

3.4.3 Videotaped Meetings

Video was used to document the on-campus and regional meetings of the participating middle school mathematics teachers using both a still camera and a roving camera. The transcribed recordings were coded to analyze teachers' own reasoning forms as they worked on the mathematical tasks, teachers' discussions of students' written work samples after the in-district classroom visits and students' samples of work brought by each teacher, and the instructor's moves throughout the activities and discussions of the intervention. The videos were transcribed by this researcher and verified by a graduate student. Transcripts are located in Appendix K.

3.4.4 Reflection Discussion

Video was used to document the reflections about the intervention at the final meeting on December 7, 2013. Participants were given four questions provided and asked by the instructors of the intervention. These questions are located in Appendix F. Teachers were asked to reflect about their activities to discuss in small groups first and then share their thoughts with the larger group when the instructors called for the group attention.

3.4.5 Interviews

Two interviews were conducted with the facilitator, Dr. Judith Landis, who instructed the middle school teachers of the southern region. The first interview occurred in person at Carl Sandburg Middle School in Old Bridge, New Jersey on October 2, 2013 and was videotaped. In this brief interview, this researcher asked general questions about any concerns with the teachers' progress in the NJPEMSM project. The second interview was conducted over the telephone on November 3, 2013 where more specific questions
were asked (see Appendix E) about how the NJPEMSM project promoted teachers attending to students' reasoning. This interview was audiotaped.

A teacher interview was videotaped on December 7, 2013 with all twenty-eight teachers of the fourth cohort group. Teachers shared their reflections about the PD activities and discussed how their participation in the NJPEMSM project had affected how they attended to students' reasoning. The interview-protocols that were used can be found in Appendix F.

3.4.6 Teachers' Discussion of Tasks

Teachers were asked to work on the same mathematical tasks as their students prior to giving the tasks to their students. On 9/7/13, Teachers worked on the first cycle four-tall towers problem selecting from two colors and the first extension problem to predict three-tall and five-tall towers selecting from two colors. Teachers worked on the second cycle pizza problem, finding all possible pizza combinations selecting from four different toppings on $10 / 2 / 13$. On $10 / 22 / 13$, teachers worked on the third cycle three-tall towers problem selecting from three colors and the Ankur's Challenge extension problem.

3.4.7 Students' Work Samples

At particular meetings, teachers were asked to bring samples of students' work from the implementation of the tasks in their own classrooms to share with the other teacher participants. Samples of students work were used to discuss the reasoning forms that teachers identified from student work. Before discussing student samples, teachers discussed and identified the reasoning forms used in teacher samples when the teachers participated in solving the same mathematical tasks. These discussions were videotaped
with two cameras, one still and one roving. The discussions based on students' work samples are coded using the frameworks already described for students’ reasoning and instructor moves. Coding framework examples are in Appendix H and Appendix I.

3.4.8 Online Discussion

Teachers were asked to respond weekly on line to questions posted by the instructor beginning with the second week. These questions referred to required readings, assigned VMC videos, and experiences with implementing the tasks in their respective classrooms, or the teachers' work after completing the tasks. Teachers were also asked to respond to a minimum of two other posts.

3.4.9 Final Teacher Projects

The teachers were assigned a portfolio project to be completed by the final meeting. Teachers were asked to choose three samples of student work that impressed, surprised, and concerned them for each of the three task cycles as well as make reflections for each cycle.

3.5 Reasoning Strategies Framework for Analysis

The reasoning strategies framework for analysis was developed collaboratively by a research team, each studying one cohort of teachers from the three-year period of the project and is in Appendix L. Video transcripts, online discussion threads, and final projects were coded using the reasoning strategies framework for analysis. The framework was used to code the observed reasoning strategies of teachers after working on the three cycles of mathematical problems on $9 / 7 / 13,10 / 2 / 13$, and $11 / 20 / 13$. The reasoning strategies framework for analysis was also used to code students' work
samples, on-line discussions, and the teachers' final projects. The following definitions describe the framework.

1. Heuristic/ Strategy: This characteristic describes the method by which the work was organized in building a solution. Codes for identifying types of strategies and heuristics based on this body of research were developed in collaboration with other researchers analyzing similar tasks making use of common heuristics and strategies used in solving combinatorics problems that have been identified from the research literature (Maher and Martino 1996, Maher, Sran, and Yankelewitz, 2011). Names for heuristics and strategies arose from students' work on the towers problems, but in some cases the strategies can be applied to pizzas as well. The heuristic or strategy used was recorded as fitting one of the following types:
a. Guess and Check-The strategy of guess and check involves first guessing a solution then testing that the solution is correct. Students can be observed using the guess and check method when building towers or listing pizzas in a random order and then double-checking for duplicate towers or pizza toppings (Maher \& Martino, 1996).
b. Opposites- The opposite of a tower in two colors is a tower of the same height where each position holds the opposite color of the first tower. For example, a 4-tall tower with yellow, blue, blue, blue and one with blue, yellow, yellow, yellow are opposites. (Maher, Sran \&Yankelewitz, 2011) This strategy can be applied to pizzas as well. For example two pizzas, one with peppers and pepperoni, and the other with sausage and
mushrooms could be considered opposites because there is no topping shared by both pizzas, and all of the toppings that appear on one pizza do not appear in the other.

Figure 3.1: Opposite four-tall towers.
c. Cousins- Two towers are said to be cousins if one tower can be flipped to form the second tower. For example, a 4-tall tower with yellow, blue, blue, blue and a tower with blue, blue, blue, yellow are cousins (Maher \& Martino, 1996) flipped to form a three-tall tower with the top and middle cube blue and the bottom cube yellow (Maher \& Martino, 1996). Figure 3.2 shows an example of cousin towers.

Figure 3.2: Cousin three-tall towers.
d. Elevator- The elevator pattern is used when finding all possible towers containing one cube of one color and the remaining cubes of the other color. The single colored cube is placed in the first position of the first tower. To create a second tower, the cube is then moved to the second position. The cube is continuously lowered one position to create new
towers until it is placed in the final position (Maher, Sran \&Yankelewitz, 2011). This strategy can appear in the pizza problem as well.

Figure 3.3: Elevator pattern of three-tall towers.
e. Staircase- The staircase pattern is named as such due to its resemblance to a staircase. In towers of two colors, the first tower begins with the first three positions as the same color followed by the 2 nd color in the last position. In each new tower, the number of cubes of the 2 nd color increases from the bottom by one cube until the final tower is a solid tower of that color (Maher, Sran \&Yankelewitz, 2011). This strategy can appear in the pizza problem, for example when a student starts with a one topping pizza, and successively adds toppings to identify new pizzas. An example of the staircase pattern is shown in Figure 3.4.

Figure 3.4: Staircase pattern of five-tall towers.
f. Controlling for Variables- Controlling for variables is a method in which one variable is held constant while adjusting another variable. When building towers, one color of the tower is held constant in one
position while the color arrangements in all other positions are varied (Maher \& Martino, 1996). This is also referred to as holding a constant. g. Other- Any strategy or heuristic other than those previously defined.
2. Representation - This characteristic describes the format used to monitor progress or describe a solution. Maher (2011) lists some common representations (physical objects, words, and symbols) and describes how existing representations are elaborated upon or related to new representations. To analyze the development of representations in this intervention, representations used by students or teachers were recorded as fitting one of the following types:
a. Manipulatives - Tangible objects used by students or teachers to help them solve the mathematical tasks. While the objects mostly used in the study included unifix cubesTM, other tangible items may be used.
b. Drawings- Pictures or diagrams used by students or teachers to help them solve the mathematical tasks. These may include tree diagrams.
c. Charts- Any graphic form or table used to represent a student's or teacher's work.
d. Symbols- Numbers, letters, or any other symbols (including written words) that are used to help students or teachers represent their work.
3. Form of Argument: This characteristic describes the structure of the argument used to justify that a solution set is complete accounting for all possible elements fitting the task criteria. Initial definitions of argument type were developed by Wright (2015, personal correspondence). The definitions were then discussed and evaluated by a team of researchers (Maher, Wright, Cipriani, Krupnik, and

McGowan). The form of argument was recorded as fitting one of the following types:
a. Case Argument- In a proof by cases, a statement is proved by proving all of the smaller subsets of statements the union of which make up the whole set. For example, the solution to the Four-tall Tower Task when selecting from two colors (i.e. blue and yellow) can be justified by separating the towers into cases using a characteristic of the tower. One such characteristic is the number of cubes of a specific color that the towers contain. In this situation, the towers can be broken down into 5 cases; (1) towers containing 0 yellow, (2) towers containing 1 yellow, (3) towers containing 2 yellow, (4) towers containing 3 yellow and (5) towers containing 4 yellow. A complete argument by cases would include justifications that (1) the cases describe the entire set of four-tall towers when selecting from two colors (2) all towers fitting each case have been identified and (3) no towers can be described by more than one of the cases.
b. Inductive Argument- In an inductive argument, the particular solution is considered to be an extension of an initial problem. To make an inductive argument, (1) an initial case is identified and a solution is presented. (2) The relationship between one case's solution and the subsequent case's solution is shown to hold up to some arbitrary point. (3) It is demonstrated in a general way that the solution can be extended beyond the arbitrary point identified in step 2 . The general solution to the

Towers Task, 2 to the nth power $\left(2^{\mathrm{n}}\right)$ where 2 represents the number of colors selected from and n represents the height of the tower, can be proved through an inductive argument.

The first step is to prove the result is true for a basis case (often $n=0$ or n $=1$). In the case of towers, we prove the basis case $\mathrm{n}=1$ or towers of one cube in height. Since there are only two cubes from which to select, i.e. yellow or blue, there are only two towers that can be built. $2^{1}=2$. Thus, the justification is established for the case, $\mathrm{n}=1$.

In the second step, an inductive hypothesis is made. The inductive hypothesis assumes the result of step 1 is true for $n=k$. Therefore, it is assumed that the total number of different towers of height k is 2^{k}. In the third step, this assumption is used to prove the next case $(n=k+1)$. The total number of towers that are $k+1$ tall can be found by placing another cube on the top of each of the 2^{k} towers that are k tall.

That additional cube can take on one of the two colors, e.g., yellow or blue. Therefore, for each of the existing 2^{k} towers, two new towers of height $\mathrm{k}+1$ can be created; one with a yellow cube added to the top and one with a blue cube added to the top. Therefore, the total number of towers that can be created of height $k+1$ is $2^{k} \cdot 2=2^{k} \cdot 2^{1}=2^{\left(k^{+1)}\right)}$. Thus, the argument is made for the case of $n=k+1$.

The provision of an induction argument coded in this research of the general solution 2 n includes the basis step $(\mathrm{n}=1)$ in which a teacher (or student) describes that the total number of 1-tall towers created when
selecting from two colors is 2, i.e. one of only blue and one of only yellow. The second step is less formal but describes that the total number of towers of a given height can be found by placing either a yellow or blue cube on the top of all of the towers of the previous height, therefore doubling the total number of towers created in the previous height.
c. Recursion- Recursion is defined as an operation on one or more preceding elements according to a rule or formula involving a finite number of steps (Merriam-Webster, 2015). An example of recursive reasoning can be seen in one possible solution of the 4-topping Pizza with Halves problem. The total number of 4-topping combinations is 24 or 16, thus there are 16 different whole 4 -topping pizzas (same topping(s) on each side). When determining the total number of 4-topping pizzas in which the two sides of the pizza are not the same, a recursive calculation can be used. First choose one topping on one side, i.e. plain, leaving 15 remaining toppings for the other side. Next choose a different topping for one side, i.e. pepperoni. Again there are 15 toppings for the remaining side but one would create a duplicate from the previous set, thus only 14 remaining toppings can be used. Choose a third topping for one side, i.e. peppers. Again there are 15 toppings for the remaining side but two would create a duplicate from the two previous sets, thus only 13 remaining toppings can be used and so on. Each new set of pizzas can be found by subtracting one from the previous set. The total number of different 4 topping pizzas that can be created is the sum of 1 through 16.
d. Contradiction- When a situation arises that is inconsistent or contrary to known or inherent facts, a contradiction has been reached. In the 4-tall Tower Problem, when selecting from two colors, (e.g., yellow and blue), a proof by contradiction can be used to prove the total number of towers that can be built in the case of exactly one yellow cube. The yellow cube can be placed in either first, second, third or fourth position. If other towers can be built with one yellow cube, the yellow cube would have to be in a different position, the fifth position. Placing a cube in the fifth position would require the tower to be a height of at least five. This is a contradiction of the requirement that the tower has a height four.
e. Rule- Features of a given task may be used to identify numbers and perform calculations leading to a solution. In that case, the work is justified with a procedure or "rule", which is a statement that relates the mathematical operations to features of the problem. For example, in the 4tall towers problem, selecting from two colors, a student may incorrectly claim that $4^{2}=16$ makes sense as a solution because there are four blocks in each tower, and two colors to choose from.
4. Teacher Evaluation: In addition to recording the forms of reasoning identified by teachers as they progressed through the intervention, this study aims to identify which arguments (if any) were found convincing.
a. Convincing - When a teacher made a claim that a particular argument was convincing, the argument was recorded as "convincing" for that teacher.
b. Not convincing -When a teacher made a claim that a particular argument was not convincing, that argument was recorded as "not convincing" for that teacher. In some instances, the teacher provided a reason as to why the argument was not convincing. Instances in which the teacher claimed the argument was not convincing because it was incomplete will be coded as "incomplete." Instances in which the teacher claimed the argument was not convincing because it was not a valid argument will be coded as "invalid."
5. Researcher Evaluation: In order to gain a truer picture of each teacher's recognition of forms of reasoning, it was necessary to identify missed opportunities, or situations in which teachers may have failed to recognize a particular form of reasoning. In order to identify these situations, the researcher evaluated each form of reasoning presented or discussed by the teachers. This evaluation was done using codes identical to those used in the "Teacher Evaluation" section- with one exception. The Researcher Evaluation includes an additional code "Undetailed Description" This code is applied to indicate situations in which there is not enough information about the particular argument to allow a code of "Convincing" or "Not Convincing" to be applied. (Wright, 2015)

3.6 Instructor Moves Framework for Analysis

The instructor moves framework for analysis was a second framework for analysis used to code the strategies used by the instructor to facilitate teachers' recognition of reasoning. This framework is used to code the video data of the observed
instructor moves after teachers worked on mathematical tasks, discussed the in-district classroom implementation of the tasks, and discussed students' work samples.

The framework draws from the Smith and Stein (2011) framework for practices that encourage mathematical discussions. Smith and Stein (2011) posited five practices describing how teachers can productively facilitate mathematical discussions in an NCTM publication called 5 Practices for Orchestrating Mathematics Discussions. The reported practices included anticipating students’ actions and possible strategies used when problem solving, monitoring students' work during the task of problem solving, selecting salient work from the students, sequencing students' regarding the order in which the work is shared, and connecting the strategies and ideas for conceptual understanding (Smith \& Stein, 2011). Although not a part of research by Smith and Stein (2011), an additional practice involved motivating was included to account for celebrating participants' work (Marzano, 2007).

The Herbal-Eisenmann, Steele, and Cirillo (2013) framework for teacher discourse moves served as a foundation to the framework for analysis for coding this study. These pedagogical practices include waiting or pausing to allow time for participants to process and then respond to questions posed by the instructor or another participant; inviting which asks participants to contribute solutions to share different strategies and forms of argument; and re-voicing which is defined as restating, repeating, reporting, or paraphrasing the ideas of the participants out loud (Herbel-Eisenmann et al., 2013). The instructor moves framework for analysis is located in Appendix H and is organized in two different categories: observed representations and forms of pedagogical
practice. The first category, used representations, is defined as in the reasoning strategies framework.

The second category describes the pedagogical practices that the instructor used to facilitate the teachers' recognition of students' reasoning. The forms of pedagogical practice are founded on the aforementioned research from Herbel-Eisenmann et al. (2013) and Smith and Stein (2011) as well as the research from Maher and Martino (1999). Martino and Maher (1999) emphasized the significance of the questioning and listening by the teacher to promote students to generalize and justify their mathematical ideas. The following definitions describe the types of questioning:

1. Types of Questioning:
a. Explanation: Questions that invite a teacher or group of teachers to describe what they are doing or did. Explanation questions might be used while teachers are working on a task, in contrast to describing a completed task. (Maher and Martino, 1999)
b. Justification: Questions that elicit how the teachers are convinced that the solution is correct. (Maher and Martino, 1999)
c. Generalization: Questions that invite teachers to consider a similar problem with the goal of encouraging them to consider patterns that suggest a solution to the original problem. For example, by considering building towers of different heights, with different color choices, students can begin to consider how the height of a tower might be related to the number of color choices in finding the total number of towers that can be made. (Maher and Martino, 1999, p. 65)
d. Connection: Questions that invite teachers to consider whether they can identify similar problems, and if so, to describe similarities and/or differences. (Maher and Martino, 1999)
e. Probing: Questions that invite teachers "to elaborate on particular ideas." (Herbel-Eisenmann et al., 2013, p. 183) For the purposes of this study, "probing" will be distinguished from "inviting." "Probing" refers to situations in which one particular teacher is invited to elaborate on his or her particular idea, whereas "inviting" refers to situations in which the question is asked in a way to encourage many teachers to respond.
f. Other Solution: Questions that make public to other teachers various solutions. (Maher and Martino, 1999) For the purposes of this study, "Other Solutions" are used to describe the first time a particular solution is presented, but not for each time the solution is mentioned by the instructor.

In addition to questioning, the following pedagogical practices are also defined:
2. Anticipating: Predicting teachers' or students' behaviors or strategies while working on a mathematical task. (Smith \& Stein, 2011)
3. Monitoring: Checking for teachers' understanding as they are working on the task. The instructor monitors to make decisions about which solutions or strategies to make public without direct interaction. (Smith \& Stein, 2011)
4. Selecting: Choosing to share a particular teacher's work. (Smith \& Stein, 2011) 5. Sequencing: Asking for teachers' work to be presented in a certain order as opposed to allowing teachers to choose the order of work shared. (Smith \& Stein,
6. Motivating: Celebrating students' or teachers' work through praise or encouragement. Marzano (2011)
7. Waiting: Pausing to allow time for teachers to process and then respond to questions posed by the instructor or another teacher. (Herbel-Eisenmann, Steele, \& Cirillo, 2013)
8. Inviting: Soliciting multiple solution strategies, often with the goal of "making diverse solutions available for public consideration" or "including multiple students in the discussion. (Herbel- Eisenmann et al., 2013, p. 183)
9. Re-voicing: "Restating or rephrasing a teacher's contribution." (HerbelEisenmann et al., 2013, p. 183)

The frameworks for analysis were formed in collaboration with Will McGowan, Erica Wright, and me, with support from our advisor, Dr. Carolyn Maher. The foundation of the frameworks was a combination of both the previously aforementioned research and our own data collection. We began our discussion to form the instructor moves and reasoning frameworks for analysis beginning in the summer of 2014. Will, Erica, and I had weekly conversations on a conference line to discuss additions and revisions resulting in numerous editions of the frameworks.

Each member of the team selected video clips from his or her data set and the group coded examples together using the frameworks and made revisions as necessary. The frameworks for the instructor moves and reasoning strategies were finalized in October of 2015 and were used to code the video data and portfolio work. Weekly phone conversations were held and another graduate student, Victoria Krupnik, joined the team
in 2016 to help with the verification of codes for reasoning strategies and instructor moves.

3.7 Beliefs Framework for Analysis

Teachers' beliefs about the learning and teaching mathematics were also analyzed. The pre- and post-assessments on participant beliefs about the learning and teaching of mathematics were given at the beginning and the ending of the PD intervention respectively, using the same instrument for each assessment. That instrument is located in Appendix A. The assessment is comprised of thirty-four statements where some of the statements are consistent with NCTM standards; and some statements are inconsistent with NCTM standards. Relevant to this study, a subset of twenty-two statements of this assessment were analyzed. The twenty-two items, located in Appendix B, correspond to students' reasoning regarding the mathematics, the learning of mathematics, and the teaching of mathematics. The response categories use a 5-point Likert scale for each item, ranging from strong agreement (e.g. 1) to strong disagreement (e.g. 5).

3.7.1 Categories of Beliefs

The assessment was used to analyze teacher beliefs over the duration of the intervention. Some assessment items were statements considered to be consistent with recent NCTM standards. Other assessment items were considered to be inconsistent with the standards and are marked below with an asterisk. The videos of regional meetings, online discussions, and final projects were analyzed for any changes in knowledge about teacher beliefs.

For analyzing the beliefs, the questions were organized into the following categories:

Expectations and Student Abilities: Q1, Q7, *Q13, *Q29
Mathematical Discourse: Q4, *Q23
Concepts and Procedures: Q2, *Q5, Q9, *Q11, Q18, Q19, Q21, Manipulatives: *Q10, *Q17

Student and Teacher Roles: Q24, *Q30, *Q32
Differentiated Instruction: *Q6, Q15, Q28, Q31 (McGowan, 2016)
The teachers' responses from the pre- and post-assessments are coded as consistent, inconsistent or undecided concerning the standard described in each category. Undecided is used as the code for a " 3 " rating (neutral). Consistent is the code used for ratings showing agreement with statements consistent with the standards or disagreement with statements inconsistent with standards. Inconsistent is the code used for ratings showing disagreement with statements consistent with standards, as well as ratings expressing agreement with statements inconsistent with standards.

3.7.2 Intervention Data

Based on the above-described groups, codes were formed to relate teacher responses made during the intervention. In addition, codes were formed that identified beliefs as referring to the learning and teaching of mathematics. Each belief response is coded relating to the NCTM Standards from the beliefs inventory assessments and were coded as inconsistent, consistent, or undecided. The following descriptions determine whether the beliefs from the question categories are consistent or inconsistent with standards from the beliefs assessments. Unclear claims are coded as undecided.

Expectations and Student Abilities:

Statements indicating lower expectations for some learners, of that only some students are capable of mathematical success are marked as inconsistent with standards.
Statements indicating beliefs that all students are capable of mathematical success are marked as consistent with standards.

Mathematical Discourse:

Statements claiming that student mathematical discourse is not valuable or that mathematical discourse is only valuable to students actively discussing the mathematics are marked as inconsistent with standards.
Statements claiming that mathematical discourse is valuable for all students are marked as consistent with standards.

Concepts and Procedures:

Statements claiming that mathematics is more about procedures than concepts are marked as inconsistent with standards.
Statements claiming that concepts and procedures are both important in mathematics are marked as consistent with standards.

Manipulatives:

Statements claiming that manipulatives have a limited value or are only useful for certain learners are marked as inconsistent with standards.
Statements claiming that manipulatives are valuable for all learners, particularly as reasoning and communication tools, are marked as consistent with standards.

Student and Teacher Roles:

Statements claiming that the teacher is the sole authority in the classroom are marked as inconsistent with standards.
Statements claiming that students can have mathematical authority, particularly be making and supporting claims are marked as consistent with standards.

Differentiated Instruction:

Statements claiming that all students learn the same way and that teachers do not need to accommodate a range of student abilities are marked as inconsistent with standards.
Statements claiming that teachers do need to accommodate a range of student abilities are marked as consistent with standards. (McGowan, 2016)

3.8 Summary

The data are coded by groups to compare the beliefs pre- and post-assessment responses. Each response is identified as consistent, inconsistent, or undecided in regard to the standards from the Beliefs Inventory. Data on teacher beliefs are analyzed by the
teacher for any noted patterns, trends, or changes in categories of questions and beliefs on the learning and teaching of mathematics and then compared to pre- and post-assessment Beliefs Inventory data.

Chapter 4 - Cycle 1 Session Summary and Analysis

This research focuses on one section of three cohorts participating in the intervention sessions. Prior to the initial session, teachers were required to complete preassessments on students' reasoning from the Gang of Four video and on beliefs of the learning and teaching of mathematics. For the beginning session, all three teacher cohort groups met as a large group at the Rutgers Graduate School of Education (GSE) to start the intervention. For the final session, all three cohort groups met again to discuss and reflect on the intervention. The intervention sessions were comprised of on-campus meetings, regional meetings, on-line discussion threads, and in-district classroom visits. During the regional meetings, teachers discussed students' work samples at district schools. For the in-district classroom visits, teachers observed an implementation with current students for each of the three task cycles.

During the intervention, teachers met on-line weekly to discuss the videos and articles using guided questions provided by the instructor. The instructor partitioned the on-line discussion threads into fifteen separate units. For each unit, a meeting was scheduled or a weekly on-line discussion was scheduled. This chapter is a summary and analysis of five session units for the first cycle of mathematical tasks.

4.1 Unit 1: Initial On-Campus Meeting 9/7/13

At this meeting, the instructors introduced themselves and briefly discussed the course requirements. Dr. Palius then spoke with the teachers about completing a precourse assessment for the NJPEMSM program evaluation. Then, the instructors began the Cycle 1 intervention by giving the teachers a mathematical task, tools, and encouragement to work collaboratively.

4.1.1 Teachers Work on First Cycle Task

Teachers were asked to work in pairs to find a solution for building four-tall towers selecting from two colors and convince each other of their solution. Once a solution was found, teachers were asked also to convince one of the circulating researchers of their solution. If successful, they were then asked to produce a written solution. If they did not successfully convince one of the researchers, teachers were invited to rethink their solution.

The first teacher pair that the instructor of the southern region cohort briefly monitored was solving the four-tall towers task by starting with a tower and then creating another tower with opposite colors. After a few minutes, the instructor encouraged the pair to by saying "That's good, you are checking for duplicates" (9/7 meeting transcript, line 19).

Then the instructor of the southern region cohort stopped at a second pair of teachers to ask "how many did you find?" and "how do you know you have them all?" (9/7 meeting transcript, line 20) This pair of teachers explained to the instructor how they "started with two reds and two yellows one of a color" (9/7 meeting transcript, line 22) and "took this red and moved it to the second position" (9/7 meeting transcript, line 26). The strategy the second teacher pair used is defined as the elevator strategy.

The instructor then stopped at a third teacher pair to ask what they were doing (9/7 meeting transcript, line 34). One teacher in the pair described their work by telling the instructor that "I used two reds and so to approach that I kept the first red always on the bottom" (9/7 meeting transcript, line 41). The instructor informed the teachers that they were "holding a constant" as their strategy ($9 / 7$ meeting transcript, line 52).

The instructor then moved on to a fourth teacher pair where they had arranged the four-tall towers in pairs by building one tower and then making another tower with opposite colors. The instructor asked the fourth teacher pair "how do I know that you found all the towers?" (9/7 meeting transcript, line 69) The fourth teacher pair was unable to provide the instructor with a convincing argument, so the instructor asked the teacher pair to "think about rearranging the towers so you can convince me" ($9 / 7$ meeting transcript, line 82).

The instructor then returned to the first teacher pair to ask "What is that?" regarding their task solution (9/7 meeting transcript, line 26). One of the teachers (T2) in the pair began to explain how they found all the towers. The explanation is as follows:

So we are adding two additional ones Every time you are adding an extra position. So for the ones that are one high, when you add a second block, you have a yellow, you could add either a yellow or red again; and to that red you add another yellow again. ($9 / 7$ meeting transcript, line 89)

The instructor responded by saying to the pair that they were using an inductive argument (9/7 meeting transcript, line 90).

The other teacher in the pair (T3) added to the discussion by saying "You are doubling it. Two times two is four." (9/7 meeting transcript, line 91) The instructor then facilitated a discussion by asking them what they meant by doubling ($9 / 7$ meeting transcript, line 92). T2 responded by saying they solved the problem with exponents. The instructor asked "So which is it? Two to the fourth to get 16 or doubled" (9/7 meeting transcript, line 91) and T3 replied "both" (9/7 meeting transcript, line 97).

The instructor asked this pair to predict how many 5 -tall towers could be made (9/7 meeting transcript, line 98). T2 explained there were " 2 different colors and 2 to the fifth power is $32 "$ ($9 / 7$ meeting transcript, line 103). The instructor explained that they
were using exponents and that they needed to write their argument down ($9 / 7$ meeting transcript, line 104). Then the instructor moved to a fifth teacher pair.

The instructor asked the fifth teacher pair to explain what they did to solve the task ($9 / 7$ meeting transcript, line 110). For one of the arguments, one of the teachers in the fifth pair said "we move red down and started with one yellow and started to take the two red down to this position so it is kind of like a rebuilding by moving the reds down" (9/7 meeting transcript, line 123). The instructor informed the fifth teacher pair that they were describing a recursive argument (9/7 meeting transcript, line 124).

The instructor returned to each teacher pair to tell them to write their convincing arguments on paper and that each teacher had to write their own argument. After forty minutes, the instructors asked the teachers to stop working in their pairs to share and discuss their reasoning strategies used to solve the first cycle task with all three cohort groups in the larger group.

4.1.2 Teachers' Discussion of First Cycle Task Solutions

The large group discussion began when the northern and central cohort instructor asked "what was the first strategy in here?" (9/7 meeting transcript, line 210) One teacher from the southern region cohort group volunteered the first response with the following:

So I had four of one color and I had it in one of the other color. And it could be in the first, the second, the third, or the fourth position. And then I knew if I did it that way, I could reverse it and do it with the other colors as well. (9/7 meeting transcript, line 217)

After this teacher shared her reasoning, the northern and central cohort instructor mentioned how "it's okay to not understand what they are doing" (9/7 meeting transcript, line 234) because then you can ask questions to provide an opportunity for the student to
explain his or her reasoning. This was also the situation with another teacher from the southern region cohort. This teacher began solving the four-tall tower problem, selecting from two colors using opposites; but then rearranged her towers using the staircase strategy and explained her reasoning to both instructors (9/7/13 meeting transcript, line 202).

The northern and central cohort instructor could not understand the teacher's reasoning and kept asking questions until an understanding was gained. The instructor said "it took me the longest time to understand. What she was saying is: Look it! There are four spots that I can change a red for a yellow. And yet this one, then there are four spots and I can change this red for the yellow then there are four spots and I can change this red for a yellow" ($9 / 7$ meeting transcript, line 238). To help with the conceptual understanding of this argument, the instructor demonstrated what she was saying by moving the Unifix cubes to the four different spots as the instructor described the argument.

Another teacher pair was asked to share the strategy they used to solve the problem. The argument is as follows:

First we started with all of one color and then we decided to just keep the bottom ones consistently red; not to change that. So then we went and said, well this one has no yellows so let's just use one yellow at a time and there is three positions that one yellow can occupy, keeping the bottom one red. ($9 / 7$ meeting transcript, line 238)

The southern region cohort instructor asked the larger group to compare what the previous teacher pair did to this teacher pair by asking "does that look at all similar to what they did?" (9/7 meeting transcript, line 271) and several teachers recognized that "they held a constant" (9/7 meeting transcript, line 272).

Another teacher pair in the northern and central cohort group shared their strategy by responding "we built one tower high, two tower high, three tower high" ($9 / 7$ meeting transcript, line 298). After asking the teachers to predict the possible 4-, 5-, and 6-tall towers that can be made, the instructor asked "how do you get those numbers?" (9/7 meeting transcript, line 306) and one teacher responded "you are doubling the outcome" (9/7 meeting transcript, line 307). When the instructor asked for the teacher to explain their argument, the teacher responded "if I have 5-tall towers, 5 times 2 are ten but you are not doubling the position you are doubling the outcome. So you would have 2 , then 4 times 2 is $8 "(9 / 7$ meeting transcript, line 309). The instructor then asked if anyone in the large group could explain the argument in a different way.

One of the southern region teacher pairs said "We started off by doubling the outcome and then we looked at it in the form of exponents. We saw that if you kept the base, exponents change depending on how high and then we saw that four cubes high you would get...you would get 16 results" ($9 / 7$ meeting transcript, line 309). The instructor then asked the teachers "when they are told to build towers 5 tall, what do you think that they could possibly predict as their solution?" (9/7 meeting transcript, line 314) and several teachers answered the instructor by saying 25 ($9 / 7$ meeting transcript, line 315). The instructor ended the discussion by telling teachers to try to arrange to have an hour to do the cycle one task or implement the task over two days, give the extension problems to students that have completed the 4-tall tower task, and make an on-line post for next week. Then the instructors met with their respective groups separately to plan for other meetings and to introduce expectations and requirements.

4.2 Unit 2: On-line Discussion and In-District Classroom Visit

For the on-line discussion, the instructor wrote on-line to sign in at the front office of one middle school for the first in-district classroom visit on 9/17/13. Teachers met briefly after the in-district classroom visit to debrief and discuss students' work from the classroom visit. The instructor also wrote that the teachers should be implementing the first cycle towers problems in their classrooms during the week of 9/18/13 and 9/27/13.

4.2.1 On-line Discussion 9/11/13 to 9/16/13

After the initial on-campus meeting, teachers were asked to participate in a weekly on-line discussion by making one original post and responding to two other teacher posts. For this discussion, teachers were asked to respond on-line to the following questions:

1. Before doing the classroom implementation, what do you think your children will predict (without building them) for 3 -tall and 5 -tall towers? Do you think they will say that there will be more, fewer, or the same number of towers as there were for towers 4 cubes high? What reasons will they give?
2. Before doing the towers problems with your children, predict how they might arrange their towers and what kind of convincing arguments they might give for their solutions. (Unit 2 on-line discussion thread, questions 1and 2)

4.2.1.1 First Question Responses

The first question asked the teachers to predict how many 3-tall and 5-tall towers could be made without building the towers. Six out of ten participants responded that students would get 6 towers for 3-tall, 8 towers for 4 -tall, and 10 towers for 5 -tall using doubling as the reason. The response that one of the teachers predicted follows:

Before doing any towers, I think students will predict that 3 high will produce 6 towers, 4 will give 8 , and 5 will give 10 . I teach in the resource classroom and students struggle with their facts. Many times, coming into the new school year, the students are not aware or familiar with exponents. I think it will be difficult for them to predict to use exponents. Instead, they may just assume they need to multiply the 2 from the colors with the number of cubes high it will be. I think
after completing the tower activity, it would be a good opportunity to introduce and discuss exponents. (Unit 2 on-line discussion thread, line 1)

Two teachers speculated that students would predict 9 towers for 3-tall and 25 for 5-tall by squaring the numbers. The response of one of the teachers follows:

I think that my students will predict that there will be 9 towers for the 3 -tall and 25 towers for the 5 -tall. I think some of them will be able to visualize an increase in the number of towers as the tower height increases and some of them will think there are an equal number of towers no matter what the height is. (Unit 2 on-line discussion thread, line 9)

Another teacher predicted that his students would say 3 for 3 -tall towers and 5 for
5-tall based on the tower height. This teacher had mildly cognitively impaired (MCI)
students. His response follows:
I believe my students will say that the possibilities will be the same number as the amount high the towers can be. So for 3 towers high I think they will say there are 3 possible outcomes, for 4 towers high there will be 4 possible outcomes, and for 5 towers high there will be 5 possible outcomes. I do believe that they will associate a lower number in height with a lower amount of outcomes. I think they will say that 3 will be less because it is a lower number. Also, 5 will be more, because it is a higher number. (Unit 2 on-line discussion thread, line 31)

Another teacher didn't give a specific number but responded that her students would guess a smaller amount than would be possible to make because her students would just try to build them using trial and error. Her response follows:

I think my students will predict a smaller number of towers than what is actually possible to make. I predict that students will think of different color combinations, but fail to realize that a different position constitutes as a different tower. I think they will think two towers of one color, one tower with three and one, another tower of three and one and one of two and two. I do think that students will think that five would make more towers and three would make fewer towers. I think the reasons will be that the more blocks you have the more ways you can pair the two different colors. (Unit 2 on-line discussion thread, line 32)

4.2.1.2 Second Question Responses

The second questions asked the teachers to predict how their students might arrange the towers and what students might give as convincing arguments. Three of the teachers responded by mentioning the opposite strategy to create pairs of towers with opposite colors. The responses of the three teachers follow:

I definitely think the students will try to create patterns with the colored cubes. I would think the students might create patterns then do the opposite patterns, which is how I did them. (Unit 2 on-line discussion thread, line 1)

After some exploration, some groups may begin to see that they have pairs of towers that appear to be opposites and may look for opposites that they are missing. (Unit 2 on-line discussion thread, line 12)

Another way students could approach the problem would be to build a tower then to build the tower with the opposite colors in each position. (Unit 2 on-line discussion thread, line 37)

Six teachers responded by mentioning that students would begin to just randomly begin to build towers with no organization. The responses of the six teachers follow:

I think that they will approach the problem slowly and look to me for help (which I will hold back on giving) and might beginning by making random towers until they compare their creations and see a pattern. (Unit 2 on-line discussion thread, line 9)

I believe that many of my students will start building without a strategy, rather just start looking for possibilities. (Unit 2 on-line discussion thread, line 12)

For my students, I could see this problem being about trial and error. They will attempt to make as many possible towers that they can without any type of organization or thought process before jumping right in. (Unit 2 on-line discussion thread, line 17)

I believe that they will just start by building all types of towers. (Unit 2 on-line discussion thread, line 19)

I also have many students who don't seem to have a good grasp on organization. I think they would just jump right in and create the towers randomly. (Unit 2 online discussion thread, line 22)

There are a few students that I think will try this activity with no plan in mind and then as they are working realize that having a plan may work best and decide to start over. (Unit 2 on-line discussion thread, line 36)

One teacher mentioned the elevator strategy by saying "Once students are building the towers, students will realize that changing the position of a block will create a different tower" (Unit 2 on-line discussion thread, line 32). Another teacher mentioned a proof by cases strategy with the following response "Students may start by arranging their towers according to how many of a certain color the tower contains starting with towers with no red, 1 red, 2 red, 3 red, and then 4 red (Unit 2 on-line discussion thread, line 37). All teachers were asked to complete their on-line responses by $9 / 16 / 13$, the day before the first in-district classroom visit.

4.2.2 In-District Classroom Visit 9/17/13

The first in-district classroom visit was scheduled for a different day than the regional meeting due to the large cohort size of ten teachers. For the first in-district classroom visit, the Cycle 1 task was implemented with twenty eighth-grade current students of a teacher. The eighth-grade current students were sitting in individual student desks that were pushed together in pairs. Similar to the way their teachers were organized the week before, the students worked in pairs. They were asked to convince their partners of their solutions and write down the solutions after convincing one of the researchers.

After the current students left, the instructor held a debriefing meeting with the ten teachers from the southern region group to discuss the students' solutions from the indistrict classroom implementation using an overhead and transferred the students", work
to transparencies for sharing. The teachers first discussed two students' work where a long written explanation for each group was written on their paper.

There were 6 groups of towers and the capital letters R and Y were used to symbolize the red and yellow unifix cubes. One tower and the opposite colors of that original-made tower were in each of the first four groups. One teacher recognized that the students paired the first four groups as "one way and then the opposite. So that's why there is two in each group" (9/17 meeting transcript, line 53). The student's written argument for the first two towers was "You can only have four blocks and then you have one yellow in the first one then the second one is the alternate color" $(9 / 17$ meeting transcript, line 65). The instructor then asked the teachers "Is that convincing? What might they have said to really let you know why they have all the towers in that group?" (9/17 meeting transcript, line 66) and one teacher responded "there are only two colors" ($9 / 17$ meeting transcript, line 67). Figure 4.1 is a replication of the tower chart of one student's work from the classroom visit on 9/17/13.

G1	G2	G3	G4	G5	G6
Y R	YR	R Y	YR	RRRY	YYYR
Y R	YR	Y R	RY	RRYR	YYRY
Y R	RY	Y R	YR	RYRR	YRYY
Y R	RY	R Y	RY	YRRR	RYYY

Figure 4.1 First Discussed Student's Work from 9/17/13 Class Visit
The instructor then had a teacher read the student's argument for group 2. The student's written argument was "You can't have any other combination in this group because of the two yellow on the top, two red on bottom, and then we did the opposite; two red on top, two yellow on bottom" (9/17 meeting transcript, line 69). The instructor said that the students just reported what they did but did not provide a convincing
argument as to whether the students found all possible towers $(9 / 17$ meeting transcript, line 72). This was also the case with the student's written argument for groups 3 and 4.

The instructor then asked "what about group 5" (9/17 meeting transcript, line 58). The fifth group had four towers where the fifth group had yellow unifix cubes only on the diagonal, where the first position of the yellow unifix cube started at the bottom and then was moved up one cube at a time to form the next tower. The student's written argument is as follows:

For this group we started with 3 red on top and one yellow on the bottom. Then we moved the yellow block up one, which gave us two red, one yellow and then another red on the bottom. For the next one, we did one red, and then a yellow, and two more red. For the last one, we did one yellow on the top and three red on the bottom. (9/17 meeting transcript, line 93)

One teacher recognized that "Group 5 is that diagonal like...I just meant diagonal was all one color" ($9 / 17$ meeting transcript, line 59). Another teacher recognized that the sixth group was "the opposite of the fifth group" (9/17 meeting transcript, line 61). The instructor said to the teachers that the argument was a written argument of what the students did and then distinguished the difference between a convincing argument and a not convincing argument with the following:

And if they exhausted all four positions there would be no other place to put a single red cube in one red and three yellow. That's a convincing argument, okay. Um, there are only four positions in tower four tall and they the single red cube in each of the four positions. That's a convincing argument; more than telling you what they did. (9/17 meeting transcript, line 96)

The instructor continued this discussion by asking the teachers which groups they thought were convincing (9/17 meeting transcript, line 104). One teacher said "I think four is pretty convincing. I think it's just alternating colors. So there's no other way...If you moved one to the top, you'd have the same tower as the second one" ($9 / 17$ meeting
transcript, line 109). The instructor responded as follows: "If they said that, then you're right, that would be convincing" (9/17 meeting transcript, line 110). The instructor asked the teachers if anyone saw the students moving the cube up from the bottom. One teacher admitted to seeing the students move the cube up from the bottom. The instructor responded by saying "when you take a [Unifix] cube from the bottom and move it up to the top to build another tower, take a [Unifix] cube from the bottom and move it up to the top; that's called a recursive argument" (9/17 meeting transcript, line 112).

Two other teachers admitted to seeing other groups make a similar argument. One teacher mentioned that two girls made an argument where "they had the two alternating ones, and they were like, oh these don't fit" (9/17 meeting transcript, line 112). The argument from the two girls is as follows:

We started with yellow and one red. Then we moved the red down on space every time and move the yellow to the top every time. Then we did the opposite with three red and one yellow. Then we did two of each color; two red, two yellow. We moved the two red down one cube and took the one yellow on the bottom and move it to the top. We put the two yellows on top, on top of each other, and had two reds...on the bottom. Two yellows on top of two reds. Oh, two reds... on the bottom. Then we moved one of the reds on top of the two yellows. ($9 / 17$ meeting transcript, line 147)

The instructor then asked "how could they have convinced you with the alternating ones that there aren't any more for that either" ($9 / 17$ meeting transcript, line 122). Another teacher responded "Take the top; put it on the bottom, and now they have a different one. But if they took the top and put it on the bottom again, they would go back to the other one so there's no more" ($9 / 17$ meeting transcript, line 125). The instructor then said "So they really could've used the recursive argument for the alternating ones too" (9/17 meeting transcript, line 126). Figure 4.2 is a replication of the drawing the student provided.

Figure 4.2 Second Discussed Student's Work from 9/17/13 Class Visit
Teachers also discussed the work from students where the drawing showed the same color on the top. The following student's argument was shown with the projector and read by teacher volunteers:

Group 1 says, you can only have four blocks and then you have one yellow in the first one then the second one is the alternate color. You can't have any other combination in this group because of the two yellow on the top, two red on bottom, and then we did the opposite; two red on top, two yellow on bottom. We did two of each color, red on top, \& two yellow in the middle, and one red on the bottom. For the other one, we did one yellow on top, two red in the middle, and one yellow on the bottom. We did red-yellow-red-yellow and for the other one we did yellow-red-yellow-red. For this group we started with 3 red on top and one yellow on the bottom. Then we moved the yellow block up one, which gave us two red, one yellow and then another red on the bottom. For the next one, we did one red, and then a yellow, and two more red. For the last one, we did one yellow on the top and three red on the bottom. (9/17/13 meeting transcript, lines 65-93).

One teacher recognized this reasoning as holding a constant (9/17 meeting transcript, line 176) and the drawing of this student's work is in Figure 4.3. After the teachers discussed the students' work from the in-district classroom visit, the instructor ended the meeting by asking the teachers to implement the same task in their own classrooms between 9/18 and 9/27 and complete the on-line assignments.

Figure 4.3: Tower Drawing, Third Discussed Student's Work from 9/17/13 Class Visit

The teachers discussed a fourth student's work sample. The student had 5 groups labeled A through E. Figure 4.4 is a replication of the fourth student's work sample. The following student's written argument was placed on the screen for the teachers to read:

Group A: can't have any more towers because all of the red blocks that are in a different position.
Group B: it can't have any more because of the yellow blocks are in different positions.
Group C: was just the standard four blocks of each color and then we switched the colors.
Group D: we just alternated the colors.
Group E: made a tower of the full color and there are only two colors.

Figure 4.4 Fourth Discussed Student's Work from 9/17/13 Class Visit

The instructor said that Group A was "the start of a real nice convincing argument" and that B was "the opposite argument of A" (9/17/13 meeting transcript, line 215). When the instructor asked about Group C, one teacher replied "I think that the way she grouped
it, like was more convincing than the way she wrote it." (9/17/13 meeting transcript, line 216). One of the teachers recognized the student may have used a recursive (9/17/13 meeting transcript, line 220). However, the instructor replied that ". And that probably is a really good guess as to what happened for these towers. She might've been using a recursive argument. She might've been taking the two together, and moved them down the way she did the one." (9/17/13 meeting transcript, line 221).

Another student's argument was discussed with the teachers but not shown on the screen. The instructor asked one of the teachers to read the following student's argument:

Being that the tower is one cube shorter than the four cube tall tower; I would say there are less than 16 towers; we have less tower patterns to choose from. If we do 2 the amount of colors times four the amount in the towers you are going to get 8. Two which is the amount of colors times 3 which is the amount in the tower, you are going to get 6 towers. (9/17/13 meeting transcript, line 242).

The instructor said to the teachers "What she is saying is this: if we build the towers four tall which we did; okay we had four cubes tall, right and there were two colors. So she said when I build towers four tall I had the four cubes times the 2 colors; that's 8 ." (9/17/13 meeting transcript, line 243). This student incorrectly used the rule strategy. The instructor asked the teachers "What would you ask her to do?" (9/17/13 meeting transcript, line 251) and one of the teachers replied "Build them!" (9/17/13 meeting transcript, line 252).

4.3 Unit 3: On-line Discussion 9/18/13 to 9/24/13

For this discussion, teachers were instructed to watch four videos located on the VMC website: www.videomosaic.org. One video was of students Stephanie and Dana working on a shirts and pants problem. For the shirts and pants problem, students had to
find the total number of outfits that could be made from three shirts and two pants of different colors. The other assigned videos were of third- grade students Stephanie and Dana working on the 4 -tall towers problem selecting from two colors, Stephanie's prediction for 3-tall towers, and Meredith's prediction for 3-tall towers by removing the top cube.

Teachers were also assigned to read chapter 3 of Combinatorics and Reasoning (Maher, Powell, \& Uptegrove, 2010) about the second- and third-grade students' representations to solve the shirts and pants problem. After watching the videos and reading the chapter, participants were asked to respond to the following guiding questions on-line:

1. At Rutgers, after building 5 -tall towers, selecting from 2 colors, and listening to the arguments shared by your colleagues, what, if anything more did you notice in the video of the children that you watched building 4-tall towers, selecting from 2 colors?
2. You have watched the video of Stephanie and Dana in grade 3 building 4-tall towers, selecting from 2 colors. Are their arguments convincing? Why?
3. For the other two videos you have watched, both Stephanie and Meredith make predictions for the number of towers 3-tall. Their predictions are not the same. Does this give you any insight to the way children think or reason?
4. In Chapter 3, compare and contrast the solutions the children found as second graders to the Shirts and Pants problem to the solutions they found as third graders. (Unit 3 on-line discussion thread, questions 1-4)

4.3.1 First Question Responses

The first question asked teachers to discuss anything that was noticed in the video of the children building 4-tall towers, selecting from 2 colors. Three of the teachers mentioned opposites as a strategy. The responses of the three teachers follow:

I did notice that the "opposite" method was very popular. (Unit 3 on -line discussion thread, line 1)

We immediately started building opposites. This was very common amongst the students this past week. (Unit 3 on -line discussion thread, line 14)

No matter what group of students I listened to, I saw them all talk about opposite pairs, patterns, diagonal movements, and recursive patterns but all were unclear as to how to explain why they did what they did. (Unit 3 on -line discussion thread, line 33)

Eight of the ten teachers mentioned the exposure to different strategies. The responses of the teachers follow:

I learned from my colleagues and from watching the children that there are many different ways of approaching and explaining the problem. (Unit 3 on -line discussion thread, line 1)

Whether it was with my partner in our own class, watching the video or seeing the students this past week, I was able to listen and see how different people approached the problem in so many different ways. (Unit 3 on -line discussion thread, line 14).

What I noticed while I was watching the video and also watching the students in C's class are the different ways that people organize towers. (Unit 3 on -line discussion thread, line 26)

After to speaking to my colleagues and conducting the activity in our class together it opened my eyes to the many different approaches that can be used to solve the problem. (Unit 3 on -line discussion thread, line 30)

I noticed that there are many different ways to approach this problem. (Unit 3 on -line discussion thread, line 39)

I have learned that there are multiple approaches toward a problem like this. (Unit 3 on -line discussion thread, line 41)

I did learn many different ways from hearing others in class. (Unit 3 on -line discussion thread, line 46)

I found it very interesting how many methods were used in getting to the solution of 16 towers. (Unit 3 on -line discussion thread, line 48)

4.3.2 Second Question Responses

For this question, teachers were asked if Stephanie's and Dana's arguments were convincing. The teachers were also asked to justify their answer. Half of the teachers
thought Stephanie and Dana provided a convincing argument. The responses of the five teachers that thought Stephanie and Dana provided a convincing argument follow:

I thought Stephanie and Dana's argument was very convincing in that 3 tall will give 8 towers. Dana explained that when you take one cube from each 4 -tall tower, that will leave you with duplicates. After getting rid of those duplicates, you will be left with 8 towers. (Unit 3 on -line discussion thread, line 1)

I think Stephanie's and Dana's argument is convincing. They were easily able to identify the 16 total towers that can be created using 4 -tall high unifix cubes. When asked how many towers they would have for 3-tall, they simply just took off one cube from the 16 towers that they already had created. They were able to then see that they had duplicates amongst the 16 towers and by eliminating the duplicates; they were left with 8 different towers. (Unit 3 on -line discussion thread, line 14)

Stephanie and Dana did have a convincing argument. The girls came to 16 combinations, they explained that they had kept trying more and more but they kept making duplicates so that made them realize there were no more combinations. Though that usually is not enough once they were explaining how they knew to build the 3-high towers they showed that they understood how they had no more combinations from the four. Taking one off just created more duplicates that they had to get rid of and their resulting answer was 8 towers 3high. (Unit 3 on -line discussion thread, line 41)

Stephanie and Dana have convincing arguments. They are able to create patterns and show that they have exhausted options without repeating. (Unit 3 on -line discussion thread, line 46)

I thought the girls' arguments were convincing. Stephanie determined right away that with less blocks there would need to be less towers because you would have duplicates. She had good reasoning to convince herself of that too. (Unit 3 on-line discussion thread, line 48)

Half of the teachers responded that Stephanie and Dana did not provide a convincing argument. The responses of the five teachers that thought Stephanie and Dana did not provide a convincing argument follow:

Stephanie's argument for having 16 towers four tall was not convincing. She only mentioned that she had them all since she was checking and could not find more. This is not convincing since there is the possibility of missing some. She did not describe any method used in creating them. Dana's argument was not convincing either since she stated that you should always assume there is more
until you find out the answer. She did not give any reasoning or method to how to determine the answer or know when you have them all. (Unit 3 on-line discussion thread, line 6)

I do not think that Stephanie and Dana have a convincing argument. Both Stephanie and Dana believe that they have tried many different ways and are convinced that they have made all the possibilities but do not supply a convincing argument as to why they are sure. (Unit 3 on-line discussion thread, line 26)

I really don't feel that their argument is very convincing. They really don't explain why they came to the conclusion and how they determined that all possibilities are done. At the end Stephanie explains that if you take one red and one blue away from the tower of four they would be the same. However, she is not thinking that there would have to be more color combinations because they are working with two colors. (Unit 3 on-line discussion thread, line 30)

I do not think Stephanie and Dana's argument is completely convincing. I think they are on the right track but they still are not sure how to explain if there are truly only 16 towers. (Unit 3 on-line discussion thread, line 34)

I am not completely convinced by their argument. It appears that since she was "checking and checking" she used a guess and check method, but did not have a systematic way to see if she had all of the possible outcomes. (Unit 3 on-line discussion thread, line 39)

4.3.3 Third Question Responses

The third question asked teachers for their insight to the way children think or reason based on the 3-tall tower predictions of Stephanie and Meredith. Eight teachers specifically mentioned Meredith using the unifix cubes to solidify her conceptual understanding of the task. The responses of the eight teachers follow:

Meredith initially thought it would be 16 still because by just taking one cube off the top, there would be the same amount of towers. It wasn't until she actually tested out that she noticed the duplicates and knew to get rid of them. (Unit 3 on line discussion thread, line 1)

Meredith did not initially think that the number of towers would change since you could just remove a block and be left with towers three tall. It was not until she actually removed the blocks that she saw the duplicates. (Unit 3 on -line discussion thread, line 6)

Meredith on the other hand, predicted that the number of towers would be the same. She immediately thought you could simply just remove one cube from each
tower and 16 different towers would still remain. It wasn't until she physically removed a cube from each tower for her to visually see that duplicates would be present. (Unit 3 on-line discussion thread, line 14)

After Meredith completes the actual process of removing the top block, she is able to articulate this very clearly. It was necessary for Meredith to complete the activity before being able to do so. (Unit 3 on -line discussion thread, line 26)

When Meredith pulled the top cubes off it took her awhile to realize that some might become doubles. Once she realized that she started to omit the doubles. (Unit 3 on -line discussion thread, line 30)

Stephanie's answer is correct but Meredith still arrived at the correct answer quickly after removing the top cube from all of her towers. (Unit 3 on -line discussion thread, line 34)

Meredith does not predict the duplicates, but is able to see them after she begins removing cubes. (Unit 3 on-line discussion thread, line 39)

Meredith predicting that there would be the same amount until her teacher asked her to try it (Unit 3 on -line discussion thread, line 41)

4.3.4 Fourth Question Responses

For the fourth question, teachers were asked to compare and contrast the solutions of the children from second to third grade on the shirts and pants problem. Five of the teachers noted an improvement in reasoning from the second grade to the third grade. The responses of the five teachers that mentioned improvement in reasoning from the second to the third grade follow:

Stephanie, Dana, and Michael all showed an improvement in their reasoning between second and third grade. While Dana seemed to understand there could be six outfits both years, in second grade she was adding the assumption that the outfits should match and taking out a combination she did not think matched as a result. Stephanie did not provide an explanation for why she changed the white shirt to a yellow shirt instead of making the last two outfits with those colors but in third grade, her diagram showed she could determine the number of outfits in a more organized way and ensure she did not miss any outfits as a result. Michael's understanding of the problem improved between the two years. He no longer assumed the shirt and pants had to be the same color, instead he knew to match each shirt with each pant color. He also completed the activity in an organized way by matching each with lines then making a list from the lines he drew. (Unit 4 on-line discussion thread, line 6)

All three students' answers and organization of the work improved from second to third grade and showed that the three students had grown in the past year when given the same problem. (Unit 4 on-line discussion thread, line 15)

The major improvement that students made from $2^{\text {nd }}$ grade to $3^{\text {rd }}$ grade was their ability to rationalize their problem solving strategy. The students were able to explain why they used lines to connect possibilities and the purpose of doing so. (Unit 4 on-line discussion thread, line 26)

I also noticed in the video that the 3rd graders' reasoning was quicker and more methodical than when they were 2nd graders. (Unit 4 on-line discussion thread, line 34)

There was obvious growth in that one year in order for these students to get to the correct solution. (Unit 4 on-line discussion thread, line 48)

All teachers were asked to complete their on-line responses by $9 / 24 / 13$, the day before the next on-line discussion, and were instructed on-line to implement the Cycle 1 tasks in their classrooms sometime between September 18th and 27th.

4.4 Unit 4: Online Discussion 9/25/13 to 10/1/13

For this discussion, teachers were instructed to watch six VMC videos about students solving the Cycle 1 task. The first video showed Stephanie and Dana working on the 4-tall towers problem as third-graders and working on the 5-tall towers problem as fourth-graders. The other videos are five clips showing fifth-grade students working on building towers selecting from two colors using the Guess My Towers Problem.

The first clip of the Guess My Towers Problem showed Milin and Michelle working on finding all the possible 3-tall towers selecting from two colors for Question 1 of the Guess My Towers problem. Question 1 of the Guess My Towers Problem follows:

PROBLEM STATEMENT "You have been invited to participate in a TV Quiz Show and have the opportunity to win a vacation to Disneyworld. The game is played by choosing one of the four possibilities for winning and then picking a tower out of a covered box. If the tower matches your choice, you win. You are told that the box contains all possible towers three tall that can be built when you
select from cubes of two colors, red and yellow. You are given the following possibilities for a winning tower: a. All cubes are exactly the same color; b. There is only one red cube; c .Exactly two cubes are red; d. At least two cubes are yellow. Question 1. Which choice would you make and why would this choice be any better than any of the others? (Private Universe Project in Mathematics Workshops (PUP), Building Towers, Selecting from Two Colors for Guess My Tower, Clip 1 of 5: The Meaning of "At Least", 1993)

The second video clip showed fifth-graders Stephanie and Matt finding all possible 4-tall towers selecting from two colors for question 2 of the Guess My Towers problem. Question 2 of the Guess My Towers problem follows:

PROBLEM STATEMENT Question 2.Assuming you won, you can play again for the Grand Prize which means you can take a friend to Disneyworld. But now your box has all possible towers that are four tall (built by selecting from the two colors, yellow and red). You are to select from the same four possibilities for a winning tower. Which choice would you make this time and why would this choice be better than any of the others?" (PUP, Building Towers, Selecting from two colors for Guess My Tower, Clip 2 of 5: Does the Number Double?, 1993

The third video clip showed Milin, a fifth-grader Milin who shared his inductive argument for building 3-tall towers with researcher Carolyn Maher and another student named Michelle. The fourth video clip, Matt explained Milin's inductive argument to Robert and Michelle. Stephanie also adds to Matt's explanation with 4-tall towers. The fifth video clip, Stephanie explained the "doubling rule" to Matt, Michelle I., Michelle R., Milin, and Robert.

In addition to the videos, teachers were also assigned to read chapters 4 and 5 of Combinatorics and Reasoning (Maher, Powell, \& Uptegrove, 2010). Chapter 4 examines the strategies and representations used for solving towers problems. Chapter 5 examines how Stephanie and their classmates built their conceptual understanding of Milin's inductive argument. After watching the videos and reading chapters 4 and 5, participants were asked to respond to the following guiding questions on-line:

1. How do the children's strategies used to solve the towers problem in third grade look different than the strategies used when they were fourth graders? Which of their arguments did you find convincing?
2. During your classroom implementation of 4-tall towers, did any solutions surprise, delight, or puzzle you? Talk in detail about the solution of one of your students, so we can understand what the student did and whether you were surprised, delighted, or puzzled about his or her work.
3. In Chapter 5, we see that when children are given the opportunity to share mathematical ideas, they can contribute to the growth of understanding of their classmates. Talk about what one child in the video did that helped another child grow in their understanding.
4. In the video that you watched, did you find Milan's inductive argument convincing? Did his classmates follow his inductive argument? Give support for your answer. (Unit 3 on-line discussion thread, questions1-4)

4.4.1 First Question Responses

Three teachers noted that Stephanie and Dana used a guess and check strategy in third grade and then used the opposite strategy in fourth grade. The responses of the three teachers follow:

In $3^{\text {rd }}$ grade Stephanie and Dana didn't really have a strategy. They built the towers and then held up towers to one another to see if there were duplicates. In $4^{\text {th }}$ grade, they immediately started by "doing the opposite." This was convincing to me because that is how I found the towers when I did this activity. (Unit 4 on line discussion thread, line 1)

In third grade, Stephanie and Dana made towers and then put them in a line. They continued to make towers and check it with what they had already built to see if it was a duplicate. The used a similar strategy in fourth grade but this time they noticed the pairs that could be created. (Unit 4 on -line discussion thread, line 7)

In third grade, Stephanie and Dana used the process of trial and error to create the different towers. They were easily able to create several towers, but used a guess and check strategy to create any additional towers. They would then compare each new tower with the towers that already existed. If the tower was in fact a duplicate, they broke down the tower and tried again. If the tower was different then, the ones that they had already created, they would add it to the group. In fourth grade, Stephanie and Dana went immediately to the idea of opposites. (Unit 4 on -line discussion thread, line 21)

4.4.2 Second Question Responses

For the second question, teachers were asked to respond about solutions that surprised, delighted, or puzzled the teachers when they implemented the 4-tall towers task in their own classrooms. Six teachers noted they were surprised at their students'
work. The responses of the six teachers follow:
I was surprised by some of the work....There was one group that started with a recursive argument. They went through each grouping and were able to clearly explain why there were no more options. As the class continued, I noticed more and more groups using a recursive argument. (Unit 4 on-line discussion thread, line 7)

Another group that surprised me was a pair that I had high expectations from; however, they struggled making all 16 towers. They made two towers of one color, two towers of three and one, two towers half and half and two towers with each cube color alternating. (Unit 4 on-line discussion thread, line 11)

I did have one group of students who were closest to creating a convincing argument for the 16 towers that they created. They first organized the towers showing 1 blue cube and 3 yellow cubes, with the blue cube in the $1^{\text {st }}$ position, $2^{\text {nd }}$ position, $3^{\text {rd }}$ position, and $4^{\text {th }}$ position. They described how they knew there could not be any more towers in this set because if they tried to move the blue cube to another spot, they would need a tower that was 5 tall. They created the same argument for 1 yellow and 3 blue cubes. They then found all the towers that had 2 blue and 2 yellow cubes. They started with 2 blues in the $1^{\text {st }}$ and $2^{\text {nd }}$ positions, and then moved them to the $2^{\text {nd }}$ and $3^{\text {rd }}, 3^{\text {rd }}$ and $4^{\text {th }}$, and $4^{\text {th }}$ and $1^{\text {st }}$ positions. Because there would not be any other place to put 2 blues next to each other, they had all towers in this set. Next they created the alternating towers, and the solid towers. What most surprised me about their work was that when I returned to their group to give them a recording sheet, I noticed they had decided to reorganize their towers into pairs of opposites. (Unit 4 on-line discussion thread, line 29)

One of the things that surprised me the most came from two boys in my $8^{\text {th }}$ grade class. They are both extremely quiet and withdrawn from most school work (except for gym) but during this activity I saw a lot of cooperation from them. (Unit 4 on-line discussion thread, line 36)

I was pleasantly surprised with almost all of my students who worked on this problem. I think that in class about 99% of them got to 16 . (Unit 4 on-line discussion thread, line 41)

I was surprised because they approached it mathematically before building. They were using the reasoning that since there is two colors and four high that they
probably will have an even amount of towers. They were trying to solve the problem, but then decided to start building. As they were building they did what most of my students did and built them by opposites. (Unit 4 on-line discussion thread, line 45)

Two of the teachers noted that they were puzzled by students' work. The two teachers' responses follow:

One group that really puzzled me had a lot of towers built. The towers filled the desks. When I asked why they had so many, they said that they had towers standing up and towers lying down. I said that if the knob was at the top it did not matter if they were upright or lying down. It did not matter. The students insisted that they were different. They also had several duplicates within their layout but for some reason could not see them. (Unit 4 on-line discussion thread, line 43)

I had one student that actually used the same method that I had used to group them. She created to sets, towers with red cubes on the top and towers with yellow cubes on the top. She kept a constant to organize the towers. However, once she got here she had a really hard time explaining or organizing the towers in the set to show that she had exhausted all options. This student is my highest achieving student and it was puzzling to me that she could not develop an argument. (Unit 4 on-line discussion thread, line 47)

4.4.3 Third Question Responses

For the third question, teachers were asked to discuss one child that helped another child grow in their understanding from the videos assigned. Five of the teachers noted that Milin helped Michele. The responses of the five teachers follow:

Milin helped Michelle understand that 2 colors, 3 cubes tall will give 8 towers. He showed her that by starting with two blocks red and yellow, you can add on a red and then a yellow, giving you a total of 4 . Then, you double the 4 because you have to do the opposite of those 4 . (Unit 4 on-line discussion thread, line 1)

Milin was able to display the solution clearly to Michelle by showing a red or yellow added to each of the previous towers. (Unit 4 on-line discussion thread, line 7)

They started with 1-tall and were both able to see that there were two different towers possible. Milan then tried to build upon the towers he had already created, but the teacher prompted him to create new towers so that Michelle could see the different towers from 1-tall versus 2 -tall. He explained to Michelle that the number of towers doubled from 1-tall to 2-tall because he was adding one red and
one yellow on top of the towers he had already created. Using the different towers they created, they built two towers that were 1-tall, four towers that were 2-tall and eight towers that were 3-tall. The concept of doubling was then seen because they are adding one red and one yellow to each previous created tower. Michelle then understood where Milin got the idea of "doubling" and was able to believe that 4 -tall would create 16 different towers. (Unit 4 on-line discussion thread, line 21)

I feel that Milin was the one to first understand the inductive reasoning behind this problem. When he was explaining it to his partner Michelle at first he struggled but then when he was showing her how one base color can become two because you can put a yellow and then a red on top of each base Michelle was able to see the idea. (Unit 4 on-line discussion thread, line 41)

Milin really helped Michelle reason through this problem. As he was building his towers bigger and bigger, he clearly showed how you can get two towers from each smaller tower because there were two color options to add. A she was explaining this, the light bulb really turned on for Michelle and she was then able to finish the explanation herself. (Unit 4 on-line discussion thread, line 43)

Two of the teachers thought Milin helped all of his classmates. The responses of the two teachers follow:

I think Milin's use of inductive reasoning and breaking the towers down helped his classmates understand. He was able to clearly communicate with his classmates what he was doing when he added a block each time and doubled the number of towers. (Unit 4 on-line discussion, line 3)

It seems as only Milin saw this reasoning originally, but once the other students began to understand how it worked, it provides a very convincing argument for why there are only a certain number of possible towers of any height. (Unit 4 online discussion thread, line 29)

Six teachers noted that Stephanie helped other students. The responses of the six teachers
follow:
Milin was able to display the solution clearly to Michelle by showing a red or yellow added to each of the previous towers. Stephanie used a similar argument describing it as a family tree. (Unit 4 on-line discussion thread, line 7)

I also think that Stephanie's description of families aided to the students' understanding. (Unit 4 on-line discussion thread, line 11)

Stephanie is struggling to explain to the other students at the table how she is creating the 4 towers that are 2 -tall. Once Matt steps in and clarifies the explanation, it seems as though all of the students at the table are convinced. It is
clear that Stephanie now understands this argument as she jumps back in and starts explaining the 4 -tall towers that can be made, starts building, and is even confident enough to share the reasoning with the class as shown in the next segment. (Unit 4 on-line discussion thread, line 29)

Throughout the videos Stephanie seems to be the most demonstrable child. She was extremely willing to use the cubes to demonstrate her reasoning to others and talk out her work as she progressed through the steps. (Unit 4 on-line discussion thread, line 36)

Stephanie came back in to further show the explanation. In the final video when they were talking to the whole class and they had their examples lined up I think it was a great visual and verbal explanation to refer to a family tree; that each "parent" cube had kids and then they had kids and each time you are multiplying their kids by two. (Unit 4 on-line discussion thread, line 41)

In the last video when Stephanie was explaining her reasoning I think she was now more effective because she had all the blocks set up, which is a good visual aid, and went through the process step by step. (Unit 4 on-line discussion thread, line 45)

One teacher mentioned Michelle helped Matt. The teacher responded that "Michelle was explaining the inductive pattern and during this explanation Matt (who did not understand the reasoning behind why there were 16 towers) was listening to her and was able to jump in and continue her explanation. He learned from watching and listening to her reasoning. He actually even said that it was a family tree" (Unit 4 on-line discussion thread, line 47).

4.4.4 Fourth Question Responses

For the fourth question, teachers were asked if Milin's arguments were convincing. The teachers were also asked to justify their answer and provide support for whether Milin's classmates followed his inductive argument. All ten teachers responded that Milin's inductive argument was convincing. Seven teachers noted that Milin's argument was convincing when Milin used the cubes to physically show Michelle his inductive argument.

At first, she was pretty confused, and then when Milan showed her how to start with 2 cubes and add on each color, it was like it clicked for her. (Unit 4 on-line discussion thread, line 1)

Starting with the basic one block tower, he build from each tower showing there were two additional outcomes from each tower when another block was added because of the two color options. (Unit 4 on-line discussion thread, line 7)

He clearly showed not only that an increased number in a block led to the doubling of a new "family" but he stated why this was occurring as well. (Unit 4 on-line discussion thread, line 11)

It wasn't until he physically built the towers though that Michelle was convinced of Milan's "doubling" concept, which was evident in a later video when Michelle was then able to explain the problem. (Unit 4 on-line discussion thread, line 21)

When he describes how the only cubes to add on to each base he previously built are either yellow or red, he proves that there are no other possibilities than the set he created. (Unit 4 on-line discussion thread, line 29)

Using only two colors you only have two options to build on the each previous tower thus multiplying the result by two works. (Unit 4 on-line discussion thread, line 41)

Once he started to show Michelle the process of building the towers one set at a time she seemed to understand it. (Unit 4 on-line discussion thread, line 45)

All teachers were asked to implement the Cycle 1 tasks sometime before September $27^{\text {th }}$, complete their on-line responses by $10 / 2 / 13$, and bring two or three samples of students' work to share at the regional meeting on October 2, 2013.

4.5 Unit 5: Regional Meeting and On-line Discussion

For the week of $10 / 2 / 13$ to $10 / 8 / 13$, teachers were asked to make an original post by 10/5/13 and respond to at least two other posts by 10/8/13 using the on-line questions provided by the instructor. For this week, teachers also attended the first regional meeting. At the first regional meeting, teachers discussed samples of work from the first cycle four-tall towers problem.

4.5.1 Regional Meeting 10/2/13 Discussion of Students' Work

Ten teachers met at a middle school in New Jersey and brought students' work samples of the 4-tall towers task. During this meeting, teachers shared and discussed students' solutions in desks pushed together to form a U-shape.

Teacher 1 (T1) was the first to share her students' work. The first pair of students concerned her because they were trying to make one big tower out of the 4-tall towers (10/2/13 meeting transcript, line 10). Although no teachers recognized a strategy the students used, one teacher suggested trying to "help them organize it differently" (10/2/13 meeting transcript, line 45). Figure 4.5 shows the written work and a picture of the towers.

Figure 4.5 T1's Cycle 1 Student Work Sample 1

T1 put the student's work on the screen for the teachers to read. The following written argument was provided by the student:

Y was for yellow and P was for purple. We just put the colors together and mixed it up to 4 cubes with different designs. We also made a tower the tower was to put 7 , then 5 , then 3 then 1 we did. (10/2/13 meeting transcript, line 41)

The next example shared by T 1 was from a girl. T 1 reported that this student correctly answered sixteen total towers but only recorded ten towers using symbols b to represent brown cubes and g to represent green cubes (10/2/13 meeting transcript, line 61). T1 read the following student's written argument to the class "We kept on making 6 of 3 and we made [a] 4 set and we found our answer. We can't make any more because there would be duplicates." (10/2/13 meeting transcript, line 78). The instructor asked the teachers "did they have any way of organizing those ten" (10/2/13 meeting transcript, line 88) and one teacher replied "First they were opposites, so you get 2 . Then there they have their diagonal...with the green going up" (10/2/13 meeting transcript, lines 89,91). Figure 4.6 shows the tower chart created by T1's student.

Figure 4.6 T1's Cycle 1 Student Work Sample 2

T1 also shared another student group's work that came up with an answer of sixteen. The student drew 16 towers with individual cubes with either r or b in the blocks to symbolize red or blue blocks respectively. T1 read the following argument out loud to the teachers: "We couldn't make anymore because we think we made all the patterns plus
we found all the blocks and we all worked together to create these patterns" (10/2/13 meeting transcript, line 103). When the instructor asked if the teachers were convinced, one of the teachers replied "for this group because of the level" (10/2/13 meeting transcript, lines 108,109). The instructor informed the teachers "You can't say the kids are young so we are going to expect less. If you want a convincing argument, you want a convincing argument" (10/2/13 meeting transcript, lines 110). Figure 4.7 shows the drawing of the towers provided by T1's student.

Figure 4.7 T1's Cycle 1 Tower Drawing Student Work Sample 3
Teacher 2 (T2) was the second teacher to share her students' work. The towers in the first-shared work sample were drawn as pairs of opposite towers. T2 read the following student's written argument to the teachers: "I did the same block twice but not the same color like a pattern sort of. The reason I did it like that is because it is easier for me" (10/2/13 meeting transcript, lines 150). Figure 4.8 shows the student's pairs of opposite-colored towers.

Figure 4.8 T2's Cycle 1 Tower Drawing Student Work Sample 1
T2 shared a second example of students' work where the students made a drawing of sixteen 4-tall towers using symbols of b and y to represent blue and yellow cubes. T2 recognized the opposite strategy by reporting that "when he did them, he started doing them opposite but then I guess between him and his partner they were getting confused about what they were drawing and that is probably why he didn't stick with it. But um they did originally do opposites" (10/2/13 meeting transcript, lines 183). T2 told the teachers that this student struggled to explain his solution and then read the following student's written argument to the teachers: "The tower we were building is four inches high and it is y and b" (10/2/13 meeting transcript, lines 193).

T2 also shared a third sample of students' work. This student did not provide a written argument but did make a drawing of the towers using yellow and blue crayons (10/2/13 meeting transcript, lines 209). The instructor asked the teachers "What's good about what she did?" (10/2/13 meeting transcript, lines 213) and two teachers replied "the
blue diagonal" (10/2/13 meeting transcript, lines 214,215). Figure 4.9 shows the drawing of the towers provided by the student using blue and yellow crayons.

Figure 4.9: T2's Cycle 1 Tower Drawing, Student Work Sample 3

T2 also shared a fourth sample of work from a student that she described as "the most interesting one" (10/2 meeting transcript, line 235). The drawing shows the towers connected to form one big cube and T2 read the following student's written argument to the teachers " 16 combinations total I think I have all the combinations for this worksheet" (10/2 meeting transcript, line 237).

Teacher 3 (T3) was the third teacher to share students' work. This time, teachers were asked to read the student's argument on the screen. The following student's argument was silently read by the teachers:

There is one solid color, and 4 blocks high. There is no other way of doing this. There is only 1 yellow and 3 blues in each tower. There is a pattern, the yellow keeps moving up one. There is only 1 blue and 3 yellow in each tower. There is a pattern, the blue keeps moving up one. Two of the same color is touching, and one color isn't touching. Not one of the same is touching. Both colors are next to their twin. (10/2/13 meeting transcript, line discussion thread, line 326)

Figure 4.10 shows the student's work. In the first sample T3 shared, T3 recognized that the second and third groups were opposites of each other and that the students "were referring to that as a staircase" (10/2 meeting transcript, line 315).

Figure 4.10 T3's Cycle 1 Student Work Sample 1
T3 also shared a second example with the teachers by showing the following argument on the screen:

We have 16 in all. We think we have all the towers because each tower has 4 blocks in it and there are 2 colors to make the tower so $2 x 4=8$. Then we realized that we can invert the colors to double the towers so $2 \mathrm{x} 8=16$. Then we couldn't make any more so we think that we made all the towers. We put the towers this way because it's a pattern. Every time the pattern moves it always has one small difference. (10/2/13 meeting transcript, line discussion thread, line 326)

The instructor invited the teachers to share their thoughts about the strategy the boys used (10/2 meeting transcript, line 329). T3 replied to the instructor by saying "I thought it was pretty good that they immediately jumped to the math of it" ($10 / 2$ meeting transcript, line 330). A discussion emerged on how this type of strategy was considered to be an invalid argument. The instructor reinforced that the mathematics the students use must make mathematical sense by saying "just the way 4 times 4 gives you the correct answer
of 16 for towers that are four tall, that is not how you get the towers four tall" (10/2 meeting transcript, line 349). Figure 4.11 shows the tower drawing of the student's work.

Figure 4.11 T3's Cycle 1Tower Drawing, Student Work Sample 2

A third example that T 3 shared was of students that randomly drew towers in groups of two. This group of students concerned their teacher because they were trying to spell the word MATH with the towers (10/2 meeting transcript, line 389). However, when the instructor asked the teachers about how the students arranged the towers, multiple teachers replied "opposites" ($10 / 2$ meeting transcript, line 395). Figure 4.12 shows the student's work.

Figure 4.12 T3's Cycle 1Tower Drawing, Student Work Sample 3

The fourth teacher (T4) shared two samples of students' work. In the first example that T4 shared, the student provided a drawing of four groups of four towers. Under each drawn group of four towers, the student provided a written argument that described what the student did. Figure 4.13 shows the student's work.

Figure 4.13 T4's Cycle 1 Student Work Sample 1

The following is the student's written argument:
[Top left] I started with red and the red kept going down one per row. The pattern goes diagonal. [Top right] I started with yellow and on each one it would go down by one. The pattern goes diagonal. [Bottom left] Two red and two yellow are opposite colors. [Bottom right] I did 4 yellow on one side and 4 red on the other. (10/2/13 meeting transcript, line discussion thread, line 415)

According to T 4 , the student was able to verbally say "for this one it was going diagonally" (10/2 meeting transcript, line 429).

The second example that T 4 shared was of a fourteen-year old girl who had been retained in the eighth grade twice ($10 / 2$ meeting transcript, line 461). T4 mentioned that this student made a drawing showing a yellow diagonal going down and that the student verbally noted an opposite pattern which would be "the same thing but red going down" ($10 / 2$ meeting transcript, line 463). The student wrote the following on her paper:

We started with yellow and then we moved them down and moved them down until yellow gets on the bottom or the same thing but the red going down. (10/2/13 meeting transcript, line discussion thread, line 461)

Figure 4.14 shows the picture of the towers drawn by T4's student.

Figure 4.14 T4's Cycle 1Tower Drawing Student Work Sample 2
A fifth teacher (T5) was the next to share. In the first sample, T5 was impressed that the students came up with the right amount of towers but could not provide a convincing argument in writing (10/2 meeting transcript, line 491). T5 read the following student's argument to the teachers as she projected the student's work on the screen:

The reason why we arranged the blocks this way is because we think it was easier the way we did it. But it helped us a lot better. (10/2/13 meeting transcript, line discussion thread, line 491)

T5 shared a second student's work by reading the following written argument to the teachers:

I believe that I am done because we made the opposites from all the towers I have made. I built the towers from the way I can make them as many ways as I can. I
have 18 towers and at the end I put the pairs in 2 s two each. So I was done. I thought it would be the fast way to organize the towers, so it would be easier. I thought the opposites were easier to handle than to just wing it. (10/2/13 meeting transcript, line discussion thread, line 507)

T5 said to the teachers "when I thought they had a duplicate, I said why don't you try and pair them up because they did have had it all scrunched together but it was laying in one and so I said separate into twos but they still put it the same" (10/2/13 meeting transcript, line discussion thread, line 517). The instructor responded by reminding the teachers to not lead the students in a certain direction (10/2/13 meeting transcript, line discussion thread, line 518).

The third sample T5 shared was from students who correctly answered 16 total towers by using the rule strategy incorrectly. Their argument follows:

We did it this way because we had two colors and they had to be four high, so you multiply them. Then they can be the opposite what you would have to add two more so that would be 16 . So there could be only 16 different combos. We organized by the opposite of the combinations ($10 / 2$ meeting transcript, line 523)

This student's work sparked a big discussion about celebrating mathematical arguments that make sense. The mathematics the students used did not allow for generalization for solving the towers problem with varying numbers of tower heights. The instructor shared the following:

I can remember um, I started as a middle school math teacher. I can remember very clearly when students would be able to force the numbers to get them the solution. And the solution happened to be the right answer. But the mathematics made no sense. And I had to try and let them know that I am not impressed when they get you know some Gobbledygook that turned into an answer that happens to be correct when the process is wrong. (10/2 meeting transcript, line 530)

The instructor was stressing the importance of celebrating students' mathematical work that makes logical sense.

A sixth teacher (T6) then shared her students' work. T6 read the following argument provided by one of her students:

First we put one yellow on the top with three red under it. Then we moved the yellow down one and moved the three reds like this from the original. Then we moved the yellow down again and again. And then we were at the bottom so that we knew we were done with those. Then we did the opposite. Then we did 4 and 4 like this. And those are all red and all yellow. And since there are only four blocks and two colors we knew that we were done with that. Then we decided to alternate red yellow red yellow like this: Then we did this: and moved it like this: then this than this: and once we reached the top we knew we were done. (10/2 meeting transcript, lines 539-549)

The instructor asked the teachers "Okay what is that called?" (10/2 meeting transcript, line 558) and one teacher replied "recursive" (10/2 meeting transcript, line 559). This was confirmed by the instructor when she said "someone said it, a recursive argument" ($10 / 2$ meeting transcript, line 560). Figure 4.15 shows the work and drawings of the student work that T6 first shared.

T6 also shared the work of this student's partner. T6 thought that the partner had "a better explanation for when they get to the twos and the twos" ($10 / 2$ meeting transcript, line 565). T6 read the following argument provided by the partner:

Then we took two reds and two yellows. We put the two reds on top of the two yellows. After that we took the two reds and put them in between the two yellows. If you make the opposite of the last two so here are the opposite of the last two and put them next to each other in a certain way then it will be a pattern of two. Then you can put two of each color in a pattern of red yellow red yellow and yellow red yellow red. Lastly you can only have four blocks in a tower and there are only two colors so you can have a tower of only red and only yellow. (10/2 meeting transcript, lines 578-588)

The third sample of work shared byT6 was a pair of students that answered there were 20 possible towers (10/2 meeting transcript, line 592). T6 read the following argument provided by one of the students in the third-shared work sample:

We made the basics, all red, all yellow. Then we did all the combos of one. Turns out all the combos of one were also 3. It was three because there are four
blocks in a tower．That means that there are going to be 3 different color blocks． Next we did the twos．We had two of each color places back to the explanation of the four color towers since there are only four blocks in a tower so there are no other combos except for four．（10／2 meeting transcript，lines 592，594，596）

that：盾届国路 we knewagain with those that we were done．Then we did 4 and 4 like the and since there are only 4 blocks and 2 colors we knew we were done with that．Then we decided to alternate red yellow red yellow like this 耳 $^{\text {W }}$ ，moved every ane spot like this＇，Then we did this：解 we moved it like this 軛 th this．着 than this：and once we reached the top we knew we were done．

Figure 4．15 T6＇s Cycle 1 Student Work Sample 1

T6 claimed that this student was demonstrating a combination of the elevator and opposite strategy but referred to the strategy as a staircase (10/2 meeting transcript, line 596). T6 also shared the partner's work which was drawn bigger and more accurately such that the first two groups of eight towers were the elevator strategy and the last ten towers were grouped showing a recursive argument but with two cubes stuck together starting at the bottom and then moving up one position each time.

T6 shared a fifth student's work by reading the following argument to the teachers:

I used two of each color. The first one in the set has the colors together. So there's two of one color on the bottom and two of the other color on the top. The second one of the group one only broke one color apart. With one color on top, two colors in the middle and one color on the bottom. (10/2 meeting transcript, lines $610,612,614)$

One teacher recognized that the student controlled for a variable ($10 / 2$ meeting transcript, line 608).

The seventh teacher (T7) then shared her students' work. T7 said that this student verbally described a recursive argument but provided a different written argument (10/2 meeting transcript, line 635). T7 read the following argument to the teachers:

The first pair of two of all the same color is there because there are four blocks and all are the same [color] but opposite from its partner. The second group of two pairs makes four different groups but they link together because if you take the bottom or top and put it completely opposite of the top or bottom one, it would make a different tower. You can only do this process 8 times before it starts to repeat itself. The third group of two pairs makes 3 different groups but the only link together twice. If you switch the top and bottom one with the opposite, it would be completely different towers and you can only do this with four towers. The last 2 towers are a set of two different colors mixed twice and switching them would just duplicate (it) further. That is why there can only be 16 different towers without any duplicates. (10/2 meeting transcript, lines 610-661)

T7 also recognized that the students used the opposite strategy ($10 / 2$ meeting transcript, line 641).

T7 then shared a second example by reading the following arguments to the teachers:

There are four blocks high, 2 colors, 16 combos; and 64 total blocks which are all divisible by each other. ($10 / 2$ meeting transcript, line 673)

There can only be two completely one cube tower (only two colors). There can be four, 3 red one yellow towers because there are only four high towers and that is the same for red. For two red and two yellow towers there can only be 2 because there are only two sides to switch to make two different towers. For the towers in the center there can only be two because there are only two colors to put in center of the tower. For the towers that have a pattern, there can be two because there are only two colors to make up the pattern starting from the top (or bottom). That was the alternating one. (10/2 meeting transcript, line 679)

T7 said that the second argument was better than the first argument (10/2 meeting transcript, line 681).

A third example that T 7 shared was different because the student chose to list the towers horizontally (10/2 meeting transcript, line 685). T7 said that the student kept them in pairs (10/2 meeting transcript, line 691) and read the following argument to the teachers:

We think we have all the towers because if you were to find or (try to find) another group of towers, you would realize that that group of towers had already been created. It would also begin a pattern of towers and if you located a tower in the pattern that hadn't been made, then you would know that you missed one. Also the towers had a knob-like appendage at the top which you would not be able to flip the towers over to make the towers different. Example: flipping one tower over to create a reverse pattern. (10/2 meeting transcript, line 693-695)

T7 wasn't sure, but thought the student was referring to the opposite strategy (10/2 meeting transcript, line 693)

The eighth teacher (T8) then shared his students' work. Figure 4.16 shows the student's work.

Figure 4.16 T8's Cycle 1 Tower Drawing, Student Work Sample 1

One of his students provided the following written argument:

1. Only 2 different colors.
2. There are one yellow on top and three red on bottom and if you move the red on the top, then there is no yellow on the top.
3.There is a block with one that has yellow red yellow red and you switch to red yellow red yellow then you won't have the yellow on the top. There is another block with yellow, yellow red, red if you move the red to the top, you have yellow on top 2 red in the middle and you have yellow on the bottom. Any other move you can get a red on top.
3. There are 3 red across and if you put red on top, then you won't have the yellow on top. If you put another red on the bottom then you get 5 cubes and there only possible be for cubes.
(10/2 meeting transcript, line 727)
T8 said that the students "started with opposite pairs and I told them that I wasn't accepting that as an answer. They needed to look at it and figure out another way that they could show me the blocks or arrange them or tell me that's all that they have" (10/2 meeting transcript, line 717). T8 said he was impressed when students rearranged her
towers using the holding a constant strategy where she made towers with only yellow on the tops and then towers with only red on the top (10/2 meeting transcript, line 719). However, T8 was confused by the written work of the student's partner who wrote "we have three red across and we have 3 yellow. But if you put the red on top you won't have the yellow on top. If you put another red on the bottom, then you get 5. And there has to be four" ($10 / 2$ meeting transcript, line 741). Figure 4.17 shows the tower drawing of the partner.

Figure 4.17 T8's Cycle 1 Tower Drawing, Student Work Sample 2

T8 also had two regular education eighth-grade students that volunteered to come to his mildly cognitively impaired (MCI) class to help out with the students and thought it would be interesting to share with the teachers how one student helpers would approach the task (10/2 meeting transcript, line 761). T8 read the following student's argument to the teachers while a drawing of how the student represented the towers was placed on the screen:

Group one has the 2 reds together every time it moved to the top, middle, and end. For group 2 it just has four yellows and 4 reds on each. For group 3, it only had one yellow so the yellow cube started on top, and went down one every time and it stopped at the bottom. For group 4 all the reds were separated. For group 5, the red cube started on the top and went down one every time and stopped at the bottom. For each group, I couldn't make any more because there was no more
possible combinations and if I added one more to it; it would be 5 (10/2/13 meeting transcript, line 787).

Figure 4.18 shows the tower drawing of one student-helper.

Figure 4.18 T8's Cycle 1 Tower Drawing, Student Work Sample 3

When the instructor asked if the argument was convincing, one teacher replied "I like how she talked about moving one down" (10/2 meeting transcript, line 789).

A ninth teacher (T9) then shared her students' work. T9 read the following student's argument to the teachers:

The reason I think we are done with 16 combinations; are because I did it like Yellow, blue yellow, yellow So I moved the blue down one spot; yellow, yellow blue yellow and one down yellow, yellow, yellow blue, then I did blue yellow blue, blue. Then I moved the yellow down. Blue. blue yellow blue; down blue, blue, blue yellow then I did pairs of two colors; yellow, yellow blue, blue; blue, blue yellow, yellow; and yellow blue yellow blue; blue yellow, blue yellow and so on. (10/2/13 meeting transcript, line 803).

T9 shared was just a listing of towers but the student did not provide a written convincing argument as to why they knew they had all the possible towers (10/2 meeting transcript, lines 807-808).

Then T9 shared a second sample of students' work. This group of three students had one regular education student and two special education students (10/2 meeting transcript, line 817). The regular education student provided the following written argument that T9 read to the teachers:

I made two whole towers and knew that there can only be two because there were 2 colors. Then I switch the first top color, the second color; the third color; and then the last color. I then knew that I could only do these because I switched the colors for both towers. Then I started doing 2 and 2. I took the wholes; and switched the bottom two, the top two; and the middle two. I know that these are the last ones, because there are four and if you are doing 2 and 2 ; then you know you can't do anymore; and finally I did the stripes. (10/2/13 meeting transcript, lines 823,827).

T9 replied that she was confused about what the student meant by stripes (10/2 meeting transcript, line 827). The instructor asked the teachers "who knows what she is talking about the stripes?" and another teacher replied "like yellow blue yellow blue" (10/2 meeting transcript, lines 828,829).

T9 shared a third work sample by reading the following student's argument to the teachers:

My group and I think this is all you can make because $4 \times 4=16$. There are 16 different pillars of 4. My teacher in Lloyd Road said if there is a problem like this do the amount of the blocks in one stack and times it by itself so 4 times 4 is 16 . (10/2/13 meeting transcript, line 843).

This student used an invalid rule strategy that the teacher admitted she was not sure where the argument came from (10/2 meeting transcript, line 845).

The tenth teacher (T10) shared her students' work by reading the following student's argument to the teachers:

The towers you see above are all of the possible combinations. To prove it, keep reading. My partner and I started making the 4 -length tower with 3 yellows. We knew we had all of them we went on to the next one which was 3 blue. We knew we done with the 3 yellow because there was 2 blue per level and we knew there couldn't be another level because the towers had to be 4 blocks in length. We did
the same for the 4 blue but there was one yellow per level. We moved on to make 4-length all blue towers and all yellow towers. Since there were two colors with so we knew we could only make 2 towers of it. Then we did the 2 blue and 2 yellow and knew we had them all because we tried and tried and tried to make more but it was impossible. So we knew we were done with that one. So we know and were absolutely positive that there are 16 towers. ($10 / 2$ meeting transcript, lines 855-867)

The student provided a convincing written argument for the three of one color and one of another (10/2 meeting transcript, line 855-859). However, the explanation of the two blue and two yellow towers was not convincing because "they tried and tried and tried and could not make anymore" (10/2 meeting transcript, line 865). Figure 4.19 illustrates the tower drawing and written argument of T10's student.

A second sample that T10 shared was of a student that kept changing how he was organizing his groups (10/2 meeting transcript, line 871). T10 said that her students saw the diagonal pattern but then rearranged the towers using opposites (10/2 meeting transcript, lines 879,881). Then the same pair changed their strategy again and organized the towers by holding a constant (10/2 meeting transcript, line 883). When questioned by the instructor as to what type of proof the students used, another teacher responded by saying the students' work was a proof by cases (10/2 meeting transcript, lines 892-893).

T10 shared a third student sample of work by putting the following argument on the screen and paraphrasing the student's argument:

We put them in different groups and there are no any other combinations to put in any of the groups. In group 6, there are only 3 blues and 1 yellow. In group 5, there are only 3 yellows and 1 blue. In group 4, there are 2 blue and 2 yellow in half. In group 3, they are a tower of the same colors and 2 they are in a pattern. In group 2, they are in a pattern. In group 1, tow colors are the same. We try and find more to find but no more towers. (10/2 meeting transcript, line 901)

Figure 4.19 T10's Cycle 1 Student Work Sample 1
T10 was able to recognize the "stair case" which is defined as the elevator strategy (10/2 meeting transcript, line 913). After T10 shared her students' work, the instructor asked teachers to respond to the questions for the weekly on-line discussion.

4.5.2 On-line Discussion 10/3/13 to 10/8/13

For the on-line discussion, the first two questions focused on the first cycle tasks.
Teachers were asked to respond to the following questions on-line:

1. What kinds of questions did you ask when you had your children build 4 or 5tall towers? Be specific - and then tell what that helped you learn about the mathematical thinking of your students.
2. When you implemented towers 4-tall in your classrooms, how did the strategies your children used to solve this problem look the same or different from the ones you used when you solved the 5 -tall towers with your colleagues?

4.5.2.1 First Question Responses

The first question asked teachers about the kinds of questions they asked their students when the students were building 4- or 5-tall towers. The question also asked teachers to be specific and tell what helped them to learn about the mathematical thinking of their students. Seven of the ten teachers said they asked their students about if they could arrange their towers differently or better. The responses of the seven teachers follow:

I asked the students to explain how they arranged their towers, which was mostly in pairs of opposites. Then I would ask them if there were other ways they could arrange the towers. Some would keep them in the pairs but also arrange them in the groups according to how many of each color the towers had. (Unit 5 On-line discussion thread, line 4)

I asked my students a variety of questions when building the 4-tall towers. Specifically, about the different arrangements they had made and how they then grouped them together. I asked why certain towers belonged in different groups and why they could not add any additional towers to each of the groups they had made. (Unit 5 On-line discussion thread, line 11)

When I was asking the students why they were choosing to organize their blocks their way they were really helped them to become aware of their reasoning. (Unit 5 On-line discussion thread, line 14)

I also asked students to explain to me why they were grouping towers in certain arrangements. This helped me understand how they were thinking about the problem and what relationships they saw in the blocks that they grouped together. (Unit 5 On-line discussion thread, line 22)

When I had my students build 4-tall towers, I asked them to describe how they were grouping their towers. Most were grouping them with their opposites. This gave me insight into their thought process and how they tacked the problem. (Unit 5 On-line discussion thread, line 36)

I asked if there a better way to organize your towers to prove to me that you made them all? Some stared at them and then said, no there is no other way to organize
them. Some started moving the towers around and came to see the "staircase" pattern but couldn't formulate a convincing argument but they were able to say there is a pattern, which I was happy with, though it wasn't convincing. (Unit 5 On-line discussion thread, line 41)

My students were able to create the towers and set them up as opposites. I had to ask them "Are there different ways to set up the towers? What are the ways that you could organize them?" They also had trouble explaining their reasoning about why they grouped them in different ways. I had to ask them to show me how they know there are no more ways. These 2 major parts have shown me that my students have a hard time clearly explaining steps to their thinking. They knew by creating opposite pairs that they had exhausted all options, but were not able to identify a way to organize them. (Unit 5 On-line discussion thread, line 44)

Five of the ten teachers asked their students how they knew they had found all the possible towers.

When my students built the 4 tall towers I asked them how many towers they had. After they responded I asked if that was all of the towers and why. Most students had organized their towers in opposite pairs and explained to me that each possibility had an opposite. I asked if that was really a convincing argument as to why they had made ALL pairs of opposites and most recognized that it was not. (Unit 5 On-line discussion thread, line 1)

I would also ask them how they knew they had all the towers. The most interesting response was from a student who said he would never know if sixteen was all the possible towers. Others would give a mathematical equation resulting in sixteen. (Unit 5 On-line discussion thread, line 4)

When my students were building the towers, I asked them questions such as "can you make anymore?" "Do you have any duplicates?" "How can you convince me that you cannot make any more towers?" This showed me that my students need guidance of how they should be thinking during the process. In general, they have difficulties expressing their thinking. Asking them questions along the way helps them process and deduce what they are doing. (Unit 5 On-line discussion thread, line 7)

Then I asked them how they knew they had all the towers. This was when I saw the students ran into conflict. They could not explain to me why they knew they had all the towers, other than to say that every new tower they built was a duplicate. I also recognized that my students did not understand what it meant to be a "convincing" argument. (Unit 5 On-line discussion thread, line 36)

I then asked, do you think you have all the towers? All would say yes, once they got to 16; however, most replies to, how do you know you built them all? They
were because we can't build anymore and they couldn't really tell me why. (Unit 5 On-line discussion thread, line 41)

4.5.2.2 Second Question Responses

For the second question, teachers were asked to compare and contrast the strategies used by the children and themselves when solving the 4 -tall and 5 -tall towers problem. Eight teachers said the children used the opposite strategy. The responses of the eight teachers follow:

Most of my students made one tower and immediately made the opposite tower. (Unit 5 On-line discussion thread, line 1)

Most of them [students] randomly built towers and opposites without any strategy. (Unit 5 On-line discussion thread, line 4)

Just like my students, I used the idea of "opposites" to see if every tower had been created. Once I thought I had all 16 towers, I then started to group the towers according to similar characteristics (example: 3 red, 1 yellow). I was able to then see the relationship between the different combinations where as my students were stuck on the idea of opposites and relied on that argument for convincing me. (Unit 5 On-line discussion thread, line 11)

For most of my students they did the problem by creating the opposite of each stack. (Unit 5 On-line discussion thread, line 14)

This different from my student pairs who mostly used the pairs of opposites grouping which as we discussed, is not a convincing argument. (Unit 5 On-line discussion thread, line 22)

I saw many of my students trying to make opposite pairs. (Unit 5 On-line discussion thread, line 30)

When my partner and I first started building the towers we organized them in pairs as all of my students did the same. (Unit 5 On-line discussion thread, line 41)

The 1st similarity is that they created opposites as the initial method to find all possible combinations. (Unit 5 On-line discussion thread, line 44)

Four teachers claimed that they solved the task using proof by cases. The responses of the four teachers that used proof by cases follow:

I approached the problem by first doing one block of one color and four blocks of another color. Then I moved to two and three. (Unit 5 On-line discussion thread, line 1)

When I completed the towers problem, I started with cases. I created all the towers one color, before moving to one of one color and three of the other. In this situation, I would change the position of the one color by one position each time. Then I created the towers that were two of each color, considering the different positions. (Unit 5 On-line discussion thread, line 4)

When I did the task with my colleague, we worked though the cases of 0 red, 1 red, 2 red, etc. (Unit 5 On-line discussion thread, line 22)

When I worked with my colleague, we built the towers by cases. We began with all red, 3 red, 2 red, 1 red, and 0 red. It was easier to formulate a convincing argument this way. (Unit 5 On-line discussion thread, line 36)

One teacher claimed to use a recursive strategy stating that "the popular method for building towers in both my classroom and with my colleagues was the recursive methodstarting with one constant color and moving it, making all the possibilities" (Unit 5 Online discussion thread, line 7).

4.6 Summary

With the completion of the aforementioned five session units, the first cycle of tasks came to an end. Throughout Cycle 1, teachers worked on the first cycle tasks, then participated in four thought-provoking on-line discussions, observed an in-district classroom visit working on the tasks, implemented the same tasks in their own classes, read literature and watched videos of other students working on the tasks, and shared their own students' work after implementing the tasks in their own classes. Teachers worked collaboratively and discussed their work as well as the work of their students. At the regional meeting on $10 / 2$, the second cycle of tasks began with the teachers working in pairs on the pizza problem.

Chapter 5 - Cycle 2 Session Summary and Analysis

This chapter is a summary and analysis for the second cycle of mathematical tasks. In this chapter, three session units of on-line discussion threads are analyzed. This chapter also has an analysis of the teachers doing the cycle two task at the regional meeting on 10/2/13 and the teachers sharing students' work at the in-district classroom visit and second regional meeting on 10/22/13.

5.1 Unit 5: Regional Meeting and On-line Discussion

Unit 5 was comprised of a regional meeting on 10/2/13 and an on-line discussion thread where teachers posted responses from $10 / 3 / 13$ to $10 / 8 / 13$. After the discussion on the first cycle tasks at the regional meeting, teachers worked on the Cycle 2 task.

5.1.1 Teachers Work on Task, Regional Meeting 10/2/13

Teachers were asked to work in pairs to find the number of pizza combinations selecting from the following toppings: pepperoni, peppers, sausage and mushroom and convince each other of their solution (Landis, 2013). Once a solution was found, teachers were asked also to convince the instructor who was monitoring the teachers' work by circulating around the room and asking questions about the teachers' work. If successful, they were then asked to produce a written solution. If they did not successfully convince the instructor, teachers were invited to rethink their solution.

The instructor of the southern region cohort looked over the shoulders at the work of the first pair of teachers. Both teachers in this pair made a list of each pizza that could be made with the available toppings using an argument by cases (Unit 5 On-line discussion thread, lines 22, 36). One teacher in the pair (T1) wrote the topping word to identify choices for her list. The other partner (T2) began to write the topping word but
then changed to write the first letter of each topping word. However, T2 stopped because she had to find a way to distinguish between peppers and pepperoni (10/2 meeting transcript, line 23).

Then the instructor of the southern region cohort stopped at a second pair of teachers to monitor their work. This pair of teachers was drawing circles to represent pizzas (10/2 meeting transcript, line 24). One teacher (T3) in the pair suggested that they use a tree diagram (Unit 5 On-line discussion thread, line 7). However, the other teacher (T4) suggested to his partner to hold one of the toppings constant and then add the other toppings to the constant topping (Unit 5 On-line discussion thread, lines 7). The strategy the second teacher pair used is defined as the controlling a variable strategy.

The instructor then stopped at a third teacher pair to monitor their work. Both teachers in this pair made a list of each pizza choice using a cases argument (Unit 5 Online discussion thread, lines 1, 4). One teacher in the pair (T5) wrote a list using the topping word but then changed to write the first letter of each topping word with the exception of the letter E to represent the topping of pepperoni (10/2 meeting transcript, line 23). The other partner in the pair (T6) also made a list using the first letter of each topping to represent the topping using letter I to represent pepperoni. The instructor then asked the teachers "Is this connected anywhere? Can you see a connection" (10/2 meeting transcript, line 43) and left challenging the teachers to work on finding the connection.

The instructor then stopped at a fourth teacher pair. One teacher (T7) in the pair had written the words plain and all toppings at the top of her paper (10/2/13 meeting transcript, line 57). T7 then listed the rest of the pizzas with two toppings and three
toppings using words numbering the pizzas to get a total of 16 pizza combinations (10/2/13 meeting transcript, line 57).

The instructor then went to a fifth pair of teachers where a cases argument was used for solving the pizza problem. One teacher (T9) wrote a list using the first letter of each topping word with the exception of the letters PR to represent the topping of pepperoni (10/2 meeting transcript, line 132). The other teacher in the pair (T10) made a list also by using the first letter of each topping word with the exception of the letter R to represent pepperoni.

T9 had 24 possible pizza combinations whereas T10 had 16 combinations. The teachers' answers were different because one teacher in the pair (T9) was counting cheese as a topping (10/2 meeting transcript, lines 79-84). The other teacher (T10) explained the following to the instructor and (T9):

You have 5 toppings because if you count cheese it is like one of the toppings. Like yours is different because like for one topping you put the cheese where you are putting just pepperoni on it, just sausage, just mushrooms, just peppers or whatever. (10/2 meeting transcript, line 89)

Although T9 had started by counting cheese as a topping, she decided to cross out the combinations that had C's which represented cheese as a topping so that she could find the same number of pizza combinations as her partner (10/2 meeting transcript, lines 127131).

The instructor left the fifth group and went back to the fourth group. The instructor saw a tree diagram on T8's paper and asked "Is it easier?" (10/2/13 meeting transcript, line 174). T8 replied with "Well it's going to be really big; I just know that many of my students are going to do that." (10/2/13 meeting transcript, line 175). The instructor asked the pair of teachers "Does this remind you of anything else?" and the
teachers said the handshake and towers problems (10/2 meeting transcript, line 193). The instructor left the fourth group and told the pair to discuss with each other how the pizza problem reminds them of the handshake and tower problems (10/2 meeting transcript, lines 193).

The instructor then returned to the third group and saw that T6 created a chart with the letters $\mathrm{P}, \mathrm{M}, \mathrm{S}$, and I were used to represent the toppings and X's where X represented no topping (10/2 meeting transcript, lines 195-197). When the instructor asked what her partner did, the partner replied with the following:

So did the same thing. I had no toppings and then one topping and then two so I held a constant pepperoni and I did one of each. And then I moved to a new constant, and I put one of each in the positions and I moved to a new constant of mushrooms and we were missing one topping so we did this. ($10 / 2$ meeting transcript, lines 199-201).

The instructor responded to the pair by saying "very interesting" and then addressed the ten teachers by saying "For those of you who are finished, which most of you are...I challenge you to tell me how this problem reminds you of another problem in math. Something you have seen before something you have done before okay. And tell me what the connection is" (10/2 meeting transcript, lines 202).

After giving teachers a few minutes to discuss finding connections to the pizza problem with another problem, the instructor called for the attention of the ten teachers (10/2 meeting transcript, lines 202). Before discussing any solutions, the instructor first asked the teachers how many pizza combinations were found for a plain pie, then one-, two-, three-, and four-topping pies (10/2 meeting transcript, lines 202-211). The instructor then asked "If you looked at those numbers. It was $1,4,6,4$, and 1. Have you seen that before?" (10/2 meeting transcript, lines 212) and one teacher replied that it was

Pascal's Triangle (10/2 meeting transcript, lines 215). The instructor then asked the teachers "where did we see Pascal's triangle?" (10/2 meeting transcript, lines 216) and one teacher replied "the towers" ($10 / 2$ meeting transcript, lines 275). The instructor described both problems as isomorphic where "the towers problem building towers 4-tall selecting from 2 colors has the same exact mathematical structure as building pizzas selecting from four toppings" (10/2 meeting transcript, lines 234).

After this discussion, the instructor asked T6 from the third teacher pair to share her chart to solve the pizza problem (10/2 meeting transcript, lines 234). A picture of her work was taken and projected on the screen for the teachers. The chart had four rows and 16 columns but only eleven of the column cells were completed. T6 wrote the letters P, M, I, and S down the left margin next to the rows to represent the four toppings (10/2 meeting transcript, lines 234).

The instructor asked T6 to explain her chart (10/2 meeting transcript, lines 240). T6 began by saying "Well there are four possibilities. The first possibility is getting nothing so an X just means that it is not [a topping]." (10/2 meeting transcript, lines 241). The instructor asked T6 about five of the combinations she represented in her chart (10/2 meeting transcript, lines 250-268). Then the instructor asked the teachers how T6 built her towers and there was no response from the teachers (10/2 meeting transcript, line 270). So the instructor said to the teachers "She is actually keeping a constant, isn't she? She is keeping her peppers constant and she is adding the mushrooms and then she is adding the pepperoni and then she is adding the sausage." (10/2 meeting transcript, line 270).

Then the instructor decided to show the teachers four different pizza combinations using the Unifix cubes (10/2 meeting transcript, line 292-308). One of the questions that the instructor asked the teachers was "How can we build a tower that might look like that pepperoni pizza?" (10/2 meeting transcript, line 292) and one teacher replied "one red, three yellow" (10/2 meeting transcript, line 293). After the four examples were discussed, the instructor ended the meeting by reminding the teachers to implement the pizza task in their own classrooms and bring two or three samples of students' work to discuss with the other teachers (10/2 meeting transcript, line 310-334) .

5.1.2 Unit 5: On-line Discussion 10/3/13 to 10/8/13

For this discussion, teachers were instructed to watch two videos located on the VMC website: www.videomosaic.org. One video was called the Brandon Interview. The other video was called Pizza with 4 Toppings.

In the Brandon Interview video, Brandon was in the fourth grade and he shared his ideas about two problems. The following are the two problems that Brandon worked on with a partner and later discussed with the researcher:

1) Your group has two colors of Unifix Cubes. Work together and make as many different towers four cubes high as is possible when selecting from two colors. (Private Universe Project in Mathematics Workshops (PUP), Brandon interview [video], 1993)
2) A local pizza shop has asked us to help design a form to keep track of certain pizza choices. They offer a cheese pizza with tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms and pepperoni. How many different choices for pizza does a customer have? Find a way to convince each other that you have accounted for all possibilities. (Private Universe Project in Mathematics Workshops (PUP), Math pizza, Clip 2 of 2 : Whole and Half Pizzas with Four Toppings [video], 1993)

Brandon explained his chart of 0's and 1's where 0's represented no toppings and 1's represented a topping (PUP, Brandon interview [video], 1993). Brandon also connected the pizza problem to the Towers problem (PUP, Brandon interview [video], 1993).

In the Pizza with 4 toppings video, 12 fifth-grade students worked together to solve two problems involving pizza combinations (PUP, Clip 2 of 2: Whole and Half Pizzas with Four Toppings [video], 1993). The two problems that the fifth-graders worked on are as follows:

First problem statement: Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms and pepperoni. How many choices does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities. (PUP, Clip 2 of 2: Whole and Half Pizzas with Four Toppings [video], 1993)

Second problem statement: Capri Pizza has asked us to help design a form to keep track of certain pizza sales. Their standard "plain" pizza contains cheese. On this cheese pizza one, two, three, or four toppings can be added to either half of the plain pie or whole pie. How many choices do customers have if they can choose from four different toppings (peppers, mushrooms, sausage and pepperoni) that can be placed on either a whole cheese pizza or half of a cheese pizza? List all possibilities. Show your plan for determining these choices. Convince us that you have accounted for all possibilities and that there could be no more. (PUP, Clip 2 of 2: Whole and Half Pizzas with Four Toppings [video], 1993)

Teachers were also assigned to read chapter 6 of Combinatorics and Reasoning (Maher, Powell, \& Uptegrove, 2010) about the fifth-grade students’ justification, reasoning, notation, and strategies to solve the pizza problems. Teachers were also given on-line assignments to complete by 10/8/13 (Unit 5 on-line discussion thread, assignment page). Three questions were assigned by the instructor and one of the three questions focused on the second cycle task (Unit 5 on-line discussion thread, instructor question
number 3). After watching the videos and reading the chapter, teachers were asked to respond to the following question on-line:

What strategies did you use that were helpful when you solved the pizza problem with your colleague? Did you try things that weren't helpful in solving this problem? Be specific in telling what you tried. (Unit 5 on-line discussion thread, instructor question number 3)

The question asked the teachers about the strategies they used for solving the pizza problem. Six teachers claimed to use controlling a variable as a strategy for solving the pizza problem. The responses of the six teacher pairs to solve the pizza problem by controlling a variable as a strategy follow:

Christine had the idea of keeping a constant. So we did all pizzas with peppers, all with mushrooms, all with pepperoni and all with sausage. We found as we eliminated an ingredient the number of possibilities were halving (just like the tower problem!). From there we decided to replicate what the towers would look like by having four possible spots. If the pizza did not occupy all of the spots with an ingredient we would put an X and if it did have an ingredient we would put the representation we came up with. (Unit 5 on-line discussion thread, line 1)

We looked at having a constant. Starting with peppers, I listed the pizzas of one topping, two toppings, and three toppings containing peppers. I then moved to mushrooms, without using the peppers again since they had previously been listed. The pizzas with sausage were next, then the pizzas with pepperoni. Following this, I created what would look like towers, using the top block to represent peppers, second block to represent mushrooms, third for sausage, and fourth for pepperoni, placing an " x " in a position if that topping was not on the pizza. (Unit 5 on-line discussion thread, line 4)

I definitely liked the strategy of picking a topping and having that as the constant. From there we added toppings to the constant topping. . (Unit 5 on-line discussion thread, line 7)

As we got to three toppings it became harder to make sure we hadn't duplicated any pizzas, so we considered holding 1 of the three toppings constant, and finding the pizza combinations that could be created by changing the other two toppings. (Unit 5 on-line discussion thread, line 22)

We got a little confused when we got to 3 toppings, but we were able to find them all. We first found all the 3-topping pizzas with sausage and then moved on from there. So, we held the topping constant in order to find the solution. (Unit 5 online discussion thread, line 36)

The strategy that we did use was keeping a topping constant and then making the possible combinations with 2 and 3 toppings. Then we would use another topping as a constant and create 2 and 3 toppings without repeating any combinations from the previous topping constant. (Unit 5 On-line discussion thread, line 44)

One teacher began the pizza problem by using the opposite strategy were she wrote plain and all toppings on the top of her paper (Unit 5 On-line discussion, line 14).. Then the teacher switched to a different strategy which was coded as 'other' and was described as any other strategy not previously defined (Unit 5 On-line discussion, line 14). Three additional teachers' responses were coded as using the 'other' strategy. The four teachers' responses follow:

Together, we created an organized list according to the number of toppings on the pizza (plain, 1, 2, 3 or 4 toppings). We used different letters to represent the different toppings (example: $\mathrm{P}=$ peppers, $\mathrm{S}=$ sausage, $\mathrm{M}=$ mushrooms \& $\mathrm{R}=$ pepperoni). After we created the list, we were able to see 16 different pizza combinations. After thinking about the problem, I attempted to use my initial thought of the tree diagram. After going back to make the tree diagram, I realized it was much harder than I had originally thought. I found myself making duplicate combinations and that it was much harder to follow and see the different pizza combinations. In the end, I think the organized list was the better approach. (Unit 5 on-line discussion thread, line 11)

We both started off breaking the pizzas in to plain and all topping similar to beginning of the block activity. I also found that we both organized our answer so it was clear that they were no duplicates. (Unit 5 on-line discussion thread, line 14)

The first instinct when faced with the pizza problem is to make a list. I found that writing out the entire word wasn't very efficient and my partner's labels of P, M, S , and R were much easier to use. After we determined that 16 pizzas could be made I tried to think of what my students would do and came up with a tree diagram with the four headings of $\mathrm{P}, \mathrm{M}, \mathrm{S}$, and R and side labels of 1st pizza, 2nd pizza, and 3rd pizza (the fourth option is all four toppings so it doesn't need to be repeated at the bottom of every branch of the tree diagram). After completing the Pepper branch I realized I needed to make a list of the combinations and from that list I realized I needed to cross out the duplicates. This was a very long process and did not prove to be more efficient that listing the combinations in letter form. (Unit 5 on-line discussion thread, line 30)

The most helpful strategy for me and my partner was to make a list of combinations of pizzas. The hardest part was coming up with an agreement as to whether cheese was a topping or not. Once we came to an agreement on that the list was simple and we both came up to the same conclusion of 16 . At first we thought about a tree diagram; however, we felt that was a hard way to represent the combinations. (Unit 5 on-line discussion thread, line 41)

5.2 Unit 6: On-line Discussion 10/9/13 to 10/15/13

For unit 6, teachers were assigned to read an article called "Brandon's Proof and Isomorphism" (Maher \& Martino, 1998). The assigned reading is about Brandon's reasoning, strategies, and notation used as he solved the tower and pizza problems and how he revised his work with each new problem (Maher \& Martino, 1998). After reading the article, teachers were asked to respond to the following question on-line:

In the chapter, Brandon's Proof and Isomorphism, we see that skillful teacher questioning can help a student think more deeply about a mathematical idea. What kinds of questions did this teacher ask to learn more about the mathematical thinking of her students? (Unit 6 on-line discussion thread, instructor question)

Teachers were asked to discuss the kinds of questions the teacher in the assigned reading asked to learn more about the mathematical thinking of her students. Six different types of questioning were defined in chapter 3 of this dissertation. The six types of questioning defined in this research are questions for explanation, justification, connection, probing, other solutions, and generalization.

Five of the types of questioning were recognized in the teachers' responses except generalization types of questions. Nine of the ten teachers described explanation questions. The responses of the nine teachers follow:

The teacher asked questions that deepened the understanding of what the children were doing (Unit 6 on-line discussion thread, line 1)

The teacher asked questions that required Brandon to explain his strategy of using " 0 "s and " 1 "s. (Unit 6 on-line discussion thread, line 8)

The teacher starts out asking general questions about her students' work. She may know the answers to some of these problems, but its beneficial to ask so that the students are conscious of what they are doing and self-monitoring their problem solving. (Unit 6 on-line discussion thread, line 14)

His teacher asked him what his 1's and 0's meant, this allowed for him to explain that 1 meant yes for that particular topping and 0 meant no. (Unit 6 on-line discussion thread, line 22)

In the article, the teacher started by asking what the student was doing to complete the problem to find out how the student approached the problem. (Unit 6 on-line discussion thread, line 35)

The teacher asked questions that were carefully chosen to ask for clarification about Brandon's thinking, such as "What are you doing here, Brandon?", "What does that mean?", "What I don't understand is...?" I think this helped Brandon to explain his thinking, and sometimes having a student verbalize their reasoning helps for them to be better able to clear up what they are thinking. (Unit 6 on-line discussion thread, line 38)

First she wanted to know what Brandon was doing and what the 0's and 1's represented. (Unit 3 on-line discussion thread, line 39)

The 2 questions that the teacher asked were: What are you doing here? What does that mean? The first question was leading the student to start thinking about how to verbalize the mathematical process that the student was using. I think we all have seen that this is a skill that is difficult for most students and needs development. The next question was to get the student to explore more deeply what they had said. Through the first 2 lesson studies I have seen that when asked to explain what they did students state the steps that they took, and don't really give justification or reasoning as to why they did something. (Unit 6 on-line discussion thread, line 40)

The one question I think is important to ask to grasp their beginning stages of their thinking is, "Tell me what you have done so far." (Unit 6 on-line discussion thread, line 43)

Nine of the ten teachers recognized justification types of questions. The responses of the eight teachers that recognized justification types of questions in their responses follow:

The teacher asked questions that deepened the understanding of what the children were doing \& thinking. (Unit 6 on-line discussion thread, line 1)

The teacher then asked questions that encouraged Brandon to explain his reasoning and how the " 0 "s and " 1 "s related to pizza. (Unit 6 on-line discussion thread, line 8)

This teacher asks the student to clarify different things that do not make sense by asking "how do you know" or "why did you do that" or ever "I'm not sure what you are saying" rather than assuming she understands what the student means. (Unit 6 on-line discussion thread, line 14)

When asking how he knew what to do next and how he knew that he didn't have repeats, he was able to reply that if there was a 1 in the column that matched any other combination he would be able to know that he made a duplicate. (Unit 6 online discussion thread, line 22)

I especially thought her asking "Why?" and pushing Brandon to explain his process were important. It seems so simple to ask why but it opens up an opportunity for students to express themselves as best they can. (Unit 6 on-line discussion thread, line 27)

The teacher asked why there could be no more pairings with pepperoni once the student went through the options with that topping and moved to mushrooms. This ensured the student knew why there were no more options with pepperoni \& why they could ignore the topping as they made the rest of the combinations. (Unit 6 on-line discussion thread, line 35)

Brandon's teacher also asked him "Why?" many times so that Brandon could further explain something he had already started to explain, and add to his justification. (Unit 6 on-line discussion thread, line 38)

The 2 questions that the teacher asked were: What are you doing here? What does that mean? The first question was leading the student to start thinking about how to verbalize the mathematical process that the student was using. I think we all have seen that this is a skill that is difficult for most students and needs development. The next question was to get the student to explore more deeply what they had said. Through the first 2 lesson studies I have seen that when asked to explain what they did students state the steps that they took, and don't really give justification or reasoning as to why they did something. (Unit 6 on-line discussion thread, line 40)

Then after they have worked further on the activity asking them to explain/convince me of their work is much easier. I feel it is much easier because they will probably be more confident at this point because they answered the prior question and have more understanding of the task. (Unit 6 on-line discussion thread, line 43)

Six of the teachers recognized probing types of questions. The responses of the six teachers that recognized probing types questions follow:

Every time the Brandon answered, the teacher pursued with a question to get more details and encourage further thinking and explanation (Unit 6 on-line discussion thread, line 1)

The teacher then had him explain and give specific examples such as " $0,0,0$, and 1 " meant a pizza with only one topping. (Unit 6 on-line discussion thread, line 8)

When the teacher "probed further" with Brandon to get him to see a clearer explanation he was able to see that he could reorganize his findings by toppings i.e.: 1 topping, 2 topping, 3 topping, etc... (Unit 6 on-line discussion thread, line 22)

She probed for more information but did not give away what direction Brandon should take his answer. (Unit 6 on-line discussion thread, line 27)

From there, the questions developed based on what the student was doing. For example, when the notation of 1 and 0 was introduced, the teacher asked what they represented to understand how the student was using the notation. Then, after seeing the order of the pizzas created, the teacher asked why there could be no more pairings with pepperoni once the student went through the options with that topping and moved to mushrooms. (Unit 6 on-line discussion thread, line 35)

She then questioned how some of the pizzas would be represented using this notation. For instance, no topping would be $0,0,0$, and 0 . (Unit 6 on-line discussion thread, line 39)

Three of the teachers recognized types of questions that exposed students to other solutions. The responses of the three teachers that recognized types of questions that exposed students to other solutions follow:

The teacher also asks about other possible solutions or situations that the student might not have thought of, like "Could we do it this way" or "What if we did this" or "Have you considered this?" (Unit 6 on-line discussion thread, line 14)

Then she asked Colin if his process was similar to Brandon's. (Unit 6 on-line discussion thread, line 39)

I also liked the suggestion to have groups compare with each other to similarities and differences in their arguments. (Unit 6 on-line discussion thread, line 40)

Three of the teachers recognized connection types of questions. The responses of the
three teachers that recognized connection types of questions follow:
The teacher challenged Brandon when asking him "if the pizza problem reminded him of another problem?" This question got Brandon really thinking. He was able to recognize that the pizza problem was just like the tower problem. He then started to physically build the towers and their "opposites". He was able to then see how the towers he created related to his chart containing " 0 "s and " 1 "s. By using proof by cases, Brandon was able to see how the two problems were related. He saw how he arranged and solved the pizza problem ended up being similar to the way he had built the different towers during the tower problem. (Unit 6 online discussion thread, line 8)

This then led to the teacher asking if he thought this was similar to any other problem they did and he was able to make the connection to the tower problem. When he started building them he did opposites as when he first solved the problem but the teacher questioned his organization of the towers and Brandon stared and was able to see the relationship to the pizza problem based off of his chart. That one color, red, would be zero and yellow would be 1 . He went on to explain and reorder the towers according to his chart. (Unit 6 on-line discussion thread, line 22)

The teacher encouraged him to make a connection to a different problem he had previously worked on with "In any way does it remind you of any of the problems we've done?" She also asked questions that directed his attention to certain aspects of his arrangements of the colors when making connections to the towers problem, such as asking him what color he would focus on and how he was describing the "one's" tower. (Unit 6 on-line discussion thread, line 38)

5.3 Unit 7: On-line Discussion 10/9/13 to 10/15/13

For unit 7, teachers were assigned three on-line questions. Teachers were asked to respond to the following questions on-line:

1. When you implemented the pizza task, selecting from 4 toppings, what kinds of strategies did your children use to solve the problem? Did any of their solutions look similar to the way you solved the problem with your colleagues?
2. Talk about one or two students' solutions that you thought were especially neat.
3. When asked if this problem reminds them of any other, how did your students respond? Did any of your students see the isomorphism between the two problems - building 4 -tall towers selecting from 2 colors and building pizzas selecting from 4 toppings? (Landis, 2013)

5.3.1 First Question Responses

The first on-line question had two parts. In the first part, the question asked teachers what kinds of strategies were used by their own students. In the second part, teachers were asked how the strategies were similar to the way the teachers had approached the task.

5.3.1.1 Part 1 First Question Responses

Two teachers recognized the controlling for a variable strategy that their students used. The two teachers' responses follow:

Many of them held a constant and moved forward with the remaining options. (Unit 7 On-line discussion thread, line 40)

She had kept a constant to create her groups. (Unit 7 On-line discussion thread, line 44)

The other teachers responded by explaining the representations used to solve the pizza problem.

Various types of representations used to solve the pizza problem were mentioned by the teachers. Eight of the teachers said that their students made lists. Of these lists, three responded that the lists were organized. The three teachers that claimed their students used an organized list follow:

Some other students began by making a list similar to that of my colleagues and mine. They came up with different combinations; however, some were organized and some were just listing. (Unit 7 On-line discussion thread, line 22)

Some students made lists that were organized by the number of toppings, others organized by pizzas that included a particular topping, and others were completely unorganized. (Unit 7 On-line discussion thread, line 35)

Many of my students used the strategy of an organized list in order to see the different pizza combinations. (Unit 7 On-line discussion thread, line 41)

Five teachers said that their students drew diagrams of pizzas to solve the pizza problem.
The responses of the five teachers follow:
Several other students drew and labeled the pizzas (Unit 7 On-line discussion thread, line 30)

Several of my students also thought it was important to draw a pizza to go with every outcome they found. (Unit 7 On-line discussion thread, line 35)

Others drew diagrams of pizzas. (Unit 7 On-line discussion, line 40)
I did have one pair of students that attempted to draw the different pizza combinations by drawing circular pizzas and drawing the different toppings on each. (Unit 7 On-line discussion thread, line 41)

One group of students actually drew out slices of pizza and the toppings. They quickly realized they could just write the words in the pizza instead of drawing them out so they changed to a form of notation. They had no method they just started drawing slices and whatever combination they came up with at that slices was what they used. (Unit 7 On-line discussion thread, line 44)

Six teachers said that their students used tree diagrams to solve the pizza problem. The responses of the six teachers follow:

A few students started with a tree diagram (which I thought some might do) and quickly got frustrated with the size of it. (Unit 7 On-line discussion thread, line 19)

Most students began by drawing tree diagrams and when I walked around and questioned them they realized that they began to make doubles using that strategy. Once this happened a few became frustrated and tried to figure out a different way to organize their work; however, they could not think of anything different so they just kept making a tree diagram. (Unit 7 On-line discussion thread, line 22)

Some students created tree diagrams, but most who started with this organization abandoned it. Students used a variety of letters or some used abbreviations to represent the different toppings. (Unit 7 On-line discussion thread, line 28)

I had two students who made tree diagrams, which I was very impressed with. (Unit 7 On-line discussion thread, line 30)

Others tried to use tree diagrams. (Unit 7 On-line discussion thread, line 40)

I even had one pair of students try using a tree diagram, but after attempting to make the diagram, they realized that they were repeating different pizza combinations and altered their strategy to an organized list. (Unit 7 On-line discussion thread, line 41)

5.3.1.2 Part 2 First Question Responses

For the second part of the question, teachers were asked if their students' strategies were similar to the strategies the teachers used. Three teachers said that some of their students had similar strategies (Unit 7 On-line discussion thread, lines 22, 30, 35), two teachers said that many or several had similar strategies (Unit 7 On-line discussion thread, lines 40,41), two teachers said that few students had similar strategies (Unit 7 On-line discussion thread, lines 1,40), and one teacher claimed one student used control for a variable which was the same as the teacher's way (Unit 7 On-line discussion thread, lines 44).

5.3.2 Second Question Responses

The second on-line question asked teachers to "talk about one or two students' solutions that you thought were especially neat" (Landis, 2013). Three of the teachers said that their students used letters to represent the pizza toppings. The three responses of the teachers that said their students used letters to represent the pizza toppings follow:

I usually do not get a lot of work from him. However, with this problem, he dove right in. He used letters to describe his pizzas. (Unit 7 On-line discussion thread, lines 1).

One pair of students used $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, and e to represent the pizza toppings which I thought was really neat. This was a better way than I thought to do because no letter is the same. (Unit 7 On-line discussion thread, lines 5).

One student's answer that I particularly liked was an 8th grader that drew circles and gave them letter labels to correspond to the toppings each pizza could have. He edited his work a few times and ended up organizing them in one topping pizzas, two topping, pizzas, three topping combinations, and four toppings. He used one of his partner's ideas of drawing circles and another
partner's idea of using letters for labels to combine them to create the correct number of pizza combinations. (Unit 7 On-line discussion thread, lines 19).

Three of the teachers said that their students' solutions were neat because they used proof by cases.

He edited his work a few times and ended up organizing them in one topping pizzas, two topping, pizzas, three topping combinations, and four toppings. He used one of his partner's ideas of drawing circles and another partner's idea of using letters for labels to combine them to create the correct number of pizza combinations. (Unit 7 On-line discussion thread, lines 19).

I kept questioning them to look to see if they can organize their lists in a different way to make more sense out of what they are doing. After this question some were able to see they were doing one topping, two topping. (Unit 7 On-line discussion thread, lines 22).

One pair of students that I found their solutions to be neat was a pair of girls in my class. They were quickly able to create the sixteen different pizza combinations. When asked how they created the different pizza pies and why they knew they had them all, they were able to verbally explain to me that they used a mathematical system. They demonstrated this "system" using arrows and were able to exhaust all possible combinations using this method. They simply listed all of the different pizzas that contained only one topping and then used that list to create two, three and four topping pizzas. (Unit 7 On-line discussion thread, lines 41).

Two teachers thought that their students' solutions were neat because they controlled for a variable. The responses of the two teachers follow:

I had one student who held a constant topping when creating his lists of pizzas. He first wrote all the pizzas that contained pepperoni, starting with 4 toppings, then 3, then 2 and then just pepperoni. He did the same for sausage, but did not include and pizzas that would have pepperoni because he already listed those in his previous list. He then went to just peppers, just sausage, and plain. He only came up with 15 pizzas though. He forgot the pizza that had both peppers and sausage in his list. (Unit 7 On-line discussion thread, lines 35).

I was so happy to see the organization in this student's problem. She started with plain and then all single toppings. Then she did all 4 , then 3 toppings, then 2 toppings. She had shown me her work when there were 14 combinations. She had kept a constant to create her groups. (Unit 7 On-line discussion thread, lines 44).

One teacher thought her student's solution was neat because the student created a table. The teacher responded "The most effective use of a table came with a pair that used column headings as toppings and had four numbered rows. Students would put an X where there existed a topping." (Unit 7 On-line discussion thread, lines 28). Another teacher thought it was neat that her student used a recursive method and responded with "One strategy that is found was interesting and surprising is one of my students used the recursive method. I was surprised because I thought that using that method without a manipulative would be harder to do" (Unit 7 On-line discussion thread, lines 30). A third teacher said the following about her student's work:

I was very surprised by some of the students' work. Many of the pairs of students considered a pizza that was half cheese and half one topping to be an option different than a pizza with that one topping, as a result they had more options and had difficulty getting all the outcomes. I also had students who considered each piece of the pizza to be a different part and therefore you could have many more outcomes because a pizza with one slice peppers and the rest sausage is different than a pizza with half peppers and half sausage. When asked if they ever order a pizza like that, the student told me his father used to have a pizzeria and would make pizzas like that. As a result, they were overwhelmed by the number of possible outcomes if each slice was looked at individually. (Unit 7 On-line discussion thread, lines 40).

5.3.3 Third Question Responses

The third on-line question had two parts. In the first part, teachers were asked how their students responded when the students were asked if the pizza problem reminded them of another problem. In the second part, teachers were if their students see the isomorphism between the 4 -tall towers problem selecting from two colors and the building pizzas selecting from four toppings problem.

5.3.3.1 Part 1 Responses

Five teachers said their students were reminded of another problem. Four of the five teachers said that their students were reminded of the 4 -tall towers problem. The four teachers' responses follow:

One student who was able to make the connection started off by saying, "I know the answer to this is 16 ," I asked him why he knows that and he said, "Because this is like the tower problem." I then said ok why you think that, he stated, "They are alike because the towers we had to build four high and the pizzas we get to choose from four toppings." I was convinced that he did see the isomorphism between these problems so then I asked him if they were related he would be able to build the pizzas using the towers, and he replied yes and started to build. (Unit 7 On-line discussion thread, line 22)

Not many of my students made the connection between the two problems. I had a couple students who made the connection, and mainly related the two questions together because they were making different combinations in each activity. (Unit 7 On-line discussion thread, line 30)

When asked what problem this was similar to, the students discussed the tower problem but none of the students mentioned the relationship between the two before being asked and they did not initially see any relationship between the two except that the number of outcomes was the same in both problems. (Unit 7 Online discussion thread, line 40)

When I asked the student discussed in number 2 if this reminded her of the tower problem, she said "Oh that's why there had to be 16 because it's like the tower problem, 4 cubes and 4 toppings. (Unit 7 On-line discussion thread, line 44)

One of the five teachers said that her students were reminded of other problems that were not related to the towers problem. The response of the teacher that said her students were reminded of other problems not related to the towers problem follows:

When I asked my class if this problem reminded them of any other problem, several students suggested word problems that involve multiple combinations. One student gave me an example of different types of sandwiches, if you have two types of bread and three types of meat. This idea led another student to give me an example of where they had three ice cream flavors and four toppings, how many different sundaes could they make. (Unit 7 On-line discussion thread, line 41)

5.3.3.2 Part 2 Responses

For the second part of the question, teachers were asked if their students' saw the isomorphism between the 4 -tall towers problem and the pizza problem. Three teachers said that their students saw the isomorphism between the 4 -tall towers and pizza problems. The responses of the three teachers follow:

One student who was able to make the connection started off by saying, "I know the answer to this is 16 ," I asked him why he knows that and he said, "Because this is like the tower problem." I asked why and he stated, "They are alike because the towers we had to build four high and the pizzas we get to choose from four toppings." I was convinced that he did see the isomorphism between these problems so then I asked him if they were related he would be able to build the pizzas using the towers, and he replied yes and started to build. (Unit 7 On-line discussion thread, line 22)

Not many of my students made the connection between the two problems. I had a couple students who made the connection, and mainly related the two questions together because they were making different combinations in each activity. (Unit 7 On-line discussion thread, line 30)

When I asked the student discussed in number 2 if this reminded her of the tower problem, she said "Oh that's why there had to be 16 because it's like the tower problem, 4 cubes and 4 toppings. (Unit 7 On-line discussion thread, line 44)

5.4 Unit 8: Regional Meeting 10/22/13

Unit 8 was comprised of an in-district classroom visit at a regional meeting on $10 / 22 / 13$. Ten teachers met at a New Jersey middle school to observe an implementation of the second cycle task with the current students of one of the teachers. After the indistrict classroom visit, the teachers discussed students' work for the second cycle task.

5.4.1 Discussion of In - District Classroom Visit

For the second in-district classroom visit, the Cycle 2 task was implemented with twenty-three sixth-grade current students of a teacher. The sixth-grade current students were sitting in individual student desks that were pushed together in pairs. They were
asked to convince their partners of their solutions and write down the solutions after convincing one of the researchers.

After the current students left, the instructor held a debriefing meeting with the ten teachers from the southern region group to discuss the students' solutions from the indistrict classroom implementation using an IPad to take pictures of the students' work and project it on the screen. The teachers first discussed two students' work that the instructor said was "very different, I don't think I've seen that before either" (10/22/13 meeting transcript, line 1). Figure 5.1 shows the student's work.

Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

plan $=2$ 1. 1+3 $2+2$

Pepperoni $=52+3 \quad 5+2$

$$
2+41+2+3+4+5
$$

$$
3+4 \quad 1+2+3+4
$$

$$
3+5 \quad 1+2+3
$$

$$
4+51+3+4+5
$$

$$
1+3+4
$$

$$
1+2+4+5
$$

Figure 5.1 First Discussed Student's Work from 10/22/13 Class Visit

The students used numbers to represent the toppings. They assigned the following number to represent the toppings: peppers=1, plain=2, sausage=3, mushrooms=4, pepperoni $=5$. Then the students had written addition expressions vertically on their paper such as $1+1,1+2,1+3,1+4,1+5,2+1,2+2$, and continued the pattern (10/22/13 meeting transcript, line 1$)$.

The instructor asked the teachers "How did it get them into trouble?" (10/22/13 meeting transcript, line 1). One of the teachers said that she had questioned one of the students in the pair by pointing to $1+1$ and asking "does that mean peppers and peppers" (10/22/13 meeting transcript, line 3). The teacher also said "Then she was like, no that just means it only has peppers. Then she was like, maybe I should just erase the second two and only put one two. And I said that's a good idea" (10/22/13 meeting transcript, line 3).

The instructor asked the teachers "What other group did you find interesting?" (10/22/13 meeting transcript, line 6) and one teacher replied about a chart that was made by two boys (10/22/13 meeting transcript, line 10). The instructor asked "What got them into trouble?" (10/22/13 meeting transcript, line 13). One of teachers said "their ordering at first, because they were just doing them all random" (10/22/13 meeting transcript, line 10). The instructor said the teacher was correct and that the students were missing the three-topping pizzas because they were trying to keep track of their pizzas in their heads until one of the circulating teachers asked them to write it down (10/22/13 meeting transcript, line 15).

The instructor asked if there was another group that the teachers found interesting (10/22/13 meeting transcript, line 19). One teacher replied that one group of girls had
struggled to solve the pizza problem because they had used a tree diagram and were having "a lot of doubles" (10/22/13 meeting transcript, line 22). Then, the instructor asked the teachers if there was another group that struggled (10/22/13 meeting transcript, line 25).

One teacher said that one pair of students struggled because "They counted a plain, a cheese, a sauce, and a nothing" where the nothing pizza was a pie with no red sauce (10/22/13 meeting transcript, line 25). In this case, the instructor said to the teachers that "their answer would be much bigger" (10/22/13 meeting transcript, line 52). After eliminating many combinations, the students found there were seventeen pizzas because the students decided to count a pie with no sauce as an option (10/22/13 meeting transcript, line 55).

At this point, the instructor requested to see the students' work projected on the screen (10/22/13 meeting transcript, line 55). The student's work that was shown first was shown in figure 5.1 above and was one of the students that used numbers as notation for the pizza toppings with addition expressions to represent each pizza (10/22/13 meeting transcript, line 1). The teachers previously discussed the student's work at the beginning of the meeting (10/22/13 meeting transcript, line 1).

However, the instructor saw that the student erased the original work and replaced it with revised work (10/22/13 meeting transcript, line 76). The instructor stressed the importance of not allowing students to erase work because "if you didn't see what they were doing and then you just saw this you would miss everything that they eliminated. And that really is important to know where they started and where they are going" (10/22/13 meeting transcript, line 76).

The second student's work that was shown was one of the students that made a chart (10/22/13 meeting transcript, line 81). Figure 5.2 shows the student's chart. The chart showed the four toppings on the top written as words and X's in the cells to represent a topping on the pizza (10/22/13 meeting transcript, line 81).

Figure 5.2 Chart from Second Discussed Student Work from Class Visit 10/22/13
The instructor asked the teachers if any of their students made a chart and one teacher replied "I had one but he started making this chart and I was like, this is really great like where are you going with this, explain it to me, and then all of a sudden, he was like said, no I didn't like this. And then he wrote ignore on it and started doing
something completely different" (10/22/13 meeting transcript, line 83). The instructor then asked the teacher to share how the student switched the work with the teacher group (10/22/13 meeting transcript, line 84).

The student had started with a chart and then switched to an organized list using proof by cases. The student wrote 16 pizza combinations and the following argument:

First, we looked at the pizzas with only one-topping and got four different pizzas. We know this is right because there are only four toppings. Second, we looked at the pizzas with two-toppings and we got six pizzas. We know this because we took the pepperoni and grouped it once with each of the other toppings. Then we took the mushrooms and grouped it once with the other toppings, except for pepperoni, because it was already grouped with it. Then we took sausage and only grouped it with peppers because it was already grouped with mushrooms and pepperoni. Third, we looked at the three-topping pizzas and got four pizzas. Since there are only 4 toppings, we took one topping off the pizza each time. (10/22/13 meeting transcript, lines 112,123)

The instructor said that it was "a brilliant way to find the three-topping pizzas" (10/22/13 meeting transcript, line 128). Figure 5.3 shows the student's list.
1.Phain
L. Peppereni, Mubhrooms
3. Repperomi, ausage
4.Rpparoi, Reppors
5. Mushrooms Sausuge
6. Mushcomits Eppers
7. Sausage, Reppers
8.leppers
9, Sousage
10. Mushrooms
11. Pepgerani
12. All toppings
13. Repprors, sausoge, Muhhrooms
14 Reppers, Suusone, Repperconit
15. eppers, mu inrooms, Pepproni

Figure 5.3 Student List from Second Sample Classroom Visit

One teacher said that one student pair "started with holding peppers constant and they did all of the two-topping pizzas with peppers, but instead of moving on and
continuing, they kept peppers and then did three-toppings with peppers they got and they kept peppers with four-topping." (10/22/13 meeting transcript, line 146). The instructor replied "So, they got 8 , right?" (10/22/13 meeting transcript, line 147) and the teacher said "Yeah, then they totally ignored the peppers and the sausage for the two-toppings and three-toppings." (10/22/13 meeting transcript, line 148). The instructor then transitioned into facilitating a discussion where the teachers shared the pizza-problem solutions of their own students' work (10/22/13 meeting transcript, line 159-161).

5.4.2 Discussion of Students' Work, Regional Meeting 10/22/13

T6 was the first to share her students' work from a sixth-grade gifted class. The student used a tree diagram to find 16 possible pizza combinations but could not provide a convincing written argument (10/22/13 meeting transcript, line 162).

The next example shared by T6 was from a girl. T6 read the following student's written argument to the teachers:

There are four different toppings and there's four mixes. So like you could...there's a potential to have 4 things on a pizza. So, 4 times 4 is 16 , and then plus one is the plain, so it's 17 . (10/22/13 meeting transcript, lines 189)

The student incorrectly used the rule strategy. This student's work sparked a discussion facilitated by the instructor about mathematics that makes sense. The instructor said with this student's argument, "you will not be able to generalize pizzas with three toppings or five toppings" (10/22/13 meeting transcript, line 199).

T6 also shared another student's work that showed a list of sixteen pizza combinations using the letters PE for peppers, S for sausage, M for mushrooms, PEP for pepperoni, and P for plain (10/22/13 meeting transcript, line 200). T6 recognized that the
student solved the pizza problem by controlling for a variable (10/22/13 meeting transcript, line 200). T6 read the following argument out loud to the teachers:

We organized the choices by toppings as we went on. When we got to a new topping, we took out all of the duplicates from the other toppings. For example, we started off, out with all of the pepper combinations. There were 8 of them. When we got to the sausage, there were only 4 combinations because there were 4 duplicates from the pepper. We did the same thing for mushrooms and pepperoni. The only thing left to do was to add one plain to our list, which we added. And then they said we got 16. (10/22/13 meeting transcript, line 232).

When the instructor asked the teachers if this was a convincing argument, one of the teachers replied "it's not" (10/22/13 meeting transcript, lines 233-237). Figure 5.4 shows a list the student provided.

Plain $=\mathrm{P} \quad$ Peppers $=$ PE \quad Sausage $=\mathrm{S} \quad$ Mushroom $=\mathrm{M}$
Pepperoni $=$ PEP
$1 \mathrm{P} \quad 16$ PEP

2 PE
3 PE, S
4 PE, M
5 PE, PEP
6 PE, S, M
7 PE, S, PEP
8 PE, PEP, M
9 PE, S, M, PEP
$10 \mathrm{~S}, \mathrm{M}$
11 S, PEP
12 S, M, PEP
13 S
14 M
15 M, PEP

Figure 5.4 T6’s Cycle 2 Pizza Combinations List, Student Work Sample 3

T1 was the second teacher to share her students' work. The student used the letters A through D to represent toppings and then used E to represent a plain pizza (10/22/13 meeting transcript, lines 252). T1 said the student made a list of 24 pizzas but
"she didn't do any kind of pattern" (10/22/13 meeting transcript, lines 258). Figure 5.5 shows the student's work.

Figure 5.5 T1's Cycle 2 Student Work Sample 1

T1 shared a second example of students' work where the student found fourteen pizza combinations (10/22/13 meeting transcript, lines 264). The student made an organized list by writing the words of the toppings in separate boxes to represent each pizza combination. T1 recognized the student controlled for a variable by holding the mushroom topping constant (10/22/13 meeting transcript, lines 276).

T5 was the third teacher and shared two samples of students' work. In the firstshared sample, T5 said the student made a chart that had 3 columns (10/22/13 meeting transcript, lines 303). At the top of each column, the student wrote out the topping words of peppers, sausage and mushroom where three toppings were in each of the cells underneath the aforementioned topping words (10/22/13 meeting transcript, lines 303). Under the chart, the student wrote a list using Pepps for Peppers, Peppi for pepperoni, S
for sausage, M for mushroom, and P for plain. T5 read the following argument out loud to the teachers:

I answered my question 16 combinations of possible pizza choices a customer can choose. I made a chart of peppers, sausage, mushrooms, and pepperoni. I did all the combinations for each of them. Then I got 7 for peppers, 3 for sausage, mushrooms, and pepperoni. I add them together to get 16 . (10/22/13 meeting transcript, line discussion thread, line 307)

Thirteen possible pizzas were listed with 7 pizza combinations holding peppers as the constant; 3 holding sausage as the constant; and 3 holding mushroom as the constant (10/22/13 meeting transcript, lines 303). However, the student had written $7+3+3+3=$ 16 possible pizzas as her solution (10/22/13 meeting transcript, lines 303).

T5 also shared a second example with the teachers by reading the following argument on the screen:

There are 10 possibilities because from the toppings in order, I can reverse them and in the middle I can use to. If all the ten combinations are reversed then it would still be the same. (10/22/13 meeting transcript, line discussion thread, line 335)

The student made a numbered list of ten pizza combinations with the topping words written (10/22/13 meeting transcript, lines 331). Peppers are listed first 6 times, followed sausage listed first three times, and then mushroom listed first one time (10/22/13 meeting transcript, lines 331). T5 said she was impressed with this student because she liked the way "he just rearranged them" (10/22/13 meeting transcript, lines 331). Figure 5.6 shows the student's work.

Figure 5.6 T5's Cycle 2 Student Work Sample 2

T8 was the fourth teacher to share his students' work. In the first example that T8 shared, the student provided a drawing of pizza slices (10/22/13 meeting transcript, lines 348). T8 recognized that the student solved the pizza problem by controlling for a variable. The drawing of the student's work is in Figure 5.7.

Figure 5.7 T8's Cycle 2 Drawing, Student Work Sample 1
The following written argument was provided by T8's student:

Group one. I start with pepperoni, then I did two toppings; there is pepperoni in each one. If I put another one I get 3 toppings. I did 3 toppings with pepperoni in each one.

Group two. I started with mushroom. Then I did two toppings; mushroom in each one. If I put another one I get three toppings. I did 3 topping with mushrooms.

Group three. I start with sausage. I did two other topping. There is sausage in each one. If I put other topping I get three. I did three topping with sausage.

Group four. I start with pepper. I did two other topping. There is pepper in each one. If I put other topping, I get three. I did three topping with pepper (10/22/13 meeting transcript, line discussion thread, line 362)

T8 shared a second sample of students' work. The following student's written argument was read by T8:

Group one. I started it with pepper, then, I did two toppings with pepper with sausage mushroom and pepperoni. Three toppings are in each different topping with pepperoni, sausage, and mushroom. Four Toppings with pepperoni, pepper, mushroom.

I started it with sausage. Then I did two toppings with peppers with mushrooms and pepperoni. Three toppings are in each different topping with pepperoni sausage and mushroom. Four Toppings with pepperoni, pepper, mushroom.

I started it with mushroom. Then I did two toppings with pepper with sausage and pepperoni. Three toppings are in each different topping with pepperoni sausage and mushroom. Four Toppings with pepperoni, pepper, mushroom.

I started it with pepperoni. Then I did two toppings with pepper with sausage and pepperoni. Three toppings are in each different topping with pepperoni sausage and mushroom. Four Toppings with pepperoni, pepper, mushroom.
(10/22/13 meeting transcript, line discussion thread, line 362)
Figure 5.8 shows the second-shared student's drawing.

Figure 5.8 T8's Cycle 2 Drawing, Student Work Sample 2
The instructor asked the teachers if this argument was convincing and no teacher replied (10/22/13 meeting transcript, lines 363). The instructor then said the student was telling what she did and that "It's not clear exactly to me what she was thinking. And it could be developed but, right now it isn't convincing (10/22/13 meeting transcript, lines 363-367).

T8 also shared the work of an eighth-grade student-helper. The student-helper made an organized list of 16 possible pizza combinations using proof by cases. T8 read the following student-helper's written argument to the teachers:

For the first 5 groups, I put the toppings by itself and then I combined all 4 of the toppings together. After that I took 1 topping, and put it with two topping and not get it to repeat. After that I took 1 topping and put it with 1 other topping and to not get it to repeat. (10/22/13 meeting transcript, line discussion thread, line 384386)

T8 recognized that the student-helper solved the pizza problem by controlling for a variable (10/22/13 meeting transcript, line discussion thread, line 372). Figure 5.9 shows the student's list.

Figure 5.9 T8's Cycle 2 Pizza Combinations List, Student Work Sample 3

T7 was the fifth teacher to share her students' work. In the first-shared sample, T7 was surprised that the students had written 145 combinations on their paper (10/22 meeting transcript, line 491). T7 said that the student "had the idea that each slice was considered a different part" (10/22 meeting transcript, line 397). T7 asked the student "Would you go in and order a different slice on a pizza?" (10/22 meeting transcript, line 399) and T7 claimed that the student's father "use to have a pizzeria and if someone ordered that, he sure he would do it" (10/22 meeting transcript, line 399). Figure 5.10 shows the first student sample of work T7 shared. The following description is provided by T7 about what the student did to solve the pizza problem:

He went to two with peppers and then six with each of the other four toppings because they're including plain as a topping. So when he was done with that he had 28 possibilities but that's only two toppings with peppers. after they did that, they multiplied, they had 28 , they multiplied by 5 , because they figured the peppers on the left column could be switched to sausage, mushrooms, plain or, uh, pepperoni [unintelligible]. So they multiplied by 5, got 140; not realizing that
that's going to be a duplicates in there. And then they added five more pizzas on for the whole pizzas of each of those five. (10/22/13 meeting transcript, line discussion thread, line 403-409)

Figure 5.10 T7's Cycle 2 Student Work Sample 1

T7 shared a second student's work by describing the following written argument to the teachers:

So this is that other student that I was talking about, um. And she broke it into quarters first and then she said, well, this quarter could have four different toppings on it, this one could have four different toppings on it, this one, and then she took that and said, well there is 13 toppings technically here and multiplied it by 4 because there is four quarters that each of them could be moved into. (10/22/13 meeting transcript, line discussion thread, line 422)

T7 replied that the student's work was "another big mess, they didn't get an answer" (10/22 meeting transcript, line 424). Figure 5.11 shows the student's work.

Figure 5.11 T7's Cycle 2 Student Work Sample 2
The third sample T7 shared was from a student who made a numbered list with 16 boxes of pizza combinations inside the boxes (10/22 meeting transcript, line 430). T7 read the following student's argument to the teachers:

There is one plain pizza, you start with individual toppings; there's four. From this, you group them in lists such as 2-topping and 3-toppings. Then you make sure you didn't repeat a combination. There are 16 possible combinations. To check there are four original topping. Four can evenly go into 16 . (10/22 meeting transcript, line 448)

T7 recognized that the student solved the pizza problem by controlling for a variable and using proof by cases (10/22 meeting transcript, lines 430-438).

T4 was the sixth teacher that shared her students' work. T4 said that this student worked with a group of three students (10/22 meeting transcript, line 464). The student began with a tree diagram but then had drawn circles (10/22 meeting transcript, line 464). T4 recognized that the student used proof by cases to make a list of the pizza combinations above the circles using letters to represent the pizza toppings (10/22 meeting transcript, line 468). Figure 5.12 shows the work of the student first shared by T4.

Figure 5.12 T4's Cycle 2 Student Work Sample 1

T4 then showed the partner's work from the first-shared sample. This student began the pizza task by listing the pizza combinations using letters to represent pizza toppings (10/22 meeting transcript, line 468). This student then revised his work using his partner's idea of proof by cases to list 16 pizza combinations (10/22 meeting transcript, line 474). Figure 5.13 shows the partner's work.

Figure 5.13 T4's Cycle 2 Student Work Sample 2
T3 was the seventh teacher that shared her students' work. The first sample of work that T3 shared was from a seventh-grade girl that had written a list of the topping words for each of the 16 combinations (10/22 meeting transcript, line 489). Figure 5.14 shows the work of the first-shared student sample from T3. The following written argument was placed on the screen:

1. To get all of them, we used a system.
2. The first four toppings, we went down the line using arrows.
($10 / 22$ meeting transcript, line 448)

Figure 5.14 T3's Cycle 2 Student Work Sample 1

T3 then shared a second example with the teachers where the student listed thirteen pizza combinations by writing the topping words and using an argument by cases. The written argument provided by the student was as follows: "We know we had it because we based it on tree diagram, and then changed to list (10/22/13 meeting transcript, lines 504-505). Figure 5.15 shows T3's student's work.

$$
\begin{aligned}
& \text { We know wee had it because we based it on } \\
& \text { tree dirgram then changed to list. }
\end{aligned}
$$

Answer: 13
Peppers
Savage
mush mores
peper on i

$$
\begin{aligned}
& \text { peperoni } \\
& \text { peppers and savage pepperoni and mushrooms } \\
& \text { manoers ant mushrooms pepperoni and savant }
\end{aligned}
$$

peppers ant mushrooms pepperoni and savage
peppers and peperoni
savage and mushrooms
peppers and savage and mushrooms
pepers and savage and pepperoni peppers and mushrooms pepperoni

Figure 5.15 T3's Cycle 2 Student Work Sample 2

T2 was the eighth teacher that shared her students’ work. One seventh-grade girl made a list of 16 pizza combinations using topping words. T 2 read the following written argument provided by her student:

I know there is no more possible ways because there are only four toppings to choose from. The plain is the base of the whole thing. I used all the possible ways there are starting with one topping to two toppings to three toppings to four toppings. Then I thought I was done but I realized that I didn't have a plain pie and only a plain pie. That's how I got my answer and there was 16 ways altogether. (10/22 meeting transcript, line 532)

The instructor asked the teachers if the argument provided by the student was convincing and one teacher replied "I like her diagrams" (10/22 meeting transcript, line 534). The instructor then said "Her written work is very, very, nice. She's showing you what she got and she started to talk about that there were only 4 toppings so that could be convincing for why there are only 4 one-topping pizzas, but the rest of the groups, not so much (10/22 meeting transcript, line 535). Figure 5.16 shows the student's list.

Figure 5.16 T2's Cycle 2 Student Work Sample 1

T2 shared a second example where the student made a connection to the 4-tall towers problem (10/22 meeting transcript, line 538). The student's written argument and diagram was placed on the screen. The diagram had 8 pairs of 4 -tall towers where P was written inside the square to represent a yellow cube for plain pizza and T was written inside the square to represent a blue cube for a topping (10/22 meeting transcript, line 538). The written argument from this student was "I use the blocks for the pizza that I just did. I use blue for the topping, yellow plain only (10/22/13 meeting transcript, line 538). The instructor said that "This is the beginning of seeing a connection, isn't it? And it's neat that he is kind of saying, it either appears or doesn't appear. We just don't know which toppings are appearing" (10/22/13 meeting transcript, line 551). Figure 5.17 shows the student's work.

Figure 5.17 T2's Cycle 2 Student Work Sample 2

T10 was the ninth teacher to share her students' work. T10 read the following student's argument to the teachers:

I think that 16 are all the possible combinations because we can't do anymore without them repeating for four-toppings. Uh, we know that all the toppings on a pizza are a choice, and that plain pizza is a choice too. That makes two pizzas total. And then there were four toppings, and though we could just put one topping per pizza, so that would make 6 pizzas total. Next we put two different toppings without repeating them again. We got 6 total pizzas for two toppings, and that makes 12 pizzas total. (10/22/13 meeting transcript, lines 572,576)

The instructor asked the teachers if the teachers noticed the student was controlling for a variable in the two-topping pizzas and T10 replied "uh huh" (10/22 meeting transcript, lines 569-570).

Then T10 shared a second sample of students' work. This student created a table with the topping words at the tops of the columns and the rows were numbered on the left margin 1-16. In the row and column cells, there were checkmarks to represent the toppings used for the pizza combinations (10/22 meeting transcript, line 590). The instructor asked the teachers what they noticed about the chart and one teacher recognized the elevator strategy in the chart where one topping was being moved down one position in a diagonal pattern down the chart until all the positions were exhausted (10/22 meeting transcript, lines 602-603).

T10 said that this student changed his strategy to a number system (10/22 meeting transcript, line 602-603). The student's written argument was as follows: "I got 16 ways to combine toppings for a pizza pie at the restaurant. I numbered the toppings and included a plain pie" (10/22 meeting transcript, lines 628-629).

T9 was the tenth teacher to share her students' work. T9 said the student provided a web that had toppings branched out from it along with the following written argument that T9 read to the teachers:

We believe that have found all the combinations. We believe this because first we used the web to see how much combos we could make. We also did them all because when I checked them off there were none left, because I did a combo. Once I did a combo, I took one thing off. I also added them altogether. You could do 4 by 4 because there are four toppings to pick out of, that's how I got 16. (10/2 meeting transcript, line 651)

T9 recognized the student solved the pizza problem by controlling for a variable" (10/22 meeting transcript, line 637). The student also incorrectly used the rule strategy (10/22 meeting transcript, line 651).

T9 shared a second sample of students' work with the teachers. The student created many web diagrams where each web represented a different pizza pie (10/22 meeting transcript, line 661). T9 read the following written argument provided by the student: "I got 16 combinations. I used factor trees to help me out by abbreviating the toppings and replaced the numbers with letters" (10/22 meeting transcript, line 665).

Figure 5.18 shows the second student drawing shared by T 9 .

Figure 5.18 T9's Cycle 2 Student Work Sample 2

5.5 Summary

With the completion of the aforementioned three session units, the second cycle of tasks came to an end. Throughout Cycle 2, teachers worked on the second cycle tasks, then participated in three thought-provoking on-line discussions, observed an in-
district classroom visit working on the tasks, implemented the same tasks in their own classes, read literature and watched videos of other students working on the tasks, and shared their own students' work after implementing the tasks in their own classes. At the regional meeting on $10 / 22$, the third cycle of tasks began with the teachers working in pairs on the 3-tall towers problem, selecting from 3 colors and an extension problem called Ankur's challenge; where teachers worked on finding 4-all towers, selecting from 3 colors using at least one of each color (Landis, 2013).

Chapter 6 - Cycle 3 Session Summary and Analysis

This chapter is a summary and analysis for the third intervention cycle with a new set of mathematical tasks. Three session units of on-line discussion threads are analyzed to include teachers' problem solving of the third cycle tasks at the regional meeting on 10/22/13 and the teachers sharing students' work at the in-district classroom visit and third regional meeting on 11/20/13.

6.1 Unit 8: Teachers Work on Third Cycle Tasks, Regional Meeting 10/22/13

Teachers were asked to convince each other of their solutions (10/22/13 Cycle 3 teachers' work transcript, lines 3-5). Once a solution was found, teachers were asked also to convince the instructor of their solution (10/22/13 Cycle 3 teachers' work transcript, lines 3-5). When successfully convincing each other and the instructor, they were asked to produce a written solution; if they were unsuccessful in convincing one of the researchers, they were invited to rethink their solution.

6.1.1 Building Three-Tall Towers, Selecting from Three Colors

Teachers were given twenty-five minutes to work on the 3-tall tower problem, selecting from three colors. The instructor monitored the progress for the five pairs of teachers by circulating around the room (10/22/13 Cycle 3 teachers' work transcript, lines 3-5). After twenty-five minutes, the instructor called for the attention of the whole group to share the teachers' solutions and said "four of the groups in the room did the problem by grouping it into 9 groups of 3" (10/22/13 Cycle 3 teachers' work transcript, line 288).

Three of the four teacher pairs had nine groups of three towers using the elevator strategy. The instructor asked one of the three teacher pairs to present their solution to the other teachers (10/22/13 Cycle 3 teachers' work transcript, line 286). The pair of
teachers recognized that they used the elevator strategy for six of the nine groups of three-tall towers (10/22/13 Cycle 3 teachers' work transcript, line 295). When the instructor asked what their convincing argument was, one of the teachers in the pair (T1) said the following:

So we said if you have the yellow and blue for example. If we had it 2 yellow and the one blue there's only 3 ways to do that. Our single cube can move to each of the positions. If we were to move that again, we would either need a fourth row or we would be repeating it. (10/22/13 meeting transcript, line 297)

T1 described two forms of argument; a recursive method and a proof by contradiction (10/22/13 Cycle 3 teachers' work transcript, line 297). Figure 6.1 shows a picture of the 3-tall towers built by the first teacher pair.

Figure 6.1 Cycle 3 Three-Tall Arranged Towers, Teachers' Work from 77 and T8

Then the instructor asked about the argument for the towers that looked like a "candy cane" (10/22/13 Cycle 3 teachers' work transcript, line 303). These towers are also referred to as alternating towers or towers that have one of each color (10/22/13 Cycle 3 teachers' work transcript, line 295). Two of the groups of 3-tall towers had one of each color. For the first group of the 3-tall towers with one of each color, the teacher pair used the recursive strategy of taking the yellow cube at the top and moving it down one position each time to make the next tower until all the positions were exhausted. For
the second group of alternating colors, the teacher pair used the same yellow cube at the top moving down one position each time except the positions of the blue and red cubes were switched in opposite positions from the red and blue cubes of the first group of alternating colors (10/22/13 Cycle 3 teachers' work transcript, lines 291).

The second teacher in the pair (T2) said "having the yellow kind of go through each position kind of the same way that we had the one cube go through in the other positions actually moving the yellow all the way through if you move it to another place, it would go to the top" (10/22/13 Cycle 3 teachers' work transcript, lines 304,306). The instructor then replied to the teachers "now they are using a recursive argument" (10/22/13 Cycle 3 teachers' work transcript, lines 307). T1 and T2 used the Unifix cubes to show the teachers how they moved the cubes to form the other towers (10/22/13 Cycle 3 teachers' work transcript, lines 307-318).

T2 said to the teachers that he solved the three-tall towers problem differently by holding "the red constant first at the top and then I said the yellow and blue could be in two different ways. Then I had the yellow constant same thing" (10/22/13 Cycle 3 teachers' work transcript, lines 320). T2 recognized that he solved the three-tall towers problem by controlling for a variable (10/22/13 Cycle 3 teachers' work transcript, line 320).

A second teacher pair was asked by the instructor to present their solution to the others (10/22/13 Cycle 3 teachers' work transcript, lines 327). This solution of this teacher pair was unique in that they created three groups of nine towers in which the top group of nine towers were arranged with all red cubes on the top of each tower, the middle group of nine towers had all blue cubes on the top of each tower, and the bottom
group of nine towers consisted of all yellow cubes on the top of each tower (10/22/13 Cycle 3 teachers' work transcript, line 290). The following solution was explained by one of the teachers (T3) in the pair:

So we started off before we actually started building them, we made a prediction that there were going to be 27 similar to the two to the fourth power and the 3 to the third power. So we knew that there were going to be 27 so we actually started building them the same exact way that Chris and Christine did. And then we kind of got stuck and there were only 24 and we were like we're missing 3 . So then I kind of looked and we decided to group them differently. And this is where we put all the...keeping the red constant, the blue constant, and the yellow constant. When we did it that way, We then saw that there were 9 that had red constant, 7 that had blue constant, and 8 that had yellow constant so that kind of gave us the 3 that we were missing. (10/22/13 Cycle 3 teachers' work transcript, line 297)

The teacher pair correctly used the rule strategy to predict how many towers there would be before they tried building the three-tall towers (10/22/13 Cycle 3 teachers' work transcript, line 297). T3 recognized that she and her partner solved the three-tall tower problem by controlling for a variable (10/22/13 Cycle 3 teachers' work transcript, line 297). Figure 6.2 shows a picture of how the second teacher pair built their three-tall towers.

Figure 6.2 Cycle 3 Three-Tall Arranged Towers, Teachers' Work from T2 and T3

The third teacher pair had nine groups of three towers (10/22/13 Cycle 3 teachers' work transcript, line 352). There was a red, yellow, and a blue cube on the top of each
tower for each of the nine groups (10/22/13 Cycle 3 teachers' work transcript, line 352).
The following solution was explained by one of the teachers (T4) in the pair:
We held the bottom color constant. So there are 3 different rows we can do that with because there are 3 different colors. Because you can hold the bottom row constant 3 different times. And then within the row of holding the bottom constant, we held the second one constant as well so the second one is yellow, the second one is blue, and the second one is red and we can't have any more groups of 3 because there are 3 colors. And that leaves the last row to kind of alternate between the colors. And it's red, yellow, or blue. (10/22/13 Cycle 3 teachers' work transcript, line 297)

The instructor then asked "what kind of argument did they use?" (10/22/13 Cycle 3 teachers' work transcript, line 359) and no teacher correctly recognized what kind of argument the teacher pair used. So, the instructor said "Milin used that argument" (10/22/13 Cycle 3 teachers' work transcript, line 361) and told the teachers that the argument was inductive. Figure 6.3 shows how the third teacher pair built their towers.

Figure 6.3 Cycle 3 Three-Tall Arranged Towers, Teachers' Work from T4 and T6

The fourth and fifth teacher pairs were not asked by the instructor to present their solutions (10/22/13 Cycle 3 teachers' work transcript, lines 286). Both the fourth and fifth teacher pairs solved the three-tall tower problem with the same strategies that the first teacher pair presented (10/22/13 Cycle 3 teachers' work transcript, lines 211-258,

261-269). The fourth and fifth pair of teachers used the elevator strategy (10/22/13 Cycle 3 teachers' work transcript, lines 211-258, 261-269).

6.1.2 Ankur's Challenge

Teachers were asked to find all possible 4-tall towers, selecting from three colors and using at least one of each color. The instructor monitored the progress for the five pairs of teachers by circulating around the room (10/22/13 Cycle 3 teachers' work transcript, lines 3-5). After twenty-five minutes, the instructor called for the attention of the whole group. The instructor, having selected the work of some teacher pairs for sharing, said "I see two different ways of arranging going on. I see grouping in groups of 3 , I see grouping in groups of 6 , I see grouping in groups of 12 . There are 3 different ways. So let's look at this is the grouping of 6" (10/22/13 Cycle 3 teachers' work transcript, line 537).

T9 and T10 were the first teacher pair to present their solution of Ankur's Challenge to the others (10/22/13 Cycle 3 teachers' work transcript, line 537). Their representation showed six groups of six towers (10/22/13 Cycle 3 teachers' work transcript, line 546). Figure 6.4 shows a picture of T9 and T10's work.

Figure 6.4 Cycle 3 Ankur's Challenge, Teachers' Work from T9 and T10

T9 explained the following solution to the teachers:
We knew we exhausted all the options for yellow and the yellow because we used it in every position. Then we just added all the reds to the bottom because that we knew that took up all or used every color. We picked a color and we said let's start with red. So then we used red as the constant and we added it to the bottom and made that the constant for the bottom. Then we did the same thing with our next tower or our other 3 towers. We had two blue and one red and we knew we already exhausted all the options for blue and red so we just decided to go with the yellow on the bottom. (10/22/13 Cycle 3 teachers' work transcript, lines $552,554)$

T9 recognized that she solved the Ankur's Challenge problem by using a recursive argument and by controlling for a variable. Figure 6.4 shows a picture of T9 and T10's work.

T1 and T2 were the second teacher pair to present their solution of Ankur's Challenge to the teachers (10/22/13 Cycle 3 teachers' work transcript, line 565). Their towers were arranged in three groups with each group having twelve towers (10/22/13 Cycle 3 teachers' work transcript, line 565). The top group of twelve towers was arranged with red cubes at the top of each tower, the middle group had yellow cubes at the top, and the bottom group showed blue cubes at the top (10/22/13 Cycle 3 teachers' work transcript, line 565). T1 recognized that one of the strategies the teacher pair used was controlling for a variable. The following explanation was given to the teachers by T1:

We did all yellow tops constant on the first row. And then for the first group of 2, we did yellow constant in the middle row. And we alternated the blue and red. And we said we couldn't put another yellow in either one of those positions. (10/22/13 Cycle 3 teachers' work transcript, lines 552,554)

The instructor asked T1 "why" (10/22/13 Cycle 3 teachers' work transcript, line 572) and her partner T2 replied "because then we would only have two of the colors, rather than all 3" (10/22/13 Cycle 3 teachers' work transcript, line 573).

T1 continued with her explanation to the teachers saying "for the next group, we kept 3 rows constant so we had all 3 colors; yellow blue and red and then we just alternated the last one" (10/22/13 Cycle 3 teachers' work transcript, lines 575,577). The instructor then asked the teachers "what argument were they using" (10/22/13 Cycle 3 teachers' work transcript, line 578) and one of the teachers recognized their argument as being an inductive argument (10/22/13 Cycle 3 teachers' work transcript, line 579).

T7 and T8 were the next teacher pair to present their solution of Ankur's Challenge (10/22/13 Cycle 3 teachers' work transcript, lines 629). This teacher pair organized their towers in groups of twelve each with three towers. The top row of twelve towers had four groups. The first group had a three-block blue row on top of a three- by three-tall subgroup of towers made using two colors with the elevator strategy. The diagonal of the first three- by three- subgroup was made of red cubes moving down one position at a time with yellow cubes in the other positions (10/22/13 Cycle 3 teachers' work transcript, lines 629).

The middle row of twelve towers had four groups with the three-block blue row on top of the opposite colors of the top row. The bottom row of four groups had a threeblock red row on top of a three by three subgroup of towers made using yellow and blue cubes where the diagonal pattern was made of yellow cubes (10/22/13 Cycle 3 teachers' work transcript, lines 629). The following explanation was given by T 7 :

We started with what we had in dealing with the previous problem and we saw that we had you know two yellow and one red. And we decided to take the blue and put it on the top and then take it and put it in the second position. And then take it and put it into the third position and then in the fourth position. Then we did the same with two red and one yellow moving the blue down. (10/22/13 Cycle 3 teachers' work transcript, lines 629)

T7 described controlling for a variable and the elevator strategy in her explanation (10/22/13 Cycle 3 teachers' work transcript, line 629). The instructor then ended the meeting asking the teachers to watch an assigned video of Romina's Proof at the following link: http://dx.doi.org/doi:10.7282/T30P0Z85 and bring two or three samples of the Cycle 3 student samples of work to share with the teachers at the next regional meeting on 11/20/13 (10/22/13 Cycle 3 teachers' work transcript, lines 645-655).

6.2 Unit 8: On-line Discussion 10/23/13 to 10/28/13

For the discussion, the teachers were instructed to watch the video of Romina's Proof to Ankur's Challenge. In the Romina's Proof to Ankur's Challenge video, Romina was in the tenth-grade and she worked on the following two problems with four other tenth-grade students.

1. Choosing from two colors of Unifix ${ }^{\circledR}$ cubes, red and yellow, how many total combinations exist for towers 5 tall, that each contains two red? Convince us that you have found them all. (Private Universe Project in Mathematics Workshops (PUP), Romina's proof to Ankur's Challenge [video], 1998)
2. (Ankur's Challenge) How many towers can you build four tall, selecting from cubes available in three different colors of Unifix ${ }^{\circledR}$ cubes, so that the resulting towers contain at least one of each color? (Private Universe Project in Mathematics Workshops (PUP), Romina's proof to Ankur's Challenge [video], 1998)

Romina used the symbols 1,0 , and X to represent the three colors of Unifix ${ }^{\circledR}$ cubes and presented her solution of 36 possible towers to the other four tenth-grade students (PUP, Romina's proof to Ankur's Challenge [video], 1998). After watching the video, the teachers were asked to respond to the following questions on-line:

1. In the video you watched, Mike and Ankur come up with 39 as their solution to Ankur's challenge. What method did they use to find their solution?
2. Approaching the problem differently, Romina comes up with 36 for her solution. How does she approach solving Ankur's challenge?
3. If you gave Ankur's challenge to your students, do you think any of them could come up with Romina's proof? (Landis, 2013)

6.2.1 First Question Responses

The first question asked teachers about Mike and Ankur's method for finding 39 towers as their solution to Ankur's Challenge (Unit 8on-line discussion thread, instructor questions). Nine teachers responded that Mike and Ankur first used a mathematical rule, where three to the fourth power gets 81 towers (Unit 8 on-line discussion thread, line 142). Six of the teachers responded that Mike and Ankur had 39 towers as their solution by eliminating towers that did not meet the criteria for the Ankur's Challenge problem. The responses of the six teachers follow:

From the video, it appears they narrowed it down to 39 , possibly by eliminating things that did not include all three colors and found 39. (Unit 8 on-line discussion thread, line 1)

Then using that number they began to take away towers that did not use all three colors to satisfy the conditions of Ankur's problem. (Unit 8 on-line discussion thread, line 17)

They followed by going back to the conditions of the problem which required all three colors to be in the tower. (Unit 8 on-line discussion thread, line 34)

They did draw diagrams of the tower so I'm thinking that maybe they worked backwards to arrive at their answer of 39 and failed to account for all duplicates. (Unit 8 on-line discussion thread, line 36)

They then narrowed it down because they realized that not every tower had to have all three colors. (Unit 8 on-line discussion thread, line 40)

It appears to me that they listed their 81 towers and then eliminated the towers that only had 2 colors. They got their solution of 39 , but must not have eliminated all the duplicates. (Unit 8 on-line discussion thread, line 44)

Four of the teachers mentioned the diagram that Mike and Ankur provided. The responses of the four teachers follow:

The boys organized their towers as numbers 1,2 , and 3 . They have four columns with three rows of 123 and one row of 000 that moves positions through the towers. (Unit 8 on-line discussion thread, line 8)

I did notice from their diagram they had three towers that looked like:

1	2	3
1	2	3
1	2	3
0	0	0

Based off of this interpretation I concluded that they had not taken away these three towers, which consisted of two colors and not three. If they subtracted those they would have gotten to the right answer. (Unit 8 on-line discussion thread, line 17)

They did not explain how they came to the answer of 39 but it appeared they used a system of numbers 0-3 for the colors and drew diagrams for the towers. (Unit 8 on-line discussion thread, line 34)

I really am not sure how they arrived at the answer 39. They did draw diagrams of the tower so I'm thinking that maybe they worked backwards to arrive at their answer of 39 and failed to account for all duplicates. (Unit 8 on-line discussion thread, line 36)

6.2.2 Second Question Responses

The second questions asked the teachers to respond to how Romina approached solving the Ankur's Challenge problem. Nine teachers responded that Romina solved the Ankur's Challenge problem by placing the three colors in positions until all positions were exhausted. The responses of the nine teachers follow:

She then focused on the placement of the two cubes of the same color and realized that there were 6 arrangements for these two cubes. She then noticed that the other two positions must be filled with opposite colors, so each of her original 6 arrangements could happen twice, depending on the placement of the $2^{\text {nd }}$ and $3^{\text {rd }}$ colors in the tower. She then said that for the set of towers 4 -tall containing 2 of a particular color, and 1 of each of two other colors, there would be 12 outcomes. Since there are 3 colors, you can repeat this process with each color and have 36 possibilities. . (Unit 8 on-line discussion thread, line 1)

Romina solved the challenge problem using a drawing of towers where two cubes of the same color (labeled with 1) were held constant in two positions and the other two cubes (labeled o and x) could alternate colors. This method gave her 6 towers. Next to each tower she has the number 2 to represent 12 towers (depending on whether or not the o or the x was used for a cube. She then
multiplied 12 by 3 because there are three colors to choose to represent the $1, o$, and x cubes. (Unit 8 on-line discussion thread, line 8)

She represented the two choices you would have from each tower of three colors in one box. For example:

This representation was two different towers. She then drew 5 more in similar to this one focusing on the one duplicate color moving positions and alternating the other two colors. She came up with a total of 6 drawings which she then multiplied by 2 since each drawing represented two towers and came up with 12 combinations for holding one color as a constant. Since there were three colors she multiplied 12 by 3 to get her resulting answer of 36 . (Unit 8 on-line discussion thread, line 17)

She then is able to position those two cubes of the same color in six different positions within a tower that is 4-tall. Romina then multiplies each of the six towers by two, because she can create an additional tower by switching two of the other colors to the opposite. She then arrives at the answer of 36 total towers by multiplying 12 by 3 for the three different colors that can be contained within each tower. (Unit 8 on-line discussion thread, line 30)

Romina approached the problem with the idea that if all three colors need to be used; the fourth color will repeat, therefore she focused on the placement of two blocks the same color. She found six arrangements of towers four tall with two blocks the same color. Following this, she knew the last two blocks had to be one of each color and there were two ways to place those colors. Therefore, she had twelve possible towers (6×2) with the previous conditions. She also realized that there were three available colors that could be doubled in the tower so she took the 12 possible towers and multiplied by 3 to determine there were 36 possible towers, four blocks tall, containing three colors. (Unit 8 on-line discussion thread, line 34)

She first focused on the two of the same color and found six different arrangements with the two blocks of one color and the two other blocks the different color. She can switch the position of the two other blocks so she multiplies six by two to get twelve. Since there are three different colors, she can repeat this 3 times and multiples 12 by 3 (Unit 8 on-line discussion thread, line 36)

She then took those two colors and repositioned them giving her 6 towers. Then she did the opposite for each of the 6 which gave her 12. Because she had three colors, she knew she could do this 3 more times, giving her 36 . (Unit 8 on-line discussion thread, line 37)

She also was able to show that after moving the colors into different positions she has exhausted all possible solutions. (Unit 8 on-line discussion thread, line 40)
She came up with 6 placements of where the 2 blocks of 1 color would be. The other 2 blocks would need to be the 2 other colors, 1 of each. So, she multiplied her 6 towers by 2 so she had 12 towers made with 2 of one color. She knew this could be replicated with both other colors, so $12 * 3=36$. (Unit 8 on-line discussion thread, line 42)

6.2.3 Third Question Responses

For the third question, teachers were asked if they thought their students could produce a proof like that of Romina (Unit 8 on-line discussion thread, question 3). Of the nine teachers that responded, six teachers said they thought their students would not come up with the same proof as Romina. However, two teachers reported that they believed some of their students could solve the challenging problem. The responses of the two teachers follow:

I do not think any of my students could come up with Romina's proof. It's very simple and very complicated at the same time. I do think my students could solve the challenge problem, but it might take them more than one class period and their explanations would be basic (opposite pairs and looking for a pattern). (Unit 8 online discussion thread, line 8)

If I gave Ankur's challenge to my students, many of them would probably be very confused by it. I may have a few students in my accelerated level class that would get the correct answer. (Unit 8 on-line discussion thread, line 42)

6.3 Unit 9: On-line Discussion 10/30/13 to 11/5/13

Teachers were assigned to read Chapter 8 of Combinatorics and Reasoning
(Maher, Powell, \& Uptegrove, 2010) about the tenth-grade students' solutions to the Ankur's Challenge problem. After reading the chapter, participants were asked to respond to the following guiding questions on-line:

1. What are some of the advantages of giving your students more than one opportunity to explain and write about their ideas? Make reference to the chapter and how it was helpful to Romina.
2. Explain why Romina multiplied by two when finding her solution to Ankur's challenge. (Unit 9 on-line discussion thread questions 1 and 2)

6.3.1 First Question Responses

The first on-line question had two parts. For the first, teachers were asked what some of the advantages were for giving students the opportunity to explain and write about their ideas (Unit 9 on-line discussion thread, question 1). For the second part, teachers were asked to reference chapter 8 and discuss how explaining and providing a written solution was helpful to Romina (Unit 9 on-line discussion thread, question 1).

6.3.1.1 Part 1 First Question Responses

Eight of the teachers said that revising student work was an advantage for giving students more than opportunity to explain and write their ideas. The responses of the eight teachers follow:

This will allow the students to revise their work and try to see if they fully understand the concept or if it can be presented in another format. (Unit 9 on -line discussion thread, line 1)

I have always found that I write better papers when I create a draft, read it aloud, edit it and repeat until the paper sounds exactly right. This process is not limited to writing essays and college papers; it can be applied to open ended responses. (Unit 9 on -line discussion thread, line 14)

I think giving students a chance to explain and write their ideas multiple times is similar to proof reading and drafting papers in language arts. Students have an opportunity to self-correct. (Unit 9 on -line discussion thread, line 21)

It can serve as a "revise and edit" and allow them to gain a deeper understanding of the actual problem. (Unit 9 on -line discussion thread, line 35)

It gives them a chance to refine their solutions and possibly come up with more strategies. (Unit 9 on -line discussion thread, line 37)

For each argument-iteration, 'Romina made refinements and clarified her reasoning.' I noticed this statement within my own student as well as in Romina throughout this chapter. (Unit 9 on -line discussion thread, line 38)

When students are asked to examine and refine their ideas they will gain a better understanding. (Unit 9 on -line discussion thread, line 39)

It gives them time to revise and clarify their thinking. (Unit 9 on -line discussion thread, line 40)

Eight of the teachers said that students would develop a deeper conceptual understanding as an advantage for giving more than one opportunity to explain and write their ideas.

The responses of the eight teachers follow:
This will allow the students to revise their work and try to see if they fully understand the concept. (Unit 9 on -line discussion thread, line 1)

By giving them more than one opportunity, they are able to see where their mistakes are to make it clearer and more convincing. (Unit 9 on -line discussion thread, line 3)

This process is helping students develop a deeper understanding of the mathematics. (Unit 9 on -line discussion thread, line 21)

The more students are asked to write and evaluate their reasoning, the more opportunities they have to develop and clarify their reasoning. (Unit 9 on -line discussion thread, line 33)

Giving students more than one opportunity to explain and write down their ideas allows them to further think and explore their answer. It can serve as a "revise and edit" and allow them to gain a deeper understanding of the actual problem. (Unit 9 on -line discussion thread, line 35)

The more time students have to think about their ideas, the better their thinking is about the problem. (Unit 9 on -line discussion thread, line 37)

The more they explain and their classmates still don't understand they are challenged to explain it in a different way and in turn furthering their understanding of the concept. (Unit 9 on -line discussion thread, line 38)

Providing students with more than one opportunity to explain and write about their reasoning allows them to analyze, critique, and further develop their ideas. (Unit 9 on -line discussion thread, line 39)

Six of the teachers mentioned that using different representations to solve the problem was also an advantage for giving students more opportunities to explain and write about their ideas. The responses of the six teachers follow:

This will allow the students to revise their work and try to see if they fully understand the concept or if it can be presented in another format. (Unit 9 on -line discussion thread, line 1)

Sometimes students need to explain it verbally, write it, and draw it to find a convincing argument. (Unit 9 on -line discussion thread, line 3)

Many times in class I challenge students to solve a problem differently than how they originally did. (Unit 9 on -line discussion thread, line 21)

The idea of giving our students multiple opportunities of explaining makes me think of all the different learning styles that we see on a daily basis in our classrooms. By allowing students multiple opportunities, it may allow them to think of the problem in a different style than how they usually learn. By giving them additional opportunities, one student may be able to see the problem verbally, visually or physically different then the first time they attempted the problem. (Unit 9 on -line discussion thread, line 35)

The more they explain and their classmates still don't understand they are challenged to explain it in a different way and in turn furthering their understanding of the concept. (Unit 9 on -line discussion thread, line 38)

Providing this opportunity allows multiple learning styles to be addressed. (Unit 9 on -line discussion thread, line 39)

Five of the ten teachers mentioned clarifying their solutions to others as an advantage to giving students more than one opportunity to explain and write about their ideas. The responses of the five teachers follow:

By giving them more than one opportunity, they are able to see where their mistakes are to make it clearer and more convincing. (Unit 9 on -line discussion thread, line 3)

The more students are asked to write and evaluate their reasoning, the more opportunities they have to develop and clarify their reasoning. (Unit 9 on-line discussion thread, line 33)

For each argument-iteration, 'Romina made refinements and clarified her reasoning.' I noticed this statement within my own student. (Unit 9 on -line discussion thread, line 38)

They will also be able to explain and reach students that may not understand a problem. (Unit 9 on-line discussion thread, line 39)

If students are given the opportunity to explain and write their ideas, it gives them time to revise and clarify their thinking. (Unit 9 on-line discussion thread, line 40)

6.3.1.2 Part 2 First Question Responses

Seven of the teachers said that giving Romina more than one opportunity to explain and write about her work helped Romina to further clarify her solution to others. The seven teachers responded as follows:

This was helpful for Romina because made refinements to her work and was also able to clarify her solution or reasoning by a different presentation. (Unit 9 online discussion thread, line 1)

In chapter 8, Romina had to explain and re-explain multiple times to the boys and every time she explained it, she got better at it and was more convinced herself. After the 2 nd or 3 rd time of explaining it, she finally convinced Ankur. She re-wrote her example neatly and explained it again to Jeff, who then finally was convinced also. (Unit 9 on-line discussion thread, line 3)

At first she did not explain on paper why she multiplied by 2 and 3, but after four drafts she was able to fully articulate that her reason for multiplying by 2 was to account for the combinations of Blue/Yellow and Yellow/Blue and her reason for multiplying by 3 was because there are 3 colors to choose from to construct the tower combinations. (Unit 9 on-line discussion thread, line 33)

As seen in the article, Romina was able to change her representation and better explain her reasoning for an answer of 36 towers. Her representation changed from $x, 1$, and 0 to letters representing the colors by the end and her multiplication was not only shown but explained in writing. She was able to justify and provide a more convincing argument. (Unit 9 on -line discussion thread, line 35)

When Romina explained her solution the first time, she was not very convincing as to why she was multiplying by 2 and 3 . As she thought about it more, she was able to interpret her solution better. She drew it out and her argument became more convincing each time she explained it. (Unit 9 on -line discussion thread, line 37)

She had to explain her reasoning several times and you can see her get better at the explanation each time she had to explain to those who didn't understand. For each argument-iteration, 'Romina made refinements and clarified her reasoning.' I noticed this statement within my own student as well as in Romina throughout this chapter. (Unit 9 on -line discussion thread, line 38)

The chapter mentions how Romina revised her thinking several times and changed her representations in order to explain it better to the other students. (Unit 9 on -line discussion thread, line 40)

Five of the teachers said that giving Romina more than one opportunity to explain and write about her work helped Romina have a deeper conceptual understanding of the solution. The five teachers responded as follows:

In this chapter it mentions that when a student is able to review their work they have a chance to further understand the concept. (Unit 9 on -line discussion thread, line 1)

I believe that when Romina was given an opportunity to explain and write her work more she noticed a few mistakes and also changed her organization of her thinking which helped her make a mathematical discovery. (Unit 9 on -line discussion thread, line 21)

In Chapter 8, Romina needed to explain her solution to Ankur, Jeff and Mike several times in order for them to not only understand, but be convinced that her solution made sense. The chapter even said that by allowing a student to review their work, it gives them a second chance to better understand their own solution, which was the case in Romina's solution. (Unit 9 on -line discussion thread, line 35)

She had to explain her reasoning several times and you can see her get better at the explanation each time she had to explain to those who didn't understand. For each argument-iteration, 'Romina made refinements and clarified her reasoning.' I noticed this statement within my own student as well as in Romina throughout this chapter. (Unit 9 on -line discussion thread, line 38)

By allowing Romina to make revisions to her proof, she was better able to understand the problem herself. (Unit 9 on-line discussion thread, line 40)

Five of the teachers said that giving Romina more than one opportunity to explain and write about her work helped Romina refine or revise her work. The five teachers responded as follows:

This was helpful for Romina because made refinements to her work. (Unit 9 on line discussion thread, line 1)

As Chapter 8 demonstrates, as Romina re-explained and rewrote her proof to Ankur's problem she refined her work and gave more details. (Unit 9 on -line discussion thread, line 14)

I believe that when Romina was given an opportunity to explain and write her work more she noticed a few mistakes and also changed her organization of her thinking which helped her make a mathematical discovery. (Unit 9 on -line discussion thread, line 21)

For each argument-iteration, 'Romina made refinements and clarified her reasoning.' I noticed this statement within my own student as well as in Romina throughout this chapter. (Unit 9 on -line discussion thread, line 38)

By allowing Romina to make revisions to her proof, she was better able to understand the problem herself and realize how it would be most convincing and clear to explain to others. (Unit 9 on -line discussion thread, line 40)

Two teachers said that giving Romina more than one opportunity to explain and write about her work helped Romina to use different representations for her solution. The three teachers responded as follows:

Her representation changed from $\mathrm{x}, 1$, and 0 to letters representing the colors by the end and her multiplication was not only shown but explained in writing. She was able to justify and provide a more convincing argument. (Unit 9 on-line discussion thread, line 33)

The chapter mentions how Romina revised her thinking several times and changed her representations in order to explain it better to the other students. (Unit 9 on-line discussion thread, line 40)

6.3.2 Second Question Responses

Six of the teachers explained why Romina multiplied by two when finding her solution to Ankur's Challenge using words such as switching, reversing, or interchanging
positions. The responses of the four teachers that used words such as switching, reversing, or interchanging positions to describe why Romina multiplied by two follow:

Romina multiplied by two because the two different colors that aren't repeated are interchangeable, as in her chalkboard example. The one color we know has to be in the tower twice and the other two can switch, which is why she multiplied by two. (Unit 9 on-line discussion thread, line 3)

Romina multiplied her answer by 2 to represent that her sample of 6 towers with Red being the color taking up two of the four positions in the tower was only one of two possible towers with Red in those positions. For example, Romina could have the towers R-B-R-Y and R-Y-R-B where Red is in the same positions in both towers but the Yellow and Blue cubes have switched positions. (Unit 9 online discussion thread, line 14)

Romina multiplied by 2 when finding her solution because she found 6 possible combinations where the same color is duplicated. The other two positions would be the other two colors. Since the position of the other two colors can be reversed, Romina multiplied 6 by 2. (Unit 9 on-line discussion thread, line 21)

Romina multiplied by two in her solution because she had represented two possibilities in each of the six towers she drew. She noticed that for each of the six positions for the two colors that match, there were two placement options for the non-repeated colors. Therefore, the six towers could be multiplied by two to find that there are 12 possible towers that have two of the same color. (Unit 9 online discussion thread, line 33)

Romina multiplied by two when finding her solution to Ankur's challenge because she saw that in order for the tower to be 4 -cubes tall, two of the cubes would have to be the same color. She then saw that there were six different arrangements for the two colors. She then assigned an " X " and an " O " to represent the two additional colors. She then multiplied by two because there would be an opposite or a different arrangement for the two other colors within the tower. (Unit 9 on-line discussion thread, line 37)

Romina first examined the outcomes for placing 2 of the same color in a tower and the positions that these 2 blocks could occupy. This gave her 6 different towers. To fill the other two spots in the tower she could set the alternating two colors in the unoccupied spots. She then multiplied by 2, to show what would happen if these two other colors had their positions reversed. (Unit 9 on-line discussion thread, line 40)

Four of the teachers explained why Romina multiplied by two when finding her solution to Ankur's Challenge using the word opposite. The responses of the four teachers that used the word opposite to describe why Romina multiplied by two follow:

So she multiplied by two because for each pattern there would be an opposite or a different arrangement for the two colors in the tower. (Unit 9 on -line discussion thread, line 1)

Romina multiplied by two when finding her solution to Ankur's challenge because she saw that in order for the tower to be 4 -cubes tall, two of the cubes would have to be the same color. She then saw that there were six different arrangements for the two colors. She then assigned an " X " and an " O " to represent the two additional colors. She then multiplied by two because there would be an opposite or a different arrangement for the two other colors within the tower. (Unit 9 on -line discussion thread, line 35)

When she made the towers she made only 6 towers but represented two combinations within each single tower; therefore, each single tower that she drew really represented 2 different towers since each one combination she came up with can have an "opposite" combination. So she multiplied the 6 single towers she drew by 2 to represent the two choices from each combination pattern. (Unit 9 on -line discussion thread, line 38)

Romina multiplied by 2 to make up for the opposites that could be created by alternating the colors in the same design. (Unit 9 on -line discussion thread, line 39)

6.4 Unit 10: On-line Discussion 11/6/13 to 11/12/13

The instructor assigned the following on-line discussion questions for unit ten.

1. What kind of strategies did one of your students use to find solutions for the different tasks? Be specific. Did the student stay with the same strategy over the different tasks or did the student approach the problems with different strategies? Again, be specific.
2. Talk about the students' attempts to provide justifications for their answers. What kinds of convincing arguments did they use? Did they become more convincing as they did more tasks? (Unit 10 on-line discussion thread, questions 1 and 2)

6.4.1 First Question Responses

The first on-line question had two parts. The first asked teachers to pick one sample of students' work from the first two tasks and report on what kind of strategies were used by that student (Unit 10 on-line discussion thread, questions 1). For the second part, teachers were asked if the student stayed with the same strategies over the first two tasks or did the student use different strategies (Unit 10 on-line discussion thread, questions 1).

6.4.1.1 Part 1 First Question Responses

The first part of the question asked teacher about the kinds of strategies used for solving the different tasks. Five teachers said that their students used the elevator strategy. The responses of the five teachers follow:

My one pair of boys focused on moving one color down each time, the recursive argument. They didn't reach the correct answer because they didn't do this for all the colors, however, they were close. They explained to me that the color moved down each time so that's why there couldn't be any more. I knew what they were talking about but I wanted them to show me. So, I told them I wasn't convinced and to arrange the towers in a way to help me understand better and they did. They grouped them in threes. Each group showed how the one color moved down from being the first spot, to the second, to the third. (Unit 10 on-line discussion thread, line 8)

After questioning him about whether he had all the towers, he and his partner decided to rearrange the towers. At this point, he saw the staircase and candy cane patterns. He was able to arrive at all 16 towers. (Unit 10 on-line discussion thread, line 10)

She often referred to the towers that contained three of one color and one of the other colors as the "staircase", similar to other students. She was able to easily arrive at the 16 different towers. (Unit 10 on-line discussion thread, line 16)

Group 5 is the staircase pattern with 3 yellows and 1 blue. Group 6 is the staircase pattern with 3 blues and 1 yellow. (Unit 10 on-line discussion thread, line 29)

For the first tower task, my student created a "staircase pattern" and was able to form a convincing argument about the group of towers with three of one color and one of another. (Unit 10 on-line discussion thread, line 36)

Five teachers said their students used the opposite strategy. The responses of the five teachers follow:

My student tried to match up opposites with the first task. He saw the opposites first; however he was unable to come up with all 16 towers. (Unit 10 on-line discussion thread, line 10)

In the 4 tall towers choosing from 2 colors, he created 6 groups. The $1^{\text {st }}$ group contains two colors the same in the middle and the other color on the end such as YBBY and BYYB. Group 2 is the pair of alternating towers BYBY and YBYB. Group 3 is the two towers that are solid colors BBBB and YYYY. Group 4 has the two colors split in half BBYY and YYBB. (Unit 10 on-line discussion thread, line 29)

For the first task my student began making opposites as her strategy. (Unit 10 online discussion thread, line 31)

For the 1st task, my student started with making opposite pairs. (Unit 10 on-line discussion thread, line 32)

For the other towers four tall, the student was not able to make a convincing argument and relied heavily on the opposite reasoning. The student explained that he had achieved all of the towers because each had an opposite. (Unit 10 on-line discussion thread, line 36)

Three teachers said their students used "controlling for a variable" as a strategy. The responses of the three teachers follow:

Then she manipulated the groups to have a constant on top. (Unit 10 on-line discussion thread, line 32)

He and his partner kept a color constant when working with three colors instead of two. (Unit 10 on-line discussion thread, line 36)

He also held a constant in each group for the pizza problem. For example, with the two topping pizzas he would start with all the pairs with pepper, then move on
knowing pepper would not be used again. (Unit 10 on-line discussion thread, line 37)

One teacher said that her student used the rule strategy and made a pattern. Her response follows:

The first assignment with the cubes my student initially chose the strategy of making a pattern. The pattern started off random and then eventually he organized the cubes to show his work clearer. As for the second problem my student automatically made the connection to the first problem. He then tried to solve it mathematically by multiplying 4×4. However, he was not able to justify his answer. (Unit 10 on-line discussion, line 1)

6.4.1.2 Part 2 First Question Responses

The second part of the first questions asked whether the student stayed with the same strategy through the first two tasks or did the student change their strategy (Unit 10 on-line discussion thread, instructor questions). Seven of the teachers mentioned that their student changed strategies from the first task to the second task. The responses of the seven teachers that said their student changed strategies from the first task to the second task follow:

The first assignment with the cubes my student initially chose the strategy of making a pattern. The pattern started off random and then eventually he organized the cubes to show his work clearer. As for the second problem my student automatically made the connection to the first problem. He then tried to solve it mathematically by multiplying 4×4. However, he was not able to justify his answer. He then started with a tree diagram and then switched to a chart to solve the problem. (Unit 10 on-line discussion thread, line 1)

My student tried to match up opposites with the first task. He saw the opposites first; however he was unable to come up with all 16 towers. After questioning him about whether he had all the towers, he and his partner decided to rearrange the towers. At this point, he saw the staircase and candy cane patterns. He was able to arrive at all 16 towers. On the second task, he began by creating a web with the word pizza in the middle. He branched off of the pizza with different toppings. (Unit 10 on-line discussion thread, line 10)

For the first task, this student drew the different towers using two different colored highlighters (blue and yellow). She grouped the towers according to the
number of unifix cubes within each tower. She often referred to the towers that contained three of one color and one of the other colors as the "staircase", similar to other students. She was able to easily arrive at the 16 different towers. For the second task, she made an organized list to create the 16 different pizza combinations. She used an arrow method to describe how she created the different pizza combinations. (Unit 10 on-line discussion thread, line 16)

My student did not stick with the same problem solving strategy for the two tasks. The first task building towers was much easier for him because the manipulatives provided an opportunity to make guesses and mistakes without the finality of writing it on paper. The second task proved difficult to him because he was very reluctant to write down anything he wasn't extremely sure of. When he did write something down it was a tree diagram which frustrated him quickly. He did not stick with that strategy and instead chose to list out the pizza combinations but did not have great organization. (Unit 10 on-line discussion thread, line 25)
For the first task my student began making opposites as her strategy. When being questioned about how she knew she had them all but she had a difficult time explaining it. I asked her to rearrange the towers in a different way maybe she will see a more concrete explanation, after this she was able to see there was more of a pattern by organizing it using proof by cases. She still had a hard time explaining in writing but she was able to see two different ways to approach the problem. For the second task she had a harder time coming up with a strategy since she wanted to dive into this one by making opposites again she quickly realized that wouldn't work for this problem. She then tried a tree diagram which, after a while she realized that was difficult to do and she began getting frustrated. She then started to make a list, even with this she did not organize it right away, she finally saw that she was making 1 topping, 2 topping, etcetera... and reorganized her work to make more sense. (Unit 10 on-line discussion thread, line 31)

For the 1st task, my student started with making opposite pairs. Then she manipulated the groups to have a constant on top. She used the recursive argument to organize and solve the problem. For the 2nd task, she started by just making toppings at random. Then with the suggestion to use some type of organization she created groups by using the first topping as a constant. For example one group had mushroom as the single topping; then mushroom with each of the other toppings for a 2 topping pizza, then mushroom with 2 other toppings for a 3 topping pizza. (Unit 10 on-line discussion thread, line 32)

For the first tower task, my student created a "staircase pattern" and was able to form a convincing argument about the group of towers with three of one color and one of another. For the other towers four tall, the student was not able to make a convincing argument and relied heavily on the opposite reasoning. The student explained that he had achieved all of the towers because each had an opposite. As we moved onto the second tower problem, this student approached the problem with more strategy. He and his partner kept a color constant when working with three colors instead of two. (Unit 10 on-line discussion thread, line 36)

Two teachers claimed that their student stayed with the same strategy for the first two tasks. The responses of the two teachers that claimed their student stayed with the same strategy for the two tasks follow:

The student who I chose used the proof by cases in the first two tasks to find his solutions. (Unit 10 on-line discussion thread, line 29)

Looking at the work of one of my students for the first tower problem, and the pizza problem, I noticed that the student used cases for both. (Unit 10 on-line discussion thread, line 37)

6.4.2 Second Question Responses

The second question had 2 parts. For the first part of the second question, teachers were asked about the kinds of convincing arguments used by their students. The second part asked teachers if the students' arguments became more convincing over the different tasks.

6.4.2.1 Part 1 Second Question Responses

Four teachers responded that their students' arguments were convincing because they used a recursive argument. The four teachers' responses follow:

My one pair of boys focused on moving one color down each time, the recursive argument. (Unit 10 on-line discussion thread, line 8)

For the second task, she was definitely able to verbally explain her "arrow" method to me in which she used every pizza topping in a different position. (Unit 10 on-line discussion thread, line 16)

The convincing argument that my student used was the recursive argument. In the 1st task she moved the blocks towards the bottom to represent each possible combination and then said that there could be no more because if the blocks were moved again there would be a double. (Unit 10 on-line discussion thread, line 32)

For this argument, the student kept a color of a block constant in the first, second and third position and repeated it for all the colors. (Unit 10 on-line discussion thread, line 36)

Two teachers responded that the convincing argument their students used was a cases
argument. The responses of the two teachers follow:

I asked her to rearrange the towers in a different way maybe she will see a more concrete explanation, after this she was able to see there was more of a pattern by organizing it using proof by cases. She still had a hard time explaining in writing but she was able to see two different ways to approach the problem. For the second task she had a harder time coming up with a strategy since she wanted to dive into this one by making opposites again she quickly realized that wouldn't work for this problem. She then tried a tree diagram which, after a while she realized that was difficult to do and she began getting frustrated. She then started to make a list, even with this she did not organize it right away, she finally saw that she was making 1 topping, 2 topping, etcetera... and reorganized her work to make more sense. (Unit 10 on-line discussion thread, line 31)

For the tower problem, he went through each of the three cases and provided an argument for why he had them all, mentioning why you could not have more. For example, with the case for three of one color and one of the other, he mentioned that the single cube would start at the top of the tower and work down one position each time until it reached the bottom and that there could not be a fifth tower since you would need it to be five cubes tall which does not fit the criteria. For the pizza problem, he just wrote that you can start with a plain pizza, then write the options for 1 topping, 2 toppings, 3 toppings, and 4 toppings and make sure there were no repeats. (Unit 10 on-line discussion thread, line 37)

6.4.2.2 Part 2 Second Question Responses

Six teachers claimed that their students' justifications became more convincing as
they worked on more tasks. The responses of the six teachers follow:
I felt my students in general improved a lot from the first task. From their explanations to working together, I saw a big improvement. (Unit 10 on-line discussion thread, line 8)

I do feel he was able to get a little more convincing with his argument; although he was not able to complete the argument. (Unit 10 on-line discussion thread, line 10)

I have found that over the two tasks, my students have had more success verbally explaining from task one to task two. I have definitely seen a lot of growth in them from task one to task two. (Unit 10 on-line discussion thread, line 16)

I think the frequent addition of this wording in his explanation makes the proof by cases slightly stronger than the justification for the first towers problem, though still not very convincing. (Unit 10 on-line discussion thread, line 29)

For the second task her justification was more concrete explaining that she started with a different amount of toppings on the pizza until she reached the max which would be 4 , she could not have 5 because there weren't 5 options. She also stated why opposites wouldn't work for this problem. She is beginning to get better with her explanations. (Unit 10 on-line discussion thread, line 31)

This student did become more convincing as he completed more tasks. (Unit 10 on-line discussion thread, line 36)

Two teachers claimed that their students provided more convincing arguments with the first task than the second task. The responses of the two teachers follow:

I feel he was more convincing with problem one than for problem two. I think as a whole all my students were more convincing for problem one. (Unit 10 on-line discussion thread, line 1)

The written explanation for this student was better on the first tower problem than it was in the pizza problem though his verbal argument for the pizza problem was convincing. (Unit 10 on-line discussion thread, line 37)

6.5 Unit 11: Regional Meeting 11/20/13 and On-line Discussion

Unit 11 was comprised of a regional meeting on 11/20/13 along with an on-line discussion thread (Landis, 2013). The discussion thread gave teachers the option to post questions about their final project from 11/21/13 to $11 / 26 / 13$ (Unit 11, on-line discussion thread, question 1). After the discussion of the in-district classroom visit at the regional meeting, teachers shared students' work on the third cycle of tasks (11/20/13 meeting transcript, line 1).

6.5.1 Discussion of In-District Classroom Visit

Ten teachers met at a middle school in New Jersey and brought students' work samples of the 3-tall towers problem and Ankur's Challenge. For the third in-district classroom visit, the Cycle 3 tasks were implemented with sixteen sixth-grade current
students of a teacher. The students were sitting in individual student desks that were pushed together in pairs (11/20/13, meeting transcript, line 1). They were asked to convince their partners of their solutions and write down the solutions after convincing one of the researchers (11/20/13, meeting transcript, line 1$)$.

After the current students left, the instructor held a debriefing meeting with the ten teachers from the southern region group to discuss the students' solutions from the indistrict classroom implementation. An IPad was used to take pictures of the students' work and project it on the screen. The instructor asked the teachers to first look at the student's work who made a chart with three columns (11/20/13, meeting transcript, line 5). Figure 6.5 shows the student's work.

Figure 6.5 First Discussed Student's Work from 11/20/13 Classroom Visit

One of the teachers called the color that was used most often in each column as "dominant" (11/20/13 meeting transcript, line 13).

The first teacher (T1) read the following student's argument to the teachers:
I think there's 27 towers are all the possible explanations because for each group there is a pattern that goes diagonal through each tower. In that pattern is one single opposite block. We have the towers below each category as red blue and yellow. The reason we have categories is because there are two main blocks in each tower. These two blocks are the same, and the blocks that made the pattern are different. So in the blue category, there will be one yellow block on a stack of two blue blocks. This helps prove our theory. We also have a random category where each tower contains one different block. So, one of our towers is red on the bottom, blue in the middle, and yellow on top. If we changed the order of the blocks, it would have a different tower we already have. (11/20/13 meeting transcript, line 21, 23)

The instructor asked the teachers "Which parts of their argument are convincing and which aren't?" (11/20/13 meeting transcript, line 26). One teacher said "It is not really convincing anywhere" (11/20/13 meeting transcript, line 27). The instructor said "What is his argument there?" (11/20/13 meeting transcript, line 30). One teacher replied that "He said he has a pattern that goes diagonal through each tower." (11/20/13 meeting transcript, line 31). The argument was a verbal description but not a convincing written argument (11/20/13 meeting transcript, line 36).

In the second sample of student work discussed, the student also used the letters B, R, and Y to represent the blue-, red-, and yellow-colored cubes respectively (11/20/13, meeting transcript, line 31). The student made five groups of three-tall towers. The student had a group that had one B , one R , and one Y written in separate squares which represented the towers made of all blue-, all red-, and all yellow-colored cubes. The student labeled the group as group two. The other four groups each had six towers. Figure 6.6 shows the student's work.

Figure 6.6 Second Discussed Student's Work from 11/20/13 Class Visit

The following student's argument was put on the screen for the teachers to read:
We got 27 combinations. We grouped the towers into groups of 5, but we only had groups of 3 for the solids.

Group 2: There are no more combinations for the solids because we already used all of the colors.

Group 1: We used each block once in each tower and we also used one colored block twice for the top. So for example: BB

YR
RY
That's how we know there are no more possible ways.
Group 3: We used one color twice in the middle row. Example: YB
BY
Group4: We used one color twice and put it on the top. For example:
RR
RR
YB
(11/20/13, meeting transcript, line 37)
The instructor asked the teachers "how did he arrange group one? (11/20/13 meeting transcript, line 42). One teacher replied "Well like he had a pair of blues on top, and a red and yellow on the bottom." (11/20/13 meeting transcript, line 43). Another teacher
said that "It looks like they were reversed on the bottom." (11/20/13 meeting transcript, line 44). The instructor restated what the teachers expressed by saying "They kept the two with the same top and they said that the bottom could be Y and R or R and Y. Okay and there was no other way to do it. And then they kept the two tops red, and did the same thing with the other two colors. Then the two tops yellow and bottoms are the other two colors in both positions." (11/20/13 meeting transcript, line 45).

The second group that the student drew was a B, R, and Y in squares to represent the three solid-colored towers (11/20/13 meeting transcript, lines 46-49). The instructor continued the discussion with the third group of towers where the student had the redcolored cubes in the middle of the tower and asked the teachers "what did they do with the top and the bottom?" (11/20/13 meeting transcript, lines 57-59). One of the teachers replied that the student "switched them." (11/20/13 meeting transcript, line 60).

The instructor then asked the teachers about the student's fourth group (11/20/13 meeting transcript, lines 70). One teacher replied "We used one color twice and put on the top." (11/20/13 meeting transcript, line 71). The instructor told the teachers that she was impressed with the writing of the sixth-grade student (11/20/13 meeting transcript, line 78).

The instructor then requested to see another students' sample of work (11/20/13 meeting transcript, line 78). The following student's argument was put on the screen for the teachers to read: "I know I got all of them because all the groups I got the same amount of 3 towers." (11/20/13 meeting transcript, lines 80). Figure 6.7 shows the student's work.

Figure 6.7 Third Discussed Student Work from 11/20/13 Classroom Visit

The drawing that the student provided was also put on the screen and the instructor said "The first one would be three red on top three blues on the bottom and they used an inductive argument." (11/20/13 meeting transcript, line 116). The instructor then asked the teachers what the students put in the middle (11/20/13 meeting transcript, line 116). One teacher replied "The three different colors that they had." (11/20/13 meeting transcript, line 117).

The instructor then asked the teachers "Was there any one else you wanted to talk about from today that we didn't talk about? (11/20/13 meeting transcript, line 132). One teacher wanted to discuss the extension problem (11/20/13 meeting transcript, line 133). She had watched two students that had different ideas working on the problem but had the same correct answer of 36 (11/20/13 meeting transcript, lines 151-159). The teacher said that his partner "was focusing on two colors that are not the same but not next to
each other" (11/20/13 meeting transcript, lines 151) and that the student "was focusing on just having a red on the bottom and all the other colors yellow and blue but alternating" (11/20/13 meeting transcript, lines 151). The teacher recognized that the student controlled for a variable (11/20/13 meeting transcript, lines 151). The instructor ended the debriefing discussion of the in-district classroom visit with "And that they did it quickly is pretty impressive" (11/20/13 meeting transcript, line 175).

6.5.2 Discussion of Students' Work Samples

For the next part of the regional meeting on $11 / 20 / 13$, teachers shared students' work from their own classrooms. T10 was the first to share her students' work that had eight different groups (11/20/13 meeting transcript, line 7). The student drew a key on his paper to show that blue-colored cubes would be a white box, red-colored cubes would be a shaded box, and yellow cubes would have a diagonal stripe in the box going from the top left-hand corner of the box to the bottom right-hand corner of the box. Figure 6.8 shows the student's work.

Figure 6.8 T10's Cycle 3Three-Tall Tower Problem, Student Work Sample 1

All eight groups of 3-tall towers were drawn using the key. The first group of towers had one tower with white boxes to represent a blue-colored tower, one tower that with shaded boxes to represent a red-colored tower, and one tower with diagonal stripes to represent a yellow-colored tower. Groups three through seven were constructed using the elevator strategy.

For groups two and seven, red -colored cubes moved from the top down one position until all positions were exhausted. For groups three and four, yellow-colored cubes moved from the top down one position until all positions were exhausted. Groups five and six had the blue-colored cubes moved from the top down one position until all positions were exhausted. For group 8, the student had six towers where the first and second towers had red-colored cubes on the top, the third and fourth towers had bluecolored cubes on the top, and the fifth and sixth towers had yellow-cubes on the top.

T10 read the following student's written argument to the teachers:
We know there are no more towers in each group because if you added another there would be a duplicate. For example, three towers each with the same colors and then one more the same. (11/20/13 meeting transcript, line 30)

The instructor asked the teachers "What do you think of the argument?" (11/20/13 meeting transcript, line 31) and one of the teachers replied "Not good." (11/20/13 meeting transcript, line 32). The instructor agreed but pointed out that the student's strategy of controlling for a variable in group 8 was good (11/20/13 meeting transcript, line 35).

T10 also shared a second student's work that had five groups of 3-tall towers which had the letters B, Y, and R inside boxes to represent blue-, yellow-, and redcolored cubes. The first group had all the solid-colored towers; represented by three B's,
three Y's, and three R's. The second and third groups had six towers each where the first and second towers had B's on the top, the third and fourth towers had Y's on the top, and the fifth and sixth towers had R's on the top. The fourth group had six towers where the first and second towers had the top and middle positions as B's, the third and fourth towers had the top and middle positions as Y's, and the fifth and sixth towers had the top and middle positions as R's. The fifth group had six towers where all three colors were used once for each tower and the first and second towers had B's on the top, the third and fourth towers had Y's on the top, and the fifth and sixth towers had R's on the top.

T10 read the following student's argument to the teachers:
There are 27 towers of three cubes. We know this because each color has 2 combinations except for ones that are all the same color." ($11 / 20 / 13$ meeting transcript, line 50). In group one I know there are no other combinations because other colors would just be a duplicate. In group two, there are no other combinations because if we switched other blocks around it. It would be a duplicate. The top and bottom block are the same color so the middle block has only two options. In group 3 the bottom blocks are the same color. (11/20/13 meeting transcript, lines 50-62).

T10 recognized that her student used the strategy of controlling for a variable in one of the tower groups to solve the 3-tall towers problem, selecting from 3 colors (11/20/13 meeting transcript, lines 46, 48). The instructor said "They have the start of a good convincing argument." (11/20/13 meeting transcript, line 71).

T2 was the second teacher to share her seventh-grade students' work with the teachers (11/20/13 meeting transcript, lines 72-75). The description of T2's student's work follows:

They did ten groups but they did 7 groups of 3 . And then instead of keeping that last group of 6 , they did it in pairs so they had 8,9 , and 10 are the alternating as pairs. So they had yellow as a constant and then they did the bottom. (11/20/13 meeting transcript, lines 78-82).

T 2 recognized that her student also used the strategy of controlling for a variable to solve the 3-tall towers problem, selecting from 3 colors (11/20/13 meeting transcript, line 82).

T 2 read the following written argument provided by the student:
I know the answer is 27 . I know there is no more possible ways because in group 2 , I moved the blue cube in each position way I could. There were only 3 positions because it could only be three high. I did the rest for groups $3,4,5,6$, and 7. In group 1 I made three different towers solid colors yellow blue and red because I only had 3 colors. For 8, 9, and 10, I kept one color on top and switched around the two underneath them. (11/20/13 meeting transcript, lines 92102)

The instructor said that the student was "really explaining what she did" (11/20/13 meeting transcript, line 107) but was impressed with her writing (11/20/13 meeting transcript, line 111). Figure 6.9 shows the drawing of the student's towers shared by T 2 .

Figure 6.9 T2's Cycle 3Three-Tall Tower Problem, Student Work Sample 1

T2 also shared the partner's work of the first-shared sample of student work (11/20/13 meeting transcript, line 116). T2 read the following student's argument to the teachers:

The answer is 27 . There is no other way without duplicates. I know there is no other way because in group 2, I moved the blue cubes in each possible way I can. There are only 3 positions because it can only be three high. I did the rest of the groups like this. I only had 3 solid colors to choose from and that is how I got my answer. (11/20/13 meeting transcript, lines 134-136)

T2 said the partner had "a little less detail" (11/20/13 meeting transcript, line 136). The instructor told the teachers that the argument was partially convincing (11/20/13 meeting transcript, line 137).

T3 was the third teacher to present and she shared her seventh-grade resource student's work. There were three groups of towers. Each group was named for the three colored cubes. The red group had all red-colored cubes on the bottom of each of the nine towers, the blue group had all the blue-colored cubes on the bottom of each of the nine towers, and the yellow group had all the yellow-colored cubes on the bottom of each of the nine towers (11/20/13 meeting transcript, line 144).

For each group, a pattern was used be the student to construct all nine towers of each group. T3 described the example of how the student constructed the nine towers of each group as "the shape of almost like a turned L" (11/20/13 meeting transcript, line 154), checkers and a meat sandwich (11/20/13 meeting transcript, lines 160-162). Figure 6.10 and figure 6.11 show the drawing of how the student constructed the nine towers of each group.

Figure 6.10 T3's Cycle 3Three-Tall Tower Problem, Student Work Sample 1 page 1
(D)

Figure 6.11 T3's Cycle 3Three-Tall Tower Problem, Student Work Sample 1 page 2

The following student's written argument was projected on the screen:

The bottom block will be a group. That means the bottom block is main. I came up with 27 in all, 9 in a group, and the other, and the other. It's basically 9 times 3. We can't make any more than 27 because the combinations were all used the same way. Each group made the same shape combination. But the bottom block will always have a different color per group but the shapes also will be the same but different color. The combination is the same, but in different colors. The bottom block is the leader. When changed, it will never change its combinations. But it will change its colors. (11/20/13 meeting transcript, lines 134-136)

T3 recognized her student controlled for a variable as a strategy to solve the three-tall towers problem (11/20/13 meeting transcript, line 144).

T3 shared a second sample of work by one of her students that had five groups. The first group had 6 subgroups of 3-tall towers constructed using two colors and the elevator strategy. In the second group, the student controlled for a variable by having two towers with blue on top. The third group had two towers with yellow on top and the fourth group had two towers with red on top. The fifth group had three towers of all red-, all blue-, and all yellow-colored towers (11/20/13 meeting transcript, lines 174-188).

T 3 read the following written argument from the student:
Each one has two of one color and one of one color and then moved the single one down each time. We did opposites for a total of 18 altogether. So she just did the opposites. This is the only way to have all 3 colors used once in a 3 stack high and only have blue on the top. This is the only way to have all 3 colors used once in a 3 stack high and only have yellow on the top. This is the only way to have all 3 colors used once in a 3 stack high and only have red on the top. Each one has only one solid color. (11/20/13 meeting transcript, lines 174-188)

T3 recognized that her student controlled for a variable to solve the three-tall towers problem (11/20/13 meeting transcript, lines 184-186).

T1 was the fourth teacher to present her students' work to the other teachers. The first sample T1 shared was from a seventh-grade resource student (11/20/13 meeting transcript, line 208). The student had drawn five groups of 3-tall towers and wrote an X over the fifth group (11/20/13 meeting transcript, line 190).

The first group had three towers made of boxes that had letters g , b , and r to represent the colored cubes of green, blue, and red. The first tower had a green cube in the top and middle positions with a blue cube on the bottom. The second tower had a green on top, blue in the middle, and red on the bottom. The third tower had a blue on top, green in the middle, and red on the bottom (11/20/13 meeting transcript, line 190).

The second group had three towers of all red-, all blue-, and all green-colored towers. The third group had three towers. The first tower had red at the top, blue in the middle, and green on the bottom. The second tower had all red cubes. The third tower had a red at the top and green in the middle and bottom positions (11/20/13 meeting transcript, line 190).

The fourth group had three towers. One tower had red on top, green in the middle, and red on the bottom. The second tower had green on top, red in the middle, blue on the bottom. The third tower had blue on top, green in the middle, and red on the bottom (11/20/13 meeting transcript, line 190).

However, T1 said that her student had drawn the towers differently than the written explanation that was provided (11/20/13 meeting transcript, lines 194, 202-204). The following student's argument was placed on the screen for the teachers to read:

Group 1 was built to make the blue go down. Group 2 had all the reds going down. Group 3 made all of the greens go down. Group 4 they were all in the same category. Green was with the blue with the green; red was with the blue with the red. (11/20/13 meeting transcript, lines 196-200)

T1 also shared a seventh-grade girl's work with the teachers (11/20/13 meeting transcript, line 214). The student had drawn twenty-three towers on her paper with squares using the letters Y, G, and B to represent the yellow-, green-, and brown-colored cubes; and three more towers were drawn that were made of all green-, all brown-, and all
yellow-colored cubes. The first eight towers were drawn as opposite pairs (see example 2 in student's written explanation below). The next six towers were drawn as pairs of cousins (see example 4 below). The next four towers were drawn had one of each color in the tower (see example 3 below). The next two towers were drawn as opposite pairs (see example 2). The last three towers were three towers of all green-, all brown-, and all yellow-colored towers. The following student argument was placed on the screen for the teachers to read: "Explanation: We got the amount of 23 by taking certain groups of 2, 3 , or 4 based on the pattern." (11/20/13 meeting transcript, line 214). Figure 6.12 shows examples that the student provided.

Example 1: GBY
GBY
GBY
Example 2: YB
BY
BY
Example 3: GBGY
YGBG
BYYB
Example 4: GY
GG
YG
Figure 6.12 T1's Cycle 3Three-Tall Towers, Examples from Student Work Sample 1

The instructor said to the teachers that "It is interesting that she didn't have groups that were the same size" (11/20/13 meeting transcript, line 223).

T4 was the fifth teacher to share her students' work. The first sample T4 shared was from an eighth-grade student (11/20/13 meeting transcript, line 226). The towers were drawn as squares with the letters B, R, and Y inside the squares. The student had
drawn 27 towers in three groups of nine. Nine towers had blue on top; nine towers had red on top, and nine towers had yellow on top. T4 recognized that her student controlled for a variable (11/20/13 meeting transcript, line 226). The following student's argument was placed on the screen for the teachers to read:

How I did it was that I made it just different ways with red, blue, and yellow just with these three different colors, then when I didn't see I didn't form the tower a different way, I made it. (11/20/13 meeting transcript, lines 230)

The instructor said to the teachers "It wasn't a convincing argument but that she used the strategy of holding a constant, is a very good strategy." (11/20/13 meeting transcript, line 231).

T4 shared a second student's work. The student drew 27 towers as squares with lowercase r , capital B , and capital Y inside the squares. The towers were in ten groups. The first group had two towers. The first tower had red on top, red in the middle, and yellow on the bottom. The second tower was the same except the yellow-colored cube was changed to a blue-colored cube. (11/20/13 meeting transcript, line 232).

A second group had three towers with all blue as the middle and all red as the bottom but the tops were yellow, blue, and red. A third group had arranged the three towers with all blue as the middle and all yellow as the bottom but the tops were red, blue, and yellow. A fourth group arranged three towers with all red on the top and bottom but the middle was red, yellow, and blue. A fifth group showed three towers all blue on the top and in the middle with blue, yellow, and red on the bottom. (11/20/13 meeting transcript, line 232).

A sixth group was also made of three towers. The first tower had yellow on top, blue in the middle, and red on the bottom. The second tower had yellow on top, red in
the middle and blue on the bottom. The third tower had red on the top, yellow in the middle, and blue on the bottom. A seventh group had three towers with all blue on the top, all yellow in the middle, and a red, blue, and yellow on the bottom. (11/20/13 meeting transcript, line 232).

The eighth group had two towers. The first tower had red on the top and blue in the middle and on the bottom. The second tower had yellow on top, red in the middle, and blue on the bottom. (11/20/13 meeting transcript, line 232).

A ninth group had three towers. The tops and the bottoms of all three towers were yellow and the middle was yellow, blue, and red. The last group drawn had two towers. The top and middle positions of both towers were yellow and the bottom was red and blue. (11/20/13 meeting transcript, line 232).

T4 read the following student's written argument: "I changed the colors each time duplicating patterns. For example, red, red, yellow; red, red, blue; then yellow, yellow, red; and yellow, yellow, blue; are the same pattern but different colors" (11/20/13 meeting transcript, line 238). The instructor responded to T4 with "But this is a good start." (11/20/13 meeting transcript, line 241).

T5 was the sixth teacher to share her students' work. The student wrote that her and her partner came up with an estimate of 31 towers but did not provide a convincing argument for how they decided there would be 31 towers (11/20/13 meeting transcript, line 246). The student had drawn five pairs of opposite towers. For the sixth, seventh, and eight pairs of towers, T 5 recognized that the student controlled for a variable in the middle of the towers (11/20/13 meeting transcript, line 246). Although the student did
not write an argument, her partner did provide a written argument (11/20/13 meeting transcript, line 252). Figure 6.13 shows the student's tower drawing.

Figure 6.13 T5's Cycle 3Drawing of Three-Tall Towers, from Student Work Sample 1
T5 read the following partner's argument to the teachers:
My partner came up with opposites of each other. My partner was very helpful. We had the best way to organize it and we shared it and we got to 27 towers. But when we started with 31 ; we had we were not thinking completely. But we were close to our estimate. (11/20/13 meeting transcript, line 254)

The instructor asked T 5 if she questioned her students as to whether or not there could be another pair (11/20/13 meeting transcript, line 261). The teacher replied "They were just saying we cannot do anymore pairs so then they would be done. So I questioned that." (11/20/13 meeting transcript, line 268).

For the next sample that T5 shared, T5 read the following student's written argument: "We put them in order and we came up with three rows of nine buildings and multiplied them together and our total was $27 . "(11 / 20 / 13$ meeting transcript, line 278).

The student had drawn three groups each with nine three-tall towers on his paper and named the groups red, yellow, and blue after the colors that were on the top of the nine towers (11/20/13 meeting transcript, line 272). The student colored the squares for the red group but then decided for the yellow and blue groups to use the letters y, r, and b to represent the yellow-, red-, and blue-colored cubes (11/20/13 meeting transcript, line 272). T5 recognized that the students controlled for a variable by having all red tops for the red group, all yellow tops for the yellow group, and all blue tops for the blue group. (11/20/13 meeting transcript, line 272). Figure 6.14 shows the student's work.

Figure 6.14 T5's Cycle 3Three-Tall Towers, Student Work Sample 2

Then, T8 was the seventh teacher shared his students' work. T8 shared his first sample of students' work by reading the following student's written argument to the teachers: "The cubes are red, blue, and yellow. Red has 3 cubes and blue has three cubes, and yellow has three cubes." (11/20/13 meeting transcript, line 284). The student had drawn four groups of towers. The towers had the letters r, y, and b inside squares to represent blue-, yellow-, and red-colored cubes. The first group had three towers. The
towers were made of all red-, all blue-, and all yellow-colored cubes. Figure 6.15 shows the student's tower drawing for the first group.

Figure 6.15 T8's Cycle 3 Group 1 Drawing 3-Tall Towers, Student Work Sample 1

T8 continued by reading "There are all 3 colors in each tower. There two yellow in the bottom. The red and the blue switch spots. There no way to move the red and the blue. I did the same thing for the reds and the blues on the bottom." (11/20/13 meeting transcript, line 284). The second group had 6 towers with all three colors in each tower (11/20/13 meeting transcript, line 284). Figure 6.16 shows the second group of towers drawn by the student.

Figure 6.16 T8's Cycle 3 Group 2 Drawing 3-Tall Towers, Student Work Sample 1

T8 continued to read the argument: "There two blues on top and bottom. There yellow, red, in the middle. There no other color for the middle. I did the same for red and yellow. The red is in the top and bottom. The yellow is in the top and bottom." (11/20/13 meeting transcript, line 284). The third group had 6 towers. The first and second thee-tall towers had blue-colored cubes in the top and bottom positions with yellow and red in the middle. The third and fourth three-tall towers had red-colored cubes in the top and bottom positions with yellow and blue in the middle. The fifth and sixth three-tall towers had yellow-colored cubes in the top and bottom positions with red
and blue in the middle (11/20/13 meeting transcript, line 284). Figure 6.17 shows the third group of towers drawn by the student.

Figure 6.17 T8's Cycle 3 Group 3 Drawing 3-Tall Towers, Student Work Sample 1

The fourth group had twelve towers where four towers had red on top, four towers had yellow on top, and four towers had blue on top. T8 concluded the student's written argument with "This group is only two colors. The first 4 has the same color on top, and the second group there only yellow on top. The third group there only blue on top. The first group I did red yellow red, red yellow red blue, blue red, red blue. Second group is yellow, yellow, blue yellow, blue, blue yellow red, red yellow red, red. Third group is blue, blue, yellow blue yellow, yellow, yellow blue red, red blue, blue, red. T8 recognized that his student controlled for a variable (11/20/13 meeting transcript, lines 284-292). Figure 6.18 shows the fourth group of towers drawn by the student.

Figure 6.18 T8's Cycle 3Group 4 Drawing 3-Tall Towers, Student Work Sample 1

T8 also shared work from a student-helper. The student-helper had five groups of three-tall towers with the letters B, Y, and R inside squares to represent blue-, yellow-, and red-colored cubes. The first group of towers was made of all yellow-, all red-, and all blue-colored cubes. (11/20/13 meeting transcript, line 315).

The second group had 6 towers. The first tower had blue on top, yellow in the middle, and red on the bottom. The second tower had blue on top, red in the middle, and yellow on the bottom. The third tower had yellow on the top with red in the middle, and blue on the bottom. The fourth tower had yellow on top, blue in the middle, and red on the bottom. The fifth tower had red on top, blue in the middle, and yellow on the bottom and the sixth tower had red on the top, yellow in the middle, and blue on the bottom (11/20/13 meeting transcript, line 315). Figure 6.19 shows the student-helper's work.

Figure 6.19 T8's Cycle 3 Three-Tall Towers, Student-Helper's Work Sample 3

The third group had 6 towers. The first tower had yellow on top, yellow in the middle, and blue on the bottom. The second tower had the blue in the middle position
with yellow in the other positions. The third tower had the blue on the top position with yellow in the other positions. The fourth tower had blue on the top and in the middle with yellow on the bottom. The fifth tower had yellow on the top with blue in the middle and on the bottom. The sixth tower had blue on the top and bottom with yellow in the middle ($11 / 20 / 13$ meeting transcript, line 315).

The fourth group had 6 towers. The first tower had blue on the top and in the middle with red on the bottom. The second tower had blue on the top and bottom with red in the middle. The third tower had red on top with blue in the middle and on the bottom. The fourth tower had red on the top and in the middle and blue on the bottom. The fifth tower had red on top and on the bottom with blue in the middle. The sixth group had blue on top with red in the middle and on the bottom (11/20/13 meeting transcript, line 315).

Six towers were also in the fifth group. The first tower had yellow on the top and in the middle with red on the bottom. The second tower had yellow on the top and bottom with red in the middle. The third tower had red on top and yellow in the middle and on the bottom. The fourth tower had red on top and in the middle with yellow on the bottom. The fifth tower had red on the top and bottom with yellow in the middle. The sixth tower had yellow on top with red in the middle and on the bottom (11/20/13 meeting transcript, line 315). T8 read the following student's argument to the teachers:

Group 1: For each tower I had one color. Group 2: For each tower I had each color on the top and then followed and then followed by the two other colors switching. I did it for all three. Group 3: For the first 3, I had the blue go up one every time for the last 3, I had the yellow go up one every time. Group 4: For the 3, I had the red go up every time for the last 3 I had the yellow go up every time. Group 5: For the first 3, I had the red go up every time and for the last three I had the Y go up every time. (11/20/13 meeting transcript, lines 318-322)

T8 said that his student-helper told what she did and the instructor replied "That is really good that you guys are picking up. She is explaining what she did she has a very, very good strategy but she is not saying that therefore there can't be any more because I have taken that single color and put it into each of the three positions and there is no other place to put it." (11/20/13 meeting transcript, line 323).

T7 was the eighth teacher to share students' work. The student had drawn four groups of twenty-seven towers on the paper with squares using the letters Y, R, and B to represent the yellow-, red-, and blue-colored cubes. The first group had three towers with all red-, all yellow-, and all blue-colored cubes (11/20/13 meeting transcript, line 328).

The second group had 6 towers. The first tower had yellow on top and in the middle with red on the bottom. The second tower had yellow on top and in the middle with blue on the bottom. The third tower had red on the top and in the middle with blue on the bottom and the fourth group had red on top and in the middle with yellow on the bottom. The fifth tower had blue on the top and in the middle with yellow on the bottom and the sixth tower had blue on the top and in the middle with red on the bottom (11/20/13 meeting transcript, line 328).

The third group had 6 towers. The first tower had yellow on top with red in the middle and on the bottom. The second tower had yellow on top with blue in the middle and on the bottom. The third tower had blue on the top and yellow in the middle and on the bottom. The fourth tower had blue on the top with red in the middle and on the bottom. The fifth tower had red on the top with blue in the middle and on the bottom. The sixth tower had red on top with yellow in the middle and on the bottom (11/20/13 meeting transcript, line 328).

The fourth group had six towers. The first tower had blue on the top and bottom with yellow in the middle. The second tower had blue on the top and bottom with red in the middle. The third tower had yellow on the top and bottom with blue in the middle. The fourth tower had yellow on the top and bottom with red in the middle. The fifth tower had red on the top and bottom with blue in the middle and the sixth tower had red on the top and bottom with yellow in the middle. (11/20/13 meeting transcript, line 328).

The fifth group had 6 towers. The first tower had blue on top, yellow in the middle, and red on the bottom. The second tower had blue on the top with red in the middle and yellow on the bottom. The third tower had yellow on the top, blue in the middle, and red on the bottom. The fourth tower had yellow on top, red in the middle, and blue on the bottom. The fifth tower had red on the top, blue in the middle, and yellow on the bottom. The sixth tower had red on the top, yellow in the middle, and blue on the bottom. (11/20/13 meeting transcript, line 328).

The following student's argument was put on the screen for the teachers to read:
First we did the 3 original colors. Then we did two colors on top and one on bottom and we did 2 colors on bottom and one on top. Then we did top bottom are same color and is different 6 times. Then we decided to have different colors 6 times in 6 different patterns. We came out to be 27 different towers. (11/20/13 meeting transcript, lines 336-340).

The instructor said to the teachers "The way he arranged it; it is very systematic and brilliant and he could very easily get it to a good convincing argument." (11/20/13 meeting transcript, line 343).

T7 shared another student sample where the eighth-grade student "used the same set up, but her explanation was a little clearer." (11/20/13 meeting transcript, lines 348). The student made five groups of three-tall towers. The student drew 27 towers as squares
with the letters B, R, and Y inside the squares to represent the blue-, red-, and yellowcolored cubes. The towers were in five groups (11/20/13 meeting transcript, line 348).

The first group was made of three towers which were all red-, all blue-, and all yellow-colored cubes. The second group had 6 towers. The first tower had yellow on the top and red in the middle and on the bottom. The second tower had blue on the top with red in the middle and on the bottom. The third tower had red on the top and blue in the middle and on the bottom and the fourth tower had yellow on top with blue in the middle and on the bottom. The fifth tower had blue on top and yellow in the middle and on the bottom. The sixth tower had red on the top with yellow in the middle and on the bottom (11/20/13 meeting transcript, line 348). Figure 6.20 shows the drawing and explanation of the first, second and third groups drawn by the student.

Figure 6.20 T7's Cycle 3 Groups 1, 2, \& 3Three-Tall Towers, Student Work Sample 2

The third group had 6 towers. The first tower had red on the top and in the middle with yellow on the bottom. The second tower had red on the top and in the middle with blue on the bottom. The third tower had yellow on the top and in the middle with red on the bottom. The fourth tower had yellow on the top and in the middle with
blue on the bottom. The fifth tower had blue on the top and in the middle with yellow on the bottom and the sixth tower had blue on the top and in the middle with red on the bottom. (11/20/13 meeting transcript, line 348).

The fourth group also had 6 towers. The first tower had yellow on the top and bottom with red in the middle and the second tower had blue on the top and bottom with red in the middle. The third tower had red on the top and bottom with blue in the middle and the fourth tower had yellow on the top and bottom with blue in the middle. The fifth tower had red on the top and bottom with yellow in the middle and the sixth tower had blue on the top and bottom with yellow in the middle. (11/20/13 meeting transcript, line 348). Figure 6.21 shows the tower drawing and explanation of the fourth and fifth groups.

Figure 6.21 T7's Cycle 3 Groups 4\& 5Three-Tall Towers, Student Work Sample 2

The fifth group had 6 towers with all three colors used in the tower. The first tower had red on the top, yellow in the middle, and blue on the bottom. The second tower had red on the top, blue in the middle, and yellow on the bottom. The third tower had blue on the top, red in the middle, and yellow on the bottom. The fourth tower had
blue on the top, yellow in the middle, and red on the bottom. The fifth tower had yellow on the top, blue in the middle, and red on the bottom. The sixth tower had yellow on the top, red in the middle, and blue on the bottom.

T7 read the following student's argument to the teachers:
[Towers are] all 3 same color. [Six towers had] two of the same color on bottom, one different on top. [Six towers had] two of the same color on top, one different on bottom. [Six towers had] two of the same color on the top and bottom, opposite color in middle. All 3 colors assorted in different patterns. The towers (in each group) have two similar towers. For example, if you have two reds on the bottom, you can only have a blue or a yellow on top (2 different towers). If you wanted a third tower, it would be all of the same colored cubes (red, red, red) which was already constructed. (11/20/13 meeting transcript, lines 350-352).

The instructor said to the teachers that the student had neatly shown the groups (11/20/13 meeting transcript, line 348).

T6 was the last teacher to share students' work with the other teachers. The student made seven groups of three-tall towers labeled A through G and used a key to make a drawing of the towers. The key showed yellow to be represented with a blank square, red with a shaded square, and blue with a striped square (11/20/13 meeting transcript, line 366).

Group A was made of all, all red-, all yellow-, and all blue-colored cubes. Group B had 6 towers with the red- and yellow-colored cubes. Three of the towers were constructed by moving the red block up one position until all the positions were exhausted. The other three towers were constructed by moving the yellow block up one position until all the positions were exhausted. Group C was the same as Group B except the red- and blue-colored cubes were used to construct the towers in the tower drawing. Group D was the same as groups B and C except the yellow- and blue-colored cubes
were used to construct the towers in the tower drawing. (11/20/13 meeting transcript, line 370).

Group E had two towers. The first tower had red on top, blue in the middle, and yellow on the bottom. The second tower had blue on top, red in the middle, and yellow on the bottom (11/20/13 meeting transcript, line 370).

Group F had two towers. The first tower had blue on top, yellow in the middle, and red on the bottom. The second tower had yellow on the top, blue in the middle, and red on the bottom (11/20/13 meeting transcript, line 370).

Group G had two towers. The first tower had yellow on top, red in the middle, and blue on the bottom. The second tower had red on top, yellow in the middle, and blue on the bottom (11/20/13 meeting transcript, line 370).

T6 said "If you read his explanation, he says first off there were 3 towers of one color each. Next I made 9 towers of two of one color and one of another. And then did the alternate colors. After that I made 9 towers containing 3 colors each." (11/20/13 meeting transcript, lines 370-372). T6 claimed that his written argument did not match his drawing and the instructor agreed with T6 (11/20/13 meeting transcript, lines 380381).

T6 shared a second student's work by reading the following argument to the teachers:

First we made 3 towers each only using one color. Second we made 2 towers each with two red on the bottom and one yellow on the top and one blue on the top. Then we put two yellow on the bottom and put one of each of the other colors on top. After that, we did the opposite with two blues on the bottom. Third we put two yellows on the top, no wait then he is talking about the next group after that. (11/20/13 meeting transcript, line 394).

T6 recognized that her student controlled for a variable to solve the three-tall tower problem. (11/20/13 meeting transcript, line 398). T6 also said "This group was actually interesting too because when they first got their 27 combinations, they were confused because it was an odd number." (11/20/13 meeting transcript, lines 404). The instructor asked T6 "So were they upset when they got 27? (11/20/13 meeting transcript, line 415). T6 replied "They were at first. But then they looked at it and they organized it. And they were able to convince themselves. It was interesting because the task changed from them trying to convince me to for them to try and be able to accept that it was 27. ." (11/20/13 meeting transcript, lines 416,418).

6.6 Summary

With the completion of the three session units, the third cycle of problem solving came to an end. Throughout Cycle 3, teachers worked on the third cycle tasks, participated in three thought-provoking on-line discussions, observed an in-district classroom visit working on the tasks, implemented the same tasks in their own classes, read literature and watched videos of other students working on the tasks, and shared their own students' work after implementing the tasks in their own classes. The final meeting to discuss and reflect on the intervention occurred on 12/7/13.

Chapter 7 - Reasoning Analysis

This chapter is an analysis of the forms of students' reasoning recognized by the teachers as well as teachers' forms of reasoning in their own problem-solving. First, the teachers' recognition of heuristics or strategies is analyzed. Second, the teachers' recognition of forms of argument is analyzed. Third, teachers' claims regarding whether or not arguments were convincing are reported. The chapter concludes with an analysis of the reasoning in the Gang of Four video pre- and post-assessments.

7.1 Heuristics or Strategies

This section reports teachers' recognition of heuristics in students' work during discussions at the regional meetings. The chapter also reports teachers' recognition of students' heuristics or strategies from research students' work after watching videos and reading scholarly articles from on-line discussion threads. During the intervention, teachers also used several different heuristics or strategies to work on and solve the mathematical tasks themselves. ${ }^{1}$ Table 7.1 shows the heuristics recognized by teachers for all three cycles.

Table 7.1
Frequencies of Heuristics/Strategies for Three Cycles

Heuristic/	Teachers'	Research	Class Visit	Current
Strategy	Task	Students'	Students'	Students'
Used	Work	Work	Work	Work
Control a variable	16	22	9	39
Cousins	0	2	0	1
Elevator	11	25	4	24
Guess and Check	1	36	2	7
Opposites	4	77	3	32
Staircase	2	2	0	0
Total	34	164	18	103

[^7]Sources: Meeting transcripts 9/7, 9/17, 10/2, 10/22, 11/20 and on-line discussion units 1-10.

7.1.1 Teachers' Task Work

Teachers from the northern, central, and southern regions of New Jersey worked on the mathematical tasks. For the first cycle of tasks, eight teachers worked in pairs from the southern region cohort. Two of the pairs of teachers worked with a partner from the northern and central region for the first cycle tasks. For the second and third cycle tasks, the ten teachers from the southern region worked on the mathematical tasks in pairs.

7.1.1.1 Teachers' Heuristics Used by Cycle

For Cycle 1, thirteen strategies were used to solve the first cycle task from the six pairs of teachers. The most common strategies used by the teachers were the opposite strategy, 4 times; control for a variable, 3 times; and the elevator strategy, 3 times. Fewer common strategies used by the teachers were the staircase strategy, 2 times and the guess and check strategy, 1 time.

One teacher pair organized towers according to elevators to make ten towers. However, this pair decided to group the remaining six towers by controlling for a variable on the top of the six towers. For three of the six towers, all red cubes were on top and the other three towers had yellow on top (9/7 meeting transcript, lines 20-32). This teacher pair did not reorganize their towers. Figure 7.1 shows how the pair of teachers arranged their towers.

YRYYY	RRR	YYY	RRRYR
YYRYY	RYY	RRY	RRYRR
YYYRY	YRY	RYR	RYRRR
YYYYR	YYR	YRR	YRRRR

Figure 7.1 Towers arranged by $T 9$ and T10

Another pair of teachers also began by organizing towers according to elevators to make ten towers. However, this pair decided to group the remaining six towers by controlling for a variable on the bottom of the six towers. For three of the six towers, all red cubes were on the bottom and the other three towers had yellow on the bottom. This pair also did not reorganize their work. (9/7 meeting transcript, lines 164-178). Figure 7.2 shows how the pair of teachers arranged their towers.

YYYYR	YYR	YRR	RRRYR
YYYRY	YRY	RYR	RRYRR
YYRYY	RYY	RRY	RYRRR
YRYYY	RRR	YYY	YRRRR

Figure 7.2 Towers arranged byT6 and T7
Another teacher pair began the first cycle task by using a combination of the guess and check and opposite strategies. In this case, the teacher pair made 9 pairs of towers from a tower and a tower using the opposite colors and checked to see if they had any duplicates (9/7 meeting transcript, lines 18-19). Later on in the session, the teacher pair reorganized their towers where the pair had built two one-tall towers. Next to the 1tall towers, the pair built 2-tall towers by placing a red and a yellow each on top of the 1tall towers which resulted in four 2-tall towers. Then the pair placed a red and a yellow each on top of the 2-tall towers to create eight 3-tall towers. ($9 / 7$ meeting transcript, lines 84-109). The instructor informed the teachers that they described an inductive argument (9/7/13 meeting transcript, line 90).

One pair of teachers also began by organizing towers according to elevators to make ten towers. However, this teacher pair had the remaining six towers grouped in opposite pairs with no organization. The instructor asked the teachers (T4 and T8) to find a way to organize the towers to convince her that they had found all the possible 4-tall
towers. Later on when the instructor checked back with T 4 and T 8 , the teachers had reorganized their towers by controlling for a variable on the bottom where the red cube was on the bottom of the eight towers.

Two pairs of teachers sat at the same table and each had one teacher from the southern region cohort and one teacher from the northern and central region. The fifth and sixth pairs of teachers began with the opposite strategy. Later, the both pairs reorganized their towers using the staircase strategy ($9 / 7$ meeting transcript, lines 148157, 191-204).

Five strategies from five pairs of teachers were coded for the second cycle of tasks. All five pairs of teachers controlled for a variable when finding the three-topping pizzas for the pizza problem. One teacher pair made an organized list of pizzas written with the full topping word. The teachers both listed the no-topping pizza and the onetopping pizzas. For the two-topping pizzas, the teachers decided to control for a variable by holding peppers constant. The teachers also held peppers constant to create the threetopping pizzas. T10 had written during the on-line discussion that "As we got to the three toppings, it became harder to make sure we hadn't duplicated any pizzas, so we considered holding 1 of the three toppings constant, and finding the pizza combinations that could be created by changing the other two toppings." (Unit 5, on-line discussion, line 22).

Another teacher pair (T1 and T8) also made an organized list of pizzas. However, their representation was a drawing of circles to represent the pizzas. T1 worked with T8 and had written in the on-line discussion that "I definitely liked the strategy of picking a
toping and having that as the constant. From there, we added toppings to the constant topping." (Unit 5, On-line discussion, line 7).

A third pair of teachers (T6 and T7) also made an organized list but represented the pizza toppings with letters. The teachers listed the plain pizza and the one-topping pizzas. For the two- and three-topping pizzas, the teachers controlled for a variable by holding peppers constant. T6 decided to reorganize their work using a chart and instructor asked T6 to share and explain her chart to the other teachers (10/2 teachers work transcript, line 202). The following was written by T6 during the on-line discussion:
[T7] had the idea of keeping a constant. So we did all pizzas with peppers, all with mushrooms, all with pepperoni and all with sausage. We found as we eliminated an ingredient the number of possibilities were halving (just like the tower problem!). From there we decided to replicate what the towers would look like by having four possible spots. If the pizza did not occupy all of the spots with an ingredient we would put an X and if it did have an ingredient we would put the representation we came up with. As I as looking at it I noticed we did not even need to differentiate between the ingredients ($\mathrm{M}, \mathrm{I}, \mathrm{P}, \mathrm{S}$) when organizing this method. If you using the unifix cubes this way with one color is representing a topping and one color representing the absence of a topping. After I tried the method of keeping the first ingredient constant, I also tried to keep the second ingredient constant. I found this strategy did not work as well. It is better to organize by the number of toppings. (Unit 5, on-line discussion thread, line 1)

A fourth pair of teachers (T4 and T5) made an organized list for the second cycle task using the full topping word. They controlled for a variable by holding peppers constant for the two- and three-topping pizzas. T4 decided to do the problem again the way she thought her students would try it and made a tree diagram. T4 stopped using the tree diagram when she realized there were too many duplicates (Unit 5 on-line discussion thread, line 30).

The fifth pair of teachers (T2 and T3) also made an organized list using letters for the toppings. They had written no toppings and all toppings at the top of their papers. For the two-topping pizzas they held peppers constant. However, they spent much time trying to decide whether cheese should count as a topping. Once T2 and T3 decided not to count cheese as a topping, they easily found 16 possible pizza combinations (10/2 teachers work transcript, lines 110-141).

For the third cycle, the teachers worked on two problems. For the first problem teachers were asked to find all possible 3-tall towers that could be made selecting from three colors. The second problem was an extension of the first problem called Ankur's Challenge. For Ankur's Challenge, teachers were asked to find all possible 4-tall towers that could be made selecting from three colors, and using at least one of each color cube.

Sixteen strategies were recognized by the teachers for the Cycle 3 tasks. The most common strategies recognized were the elevator strategy, 8 times and controlling for a variable, 8 times. For the 3 -tall towers problem, 6 strategies were recognized by the teachers. Three pairs of teachers used the elevator strategy to solve the 3-tall towers problem and three pairs of teachers controlled for a variable. Ten strategies were recognized by the teachers for the Ankur's Challenge problem. All five pairs of teachers used the elevator strategy and controlling for a variable to solve Ankur's Challenge.

7.1.1.2 Summary of Teachers' Heuristics Used

For their own problem solving, 34 strategies were used by the teachers. Teachers frequently used the strategies of controlling for a variable, 16 times; and the elevator strategy, 11 times and were used to solve the second cycle pizza problem, the third cycle three-tall tower problem, and Ankur's Challenge. Less common strategies used by the
teachers strategies were opposite pairs, 4 times; and the staircase method, 2 times; and guess and check, 1 time and were only used to solve the problems for the first cycle fourtall towers problem.

7.1.2 On-line Discussion of Research Students' Work

In addition to the teachers working on the task themselves, the instructor assigned videos to watch and articles to read about the research students' task work. Teachers were asked to respond to questions about the research students' work in an on-line discussion thread. The teachers identified strategies from ten on-line discussion threads for the three cycles of tasks.

7.1.2.1 Research Students' Heuristics Used by Cycle

Four units of on-line discussion threads (Units 2, 3, 4, and two questions of Unit 5) were used by the teachers to post responses regarding the first cycle four-tall towers problem, selecting from two colors and the extension problems for predicting three-tall and five-tall towers. During the on-line discussion of the four-tall towers problem, 110 strategies were identified by the teachers. The more common identified strategies for the mathematical tasks of the first cycle were: the opposite strategy, 56 times; the guess and check strategy, 27 times; and elevator, 19 times. Less common strategies recognized by the teachers were controlling for a variable, 4 times; the cousin strategy, 2 times; and the staircase strategy, 2 times.

Three units of on-line discussion threads (Third question of Unit 5, all of Units 6 and 7) were used by the teachers to post responses regarding the second cycle pizza problem. During the on-line discussion of the pizza problem, 17 strategies were identified by the teachers within the on-line discussion. The strategies identified by the
teachers during the on-line discussion of the pizza problem were: controlling for a variable, 11 times; guess and check, 3 times; and the opposite strategy, 3 times.

Three units of on-line discussion threads were analyzed for the third cycle tasks of tasks. For the third cycle, 37 strategies were recognized by the teachers. The recognized strategies for the third cycle tasks were the opposite strategy, 18 times; controlling for a variable, 7 times; the elevator strategy, 6 times; and guess and check, 6 times.

7.1.2.2 Summary of Research Students' Heuristics

From the on-line discussion of the research students' work, 164 strategies were identified by the teachers. Teachers frequently identified the opposite strategy, 77 times; guess and check, 36 times; the elevator strategy, 25 times; and controlling for a variable, 22 times. The opposite strategy was identified 56 times out of 77 times and the guess and check strategy was identified 27 times out of 36 times for the first cycle four-tall towers problem. The cousin and staircase strategies were identified fewer times; each having been identified by teachers twice and only for the research students' work on the first cycle four-tall towers problem.

7.1.3 Analysis of In-District Classroom Visits

There were three in-district classroom visits with teachers' current students. The instructor and teachers circulated around the room to observe and ask students questions about their work. Samples of students' work from the in-district classroom visit were discussed during the debriefing meeting.

7.1.3.1 Students' Heuristics Used from Classroom Visits by Cycle

At the debrief meeting, five samples of students' work were selected for discussion from the first cycle tasks. From the five samples selected, seven strategies
were recognized by the teachers. Three teachers recognized the opposite strategy, three teachers recognized the elevator strategy, and one teacher recognized controlling for a variable.

Five samples of students' work were discussed for the second cycle of tasks. From the five samples discussed, five strategies were recognized by the teachers. Three teachers recognized controlling for a variable and two teachers recognized the guess and check strategy.

Four samples of students' work were discussed for the third cycle of tasks. From the four samples selected, six strategies were recognized by the teachers. Four teachers recognized the strategy of controlling for a variable and one teacher recognized the elevator strategy in the students' work for solving the 3-tall towers problem, selecting from three colors. One teacher recognized that one pair of students controlled for a variable to solve the extension problem, Ankur's Challenge.

7.1.3.2 Summary of Classroom Visit Students' Heuristics

From the in-district classroom visits, 18 strategies were recognized by the teachers for the three cycles. The most common strategy recognized by the teachers was controlling for a variable, 9 times. Less common strategies recognized by the teachers were the elevator strategy, 4 times; opposites, 3 times; and the guess and check strategy, 2 times. The opposite strategy was only identified for students' work on the first cycle four-tall towers problem.

7.1.4 Current Students’ Task Work

During the regional meetings, teachers shared 73 samples of students' work. The strategies recognized by the teachers for the three cycles of tasks were from the students'
samples that teachers brought from their own classes to share with the other teachers. The instructor asked the teachers to share two or three samples of students' work.

7.1.4.1 Current Students' Heuristics Used by Cycle

Thirty-two samples of students' work were analyzed for the first cycle of tasks. For the first cycle, 51 strategies were recognized by the teachers from the students' work samples. The more common recognized strategies for the first cycle tasks were the opposite strategy, 27 times and elevator, 16 times. Less common strategies recognized by the teachers were controlling for a variable, 4 times and the guess and check strategy, 3 times; and the cousin strategy, 1 time.

Twenty-three samples of students' work were analyzed for the second cycle tasks. For the second cycle, 27 strategies were recognized by the teachers from the students' work samples. The more common recognized strategies for the second cycle tasks were controlling for a variable, 21 times and 4 times for the guess and check strategy. Less common strategies recognized by the teachers were the elevator strategy and opposite strategies each with 1 time.

Eighteen samples of students' work were analyzed for the third cycle tasks. For the third cycle, 26 strategies were recognized by the teachers from the students' work samples. The more common recognized strategies for the third cycle tasks were controlling for a variable, 14 times and 7 times for the elevator strategy. Less common strategies recognized by the teachers were opposite pairs, 4 times and the cousins, one time.

7.1.4.2 Summary of Current Students' Heuristics

From the current students' samples of work shared by the teachers, 103 strategies were identified by the teachers. The more common strategies recognized from the shared student samples of work for all three cycles were controlling for a variable, 39 times; opposites, 32 times; and elevator, 24 times. Less common strategies recognized by the teachers were the cousin strategy, 1 time and the guess and check, 7 times. The opposite strategy was identified by the teachers from the students' samples 27 out of 32 times; and the elevator strategy was identified 16 out of 24 times for the first cycle four-tall towers problem. Controlling for a variable was identified by the teachers from the students' samples 21 out of 39 times for the second cycle pizza problem; and 14 times during the third cycle tasks.

7.1.5 Summary of Heuristics

The results of heuristics analysis showed that the intervention helped teachers to progress in a formative way as the teachers used and recognized heuristics throughout the three cycles. The opposite strategy was found to be a popular strategy by teachers and students for solving the first cycle four-tall towers problem and the three-tall, five-tall towers extension problems but did not lead to convincing arguments. When solving the second cycle pizza problem, controlling for a variable was used as a strategy for all the teachers and identified from the students' samples 21 out of 27 times. Controlling for a variable and the elevator strategy were found to be popular strategies used by teachers and students for solving the third cycle three-tall towers problem and Ankur's Challenge. Teachers recognized that using the elevator strategy and controlling for a variable
resulted in arguments that were more convincing in their own work as well as their students' work.

7.2 Forms of Argument

In addition to heuristics, teachers used forms of argument to solve the mathematical tasks. Teachers also recognized forms of argument in samples of students' work at the in-district classroom visits and at the regional meetings where teachers discussed current students' work. Teachers additionally recognized forms of argument after watching videos and reading scholarly articles about research students' task work using an on-line discussion thread. Table 7.2 shows the number of argument forms teachers recognized for all three cycles.

Table 7.2
Frequencies of Argument Forms for Three Cycles

Argument	Teachers'	Research	Class Visit	Current
Form	Task	Students'	Students’	Students'
Used	Work	Work	Work	Work
Cases	19	34	10	63
Induction	3	19	1	0
Recursion	13	30	4	23
Contradiction	1	1	0	0
Rule	2	18	2	11
Total	38	102	17	97

Sources: Meeting transcripts 9/7, 9/17, 10/2, 10/22, 11/20 and on-line discussion units 1-10.

7.2.1 Teachers' Task Work

Throughout the three cycles of the intervention, teachers used forms of argument. Teachers recognized case arguments, induction, recursion, rule, and contradiction. An analysis of the teachers' forms of argument from solving the first cycle four-tall towers problem, the second cycle pizza problem, the third cycle three-tall towers problem, and Ankur's Challenge follows.

7.2.1.1 Teachers' Forms of Argument Used by Cycle

For the first cycle four-tall towers problem, thirteen forms of argument were used by six pairs of teachers. The most common form of argument used by the teachers to solve the first cycle four-tall towers problem was cases, 7 times. Less common forms of argument used by the teachers were recursion, 5 times and induction, 1 time. For the second cycle pizza problem, all five forms of argument used by the teachers were case arguments.

Although all the teachers used a case argument, it is also important to note that the teachers used different representations to solve the pizza problem. Three pairs of teachers drew a diagram and made an organized list. One pair of teachers made a drawing. One pair of teachers just made an organized list. Another teacher pair later reorganized their drawing to make an organized chart which was shared with the teachers during the whole-group discussion. It should also be noted that some case arguments were organized according to the number of toppings and some were organized according to the type of topping for the second cycle of tasks.

Twenty forms of argument were used by the teachers for the Cycle 3 tasks. The more common form of argument used by teachers was recursion, 8 times and cases, 7 times. Less common forms of argument were induction, 2 times; rule, 2 times; and contradiction, 1 time.

For the 3-tall towers problem selecting from 3 colors, 11 forms of argument were used by the teachers. Recursion was used 3 times and case arguments were used 2 times. Slightly less common forms of argument were induction 1 time, contradiction 1 time, and 2 times for the rule form of argument.

Eleven forms of argument were used by the teachers for the Ankur's Challenge problem. The most common forms of argument were cases and recursion each 5 times. A less recognized argument form was induction, 1 time.

7.2.1.2 Summary of Teachers' Forms of Argument

For their own problem solving, 38 forms of argument were used by the teachers. The most common form of argument that teachers used to solve the problems were case arguments, 19 times. Recursion was the next common form of argument used by teachers when solving the problems themselves; noted 13 times. Less common forms of argument teachers used to solve the mathematical tasks were induction, 3 times; contradiction, 1 time; and rule, 2 times.

7.2.2 Teachers' On-line Discussion of Research Students' Work

Teachers were also assigned videos to watch and articles to read about research students' work in addition to working on the tasks themselves. After watching the videos and reading the articles, teachers were asked to respond to questions about the research students' work in an on-line discussion thread. The data are spread over ten units of discussion threads for the three cycles of tasks.

7.2.2.1 Research Students' Forms of Argument Used by Cycle

Four units of on-line discussion threads were analyzed for the first cycle tasks. For the first cycle, 45 forms of argument were recognized by the teachers. The argument forms recognized by the teachers for the first cycle tasks were induction 19, times; recursion, 18 times; and cases, 8 times.

Three units of on-line discussion threads were analyzed for the second cycle of tasks. For the second cycle, 21 forms of argument were recognized by the teachers. The
most commonly recognized form of argument for the second cycle tasks was cases, 20 times. A less common form of argument recognized by the teachers was recursion, only 1 time.

Three units of on-line discussion threads were analyzed for the third cycle tasks of tasks. For the third cycle, 36 forms of argument were recognized by the teachers. The recognized forms of argument for the third cycle tasks were rule, 18 times; recursion, 11 times; cases, 6 times; and contradiction, only 1 time.

7.2.2.2 Summary of Research Students' Forms of Argument

From the on-line discussion of the research students' work, 102 forms of argument were identified by the teachers. The forms of argument more commonly recognized from the on-line discussion threads for all three cycles were cases, 34 times; recursion, 30 times; induction, 19 times; and 18 times for the rule form of argument. A less common argument form recognized by the teachers was contradiction, only 1 time.

7.2.3 Analysis of In-District Classroom Visits

There were three in-district classroom visits with teachers' current students. The samples of students' work from the in-district classroom visit were discussed during the debriefing meetings. The debrief meetings were held directly after the classroom implementation.

7.2.3.1 Students' Forms of Argument Used from Classroom Visits by Cycle

Five samples of students' work were selected for discussion from the first cycle tasks. From the five samples selected, eight argument forms were recognized by the teachers. Four teachers recognized recursion, three teachers recognized cases, and one teacher recognized the rule form of argument.

Five samples of students' work were discussed for the second cycle of tasks. From the three samples discussed, five forms of argument were recognized by the teachers. Four teachers recognized cases and one teacher recognized rule.

Four samples of students' work were discussed for the third cycle of tasks. From the four samples selected, four forms of argument were recognized by the teachers. The argument forms recognized by the teachers were cases, 3 times and induction, 1 time.

7.2.3.2 Summary of Classroom Visit Students' Forms of Argument

At the debrief meetings after each in-district classroom implementation, 17 forms of argument were recognized by the teachers for the three cycles. The more common forms of argument recognized by the teachers were cases, 10 times and recursion, 4 times. Less common argument forms were induction, one time and rule, two times.

7.2.4 Current Students’ Task Work

During the regional meetings, teachers shared 73 samples of students' work. The instructor asked the teachers to share two or three samples of students' work. Each teacher presented their students' work to the other teachers to discuss the forms of argument the teachers recognized from the students' samples for each of the three cycles.

7.2.4.1 Current Students' Forms of Argument Used by Cycle

Thirty-two samples of students' work were analyzed for the first cycle four-tall tower problem. For the first cycle four-tall tower problem, 41 forms of argument were recognized by the teachers from the students' work samples. The argument forms for the first cycle four-tall towers problem were cases, 23 times; recursion, 14 times; and rule, 4 times.

Twenty-three samples of students' work were analyzed for the second cycle pizza problem. For the second cycle pizza problem, 29 forms of argument were recognized by the teachers from the students' work samples. The forms of argument recognized for the second cycle pizza problem were cases, 23 times; rule, 4 times; and recursion, two times.

Eighteen samples of students' work were analyzed for the third cycle three-tall towers problem. For the third cycle three-tall towers problem, teachers recognized 27 forms of argument from the students' samples. Teachers recognized cases, 17 times; recursion, 7 times; and rule, 3 times.

7.2.4.2 Summary of Current Students'Strategies

There were 97 forms of argument recognized by the teachers for the three cycles of tasks from the current students' work. The more common forms of argument recognized from the shared student samples of work for all three cycles were cases, 63 times; recursion, 23 times; and rule, 11 times.

7.25 Summary of Forms of Argument

The forms of argument analysis showed that the intervention was helpful for enabling teachers to use and recognize forms of argument throughout the three cycles. Case arguments were found to be the most popular form of argument used by teachers and students when solving the problems in all three of the cycles. Teachers used case arguments 19 times for their own problem solving. Moreover, teachers identified case arguments from research students' work, 34 times; students' work from the classroom visits, 10 times; and current students' work, 63 times.

Recursion was used by the teachers for their own problem solving 5 times when solving the first cycle four-tall towers problem, 3 times when solving the third cycle
three-tall towers problem, and 5 times when solving Ankur's Challenge. Teachers identified recursion 30 times in research students' work, 4 times in students' work from the classroom visits, and 23 times from current students' samples.

Induction was identified in research students' work 19 times regarding the first cycle four-tall towers problem and three-tall and five-tall tower extension problems. For their own problem-solving, teachers used induction three times. Teachers only identified one inductive argument from a student during a debriefing meeting about the third cycle three-tall towers problem.

Rule was identified as a form of argument in research students' work 18 times regarding the Ankur's Challenge problem. Teachers used rule as a form of argument in their own work when solving the three-tall towers problem 2 times and identified rule as a form of argument 13 times in students' work.

Teachers used contradiction as a form of argument once when solving the third cycle three-tall towers problem and identified it in a research students' work once about Ankur's Challenge. It is important to note that the teachers recognized that there were times when students used multiple forms of argument and heuristics to solve a mathematical task. Arguments or heuristics used together to solve a task are referred to as co-occurrences.

7.3 Co-Occurring Heuristics and Arguments

The most common co-occurrences were control for a variable and cases, 54 times. Other strong or frequent co-occurrences were: the elevator strategy and case arguments, 23 times; the elevator strategy and recursive arguments, 19 times; the opposite and case arguments, 23 times; and the opposite and recursive arguments, 11 times. Controlling for
a variable co-occurred less frequently than cases with other forms of argument such as rule, 6 times; recursion, 5 times; and induction, two times. Table 7.3 summarizes the cooccurrences for the forms of argument and heuristics.

Table 7.3
Frequencies of Co-Occurrences for Three Cycles

Co-occurrence	Cases	Recursion	Rule	Induction
Control a variable	54	5	6	2
Cousins	1	0	0	0
Elevator	23	19	3	0
Guess and Check	6	0	2	1
Opposites	23	11	4	0
Staircase	0	2	0	0
Total	107	37	15	3

Source: Meeting transcripts 9/7, 9/17, 10/2, 10/22, 11/20 and on-line discussion units 1-10.

7.4 Teachers' Evaluation of Arguments

Throughout the intervention, teachers were asked to evaluate whether or not strategies or arguments were convincing in a variety of contexts. Teachers were asked to determine if arguments made by other teachers or themselves while working on the tasks were convincing. For the on-line discussions, teachers were asked to determine whether the research students' arguments were convincing. Teachers were also asked to determine whether or not current students provided convincing arguments from samples of their work.

It is important to note that teachers were not always completely convinced by an argument and were therefore coded as not convincing. The non-convincing arguments were coded with an additional code for being incomplete or invalid. Arguments that were not convincing were coded as incomplete if no parts, one part or some parts of the arguments were convincing; but not all parts were convincing. Arguments were coded as
invalid if the arguments did not make mathematical sense for solving the problem. Table 7.4 shows the number of arguments made by the teachers regarding whether the arguments were convincing or not convincing.

Table 7.4
Frequencies of Teachers' Evaluations of Arguments

Evaluation	Teachers'	Research	Class Visit	Current
of	Task	Students'	Students'	Students'
Arguments	Work	Work	Work	Work
Not convincing	1	8	5	16
\quad Incomplete	1	8	5	15
\quad Invalid	0	0	0	1
Convincing	8	18	1	0

Sources: Meeting transcripts 9/7, 9/17, 10/2, 10/22, 11/20 and on-line discussion units 1-10.

7.4.1 Teachers' Evaluations of Arguments of Teachers' Own Work

As teachers worked on the tasks themselves, the instructor asked teachers to evaluate whether arguments were convincing or not convincing. On most occasions, the instructor asked the teachers "Are you convinced [you have all towers]?" (Meeting transcript 9/7/13, lines $21 \& 62 ; 10 / 2 / 13$, line $93 ; 10 / 22 / 13$, line 342). For other times, the instructor asked "Do you think you have them all [all the towers]?" (Meeting transcript 10/2/13, lines $60 \& 157$) or other similar questions asked about whether the arguments were convincing or not convincing (Meeting transcript 10/22/13, lines 158, 181, 298).

7.4.1.1 Evaluation of Arguments by Cycle of Teachers' Own Work

For the first cycle four-tall towers problem, the teachers paired up to build all possible four-tall towers that could be made selecting from two colors. After building the four-tall towers, teachers were asked to convince their partners that all possible four-tall towers were built without having duplicates. After convincing their partners, teachers were asked to verbally convince one of the researchers circulating around the room
(Meeting transcript $9 / 7 / 13$, line 12). Teachers were then asked to record on paper the convincing argument they verbally provided to the researchers (Meeting transcript 9/7/13, lines 32, 63, 107, 144, 148).

There were two claims made for the first cycle of tasks regarding whether teachers were convinced with their own argument or other teachers' arguments. For one claim, the instructor asked the teacher pair (T9 and T10) if they were convinced by their argument for the four-tall towers problem (Meeting transcript 9/7/13, line 21). T10 described ten of the four-tall towers using a recursive argument for one red and three yellows and then three reds and one yellow. For the other six towers, T10 explained the following convincing argument to the instructor:

First we started with two reds and two yellows. Then one yellow, moved the second red down one keeping the first red on top. There can't be another one with 2 reds on top. So then we took this red and moved it to the second position. That's one that I already had. It does because then we moved our starting red to the third position. We already had we put it in the third position because we already had a one top red. (Meeting transcript 9/7/13, lines 29-31).

For the second claim, T 7 described the following argument to the instructor:
So then I used two reds and so to approach that I kept the first red always on the bottom. So I can get only three options with where the red can go. Then I switch red to the third position, so I get all red on the bottom. So then I went to 1 yellow with 3 reds and moved my one yellow to different spots. (Meeting transcript 9/7/13, lines 39-49).

The instructor asked both T7 and her partner if they were both convinced by their arguments and they nodded their heads in agreement (Meeting transcript, 9/7/13, line 62). It should be noted that the other teacher pairs gave arguments to the instructor but the instructor found their initial arguments were not convincing. As a result, four teacher pairs were asked by the instructor to reorganize their initial work. (Meeting transcript 9/7/13, lines 133; 136; 148; 202).

During the second cycle of tasks, there was only one claim made that the argument was convincing when the instructor asked T2 "Do you think you have them all?" (Meeting transcript teachers' work $10 / 2 / 13$, lines 157) and T2 replied "Yes." (Meeting transcript teachers' work 10/2/13, line 158). T2 gave the following explanation to the instructor:

Well, I mean if you do it like the tower problem and simplify it so you know what I am saying like if this is cheese, peppers, sausage. Then you could just add a mushroom or add pepperoni. Then so like the same thing here was pepper and mushroom, and added a pepperoni. So like we just added the other 4 toppings we didn't include. We both agreed that order didn't matter. (Meeting transcript teachers' work 10/2/13, lines 157-164).

A second claim was made by T 5 for solving the second cycle pizza problem. T5 said "I'm trying to think of how many there are possible. It is more if you are allowed to have duplicates for orders. There would be more if you said peppers pepperoni or pepperoni peppers." (Meeting transcript teachers' work 10/2/13, lines 53-55). The instructor asked "Do you think you have them all?" and T5 replied "I don't know!" (Meeting transcript teachers' work 10/2/13, lines 60-63). This argument was coded as an incomplete, non-convincing argument by the researcher.

For the three-tall towers problem, there were 5 claims that teachers were convinced by arguments. First, the instructor asked the teacher pair, T7 and T8, "Are you convinced you have them all?"(Meeting transcript teachers' work 10/22/13, lines 93). T7 responded to the instructor "Yes, we are."(Meeting transcript teachers' work 10/22/13, lines 94). T7 described the following argument to the instructor:

We started with our 3 solids of each color. So then we said we could have yellow and blue. And in that case it could be two yellow one blue or it could be two blue one yellow. And we used placements, so blue could be in 3 positions for those 3 and the yellow. Then we said instead of yellow blue we can also have yellow \& red. Then we are done with our yellow. And then the only ones that are left are
the blue and red. So we are done with all of our just 2 colors in the tower. Then we had our 3 color towers. And we had thought about each of these differently. (Meeting transcript teachers' work 10/22/13, lines 96-119)

From this point, T8 used recursion to explain the rest of the argument for solving the three-tall towers problem, selecting from 3 colors (Meeting transcript teachers' work 10/22/13, lines 122-138).

Second, T7 told the instructor about her idea of controlling for a variable (Meeting transcript teachers' work $10 / 22 / 13$, line 153). T7 provided the following argument to the instructor:

I had originally thought a red on the top a blue or yellow will alternate on the bottom. If the yellows are on top, the red and blue will switch. The third one would be the blues on top. (Meeting transcript teachers' work 10/22/13, lines 155-157)

The instructor asked T7's partner "What do you think of her argument?" (Meeting transcript teachers' work $10 / 22 / 13$, line 158) and the partner replied "I think it works!" (Meeting transcript teachers' work 10/22/13, line 159).

There was a third time where a teacher pair claimed to be convinced of an argument for the three-tall towers problem. The instructor asked T2 and T3 "Can you convince me, that there are only 9 with red tops and only 9 and you can't have any more?" (Meeting transcript teachers' work 10/22/13, line 181). T2 and T3 had organized their towers in three groups of 9 three-tall towers by controlling for a variable so that either all red, yellow, or blue cubes were on the tops of the towers. The following arguments were explained by T 2 and T 3 to the instructor:

T2: So if we moved it once it would be this; if we moved it twice it would be one of the yellows with a red on top.
T3: It would be the same thing we are keeping the red on top, so we are keeping the red on top. If I move it once, the reds will be on top but then if I move it again it has two categories and that is not what I want.

T2: Right. And then this is the same thing with this one but with blue....And then this one....The only way you can have a red on top with two of the same colors on the bottom with a yellow. And then this one has the same thing red on top with two of the same color on the bottom where the constant is either yellow or blue. You can either get a yellow or blue or a blue or a yellow. And if you were to move it this would be one of these. (Meeting transcript teachers' work 10/22/13, lines 186-199).

The instructor said to T 2 and T 3 that their argument was different than the others and asked the teacher pair to record their work (Meeting transcript teachers' work 10/22/13, line 208). The instructor then picked three teacher pairs to present their work (Meeting transcript teachers' work 10/22/13, line 283).

A fourth time, teachers claimed that an argument was convincing was when the instructor asked T7 and T8 "What's your convincing argument why you have every possibility of two of one color and one of the other?" (Meeting transcript teachers' work 10/22/13, line 296). T7 explained the following argument to the instructor:

So we said if you have the yellow and blue, for example. If we had it 2 yellow and the one blue there is only 3 ways to do that. Our single cube can move to each of the positions. If we were to move that again, we would either need a fourth row or we would be repeating it. (Meeting transcript teachers' work 10/22/13, line 297).

The instructor asked "Does everyone buy that?" (Meeting transcript teachers' work 10/22/13, line 298-299) and several teachers responded yes in unison.

There was a fifth claim made by a teacher that an argument was convincing. T2
and T 3 were presenting their solution of three groups of 9 three-tall towers and explained the following argument to the teachers:

T3: So we kind of organized it with the first 3 in each group is the following color. And then the next two is where you held that particular color constant. So for the first group where the red was constant you can only then have one yellow in position 2 and position 3 which would be the second and third tower. And then
if you do the same thing with the blue it could then only be a second position and a third position.
T2: Then working with two colors but keeping red as a constant you can only have just 2 of yellow if you move it around you are going to come up with something else. So you could only have 2 yellow or 2 blue to be no repeats, no duplicates. And then the same thing with the yellow and the blue we just switched them, the position. (Meeting transcript teachers' work 10/22/13, lines 340-341).

After the explanation, the instructor asked the teachers if they were convinced by the argument and T8 shouted "Yeah!" (Meeting transcript teachers' work 10/22/13, line 342343).

7.4.1.2 Summary of Evaluation of Arguments from Teachers' Work

Teachers claimed that 8 arguments were convincing while working on problems throughout the three cycles. There was only one argument that teachers found was not convincing while working on the second cycle pizza problem. This argument was coded as an incomplete, not-convincing argument by the researcher based on the teacher's comments. It is possible that teachers may not have been as confident in their ability to determine whether arguments were not convincing as it was their first meeting of the Lesson Study course.

7.4.2 Teachers' Evaluation of Arguments of Research Students' Work

For the on-line discussions, the instructor provided some questions that asked teachers to make claims about whether an argument from the research students was convincing. Teachers were asked to watch videos and read scholarly articles about students participating in mathematical tasks. After watching the videos and reading the articles, teachers made claims on-line in response to questions asked by the instructor about the research students' work.

7.4.2.1 Evaluation of Arguments by Cycle from Research Students' Work

In Unit 3, teachers were asked to watch the video of Stephanie and Dana in the third grade building 4-tall towers selecting from two colors. After watching the video, teachers were asked to respond whether the arguments of Stephanie and Dana were convincing. Five teachers wrote on-line that they were completely convinced by Stephanie's and Dana's argument (Unit 3 on-line discussion thread, line 1, 14, 41, 46, 48). Five teachers claimed that they were not convinced by Stephanie's and Dana's argument and were coded as incomplete based on the explanation provided by the teacher. The responses of the five teachers that were not convinced by Stephanie's and Dana's arguments follow:

Stephanie's argument for having 16 towers four tall was not convincing. She only mentioned that she had them all since she was checking and could not find more. This is not convincing since there is the possibility of missing some. She did not describe any method used in creating them. Dana's argument was not convincing either since she stated that you should always assume there is more until you find out the answer. She did not give any reasoning or method to how to determine the answer or know when you have them all. (Unit 3 on-line discussion thread, line 6)

I do not feel that Stephanie and Dana have a convincing argument. Both Stephanie and Dana believe that they have tried many different ways and are convinced that they have made all the possibilities but do not supply a convincing argument as to why they are sure. (Unit 3 on-line discussion thread, line 26)

I really don't feel that their argument is very convincing. They really don't explain why they came to the conclusion and how they determined that all possibilities are done. At the end, Stephanie explains that if you take one red and one blue away from the tower of four they would be the same. However, she is not thinking that there would have to be more color combinations because they are working with two colors. (Unit 3 on-line discussion thread, line 30)

I do not think Stephanie and Dana's argument is completely convincing. I think they are on the right track but they still are not sure how to explain if there are truly only 16 towers. (Unit 3 on-line discussion thread, line 34)

I am not completely convinced by their argument. It appears that since she was "checking and checking" she used a guess and check method, but did not have a systematic way to see if she had all the possible outcomes. I do think for a third grader this is the beginning of a convincing argument, but she must extend further to find proof as to how she can justify the 16 towers that they did find. (Unit 3 on-line discussion thread, line 39)

For the Unit 4 discussion thread, teachers were asked to watch videos about Stephanie and Dana working on the 4-tall towers problem as third-graders and the 5-tall towers problem as fourth-graders as well as five other video clips showing fifth-grade students working on building towers selecting from two colors using the Guess My Towers Problem. Teachers were also asked to read the following chapters in Combinatorics and Reasoning (Maher, Powell, \& Uptegrove, 2010): chapter 4, which examines strategies and representations used for solving towers problems; and chapter 5, which examines how Stephanie and their classmates built their conceptual understanding of Milin's inductive argument.

After watching the videos and reading the chapters, teachers were asked about how the children's strategies to solve the towers problem in third grade were different than the strategies used in fourth grade and which of their arguments were convincing. Three teachers made the following claims regarding research students' work that the teachers thought were convincing:

In $4^{\text {th }}$ grade, they immediately started by "doing the opposite." This was convincing to me because that is how I found the towers when I did this activity. (Unit 4, on-line discussion thread, line 1).

I thought Dana and Stephanie's arguments of families was convincing. The way that they moved one red cube and then did the same with two red cubes stuck together moving in the same fashion as one red cube. (Unit 4, on-line discussion thread, line 11).

The girls also noticed both elevator and staircase patterns, which helped them to find some of the possible combinations. Both of the pattern arguments were
convincing for that portion of the towers, and definitely showed growth in their reasoning skills. (Unit 4, on-line discussion thread, line 29).

The following three teachers posited that they were not convinced regarding research students' arguments and were coded as incomplete, non-convincing arguments by the researcher:

They used a similar strategy in fourth grade but this time they noticed the pairs that could be created. They kept the towers in pairs and again checked to see if the new towers they built were duplicates of towers they already had since they were convinced they would never know how many possible towers could be created. Their arguments are not fully developed at this grade level and need more convincing. (Unit 4, on-line discussion thread, line 7).

When tackling this problem in third grade it sounded like Stephanie was changing the positions of the one blue cube at first and then she went to making opposites. The interesting thing when they were in $4^{\text {th }}$ grade making the opposites was that Stephanie called the opposites they were building duplicates. So I am unsure if she knew the meaning of a duplicate. I believe that in both grades the students were on their way to having a convincing argument but didn't fully get there. (Unit 4, on-line discussion thread, line 41).

When they were in fourth grade, they started organizing their thoughts a little better. They created families of blocks based on patterns they saw. I found the fourth grade arguments much more convincing. It was clear to me when they explained the elevator pattern of the blocks moving from one position to the other. (Unit 4, on-line discussion thread, line 43).

A second question from the unit four on-line discussion asked teachers whether they found Milin's inductive argument convincing. All ten teachers wrote on-line claiming that Milin's inductive argument was convincing (Unit 4, on-line discussion thread, lines $1,7,11,21,29,36,41,43,45,47)$..

7.4.2.2 Summary of Evaluation of Arguments from Research Students' Work

Teachers claimed on-line that they were convinced by research students' arguments 18 times throughout the three cycles. There were 8 arguments from the research students that teachers found were not convincing. The 8 arguments were coded
as incomplete, not-convincing arguments by the researcher based on the teacher's on-line response. It is possible that teachers were more confident with their ability to claim whether or not research students' arguments were convincing or not convincing on-line.

7.4.3 Teachers' Evaluation of Arguments of Students' Work from Class Visits

During the debrief meeting after the in-district classroom visit, teachers were asked to make claims about whether a students' argument was convincing. The instructor asked the teachers about which students' work they wanted to discuss. Most samples of the students' work were put on the screen for teachers to discuss. However, there were times when teachers verbally discussed students' work but the students' work was not shared on the screen.

7.4.3.1 Evaluation of Arguments by Cycle from Class Visits

For the first cycle four-tall towers problem, teachers claimed that 3 arguments were not-convincing. The 3 non-convincing arguments were coded by the researcher as incomplete based on the following comments from the teachers at the meeting:

T8: In the group 2, they were both solids. So if they were to be switched they would stay exactly the same. For example, there are four red and four yellow.
R1: Okay. What do you think? Convincing? [Teachers responded in unison, No.] What could they have said?
T7: This is what this group did the whole time. I don't know. You were with this group, right? All they kept saying to me was like, we switched it...it would, it would be good. So they, they just proved that they made opposites of each other, but they didn't really. I don't know if they understood the task because they didn't really say anything about how this is the most amount of towers they can make. (Meeting transcript 9/17/13, lines 165-167)

T7: We started with yellow and one red. Then we moved the red down one space every time and move the yellow to the top every time. Then we did the opposite with three red and one yellow. Then we did two of each color; two red, two yellow. We moved the two red down one cube and took the one yellow on the bottom and move it to the top. We put the two yellows on top, on top of each other, and had two reds on the bottom. Two yellows on top of two reds. Oh, two reds on the bottom. Then we moved one of the reds on top of the two yellows.

R1: Okay. It's gets hard not only to read but to understand what they're doing. Um, but that is a recursive argument. And that's a good argument, okay? Um, so that was, um, the solids here, okay; and here's the ones again with the alternating pattern. Are they convincing you?
T3: More than the last one. (Meeting transcript 9/17/13, lines 147-149)
T3: You can't have any other combination in this group because of the two yellow on the top, two red on bottom, and then we did the opposite; two red on top, two yellow on bottom.
R1: Okay, is it convincing?
T3: Well, within that group; but...
R1: Good within that one little group two, yes they have it, but that doesn't yet convince us that they have all possible towers; all 6 of them that are two red and two yellow. (Meeting transcript 9/17/13, lines 69-72)

For the 2 of the non-convincing arguments, students had used the opposite strategy to solve the first cycle four-tall towers problem. One argument used recursion and teachers found the argument to be more convincing than the previous argument given. It should also be noted that it is possible that teachers were may have been reluctant to share their thoughts as to whether an argument was convincing or not because this was the beginning of the course. There were 2 instances where the instructor asked the teachers whether an argument was convincing, but the teachers were silent (Meeting transcripts 9/17/13, line 86; 10/22/13, line 124).

For the second cycle pizza problem, one claim was made that a student's argument was convincing during the debrief meeting. The following argument was given:

First, we looked at the pizzas with only one-topping and got four different pizzas. We know this is right because there are only four toppings. Second, we looked at the pizzas with two-toppings and we got six pizzas. We know this because we took the pepperoni and grouped it once with each other topping. Then we took the mushrooms and grouped it once with the other toppings, except for pepperoni, because it was already grouped with it. Then we took sausage and only grouped it with peppers because it was already grouped with mushrooms and pepperonis. Third, we looked at the three-topping pizzas. (Meeting transcript in-district class visit $10 / 22 / 13$, line 112).

The instructor asked if the argument was convincing and T6 replied "Yeah. They just said that they were grouping them with the other ones, and then they didn't do because it was already there." (Meeting transcript 10/22/13, line 114).

For the third cycle three-tall towers problem, two claims were made by teachers that the students' arguments were not convincing and were coded by the researcher as incomplete. The following argument was shown on the screen to the teachers and read aloud by T10:

These Two blocks are the same, and the blocks that made the pattern are different. So in the blue category, there will be one yellow block on a stack of two blue blocks. This helps prove our theory. We also have a random category where each tower contains one different block. So, one of our towers is red on the bottom, blue in the middle, and yellow on top. If we changed the order of the blocks, it would have a different tower we already have. (Meeting transcript debrief 11/20/13, line 25).

The instructor asked the teachers which parts of the argument were convincing and notconvincing and T3 responded "It is not really convincing anywhere. He gave us one example and then his partner said to... then he switched it up." (Meeting transcript $11 / 20 / 13$, line 27-29). For this sample of work, the student used a cases argument and controlled for a variable when solving the third cycle three-tall towers problem.

The second argument that a teacher said was not-convincing from the third cycle three-tall towers problem was one where the student wrote the following argument about his three groups of 9 three-tall towers: "I know I got all of them because all of the groups I got the same amount exactly." The instructor asked if the argument was convincing and T10 replied "No." (Meeting transcript 11/20/13, lines 126-127). For this sample of work, the student also used a cases argument and controlled for a variable when solving the third cycle three-tall towers problem.

7.4.3.2 Summary of Evaluation of Arguments from Class Visits

Teachers claimed that they were convinced by students' arguments from the indistrict classroom visit only 1 time throughout the three cycles. There were 5 students' arguments from the in-district classroom visit that teachers found were not convincing. From the 4 not-convincing arguments, the researcher coded 5 arguments as incomplete based on the teacher's comments during the debrief meetings on $9 / 17 / 13,10 / 22 / 13$, and $11 / 20 / 13$. In two of the non-convincing arguments, the opposite strategy was used and recursion was used in one of the non-convincing arguments. For the other two nonconvincing arguments, students used case arguments and controlled for a variable.

7.4.4 Teachers' Evaluation of Arguments of Current Students' Work

During the regional meetings, teachers shared their own student's written samples of work with the other teachers. As teachers shared their written students' work, the instructor asked the teachers if they thought the students' arguments were convincing. Teachers took turns reading their students' work to the teachers while the students' work was projected on the screen.

7.4.4.1 Evaluation of Arguments by Cycle of Current Students' Work

For the first cycle four-tall towers problem, teachers claimed that 7 arguments were not-convincing. One of the following non-convincing arguments was coded by the researcher as invalid based on the following comments from the teacher at the meeting:

This group was a group of boys. And they immediately went to the math of it and said that there are two colors and they have to be four high. Two times four is 8 . And then once they made the first 8 blocks they realized they could do opposites. So they doubled them and made 16. (Meeting transcript students' work $10 / 2 / 13$, line 326).

The instructor asked the teachers about what they thought of the argument (Meeting transcript students' work $10 / 2 / 13$, line 329). T3 responded that she liked that the students
used math but admitted their argument did not make sense mathematically (Meeting transcript students' work 10/2/13, lines 326-333). The other 6 arguments were coded by the researcher as incomplete and non-convincing. The 6 excerpts of arguments follow:

T1: We couldn't make anymore because we think we made all the patterns plus we found all the blocks and [pause] we all worked together to create these patterns. So again, they couldn't really explain.
R1: Well they are. That's their reason. Is it a good convincing argument? What do you think? Are you convinced? We're done because we couldn't make any more.
T3: Well she said all the patterns, so...
R1: We made all the patterns, right but does that help you?
T3: A little bit.
R1: It does? Are you convinced?
T3: Well I mean for this group because of the level.
(Meeting transcript students' work 10/2/13, lines 103-109).

T3: They said two of the same color is touching and 1 color isn't touching. So they kind of said to me that two of the yellows are touching. Then they alternated touching Then they alternated them so that none of the same color is touching. Both colors are next to their twin.
R1: What do you think of that I think if you wanted to get a convincing argument for the last six towers? What might you do? How do we know we have all the towers that are exactly two one color and two of the other. What would you ask them to do? Are you convinced?
T3: That is the most convincing that I have read. (Meeting transcript students' work $10 / 2 / 13$, lines 319-321).

T4: All of them gave examples. All my students pretty much said the same thing about opposites. At least he said for this one it was going diagonally. But he didn't add anything else to it.
R1: So what do you guys think?
T4: It is a good start. (Meeting transcript students' work 10/2/13, lines 429-433).

T6: this is a girl that had a really good argument when she was talking to me, but she didn't finish. Her last sentence just stops. But she starts to talk about the twos really well and this is her drawing. So she again has the stair case and then she has the opposite. And she did the twos stuck together. Um, what is she saying?
R1: If you read what she says; but not yet. Look at her second grouping where she has 2 of one color and two of the other. What did she do?
T6: She has a constant.
R1: She has a constant on the top do you see that? And in the third group, there is the same thing, right? A constant is on the top. Okay.

T6: She said I used two of each color. The first one in the set has the colors together. So there's two of one color on the bottom and two of the other color on the top. (Meeting transcript students' work 10/2/13, lines 600-610).

T7: They said that there can only be two completely one cube tower (only two colors). There can be four, 3 red one yellow towers because there are only four high towers and that is the same for red. And then they said for two red and two yellow towers there can only be 2 because there are only two sides to switch to make two different towers. They were talking about two red on top and two red on the bottom. Then they said that for the towers in the center there can only be two because there are only two colors to put in center of the tower. And then they said that for the towers that have a pattern, there can be two because there are only two colors to make up the pattern starting from the top (or bottom). That was the alternating one.
R1: Right, right.
T7: So this is much better than their argument on the front. (Meeting transcript students' work 10/2/13, lines 679-681).

T8: She said group one has 2 reds together every time you move it to the top, middle, and end. I guess she was saying that the 2 reds are at the top; middle; and at the bottom. She said for group 2 it just has four yellows and 4 reds on each. For group 3, it only had one yellow so the yellow cube started on top, and went down one every time and it stopped at the bottom. For group 4 all the reds were separated. Uh, for group 5 the red cube started on the top and went down one every time and stopped at the bottom. And then at the end she said for each group, I couldn't make any more because there was no more possible combinations and if I added one more to it; it would be 5 .
R1: What do you think? Are you happy with her thinking? Do you think she should have done something else? Are you not sure? Is it convincing to you? Is any of it convincing?
T3: I like how she talked about moving one down.
R1: Good. Again, you want them to be able to... uh go back to her picture. You want them to be able to let you know that there can be no more towers in that group, okay, and that there aren't any other groups or any other ways to arrange. So I think that this is the beginning of something that could be a very nice convincing argument, right? Okay.
T8: She started with opposites and I said alright that is not working for me. Do it a different way. Okay. (Meeting transcript students' work 10/2/13, lines 787-796).

For the second cycle pizza problem, teachers claimed that 7 arguments were not
convincing. All 7 of the non-convincing arguments were coded by the researcher as
incomplete based on the comments from the teachers during the discussion. The
following are the excerpts of the teachers' responses:
T6: We organized the choices by toppings as we went on. When we got to a new topping, we took out all of the duplicates from the other toppings. For example, we started off, out with all of the pepper combinations. There were 8 of them. When we got to the sausage, there were only 4 combinations because there were 4 duplicates from the pepper. We did the same thing for mushrooms and pepperoni. The only thing left to do was to add one plain to our list, which we added. And then they said we got 16 .
R1: What do you think of their explanation of their argument? Is it convincing?
T6: They're just saying that they found all of them and they took out the duplicates. (Meeting transcript students' work 10/22/13, lines 232-234).

T5: There are 10 possibilities from the topping in order, I can reverse them and in the middle I can use them too. If all the ten combinations are reversed then it would still be the same. I, I think he understands about the whole duplication of it. But I think he just, maybe he could have done a little bit more were as maybe just even realize, okay, and we could do a plate. We could come up with; well he has the one with the all, then to make the next set of three combinations.
R1: So, is his argument convincing?
T5: No. (Meeting transcript students' work 10/22/13, lines 335-337).

T8: For group 2, I started with mushroom and then I did...two toppings; there are mushrooms in each one. And if I put another one I get three toppings; and she kind of went on to do that for each argument for each group. So, I don't know, what do you guys think? You think that works as an argument?
R1: Is it convincing? She's telling you what she did, right?
T3: I mean it could be if she just went in depth a little further. (Meeting transcript students' work 10/22/13, lines 362-366).

T8: So she...the five choices is plain and the single toppings. Then I combined all four of the toppings together. After that I took one topping and put it two toppings and not to get it to repeat. After that I took one topping and put it with one other topping to get it to repeat. So I guess for the one-topping and the twotopping, she's doing the three with all the constants. But she doesn't really say that she kept a constant or anything like that.
R1: What is her argument that she writes, is it convincing?
T8: I don't really think that it's that convincing.
R1: No, it's really not. Why not? She is telling you what she did. But she is not really giving an argument why there are exactly that number pizzas in each group. She is not really telling you why.

T8: I feel like that's the case most of the time. They just tell you what they do, instead of how. (Meeting transcript students' work 10/22/13, lines 386-390).

T3: They used a system. And they use it by describing arrows. So they kind of showed me that they listed each of individual toppings; so peppers, sausage, pepperoni, mushrooms. And then they went peppers sausage with the pizza, pepperoni sausage pepperoni with the pizza, pepper sausage pepperoni mushrooms and they kind of used the arrows to come up with the 16 combinations. So I thought that was pretty good. They were...understood it pretty quickly. And...they were pretty decent with their explanations. This is as far as written wise that they could give me. And that was their convincing argument with that.
R1: Okay, so is it convincing to you?
T3: I liked the way that they organized it with the arrows but there is no real argument there about why they have all of them. (Meeting transcript students' work 10/22/13, lines 491-500).

T10: Then it says, next we put two different toppings without repeating them again. We got 6 total pizzas for two toppings, and that makes 12 pizzas total. R1: Hold on. Is that convincing...why they have two... 6 two-toppings?
T10: Not really.
R1: No, their argument there falls apart. Go ahead...three-topping...
T10: We put three toppings on each pizza without repeating. It's pretty much what they said they just did them without repeating which isn't very convincing. (Meeting transcript students' work 10/22/13, lines 574-582).

For the third cycle three-tall towers problem, teachers claimed that 2 arguments
were not convincing. The non-convincing arguments were coded by the researcher as incomplete based on the comments from the teachers during the discussion. The following are the excerpts of the teachers' responses:

T10: We know there are no more towers in each group because if you added another there would be a duplicate. For example, three towers each with the same colors and then one more. There is not much on top there.
R1: So what do you think of the argument?
T10: Not good.
R1: It is not, because what they did was they are saying basically you can't find any more because you will get a duplicate. That's not a good argument but interesting code.
T10: Yeah I thought their grouping was good. (Meeting transcript students' work 10/22/13, lines 30-34).

T8: So for group one for each tower I had one color. For each tower I had each color on the top and then followed by the 2 other colors switching. I did it for all three. So for group 2 she kind of did the same thing as the first one. For group 3, for the first 3, I had the blue go up one every time. For the last 3, I had the yellow go up every time. Okay, alright, because she drew the cubes a little backwards on that. Group 4 for the first 3 I had the red go up every time then the yellow every time. So she is really just talking about how they moved but not really saying you know.
R1: Good. That is really good that you guys are picking up. She is explaining what she did she has a very, very good strategy but she is not saying that therefore there can't be any more because I have taken that single color and put it into each of the three positions and there is no other place to put it. (Meeting transcript students' work 10/22/13, lines 318-323).

7.4.4.2 Summary of Evaluation of Arguments of Current Students' Work

Teachers claimed that they were not convinced by current students' arguments 16 times throughout the three cycles. From the 16 non-convincing arguments, the researcher coded 15 as incomplete based on the teacher's comments during the regional meetings on $10 / 2 / 13,10 / 22 / 13$, and $11 / 20 / 13$. Only one non-convincing argument was coded as invalid by the researcher based on the teacher's comments during the discussion at the 10/2/13 regional meeting.

7.4.5 Summary of Teachers' Evaluation of Arguments

As teachers worked on the tasks themselves, teachers claimed 8 arguments were convincing and 1 argument was not convincing. For the on-line discussion of research students' work, teachers claimed 18 arguments were convincing and 8 were not convincing. During the in-district classroom visits, teachers claimed 1 argument was convincing and 5 arguments were not convincing. When teachers discussed samples of students' work, teachers claimed 16 arguments were not convincing.

Overall, teachers were convinced by 27 arguments and not convinced by 30 arguments throughout the three cycles. The data indicate that the PD intervention helped
teachers to determine whether or not an argument was convincing. Teachers described 29 of the non-convincing arguments as incomplete and were coded as such by the researcher. The instructor responded with the following to a student's work shared by T8 regarding convincing arguments:

I think again, it is a process and she is coming along in the process because in the first two tasks, I don't remember seeing all this writing, right? I think also that is very nice, even if she is just explaining what she did, she is writing. And once you get them writing, you can get them to write a convincing argument. (Meeting transcript, 11/20/13 current students' work, line 307)

Providing opportunities for teachers and students to make convincing arguments and critique whether arguments are convincing or not convincing helps teachers to attend to students' reasoning.

7.5 Gang of Four Pre- and Post-Assessment

After watching the Gang of Four VMC video, teachers were asked to describe each example of reasoning recognized by the children in the video; whether or not the argument is valid and/or convincing; and justify why or why not the teachers were convinced by the argument on a pre- and post-assessment. A scoring rubric by Maher, Palius, Maher, Hmelo-Silver, and Sigley (2014) was used to determine complete or partial arguments for the two cases arguments and the inductive argument that teachers' identified on the pre- and post-assessment and to measure if any changes occurred. The scoring rubric that was used follows:

Cases Argument 1: Stephanie's cases argument for towers three cubes high that are selected from two colors (blue and red) resulted in a set of eight unique towers. A complete argument includes each of the following cases. Note that written responses by study participants may well be fragmentary and use much less precise language than the following:

- All blue cubes or not red cubes, resulting in only one tower.
-One blue cube and two red cubes, resulting in three unique (different) towers.
-Two blue cubes stuck together and one red cube, resulting in two unique towers.
-No blue cubes or all red cubes, resulting in one tower.
-Two blue "stuck apart" or separated by one red cube, resulting in one tower.
Cases Argument 2: An alternate cases argument for towers three cubes high that are selected from two colors (blue and red) proposed by several of the children resulted. Several of the cases overlap completely with the ones articulated by Stephanie. Participants may describe the organization of the third case as better (e.g., preferred, more elegant) than the way Stephanie organized her cases, which bifurcated it into the third and fifth cases in the Cases Argument 1, above.
- All blue cubes or no red cubes, resulting in only one tower.
- One blue cube and two red cubes, resulting in three unique (different) towers.
- Two blue cubes stuck together and one red cube, resulting in three unique towers.
- No blue cubes or all red cubes, resulting in one tower.

Inductive Argument: This argument may be expressed with reference to towers of a specific height, as in the two features below. It also may be expressed in general form.
-When building towers that are selected from two colors, there are exactly two unique towers of height one. With a single position in the tower, the one cube can be (say) either red or blue.
-Two unique towers of height one can be used to generate all possible towers of height two. For each tower one cube in height, two different towers can be built from it. Starting with (say) a red cube in the first position, either a red cube or a blue cube can be placed in the second position. Similarly, starting with a blue cube in the first position, either a red cube or a blue cube can be placed in the second position. The resulting four unique towers of height two is double the amount, tow, that there are of towers of height one. (And so on for n-tall).
(Maher et al., 2014, p. 46-47)
There were two forms of case arguments. The scoring rubric was used to decide whether the argument was partially or completely described for the two cases. The rubric was used in a similar way for the third inductive argument to establish the following two criteria: "with two colors of cubes, there are two possibilities for a tower of height one and that each tower then has two possible choices for the color of a cube to be addend on for a tower of height two, and so on" (Maher et al., 2014, p. 37). Table 7.5 shows a comparison of the reasoning arguments in the pre- and post-assessments.

Table 7.5
Comparison of Reasoning Arguments in Gang of Four Assessments

Argument	Pre-Assessment		Post-Assessment	
	Partial	Complete	Partial	Complete
Case Argument 1:	3	3	4	6
Stephanie's Cases Argument Case Argument 2:	1	0	1	0
Alternative Cases Argument	1	5	2	7
Inductive Argument: Milin's Argument				

Sources: Pre- and Post-Assessment for Gang of Four Video

7.5.1 Gang of Four Pre-Assessment Case Arguments

Three out of ten teachers described complete case arguments on the preassessment for Case Argument 1, Stephanie's cases argument. The responses of the three teachers follow:

The argument made by Stephanie about creating towers of height 3 using 0 blue cubes, 1 blue cube, 2 blue cubes, and then three blue cubes was insightful. Stephanie leaves the blue, red, blue tower out of her list of 2 blues because she only considers towers where the blues are next to each other to fit into this category. She adds this on the end after she has built the tower of three blues. (T10, Gang of Four, pre-assessment)

Stephanie reasoned with a pattern of how many blue blocks could be in the tower rather than focusing on the red blocks. She started by stating that there is only one possible tower with no blue blocks (which is the tower of three red blocks). She then moved on to note that there could be one blue block in the tower and showed three possible towers with one blue block noting that it could be located at the top, middle, or bottom of the tower. She also mentioned that there were no other towers with one blue block since it started at the top and moved down each time, once it reached the bottom of the tower there was nowhere else it could be placed. After, she focused on towers with two blue blocks stuck together showing that there were two possible towers, (BBR and RBB). Then moved on to three blue blocks resulting in one possible tower. Stephanie then went back to the two blue blocks and said they could also be apart resulting in one more tower (BRB). Altogether, she found eighth possible towers. Her reasoning was valid and convincing. She was able to follow a pattern to show why there was only one tower with no blue, three towers with one blue, and one tower with three blue. A concern is raised with the three towers with two blue (T7, Gang of Four, preassessment)

Then Stephanie gives her reasoning. She drew out the pattern. She was trying to convince Jeff that there are 8 ways to build towers of height 3 . She drew out her patterns. First, she began drawing out all the towers with 0 B. There was only 1 RRR. Then she listed out the towers with 1 B . There were $3-B R R, R B R$, and RRB. She later explains that she used the strategy of moving the B down a level each time to make sure she did not miss any combination. Then she listed all the combinations using 2 B stuck together. There were 2 - BBR and RBB. Next she listed all the ways of 3 B . There was just $1-\mathrm{BBB}$. Last she thought of all the ways to have 2 B not stuck together. There was just 1 - BRB. (T9, Gang of Four, pre-assessment)

Three of the teachers described partial cases arguments for Case Argument 1, Stephanie's cases argument on the pre-assessment. The partial cases arguments of the three teachers follow:

Stephanie on the other hand created the towers according to having specific colors stacked on top of one another (blue stacked together or red stacked together) and then she considered if the colors were separated. Stephanie made a convincing argument and was easily able to articulate her reasoning to her classmates using her picture and verbal reasoning. (T3, Gang of Four, pre-assessment)

During the second segment when Stephanie was explaining her methods toward solving the problem and she comes to the conclusion that you should follow a pattern to solve the problem, well at least her method involved a pattern. Stephanie: "Well, you are following your pattern, but my pattern goes no red, one red, this was not meant to be like that. That's not- it's in the category of one blue. I could stick that in another category, but I want this to be in the category of one blue and not in the category of opposite of this one. And then I have this one red/red/blue. So, to you - you might put that way at the end of the line but I put it right here." I think that finding a pattern with this type of problem allows for you to justify that there are absolutely no more options available. I think that Stephanie's reasoning was the most valid because she spent most of her time trying to convince Jeff that her answer was correct and that her patterns she used worked for her to get to the correct response. Throughout Stephanie's explanation she convinced the entire group that the easiest way to solve this problem was to make patterns. (T2, Gang of Four, pre-assessment)

Stephanie: Stephanie talks about different possible combinations that she could make with the blocks that she is given. At one point in the conversation she lists the different combinations that you can make with three blocks. This is a very straight forward argument. "Stephanie: Here is one red/red/red, blue/blue/blue and then I go like red/blue/blue, blue/red/blue-"Stephanie continues to work with the colors this way and "moves" blocks down. Stephanie's argument was very unclear. I think Stephanie is doing a good job explaining that specific example;
however, her reasoning does not convince me that she could use her method to make a prediction with x amount of blocks. (T6, Gang of Four, pre-assessment)

Also, one teacher described the following partial cases argument on the pre-assessment
for the Case Argument 2, the alternative cases argument:
The argument made by Stephanie about creating towers of height 3 using 0 blue cubes, 1 blue cube, 2 blue cubes, and then three blue cubes was insightful. Stephanie leaves the blue, red, blue tower out of her list of 2 blues because she only considers towers where the blues are next to each other to fit into this category. She adds this on the end after she has built the tower of three blues. Milin and Michelle want the blue, red, blue tower to be included in the 2 blues description, so a little discrepancy between the students thinking about the systematic list existed. Stephanie's systematic list seemed to be a valid explanation and was convincing, as Stephanie was able to convince Jeffery of the reason that she did find all 8 possible arrangements. It was clear that Jeffery understood the pattern that Stephanie created after he rationalized and created the same list of towers on his own. I am convinced by Stephanie's argument that she found all of the possible arrangements, but had similar thinking to Milin and Michelle as she was explaining. I think in her pattern, it would have been best to include the blue, red, blue arrangement in the context of 2 blues instead of at the end. Leaving this off because the blues are not stuck together could be problematic for students when following this thinking on a different problem.
(T10, Gang of Four Pre-Assessment).
It should be noted that the teachers did not mention the words case argument on the pre-
assessment.

7.5.2 Gang of Four Pre-Assessment Inductive Arguments

Five of the teachers described complete inductive arguments on the preassessment. The responses of the five teachers that described complete inductive arguments follow:

Milin listed or created different towers using all red, one red or two reds in different positions throughout the tower. He exhausted all possible solutions with the one, two or three reds whether they were the colors were together or separate. He was then able to see if you wanted to increase the tower size, you simply could add two additional formations for every tower already created by adding either an additional red or an additional blue. His argument made sense, but he had a hard time verbalizing it to his classmates and providing proof of why he gave a specific answer. (T3, Gang of Four, pre-assessment)

Milin steps in to continue the explanation and states that it must be 8 because if you took the 4 previous towers of 2 blocks high and wanted to create towers of three blocks high, each tower could have either a blue or a red block added to the top. Because of this the blue, blue tower could become the blue, blue, blue or blue, blue red tower. Since each of the 4 previous towers has two possible new top pieces to make a tower of 3 , there are a possible 8 towers that are three blocks high. Milin's thinking is valid and convincing. (T10, Gang of Four, preassessment)

Milin reasoned with a pattern from the basic tower one block high which is either one blue or one red, resulting in two outcomes. He then reasoned that to build a tower two blocks high, he would need to put one more block on each of the towers that were one block tall, and since there were only two options for the color, there were two resulting towers built from each of the basic towers, resulting in four possible towers that would be two blocks high. He followed this reasoning and pattern to say there would be eight different towers three blocks high since each of the four towers that were two high would have two options for the third block, doubling the previous amount of towers. His reasoning formed a valid argument that was convincing to his audience. Since he begins with the most basic example, it is clear to see why there are only two outcomes. Building from the basic tower, he is able to clearly show why there are only two options built from each of the previous towers since he can focus on the options for the one block being added to the tower rather than having to focus on the entire tower. From this reasoning, he is able to determine that for every block added to the height of the tower, the options for the tower would double from the amount of towers, one less in height. (T7, Gang of Four, pre-assessment)

Then, Milin continued that for every new height, you could add 2 ways for each way you already had. So, when he had 1 R and 1 B , on each of those towers, you could add 1 more R and 1 more B . This doubled the number of towers you had. He continued to say with a tower of height 3 ; you could again put either an R or a B on top, doubling the amount of towers yet again. (T9, Gang of Four, preassessment)

Milin is the first student to recognize that the number of tower increases by a multiple of 2 when adding one block. This is a great observation and a good start; however, not a convincing argument. It is a valid argument; however, to be sure that the pattern holds true, the student must provide evidence of why the number of towers is increased by a factor of two for each block. Later on in the conversation, Milin does provide an explanation of why the number of towers is doubled every time you add a block. Milin says " For each one of them you could add one - no two more on because there is a black, I mean a blue, and a red -" When he says this he is saying for each way that you could make a tower, if you add a colored block you can have two towers for each that already exist by adding either a blue or a red to that tower. (T6, Gang of Four, pre-assessment)

It should be noted that the teachers did not mention the words induction on the preassessment. One teacher described a partial inductive argument on the pre-assessment which was as follows:

When Milin was asked about 4 he went back to his explanation that you would be adding 1 block to each arrangement of each of the columns to equal 4 high, but that means you would multiply the amount of columns by 2 because you are adding 2 more different arrangements. (T5, Gang of Four, pre-assessment)

7.5.3 Gang of Four Post-Assessment Case Arguments

On the Gang of Four post-assessment, six teachers described a complete case argument of the Cases Argument1, Stephanie's cases argument. The responses of the six teachers follow:

Stephanie took her explanation to the next level at the group discussion. She drew her tower examples and used a proof by cases method to diagram towers with no blue cubes, exactly one blue cube, exactly two blue cubes stuck together, three blue cubes, and two blue cubes stuck apart. (T4, Gang of Four, post-assessment)

Stephanie used a proof by cases to make her argument. She started with a tower of no blue and showed there was only one tower in that category. She followed with towers of one blue and explained that there were only three because the one blue could not go down another block. Then came the towers with two blue but she kept them stuck together which results in two towers. This caused some confusion with her classmates as they wanted her to have all the two blue together. She moved on to the one tower that had three blues and then went back to the tower with two blues but not together and showed there was only one tower in that category. (T7, Gang of Four, post-assessment)

Stephanie uses a systematic listing strategy to solve the problem. She begins by building a tower 3 -high with all red. Then, she lists towers with 2 red and 1 blue. She uses a recursive pattern moving the blue block down until she exhausted all the positions. (T9, Gang of Four, post-assessment)

Stephanie proved her solution using proof by cases argument. She started with no blue, one blue, two blues, three blues, four blues and then all blue. She used a diagram to show her solution. (T2, Gang of Four, post-assessment)

Stephanie begins her proof for 8 towers 3-tall using a proof by cases. She first shows a group of 0 blues which is only 1 because there is only 1 color that is not blue. Her next group is 1 blue in which she moves the blue through each position
in a staircase pattern saying that you couldn't move the blue 1 more spot, because then you would have a tower that is 4 tall. (T10, Gang of Four, post-assessment)

Stephanie used a proof by cases argument. She first made towers with no blue, one blue, two blue and three blue. (T6, Gang of Four, post-assessment)

Four teachers described partial cases arguments for the Case Argument 1, Stephanie's cases argument from the Gang of Four post-assessment. The responses of the four teachers follow:

In the second video, it seemed that Stephanie started to use the constant approach which is definitely a valid and convincing argument. She started with "no blue" and continued adding one blue, two blue, and so on. I am convinced by this because by using a constant and manipulating the constant, you are able to prove that you use all possible positions on the tower. Milan also demonstrates the same argument. (T1, Gang of Four, post-assessment)

Stephanie on the other hand, proved her argument by using proof by cases. She focused on "how many" of each color was contained in every tower. While explain her argument, Michelle jumped in to explain how he saw the "staircase" pattern where one color was the focus point in a group of towers. Michelle found it easy to follow Stephanie's argument so she went on to explain her argument in more detail. She then went on to explain to Jeff that each group of towers she created contained a specific number of either blue or yellow. She understood that you could have the same amount of either blue of yellow and then just change the position of each. This meant she could either keep the same colors toughing or not touching within the tower. In the end, Stephanie and Michelle were able to convince Jeff that there were 32 total towers that were 5 -tall containing two colors. (T3, Gang of Four, post-assessment)

Stephanie uses proof by cases. She starts out with no blue then 1 blue and so forth. She states that you could not have any more patterns because the blue because you would need to add an extra cube. She then clarifies by stating that once the blue cube is to the bottom you cannot make any more patterns. I find her argument valid also because she is explaining that once the blue is to the bottom all possibilities have been done. Although each group had a different approach to their argument I felt that they each had convincing/valid arguments. That identified how they solved the problem by stating how they knew when they were done. (T5, Gang of Four, post-assessment)

Stephanie used a proof by cases method, by keeping 2 of the same color stuck together. On page $7-8$ she was able to create a table and show how she was completing it and provide justification for why she was completing it in that way. On page 13 and 14 she explains her reasoning and proves her method to the others (So I've convinced you she repeatedly said). Her pattern is more complex than the
others. The fact that she is able to correctly complete the table in that manner and explain it step by step shows that her reasoning is correct. And she already figured out how many outcomes there would be if there were towers of 10 . This shows her understanding of the concept by her application to a more complex outcome, which would have been extremely difficult to find using a table. (T8, Gang of Four, post-assessment)

It should be noted that eight of the ten teachers specifically used the words proof by cases and then provided the description of Stephanie's case argument. Also, one teacher described the following partial cases argument on the post-assessment for the Case Argument 2, the alternative cases argument:

Stephanie used a proof by cases to make her argument. She started with a tower of no blue and showed there was only one tower in that category. She followed with towers of one blue and explained that there were only three because the one blue could not go down another block. Then came the towers with two blue but she kept them stuck together which results in two towers. This caused some confusion with her classmates as they wanted her to have all the two blue together. She moved on to the one tower that had three blues and then went back to the tower with two blues but not together and showed there was only one tower in that category. Her argument was valid and convincing but it would have been more convincing to her classmates and others if she kept all the two blues together, even if she had the two subcategories. When her classmates tried to convince her she should keep all the two blues together she made a good argument that her pattern is different than others and that she can arrange them in different groups if she wanted to but that was not the way she was doing the problem. (T7, Gang of Four Post-Assessment)

7.5.4 Gang of Four Post-Assessment Inductive Arguments

For Milin's inductive argument, seven teachers described complete inductive arguments on the post-assessment. The descriptions of the seven teachers follow:

Milin explained that the base of the tower could be either red or blue making two options for a one-tall tower. For the second position in the tower we could have either a red of a blue which meant that each of the original one-tall towers could now create two more towers that would be two-tall. Milin kept a constant for the base the kept the base and second position constant, then kept the base, second position and third position constant, etc. Milin used inductive reasoning to explain why there could only be eight tower options that are three-tall and picking from two colors. (T4, Gang of Four, post-assessment)

In the videos Michelle starts to draw and explain an inductive argument. She is
having difficulty so Milin helps out. Throughout the two videos I find their arguments valid. They explain that you add a color to each tower to create more. They state that as they are drawing and explaining that since you only have two colors you cannot make any more towers. When asked about the towers of four I feel their argument was also valid. They stated, "You would add a red or blue to the eight towers which would make 16." Their argument shows that you are making another group without making duplicates. Stephanie uses proof by cases. She starts out with no blue then 1 blue and so forth. She states that you could not have any more patterns because the blue because you would need to add an extra cube. She then clarifies by stating that once the blue cube is to the bottom you cannot make any more patterns. I find her argument valid also because she is explaining that once the blue is to the bottom all possibilities have been done. (T5, Gang of Four, post-assessment)

Milin solved the tower problem by using an inductive argument. He was able to convince the audience that there were 32 total towers that were 5 -cubes tall containing two colors. His inductive argument explained the towers by building upon a base. He started his argument by explaining towers one tall, two-tall, three-tall, four-tall and five-tall. He started by explaining that when using towers that are only 1 -cube tall, there would be two total towers. He then went on to explain that there would be four total towers for two-tall. He then followed by three-cubes tall having eight possible towers. Milin justified his answer because he understood that from each previous tower height, two additional towers could be created from one single tower. By recreating two exact towers from the previous height, that you could add one yellow and one blue on top which would then create two different new towers. (T5, Gang of Four, post-assessment)

Milin's argument is convincing. He builds an inductive argument for multiplying the previous number of towers by 2 , starting by building towers 1 tall, then 2 tall, then 3 tall, etc. explaining that to each tower, there are 2 different colors of blocks to add to the top, doubling the number of towers. (T10, Gang of Four, postassessment)

Milin used an inductive argument. He explained that for each of the towers of the previous height a red or blue could be added to the tower so there are two towers that can be made from each of the previous so the number of towers is doubled. He started by showing there were only two towers one tall because there were only two colors and from each of those towers, he had two options for the next block. (T7, Gang of Four, post-assessment)

At first, Milin began by describing a pattern of multiplying by 2 . This is not a valid or convincing argument because Milan does not explain clearly what he is multiplying by 2 . If this was the case, 14 is a multiple of 2 ; however it will never be a solution to the tower problem. As Milan is questioned further, he explains his thoughts much more clearly. He says that when you have a tower and you want to add a block to make it taller, you only have 2 colors to choose from.

Because of this, each tower can make 2 more towers from it. Therefore, you are doubling the number of towers you have for each block you add to the height. (T9, Gang of Four, post-assessment)

Michelle and Milin seem to have a more inductive reasoning approach toward solving this problem. That is they are rationalizing their answer of 32 for 5 high by saying if you started with 1 high you solution would be two, 2 high would be 4 , 3 high would be 8,4 high would be 16, 5 high would be 32 . At first Michelle explained that doubling meant 25 would be the answer based off of what Milan said but then she began to explain and showed that you weren't doubling the towers (5x5) you are doubling their solution because you only have two colors. (T2, Gang of Four, post-assessment)

Two teachers described partial inductive arguments. The partial arguments of the two teachers are below:

Millin also uses inductive reasoning. He is able to accurately predict different towers tall by doubling the previous. He explained this clearly about how for each tower you can add either a blue or a red, therefore doubling the towers. I think his argument is convincing. (T6, Gang of Four, post-assessment)

Millan's reasoning was also inductive reasoning. He stated that he had to times by 2, but when asked to explain he struggled. On page 3 he said times the towers by 2 because 1 and 2 is 2 , and 2 and 2 is 2 (but then corrected and said 4). On page 6 he was able to identify Jeff's pattern as incorrect. On pages 6 and 7 I was unable to follow his explanation, but he seemed to know how to find the answer. Jeff did seem to understand what he was saying though. Millan is able to find the correct answer, but is unable to validly explain his reasoning. On page 16 he shows that he is able to find that towers of 5 had 32 possible outcomes. So I am unsure of his reasoning being correct, but he does know how to find the correct answer. (T8, Gang of Four, post-assessment)

It should be noted that eight teachers used the word inductive in their description.
Three teachers also described recursive arguments in the post-assessment. A table that shows the teachers' recursive arguments found from the Gang of Four pre- and postassessment is located in Appendix K. Two of the teachers provided descriptions of Stephanie's recursive argument and one teacher described a recursive argument by Jeff and Michelle.

7.5.5 Summary of Gang of Four Pre- and Post-Assessment

On the pre-assessment, 7 teachers claimed they were convinced by Case Argument 1, Stephanie's cases argument. On the post-assessment, all 10 teachers claimed they were convinced by Case Argument 1, Stephanie's cases argument. One teacher described a partial argument for the alternative cases argument on the preassessment and a different teacher described a partial argument for the alternative cases argument on the post-assessment. On the pre-assessment, 4 teachers claimed they were convinced by the inductive argument. On the post-assessment, 8 teachers claimed they were convinced by the inductive argument.

7.6 Summary of Reasoning Analysis

Based on the results of the reasoning analysis from this research, the PD intervention was effective in helping in-service middle-school mathematics teachers to attend to students' reasoning. Teachers' recognition of reasoning was examined in the following contexts: teachers doing the tasks themselves, teachers recognizing research students' reasoning from articles and videos during an on-line discussion, teachers recognizing reasoning from current students during debrief meetings after three in-district classroom visits, and teachers recognizing reasoning from current students' samples.

Case arguments and controlling for a variable were used frequently to solve the problems in all three cycles. It should be noted that the opposite strategy was used and identified frequently for solving the first cycle four-tall towers problem and the three-tall and five-tall extension problems. However, the opposite strategy was used fewer times to solve the second cycle pizza problem, the third cycle three-tall towers problem, and Ankur's Challenge.

There were times when heuristics and forms of argument co-occurred with solving the given problem. The most frequent co-occurrences were controlling for a variable and case arguments. Other strategies and forms of argument co-occurred less frequently compared with the co-occurrence of case arguments and controlling for a variable. It should also be noted that the co-occurrences happened more frequently when solving the third cycle three-tall towers problems and Ankur's Challenge.

Teachers also determined whether arguments were convincing or not convincing. Teachers were convinced by 27 arguments from students and other teachers using forms of argument such as induction, recursion, contradiction, and case arguments from problems in all three cycles. Teachers were not convinced by 30 arguments from students and teachers. Twenty-nine teachers described the non-convincing arguments as incomplete and only 1 teacher described an invalid argument.

The Gang of Four video post-assessment revealed that all ten teachers claimed to be convinced by Case Argument 1, Stephanie's case arguments. Only one teacher described a partial argument for Case Argument 2, the alternative case argument on the Gang of Four post- assessment. Case arguments were the most common identified form of argument from the Gang of Four assessments.

Eight teachers wrote they were convinced by Milin's inductive argument on the Gang of Four post-assessment. However, all ten teachers wrote they were convinced of Milin's inductive argument during the Unit 4 on-line discussion. The data indicate that teachers were able to recognize inductive arguments. However, teachers tended to avoid using inductive arguments as the data revealed that teachers only used inductive arguments three times when solving the problems throughout the three cycles.

Chapter 8 - Instructor Moves Summary

This chapter is an analysis of the instructor moves for the three cycles of tasks. The instructor moves are examined in three parts in the following contexts: as teachers worked on the tasks, as teachers participated in an on-line discussion threads about research students' work on the mathematical problems, and as teachers discussed current students' work samples brought by teachers during regional meetings and after the indistrict classroom visits. First, the types of questions asked by the instructor are examined. Second, pedagogical practices used by the instructor are examined. The chapter concludes with a description of the representations used by the instructor. Table 8.1 summarizes the instructor moves coded by context and cycle.

Table 8.1
Frequency of Instructor Moves by Context and Cycle

Moves Of Instructor	Teachers' Own Work			Research Students' Work			Class Visit Students' Work			Current Students' Work		
	C1	C2	C3									
Question Type												
Explanation	3	20	4	-	-	-	5	8	6	14	19	7
Justification	11	1	13	-	-	-	9	-	1	4	9	2
Generalization	6	-	1	-	1	-	1	-	-	2	4	-
Connection	-	18	-	-	-	-	-	-	-	-	1	1
Probing	16	37	39	-	1	-	27	12	19	28	21	9
Other Solution	9	2	13	-	1	-	-	4	3	5	14	4
Total Questions	45	78	70	0	3	0	42	24	29	53	68	23
Practices												
Anticipating	3	-	1	-	-	-	8	-	1	4	3	1
Monitoring	13	7	11	-	-	-	-	-	-	-	-	-
Selecting	-	1	7	-	3	-	5	3	3	-	2	-
Motivating	9	3	31	9	8	9	9	7	11	29	28	51
Waiting	-	18	14	-	-	-	9	3	2	10	7	2
Inviting	13	21	14	-	-	-	24	7	5	21	33	8
Re-voicing	9	4	31	-	-	-	19	7	11	26	43	19
Total Practices	47	54	109	9	11	9	74	27	33	90	116	81

*Note: C1, C2, C3 refer to first, second, and third Cycles respectively.
Sources: Meeting transcripts 9/7, 9/17, 10/2, 10/22, 11/20; On-line threads units 1-10

8.1 Instructor's Questions

Throughout the intervention, the instructor facilitated discussions with the teachers. During these facilitated discussions, the instructor asked different types of questions. The instructor's questions were examined in the following contexts: questions regarding teachers' own work, questions regarding research students' work, questions regarding students' work from the in-district class visit, and questions regarding current students' work brought by the teachers.

8.1.1 Questions Regarding Teachers' Work

Teachers worked on three cycles of mathematical tasks throughout the intervention. As teachers worked on the three cycles of problems, the instructor asked the teachers questions regarding teachers' work. There were times when the instructor asked questions regarding teachers' own work by using Unifix cubes to represent towers or pizza combinations. At times, the instructor asked questions as teachers demonstrated towers using the Unifix cubes to show models of solutions when solving problems during the intervention.

8.1.1.1 Questions Regarding Teachers' Work by Cycle

At the initial meeting on 9/7/13, 18 types of questions were asked by the instructor as the ten teachers from the southern region of New Jersey worked on the first cycle four-tall towers problem. Seven of the questions asked by the instructor as teachers worked on the first cycle four-tall towers were justification questions about how teachers were convinced their solutions were correct (Meeting transcript 9/7/13, lines 20, 21, 30, $34,69,77,112)$. The instructor also asked 6 probing questions as teachers worked on the four-tall towers problem. Probing questions were questions from the instructor that gave
teachers the opportunity to elaborate on their work (Meeting transcript 9/7/13, lines 20, $21,60,86,92,166)$. The instructor also asked 2 explanation questions as teachers worked on the first cycle four-tall towers problem, which asked teachers to describe what they did to solve the problem (Meeting transcript 9/7/13, line 54, 84); 2 generalization questions where the instructor asked T2 and T3 to clarify how to find the number of possible five-tall towers (Meeting transcript 9/7/13, lines 95-103); and 1 other solution question, which exposed teachers to varied solutions (Meeting transcript 9/7/13, line 235). It is possible that the instructor asked more probing and justification problems because it was the beginning of the course.

After the teachers were provided the opportunity to work on the first cycle fourtall towers problem, the instructors of the southern region cohort and northern/central region cohort called for the entire groups' attention to discuss the teachers' solutions. From this whole-group discussion, 27 additional questions were asked by the instructor of the teachers' cohort for the southern region of New Jersey. During the discussion of the four-tall towers problem, the less common questions that the instructor asked were: explanation, 1 time; as well as justification and generalization questions each 4 times. Other solution questions were asked 8 times; and probing questions, 10 times.

Seventy-eight types of questions were asked by the instructor when the teachers were solving the second cycle pizza problem. The more common asked questions as teachers worked on the second cycle pizza problem were: probing, 37 times; explanation 20, times; and connection, 18 times. Explanation and probing questions were asked frequently to clarify and elaborate on what the teachers did to solve the pizza problem. The instructor asked less common questions such as: justification, 1 time and other
solutions, 2 times as teachers worked on the second cycle pizza problem. It is possible that the instructor asked connection questions more frequently during the second cycle pizza problem because the instructor may have been hoping that the teachers would see similarities between the towers and pizza problems. For the second cycle pizza problem, the instructor asked less common questions such as: justification, 1 time and other solutions, 2 times.

As teachers worked on the third cycle three-tall towers problem, 46 questions were asked by the instructor. The more popular questions as teachers worked on the third cycle three-tall towers problem were probing 26 times, justification, 11 times and other solution, 7 times. Explanation questions were asked by the instructor 2 times as teachers worked on the third cycle three-tall towers problem.

For Ankur's Challenge, 24 questions were asked by the instructor as teachers worked on the problem themselves. The more common asked questions were probing, 13 times and other solution, 6 times. Less common asked questions were explanation and justification each 2 times and generalization 1 time.

8.1.1.2 Summary of Questions Regarding Teachers' Work

As teachers worked on all three cycles of tasks, the instructor asked 193 questions. More frequent questions asked by the instructor as teachers worked on the three cycles of problems were: probing, 92 times; explanation, 27 times; connection, 18 times; justification, 25 times; and other solution, 24 times. A less common type of question asked by the instructor as teachers worked on the three cycles of problems was generalization, 7 times.

8.1.2 Questions Regarding Research Students' Work

The instructor posted prepared questions weekly for each Unit of the on-line discussion about research students' work. In addition to the prepared questions, the instructor responded to comments made by the teachers during the on-line discussion. At times, the instructor asked questions during the on-line discussion that were in addition to the prepared questions teachers were asked to discuss.

8.1.2.1 Questions Regarding Research Students' Work by Cycle

The instructor asked 3 questions regarding the research students' work to solve the second cycle pizza problem from Units 5, 6, and 7 of the on-line discussion threads. Regarding the second cycle pizza problem, the instructor asked the teachers on-line "What do you think of the idea of creating 3 topping pizzas by starting with the 4 toppings and eliminating one - for example, starting with peppers, mushrooms, pepperoni, and sausage - then eliminating peppers to get a mushrooms, pepperoni, and sausage pizza? I'm curious to hear what you all think about this strategy." (Unit 5, online discussion thread, line 28). The researcher coded this question as other solution.

A second question that the instructor asked on-line was in response to T 1 about her student's work for the second cycle pizza problem. The instructor asked T1 on-line "An 'a, b, c, d, e,' notation is unique - did the students use a key so you knew what each letter represented?" (Unit 7, on-line discussion thread, line 16). This question was coded by the researcher as a probing question.

A third question was asked by the instructor in response to one of T5's on-line comments about one of her students that solved the pizza problem by multiplying 4 times 4 (Unit 7, on-line discussion thread, line 30). The question was coded by the researcher
as a generalization question. The instructor asked T5 on-line "What would your student say the answer would be to pizzas, selecting from 3 toppings?" (Unit 7, on-line discussion thread, line 32).

8.1.2.2 Summary of Questions Regarding Research Students' Work

The instructor asked 3 questions regarding research students' work in addition to the prepared questions posted for the discussion threads. The following types of questions asked by the instructor regarding research students' work regarding the second cycle pizza problem were: probing, other solution, and generalization, each 1 time. It should be noted that questions such as "Isn't it neat to see growth when you give students an opportunity to revisit a problem?" and "Don't you think that Romina's proof is elegant?" were coded as motivating practices; not questions.

8.1.3 Questions Regarding Students' Work from Class Visit

There were 3 in-district classroom visits on $9 / 17 / 13,10 / 22 / 13$, and $11 / 20 / 13$. The instructor asked teachers questions regarding students' work after the implementations of the three cycles of problems during the debrief meeting. A few samples of the students' work from the class visit were placed on the screen for all teachers to see and discuss.

8.1.3.1 Questions Regarding Students' Work from Class Visit by Cycle

On 9/17/13, 42 types of questions were asked by the instructor regarding the students' work from the in-district classroom visit. Twenty-seven of the questions asked by the instructor regarding students' work from the class visit for the first cycle four-tall towers were probing questions. Other questions that were asked by the instructor about students' work for the first cycle four-tall towers problem from the class visit were justification, 9 times; explanation, 5 times; and generalization, 1 time.

At the second in-district meeting on 10/22/13, 24 types of questions were asked by the instructor regarding students' work from the in-district classroom visit. Twelve of the questions asked by the instructor regarding students' work from the second cycle pizza problem after the in-district class visit were probing questions. Other questions asked by the instructor regarding students' work for the second cycle pizza problem from the in-district class visit were explanation, 8 times and other solution, 4 times.

At the third in-district meeting on $11 / 20 / 13,29$ questions were asked by the instructor regarding students' work from the class visit. Nineteen of the questions asked by the instructor regarding students' work for the third cycle three-tall towers problem from the in-district class visit were probing questions. Other questions asked by the instructor regarding students' work from the third cycle three-tall towers problem were explanation, 6 times; other solution, 3 times; and justification, 1 time.

8.1.3.2 Summary of Questions Regarding Students' Work from Class Visit

Ninety-five questions were asked by the instructor during the classroom visit debriefing meeting. The types of questions asked by the instructor were probing questions, 58 times; explanation questions, 19 times; justification questions, 10 times; other solutions, 7 times; and generalization questions, one time. Probing questions were the most common question asked by the instructor for each of the three cycles of problems.

8.1.4 Questions Regarding Current Students' Work

Teachers attended three regional meetings on $10 / 2 / 13,10 / 22 / 13$, and $11 / 20 / 13$. At these regional meetings, teachers discussed students' work samples from their own
classrooms. The instructor asked questions about current students' work as teachers presented their students' work samples.

8.1.4.1 Questions Regarding Current Students' Work by Cycle

For the first cycle four-tall towers problem, 53 questions were asked by the instructor regarding current students' work. The most common type of question asked by the instructor regarding current students' samples of work for solving the first cycle fourtall towers problem was probing, 28 times. Less common question types asked by the instructor regarding current students' samples of work for solving the first cycle four-tall towers problem were: justification, 4 times; explanation, 14 times; and generalization, 2 times; and other solution questions, 5 times.

Sixty-eight questions were asked by the instructor regarding current students' work for the second cycle pizza problem. The more commonly asked questions by the instructor regarding current students' work for the second cycle pizza problem were: probing, 21 times; explanation, 19 times; and other solution questions, 14 times. Less common asked questions by the instructor regarding current students' work for the second cycle pizza problem were: justification, 9 times; generalization, 4 times; and connection, 1 time.

For the third cycle, 23 questions were asked by the instructor regarding current students' work for the third cycle three-tall towers problem. The more common asked questions regarding current students' work for the third cycle three-tall towers problem were: explanation, 7 times and probing, 9 times. Less common questions regarding current students' work for the third cycle three-tall towers problem were: other solution questions, 4 times; justification, 2 times; and connection, 1 time.

8.1.4.2 Summary of Questions Regarding Current Students' Work

One hundred forty-four questions were asked by the instructor regarding the current students' work samples shared by each of the ten teachers throughout the three cycles of the intervention. The types of questions asked by the instructor throughout the three cycles were: probing, 58 times; explanation, 40 times; justification, 15 times; other solution, 23 times; and generalization, 6 times. The more popular questions asked by the instructor regarding teachers' current students' samples for the three cycles of problems were probing and explanation questions.

Probing questions were used by the instructor 28 out of 58 times as the instructor facilitated a discussion on the four-tall towers problem; 21 out of 58 times as the instructor facilitated a discussion on the second cycle pizza problem; and 9 out of 58 times as the instructor facilitated a discussion on the third cycle three-tall towers problem. Explanation questions were used by the instructor 14 out of 40 times for the first cycle four-tall towers problem; 19 out of 40 times for the second cycle pizza problem; and 7 out of 40 times for the third cycle three-tall towers problem. Other solution, justification, and generalization questions were asked less frequently throughout the intervention.

8.1.5 Summary of Instructor's Questions

The results of the questions analysis showed that the instructor's questions used throughout the intervention helped teachers to attend to their own reasoning as well as their students' reasoning. The most common type of question that the instructor asked throughout the three cycles of the intervention was probing questions, 209 times. The instructor asked probing questions 92 out of 209 as teachers worked on the three cycles of mathematical problems. The instructor also asked 1 probing question regarding
research students' work in addition to the prepared questions for each on-line unit discussion, 58 probing questions regarding the students' work from the class visits, and 58 probing questions regarding the current students' work samples.

Explanation questions were asked 86 times by the instructor throughout the three cycles of the intervention. The instructor asked 27 explanation questions out of 86 questions as teachers worked on the three cycles of problems. Regarding the students' work for the in-district class visits, explanation questions were asked 19 out of 86 times. For the current students' work samples, explanation questions were asked 40 out of 86 times, which is slightly less than half of all the explanation questions asked during the intervention.

Other solution questions were asked by the instructor 54 times throughout the three cycles of the intervention. As teachers worked on the three cycles of problems, other solution questions were asked 23 out of 54 times. Other solution questions were asked 7 out of 54 times regarding the students' work from the class visits, and were asked 23 out of 54 times regarding the current students' samples of work. One other solution question was asked by the instructor during the Unit 5 on-line discussion.

Justification questions were asked 50 times by the instructor throughout the three cycles of the intervention. As teachers worked on the three cycles of problems, justification questions were asked half of time times. The other half of the justification questions were asked by the instructor 10 times regarding the students' work from the class visits, and 15 times regarding the currents students' work samples.

Connection questions were asked 20 times by the instructor throughout the three cycles of the intervention. Two connection questions were asked by the instructor during
the intervention regarding current students' work samples. It should be noted that connection questions were asked 18 out of 20 times as teachers worked on the second cycle pizza problem themselves. It is possible that the instructor may have asked the majority of connection problems as teachers worked on the second cycle pizza problem because the instructor may have been hoping that teachers would recognize a connection between the first cycle four-tall towers problem and the pizza problem.

Generalization questions were asked 15 times by the instructor throughout the three cycles of the intervention. As teachers worked on the three cycles of problems, the instructor asked 7 generalization questions. One generalization questions was asked during the Unit 7 on-line discussion. Regarding the students' work from the class visits, the instructor asked 1 generalization question about the first cycle four-tall towers. The instructor asked 6 generalization questions regarding current students' work throughout the three cycles of the intervention.

The instructor's 435 questions asked throughout the intervention helped teachers to attend to students' reasoning. The role of the instructor was to facilitate teachers' discussions regarding the teachers' and students' work for the three cycles of problems. The questions asked by the instructor helped to facilitate the teachers' discussions.

8.2 Instructor's Pedagogical Practices

The instructor also facilitated teachers' discussions using pedagogical practices throughout the intervention. Although questioning is considered to be a pedagogical practice, this section focuses on practices other than questioning. The instructor's practices were examined in the following contexts: practices used as teachers' worked on the problems, practices used on-line regarding research students' work, practices used as
teachers discussed students' work from the in-district class visit, and practices used as teachers discussed current students' work samples brought by the teachers.

8.2.1 Pedagogical Practices Regarding Teachers' Work

The instructor used pedagogical practices as teachers worked on three cycles of mathematical tasks. The instructor modeled pedagogical practices to help teachers attend to their own reasoning as they worked on the problems. Pedagogical practices were used by the instructor as teachers' worked on each of the three cycles during the intervention.

8.2.1.1 Practices Regarding Teachers' Work by Cycle

Twenty-four pedagogical practices were used by the instructor as the ten teachers from the southern region of New Jersey worked on the first cycle four-tall towers problem. Thirteen of the practices used by the instructor as teachers worked on the first cycle four-tall towers problem were monitoring practices which allowed for the instructor to circulate through the room to check for teachers' understanding. Seven of the practices used by the instructor were motivating practices where the instructor used praise or encouraging words regarding the teachers' work for the first cycle four-tall towers problem. Three of the practices used by the instructor as teachers worked on the four-tall towers problem were inviting practices where the instructor exposed teachers to varied solutions. As teachers worked on the four-tall towers problem, re-voicing was used by the instructor once to restate a teacher's comment to clarify the instructor's understanding of the teachers' work.

The instructors called for the attention of the teachers to discuss their solutions after working on the first cycle four-tall towers problem. From this discussion, the practices used by the instructor were: inviting, 10 times; re-voicing, 8 times; and
motivating, 2 times. The instructor also used the practice of anticipating 3 times to help teachers' predict what a student might do while working on the four-tall towers problem.

Fifty-four pedagogical practices were used by the instructor as the teachers worked on the second cycle pizza problem. The more common practices were: inviting, 21 times; waiting, 18 times; and monitoring, 7 times as teachers worked on the pizza problem. Less common practices were: re-voicing, 4 times and motivating, 3 times as teachers worked on the pizza problem. The instructor used the practice of selecting, 1 time when the instructor selected T6's chart to show all the teachers how T6 reorganized her work to find the possible pizza combinations (Meeting transcript teachers' work 10/2/13, line 234).

For the third cycle three-tall towers problem, 57 pedagogical practices were used by the instructor. The more common practices by the instructor were: re-voicing, 15 times; motivating, 13 times; waiting, 12 times; inviting, 7 times, and monitoring, 6 times as teachers worked on the three-tall towers problem. Lesson common practices by the instructor were selecting, 3 times; and anticipating, 1 time for the teachers' work on the three-tall towers problem.

For Ankur's Challenge, 52 pedagogical practices were used by the instructor. The practices that the instructor frequently used were: motivating, 18 times; re-voicing, 16 times; and inviting, 7 times. Less frequent practices used by the instructor were: monitoring, 5 times; selecting, 4 times; and waiting, 2 times.

8.2.1.2 Summary of Practices Regarding Teachers' Work

As teachers worked on all three cycles of tasks, the instructor used 210 pedagogical practices. More frequent pedagogical practices used by the instructor as
teachers worked on the three cycles of problems were: inviting, 48 times; re-voicing, 44 times; motivating, 43 times; waiting, 32 times; and monitoring, 31 times. Less common practices used by the instructor as teachers worked on the three cycles of problems were selecting, 8 times and anticipating, 4 times. It should be noted that monitoring was only used by the instructor as teachers worked on the three cycles of tasks.

8.2.2 Pedagogical Practices Regarding Research Students' Work

The instructor posted weekly comments for each Unit of the on-line discussion. For the majority of times, the instructor's comments were in response to the teachers' original posts regarding research students' work. There were also times when the instructor commented on the teachers' responses to other teachers' original posts about the research students' work. Most of the instructor's on-line comments were motivating.

8.2.2.1 Practices Regarding Research Students' Work by Cycle

Nine of the instructor's comments were coded by the researcher as motivating practices for Units 2, 3, and 4 of the on-line discussion. One motivating comment by the instructor was from the Unit 2 discussion thread. The instructor wrote on-line "Glad to hear you will hold back on giving help." (Unit 2, on-line discussion thread, line 11).

Three motivating comments by the instructor were from the Unit 3 discussion thread. The first motivating comment from the Unit 3 discussion thread was in response to T1's original post for the first question provided by the instructor on-line about how T1 noticed that "one student explained that by moving the position of the cube down each time, eventually the cube will be brought to the top and the pattern would start to duplicate." (Unit 3, on-line discussion thread, line 1). The instructor wrote on-line "What
you are describing in $\# 1$ is called a recursive argument. Nice that you noticed it." (Unit 3 , on-line discussion thread, line 2).

A second motivating comment from the Unit 3 discussion thread was to T4 regarding a comment T 4 made about having the same students solve the tower problem again next year. T4 wrote "I am lucky enough to keep the same students from year to year (between sixth through eighth grade) so I would like to try the tower building next year and see how my students' reasoning changes." (Unit 3, on-line discussion thread, line 16). The instructor wrote on-line "You are very lucky to keep the same students - I think it is neat that you plan to let them revisit the problem next year to see how their reasoning changes." (Unit 3, on-line discussion thread, line 18). Another teacher, T2, responded to T 4 that T 2 also kept the same students and planned to also try the same problem with the students for the next year to "see if their reasoning changes" (Unit 3, on-line discussion thread, line 19). The instructor replied "Neat!" to T2 (Unit 3, on-line discussion thread, line 20).

Two motivating comments by the instructor were from the Unit 4 discussion thread regarding teachers' responses of research students' work for the first cycle fourtall towers problem and the three-tall and five-tall extension problems. The instructor wrote "It is so neat that your students were able to organize and reorganize their towers in so many different ways." (Unit 4, on-line discussion thread, line 35). The instructor also wrote "It sounds like you did a good pairing of your two $8^{\text {th }}$ grade boys." (Unit 4, on-line discussion thread, line 40).

Eight of the instructor comments were also coded by the researcher as motivating practices in response to the teachers' comments regarding the research students' work for
the second cycle pizza problem. The instructor made 1 motivating comment on the Unit 5 on-line discussion thread; 5 motivating comments on the Unit 6 on-line discussion thread, and 2 motivating comments on the Unit 7 on-line discussion thread (Unit 5, line 26; Unit 6, line 7, 12, 13, 42; Unit 7, line 33, 43).

Seven of the instructor comments were coded by the researcher as motivating practices in response to the teachers' comments regarding the research work for the third cycle Ankur's Challenge problem. The instructor made 2 motivating comments on the Unit 8 on-line discussion thread; 3 motivating comments on the Unit 9 on-line discussion thread, and 2 motivating comments on the Unit 10 on-line discussion thread (Unit 8, lines 4, 29; Unit 9, lines 20, 27, 28; Unit 10, lines 20, 30).

It should be noted that there were 6 comments by the instructor that were coded as motivating practices but were phrased as questions. One comment was in response to T5's original post about comparing and contrasting students' work from the second grade to the third grade to solve the shirts and pants problem. The instructor wrote on-line "Isn't it neat to see growth when you give students an opportunity to revisit a problem?" (Unit 3, on-line discussion thread, line 33).

A second comment coded as motivating practices was in response to T6's original about Stephanie's family description of Milin's inductive argument regarding the threetall towers problem selecting from 2 colors. The instructor wrote on-line "Wasn't it neat when Stephanie listened to Milin's argument and was able to explain it to others?" (Unit 4, on-line discussion thread, line 20). A third comment coded as motivating practices was in response to T8's original post of how Milin's inductive argument helped the other students to understand the three-tall towers problem, selecting from 2 colors. The
instructor wrote on-line "Isn't it neat when students listen to and learn from their classmates?" (Unit 4, on-line discussion thread, line 49).

A fourth comment by the instructor coded by the researcher as motivating practices was in response to T7's on-line comment regarding questions asked by Brandon's teacher while working on the pizza problem. T7's on-line comment in response to T6's original post follows:

I find that I am asking students to explain things more than once to really understand what they are saying rather than assuming that I know what they are talking about as you mentioned. Many times, they are actually explaining something different than what I originally thought they were saying. (Unit 6, online discussion thread, line 19).

In response to T7's comment, the instructor asked the following probing question toT7 on-line "Isn't it neat when we listen carefully and really understand the mathematical thinking of our students?" (Unit 6, on-line discussion thread, line 20).

Two more comments were coded by the researcher as motivating practices regarding the solution to Ankur's Challenge. For the first comment, the instructor responded to T6 on-line by writing "Don't you think that Romina's proof is elegant?" (Unit 7, on-line discussion thread, line 15). The second comment was in response to an original post by T7 about Romina's proof. The instructor asked T7 on-line "Isn't it neat how we learn from our classmates as well as our teacher?" (Unit 7, on-line discussion thread, line 35).

The instructor also used the practice of selecting three times. Selecting was coded when the instructor asked teachers on-line to share a students' work sample at the next regional meeting. The instructor made an on-line request for $\mathrm{T} 6, \mathrm{~T} 9$, and T 10 to share
one of their students' work from the second cycle pizza problem at the next meeting (Unit 7, on-line discussion thread, lines 4, 29, 38).

8.2.2.2 Summary of Practices Regarding Research Students' Work

Throughout the ten units of on-line discussions regarding research students' work, the instructor used 29 pedagogical practices. The most frequent pedagogical practice used by the instructor on-line for the three cycles of problems was: motivating, 26 times. There were 3 times when the instructor selected three teachers to bring a particular students' work to the next regional meeting for the teachers to discuss and the researcher coded each of the three instructor's on-line requests as selecting.

8.2.3 Pedagogical Practices Regarding Students' Work from Class Visit

After the 3 in-district classroom visits on $9 / 17 / 13,10 / 22 / 13$, and $11 / 20 / 13$; the instructor had a debrief meeting with the teachers. At the debrief meeting, the instructor used pedagogical practices to facilitate discussions with the teachers about students' work form the classroom visits. The following pedagogical practices were used by the instructor regarding students' work from the in-district classroom visits for each of the three cycles.

8.2.3.1 Practices Regarding Students' Work from Class Visit by Cycle

For the first cycle four-tall towers problem, 74 pedagogical practices were used by the instructor regarding students' work from the classroom visit debrief meeting on $9 / 17 / 13$. The most common pedagogical practices used by the instructor regarding the students' work of the four-tall towers problem from the in-district class visit were: inviting, 24 times; re-voicing, 19 times; waiting, 9 times; motivating, 9 times; and
anticipating, 8 times. A less common practice used by the instructor regarding students' work of the four-tall towers problem from the class visit was selecting, 5 times.

Twenty-seven pedagogical practices were used by the instructor during the classroom visit debrief meeting regarding the students' work on the second cycle pizza problem. The pedagogical practices used by the instructor during the classroom debrief meeting regarding the students' work on the second cycle pizza problem from the class visit were motivating, inviting, and re-voicing each 7 times. Slightly less used practices by the instructor were selecting and waiting each 3 times regarding the students' work on the second cycle pizza problem from the second in-district class visit on 10/22/13.

For the third cycle three-tall towers problem, 33 pedagogical practices were used by the instructor regarding the students work from the in-district classroom visit on $11 / 20 / 13$. The practices used by the instructor regarding the students' work on the threetall towers problem were: motivating and re-voicing each 11 times; inviting, 5 times; selecting, 3 times; waiting, 2 times; and 1 time for anticipating. The instructor's practices helped to strengthen the instructor's role as a facilitator of knowledge.

8.2.3.2 Summary of Practices Regarding Students' Work from Class Visits

One hundred thirty-four pedagogical practices were used by the instructor during the classroom visit debrief meeting. The more common pedagogical practices made by the instructor regarding students' work from the three class visits were: re-voicing, 37 times; inviting, 36 times; motivating, 27 times; and waiting, 14 times. Less common pedagogical practices made by the instructor from the three class visits were: selecting, 11 times; and anticipating, 9 times.

8.2.4 Pedagogical Practices Regarding Current Students' Work

The instructor met with the teachers to discuss their current students' work at the regional meetings on $10 / 2 / 13,10 / 22 / 13$, and $11 / 20 / 13$. During the meetings, the instructor used pedagogical practices to facilitate discussions with the teachers about their own currents students' work. The following pedagogical practices were used by the instructor as teachers discussed their current students' work for each of the three cycles.

8.2.4.1 Practices Regarding Current Students' Work by Cycle

For the first cycle four-tall towers problem, ninety pedagogical practices were used by the instructor as the instructor facilitated a discussion with teachers regarding their own current students' work. The more frequent practices used by the instructor as teachers discussed current students' solutions of the four-tall towers problem were: motivating, 29 times; re-voicing, 26 times; and inviting, 21 times. Less frequent practices used by the instructor as teachers discussed current students' solutions of the four-tall towers problem were: waiting, 10 times and anticipating, 4 times.

One hundred sixteen practices were used by the instructor as the instructor facilitated a discussion with teachers regarding current students' work for the second cycle pizza problem. The more common practices used by the instructor as teachers discussed current students' solutions of the second cycle pizza problem were: motivating, 28 times; inviting, 33 times; and re-voicing, 43 times. Less common moves used by the instructor as teachers discussed current students' solutions of the second cycle pizza problem were: anticipating, 3 times; selecting, 2 times; and waiting, 7 times.

For the third cycle three-tall towers problem, 81 practices were used by the instructor as teachers discussed current students' solutions. The more common instructor
practices used by the instructor as teachers discussed current students' solutions of the third cycle pizza problem were motivating, 51 times and re-voicing, 19 times. Less common moves were inviting, 8 times; waiting, 2 times; and anticipating, 1 time.

8.2.4.2 Summary of Practices Regarding Current Students' Work

Two hundred eighty-seven moves were used by the instructor as teachers discussed their own current students' work throughout the three cycles of the intervention. The more common practices used by the instructor as teachers discussed their own current students' work for the three cycles of problems were: motivating, 108 times re-voicing, 88 times; inviting, 62 times; and waiting, 19 times. Less common practices used by the instructor as teachers discussed their own current students' work were selecting, 2 times and anticipating, 8 times.

8.2.5 Summary of Instructor's Pedagogical Practices

The instructor used 654 pedagogical practices to help teachers attend to students' reasoning throughout the intervention. Motivating practices were used 198 times and were found to be the most popular practice used by the instructor throughout the intervention in all three cycles. Motivating practices were used by the instructor 43 times as teachers worked on the three cycles of problems themselves, 20 times as responses to teachers' on-line comments of research students' work, 27 times when facilitating discussions with teachers of students' work from the classroom visits, and 108 times when facilitating discussions with teachers of current students' samples of work. The motivating practices used by the instructor praised teachers for their contributions and encouraged the teachers to continue working throughout the intervention.

The second most popular practice used by the instructor throughout the three cycles of problems was re-voicing and was coded by the researcher 169 times. Revoicing was used by the instructor 44 times as teachers worked on the three cycles of problems themselves, 37 times when facilitating discussions with teachers of students' work from the classroom visits, and 88 times when facilitating discussions with teachers of current students' samples of work. Re-voicing was used by the instructor to clarify the instructor's understanding of the teachers' and students' arguments. The number of revoicing practices used by the instructor when facilitating discussions with teachers about current students' work for the three cycles of problems was double the number of revoicing practices as when the teachers worked on the problem themselves. It is possible that this increase is due to the larger number of students' samples discussed as compared to the samples of the ten teachers.

Inviting was used by the instructor 146 times throughout the intervention. Inviting was used by the instructor 48 out of 146 times as teachers worked on the three cycles of problems themselves, 36 out of 146 times when facilitating discussions with teachers of students' work from the classroom visits, and 62 out of 146 times when facilitating discussions with teachers of current students' samples of work. Inviting was used by the instructor to expose teachers to solutions from more than one person.

Less frequent pedagogical practices used by the instructor throughout the three cycles of the intervention were waiting, 65 times; monitoring, 31 times; selecting, 24 times; and anticipating, 21 times. Monitoring was only used by the instructor as teachers worked on the three cycles of problems themselves. Waiting, selecting, and anticipating were used fewer times by the instructor for all three cycles of problems.

8.3 Instructor's Representations Used

The instructor often used the teachers' and students' work samples to facilitate discussions of teachers' recognition of reasoning. However, there were times when the instructor used Unifix cubes to make towers and then asked teachers questions about how to represent towers and pizza combinations using the Unifix cubes. Other times the instructor asked the teachers to use the cubes to make towers and asked questions about the representations teachers used to make the towers.

The instructor showed the teachers Unifix cubes at the first session before teachers started the first task and said "there is a little chimney that we call here that we always want to keep facing top" $(9 / 7 / 13$ meeting transcript, line 10). After the teachers worked on the first cycle task, the instructor asked some of the teachers to share their work. T6 volunteered to share her work for the first cycle four-tall towers problem. As T6 explained her solution, the instructor asked her partner to hold up the towers of Unifix cubes for the other teachers to see as they shared their solution (9/7/13 meeting transcript, line 214). The following excerpt illustrates the questions asked by the instructor while teachers used the Unifix cubes to explain their argument:

T6: So I had four of one color and I had it in one of the other color. And it could be in either the first, the second the third or the fourth position. And then I knew if I did it that way, I could reverse it and do it with the other colors as well.
R1: Okay, before we leave, I am asking the group: for the group she just made, it looks like it is three of one color and one of another color. Could she have another tower in that group that has exactly three yellow and one red? [Teacher in unison responded 'no'.] Did she skip one? Why not? I heard a lot of no's why not? T6: Because the red is in each of the four positions.
R1: Okay. She gave you the answer because the red is in each of the four positions. Okay I am going to say why couldn't she have then the red in the fifth position? There is no red in the fifth position? (Meeting transcript 9/7/13, lines 217-222).

The instructor had also asked T7 and T8 to hold up towers to illustrate their recursive argument for building three-tall towers, selecting from three colors (Meeting transcript 10/22/13, line 307). The instructor helped T7 and T8 hold up the towers as they explained their argument (Meeting transcript $10 / 22 / 13$, line 309). The following excerpt illustrates the questions asked by the instructor while teachers used the Unifix cubes to explain their argument:

R1: What is the argument for the candy cane or the 3 colored colors in a tower?
T8: Okay, so [T7\} and I did this a little bit differently. This was the idea I had, was having the yellow kind of go through each position kind of the same way that we had the one cube go through in the other positions. And it is the same concept, of actually moving the yellow all the way through. If you were to move it to another place, it would come back to the top and it would result...
R1: We better see that. Can you get three and show us? Now they are using a recursive argument. Okay cause that's not quite as easy to see why you have them all and why there can't be another tower. So they have the 3 towers there, okay.
T8: So as you go through the first you get the yellow to move down to the middle place.
R1: How about if I hold 2 and you three?
T7: Okay, so then at the end, you take the yellow one and move it back on the top we are back at the first one that he had originally there.
R1: Alright.
T7: Oh I thought... [toT8] Do you want to do those?
R1: Well is that the only other way to do it? (Meeting transcript $10 / 22 / 13$, lines 304-317).

The instructor also used the Unifix cubes to ask questions was to demonstrate the connection between the 4-tall tower problem and the pizza problem after T6 shared her pizza combinations chart with the other teachers (10/2/13 meeting transcript, line 290308). The instructor had T6's chart on the screen and asked the teachers "How could we build a tower that might look like that pepperoni pizza?" (10/2/13 meeting transcript, line 292). One teacher replied "One red, three yellow." (10/2/13 meeting transcript, line 293). Using T6's chart, the instructor asked the teachers how to arrange the cubes to represent three more of the pizza combinations (10/2/13 meeting transcript, line 300-
308). It should be noted that the instructor used the Unifix cubes to demonstrate towers or had teachers use the Unifix cubes to demonstrate towers after teachers worked on the three cycles of problems.

8.4 Summary of Instructor Moves Analysis

Based on the data from this research, the instructor's moves throughout the PD intervention helped the in-service middle-school mathematics teachers to attend to students' reasoning. The instructor's pedagogical practices used and questions asked were identified and analyzed throughout the three cycles of the intervention as teachers' worked on the problems, as teachers made on-line posts regarding research students' work, as teachers discussed students' work from the in-district class visit, and as teachers discussed their own current students' work samples. Table 8.2 summarizes the instructor moves by the context in which the moves were studied.

Table 8.2
Frequency of Instructor Moves by Context
$\left.\begin{array}{llllll}\hline \text { Moves } & \begin{array}{l}\text { Teachers' } \\ \text { Of }\end{array} & \begin{array}{l}\text { Research } \\ \text { Own }\end{array} & \begin{array}{l}\text { Students' } \\ \text { Instructor }\end{array} & \begin{array}{l}\text { Cork } \\ \text { Students' }\end{array} & \begin{array}{l}\text { Current } \\ \text { Students' }\end{array}\end{array} \begin{array}{l}\text { Work } \\ \text { Work }\end{array}\right)$

Sources: Meeting transcripts 9/7, 9/17, 10/2, 10/22, 11/20; On-line threads units 1-10

The researcher coded 1095 instructor moves. From the 1095 instructor's moves, 403 were coded by the researcher from video transcripts of teachers working on the three cycles of problems themselves, 32 were coded by the researcher from the instructor's online comments, regarding research students' work for the three cycles of problems, 229 were coded by the researcher from video transcripts of the teachers' discussion of students' work from the in-district class visit, and 431 were coded by the researcher from video transcripts of the teachers' discussion of their own current students' samples of work for the three cycles of problems.

Out of the 1095 instructor moves, 435 were questions asked by the instructor. The most common type of question asked from each of the contexts examined was probing, 209 times; which is slightly less than half of the questions asked by the instructor. It is possible that the instructor used probing questions frequently because these types of questions allowed teachers the freedom to elaborate on their work and the work of the teachers' students. Other types of questions used frequently by the instructor were explanation, 86 times; other solution, 55 times; and justification, 50 times. Less frequent questions asked by the instructor were connection, 20 times and generalization, 15 times. It is possible that the instructor may have asked generalization and connection questions less frequently because more time is needed for teachers' to reflect and answer generalization and connection questions as compared to the other types of questions.

Out of the 1095 instructor's moves, 660 were pedagogical practices used by the instructor. The most common practice used by the instructor was motivating practices, 204 times. When teachers worked on the three cycles of problems themselves, the researcher coded inviting, 48 times and re-voicing, 44 times which was slightly more
than motivating practices, 43 times. Other pedagogical practices used frequently by the instructor were: re-voicing, 169 times; inviting, 146 times; and waiting 65 times. Less frequent practices used by the instructor were: monitoring, 31 times; selecting, 24 times; and anticipating, 21 times. It is should be noted that practices, such as monitoring, were used less by the instructor for a particular context because of the nature of the practice (i.e. Monitoring practices were used when teachers worked on the problems themselves.).

The instructor's moves were also examined by the three cycles of problems. For the first cycle, instructor moves were coded regarding the four-tall towers problem and the three-tall and five-tall tower extension problems. For the second cycle, instructor moves were coded regarding the pizza problem. For the third cycle, instructor moves were coded regarding the three-tall towers problem and Ankur's Challenge. Table 8.3 summarizes the instructor moves by cycle.

Table 8.3
Frequency of Instructor Moves by Cycle

Moves	Cycle 1	Cycle 2	Cycle 3	Total
Question Type				
Explanation	22	47	17	86
Justification	24	10	16	50
Generalization	9	5	1	15
Connection	-	19	1	20
Probing	71	71	67	209
Other Solution	14	21	20	55
Total Questions	140	173	122	435
Practices		3	3	
Anticipating	15	8	13	21
Monitoring	16	9	10	37
Selecting	5	45	100	24
Motivating	53	28	18	198
Waiting	19	61	27	65
Inviting	58	54	61	146
Re-voicing	54	208	232	169
Total Practices	220			660

Sources: Meeting transcripts 9/7, 9/17, 10/2, 10/22, 11/20; On-line threads units 1-10

Probing questions accounted for 71 out of 140 questions asked by the instructor regarding the first cycle four-tall tower problem and three-tall and five-tall extension problems; which are slightly more than half of the questions. It is possible that the instructor asked probing questions more frequently regarding the first cycle tower problems because the first cycle problems were given in the beginning of the intervention. Other types of questions that were asked by the instructor regarding the first cycle problems were justification, 24 times; explanation, 22 times; other solution, 14 times; and generalization, 9 times.

For the first cycle problems, 220 pedagogical practices were recorded by the researcher. The most common practices used by the instructor regarding the first cycle problems were: inviting, 58 times; re-voicing, 54 times; and motivating, 56 times. Less common practices used by the instructor regarding the first cycle problems were: waiting, 19 times; anticipating, 15 times; monitoring, 13 times; and selecting, 5 times.

For the second cycle pizza problem, 173 questions were coded by the researcher. The more common questions asked by the instructor were: probing, 71 times; explanation, 47 times; and other solution, 21 times; and connection, 19 times. It should be noted that 18 of the 19 connection questions were asked by the instructor as teachers discussed their solutions of the second cycle pizza problem. It is possible that the instructor asked most of the connection questions during the discussion of the teachers' solutions of the pizza problem hoping that the teachers would see the connection between the towers problem and the pizza problem.

Regarding the second cycle pizza problem, 208 pedagogical practices were coded by the researcher. The most common practices used by the instructor regarding the
second cycle pizza problem were: inviting, 61 times; re-voicing, 54 times; motivating 46 times, and waiting, 28 times. Less common practices asked by the instructor were: selecting, 9 times; monitoring, 7 times; and anticipating, 3 times.

For the third cycle three tall towers problem, 100 questions were asked by the instructor. Fifty-six of the questions asked by the instructor were probing regarding the three-tall towers problem. Other questions that were asked by the instructor regarding the three-tall towers problem were: explanation, 15 times; other solution and justification each 14 times; and connection, 1 time. For the third cycle Ankur's Challenge problem, the instructor asked the following 24 types of questions: probing, 11 times; other solution, 6 times; explanation and justification each 2 times; and generalization, 1 time.

Regarding the third cycle three-tall towers problem, 178 practices were used by the instructor. The most common practice used by the instructor for the third cycle threetall towers problem was motivating, 82 times. More common practices used by the instructor for the three-tall towers problem were re-voicing, 45 times; inviting, 20 times; and waiting, 16 times. For Ankur's Challenge, the instructor used motivating practices 18 times. It should be noted that 102 out of 204 motivating practices were coded by the researcher for the third cycle problems.

Chapter 9 - Teachers' Beliefs Summary and Analysis

This chapter examines teachers' changes in beliefs, if any, about the teaching and learning of mathematics. Teachers were asked to complete a 34 -item pre- and postassessment on beliefs about the teaching and learning of mathematics. Relating to this study, a subset of 22 statements of this assessment was analyzed. Some statements on the inventory were statements considered to be consistent with standards promoted by the NCTM in documents such as the Principles and Standards for School Mathematics (2000). Other belief inventory statements were considered to be inconsistent with the standards.

For this study, the teachers' beliefs are examined in four parts. First, teachers' beliefs are examined by the number of the belief statements teachers' out of the 22 belief statements subset consistent with NCTM standards regarding the teaching and learning of mathematics. Second, teachers' beliefs are examined by each category from the subset of the 22 pre- and post-assessment statements. Third, the stability of individual teacher beliefs is examined from teachers who scored 100% on the pre-assessment for beliefs consistent with the standards. Fourth, teachers' potential growth rates of the teachers' beliefs are examined from the pre-assessment to the post-assessment.

9.1 Teachers' Scores for Subset of Beliefs Statements

This section examines teachers' scores from the subset of the 22 pre- and postassessment belief statements consistent with the NCTM standards. The scores are from the ten teachers from the southern region cohort who took the beliefs pre- and postassessment beliefs in fall 2013. Table 9.1 summarizes the teachers' pre- and postassessment scores by the percentage of the number of belief statements out of the 22
belief statements subset teachers' scored consistent with the standards (CP) and the number of the subset of belief statements teachers scored consistent with the standards (CN), inconsistent with the standards (IN), and undecided statements (UN).

Table 9.1
Teachers' Scores for Belief Statements Consistency with the Standards

Teacher	Pre-Assessment			Post-Assessment				
	$C P$	$C N$	$I N$	$U N$	$C P$	$C N$	$I N$	$U N$
T1	77	17	4	1	73	16	3	3
T2	64	14	5	3	91	20	0	2
T3	68	15	4	3	73	16	4	2
T4	68	15	2	5	91	20	2	0
T5	82	18	0	3	73	16	1	5
T6	91	20	2	0	95	21	0	1
T7	73	16	2	4	68	15	1	6
T8	73	16	4	2	95	21	1	0
T9	91	20	1	1	82	18	4	0
T10	77	17	2	3	82	18	2	2
Mean	76.4	16.8	2.6	2.5	82.3	18.1	1.8	2.1

Sources: Beliefs Inventory Pre- and Post-Assessment
*CP=Percent scored out of 22 beliefs consistent with standards;
$C N=$ number out of 22 beliefs consistent with standards
IN = number out of 22 beliefs inconsistent with standards
$U N=$ number out of 22 beliefs undecided

9.1.1 Beliefs Pre-Assessment Score Results

The pre-assessment scores for this cohort of teachers show that all ten teachers scored 64% (14 out of 22 beliefs) or higher for the percentage of teachers' beliefs statements out of the 22 subset statements consistent with the standards. On the preassessment, five teachers (T1, T5, T6, T9, and T10) scored higher than the mean for the subset of beliefs consistent with the standards. For the number of statements inconsistent with the standards, 4 teachers ($\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$, and T 8) scored higher than the mean of the ten teachers. Four teachers scored higher than the mean for undecided statements. The preassessment scores for all ten teachers show high alignment to the standards.

9.1.2 Beliefs Post-Assessment Score Results

The post- assessment results for all ten teachers show a slightly higher alignment to the standards. All ten teachers scored 68% (15 out of 22 beliefs) or higher for the percentage of teachers' belief statements out of the 22 subset statements consistent with the standards. Six teachers increased their percent of the subset of beliefs consistent with the standards as compared to the pre-assessment.

The mean score of teachers' subset of beliefs consistent with the standards increased to 82.3% on the beliefs post-assessment. On the post-assessment, 4 teachers scored higher than the mean for the number of belief statements consistent with the standards, 5 teachers scored higher than the mean for the number of belief statements inconsistent with the standards, and 3 teachers scored higher than the mean for the number of undecided belief statements. In order to study the beliefs in more depth, the subset of 22 beliefs were examined by statement categories.

9.2 Teachers' Beliefs by Statement Category

In this section, teachers' beliefs regarding each of the categories for the subset of the 22 statements are examined. The subset of 22 statements from the pre- and postassessment is grouped into the following six categories: expectations and abilities, mathematical discourse, concepts and procedures, manipulatives, roles of students and teachers, and differentiated instruction. Teachers' responses from the beliefs inventory were coded as consistent, inconsistent or undecided for each statement category.

A 5-point Likert scale for each statement was used ranging from strong agreement (e.g. 1) to strong disagreement (e.g. 5). Consistent (C) was coded when responses showed agreement with statements consistent with the standards or disagreement with
statements inconsistent with the standards. Inconsistent (I) was coded when responses showed disagreement with statements consistent with the standards or responses that showed agreement with statements inconsistent with the standards. Undecided (U) statements were coded from teachers' responses of " 3 " (neutral).

9.2.1 Expectations and Abilities

Four of the belief statements were categorized under expectations and abilities. Of the four beliefs statements for the category of expectations and student abilities, two statements were consistent with the standards and two statements were inconsistent with the standards. The following statements for the expectations and abilities category were:

Q1: Learners generally understand more mathematics than their teachers or parents expect.
Q7: All students are capable of working on complex math tasks.
*Q13: Only really smart students are capable of working on complex math tasks.
*Q29: Only the most talented students can learn math with understanding. (Beliefs Inventory, Appendix A \& B)

The two statements not consistent with the standards are marked with asterisks.
Table 9.2 shows the number (N) and percentage (P) of belief statements consistent (C), inconsistent (I), and undecided (U) with the standards out of the subset of 22 beliefs from the pre- and post-assessments for each teacher in the expectations and student abilities category. For the pre-assessment category of expectations and student abilities, 6 teachers (T1, T2, T3, T5, T7, and T8) had 2 out of 4 belief statements as consistent with the standards; 2 teachers (T4 and T6) had 3 out of 4 belief statements as consistent with the standards; and 2 teachers (T9 and T10) had all four beliefs consistent with the standards. T 1 and T 2 had 2 inconsistent statements for the category of expectations and student abilities; and T3 and T5 had 1 inconsistent statement for expectations and student abilities.

Table 9.2
Teachers' Scores from Beliefs for Expectations and Student Abilities

Teacher	Pre-Assessment											Post-Assessment							
	$C N$	$C P$	$I N$	$I P$	$U N$	$U P$	$C N$	$C P$	$I N$	$I P$	$U N$	$U P$							
T1	2	50	2	50	0	0	3	75	1	25	0	0							
T2	2	50	2	50	0	0	4	100	0	0	0	0							
T3	2	50	1	25	1	25	2	50	1	25	1	25							
T4	3	75	0	0	1	25	4	100	0	0	0	0							
T5	2	50	0	0	2	50	3	75	0	0	1	25							
T6	3	75	1	25	0	0	4	100	0	0	0	0							
T7	2	50	0	0	2	50	2	50	0	0	2	50							
T8	2	50	1	25	1	25	4	100	0	0	0	0							
T9	4	100	0	0	0	0	3	75	1	25	0	0							
T10	4	100	0	0	0	0	4	100	0	0	0	0							
Mode	2	50	0	0	0	0	4	100	0	0	0	0							

Sources: Beliefs Inventory Pre- and Post-Assessment
Based on the beliefs post-assessment regarding the expectations and student abilities category, the results indicate that a slight change in beliefs may have occurred for $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6$, and T 8 as their number of belief statements increased for the category of expectations and student abilities. The results also indicate that a slight change in beliefs may have occurred for T9 as her number of belief statements decreased for the expectations and student abilities category on the post-assessment.

9.2.2 Mathematical Discourse

Two of the beliefs statements were categorized under mathematical discourse. Of the two belief statements for the category of mathematical discourse, one statement was consistent with the standards and one was inconsistent with the standards. The following statements from the beliefs inventory assessments were categorized as mathematical discourse:

Q4: It's helpful to encourage student-to-student talking during math activities.
*Q23: Collaborative learning is effective only for those students who actually talk during group work. (Beliefs Inventory, Appendix A \& B)

One inconsistent statement with the standards is marked with an asterisk.

From the pre-assessment responses, 9 teachers (all but T8) had a score of 2 out of 2 belief statements as consistent with the standards for the mathematical discourse category. On the post-assessment, one teacher (T5) had 1 out of 2 belief statements as consistent with the standards and 1 out of 2 belief statements as inconsistent with the standards. The results indicate that a slight change in beliefs may have occurred for T5 as T5's number of belief statements decreased for the mathematical discourse category. Based on the beliefs post-assessments regarding the mathematical discourse category, the results also indicate that a slight change in beliefs may have occurred for T 8 as T 8 's number of belief statements increased for the category of mathematical discourse.

9.2.3 Concepts and Procedures

Seven of the beliefs statements were categorized under concepts and procedures. Of the 7 belief statements for the category of concepts and procedures, 5 statements were consistent with the standards and 2 were inconsistent with the standards. The following statements from the beliefs inventory assessments were categorized as concepts and procedures:

Q2: Teachers should make sure that students know the correct procedure for solving a problem.
*Q5: Math is primarily about learning procedures.
Q9: If students learn math concepts before they learn the procedures, they are more likely to understand the concepts.
*Q11: Young children must master math facts before starting to solve problems.
Q18: Learners can solve problems in novel ways before being taught to solve such problems.
Q19: Understanding math concepts is more powerful than memorizing procedures.
Q21: If students learn math concepts before procedures, they are more likely to understand the procedures when they learn them. (Beliefs Inventory, Appendix A \& B)

Two inconsistent statements are marked with an asterisk.

Table 9.3 shows the number (N) and percentage (P) of belief statements consistent (C), inconsistent (I), and undecided (U) with the standards out of the subset of 22 beliefs from the pre- and post-assessments of each teacher for the category of concepts and procedures. From the pre-assessment responses, 5 teachers (T1, T3, T4, T7, and T10) had the mode score of 5 out of 7 belief statements as consistent with the standards for the concepts and procedures category. T 5 and T 8 had 6 out of 7 belief statements consistent with the standards for concepts and procedures and; T6 and T9 had 7 out of 7 belief statements consistent with the standards; and T2 had 2 out of 7 belief statements consistent with the standards.

Table 9.3
Teachers' Scores from Beliefs for Concepts and Procedures

Tchr.	Pre-Assessment			Post-Assessment								
	CN	CP	$I N$	IP	UN	$U P$	NC	CP	IN	IP	UN	UP
T1	5	71.4	1	14.3	1	14.3	4	57.1	1	14.3	2	28.6
T2	2	28.6	3	42.8	2	28.6	6	85.7	0	0	1	14.3
T3	5	71.4		14.3	1	14.3	6	85.7	1	14.3	0	0
T4	5	71.4	1	14.3	1	14.3	6	85.7	1	14.3	0	0
T5	6	85.7	0	0	1	14.3	6	85.7	0	0	1	14.3
T6	7	100	0	0	0	0	7	100	0	0	0	0
T7	5	71.4	1	14.3	1	14.3	6	85.7	0	0	1	14.3
T8	6	85.7	1	14.3	0	0	7	100	0	0	0	0
T9	7	100	0	0	0	0	6	85.7	1	14.3	0	0
T10	5	71.4	,	14.3	1	14.3	6	85.7	0	0	1	14.3
Mode	5	71.4	1	14.3	1	14.3	6	85.7	0	0	1	14.3

Sources: Beliefs Inventory Pre- and Post-Assessment
The mode of the data for the post-assessment was 6 out of 7 beliefs consistent with the standards for the concepts and procedures category. Based on the beliefs postassessments, the results indicate that a slight change in beliefs may have occurred for T 2 , $\mathrm{T} 3, \mathrm{~T} 4, \mathrm{~T} 7, \mathrm{~T} 8$, and T 10 as the number of belief statements for these teachers increased for the category of concepts and procedures. The results also indicate that a slight change
in beliefs may have occurred for T 1 and T 9 as the number of belief statements for these teachers decreased for the concepts and procedures category.

9.2.4 Manipulatives

Two of the beliefs statements were categorized under manipulatives. Both statements were inconsistent with the standards and marked with asterisks. The following statements from the beliefs inventory assessments were placed in the manipulatives category:
*Q10: Manipulatives should only be used with students who don't learn from the textbook. *Q5: Math is primarily about learning procedures.
*Q17: Manipulatives cannot be used to justify a solution to a problem. (Beliefs Inventory, Appendix A \& B)

From the pre-assessment responses, 9 teachers (all but T4) had the mode score of 2 out of 2 belief statements as consistent with the standards for the mathematical discourse category.

On the post-assessment, one teacher (T5) had 1 out of 2 belief statements as consistent with the standards and 1 out of 2 belief statements as undecided with the standards. The post- assessment results indicate that a slight change in beliefs may have occurred for T5 as T5's number of belief statements decreased for the manipulatives category. Based on the beliefs post-assessments regarding the manipulatives category, the results also indicate that a slight change in beliefs may have occurred for T4 as T4's number of belief statements increased for the category of manipulatives.

9.2.5 Student and Teacher Roles

Three of the belief statements were categorized under student and teacher roles. Of the three beliefs statements for the category of student and teacher roles, two
statements were consistent with the standards and one statement was inconsistent with the standards. The following statements for the student and teacher roles category were:

Q24: Students should be corrected by the teacher if their answers are incorrect. *Q30: The idea that students are responsible for their own learning does not work in practice.
*Q32: Teacher questioning of students' solutions tends to undermine students' confidence. (Beliefs Inventory, Appendix A \& B)

The two statements inconsistent with the standards are marked with asterisks.
Table 9.4 shows the number (\#) and percentage (\%) of belief statements consistent (C), inconsistent (I), and undecided (U) with the standards out of the subset of 22 beliefs from the pre- and post-assessments of each teacher for the student and teacher roles category. From the pre-assessment responses, T2 and T5 had 3 out of 3 belief statements as consistent with the standards; T1, T4, T6, and T9 had 2 out of 3 belief statements as consistent with the standards; and T3, T7, and T8 had 1 belief consistent with the standards for the student and teacher role category.

Based on the beliefs post-assessment regarding the student and teacher roles category, the results indicate that a slight change in beliefs may have occurred for T 8 as the number of belief statements increased for the category of student and teacher roles. The results also indicate that a slight change in beliefs may have occurred for $\mathrm{T} 1, \mathrm{~T} 5$, and T7 as the number of belief statements decreased for the student and teacher roles category on the post-assessment.

Table 9.4
Teachers'Scores from Beliefs for Student and Teacher Roles

Tchr.	Pre-Assessment			Post-Assessment								
	CN	CP	IN	$I P$	UN	$U P$	CN	CP	IN	IP	UN	$U P$
T1	2	662/3	1	$33^{1 / 3}$	0	0	1	$33^{1 / 3}$	1	$33^{1 / 3}$	1	$33^{1 / 3}$
T2	3	100	0	0	0	0	3	100	0	0	0	0
T3	1	$33^{1 / 3}$	2	$66^{2 / 3}$	0	0	1	$33^{1 / 3}$	1	$33^{1 / 3}$	1	$33^{1 / 3}$
T4	2	662/3	0	0	1	$33^{1 / 3}$	2	662/3	1	$33^{1 / 3}$	0	0
T5	3	100	0	0	0	0	1	$33^{1 / 3}$	0	0	2	662/3
T6	2	662/3	1	$33^{1 / 3}$	0	0	2	662/3	0	0	1	$33^{1 / 3}$
T7	1	$33^{1 / 3}$	1	$331 / 3$	1	$33^{1 / 3}$	0	0	1	$33^{1 / 3}$	2	662/3
T8	1	$33^{1 / 3}$	1	$331 / 3$	1	$33^{1 / 3}$	2	662/3	1	$331 / 3$	0	0
T9	2	662/3	1	$331 / 3$	0	0	2	662/3	1	$331 / 3$	0	0
T10	0	0	1	$331 / 3$	2	662/3	0	0	2	$66^{2 / 3}$	1	$33^{1 / 3}$
Mode	2	662/3	1	$33^{1 / 3}$	0	0	2	662/3	1	$33^{1 / 3}$	0	0

9.2.6 Differentiated Instruction

Four of the belief statements were categorized under differentiated instruction. Of the four beliefs statements for the category of differentiated instruction, three statements were consistent with the standards and one statement was inconsistent with the standards. The following statements for the differentiated instruction category were:

Q1: Learners generally understand more mathematics than their teachers or parents expect.
Q7: All students are capable of working on complex math tasks.
Q13: Only really smart students are capable of working on complex math tasks.
*Q29: Only the most talented students can learn math with understanding. (Beliefs Inventory, Appendix A \& B)

One statement was inconsistent with the standards and marked with an asterisk.
Table 9.5 shows the number (N) and percentage (P) of belief statements consistent (C), inconsistent (I), and undecided (U) with the standards out of the subset of 22 beliefs from the pre- and post-assessments for each teacher in the differentiated instruction category. For the pre-assessment category of differentiated instruction, 5 teachers (T1, T6, T7, T8, and T10) had 4 out of 4 belief statements as consistent with the standards; 4 teachers (T2, T3, T5 and T9) had 3 out of 4 belief statements as consistent
with the standards; and 1 teacher (T4) had 2 out of 4 beliefs consistent with the standards. T2, T3, and T9 each had 1 undecided statement for the category of differentiated instruction; and T4 had 2 inconsistent statements for differentiated instruction. It should be noted that T 5 did not provide an answer for belief statement number 28 on the preassessment.

Table 9.5
Teachers' Scores from Beliefs for Differentiated Instruction

Teacher	Pre-Assessment			Post-Assessment								
	CN	CP	$I N$	IP	UN	$U P$	CN	CP	IN	IP	UN	$U P$
T1	4	100	0	0	0	0	4	100	0	0	0	0
T2	3	75	0	0	1	25	3	75	0	0	1	25
T3	3	75	0	0	1	25	3	75	1	25	0	0
T4	2	50	0	0	2	50	4	100	0	0	0	0
T5	3	75	0	0	0	0	4	100	0	0	0	0
T6	4	100	0	0	0	0	4	100	0	0	0	0
T7	4	100	0	0	0	0	3	75	0	0	1	25
T8	4	100	0	0	0	0	4	100	0	0	0	0
T9	3	75	0	0	1	25	3	75	1	25	0	0
T10	4	100	0	0	0	0	4	100	0	0	0	0
Mode	4	100	0	0	0	0	4	100	0	0	0	0

Sources: Beliefs Inventory Pre- and Post-Assessment
Based on the beliefs pre- and post-assessment regarding the differentiated instruction category, the results indicate that a slight change in beliefs may have occurred for T4 and T5 as their number of belief statements increased for the category of differentiated instruction. The results also indicate that a slight change in beliefs may have occurred for T 7 as the number of belief statements decreased for the differentiated instruction category on the post-assessment.

9.3 Stability and Potential Growth of Teachers' Beliefs

There are salient findings regarding the stability of teacher beliefs from pre- to post-assessment. Table 9.6 shows the number and percent of teachers who scored 100% consistent with the standards for each category on the pre-assessment and the number of
teachers whose post-assessment score declined out of the teachers who scored 100% consistent with the standards on the pre-assessment. Table 9.6 also shows the confidence intervals indicating the probability level of getting similar results if the study were replicated. Confidence intervals (C.I.) are also provided in table 9.6 indicating the potential for getting similar results of growth on the post-assessment if the study were repeated. The confidence intervals were computed using the tool on the following website: http://statpages.info/confint.html.

Table 9.6
Pre- and Post-Assessment Stability of Teachers' Beliefs

Belief	Teachers with 100\% on Pre-	Teachers with Decline on Post-
Statement	$\%$ of Teachers	$\%$ of Teachers
Category	95% One Sided C.I.	95% One Sided Upper C.I.
Expectations	2 of 10	1 of 10
and	20%	10%
Abilities	$\geq 3.7 \%$	$\leq 0.5 \%$
Mathematical	9 of 10	1 of 10
Discourse	90%	10%
	$\geq 60.6 \%$	$\leq 0.5 \%$
Concepts	2 of 10	1 of 10
and	20%	10%
Procedures	$\geq 3.7 \%$	$\leq 0.5 \%$
Manipulatives	9 of 10	1 of 10
	90%	10%
	$\geq 60.6 \%$	$\leq 0.5 \%$
Student and	2 of 10	1 of 10
Teacher	20%	10%
Roles	$\geq 3.7 \%$	$\leq 0.5 \%$
Differentiated	5 of 10	1 of 10
Instruction	50%	10%
	$\geq 22.2 \%$	$\leq 0.5 \%$
*Sources:	Beliefs Pre- and Post-Assessment	

Two out of 10 teachers scored 100% consistent with the standards on the preassessment for the following categories: expectations and student abilities, concepts and procedures, and student and teacher roles. One teacher (T9) decreased her score on the
post-assessment for two categories: expectations and student abilities and concepts and procedures. Another teacher (T5) decreased the score on the post-assessment for the category of student and teacher roles. One could state with 95% confidence that if this study was replicated, at most 0.5% of a population with similar teacher participants would be expected to show post-assessment decline for the belief statement categories of expectations and abilities, concepts and procedures, and student and teacher roles.

For mathematical discourse and manipulatives, nine out of ten teachers scored 100% consistent with the standards for those statement categories on the pre-assessment. Of the 9 teachers who scored 100% consistent with the standards for manipulatives and mathematical discourse, only one teacher (T5) decreased the belief score on the postassessment. One could state with 95% confidence that if this study was replicated, at most 0.5% of a population with similar teacher participants would be expected to show post-assessment decline for the belief statement categories of mathematical discourse and manipulatives.

Half of the teachers scored 100% consistent with the standards on the pre assessment for the category of differentiated instruction. Of the five teachers that scored 100% consistent with the standards on the pre-assessment, only one teacher (T7) decreased her score on the post-assessment. One could state with 95% confidence that if this study was replicated, at least 0.5% of a population with similar teacher participants would be expected to show post-assessment decline for the belief statement category of differentiated instruction.

It is also important to note the growth potential for the teachers' beliefs. Table 9.7 shows the number of teachers that had potential for their beliefs to grow based on
their pre-assessment belief scores. Table 9.7 also shows the number and percent of teachers whose score declined on the post-assessment and the number of teachers' that received a higher score on the beliefs post-assessment. Confidence intervals are also provided in table 9.7 indicating the potential for getting similar results of growth on the post-assessment if the study were repeated.

Table 9.7: Growth Rates for Teachers' Growth Potential on the Beliefs Pre- Assessment
$\left.\begin{array}{llll}\hline \text { Belief } & \text { Growth Potential } & \begin{array}{l}\text { Decline on Post } \\ \% \text { Teachers }\end{array} & \begin{array}{l}\text { Growth on Post } \\ \%\end{array} \\ \text { Statement Teachers } \\ \text { Category } & \text { \% Teachers }\end{array}\right)$

Sources: Pre- \& Post- Assessments for Gang of Four Video

The belief statement categories where 8 out of 10 teachers' belief scores had the potential to grow were: expectations and student abilities, concepts and procedures, and student and teacher roles. One could state with 95% confidence that if this study was replicated, at least 49.3% of a population with similar teacher participants would potentially show post-assessment growth for the belief statement categories of expectations and abilities, concepts and procedures, and student and teacher roles.

Moreover, teachers had higher belief scores on the post-assessment for the following belief statement categories: expectations and abilities, 6 out of the 8 teachers; concepts and procedures, 6 out of the 8 teachers; and student and teacher roles, 1 out of the 8 teachers. One could say with 95% confidence that at least 40% of a population with similar teacher participants would be expected to show post-assessment growth for the belief statement categories of expectations and abilities and concepts and procedures; and at least 0.6% of a population with similar teacher participants would be expected to show post-assessment growth for the belief statement category of student and teacher roles.

The belief statement categories where 1 out of 10 teachers' belief scores had the potential to grow were: mathematical discourse and manipulatives. One could state with 95% confidence that if this study was replicated, at least 0.5% of a population with similar teacher participants would potentially show post-assessment growth for the belief statement category of differentiated instruction. Moreover, two teachers had higher belief scores on the post-assessment for mathematical discourse and manipulatives. One could say with 95% confidence that at least 5% of a population with similar teacher participants would be expected to show post-assessment growth for each of the belief statement categories of mathematical discourse and manipulatives.

Differentiated instruction was the only belief statement category where 5 out of 10 teachers' belief scores had the potential to grow. One could state with 95% confidence that if this study was replicated, at least 22.2% of a population with similar teacher participants would potentially show post-assessment growth for the belief statement categories of mathematical discourse and manipulatives. Moreover, teachers had higher belief scores on the post-assessment for differentiated instruction having 2 out
of the 5 teachers show growth on the post-assessment. One could say with 95% confidence that at least 7.6% of a population with similar teacher participants would potentially show post-assessment growth for each of the belief statement categories of mathematical discourse and manipulatives.

9.4 Summary of Teachers' Beliefs

The data shows there is evidence that teachers' beliefs changed slightly regarding the teaching and learning of mathematics after teachers participated in the intervention. Scores to measure teachers' beliefs were calculated as a percent based on the number of statements of agreement with the standards out of a subset of 22 beliefs statements. The teachers' mean beliefs score increased from pre- to post-assessment.

Teachers' beliefs were also measured by the following statement categories: expectations and student abilities, mathematical discourse, concepts and procedures, manipulatives, student and teacher roles, and differentiated instruction. There is evidence from the data exhibiting change in teachers' beliefs for the categories of expectations and student abilities; concepts and procedures; and student and teacher roles. The data revealed significant results for teacher growth potential in the belief statement categories of expectations and abilities and concepts and procedures, 40%. The intervention helped teachers to align their beliefs to be more consistent with the standards.

Chapter 10 - Narratives of Teachers

This chapter is a description of ten teacher narratives. The teacher narratives describe each teacher's experiences within the intervention regarding beliefs and how the teachers attended to students' reasoning. The data sources used to examine the teachers' intervention experiences are the meeting transcripts, the on-line discussion threads, and the final projects.

10.1 T1

T1 completed the Beliefs pre-assessment before the start of the first meeting. Results of the pre-assessment showed that two of the statements inconsistent with the standards were in the category of expectations and abilities, one statement inconsistent with the standards was in the category of concepts and procedures, and 1 statement inconsistent with the standards was in the category of students' and teachers' roles.

T1 began the first cycle by working on finding all possible 4-tall towers that can be made selecting from two colors with another teacher from the northern and central cohort group. When the instructor went to T1 and her partner to ask how they arranged their towers, T 1 and her partner arranged the four-tall towers in pairs by building one tower and then making another tower with opposite colors (9/7 meeting transcript, lines 69-70). The instructor asked T1 and her partner "How do I know that you found all the towers?" and T1 replied "opposites" (9/7 meeting transcript, line 69). The instructor asked the teacher pair to "think about rearranging the towers so you can convince me" (9/7 meeting transcript, line 82). When the instructor returned to the group about fifteen minutes later, T1 and her partner had not written their argument but had rearranged the towers using the staircase strategy.

For the unit 2 on-line discussion, T1 was the first to begin the discussion thread.
T1 had written "Before doing any towers, I think students will predict that 3 high will produce 6 towers, 4 will give 8 , and 5 will give 10 . I teach in the resource classroom and students struggle with their facts." (Unit 2, On-line discussion thread, line 1). T1 also made the following comments to other teachers:

I agree that many 7th graders in the resource math setting just jump into the problem before thinking it through. I also realize that they are so quick to use addition and subtraction or very basic multiplication whenever possible. That is also why I predicted that the students would just multiply by 2 because it is a computation they are more familiar and comfortable with. (Unit 2, On-line discussion thread, line 18).

I gave my 7th grade students that are in the resource room a 5 th grade pretest and realized that they are much lower than I expected. (Unit 2, On-line discussion thread, line 20).

Her comments may be evidence of why T 1 made statements inconsistent with the standards for the category of students' expectations and abilities on her Beliefs preassessment.

T1 implemented the first cycle task in a seventh-grade resource pull-out with seven students in a forty-minute mathematics class on September 20, 2013. T1 explained that her students "loved the hands-on aspect and worked diligently in their pairs" (Final Project for T1, p. 2). However, T1 reported that the students struggled to explain and write their arguments (Final Project for T1, p. 2).

For the Unit 3 on-line discussion, T1 was the first to post her original response. She made the comment that "I learned from my colleagues and from watching the children that there are many different ways of approaching and explaining this problem." (Unit 3, On-line discussion thread, line 1) and T1 also mentioned that she noticed many students used the opposite strategy (Unit 3, On-line discussion thread, line 1). T1 replied
that "I think it is important to encourage students to explain their problems in a way that makes sense to them." (Unit 3, On-line discussion thread, line 1). For the Unit 4 discussion, T1 replied to another teacher to express concern that her "students were disinterested and frustrated." (Unit 4, On-line discussion thread, line 27). T1 also wrote that "I had them finish writing because they were almost at the point of over frustration." (Unit 4, On-line discussion thread, line 27).

At the October 2 regional meeting, T1 shared three samples of students' work with the teachers. The first sample T1 expressed concern with regards to the students understanding the task because the student pair made one big tower out of the 4 -tall towers. In the second sample shared, T1 said that the students had correctly answered with 16 but only had ten towers drawn on their paper. T1 recognized the diagonal pattern in the student's work (10/2/13 meeting transcript, line 74-80). The third sample of students' work that T1 shared was of a pair that found 16 possible towers but said "We couldn't make anymore because we think we made all the patterns." (10/2/13 meeting transcript, line 103). This sparked a debate about convincing versus non-convincing arguments.

Later on at the October 2 regional meeting, T1 paired up with T8 to work on the second cycle task. T1 had written the following comment on the on-line discussion thread:

With the pizza problem, I automatically thought "tree diagram!" but my partner reminded me we cannot do that because we will have duplicate pizzas. I definitely liked the strategy of picking a topping and having that as the constant. From there we added toppings to the constant topping. It was a little harder for me to organize my work than it was with the towers. (Unit 5, On-line discussion thread, line 7).

During the Unit 6 on-line discussion, the focus was on types of questioning. T1 said in response to another teacher that "I also agree that asking why is really important. I feel that sometimes we are in such a rush to get the curriculum done that we often don't take the time." (Unit 6, On-line discussion thread, line 29). On October 11, 2013, T1 implemented the second cycle task in her classroom. T1 wrote the following in her final project:

Many students spent much time pondering over whether they could use extra toppings, half pies, and whether order matters in how the toppings are placed on the pizza. I felt this weakened the purpose of the activity. If I could do this activity again, I would give the student specific directions such as order doesn't matter and there cannot be half pies in this case. (Final Project for T1, p. 17)

T1's comments may be evidence for statements inconsistent with the standards for the category of expectations and abilities. For the Unit 7 on-line discussion, T1 mentioned in response to another teacher that her students did not see the connection between the towers and the pizza problem and "made a lesson of explaining the problem" (Unit 7, Online discussion thread, line 47). T1's comment may be evidence for statements inconsistent with the standards for the category of expectations and abilities.

At the October 22 regional meeting, T1 shared two samples of students' work. One student made an unorganized list using the letters A through D to represent toppings and then used E to represent a plain pizza (10/22/13 meeting transcript, lines 252). Another student found fourteen pizza combinations using an organized list by writing the words of the toppings in separate boxes to represent each pizza combination. T1 recognized the student controlled for a variable by holding the mushroom topping constant (10/22/13 meeting transcript, lines 276).

After all teachers shared their students' samples of work, T1 paired up with T5 to work on the three-tall tower problem and Ankur's Challenge. For the three-tall towers problem, T1 and her partner made 9 groups of three 3-tall towers, For Ankur's challenge, T1 and her partner made 6 groups of 6 four-tall towers where six towers each had red, yellow, or blue held constant on the bottom and six towers each had red, yellow, or blue held constant on the top.

The Unit 8 on-line discussion focused on Ankur's Challenge. In response to one teacher, T1 said "I think my students would do the same with finding opposites and a pattern; however, the 3rd color will probably get them very frustrated." (Unit 8, On-line discussion thread, line 16). T1 also responded about whether or not her students would be able to come up with Romina's proof. T1 said "I think my students would be able to work with the towers and find the combinations but not all possibilities." (Unit 8, On-line discussion thread, line 41).

T1 also referenced Romina in the Unit 9 discussion when she responded to another teacher about giving students more than one opportunity to explain or write their reasoning. T1 said "Really good analogy! Editing papers shows mistakes and gives students a chance to fix or enhance their papers....this is exactly what Romina did with her argument." (Unit 9, On-line discussion thread, line 29).

On 10/31/13, T1 implemented the third cycle of tasks in her classroom. T1 said the following:

I was excited to see that my students started working diligently right away and did not need me to push them to get started. They all showed growth since the first task whether it was the way they worked together, drew their explanations, or explained their thinking. (Final Project for T1, p. 26)

T1 also said "I was more comfortable letting them ponder over the problem and didn't feel the urge to guide them" (Final Project for T1, p. 26). T1's comments may be evidence of statements consistent with the standards for the category of teachers' and students' roles.

The Unit 10 discussion asked teachers to discuss the strategies used by one student over the series of tasks. T1 talked about a pair of boys that used a recursive argument to solve the problems in the third cycle of tasks (Unit 10, On-line discussion thread, line 8). In response to one of the teachers, T1 said "It was very difficult to get them to write, especially for the pizza task, because they did not understand that task as much as the towers. However, I noticed an improvement with the 3rd task as far as the writing." (Unit 10, On-line discussion thread, line 28).

At the 11/20 regional meeting, T1 shared two students' work for the third cycle. One student's work T1 was concerned with because her written argument did not match the drawing of the towers (10/22/13 meeting transcript, lines 196-200). A second student's work from T1 had four examples of different types of patterns and the student drew 23 towers based on those patterns (10/22/13 meeting transcript, line 214). T1 shared the following final reflection thoughts on the intervention:

With the four towers, I was quick to accept arguments for fear of them reaching frustration. However, as we went on with the tasks, my students showed such improvement and I realized they were capable of more. I feel like I never give enough 'wait' time because I'm scared I'm going to 'lose' students. Now, I give more 'wait' time and am not so quick to give and explain the answer. (Final Project for T1, p. 27-28)

10.2 T 2

T2 completed the Beliefs pre-assessment before the start of the first meeting. On the pre-assessment, T2 made 2 statements inconsistent with the Standards in the category
of expectations and abilities and 3 statements inconsistent with the Standards in the category of concepts and procedures. T2 began the first cycle by working on finding all possible 4-tall towers that can be made selecting from two colors with T3. T2 and T3 originally arranged their four-tall towers using guess and check and the opposite strategy but then rearranged their towers using an inductive argument (9/7/13 meeting transcript, lines 19; 84-90).

For the unit 2 on-line discussion, T2 had posted "This year I am teaching 6th, 7th and 8th grade LLD students (Self-Contained). During this week of school I have been doing testing to figure out what mathematical levels they are all on. Though testing is not complete yet I have noticed that they are 2 to 3 grade levels below in their mathematical knowledge. "(Unit 2, On-line discussion thread, line 19). T2 also said the following:

I believe that they will just start by building all types of towers. I don't know if they would plan or discuss a plan of action before building. I'm hoping that they will notice the doubles that they build but I am not sure that they will do that. Some of my students may see the bag of cubes and just build as many towers as they can 4 high and then say that is their answer. I will need to be very specific when reading the question to them just to make sure that they understand their task before attacking it. I am very interested in seeing what they come up with. (Unit 2, On-line discussion thread, line 19).

Her comments may be evidence of why T2 made statements inconsistent with the standards for the category of students' expectations and abilities on her Beliefs preassessment.

T2 implemented the first cycle task in a seventh-grade self-contained special education class with ten students in a mathematics class for 43 minutes on September 20, 2013 (Final Project for T2, p. 3). T2 said that her students "had a hard time understanding that I could not guide them" (Final Project for T2, p. 10). However, T2
reported that she wanted to encourage her students to "be more independent thinkers" (Final Project for T2, p. 10).

For the Unit 3 on-line discussion, one teacher (T5) had written that Stephanie and Dana's argument for the four-tall towers problem in third grade was not convincing. In response to T5's original post, T2 said "I actually felt their argument was convincing. Maybe I'm being too nice or easy on the girls. I can see how many don't think their argument was convincing initially but I felt when she was describing taking a cube of the bottom and creating a duplicate that showed she did understand the problem and that maybe she couldn't explain it as well because of her age. " (Unit 3, On-line discussion thread, line 31).

For the Unit 4 discussion, T 2 responded to another teacher regarding one pair of students that kept changing their strategies for solving the four-tall tower problem, selecting from two colors. T2 said the following:

I think it was so interesting that the one group you had changed their argument so many times and in the end went back to their original response because that convinced them the most. I did not have any student think of different ways. Most of them tackled the problem using opposites and then couldn't explain how they had them all. (Unit 4, On-line discussion thread, line 30).

At the October 2 regional meeting, T2 shared four samples of students' work with the teachers. In the first-shared sample, T 2 recognized that her student used the opposite strategy to draw 16 towers, but explained verbally more than what they provided as a written argument (10/2/13 students' work meeting transcript, lines 139-148). In the second sample shared, T 2 recognized that her student used the opposite strategy to draw 16 towers but used the letters y and b instead of coloring the squares that represented the cubes (10/2/13 students' work meeting transcript, line 183).

T2 shared the partner's paper as a third sample where the student used blue and yellow markers to draw the 16 towers but did not provide a written argument. T2 recognized the diagonal pattern in the student's work as a blue cube moved down one for each position and noted that the partners made different tower drawings (10/2/13 students' work meeting transcript, line 189). The fourth sample of students' work that T2 shared was from a student that drew the towers forming a cube but T2 said that the student had used pairs but did not build his towers the way it was drawn on his paper (10/2/13 meeting transcript, line 237).

Later on at the October 2 regional meeting, T2 paired up with T3 to work on the second cycle task. T2 had written the following comment on the on-line discussion thread:

The most helpful strategy for me and my partner was to make a list of combinations of pizzas. The hardest part was coming up with an agreement as to whether cheese was a topping or not. Once we came to an agreement on that the list was simple and we both came up to the same conclusion of 16 . At first we thought about a tree diagram; however, we felt that was a hard way to represent the combinations. (Unit 5, On-line discussion thread, line 41).

During the Unit 6 on-line discussion, the focus was on types of questioning. T2 responded with the following to two teachers:

I completely agree with you that questioning is very important!! I feel as though I am trying to be more aware of my questioning toward my students but I am still finding it hard for them to give me clear explanations. (Unit 6, On-line discussion thread, line 2).

I liked this type of questions that make it seem as though the teacher is confused and needs further clarification, "I'm not sure what you're saying..." I think this allows the student to feel confident that they may know something over the teacher and allows them to think further about what they did and why. (Unit 6, On-line discussion thread, line 15).

T2 had noted the significance of questioning students about their work and admitted that her students struggled to give explanations that were clear (Unit 6 On-line discussion thread, lines 2, 15).

On October 10, 2013, T2 implemented the second cycle task in her classroom. T2 wrote the following in her final project: "For the pizza task, I found it to be more difficult than the towers. I was excited to implement this task, it was more relatable" (Final Project for T2, p. 17). T2 had mentioned that a lot of her students did not like certain toppings on their pizza and had not used them to find the solution to the pizza problem. For the Unit 7 on-line discussion, T2 mentioned the following in response to another teacher:

My students had more difficulties with this problem as well because they couldn't build something like the towers. A lot of my students did not see the duplicates right away until I asked them if they went into a pizzeria and ordered a sausage and a mushroom slice and then a mushroom and a sausage slice would they be ordering different things. They then saw they couldn't just switch the order like they did with the towers and making opposites. (Unit 7, On-line discussion thread, line 7).

At the October 22 regional meeting, T2 shared two samples of students' work. One student made an organized list using one-topping, then two-topping, three-topping, and four-topping cases (10/22/13 meeting transcript, lines 532). Another student connected the pizza problem to the towers problem by making towers and placing P in a cube to represent no topping or plain and placing T in a cube to represent a topping (10/22/13 meeting transcript, lines 538).

After all teachers shared their students' samples of work, T2 paired up with T3 to work on the three-tall tower problem and Ankur's Challenge. For the three-tall towers problem, T2 and her partner made 3 groups of 9 three-tall towers. For Ankur's

Challenge, T2 and her partner tried holding the first two cubes constant to create towers but were unable to successfully solve the problem.

The Unit 8 on-line discussion focused on Ankur's Challenge. In response to one teacher, T2 said "I did not see the answer to this problem very quickly either. Even coming up with the way to organize the towers so that you can find out what was missing was difficult, I'm curious to see if our students can solve this problem." (Unit 8, On-line discussion thread, line 5). T2 also responded about whether or not her students would be able to come up with Romina's proof. T2 said the following:

Based off of the last two problems I gave my students, I do not believe they can. However, they always can surprise me. I do not want to set low expectations of my students so I would like to present them with this challenge and see what they can come up with. They may not come up with Romina's exact proof but they may be able to develop a unique approach of their own. (Unit 8, On-line discussion thread, line 17).

T 2 responded to another teacher about giving students more than one opportunity to explain or write their reasoning with the following:

I like how you called this opportunity a revise and edit, maybe referring it this way to our student may make them understand that we are not asking them to clarify as a punishment but as a way to make them better. (Unit 9, On-line discussion thread, line 36).

On 11/13/13, T2 implemented the third cycle of tasks in her classroom. T2 said the following: "Throughout this final task, I have seen improvement amongst most of my students." (Final Project for T2, p. 28) but expressed concerns about her students' work not matching their final answer for the problem.

The Unit 10 discussion asked teachers to discuss the strategies used by one student over the series of tasks. For Unit 10, T2 wrote the following on-line about her student's work:

For the first task my student began making opposites as her strategy. When being questioned about how she knew she had them all but she had a difficult time explaining it. I asked her to rearrange the towers in a different way maybe she will see a more concrete explanation. After this she was able to see there was more of a pattern by organizing it using proof by cases. She still had a hard time explaining in writing but she was able to see two different ways to approach the problem. For the second task she had a harder time coming up with a strategy since she wanted to dive into this one by making opposites again. She quickly realized that wouldn't work for this problem. She then tried a tree diagram which, after a while she realized that was difficult to do and she began getting frustrated. She then started to make a list, even with this she did not organize it right away, she finally saw that she was making 1 topping, 2 topping, and etcetera and reorganized her work to make more sense. She was then able to better explain her work in the second task then in the first. For the first task she did not come up with a convincing argument for why she had all the towers. She completed the task correctly with 16 but could not justify her answer. For the second task her justification was more concrete explaining that she started with a different amount of toppings on the pizza until she reached the max which would be 4 , she could not have 5 because there weren't 5 options. (Unit 10, On-line discussion thread, line 31).

In response to one of the teachers, T2 said "I feel that the convincing argument is the hardest for the students to get. I feel that once we can get them to understand the problems better their explanations will become better. They are not challenged like this in the everyday classroom but they should be." (Unit 10, On-line discussion thread, line 11).

At the 11/20 regional meeting, T2 shared two students' work for the third cycle. T 2 recognized that one of her students used the elevator strategy and controlled for a variable to solve the three-tall towers problem (10/22/13 meeting transcript, lines 82). T2 also shared the partner's work who described using a recursive argument (10/22/13 meeting transcript, lines 134-136). T2 shared the following final reflection thoughts on the intervention:

I have learned that mathematics is not just basic arithmetic and procedure, that understanding the process behind the math is very important. Since the implementation of these tasks, I have been trying to encourage the "why" behind the math. I have been trying to teach and assess my students' reasoning of math. In the beginning, my students' reasoning and mathematical thinking was little to
none. They did not question math or even think about explaining math, they just knew what to do and figured that was good enough. Now they are working on improving their reasoning. (Final Project for T2, p. 32)

T2 also said "I find myself questioning my students more instead of leading them toward the answer. I have a different view about my teaching style." (Final Project for T2, p. 32) which is evidence that T 2 made a change in her pedagogical practices.

10.3 T3

T3 completed the Beliefs pre-assessment before the start of the first meeting. On the pre-assessment, T3 made 1 inconsistent statement with statements in the category of expectations and abilities, 1 inconsistent statement in the category of concepts and procedures, and 2 statements in the category of teachers' and students' roles.

T3 began the first cycle by working on finding all possible 4-tall towers that can be made selecting from two colors with T 2 . T 2 and T 3 originally arranged the four-tall towers using guess and check and the opposite strategies. The teacher pair later rearranged their towers using an inductive argument (9/7/13 meeting transcript, lines 19; 84-90). The instructor asked this pair "Which is it? Two to the fourth power to get 16 , or doubled?" regarding how the pair solved the four-tall towers problem. (9/7/13 Meeting transcript, line 96). T3 replied "both" and then the instructor facilitated a discussion with the pair about writing a convincing argument about their solution (9/7/13 Meeting transcript, lines 104-107).

For the unit 2 on-line discussion, T3 had responded to another teacher (T4) with the following:

I always find that the kids are in such a rush to get anything done. I think that my students will immediately jump right in to the building the towers through trial and error before even thinking or even considering a pattern. [T4], I definitely think it's going to be hard not to help. My resource level students are pretty needy
and when they do not get something right away, they always ask for help. I definitely think this lesson will be challenging for my students, but also challenging for me to just sit back and watch. (Unit 2, On-line discussion thread, line 14).

Her comments may be evidence of why T3 made statements inconsistent with the standards for the category of students' expectations and abilities and teachers' and students' roles on her Beliefs pre-assessment.

T3 implemented the first cycle task in a seventh-grade pull-out resource class with 12 students in a mathematics class for 40 minutes over two days on September 24th and 25th, 2013 (Final Project for T3, p. 3). T3 said that her students liked working with the Unifix cubes and "were taking the problem very seriously and trying their very best" (Final Project for T3, p. 18). However, T3 reported that she was frustrated because she "struggled with not being able to help and guide them more" (Final Project for T3, p. 19).

For the Unit 3 on-line discussion, one teacher (T7) had written that Stephanie and Dana's argument for the four-tall towers problem in third grade was not convincing. In response to T7's original post, T3 agreed with T7 and said "Neither girl gave an explanation as to why there were 16 total towers. She could not explain her answer and felt 16 was all she could come up with due to the fact that she could not build anymore. She never mentioned any type of argument to why there were only 16 other than that she could not find anymore." (Unit 3, On-line discussion thread, line 7).

For the Unit 4 discussion, T3 responded to another teacher regarding the four-tall tower problem, selecting from two colors. T3 said the following:

My students definitely struggled with the explanation aspect of this problem too. Several times, they voiced their opinions that they felt confused, exhausted and frustrated. With several pairs of students I was able to verbally understand some of their arguments, but to get them to write any of that down is a different story. One pair of students wrote how they could not create anymore towers because of
duplicates and the fact that they were exhausted! (Unit 4, On-line discussion thread, line 42).

At the October 2 regional meeting, T3 shared three samples of students' work with the teachers. In the first-shared sample, T3 said that her student separated the towers in six groups. T3 recognized that her student used the elevator strategy to draw the second group of towers and then created the third group by using the opposite colors of the second group (10/2/13 students' work meeting transcript, line 315). In the second sample shared, the student wrote the towers were found by multiplying 2 times four to get 8 and the doubling the towers to get 16 (10/2/13 students' work meeting transcript, line 326). T3 said that "I thought it was pretty good that they immediately jumped to the math of it." (10/2/13 Students’ work transcript, line 330) which sparked a debate about students using invalid rules to solve the four-tall towers problem selecting from two colors. T3 shared a third sample where the student had drawn three pairs of opposite towers with the purpose of using the towers to spell out the word math. (10/2/13 meeting transcript, line 389).

Later on at the October 2 regional meeting, T3 paired up with T2 to work on the second cycle task. T3 had written the following comment on the Unit 5 on-line discussion thread:

When reading this problem, I immediately thought of a tree diagram. However, I was working with [T2] and she suggested we start with a list. Together, we created an organized list according to the number of toppings on the pizza (plain, $1,2,3$ or 4 toppings). We used different letters to represent the different toppings (example: $\mathrm{P}=$ peppers, $\mathrm{S}=$ sausage, $\mathrm{M}=$ mushrooms $\& \mathrm{R}=$ pepperoni). After we created the list, we were able to see 16 different pizza combinations. After thinking about the problem, I attempted to use my initial thought of the tree diagram. After going back to make the tree diagram, I realized it was much harder than I had originally thought. I found myself making duplicate combinations and that it was much harder to follow and see the different pizza combinations. In the
end, I think the organized list was the better approach. (Unit 5, On-line discussion thread, line 11).

During the Unit 6 on-line discussion, T3 responded with the following to T2 about her students were struggling to write clear explanations: "They are verbally able to explain certain concepts, but then to get them to put it down on paper is a completely different story." (Unit 6, On-line discussion thread, line 3). T3 had admitted that her students were able to give verbal arguments but struggled to provide written arguments (Unit 6 On-line discussion thread, line 3).

On October 8, 2013; T3 implemented the second cycle task in her classroom. T3
wrote that half of her students were successful at solving the pizza problem and the other half of her students were unsuccessful (Final Project for T3, p. 18). T3 said the following in her final project about the students who were unsuccessful at solving this problem:

The other half that was unsuccessful with this task, I felt struggled to solve this problem due to the lack of manipulatives. This was an abstract problem, in which the students needed to visually see and create the different pizzas in their mind or on paper, rather than physically creating them with their hands and in front of them. If given the opportunity to complete this task again, I would definitely create the four different pizza toppings out of manipulatives." (Final Project for T3, p. 37)

Her comments may be evidence supporting statements consistent with the standards for the manipulatives category. In response to one of the teacher's (T1) post that T1's students had a lot of difficulty solving the pizza problem, T3 wrote the following on-line:

Wow, I thought the complete opposite. I thought for the most part, my students were able to solve this problem a lot quicker and more easily. I felt as though this was something that they could actually relate too since they all love pizza. I did have several groups suggest that sausage and pepperoni was a different pizza then pepperoni and sausage. However, after discussing it with them, I related it back to if they were to actually order the pizza, would they taste different if you ordered them two different ways and they immediately understood that the order did not matter. (Unit 7 On-line discussion thread, line 14)

T3 had discussed the variety of representations that the students used. Most of T3's students made a list; but one pair of students drew circular diagrams to represent each pizza combination and one student pair used a tree diagram (Unit 7, On-line discussion thread, line 41).

At the regional meeting on October 22, 2013; T3 shared two samples of students' work. One student made an organized list using a system that the student described to find the possible pizzas (10/22/13 meeting transcript, lines 489). In response to another teacher's (T5) original post, T3 described the system used by one pair of her students in the following way:

One pair of my students used a recursive argument as well. They kept telling me they used a "system" in order to list the different pizzas. When explaining their "system" they showed me how they created the different pizzas using arrows from topping to topping. (Unit 7 on-line discussion thread, line 31)

T3 shared a second example where the student started with a tree diagram but then changed to make a list of 13 possible pizzas (10/22/13 students' work transcript, lines 504-505).

After all teachers shared their students' samples of work, T3 paired up with T2 to make 3 groups of 9 three-tall towers on the three-tall tower problem and found 28 towers for the Ankur's Challenge problem holding the same color constant for the first two positions. For the Unit 8 on-line discussion, T3 said the following:

I have a feeling that this problem, would take my students several periods to complete. I am hoping their explanations will be more thorough now that we have been practicing more, but most often they are very basic. Their explanations either consist of what they did to arrive at their answer rather than why. I am as well expecting to hear lots of opposite and pattern explanations from my students. (Unit 8, On-line discussion thread, line 11).

Although T3 did not expect her students to come up with Romina's proof on their own,
T3 said that she liked the idea of using the problem to challenge her students (Unit 8, Online discussion thread, line 18).

On $11 / 13 / 13$, T3 implemented the third cycle of tasks in her classroom. T2 said "By cycle three, I felt that they implemented more of a strategy for this task than when they had completed the first cycle. This time around, they were able to explain themselves better." (Final Project for T3, p. 55) and found more success at solving this problem. T3 also responded to another teacher (T1) about the importance of giving more than one opportunity for students to explain and write their reasoning when solving problems. T3 wrote on-line that "It is definitely important for us to address multiple ways of solving various math concepts." (Unit 9, Meeting transcript, line 9).

For the Unit 10 discussion regarding a student's work over the first two tasks, T3 wrote the following on-line about her student's work:

For the first task, her justification was more of what and how she created the different towers versus why she had created all 16 towers and why she could not create any additional towers. She struggled to not only verbally give me an explanation, but she also struggled to write a convincing argument. For the second task, she was definitely able to verbally explain her "arrow" method to me in which she used every pizza topping in a different position. Her transition from verbally to physically being able to write down her explanation was still a struggle. I have found that over the two tasks, my students have had more success verbally explaining from task one to task two. I have definitely seen a lot of growth in them from task one to task two. (Unit 10, On-line discussion thread, line 16).

Moreover, T3 wrote an on-line response to one of the teachers that "having the actual unifix cubes physically in front of them helped my students. In task two, they had no visuals to help them create the different pizza combinations." (Unit 10, On-line discussion thread, line 2). Her comments may be evidence of why T3 made statements
consistent with the standards for the manipulatives category on her Beliefs preassessment.

At the $11 / 20$ regional meeting, T 3 shared two students' work for the third cycle. T3 recognized that one of her students controlled for a variable on the bottom of the towers with each color making three groups of nine 3-tall towers to solve the three-tall towers problem (10/22/13 meeting transcript, line 491). T3 also shared a second student's work where the students began using a tree diagram but "realized they were having too many duplicates" $(10 / 22 / 13$ meeting transcript, lines $504-506)$ and changed to a list of thirteen possible pizza combinations. T3 shared the following final reflection thoughts on the intervention:

As far as their reasoning and arguments are concerned, I learned that at the very beginning I needed to really push the idea of giving a convincing argument. My students definitely struggled with this, but by the third task; they knew what was expected of them. They had learned through these tasks that they needed to organize their thinking on paper and include details on what and why they did what they did. (Final Project for T3, p. 57)

T3 also said "I plan on continuing to implement similar tasks throughout the remainder of the school year as well as for years to come." (Final Project for T3, p. 32) which indicated thatT3 intended on changing her current and future pedagogical practices.

10.4 T4

On the beliefs pre-assessment completed before the first meeting, T4 made 1 statement, inconsistent with the Standards, in the category of concepts and procedures and another in the category of manipulatives. T4 began the first cycle by working on finding all possible 4-tall towers that can be made selecting from two colors with T8. T4 and T8 originally arranged their towers the four-tall towers using a recursive argument for finding ten towers and using the opposite strategy for the remaining 6 towers; but then
later rearranged their towers by controlling for a variable of red on the bottom for eight 4tall towers (9/7/13 meeting transcript, lines 119-124).

For the unit 2 on-line discussion, T4 had responded to another teacher (T10) about predictions for the four-tall towers problem with the following:

My students will also start off building the towers without a reason. It's going to be difficult to hold back and not help them! But I think it will be great for them to struggle to compare and contrast and find a pattern. (Unit 2, On-line discussion thread, line 13).

T4 implemented the first cycle task in an eighth-grade general education class with 7 students in a mathematics class for 80 minutes (Final Project for T4, p. 2). T4 said that her students "were diligently working and persevering till they found all the tower combinations" (Final Project for T4, p. 9). T4 also wrote in her final project that "I have found myself asking more thought-provoking questions and doing a lot less leading towards the correct answer." (Final Project for T4, p. 9) and which indicated a change for T4 in pedagogical practices.

For the Unit 3 on-line discussion, T4 responded in the following way to another teacher (T7) about the arguments the students provided for solving the four-tall tower problem:

No matter what group of students I listened to, I saw them all talk about opposite pairs, patterns, diagonal movements, and recursive patterns but all were unclear as to how to explain why they did what they did. This kind of reasoning is an essential mathematical practice that I need to work on with my students. (Unit 3, On-line discussion thread, line 34).

For the Unit 4 discussion, T4 responded to another teacher (T3) regarding the four-tall tower problem, selecting from two colors. T4 also had written the following:

As I moved around the room and questioned students about their reasoning and the steps they took to construct their towers I saw that they had a very difficult
time putting their reasoning into words - I frequently got "I don't know; I just did it," as an answer. (Unit 4, On-line discussion thread, line 36).

T4 expressed that students struggled to provide any written arguments.
At the October 2 regional meeting, T4 shared two samples of students' work with the teachers. In the first-shared sample, T4 said that her student had the towers in four groups. T4 recognized that her student used the diagonal strategy to draw the first group of towers and used the opposite colors to create the towers for the second group of towers. The third and fourth groups of towers were created using the opposite strategy of two of each color and two towers where one tower had all yellow cubes and one tower had all red cubes (10/2/13 students' work meeting transcript, line 415). In the second sample shared, T4 had described that the student had "saw the step thing going down" (10/2/13 students' work meeting transcript, line 469) regarding the elevator pattern.

Later on at the October 2 regional meeting, T4 and T5 worked together on the second cycle task. T4 had written the following comment on the Unit 5 on-line discussion thread:

The first instinct when faced with the pizza problem is to make a list. I found that writing out the entire word wasn't very efficient and my partner's labels of P, M, S , and R were much easier to use. After we determined that 16 pizzas could be made I tried to think of what my students would do and came up with a tree diagram with the four headings of $\mathrm{P}, \mathrm{M}, \mathrm{S}$, and R and side labels of 1st pizza, 2nd pizza, and 3rd pizza (the fourth option is all four toppings so it doesn't need to be repeated at the bottom of every branch of the tree diagram). After completing the Pepper branch I realized I needed to make a list of the combinations and from that list I realized I needed to cross out the duplicates. This was a very long process and did not prove to be more efficient than listing the combinations in letter form." (Unit 5, On-line discussion thread, line 30).

T4 found that there were too many duplicates using a tree diagram and abandoned using this representation (10/2/13 meeting transcript, lines 174-177).

During the Unit 6 on-line discussion, T4 responded with the following to T2 about how the questions asked by the teacher in the video helped Brandon with his conceptual understanding:

Brandon had a great method for solving the problem but I think that being pushed to explain his process in detail gave him more confidence in his reasoning. Confidence is something most of my students lack and I am going to try to use this kind of questioning technique with them. (Unit 6, On-line discussion thread, line 23).

T4 expressed that probing questions helped Brandon explain his argument (Unit 6 Online discussion thread, line 27).

On October 15, 2013, T4 implemented the second cycle task in her classroom. T4 had written "If I can avoid sharing my opinion during this discussion, my students might feel more confident in their choices just from peer reinforcement. If anything, my students will be able to talk to each other and share their thoughts." (Final Project for T4, p. 19) and T4's statements may be evidence consistent with the standards for the category of teachers' and students' roles. In response to one of the teacher's (T9) post that T9 was confused in the way students used webs to solve the pizza problem, T4 wrote the following on-line: "A lot of my student did webs too - I think it's because they knew they were looking for combinations and have be programmed to use tree diagrams instead of any other solution method." (Unit 7, On-line discussion thread, line 14).

At the regional meeting on October 22, 2013; T4 shared two samples of students' work. One student wrote circles to represent pizzas and used letters to represent toppings to list the pizza combinations. Another student began the second cycle task using a tree diagram but then stopped because the student "was running into so many problems" (10/22/13 meeting transcript, lines 464). According to T4, the student was able to fix his
work after hearing the comments made to the first student (10/22/13 meeting transcript, lines 464).

After all teachers shared their students' samples of work, T4 paired up with T6 to make 9 groups of 3 three-tall towers using an inductive argument for the three-tall tower problem and successfully found 36 towers for the Ankur's Challenge problem with six groups of six 4-tall towers. For the Unit 8 on-line discussion, T4 said the following:

I agree with holding high expectations for our students. Even though many of us have special education students they are still just as capable as anyone else of solving the problems. We may need to give them more time or let them work it out in their own unique way. Holding back has never been my strength as a teacher (I just want to be helpful always!) but I'm slowly practicing letting go and holding back. I figure it will only make my students stronger and more independent and maybe make me a little less stressed. (Unit 8, On-line discussion thread, line 21).

T4 also did not expect her students to come up with Romina's proof. However, T4 said her students have surprised her with their work on the tasks and that she might try Ankur's challenge before Thanksgiving. (Unit 8, On-line discussion thread, line 2).

In response to one of teachers (T6) regarding the importance of giving students more than one opportunity to explain and write about their ideas, T 4 wrote the following on-line:

I find myself constantly asking my students, "Do you think that's a convincing argument?" It's great because I've trained myself and them to expect more detail from their explanations. They are editing they're thinking and giving me full answers. It has also helped to open up more dialogue between students and I have found they are much more willing to work together and help each other through the problem solving process. (Unit 9, On-line discussion thread, line 25).

T4's comments are consistent with the standards for teachers' and students' roles.
Regarding a student's work over the first two tasks, T4 wrote the following online about her student's work:

My student did not stick with the same problem solving strategy for the two tasks. The first task building towers was much easier for him because the manipulatives provided an opportunity to make guesses and mistakes without the finality of writing it on paper. The second task proved difficult to him because he was very reluctant to write down anything he wasn't extremely sure of. When he did write something down it was a tree diagram which frustrated him quickly. He did not stick with that strategy and instead chose to list out the pizza combinations but did not have great organization. (Unit 10, On-line discussion thread, line 25).

In response to another teacher (T5), T4 wrote the following on-line:
I am hopeful that my students will be much more convincing in their arguments for the third task. The manipulatives definitely give them more confidence or maybe they just like playing with blocks? Either way it's a great way to get them to do math and shows us their thinking processes. (Unit 10, On-line discussion thread, line 3).

T4's comments are consistent with the standards in the category of manipulatives.
On 11/19/13, T4 implemented the third cycle of tasks in her classroom. T4 wrote in her final project that "This task proved to be more difficult for my students than the first tower problem." (Final Project for T4, p. 27) and said she hoped that other students' work would motivate some of her students to try to solve the third cycle tasks. At the 11/20 regional meeting, T4 shared two students' work for the third cycle. T4 shared that one of her students controlled for a variable by separating the towers by their color on top to solve the three-tall towers problem (11/20/13 meeting transcript, lines 230-231). T4 also shared a second student's work where T4 said that "He struggled with what he wanted to say but he did give an example." (11/20/13 meeting transcript, line 240). T4 shared the following final reflection thoughts on the intervention:

I was pleasantly surprised and impressed by the small steps my students made towards solving the problems from each cycle but I am very concerned with the lack of ability to explain and give a convincing argument. (Final Project for T4, p. 28)

T4 also wrote that she planned on giving her students the three tasks again to compare how their thinking changed from the beginning to the end of the year (Final Project for T4, p. 28).

10.5 T 5

On the pre-assessment, T5 made 18 statements consistent with the standards and no statements inconsistent with the Standards. T5 began the first cycle by working on finding all possible 4-tall towers that can be made selecting from two colors with a teacher from the northern and central cohort group. T5 originally arranged their towers using the opposite strategy but then rearranged the towers using a staircase strategy (9/7/13 meeting transcript, lines 192-204).

For the unit 2 on-line discussion, T5 had responded to another teacher (T10) about predictions for the four-tall towers problem with the following:

I am going to try this activity in my resource classes, and at this point of the year I can already tell that each class as a whole is at very different levels. My concern with this project is that I feel some of my students will become frustrated and give up or just build random towers. They are used to a lot of guided instruction, so this should be interesting... (Unit 2, On-line discussion thread, line 21).

T5 implemented the first cycle task on September 20, 2013 in a seventh-grade resource class with all classified students in a mathematics class for 45 minutes (Final Project for T5, p. 2). T5 had written the following: "Even though a majority of my students had difficulty proving their point, they all had the general idea. I consider that a success because they are not used to explaining their math reasoning, and were all able to get 16 towers." (Final Project for T5, p. 7) and which is consistent with the standards in the category of expectations and abilities.

For the Unit 3 on-line discussion, T5 wrote the following from an original post about the students' arguments during the in-district classroom visit for solving the fourtall tower problem: "I really liked how some of the students reasoned their answers and organized their towers. The one group that caught my eye was the group that changed the position of each color so that they could determine the amount of towers and any duplicates." (Unit 3, On-line discussion thread, line 30). For the Unit 4 discussion, T5 responded to another teacher (T3) regarding the four-tall tower problem, selecting from two colors. T5 had written the following:

I agree that there were elements of this activity that were confusing for my resource level students. I had to explain several times what the question was asking because some of my students could not grasp the concept at first. Also, I had to explain what a duplicate looked like, and how to draw out the towers. However, once we were into the activity, which took me several days too. The students started to get the hang of it. They all did not get the correct answer but that's ok. On a whole they all had a difficult time explaining their reasoning. I had to do a lot of prompting to help them. (Unit 4, On-line discussion thread, line 25).

T5 expressed that students struggled to explain their arguments and T5 admitted to prompting the students to help them solve the first cycle task (Unit 4, On-line discussion thread, line 25).

At the October 2 regional meeting, T5 shared two samples of students' work with the teachers. In the first-shared sample from T5, the student had arranged the towers in four groups where the first group had a red diagonal going down and the second group had a yellow diagonal going down. The other eight towers were arranged in two groups using the opposite strategy (10/2/13 Meeting Transcript, line 415). T5 recognized that her student used the diagonal strategy to draw the first group of towers and used the opposite colors to create the towers for the second group of towers. The third and fourth
groups of towers were created using the opposite strategy of two of each color and two towers where one tower had all yellow cubes and one tower had all red cubes (10/2/13 students' work meeting transcript, line 415). In the second sample shared, T5 had described that the student had "saw the step thing going down" (10/2/13 students' work meeting transcript, line 469) regarding the elevator pattern.

Later on at the October 2 regional meeting, T5 and T4 worked together on the second cycle task. T5 had written the following comment in the Unit 5 on-line discussion thread: "We both started off breaking the pizzas in to plain and all topping similar to beginning of the block activity. I also found that we both organized our answer so it was clear that they were no duplicates." (Unit 5, On-line discussion thread, line 14). For the Unit 6 on-line discussion, T5 made the following original post about how the questions asked by the teacher in the video helped Brandon with his conceptual understanding:

After the students have worked on the activity for a while the one question I think is important to ask to grasp their beginning stages of their thinking is, "Tell me what you have done so far." This question is vital because it is a springboard for their further answers. I also think this is the type of question students won't automatically feel they are doing the activity wrong, and be afraid to answer. Then after they have worked further on the activity asking them to explain/convince me of their work is much easier. I feel it is much easier because they will probably be more confident at this point because they answered the prior question and have more understanding of the task. Also, since you have some background knowledge it will be easier to continue to ask more questions because you can refer back to their previous answer. I really feel that in order to understand a child reasoning it is not so much the question you ask, but I how the question is presented to the child. I learned that through the last activity that each child may need the same type of question presented differently in order to grasp their full reasoning of the activity. (Unit 6, On-line discussion thread, line 43).

T 5 also responded to another teacher (T8) that the assigned article to read called Brandon's Proof and Isomorphism, gave T5 ideas about how to ask students effective questions (Unit 6 On-line discussion thread, line 41).

On October 21, 2013, T5 implemented the second cycle task in her classroom. T5 had written the following in her final project:

I really enjoyed seeing how my students chose to organize their work. I had some students use tree diagrams, listing, creating drawings, and making charts. I also think this activity was a little more difficult because there were not many manipulatives to use. So the students had a hard time telling if they had a duplicate. Many of my students did not come up with an accurate solution, but they showed improvement on their organization of their mathematical findings. (Final Project for T5, p. 13)

In response to one of the teacher's (T1) original post about difficulties that T1's students experienced, T5 wrote the following on-line: "A lot of my students had difficulty with this problem because I feel the way it is worded could be interpreted differently. Also, I feel because there were no manipulative this activity was harder." (Unit 7, On-line discussion thread, line 12). T5's comments supported statements consistent with the standards for the manipulatives category.

At the regional meeting on October 22, 2013; T5 shared two samples of students' work. One student made a chart and used topping words at the top of the chart to represent 16 pizza combinations (10/22/13 students' work meeting transcript, lines 307). Another student made a numbered list of ten possible pizza combinations and held peppers as a constant (10/22/13 meeting transcript, lines 331).

After all teachers shared their students' samples of work, T5 paired up with T6 to make 9 groups of 3 three-tall towers using a recursive argument for the three-tall tower problem and successfully found 36 towers for the Ankur's Challenge problem with six groups of six 4-tall towers. For the Unit 8 on-line discussion, T5 wrote the following in response to T 2 :

I don't want to set low expectations for my students either. I also agree that they may not be able to come up with Romina's proof, but even if they came up with
their own proof and it was not correct I would take that as a success because it is a challenging problem. (Unit 8, On-line discussion thread, line 24).

T5 also responded to another teacher (T10) on-line that she did not expect her students to come up with Romina's proof. However, T5 had written "My students may not come up [with] the solution right away, but am also surprised by their work and their solutions." (Unit 8, On-line discussion thread, line 7).

In response to one of teachers (T1) regarding the importance of giving students more than one opportunity to explain and write about their reasoning, T5 had written the following on-line: "I think it is also helpful to let students represent their work in several ways because they are able to see any mistakes and also have the chance to really understand what they have done." (Unit 9, On-line discussion thread, line 25). T5's comments are consistent with the standards for mathematical discourse and differentiated instruction.

Regarding a student's work over the first two tasks, T5 wrote the following online about her student's work:

The first assignment with the cubes my student initially chose the strategy of making a pattern. The pattern started off random and then eventually he organized the cubes to show his work clearer. As for the second problem my student automatically made the connection to the first problem. He then tried to solve it mathematically by multiplying 4×4. However, he was not able to justify his answer. He then started with a tree diagram and then switched to a chart to solve the problem. (Unit 10, On-line discussion thread, line 1)

In response to another teacher (T3), T5 wrote the following on-line: "I have also seen growth in my students when they have to verbally explain their results. I see that they are able to elaborate a little more than in the past." (Unit 10, On-line discussion thread, line 19). T5's comments are consistent with the standards in the category of expectations and abilities.

On 11/14/13, T5 implemented the third cycle of tasks in her classroom. T5 wrote in her final project that "I thought that the organization factor in the task would be challenging for them, but they all impressed me with the variety of strategies they used." (Final Project for T4, p. 18) regarding the cycle 3 tasks. At the 11/20/13 regional meeting, T5 shared two students' work for the third cycle. T5 shared that one student estimated 31 towers with her partner but did not provide a convincing argument. In a second sample, T5 recognized that the student controlled for a variable by having three groups of nine 3-tall towers for the 3-tall problem (11/20/13 meeting transcript, line 278).

T5 shared the following final reflection thoughts on the intervention: "It is nice to see what the freedom of thinking can show me. They also have improved on explaining their work and it is starting to come naturally to them." (Final Project for T5, p. 20) concerning students' mathematical discourse. T5 also wrote that her questioning skills improved. T5 wrote the following in her final project "Often I give too much away when I question, or guide my students too much. I know that I do it, but after this class I am able to question my students without fully leading them to the answer (Final Project for T5, p. 20). T5's comments may be evidence for statements consistent with the standards for the category of teachers' and students' roles.

10.6 T6

On the pre-assessment before the first meeting, T6 made 1 statement, inconsistent with Standards, in the category of expectations and abilities and another statement in the category of teachers' and students' roles. At the first meeting, T6 worked on finding all possible 4-tall towers that can be made selecting from two colors with T7. T6 and T7
originally arranged the towers using the opposite strategy but then rearranged the towers by controlling for a variable (9/7/13 meeting transcript, line 52).

For the unit 2 on-line discussion, T6 had responded to T9 for predicting students' solutions for the four-tall towers problem with the following:

You make a great point about students jumping in and creating towers randomly! I can see how this could discourage and overwhelm students. I would be weary of saying something to the student too in fear of stealing his/her ah-ha moment. I think some of my more unorganized or aloof students I might pair with a more structured student. (Unit 2, On-line discussion thread, line 26).

T6 implemented the first cycle task on September 26, 2013 in a sixth-grade gifted class with 27 students in a mathematics class for 60 minutes (Final Project for T6, p. 2). T6 had written the following:

My students struggle with translating their mathematical thinking into words. Many students had a difficult time writing down what they were able to verbalize. My students also had a difficult time formulating a 'convincing argument'. After reading their work and observing them in class, I came to the conclusion that many of them did not truly understand what it meant to have a convincing argument. (Final Project for T6, p. 11)

T6 also wrote that she found it difficult to "not lead the students during this problem" (Final Project for T6, p. 11).

For the Unit 3 on-line discussion, T6 wrote the following in response to an original post from T3 about the comparison of students' solutions from the second to the third grade for the shirts and pants problem: "I think the way students choose to organize their thought can give us some insight to how they are thinking and can help us interpret their mathematical reasoning. Do students improve their organizational skills because their mathematical reasoning skills have improved or because they have been trained?"(Unit 3, On-line discussion thread, line 24). For the Unit 4 discussion, T6 responded to another teacher (T3) regarding the four-tall tower problem, selecting from
two colors about the struggle students have when writing down their reasoning. T6 had written "I think students rarely associate writing with math and when asked to explain their thinking the students often do not see the point of doing it. It is hard to motivate students to write a reflection on their mathematical thinking or processes sometimes." (Unit 4, On-line discussion thread, line 18).

At the October 2 regional meeting, T6 shared three samples of students' work with the teachers. In the first-shared sample from T6, the student provided a recursive argument by showing step-by-step drawings and explanations of how this student moved the cubes (10/2/13 Meeting Transcript, line 560). T6 also shared the partner's explanation because T6 decided the partner's explanation for the case of two of each color was better (10/2/13 Meeting Transcript, line 565). In a third-shared sample, T6 recognized that her student used the opposite and elevator strategies to create the towers but had called the strategy a staircase (10/2/13 students' work meeting transcript, line 596).

Later on at the October 2 regional meeting, T6 and T7 worked together on the second cycle task. T6 had written the following comment in the Unit 5 on-line discussion thread:
[T7] had the idea of keeping a constant. So we did all pizzas with peppers, all with mushrooms, all with pepperoni and all with sausage. We found as we eliminated an ingredient the number of possibilities were halving (just like the tower problem!). From there we decided to replicate what the towers would look like by having four possible spots. If the pizza did not occupy all of the spots with an ingredient we would put an X and if it did have an ingredient we would put the representation we came up with. As I as looking at it I noticed we did not even need to differentiate between the ingredients ($\mathrm{m}, \mathrm{i}, \mathrm{p}, \mathrm{s}$) when organizing this method. If you are using the unifix cubes this way with one color is representing a topping and one color representing the absence of a topping. (Unit 5, On-line discussion thread, line 1).

For the Unit 6 on-line discussion, T6 responded to T3 about the representation Brandon used to solve the pizza problem: "The way a student chooses to represent his/her work can give us insight on his/her mathematical thinking." (Unit 6, On-line discussion thread, line 9).

On October 22, 2013; T6 implemented the second cycle task in her classroom. T6 wrote the following from her original post on-line:

My students used many different strategies to solve this problem. Many partners started out creating tables. The tables were organized either by the type of topping or by the number of toppings. I thought this was an interesting strategy. There were tons of questions about the "rules" for the pizzas. My students are very creative and it was very difficult for me to not give them stipulations about duplicates or order. Most students naturally realized that the order of the toppings does not change the pizza. Some students created tree diagrams, but most who started with this organization abandoned it. Students used a variety of letters or some used abbreviations to represent the different toppings. (Unit 7, On-line discussion thread, line 28).

T6 also had written the following in her final project:
I was doing a better job at not leading the students. I found myself asking better questions to get students to re-think things, without giving everything away. I was successful when I suggested students to re-write their pizza possibilities, or try a different organization. (Final Project for T6, p. 26)

T6's comments are consistent with the standards for the category of teachers' and students' roles.

At the regional meeting on October 22, 2013, T6 shared three samples of students' work. One student made a tree diagram to find 16 pizza combinations but did not provide a written argument (10/22/13 meeting transcript, line 162). Another student incorrectly used the rule strategy to get the answer by multiplying four times four (10/22/13 meeting transcript, lines 189). In the third-shared sample, T6 recognized that her student controlled for a variable (10/22/13 meeting transcript, line 200).

After all teachers shared their students' samples of work, T6 paired up with T5 to make 9 groups of three, 3 -tall towers, using an inductive argument for the 3 -tall tower problem and successfully found 36 towers for the Ankur's Challenge problem with six groups of six 4-tall towers. For the Unit 8 on-line discussion, T6 said the following regarding predictions of how T6's students will solve the third cycle task:

I think my students will start initially by building the towers. I will be interested to see how the students organize this. In the first tower problem, the students just started building, without a real "plan of attack." I think if they approach this problem the same way they will have a difficult time building all the towers and I'm not sure if they will put much thought into a strategy or organizational method; however, I have been surprised in the past! Some of my students are capable of approaching this problem with great strategy, but that is considering if they approach it with a strategy at all. (Unit 8, On-line discussion thread, line 36).

In T6's original post regarding the importance of giving students more than one opportunity to explain and write about their reasoning, T6 had written the following online:

Even if students do not make mistakes, taking an additional opportunity to explain or write an idea might prompt them to change something about their explanation and help them make a new discovery. With the first tower problem, most students just started building towers and the opposites. When given an opportunity to explain their thinking again, students realized this was not very convincing and were able to build a stronger argument. This process is helping students develop a deeper understanding of the mathematics. Many times in class I challenge students to solve a problem differently than how they originally did. (Unit 9, On-line discussion thread, line 25).

T6's comments are consistent with the standards for mathematical discourse.
Regarding a student's work over the first two tasks, T6 wrote the following online about her student's work:

For the first tower task, my student created a "staircase pattern" and was able to form a convincing argument about the group of towers with three of one color and one of another. For the other towers four tall, the student was not able to make a convincing argument and relied heavily on the opposite reasoning. The student
explained that he had achieved all of the towers because each had an opposite. As we moved onto the second tower problem, this student approached the problem with more strategy. He and his partner kept a color constant when working with three colors instead of two. This student was able to write a convincing argument explaining his strategy and justifying how he had all of the towers. In comparing these two strategies, I believe the student refined his strategy for the second tower task. I believe this was partly because of his experience with the first task. For the pizza problem, this student created a table to keep track of the types of pizza. (Unit 10, On-line discussion thread, line 1).

In response to another teacher (T1) about students knowing they should have a strategy before attempting the third cycle tasks, T6 wrote the following on-line: "I felt my students also had much more strategy approaching the task. They knew from the first task that it was not difficult to build all the towers, but to make a convincing argument was very challenging and required organization and strategy." (Unit 10, On-line discussion thread, line 9). T6's response is consistent with the standards in the category of expectations and abilities.

On 11/6/13, T6 implemented the third cycle of tasks in her classroom. T6 wrote the following in her final project: "The growth in the students from the first tower problem to this problem was apparent across the board. Students approached the problem with strategy and used their past experiences to help them formulate a convincing argument." (Final Project for T6, p. 34) and asked T6 if she would extend class time in order to finish the task. T6 wrote the following in her final project "During the first tower problem, when it came time to write, most students hesitated to start and struggled to put any thoughts on paper. During this tower problem, when it came time to write an argument, students were busy writing or collaborating with their partners." (Final Project for T6, p. 34) and this marked a change with her students' ability to write convincing arguments.

At the 11/20 regional meeting, T6 shared two students' work for the third cycle. In the first-shared sample, T6's recognized that her student used a combination of the elevator and opposite strategies with 7 groups labeled A through G (11/20/13 meeting transcript, lines 366-370). In a second sample, T6 recognized that the student controlled for a variable by first keeping two colors on the bottom constant, then kept the top two the same and changed the bottom for the 3 -tall problem (11/20/13 meeting transcript, lines 394-398). T6 shared the following final reflection thoughts on the intervention:

With practice, students improved their abilities to write a convincing argument and they also learned what is expected in a convincing argument. I watched students recognize that restating what they did was not necessarily convincing. It was evident in the third problem that students had a better grasp on being convincing. The students approached the problem with strategy (Final Project for T6, p. 35).

10.7 T7

Before the first meeting, T7 made 1 statement inconsistent with Standards in the category of concepts and procedures and another in the category of teachers' and students' roles on the pre-assessment. At the first meeting, T7 and T6 worked together to arrange the towers using the opposite strategy first and then rearranging the towers by controlling for a variable (9/7/13 meeting transcript, line 52).

T7 had responded to T10 for the second unit discussion about predicting students' solutions for the four-tall towers problem. T7 wrote "I agree that some students will start building towers without any strategy to ensure they have all possibilities. It will be interesting to see how the students start to arrange their towers once they build them without a method and how they notice, or lack noticing, which outcomes are missing if they did in fact miss some of the possibilities which would be expected." (Unit 2, On-line discussion thread, line 16).

T7 implemented the first cycle task on September 17, 2013 in an eighth-grade regular class with 20 students in a mathematics class for 80 minutes (Final Project for T7, p. 2). T7 had written the following: "Many students used proof by cases or the recursive argument but it took some time for them to get away from the thought of pairs of opposite towers in order to better develop their reasoning. Once students started regrouping their towers, they were able to develop better arguments." (Final Project for T7, p. 11) and "it was a challenge not to direct students to a solution" (Final Project for T7, p. 11).

For the Unit 3 on-line discussion, T 7 wrote the following in response to T 6 about the way students organized their towers:

I agree that it was interesting to see how the students organized their towers. Their argument became easier or harder based on how they grouped the towers and when they started to look at the towers in a different way, sometimes they were able to come to a more convincing argument. When I worked with my other class on the activity, many of them started to use the recursive argument as they moved the groupings around. Most of them were focusing on opposites for a while. (Unit 3, On-line discussion thread, line 29)

For the Unit 4 discussion, T7 responded to T6 about the struggle students have when writing down their reasoning as they worked on the four-tall towers problem. T 7 wrote the following:

My students also struggled with writing their argument. They could explain it to me, but when I asked them to write it they would ask what to write down and I would tell them to write exactly what they told me. Many of them just didn't want to take the time to write it on paper. (Unit 4, On-line discussion thread, line 17).

This was discussed by some of the teachers who experienced this common issue with their students (Unit 4, On-line discussion thread, lines 13, 15, 17, 18)

At the October 2 regional meeting, T7 shared three samples of students' work with the teachers. In the first-shared sample from T7, the student provided a recursive
argument verbally but T 7 recognized that the student described the opposite strategy in their written argument (10/2/13 Meeting Transcript, lines 635-653). T7 shared a second example where the student used a rule strategy that gave them 16 but the written argument was not convincing (10/2/13 Meeting Transcript, lines 673-676). In a thirdshared sample, T7 recognized that her student had written the towers horizontally in pairs (10/2/13 students' work meeting transcript, lines 683-687).

Later on at the October 2 regional meeting, T7 and T6 worked together on the second cycle task. T7 had written the following comment in the Unit 5 on-line discussion thread:
[T6] and I started with the plain pizza, and then moved to the possibilities for one topping, two toppings, three toppings, and four toppings. We both developed notation for the peppers and pepperoni which differed from each other. After being encouraged to look at how this compared to the tower problem, we looked at having a constant. Starting with peppers, I listed the pizzas of one topping, two toppings, and three toppings containing peppers. I then moved to mushrooms, without using the peppers again since they had previously been listed. The pizzas with sausage were next, then the pizzas with pepperoni. Following this, I created what would look like towers, using the top block to represent peppers, second block to represent mushrooms, third for sausage, and fourth for pepperoni, placing an " x " in a position if that topping was not on the pizza. (Unit 5, On-line discussion thread, line 4).

T7 responded with the following to T2 about the teachers' questioning of Brandon's work for the pizza problem: "The more students are questioned and encouraged to explain their reasoning, the better their arguments become. I also find that questioning can help students find their own misconceptions and correct them without being told that they were incorrect." (Unit 6, On-line discussion thread, line 28).

On October 18, 2013, T7 implemented the second cycle task in her classroom. T7 had written the following in her final project about the myriad interpretations from students regarding the pizza problem:

I was very surprised by the difficulty experienced by the students in solving this problem. I did not expect the students to analyze the problem considering different slices or sections of the pizza as being different from each other. This task showed me the effect real world experience can have on students' approaches to problems. I saw this student who had experience in a family owned pizzeria as well as in the students who considered half pizzas because they had previously ordered pizzas with one half different than the other half. I was surprised to see so many students consider half pizzas, pizzas without cheese, and plain as a topping option. (Final Project for T7, p. 23)

T7 wrote the following from her original post on-line about the plethora of representations and strategies used by her students:

Some used lists; others drew diagrams of pizzas, while others tried to use tree diagrams. There were students who assigned a number to each of the toppings, others assigned letters; and some wrote the words out. Only a few students attempted the problem using cases. Many of them held a constant and moved forward with the remaining options. They were able to explain why a topping was no longer used after they had exhausted all the possibilities with that topping. (Unit 7, On-line discussion thread, line 40).

T7 also mentioned that some students were still struggling to write their arguments on paper; but said that for future tasks she would try having the students "dictate their reasoning as the other person in the pair records the reasoning on paper" (Final Project for T7, p. 23).

At the regional meeting on October 22, 2013, T7 shared three samples of students' work. One student had 145 pizza combinations on their paper because the student was counting each slice as having a different topping (10/22/13 meeting transcript, line 397). Another student divided the pizzas into quarters that could have different toppings in each quarter (10/22/13 meeting transcript, lines 422). T7 shared a third sample of student work where the student listed 16 possible combinations (10/22/13 meeting transcript, line 430).

After all teachers shared their students' samples of work, T7 paired up with T8 to use a recursive argument to make 9 groups of 3 three-tall towers for the three-tall tower problem. Also, T7 and T8 successfully found 36 towers for the Ankur's Challenge problem with three groups of twelve 4-tall towers separated by controlling for a variable on top with the three colors. T7 wrote the following regarding whether her students would come up with Romina's proof for Ankur's Challenge:

I would be very surprised if my students approached the problem the way Romina did. I had not thought about this approach until another group demonstrated it at the board. Observing how they have approached the past problems, most of my students seem to take a random approach with no organization. (Unit 8, On-line discussion thread, line 34).

T7 also responded to T1's original post about the importance of using different representations in the following way: "It was interesting to see her diagrams as well as her writing and verbal explanations. It not only helps the person explaining the problem develop their reasoning more, it helps the students who learn in different ways understand the explanation better." (Unit 9, On-line discussion thread, line 12).

For the discussion about a student's work over the first two tasks, T7 wrote the following on-line:

I noticed that the student used cases for both. For the tower problem, he had three groups of towers; all cubes one color, two cubes of each color, and three cubes of one color and one cube of the other color. He attempted the pizza problem in the same way, beginning with the plain pizza, moving to 1 topping pizzas, 2 toppings, 3 toppings, and 4 toppings. He also held a constant in each group for the pizza problem. For example, with the two topping pizzas he would start with all the pairs with pepper, then move on knowing pepper would not be used again. It was interesting to see the change in notation. For the tower problem, he used a key for red and yellow cubes and drew the towers while for the pizza problem, he wrote the toppings out and put them in parenthesis if they were on a pizza together. (Unit 10, On-line discussion thread, line 37).

In response to another teacher (T5) about students providing valid justifications for their answers, T7 wrote the following on-line:

Many of my students also wanted to give an equation for why the answer was 16 but they were not able to justify where it was coming from other than the fact that it gave them 16. I would ask them if they knew the answer before they started because of the equation or if they came up with the equation after finding the answer. It was always the second response, so I would encourage them to explain without using the equation. (Unit 10, On-line discussion thread, line 5).

T7's response is consistent with the standards in the categories of expectations and abilities and mathematical discourse.

On 11/6/13, T7 implemented the third cycle of tasks in her classroom. T7 wrote the following in her final project: "The students had less difficulty with these two tasks than they did with the pizza problem. This is in part because of the manipulatives they were able to use and that there was less room for them to interpret the problem in different ways." (Final Project for T7, p. 32) and T7's comments are consistent with the standards in the manipulatives category.

At the 11/20 regional meeting, T7 shared two students' work for the third cycle. T7 recognized that one of her students controlled for a variable drawing four separate groups with 6 towers each plus three towers that had all solid colors. T 7 also shared a second sample where the student set up the towers similarly but provided a clearer explanation (11/20/13 meeting transcript, line 348). T7 shared the following final reflection thoughts on the intervention:

I was able to see growth in the students and their reasoning. Many students were automatically grouping the towers in different ways before being asked if it was possible and they were providing better verbal reasons. I was also able to see the positive influence on questioning students to get them to think about their work and other possibilities in mathematics. It was beneficial for students to see that mathematics is not just equations and numbers but also reasoning. (Final Project for T7, p. 33)

10.8 T 8

On the pre-assessment before the first meeting, T8 made 1 statement, inconsistent with the Standards in the following categories: expectations and abilities, mathematical discourse, concepts and procedures, and teachers' and students' roles. At the first meeting, T8 and T4 worked together to arrange the towers using the opposite strategy for six towers as well as the recursive strategy for ten towers. Then, the teacher pair rearranged the towers by controlling for a variable (9/7/13 meeting transcript, lines 111131). T8 made the following original post for the second unit discussion about predicting students' solutions for the four-tall towers problem:

I think that they will pick alternating colors for the towers. I do not think they will automatically develop a pattern for moving groups of blocks throughout the tower to find all possible outcomes. I also think that they will overlook the obvious combination of making a tower with all the same color. I think that they will want to make all towers have both colors in them. (Unit 2, On-line discussion thread, line 31).

T8 implemented the first cycle task on September 23, 2013 in a Mild Cognitive Impairment Self Contained sixth-eighth grade (MCI SC 6-8) class with 9 students in a mathematics class beginning at 9:30 am (Final Project for T8, p. 2). T8 had written "They were able to show what they were doing but had trouble putting it into a clear explanation verbally." (Final Project for T8, p. 13) and it was a challenge "getting them to write their explanation down on paper" (Final Project for T8, p. 13).

T8 wrote the following original post about the way students organized their towers:

I learned that we had come up with similar strategies as students did to organize, group, and justify answers. However, our reasoning skills allowed us to fully comprehend the task. The students were simply trying to justify their thought process. It did bother me that I had made some of the same reasoning arguments
that students have made. I would like to think that I am more advanced than those that I teach. It must be natural for the brain to make certain patterns and groupings, whether one is a teacher or student. I think that as teacher we must guide students in increasing their ability to manipulate and justify reasoning, just as the professors did for us. I also think that students pick up reasoning skills from listening to others explanations. I know that there were many different ways to justify our answers, but I only came up with one. (Unit 3, On-line discussion thread, line 46)

T8 responded to T6 about the struggle students have when writing down their reasoning as they worked on the four-tall towers problem. T8 wrote "My students really struggled with putting their thoughts on paper. I had to pretty much have them explain it to me one step at a time and after each step have them write what they just said." (Unit 4, On-line discussion thread, line 13). This was a common issue expressed by some of the teachers (Unit 4, On-line discussion thread, lines $13,15,17,18$).

At the October 2 regional meeting, T8 shared three samples of students' work with the teachers. For the first-shared sample, T8 recognized that his student controlled for a variable (10/2/13 Meeting Transcript, line 719). T8 also shared the partner's work where the tower drawings were similar but T8 said the written argument provided by the student was confusing (10/2/13 Meeting Transcript, line 741). T8 also shared the work of a student-helper that came during lunch to help with the students. The student-helper had five groups where the first and fourth group had two of each color, the third and fifth groups were the diagonal pattern, and the second group had two towers each of one color (10/2/13 students' work meeting transcript, line 761).

Later on at the October 2 regional meeting, T8 worked with T1 on the second cycle task. T8 had written the following comment on the Unit 5 on-line discussion thread:

The least helpful strategy was making a tree diagram. We started with this and quickly realized that we were repeating. The strategy that we did use was keeping a topping constant, then, making the possible combinations with 2 and 3 toppings. Then we would use another topping as a constant and create 2 and 3 toppings without repeating any combinations from the previous topping constant. (Unit 5, On-line discussion thread, line 44).

T8 responded to T1 about how the teachers' questions helped encourage Brandon to further explain his ideas for the pizza problem with the following: "I am also finding myself focusing more on the way that I question students. I am trying more to elicit their own response rather than the response that I am looking for." (Unit 6, On-line discussion thread, line 6).

On October 8, 2013, T8 implemented the second cycle task in his classroom. T8 had written the following in his final project about the pizza problem:

They were much less successful in this problem than in any others. I think that the change to having no manipulative made the problem more challenging. The manipulatives gave them something tangible to work with, which is obviously beneficial to this type of exploration problem. (Final Project for T8, p. 27)

T8's comments are consistent with the standards for the manipulatives category. T8 responded to T5 about how one student drew circles labeled with letters in a diagram to make the pizzas

I had a group do a similar diagram. They drew slices of pizza instead of circles representing the whole pie. I think it is a great skill to be able to create meaningful diagrams that give students ownership and connection like that. (Unit 7, On-line discussion thread, line 20).

T8 had written that he noticed "an increase in willingness and effort towards the problem when compared to how they acted with the first cycle" (Final Project for T8, p. 27).

At the regional meeting on October 22, 2013, T8 shared three samples of students' work. T8 recognized that one student had controlled for a variable in his diagram of triangles representing separate pizza combinations (10/22/13 meeting
transcript, line 348). The partner had a similar diagram and argument (10/22/13 meeting transcript, lines 348). In the third-shared sample of student work, T8 had the studenthelper do the problem and she listed 16 possible pizza combinations using a cases argument by controlling for a variable with peppers (10/22/13 meeting transcript, line 372). Later on in the regional meeting, T 8 paired up with T 7 to solve the third cycle problems. T8 and T7 used a recursive argument to make 9 groups of 3 three-tall towers. T8 and T7 solved the Ankur's Challenge problem with three groups of twelve 4-tall towers.

T8 also responded to T1's original post about the importance of giving students more than one opportunity to explain and write about their reasoning:

Sometimes students are able to understand a peer explanation better than ours. I have been trying to provide teacher moments in my class where students that have shown understanding can go up to the board and teach other students. Everyone gets excited for this and it really helps. It gives you the ability to check in with students individually. The students really get it when they work with their peers. And those that are teaching it gain an even deeper understanding. (Unit 9, On-line discussion thread, line 12).

T8 also wrote the following comments on-line about the intervention: "As a student, math for me was always about memorizing an algorithm and knowing how to plug in numbers. We were never taught the "why" behind math; just this is how you do it." (Unit 9, On-line discussion thread, line 18).

T8 wrote the following on-line about a student's work for the first two tasks:
For the 1st task, my student started with making opposite pairs. Then she manipulated the groups to have a constant on top. She used the recursive argument to organize and solve the problem. For the 2 nd task, she started by just making toppings at random. Then with the suggestion to use some type of organization she created groups by using the first topping as a constant. For example one group had mushroom as the single topping; then mushroom with each of the other toppings for a 2 topping pizza, then mushroom with 2 other
toppings for a 3 topping pizza. My student used a constant to group combinations in both tasks. (Unit 10, On-line discussion thread, line 32).

In response to T3 about ways to improve students' written arguments, T8 had written
"This class has really allowed me to see how struggling writers can be affected by these types of questions. It is so important for us to teach writing strategies to our students in math so they feel comfortable doing so." (Unit 10, On-line discussion thread, line 22).

On 11/14/13, T8 implemented the third cycle of tasks in his classroom. In the final project, T 8 had written the following:

I was very impressed by my students' readiness to solve this problem. They told me that the problem was easy for them. They were able to apply their strategies they used from the first problem and further develop them to solve this problem. They were able to create groupings without any help. (Final Project for T8, p. 37)

T8 shared two students' work for the third cycle at the 11/20/13 regional meeting. T8 recognized that one of his students controlled for a variable in two out of four groups of the tower drawings. T8 also shared the student-helper's work where group one was three towers all the same color; the second group was six towers with one of each color cube; and groups three through five were constructed by controlling for a variable for the first two towers and then switching the bottom two positions (11/20/13 meeting transcript, line 315). T8 wrote the following reflection thoughts on the intervention:

During the implementation of these lessons, I learned that I had completely underestimated my students. They showed perseverance throughout the projects. My students were capable of solving the problems, especially when using manipulatives. Their struggles where when they were asked to explain their reasoning and not state what they did. (Final Project for T8, p. 38)

T8 also wrote that he needed to have more writing within his lessons, but that "It is important to scaffold and support this writing so students can revisit it to analyze their thinking and further develop their writing." and is consistent with the standards in the
categories of mathematical discourse and student and teacher roles (Final Project for T8, p. 38).

10.9 T9

On the pre-assessment, T9 made 20 statements consistent with the Standards and 1 statement inconsistent in the category of teachers' and students' roles. At the first meeting, T9 and T10 worked together to arrange the towers using the opposite strategy. Then the teacher pair reorganized their towers by controlling for a variable with six of the towers and using an elevator strategy for the other ten towers (9/7/13 meeting transcript, lines 21-31). T9 wrote the following in her original post about predicting students' solutions for the four-tall towers problem:

In the short time I have known my students (4 days); I realize I have a diverse bunch. It is always interesting to me to see their differences. I have a bunch of students who are already very meticulous in their processes. For these students, I could see them arranging their towers in a very organized way like the girl did in the video...I also have many students who don't seem to have a good grasp on organization. I think they would just jump right in and create the towers randomly. I could see how this could be challenging for these students when trying to see if they have created all the towers. Their arguments might be harder to give. (Unit 2, On-line discussion thread, line 22).

T9 implemented the first cycle task on September 27, 2013 in a sixth-grade inclusion class with 15 students in the mathematics class for 74 minutes (Final Project for T9, p. 2). T9 had written the following:

I learned that my students do not understand the concept of justifying their work and what it means to convince someone. Most of them tended to just write what they did instead of why they did it or ow they knew they were finished. I learned that I really needed to address what these words meant if I wanted to get clear, concise thoughts from my students. (Final Project for T9, p. 9)

T9 also wrote the following in response to T3 about students' explanations:

I also find that explaining their reasoning is where my students tend to struggle. They seem to want to always tell you WHAT they did instead of HOW they did it or even WHY they did it. I find this skill very hard to teach. (Unit 3, On-line discussion thread, line 8)

T9 was one of the four teachers that agreed with T6 that students struggled to write down their reasoning as they worked on the four-tall towers problem. T9 wrote the following:

I also had a problem with students putting their thoughts on paper. When I asked them to verbally convince me, I felt they did a nice job. Then when they had to write it, they just put down that they found patterns. When I told them that they verbally told me more and I wanted them to write what they said, they either could not remember what they said or thought that they did write everything down. (Unit 4, On-line discussion thread, line 12).

At the October 2 regional meeting, T9 shared three samples of students' work with the teachers. One of her students had written an argument that listed 16 towers but did not provide a convincing argument as to whether the student found all the towers (10/2/13 Meeting Transcript, lines 807-808). Another student provided a convincing argument for the first group of towers that had all the same colored cubes but did not provide a convincing argument as to why the student knew all the towers were found (10/2/13 Meeting Transcript, lines 823-827). A third student sample shared by T9 was of a student who incorrectly used the rule strategy and multiplied four times four to get 16 towers (10/2/13 Meeting Transcript, line 843).

T9 worked with T10 on the second cycle task. T9 had written the following comment in the Unit 5 on-line discussion thread:

When solving the pizza problem, my colleague and I again used the proof by cases. We found the number of 0 topping, 1 topping, 2 toppings, 3 toppings, and 4 topping pizzas there were. I think that organized our thoughts pretty clearly. We got a little confused when we got to 3 toppings, but we were able to find them all. We first found all the 3-topping pizzas with sausage and then moved on from there. So, we held the topping constant in order to find the solution. (Unit 5, Online discussion thread, line 36).

The following was T9's response to T1 on-line about teachers' questioning techniques:
I agree that my questioning techniques have changed. I am much more aware of what I ask the students and how I phrase my questions to them. It is very hard for them to explain their thinking. I hope to see growth in their responses throughout the year. (Unit 6, On-line discussion thread, line 4).

T9 implemented the second cycle task in her classroom on October 11, 2013. T9
wrote the following on-line:
I gave the pizza problem to my students today and was amazed at how many different representations they had. I even had one boy who made the connection to the towers! I was amazed. He said that a no topping pizza would be an all blue tower, and a 4-topping pizza would be an all yellow tower. It was like a breakthrough! (Unit 6, On-line discussion thread, line 11)

T9 also wrote "When I implemented the pizza task, most students began drawing webs. They had words like plain or pizza in the middle and branched out in all directions with their toppings." (Unit 7, On-line discussion thread, line 1). T9 had written the following in her final project about the plethora of interpretations the students made to solve the pizza problem:

They could not figure out how to begin with the toppings. They wanted to make half-and-half pizzas. They claimed that was different than a two-topping pizza "mixed". A few students even wanted to make each slice a different topping. They were really making the problem much harder than it actually was. (Final Project for T9, p. 22)

T9 also mentioned that students struggled because they did not have manipulatives to use for this problem (Final Project for T9, p. 22).

T9 shared two samples of students' work at the regional meeting on 10/22/13. T9 recognized that one student had controlled for a variable in his diagram but had incorrectly used the rule argument (10/22/13 meeting transcript, line 651). Another student had found the 16 possible pizzas using 16 separate tree diagrams (10/22/13 meeting transcript, lines 665). Later on in the regional meeting, T9 and T10 used a
recursive argument to make 9 groups of 3 three-tall towers for the three-tall tower problem and made 12 groups of three 4-tall towers to solve Ankur's Challenge. T9 posted that she did not think her students would come up with Romina's proof but T9 did think her students would come up with the correct solution (Unit 8, On-line discussion thread, lines 42, 43).

T9 responded to T6 about the importance of giving students more than one opportunity to explain and write about their reasoning:

I am also asking my students if their arguments are convincing. I even ask other students if it was convincing to them. If not, I have them tell the student why it wasn't and ask them to clarify. (Unit 9, On-line discussion thread, line 26).

T9 had written the following on-line about a student's work for the first two tasks:
My student tried to match up opposites with the first task. He saw the opposites first; however he was unable to come up with all 16 towers. After questioning him about whether he had all the towers, he and his partner decided to rearrange the towers. At this point, he saw the staircase and candy cane patterns. He was able to arrive at all 16 towers. On the second task, he began by creating a web with the word pizza in the middle. He branched off of the pizza with different toppings. It looked unorganized to me, but he was able to get 15 of the solutions. He missed one of the three topping pizzas. (Unit 10, On-line discussion thread, line 10).

In response to another teacher (T5) about how manipulatives helped to form students' arguments, T9 had written "I agree that when the students had something tangible to use their arguments seemed better. They are able to manipulate them and reorganize them a lot easier than if they have something just drawn on paper." (Unit 10, On-line discussion thread, line 7). T9 also responded to T 3 about her students making convincing arguments. T9 wrote the following on-line:

I also want to really push my students to write more convincing arguments. I have been giving them smaller tasks in class and asking them to explain their reasoning. I am finding that they do not understand the term reasoning. They think it means tell me what you did. (Unit 10, On-line discussion thread, line 18)

On 11/14/13, T9 implemented the third cycle of tasks in her classroom. In the final project, T 9 had written the following:

For each class I implemented this task in, the students' reasoning got better and better. I learned that the students really have the capacity to grow in such a short amount of time. Their responses got more detailed and in-depth. I have to admit, after the first and even the second task, I was really skeptical about how much the students would grow. (Final Project for T9, p. 33)

T9 did not attend the 11/20/13 regional meeting. However, T9 wrote the following reflection thoughts on the intervention:

This lesson study really opened my eyes to how important it is to allow the students time to reason through the math they are learning. I feel that my students really gained self-confidence in writing about math. They went from being able to verbalize their thoughts in the beginning of the year to being able to put those thoughts to paper. I have noticed that I take more of a facilitator role in the classroom. I try to allow my students the time and space to discuss, and even argue, with their peers to determine the solutions to problems. I find myself asking if their peers are convincing them. I also ask them to defend their positions. (Final Project for T9, p. 34)

T9's comments are consistent with the standards for the category of teachers' and students' roles. T9 also had written that she became a better teacher after participating in the lesson study (Final Project for T9, p. 34).

10.10 T10

On the pre-assessment, T10 made 17 statements consistent with the standards and 2 statements inconsistent with the standards where 1 inconsistent statement was in the category of concepts and procedures and 1 inconsistent statement was in the category of teacher and student roles. T10 and T9 worked together to arrange the towers using the opposite strategy first. Then T10 and T9 rearranged the towers in a group of six towers by controlling for a variable and grouping the other ten towers using the elevator strategy
(9/7/13 meeting transcript, lines 21-31). T10 wrote the following in her original post about predicting students' solutions for the four-tall towers problem:

I believe that many of my students will start building without a strategy, rather just start looking for possibilities. After some exploration, some groups may begin to see that they have pairs of towers that appear to be opposites and may look for opposites that they are missing. If students use this strategy, it may be difficult for them to give a convincing argument to explain how they know they aren't missing any complete pairs. In general, I think the students may have trouble giving convincing arguments because they are not accustomed to thoroughly explaining their thinking and reasoning in any problem solving situation. (Unit 2, On-line discussion thread, line 12)

T10 implemented the first cycle task on September 26, 2013 in a sixth-grade inclusion mathematics class with 17 students for 74 minutes (Final Project for T10, p. 4). T10 had written: "The most challenging part of this task for most of the students was writing a convincing argument." (Final Project for T10, p. 13) and that T9 found herself "restructuring activities in class to allow the students to generate explanations that were not based on telling what they did, but instead explaining why they chose a certain operation, or describing how they know their solution is complete" (Final Project for T10, p. 13).

T10 wrote the following in response to T 7 about the importance of having students justify their solutions:

Explaining the "why" is definitely very hard to teach. I think we do often ask them to explain "what" they did to solve a problem when they come up with something that doesn't quite make sense to us so that we can help them figure out where their mistakes were. They are so accustomed to describing the steps that they took, that it is difficult to provide a reason why. Our students are so focused on the solutions that they often miss the description of why something works, or more often than not, don't think that the why is important, as long as they have the correct solution. (Unit 3, On-line discussion thread, line 9)

T10 was one of the four teachers that expressed her students struggled to write down their reasoning from the four-tall towers problem. T9 wrote the following:

Most of my students organized their towers into pairs and their argument was that they could not think of any more pairs. I did this activity with 2 of my 6th grade classes, and out of the 17 student groups I had only about 3 groups had the beginnings of a convincing argument, which they verbalized to me. Unfortunately, their writing doesn't match much of what they talked about. It would be hard for anyone else to read their conclusions and understand what they were thinking. (Unit 4, On-line discussion thread, line 15).

T10 shared three samples of students' work with the teachers at the regional meeting on October 2, 2013. One of her students had written a partially convincing argument where the argument was convincing for three of one color and one of the other; but not convincing for two of each color (10/2/13 Meeting Transcript, lines 855-867). For the second-shared sample, T10 recognized that the student used a cases argument (10/2/13 Meeting Transcript, lines 892-893). T10 also recognized the elevator strategy in a third-shared student argument (10/2/13 Meeting Transcript, line 913).

Later on, T10 worked with T9 on the second cycle task. T10 had written the following comment in the Unit 5 on-line discussion thread:

To solve the pizza problem, we again used a proof by cases. We first found all the possibilities with 0 toppings, 1 topping, 2 toppings, etc. As we got to three toppings it became harder to make sure we hadn't duplicated any pizzas, so we considered holding 1 of the three toppings constant, and finding the pizza combinations that could be created by changing the other two toppings. (Unit 5, On-line discussion thread, line 22).

The following was T10's response to T1 on-line about questions asked by teachers:
It is important that we don't get caught up in assuming our students understand something, and sometimes the most obvious questions can clear that up. It also helps the students think about what they are saying, and often by restating their thinking aloud, things begin to make more sense to them, or they realize there is something wrong with their reasoning. (Unit 6, On-line discussion thread, line 21).

T10 implemented the second cycle task in her classroom on October 10, 2013.
T 10 wrote the following on-line about the pizza problem:
My students also had a lot of trouble with this one. In the towers problem, most groups came up with 16 . With this problem, I saw a wide variety of answers! I think the lack of manipulatives definitely made this more challenging. Since many of my students made lists, there were many duplicates and many missing pizzas. (Unit 6, On-line discussion thread, line 11)

T10 also had written about the variety of representations the students used. T10 wrote the following:

Some students made lists that were organized by the number of toppings, others organized by pizzas that included a particular topping, and others were completely unorganized. Many students made webs, with pizza at the center and all the types of pizza extending from the center. One student made a checklist similar to Brandon's in the video, but then abandoned it for a list where he found all the pizzas that had certain toppings. Several of my students also thought it was important to draw a pizza to go with every outcome they found. (Unit 7, On-line discussion thread, line 35).

T10 noted that students had difficulty solving this problem without manipulatives (Final Project for T10, p. 25). T10's comments are evidence that the statements are consistent with the standards for the manipulatives category.

T10 shared two samples of students' work on $10 / 22 / 13$ during the regional meeting. T10 recognized that one student had controlled for a variable for group of the two-topping pizzas (10/22/13 meeting transcript, lines 569-570). Another student had originally made a chart but then decided to use a number system to find the possible pizza combinations (10/22/13 meeting transcript, lines 602-603; 628-629). Later on in the regional meeting, T9 and T10 used recursion to make 9 groups of 3 three-tall towers for the three-tall tower problem. T10 and T9 then made 12 groups of three 4-tall towers to solve Ankur's Challenge. T10 made an original post that she didn't think her students would come up with the proof that Romina did but had written that she had been
surprised by her students' work while working on the intervention tasks (Unit 8, On-line discussion thread, line 1).

T10 also agreed with T8 about the importance of having students explain their reasoning to other students. For the Unit 9 discussion thread, T10 wrote the following:

It's always best if a student can explain what they are doing any why to others. I think when students are asked to teach a solution method they used to the class they sometimes struggle, because they realize maybe what they are saying is not as clear as what they were thinking. When my students take on this task of explaining a new or different solution method to the class I think the student presenting learns more about their work than if they had just solved the problem and moved on to the next task. (Unit 9, On-line discussion thread, line 8).

T10's comments are consistent with the standards for the mathematical discourse category. In response to T5about how manipulatives helped to form students' arguments, T10 had written "I also think having the cubes helped my students to find the correct solution, but I don't think it necessarily helped them to justify their answers any better." (Unit 10, On-line discussion thread, line 6).

On 11/20/13, T10 implemented the third cycle of tasks in her classroom. T10 had written the following in her final project:

The implementation of this task was easier than I had anticipated. I thought this task was going to be confusing for my students because of the number of solutions and the complexity of using three different colors of cubes. The students really surprised me with their solutions and explanations. (Final Project for T10, p. 36)

At the $11 / 20 / 13$ regional meeting, T10 shared two samples of students' work. T10 recognized that her student made eight groups controlling for a variable and using the elevator strategy to solve the three-tall towers problem (11/20/13 meeting transcript, lines $7-35)$. The second sample shared by T10 had five groups using the same strategies as the first sample (11/20/13 meeting transcript, lines 50-62).

10.11 Summary of Teacher Narratives

The teacher narratives describe each teacher's experiences within the intervention regarding teachers' beliefs and how the teachers attended to students' reasoning. The teachers' on-line discussion gave teachers the opportunity to discuss the articles and videos of the research students as well as work from their current students. Teachers were also given the opportunity to discuss students' work with each other at regional meetings. Many of the teachers remarked about how their students' work frequently surprised them in a positive way.

While discussing the current students' samples, the instructor made motivating statements regarding the improvement of the teachers' abilities to effectively question students regarding students' work and determine whether arguments were convincing or not convincing (Meeting transcript $11 / 20 / 13$, lines $323-325,441$). By the end of the intervention, teachers attended to students' reasoning by describing students' work in a more precise way using the terminology learned throughout the intervention when describing arguments (e.g. inductive, recursive, case) or strategies (e.g. opposite, staircase, holding a constant, guess and check).

Chapter 11 - Findings

The purpose of the study was to examine the obstacles and successes experienced during an intervention of ten middle-school mathematics teachers from the southern region of New Jersey. The following research questions guided the study:

1) What reasoning forms do middle school mathematics teachers identify from the following:
(a) Their solutions to given mathematical tasks during a PD intervention;
(b) Their current students' solutions to the same mathematical tasks implemented in the teachers' own classrooms;
(c) The research students' solutions working on the same mathematical tasks from assigned articles to read and VMC videos;
(d) Teachers' pre and post-assessment responses of the reasoning forms used by fourth-grade students to solve mathematical tasks in the Gang of Four VMC video?
2) What pedagogical moves are used by the instructor to facilitate the teachers' knowledge construction about mathematical reasoning as teachers:
(a) Worked on combinatorics tasks;
(b) Attended to research students' reasoning from VMC video and scholarly articles;
(c) Analyzed current students' written task work?
3) In what ways, if any, have the teachers' beliefs about the teaching and learning of mathematics changed?

This chapter summarizes the findings for each research question in the following three parts: the teachers' recognition of reasoning, the instructor's moves, and the teacher'
beliefs regarding the teaching and learning of mathematics. For each of the three parts, themes emerged and are supported with salient discussions or events from the intervention.

The video data for this study was analyzed using the analytic model for studying video data by Powell, Francisco, and Maher (2003). Powell et al. (2003) defined critical events as occurrences which had a positive or negative contribution to the research. The critical events referred to in this research are the events where the instructor makes pedagogical moves to facilitate teachers' knowledge construction or recognition of students' reasoning and teachers' discussions or descriptions of reasoning strategies used by the teachers, their students, or by the students observed in the videos.

11.1 Teachers' Recognition of Reasoning

This section is a report of seminal findings from the reasoning analysis that addresses the first research question. Based on the results of the reasoning analysis from this research, the PD intervention was effective in helping in-service middle-school mathematics teachers to attend to students' reasoning. The findings from the teachers' recognition of reasoning were examined in the following contexts: teachers doing the tasks themselves, teachers recognizing research students' reasoning from articles and videos during an on-line discussion, teachers recognizing reasoning from current students during debrief meetings after three in-district classroom visits, teachers recognizing reasoning from current students' samples, and the teachers' recognizing reasoning from the Gang of Four video. Moreover, the findings from teachers' recognition of reasoning are framed around two themes: heuristics/strategies and forms of argument.

11.1.1 Findings from Heuristics/Strategies

For this section, seminal findings of teachers' recognition of reasoning regarding the heuristics used when solving the three cycles of mathematical problems are reported. The intervention helped middle school mathematics teachers to use and recognize heuristics in their own solutions to the problems as well as identify strategies in research and current students' work when solving the mathematical problems.

11.1.1.1 Opposites

The strategy that was most used or recognized by the teachers was opposites, 116 times. Opposites were used or recognized 90 out of 116 times to solve the first cycle four-tall towers problem and the first cycle three-tall and five-tall tower extension problems. Four pairs of teachers used the opposite strategy when beginning to solve the first cycle four-tall towers problem but then later reorganized their towers to provide more convincing arguments (Meeting transcript 9/7/13, lines 19-204).

Teachers also noted that many of their students used the opposite strategy to begin their arguments for the first cycle four-tall towers problem (Unit 4 on-line discussion thread, lines 29-32, 36, 43). Teachers recognized the opposite strategy 35 times from students' work at the in-district class visits and from current students' samples of work brought by the teachers. Teachers also identified the opposite strategy 77 times during on-line discussions regarding research students' work.

The data show that the opposite strategy was frequently used and recognized for the first cycle towers problems but used or recognized less frequently for the second and third cycle problems. It is possible that teachers and students did not use the opposite
strategy as frequently for the second and third cycle problems because providing a convincing argument was difficult using the opposite strategy.

11.1.1.2 Control for a Variable

The second most used or recognized strategy when solving the three cycles of problems was controlling for a variable, 86 times. Throughout the intervention, the teachers referred to this strategy as holding a constant. When solving the three cycles of problems, teachers controlled for a variable 16 out of 86 times. Teachers recognized the control for a variable strategy 48 times from students' work at the in-district class visits and from current students' samples of work brought by the teachers. Teachers also identified the control for a variable strategy 22 times during on-line discussions regarding research students' work.

For the second cycle pizza problem, teachers used or identified the control for a variable strategy 40 out of 86 times. During the third cycle, teachers used or identified the control for a variable strategy when solving the three-tall towers problem, 21 times and Ankur's Challenge, 13 times. Moreover, control for a variable was used or identified by the teachers 12 times for the first cycle towers problems. The data show that controlling for a variable was used more frequently when solving the second cycle pizza problem and the third cycle towers problems than when solving for the first cycle towers problems.

11.1.1.3 Elevator

The third most used or recognized strategy when solving the three cycles of problems was elevator, 64 times. When solving the three cycles of problems, teachers used the elevator strategy 11 out of 64 times. Teachers recognized the elevator strategy

28 times from students' work at the in-district class visits and from current students' samples of work brought by the teachers. Teachers also identified the elevator strategy 25 times during on-line discussions regarding research students' work. Teachers often referred to the elevator strategy as a "staircase" or "stairs" and described this strategy as a diagonal where one block was moved up each time through all the positions when solving the first cycle four-tall towers problem, the third cycle three-tall towers problem, and Ankur's Challenge (Meeting transcript 10/2/13, lines 80-91, 215, 241, 415, 429; Unit 10 on-line discussion thread, lines $10,16,29$).

The elevator strategy was used 41 out of 64 times to solve the first cycle four-tall towers problem. To solve the third cycle three-tall towers problem, elevator was used 17 times and used 5 times for Ankur's Challenge. The elevator strategy was identified only one time to solve the second cycle pizza problem.

11.1.2 Findings from Forms of Argument

For this section, the seminal findings of teachers' recognition of reasoning regarding the forms of argument used when solving the three cycles of mathematical problems are reported. The intervention helped middle school mathematics in-service teachers to use and identify forms of argument in their own solutions to the mathematical problems as well as identify strategies in research and current students' work when solving the mathematical problems.

11.1.2.1 Case Arguments

The form of argument that was most used or recognized by the teachers was case arguments, 126 times. Case arguments were used or recognized 52 out of 126 times to solve the second cycle pizza problem. All five pairs of teachers used case arguments to
solve the second cycle pizza problem (Meeting transcript 10/2/13, lines 17-289). Teachers' recognized case arguments 73 times from students' work at the in-district class visits and from current students' samples of work brought by the teachers. Teachers also identified case arguments 34 times during on-line discussions regarding research students' work.

The data show that case arguments were used or recognized fewer times for solving the first- and third-cycle towers problems. It is possible that teachers and students used case arguments more frequently for the second cycle pizza problem because teachers and students may have been more comfortable organizing the pizza combinations by the different types of pizza toppings or organizing the pizza combinations by the number of pizza toppings.

Case arguments were also identified by the teachers on pre- and post-assessments after watching the Gang of Four video. On the pre-assessment, three teachers provided partial descriptions for Case Argument 1: Stephanie's Case Argument. On the postassessment, the number of teachers that provided partial descriptions for Case Argument 1 increased to four teachers. Three teachers provided complete descriptions on the preassessment for Case Argument 1. The number of teachers that provided a complete description of Case Argument 1 increased to six teachers on the post-assessment. It should be noted that teachers described case arguments to the instructor but did not use the words "case" on the pre-assessment. On the post-assessment, eight of the ten teachers specifically used the words proof by cases when providing a description of Case Argument 1. The data shows that the intervention was effective in helping the middle school in-service teachers to recognize case arguments.

Case Argument 2 was identified only one time on the pre-assessment by T10 and one time on the post-assessment by T7. The data show that the intervention was not as effective in helping the middle school in-service teachers to recognize Case Argument 2, "a more elegant argument" (Maher et al., 2014, p. 37). It is possible that teachers did not find Case Argument 2 as easily recognizable as compared to Case Argument 1: Stephanie's Cases Argument.

11.1.2.2 Recursive Arguments

The form of argument that was the second most used or recognized by the teachers was recursive arguments, 70 times. Recursive arguments were used or recognized 41 out of 70 times to solve the first cycle towers problem, and 26 out of 70 times to solve the third cycle three-tall towers problem. Teachers recognized recursive arguments 27 times from students' work at the in-district class visits and from current students' samples of work brought by the teachers. Teachers also identified recursive arguments 30 times during on-line discussions regarding research students' work. The data shows that recursive arguments were used or recognized more times for solving the first- and third-cycle towers problems.

Recursive arguments were also identified by the teachers on pre- and postassessments after watching the Gang of Four video. On the pre-assessment, three teachers provided descriptions of recursive arguments but did not use the word "recursive". On the post-assessment, three teachers provided descriptions of recursive arguments on the post-assessment (T4, T6, T9, Gang of Four post-assessment). Moreover, two of the teachers used the word "recursive" (T4, \& T9 Gang of Four postassessment).

11.1.2.3 Inductive Arguments

Inductive arguments were also used or recognized by the teachers 23 times. Inductive arguments were used or recognized 20 out of 23 times to solve the first cycle four-tall towers problem and 3 out of 23 times to solve the third cycle tower problems. Three teachers used inductive arguments when solving the following tower problems: T2 and T 3 reorganized their towers to provide a more convincing argument for the first cycle four-tall towers using an inductive argument; T4 and T6 organized their towers to solve the third cycle three-tall towers using an inductive argument; and T7 and T8 used an inductive argument to solve Ankur's Challenge. Teachers recognized only one inductive argument from a students' work at the in-district class visits on 11/20/13 (Meeting transcript 11/20/13, lines 116-122). Teachers also identified inductive arguments 19 out of 23 times during on-line discussions regarding research students' work. It is likely that the instructor's guided questions during the on-line discussion may have been a factor for the number of inductive arguments coded by the researcher.

Inductive arguments were also identified by the teachers on pre- and postassessments after watching the Gang of Four video. On the pre-assessment, one teacher provided a partial description for Milin's inductive argument. The number of teachers that provided partial descriptions for Milin's inductive argument increased slightly to two teachers on the post-assessment. Five teachers provided complete descriptions on the pre-assessment for Milin's inductive argument. The number of teachers that provided a complete description of Milin's inductive argument increased to seven teachers on the post-assessment. It should be noted that teachers described inductive arguments to the instructor but did not use the words "inductive" on the pre-assessment. On the post-
assessment, eight of the ten teachers specifically used the words "inductive arguments" when providing a description of Milin's argument.

11.1.2.4 Rule Arguments

Some arguments made by the teachers and the students contained mathematical sentences that worked out to be correct answers for the problem but were found using invalid mathematical rule arguments. For example, T3 described a student's work where the student took the two colors multiplied that number by 4 , and then doubled the result to get 16 for the four-tall towers problem (Meeting transcript 10/2/13, line 326). The numbers worked out to the correct answer, but the reasoning behind the rule did not make logical sense and did not generalize to find the number of possible towers for different tower heights.

This identification of a rule to yield a correct answer was discussed in a paper "Rules without Reason: Allowing Students to Rethink Previous Conceptions" by Mueller, Yankelewitz, \& Maher (2010). Mueller et al. (2010) reported on the reasoning of a group of sixth-grade students in the Informal Mathematical Learning Project (IML) as they worked to solve an open-ended fraction problem using Cuisenaire ${ }^{\mathrm{TM}}$ rods. The IML was an after-school project designed to give twenty-four urban and minority middle school students the opportunity to "confidently share their solutions, both correct and incorrect" (Mueller et al., 2010). For the episodes where students provided invalid rule arguments, students were given the opportunity to discuss and make claims to correct any invalid solution (Mueller et al., 2010).

Another similar study was done by Erlanger (1973) about Benny, a sixth grade boy who was considered to be excelling in his program. The program was called

Individually Prescribed Instruction (IPI) (Erlanger, 1973). When Benny was questioned about the mathematics, Erlanger (1973) found instances where Benny's reasoning did not make mathematical sense.

The instructor facilitated a discussion with the teachers about the importance of the arguments making sense mathematically (Meeting transcript 10/2/13, lines 326-378). This discussion briefly resurfaced when T5 shared her student's work that made the same argument as T3's student (Meeting transcript 10/2/13, lines 523) and again when T6 shared a student's second cycle pizza problem solution (Meeting 10/22/13 student work transcript, lines 189-199).

11.1.3 Summary of Teachers' Recognition of Reasoning

Controlling for a variable was used frequently to solve the problems in all three cycles. The elevator and opposite strategies were also frequently used or identified when solving the mathematical problems. It should be noted that the opposite strategy was used and identified frequently for solving the first cycle four-tall towers problem and the three-tall and five-tall extension problems. However, the opposite strategy was used fewer times to solve the second cycle pizza problem, the third cycle three-tall towers problem, and Ankur's Challenge. It should also be noted that the elevator strategy was used or identified frequently when solving the first cycle or third cycle tower problems.

Case arguments were the most frequently used or identified form of argument used when solving the mathematical problems for all three cycles. The Gang of Four video post-assessment revealed that case arguments were the most common identified form of argument from the Gang of Four assessments. Case Argument 1: Stephanie's cases argument was identified by all ten teachers.

Milin's inductive argument was also identified by the teachers and all ten teachers wrote they were convinced of Milin's inductive argument during the Unit 4 on-line discussion. Although the data indicate that teachers were able to recognize inductive arguments, teachers only used inductive arguments three times when solving the problems throughout the three cycles.

Based on the results of the reasoning analysis, the intervention was found to be effective in helping in-service middle-school mathematics teachers improve in their attention to students' reasoning in the following contexts: (1) teachers doing the tasks themselves, (2) teachers recognizing research students' reasoning from articles and videos during an on-line discussion, (3) teachers recognizing reasoning from current students during debrief meetings after three in-district classroom visits, and (4) teachers recognizing reasoning from current students' work samples.

11.2 Findings from Instructor Moves

This section is a report of salient findings from the instructor moves observed during the regional meetings and debriefing meetings of the in-district classroom visits. The second research question is addressed in this section. Two themes emerged supported by critical events from the intervention as the instructor modeled questioning techniques and pedagogical practices: non-leading questioning and promoting reasoning as a process. The section concludes with a summary of the overall findings from the instructor's moves.

11.2.1 Non-leading Questioning

Throughout the intervention, the instructor facilitated discussions regarding nonleading questioning techniques. One critical event occurred at the debrief meeting after
the 9/17/13 in-district classroom visit. The instructor facilitated the following discussion regarding one student's work on the first cycle four-tall towers problem:

T8: In the group 2, they were both solids. So if they were to be switched they would stay exactly the same. For example, there are four red and four yellow.
R1: Okay. What do you think? Convincing? [Unison: No.]What could they have said?
T7: This is what this group did the whole time. I don't know. You were with this group, right? All they kept saying to me was like, we switched it...it would, it would be good. So they, they just proved that they made opposites of each other, but they didn't really...I don't know if they understood the task because they didn't really say anything about how this is the most amount of towers they can make.
T8: Yeah.
R1: Okay.
T8: For a while they were doing that, and I was like okay, you're just showing me opposites. Can you try to put it... because I think they had the one that, most get that one diagonal is going down. And I was like, can you put these together something like that? And that's where they came up with the drawing they have on the bottom.
R1: So you led them a little bit. I would...I thought they were brilliant did that. I didn't realize that you...
T8: No, because they were looking at it...and I was saying how can you group these?
R1: Okay, that's good. That's fair.
T8: And they put it together. And I said why did you group it like that? And he goes, well I have one red top and on the top.
R1: That's good. Then that's really good. Then you weren't leading them. You just said to them, I don't see a convincing argument. Can you group these that are two of one color and two of another color, in a different way that may be able to convince me that there aren't any more [towers] and that's a good way to do [the questioning]. (Meeting transcript 9/17/13, lines 165-175).

This exchange was a critical event for emphasizing to the teachers the importance of how to effectively ask non-leading questions.

Another critical event occurred at the regional meeting on $10 / 2 / 13$. The instructor was facilitating a discussion regarding one student's work brought by T3, a seventh-grade resource teacher. The following argument was placed on the screen for the teachers to read:

There is one solid color, and 4 blocks high. There is no other way of doing this. There is only 1 yellow and 3 blues in each tower. There is a pattern, the yellow keeps moving up one. There is only 1 blue and 3 yellow in each tower. There is a pattern, the blue keeps moving up one. Two of the same color is touching, and one color isn't touching. Not one same color is touching. Both colors are next to their twin. (Meeting transcript 10/2/13, line 308)

The instructor praised the student's work and asked the teachers "What might you ask them to push them one step more for the three of one color and one of the other?" (Meeting transcript $10 / 2 / 13$, line 316) and T3 replied "Why can't you go up one more step?" (Meeting transcript $10 / 2 / 13$, line 317). The instructor made a motivating comment by praising T3 for coming up with an effective question (Meeting transcript 10/2/13, line 318).

Another critical event regarding non-leading questioning techniques occurred when discussing a student's work brought by T5. The student had found 18 four-tall towers grouped in opposites and the following discussion occurred:

R1: Yeah so they used a constant. Very nice; go back to...did they tell you I have them all I have 18 here. And what might you ask them to kind of you know to let them know that they are not convincing you? What is a question you can ask them? They have 9 groups of pairs, right? And nine groups of opposites; [are there] any ideas?
T5: Can you arrange it in a different way?
R1: You could do that but I am saying that if that is the way they are arranging it. If you said to them, why can't you have a tenth pair of opposites? Why can't there be a tenth pair? I am not convinced there are only 9 pairs. In fact I don't even think there are 9 pairs. I am saying that if you ask them, I don't know. Could there be another pair? And that is a way for them to you know may be thinking that it is not a convincing argument and then your question can be arranged in a different way into a very good one.
T5: They had it originally arranged straight out and when I thought they had a duplicate, I said why don't you try and pair them up because they did have had it all scrunched together but it was laying in one and so I said separate into twos but they still put it the same.
R1: And again, remember it is so hard. But rather than say why don't you separate them into twos? Why don't you say Can you arrange them in a different way not all of them together, but can you arrange them in a different way that maybe I will be better able to figure out if you have them all because you are kind
of like telling them to arrange it into twos. You are kind of forcing them into...going in a direction. Okay. (Meeting transcript 10/2/13, lines 511-518).

In this discussion, the instructor was modeling possible non-leading questions that could be asked to students if teachers observed their students making a similar error.

11.2.2 Reasoning as a Process

The instructor also facilitated discussions helping teachers to recognize reasoning as a process. Two critical events were identified by the researcher during the debrief meeting after the first in-district classroom meeting on 9/17/13 where the instructor emphasized reasoning as a process to the teachers. One critical event was a discussion about one student's work where he explained how he arranged the towers but did not provide a reason as to why he arranged the towers.

R1: Group 4 is this one here? [Points to student work.] Okay. Did anyone give a name to this group? Any of the students you talk to call this something? Sometimes they call it the rotating one, the candy cane one, the barber pole one... Umm, because the...
T7: Because they alternate colors.
R1: Yeah, okay. Cause its yellow-red-yellow-red or red-yellow-red-yellow. Okay, so let's see what they said for that group. Can someone read it that can see it?
T1: We did red-yellow-red-yellow and for the other one we did yellow-red-yellow-red.
R1: Convincing? Not really. Again they are telling you what they did, not why there can't be another one in that group. And that's going to be... and this is a hard thing to do and this is the beginning of the year. So I think they are doing more writing than I have seen in other groups than previous years in September. I mean, this is amazing.
T6: Yeah, I don't think that they truly understand [Phone rings.] exactly what it means to be convincing. Like, I don't think, I don't think that they get the objective of how to be convincing. They just kind of explain to you what they do and, they just think that you're going to assume and guess because you're an adult.
R1: But we don't want to guess and we don't want to assume. Because sometimes we will assume hoping that they're going down a path that's the right path, we're going to assume what they're doing but that may not be what they are doing. (Meeting transcript 9/17/13, lines 82-88).

In this exchange, it should be noted that the teacher did not assume that students knew how to provide convincing arguments. The instructor warned teachers about the distinction between making assumptions from students work and what students actually say or write as their argument. (Meeting transcript 9/17/13, line 88).

Another critical event that was identified was from a discussion about why students should be asked to use pen for this activity. T3 expressed her concern that her students would think that they could use pen for the rest of the year because she wanted them to use pencil when doing their mathematics (Meeting transcript 9/17/13, lines 161). The instructor replied to the teachers with the following:

Let me tell you another reason why I wouldn't have them use pencil. Okay? Um, what students normally do when they're using pencil, is that they have an eraser. And after they do something, they erase it so you can't see it. And part of this is, they may have some good work that they're getting rid of, and all you will see is a hole in the paper. If you're working in pen and they want to get rid of something, all they do is put one line through it and you can still see what they've did. And remember, the aim of this class is not to look at the final answer but to look at the mathematical thinking as they're go through the process of solving the problem. So I would urge you that, trust that they will be able to know that this is a time I'm going to ask you to use a pen, but normally I won't do that in math class, okay. (Meeting transcript 9/17/13, line 164).

The instructor stressed the importance of being able to follow the work of the student as it emerges. By using pen, teachers can see work prior to students erasing earlier notations or rearranging their thought processes. (Meeting transcript 9/17/13, line 164).

A third critical event occurred at the first regional meeting on 10/2/13 as teachers discussed samples of students work. T2 discussed her student's sample of work for the four-tall towers problem who found the right answer of 16 possible towers and then stated "with my kids, I noticed they can explain verbally more than write. But so, his explanation he wrote on the back." (Meeting transcript 10/2/13, line 148). The instructor
asked T2 to read the following student's explanation to the class: "I did the same block twice but not the same color like a pattern sort of. The reason I did it like that is because it is easier for me." (Meeting transcript $10 / 2 / 13$, line 150). This critical event provides evidence that students were moving forward in the process of learning how to reason. T2's students were able to verbally explain, but they were not at the level to write convincing arguments yet.

Another critical event led to the instructor asking the teachers if any of them figured out a way to help their students out with their writing (Meeting transcript 10/2/13, line 151). T8 said that his students had formed groups and that for each group, the student explained several times about the placement of towers in the groups but then decided on a final response to T 8 and T 8 said to his students "write it down" ((Meeting transcript $10 / 2 / 13$, line 154-156). T8, who gave the four-tall towers problem to a selfcontained class of sixth-through eighth-grade mildly cognitively impaired students, shared that one of the girls started crying because the girl claimed "This is too much. I don't understand what's going on." (Meeting transcript 10/2/13, line 160). T8's response was "That's alright. Okay let me sit and help you get through this because we don't typically get to work like this so it was really.... I mean to write this much. She ended up writing like pages." (Meeting transcript $10 / 2 / 13$, line 162). The instructor praised T8's strategy and how he handled the situation with his student.

T2 also shared another one of her student's work where her student drew one big block on the paper and wrote " 16 combinations total and he got it right I think I have all the combinations for this worksheet." (Meeting transcript 10/2/13, line 237). T2 said that "he knew how to tackle the problem, but as far as recording, he had no clue"
(Meeting transcript 10/2/13, line 245-247). The instructor then asked the teachers "Did any of you do something that helped students with their recording?" (Meeting transcript 10/2/13, line 248).

T6 replied that she did not give her sixth-grade Pinnacle students the paper until they were done solving the problem and asked them to arrange the blocks "how you want them to look on your paper and then copy it" (Meeting transcript $10 / 2 / 13$, line 257) and claimed the students did not have any problem recording their towers this way. However, T5 taught seventh-grade resource special education students and claimed her students struggled with recording their tower data. To help make the recording easier, T5 said she had one student draw representations of the towers and the partner copied the drawings onto his or her paper. T5 also remarked that her idea was similar to T8's where she had each student verbally explain the tower arrangement to her and then once they explained the tower arrangement, T 5 asked the students to repeat what they verbalized. T5 said that this was done line by line having one partner record what the other person said. (Meeting transcript 10/2/13, lines 261-265).

The instructor again reiterated the importance of having students write convincing arguments at the second regional meeting on $10 / 22 / 13$ in which the teachers were discussing samples of students' work regarding the second cycle pizza problem. The instructor said the following about providing help if students had special needs:

Now remember, we talked about if your students can't write that you can be their scribe and write for them. Because you really want to see something down as to why they think they have them all. At least the beginning of a convincing argument because that's what this is all about. We're not so much interested in just that they can do the problems, we are interested in, can they provide a convincing argument. (Meeting 10/22/13 student work transcript, line 300)

Several teachers reported that their students struggled to write a convincing argument. T7 had reported that one of her students struggled to write a convincing argument for the second cycle pizza problem. T7 said that "His writing was not good, but his explanation to me was good." (Meeting 10/22/13 student work transcript, lines 446-450). The following is the student's written work:

There is one plain pizza, you start with individual toppings; there's four. From this, you group them in lists such as 2-topping and 3-toppings. Then you make sure you didn't repeat a combination. There are 16 possible combinations. To check there are four original topping. Four can evenly go into 16. (Meeting 10/22/13 student work transcript, line 448)

The student was able to verbally provide a convincing argument to the teacher. However, the student did not provide a convincing argument in writing.

For the third cycle task, the instructor said the following to the teachers: "Push the children to the next level, wherever they are. If they haven't been writing at all, you really want them to write a little bit, because we're hoping to see growth from wherever they started." (Meeting 10/22/13, student work transcript, line 513). The instructor also said "Even if they don't have a whole solution, if their organization is here in the third task than it was in the first and second, that's a good thing." (Meeting 10/22/13, student work transcript, line 513).

T8 had decided to share one of his special education students' samples of work for the third cycle three-tall towers problem. This student cried when trying to solve the first cycle four-tall towers problem seemingly overwhelmed by the problem-solving process indicated by T8 that "We don't typically work like this." (Meeting 10/2/13 students' work transcript, lines 160-162). For the third cycle three-tall towers problem, T8 said that his student described the combination of colors used for each possible tower
but "didn't really say there were no other possible combinations" (Meeting transcript 11/20/13, line 306). The instructor responded to T8 about his student's work from the first to the third cycle:

Right, it was probably harder for her to do that. But you know I think again, it is a process and she is coming along in the process; because in the first two tasks, I don't remember seeing all this writing, right. And I think also that is very nice. Even if she is just explaining what she did, she is writing. And once you get them writing, you can get them to write a convincing argument. (11/20, line 307)

11.2.3 Summary of Instructor Moves

Throughout the intervention, the instructor asked various types of non-leading questions. Of the 435 questions for the three cycles of mathematics problems, probing questions were the most common, 209 times. The other types of questions asked by the instructor were: explanation, 86 times; other solution, 55 times; justification, 50 times; connection, 20 times; and generalization, 15 times.

The instructor also modeled pedagogical practices to promote reasoning as a process. The most common pedagogical practice used by the instructor was motivating, 204 times. Other pedagogical practices used by the instructor were re-voicing, 169 times; inviting, 146 times; waiting, 65 times; monitoring, 31 times; selecting, 24 times; and anticipating, 21 times. The instructor's moves throughout the intervention helped the middle school mathematics teachers to recognize reasoning in their own work as well as recognize reasoning in their students' work.

11.3 Teachers' Beliefs

This section is a report of salient findings from teachers' beliefs. The third research question is addressed in this section. From the teachers' beliefs expressed on the beliefs assessments, teachers' final projects, and the teachers' experiences from the
intervention, the following two themes emerged: change in expectations and abilities with special education students and teachers' growth regarding questioning techniques and pedagogical practices.

11.3.1 Change in Expectations of Special Education Students

Seven of the ten teachers participating in the intervention taught special education. Of the seven special education teachers, 3 teachers taught seventh grade resource (T1, T3, and T5), 1 teacher (T2) taught sixth-, seventh-, and eighth-grade selfcontained language learning disability (LLD) students, 1 teacher (T9) taught a sixth-grade inclusion class, 1 teacher (T8) taught sixth through eighth grade self-contained mildly cognitively impaired students, and 1 teacher (T4) taught what she described as an eighthgrade general education class at an alternative academy. The instructor made the following point about special education students at the first in-district classroom visit:

But sometimes it's very hard to tell who your special ed. students are and who your regular ed. students are. In fact in a good class you can't tell. When I would go in when I was a principal in a school and we had all inclusion, and, I would go into a class and I would try and figure it out, like, who are my children that have special needs. And, I really had trouble doing it, and that's a good thing. You don't want to be able to figure that out. And you really want to trust that the special ed. kids are going to do good stuff with this problem and they can. (Meeting transcript, 9/17/13, line 5)

Several critical events occurred that may have affected teachers' beliefs about special education students.

One critical event occurred when the instructor facilitated a discussion regarding a
student sample of work brought in by T 1 . The following exchange occurred:
T1: We couldn't make anymore because we think we made all the patterns plus we found all the blocks and we all worked together to create these patterns. So again, they couldn't really explain.
R1: Well they are; that's their reason. Is it a good convincing argument? What do you think? Are you convinced? We're done because we couldn't make any more. T1: Well, she said all the patterns, so...

R1: We made all the patterns, right but does that help you?
T3: A little bit.
R1: It does? Are you convinced?
T3: Well I mean for this group because of the level.
R1: No, you can't do that. And I know that a bunch of you said that online. You can't say the kids are young so we are going to expect less. If you want a convincing argument, you want a convincing argument.
T3: I'm not saying they are young, I am saying they are special education.
R1: No, I understand, but I'm saying online some of you said you watched the video the kids were young and we are accepting what they say and it is convincing enough. It's not. It doesn't mean that they should be doing more than this. I bet a lot of your students whether they were regular or special ed. said we are done because we tried and we tried and we can't find any more and therefore we are done and we got it. Okay. How many got that as an argument? Regular ed. and special ed. Correct? (Meeting transcript 10/2/13, lines 103-112).

This early exchange in the intervention is evidence that T 3 had low expectations regarding the abilities of her special education students.

Another critical event was identified about teachers' allowing students to use colored pencils, markers, or crayons for motivation when solving the problems. The instructor facilitated a discussion with T3 and T4 who both taught special education students in fall 2013 when participating in the intervention. T3 and T4 expressed concern about their s lack of motivation at the academy from where she taught in the following discussion:

T4: They don't do anything unless they have some sort of motivation.
R1: Not true. We got wonderful stuff from those students.
T4: Yeah, but they won't put anything on the paper unless they have some kind of motivation.
T3: They need an incentive.
T4: They need motivation to do something on paper. They won't ever touch the paper unless you give them a little incentive. Like
R1: What would be the incentive?
T3: You could use markers or colored pencils or whatever (Meeting transcript 9/17/13, lines 10-16).

The instructor recommended that the teachers set up a table or math center that had tools if students chose to use them and suggested not handing out colored pencils (Meeting transcript 9/17/13, line 27).

Several teachers shared work from their special education students for the third cycle three-tall towers problem that impressed the instructor (Meeting transcript $11 / 20 / 13$, lines $87-97 ; 142-169$). T2 shared a student's work that seven groups of three towers, and three groups of tower pairs that were alternating the three colors. The instructor facilitated the following discussion with T2 about her students' work:

R1: So this is pretty neat, isn't it? Pretty neat work from special ed. [students]
T2: Yeah they are seventh grade.
R1: Very, very Good. Good. Did they write anything?
T2: Yeah, she actually did.
R1: Oh good.
T2: She said I know the answer is 27. I know there is no more possible ways because in group 2, I moved the blue cube in each position in every way I could. There were only three positions because it could only be three high. I did the rest for groups $3,4,5,6$, and 7 . So she just said she did this strategy.
R1: Did she do this by herself?
T2: Yes.
R1: Because this is pretty impressive. Isn't it; right?
T2: Yeah.
R 1 : It is good writing.
T2: Yeah she had definitely wanted to improve her explanation from the beginning. (Meeting transcript 11/20/13, lines 87-97).

This discussion revealed one example where T2's student improved her writing for the third cycle three-tall towers problem.

T3 was another teacher that shared samples of work from her special education students. The instructor also said the following motivating comments after discussing a few teachers' samples of students' work for the third cycle three-tall towers problem:

So it's nice so they are really doing some good stuff. Very good, again when you have students that are struggling in the very beginning when you see progress you should feel very proud. Good. (Meeting transcript 11/20, line 189)

So we have a lot of special ed. kids doing neat stuff. (Meeting transcript 11/20/13, line 281)

So we are talking about a lot of kids that are being exposed to math which really has them thinking; which is a good thing. Because you really don't want your special ed. kids to just do arithmetic...It doesn't cut it anymore. Good. (Meeting transcript 11/20/13, line 313)

T8 reported how happy he was with the variety of strategies that his students used when solving the problems. T 8 wrote the following in his final project:

I did not expect them to come up with a constant. This is something that I did not think of at first, so I didn't think they would either. They showed me that students with low functioning levels are still able to reason at high levels if given the time and appropriate resources. It has helped me to try not to limit my students when giving assignments. (T8 Final Project, p. 57)

T9, another special education teacher, reported the following about the expectations she initially had regarding her students' abilities to reason:

I learned that the students really have the capacity to grow in such a short amount of time. Their responses got more detailed and in-depth. I have to admit, that after the first and even second task, I was really skeptical about how much these students would grow. They completed building the towers faster and wrote much more detailed and convincing arguments. (T9 Final Project, p. 33)

11.3.2 Teachers' Beliefs Regarding Their Pedagogical Improvement

Teachers' beliefs regarding their pedagogical improvement were found in the final projects, the on-line discussions, and from facilitated discussions led by the instructor. The results of the study revealed evidence of teachers' improvement regarding non-leading questioning techniques and recognition of convincing arguments.

11.3.2.1 Non-Leading Questioning

Teachers reported that they improved in their abilities to ask non-leading questions as the intervention progressed through the three cycles. T2 reported that she questions her students more instead of "leading them toward an answer" (T2 Final

Project, p. 32). T2 also wrote "The more I question my students, the better they understand the math they are given." (T2 Final Project, p. 32) and wrote that this experience changed her view about teaching.

T4 reported similar beliefs when she wrote the following about the first cycle task: "The task gave me the opportunity to change my teaching and questioning techniques and I have found myself asking more thought-provoking questions and doing a lot less leading towards the right answer." (T4 Final Project, p. 9) and reported that her students had family, social, emotional, and academic issues at the alternative academy. T3 wrote similar comments in her final project "I was much better at questioning my students throughout the entire [third] task. Even when asking my students specific questions, I found that they had become better at responding to me knowing what they had learned from cycle one and cycle two." and mentioned that she allowed her students to question each other and explore problems more often (T3 Final Project, p. 57).

11.3.2.2 Recognition of Convincing Arguments

Teachers began to show growth during the discussion of the second cycle pizza problem in determining whether arguments were convincing or not convincing. T3 shared a student's work sample where the students used an arrow system to list the 16 possible pizza combinations. The following written work was provided by the student:

The first pair of 2 of all the same color is there because there are 4 blocks and all are the same color; but opposite from its partner. The second group of 2 pairs makes 4 different groups, but they link together because you can take the bottom or top and put it completely opposite of the top or the bottom. (Meeting 10/22/13 student work transcript, line 495)

T 3 recognized that the organization was neat but that the written argument provided was not convincing (Meeting 10/22/13 student work transcript, line 500).

T8 was another teacher who posited that his students were not providing convincing arguments. T8 taught mildly cognitively impaired (MCI) students in fall 2013. After reading one of his students' solutions aloud to the teachers he said that she talked about how the three-tall towers were moved but did not discuss why (Meeting $11 / 20 / 13$, students' work transcript, line 322). The instructor praised T8 and the other teachers with the following motivating comment:

Good. That is really good that you guys are picking up. She is explaining what she did. She has a very, very, good strategy, but she is not saying that therefore there can't be anymore because I have taken that single color and put it into each of the three positons and there is no other place to put it. So it is good. I think you guys are showing that you have really grown. Not just your students. Good! (Meeting 11/20/13 students' work transcript, lines 323, 325)

Another teacher, T9, reported that she didn't see students' growth in their arguments until the third cycle problem. T9 wrote the following comments in her final project:

I cannot tell you how amazed at the arguments the students were making! This lesson study really opened my eyes to how important it is to allow the students to reason through the math they are learning. (T9 Final Project, p. 34)

11.3.3 Summary of Teachers' Beliefs

The findings from the teacher beliefs had two main themes: change in expectations and abilities with special education students and teachers' growth regarding questioning techniques and pedagogical practices. The intervention helped teachers to see that all students are capable of reasoning through mathematical problems. The intervention also helped teachers to believe that they could become better teachers by asking more questions and providing their students more opportunities to question each other as well as explore solutions to problems.

11.4 Summary of Overall Findings

Seminal findings were revealed from the study's data sources. The following two main themes emerged from the findings of the instructor's moves analysis: non-leading questioning and recognizing reasoning as a process. From the findings of the beliefs analysis, the following two themes that emerged: change in expectations of special education students and teachers' growth regarding non-leading questioning and recognition of convincing arguments. Teachers were also able to use and recognize forms of argument and strategies for solving the three cycles of problems.

Chapter 12 - Conclusions

The results of this case study of ten teachers and one instructor revealed that (1) teachers' expectations of students' abilities increased, particularly with special education students, (2) teachers showed evidence of growth in using non-leading questioning techniques and pedagogical practices, and (3) that attending to students' reasoning is a gradual and continual process. The ten in-service middle school teachers that participated in the intervention were able to use and recognize reasoning in the following contexts: (1) teachers' using and identifying reasoning in the mathematical tasks themselves, (2) identifying reasoning from research students' work as teachers read articles and watched videos of students performing the mathematical tasks, and (3) identifying reasoning from samples of current students' work.

12.1 Conclusion Summary

There is evidence from this study that suggests teachers' expectations of students' abilities gradually increased, particularly with the seven teachers who taught special education students. During the Unit 2 on-line discussion thread where the instructor asked teachers to predict how their students would arrange the towers for the four-tall towers problem, some teachers made the following initial comments that suggested their expectations of their students' abilities were low:

This school year, I am teaching $7^{\text {th }}$ grade resource math. Based on my experience, middle-school students struggle with any type of abstract thinking especially resource level. They either jump right into something without even thinking about the concept or they don't even attempt something on their own without asking for any type of help or assistance right away. (Unit 2, on-line discussion thread, T3, line 7).

This year I am teaching $6^{\text {th }}, 7^{\text {th }}$, and $8^{\text {th }}$ grade LLD students (SelfContained). During this week of school I have been doing testing to figure out what mathematical levels they are all on. Though testing is not complete yet I
have noticed that they are 2 to 3 grade levels below in their mathematical knowledge. (Unit 2, on-line discussion thread, T2, line 7).

I gave my $7^{\text {th }}$ grade students that are in a resource room a $5^{\text {th }}$ grade pretest and realized that they are much lower than I expected. (Unit 2, on-line discussion thread, T1, line 20).

It did bother me that I had made some of the same reasoning arguments that students have made. I would like to think that I am more advanced than those that I teach. (Unit 3, on-line discussion thread, T8, line 46).

The following comments from the teachers' final projects suggest that teachers were surprised or impressed by their current students' work affecting their expectations of students' abilities:

With the four towers, I was quick to accept arguments for fear of them reaching frustration. However, as we went on with the tasks, my students showed such improvement and I realized they were capable of more. (T1, final project, p. 27)

Even though they are special education students, I should not set my expectations of their abilities low. I have learned that I can challenge them and that they can surprise me and rise to that challenge. I have learned that mathematics is not just basic arithmetic and procedure, that understanding the process behind the mathematics is very important. Since the implementation of these tasks, I have been trying to encourage the why behind the math. I have been trying to teach and assess my students' understanding of the reasoning of math. In the beginning, my students' reasoning and mathematical thinking was little to none. They did not question math or event think about explaining math, they just knew what to do and figured that was good enough. Now they are working on improving their reasoning through these tasks as well as their everyday assignments. (T2, final project, p. 32)

I have learned to never underestimate my students because the work they come up with can be quite surprising, both good and bad. As a special education teacher, I often have to really encourage my students to put as much effort as possible into their work. With these tasks, they were extremely motivated and enjoyed working on them. (T3, final project, p. 57)

I was pleasantly surprised and impressed by the small steps my students made towards solving the problems form each cycle but I am very concerned with the lack of ability to explain and give a convincing argument. (T4, final project, p. 28)

The students' mathematical reasoning and thinking surprised me throughout all of these problems. So many of my students solved these problems in ways I never would have predicted. Their organization and work in some cases were impressively sophisticated. Many of the ways students recorded their work, or arrived at their solution, surprised me. (T6, final project, p. 36)

From comparing the first task and challenge problem, I was able to see growth in the students and their reasoning. Many students were automatically grouping the towers in different ways before being asked if it was possible and they were providing better verbal reasons. I was also able to see the positive influence on questioning students to get them to think about their work and other possibilities in mathematics. (T7, final project, p. 33)

I also saw that middle school students were able to develop more advanced strategies than I had initially come up with. As we did the other problems, I was able to apply and develop the strategies I used from the previous exercise. During the implementation of these lessons, I learned that I had completely underestimated my students. They showed perseverance throughout the projects. My students were capable of solving the problems, especially when using manipulatives. (T8, final project, p. 38)

Given the first two tasks, I was a little discouraged by some of my students' responses. I did not really see growth until after the third task. I cannot tell you how amazed I was at the arguments the students were making! This lesson study really opened my eyes to how important it is to allow the students time to reason through the math they are learning. (T9, final project, p. 34)

I have learned that my students have strong reasoning skills when given the opportunity to explore concepts that have multiple ways to reach a solution. It is wonderful to see that even students who struggle the most were able to use their own reasoning abilities and build on ideas with a partner to explain how they arrived at a solution. The success that these students experienced as a part of these tasks made them more confident and excited to work on the tasks later in the semester. (T10, final project, p. 37)

The intervention experiences gave teachers the opportunity to see that all students, whether regular or special education, were capable of higher-level reasoning.

Maher, Landis, and Palius (2010) designed and conducted a beliefs study to examine 20 middle-school classroom and special education teachers' beliefs during a year-long intervention. The following objectives and interests were posited in the Maher et al. (2010) research:

An objective was to track changes, if any, in teacher-held beliefs during the course of the intervention. Our expectation was that learning to attend to forms of reasoning they use in problem solving and to be more attentive to children's reasoning by studying videos might affect certain held beliefs. We were particularly interested in whether there would be differences between special education and regular classroom teachers in terms of the expectations about student learning and the conditions that teachers can create to influence children's learning. (p. 14)

For the Maher et al. (2010) research, a subset of 13 of the 34 Beliefs assessment items were aligned with the intervention had changed. The research revealed that no differences between special education and regular education teachers were found. Moreover, special and regular education teachers were reported to have changes in beliefs.

In addition to increased expectations of their students' abilities, evidence suggests that teachers improved their questioning techniques and pedagogical practices. The following teachers' comments suggest that teachers believed their questioning and pedagogical practices improved:

I give more 'wait' time and am not so quick to give and explain the answer. (T1, final project, p. 27-28)

I feel that through the implementation of these tasks as well as the information I have gained throughout this course has made me a better facilitator. I find myself questioning my students more instead of leading them toward the answer. I have a different view about my teaching style and I feel that this change is going to benefit all. The more I question my students, the better they understand the math they are given. (T2, final project, p. 32)

I find that I am now asking even more questions than ever in my classroom. I am no longer guiding my students to arrive at the correct answer, but allowing them to explore and question each other. (T3, final project, p. 57)

I was recently observed by my principal and an administrator from outside the building and they complimented me on pushing each student to continually explain what they saw and why they were answering in a specific way. (T4, final project, p. 28)

Also, my questioning skills have improved throughout this course. Often I give too much away when I question, or guide my students too much. I know that I do it, but after this class, I am able to question my students without fully leading them to the answer. (T5, final project, p. 20)

I have been encouraging students to write explanations more often. (T7, final project, p. 33)

It was also evident that I need to incorporate writing into my lessons. (T8, final project, p. 38)

I have noticed that I take more of a facilitator role in the classroom. I try to allow my students the time and space to discuss, and even argue, with their peers to determine the solutions to problems. I find myself asking the students if their peers are convincing them. I also ask them to defend their positions. This lesson study has definitely made me a better teacher. (T9, final project, p. 34)

The intervention experiences gave teachers the opportunity to improve their questioning techniques and pedagogical practices.

Another seminal finding from this study was that attending to students' reasoning is a gradual process. The following comments from the teachers' final projects suggest that teachers realized that attending to students' reasoning is a gradual and continual process:

I learned that my students' oral reasoning was much stronger than their written reasoning. My students had a lot of difficulty explaining the pizza task, but they did show a lot of improvement by the third. (T1, final project, p. 27)

I learned at the very beginning I needed to really push the idea of giving a convincing argument. My students definitely struggled with this, but by the third task; they knew what was expected of them. They had learned through these three tasks that they needed to organize their thinking on paper and include details of what and why they did what they did. (T3, final project, p. 57)

I am going to give them the three cycle tasks again and then have them compare where their thinking was at the beginning of the year to where they have grown to at the end of the year. (T4, final project, p. 28)

I think they made a better connection mathematically because they were hands-on and they could make the task their own. It is nice to see what the freedom of
thinking can show me. They have also improved on explaining their work and it is starting to come naturally to them. (T5, final project, p. 37)

Throughout the three problems we worked on in class, I can see an improvement from the beginning to the end in the students' ability to formulate a convincing argument. For the first problem, students struggled to write down an explanation. For the second problem, students did a better job writing; however, some students failed to provide a convincing argument and rather recorded what different combinations they were able to make. For the last problem, building towers three high with three colors, many students were able to write why they had created all the towers, rather than just simply listing the towers they created. With practice, students improved their abilities to write a convincing argument and they also learned what is expected in a convincing argument. I watched students recognize that restating what they did was not necessarily convincing. It was evident by the third problem that students had a better grasp on being convincing. (T6, final project, p. 35)

From comparing the first task and the challenge problem, I was able to see growth in the students and their reasoning. Many students were automatically grouping the towers in different ways before being asked if it was possible and they were providing better verbal reasons. (T7, final project, p. 33)

Students need to discuss math with each other. They need to build and manipulate. They need to be given the time to think about the problems they are given. I really learned that writing about math is very important. Students who have the opportunity to defend their thoughts and ideas will gain a deeper understanding of the concepts. (T9, final project, p. 34)

I think my students are still struggling with the development of writing a convincing argument, but they were mostly able to give convincing verbal arguments by the completion of the third task. (T10, final project, p. 38)

The intervention experiences helped teachers recognize that attending to students' reasoning is a gradual process that requires time for students to develop and that students should be encouraged to continue strengthening their reasoning throughout their future mathematical studies.

12.2 Implications and Limitations

The analysis of the research data from this case study of ten teachers and one instructor indicated that the intervention was successful in helping teachers use and
recognize forms of reasoning. As teachers worked on the tasks, the teachers were able to experience what was expected of the students. This helped to prepare the teachers to recognize the forms of reasoning from research and current students. During an interview, the instructor said the following about why it was important for teachers to complete the tasks before implementing the tasks in the classroom with current students:

I think if they didn't complete the tasks they may not even understand what the task is about. Maybe wouldn't be able to follow the reasoning or the thought process of their students. I think that they really have to be a problem solver to see the struggles that are involved and where their students might have struggles as well. I think that they can't just implement in a thoughtful way unless they had a chance to be a problem-solver themselves. (Landis, 2013b)

Teachers also compared their current students' work to the research students' work from Stephanie, Milin, Brandon, and Romina at times during the meetings and on-line discussions.

Although case arguments were the most used and recognized, recursive arguments were used and recognized frequently; particularly in the first and third cycle of tasks. However, there were only two samples of current students' work discussed where the students used a recursive argument to find the pizza combinations (10/22/13 students' work meeting transcript, lines 448; 602-603).

Inductive arguments were recognized by eight teachers on the Gang of Four video post-assessment. However, it was rare when teachers or students used an inductive argument when solving the problems from the cycles. One teacher pair used an inductive argument for the first cycle (9/7/13 meeting transcript, line 90). Two teacher pairs used an inductive argument for the third cycle tasks (10/22/13 meeting transcript, lines 361, 579-580). The instructor also mentioned that one student appeared to use an inductive argument for solving the three-tall towers problem for the third cycle (10/22/13 in-district
class meeting transcript, lines 118-122). The instructor's moves throughout the intervention helped teachers to attend to students' reasoning.

The instructor moves that encouraged teachers to persevere in solving the tasks were mainly probing, explanation, and justification questions. Other frequently-used pedagogical moves were motivating, inviting, re-voicing, and monitoring. The instructor said the following during an interview about what the instructor expected teachers to do and say during the implementation of the tasks with the current students:

I would hope they [the teachers] would be presenting the problem and then they would step back. In other words, I wouldn't want them to be leading the students down the path that they took as a problem solver or the path they thought the students should take. I would hope that they would be letting the students go down the path that they [the students] want and I would hope they [the teachers] would be listening carefully so they could try and understand the path the students were taking. I would hope that if they really didn't understand what the students were doing that they would ask the students to explain what they were doing so that they could have a better understanding of the students' thinking. (Landis, 2013b)

The expectations were modeled by the instructor as teachers worked on the tasks as well as when attending to current and research students' reasoning.

Teachers' beliefs were also examined for this study. Slight changes in the teachers' beliefs were noted from the beliefs pre-assessment to the beliefs postassessment for two main categories: expectations and abilities and concepts and procedures. Both categories had six teachers that improved the percentage of questions that were consistent with the standards from the pre- to the post-assessment. During an interview, the instructor said the following about the knowledge teachers should have after successfully completing the course requirements:

I would hope you would be a better listener; to really understand what your children your students were thinking and how their mathematical thoughts were
developing. I would hope that you would be willing to know that students can learn from each other as well as from you; and give them opportunities to talk about the mathematics, argue about the mathematics. I would think that you would be a better problem-solver yourself because you would be willing to struggle and not always see that math is easy answers. I would hope that you would be able to celebrate when your students do something that maybe even would be neater or more elegant than the way you went about solving something. (Landis, 2013b)

Ten in-service teachers participated in the intervention. Due to the small sample size, the results from this study cannot be generalized. The instructor implemented the intervention with the ten teachers of the southern region but was free to choose different tasks, articles, videos, and on-line discussion questions from the instructor of the northern and central regions. The in-district classroom visits were not videotaped from any of the regions for this study. Videotaping the in-district classroom visits may have led to a more in-depth analysis for studying the teachers' recognition of students' reasoning.

It should also be noted that the intervention was implemented in a graduate-level course for one semester. Teachers were offered incentives such as waiving tuition and student fees for seven masters-level courses at Rutgers University, receiving stipends after successfully completing summer institutes, and using the courses towards a Master's degree at Rutgers (NJPEMSM, 2009). However, teachers were required to invest time and effort by attending regional meetings, responding to on-line discussions, implementing the tasks with their students, and completing final projects. Without the NJPEMSM project incentives, it is possible that this study and similar studies may have had different results.

12.3 Further Research Suggestions

Some teachers expressed concern over the difficulty level of the tasks because seven out of the ten teachers taught special education when implementing the
mathematical tasks and in some cases had mild cognitively disabled students as in the case of T8's students with Down's syndrome. At the first regional meeting, the instructor had suggested that "If you have children that really are very low functioning, this might be too challenging a problem for them and maybe building towers three-tall might have been enough of a challenge. And maybe that would be something they would be more successful with." (Meeting transcript 10/2/13, line 744). Possible further research might include adjusting the level for special education students with severe learning handicaps where control and experimental groups could be formed and compared by using the three-tall towers problem first.

Future research might include comparing the results of the other cohorts from the same instructor. In one such study, McGowan (2015) examined seven in-service teachers attention to reasoning during fall 2010 using the same instructor, mathematical tasks and contexts that were used for this case study of ten teachers. McGowan found similar patterns from his data in regard to case arguments and inductive arguments. Moreover, McGowan (2016) reported that teachers in his study "used or described recursive arguments during cycle 2 of the intervention" but teachers did not refer to a particular argument such as Stephanie's Case Argument or Milin's inductive argument (p. 167).

Currently, Wright (2015) is in the process of examining a study with teachers that were in the NJPEMSM program in 2010 that experienced the same intervention but had a different instructor. The instructor of the intervention used the first two cycles of problems that the instructor used in this study and the study by McGowan (2015). For the last problem, the instructor used the following Taxicab Problem:

A taxi driver is given a specific territory of a town, shown below. All trips originate at the taxi stand. One very slow night, the driver is dispatched only 3
times; each time, she picks up passengers at one of the intersections indicated on the map. To pass the time, she considers all the possible routes she could have taken to each pick-up point and wonders if she could have chosen a shorter route. What is the shortest route from the taxi stand to each point? How do you know it is the shortest? Is there more than one shortest route to each point? If not, why not? If it is so, how many? Justify your answer. (Maher, Powell, and Uptegrove, 2010, p. 146)

Future research might also include continuing this intervention with a new generation of in-service teachers. Videotaping and analyzing current students as they work on the tasks during the in-district classroom visits would be worth exploring for future research. Similar PD intervention models can also be offered or modified for preservice teachers. Whatever the future may hold, it is exciting to see that more teachers are recognizing the value of attending to students' mathematical reasoning in their classes.

References

Achieve (2015). Our Agenda-Achieving the Common Core. Retrieved from: http://www.achieve.org/achieving-common-core

Achieve the Core (2015). Mathematics, Professional Development: Introduction to the Math Shifts. Retrieved from: http://www.achievethecore.org

Alston, A.\& Davis, R. (1996). The Development of Algebraic Ideas: Report of a Mathematics Education Seminar for Teachers and Educators. Rio de Janeiro, Brazil.

Alston, A. \& Maher, C.A. (1993). Tracing Milin's building of proof by mathematical Induction: A case study. In B. Pearce (Ed.). Proceedings of the Fifteenth Annual Meeting for the North American Chapter for the Psychology of Mathematics Education (vol.2, pp. 1-7). Pacific Grove, California.

Ball, D. L., Ben-Peretz, M., \& Cohen, R. B. (2014). Records of Practice and the Development of Collective Professional Knowledge, British Journal of Educational Studies, 62(3), 317-335.

Battey, D. \& Franke, M. L. (2008). Transforming Identities: Understanding Teachers across Professional Development and Classroom Practice. Teacher Education Quarterly, 35(3), 127-149.

Borko, H., Mayfield, V., Marion, S., Flexer, R., \& Cumbo, K. (1997). Teachers' developing ideas and practices about mathematics performance assessment: Successes, stumbling blocks, and implications for professional development. Teaching and Teacher Education, 13, 259-278.

Brophy, A. (2011). Learning About Children's Reasoning Using Videos as a Tool in a Pre-service Mathematics Course. (Doctoral Dissertation). Retrieved from: www.sakai.rutgers.edu (Resources, Rutgers dissertations).

Brownell, W. A. (1947). The Place of Meaning in the Teaching of Arithmetic, Elementary School Journal, 47, 256-265.

Buell, I.A., (1944). Let us be sensible about it, The Mathematics Teacher, 306-308.
Cipriani, P. (2015). The Evolution of Mathematics Standards: Have Common Core State Standards Ended the Math Wars? Manuscript submitted for publication. Retrieved from: http://maereview.org/index.php/maer

Cole, Corwin. (2015). Proof by Contradiction. Mathworld-A Wolfram Web Resource created by Eric W. Weisstein. Retrieved from: http://www.mathworld.wolfram.com

Davis, R. B., Maher, C. A., \& Noddings, N. (Eds.). (1990). Constructivist views on the teaching and learning of mathematics: Journal for Research in Mathematics Education, Monograph No. 4. Reston, VA: National Council of Teachers of Mathematics.

Erlwanger, S. H. (1973). Benny's Conception of Rules and Answers in IPI Mathematics. Journal of Children's Mathematical Behavior, 1, 7-26.

Fletcher, P. \& Patty, C. W. (1988). Foundations of Higher Mathematics. Boston: PWS-Kent Publishing Company.

Francisco, J. M. \& Maher, C. A. (2011). Teachers attending to students' mathematical reasoning: Lessons from an after-school research program. Journal of Mathematics Teacher Education, 14(1), 49-66.

Francisco, J. M., Maher, C. A., Powell, A., \& Weber, K. (2005, May). Urban Teachers Attending to Students' Mathematical Thinking: An Emergent Model of Professional Development. Paper presented at the fifteenth ICMI Study Conferences: The Professional Education and Development of Teachers of Mathematics, Àguas de Lindòia, São Paulo, Brazil.

Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., \& Williamson, P. W. (2009). Teaching practice: A cross professional perspective. Teachers College Record, 111(9), 2065-2100.

Heck, D.J., Weiss, I. R., Pasley, J. D. (2011). A Priority Research Agenda for Understanding the Influence of the Common Core State Standards for Mathematics. Chapel Hill, NC: Horizon Research Inc. Retrieved from: http://www.horizonresearch.com/reports/2011

Herbel-Eisenmann, B., Steele, M. D. \& Cirillo, M. (2013). (Developing) Teacher Discourse Moves: A Framework for Professional Development. Mathematics Teacher Educator, 1(2), 181-196.

Ho, K. F. \& Hedberg, J. G. (2005). Teachers' pedagogies and their impact on students' mathematical problem solving. Journal of Mathematical Behavior, 24(3-4), 238-252.

Kazemi, E., Franke, M., \& Lampert, M. (2009). Developing pedagogies in teacher education to support novice teachers' ability to enact ambitious instruction. In R. Hunter, B. Bicknell \& T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd annual conference of the Mathematics Education Research Group of Australasia (Vol. 1, pp. 1230). Palmerston North, NZ: MERGA.

Lampert, M., Franke, M., Kazemi, E., Ghousseini, M. Turrou, A., Beasley, H., Cunard, A., and Crowe, K. (2013). Keeping it complex: using rehearsals to support novice teacher learning of ambitious teaching, Journal of Teacher Education, 64, 226-243.

Landis, J. (2013a). Re: Lesson Study on Reasoning, Rutgers University. Retrieved from: http://onlinelearning.rutgers.edu

Landis, J. (2013b). Interview by Phyllis J. Cipriani, Rutgers University, New Jersey.
Larson, R \& Boswell, L. (2015). Geometry, A Common Core Curriculum, Big Ideas Learning, LLC: PA.

Leinwand, S. (2012). Sensible Mathematics: A Guide for School Leaders in the Era of Common Core State Standards (2 $2^{\text {nd }} \mathrm{ed}$.). Portsmouth, NH: Heinemann.

Leong, Y. H., Tay, E. G., Toh, T. L., Quek, K. S., Dindyal, J. (2011). Reviving Pólya's "Look Back" in a Singapore school, The Journal of Mathematical Behavior, 30(3), 181-193.

Lewis, C. (2000). Lesson Study: The Core of Japanese Professional Development, Invited Address to the Special Interest group on Research in Mathematics Education, American Education Research Association meetings, New Orleans. Retrieved from: http://files.eric.ed.gov/fulltext/ED444972.pdf

Lewis, C., Perry, R., \& Murata, A. (2003, April). Lesson Study and Teachers’ Knowledge Development: Collaborative Critique of a Research Model and Methods, Paper presented at the Annual Meeting of the American Educational Research Association in Chicago, IL, Retrieved from: http://files.eric.ed.gov/fulltext/ED478172.pdf

Linn, M., Lewis, C., Tsuchida, I., \& Songer, N. (2000). Science lessons and beyond: Why do US and Japanese students diverge in science achievement?, Educational Researcher, 29, 4-14.

Maher, C.A. (1996). Constructivism and constructivist teaching - can they coexist? In Proceedings of the Eight International Congress for Mathematics Education, Spain: Sevilla.

Maher, C. A. (2011a). Supporting the Development of Mathematical Thinking Through Problem Solving and Reasoning. In Ubuz, B. (Ed.) Proceedings of the $35^{\text {th }}$ Conference of the International Group for the Psychology of Mathematics Education, Vol.1, 85-90, Ankara, Turkey: PME.

Maher, C. A. (2011b). The Longitudinal Study. In C. A. Maher, A. B. Powell, \& E. Uptegrove, (Eds.), Combinatorics and reasoning: Representing, justifying and building isomorphisms (pp. 3-8). New York: Springer Publishers.

Maher, C. A. \& Alston, A. (1989). Is meaning connected to symbols? An interview with Ling Chen. The Journal of Mathematical Behavior, 8(3), 241-248.

Maher, C. \& Martino, A.M. (1996). The development of the idea of mathematical proof: A 5year case study. Journal for Research in Mathematics Education, 27(2), 194-211.

Maher, C.A. \& Martino, A. M. (1998). "Brandon’s Proof and Isomorphism". In C. A. Maher, Can teachers help children make convincing arguments? A glimpse into the process. Rio de Janeiro, Brazil: Universida de Santa Ursula.

Maher, C. A., Landis, J. H. \& Palius, M. F. (2010). Teachers attending to students' reasoning: Using videos as tools. Journal of Mathematics Education 3 (2), 1-24.

Maher, C. A., Powell, A. B., \& Uptegrove, E.B. (2011a). Introduction. In C. A. Maher, A. B. Powell, \& E. Uptegrove, (Eds.), Combinatorics and reasoning: Representing, justifying and building isomorphisms (pp.xiii-xvi). New York: Springer Publishers.

Maher, C. A., Sran, M.K.., \& Yankelewitz, D. (2011b). Building an Inductive Argument. In C. A. Maher, A. B. Powell, \& E. Uptegrove, (Eds.), Combinatorics and reasoning: Representing, justifying and building isomorphisms (pp.45-57). New York: Springer Publishers.

Maher, C. A., Palius, M. F. , Maher, J. A., Hmelo-Silver, C. E., \& Sigley, R. (2014). Teachers can Learn to Attend to Students' Reasoning Using Videos as a Tool, Issues in Teacher Education, 23(1), 31-47.

Martino, A.M. \& Maher, C. (1999). Teacher questioning to promote justification and generalization in mathematics: What research practice has taught us. Journal of Mathematical Behavior, 18, 53-78.

Marzano, R. J. (2007). The Art and Science of Teaching. Alexandria, VA: Association for Supervision and Curriculum Development (ASCD).

Mastropieri, M.A. \& Scruggs, T.E. (2010). What are Resource and Self-Contained Services? Retrieved from: http://www.education.com/reference/article/what-resource-self-contained-services/

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59, 14-19.

McGowan, W. (2016). Exploring In-Service Teachers' Recognition of Student Reasoning in a Semester-Long Graduate Course (Doctoral Dissertation, Rutgers University). Retrieved from: https://drive.google.com/file/d/0Bw3R1YwOCY0xckpuRnN4b3RfTXc/view?usp=sharing

Mueller, M., Yankelewitz, D. \& Maher, C. (2010). Rules without reason: Overcoming students’ obstacles in learning. The Montana Mathematics Enthusiast, 17(2/3), 307-320.

National Board Professional Teaching Standards (NBPTS). (2015). Adolescence and Young Adulthood (AYA) Mathematics portfolio. Retrieved from: www.nbpts.org.

National Council of Teachers of Mathematics. (1980). An agenda for action: Recommendations for school mathematics of the 1980s. Reston, VA: Author.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1995). Assessment Standards for School Mathematics. Retrieved from: http://www.nctm.org/standards/content.aspx.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (2007). Special issue: 100 years of Mathematics Teacher. Reston, VA: Author.

National Council of Teachers of Mathematics. (2009). Focus in high school mathematics: Reasoning and sense making. Reston, VA: Author.

National Governors Association Center for Best Practices and Council of Chief State School Officers (NGA \&CCSSO). (2010). Common Core State Standards Initiative, Read the Standards - Common Core State Standards Mathematics Introduction. Retrieved from: http://www.corestandards.org/read-the-standards/Math

New Jersey Partnership for Excellence in Middle School Mathematics. (2009). Retrieved from: http://www.math.rutgers.edu/NJPEMSM/details.html

Noddings, N. (1990). Chapter 1: Constructivism in Mathematics Education. In R. B. Davis, C. A. Maher, \& N. Noddings (Eds.), Constructivist Views on the Teaching and Learning of Mathematics. Journal for Research in Mathematics Education Monograph No. 4, 7-18. Reston, VA: National Council of Teachers of Mathematics.

Palincsar, A. S. (1998). Social constructivist perspectives on teaching and learning. Annual Review of Psychology, 45, 345-375.

Palius, M.F. \& Maher, C.A. (2011). Teacher Education Models for Promoting Mathematical Thinking. In Ubuz, B. (Ed.) Proceedings of the $35^{\text {th }}$ Conference of the International Group for the Psychology of Mathematics Education, Vol.3,

321-328, Ankara, Turkey: PME.

Partnership for Assessment of Readiness for College and Careers (PARCC). (2015).
Retrieved from: http://parcc.pearson.com/
Pólya, G. (1945). How to Solve It. Princeton, NJ: Princeton University Press.
Powell, A. B. (2011). Chapter 13: So Let's Prove It!. In C. A. Maher, A. B. Powell, \& E. Uptegrove, (Eds.), Combinatorics and reasoning: Representing, justifying and building isomorphisms (pp.145-154). New York: Springer Publishers.

Powell, A. B., Francisco, J. M., \& Maher, C. A. (2003). An analytical model for studying the development of learners' mathematical ideas and reasoning using videotape data. The Journal of Mathematical Behavior, 22(4), 405-435.

Private Universe Project in Mathematics Workshops (PUP), (1993). Cambridge, MA:
Annenberg Learner. (Building Towers, Selecting from Two Colors for Guess My Tower, Clip 1 of 5: The Meaning of "At Least", [video]. Retrieved from http://dx.doi.org/doi:10.7282/T3BC3XR5)

Private Universe Project in Mathematics Workshops (PUP), (1993). Cambridge, MA:
Annenberg Learner. Building Towers, Selecting from two colors for Guess My Tower, Clip 2 of 5: Does the Number Double? [Video]. Retrieved from http://dx.doi.org/doi:10.7282/T32V2FBZ)

Private Universe Project in Mathematics Workshops (PUP), (1993). Cambridge, MA:
Annenberg Learner. Brandon interview [video]. Retrieved from:
http://dx.doi.org/doi:10.7282/T3VX0FRD)
Private Universe Project in Mathematics Workshops (PUP), (1993). Math pizza, Clip 2 of 2: Whole and Half Pizzas with Four Toppings [video]. Retrieved from: http://dx.doi.org/doi:10.7282/T3NC60FW

Private Universe Project in Mathematics Workshops (PUP), (1998). Math Romina's proof to Ankur's challenge [video]. Retrieved from: http://dx.doi.org/doi:10.7282/T30P0Z85

Putnam, R. T. \& Borko, H. (2000). What Do New Views of Knowledge and Thinking Have to Say about Research on Teacher Learning? Educational Researcher, 29(1), 4-15.

Rothman, R. (2011). Something in Common: The Common Core Standards and the Next Chapter in American Education. Cambridge, MA: Harvard Education Press.

Sample McMeeking, L.B., Orsi, R., \& Cobb, R. B. (2012). Effects of a Teacher Professional Development Program on the Mathematics Achievement of Middle School Students. Journal for Research in Mathematics Education, 2(43), 159-181.

School Improvement Network. (2015). Vision of the Common Core. Retrieved from: http://www.CommonCore360.com

Schorr, R. Y., \& Amit, M. (2005). Analyzing Student Modeling Cycles in the Context of a "Real World" Problem. In Chick, H. L. \& Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the InternationalGroup for the Psychology of Mathematics Education, Vol. 4, pp. 137-144. Melbourne: PME.

Smith, M.K. \& Stein, M. (2011). Five Practice for Orchestrating Productive Mathematics Discussions. Reston, VA: National Council of Teachers of Mathematics.

Tracey, D. H., \& Morrow, L. M. (2012). Chapter four: Constructivism (1920s-Present), Lenses on Reading (pp. 57-89). New York, NY: Guilford Press

Video Mosaic Collaborative (VMC). (2010-2015). About the VMC. Retrieved from http://videomosaic.org

Webster, J. (2015). Regular Education-The Education Everyone Gets. Retrieved from: http://specialed.about.com/od/glossary/g/regulareducation.htm

Wheat, H. G. (1945). Why not be sensible about meaning? The Mathematics Teacher, 99-102.

Wright, E. (2015). Tracing Middle-School Teachers' Recognition of Forms of Reasoning (Unpublished doctoral dissertation). Rutgers University, New Jersey.

Appendix A
Beliefs Assessment

1. Learners generally understand more mathematics than their teachers or parents expect.

1
Strongly Agree
3
2

4
Strongly Disagree
2. Teachers should make sure that students know the correct procedure for solving a problem.

1	2	3	4	5
Strongly Agree				Strongly Disagree

3. Calculators can help students learn math facts.
1
2
3
Strongly Agree
4
5
Strongly Disagree
4. It's helpful to encourage student-to-student talking during math activities.

1	2	3	4	5
Strongly Agree				Strongly Disagree

5. Math is primarily about learning the procedures.

1	2	3	4	5
Strongly Agree				Strongly Disagree

6. Students will get confused if you show them more than one way to solve a problem.

1	2	3	4	5
Strongly Agree				Strongly Disagree

7. All students are capable of working on complex math tasks.

Strongly Agree
Strongly Disagree
8. Math is primarily about identifying patterns.

1	2	3	4	5
Strongly Agree				Strongly Disagree

9. If students learn math concepts before they learn the procedures, they are more likely to understand the concepts.

1	2	3	4	5
Strongly Agree				Strongly Disagree

10. Manipulatives should only be used with students who don't learn from the textbook.
$1 \quad 2 \quad 3$
Strongly Agree
4
5
Strongly Disagree
11. Young children must master math facts before starting to solve problems.

1	2	3	4	5
Strongly Agree				Strongly Disagree

12. Teachers should show students multiple ways of solving a problem.
1

3
4 Strongly Disagree

Strongly Agree
13. Only really smart students are capable of working on complex math tasks.

1	2	3	4	5
Strongly Agree				Strongly Disagree

14. Calculators should be introduced only after students learn math facts.

1	2	3	4	5
Strongly Agree				Strongly Disagree

15. Learners generally have more flexible solution strategies than their teachers or parents expect.
1
Strongly Agree
3
4
5
Strongly Disagree
16. Math is primarily about communication.

1	2	3	4	5
Strongly Agree				Strongly Disagree

17. Manipulatives cannot be used to justify a solution to a problem.

1	2	3	4	5
Strongly Agree				Strongly Disagree

18. Learners can solve problems in novel ways before being taught to solve such problems.
1
Strongly Agree
3
2
4
5
Strongly Disagree
19. Understanding math concepts is more powerful than memorizing procedures.
1

3
4 Strongly Disagree

Strongly Agree
20. Diagrams are not to be accepted as justifications for procedures.
1
2
3
4 Strongly Disagree

Strongly Agree
21. If students learn math concepts before procedures, they are more likely to understand the procedures when they learn them.

1	2	3	4	5
Strongly Agree				Strongly Disagree

22. Students are able to tell when their teacher does not like mathematics.

1
Strongly Agree

3
2

4
Strongly
23. Collaborative learning is effective only for those students who actually talk during group work.
$1 \quad 2$
Strongly Agree

23
4 $\stackrel{5}{5}$ Strongly Disagree
24. Students should be corrected by the teacher if their answers are incorrect.
1

Strongly Agree
3
4
5
Strongly Disagree
25. Mixed ability groups are effective organizations for stronger students to help slower learners.
1
Strongly Agree
4
Strongly Disagree
26. Collaborative groups work best if students are grouped according to like abilities.

1	2	3	4	5
Strongly Agree				Strongly Disagree

27. Conflicts in learning arise if teachers facilitate multiple solutions.

1	2	3	4	5
Strongly Agree				Strongly Disagree

28. Learning a step-by-step approach is helpful for slow learners.

1	2	3	4	5
Strongly Agree				Strongly Disagree

29. Only the most talented students can learn math with understanding.
$1 \quad 2$
Strongly Agree
3

4
Strongly Disagree
30. The idea that students are responsible for their own learning does not work in practice.
1
2
Strongly Agree
3
4
5
Strongly Disagree
31. Teachers need to adjust math instruction to accommodate a range of student abilities.

1
Strongly Agree
3
2
4 Strongly Disagree
32. Teacher questioning of students' solutions tends to undermine students' confidence.
1
2
3
Strongly Agree

4
5
Strongly Disagree
33. Teachers should intervene as little as possible when students are working on open-ended mathematics problems.
1

3

4
Strongly

Strongly Agree
34. Students should not be penalized for making a computational error when they use the correct procedures for solving a problem.

1	2	3	4	5
Strongly Agree				Strongly Disagree

Appendix B

Subset of 22 Beliefs on the Learning and Teaching of Mathematics
*Statements inconsistent with current standards are indicated with an asterisk.
Beliefs on Student Learning of Mathematics

Q1	Learners generally understand more mathematics than their teachers or parents expect.
Q7	All students are capable of working on complex math tasks.
Q9	lf students learn math concepts before they learn the procedures, they are more likely to understand the concepts.
*Q11	Young children must master math facts before starting to solve problems.
*Q13	Only really smart students are capable of working on complex math tasks.
Q15	Learners generally have more flexible solution strategies than their teachers or parents expect.
Q18	Learners can solve problems in novel ways before being taught to solve such problems.
Q19	Understanding math concepts is more powerful than memorizing procedures. *Q23Collaborative learning is effective only for those students who actually talk during group work.
Q28	Learning a step-by-step approach is helpful for slow learners.
*Q29	Only the most talented students can learn math with understanding
*Q30	The idea that students are responsible for their own learning does not work in practice.

Beliefs on Teaching of Mathematics

Q2	Teachers should make sure that students know the correct procedure for solving a problem.
Q4	It's helpful to encourage student-to-student talking during math activities.
*Q6	Students will get confused if you show them more than one way to solve a problem.
*Q10	Manipulatives should only be used with students who don't learn from the textbook.
Q21	If students learn math concepts before procedures, they are more likely to understand the procedures when they learn them.
Q24	Students should be corrected by the teacher if their answers are incorrect.
Q31	Teachers need to adjust math instruction to accommodate a range of student abilities.
*Q32	Teacher questioning of students' solutions tends to undermine students' confidence.

Beliefs on Mathematics

*Q5	Math is primarily about learning procedures.
*Q17	Manipulatives cannot be used to justify a solution to a problem.

Appendix C
Gang of Four Video Assessment

Title: Gang of Four
Context: This episode is an assessment interview with four $4^{\text {th }}$ grade students, Milin, Michelle, Jeff and Stephanie, for building all possible different towers of a particular height when selecting from two colors of unifix cubes. The children, working in pairs, had built towers four and five cubes tall during class sessions. Each of the children was subsequently interviewed individually and asked to describe how he or she had approached the tasks and to justify any solutions that had been constructed. In this group interview, the students are sharing their ideas about the towers problems, explaining and justifying their solutions to each other. While they consider towers of various heights during the session, they specifically reason about towers that are three cubes tall. Although unifix cubes were available, the children chose not to use them during the interview. The segment begins with short clips from the $4^{\text {th }}$ grade classroom session to provide a background context of the students' building and organizing their towers with unifix cubes.

After viewing the video of the children explaining and justifying their approaches to the problems, please describe as completely as you can: (1) each example of reasoning that a child puts forth; (2) whether or not the reasoning forms a valid argument; (3) whether or not the argument is convincing; and (4) why or why not you are convinced. Give evidence from the interview to support any claims that you make. You may refer to the attached transcript as needed.

Each response will be evaluated according to the following criteria:

- Recognition of children's arguments
- Your assessment of the validity or not of children's reasoning
- Evidence to support your claims
- Whether the warrants you give are partial or complete

Appendix D

Gang of Four Group Interview
Transcript for Episode

This episode is an assessment interview with four $4^{\text {th }}$ grade students, Milin, Michelle, Jeff and Stephanie, for building all possible different towers of a particular height when selecting from two colors of unifix cubes. The children, working in pairs, had built towers four and five cubes tall during class sessions. Each of the children was subsequently interviewed individually and asked to describe how he or she had approached the tasks and to justify any solutions that had been constructed. In this group interview, the students are sharing their ideas about the towers problems, explaining and justifying their solutions to each other. While they consider towers of various heights during the session, they specifically reason about towers that are three cubes tall. Although unifix cubes were available, the children chose not to use them during the interview.

The segment begins with short clips from the $4^{\text {th }}$ grade classroom session to provide the background context of the students' building and organizing their towers with unifix cubes.

Transcript

CM: \quad......You know the towers problems?
All: Yeah.
CM: The last one we did in class - Remember what that was about?

Jeff: \quad Robin Hood? That was the last one we did -

M, M, S: Towers of 5!

CM: \quad You remember what you did with those Towers of 5 ?

All: Um-hm.

CM: Um-hm. Tell me about it. What was the problem?

Jeff: How many -
Michelle: You had to figure out how many - how many different towers you could make for five blocks up.

CM: Any five blocks?

All: No. Two colors.

CM: Two colors. OK. And did you figure that out?

All: Yeah.
CM: And what is it? Do you remember?
All: 32!

CM: You're sure of it?

All: Yeah!
CM: How can you be so sure?

Milin: We checked!

CM: How can you be so sure?

Jeff: Remember when we did all the charts - the thingies - the

Milin: And then remember -

Jeff; All the different patterns. Remember, I convinced you up in the -

CM: Yeah - in the room. OK. But I remember saying to you, Jeff, and I remember saying to you, Michelle - and to you, Stephanie - and Stephanie did try to work on towers of six and I asked all of you if you-

Milin: \quad So did I.

CM: You did, too? If you were building towers of six, how many would there be?

Jeff: I don't know
Michelle: I did some but I didn't-

CM: But do you know how many?
Stephanie: Yeah.

Milin: Probably 64.

CM: Why do you think 64?

Milin: Well, because there was a pattern.

CM: What's that?

Milin: You just times them by two

CM: Times what by two?
Milin: The towers by two, because one is two, and then we figured out two is two, and then, I mean four, and then -

Jeff: You are not making much sense!
Michelle: See, if you had only one block up and two colors, then you would have two towers, and we figured out that the other day that you keep on doing...

Jeff: Everything is opposites!
Michelle: ...like two times two would be four and then...

CM: So four would be for what?

Stephanie: All you have to do-

Michelle: ...four for, there would be four towers for two high.

CM: Okay.

Jeff: They are all opposites though.

CM: Okay well, let me hear what Michelle is saying.

Michelle: And then for this three high, you would have eight towers and four high, you would have twelve towers and then you keep on doing it like that.

CM: Do you agree with that?

Jeff: I don't know what you are talking about.
Stephanie: Well. What it is - is-

Michelle: Well - five high would be twenty-five and then -
CM: Okay, lets get a piece of paper and write down what you are saying and see if you all agree. I think Jeff hasn't been with us for a while and he doesn't know what we are talking about. But let's take one at a time. Let's just agree as we are moving along.

Michelle: If you had one high see there is red and blue then you would have two and then if you had -

CM: Okay, write that down. Two. Did you agree with that?

Jeff: Yeah.

CM: Do you know what she is talking about?

Jeff: There is one red and one blue so there is only one way to do it so it's two.

CM: One way you can do it and so it's two.

Jeff: Yeah, you see if you have to make towers of one and there is only two colors

Milin: He keeps on doing that.

CM: All right, let's go on.
Michelle: If you had two towers that would be four, because you have-
Jeff: Yeah I agree with that. Okay.
Michelle: See you would just times it. See two times two

CM: Okay just hold on okay write the four down. Look I don't ...Can you explain to me why from two you would get to four? Milin, tell me why.

Milin: \quad For each one of them you could add one - no two more on because there is a black, I mean a blue, and a red -

Jeff: What she is doing...

CM: Let her finish. Okay.

Milin: \quad See. For that you just put one more for red you put a black on top and a red on top - I mean blue on top instead of black and on blue you put a blue on top and a red on top. You keep on doing that.

CM: Do you understand what he is talking about?
Stephanie: Uh-huh!
CM: You all understand what he is talking about?
Jeff: Yeah.

CM: All right. So - so we agree four. What happens if you're building towers three high? What did you say it would be?

All: It would be eight.

CM: Write eight down. Can you give me an argument; you don't have to do it. Why we jumped from four to eight?

Michelle: There's-
CM: Shhh. That's what Jeff wants to know

Michelle: There's - there's-
CM: Go slow. It's Jeff you are convincing not me.

Michelle: There is two blue. There is two here.

Jeff: I know that.

Michelle: And then we went to four so it would have to be times. Two times two equals four and four times two would equal eight.

CM: That doesn't help Jeff understand. He just knows that we are multiplying two times two

Milin: I know! I know!

Stephanie: All right.

Jeff: If this...
CM: Okay. One at a time.
Jeff: If this was like a pattern it would go two - four - six in between the eight.

CM: Yeah, that's what he is saying.
Milin: \quad No! No!

Stephanie: But that's not the pattern we are working on.
CM: Go ahead Stephanie.

Stephanie: The pattern that we saw was this. For one block at a time we found two.

Jeff: We already got two and four
Milin: Two, four, six-

Stephanie: I know - two, four and then eight - Right? Two, four and then eight.
CM: Why eight? That's what Jeffery asked about.

Milin: I know.

CM: Go ahead. Let Milin persuade Jeff.

Milin: If you do that you just have to add for each one of those you have to add

CM: Each one of what? These four?

Milin: Yeah. You have to add one more color for each one

CM: Which way are you adding it? Where are you putting that one more color, Milin?

Milin: No. Two more colors for each one. See-

CM: \quad So this one with red on the bottom and blue on the top.
Milin: You could put another blue or another red.

CM: You agree with that? You can put a blue or red on top and that-

Milin: And that will be two and then on this you could put another red or blue on top that will be four.

Jeff: That is the same right there.
CM: \quad No, this is blue red

Jeff: No. Here look. It's blue oh okay, okay.

Milin: See. Now you see.

CM: Could you find what Milin is saying and now here you could put-
Milin: A red or a blue and same thing here
CM: Do you understand that?
Jeff: Yeah.

CM: \quad So do you see how you get eight?

End of first segment
Begin second segment
Stephanie: Yeah, but that's what he is like, that's what is different from mine I just like took the things and went- I just took one and went -

Milin: And kept on-
Stephanie: Here is one red/red/red, blue/blue/blue and then I go like red/blue/blue, blue/red/blue-

CM: So, what I am hearing you say is that you're just...

Milin: Guessing!

CM: ...you believe there is eight. But you say guessing. Now, why does that sound like guessing?

Milin: Because what if you could make more?

Stephanie: Okay, this is the three high. Right? And you're convinced you can make eight?

Milin: Yep!

Stephanie: I'm convinced I can make eight.
CM: Yeah, but you haven't- he's proved to me from the four you can only make eight you can get two from this one, two from this one, two from this one and two from this one.

Milin: But could you convince her?

Stephanie: Convince who? Michelle? Him?

Milin: No. Her.

Stephanie: Her? Yeah. All right. I've done this before. Okay.

CM: Take another piece of paper if you want to, because it sounds like your approach is a little bit different

Stephanie: Alright.

CM: You've got to convince me there are eight and only eight, and no more or fewer.

Milin: You do draw big!
CM: Now Jeff this might be a little different here. Let's see what's going on here.

Stephanie: All right, first you have without any blues, which is red/red/red.

CM: Okay, no blues.
Stephanie: Then you have with one blue -
CM: Okay

Stephanie: Blue/red/red or red/blue/red or red/red/blue.
CM: Anything else?

Michelle: And you would do the same pattern for-

Stephanie: No, not with the blue, not with one blue -

Michelle: You would do it, you would do it with one red and two blues? Alternate -

Jeff: You would alternate-

Michelle: You would do it the other way around.

CM: That's not what she is doing. Let her finish. That's what you would do. You would alternate. Let's see what Stephanie does. Maybe she's not going to do that.

Stephanie: Well, there's no, there's no more of these because if you had to go down another one you'd have to have another block on the bottom. But then you have with three blues - well, not with three blues. I'll go like this.

CM: You have no blues and now you have exactly one blue.
Stephanie: Now you have exactly two blues. Wait, wait . Actually, that's what I did last time I was here. I did exactly two blues.

CM: Okay. Let's see.

Milin: And then you did three blues.

Stephanie: All right. You could put blue/blue/red; you could put red/blue and blue.

Milin: You could put blue, red and blue. You could put...

Stephanie: Yeah, but that's not what I am doing. I'm doing it so that they're stuck together.

CM: Okay.

Jeff: There should be one - there could be one with one red and then you could break it up and there's one with two reds and there's one with three reds and then...

Milin: Ah, but see - you did the same thing, but there's the blue.

Jeff: \quad See, there's all reds and there's three reds, two reds. There should be one with one red. And then you change it to blue.

Stephanie: Well, that's not how I do it.

CM: Let's hear how Steph - we'll hear that other way; that's interesting. Okay, now, so what you've done so far is -

Stephanie: One blue, two blue.
CM: Okay, no blues

Stephanie: One blue, two blue.

CM: One blue, and two blues, but Milin just said you don't have all two blues, and you said that - why is that?

Stephanie: All right, so show me another two blues. With them stuck together, because that's what I am doing.

Milin: In that case here.

CM: Okay, so now what are you doing, Stephanie?

Michelle: What if you just had two blues and they weren't stuck together, you could -

Stephanie: But that's what I'm doing. I'm doing the blues stuck together.
CM: Okay.

Stephanie: Then we have three blues, which you can only make one of. Then you want two blues stuck apart- not stuck apart - took apart.

CM: \quad Separated?

Stephanie: Yeah, separated. And you can go blue/red/blue -

CM: Okay, so Milin wanted to stick that in earlier I thought and Michelle right where you were doing two blues you wanted stuck-

Milin: 'Cause see, look at this for two reds and one blue

Michelle: They are not stuck together here, the two reds

Milin: Yeah so, you are following no pattern.

Michelle: And you have more stuck together here.

Stephanie: Well, you are following your pattern, but my pattern goes no red, one red, this was not meant to be like that. That's not - it's in the category of one blue. I could stick that in another category, but I want this to be in the category of one blue and not in the category of opposite of this one. And then I have this one red/red/blue. So, to you - you might put that way at the end of the line but I put it right here.

Jeff: I have a question. Do you have to make a pattern?

Michelle: No.

Jeff: So, then why is everybody going by a pattern?

Milin: Because we like to.

Stephanie: It's easier. It's easier to find than just going: "Ooh, there's a pattern!"

Michelle: 'Cause if you just keep on guessing like that, you're not sure if there is going to be more.

Stephanie: It's easier, maybe, like Shelly and Milin's pattern was to go put this in a different category.
Jeff: I know their pattern.
Stephanie: Okay, but what I'm saying is it's easier, it's just easier to work with a pattern since it's like

Milin: \quad Oh, here's another one. Let's see

Stephanie: Yeah, that looks good, let's put that in.

Michelle: Because you might have a duplicate, and then you may not know.
Stephanie: It's harder to check. It's harder to check just having them like come up from out of the blue.

Milin: \quad Then just going like this and getting two, one

Jeff: How do you know there's different things in the pattern?

Milin: \quad Since, see. Look at this. These are all different right?

Jeff: I see that

Milin: Yeah. See. From this, right, you can make two more. So, because - uhm - because here there 's a blue / red and then a blue-

Michelle: 'cause there's 'cause there's only two colors more so you know you can't make any more.

Milin: And there's red I mean blue/red/red And you can't make any more in this, so you go on to the next one.

Stephanie: All right, and these -

Jeff: How do you know you can't make any more from that?

Milin: Because there's not any more colors.

Stephanie: Look, okay, start here. Sorry. Start here - okay, you have the three together. The one, one blue, right? You have the one blue. How could I build another one blue?
Jeff: You can't.

Stephanie: All right, so I have convinced you that there's no more one blue?

Jeff: Yeah.

Stephanie: All right.

Michelle: But if you didn't have that pattern, it would be harder to convince you.

Stephanie: If I went I will put this one blue over here and that blue will be on another piece of paper-

Jeff: Yeah but-
Stephanie: How will -
Jeff: You can make a blue different from what you did if you go like this-
Michelle: That's if you have four.

Jeff: If you go like this, you can go red/red/blue or you can go blue/red/red

Stephanie: That's what I have.
Jeff: \quad No they are all different. You can do red/blue/red -
Stephanie: What I am saying is this is one blue. This is one blue.
Jeff: Yeah, there's still all different with one blue.
Stephanie: Yeah-

Milin: No, but only on the bottom

Stephanie:	But I have those three. Look blue/re/red, red/blue/red, red/red/blue. But then how am I supposed to make another one once that blue got down to the last block?
Jeff:	You can't.
Stephanie:	Okay, so I've convinced you that there's no more one blue?
Jeff:	Yeah.
Stephanie:	All right, now we move on -
Michelle:	Then you have to go to two blue.
Stephanie:	Two blue. Here's one - right? Two blue - we have one, blue/blue/red, then we have red/blue/blue. How am I supposed to make another one?
Jeff:	Blue/red/blue.

Stephanie: No, this is together. Milin gave me that same argument.

Michelle: \quad She means, she means together -

Jeff: But the thing is does it matter that they are together?

Michelle: No, she means stuck together.
Stephanie: Stuck together, that means like -
Jeff: I know.

Michelle: Okay, so can I make any more of that kind?
Jeff: No.

Michelle: Then you have to move to three, which you can make one.

Stephanie: All right, yeah, you can only make one and then you can make
the three with out blue with the three red.

Michelle: And then you can make two split apart.

Stephanie: Two split apart, which you can only make one of, and then you can find that you can - you can find the opposites right in this same group. All right, so I've convinced you that there's only eight?

Jeff: Yeah.

CM: How many if you're making towers of four?

Michelle: Sixteen.

Milin: Sixteen.

CM: Do you agree Jeff?
Michelle: Because -

Jeff: Yeah.

Michelle: Because you have to add...

CM: Jeff, why do you agree? Don't let them get by so easily. This could be pressure here.

Michelle: You see, look it's because say you add a red or a blue, you can add a red or a blue here-

CM: Make a "Y" or something to show me...

Jeff: I understand because you can only - you can keep - you can make

Michelle: You can put two colors here - two colors there, two colors - and keep on going.

Jeff:	Yeah, you can keep on doing two colors for each one. And that's two, four, six, eight, ten, twelve, fourteen, and sixteen.
CM:	And so that's the towers of - ?
Jeff:	Four.
Milin:	My guess is-
CM:	Four.
Milin:	Sixteen but-
Jeff:	We already got sixteen.
Milin:	Why did she say in the beginning the whole thing - 12?
Jeff:	This, that you get - listen
Michelle:	It's like, it's like-
CM:	Why did you say twelve Michelle?
Michelle:	Sixteen.
Jeff:	Red or a blue, red or blue, red or blue-
Cilin:	Jeff, Jeff, Jeff. I know that pattern. But I want to know why she
CM:	She was guessing not making patterns.

CM: \quad Michelle thinks sixteen.

CM: Now - Now. You made towers of five in class and what did you get?

Stephanie: Thirty-two.
Milin: Thirty-two.

CM: \quad Does that work the same way?

Stephanie: Yeah.

Jeff: They're all multiples of two.

Michelle: If you get towers of four -

Stephanie: The hard part is to make the pattern. Like, from now, we know how to just - oh, you could give us a problem like how many in ten and we could just go -

CM: How many in ten, and you'd know the answer.

Stephanie: Yeah, I know the answer. I figured it out. It's 1,024!

CM: $\quad 1,024$.

Alice: \quad Are you sure?
Stephanie: Uh-huh.
Milin: Uh-huh.

Jeff: Don't try to convince her.
CM: Try to convince me.

Jeff: No.
Milin: Okay, okay, okay

Jeff:
CM: You could do that later. However you were saying you know the answer but...

Appendix E
 Instructor Interview Parts 1 and 2

Part 1: October 2, 2013 Interview in person at Carl Sandburg Middle School in Old
Bridge, NJ

1) What is your name and your role in the program?
2) How do you feel about the September 7, 2013 implementation to the teachers of the towers problem?
3) In what ways, if any are you satisfied with the progress that the teachers are making in attending to the students' reasoning?
4) In what ways, if any, are you satisfied with the progress that the teachers are making in attending to their own reasoning?
5) What are your concerns with the teachers' progress and how do you plan to deal with these concerns?
6) Why do you think research on attending to students' reasoning is important?

Part 2: Phone interview on Sunday, November 3, 2013 11:00 am
7) What would I see if I walked in on an implementation of a mathematical task with the students?
8) What would I see if I walked in on an implementation of a mathematical task with the teachers?
9) What would you expect the teachers to do and say during the task implementation with the children?
10) Some teachers think that there is not enough time to allow students to explore mathematical tasks to promote reasoning. What would you say to a teacher who claimed
that there is not enough time to implement mathematical tasks that are based on a constructivist perspective?
11) Based on your experience, what do you think is significant to know about the amount of time needed for teachers to attend to students' reasoning?
12) Why is it important for teachers to complete the mathematical tasks before implementing the task in the classroom with students?
13) How do you feel about the teachers' progress after completing two out of the three mathematical tasks so far?
14) If I was a teacher in New Jersey Partnership for Excellence in Middle School Mathematics (NJPEMSM) project, what skills and knowledge would you expect me to leave with after successfully completing the requirements of this project?

Transcript: Interview with Dr. Judith Landis (in person)
Date: October 2, 2013
Place: CS Middle School

Line	Time	Speaker	Transcript
1	00:00:00	PC	I suppose we should start with your name and your role.
2		JL	My role.. I'm Judy Landis. I am the instructor for the cohort four group of the lesson study.
3	00:00:53	PC	How do you feel the implementation went?
4		JL	The implementation? This year? Over the four years? What? Which?
5		PC	Well, let's start with uh, overall the four years.
6	00:01:09	JL	This is the fourth year and I think the um implementation is.. is a good one. I think it's a very strong model of how to um engage teachers in not only doing math in a meaningful way but of having the students do math in a meaningful way. And getting them to look at videos of children doing the same problems that they are doing and then looking at their own students doing the same problems that they have done and talking about it. I think it's very powerful.
7		PC	Absolutely. Um so, are you satisfied with the way the cohort has progressed?
8		JL	Yes, Yes.
9		PC	Okay, great! Um, how would you define attending to students' reasoning?
10	00:02:00	JL	How would I define it? Um, I would say that you really have to have an open ear and be willing to drop the way you are thinking about something so that you can understand the way the students are thinking about

Line	Time	Speaker	Transcript
			something. It is not always easy to do but it's important to do and um uh understanding by listening carefully, understanding the way they are thinking mathematically.
11	00:02:30	PC	Great! Let's see uh, in what ways, if any, are you satisfied with the progress that the teachers are making attending to their own reasoning?
12		JL	Okay, and..
13		PC	In a task that they are doing.
14		JL	Okay, say it one more time.
15		PC	When the teachers are actually doing the task themselves.
16		JL	Right, right.
17		PC	Um, in what ways do you feel that that they are making progress toward the goal of attending to their own reasoning?
18	00:03:00	JL	I think that I would probably talk about the first three cohorts because they [cohort 4] are still at the beginning of the semester and I think that they are going to grow. I think that they are starting to realize that um uh that just working with symbols that don't make sense is not a good thing. Even if it's symbols. Um, but I think that in the past 3 cohorts, um over the course of the semester, they really um thought a lot more deeply about the mathematics and um I think they grew because they were thinking more deeply.
19	00:03:39	PC	Great! Um, do you have any concerns; or if you do, how do you plan to deal with those concerns while teachers are working through um their reasoning?
20		JL	Do I have any concerns? Um... I think that uh sometimes you have um teachers like in this semester that are working with children that are special needs and

Line	Time	Speaker	Transcript
			I think some of them have limits on those kids and think that they can't do certain things. And I think breaking those beliefs is an important part of this. Of letting teachers know that if they let the children have an open- ended problem that they can solve without them telling them how to solve it. Um, they are going to be surprised that the students are going to do better things than they expect.
21	$00: 04: 45$	PC	Great! Last thing. Last question. Why do you think that attending to students' reasoning is important?
22		JL	Why do I think it's important? It's really what math is all about. It's not about answers. It's about process. It's about thoughtfulness. You have to attend to what they are thinking to understand what they are thinking and um where they might be going off and how to help them go on the right path. Or how wonderful they are thinking and to celebrate the way they are thinking about something.
23	$00: 05: 07$	PC	Thank you very much for your time.
24		JL	You're welcome!

Interview Part 2: Phone interview on Sunday, November 3, 2013 11:00 am

Line	Time	Speaker	Transcript
25	$00: 00: 00$	JL	Hello.
26		PC	Hello Dr. Landis. This is Phyllis.
27		JL	Yes, hi Phyllis. How are you?
28		PC	Hi, Good, how are you?
29		JL	I'm good, thank you.
30		PC	That's good. Thank you so much for agreeing to

Line	Time	Speaker	Transcript
			do this. I really appreciate it.
31		JL	Sure thing.
32		PC	Okay, so are you ready?
33		JL	Yeah!
34		PC	Are you ready for my questions?
35	00:02:00	JL	I'm ready.
36	00:02:30	PC	Okay great. Um, what would I see if I walked in on an implementation of a mathematical task with the students?
37		JL	What would you see?
38		PC	Right.
39		JL	Uh, you would see students working with partners. You would see students talking to each other, arguing about you know their solution paths uh trying to convince the partners of the route they're taking and trying to explain to the partners till they understand what they are doing. Um and uh you would see a lot of animated discussion. Um, it wouldn't be a quiet classroom but it would be a good noise. Um and there would probably be lots of um materials for the students to work with, manipulatives to help them in their solution task.
40		PC	Great, um, how would it be different if I walked in on an implementation of a mathematical task with the teachers?
41		JL	Say that one more time. How would it look different if..
42		PC	If I walked in on an implementation of the task with the teachers?

Line	Time	Speaker	Transcript 43 44 $00: 03: 00$ 45

Line	Time		
			Ppeaker
PC		Transcript uh the students to explain um you know what they were doing so that they could have a better understanding of the students' thinking.	
51	JL	Okay, um, uh, some teachers uh have said that there is not enough time to allow students to explore mathematical tasks to promote reasoning. What would you say to a teacher who claimed that there is not enough time to implement the mathematical tasks that are based on a constructivist perspective?	
52	PC	Okay, you're you're breaking in and out. So try that question again.	
53	I'm sorry. Um, what would you say to a teacher who claimed that there is not enough time to implement mathematical tasks that are based on exploration or a constructivist perspective?		

Line	Time	Speaker	Transcript
			experience it to see the benefits and I think they do uh see the benefits and then they believe it. But I think just telling them um doesn't really,...does not really work.
54		PC	Right. So um, so that would be.. What do you think is the most significant thing to know in regards to time for teachers attending to students' reasoning.
55		JL	Okay, again you're breaking out.
56		PC	I'm sorry.
57		JL	I hear parts of your question.
58		PC	I'm sorry. So what do you think is significant to know then, about the time needed.for teachers to attend to students' reasoning?
59		JL	It takes time. I mean you know I think you would be um uh misleading teachers to think that they can do this in a neat 40 minute package um which many of them unfortunately have their math class um at the middle and secondary levels. Um, I think though um when teachers uh take the opportunity um to engage themselves and then to engage their students in a longer math class where the students really can do some thoughtful mathematics. Um I think they really get excited and I think they really see the benefits. So, I think you don't have to convince them once they try it. I think there are frustrations when they are working with conditions that are hard um but then they have to be creative and figure out how to overcome those conditions so that they can build meaningful math environments for their students.
60		PC	Okay, great! Um, uh is it....why is it important for teachers to complete the mathematical tasks

Line		Time	
61		JLeaker	Transcript before implementing the tasks in the classroom with the students?
62		Well, I think if they didn't complete the tasks uh they may not even understand what the task is about. Maybe wouldn't be able to follow the reasoning or the thought process of their students. Um I think um you know that they really have to be a problem solver to see the struggles that are involved and where their students um might have struggles as well. Um, I think that they can't just implement um in a thoughtful way unless they had a chance to be a problem-solver themselves.	
63			

Line	Time	Speaker	Transcript
			and in writing um surprisingly to me has been um a new thing for for some of the teachers. So, I think that there is definitely is movement in the right direction and uh you know I anticipate the third task uh their comfort level with implementing it will be even better and I expect to see some neat things when we meet at that third regional meeting at the end of November.
64		PC	Right. Right. Uh, last question. Um
65		JL	Okay.
66		PC	So If I was a teacher in the New Jersey Partnership for Excellence in Middle School Mathematics project, what skills..what skills and knowledge would you expect me to leave with after successfully completing the requirements in this project?
67		JL	Um, I would hope you would be a better listener. Um to really understand what your children your students were thinking and and how their mathematical thoughts were developing. Um, I would hope that you would um be willing to um know that students can learn from each other as well as from you. And give them opportunities to uh you know uh talk about the mathematics, argue about the mathematics. Um I would think that you would be a better problem-solver yourself because you would be willing to struggle and and not always see that math is easy answers. Um and I would hope that you would be able to celebrate when your students do something that maybe even would be neater or more elegant than the way you went about solving something.
68		PC	Great! Well, thank you so much Dr. Landis. I really appreciate it. Um, I think it was you know

Line	Time	Speaker	Transcript
			it was a great interview!
69		JL	Okay, good. I'm glad we got to do it. [recording stopped].

Appendix F Reflection Discussion Questions 12/7/13

Questions provided and asked by Course Instructors:

As you prepare for our session on Saturday, it is important for you to know that we will spend most of the remaining learning from each other. So, we are asking you to reflect about our activities and assuming that you have this information in your portfolio, be prepared to share and discuss with your colleagues and in the larger group your thoughts about the following:

1) Something of particular interest about solving the tasks yourself and then implementing them with the students? Are the characteristics of these tasks and the way that we used them that are consistent with the Common Core State Standards for Mathematics?
2) What, if anything, was added by studying the video clips from the Video Mosaic Collaborative (VMC)?
3) Something that was important to you about students' reasoning about mathematics? - Backed by evidence from student samples that you have selected for your portfolios. It would be particularly interesting if you have documented if one shows a particular student's activity across the tasks.
4) And what, if anything, have you observed and or learned about the role of teachers and in the importance of it for math instruction?

Appendix G
Cycle 1: Building 4-Tall Towers Using 2 Colors of Unifix Cubes with Two Extensions

ACTIVITY	Date	Meeting Type	VMC Videos Assigned	Readings Assigned
Teachers participated in first task.	9/7/13	On-campus	none	none
Teachers made an original post using on-line guided questions and responded to the original posts of at least two other teachers between these dates.	$\begin{aligned} & 9 / 11 / 13 \\ & \text { to } \\ & 9 / 16 / 13 \end{aligned}$	On-line	none	none
Instructor implemented the first task with students at one of the regional sites and held a debriefing with the teachers after classroom implementation.	9/17/13	Regional	none	none
Teachers watched videos, read the assigned readings, and made an original post using the online guided questions, and responded to the original posts of at least two other teachers between these dates.	$\begin{aligned} & 9 / 18 / 13 \\ & \text { to } \\ & 9 / 24 / 13 \end{aligned}$	On-line	1) PUP Math Shirts and Pants 2) Stephanie \& Dana, grade 3 3) Stephanie's prediction for 3-tall towers 4) Meredith removes the top cube.	Chapter 3 in Maher, C.A., Powell, A.B., \& Uptegrove, E. (Eds) (2010) Combinatorics and reasoning: Representing, justifying and building isomorphisms. New York: Springer Publications.
Teachers watched videos, read the assigned readings, and made an original post using the online guided questions, and responded to the original posts of at least two other teachers between these dates.	$\begin{aligned} & 9 / 25 / 13 \\ & \text { to } \\ & 10 / 1 / 13 \end{aligned}$	On-line	1) The Meaning of "At Least" 2) Does the Number Double? 3) Milin Introduces an Inductive Argument 4) Stephanie and Matt Rebuild the Argument 5) Stephanie and Dana, grade 4	Chapters 4 \& 5 in Maher, C.A., Powell, A.B., \& Uptegrove, E. (Eds) (2010) Combinatorics and reasoning: Representing, justifying and building isomorphisms. New York: Springer Publications.
Teachers implemented the first task and extension tasks with their students in their classrooms.		Regional classrooms	Aforementioned above.	Aforementioned above.
Teachers brought 2-3 student samples and discussed the reasoning evidenced by students’ work.	10/2/13	Regional	No more videos assigned for Cycle 1.	No more readings assigned for Cycle 1.

Cycle 2: Finding the number of pizzas that can be made from a choice of four toppings
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { ACTIVITY } & \text { Date } & \begin{array}{l}\text { Meeting } \\ \text { Type }\end{array} & \begin{array}{l}\text { VMC Videos } \\ \text { Assigned }\end{array} & \text { Readings Assigned } \\ \hline \begin{array}{l}\text { Teachers participated in } \\ \text { second task. }\end{array} & 10 / 2 / 13 & \text { Regional } & \begin{array}{l}\text { 1) PUP Math } \\ \text { Brandon } \\ \text { Interview } \\ \text { 2) PUP Math } \\ \text { Pizza with 4 } \\ \text { Toppings }\end{array} & \begin{array}{l}\text { Chapter 6 in Maher, C.A., } \\ \text { Powell, A.B., \& Uptegrove, } \\ \text { E. (Eds.) (2010) } \\ \text { Combinatorics and } \\ \text { reasoning: Representing, } \\ \text { justifying and building } \\ \text { isomorphisms. New York: } \\ \text { Springer Publications. }\end{array} \\ \hline \begin{array}{l}\text { Teachers read the } \\ \text { assigned reading, and } \\ \text { made an original post } \\ \text { using the on-line guided } \\ \text { questions, and responded } \\ \text { to the original posts of at } \\ \text { least two other teachers } \\ \text { between these dates. }\end{array} & \begin{array}{l}10 / 3 / 13 \\ \text { to } \\ 10 / 8 / 13\end{array} & \text { On-line } & \text { none } & \text { none } \\ \hline \begin{array}{l}\text { Teachers read the } \\ \text { assigned reading, and } \\ \text { made an original post } \\ \text { using the on-line guided } \\ \text { questions, and responded } \\ \text { to the original posts of at } \\ \text { least two other teachers } \\ \text { between these dates. }\end{array} & \begin{array}{l}10 / 9 / 13 \\ \text { to }\end{array} & \text { On-line } & \text { none } & \\ \hline \begin{array}{l}15 / 13 / 13\end{array} & & & \begin{array}{l}\text { Maher, C.A. \& Martino, A. } \\ \text { (1998). }\end{array} \\ \text { "Brandon's Proof and } \\ \text { Isomorphism". In C. }\end{array}\right\}$

Cycle 3: Building 3-Tall Towers Using Three Colors of Unifix Cubes with Extension Activity

ACTIVITY	Date	Meeting Type	VMC Videos Assigned	Readings Assigned			
Teachers worked on the third cycle task.	$10 / 22 / 13$	Regional	1) PUP Math- Romina's Proof to Ankur's Challenge	none			
Teachers made an original post using on- line guided questions and responded to the original posts of at least two other teachers between these dates.	$10 / 23 / 13$ to $10 / 29 / 13$	On-line	none	none			
Teachers made an original post using on- line guided questions and responded to the original posts of at least two other teachers between these dates.	$10 / 30 / 13$ to $11 / 5 / 13$	On-line	none				
Teachers made an original post using on- line guided questions and responded to the original posts of at least two other teachers between these dates.	$11 / 6 / 13$ to $11 / 19 / 13$	On-line	none	Chapter 8 in Maher, 			
Instructor implemented the third task with students at a regional site and met with the teachers after class- room implementation where teachers brought 2-3 student samples to discuss the reasoning evidenced by students' work.	$11 / 20 / 13$	Regional	none	(2010) Combinatorics and reasoning: Representing, justifying and			
Teachers discussed and reflected about their experiences with the course. Portfolio projects were due today.	$12 / 7 / 13$	On-		none			
isomphisms. New							
York: Springer							
Publications.					$	$	none
:---							

Appendix H: Instructor Moves Framework for Analysis

```
CYCLE:
TASK:
DATA SOURCE:
DATE:
TIME:
```

INSTRUCTOR MOVES FRAMEWORK	COUNT
I. Representation Used	
A. Manipulatives 1. Unifix cubes 2. Other	
B. Drawings 1. Tree diagram 2. Other	
C. Charts	
D. Symbols	
E. Gestures	
II. Forms of Pedagogical Practice	
A. Questioning	
1. Explanation	
2. Justification	
3. Generalization	
4. Connection	
5. Probing	
6. Other Solution	
B. Anticipating	
C. Monitoring	
D. Selecting	
E. Sequencing	
F. Motivating	
G. Waiting	
H. Inviting	
I. Revoicing	

Appendix I: Reasoning Strategies Framework for Analysis

REASONING STRATEGIES FRAMEWORK	COUNT
I. Heuristic/Strategy	
A. Guess and Check	
B. Opposites	
C. Cousins	
D. Elevator	
E. Staircase	
F. Controlling for Variable	
G. Other	
II. Representation Used	
B. Manipulatives 1. Unifix cubes 2. Other	
C. Drawings 1. Tree diagram 2. Other	
D. Charts	
E. Symbols	
F. List	
III. Form of Argument	
A. Cases	
B. Induction	
C. Recursion	
D. Contradiction	
E. Rule	
F. Other	
IV. Participant Evaluation	
A. Convincing Argument	
B. Not Convincing Argument 1. Incomplete 2. Invalid	
V. Researcher Evaluation	
A. Undetailed Description	
B. Unidentified Participant Argument	
C. Convincing Argument	
D. Not Convincing Argument 1. Incomplete 2. Invalid	

Appendix J

Final Project T1

Cycle I: Class Profile
This activity took place in a $7^{\text {th }}$ grade resource-pull out math class that is 40 minutes long. There are 7 students total- 5 girls and 2 boys. The majority of the students have special needs that consist of mainly mild learning disabilities; however, one student had a brain injury resulting in Tourette's syndrome. This has significantly affected her focus and ability to complete activities in one sitting. Likewise, all of my students have difficulty with written expression which will be apparent in their explanations of each activity. My math class starts at 10:45, which is right before the students' lunch period.

Cycle I: Towers of 4-tall, selecting from 2 colors

First sample: Impressive

This sample impressed me because the student attempted to use the recursive argument, although he didn't know that he was actually using that argument. Michael did not record the answer; however he did finally reach it with his partner. More importantly, he was able to explain and find an argument. He drew the towers and circled the diagonal of the blue cubes "going down" in each place. Likewise, he did this with the other color. Michael did not completely record what he had created at his desk, but he and his partner really focused on finding patterns and fixing them. I was really impressed that he was able to see this diagonal and explain to me that the color is being used in every space; therefore, that pattern could not be used again. He did not record every pattern, but he did show me.

Building 4-tall towers, selecting from 2 colors

You have two colors of unifix cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them all.

we Kept an
made 4. Set and we found our answo Bbb we cant ma ce any
sob more because there wo r
sob be dupplalits

Cycle 1: Towers 4-tall, selecting from 2 colors

Sample 2: Surprising

This sample surprised me mainly because this is a "lower" student and I thought she did a great job of drawing her towers. Bethany has one duplicate in the set, but that is minor. I was also surprised in her explanation that she found combinations "backwards" and "opposite." I was glad she was able to recognize that not only can the towers be made by opposites, but that the constant changes when going backwards. I've never heard of a student using "backwards" as a way to describe it in any of the activities in my class, or in the classes we visited. ft just goes to show how students have many different ways of seeing things.

Building 4-tall towers, selecting from 2 colors

You bave two colors of unifix cubes available to baild towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why

Cycle 1: Towers 4-tall, selecting from 2 colors

Sample 3: Concerning

This sample concerned me, because the student did not grasp the concept of the assignment. Jocelyn was not using any mathematical reasoning to create designs with the cubes. At one point, she was trying to make the professional basketball team, the Laker's, sign. Likewise, she started to make a tower using all of the cubes, instead of individual towers of 4 tall. All in all, she did not follow directions, nor use any mathematical reasoning during the activity and in her explanation.

Building 4-tall towers, selecting from 2 colors

You have two colors of unific cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them all.

Y was For yellow Pwas For Purple we Just Put to colors tooter Mixed the Colors, it up to 4 Cubes with different diesighins we also made the tor was to Put them 7 then the 5 and then 3 and 1. We did it,

Intervention Implementation: Cycle 1

My students really enjoyed this activity. They loved the hands-on aspect and worked diligently in their pairs. I learned that it was extremely difficult for my students to explain their mathematical reasoning orally and on paper. Likewise, many did not translate what they created onto their papers which was hard for me to go back and see what they did. Luckily, I took pictures on my Ipad to refer to. One group of girls were paired in 3, which I didn't think worked well because they were all building their own towers and not communicating well. It was hard for them to see the duplicates because they had so many. If I had the opportunity, I would give my students more time to complete the activity because I felt that it was rushed in the 40 minute period.

$$
\begin{aligned}
& \text { Ho Minutes is defuntely not enough time } \\
& \text { to do an activity that engaged portents in } \\
& \text { Thoyprifol Mathematics }
\end{aligned}
$$

Cycle II: Class Profile

This activity took place in a $7^{\text {th }}$ grade resource-pull out math class that is 40 minutes long. There are 7 students total -5 girls and 2 boys. The majority of the students have special needs that consist of mainly mild learning disabilities; however, one student had a brain injury resulting in Tourette's syndrome. This has significantly affected her focus and ability to complete activities in one sitting. Likewise, all of my students have difficulty with written expression which will be apparent in their explanations of each activity. My math class starts at 10:45, which is right before the students' lunch period.

Cycle II: Pizza Problem

Sample 1: Impressive
This sample impressed me because of the key Bethany set up to show her pizza
combinations. She created the labels A, B,C,D,E to represent the pizza toppings instead of using the actual names like the other students did. I felt that this helped her organize her work better than the other students and she could easily make changes if need be. Also, it was easier for her to visually see if there were any duplicates. All in all, I thought using A, B, C , D, E to represent the pizza toppings was a clever way of organizing her work.

Cycle II: Pizza Problem

Sample 2: Surprising

I was surprised by Jocelyn's work because she made a huge improvement in her reasoning and drawings from the first tower problem. She did not write out her explanation; however, she orally expressed it to me. Likewise, her drawings were boxed out like pizza boxes and she numbered them. Jocelyn is probably the lowest math student in the class, so I was very surprised and impressed that she organized her work in this way. Many students included plain and extra toppings, but she stuck to the directions and created pizzas using only those toppings.

Cycle II: Pizza Problem

Sample 3: Concerning

Lesley's paper is concerning because she had many duplicates and did not notice them until I pointed them out. As you can see on the paper, she erased many. Likewise, she used "extra" toppings as a combination and included "plain" as a topping in the combinations. Lesley did not take the questioning and direction of me or her partner. When I asked her to explain what she did, she could not reason how she created the combinations.

Intervention Implementation: Cycle II

Overall, this activity was the most difficult for my students because of the ambiguity in the task. Many students spent much time pondering over whether they could use extra toppings, half pies, and whether order matters in how the toppings are placed on the pizza. I felt that this weakened the purpose of the activity. If I could do this activity again, I would give the students specific directions such as order doesn't matter and there cannot be half pies in this case. I do not think it would take away from the problem; it would just give them more direction and allow the students to focus more on the task.

$$
\begin{aligned}
& \text { it is ingortent to set shotent } \\
& \text { decide nether ale stem }
\end{aligned}
$$

Cycle III: Class Profile

This activity took place in a $7^{\text {th }}$ grade resource-pull out math class that is 40 minutes long. There are 7 students total -5 girls and 2 boys. The majority of the students have special needs that consist of mainly mild learning disabilities; however, one student had a brain injury resulting in Tourette's syndrome. This has significantly affected her focus and ability to complete activities in one sitting. Likewise, all of my students have difficulty with written expression which will be apparent in their explanations of each activity. My math class starts at 10:45, which is right before the students' lunch period.

Cycle III: Towers 3-tall, selecting from 3 colors

Sample 1: Impressive

Bethany's work impressed me because of her drawing. She did not get the correct answer, but she was very close. Her drawing shows her towers broken up into pairs that are opposite of each other. I thought this was a good way of showing this task; she only missed two but was on the right track. Breaking these up into pairs clearly showed how each color was used, especially because the third color could get confusing. Her drawing showed patient planning and the use of all colors in an organized manner.

BUILDING TOWERS THREE COLORS

Cycle III: Towers 3 -tall, selecting from 3 colors

Sample 2: Surprising

I thought Victoria's work was surprising because she got the answer right! I know it is more about the reasoning, but her pictures were clear and she did explain herself, although not thoroughly. Her explanation continues on the back of the paper. Victoria struggled with the first tower task and I was surprised that this task came so easy to her. She drew all the towers and wiee! color coordinated them in her key. Victoria took what she knew from the first task and used that knowledge to complete this task with her partner, which is what I want my students to do. She learned from the first task that she could not have duplicates and that she needed to clearly draw her towers. On her desk, she had her pattern grouped by constants then did the opposite of each; however, she did not record it that way onto her paper.

BUILDING TOWERS THREE COLORS

Find all possible towers that are three cubes tall, selecting from cubes available in three different colors. In the space below, show your solution and provide a convincing

(10)

we got ap because we worked loge the to find all matches.

Cycle III: Towers 3 -tall, selecting from 3 colors

Sample 3: Concerning
Jocelyn's work concerned me because of her mathematical reasoning. She struggled to orally explain to me how she was reaching 23 towers, even after her partner tried explaining it to her. She kind of sat back and did not contribute to the task. Jocelyn wrote that she reached 23 towers; however, her reasoning has no mathematical validity for this task. It was also very concerning that by the $3^{\text {rd }}$ task she did not attempt to use the skills we used and talked about in the 2 prior tasks and did not make an attempt to give a detailed explanation.

BUILDING TOWERS THREE COLORS
Find all possible towers that are three cubes tall, selecting from cubes available in three different colors. In the space below, show your solution and provide a convincing argument that you have found them all.

Intervention Implementation: Cycle III

I was very pleased with this task, considering I thought it was the most difficult one. I was excited to see that my students started working diligently right away and did not need me to push them to get started. They all showed growth since the first task whether it was the way they worked together, drew their explanations, or explained their thinking. I was definitely impressed by all with their progress. If I did this task again, I definitely would give them two days to complete it because I think they needed it. I was hesitant to do this because I thought the students would lose interest and forget what they had done the day before. I may be right, but it is worth a shot to give them the extra day. Also, I felt that as a teacher I grew since the first task. With this task, I was more comfortable letting them ponder over the problem and didn't feel the urge to guide them. The students responded well to this.

Reflection

Through these three cycles, I learned that mathematics is not just about finding the answer; it's about explaining and justifying the answer. When we first completed the tasks as a cohort, I had difficulty explaining why I was done finding towers of 4 using 2 colors. I kept saying "because I can't find anymore." After doing the activities with my students, I could relate to their struggles to explain to me their reasoning. I think we are so used to being taught to produce an answer in math that it is not in our nature to explain it. By giving a convincing argument, students are encouraged to think deeply and use skills such as inductive reasoning, proof by cases, and recursive arguments. Likewise, I found that by explaining and justifying my reasoning, I was not only able to find the mistakes I was making and improve them, but also strengthen the arguments I had.

I learned that my students' oral reasoning was much stronger than their written reasoning. My students had a lot of difficulty explaining the first pizza task, but they did show a lot of improvement by the third. I was very proud of them! Often times students would explain and show me their reasoning, but their writing would not reflect their thoughts. This is something I will work with them on- having one person write as their partner dictates and vice versa. Students need to be getting credit for their hard working explanations.

As a teacher, I definitely changed from the first task. With the four towers, I was quick to accept arguments for fear of them reaching frustration. However, as we went on with the tasks, my students showed such improvement and I realized they were capable of more. I feel like I never give enough "wait" time because I'm scared I'm going to "lose" students. Now, I
give more "wait" time and am not so quick to give and explain the answer. Overall, this was a great learning experience for both myself and my students.

Appendix J

Teacher T2

CLASSROOM DEMOGRAPHICS

This study took place in a $7^{\text {th }}$ grade self-contained special education classroom of 10 students. The class consisted of 6 boys and 4 girls from various ethnic backgrounds including, but not limited to, Caucasian, Hispanic, African American, and Asian. The students' disabilities within this classroom are Attention Deficit Disorder, Hearing Impaired, Multiply Disabled and Autistic. The disabilities range from mild to moderate levels. The hearingimpaired students wear hearing aids and the teacher is required to wear an FM system. The functioning levels of the students are as follows: 4 students on a $2^{\text {nd }}$ grade math level, 4 students on a $3^{\text {rd }}$ grade math level and 2 students on a mid-4 th grade level. Most students can add basic and multi-digit numbers with little difficulty and little assistance. About 85% of the class has difficulty subtracting when regrouping is involved and 95% of the class cannot multiply without the assistance of a chart. The entire class has difficulty dividing. The class period for these tasks took place from 8:35am until 9:18am over the course of a two-day period. A paraprofessional is present during this class period; however, she did not provide the students with any assistance during these tasks.
Yum decocintion pally hefts me
understand the apficult cnotiond
you an wording nuder

SURPRISED

This student's work surprised me because she had a rough time starting this task. The two partners spent a lot of time discussing the task and trying to come up with a way to solve it before building. They then began like the rest of my students to build opposites of each other. They started with a solid blue tower and then a solid yellow tower; they then made alternating color towers blue, yellow, blue, yellow and its opposite. They continued to do this until they felt that they couldn't make any more without creating a duplicate. Once again I ask her to explain how she knew she had them all; she smiled at me and stated that she wasn't sure. $\}$ wee She was convinced she could build more. I let her try to build more , hat
as I went to other groups to question their strategies. I came back and asked her if she found any more, at this point she had not. She
 was convinced she had them all; however, she struggled with her Time to reasoning why. Her recordings did not show the way she actually fork for more organized her towers. She was able to rearrange them to show the moving of one colored cube into different positions; however, she did not think that was the best way to record so she went back to opposites. Again, her explanation was not convincing.

Building 4-tall towers, selecting from 2 colors

You have two colors of unifix cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them all.

We myad as many as we can theink of. Then we maced show r the was none the same.

CONCERNED

This student's work concerned me mainly because of his explanation. This student like many of my others completed this task by making opposites. I did enjoy the way he recorded his work into 8 pairs of 2; however, his explanation and reasoning was where my concerns came from. He just stated how he used "b" for blue and "y" for yellow. When he was working on this task and I was questioning his strategy he was able to tell me he was making opposites. He began making a lot of different towers. He had more then 16 at one point, I then asked him if he had them all and he stated no. He continued to make more towers; while I could clearly see there were opposites I did not let him know. I just asked him to read the task again with his partner and to look at what he is doing to make sure he is following the directions. He reread the task and stared at his towers for a bit and then asked me what a duplicate was. Even though I did go over that with the class in the beginning of the task he may of gotten off task during that time. I asked someone in the class to explain that to him and then he began pulling apart duplicate towers he had made and finally stopped at 16 . When I asked him how he knew he had them all he said because the rest will be duplicates. I asked again, "how do you know they would be duplicates?" He stated that he just took all the duplicates away and that's what he was left with. He was beginning to get frustrated so I let him record his towers at this point and he tried to explain his thinking but did not do a good job at it.

Date: $9 / 20 / 13$
Teacher: \qquad
Other Group Members: \qquad

Building 4-tall towers, selecting from 2 colors

You have two colors of unifix cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them all.

I solve with a block of blue and yellow.

I use b in the box and yellow.
I use the full name alter I ingle b andy.

CYCLE I REFLECTION

This task was very interesting to implement. I was worried at first that none of my students would come up with the correct answer due to the classroom demographics; however, I was pleasantly surprised. This is the first time my students where given an open ended task with no direction at all. They had a hard time understanding that I could not guide them in any directions at all, they kept asking me if they were right and I would just respond with you should know your right you don't need me to tell you. I was able to see that even though my students are lower functioning it doesn't mean they are incapable to be challenged and they will rise to the challenge. Ges! At first, they were excited to just play with the unifix cubes but once they were given the task they went right to work. Since the implementation of this task I have been trying to challenge them more and encourage them to be more independent thinkers. This task allowed me to learn about their strengths and weaknesses as mathematical thinkers. I enjoyed questioning my students and seeing them really think about what they were doing in order to solve this task. I think it was great for my students to be challenged with a thinking task like this. One thing I wish I could've done better was grouping my students. It was early in the year and though I knew them I wasn't sure who would work best together. If I had an opportunity to do this task again I would group my students differently.

IMPRESSED

This student's work impressed me because of her organization and explanation. She was excited with this task just as the first one. She was determined to get the correct answer and to understand why it worked. She had a hard time understanding that the plain was what you were building up on first but by discussing it with her partner and questioning her thinking she finally decided that you can have one topping, two toppings, etc... She organized her recording in the same fashion. She indicated a key; which for each box she drew that was once pizza. She was able to show that there were 4 options for one topping which also consisted of the plain she considered as one topping, 6 options for two topping, 4 for three topping and 1 for four topping. This resulted in 16 possible ways. She was then able to verbally explain that there are only four toppings so she could not make a five topping pizza, therefore, she used all possible toppings which would mean she found all possible combinations. I then asked her if she had a pepperoni and sausage why couldn't she make a sausage and pepperoni pie? She replied by saying that the order of the toppings doesn't matter in this case because it's the same pizza. So the opposite strategy didn't work for this problem. This student impressed me the most with her thinking and explanation.

The Pizza Problem

Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

Plain peppers sausage mushrooms pepperoni,

I known there is know more posable ways. Because there is only four topping. To Chocies from the plain is the base of the hole thing. I used all the possible ways there ares Starting with one bopping to two toppings to three toppings to to un toppings. Then I thought I was done but. I realize that I didn't have a plane pie and a only plain pie. Whats how I got my answer and there was 16 ways all togeather.

SURPRISED

This student's response surprised me due to her struggle with the first task. She had a very hard time starting this task as well; however, once she got started she got into it and became confident in what she was doing. She started off by making opposites like she did with the towers; she was making a pepper and sausage and then a sausage and pepper. I asked her if she went into a pizzeria and ordered both of those slices if she would be ordering a different slice. She replied that she would be getting the same thing and then she realized that just switching the toppings didn't work in this case. She then decided to try a tree diagram but she quickly realized she was doing the same thing with the toppings. She then asked me if she could have more than one topping on a pizza and I asked her what did she think and she smiled and ran back to her partner and started to draw up what she recorded on the paper. She really had the right idea with the one topping, two topping and so on. She was able to find all 16 ways; however, due to time she was not able to record all of her ways; she ended up being short two ways on her final copy. Her explanation improved from the first task to this one, she was able to explain a little more about what she was thinking when she was completing this task; however, it wasn't fully convincing since she didn't state how she knew she had them all.

Date: \qquad
\qquad

The Pizza Problem
Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

Ingot the anser 16 becuse Inept tring to get it and I thout can we put more then one toping on a pizza so I did I toping 2 topinos 3 topings 4 toping in till got the anser

CONCERNED

This student's work concerned me and surprised me all at the same time. He started making pizzas like the rest of the class but shortly after he began he called out to me that the answer was 16. I went over to him and asked him "how does he know that, if he didn't even have 16 options on his paper?" He said, "Well this is like the towers problem we did." I said, "How so?" and he stated, "Because the answer is 16." So I asked him if he could build the towers to represent the pizzas if they were related, he said "ok." So he did and then he recorded his answer. However, just as in the first task he did not explain much. I feel like his mind is in the right spot but he is having a hard time verbalizing his thinking as well as writing it. He put a "p" for plain and those were the blue cube and a "t" for topping and those were the yellow cubes. He made opposites again and made 8 groups of 2 just as he did when he made the towers the first time. However, for the pizza problem opposites would not help them come up with the right answer. He was not able to explain fully how the two problems were related and he was not able to list all of the pizza toppings as the other students did so I was not sure if he truly saw the connection or just assumed that the two tasks were related because they sounded similar to him somehow.

_ Teacher: \qquad

The Pizza Problem
Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

 did. I use blue for the ropellow plain on ty.

CYCLE II REFLECTION

For the pizza task I found it to be more difficult then the towers.
I was excited to implement this task being as though it was more relatable, or so I thought, for the students then the cubes.

However, they had a hard time starting this task and seeing that you can have multiple toppings on one pizza. This could be because they are young and they do not normally have anything besides a plain slice or a one topping slice. A lot of the students where saying how they hated peppers; therefore it couldn't be on their pizza. Maybe that was the down fall of it being too relatable for them, they couldn't get passed the facts that they weren't actually eating any of the combinations they were just trying to give me all possible combinations available. I learned that my students work better with a manipulative and that sometimes a real-life example can back fire if their thinking is too literal. I am not quite sure what I could have done differently to make this session better without leading them. The only thing I could think of would be to explain that the combinations have nothing to do with whether they like them or not, they are just to find all possible combinations of topping available using the four options provided. Again, I changed the partners for this task but do not feel as though I fully found the right matches yet. If I could do this task again I would change partners again.
Sues like Dana in the Sins and gaits quablen when she didn't in dude the yelled skint and white gand fecause of her fashion purse

IMPRESSED

This student's work impressed me because when given this task she went right to work. She began by building her towers in different groups where she moved one cube into three different positions. She then did this for each of the three colors using each color twice into two different groups. For example; three yellow cubes and one blue cube, moving different positions and then three red cubes and one blue cube moving different positions. She then repeated this using the red twice and then the yellow twice. She organized her towers in 7 groups of 3 and three groups of two. She was able to show how one colored cube can more into all three positions until no positions are left. She explained that the one blue cube could only move in three positions because the towers are only three cubes high using the proof by cases argument. She then justified that in-group 1 the three solid towers where the only options because there were only three colors. Finally, she explained that in the three groups of two she kept a constant and switched the two bottom colors. Since there were only two colors and two positions there were no other possible ways to make the towers using three colors holding one constant on top then the two ways she found for each group. Her final answer was 27 towers. Her explanation convinced me that she understood the task and was able to grow within these three tasks.

BUILDING TOWERS THREE COLORS

Find all possible towers that are three cubes tall, selecting from cubes available in three

I know tho answer is 27. I know there is no more possible ways because in group 2 I moved the blue cubs in each positions way I could. There was only 3 pósitons because it can only be 3 high. I did the rest for groups $3,4,5,6$, and 7. In group 1 I made 3 different towers solid Colors yellow, bull, and red be cause I only had 3 colors. For 89,10 I kept one color on the top and switched around the 2 underneath them.

SURPRISED

This student used the keeping a constant argument. He was able to see that you can keep all of one color on top in order to make three different groups because there were three different colors. When he first started and saw this he had a different number of towers in each group. I began asking him if he thought he had them all and he stated no, when I asked him why he said because each feat! group is a different amount and I think they should all be the same. I asked him why he thought they should all be the same and he could not answer me. He began building again looking for towers he had in one group and not another. When he finally stopped he had 3 groups of 9 . He was not able to justify how he knew he had all towers for each group very well but he was able to finally organize his towers in a different way then opposites like the first task.

So that surprised me since he did not see any other relationship between the towers in the first task like he did in the third.

School: \qquad Teacher: \qquad
Other Group Members: \qquad

BUILDING TOWERS THREE COLORS
Find all possible towers that are three cubes tall, selecting from cubes available in three different colors. In the space below, show your solution and provide a convincing argument that you have found them all.

CONCERNED

This student's work was a bit of a concern. He began by organizing his towers using a constant on top. He had a method and it was the best method he had thus far; however, when asked to explain and record he did not make any sense as to what he actually made. The four towers he did record do not make sense to what he actually did and his explanation did not convince nor explain his thinking at all. Being the third and final task I expected great things as he did provide me with the best organization he had done over all three tasks; however, he did not record it the way he had them organized as well as write an explanation that made sense to what he did. This concerns me because at this point he should have gotten the hang of these tasks and truly understood how to approach them. He did approach this task a different way but based off of his final product there was no improvement like I had seen with the others in the class.

Student:

School: \qquad Date: \qquad
Teacher: \qquad
Other Group Members: \qquad

BUILDING TOWERS THREE COLORS
Find all possible towers that are three cubes tall, selecting from cubes available in three different colors. In the space below, show your solution and provide a convincing argument that you have found them all.

What I did was did red bloeylllow then I was thinking to reverssy the colon by potting blue red Yellow and then I just Heep rep eating the pattern.

CYCLE III RELFECTION

Throughout this final task I have seen improvement amongst most of my students. Surprisingly, a lot of them approached this task with a keeping a constant strategy. I found this very interesting since no one approached the first task this way at all. The grouping was better during this session, which resulted in more interesting results and more students being able to work through the problem better. I was able to group them with similar ability, which helped them tackle the task with more confidence. Everything went well with this final task; however, I find it strange that what my students came up with as answers and how they recorded it was different in some cases. The one thing I can think about doing differently would be to explain that they are to record the towers exactly how they built them on the paper.

IMPRESSED

This student's work impressed me because during the task she was able to see the patterns the towers made. At first she began this task by making opposites with her partner; however, once I walked around and asked her to explain how she knew she had them all, she was stumped. I then asked her if there was a way to re-organize the towers to make a more convincing argument. She thought for a bit and then began to rearrange them with one color moving to each position. She was able to verbalize that she knew she couldn't make any more because there were no more positions for the one colored cube to move. When I questioned her about the other towers that had two blue and two yellow as well as alternating blue and yellow cubes she could not give me a verbal explanation of how she knew she had them all. Even though she impressed me with her verbal explanation and the way she re-organized the towers, she had a difficult time with writing down understanding of this task.

You have two colors of unifix cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them all.

We went by each color and add more
and more colors To build the amour of clocks right.

CONCLUSION

Throughout this process I have learned a great deal about my students and myself. I have learned that I do not always need to lead them in the right direction in order for them to find their way. Even though they are special education students I should not set my expectations of their abilities low. I have learned that I can challenge them and that they can surprise me and rise to that challenge. I have learned that mathematics is not just basic arithmetic and procedure, that understanding the process behind the math is very important. Since the implementation of these tasks I have been trying to encourage the "why" behind the math. I have been trying to teach and assess my students' understanding of the reasoning of math. In the beginning, my students' reasoning and mathematical thinking was little to none. They did not question math or even think about explaining math, they just knew what to do and figured that was good enough. Now they are working on improving their reasoning through these tasks as well as their every day assignments. I feel that through the implementation of these tasks as well as the information I have gained throughout this course has made me a better facilitator. I find myself questioning my students more instead of leading them toward the answer. I have a different view about my teaching style and I feel that this change is going to benefit all. The more I question my students the better they understand the math they are given.

Appendix J

Teacher T3

Tanala

Classroom Dynamics

For the past four years, I have taught $7^{\text {th }}$ grade Math and Problem Solving in Sayreville School District in Sayreville Middle School. Sayreville is a suburban town which is part of Middlesex County within the state of New Jersey. There is only one middle school in Sayreville, in which the school is made up of approximately 1,500 students in grades sixth through eighth. We have a six hour and thirty-four minute school day that is broken into nine, forty minute periods. In Sayreville, students have two forty- minute math periods per school day; one period of Math and one period of Problem Solving. These two classes are not necessarily two periods in a row or taught by the same teacher. Due to the class periods being shorter in length, each of the three tasks was implemented over several days.

Each of the tasks was completed in one of my $7^{\text {th }}$ grade, pull-out resource setting Problem Solving classes. This particular class takes place forty minutes prior the $7^{\text {th }}$ grade lunch period in which most days the students can get very antsy. This particular class is made up of 12 total students; 10 boys and 2 girls. The students not only have me on a daily basis, but there is also a paraprofessional available to them for extra support as well. This class is made up of special education students in which every student has their own IEP (Individualized Education Plan). Every student struggles with inattentiveness and the ability to retain information for long periods of time. The students struggle with basic computation, and have a hard time expressing themselves. However, throughout each of the three tasks, my students worked to the best of their ability and enjoyed working on each of these activities.

Impressed - Cycle 1

Building 4-tall towers, selecting from 2 colors

You have two colors of unifix cubes available to build towers. Your task is to make as You baleen exactly four cubes high. Find a way to many different looking towers as possible, cache all possible towers four cubes high, and convince yourself and others that you have found aver always points up, with the little that you have no duplicates. (Remember that and provide a convincing argument why knob at the top.) Record you
you think you have them all.
 the yellow keeps moving up one

QR $=2$ of the same color is touching, and one color
REF not one of the same color is touching

Both colors are next to there twin.

Impressed

In cycle one, the work that impressed me was completed by a $7^{\text {th }}$ grade female student. Evamarie was easily able to identify and create the sixteen different towers. I was really impressed with how she recorded her towers. She chose to physically draw the different towers that she had built. She then color coordinated the towers by using a blue and yellow highlighter according to the unifix cubes within each tower, based on the cubes we used in class.

She then grouped the towers into six different groups. Each group was based on the amount of each color within each tower; proof by cases. Evamarie first built the two towers that contained only one color. These two towers were the most popular towers to have been built first amongst the class. She understood that there were only two possible towers that were made up of one solid color; solid yellow and solid blue.

She then created towers that contained three blue cubes and one yellow cube. Here she demonstrated the staircase method by showing the yellow unifix cube as the focus point. The first tower started with the yellow in the bottom position with three blues on top. She then moved the yellow to the second position, then the third and finally the top. Underneath that case, she focused on the blue unifix cube and applied the staircase method with this group. During class she physically showed me that by moving the solo colored cube from the top position, to the bottom position, it would create a duplicate tower. I understood this as a recursive argument, by moving the cubes from the top position to the bottom position duplicate towers would be created.

For the next three groups, she focused on using opposites and having two of each color either touching or not touching within the tower. Here, she saw that you could have either two of the same color touching, both of the colors touching or none of the same colors touching.

Evamarie's work really impressed because I found the way she drew the towers and grouped them was in a very organized fashion and was easy to follow. When it came time to provide a convincing argument, she gave very straightforward statements about each of the different cases. In fact, I felt as if her argument was quite convincing compared to her other classmates. I was impressed that she was able to physically see the recursive argument although she did not mention the movement of the cubes within her writing. Although her argument could have used a little more clarification, I was impressed with her overall completion in the first task.

Surprised

Building 4-tall towers, selecting from 2 colors

You have two colors of unifix cubes available to build towers. Your task is to make as
many different looking towers as possible, each exactly four cubes high. Find a way to
convince yourself and others that you have found all possible towers four cubes high, and
that you have no duplicates. (Remember that a tower always points up, with the little
knob o at the top.) Record your towers below and provide a convincing argument why
you think you have them all.
We have lo in all. Re think we have all the Towers Because each tower has 4 Blocks init and there ore 2 colors to make the tower 50 h $2 \times 4=8$ then we realised that we can invert The colors to double the towers so $2 \times 8=16$ Then we couldent make any more so we think That we made all the towers.

We fut the Towers This way Becouse its a padern, every time the Potern moves it always has one small difference.

Surprised

In cycle one, the work that surprised me was completed by a $7^{\text {th }}$ grade male student. Patrick immediately approached the problem with mathematical thought. He instantly told me, that there had to be some kind of math behind this problem; he just needed to "figure it out". Patrick and his partner Mark then started to build the towers at random. They both immediately grabbed several unifix cubes and started to build the towers through trial and error. After working for several minutes, he quickly realized that there was going to be sixteen total towers. At that point, he had only built ten different towers. I immediately asked him, where he was getting sixteen from especially when he only had ten towers built in front of him. He explained that since the towers had to be four cubes tall and there were only two colors to choose from, that 2×4 is 8 . He then explained that since every tower has its own opposite that he then multiplied 8 $x 2$ to get a total of 16 towers. I then questioned him on the sixteen towers especially since he had only built ten total towers at that point. After speaking with him and his partner, they realized they needed to prove their hypothesis of sixteen towers by building the remaining towers that were missing. A few minutes later, I returned to this student and he had all sixteen towers built. He explained that he used the ten towers that he had already built to help create the six additional towers he needed. He used the idea of opposites to help build the remaining six towers.

When drawing the towers, he decided to draw squares and use letters to represent the different colors. ($B=$ blue and $\mathrm{Y}=$ yellow). When writing up his explanation, I was surprised with the different vocabulary that he included in his work. Just like several other students, he used the
heat the way student use langrage!
idea of opposites to build several towers. However, Patrick said that he could invert each tower instead of referring to them as "opposites". He also used the vocabulary of dominance to show that one particular color was more dominant than the other in specific towers. Pat also explained dominance, in the sense that there were towers that contained the same number of blue and yellow cubes in which neither color was dominant.

Although Pat's math was incorrect in this task ($2 \times 4 \times 2=16$ versus $2^{4}=16$), I was surprised that he had the immediate thought that this problem could be solved mathematically. When this task was first completed, we had yet to discuss exponents in our math class. Now that we have covered exponents, it would be interesting to see if he still thought that the math was 2 x 4×2 versus 2^{4}. Overall, I was surprised that he used more sophisticated vocabulary within his argument and overall was very happy with his work in the first task.

Concerned

Building 4-tall towers, selecting from 2 colors

You have two colors of unifix cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them ail.

Concerned

In cycle one, the work that concerned me was completed by a $7^{\text {th }}$ grade male student. Taylor really struggled with this task and unfortunately had a very hard time staying focused. Several times during the class, he wanted to see how tall he could build a tower before it would fall over. However, after prompting him several times, Taylor was finally able to build a total of twelve towers.

When it came to recording his combinations, he didn't seem to have a technique as of how he was organizing them. Similar to other students, he used the idea of opposites to build his towers. He drew the towers in groups of two and used blue and yellow colored pencils to represent the colored unifix cubes. After building the twelve towers, his argument, was that he was able to use all twelve towers to spell out the word "MATH". Since he used all twelve towers, and was able to successfully spell and form the word "MATH", he believed that no additional towers could be built.

Taylor's explanation concerned me, because he was unable to identify or see any kind of pattern or relationship within the towers. He struggled with creating the twelve towers and truly believed that there were only twelve, due to the word "MATH" being correctly spelt. After creating the twelve towers, Taylor and I discussed what he had built in hopes to get him to see the towers in a different light. Even with the different observations that he saw, he unfortunately was still unable to see or create any additional towers.

When it came to writing a convincing argument, I felt as if he didn't know how to even go about writing an argument other than writing what he did rather than why he did it. When I

Intervention Implementation

Overall, I thought my students did a great job on this first task. By completing the first task of building four tall towers with two colors, I learned more about my students. It was definitely a challenge for them, but in the end they were successful. It not only taught me things about my students, but it also taught me about myself as a teacher.

From my students, I realized how much they enjoy working with the unifix cubes. I was doubtful in the beginning when we started working with them and was unsure how well they would do with the towers. However, after several minutes, I realized they were not only enjoying working with them, but they were taking the problem very seriously and trying their very best. I found that they really enjoyed this activity and the manipulatives was the key to their success.

I also learned that I needed to encourage my students to actually work with their partner to create the different towers, versus them working separately and then comparing towers with each other. I learned that they truly struggle to explain their work both verbally and physically. They had a very hard time convincing me that there were only sixteen towers. I was constantly told they could only make sixteen towers because if they had any additional towers they would be creating a duplicate.

I found that this task was not only frustrating for me as a teacher, but it was frustrating for my students as well. They struggled with the fact that I wanted more from them, then the argument of duplicates. On several occasions, I was told by my students that they were angry and exhausted! I too struggled with not being able to help and guide them more. I find that as teachers, we constantly are guiding our students too much and should let our students do more of the exploring and thinking aspect behind concepts. If we allowed them to discover more instead
of immediately diving in to intervene and assist, maybe they would have more success with tasks where they are expected to explain.

If given the opportunity to do this task again, I would be more conscience of the pairs of students that I allowed to work together. Some of the pairs were really successful, whereas others did not seem to work well together. I also think that I would try to stretch this activity one more class period. Due to the time restrictions within Sayreville, this task was completed in four, forty minutes class periods. The first two forty-minute periods, the students focused on building the actual towers whereas the second two forty-minute periods they focused on their argument. By using one more class period of time, I could have implemented the extension activity to see what my students could have done with a bit harder of a challenge.

Impressed

The Pizza Problem

Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

- peppers

*mushrooms
- pepperoni
- cheese
peppers
pepperoni
- peppers
sausage
mushrooms

0

sausage

- peppers.
mushrooms

- sausage
mushrooms
- Sausage pepperoni
- mushrooms peppers pepperoni
(1) to get all of them, we use a system
(4) the first 4

Dxヤnp/e:

Impressed

In cycle two, the work that impressed me was completed by a $7^{\text {th }}$ grade female student. After the task was read aloud, Evamarie immediately raised her hand and had several questions, She wanted to know "If cheese counted as a topping?", "If you could have more than one topping on a pizza?" and "If pepperoni and mushrooms is different than mushrooms and pepperoni?" I told her that the answers to those questions needed to be decided between her and her partner. She immediately did not like my response and wanted some kind of guidance. Although it was hard for me to not immediately respond to her by answering all three questions, I instead told her to think about when she goes to a pizza place to help her decide.

After allowing her to work with her partner Reanna for several minutes, she was able to answer all three questions on her own. I truly believe the idea of using themselves in a real pizza place allowed them to understand the problem in a much more relatable way. The strategy she used was to create an organized list. She started with five, one-topping pizzas; six, two topping pizzas; four, three topping pizzas; and one, four topping pizza. As for her argument, she explained a "system" of using arrows to go from topping to topping. She listed the four-toppings that were given in the problem in a column, and used arrows to help her create each pizza. Although her argument was not completely convincing, I was impressed with her method and how it was a different approach. I was easily able to follow her "system" and it allowed her to easily arrive at the sixteen different pizza combinations. Although her "system" did not help her prove why no additional pizzas could have been created, it did allow her to easily create the sixteen different pizza combinations that we were looking for.

Surprised

The Pizza Problem

Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

We know we had it becuse we based it on tree dirgram then changed to /hist.

Answer: 13
peppers
Savage
mush rooms
peperoni
peppers and savage pepperoni and mushrooms
peppers and mushrooms pepperoni and savage
peppers and mushrooms pepperom and savage
peppers and peperoni
savayeand mushrooms
peppers and savage andmushrooms
pepers and savage and pepperoni
peppers ant mushrooms pepperoni

$$
\begin{aligned}
& \text { peppers } \\
& \text { savage } \\
& \text { mushrooms } \\
& \text { pepperoni } \\
& \begin{array}{l}
\text { peppers and savage } \\
\text { peppers and mustrasms }
\end{array} \\
& \text { peppers and pepperoni } \\
& \begin{array}{l}
\text { pepper oui and musheoms } \\
\text { pepperoni and soungen }
\end{array} \\
& \text { pepperoni and savage } \\
& \text { savage and mushrooms } \\
& \text { peppers and savouge and } \\
& \text { peppers and savage and mushroom } \\
& \text { peppersandmushrooms and pepperoni } \\
& \text { peppers and muatrymens and pepperoni }
\end{aligned}
$$

Surprised

In cycle two, the work that surprised me was completed by a $7^{\text {th }}$ grade male student. Uriel has recently been moved up a math level, into a pull-out resource setting from being in a selfcontained classroom since elementary school. I have already seen a great deal from him since September and am interested to see how far he will come by the end of the school year.

For this task, I was surprised by his work because of the strategy in which he approached the problem. When we first met in Old Bridge and worked on the Pizza Problem, I first tired solving the problem using a tree diagram as well. After working on the diagram for a few minutes, I found that it was very complicated to follow and would be difficult to see all the pizza combinations without losing track.

As for Uriel, although he only arrived at the answer of thirteen different pizza combinations, I was more or less surprised on his decision making throughout his attempt at task two. After the problem was read to him, his immediate thought was to use a tree diagram to help him create all of the different pizza combinations, similar to the thought that I had. After several branches of the tree diagram were created, he started to verbally tell me the different pizzas he had created. As he was telling me, he realized that he had created several duplicate pizza combinations and started to erase his work. He then realized he was erasing quite a bit, which helped him to see a tree diagram was not going to be the best approach to help him solve this problem.

He then decided to approach the problem differently by using the strategy of making an organized list. His list contained a total of thirteen different pizzas combinations, in which he

BUILDING TOWERS THREE COLORS

lowers that are three cubes tull, selecting from cubes available in three Find all possible town ers show solon show and provide a convincing different colors. In the space below, sha

Impressed

In cycle three, the work that impressed me was completed by a $7^{\text {th }}$ grade female student. I was very interested to see how my students would do with this task, now that they were working on the second towers task. For a third time, I chose Evamarie as my "Impressed" piece of work. It was great to see how she improved from task one to task three.

Similar to the first tower task, she grouped the towers by cases. She drew one larger group that contained a total of eighteen towers. Here she again focused on the staircase method. As you can see, in the top row she focused on the red cube going down the stairs surrounded by blue and then the blue cube going down the stairs surrounded by red. Right underneath that, she focused on the yellow cube going down the stairs surrounded by blue and then the blue cube going down the stairs surrounded by yellow. The last group of six focused on the yellow cube going down the stairs surrounded by red and then the red cube going down the stairs surrounded by yellow. She repeated this process in order for each of the three colors to be the focus cube.

She then made three additional groups that contained two towers each. In these groups she kept the top cube a constant. In the first group of two she kept the cube in the first position blue and understood that she could do the opposite of the two other colored cubes. She repeated this process by then keeping the yellow cube and red cube constant in the first position. Lastly, she focused on the three solid color towers; red, yellow and blue.

As for her argument, Evamarie focused on the diagonal pattern, also known as the staircase method. I do feel like she could have gone further into detail about describing how she
is certain that there are no additional towers. However, her towers were very organized and that is what impressed me the most.

Overall, I am really impressed with her efforts to always do her best. Her and her partner did a really great job. I think this also reflects on the background knowledge that they gained from completing the first cycle a few weeks prior.

Surprised

BUILDING TOWERS THREE COLORS

Find all possible towers that are three cubes tall, selecting from diff colors. In the space below, show your solution and provide a convincing argument that you bave found them all.

The bottom block will be 9 group. That means the bottom block is main.

$$
\begin{aligned}
& \text { I came up with } 27 \text { ingll, } 9 \text { in } \\
& \text { group, and the other. and the other. } \\
& \text { It's basicly } 9 \times 3
\end{aligned}
$$

(1)

$$
\text { We cant make pry } \quad \text { P9,2 }
$$

$$
\begin{aligned}
& \text { Combinations were all used the same the } \\
& \text { Each group made the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Each group made all used the same way. } \\
& \text { Ex. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { But the bottom block will gimays } \\
& \text { have a different color but the } \\
& \text { oise will be the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { valse will be the color but the shapes } \\
& \text { color. int different }
\end{aligned}
$$

Surprised

In cycle three, the work that surprised me was completed by a $7^{\text {thr }}$ grade male student. pull-out resource students. He is often absent from school and has a hard time catching up and making up work and material that he has missed.

He completed cycle one a few weeks prior, but this time he worked with a different partner. Ryan immediately got to work and started building towers at random. As I watched him work, I noticed he was building the towers by always choosing to use a red cube first. I kept watching and realized he was keeping the cube in the bottom position a constant, but at that point I was unsure if he had even realized what he was doing. A few minutes later, Ryan and his partner called me over and said that they arrived at twenty-seven total towers. I immediately looked at all of the towers that they had built and was in total shock. Ryan had kept the bottom cube constant in every group. He had three groups of nine towers in front of him as well as three singular cubes. I asked what the single cubes were doing amongst the twenty-seven towers. He went on to explain that the single cubes served as a key to show which color was being kept at the bottom of each tower. He also indicated this key in his drawing.

As for his argument, he first explained it mathematically using the fact that 9×3 is 27 . He then looked at one of the groups of nine towers individually. He was able to observe different shapes being formed within the nine towers all based on keeping the bottom cube the same color. He explained the shapes by using familiar objects; checkers, meat of a sandwich and what looked like a rotated " L ". He explained that the bottom cube will always have a different color either

Concerned

In cycle three, the work that concerned me was completed by a $7^{\text {th }}$ grade male student. Taylor was the student that I included in my concerned section in cycle one. He was only able to build twelve towers in cycle one and arrived at that conclusion because he successfully spelt the word "MATH". Although he improved quite a bit from task one to task three, I am still a bit concerned with his work.

For cycle three, Taylor was successfully able to build all twenty-seven towers. He not only built the towers at random, but he drew them randomly as well. The first three towers were the solid colored towers, but the remaining twenty-four towers were not drawn in any of kind organized fashion. He drew three groups of nine towers. After drawing all of the twenty seven towers, he immediately said that 9×3 is 27 . I proceeded to question Taylor on the thought process he had behind his mathematical statement. He said that because there were three different colors and each tower needed to be three tall that 3×3 is 9 . I continued to ask Taylor if that is why he drew them in groups of nine, but he claimed that he could only draw nine in a given row in order for the towers to fit on the paper. I tried to further explore the math statement he had made earlier of 9×3 is 27 , but he could only justify the idea behind 3×3 is 9 . When asked why you would then multiply 9×3 to get a total of 27 , he simply just said because that is how he drew them.

This argument concerned me, because Taylor was unable to look past the way he drew the towers. All he could see was three groups of nine. We tried discussing the amount of colors
within each tower and tried to see if there was any kind of obvious patterns, but Taylor always fell back on the idea that 9×3 is 27 .

Intervention Implementation

I really enjoyed working with the students a second time around building the three tall towers with three colors. At first I thought the three colors were going to be a challenge, but I felt like my students did really well with it. By cycle three, I felt that they implemented more of a strategy for this task then when they had completed the first cycle. This time around, they were able to explain themselves better. They were able to focus on specific characteristics within the towers rather than simply just using the idea of opposites.

Overall, this cycle went really well. I felt not only that my students were successful with this task, but I felt success in myself as well. I was much better at questioning my students throughout the entire task. Even when asking my students specific questions, I found that they had become better at responding to me knowing what they had learned from cycle one and cycle two.

If given the opportunity to complete this task again, I would approach the problem in a similar way. I again would have my students read the problem in advance and allow them some time to think about the task, prior to just jumping right into it. I feel as if my students do well when reading over things and taking some extra time to absorb the information. I would have the entire class read over the problem the day before and allow my students to think about the problem overnight before diving right in to solve the task.

Reflection

Overall, I have really enjoyed implementing these three tasks in my classroom. I have learned more about my students and myself as a teacher through these different tasks. I also learned to never underestimate my students because the work they come up with can be quite surprising, both good and bad.

These three tasks have helped me learn more about how students really do well with patterns. I felt like all of my students really stayed organized by grouping their combinations according to specific patterns. It was really quite amazing to see how differently each of the pairs of students approached the different tasks. As a special education teacher, I often have to really encourage my students to put as much effort as possible into their work. With these tasks, they were extremely motivated and enjoyed working on them.

As far as their reasoning and arguments are concerned, I learned that at the very beginning I needed to really push the idea of giving a convincing argument. My students definitely struggled with this, but by the third task; they knew what was expected of them. They had learned through these three tasks that they needed to organize their thinking on paper and include details on what and why they did what they did.

Over the past semester of implementing the three tasks, I can honestly say that I have benefited a great deal. I find that I am now asking even more questions than ever in my classroom. I am no longer guiding my students to arrive at the correct answer, but allowing them to explore and question each other. These three tasks, made my students realize that I am not always going to give them all of the answers that in fact they need to discover things themselves.

In conclusion, I really loved working on and implementing these tasks into my own classroom. My students really thrived and I feel like I did as well. I plan on continuing to implement similar tasks throughout the remainder of the school year as well as for years to come.
Gprat?

Appendix J

Teacher T4

Cycle I: Towers 4-tall, selecting from 2 colors

Grade and Class Description

For this cycle I worked with my general education $8^{\text {th }}$ grade Math class at the Long Branch Alternative Academy. The class has seven students consisting of five boys and two girls; most of which have individual issues spanning family, social, emotional and academic needs. The class period is 80 minutes (up from 45 minutes last year) and the class is held at 10:45am right after an 80 minute ELA block and right before Lunch.

My students have low self-esteem due to many years of academic failure and their skill gaps are many, but even with these challenges, my students are just as capable of learning and demonstrating their knowledge as any other $8^{\text {th }}$ grader. When I create assignments and assessments for this class I need to take into consideration much more than just academic ability. All teachers think about the whole student when planning lessons but I have the unique task of individually tailoring my instructional methods and materials to each child in my room due to their behavioral, emotional, and academic needs. Two students have very general 504 plans but I choose to treat every student as if they have their own education plan. We move at a slower pace but I am still required to cover the same curriculum using the same book, same national standards, same tests, but in less time (our class periods are slightly shorter than the middle school's and we frequently have building social and life skills activities that take students Cqallenalag out of class). It sometimes feels like a marathon but I have gotten the knack for stripping down
 a topic or skill to its base form and building the skill with just the necessities - no frills and no fillers and writing tasks in small pieces. Much of my analysis of their tasks has as much to do with what is on paper as what was said and observed in class.

Impressed

Building 4-tall towers, selecting from 2 colors

You have two colors of unifix cubes availahle to boild towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you lave found all possible fowers four cubes high, and that you have no duplicates. (Remember that a tower always points ug, with the little knob at the top.) Record your towers below and provide a convincing arganent why you think you have thens all.

Cycle I: Towers 4-tall, selecting from 2 colors \quad Reflective Description - Why it impressed

I think the first cycle was filled with a lot of interesting work because it was done at the beginning of the school year. Many of my students were new to my school and unfamiliar with the policies and procedures which meant they were on their best behavior and put forth a great deal of effort. The sample that impressed me came from one of my new eighth grade students, Leslie. I had the opportunity to meet her and her mother over the summer when she came for an interview with the principal. At this meeting Leslie gave off a very negative impression: head down, no eye contact, very little communication, angry and disrespectful. It was nothing new for me but I was very cautious in my interactions with her at the beginning September. What impressed me most about Leslie's response, although incomplete, is that she did the activity. The student sample work page is not nearly adequate an example of what Leslie did and how well she communicated with her partner and with me. Writing is not her strength but she committed to the task and followed through until she was sure she could not come up with any new towers. When I probed and pressed her to think without my lead she did not rebel and shut down but instead persevered and recursive argument for her tower creation process. I am confident that if she had an extra twenty minutes, Leslie would have written a convincing argument.

Surprised

Brilding 4-tall bowess, selecting finm 2 valers

 many dilienent lovkirg towes as prosihle, eact quactly four cube ikit. Find a way 70

 yoa think yoe hove themall

Erik's work surprised me because of the detail he included but also because of his perseverance through the task. I had Erik in my seventh grade class last year. He arrived at my school in the middle of the school year having failed the first two semesters of Math. He hated Math and as an extension barely tolerated me. He put in minimal to no effort and just skidded by with a passing grade for the year. I was incredibly surprised at the positive attitude and diligence Erik displayed during this towers task. He used a recursive argument to describe some of his cube placement but had a difficult time explaining the rest of his tower formations. What surprised me during this activity was Erik's ability to verbally communicate what he was doing. Erik clearly walked me through the steps he took to create the two-red and two-yellow towers. (This was a massive accomplishment in comparison to the previous school year's performance and I have since been able to build upon his success with the towers.) In addition to communicating with me, I observe Erik motivating his partner, Sostenes, another new student this school year. Erik's persistence through the task actually inspired others in the room and a competitive spirit took over the entire group. I was very surprised and proud of the leadership role Erik had taken on. Erik had a difficult time giving a convincing argument but I was surprised by how he grouped his towers. The lower left group is laid out in a very geometric way and when Erik verbalized his reasoning for grouping them that way demonstrated to me that he likes to look for patterns and shapes (another thing I have been able to use and build upon this school year with him).

Cycle 1: Towers 4-tall, selecting from 2 colors Student Work - Concerned

Cycle I: Towers 4-tall, selecting from 2 colors Reflective Description - Why it concerned

This third sample concerned me for many reasons. I was very happy this student completed the task and was willing to document anything but his argument is scattered, disorganized and not at all convincing. When I probed further, Laron believed that his answer was the best it could be and he wanted to play with the cubes instead of reaching further for a more detailed response.

Laron wrote, "How I had all of these combinations...It like If you have to different colors its like you make a design. with one color then use your second color with the same design (flip page) as the other color. Done." At first I was really worried that Laron had completely missed the point but upon analyzing how he organized his tower diagram I noticed he was trying to explain his argument with proof by cases or opposite pairs. That was encouraging because at least I could see that Laron was looking for patterns and connections between the positions and colors.

However, I was extremely concerned that Laron could not explain his reasoning in words. He was also very resistant to any questioning or assistance from me or the paraprofessional in the room. He barely communicated with his partner and basically horded all of the cubes in front of himself. This task sent up so many red flags for me in regards to how I could best meet Laron's needs and prepare him for the eighth grade NJASK.

Cycle I: Towers 4-tall, selecting from 2 colors Intervention Implementation

As I stated above, I am very happy that this activity came at the beginning of the school year. It gave me the opportunity to see what my students were capable of before they got too comfortable with the class, me and each other. Most students were still on their best behavior and tried to be model students diligently working and persevering till they found all the tower combinations. This and other activities I did at the beginning of the year helped to set an energized and positive tone in the classroom. I have used my observations during the towers task to inform my teaching so I can individualize instruction to best meet each student's needs like more focus on writing clear explanations.

This task gave me the opportunity to change my teaching and questioning techniques and I have found myself asking more thought provoking questions and doing a lot less leading towards the correct answer. My students get frustrated when I say, "are you sure; how can you prove it? Explain the process and why you chose those steps." But they know that I am making them better mathematicians and not trying to torture them.

This task also gave the class the opportunity to work together. My principal has made it a building-wide goal for all students to work collaboratively (a $21^{\text {st }}$ century skill) and the towers task got students working together within the first month of school. Next year I have many plans and within the first week of school I intend on using this towers task as a team building exercise and an exploration into how my students learn and express themselves. I want to engage them in something hands on and I want to observe exactly how they interact with each
other and how they feel about each part of the task (manipulative, creating towers, explain in words together, diagramming, writing out the explanation). One thing I will change with the task is I will allow students two days to work: the first day is working with the manipulatives, partner discussions, and pre-writing then the second day will consist of finalizing their explanations and class presentations similar to what we have done in our regional meetings. I feel my students will benefit from the whole group discussion and presentation of different ideas.

Cycle II: Pizza Problem, selecting from 2 colors

For this cycle I worked with my general education $8^{\text {th }}$ grade Math class at the Long Branch Alternative Academy. The class has seven students consisting of five boys and two girls; most of which have individual issues spanning family, social, emotional and academic needs. The class period is 80 minutes (up from 45 minutes last year) and the class is held at 10:45am right after an 80 minute ELA block and right before Lunch.

My students have low self-esteem due to many years of academic failure and their skill gaps are many, but even with these challenges, my students are just as capable of learning and demonstrating their knowledge as any other $8^{\text {th }}$ grader. When I create assignments and assessments for this class I need to take into consideration much more than just academic ability. All teachers think about the whole student when planning lessons but I have the unique task of individually tailoring my instructional methods and materials to each child in my room due to their behavioral, emotional, and academic needs. Two students have very general 504 plans but I choose to treat every student as if they have their own education plan. We move at a slower pace but I am still required to cover the same curriculum using the same book, same national standards, same tests, but in less time (our class periods are slightly shorter than the middle school's and we frequently have building social and life skills activities that take students out of class). It sometimes feels like a marathon but I have gotten the knack for stripping down a topic or skill to its base form and building the skill with just the necessities - no frills and no fillers that would be just for extra practice. My student get bored and frustrated easily so
although I will repeat skills over and over I must continually move forward and reactivate prior knowledge at the beginning of the lesson it pertains to.

Impressed

The Pizza Problem
Capri Pizza has asked you to help design a form to kemp track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and psppororti. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted

[^8]Cycle 11: Pizza Problem, selecting from 2 colors Reflective Description - Why it impressed

Besides being the only student to find all of the pizza combinations, Yannick impressed me with his organization method. He began listing pizza combinations using letters: mr, mp, ms , etc. to represent mushroom-pepperoni, mushroom-peppers, mushroom-sausage, etc. This was a common starting point for most students. Yannick thought he had the correct number with eighteen different pizzas but after I asked him to explain what his letters meant he quickly found a duplicate and crossed it out. He was frustrated and not sure where to go with his ideas until he looked at his partner, Jon's, paper. Jon fooled around a lot during this task but he started hi pizza combinations by recording the labels with a circle around them. Yannick adopted this circle method and slowly organized his pizzas as one topping, two topping, three topping and four topping. He did not have enough time to write an explanation but from his list, I think he would have given a clear argument that would convince me he methodically worked to find all the possible topping combinations.

Surprised

The Pizza Problem

Capri Pizza has asked you to heip design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

Cycle II: Pizza Problem, selecting from 2 colors

As I stated above, Jon definitely surprised me in several ways. Firstly, he fooled around a lot during the task. I was unhappy with his performance but had to gently nudge him towards work and away from play. It took a very long time to get Jon on task but once he put pencil to paper I was happily surprised to see that he had tried two different methods. Jon began with a tree diagram with a P and three branches. He did not add to the tree diagram and when I asked him why not he told me it would have taken him too long to do a tree diagram and the problem said to list. Another part of Jon's answer that surprised me was his circles. Jon organized his work as one topping, two topping, three topping, and four topping pizzas. He did not have all of the combinations but his paper showed me he was using some sort of reasoning to find his combinations (he couldn't put it into words). Although Jon only found ten of the pizzas I think he could have found them all and given a convincing argument if given more time and less distractions (different partners, seat moved away from distracting peers, etc.)

Cycle II: Pizza Problem, selecting from 2 colors
Reflective Description - Why it concerned

Sostenes's paper concerned me for a few reasons. He was slow to start and afraid to get the wrong answer. He kept calling me over to ask, "is this it?" He followed the directions and created a list but the list is very confusing. He used the labels $P, S, M, P r, P^{3}, P e, C$, and t^{5} but did not include a key. I figured it out later that the letters were Plain, Sausage, Mushroom, Pepper, Pepperoni, Cheese, tomato sauce. When I inquired what his list meant he had a difficult time remembering what each letter meant. I probed to see how he made the description to use tomato sauce and cheese as separate pizza choices but he just shrugged his shoulders and said, "I don't know. Is it right?" He wanted me to hand him the answer. I was very concerned because Sostenes actually had the highest grades on all Math assessments up to this point in September. His confusion with the task made me take a good look at how he performs in class and I saw how low his self-confidence was in regards to Math. I was also very concerned with his confusing pizza labels and his inability to clearly explain to me what his combinations meant.

This task provided many learning opportunities for me. I will never have my students work on a partner task like this the day after a three-day weekend. My students had very little success with this task when compared to the first cycle and I think the extra long weekend had something to do with their laziness/unfocused behavior. I learned that my students have a difficult time starting a task and need quite a bit of reinforcement once they have begun in order to motivate them to move forward. The next time I do this task with a class I plan on introducing the problem by reading it out loud to the class and inviting a discussion on how to start the problem. I know this will make the task lose some independent thought but I might be able to get students to brainstorm and share different ways of beginning the problem as a whole group before they break into partners and begin to list the pizza combinations. If I can avoid sharing my opinion during this discussion, my student might feel more confident in their choices just from peer reinforcement. If anything, my students will be able to talk to each other and share their thoughts, a $21^{\text {st }}$ century skill.

Other Group Members: \qquad \square

BUHLDING TOWERS THREE COLORS
Find all passibie towers that are three cubes talt, selecting from cubes avaitable in three
difieren cotors. In the space helow. staw yan solution and provide a convineing argumen that you have found them all.

4an I did of that amodit Jush different mavs mith Ped.

arock is

Cycle III: Towers 3-tall, selecting from 3 colors
Grade and Class Description
For this cycle I worked with my general education $8^{\text {th }}$ grade Math class at the Long

Branch Alternative Academy. The class has seven students consisting of five boys and two girls; most of which have individual issues spanning family, social, emotional and academic needs. The class period is 80 minutes (up from 45 minutes last year) and the class is held at 10:45am right after an 80 minute ELA block and right before Lunch.

My students have low self-esteem due to many years of academic failure and their skill gaps are many, but even with these challenges, my students are just as capable of learning and demonstrating their knowledge as any other $8^{\text {th }}$ grader. When I create assignments and assessments for this class I need to take into consideration much more than just academic ability. All teachers think about the whole student when planning lessons but I have the unique task of individually tailoring my instructional methods and materials to each child in my room due to their behavioral, emotional, and academic needs. Two students have very general 504 plans but I choose to treat every student as if they have their own education plan. We move at a slower pace but I am still required to cover the same curriculum using the same book, same national standards, same tests, but in less time (our class periods are slightly shorter than the middle school's and we frequently have building social and life skills activities that take students out of class). It sometimes feels like a marathon but I have gotten the knack for stripping down a topic or skill to its base form and building the skill with just the necessities - no frills and no fillers that would be just for extra practice. My student get bored and frustrated easily so although I will repeat skills over and over I must continually move forward and reactivate prior knowledge at the beginning of the lesson it pertains to.

Cycle III: Towers 3-tall, selecting from 3 colors

This student, Virginia, impressed me with her response because she worked on it completely on her own. She is on a special shortened day plan and works in the back of my classroom while I am wrapping up class with a younger grade. I gave Virginia the cubes and paper and asked her to try making the towers but not to write anything until she called me over and we discussed her work. At first she was frustrated and slow to start so I encouraged her by asking what she had already formed and what they represented. One impressive thing I advised her on was her organization of the towers. She had positioned her three-blue, threeyellow, and three-red in a vertical column. I asked her why they were together this way and she was able to articulate that she saw the relationship of all have three cubes of the same color. She was able to explain that the first, second and third cubes were all the same color and there couldn't be another cube of the same color because the tower would be too tall. I left her to continue exploring and was incredibly impressed with her result. She made a mistake recording her towers and duplicated half of the yellow row. Her explanation is lacking a clear argument but with time I believe I can get her to improve her writing.

BUILDIVG TOWTRS THREE COLOSS

	diffirnmi oolers. is the space betion, stow sner sedution and provide a cunvinciage : Egumsen lan yon tare firnd then all.					
$\begin{aligned} & \text { YRB } \\ & \text { We日 } \end{aligned}$	$\begin{aligned} & \text { GYP } \\ & \text { yye } \\ & \text { yYR } \end{aligned}$	-2.14 MロR 422 62R	$\begin{aligned} & \text { RABy } \\ & \text { YBy } \\ & 2 B y \end{aligned}$	$\begin{aligned} & \text { RQB } \\ & R B R \\ & R y R \end{aligned}$	$\begin{aligned} & 2030^{2} \\ & 4+32 \\ & \text { Rise } \end{aligned}$	$\begin{aligned} & B_{3}+2 \\ & P_{2}+y \\ & R+y \end{aligned}$
$\begin{aligned} & \text { Hese } \\ & \text { yese } \end{aligned}$						4py 2 Pr 4
$\begin{gathered} \text { The } \\ +1 \\ \text { e } \\ \text { t } \end{gathered}$		Eिद.tr $x \leq 3$ $5-177$ +6:	- 1 K Crn ㄱ - Qe		[3नक) न सह 45 C	somes bst ch bes P $\in \mathscr{A}$
Fied rax Fice	veilo (-3) Phe	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$				

Cycle III: Towers 3-tall, selecting from 3 colors Reflective Description - Why it surprised

Abstract

Leslie impressed me not with her diagrams, but with her reasoning. She has the incorrect number of towers but her explanation of: "The cubes from the bottom are the same but the cubes from the top the cubes changes. Then 3 more groups change the color to red. Red/Blue/Blue, Yellow/Blue/Blue, Blue/Blue/Blue Red/Red/Red, Yellow/Red/Red,

 Blue/Red/Red"Leslie was holding the first and second cubes constant and only changed the top cube's color. Her diagram does not reflect this reasoning and much of it seems to be a mix of different patterns or opposite pairs but I was impressed with Leslie's ability to see constants in the variables (something we have been working on in equations and functions).

Sostenes's response concerned me greatly. He barely worked with the cubes or talked to his partner and did not record anything. His partner, Erik, tried to organize the cubes into towers but was less motivated to work by the partner he had. When I asked Sostenes how he thought he should begin he helped up a tower of three blue cubes and said, "I don't know. Like this?" I tried not to feed him too much information and said yes keeping making more combinations. He played with the cubes and made a tower with all of the cubes until it fell on the floor. Again, like the pizza problem, Sostenes had a very difficult time working independently and that translated into his partner relationship. I purposely partnered him with Erik because they are very good friends and have the highest grades in my math class. I thought they would work well together but neither student was successful in producing the correct number of towers. I spoke to Sostenes's counselor about his apathetic mood and he is still being monitored by staff to determine why he has stopped putting forth effort in his classes.

Cycle III: Towers 3-tall, selecting from 3 colors
Intervention Implementation

This task proved to be more difficult for my students than the first tower problem. I intend on changing the procedures next time I use these tasks and will have students explain their findings after each task to the whole class. I feel that my students did not want to try very hard with this task because they weren't getting anything out of it - no grade, no final correct answer - and that frustrated them to the point that they no longer cared to try their best. I hope that reviewing what others' did will motivate them and ignite their competitiveness to get the best answer possible.

Reflection

Unfortunately, I did not see the same results as some of my classmates. I was pleasantly surprised and impressed by the small steps my students made towards solving the problems from each cycle but I am very concerned with the lack of ability to explain and give a convincing argument. None of my students demonstrated clearly how they solved each task and why their answer is the only correct answer. I am glad that these tasks came at the beginning of the school year because it opened my eyes to the exact skills I need to work on with my students.

We have been concentrating on explaining our reasoning and finding connections in the math. This eight grade class has been working with variable relationships and I have made a point to incorporate explaining the relationship with a table, graph, word form equation, variable equation, and in two sentences. It seems exhausting but my students are now able to expression relationships between graphs and equations with ease. I was recently observed by my principal and an administrator from outside the building and they complimented me on pushing each student to continually explain what they saw and why they were answering in a specific way.
 un Mash clans. Prey will ger fitter ot it
The success with verbal answers had not translated into success with written answer yet but I am hopeful it will before the NJASK. I have learned that my students are very capable of completing these tasks but they lack the confidence and reasoning skills to make the connections in a sophisticated way. Once we work on their basic skills them three cycle tasks again and then have them compare where their thinking was at the beginning of the year to where they have grown to at the end of the year

Appendix J

Teacher T 5

\qquad

Cycle 1: Towers 4-tall, selecting from 2 colors

On September 20, 2013 in my grade 7, period 4, resource class I implemented the cycle 1 activity. In Old Bridge we have 45 minute math period and the class time runs from 10:40-11:26. This class consists of all classified students, and they all range in academic levels. Since our class periods are a 45 minutes, time constraint is an issue. This activity was done over a course of $21 / 2$ days of class. When I implemented this activity all students were in attendance, and since it was the beginning of the year I grouped them the best that I could.

enngnt time to engage shdewes in Brought M al Hathemohis Hunter of sindents?

First Sample: Impressed by an interesting example of mathematical reasoning.

I chose Anthony's work because as soon as he was given the task he automatically reverted to multiplication. Since it was the beginning of the year I did not have a true understanding of my students mathematical abilities. Although I was able to decipher at this point that Anthony was one of my stronger math students, I was impressed that he went straight to the mathematical portion of the activity.

When he was given the material he said," Oh there are two colors and the towers have to be four high, so you multiply them." I then questioned him why do you multiply the numbers, and he was not able to explain his thoughts in more detail. I then suggested to him to start building with the unifix cubes, and that might help him come to his conclusion.

As he was working was-working he was arranging his towers by their opposites. He would still refer to his idea of multiplication, but by seeing that each tower had an opposite this helped him realize that there are more combinations than 8 . At the end of the activity he had the result of 16 towers. He knew that he was done because he was able to prove that if he made more there would be opposites. He also said that since there are 8 towers built, and their opposites then there are16 towers total. After the task was over I asked him about his thoughts on the multiplication, and he
said since $4 \times 2=8$, and they all have an opposite then you would multiply $8 \times 2=16$ towers in all. Even though Anthony did not mention the concepts of exponents I was glad to see that was thinking mathematically.

We did it this wary because we hod
2 copes and they hereto be 4 hýve
so you moltply them. Then the can be the opisit what you would hast to add \mathbb{R} more so that would be 16. So there could pos Only 16 different camboyes. we thonenginsemes by the goalie of the combtockcherz.

Second Sample: Surprised by the strategy or representation, or as an impressive product from an unlikely student.

For this sample I chose a boy who has a very tough time focusing on any task and requires constant redirection. In the beginning of the year Ryan also did not show at this point much effort towards school. Ryan chose to work alone on this activity, with the assistance of my paraprofessional standing in proximity of him to keep him on task. With that said, Ryan has improved a great deal since the beginning of the year, and I could not be prouder of him.

As soon as Ryan received the unifix cubes he started to create the towers immediately. He was not very organized at first, but then I noticed that he was keeping a constant throughout and that really impressed me. His constants were the top cubes organized with one blue top and one yellow top towers. Then he rearranged the 3 other cubes to create opposites of each other. However, when Ryan was asked to draw the towers for some reason he did not draw them they way he had them organized. When I asked Ryan if he was done he said yes he knew he was done because he tried to make more but then we would have the same ones. Therefore, he understood that all possibilities were created because he knew he could not have duplicates.

Building 4 -tall towers, selecting from 2 colors

to find other ways bot I CoOl,

Third Sample: Concerned about the student's struggles to understand the mathematical ideas.

I chose Patrick's work because throughout this activity Patrick had a difficult time grasping the concept even with his partners help. After Patrick and his partner started working on the activity I went over to see their progress. I noticed that they both still had a difficult time understanding the meaning of a duplicate. So I demonstrated to them an example and after a few demonstrations his partner understood, but Patrick was still having difficulty. Then his partner started to make some towers while Patrick was watching. He then eventually was able to help his partner after she had made several towers. Their towers were arranged in proof by cases. I was concerned because this was extremely difficult for him visually, and also had difficulty fully comprehending the activity as a whole. With my guidance and some help from his partner Patrick was able to somewhat help with this activity.

Building 4-taill towers, selecting from 2 colors

You have too colors of unifix cubee swailable io build towens, 'Your tack is 30 maloe as many different looking towers as poosible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four oubes high, und that you hawe no duplicates. (Remember that a torwer alozys points up, widn the Berle

Cycle 1: Intervention Implementation

Since this was my first activity I was very unsure of how well this activity would work out. I also was a little concerned because I really did not know my students that well, and I was hoping I paired them successfully. For the most part I felt that I did, so that made me happy. I think that the way I approached this activity would stay the same for next time. When I introduced the activity, I was very thorough with the instructions. I made sure the students understood the task by having them repeat to me what is being asked.

This activity was very helpful because it gave me great insight to all my students that may have gone unnoticed. I would like to think that it would not have gone unnoticed for long, but this activity brought it to my attention. It was nice to hear them use their reasoning skills with their visual aides to prove their work. Even though a majority of my students had difficulty proving their point, they all had the general idea. I consider that a success because they are not used to explaining their math reasoning, and were all able to get 16 towers. The only aspect I might change is demonstrating how to draw the towers, without identifying as notation for them. I know this may sound simple, but some of my students had a hard time drawing the towers. A strategy I did use that was helpful was one

$$
\begin{aligned}
& \text { don't limid spindento - let Trem decide har } \\
& \text { Then want to peerod their froest }
\end{aligned}
$$

partner would read the order of the colors on the towers, as the other partner wrote it down.

Cycle 2: Pizza Problem, selecting from 4-toppings

On October 21, 2013 in my Grade 7, period 4 ,resource class I implemented the cycle 2 activity. In Old Bridge we have 45 minute math period and the class time runs from 10:40-11:26. This class consists of all classified students, and they all range in academic levels. Our class periods are a 45 minutes, so the time constraint is an issue. This activity was done over a course of $21 / 2$ days of class. When I implemented this activity all students were in attendance.

First Sample: Impressed by a student's mathematical reasoning.

In this activity Naziel started to list the topping horizontally, and he does not use a notation for the name of the toppings. Although when he started to write his response he had a notation, but it was not used. His approach impressed me because when he explained reasoning it was in a somewhat of a recursive way. He started listing the topping with the peppers as the constant. He listed the pizzas with peppers as the constant with all four toppings, then to three, two and one. He then did it again with sausage as the constant starting with three toppings and then to two toppings. He then started with mushrooms, but did not complete the task. He decided there were 10 possibilities. I tried to encourage him to try a different way to organize his data because I think what was frustrating him was his inability to see if there were duplicates. He decided not to approach it differently, and I was ok with that. This task was more challenging and I did not want him to become frustrated. However, I believe from what I saw in his work and his reasoning if he tried a different approach I think he would have be able to get the correct answer. I was very impressed on his approach and explanation to this activity.

Gapri Pizza has asked you to Thelp design a form to homp trach ol oertain pisza chaices. They offor s standiand "plain" pirza with chaeser pand tomato saucs. A cuesomer can then sellect from the
 How many chodees for pizzi does an custorner have? Lisi all posesibia
 for all pocssinilities.

```
\(1-4=-1-3\)
Peppers=Fl
\(5 \operatorname{soc}+5 \cos ^{2}=5\)
HusHm com= \(\quad 4\)
Trasocerany \(=-t=10\)
```



```
盾 1 田
```



```
4 5 yaseser Tppere en.
u Hushroun praporon
```


Second Sample: Surprised by the strategy or representation selected, or an impressive product from an unlikely student

I chose Alexis as my student who impressed me because she did not seem confident when I was going over the activity, and looked very confused. When I went around interviewing each group I saw many different notations and strategies being used. When I came to Alexis I was not sure what she would have, and what I saw really surprised me. She was making a tree diagram where the plain pizza was the base, which is not the strategy I would have guessed she would have used. I was so happy for her because she seemed more confident and at ease. She used the tree diagram for a while, but her partner was listing his responses, so she changed to the listing method. I asked her why she changed and she said it was hard to explain to her partner. I think she was also having difficulty because of the way she had them set up, and the order of her pizza topping were hard to detect. Even though, she did not come to the correct response she understood the concept. I was very happy to see her gain some confidence in an activity that was difficult for others, and that she also did not give up.

Third Sample: Concerned about the student's struggles to understand the mathematical ideas.

Michael's work concerned me because he was unable to grasp the concept of this activity. However, his work was very organized. As I approached Michael and his partner I heard them discussing the possible choices a person can make with the four toppings. They started out making the basic selections. Then he had a hard time understanding the concept of duplicates, for example: pepperoni \& sausage is the same as sausage \& pepperoni. I also explained to him that we were not creating a half pie or a topping for each slice, but that too was also difficult for him to get passed. I was concerned because he was so focused on one idea that he was not able to get past it. I think in general this concerns me not just in math, but in any real life situation.

Cycle 2: Intervention Implementation

Well for starters this activity was very different from the first activity. I think in this activity the question is written in an ambiguous way, and it made it hard for my students to decipher what was being asked. I went over the problem, but found myself having to clarify the activity several times as I walked around. I think for next time I would go over the problem in more detail for the students.

As I walked around I feel that this activity displayed a wide variety of strategies my students used opposed to the first activity. I really enjoyed seeing how my students chose to organize their work. I had some students use tree diagrams, listing, creating drawings, and making charts.

I also think in this activity was a little more difficult because there were not any manipulatives to use. So the students had a hard time telling if they had a duplicate. Many of my students did not come up with an accurate solution, but they showed improvement on their organization of their mathematical findings.

Cycle 3: Towers 3-tall, selecting from 3 colors

On November 14, 2013 in my Grade 7, period 4, resource class I implemented the cycle 3 activity. In Old Bridge we have 45 minute math period and the class time runs from 10:40-11:26.This class consists of all classified students, and they all range in academic levels. Our class periods are a 45 minutes, so the time constraint is an issue. This activity was done over a course of $21 / 2$ days of class. When I implemented this activity all students were in attendance.

First Sample: Impressed by an interesting example of mathematical reasoning.

Justin is my choice for this cycle activity. He truly impressed me with his reasoning skills and his organization of his towers. At first Justin and his partner discussed how they wanted to approach this activity. Then they started with the yellow and blue solid towers. He then started to build them in a recursive pattern using the blue and yellow colors. He then created the opposite pattern. He continued to create his towers this way for a while. When I asked him why he was arranging them this way he just said that he saw a pattern and proceeded to point to the pattern, or recursive argument. He then said he knew he also had to make the opposite pattern.

I waited a while before I went back to his group, and when I went over to them he had the towers organized by a constant of the top colors. He had two groups of nine towers and one group of ten. When he told me he was done I questioned him about the amount of towers he has in each group. Through my questioning and our discussion he was able to realize that since there are three colors that each of the three groups should have an equal amount of towers. I was very impressed that he was able to draw this conclusion with minimal assistance. That really showed me his mathematical thinking has improved since the last activity.

We put them in order and we came up with three row of nine buildings and muttiplie them together and our total w tweaty-Seven.

Second Sample: Surprised by the strategy or representation selected, or an impressive product from an unlikely student

I chose Nakya for the piece that surprised me because as soon as I mentioned this activity she said, "Oh boy this is going to be hard." We then discussed as a class why this activity may be harder than the last. She mentioned because you are only building them three tall and you have three colors. So at that point I was thinking that this might be hard for her conceptually to understand and organize. I knew she would give it a good effort so I was not concerned in that area.

She and her partner started with the three solid colors and then started making patterns with the three colors. They were basically making random towers and then creating their opposites. When I approached them we discussed their process, and I suggested that maybe they should try to organize their towers in some way to help them see all their possibilities. When I came back to them organized in sets of two with their opposites. I was very surprised that she was able to organize her towers in a way that displayed all possibilities, and she also made somewhat of a connection to the mathematical portion of this activity.

GUILDING TOWKRS THREE COLORS

Find all pogsible wers that are three cubes tall, selecting from cubes available in thre
ifferent colors. In the space below, show your solution and provide a convincing argument that you have found them all

ESTIMATE 32

Third Sample: Concerned about the student's struggles to understand the mathematical ideas.

The student that I chose that concerned me greatly was a student who visually had a difficult time with this activity. In her group her partner completed a lot of the towers, not because she was not helping but because visually this was hard for her see. When I went over her I saw that she was getting frustrated, so I worked on explaining the task in more detail and also giving her some examples using only two colors. She was starting to feel more comfortable with this activity because she said it was similar to the first one. When I then did a tower with three colors she could not create and opposite without getting frustrated. I would never want any of my students to feel defeated, so I had her focus on the towers with only towers with only two colors. I even told her to start with the blue and create all the blue possibilities. I went over later to check on her and she was able to do that. While she was creating the blue group, as I called it, her partner was working on the towers that included three colors. Then they both worked on the other towers that on contained two colors. She was unable to draw out the towers, so her partner read the colors to her as she wrote them down. So as you can see my concern I was still very happy that she was able to complete the part of the activity she was asked to do, and she was not frustrated doing it.

	Flalt pizza bith falf Effrer and molk Mu4stroctus
2	Plath pizza balf Fform and hatt Squscrse:
3	Plain pizsi talt Suactsay \leq and ho if hous hromens.
	Fjain Pjzza hact Peptimi and haff Ma ushoomes
$.5$	Flain Fizza Holt sactisgac ons hat Perpran.
4	Plain fizza bal If Peftrani alnd thet HEPELS
	Plaith Fizsw Fulf Pe PFerory what if Sencisaper Dind Fuelt mucsirwows.
8	Plaik Przea hagif muisthroonus. haif Sausaue and hate Pepfers
4	Plair Prean \geq Slices or Peprers

Cycle 3: Intervention Implementation

As we approached this activity I was a little concerned on how my students would do with this. I wasn't sure if they would understand the task as quickly as they did. With this task as I introduced the directions I read them twice as they read them from the board. I then asked a student to explain the task and then questioned them about the amount of colors needed in each tower. I think being thorough with the directions helped my students feel at ease and fully understand what they had to do. I was very surprised how well all my students did. I thought that the organization factor in the task would be challenging for them, but they all impressed me with the variety of strategies the used. Some of my students also made a mathematical connection to the activity as well. Such as: there are three colors and three high so you multiply them, and multiply them by three again because you need an opposite. I also had other variations of their mathematical perspectives. Even though none of my students made the connection to exponents, they all had a decent mathematical perspective, which made me very happy.

At the end of the lesson I tried something new that the students responded well too. I had them walk around the room and look at everyone's towers and try to identify how they organized their towers. I then showed them mine, which they loved to see how their teacher solved the activity. All in all

I was so proud of my students throughout this activity not only because of their growth in math, but also for their determination.

Reflection

I really enjoyed doing these activities with my students. I feel that it was a great ice breaker for the beginning of the year, and also allowed me to see another side of the students I may not have seen. These activities also allowed us to work together as a group and learn from one another.

Throughout the activities my students taught me to pay attention to details. Such as how everyone approaches/explains an activity differently. My students were able to teach me this throughout all of these activities. Implementing these three cycles of activities was about reasoning and mathematical thinking, but it also brought to light the teaching techniques and strategies we need to remember to incorporate into the classroom.

I feel that all my students were able to reason through these activities mathematically, by using various arguments. I think they made a better connection mathematically because they were hands-on and they could make the task their own. It is nice to see what the freedom of thinking can show me. They also have improved on explaining their work and it is starting to come naturally to them.

Also, my questioning skills have improved throughout this course. Often I give too much away when I question, or guide me students too much. I know that I do it, but after this class I am able to question my students without fully leading them to the answer.

Appendix J

Teacher T6

I completed the following problem with a $6^{\text {th }}$ grade, "Pinnacle" math class. Pinnacle is the label for gifted and talented classes. These classes are based off of a student's performance in all subjects and on state testing, not only their mathematic performance or level. Because of this, I see a varying level of mathematic skill and reasoning in this class of 27 students. The class that I have selected to complete this problem with is at $12: 50 \mathrm{PM}$. Class is usually over at 1:50 PM; however, for these problems we extended the class through our "enrichment period" and class was held until 2:10 PM. This is the students last period of the day. The students have three academics in the morning, activity classes and lunch before coming to math class. Although the long break could cause some students to lose focus, this group seems to be energized and excited to end the day with math class. There is one child in the class with autism who has an IEP; however, he functions normally with the class and completes partner and group work like all students.

These students are used to sitting in partners and working collaboratively in class. Students normally sit in pairs and the seating is changed frequently for students to be accustomed to working with many different people. These children spend most of the day together and take all academic class periods together. They are comfortable with challenging each other and pushing each other to reach academic expectations. I choose this class purposely because I know they will do everything they can to reason mathematically in these problems, and because they will work together in order to do so.

 4. $-1+2$

 Fom

Cycle I- Impressive

One student that impressed me with this problem used a combination of proof by cases and a recursive argument. The student did a good job describing the towers that were three of one color and one of another. The student talked about moving the one color cube down to all four positions. The student articulated this explanation very well in his writing. He made a new tower by moving the one color down each time, and knew that they had all of them when the cube was at the bottom.

He also stated very clearly that there were only two possible full color towers because there were only two colors. This is an obvious to the students, but I was impressed that this student thought to write the reason why there could only be 2 solid color towers.

The student started to use a recursive argument with the towers that there 2 of each color He said he and his partner started with alternating colors and just moved everything down one to create a new color. After this; however, the student simply states the other towers that he and his partner created. Although this is not convincing, overall this student produced some impressive work. The student did a good job clearly writing his thoughts. He recorded his towers and also drew the tower he was talking about next to the description on his page. The extra drawing of the tower made his explanation easy to follow. As I mentioned in my reflection, I would have like more time to work on this problem. With some more time, this student may have been able to devise an argument for the remaining towers.

保

Cycle I- Surprising

I expected students to struggle with the four tall tower problem building from two colors. When I first entered the class, I struggled with understanding what it meant to truly be convincing when arguing that I had found all the towers. The student's work that surprised me was extremely honest in her recording of her convincing argument. She was able to find all 16 tower possibilities and organized these towers as opposite pairs. She had convinced herself that she had built all of the towers, yet she admitted in her writing that she was not sure how to prove that they were the only 16 towers. Many students struggled with writing their arguments and stated that they had found opposite pairs, but this student recognized that just putting the towers in pairs was not convincing. Even though she could tell it was not a good argument, she still admitted that she could not formulate mathematical reasons as to why she had created all 16. I was surprised by her confessions and also happy to see that this student recognized what was not considered convincing. This student's work shows me that she was trying hard to create a convincing argument with her towers four tall.

Buildiag 4-tall towers, geleting frum 2 collort

 you tilik you have tham in

 ond yust 5

Cycle I- Concerning

All of my students were able to arrive at the correct number of towers for this problem. When it came time to write a convincing argument, many students struggled. This student's work in particular concerns me because of her lack of organization and a convincing argument.

Although this student was able to build 16 towers with no duplicates, her reasoning and argument was lacking greatly. She reasoned that she had made all 16 towers because she made opposites and tried to make others and could not. This is not a convincing argument. This student was satisfied with her argument and when encouraged to try a different organization of her towers, she made no attempt. As you can see, the towers are recorded as pairs of opposites, which mirrors her attempt at a convincing argument. With the recording of pairs, it does not seem like she tried to organize them in any other matter. There were many students who choose to organize their towers as opposite pairs for this problem; however, there was some other hidden organization within their recordings. Students would record all pairs with three of one color and one or another and two of each color, hinting that there was some other thinking when creating the towers. This student's organization of the tower pairs seems more random then the other students.

Building 4-tall towers, selecting from 2 colors

You have tap colors of unific cabs available to build towers. Your task is to make as many different looking towers as possible, exch exnetly four cubes high. Find a wry to convince yourself and ochers that you hove found all possible towers four cubes high, and that you hove no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a codvinsing argument why you think you have them all
and then found -the opposite. The o we trild and and then found the opposite. The o we the wing
tries con and we find onymber that
shore we feudal of them.

Cycle I- Intervention Implementation

Building towers four tall from 2 different colors was the most challenging problem to implement in the classroom. I think that because it was the first problem we completed, both myself and the students struggled. After this problem, I learned that my students struggle with translating their mathematical thinking into words. Many students had a difficult time writing down what they were able to verbalize. My students also had a difficult time formulating a "convincing argument". After reading their work and observing them in class, I came to the conclusion that many of them did not truly understand what it meant to have a convincing argument. Many of the students would simply restate what they had in front of them or use the opposite argument. It takes thive to help sindeadd linderstand set 4 pears to gere a convincing argument - kepp at it!
It was difficult for me to not lead the students during this problem. I caught myself a few times about to lead students in a certain direction with their towers, but always stopped myself. I noticed that this became easier by the end of the class period.

If I had the opportunity to complete this problem again, I would have tried to have more class time to complete it. It is difficult to adjust our schedule; however, I think the students would have benefited greatly from more time.

Although my students struggled with this problem, they put a lot of effort into this problem. None of the students became frustrated that they were not succeeding in "convincing" me, but simply worked harder to come up with a convincing argument. The students realized that it is difficult to write down your mathematical thinking, but no one gave up because it became difficult. I cannot claim that any of my students produced a "perfect" solution; however, I
received some great work from my students for this problem. I was proud that the group worked outside of their comfort zones and stayed focused and motivated. great!

I completed the following problem with a 6 th grade, "Pinnacle" math class. Pinnacle is the label for gifted and talented classes. These classes are based off of a student's performance in all subjects and on state testing, not only their mathematic performance or level. Because of this, I see a varying level of mathematic skill and reasoning in this class of 27 students. The class that I have selected to complete this problem with is at 12:50 PM. Class is usually over at 1:50 PM; however, for these problems we extended the class through our "enrichment period" and class was held until 2:10 PM. This is the students last period of the day. The students have three academics in the morning, activity classes and lunch before coming to math class. Although the long break could cause some students to lose focus, this group seems to be energized and excited to end the day with math class. There is one child in the class with autism who has an IEP; however, he functions normally with the class and completes partner and group work like all students.

These students are used to sitting in partners and working collaboratively in class. Students normally sit in pairs and the seating is changed frequently for students to be accustomed to working with many different people. These children spend most of the day together and take all academic class periods together. They are comfortable with challenging each other and pushing each other to reach academic expectations. I choose this class purposely because I know they will do everything they can to reason mathematically in these problems, and because they will work together in order to do so.

Cycle II- Impressed

This student's work impressed me and surprised me. His ability to organize his thoughts was truly impressive; however, his method to find the pizza combinations surprised me. When we did the problem in class, we attempted to make a connection between the tower problem, building towers four high with two colors, and the pizza problem. My partner and I created an array with four positions representing each ingredient and put an X if it had the ingredient and left it blank if it did not. We only did this because we were trying to find a connection between the tower problem. When I saw this pair of students doing this method in class I was very heat? surprised and impressed. At first, this student did not arrive at the correct answer because he did not include three topping pizzas. After he wrote out all his possible pizzas he had already created using words, he saw what he was leaving out and added it to his chart. In his chart, it is clear to see all the different combinations.

When it came time for the student to write his convincing argument, he did a nice job explaining that he paired each ingredient with all the other ingredients, unless it had already been done. If we had more time available, I would have liked the student to re-write his chart and reorganize the pizza combinations. His chart is very random, while his explanation is not. I think that if he had a second opportunity to repeat his chart he might make more of a connection between this problem and the four tall tower problem.

The Phan Prumin

Tist, wa looket at the plezer with olly Itappias as got 4 diffort givoar we wow this is the baccure to are oly 4 tappigs Secand we locked at the pizeor

1.Pbain
2. Pepperani, Muhtrooms
3. Pepperonis, Sausage
4. epprami, Reppers
5. Mushroons Sausgige
6. Mushcoms, Reppers
7. Sausage, Reppers
8. Reppers

9, Sausage
10. Mushifoms
11. Pepperani
12. All tappings

13. Repprors, Sausoge, Nuchrooms

14 Reppers, Suvanes Repperani:
15.eppass, Mutrooms, Pepperoni
16. Sausage, Mushromis, Pepproni

Cycle II- Surprised

The following student's work surprised me for many different reasons. I would not have predicted that any of my students would use a numerical representation for all of the pizza combinations as this student did. The students represented peppers as 1 , plain as 2 , sausage as 3 , mushroom as 4 , and pepperoni as 5 . After observing the student's initial method for representing the toppings I also expected the student to arrive at more than the correct number of pizzas because the student represented plain the same way as he represented one of the ingredients; however, the student recognized and accounted for this when doing his work. I think that the student realized this because he wrote out the words for the number representations. For example, $1+3=$ peppers and sausage. The student did have duplicates the first time he completed the problem, but found them and arrived at the correct number of pizzas.

Unfortunately, the student did not complete a convincing argument. He provided an explanation of why he decided to use numbers to represent the toppings. The student claimed that numbers are faster and easier to use then writing out the toppings themselves. This method did surprise me. It also surprised me that the student was able to stay with his method and arrive at the correct number of pizza combinations.

The Pizza Problem
Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for plaza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.

$$
\begin{aligned}
& 4+5 \text {, } 4 \text {, } 1+3+6=\text { peppers, sousog and mushroom }
\end{aligned}
$$

R \quad,
M1040corras 8. -10 - \quad A.0.

Cycle II- Concerned
There were a few students that were not able to arrive at the correct amount of pizza combinations. Although the following student's work concerned me, I do think there is some good work in her attempt. The student started by creating a pizza with one combination and paired each of the ingredients with the other three ingredients. When it came time to write her argument, the student realized that she had duplicates and proceeded to cross the duplicates off, Although the student realized that there could be a pizza with all four ingredients, she did not recognize any of the three toping pizzas.

The student's argument was very weak. She argued that she had all of the pizzas because she started having repeats. She believe that because she was making two identical pizzas, that she must be done with all the different combinations. This misconception is what concerned me about her work.

The student's work I selected is a shy student and was paired with a lower student. The group did not react well to the problem. Both were hesitant to start and it took them a while to write anything on their paper. This would have been the only group that I might have split up and paired with other students if given the opportunity to do this problem again.

The Pizza Problem

Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities. (ALL) ($\sim N$

I know that there is no more possible ways for ciffrent pizzas because when was me combinations I was repeating the some combinations. So had to cross art the c That had trow of them. For example, when I woe making combinations for Pepperoni i h two of mushroom and pepteran pigs. So 1 knew 1 had to cross then out 30 . It see that I only had one of them. I did this tor each one the I hack dabble of. 7 Counted all of the onfrent possible ways to make diffott pizzas and for how much pizzas there was. This is how I found of how much pizzas there v

Cycle II Intervention Implementation

I thought there were many things that went well with the pizza problem. Students were actively engaged and interested in the problem. All pairs of students were working and diligently on the problem. The students were highly motivated for this problem because the cohort teachers were observing the class. The students were excited and eager to show their mathematical thinking to our visitors. I prepared the students to expect many adults in the classroom. Since it was a $6^{\text {th }}$ grade class, it was beneficial to prepare them and to know what to expect so the students could focus on the math instead of the situation.

I also found that I was doing a better job at not leading the students. I found myself asking better questions to get students to re-think things, without giving everything away. I was successful when I suggested students re-write their pizza possibilities, or try a different organization or their pizza choices.

I'm not sure what I would do differently if given the opportunity to do this problem again. I thought that the pizza problem went very well and the students produced very good work. The partners that were created all worked well together. The students did write in pencil, so I might encourage students to use pen if I did repeat the problem.

Detailed Class Description:

I completed the following problem with a $6{ }^{\text {th }}$ grade, "Pinnacle" math class. Pinnacle is the label for gifted and talented classes. These classes are based off of a student's performance in all subjects and on state testing, not only their mathematic performance or level. Because of this, I see a varying level of mathematic skill and reasoning in this class of 27 students. The class that I have selected to complete this problem with is at 12:50 PM. Class is usually over at 1:50 PM; however, for these problems we extended the class through our "enrichment period" and class was held until 2:10 PM. This is the students last period of the day. The students have three academics in the morning, activity classes and lunch before coming to math class. Although the long break could cause some students to lose focus, this group seems to be energized and excited to end the day with math class. There is one child in the class with autism who has an IEP; however, he functions normally with the class and completes partner and group work like all students.

These students are used to sitting in partners and working collaboratively in class. Students normally sit in pairs and the seating is changed frequently for students to be accustomed to working with many different people. These children spend most of the day together and take all academic class periods together. They are comfortable with challenging each other and pushing each other to reach academic expectations. I choose this class purposely because I know they will do everything they can to reason mathematically in these problems, and because they will work together in order to do so.

It was difficult to pick only one students' work that impressed me for this problem. Students had a much better grasp on how to approach the problem and how to organize their thoughts to create a convincing argument. The student's work that impressed me, showed an incredible amount of growth from the first problem to the last problem. She was able to clearly make an argument and demonstrated an understanding of the different between generating and argument and generating statements about what she did in the problem. For most of the argument, this student kept a constant. She first kept a constant in the bottom position and stated that there would be two towers for each color base because "with one color and space already taken up, there are two more to switch around." Next she moved the constant to the top position and made the same argument. Then she repeated this, but kept the bottom two blocks constant and the top two blocks constant. Lastly, she kept the middle block constant and switched the top and bottom. She also explained in the beginning, her first group would be three solid blocks of color because there are only three colors to choose from. She organized her recording into 4 groups of 6 and one group of the three solid towers. I was really impressed by how simple the student made her argument, but basically making the same argument for all 5 of her groups. This was a popular argument from a lot of students and while many were able to verbalize the idea of keeping a constant and having only a certain amount of colors to put in the remaining position, this student was truly successful in translating her argument to paper. I was truly impressed and proud of this student's work.

BUILDING TOWERS THREE COLORS

Find all possible towers that are three cubes tall, selecting from cubes available in three Different colors. In the space below, show your solution and provide a convincing
argument that you have found them all.

To start, I mode thane towers of one color. This is all there 13 because there are only three cotters. Then, for the to wert with all there bors, I grouped them by when with ore bases were. I know that this is all because, 1 there ore two more to color and space already taken up p there are two wo r of the switch around. For group 3 .ot the towers) I put tap oof for same color on top, leaving the last sped by the base the last color for group 4 I grouper wite same colored color again but instead with the end last space ones on the bottom. This either color. For group to wort with that color in the middle spot and two 5 I did one color color on the top and bottom mating

Cycle III Surprised

One student's work on this tower problem surprised me for a few reasons. This student is one of my lower students in the class. Although it's a gifted class, as mentioned in my detailed description of the class, I have varying levels of students. In the pizza problem and the tower task of building towers four high with 2 colors, this student was not able to arrive at the correct answer. I was very surprised that for the last problem, she arrived at the correct number of towers, organized her towers by keeping a constant and also made a numerical connection between the number of towers and the number of positions and number of colors. The student kept the top color constant and had three groups of nine. Most students who kept a constant made a separate group for the solid color towers, but this student included them in the appropriate groups. She did not seem to have any other organization after keeping the top constant, but if you look closely at her recording she does one color and another on the bottom positions and then switches the positions of the two colors for the next tower. So, although the group of nine appears random except for the top constant, it is not.

I would have encouraged this student to create an argument that supported how she and her partner organized her towers; however, I was surprised with this particular student's argument. She writes that she and her partner found an algorithm 3 to the $3^{\text {rd }}$ power because there are three colors and it is three blocks high. She also recognized that 9 is a multiple of 27 . I was surprised at the connections that this student made. Unlike one of my other students who also wrote about the connection of $3 \times 3 \times 3$, she seemed to grasp more the meaning of the numbers in the algorithm.

BUILDING TOWERS THREE COLORS

Find all possible towers that are three cubes tall，selecting from cubes available in three different colors．In the space below，show your solution and provide a convincing
argument that you have found them all．
We did 27 towers．We found that answer by obviously getting ail the colors together．We found the algorith in by doing 3^{3}（three to the thinned power）and reakzed that was 27 ．We did 3^{3} because there were 3 coles 3 bisk high，and 27 is a multiple of 9 ．We did a because $3 \times 3=9$ ．We grouped them in \＆（because of 3×3 ）and 27 was the product $/$ sum．We know it bo might because of the reasoning above． 27 is the number of towers？

Towers－

Cycle III- Concerned

For the tower problem building towers three tall, all of my students were able to arrive at the correct amount of 27 towers. This was the third problem that the students had completed that required them to create a convincing argument. Most of the students showed incredible improvement in their ability to do so. Out of all the work I received from my students, the following concerned me the most. This student was able to arrive at the correct number of towers when completing the problem; however, his convincing argument did not include any mathematical reasoning pertaining to the way he and his partner constructed the towers or to the organization he used when recording his towers. This student claimed in his argument that he arrived at the answer through multiplication. Many students drew a connection in this problem between the number of tower (27) and the three colors and three blocks high. In this student's argument he stated that he arrived at his answer by multiplying 3 by 3 by 3 , for the number of blocks, the number of "how" the blocks, and the three starting colors. Although I welcome the mathematical curiosity, I do think that this student strayed away from creating convincing - argument-using some sort of mathematical reasoning. I do not think that the student truly understood the connection between the 27 towers and the number sentence, three cubed. I think the student fell back on using this as his explanation because he struggled with creating a convincing argument using mathematical reasoning. After completing two of the problems already, I expected students to be more prepared to write a convincing argument.

After looking at the student's organization in his recording of the towers, it did seem like the student attempted to organize the towers; however, the organization does not support any of the common reasoning methods of proof by cases, recursive, inductive reasoning or holding a constant. The student's recording of the towers leads me to believe that he struggled with coming
up with a solid argument that would have supported his 27 towers. It seems that he organized them more in pairs, which as we have talked about before, is not the best method in order to prove you have exhausted all the tower options. If I had a chance to, I would question this student's argument of $3 \times 3 \times 3$ and encourage him to organize his towers in a different grouping.
different colors. In the space below, show your solution and providiga convincing
argument that you have foudthers

I got my anger by cuthipy it first.
3 (which is the number of blocks) times
3 (number of hor the blahs) tries
3 (because of the the threes starting colors
Simpitiod is 3x333.0 3 3.I. got 27
which is the mentor of possblitites

Cycle III Intervention Implementation

I was extremely pleased with the session "building towers three colors." The growth in the students from the first tower problem to this problem was apparent across the board. Students approached the problem with strategy and used their past experiences to help them formulate a convincing argument. During the first tower problem, when it came time to write, most students hesitated to start and struggled to put any thoughts on paper. During this tower problem, when it came time to write an argument, students were busy writing or collaborating with their partners. My students took pride in completing this problem thoroughly and completely. When the class period was ending, students asked if I could call their next cycle teacher and extend our class time. I learned that my students are very capable and willing to create convincing arguments. It was amazing how with just a little experience with these problems, the students' attitudes and confidence towards the problems drastically changed.

If I had the opportunity to do this again, I would not change much about how I did this problem. The students had enough time to complete the problem and the partner groups that I arranged worked out very well. The only thing that I would have changed throughout all 3 of these sessions was allowing students to use pen. I did not address the pen issue and students came to class prepared with a pencil, like always. Since I had limited time, I decided not to take any time passing out or having students retrieve pens, but if I had an opportunity to do it again, I would have been better prepared.

Final Reflection

Throughout this semester, I learned how possible it is to incorporate sophisticated mathematics into problems that can be solved using natural mathematical reasoning. I remember vaguely learning about Pascal's triangle and it was interesting when we looked at the correlation between Pascal's triangles and the problems. I also learned about the different types of reasoning. Before this class, I might have recognized that some types of reasoning that students used were similar, but would not have categorized them the way we did. Proof by cases and keeping a constant were arguments that came naturally to me; however, a recursive argument for the tower problem was not something I would have thought of. I also did not differentiate between keeping a constant and inductive reasoning. I would have classified inductive reasoning as keeping a constant; however, I see now how you are building upon the first position.

I learned that my students struggle with writing down their mathematical thinking. Throughout the three problems we worked on in class, I can see an improvement from the beginning to the end in the students' ability to formulate a convincing argument. For the first problem, students struggled to write down an explanation. For the second problem, students did a better job writing; however, some students failed to provide a convincing argument and rather recorded what different combinations they were able to make. For the last problem, building towers three high with three colors, many students were able to write why they had created all the towers, rather than just simply listing the towers they created. With practice, students improved their abilities to write a convincing argument and they also learned what is expected in a convincing argument. I watched students recognize that restating what they did was not necessarily convincing. It was evident by the third problem that students had a better grasp on being convincing. The students approached the problem with strategy.

The students' mathematical reasoning and thinking surprised me throughout all of these problems. So many of my students solved these problems in ways I never would have predicted. Their organization and work in some cases was impressively sophisticated. Many of the ways students recorded their work, or arrived at their solution, surprised me.

Appendix J

Teacher T7

Cycle 1: Building 4-tall Towers, Selecting from 2 Colors

The Class

The first task was implemented in a regular education eighth grade math class. There were twenty students present for the activity and none of the students have accommodations. Two of the students had completed the task previously, while they were in sixth grade, and happened to be working together. Students in this class are not afraid to ask questions and are always eager to share ideas for solving problems. Since it was the beginning of the school year, there was not much information to use to assign the students in pairs, so they were grouped according to their seventh grade NJASK math scores and the pairings worked very well. The students were respectful of each other and were able to communicate with each other.

This class is the last class of the day for the students, with the exception of a twenty minute enrichment period at the end of the day, used for extra class time amongst their academic classes. It is usually an hour long class beginning at 12:50 in the afternoon but we had the additional twenty/ minutes due to the enrichment period. This time proved useful for the students to complete the task and one group was able to complete the extension activity. On this day, September 17, 2013, the teachers from the NJPEMSM program were in attendance to observe the class. The students did not appear timid with the additional adults in the room and were discussing their solutions with the teachers.

Cycle 1: Building 4-tall Towers, Selecting from 2 Colors

Sample 1: Impressive Work

This student had the most impressive written justification of his solution in the class and was also the only student to attempt the problem using a constant for part of the explanation. His explanations was well thought about and explained clearly, giving reasons for why there are no more options, not just stating what he did for each case. He also had a clear diagram with a key explaining his notation.

He started with three blocks of one color and one block of another color and explained that the one block moves through each position in the tower and cannot go anywhere else because there cannot be a fifth block. Many students in the class mentioned this reason in their proof. His next group was the two towers of solid colors. He was the only student to explain that there were only two options because there were only two colors available to choose from for the towers, which was impressive to note.

His last group was the towers of two blocks of each color. The strategy he used in this section was different from any other student in the class. He kept the bottom block constant and moved the other block of that same color through each of the other three positions then switched the color on the bottom and did the same thing. He explained that there cannot be more than three in each of the two groups because the second block of the color kept constant on the bottom can only go in three different positions.

His explanation was clear and concise, offering proof for why there were no more options in any of the groups he created. This was an area that many of the students in the class struggled with and he was able to write his justification in a way that was convincing to the reader. His strategy was also very impressive as he thought about a constant for the group of two of each color and the different positions the blocks could take.

Building 4-tall bowers, sweeting from 2 colors

You have two colors of unific cubes mailable to build towers. Your calk is to make as You have differem looking towers as posifible, each evicotly fore cubes high. Find a way to comisoe yourself and others that you have found all possible sowers for ed bes high, and hat you have no duplicates (Remember that a tower always points up, will the little knob an the top.) Record your bowers below and provide a corvinciag argument why you think you have them all.
We have 3 Reds I yellow. The yellow is on the top and mores down I each time. Same with 3 yellows tied. The Red is means you wout have 5 blocks it it went one more higher. The four red dna fou
yellow cant be any diftrent because

You cant hare of high and
their are only e colors
Their are 2 yellows and 2 reds
in these towers. the yellow stars on the
top and goes down i ara a time.
The bottom are allays yellow. you carit
Po more then 3 in a diagnal because fat would repeat. Same for the (e). Their are also 2 reds and 2 yellows in these towers. Instead the ed starts on top and goes down at a time. The bottom is always ed in all theree.tou cant 90 more hen 3 in a diagnal because that -ould be a repeat

Cycle 1: Building 4-tall Towers, Selecting from 2 Colors

Sample 2: Surprising Work

This student's work surprised me for a few reasons. First, the written explanation was somewhat convincing but has room for improvement and second, the strategy used by the student included considering opposite towers which was a different grouping than other students in the class. This student was also able to complete the extension activity and, while some of her observations were accurate, others were not correct.

She started with a group of three of one color and one of a different color and explained how the one color block started at the top and moved down one position in the tower each time. She also explained that she would start with one tower and then switch the colors for the opposite tower. While other students attempted to solve the problem with opposites, they eventually reorganized the towers so they were not with the opposites anymore, but this student chose to keep the opposite towers together. I would have liked to see an explanation that there were only four positions for the single block so there were no more options but she did not explain why there were no more options.

The second group was for the towers of two blocks of each color. She started with a convincing argument that if the two blocks on the bottom are the same color the two blocks on the top have to be the other color and then she explained that there could be one color on the bottom then the two in the middle would have to be the other color but she did not explain that the top block would be the same as the bottom block. She also talked about the two colors alternating but did not prove why there are only two towers in this group. I was also surprised that she did not mention the solid color towers though she had them included on her diagram.

I was surprised by this work because I found the explanations that were omitted to be ones that she understands but did not write clearly. I was also surprised to read her explanation on the extension activity. She was able to come to the conclusion that there would be less than sixteen towers if they were restricted to three blocks tall rather than four blocks and her reason was that since it was shorter, there are fewer patterns to choose though her prediction of twelve towers for three blocks tall was incorrect.

Inibing 4-tall hwers, weleting from 1 edore

 linob it the topy Revert yes
yes think youl have tem ill.

Eulliny Thwers 1 Cutors Exitisho

 thine that?
Betncy have tint
Honet is I cubt

T. welta sovi therer cher tase thenem

 trwets, shlething from 2 edors, Do you think dero will be new, fever, or the sume
 that that?

Cycle 1: Building 4-tall Towers, Selecting from 2 Colors

Sample 3: Concerning Work

This student's work was the most concerning to me from the class as they did not have all the solutions. The student also changed their notation while recording their work, making it harder to follow.

She started with a group of towers consisting of the tower of all one color and then the towers of three of one color and one block of another color. She explained that the one block moves up a position each time until it reached the maximum height so there are no more options. She noted the shaded block as yellow in this group. Although she put the solid tower in this group, she did not mention it. Then she moved on to the same group with opposite colors but she changed the notation of the shaded block to red. This makes the two groups look the same on paper if the key is not noted.

For her last group, she changed the notation of the shaded block back to yellow. This was the group of two of one color and two of the other color. She had the two blocks together and moved them through each possible position, starting at the top of the tower. My concern is that she missed the three towers with the two colors apart. As a result, she found thirteen towers rather than sixteen.

While the explanation she provided was clear to follow, she missed towers and her change in notation of the colored blocks made the diagrams harder to follow. She also did not provide much explanation for why she had all the blocks in the two of one color and one of another.

Builling 4inll fomers, elexting From 2 eopors

that you here ne duplicales. pRomember tha a wowtr almys poine up with the Fulle
jue think you bswe them all.

- yenow

bres

- Gonge uphownot

MOUCS ve OH of ar got conmo so wde seng moke

and

 Somar an tra पevau combo. There is a Patren of Ont Fed bac mores $30 \mathrm{D}+\mathrm{te}$ Qatreir con+wnees witd +re ped bookcan move onquote

44 ENO

Gach +wo Yelougrack Potbr $4-000060$

- + untror becolse
wh cor towecove

Cycle 1: Building 4-tall Towers, Selecting from 2 Colors

Reflection

Observing this class complete the problem and reviewing their written work, I had the opportunity to learn more about the students and how they think about problems. This proved valuable for early in the year, as I was still learning about my students. I noticed that many students would benefit from more activities requiring them to write their explanations as many had difficulty expressing their reasoning on paper. I also found it interesting to observe the different ways students attempted the problem. Many used proof by cases or the recursive argument but it took some time for them to get away from the thought of pairs of opposite towers in order to better develop their reasoning. Once students started regrouping their towers, they were able to develop better arguments.

It was especially interesting to hear students develop their reasoning. Most students started by stating what they did rather than why they have all the towers. It took some time and questioning for them to further develop their reasoning. Quite a few groups mentioned that the answer was sixteen towers based on a mathematical expression that resulted in sixteen, for example four multiplied by four. Through these conversations, I realized that many students are looking for a mathematical expression to provide them an answer rather than an understanding of the reasoning for the expression or solution. This is based on the observation that, while the expressions they mentioned did result in sixteen, they were not correct in context of the problem. When they were asked how they found the expression and if they knew it before they completed the problem, they responded that they did not know it before they built the towers but that they were content because it resulted in the correct answer. Unfortunately, their conclusions for the expression would not hold true for towers of other heights or color options. It was also interesting to hear a student mention that he did not think there was a way to know if he had all the possibilities.

I was impressed with the ability of the students to work well together in groups so early in the year. They were all interacting and discussing the problem together. I was also intrigued with the way some students were able to be flexible and explore alternate ways of arranging the towers.

It was a challenge not to direct students to a solution through questioning and to spend more time observing their work. My questioning strategies had room for growth after the first task and it was beneficial to watch it implemented as I could listen to questions and implement those questions in the future. I also found the extra time to be important for the class. It was a challenge for some of the students to finish their explanations and in the future, I would ensure they have more time to work on the written reasoning.

Cycle 2: The Pizza Problem

The Class

The second task was implemented on October 18, 2013, in the same class as the first task. It is a regular education eighth grade math class. There were twenty two students present for the activity and none of the students have accommodations. Students in this class are not afraid to ask questions and are always eager to share ideas for solving problems. They worked in the same groups as the first task. The groups were originally assigned based on their seventh grade NJASK math scores since there was not much other information available at the time to base the groupings. A few students had a new partner since there were some students absent for the first task and some absent for the second task. The students were respectful of each other and were able to communicate with each other.

This class is the last class of the day for the students, with the exception of a twenty minute enrichment period at the end of the day, used for extra class time amongst their academic classes. It is usually an hour long class beginning at 12:50 in the afternoon but we had the additional twenty minutes due to the enrichment period. This time proved useful for the students to complete the task.

Cycle 2: The Pizza Problem

Sample 1: Impressive Work

This problem proved more challenging for the students than the first task and it was difficult to find a written explanation that was completely convincing but I chose a student who had a clear representation of the work and was able to communicate some reasoning on paper. He used proof by cases to explain his reasoning and within the case for two topping pizzas, he held a constant. He was also in the first group to complete the problem so I would have liked to see a better written explanation.

The student started with the group of all toppings by themselves and included the plain pizza in this group. From there, he made the two topping pizzas. It was interesting to see how he held one topping constant until the other options were used then he would not use the constant topping again. Unfortunately, he did not explain this in writing, he just explained they were put in groups of two and did not include plain as a topping that could be paired. For the three toppings, he mentions in his written explanation that each topping would be used three times. I found it interesting that he viewed the group in this way rather than the fact that there will be four pizzas because there is one topping missing from each pizza and there are four toppings for that possibility. He concludes with the pizza with all the toppings.

While I would have liked to see a better written explanation of the work, this student had a clear representation that included writing the words rather than using abbreviations. His groups were easy to follow and he had more written as an explanation than most students in the class. This was a much more challenging problem for the students than the first task.
win pizzo
Peppers
Sansuges
Dostrombris
sepperon:

'epperst Suusques
ppers + moshroums
ppers + pepperom.

Convoss

with the ist groupeits
all twppings by themselves.
in the 2nd all topeings are togethare, basides
prain in ine $3 \cos ^{2}+$ theyre
ats tagether 4 7 thece, ench perent t saushys t pepperstis used 3 Himes. Inthe

usage, mushmowns, pepperen.

Cycle 2: The Pizza Problem

Sample 2: Surprising Work

I was very surprised by the difficulty this problem presented to the students and I was surprised with the way the students thought about the problem. The student I selected thought about each slice of the pizza as being a different possibility. This made the problem much more difficult for the pair of students. It is interesting to note that this pair included the student with the most impressive work from task one. There is not a written explanation but I was able to talk with this group extensively during the task. As a whole, the class did not have extensive written explanations for this problem.

The pair of students made a list of possibilities for each slice of pizza. They started with one slice of pepper and seven slices of a different topping choosing from sausage, mushrooms, pepperoni, and plain. Then they moved to two slices of pepper and six slices of one the other toppings. They continued with this pattern of three slices of one topping and 5 of another up to the option of all eight slices being pepper. From here, they noticed there were 28 options of pepper paired with another topping but they did not include the all pepper pizza. They multiplied the 28 options by five to get 140 options because there were five possibilities for toppings but they did not realize that this would result in duplicates of pizzas. From there they added five more options for the five pizzas of all one topping.

When discussing with the students why they were attempting the problem this way, one of the students in the pair discussed that his family had previously owned a pizzeria and would make pizzas to order the way they were making their list. It was interesting to see how the student's experience had influenced the way he attempted the problem. This is the reason I found this solution so surprising since it also raises concerns. My concerns are that they only looked at two topping pizzas and single topping pizzas. They did not consider three or four topping pizzas and they were not aware of the duplicates they were accounting for when they multiplied. It was also surprising to note that the students in this pair had discussed whether or not a pizza with the slices arranged with different toppings were considered different options or not. For example, a pizza with four slices of one topping and four slices of a different topping could have the slices arranged in an alternating way or grouped together. I had not expected the students to think about the problem in this way and was surprised to see them think about the task in this manner. Even with questioning if they would ever order a pizza that way, they were convinced it was a possibility since the one student had that previous experience in the pizzeria. It was surprising to see the effects of previous experience develop the work of the student in this way.

Cycle 2: The Pizza Problem

Sample 3: Concerning Work

During this task, I found more of the work to be concerning rather than surprising or impressive. I chose a student who had different representations and did not give clear reasoning as to how she attempted the problem. This student had examined the pizzas as being broken into quarters or halves with each section containing a different number of toppings.

She started on the front of the page with lists and changed to circles on the back of the page to represent the pizzas. It is difficult to follow her reasoning. She does not explain why the pizzas are divided into halves or quarters or why there are different numbers of toppings in each of the sections. She also includes numbers in each of the sections representing the number of toppings in that section. She continues with adding the numbers together in each of the sections to get the number of toppings on each pizza and she multiplies it by four or three. There is no explanation as to why she is computing numbers in this manner. It appears she is multiplying by the number of sections she broke the pizza into. There does not appear to be any structure for ensuring there are no duplicates and there is no reasoning for her work. In her written explanation, she comes to the conclusion that there are more options but she ran out of room so for now, there are 130 pizza choices.

I am concerned with the work because there is no structure to the solution and there is no explanation for why she is attempting the problem in this way. I am also concerned that she is not considering duplicates and is content with stopping at an answer because she ran out of room to continue.

The Pizza Problem
30 Sin) itit-8xpri Pizza has asked you to help design a form to keep track of cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted
pepoers-sausade

half -mushroom * pepperoni

pepperoni-peppers
s sausage
mushrooms

Capri zara mas asked mos
no vichy dregigy ch form to peter

Tres offerer Q shoretucl Pizza

c प世木
cutracte, whsurchisw Pe prisuch
i centre 20 possintites te

 race It

 focssvonveres.

Cycle 2: The Pizza Problem

Reflection

I was very surprised by the difficulty experienced by the students in solving this problem. I did not expect the students to analyze the problem considering different slices or sections of the pizza as being different from each other. This task showed me the effect real world experience can have on students' approaches to problems. I saw this in the student who had experience in a family owned pizzeria as well as in the students who considered half pizzas because they had previously ordered pizzas with one half different than the other half. I was surprised to see so many students consider half pizzas, pizzas without cheese, and plain as a topping option.

Reflecting on what would be different next time, I realize the students could definitely benefit from additional time. As I looked through the student work, I realized many students did not have enough time to write a full explanation of their reasoning. This was in part because of the extensive options they were considering. Many students had become overwhelmed with the number of possibilities and had considered the problem to be impossible to complete. I would consider asking students to think about how options for pizzas are written on menus they have seen to see if this eliminates the confusion of considering each slice.

There were two groups who offered good reasoning for their answer of sixteen pizzas when I was listening to them explain their work but they did not explain it well on paper. This was something that was noticed in task one but was more evident in this task. It was encouraging to hear clear and concise oral explanations but the students have room for improvement in putting their reasoning on paper. In the future, I would take the advice mentioned by other teachers in the class of telling the students to dictate their reasoning as the other person in the pair records the reasoning on paper.

Cycle 3: Building Towers Three Colors

The Class

The third task was implemented on November 4, 2013, in the same class as the first and second tasks. It is a regular education eighth grade math class. There were seventeen students present for the activity and none of the students have accommodations. Students in this class are not afraid to ask questions and are always eager to share ideas for solving problems. They worked in the same groups as the first task. The groups were originally assigned based on their seventh grade NJASK math scores since there was not much other information available at the time to base the groupings. A few students had a new partner since there were some students absent for the first task and some absent for the third task. The students were respectful of each other and were able to communicate with each other. Since this task was implemented during a two day school week due to Election Day and Teachers' Convention, the students were hice! able to spend Monday on the task and on Wednesday, November 6, 2013 they completed the extension activity.

This class is the last class of the day for the students, with the exception of a twenty minute enrichment period at the end of the day, used for extra class time amongst their academic classes. It is usually an hour long class beginning at 12:50 in the afternoon but we had the additional twenty minutes due to the enrichment period. This time proved useful for the students to complete the task.

Cycle 3: Building Towers Three Colors

Sample 1: Impressive Work

This student had a clear diagram which was easy to follow. Her notation was clear and she included descriptions of each group next to the diagram making it clear to the reader why she created the group in that way. She also had one of the more convincing arguments in the class, using proof by cases, though I would have liked to see more explanation in some areas.

She started with the towers that were all solid colors then moved to the groups with two blocks of one color and one block a different color. She had three groups of six towers that were only two colors, and used the placement of the one block that was a different color to create her groups. Her groups started with the one color block on the top, then on the bottom, then in the middle. I would have liked to see more explanation that there were only three positions for this block so there were only three groups but I was impressed with her explanation of the towers within each of these groups. She mentioned that there were two towers that she called "similar" in each group. Her reasoning is that if two blocks are the same color, there are two options for the third block since using the color that was already in the tower would result in the solid tower which was already created. Her last group was not as convincing though she did have all the possible towers. The only explanation provided was that all three colors were assorted in different ways. I did not find this to be a convincing argument.

Although there were areas for improvement, I still considered her work to be one of the most impressive in the class due to the clear organization of the towers with descriptions, and the explanation of the towers that were two colors.

BUILDNG TOWEMS THREE COLORS

 oppucat then you lave forme then ail.

 whons. Fur exomper, is you hove tro vele on the botem. Whe cus gocy wout be but or a yethol ch by. (2 dxresem berersi If wo whoted a thud twor, it whel be oth of tre scome cotored

Cycle 3: Building Towers Three Colors

Sample 2: Surprising Work
I chose a student sample from Ankur's Challenge for this section. This student had a clear diagram, color coded, and used a recursive argument, which was different than the argument used by others in the class. She started with the realization that each tower four blocks tall would have two blocks the same color and the other two colors could be alternated in position.

Her first row consisted of three groups of four towers each. Her explanation was that there were three colors that could be used as the double so she created a group for each with the two same colored blocks starting at the top of the tower. Then she explained how the bottom block could be moved to the top and continued in this way to end with four towers in each group. Her second row was like the first row except she noted that the two different colors on the bottom of the tower could be switched in position.

To finish, her last row consisted of groups with the two blocks of the same color when they were "not touching". She continued with the recursive argument for the three colors and concluded that there were thirty six possible towers that could be built four blocks tall with all three colors.

I was surprised by her approach to the problem since no other student used a recursive argument and she was able to clearly describe the possibilities for the starting tower in each group. Both her diagram and description were easily understood and showed a level of understanding not exhibited in some of her classmates' work.

EMIL MING TOWERS THEE COLORS EXTEWSMOM

 beth

$\frac{5 W^{5}}{1}$
Blue

starting of with the $1^{\text {st }}$ row we start with 2 reds and then yellow than blue top to bottom. Sithefing the bottom color sion top makes a total of 4 diffent towers with those specific colors. That goes for all the
color date double.
The second row is the same colors as its colum just with terse colors switched. This goes for the rest of the $2^{\text {nd }}$ row.
The $3^{\text {rd }}$ row is the collums same parlors just the color with Q is now nat toweling. Using the press process that we used for the first 2 rows and using the agpriate colum colors there will be 36 towers with 3 diffent solos 4 blocks high.

Cycle 3: Building Towers Three Colors

Sample 3: Concerning Work

Although this student came to the correct conclusion of twenty seven possible towers built three blocks tall choosing from three colors, her reasoning was incorrect and her explanation was not convincing. She did have a nicely created diagram and used color coding to make it easy to understand.

Many students wanted to have a mathematical expression for finding the answer and this student chose to say there were twenty seven towers because three blocks tall multiplied by three color options is nine and nine multiplied by three again is twenty seven. She did not offer an explanation for why she multiplied by another three to end with twenty seven and while the answer is found by computing three to the third power, which is technically what she did, she did not exhibit an understanding of the expression being three to the third power or an understanding of why the expression would be three to the third power.

1 am also concerned with her explanation of the groups. The only explanation of the groups is that the possibilities are solid towers, two color towers which there are three combinations of colors, and towers with all three colors. No explanation is provided for why these are the only options or why she knows she has all the towers in each of the groups.

This student is capable of creating a better written explanation and I am concerned that she did not demonstrate her understanding of the problem better on paper. I am also concerned with the misconception of the mathematical expression. So many students think they need to have an expression to prove their work is correct rather than using reasoning and her work was an example of the misconceptions students have about reasoning in mathematical problems.

HUUロIVGTMWERS THESE CTHOBS

There are 27 possible colors
3 cubes tall $\times 3$ colors $=0$
$9 \times 3=2 \square$
We got sold over with.
Then switched blue and red powers.
Then switched blue and yellow.
Then switched yellow a red.
The figured out the pattern with all 3 colors in them.

 Cycle 3: Building Towers Three Colors
 Reflection

I was interested in seeing how the students would do with another tower problem, compared to the pizza problem, as well as how they would complete Ankur's challenge. The students had less difficulty with these two tasks than they did with the pizza problem. This is in part because of the manipulatives they were able to use and that there was less room for them to interpret the problem in different ways, though there are multiple strategies for approaching the problem.

It was interesting to see the different strategies in the problem and the challenge. Many students used proof by cases, there was a recursive argument, and some were challenged to make an argument because they were focused on pairs of opposite towers. The students in the class were able to work well together with the exception of one group. This specific pair of students had a difficult time communicating with each other as they both wanted to do the problem on their own and were challenged with explaining their reasoning to each other. In the future, this is something I would address with them in advance. While they may have different approaches, they should be communicating with each other.

Having two days to complete the problem and challenge proved to be beneficial as it allowed the students the necessary time to work through the problem and record their work and reasoning. I would not try to complete both activities in one class period as the students would be rushed or would not have the opportunity to attempt both problems. Through watching them work on the activities, I noticed students sometimes struggle to understand reasoning when presented in a different way. We had the opportunity in class to show the different ways the students solved Ankur's challenge and some of the students were only convinced with one way and had -more difficulty following the reasoning of other students. Although this was true for some students, there were also other students who were intrigued to see different ways of organizing the towers and solving thelproblems.

Final Reflection

Through the three tasks I was able to observe many different things about the students' reasoning in mathematics. First, I found students are more inclined to create equations since they are in math class rather than realizing that using written reasoning is an important part of mathematics. This reveals the need to incorporate written explanations more in mathematics classes, which unfortunately is something that can be overlooked. As a result, I have been $<$ OOQC!
encouraging students to write explanations more often. It was also interesting to note the difference in some of the students' oral explanations in class and the reasoning they wrote on their paper. Many were able to explain their reasoning in person and had difficulty communicating the same thing in writing.

Second, I saw students who were content with the answer because they could not find any more options, rather than convincing themselves there was no other possibility based on what they know. Through questioning, students were able to develop their reasoning and have convincing arguments, but it was not something that was first observed in the class.

The third thing l observed was the different approaches students took to solve the problem. I found many students start with opposite towers and only rearranged them when they had difficulty convincing themselves they had them all and were asked if there was a different way to group them. When they rearranged them, students were more inclined to use a proof by cases approach rather than inductive or recursive. I did not have any students use an inductive approach to solving the problems.

From comparing the first task and challenge problem, I was able to see growth in the students and their reasoning. Many students were automatically grouping the towers in different ways before being asked if it was possible and they were providing better verbal reasons. I was also able to see the positive influence on questioning students to get them to think about their work and other possibilities in mathematics. It was beneficial for students to see that mathematics is not just equations and numbers but also reasoning. As a teacher, it was informative to listen to students and their thoughts about problems, why they solve them a certain way, or what convinces them. I saw that students can interpret problems differently and can, therefore, approach problems differently. It was also a learning experience in the pizza problem to realize how the students' experiences can impact their reasoning. Implementing the tasks in the beginning of the year provided valuable insight into the reasoning of my students and areas that need more focus throughout the year.

Appendix J

Teacher T8

Tachach

Cycle 1 Towers 4 tall selecting from 2 colors

Two of the student's work being presented in this cycle (KC and Brenda) are in This stands for Mild Cognitive Impairment Self Contained The students are $8^{\text {th }}$ graders, however recent testing performed by child study team members placed their math abilities on a $3^{\text {rd }}$ grade level. They were given this work in members placed class they started at 9:30 A.M. There are 9 students in this class. The third student work sample (Mary) is from an $8^{\text {th }}$ grade student. She is in a General Education Math Class, and comes in my class every day during her lunch period to work with my students. The time she performed this task was during her lunch at 12:00. All 9 of my students were in class while she performed this task.

Brenda

This student's work surprised me. She used multiple reasoning strategies to solve this problem. She started finding combinations by making opposite pairs and found all possible combinations. I questioned her to get her to try to find another way to group the towers. This student broke the towers into 3 groups and kept a constant on the top, red or yellow. One group was made up of single color towers. She broke the other 2 groups into subgroups. She did this by using the proof by cases argument. She flows or reds in the tower. She then went on to exhaust all combinations for each group by using a recursive argument. The $1^{\text {st }}$ sub one tower. It was a yellow on top and 3 red on the bottom. She explained that there was no way to move the yellow because it would result in a red on op, which would ruin her constant. The next group was 2 yellows and 2 reds. She again tried to explain how positions could be moved within the bottom 3 positions without removing the 1 yellow cube from the top. The next group of towers had 3 yellow abe in the $2^{\text {nd }}$ position from the top and moved it one space down in each tower until it reached the bottom position. I was surprised at this student's growth throughout this project. She went from just making opposite pairs to using many valid reasoning techniques.

Building 4-tall towers, selecting from 2 colors

You have two colors of unific cubes available to build towers. Your task is find a way to many different looking towers as possible, each exactly possible towers four cubes high, and convince yourself and others that you have found ane always points up, with the little that you have no duplicates. (Remember haw and provide a convincing argument why knob at the top.) Record your

$1.0 n y 2$ different colors
2 Thee are ane below on tor and thrice ied an bottom and if var move the red an the for then there is no nayellom on the top.
3. There is a block with one that has Yellow red yellowed and you swim is to red yellow red vellow then row wien t have te.
(V) yellow on the hap thar a cutter. Wow wa th Yellow yellow cen red if you move the red to h on top. you have yellow on top 2 ed. in the Middle and you have yellow on the better. any other move wu. can get fared on top
4 There ore 3 red across If you Put the red on lope then you wort have the yellow on 100 if you put the another red on the bottom then you ge s cubs gads there only post to

1 for the clues with red on top the some rules work dust some color

\qquad

3
 on the bid you neatened

KC

This student's work concerned me. This is my strongest student and l expected him to do best on this, however that was not the case. This student struggled hout this project. He was able to make all possible combinations by making解 his partner to do the work. He really seemed to miss the concept. Once his partner made new groups he was able to understand what she was doing and was able to explain her argument. He had no independent ideas and made no contributions to the organization and explanation of the regrouping of towers. After his group was finished I fook him to the side to assess what he learned. He was able to show me the manipulation and movement of cubes to show how all possible towers were created.

 many different boding towers as possible, cad exactly four cubes high Fid a way to convince yourself and wees that you be found all posable towers far cubes high, and that you haven duplicates (Renumber that a tower always points up, with the little knob at the top,) Record your now er below and provide a orovincing argument why you think you have them all.

1. Only 2 different color
2. There ore one yellow on the top one it \Rightarrow red on button you wit have red on top an yolio cuz it any (3) Sone yobbo and the fed
3. it 2 yow on top and it 2 rod on bottom I yollich antop and arad on the mition
 1 rete If you Try a another move on the black. How out a red on'top or randoms.
(2) we have 3 red coss and we hove 3 yalow but If you but the red on top you wont have to the yolked on top if you pat the Gnather red on the button then you out five cube the coly past to ko for cuba
c)
for the cube on rad on top the Solve rio.

Mary

This student's work impressed me. She used a recursive argument. She did not start with opposite pairs. She started by making groups and moving the cubes downwards to make all possible combinations. The first group she made had 3 towers. In each tower was 2 red and two yellow. In this group she kept the 2 reds together and moved them through all possible spaces without separating. The next group consisted of towers made up of only 1 color. The $3^{\text {rd }}$ group had 3 reds and one yellow. She created this group of 4 towers by moving the yellow down one space until it reached the last possible position. The $4^{\text {th }}$ group was 2 reds and 2 yellows alternating. She explained this group to me by taking the $1^{\text {st }}$ towers, which was red yellow red yellow, and moving the blocks down and placing the last block on the top tower. Her $5^{\text {th }}$ group had towers consisting of 3 yellows and 1 red. She moved the red down 1 space until it reached the lowest spot on the tower. She excelled in this project, and needed minimal direction and assistance.

Building 4-tall towers, selecting from 2 colors

You have two colors of unific cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them all.

$R Y Y$ $R 4 R$ $4 R 2$ $Y R Y$

Groups

Group 1 hos the the sects truther everatmo t m aver to the tops mack u, one ends. For crash 2 It
 on ext For crump si It ex ha
mad \& mexico. So the velbous
cube started on the twp coact wert chows exc evert tame ores it streppect Get. the butter. For croup of an the reds was sepcirctet . For grate B the rect cube started on the top and cert chum on s every two anat stuppect ct the costate.
For each cyme i conceit note ondruxe become there usps nd crate possible combinations creel \& t couched mona mete the it in cove ser s.

Intervention Implementation

What I learned most about my students during this cycle is the difficulty they have explaining their thought process. They were able to show what they were doing. But had trouble putting it into a clear explanation verbally. I had 2 sit with KC and Brenda and question them appropriately to help them verbalize their explanation instead of showing me with the blocks. The biggest challenge my students faced during this project was getting them to write their explanation down on paper. Once they were able to explain their reasoning to me I asked them to write it down and walked way so they could start working. After a few minutes I noticed that Brenda was crying. She had become so frustrated with the writing aspect of the project that she broke down. They explained that they did not know how to write down what they were saying. So I sat with them to give them the support they needed to get their thoughts on paper. I started with helping them break up their explanations by the groups. So they started writing the explanation for the single color towers. This was a good starting point for them.

I was very happy to see my students use such a variety of methods to explain their groupings. I did not expect them to come up with a constant. This is something that I did not think of at first so I didn't think they would either. This showed me that students with low functional levels are still able to reason at high levels if given the time and appropriate resources. It has helped me to try not to limit my students when giving assignments.

Cycle 2 Pizza Problem Selecting From 4-toppings

Two of the student's work being presented in this cycle (KC and Brenda) are in an MCI SC 6-8 grade class. This stands for Mild Cognitive Impairment Self Contained. The students are $8^{\text {th }}$ graders, however recent testing performed by child study team members placed their math abilities on a $3^{\text {rd }}$ grade level. They were given this work in Math class they started at 9:30 A.M. There are 9 students in this class. The third student work sample (Mary) is from an $8^{\text {th }}$ grade student. She is in a General Education Math Class, and comes in my class every day during her lunch period to work with my students. The time she performed this task was during her lunch at 12:00. All 9 of my students were in class while she performed this task.

Brenda

This student really struggled throughout this project. I was worried because she did so well with the previous project. She started by making triangles to represent slices of pizza. The $1^{\text {st }}$ she made was a plain pizza. She then started making random combinations with no organization or method. She was just coming up with different combinations. She wrote the combination on the crust, then went on to write the $1^{\text {st }}$ letter of the toppings on the slice. For example, mushroom and sausage had MS written all over the slice of pizza.

She came up with a total of thirteen combinations. Her partner wasn't satisfied with the diagram and realized that they had created duplicates. Brenda was not catching on to what her partner was trying to do. Her partner started to create a table to organize the different combinations. She tried to follow his lead, but when her table is compared to his it is clear that she did not understand the organization of the table. Her writing was also not convincing. She basically just wrote what her partner said that they did.

The Pizza Problem
Capri Pizza has asked you to help design a form to keep track of certain pizza choices. They offer a standard "plain" pizza with cheese and tomato sauce. A customer can then select from the following toppings: peppers, sausage, mushrooms, and pepperoni. How many choices for pizza does a customer have? List all possible choices. Find a way to convince each other that you have accounted for all possibilities.
 pat another one I get 3 topping. I did stopping with pepperoni in each one. group 2
I Stark with Mushroom, then I did 2ben There Mushroom in each one If I Pa 4. another one I Get 3 toppingat did 3 topping with Mushroom
graup 3
I Start with sausage - I did two other topping. There are sausage in each one. If I put other topping. I get three I did three topping
with Sausage With Sat
Mover
I start with peter. I did two
other topping. There are pepper in each one. If I put other three topPing with pep Per o

KC

This student gurprised me duing this project. I was surpifed because he struggled so much with the provious propect. He started by making triangles to represent slices of pizza. The tit he made was a plain pizza. He then started making 11 topping combinations. Then went on to make 2 and 3 topping combinations whth no organization of method. He slarted drawing images of the toppings, but when he got to 2 and 3 toppings he started witing the combination on the crust and lett the pizza emply.

KC then decided to make a lable to arganize his pizzas. He made columnt for each topping. The first row in each column was a single topping. The first topping he selected was popper. Then undemeath that he did each 2 topping combination that had pepper in It The first was pepper and sausege, the next was pepper and mushoom, the other was pepper and peperoni. The next that he made wab a 4 topping pizza and pepper was the 14 topping. He did the same for each column of sausage, mushroom, and pepperoni. Atter this he realized he forgot plain pizza and pizza with 3 toppings. So he made groups for each of the 3 toppings and labeled them to match the appropriate group: He was satisfied that he found all possble conthinations, which he did and then gome. So to help him L aked "f you ordered a saugage and pepper pizza, and then ordered a pepper and sausage pizza would they be different or the same? He said that they would be the same and said he should cross one out. Then he did the same for other duplicates. His witing did not putify his answer, it was more of an explanation of the diferent combinations he made.

Mropl
I solet it with peppo then Ievid 2 wiswitk poptar with sossge mugrad cund provire t+ 3 tophing the each then thans with perpaton solese and mushom 4 tepting with pepperion peprow mesplich.
I salet it with sasge. then I did 2 topping witt Defor with mustran ohd peptre. it 3 tppiff in exon dere toping with fapper/on solose and musmo of toppins with perberkn Appa mosinca.
I sathot if mith mushom theri $\pm d$ de 2 topting with poler with sersere and peritan. if 3tppitg in coch draz topus with Anplatien soluase ond
 - 1 LEAKL

I sedet it with peflom then I d/b? tapple with paper buth culcte and petinon it 3 tppos in cach de
 mosezer 4 topps with naplaion, pope and husuly

Mary

 toping whbinatian with peppers is the onsiant Then did 2 mppry piesse with peppers as the condant She wemon mate 2 topping combination with whitroens

 Eventully she found fen 2 tiesing contingions, which were peppes motroors

 she douthed her combutions.

The Pizia Prolotam
Ceprl Pleza has ansed ypu io help degign fant to keep wack of certain pizza ctrokese They ofter s standand plan" pizzil with cheeser and tombivo suace. A cugtomer can them selact rom the folowirg hoppings: peppers, sausape, ruoploongs, wnd popparoni. Hov marry choves bor pizza doce as puetormar nower hawe apcountad choioes. Find a way to gomwres each other that you hate for all porsiontios.
© 4 H
the first 5 chaces I put the topprigs
tself, and then I ambinated all 4
 स宜 3 t YI ${ }^{1}=$

$$
\begin{aligned}
& \text { +Tuctur } \\
& \text { - perpers } \\
& =A \operatorname{chtary}
\end{aligned}
$$

$$
\begin{aligned}
& =p+P R+4 \sin
\end{aligned}
$$

Internention Implambation

Iden rotice an incerabs in willingess and eftor twatide the problem wher ompared to how they acted with the firs both. The suderis had porkorered though

 having no manipulatues made the problem mere chalergag The matipuatmes geve

 Wheir wohs. They were not able to explin how of why twy geated their digerme. They जefe cofly able to wribe what then combingipne were and what ther gropings were. I thict that this problen thoded io be move spedfis as to what was beng asked of the

 baming copentron troughout fos cyde.

Cych 3 Towers 3 Tall Seloding From 3 Colors

 ge graders, howewer pocent terting parfomed by brid suty team menbers plabed their
 at 920 A M. There ant 8 students in the clabs The thid swdent wot eample form an gh grade tudent She in in General Educgion Mofn Clars, and comes in my clase wery day duing her lunch perlod to wokk whin my gudents. The inte the perlomed
 parfomed the tabl

Brenda
This shadents woth inpressed me she hed ideas for how to crean and organize blocks. She said thed ste was uing the game ldeas the had learned from the the towers problem. She weol right to making 3 towers that wore prly one odor. Then she want on to make towers that had an 3 colors in twem. She kept constants on the botton and abernated the other bslora in the top 2 pospions. For example the 142 tewers in the group had yelow on the potiom. She aherrabed the blue and ref cubes to exhast the possile combinations with the yeliow combant on the butbom she did the same for keeping fod and blue as toratants on the boltom. Her neet group had only 2 colors in the tower, She kept a corbant of twe same color on the bottom and the fop and swibhed cut the dher cospre in the midde. For cxample, she had 2 towers with blue on the top ard hotpm One tower had yellow as the riddol cube and the other had bue bes the midde cube. The kst group that she had was broken into 3 subgroips. Each part had a dement constant on the top. She hod 2 dfterent constants on the bottom for each mubgroups. Her coplanation in writing uas jut fating the groups she freve to argaries them by colos, but really couldit estableh a convincing angument for wiy or how tis grouping warkad.

The cubesthat are red, blue, yellow. fed has three cubsiand blue has thrice cubes and yellow hos tree cubs.

Theses all: three cloros in the each towers.

there two yellow in the bottom The red and the blue switch spots. There noway to move the red and the blue. I did the same thing for the reds and the bites on the bottom.

There two blues on the top and bottom. There yellow, red in the middle. There 00 other color for the Middle I did the same this (or red and yellow the red is in the top and bottom
the Vellow is in the hep

This gurop are onty law colors. The rist if has the same color an top and the second guroe ther ently yellew on top the thatod gur on there mily blue on top. The Girst garop I did red yellow yelber ved reat yeliots hed blue blee red red blue. Secona gurod is yellow vellow bhe yellos, Hie plue red thirg gurop sluece blue ba thira garop is biucilo blue yelloa, bive, yelbus bellou, blee rect, reds. blete, tblue red.

MC

The sudent's work concerned the. He reste 3 main groupe by beeping a censtant color on the top. He had a goup of gwith red as a conshant an the top. He broke it into sub groups. He slarted with a bower of all fed. Then he had 3 fowers with just red and blue and 3 towers with red and yellow. The lase 2 gowers were made up of all threa colore. I could des what he was trying to do and he expluined it io me by moviag biock and using the recursive argument Howret, when he went to draw his diagram and convinting argument he did not diaw or say what he lohe me. His nowt group, which lopt blue as absistant en top, orly had 8 towses and he wos mising The all blue tower. This was the easiest type of tower for him of find in the 1 wrop, so II expectad him to have it again. The grrangenwim of the other towers was almilar to that of the ones that had red as a consfant, and hes explanation was just beling the armangement of the blocks. He did not witi anyming cominding. Hes lant group, yellow 35 a consban on the top, hed 11 towers. He had 3 towers that were yellow and white, which were not angting. He was also missing the all yellow tower. Again, hes witice
 see growth pust as Brenda hod shown, espeoialy because he made improvements from the 1 thower problem and the pizan problom.

an Fopmoxt the on tep
I Hot Fred cop I pot
on the botton vowlaw on
I put lue on the buttwen
rod onthe mow bon tod ite

lost $\mathrm{x}+\mathrm{rac} /$ bot I'pobun

yowerlewtes

I put $\frac{2}{H E}$ red on
He bucthom cune
Hed why

youcentap
lost I Dut Fur on
low botker

Mary

The shotent improsed mee with her corfidence and independence lewt
during the the She went night to work and needed minmel assidange firoughout the toke She told me thet she whe using the same stratione that she uagd for the te problem. The tinat group was made up of towers anly one color For the ned group she kept constants on the top and attemaled the gher colors in the bolfom 2 pacitions. Fer axamplis the the 2 lowers in the group had the on the top she diombiad the yelow and red cubes fo tothest the pasible combinalong with the blue consiont on the top. She did the same for keeping red and yelow as conatants on the top For the next group she had howers of yellow and the. The te 3 bwes hed 2 yellow and 1 blue She moved the blue cube up from the bofom in the top. The next 3 had 2 blue and 1 yatrow. She meved the yellow from the bohon io the top. She used the same shrategy for trwes made of blue and red and towers made of ind and yelow. Mary used kesping a
 that ghe was abie to apply the same bralegher that ghe uned in the tw towers problem. Her withen explantions were net very comincing bowner her vebal empanations wire dear and detaiko.

BLI Bive TOWFHS THREE CGLOMS

 difirat polors ha the wase toriow wh

- boues I vold Efors cevi cx the tex
 ore tre 2 onec +4

connmiter

cober 4

$$
\begin{aligned}
& \operatorname{Grove} 3 \\
& \text { the }+4 y=3
\end{aligned}
$$

$$
\begin{aligned}
& 4 x+4 y \\
& 4 x y \\
& 4 y y
\end{aligned}
$$

I Tos tre tes

xa +40 thenty 3

Intevention Implamentation

 Whataliges ef kemphe conslants in dffemit bostions.

The gludents wownod to stugge with witite comindig agumente for their

 how Thay hed ehausted al biptorns.

Conclusion

Il learned a lat about the getual mathematics of the projpct. When il did the Fest iqwers problam, I shupaled to develop a woy of acganizing the gines that 1 made. II achaly shated by mating tpposte pairs. Fify parther then drueloped the blrategy of kerping cotsiant and then I applad the recurshe method to organce groups. I had not done mathernatical thirwing like this in quie gome time. It made me hesitant at frot when thiming about giving my chas the problem. Howerer, once I swe Dr. Landes implernematian in the etassroom I became much mene cormortable in my ingtuction of
 advanced stratoges than I hod inifolv comter up wh. As we did the otheir problens I was able to apply and devalop the strategess il used from the provious exarcise

During the implementaien of themo lesbons il leamed that I had completely underestimsted my studants. The showed perseveranot throughout the projects. Py shodenta were capable of solving the problems, espocially when uEing manjpluatives Their shugges where when they were abkod to eaplain their reasuning and rod efgo what they did. It was aleo fovdent that il nesd to incorponato writing info my leesens. Teachers do insopprate wing by proviang opon ended responses for shodents. However, in is impotan to ecaffold and support, this witing and have students revait it to analyze their thinuling and furthem develop their witing.

Appendix J

Teacher T9

Cyele 1t Towers 4 -all, gelecting from 2 colors

The following samples are from a sixth grode class. The class is titled Mathematics 6. It meets periods 5 and 6 , which is from $10: 42$ to $11: 56$, right after lunch. The class is an inclusion class. There are 15 total students in the class. Five of the students have IEPs and two have behavional plans. One of the students has a 504 -plan for dygraphia und usually requites a seribe The rest of the students are regular educution students. There is an in-chas gupport teucher with me in the class.

Work that Impressed Me - Cycle 1

This sample from Samantha impressed me because her mathematical reasoning was very clear. She clearly explains why there could only be two solid towers. Then, she moves to a recursive argument. She takes both solid towers and changes the top block. Then she moves that block down to each position until she had exhausted all the positions. Once she completes that pattern, she moves to having two of each color. She again used the recursive argument to complete her pattern.

I thought this was a very well thought out argument, especially since it was done so early in the year. Samantha was able to complete the task and give a detailed explanation as to how she knew she had all the towers. Most of my students were not able to do this so carly in the year. This impressed me very much.

You have two colors of unific cubes available to build towers. Your task is to make as You ny different looking towers as possible, each exactly four cubes high. Find a way to many different looking towers as poos have found all possible towers four cubes high, and that you have no duplicates. (Remember that a tower always points up, with the little knob at the top.) Record your towers below and provide a convincing argument why you think you have them all.
 only do wee because I switched the colors for: both towers. Then I starded doing 2 and 2 . I
took the wholes and swithed the bottom 2 , the top 2, and the midge two. I know that these Were the last ones beoouse where are 4 and
if your doing 2 and 2 vo u cant do anymore. And Fincticy I did the stipes

Work that Surprised Me-Cycle 1

This work from Zaire really surprised me. I typically do not get much work out of Zaire unless I am sitting with him and helping him. He has trouble processing his ideas. Unfortunately, he was not able to write his argument; however, his representation of his solution really impressed me.

You can see four sets of towers. I am not able to know exactly what Zaire was thinking, but it appears to me that he also used a recursive pattern. In his first set of towers, he has two blue blocks together sandwiched between two yellow blocks. It appears that be took the top block and moved it to the bottom position. He continued with this pattern until he exhausted all the positions. The next two sets show the blocks with three of one color and one of another. He shows the "staircase" pattern that many other students saw. He then drew the "candy cane" pattern, and finally the solid blocks.

This was impressive to me because it shows much more higher order thinking than Zaire has shown to me yet. His representation is very though out and organized. It showed me that I could push Zaire farther than what he was originally showing me.

Bullding 4-tall towers, sclecting from 2 colors

Work that Concerned Mc -Cycle 1

This sample from Devin really concerned me. His mathematical reasoning was not on target. He really tried to use prior knowledge that a previous teacher gave him. Unfortunately, he did not use it correctly.

Devin did get the correct number of towers and represented them well. However, his reasoning is very concerning. He said there should be 16 towers because 4 times 4 equals 16 . Mathematically, this equation does not fit this problem. He can see that the towers are four blocks tall, but he could not explain where the other four came from.

This concerns me because Devin is always looking for math problems to "fit" an equation. This is not the way to approach a math problem. He should be thinking about the numbers that are actually used in the problem to try and determine the correct equation. Devin tends to jump right to equations before thinking about what the numbers actually mean.

My Group and I thank this is all you can Make. because 4x+1=16. There de 16 different pillars of 4. My teach in lloydRoad said if there is a problepir like this do the amount
 in ore stan and
 Self so $4 \times 4=16$ ollas

Interyention Implementations for Cyele 1

For this cyele, I leaned a lot about my students. I feel that it was a great way to start off the year. It gave tre the opportunity to see how my students think and reason problems out. I was also able to see where my gludents need help in writing about math.

I learned that my students do not understand the concept of justifying their work and what it means to convince somene Most of them tended to just wrile what they did instead of why they did it or how they knew they were finished. I leamed that I really needed to address what these words meant if I wanted to get clear, concise thoughts from my students. I really thought this was great for me as a teacher to see right away in the beginning of the year.

I could have paired the students up better. I strictiy went on test scores to pair the students up. This did not work with this group of students given their limitations. For instance, the highest scoring student is on the autism spectrum. He did not work well with his partner who also soored very high on her testing. This is because he would not talk to her and she wanted to forge through the problem at a specdy puoe because that is how she does things. The next time I pair students up, I will remember to consider other factors besides test soores.

I have some students who just sat and stared at the bollocks because they were overwhelmed. I tried to encourage them to work, but it semed to frustrate them. If I had the opportunity to do this problem again, I would tell students who get frustrated so quickly to start with creating towers of three blocks high. I believe that this is an easier problem to takle and if solved corroctly, would give these students the encouragement to try the towers four high.

Cyde 2: Pizaz Problem, sulecting from 4 tuppings

The following sanples ste from a sixth grade class. The class is tiled Mathematices 6. It meets periods 5 and 6 , which is fom 10.42 to $11: 56$, tight after lunch. The clas is an inclusion dhas. There are 15 tolal sudects in the class. Five of the students have IEPs and two have betuvioral plans. One of the students hasa 504 -plan for dyygrephia and usually requires a surike. The rest of the students are regular cducation sudents. There is an in class support teticher with me in the ollas.

Work that Impressed Me-Cycle 2

The student that impresses me with this problem was Samantha. Her solution was the most thought out solution that I got from my students. She begins by talking about the onetopping pizzas and how there could only be four since there were only four toppings. Then she moves to two-topping pizzas, and so on. She does not discuss it in her explanation, but looking at her list of the pizzas, you can see that she kept a constant throughout her representations and thought process. She is; however, one of the only students that discussed how if you "flip" the toppings you would get the same pizza.

This solution really impressed me because her representation was one of the most organized that I have seen. She had a really well thought out solution. Even though her explanation is not perfect, she definitely had some good ideas. Her explanation of the twotopping pizzas is very confusing, but she does list them accurately. In all, I think she really understood the problem.

$P=$ plan

1 Ptpeppers
$2 p+$ sausagc
3 Ptradroars
4 pa papperoni
5 p+ pepperstsausaces
6 ptepeppert muenroure
4 ptpeppertacpperoc:
8 ptsalsage + musiscoams
a ptsausaget peppoton:
10 ptinushoumst praproci:
11 pt peppertsauseogetmushroom
12 pt peppert Sausaget pepperoni
15 pt pecpert salsage trousrioum + pepperoni 14 p+ pepperonitsausaget mushroom
$15 p+$ pepperoni + mushroornst pepper
16 p

Work that Surprised Me-Cycle 2

Garret's solution really surprised me because of the way he represented his pizzas. He was able to come up with the correct solution to the problem by drawing a separate tree diagram for each pizza. This really struck me because it took me a while to be able to interpret his work.

Once I sat with him and he explained his representation to me, I really got inside his head and was able to see what he saw. He was imagining each pizza separately, instead of in groups of numbers of toppings. He began with the four-topping pizza. When he moved to the two- and three-topping pizzas, he did not keep a constant. I cannot find any order io his list. He was still able to come up with the correct number of pizzas.

What I find really interesting about this solution is that what seems like chaos to me was completely understandable to this student. He saw it and was able to interpret the solution with this representation. There is one thing I am still confused about with his explanation. He says that be replaced the numbers with letters. I still have no idea what he meant by this. I am not sure if he meant the number of toppings, how many pizzas, or something else.

Wurk dist Cuntarat Me-Cyele 2

However, that did mit watk get math betior for the tou of thent, What Coydal did was

 plazs.

peppers saupage
peppers pepparon.
peppers - muthromus
peppers-cheese

mushrochs -scusge
mushrooss- peppers
Mursir iovars-pepporom.
mushroons - cheese
cherese-scusuge
cherse-peppers
checser-pepperon i
shour ms
pepperoni - sussoge
pepper on .- moshroom
peppeneni cheese
pepperon: - peppers

We hove every pizza combinotion
beouse we list every pixso toping and listed the nest of the toppings next to them.

Istervenciun Inplementathes lor Cock 2

 bugio with the leppings. They wanted to mike halt-and-lolf plone They deimed thet wes differet bian a twotopping pixa "misol" A few students wen moned to mike cilche slice a differen wpping. Thry wer reully milung ite problem much harder than it actually wes What was indereding to sex with these studers was how they reactal whan char sudent claimed os le finthod. They wor working on tens of plase with mo and yer lheir pees had finished so fist! They could not cumpethend that.

Another thing I nobled was that the studens had a lued thene bexuse they whly had pan

 diagram; howeer, dis proved to to very chancouing
 sould osnviee me they had all the opsons, the folt a grest sure of acomplishment. Ithink becuse if was sochalkeite for them, it measi moen to than when they got the unswer.

I am not suge whit enuld have toen betwr. Pertup somexhere in the dirostions I would coplain more shoel hew the wpplige could the usd. If feli wo lat tor the students who gol suck on diffornar ways to mide the pixas. I wish II buld have guided them a lithle more with lise purt
 throe kippings is clowe from.

 The rest of the shaderis ame regilar edrocilon students There is am in-elos support beachar wilh me the class.

Wark diat Impressed Me-Cyely 3

The staten whe reily improsed me with the tuck was Devin. He came a very loge way

 the posibilities wing blue se the tollom block

 nine porsibilitios by thes. Whike the frat task wher he fometly ued the equation thens 4
 towers.

 holding a corchert

- I think there are 27 Different

Towers because I dill A whole Solid Tower of Red and only 1 Tom er Then I did all the different combanatio. with red on the bottor and got Nine Different one's for just red on the button. Then I knew I had to do yellow ont thee on the button so I did 9×3.
Then I can prose that their is
Wine percalor on the bottom by
Staying the towsere is 3 block hag and $3 \times 3=9$ towers Each So then 9
block each Times 3 Different colots.

Bye on the cotton
Y how in the bode and ked on the to f I get 8 be
Dong the cone. Thing but
Swed reflow and red from 7.12 That all gl the, some pattie but without Brat on the gout tom I would Put ked of Yelow on the bottom

Work that Surprised Me -Cycle 3

 He quod up and actually worked!

For a student who wary gros me the fort minimum, doge was ole to repent the
 wa the tais tor the red and yellow, he kero there were two mon sets, ane with blur ind red

Werk thet Concermed Mr-Cpcle 3

 She just gugs they are the obvigu ares. Then lee explanation simply destiben "uppedtes" homever she does not distinguith between the opposile pain The hat pirs ste discusses and "triple puis" and cose thy are the ame bit in different forme.
 wery oovincing epecilly sinee she did not come up with the oorrod ancwori When Il loote at
 toures, she mate them whit rod and yellow and yellow and blew, but she grgot ahout red and Hun

 resouling pas in't these in the courts.

Explanation be know he hove fond all the prsible ways by matizsobuises is, and making I of exch way but, we did opposites of all of them so that made 23 prods, to show all of them we circled the pairs in priple.

The ph ene is apr brags they are all the obvious is.
The 2 nd gad is par because they are 2 oppistes of arch other. 4 \& pair begone they arepontwer pair The $z^{\text {id pair }} 15$ a pail because then, are so Bt oppistes. That goes for the quiçof $45,8,9,410$. The bo pair is a triple pair pecibse they gest ut the sane but in dicerent forms.

Intervention Implewedation for Cycle 3

This usk rally improsed met the moct. I am not sure if is la bocuse the stelats had the
 I implementod this tast in, the studens" mosning get batier and better.

Thered the the stodenta really have the cipacity to grow in sable a shor amount of time Their ruspenser pot more detailed and in-depth. Ihect to altrit, aftor the firci and wen the

II de rest thirk I would change anything atout this sevinn, I was very impressed and
 studenta redly towe right itio the problem. The completed bulldies the iowen faster and wow moch mare detulibd and coevineing siguments

Bellection Page

Appendix J

Teacher T10

Cycle 1: Building Four-Tall Towers, Selecting From Two Colors

Class Description

The class who I chose to implement the Cycle 1 task with is a regular level sixth grade math class at Matawan Aberdeen Middle School in Cliffwood, New Jersey. The class is held daily from 11:58 a.m. to 1:12 p.m. and is the students' third academic block of the day. The class is made up of 13 boys and 4 girls, with varying levels of ability. Out of the seventeen students in the class, four are basic skills students who receive additional support from a special education teacher who comes into our math period every other day for 36 minutes. In addition, several other students in the class have 504 s and plans implemented through Intervention and Referral Services.

For the first cycle, the task was implemented in one class period. At the end of the period, several students expressed that they were not yet finished with their convincing arguments, and were therefore given time on a second day to complete their arguments.

Kimberly's work from the first task impressed me. She has a clear method that her and her partuer used to solve the problem, by creating 6 groups of towers The first two groups show towers that have 3 ofone color and 1 of the other collor For example, her first group is of four towers, each ontaining three yellow and one blue In her picture, she arranged them with the staircase pattern, showing the blue cube in the bottom position, and moving up the tower in the three towers that follow. What most impressed me about Kimberlys work was her argument that deseribed this group of towers. Kimberly states, "We knew we were done with the 3 yellow because there was 1 blue per lovel and we knew the couldn't be another level beciuse the towers had to be 4 blacks in length." This was the most convincing part of any argument that I read from the entire class, I found that in this first task, it wis extremely difficult for the students to articulate a convincing argument, either verbally or written. Even though the other parts of Kimberly's argument were not convincing such as using the opposites strategy for the towers with two of each color, this one sentence was convincing as an argument for both the group with 3 blues and 1 yellow and 3 yellows and 1 blue.

You have two colors of unfix cubes available to build towers. Your task is to make as many different looking towers as possible, each exactly four cubes high. Find a way to convince yourself and others that you have found all possible towers four cubs the little that you have no duplicates. (Remember that a tower always points up, wat her when
knob at the top.) Record your towers below and provide a convincing argument when you think you have them all.
 I started making the 4 legth tower with 3 yellows We knew we had all the of them we went on to tr next one, which was 3 bleak. We knew the we done with the 3 y low because there was 1 blue per level af we knew the could nt be another level because the towers had ta be y brooke's in length we did the se for the 3 blue but there was one yellow per level. we moved on to make 4 length all blue towns an al) yellow tower. Since there was two 2 colors with so we knew we could only, make 2 tower of it. Then we did the 2 blue and 2 yellow and knew we had them all because we tried and tried We were done with that one. SO we know and were abosonith

Harrison's work from the first task surprised me. The argument that is shown on his paper is not convincing, but while working on this task, it was clear that Harrison and his partner both thoroughly understood the task and their solution. When I first observed Harrison and his partner, they had the towers organized as they do on their paper, into 4 groups. The first group contained the solid color towers, the socond group contained towers with 3 blue and 1 yellow, the third group contained towers with 3 yellow and 1 blue, and the last group contained towers with two of each color. Even though it is not recorded in their argument, their verbal argument was very convincing. For the towers with 1 blue and 3 yellow cubes, they organized this group with the blue cube in the $1^{\text {st }}$ position, $2^{\text {nd }}$ position, $3^{\text {rit }}$ position, and $4^{\text {th }}$ position. They described how they knew there could not be any more towers in this set because if they tried to move the blue cube to another spot, they would need a tower that was 5 tall. They created the same argument for 1 yellow and 3 blue cubes. They then found all the towers that had 2 blue and 2 yellow cubes. They started with 2 blues in the $1^{\text {st }}$ and $2^{\text {nd }}$ positions, and then moved them to the $2^{\text {sd }}$ and $3^{\text {rd }}, 3^{\text {nt }}$ and $4^{\text {th }}$, and $4^{\text {th }}$ and $1^{\text {th }}$ positions. Because there would not be any other place to put 2 blues next to each other, they had all towers in this set. Lastly, they described the alternating towers, and the solid towers.

I was very impressed with the verbal argument that they gave me, but what most surprised me about their work was that when I returned to their group to give them a recording sheet I noticed they had decided to rearganize their towers into pairs of
opposites. I asked them how they were going to convince me that there were no more opposites that could be built, and they were unsure of how to do so. I lef them to think about that, and when I returned to these students, saw that they again had their towers organized in a new fashion. They now had all the towers with the top block yellow on one side, and all the towers with the top block blue on the other side. With this arrangement they held a constant, but were unable to articulate how they knew that there could be no other towers with a blue block in the $1^{\text {It }}$ position or a yellow block in the $1^{\text {st }}$ position.

Finally after some discussion between the pair, they decided their original organization was the easiest to describe how they knew they had all of the towers and decided to reorganize the towers how they originally had them and began recording their work and arguments. It was surprising to see one group think of 50 many ways to organize the towers and to hear the things that chey noticed about the patterns and the ways in which they were able and unable to give a convincing argument.

Tommy's work from the first task concerned me. Tommy and his partner took a while to understand the task. They first created towers that were four tall and lined up next to each other to spell the word "Huskies," our school mascot. After further clarification of the task, Tommy and his partner then started to go through the towers they had created to get rid of duplicates and ended up with 14 towers. When talking to this group, they had no idea if they had found all of the towers or not and did not have any way to tell if there were more towers. I suggested that they try to group the towers in some way where they could tell if they had them all. Tommy and his partner came up with the groupings that are recorded on his paper, It appears that the groups do not have any meaning and there is not any sort of convincing argument. Tommy and his partner did not have any strategy to boild towers and really did not seem to understand how to check if they had them all. Their grouping is random and doesn't show any understanding of what the task was asking which concerned me.

Building 4-tall towers, selecting from 2 colors
You have two colors of unifix cabes available to build towers. Your task is to make as many differcnt looking towers as possible, each exactly four cubes high. Find a way to and convince yourself and others that you have lhat a tower always points up, with the little that you have no duplicates. (Remember tow and provide a corvincing argument why

Cycle 1: Building Four-Tall Towers, Selecting From Two Colors

Reflection for Cycle 1

I was impressed with my students work during this task. I really did not know what to expect, as it is not often in our structured curriculum that we engage the students in tasks such as this one. I often do engage the students with group work during our daily lessons, but it is typically smaller explorations that align with the topic of the lesson. I think the students really enjoyed having the opportunity to work on something outside of the curriculum with another student who is of similar ability.

This task showed me the variety of thinking and ability that the students in my class have. Many groups used the "opposites" strategy to make sure that they had pair for each tower that they created, but a few groups were more sophisticated in their reasoning These groups generally used parts of a proof by cases, showing groups of towers with 1 of a particular color, or 3 of a particular color.

The most challenging part of this task for most of the students was writing a convincing argument. Generally students were describing pairs of opposites, but that is not convincing to describe how they know they have all of the towers. I realized that we often ask students what they did, instead of why, or how they know they have a complete solution. After the completion of the first task, I found myself restructuring activities in class to allow the students to generate explanations that were not based on telling what they did, but instead explaining why they chose a certain operation, or describing how they know their solution is complete.

Cycle 2: The Pizza Problem

Class Description

The class who I chose to implement the Cycle 2 task with is a regular level sixth grade math class at Matawan Abendeen Middle School in Cliffwood, New Jersey. The class is held daily from 11:58 a.m. to 1:12 p.m. and is the students' third academic block of the day. The class is made up of 13 boys and 4 girls, with varying levels of ability. Out of the seventeen students in the class, four are basic skills students who recelve additional support from a special education teacher who comes into our math period every other day for 36 minutes. In addition, several other students in the class have $504 s$ and plans implemented through Intervention and Referral Services.

The student work in this cycle is from the same class as the student work in Cycle 1. The students were given one class period, but struggled to come up with complete solutions and written arguments as this task took them longer to figure out than the first task

Impressed

Griflin's work ens the most impressive of the solutions that I saw in this clisse. He clearly holds a constant to find the pizas that contain pepperoni, and works his way from pepperoni piazas with 4 toppings, to 3 toppings, bollowed by 2 toppings, and 1 topping. He then holds mushropms constant, and lists the pizzas that contain mushrooms, leaving out the pepperonil pizzas that he had already listed. It was clear that he forgot the pepper and sausage pizai originally, but later included it as his sixteenth pizza, Even though Griffin does not have a convincing argument, his organization was the clearest and the easiest to follow how he knew he arrived at his solution of sixteen pizas. He had an organized approach to solve this problem.

> 2. Pepperon:, mushrooms sausgge
> 3. Aepoeran, mushrosms. peopers
> F. Pepperon: sausage peppors
> 5. Pepperon: soukage
> C. Pepperon' peppers
> 7. Oepocron: mushtoorms
> - Pepuecton
> 9 .4bshioovs, कौusage. peppers
> [0 hushroonts. sausenge
> (1) Mushooon's peppets
> 'he Muskooros
> it Pepper
> $14,5 \sin u g x$
> 15. Platim
> Wo Sousoge and peppers
> We know we nave lo possiolities
> Decause we listed

The work that most surprised me for the pizza problem was Harrison's. The chart that Harrison created was an interesting way to find the solution of 16 pizzas. He explained to me the top row of the table was each of the pizzas with a single topping, In the second, third, and fourth rows of the table, he created pizas with 2 toppings and placed them in the "correct" column based on one of the two toppings in the pizza. Other spaces are left blank, because these pizzas would be duplicates of pizzas that he already recorded. I was confused by Hartison's organization, but it made complete sense to him, and allowed him to determine the correct solution. The final row of his table shows pizzas with three toppings, which don't treally fit into the organization in the table that he orighally told me about. The piza with all four toppings is off to the side. This was an original way to organize the pizzas, but I thinkit would be confusing for anyone else to follow, If Hartison wasn't there to explain it. His written argument Is not convincing or clear, buth his organization was surprising and unexpected.

I think that these are all the possible combinations because on my graph, all of the prizay are organized in a paitera. In my graph, it shows combinations for toppings, but it also prevent, from any burnings to be repented.

Carlos's work most concerned me with this task. His work on the front of the paper suggests that he began by listing a plain pizza, and then started to list pizzas with peppers and then appears to add a topping each time. He then does the same but starts with mushrooms. It is unclear in his writing what each specific pizza is, as each topping is only separated by a comma, and perhaps each pizza is separated by the same comma. When examining Carlos's work on the back of his paper, it appears that Carlos thought there would be 4 pizzas that started with each topping. He ends up with duplicates (peppers, sausage and sausage, peppers). The idea of adding a topping each time is a good way to think about this problem, but he doesn't notice that the order of the toppings does not matter. It is troublesome that Carlos does not recognize that there is only 1 pizza that contains all four toppings.

Carlos does not form any sort of argument for this task, and it appears he may have run out of time completing his pizzas, as he has a spot numbered 1.4 on his paper that is not filled in. Carlos and his partner struggled with how to start this task and how to determine the solution.

1 Peppers

I musiroom
\geq mushroorarpeper
3 mushroom, pepper isausages
4 mushroam, peppers, suusages ipeper and

Cycle 2: The Pizea Problem

Reflection for Cycle 2

In gencral, my stodente found this tak more difficult then the first bisk I think the lack of manipullatives made it tiflicult for thrm. In the first tasic thap could thange thetr drganiation of notice duplicates iffore easily. If they wanted to rethinit their orginization In then trate they mould have to revite their molutions, and getting them to writh is usually a which may have made it easier to gee if they were missingany pizas.
 guess and chedr solutien method. Some of the studenl groups hat an ongantend war to find the piesas focusing on the number of topplngs, but had trouble knowing if they liad all of the possibilitus in that catcgory Many studenta thought if was importint to driw a pirss to go with their description of indude chese snd sauce in thetr descriptien as well When reading their soutions this mede it more confising to find which plzzas ther were mising or where the duplicates were since mose of the student did nut organime their golutions in any way there were not grouplag and therelore they had more difficulty writing a oonvincing wrgament

I learned that my studeme better underbland something when there is a hands on
 them, and orpanization if weaknese. It geems as though they do not plan out a solution methed before thep siart, bell forit want to dive in and oome wip with a golution L apprectate the excivment and werness thet they book on the tate whin but it chould be grossed that
 thes or any problem of this type.

Cycle 3: Bullding Three-Tall Towers, Selecting From Three Colors

Class Description

The class who I choon to implement the Cycle 3 thask with if a regular level sisth
 hedd dally from $11: 58$ em. to $1: 12 \mathrm{pm}$ and is the studente' third academic bleck of the dyy. The class is mide up of 13 bogs ind 4 girhe with varying leneb of ability. Out of the
 support Irom a epiclal education teacher who comes into our math period ewry ather day For 36 minutes. In iddition, geveral other stadtats in the class hove 50te ind plans implemented throuph Intervention and Referral Servicos

The student work in this cyde is fom the ame class as the student wok in Crole 1 and Cycle 2. During this implementation Dr. Lantis and the other tewthers from my cohort were present. Dr. Lands introduted the task and the students worked as many adults observed and quationing ther thinking and reworling

Cratian's work mist improsed men for this tack Grisim cresked four groupe of bivan and one group of sta He limioted a key that hes overedets striped, ind dotrod towirs to thow the three difforent collors. The kep mady it clear to see the ditferences betwete the towers thathecriated. Though Gristian's vitten explastions arenot complety oombincing fit wes doar frum spalking ith Gristlon shat his portner that they had prout 3 to why ther were enactly 77 tovers
 slled the Blug, Rod, and Yellow proper Eath of thesu groups started with the tower of that single color. They then replecd each lerel of that towir with one of the wher two colors
 blue tomer, blue, yellow, blue torier, and the blow, blue, ydilow towtr. Cristian and hos patner scald thare werano other towers with blof and yellow becuse they moved the Fello down spiemsticily to iach position and the towers were only thee bises thll This get was omplebil with the blue and red towors uglide the game argumet as the blue and yHlaw timers. Ther repentud this argument ba complete the Rod and Yelow groups and arived at 21 towers. This wimanement was wey Lmpreshe to me

For while, Cristian and his partner were comvend then were only 21 tower, but then they reallacd they were mising the towers thet contaned all three oolors. They labeled this group the "riple color group Cistian mplainest that for flila group they

 the fratcube and gellow the firs cole, Thogh his writing doesn't fully explain this
 top color. Their rerbal argument was onvincing explanation of where the six tomers in the group come fom and why then were not any other towers in thls goup. Cristan and

Find all posible tuwes that ase troe cabes tall, velecting from oches anilable in etree different colon. La fee spaoe below, show ywur imlatiat asd provide a coevincing

Adifig work most gurprised me during this tark. Adingenerally strugples in math dass, bat is alwqe willig to put in his bete effort, 悬 ho did with this turers task fidan and his partiner Tomme worked sicoly in build the towers, without much organization. Atter they had several tomeri created, and were stack they ceeted groups of towers that had the same color as the bottom Bock, but they were still missing a few lowers. Iakked them how they lesw thep had all the towers that fit into cach categorg, and they startad to euplain ibowt moring rome of the other blocks around and finding pairs. They decided on en way to orginlese she blacks and Adan was going to work of one of the groups and Tommy another Afer this time they both had onganted them in different ways. Ather talking with some of the ardtes in the room, Adpa and Tommy both noticed thet in each group had thee towers that were had reil lops, thane towers erth blue tops, and thre towers with yenow tepre. Adan was then able to artienlatit that there were three towers that had rod botomes and red tops because there were thre colons to put se the middle bock. This argument wis the mast impresslwe solution that Aidm fornt while completing any of these tasks Though his writing doesint support what he sald during the ectivity, il waz wery surprised by hes work and persistence on thls tomers task

 unclear but hime dow sean bo be thy byinning of a contring argument

Find all possible warns dat are these cubes tall, selecting from cubes available in three different colors. In the space Below, show your soluricen and provide a convincing arguer dar you the found then all. Se bice pred bi yetiou

What I Did was I took blue, yellow, and Red for group. I took B and Y and I revesed then to get my 6 combinations and for number two I did the Game thing. I think. I found all my combinations becouse their are only three colors and It impossible that their, could be more combination's for group 7 = and for group 2 . Heir are ho more combinations because I grouped them into 3 groups and on the top are red, ted $\mid y, v t$ blue,blisel and then lust reversed the colors.

Cycle 3: Building Three-Tall Towers, Selecting From Three Colors

Reflection for Cycle 3

The implementation of this thale was easier than il had antidpated. I thought this task was going to be confuging for my students beowsw of the number of solntions and the bemplexity of using thriw differenteolers of cubes. The students really surprised me with their solutions and explarational Atter the pian task whom many of them struplat the stodents dembriced having mainpulativer once ggin as a holpill tool to solving this problem.

During this kesson the other teachers from my cohort were present. It think the students mere looking forward to eharing their goluthon with new aduls mot were exited about the ifes of impussing them eith their knowledge. Fiven my studetes that regularly sruple with task in class were secessful and thle to come up with comincing wrol argumints for the was thet thy arranged their towers

I think thet the gudent palrs used during this implementation were well organizad 3s the students remalned forosed and for the majority, worked opoperatively with their assigned partner inctead of fust next to them. During the first two tasks, there were more groups of students who workad parallel to each othen instawd of cooperatively, 1 think the counthes group activities and the implementation of the tesles have helped the ctudents' work ethic in cooperative groups grow. They realite the mense of ahared responsibility for the outeome but alfo an halivinal respensibility to complete their part of the assignment.

Course and Implementation Reflection

Throuphout the peurst I harmid new ind interasting thing about mathematical
 where I was impressed, confused, conoerned, or surprised by my sindets rathoming absitites. The sudenta truly enjoyed these tasks as it gave them an opportunity to bak a break from the curriculum and work on a challenging problem that hid mary differem way in which they could arrive wh corrost solution.
|l learred specific names for the type of mathematical proola that can be given for situations such as the task that we implemented It is interesties to determine that one trpe of proof can extend to mary probilem-solving sitistions. Though mitudents may met realiee they areging a prod by cases or an inductive proof, this cours had breadened my knowledge of the tppe of reavoing that my students are engaping in and glver me ways to dexaribe their thinking end reasolingstyles.

I hwe leamed that wy students hre strong warming sidls when gen the opportanity to explore tontepts that hive multiple wass to rowh a salution. It ts wonderful
 abilities and build on ldeas ath a partatr to eqplain how they arrived at in slution. The sucuss that these students coperlenced as a part of these taske made them more confident and excited to worlon the tashs lattr in the semester.

When I completed the firgt theset Futgers, myargument consbded of steps decribing how I onganized the towers to dhow that I hud systematically found all of the passibilities I did not completely understand thet a convindiep arpumint mere focused on

how you know you have all of the possibilities instead of the steps that were taken to git there. 1 think my stodents are still struggling with the development of writing a convincing argument, bat they were mostly able to give very convincing verbal arguments by the completion of the third task. I think that I better anderstand my students' struggles and frustrations as well is successes with reasoning tasks due to the implementation of these tasks. These are things that I will continue to work on with them and build so that they will be confident in their mathematical reasoning abilities and become perilikent and successful problem salvers in the future.

Appendix K

Descriptions of Recursive Arguments from Gang of Four Assessments

Teacher	Pre-Assessment	Post-Assessment
T4	Jeff is seen lining up all of the towers into a pattern that shows a yellow block moving diagonally across the towers.	When Jeff and Michelle's work was displayed I noticed their towers were arranged in what looked like a recursive pattern (a checkerboard looking) red dominant towers with one yellow cube arranged in a diagonal pattern across it.
T9	Then Stephanie gives her reasoning. She drew out the pattern. She was trying to convince Jeff that there are 8 ways to build towers of height 3. She drew out her patterns. First, she began drawing out all the towers with 0 B . There was only 1 RRR. Then she listed out the towers with 1 B. There were $3-B R R, R B R$, and RRB. She later explains that she used the strategy of moving the B down a level each time to make sure she did not miss any combination. Then she listed all the combinations using 2 B stuck together. There were 2 - BBR and RBB. Next she listed all the ways of 3 B . There was just 1 - BBB. Last she thought of all the ways to have 2 B not stuck together. There was just 1 - BRB.	Stephanie uses a systematic listing strategy to solve the problem. She begins by building a tower 3-high with all red. Then, she lists towers with 2 red and 1 blue. She uses a recursive pattern moving the blue block down until she exhausted all the positions.
T6	"Stephanie: Here is one red/red/red, blue/blue/blue and then I go like red/blue/blue, blue/red/blue "Stephanie continues to work with the colors this way and "moves" blocks down. Stephanie's argument was very unclear. I think Stephanie is doing a good job explaining that specific example; however, her reasoning does not convince me that she could use her method to make a prediction with x amount of blocks.	Stephanie talks about moving the blue blocks by position and convinces her peers when she shows them how she has moved it to each possible position.

Sources: Pre- and Post-Assessments for Gang of Four Video

Description: Transcript of teachers working
together on the four-tall towers problem; 9/7/13
Advisor: Professor Carolyn Maher
Location: Graduate School of Education, Rutgers
University

Author: Phyllis J. Cipriani Verified by: Victoria Krupnik Date Verified: 1/3/16
Page 1 of 24

Line	Time	Speaker	Transcript
1	$00: 00: 00$	R1	Okay! Um, probably what we want to do very, very briefly is just tell you a little bit about ourselves. Um I will tell you about me and Alice will tell you a little bit about her. Then we are going to get right into the task which I think you will enjoy doing. And it will be the same task that you will be doing with your students during the month of September. Right now, I am quote retired, I say retired because here I am teaching. But I was a school administrator for many years. I was a principal in Holmdel and Colts Neck. I was a director of math and science in Highland Park. I ended up as an assistant superintendent in Holmdel
2	$00: 53: 00$	R2 am happily retired and working at Rutgers.	
So that's me, Alice...			

Line	Time	Speaker	Transcript
			Judy and me to get to know you people and to get to visit with you in your schools to and Learn together about what your students are doing as we study together what...
3	00:03:22	R1	I think you will find that this is going to be a wonderful class for you in terms of looking at your own learning and looking at the learning of your own students. I know it is my favorite thing to do is working with teachers. Looking at your own learning I think Alice too Do we have unifix cubes?
4	00:03:42	R3	Yes
5		R1	How many of you have worked with unifix cubes in your classroom? Better question: How many of you have not worked with unifix cubes? Okay, alright not a problem. Um, I think what you will do you is you will get to experience what you can do with those today; here. And in your schools. Am I right Marjory, they should have unifix cubes all the districts?
6	00:04:08	R3	I think so. I will have to talk with Alice in the morning I am not sure about the district of Berkeley Heights.
7		R1	How about Matawan-Aberdeen?
8		R1	Oh, Matawan-Aberdeen? Your district was not in the PEMSM project last year.
9	00:04:31	R3	I will have to check with Linda and Amy.
10	00:04:35	R1	Okay. Okay. Every district should have unifix cubes. This is the fourth year of the PEMSM project. So, you want to search down for the teacher who has the unifix cubes and then you want to borrow them so that you can do the tasks. Okay, these are...can I borrow a set? [instructor used the cubes to show teachers] These are called unifix cubes. They are cubes that link together and when you get the bag you can check it out yourself. But they snap apart and they snap together. And there is a little chimney that we call here that we always want to keep facing top. Okay, because the task is going to involve you building towers of unifix cubes. Do we have the task?
11	00:05:37	R3	We do not have the task.
12	00:05:39	R1	We don't have the task. We will have to verbally say it. Okay. What you are going to do is you are going to select from the two colors in this bag and you are going to build with a partner so you are going to pair off as many towers that are exactly four cubes tall that you can build using or Selecting from these two colors. Now the task is beyond

Line	Time	Speaker	Transcript
			that once you build the towers, this is the key thing. You want to convince your partner that you built all the towers that are possible without having duplicates. If you have convinced your partner, you are going to kind of contact Alice or me or I don't know if Marjory is going to be circulating.
13	00:06:24	R3	I will be here for a minute.
14	00:06:27	R1	But whoever is walking around the room, You are going to pull one of us over and you are going to convince us that you have found all the possible towers that you can have four cubes tall selecting from these two colors. Alright. And once you can convince us, were going to ask you to write down your solution. Okay, So you are going to record your solution and your convincing argument and then when everyone is done, we are going to share your solutions with one another and you are going to see all the different ways that you have found for solutions to this task. Before you begin is there any question of what the task is asking you?
15	00:07:07	UCT	You said four high, right?
16	00:07:10	R1	Four tall, Yep, Okay you can begin. [Teachers begin to work-noisy!]
17	00:07:15	R2	Your solution and your way of convincing us you know is probably going to depend on your towers... so make sure your towers are written for right now....[inaudible based on noise]
18	00:08:01		[Teachers begin to work in pairs.] [R1, R2, R3 circulate to monitor work of the pairs of teachers for 35 minutes. One camera follows R1.] [Multiple conversations take place. Some partial conversations follow, most of which are inaudible until the entire group is called together to discuss which begins on line 205].
19		R1	That's good you are checking for duplicates (saying to first group R1 stopped at). [This group has the towers organized using the opposites reasoning strategy][Gives thumbs up!]
20	00:10:02	R1	[asks question to second group stopped at] How many did you find? How do you know you have them all? [response is inaudible]
21	00:11:06	R1	Okay so let me see if I understand.. Okay and if you look at this one here, okay. So you are pretty convinced you have them all here? And....[elevator strategy used] I guess...So this was a little trickier. Talk to me how do I know you have all those? It is not clear for me.
22	00:11:30	UCT	So first we started with two reds and two yellows one of a

Line	Time	Speaker	Transcript
			color.
23		R1	Okay.
24		UCT	Then we have one yellow and [inaudible]. Using the same technique ... two reds and two yellows then we put three reds
25	00:11:40	R1	Okay.
26	00:11:47	UCT	So then we took this red and moved it to the second position.
27		R1	Okay, so let me see. So you said you moved it to the second position.
28		R1	So you are pretty convinced you have them all here? (GH nods yes). This is a little tricky [getting the two of one color] Talk to me, how do I know you have all of those?
29		GH	First we started with two reds and two yellows. Then one yellow, moved the second red down one keeping the first red on top. There can't be another one with 2 reds on top. So then we took this red and moved it to the second position. That's one that I already had.
30		R1	Oh, I see, got it. So those were the reds in the second position. Then you did all the possible towers that you could do that. But I do not see the second red in this position. Where is it? Does this fit in this group?
31	00:12:23	UCT	It does because then we moved our starting red to the third position. We already had we put it in the third position [inaudible] because we already had a one top red.
32	00:12:38	R1	I see got it. Okay, okay. I think you would give me a similar argument for these. So why don't you, it looks pretty neat. These are going back in the bag so Why don't you record how you did your towers on paper and write me a convincing argument that you just gave me.
33		UCT	Okay.
34		R1	[speaking to the third group stopped at] What are you guys doing? Could we put the red in another different position?
35		UCT	There can only be four blocks in the towers.
36		R1	Okay, okay. Now the question seems pretty silly to you, but when you ask it to your students, it is a good question to ask. Towers 4 tall, why can't there be another position?
37		MM	It also gets them thinking about what if there was another position.
38		R1	Absolutely, absolutely. Okay good. So keep going
39		CD	So then I used 2 reds
40		R1	Okay
41		CD	And so to approach that I kept the first red always on the bottom.
42		R1	Pretty neat

Line	Time	Speaker	Transcript		
43		CD	So I can only get 3 options with where the red can go.		
44		R1	Okay.		
45		CD	Then I switch red to the third position.		
46		CD	Ahhh.		
47		Ro I get all the red on the bottom			
48		CD	Okay. 49 [inaudible response] So then I went to 1 yellow with 3 reds and moved my one yellow to different spots.		
50	$00: 14: 21$		R1	Very neat. Do either of you teach algebra? \quad I do. \quad	CD
:---					
51					
52					
$00: 14: 30$					
53					

Line	Time	Speaker	Transcript
68		UCT	We don't have 3 colors.
69		R1	No, so that is pretty convincing. That means the only colors are exactly two colors. How do I know that you found all the towers? What do you call this?
70		UCT	Opposites.
71		R1	Opposites, okay.
72		UCT	We should show them next to each other. We have a yellow on top.[inaudible]
73		R1	You have a tower [inaudible]
74		UCT	Originally that is how we did it. [inaudible-Showing Dr. Landis how they formed it] We went to the stack because we couldn't go any more down. We have a yellow on top. [inaudible] We already had yellow. Instead of the yellow..
75	00:17:21	R1	I see.[she asks a question-inaudible]
76		UCT	So we did it with the other guys. All our reds; second one yellow.[inaudible] Second one has all our reds and then third one yellow and the fourth one doesn't have it.
77		R1	Can there be a yellow in the top position?
78		UCT	No
79		R1	Okay, let me tell you if you said yeah..The second position, then the third...[inaudible].
80		UCT	Well we already did all of our colors.
81		TD	Oh yeah we did.
82		R1	What's confusing is let me tell you what is confusing to me. You say you have them here so you didn't have to repeat them here. I want you to think about rearranging the towers so that you can convince me because I wasn't working with you, so you can convince me that you have all the towers there are and there are no more. Okay, because I am not totally convinced yet. Call me back when you got it.
83		TD	Okay.
84		R1	[R1 returns back to the first group stopped at] Look at this. What is that?
85		UCT	We did it this way and we came up with 16 and then. Two one one high.
86		R1	Where did you get 2?
87		UCT	Well, one high. We were trying to justify.
88	00:18:52	R1	Ahhhhhhhh Okay, that's very interesting. Okay.
89	00:20:21	UCT	So we are adding two additional ones Every time you are adding an extra position. So for the ones that are one high, when you add a second block, you have a yellow, you could add either a yellow or red again; and to that red you add another yellow again. [inaudible] So you are adding two each time.

Line	Time	Speaker	Transcript
90	00:20:49	R1	That's beautiful. What you are doing is called an inductive argument. Remember that. Inductive argument is what you just explained to me is inductive. And what I want you to do is When we share solutions, explain how you can either put a yellow or a red here and a yellow or red here. Yeah, and that's really neat and you can carry that from here to here. Very very nice, okay. So does this look familiar? You said something about doubling it?
91		MC	You're doubling it. Two times two is four and that should be two squared.
92		R1	Now you said double and then you said it was squared? Is that what you said?
93		UCT	Yeah, Exponents.
94		R1	Exponents, okay.
95		NL	Well you could...There are two colors and there are five so two to the fifth is 32 .
96		R1	So Which is it? Two to the fourth to get 16 or doubled?
97		MC	Both.
98		R1	How about if I build towers 5 tall? How many would you get?
99		NL	32
100		R1	And how did you get 32?
101		MC	Right you add 2 every time.
102		R1	Okay, what if you did 2 to the fourth to get 16. How would you get 32 with five towers?
103		NL	There are 2 different colors and 2 to the fifth power are 32.
104		R1	OH . So now you are telling me you are using exponents and...That's pretty good.[inaudible response]
105		R1	Now again, [inaudible] you may or may not get that far. Okay, and there are people in this room that may not be able to see the link between the number of towers Based upon how many colors and how tall so that is really neat.
106		UCT	Yeah!
107		R1	What I want you to do is somehow make a convincing argument on paper in writing. Like how do you know that there is not another member of this group? How do you know that there is not another member of this group? How do you know there isn't another member of this group and how do you know there isn't another member of that group How much did you get?
108		UCT	16
109		R1	Five, ten, fifteen, I only see 15 . Could there be another one? Write a convincing argument for why each group can't have another member.
110	00:23:34	R1	[R1 goes to the fifth group] how about you guys. You think

Line	Time	Speaker	Transcript
			you have them, explain to me what you did and Why can't there be another tower with one yellow?
111		CP	We started with red and yellow...
112		R1	Could there be another one?
113		UCT	No because there are only 2 colors.
114	00:24:25	R1	That is pretty convincing. Okay, keep going.
115		CP	Then we started with the yellows and we took one red
116		R1	Okay. Now when you have opposite pairs and that is a good strategy but what you are doing is pretty confusing. But tell me why can't you have another red in the fifth position?
117		CP	Because then it wouldn't be four high.
118	00:24:30	R1	Now This sounds like a silly question to you but it won't be silly to your students. And you are going to want them to say to you; you are only doing them four tall so there is no fifth position; So then, this is very convincing that you have all the possible towers that have exactly 3 yellow and one red. Okay and I bet you can give me a similar argument. But I am not sure what this is all about and why are they partnering and how do I know you have all of them?
119		UCT	We have opposite pairs so we have two red here [pointing to two red blocks over two yellow blocks], two red, two yellow and then we just flipped it.
120		R1	Okay.
121		UCT	And we did the same thing here, we move red down and Started with one yellow and started to take the two red down
122		R1	Okay.
123		UCT	To this position so it is kind of like a rebuilding by moving the reds down.
124	00:25:45	R1	So what you are talking about is called a recursive argument. Moving the positions okay.
125		UCT	Then we had this same thing and then we had opposite pairs. [inaudible]
126		R1	Okay
127		UCT	Red here red here and yellow here[inaudible]
128	00:26:31	R1	MMhh
129		UCT	And it matched up here.
130		R1	I can see this, But you know it is not easy for me to see that. I can see this, and I can see this, but I think you need to convince me of this.
131		CP	That was one of the things we struggled with. We were like how can we set it up? If we take each of the opposite pairs and compare them.

Line	Time		Speaker
132		R1 Transcript	
133	$00: 27: 30$	R1	But then I would say to you: How do I know that there isn't another pair that goes into this group? So what I am going to do is challenge you to do is to see if you can rearrange them and call me back when you are done.
134		R1	[Back to first group] in the fourth position; there is no other way to put a single red or yellow so you know you have them all. So it is a convincing argument, not just telling what you did but why. Okay, good.
135		UCT	[R1 goes to a fifth group in the room] Do either of you teach algebra?
136		Un, pre-algebra.	
137		R1	You held a constant, that is what you did. which is a very nice strategy. [inaudible] Talk about how you solved it and what you did.
138		UCT	The second set is bottom yellow. What I wanted you to do is record on paper how the yellow is.. I don't
139		U1Itried to start with a pattern. 140	

Line	Time	Speaker	Transcript				
exhausted. Good.							
149		R1	This is nice but you are not going to say what you did.				
150		R1	Ilike the way you are showing me the groups.				
151		R1	Good.				
152		Did you write a convincing argument?					
153		R1	Not yet.				
154	$00: 32: 37$		Each person has to do their own writing. Everyone has to write their own, no, no no!				
155		U1	[inaudible]When you do this task with the children. Each child even though they are in pairs, is going to have a sheet to record their solution. Because even though they are working together, you are going to be very surprised...what they write may be very different. And even the way they solve it may be very different.				
156		R1	Okay. 157 $00: 33: 14$				
		Ukay now what I want to do is see your towers on paper					
somehow. These go back in the bag so I want to see how							
you solved it.				$	$	Okay.	
:---	:---						
158							

Line	Time	Speaker	Transcript
174		R1	red. Exactly, exactly. Sometimes what your kids will do when working with 5 tall towers is hold the middle cube constant. Holding a constant. It is a very strong strategy.
175		CP	So it is like a tree diagram is kind of the same what we did here. Well No it is not the same concept as a tree diagram but...
176		R1	Okay, It is similar. Not really because this is holding a constant which is a neat strategy. When you looked at this and you told me about it. That you are looking at cubes 3 tall. How many positions did you put the yellow in?.
177		R1	3 178

Line	Time	Speaker	Transcript
192	00:38:21	R2	You were saying that you changed..But this one..
193		UCT	You have it upside down.
194		R2	Oh!
195		R1	I was wondering what you were doing, Alice! [giggle]Okay.
196	00:38:49	R2	Here is this one and there are four different places I can change it.
197		R1	Okay.
198		R2	[inaudible] but what happened here? And then she said I can change that [showing staircase strategy] And then you said I can do that and start over again and change the bottom, okay and then[inaudible]. And back where we started. And so she did that sort of a notation.[inaudible]
199	00:39:38	R1	Got it, okay.
200		R2	But this is such an interesting perspective.
201		R1	MMhh. Good, tell me more about this.
202		VB	I started to do opposites but then I had to figure out where...[knocked blocks over]
203		R1	Wooo!! What about towers 5 tall? [inaudible response]
204		R1	When children do opposites, How do they know that there is not another pair? Okay, that is good.
205	00:40:20		[R1 calls everyone together to discuss as an entire group] Alright, can I have your attention? I have seen and Alice and Marjory we have seen some really neat solutions. And not all of you have solved the problem in the same way. And that is good. A lot of good strategies And they are not all the same. When your children do this, they also will do things that perhaps that you have not done. And Your eyes are going to have to be open to see whether or not mathematically makes good sense. Okay, and it is kind of fun. This will be the fun part of your teaching because you will be actually be learning new things from your students. And my best teaching was done when I was in a fourth grade class with very, very bright children and they were explaining things in a way that I hadn't seen it. And sometimes their solutions I thought were even neater than what I did. And that's fun so you are going to celebrate mathematical thinking of your own, right now as we look at different solutions you've done. Now when you do it with your children, I do not recommend that you do it the way we are going to do it here as grown-ups. I am hoping you are going to have either a projection camera? How many of your schools have that tool? Lucky people. How many of you have overhead projectors that if you

Line	Time	Speaker	Transcript
			don't have a projection camera? Is there any of you that don't have either of those tools? Wooo! Okay.
206	00:40:21	UCT	We have smartboards.
207	00:41:50	R1	Smartboards excellent. Okay. So I am saying that as long as you have a way for children to share their solutions other than talking about it. Because it is going to be very hard when we talk about the solutions here for all of you to see what they have done. We are going to do it because we are grown-ups and we can do it. But when you are with your students you are to want somehow their towers and solutions to be shown so everyone can see it. Okay.
208	00:42:12	R2	You know there are lots of ways to do that. If you are a low-tech class, one really good way is to have tag board like what's there on the wall and have them put up paper on the wall and do whatever and have them walk around. You are all teachers you know how to do all these things and the looking at the different solutions. The chartboards are wonderful!
209	00:42:44	R1	Absolutely. Absolutely. I know it can be done. Sayreville I remember 3 years ago didn't have the technology and I remember they did use the chart paper and it was very successful. Okay, so what we want to do is we want to first look at what you have done okay, how you solved it and we want to hear your convincing arguments and then we will talk about how you're going to do this with your children in school. Okay. Alice, so which group should we start with? Do we have a starting point?
210	00:43:20	R2	Sure. What for all of you, sort of what was the first strategy in here?
211	00:43:30	MM	Just to start with all one color. I think. And then move on from that.
212		R2	Yeah, moving starting from one. How did you do yours?
213		MM	I started with all one color. And then I added in one of the other color and I knew that it could be in either the The first the second the third or the fourth position.
214	00:43:50	R1	You know what I am going to do.... Your partner I am going to ask you to hold up a group as she is talking about it. Because then the rest of the people will understand because It may not be the way that you solved it. Okay. Can everyone see what she is holding up?
215		UCT	MMhh.
216		R1	Okay, keep talking.

Line	Time	Speaker	Transcript
217	00:44:05	MM	So I had four of one color and I had it in one of the other color. And it could be in either the first, the second the third or the fourth position. And then I knew if I did it that way, I could reverse it and do it with the other colors as well.
218	00:44:16	R1	Okay, Before we leave, I am asking the group: for the group she just made, it looks like it is three of one color and one of another color. Could she have another tower in that group that has exactly three yellow and one red?
219	00:44:33	unison	No
220		R1	Did she skip one? Why not? I heard a lot of no's why not?
221		MM	Because the red is in each of the four positions.
222		R1	Okay. She gave you the answer because the red is in each of the four positions. Okay I am going to say why couldn't she have then the red in the fifth position? There is no red in the fifth position?
223	00:44:52	unison	They are only 4 towers.
224		R1	Oh, the towers only go 4 tall...Now again you are going to say: Why am I asking you such a ridiculous question? Your children will not think it is so ridiculous. And you are going to want to push them to really be thinking about why they are saying that they have all the towers that are exactly three of one color and one of another. Keep going.
225	00:45:12	R2	To follow up with that as you are working with your kids, they when you say why not why not. They think you are asking for some really complicated answer. When what you are really wanting is what they know. Which is Hey look lady, there is only four.. [laughter] for instance many of you said there was these 2 [holding up all red towers and all yellow towers] but how many were there?
226		unison	2
227		R2	Are there any others that are only all one color?
228		unison	No
229		R2	Why not?
230		unison	There are only two colors.
231	00:46:02	R2	There are only two colors. Kids are going to think you are stupid. But what is so important is for them to realize the way they are thinking is logical.
232	00:46:13	R3	The other key point of what Alice and Judy said is that the idea of 4 positions and two colors, means well what do those ideas represent? Are they the additions of the problem? So any time we are doing a math problem you know one of the big ideas is what is the problem asking you to do, what are the rules or constraints of the problem? And so asking a question that is getting a student to

Line	Time	Speaker	Transcript
			address means that the student knows what they are solving. Because someone could come up with a different answer and might be solving a different problem and it would be important to know that.
233	00:46:58	R1	Also your children your students need to know that when you are asking them a question, that it doesn't mean that they are wrong, it means you are trying to understand how they are thinking. Throughout this semester, they will get to understand that. That when you question them. You are curious to know how they are thinking.
234	00:47:19	R2	It's okay to not understand what they are doing. I must have been over here with Victoria for how long? And it was because...[laughter] it was that she was organizing her towers in a way that I had not really thought about before.
235	00:47:46	R1	How many of you at one point organized your towers like this [holding up elevator pattern] Did any of you? I thought I saw somewhere... Yeah...Yeah. Many different ways to organize.
236	00:48:00	R2	But I would like...Given that you just held that up. Because when Victoria was doing this, I saw it. But I didn't quite understand what what her logic was. Can you help me?
237	00:48:15	VB	I just thought it was easier for me to kind of be more organized with it. Knowing that I had all red. Now I have to add a yellow and there are only four blocks and So then I had to take away one red and the same thing there so that I had to take Two yellows so I knew I had to take away a red block that would be 4 total I knew there were more solutions. To where I started This is where my issue was because then this is where I got a little disorganized so I started rearranging them all and go back... But lauren helped me and she was like just do the opposite right away. So I was making it more difficult on myself so that way was easier. But then once I got to the end I had to go and double check what I already had it because we rearranged it.
238	00:49:02	R2	So this arrangement, gave you 8 of them. I think. Really logically and what Victoria said that it took me the longest time to understand what she was saying is. Look it! there are four spots that I can change a red for a yellow[holding up staircase pattern with yellow on bottom and red on top]. And yet this one then there are four spots and I can change this red for the yellow then there are four spots and I can

Line	Time		Speaker
		Transcript	
change this red for a yellow and then after this one, what			
did you think was next tower?			

\hline 240

\hline\end{array}

\hline 241 \& \& Ubsolutely, it was all yellow. And then she started again

and what do you think was next?

Red at the bottom.

\hline 243 \& \& UCT \& $$
\begin{array}{l}\text { Mmhh. }\end{array}
$$

\hline 244 \& 00: 50: 04 \& \& R1\end{array} \begin{array}{l}See, Isn't that fun? [laughter] It was fun for me because it

was a whole new idea.\end{array}\right|\)| Let's go back to hearing the rest of your solution. Okay. |
| :--- |
| 245 |

Line	Time	Speaker	Transcript
258		R1	Hold one up at a time.
259	00:51:48	MM	I started off with two colors of each and having them stuck together each so that they are occupying positions right next to each other. Then I kept one of the colors stuck together so they are still occupying the same 2 positions. And the other colors I didn't want stuck together. The only positions that they can occupy that way so that these stay stuck together. And Then I can have them so that all of them are not all stuck together are the first and the fourth position. And then I can have them so that they are not all stuck together and there is a specific way that they have to go as well. Well two specific ways that you can go for that. So you have one two one two.
260		R2	Okay, I don't understand why when you have the two of them that were stuck together, there were two on top or whatever they were. And then they moved down to the middle put the reds on the top. Okay, and then that one down there by your hand. Why can't you put two reds on the bottom?
261	00:52:54	MM	You can.
262		MM	I did the opposite.
263		R1	She did 3 and then she did the other 3. So she will have two red at the bottom...
264		R2	I understand that. But What I am interested in.is sort of Two different strategies that you are working on together. You have the two and the two. But For those of us who looked at that video then in, why not go all the way down but you said no, no, no that is not what I am doing [laughter].
265	00:53:32	R1	And that actually is...Stephanie does that too. By the way, when you watched the video did Stephanie already talk about stuck together and stuck apart?
266		Unison	Yes
267	00:53:48	R1	Okay I thought it was interesting that they were using stuck together said that they are stuck apart. So that was kind of neat. Alright, There was a group I don't remember where you are that actually held a constant; I saw either the top or the bottom one color. And this group did it back there. Can you have your partner hold up the cubes and you tell what you did. Because this is going to be a very different way of organizing the towers.
268	00:54:26	UCT	First we started with all of one color and then we decided to just keep the bottom ones consistently red; not to change that. So then we went and said, well this one has no yellows so let's just use one yellow at a time and there is

Line	Time	Speaker	Transcript
			three positions that one yellow can occupy, keeping the bottom one red.
269		R1	Can you show us those three positions?
270		UCT	So we had it in the second and the third and the fourth; but we are still keeping the bottom red.
271		R1	So does that look at all similar to what they did? The way they had three of one color and one of the other and they moved it to each of the four positions. They only have 3 positions why to move it.
272	00:55:08	unison	The bottom is constant.
273		R1	Ahhh, Keeping the bottom constant is a really neat strategy.
274		R2	Can I just stop for a second? What's the difference between that structure and between what Roberta and her partner did?
275	00:55:26	UCT	The top is constant.
276		R1	Does it matter if the top is constant or the bottom is constant? Absolutely not! In fact, You will actually see students when they build towers that are five tall. They may hold the middle cube constant which blew my mind the first time I saw it. But it's just fine. It doesn't matter which they are holding constant. It just makes the problem a simpler.
277		R2	But you can't change.
278		R1	Once you start a strategy you are stuck with it. But it doesn't matter which cube you are holding constant. Keep going
279		UCT	So then we had the 3 towers which is one yellow. So we wanted to use 2 yellows. And do the same thing Second and third or the second and fourth or the third and and fourth.
280	00:56:25	UCT	The last choice was still keeping the bottom red but having the other 3 yellow that only go first, second and third once we had those...
281		R1	How many did you get when you had red as a constant on the bottom. How many towers did you find?
282		UCT	8
283			Rest of the group how many towers do you think they had yellow as the bottom constant?
284		unison	8
285		R1	And that is a really powerful thing for children if they are holding constants. Sometimes you will see that they will have a group of 8 towers with red on the bottom and a group of 9 towers with yellow on the bottom. And they are

$\left.$| Line | Time | | Speaker |
| :--- | :--- | :--- | :--- |
| | | Transcript | |
| | | | not disturbed by it. And sometimes they are disturbed by it.
 Because they think that it should be the same. But
 It will be interesting to watch and see that if your students
 are forming groups, that they are going to know that the
 groups should have the same number.
 Not your job to tell them they have the same number but to
 see are they disturbed that they are getting 8 with red on
 the bottom and
 9 with yellow on the bottom and vice versa. Good okay.
 And a convincing argument...Once students convince you
 they have all the towers with the red bottom, they really
 will be able to convince you they have all the towers with
 the yellow bottom.
 Good. Was there another strategy Alice, that you saw? |
| 286 | $00: 57: 50$ | | R2 |
| 287 | $00: 55: 08$ | | R1 | | Well, Just the group that was over here had two or three |
| :--- |
| different ones. The first one did it very much like you all |
| did over there. You did the red and the yellow as opposites |
| and then you did one color | \right\rvert\, | Okay. |
| :--- | :--- |

Line	Time	Speaker	Transcript
			with this one and trace it up. if you look at this, if you can show each four tower, this one, this one, this one, this one... And so you could see them all but you kind of had to imagine whereas those back there and I think there were other couple of more places. You could actually build each level. Because it could either be and so that helped you to move to the next level; So that convinced you
300	01:00:40	R1	So if you are telling me that towers four tall have how many towers?
301		unison	16
302		R1	16. What would you think towers 5 tall would have?
303		unison	32
304		R1	And 6 tall?
305		Unison	64
306		R1	Now, How do you get those numbers?
307		UCT	You are doubling the outcome.
308		R1	You are doubling the outcome. What do you mean the outcome?
309		UCT	So say okay so if I have 5 tall towers, 5 times 2 is ten but you are not doubling the position you are doubling the outcome. So you would have 2 , then 4 times 2 is 8 .
310	01:01:38	R1	So that is your outcome, Can anyone say that another way?
311		UCT	We started off by doubling the outcome. And then we looked at it in the form of exponents. We saw that if you kept the base, Exponents change depending on how high and then we saw that four cubes high you would get
312		R1	So...
313		UCT	You would get 16 results.
314		R1	Okay, okay. Now when you have children that think they're multiplying or doubling rather than exponents. When they are told to build towers 5 tall, What do you think that they could possibly predict as their solution? How many towers do you think they will find?
315		unison	25
316		R1	They might say 25 because when they built four tall they got what?
317		unison	16
318		R1	Sixteen is 4 times 4, isn't it? So logical for five tall, five times five; if they do that, and they start using the strategy of a tower and it's opposite; what happens with 25 ?
319	01:02:41	unison	They get an odd number.
320		R1	Odd number and then they go... I have actually worked with middle school children that said well wait a minute I have to revise that. It can't be five times five, it must be

Line	Time	Speaker	Transcript
			five times five minus one.
321	01:03:00	R2	And you know why they did that. Because when you ask these kids what about 3 tall. They automatically say 9 . And that is easy to disprove and it is 3×3 minus one and so that one is 8 so then they say that the next one must be 24 because you are adding 8 you know every time. and so this is when you
322		R1	And it is interesting the next thing after you do building towers 4 tall; is you are going to have a sheet \& Both Alice and I have on eCollege \& we are going to show you how to get to eCollege if you haven't yet figured it out. But what you are going to do is you are going to then have a sheet that says to students: I don't want you to build, but I want you to predict. How many towers do you think you're going to have if you are building 3 tall. And why? Most of them I predict aren't going to come up with 8 They might come up with 9 , and the 9 will be because of 3 times 3. Okay How many towers do you think you are going to get if you build 5 tall. So that would be a prediction with supporting answers. And then you might um, In some of your classes, not all, some of you may be done in your period. I hope you all have an hour math class.
323			No.
324			If you don't have an hour math class and If you can't get your handy dandy principal to arrange it so that you can have the one hour math class. if that is impossible, then You are going to have to do this over two days. If you do it over two days, it will just be a little more of a problem for you. What you will have to do is once the children build them the first day; you don't want them to start over. What you will do is you will have a baggie for each group and you will take their towers and If they arranged them in pairs let's say, you are going to Tape around the pair and stick it in the bag. If they arranged in groups of four or five; you are going to take their group and Put masking tape around it and then stick it in the bag. That way when they come back the second day they know what they built the first day and They don't have to start from scratch. Okay.

Line	Time	Speaker	Transcript
			The idea of having a longer class really is helpful and I will tell you it is much easy not to revisit because One day they can forget everything they did the day before
325	01:06:00	R2	It will take 10-15 minutes to get them back up to the spot that they were.
326		R1	So It is harder for you. Um, if you are in a school that is really locked; you might have to do it in two days. However, I know that our math classes were not an hour long. They didn't do that back in those days. But yet I was able to creatively work with the teacher. Maybe to combine related arts with a math class. Maybe I was able to back it into a lunch time...I was able to do something that allowed them to have that extra block of time.
327	01:06:41	R2	It is harder.
328		R1	It is, but even with some of the middle schools. Some were able to be flexible. Some of the schools. Sometimes your principal has enough on their plate and It takes work. But sometimes you will have an administrator that will be willing to work with you. It will make it easier for you to do it in one block, and not in two.
329	01:07:13	R2	Judy, can we talk about the understanding?
330		R1	Absolutely.
331		R2	I am sure that those of us as we sit around the room, As we listen to what each other are saying some of the ideas but you don't understand others. And as you are working with your kids, your goal is for them to start thinking about these ideas but not necessarily to get to where we are even right now. But over this semester we are going to be working on a series of tasks and they are related to each other. And Some of these ideas we will return to. So that by December, you say oh that's what they were talking about. But what I would like is if...Could you describe a little bit of this organization that you did? This is also what you do when they are done
332	01:02:41	UCT	Alright so we started again with the one cube high tower and we saw that we didn't have no reds or one red. So there are two possibilities and 2 combinations when we have one cube high tower. When we moved onto two cube kind, we can have No red, one red, which is four combinations and two red. So altogether we have 4 different combinations for 2 cube high towers.
333		R1	Interesting she is not saying yellow she is saying what?

Line	Time	Speaker	Transcript
334		unison	No red.
335		R1	No red
336		UCT	Okay and then again we started with no red, 1 red,...
337		UCT	Notice they had the elevator.
338		Three red. When we looked at the previous combination, we saw that when we add two plus one, we would get three possibilities for the following combinations. I don't know if I am explaining it.	
339		R1	You are doing a very nice job. A very nice job, it is not easy.
340		UCT	And then the last one for the four cubes high, is no red, one red, two red, three red, and four red. And again These numbers build up from the previous combinations.
342		R1	Could you explain that?
343		So for example if I have No red here for the 3 cube high and one red here if I put them together I have four combinations. And then for the four cube high I have four combinations of one red	
344		How about if I take 3 cubed high and I take these [yellow with red elevator] \& these [red with yellow elevator] and put them together; where do you see that in the four cubes. Ahh.	
345		UCT	It would be 1,4,6,4,1 346 347

Line	Time	Speaker	Transcript
349		R2	Yes
350		R1	How can you be sure? But that is a question that is not so obvious to the kids.
351		You did a phenomenal job. Cubes have to go back in the bags in stacks of ten and then we will break up into 2 groups.	

R1- Dr. Judy Landis
R2- Dr. Alice Alston
R3- Dr. Marjory Palius
UCT- Unidentified Cohort Teacher
Any initials-identified cohort teacher

Description: Transcript of in-district classroom visit
debrief meeting
Advisor: Carolyn Maher
Location: TRIE, NJ
Date: September 17, 2013

Line	Time	Speaker	Transcript
1	00:00:00	R1	We had a meeting in the beginning of the school year and we talked about um, you know what kind of questions you want to use. Um, and we talked about having them, you see how today it was really good. You see how we had the problem written out and if you give out a paper, that has the problem, they are going to start writing on the paper. And they won't go to the unifix cubes which is going to take... it will not be good for them to do that. So what you want to do is don't give out the papers until you see that the students have worked with the unifix cubes. Built the cubes and actually talked to each other about as convincing an argument as they can get. Now these kids we pushed them far and they're $8^{\text {th }}$ graders. And they also are regular ed. and they also are...Is there any inclusion, here?
2	00:00:50	UCT	There was one.
3		R1	Okay, okay but they are ...what
4		UCT	[unintelligible] Sometimes she got confused with the directions. The way he explained it. It was interesting the way he did it.
5	00:01:07	R1	But sometimes it's very hard to tell who your special ed. students are and who your Regular ed. students are. In fact in a good class you can't tell. When I would go in when I was a principal in a school and we had all inclusion, um and, I would go into a class and I would try and figure it out, like, who are my children that have special needs. And, I really had trouble doing it, and that's a good thing. You don't want to be able to figure that out. And you really want to trust that the Special Ed. kids are going to do good stuff with this problem and they can. Um, who was concerned about giving colored pencils?
6	00:01:45	T3	I was.
7		R1	Okay.
8		UCT	[Unintelligible.]
9		R1	And it's okay. We've had children, high school students from The Academy at Long Branch. Who was that? That's you. [Pointing] And, ah, at first, those teachers say, Oh my g. And not only resource but its children with really...

Line	Time	Speaker	Transcript
10	$00: 02: 02$	T4	They don't do anything unless they have some sort of motivation.
11		R1	Not true. We got wonderful stuff from those students. Um...
12		T4	Yeah, but they won't put anything on the paper unless they have some kind of motivation.
13		T3	[Unintelligible.] They need an incentive.
14		R1	They need motivation to do something on paper. They won't ever touch the paper unless you give them a little incentive. Like...
15		R1	What would be the incentive?
16		Tha could use markers or colored pencils or whatever	
[unintelligible].			

Line	Time	Speaker	Transcript
34		UCT	Boxes.
35		R1	Okay. So they actually made something that looked like a unifix cube. And um, did they put anything in the little cubes?
36		UCT	Shaded. They shaded it.
37		R1	They shaded it, okay. And I actually saw some of the people who were shading; they made you a code. In case you couldn't figure out that what was here was... What colors were they?
38	00:03:54	UCT	Yellow and red.
39		R1	One was yellow. One was red. They really made it very easy for you. Did you see another way that students recorded the towers?
40		T4	Some of them just used the letters. [Unintelligible]
41		R1	Exactly, and they didn't have any boxes. And they used an R for the red and a Y for yellow. They even included a little [unintelligible] in case you couldn't figure it out that the Y was yellow and the R was red. Um, and that's really neat. I mean that is a nice strategy. Almost kind of like using a notation, algebraic notation where you take the first letter of the word and then, represents the color that they use. Did you see any other way that they did it? [Pause.] Okay. Everyone today that used the R and the Y , were they writing the towers vertically or horizontally?
42	00:04:49	unison	[Multiple responses.] Vertically.
43	00:04:50	R1	They were writing it vertically; and that's more common. However, I have seen students take a tower that's a, uh, green, red, and yellow, and they decided that they read from left to right, so they're going to build, or they are going to write or record their towers, from left to right. So if they had this tower, they would not record it this way. [Demonstrating.] They would record it this way [turned 4tall tower to side] [Unintelligible] Okay, here's the top of the tower. So they would write on their paper: R-R-RYellow. Okay? As long as they always have the tower pointing the same way, this is fine. They understand it; it might be hard for you. I've had teachers that when they saw it written this way they said, oh my god I can't think of it that way, I have to think this way, okay. So, uh, there are lots of variations. Um, if you have students that, um uh, you know some teachers asked should we get them graph paper, should we get them rulers, again no! Because you're going to lock them into... What if they don't want to build this and shade

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & \text { Speaker } & \begin{array}{l}\text { Transcript } \\ \hline \text { it, or build it or put R-R-R-Yellow? [Demonstrating.] } \\ \text { You want to give them the freedom to, to do it the way } \\ \text { they want to do it, okay. You don't want to lock step them. }\end{array} \\ \hline 44 & 00: 06: 14 & 00: 06: 16 & \text { UCT } \\ \hline \text { But if they ask for it? } \\ \text { I would...I...if they ask, you say, you know, if there any } \\ \text { tool in your room normally, do you have a math center } \\ \text { where you have certain tools? No? But you might want to } \\ \text { for this say, well here's a whole bunch of stuff, if you } \\ \text { want, you don't have to use any of it, but if you want to it's } \\ \text { here if you want to come and take it. And don't give it out. } \\ \text { Okay. All right? Um, I really think trust those Special Ed. } \\ \text { students. I have seen some of the neatest solutions from } \\ \text { children with special needs, um, because they think outside } \\ \text { the box sometimes. And their solutions are, um, creative } \\ \text { and, um, I think it will be interesting for you to trust that } \\ \text { they can. Now, what happens when you have children that } \\ \text { are working and they look really stuck? They look like } \\ \text { they are getting frustrated. Do not make them cry. Okay? } \\ \text { That's possible that you can do that. Younger children } \\ \text { especially, when I've done this in the elementary school, } \\ \text { um. Sometimes they reach such a frustration level, uh, } \\ \text { they...they actually, uh, they're releasing it by crying. We } \\ \text { never want to push a student to cry, okay. }\end{array}\right\}$

Line	Time	Speaker	Transcript
			and what you think you saw. We didn't, uh, make transparencies of everything because there are too much transparencies.
46	00:09:40	R1	Are you cold? Oh my gosh. Okay. Alright, let's see. Should we kill some of the lights so that it'll be a little easier to read it? Okay. Alright, now this was G-----working with E---, where were they sitting?
47		UCT	They were the two in the back end of the [unintelligible].
48		R1	Okay so, did anyone get a chance to talk to G------ and E--? Or did anyone get to look at G------ and E---, the two that had been doing this before? Okay, so it'll be... and if you didn't, now is your time to really look. Can you see how they grouped? Is this clear enough? Your eyes are better than mine. So I want you to take this time to look at the groupings that they did and see if you can figure out how they grouped. [Extensive pause.]
49	00:10:37	UCT	He did singles, two colors, two colors and opposites.
50		R1	Okay, so basically, you're calling singles...
51		UCT	Like all one color.
52		R1	All one color, okay.
53		UCT	And they did one way and then the opposite. So that's why there are two in each group.
54		R1	Okay so you're saying this is a tower and it's opposite. This is...is this also a tower and its opposite?
55		UCT	MH.
56		R1	And, is this?
57		UCT	Yes.
58		R1	What about group 5?
59		UCT	Group 5 is that diagonal like. I just meant diagonal was all one color. [Unintelligible. Multiple responses.]...One...one different color. [Unintelligible.]
60		R1	Good. So it's a group of 3 of one color, and one of the other. And the single color goes up on the diagonal. And what about group 6?
61		UCT	That's the opposite of the fifth group. [Unintelligible.].
62		R1	It is, okay. Also a group of three and one. Okay. How many of you got a good convincing argument for the groups that had two of one and two of the other? Or was that where the children had trouble?
63		unison	[Multiple responses.]
64		R1	It's easy to make a convincing argument for the 3 and 1. Right? Especially when they put a single cube going up in every slot. It is easy to make an argument for the solid towers. This is the harder part, isn't it? Okay. So what did they say for, let's look at group $2 \ldots$ well let's start with

Line	Time	Speaker	Transcript
			group 1. What did they say? Can someone read it? [Pause.]
65		UCT	Alright, group 1 says, you can only have four blocks and then you have one yellow in the first one then the second one is the alternate color [unintelligible].
66		R1	Okay. Is that convincing? What might they have said to really let you know why they have all the towers in that group?
67		UCT	There are only two colors.
68		R1	Yeah, there are only two colors to choose from, and one was all red and one was all yellow. So they, they must've left a piece out, okay. I know they know it though. Alright, so how about group 2? [Pause.] Someone else...can you, can you see it?
69		UCT	You can't have any other combination in this group because of the two yellow on the top, two red on bottom, and then we did the opposite; two red on top, two yellow on bottom.
70		R1	Okay, is it convincing?
71		UCT	Well within that group but [unintelligible].
72		R1	Good within that one little group two, yes they have it, but that doesn't yet convince us that they have all possible towers; all 6 of them that are two red and two yellow. What did they say for group 3? [pause]
73	13:31:00	CP	We did two of each color, red on top, \& two yellow in the middle, and one red on the bottom. For the other one, we did one yellow on top, two red in the middle, and one yellow on the bottom.
74		R1	And students do a good job of telling you what they did, okay. You're going to see that happens a lot. You don't really want to know what they did; you want to know why they think there aren't any more in that group. Okay? So, is their argument or is their writing for group 3 convincing? [Pause.]
75	00:14:10	CP	Sure, I think the right combination.
76		R1	Umm...
77		CP	1-2-1. The one color, then two of the same [unintelligible]. One being the same as the other.
78		R1	Okay, so that is group 3 here. So they have the two there and they made those there so. Was there any other way that they could put the two in the middle the same with the opposite color on the top?
79		CP	No.
80		R1	No. Okay, so, within this group you can say they exhausted the possibilities? Umm...let's see, do we have the....
81	00:14:52	UCT	Yes, we have it.

| Line | Time | | Speaker |
| :--- | :--- | :--- | :--- | Transcript | Tri |
| :--- |
| 82 |

Line	Time	Speaker	Transcript
		Rellow on the top and three red on the bottom.	
94		UCT	Okay. Again they're telling you what they did. What could they say here that would make it a convincing argument? What could they say for group 5? [Bell rings.]
95		R1	[Unintelligible response.] that one color that moves in the tower.
96		Good, okay. And, did they exhaust all four positions? And if they exhausted all four positions there would be no other place to put a single red cube in one red and three yellow. That's a convincing argument, okay. Um, there are only four positions in tower four tall and they the single red cube in each of the four positions. That's a convincing argument; more than telling you what they did. Okay? Because you can see what they did. I mean if you look at their paper...is this them? Uh, was it L-----?	
97			UCT
98		R1	No.
99		UCT	You're not going to look at that one then. What was their name?
100		G------ and E---.	
107		CP	G----. Alright, let's see. If you look at their picture you can actually see, we're not going to be able to look at it because I can't find it. I see G-----'s hard copy. If you looked at their towers...here's G-----...and you saw this, you can see what they did. They don't have to tell it to, you know, what they are doing. But you want them to be convincing you by saying, I have a single red cube, I'm putting in each position, I am exhausting all my four positions with a red cube in each, therefore, I can't do any other tower with three yellow and one red. That's a convincing argument. Do you see the difference? Okay. Alright, so that was that group. Is...what would you say about these students? What parts of their argument were convincing to you? Maybe they didn't write it. Okay, but what did you find convincing in the way they grouped?
[Unintelligible]. That's not it.			

Line	Time	Speaker	Transcript
108		R1	Sure, sure.
109		UCT	I think four is pretty convincing. I think it's just alternating colors. So there's no other way [unintelligible]. If you moved one to the top, you'd have the same tower as the second one.
110	00:20:21	R1	And if they said that then you're right, that would be convincing. Um, who was there when they saw, uh, the students taking, uh, a cube from the bottom, and they moved it up?
111		UCT	Right here.
112		R1	Okay. And when you do that, when you take a cube from the bottom and move it up to the top to build another tower, take a cube from the bottom and move it up to the top; that's called a recursive argument. Okay. It's powerful. Um, you want to be looking for that in your students. You follow? If you didn't see them, do you know what I am talking about?
113	00:20:54	UCT	Yeah, the group up here was [unintelligible] as well.
114		R1	Good.
115		UCT	The group I had worked with too. They had all the ones with the twos, so it would be I guess for 2,3 and 4 , they had all the same ones on the bottom. And then they took the cube off the bottom and they put it on the top, and they found out that, you just had a different grouping of all the combinations, you have beforehand. So...
116		R1	Good. Okay. And that's a powerful argument, not all groups did it but I'm glad that a bunch of you got to see some groups. If you have a group of two and two and they took the top cube off and put it on the bottom, this is a different tower of two and two. They take the top cube off and put it on the bottom, different one. They take the top cube off, put it on the bottom, another one [demonstrating using the unifix cubes]. What happens when you take the top cube off and put it on the bottom?
117	00:21:46	CP	It goes back to where It started...
118		R1	It starts repeating. And therefore, they've exhausted. And some students did that for two of the groups. Um, for groups 3 and 4, that's how they did that. No that's 3 and 4; 2 and 3. And that's how they made their convincing argument. Who saw, uh, okay...students...
119		CP	These two girls right here did it.
120		R1	Okay.
121		CP	And then they had the two alternating ones, and they were like, oh these don't fit. Where are we...
122		R1	Okay. And how could they have convinced you with the

Line	Time	Speaker	Transcript
			alternating ones that there aren't any more for that either?
123		UCT	The same way.
124		R1	Exactly. So, say what you're saying. Same way meaning? [Demonstrating.] If they had this as one alternating, what would they do?
125		UCT	Take the top, put it on the bottom, and now they have a different one. But if they took the top and put it on the bottom again, they would go back to the other one so there's no more.
126	00:22:38	R1	Okay. So they really could've used the recursive argument, um, for the alternating ones too. Okay, so that's really good. Alright, um. This is impressive. I don't know if you are aware, um, in previous years, um, we saw kids very resistant to write. Um, and I think you're doing more in your schools to write so much in the beginning of the school year. I don't think it hurt that we had so many adults in the room too. It's going to be harder, I warn you, it's going to be harder when you are alone in your room. Um, especially if you have a whole class with as many students as were in here. Uh, in a resource room it will be easier. You'll have less students. It'll be easier to see what they're doing. In a class of 20 or 30 students, when you have 10 or 15 groups, don't try to get to all 10 or 15 groups in one class. You will drive yourself crazy and you won't hear anything! What I would suggest you do is, stay with three or four, maybe five, groups at most. Stay and listen. Question them. Try to understand their thinking and then make sure you, um, record who you went to because the next lesson, don't go to the same five groups. Go to five different ones. And then last lesson that we do in November, you go to the groups that you haven't seen yet. That way you get to see everyone, but you see them with a meaning, rather than running around and not hearing anything. Okay. Here is a different group and a different recording. Okay and if a student in your class uses this and uses a key, I would point it out as a good thing when you start to share their solutions. Um, because I think it's really neat when they do this. Um, okay. So, how did they do it? What do we see here? Groups...we will call it 1 and 2.[Pause]
127	00:24:45	UCT	Opposites.
128		R1	Well, one group is the opposite of the other. And?
129		UCT	The one block...[Multiple unintelligible responses.]
130		R1	Yeah, kind of the same, um, strategy where they're exhausting every position. So that's that. How about, what

Line	Time	Speaker	Transcript
			going on over here?
131	00:25:05	UCT	It's kind of like the same idea, but only moving the two blocks at a time. And that one and one is the opposite of the first.
132		UCT	Yeah.
133		R1	Opposite of...
134		UCT	[Multiple responses] The first one...the top one is from the bottom of each time.
135	00:25:19	R1	Ah! So you think here, you're seeing that they took the top cube and moved it down to the bottom to get the second one.
136		UCT	Yeah. Yeah. Well then the other top cube.
137		R1	The top to go down to the bottom.
138		UCT	Um huh.
139		R1	And the top, so here the top, go down...so did this group...it was Lauren...
140		UCT	That was, those were the two girls that were here.
141		R1	And did they use a recursive argument?
142		unison	[Multiple responses.] No, it wasn't Lauren.
143		R1	In the corner where you were sitting? Did they use a recursive argument?
144		CP	Yeah, those girls.
145		R1	Well that's what they did. Okay. Did they write about it? That's interesting. Mm...Can anyone read that?
146		UCT	We started with yellow and...yellow and one red
147	00:26:03	UCT	We started with yellow and one red. Then we moved the red down one space every time and move the yellow to the top every time. Then we did the opposite with three red and one yellow. Then we did two of each color; two red, two yellow. We moved the two red down one cube and took the one yellow on the bottom and move it to the top. We put the two yellows on top, on top of each other, and had two reds...on the bottom..hold on. Two yellows on top of two reds. Oh, two reds... on the bottom. Then we moved one of the reds on top of the two yellows.
148	00:26:49	R1	Okay. It's gets hard not only to read but to understand what they're doing. Um, but that is a recursive argument. And that's a good argument, okay? Um, so that was, um, the solids here, okay; and here's the ones again with the alternating pattern. Are they convincing you?
149	00:27:16	unison	[Multiple responses.] T3:More than the last one...yeah...yeah.
150		R1	Say that again.
151		UCT	Much more than the last one.
152		R1	Okay. [Sneezing.] Alright, a recursive argument is very

Line	Time	Speaker	Transcript
			convincing. Bless you.
153	00:27:27	R1	Let's see. This is Steven...this is Steven and Christian, and where were they?
154		UCT	They were the two in the back corner.
155	00:27:36	R1	The back corner over there. And Christian had to go out for a little bit, and he came back. Did anyone get to watch the two boys in the back corner? Yeah, okay. So let's see what they did. And you can read this one; this is nice. By the way, I probably would recommend that you ask the students to work either in a pen, ballpoint pen, or if you have a black felt tip pen. Because if you're going to want to be looking at the work on an overhead projector, or even putting it on a screen, you have to be able to read it. You saw how hard it is to read some of it. Um, you know, some of their handwriting, I mean, I don't think my handwriting would be much better, but it's too light. You don't really... you can't read it. So even though you probably work in pencil when they do math. For this, I would have them work in pen, okay.
156		UCT	If we're not making overheads, can we just let them use pencil?
157		R1	No. Because you're final project for this class, you're going to be making a book of the student work, and you're going to have to Xerox papers if you want to keep copy for yourself.
158	00:28:49	UCT	You can adjust the darkness though...[Multiple responses.]
159		UCT	I mean, my kids...
160		R1	Two reasons
161		T3	Like always want to use pen in math. So if I allow them to use pen, then they going to think for the rest of the year they can use pen.
162		R1	No, no. Kids are pretty, they understand if you say, I'm asking you to use pen for this because I want to be able to read it and I am sharing with my colleagues from Rutgers.
163	00:29:11	T4	But if they don't want to break their classroom habits, then it's okay. We can copy it [unintelligible]. I know how to work a copier if anyone needs help.
164		R1	Let me tell you another reason why I wouldn't have them use pencil. Okay? Um, what students normally do when they're using pencil, is that they have an eraser. And after they do something, they erase it so you can't see it. And part of this is, they may have some good work that they're getting rid of, and all you will see is a whole in the paper. If you're working in pen and they want to get rid of something, all they do is put one line through it and you

Line	Time	Speaker	Transcript
			can still see what they've did. And remember, the aim of this class is not to look at the final answer but to look at the mathematical thinking as they're go through the process of solving the problem. So I would urge you that, trust that they will be able to know that this is a time I'm going to ask you to use a pen, but normally I won't do that in math class, okay. Alright, so we were looking at this? Okay, could someone read it? And let's see what Steven and Christian used as an argument. [Pause.]
165		CP	In the group 2, they were both solids. So if they were to be switched they would stay exactly the same. For example, four red and four yellow.
166		R1	Okay. What do you think? Convincing? [Unison No.]What could they have said?
167		CDR	This is what this group did the whole time. I don't know. You were with this group, right? All they kept saying to me was like, we switched it...it would, it would be good. So they, they just proved that they made opposites of each other, but they didn't really...I don't know if they understood the task because they didn't really say anything about how this is the most amount of towers they can make.
168		CP	Yeah.
169		R1	Okay.
170		CP	For a while they were doing that, and I was like okay, you're just showing me opposites. Can you try to put it... because I think they had the one that, most kids get the one diagonal going down. And I was like, can you put these together something like that? And that's where they came up with the drawing they have on the bottom.
171		R1	So you led them a little bit. I would...I thought they were brilliant did that. I didn't realize that you...
172		CP	No, because they were looking at it... and I was saying how can you group these?
173		R1	Okay, that's good. That's fair.
174		CP	And they put it together. And I said, why did you group it like that? And he goes, well I have one red top and on the top.
175		R1	That's good. Then that's really good. Then you weren't leading them. You just said to them, I don't see a convincing argument. Can you group these that are two of one color and two of another color, in a different way that may be able to convince me that there aren't any more. And that's a good way to do it. Um, take a look at what they did here. What did they do?

Line	Time	Speaker	Transcript
176		T8	They held a constant.
177		R1	They held a constant. Remember we talked how powerful that was. Okay, and by holding the constant here, what did they do here? [Pause.] Does it look like the three and the one, okay, where they exhausted the positions? They only have three positions now. Okay. And in these positions, they are going to take the dark cube, red cube, and put it in each one. And they know now that these are the only towers you can make that are, what is it, 2 red and 2 yellow, right? The one group. Did they have another group like that? Cause they had, there should be 6 of them, right? Up, they do. Okay. No, that's not them.
178		T8	Yeah.
179		R1	That is them?
180		UCT	It looks like them, but it's not them.
181		R1	It the...that for the three and the one, okay. Three of one color.
182		UCT	Like that one says for the two groups of four. So for their, and they had just put their argument that there are two groups like this, just opposites or something.
183		R1	Okay, now if they convince you of this, have they convinced you of the, if this is red, a single red...If they make a convincing argument for this, will you be convinced that the towers that are exactly three red and one yellow are the same argument? Would you be convinced or would you make them go through it? You're shaking your head. What?
184		UCT	I'd be convinced.
185		R1	I would be convinced also, okay. Because the argument for this is the same as the argument, if it's a single red going down or single yellow going down. Did they talk about the other group here? Maybe they have and we didn't read it. Someone read it. Let's see if they have both groups.[pause]
186		UCT	In the two groups of three, there are 3 of each color at the top top. There are four layers in the second, third and fourth rows. There's at least one of each color, whether it be red or yellow, you can't put the top layer of one of them anywhere else in the group because each row has at least one of each color.
187		R1	What did they mean? Do you understand what they are saying? [Extensive pause.]
188		UCT	[Multiple response.] I think that it would be the same as another one.
189		UCT	I think they are talking about the group of them. Like the first row is three and the second row is 2 and one so they

Line	Time		Speaker
		Transcript	
190		R1	are going from left to right and from right to left talking about it.
191		UCT	What do you mean? I'm not sure I follow. Like, they put them together with 3 towers. Now we're talking about them as if they are one unit.
192		R1	Okay.
193		R1	Another group did this too.
194		Okay.	
195		CP	So they look for patterns I think, and then try to stick them together, and use that to explain.
196		R1	Sure, but what do they mean, you can't put the top layer on one of them anywhere else in the group because each row has at least one of each color.
198		I think they're trying to keep that constant.	
199		R1	They are trying to keep a constant. Okay, so that's the top row.
200		Yeah. 206	

Line	Time		Speaker
		Transcript Because it's complicated. I am kind of interpreting it the same way that you are. Did you follow what she said? Did anyone follow what she said? [Pause.] It's hard, isn't it? Huh? To try and understand what kids are thinking?	
207		UCT	Especially if they are talking. And they are not talking about towers individually. They are talking about the position across three towers. So they're not even focusing on one tower.
208		R1	That's right.
209		R1	CP
210		UCT	Ro they're not even focusing on one tower.
211		So they are moving it across the row instead of the column?	
213		Well they're saying that the, like the bottom in the second and third level in all those, only has one red.	
215		R1	Ah, so it's ... Horizontally. Until you get to the top. Then there's 3 red. So what they're saying is if that top one was moved down somewhere else that breaks your pattern, because now your horizontal rows are going to have more than one red [unintelligible].
			Okay, so horizontal rows is what she is saying. If you move this red that's on the left down one, okay. There'll be two red in this horizontal row. This row only has one red. This one has one red. So again, we don't know for sure.
It's another interpretation. But I think it's...it's a good			
guess that they're saying that you can't move the top row			
into another position. Otherwise you're going to have more			
than on red when you look at it across. Okay? Do we know			
that's really what they meant? No. We really don't. Not,			
nor do you know that's what they meant. The only way			
you what a student really means, is if you interview them			
and talk to them. Okay? And sometimes that's possible and			
sometimes it's not when you are a teacher in a class with a			
lot of students. Okay, alright. How about this one? Olivia.			
I love the way they, uh, recorded it in terms of...do you see			
how they broke it into groups for you? That's really nice.			
Okay. And now she's talking and they labeled. So this is			
really makes it easy for you as a teacher to know which			
argument goes with which group. Alright? Group A can't			
have any more towers because all of the red blocks are in a			
different position. Okay. So that's really the start of a real			
nice convincing argument. There are only 4 positions, the			
red block is in each of the positions, we've exhausted it.			
Okay, same with B. It's the opposite argument of A.			

Line	Time	Speaker	Transcript
			Group C was just the standard four blocks of each color and we just switched the colors. What do you think?
216		UCT	I think that the way she grouped it, like was more convincing than the way she wrote it.
217		R1	Okay, alright. And how do you think she grouped it? How do you think she formed those towers? And again, we're guessing.
218		UCT	Like, Try to follow the A and B pattern diagonally it looks like, but with two colors, except for when she got to the last one.
219		R1	And what did she do to go from this one to this one?
220		UCT	She moved using a recursive argument. She moved the bottom to the top.
221		R1	Very good. And that probably is a really good guess as to what happened for these towers. She might've been using a recursive argument. She might've been taking the two together, and moved them down the way she did the one.
222		UCT	That's what she did. [Multiple responses. Unintelligible.]
223		R1	Good. Okay, you actually saw it. Perfect! Okay, so the we don't have to guess. How about group D? We just alternated the colors. Again, that is what they did. But what do we want them to say? We want them to say why there is no else in that group. And they might use a recursive argument to show that if they move again, they just get back the...the first tower that they had. Group E. Made a tower of the full color, and there's only two colors. What do you think?
224		UCT	That one's good.
225		R1	It's pretty good, right? Okay, so no other possibility, alright. Nice stuff. Alright, let's see what did you see...I saw one group that did towers and opposites. Which group was that? [pause] Did anyone else see a group that had pairs as opposed to?
226	00:41:23	unison	[Multiple responses.] Yeah, I think That group over there did that.
227	00:41:26	R1	Okay, okay. And that is a strategy. It's not as sophisticated as that, and it's also harder to convince you that they have them all. Okay. We're not going to read it but let's see, how did they group them? Are they in pairs or are they actually not in pairs?
228		UCT	Yeah, they're opposites.
229		R1	They're in pairs of opposites. Good question to ask when they make 8 pairs, um, and they have all $16 \ldots$ a good question to ask is, why isn't there another pair with an opposite? Like, why can't there be 17? You know. Um...

Line	Time	Speaker	Transcript
230		UCT	[unaudible response]
231	00:42:05	R1	What was their argument?
232		UCT	Well he had started talking about the fact that no matter what tower you build, there's 2 colors; you are always going to be [inaudible]. There will be an odd number of towers.
233	00:42:17	R1	Okay, good good and that's nice.
234		UCT	She was just saying if they wanted more they would have a higher tower that they knew that if they wanted more towers they knew what they had to do.
235		R1	Good, good, and those are good. I am looking for the girl who actually here that got to do the prediction. She was here right?
236	00:42:42	UCT	Yeah.
237		R1	Okay, Megan was...Did anyone follow Megan? She was sitting right here.
238		UCT	Yeah, I did
239		R1	Okay. She did some fascinating stuff. And she had a theory that I have never seen before it is not actually a theory that is going to pan out to work. But, it is awfully nice when students come up with a mathematical theory and then go on to... Can we get her paper? This is hard to read and um you are going to read it for us. She is making a prediction now. In your class, if you are working with students with this problem And you have time this is the next thing that you go to. These problems are all listed for you um the worksheets; it's called an extension. You are asking them to tell you without building how many towers they think they are going to get if you ask them to build 3 tall. Do you think they are going to be the same as four tall? Do you think it will be less? Do you think it will be more? And you had interesting comments on the web. Some of you said that you think that the children will definitely say less than 3-tall because there are less towers high, less combinations. Who was it that said they thought the Children might say it is the same? And your reason was?
240	00:44:11	UCT	Well, some of them might just think oh you just take the one layer off you will have the three towers tall.[inaudible]
241		R1	Yeah. Now do you know no one predicted that. Towers 3 tall would have more towers than towers four tall. Do you think students might do that? [long pause] If you ask them how many towers 3 tall, would it be more than towers four tall? How many of you think might say yes? [pause] How many don't think they will do that? [pause] Okay, well

Line	Time	Speaker	Transcript
			they do do that! Because you are going to watch a video of Meredith. And Meredith did think that towers 3 tall would have more towers than four tall and you'll get to see why. Okay, and um she is not the only person who has done that, I have been in other classes where they actually predicted more. Can you read for us her prediction for..
242	00:45:11	UCT	She says Being that the tower is one cube shorter than the four cube tall tower; I would say there are less than 16 towers; We have less tower patterns to choose from. And then she said If we do 2 the amount of colors times four the amount in the towers you are going to get 8 . And then she says 2 which is the amount of colors times 3 which is the amount in the tower, you are going to get 6 towers.
243	00:45:37	R1	Okay, That's real confusing. I was there and I understood her. What she is saying is this: if we build the towers four tall which we did; okay we had four cubes tall, right and there were two colors. So she said when I build towers four tall I had the four cubes times the 2 colors; that's 8 . But, when I actually built the towers four tall, I got how many?
244	00:46:08	unison	16
245		R1	So she is saying, her theory is .. is gonna be the height of the tower times the two colors; 4 times 2 is 8 . But double it because you get 16 when they are four tall. Okay, That was her theory. So telling ...her name is?...
246		UCT	Megan.
247		R1	Megan's theory. What would she guess then the towers 3 tall to be?
248	00:46:34	UCT	12 [inaudible response]
249		R1	Good and how did she get it?
250		UCT	The amount of colors times 3 cubes to get 6 and then double it.
251		R1	Okay, now that is pretty neat, right? So what would you do next for someone like Meredith? What would you ask her to do? Megan, so she could...
252	00:46:51	UCT	Build them!
253		R1	Build them. Now when she builds them she is not going to find 12. And then she is going to have a disequilibrium. Because she is going to say, wait a second, I am only finding 8 so maybe my theory isn't good.
254		UCT	What was her reason to double it just to make it..? [multiple responses]
255	00:47:10	R1	No, no, no. It was just to make it work. How many have you have students, I mean I did, and know what the answer is. and work the numbers so that it comes to the

Line	Time	Speaker	Transcript
			answer doing crazy things with adding or subtracting, multiplying or dividing just to that they force the answer to be 16 . She knew that she had four cubes high. So that was the 4. She knew that she had two colors. Now what did you do with 2 colors and 4 cubes tall, how did you get 16 ?
256	00:47:44	UCT	2 to the fourth [inaudible].
257		R1	You got 2 to the fourth. You took 2 for the number of colors raised to the fourth power the height of the tower. And two to the fourth gave you 16 . Now she didn't know to do that. She did four times two, giving her 8 , and she said no the answer is not 8 . The answer is 16 , so I'll double it. Okay. And that is exactly what she did.
258		UCT	But instead of having her try and build the other towers, can't you challenge her to try and make sense more of the numbers first.
259	00:48:16	R1	How would she make sense?
260		UCT	But I think she, when she was working in pairs for the entire time.
261		R1	Yeah.
262		UCT	So I think she had 8 groups on her desk. She was still holding 2 groups together. That 8 probably made sense to her because she had 8 groups so maybe that's really what she meant by 8 groups. Even when she was explaining the ones that had 2 of the same color and 2 different colors; she was focused on the Pairs staying together. So I think that for her she probably said oh 8 groups here. And that is the 8 she is talking about.
263	00:48:51	R1	Maybe, maybe not. When she explained it to me, she didn't point that. She might have been thinking that but when she verbally actually told me because I was asking her. Um I was saying... she said to me it was the height of the tower, times 2 because there are two colors. That was her reasoning. How would you try and get her to make sense of it? I'm curious.
264		UCT	Um, [slight pause] I would just ask her where that second 2 is coming from?
265		R1	Okay. Okay.
266		UCT	It doesn't make sense, It doesn't fit so then.. she would hopefully realize that extra 2 that doubling 8 towers doesn't make sense. So then you can try and challenge her well; can we make sense of the number of colors and kind of take away the two and the number of blocks that we have and mathematically make the numbers work.

Line	Time	Speaker	Transcript
267	00:49:50	R1	Okay, what you're trying to do is what many of you talked about in the dialogue that you had on line. It was to get them to understand 2 to the fourth as being the way you get the answer for towers four tall. You don't want to do that. Your students one, may not know exponents. Your students two, may not be ready to hear that. And many of the You guys are very good that you got that this was connected to exponents. I have worked with other teachers over the years. They always thought that it was just doubling and that you got your answer by just doubling and that is what they got before. So, I am saying You got it because you were ready to get it. Your students may not be ready and just by you leading them is is not what you want to do. Okay. So, I think, Probably its safer if you have her build 3 tall towers and she can't find the 12, that may Force her to come up with another plan, another strategy. Another way, another theory. Okay. Um, I had I think I told you I had students in middle school that I asked them to build towers 5 tall and Make a prediction for 5 tall. And they didn't use her theory. What would her theory be for five tall? How many towers would she expect to get?
268	00:51:14	unison	20
269	00:51:15	R1	20. Okay, most of the students that I have seen in middle school, that have done this. They predict 25 okay, because 16 is four times four right? So 25 is 5 times 5 . Again if you had less time to let them build the towers they would see that they get more than 25 . Once they get more than 25 , then they have to readjust their theory. Okay and that is a strong way to do it. I know you would like them to see what you know. But they may not be ready. Okay and getting them to understand that this is really exponents, towers 5 is two to the fifth, towers ten is 2 to the tenth; um that's not where we are going, okay. So it is okay for them to come up with a theory, and then have some disequilibrium when you ask them to build the towers. Okay, Questions? You guys did a good job and the students were phenominal, really phenominal. And you should celebrate what they did do. They may not have gotten a full convincing argument, but it is hard to do that. And if they don't get it now in September, in October they

Line	Time	Speaker	Transcript
			will be better, and in November they will be better. Okay. Let me give you a heads up about your final project for the course. Even though we will talk about it again later. Know that the final project, is going to be for you to collect, work samples from the 3 tasks that you will be doing at Rutgers as adult learners. And it will be the three tasks they do when we go in to do the three classroom implementations. So you are going to want to be having student work first of all that you can read, and second of all that is indicative of what your students can do. And again, it doesn't have to be picture perfect excellent work with a complete solution and a complete convincing argument. Very few students are going to do that in the beginning of the year. Okay, you might have an outlier. I might be telling you they won't and you will find someone that does. But you also are going to have um picking sampels of work that surprised you, um which means that it could have been a student who couldn't do something and they did it. Okay, you are going to pick work that impressed you which may be a student who gives a convincing argument. And you are going to pick student work that troubles you. Troubles you because the students don't have any mathematical sense in what they are doing and what their arguments are; don't make any sense mathematically. Okay, while you are looking through the student work each time, you are going to be looking for those three kinds of work. Work that impressed you, work that surprised you, work that troubled you. And at the end, you are going to be having that for each of the three classroom implementations. Okay, so when you are looking at your student work, you are going to be bringing to the next time we meet, you are going to be bring samples of student work. I am only asking you to bring 2 or at most 3. Okay so you are really going to have to look through your class and you will have the option to pick what you want to bring to share. You might pick it because you are thrilled that the student that you thought didn't have anything in their head, did wonderful work. You might bring it because you don't understand at all what the student is saying or what they are thinking or what they drew or what their argument is. And you are going to bring it so that all of us can talk about it, and figure out what the student is maybe saying. And again I say maybe because we won't know for sure, unless we talk to the student. Okay, Um or you may bring work that

| Line | Time | Speaker Transcript
 troubles you because it doesn't make any mathematical
 sense and you really want to say I gotta help this student
 because they are saying something that doesn't make
 sense. I have had students as a teacher, I began as a middle
 school teacher. I had students that took a word problem
 and plucked the numbers out okay and did some operations
 with it So if the numbers were big numbers they said I am
 not going to do any division I will add it and get my
 answer. Sometimes the answer of what they did is the
 right answer. But if their reasoning is wrong do you
 celebrate a right answer? No, in fact you all know that the
 state test now say that work is important, process is
 important and if they don't have the right process, it
 doesn't matter that the answer is correct. if they got it the
 wrong way, we don't celebrate it. Okay, so when we meet
 next time, okay you are going to bring 2 to 3 pieces of
 student work. You don't have to put them on overheads.
 We should be able to share it without overheads. Any
 questions? [pause] Any questions on the implementation?
 [pause] |
| :--- | :--- | :--- | :--- |

R1: Dr. Judy Landis
UCT: Unidentified Cohort Teacher Initials: Identified Cohort Teacher

Description: Transcript of current students working	Author: Phyllis J. Cipriani
together on the pizza problem.	Verified by: Simone Grey
Advisor: Professor Carolyn Maher	Date Verified: Summer 2015
Location: Carl Sandberg Middle School,	Page 1 of 50
Old Bridge, NJ	
Date: October 2, 2013 part one	

Line	Time	Speaker	Transcript
1	$00: 00: 00$	R1	It could be work you are troubled about. It could be work that you are celebrating that you did not expect to do whatever they did. Alright now, how are we going to show this up?
2		TD	Do you want me to go first? I already have this.
3		T1	Sure, excellent.[slight pause] This school has good technology. I know that some of your students don't. But you are going to have the uh... projection camera.
4		R1	Yeah. 5 It is hard. How many of you had trouble making a convincing argument. They will get better, I can promise you that. Um, I have been doing this for many years now and We had a lot of skeptics. Teachers in the beginning that said my kids will never get this. But by the end of the semester, you are going to see progress. Now wherever they start, they are going to make progress from that point. So if they are doing very little now, you are going to celebrate that they are able to do more a few months from now. Okay, but let's take a look at what they are doing now.
6	$00: 01: 07$		TD
7		Rkay, so, I had only 8 students; one was absent,	
8		TD	R1
9		Okay.	
10	one was absent,		
Okay.			
11		R1	So I had a group of 3 and then two pairs. And to be honest I was really only impressed with one pair. This is the one that troubled me this pair because they couldn't even like they were making a pattern with the towers themselves. I should... I'll show you a picture of what they did. Okay, So this is what they were doing. They were trying to make a pattern. So first they were doing the colors like trying to match them up and then they started thinking that they could make a pattern actually with the towers.
12	Okay. So they had towers four tall.		

Line	Time	Speaker	Transcript
13		R1	Before you take it off, Take a look at their towers, they are upside down, okay but they are all facing the same way.
14		TD	They weren't upside down, I was upside down.
15		R1	Oh, you were upside down. Okay so They are all facing the same way so we can look at them, And take a look and see any patterns in the way that they grouped at all or is it random grouping? [pause]
16		UCT	Well there's 18 there.
17		R1	There are 18, okay. Are there duplicates?
18		UCT	There have to be.
19		R1	There have to be. Good. Which ones, um ...
20		UCT	Oh yeah these two right here.
21		R1	Okay.
22		UCT	And I feel like that's what happened so many times that every time I went over, they were like we're done and I had to like say do you have any duplicates? Do you have any duplicates? Um, that was the one thing they kept doing.
23		R1	Okay. Do they have.... Take a look at the different kinds they did. If you look at the towers that are one yellow and 3 blue, how many towers do they have that are exactly one yellow and 3 blue?
24		UCT	One...
25		UCT	6,6
26		CP	Yeah.
27		UCT	3
28	00:03:21	R1	You see 3, someone said 6.
29		unison	6 [multiple responses inaudible]
30		UCT	Wait There is One yellow, 3 blue, 2, 3, 4, 5, and 6 pointing to the screen.
31		R1	Why don't you point it out the six of them? And of the six... Are there supposed to be 6 ?
32		UCT	1-2-3-4-5-6
33		R1	Okay, okay, so if there are 6 , you are saying they are only supposed to be 4 ? What are the duplicates there?
34		CP	2 bottom.
35		UCT	The ones on the top and the ones on the bottom
36		R1	Okay, okay And the next row?
37		UCT	That one
38		R1	So they know they are making the combinations here they are getting the different groupings. What is the problem with this? Why are they.... Why will they have a difficult time..?
39		UCT	The way they grouped them.

Line	Time	Speaker	Transcript
40	00:04:16	R1	Okay, Good, alright and there isn't a grouping where they put them together in any systematic way so they don't even have opposites they don't have you know pairs so I think . Let's see what they said though.
41		TD	Okay. [slight pause] Okay y is for yellow and p is for purple. We just put the colors together and mixed it up four cubes with different designs. We also made a tower the tower was to put 7 then five then three then one we did.
42		R1	Okay, alright. What did you do when they did that?
43		TD	Um... I just kept....well...I was walking around and I just kept complementing them saying like it was like they were making it but they couldn't really explain what they were doing.
44	00:05:08	R1	Okay, Suggestions from the class: What would you do if a group did something like this in your class? What would you do? How would you react? What would you do to get them, without leading them, Did they have good work? There is a lot of good stuff that was really good. So we don't want to say that this is garbage. You know. How do you redirect them? [long pause]
45	00:05:37	UCT	Try to help them organize it differently.
46		R1	Okay, Good!
47		UCT	Maybe they can see either a pattern or which ones are duplicates.
48		R1	Good okay and if you said to them, you know can you show me a different way to arrange your, your towers and that would be fair you're not leading them. See if they would regroup them and maybe they might find duplicates. So, when you have something like this although this page I am really glad that you made a picture of what they actually did. Cause What they actually did is what you want to celebrate. This is not what you celebrate.
49	00:06:10	UCT	Yeah, exactly, that's what I have found with all of them, they have a really tough time writing down their thoughts. So
50		R1	But it's not just...
51		UCT	That's why I am glad I took a picture of it.
52		R1	Good, that's good. I think what you want to do is When they get sidetracked. Some of you said were saying that they were making letters or words.
53	00:06:27	UCT	Yeah!
54	00:06:28	R1	This is interesting because this is the first year that I have ever heard that from the teachers in the program. This is novel. Which districts did Letters and arranging? Matawan-Aberdeen,

Line	Time	Speaker	Transcript
55		UCT	Toms River.
56		R1	Toms river.
57		UCT	Sayreville
58		R1	Sayreville Every district practically, Old Bridge. So This is a new twist. Maybe there is something in the water this year. But I think what you want to do is get them back and find the good in what they are doing. Because There was an awful lot of good in what your students had. Do you have another paper?
59		TD	Yeah. This is another, her partner Jocelyn.
60		R1	Okay.
61		TD	Okay, They did pretty good. But um On their paper they only drew ten towers. But when I was walking around I have a picture of theirs too. They were the ones that really seemed to get it. They could see...
62		R1	Okay. They had more than ten towers?
63		TD	They had 16.
64		R1	Okay.
65		UCT	So, I guess when they were drawing I don't know why.
66		R1	Well they had...How many of your students had difficulty recording the towers?
67		UCT	Yeah like the actual..
68		TD	and like that girl, she, that was her biggest problem.
69	00:07:37	R1	Now, This is a wonderful way of recording, um, I know that not everyone or every group probably used Bs and Gs to do their...
70		UCT	They had brown and green.
71		R1	Well I think it's great!
72		UCT	I liked how they saw the diagonal.
73		R1	Very nice, very good.
74		TD	And they saw that okay, that's where it ended and then they have a green diagonal.
75		R1	And isn't that wonderful?
76		UCT	Yeah
77		R1	okay so what do we have there
78		TD	He said We kept on making a set of three and then we made a set of 4 and we found our answer. We can't make any more because then they would be duplicates.
79		R1	Okay
80		TD	But He drew what he was doing. They found the diagonal of both colors.
81		R1	Okay, now They found a diagonal. What do they have there they have a ...really, what are they doing in that grouping? What is that a grouping of? On the bottom.

$\left.$| Line | Time | Speaker | Transcript |
| :--- | :--- | :--- | :--- |
| 82 | | UCT | Three of one color. |
| 83 | | UCT | Yeah. |
| 84 | | U1 | Okay, So it was three blues with one green. And really
 there they are showing you |
| 85 | | R1 | Yeah the green going up. |
| 86 | | The green going up.. | |
| 87 | | R1 | And they had a word they called it stairs and the stairs are
 going down. |
| 88 | | UCT | Okay so they actually they gave a word they called it stairs.
 Now This is wonderful. Absolutely something you would
 want this group to share with the others. Ah, Also, How
 about in their listing of the ten towers? Um, Did they have
 any way of organizing those ten? |
| 99 | $00: 09: 01$ | | R1 | | First, it says first they were opposites, so you get 2. Then |
| :--- |
| there they have their diagonal. | \right\rvert\, | Good.Okay, good |
| :--- |
| 91 |

Line	Time	Speaker	Transcript
			really explain.
104		R1	Well they are..That's their reason. Is it a good convincing argument? What do you think? Are you convinced? We're done because we couldn't make any more.
105	00:10:42	T1	Well She said all the patterns, so..
106		R1	We made all the patterns, right but does that help you?
107		T3	A little bit.
108		R1	It does? Are you convinced?
109		T3	Well I mean for this group because of the level.
110		R1	No, you can't do that. And I know that a bunch of you said that online. You can't say the kids are young so we are going to expect less. If you want a convincing argument, you want a convincing argument.
111	00:11:07	T3	I'm not saying they are young, I am saying they are special ed.
112		R1	No, I understand, but I'm saying online some of you said you watched the video the kids were young and we are accepting what they say and it is convincing enough. It's not. It doesn't mean that they should be doing more than this. I bet a lot of your students whether they were regular or special ed. said we are done because we tried and we tried and we can't find any more and therefore we are done and we got it. Okay. How many got that as an argument? [pause] Regular ed. and special ed. Correct?
113	00:11:42	T6	A lot of my kids said that but they at least recognized that it wasn't good enough.
114		R1	Okay.
115		UCT	Like even this one girl that I have it is not one that I am going to share.
116		R1	Okay.
117		UCT	But she wrote We tried all the ways and we know that we can't make anymore but I know that is not very convincing though.
118		R1	Good
119		UCT	And then she put dot dot dot.
120		R1	Okay, I think that is great. It isn't convincing but that may be where some of the students are now. Okay, I'm not talking just special ed. Regular ed also. Okay, but it isn't convincing but this is neat notation too. Look at how they actually drew the unifix cubes and they put the letter of the color in each one. So that would be another thing to share. Good.
121		UCT	And that's all the pairs, that's all.
122	00:12:27	R1	Nice, okay you got some good work there. Who else wants to go? You are all going so who wants to go next?

Line	Time	Speaker	Transcript				
123		UCT	Do you just want to take a picture of it?				
124		UCT	With the Ipad?				
125		UCT	Yeah.				
126		UCT	I guess that is what most people will do.				
127		Yeah,					
128		R1	Are we supposed to bring copies of them?				
129		UCT	No No because she said she would be able to take a picture and put it up. Um, The next school we go to is Beachwood, right?				
130		MM	Yeah.				
131		D1	I have the same thing, I have an Ipad so we will just take a picture. Yeah, As long as its wireless.				
132		UCT	Yeah, alright. Um, I guess we will just do it. Because it is a pain in the neck to make overheads, right. If, I just do it half...I can just take a picture. 133				
		UCT	No, you can't all look at it.				
134		No, Instead I have my I pad cable so I can just use that.					
135		R1	That would be good. Okay. 136				
137		Okay, um alright so this is one of my students, he is a					
seventh grader. Um,I teach special ed. but				$	$	Okay	
:---	:---						
138							

Line	Time	Speaker	Transcript
			trouble with the kids writing. Who had something that they did that helped with that, Did anyone figure out what they could do? There were a couple of you what did you do?
152	00:14:54	CP	What I did was, Once they were actually able to formulate their explanations.
153		R1	Good.
154		CP	They had it in different groups. So, for each group, They would explain it to me.
155		R1	Okay
156		CP	They actually had to explain to me probably about five times I would say altogether. But after the last one, they were like This is what I want to tell you and say tell me for this group and then write it down.
157	00:15:17	R1	Excellent
158		CP	A lot of them needed help with the spelling or words or like pretty much sentence for sentence saying to me and I would help them get it down.
159	00:15:27	R1	Good okay and that is a very neat strategy what he did. He said Tell me what your justification for this group of towers and then when they would tell him he said that's great get it down. Okay.
160		CP	They went through and told me the whole thing. And I was like Okay now write it. And One of my girls I put it on the post she actually started crying. She was like this is too much. I don't understand what's going on.
161	00:15:49	R1	We don't want them to be crying.
162		CP	That's alright. Okay let me sit and help you get through this because we don't typically get to work like this so it was really.... I mean to write this much. She ended up writing like pages.
163	00:16:06	R1	That's great! That's great.
164		CP	She just needed that.
165		R1	And how many of you... it should be everyone is doing state testing for regular and special ed. Do they need to write on this?
166		unison	Yep!
167	00:16:18	R1	Of course they do! Okay. So It's not an option that math doesn't require writing. Math has to have writing. Math has to have communicating. That's one of the standards, you know where you communicate your...your mathematical thoughts. So your strategy is a very, very good one. You want to ask them Tell me what, how you did this, how you grouped these together, why you think you have them all.

Line	Time	Speaker	Transcript
			And Probably the easiest one is if you look at the first two towers. Okay. For those that are having trouble with the rest. For the first two towers, can you tell me why you think you have them all in that group, if that is a group. And I think they could tell you that. What would they say?
168	00:17:00	CP	That was..That was my starting point. They were like those were the first ones they wanted to talk about.
169		R1	Good, and what did they tell you for those two towers?
170		CP	They are the same.
171		UCT	There is only two colors.
172		R1	There is only two colors, good. Get that down on paper. Okay.
173		UCT	Yeah.
174	00:17:20	R1	Then they already have a justification for the solid towers that are all of one color. Okay, they already have it and they can get that down if they say we made two towers, one that's yellow and one that's blue; whatever the colors were and we are done because there are only two colors. So we have all the towers in that group. And that would be convincing. And All of your students probably could do that even if they couldn't do the rest.
175	00:17:45	T2	Oh yeah they definitely could. Mine, like with the questioning and everything.
176		R1	Good. Good
177		T2	The problem with mine is, like they would say it and get it. So then I would say, write it, and then they would just look at me.
178	00:17:56	R1	Yeah.
179		T2	So Getting them to actually write it was definitely the hardest thing. But the...Verbally talking to them most of them got it.
180	00:18:02	R1	Okay, well That's good that is what you want to...even if they can't write everything you want to get them to write something. And your strategy is the one I would use. Tell me about the first two towers. That looks like....if that is a group. If that is a group, Why is that group complete and there aren't there anymore? Okay And then they write it. That's good. Now did they have the towers on the first row; I'm looking at towers Three four five six, seven and eight What kind of towers are those?
181	00:18:36	T2	Um, Well it was funny. Because He listed them in

Line	Time	Speaker	Transcript		
opposites but he didn't draw them that way.					
182		R1	Oh...kay.		
183		T2	So when he did them, he started doing them opposites but then I guess between him and his partner They were getting confused about what they were drawing and that is probably why he didn't stick with it. But um they did originally do opposites.		
184			R1		Okay. So they were in pairs.
:---					
185					
186					
$00: 18: 56$					

Line	Time	Speaker	Transcript
			like this but they actually had them all on the line.
204		R1	Oh they were...
205		NL	That's probably why they drew them like that.
206		R1	Okay
207		NL	Because Even though they did opposites. They had them all against the table like that.
208		R1	Okay, okay.
209		NL	So that was another way they recorded it [shows yellow and blue colored towers] and then one of my students was like Wouldn't it be easier to use yellow and blue crayons. So this pair Jenn and [unintelligible] wanted to use the crayons. She didn't write it for me.[unintelligible] So this pair Jenna and...she definitely knew what she was doing [unintelligible]
210	00:20:51	PA system	Announcement: Good afternoon, It is now 4:00 all students going home please go to door $23 \ldots$
211		R1	That's a good thing. Right okay.
212		UCT	She did it anyway. She did enjoy it. A lot of my kids enjoyed it but talking to her; she definitely knew what she was doing; but she couldn't she had a hard time just writing. But verbally like questioning her she did well.
213	00:21:14	R1	What's good about what she did? Or She had the towers arranged what do you see?
214		UCT	The blue diagonal.
215		UCT	Yeah, the blue diagonal, yeah.
216		R1	She has a blue going down in each position. Uh huh.
217		UCT	That's funny why she didn't do it on the bottom.
218		R1	No she didn't
219		UCT	With the yellow
220		R1	Isn't that interesting, right.
221		UCT	Yeah.
222		R1	Um, And I think um, that what again, you want to do is when they are sharing, you might want her is that how she had those four together. Were they...
223	00:21:43	T2	These five in a way. She got..
224		R1	She put 5 together. Okay.
225		T2	But then the blue ones, The ones with the yellow in different positions; She didn't have them grouped like that.
226		R1	Okay
227		UCT	Even the colored one, The dark was shaded
228	00:21:54	R1	Maybe
229		UCT	Yeah she might have been able to.
230		R1	Maybe... and you might want here to share with the others why she grouped it that way. Can anyone get a convincing

Line	Time		Speaker		
		Transcript			
		argument that those are all the towers that could form that group? And why can't you have a blue in the fifth position? Remember what I asked you? It is a good question to ask the kids too. Alright so you are working with self-contained special ed.			
231		NL	Yes. And this was an eighth grader.		
232		R1	And you are self-contained special ed.?		
233		R1	SL		
234		Reventh grade Yeah, resource.			
235		NL	My last one is the most interesting one.		
236		Oh good.			
237	$00: 22: 31$		Okay. This is not how he built his towers at all. When I asked him to just write me an explanation as to why he even drew it this way. He just kind of froze and just stared at me and was like I don't know why. This is just the way I see it. So He wrote 16 combinations total and he got it right I think I have all the combinations for this worksheet.		
238	$00: 22: 49$		R1		How did he build the towers? What did they look like?
:---					
239					

Line	Time	Speaker	Transcript
253		T6	Um. And I think If they had a little bit more time.
254		R1	Okay.
255		T6	They might have been able to make a better argument.
256		R1	Okay.
257		T6	Um. I just told them to you know put your blocks how you want them to look on your paper and then copy it and that's what they did. They didn't really have a problem with it at all.
258		R1	They didn't have a problem. Okay, Anyone have students that did have a problem and how did you get around it?
259		VB	Um. First my students were a little confused on how to draw them and started tracing the whole thing.
260		R1	Okay.
261		VB	Um Then they started drawing them and they would lose track where what they were drawing. And then they would start drawing them and they would lose track. So I showed some of them like how to draw these. Take one put it on paper and then put it away.
262		R1	Okay.
263		VB	And I found it easier if one kid drew it and they copied from the other kid's paper. Two of them doing it they were getting too confused, it was too much with working with partners.
264		R1	Okay.
265	00:24:42	VB	Also with them verbalizing. I did what [T8] said I had each of them, explain to me. But once they explained it to me, I said okay, now repeat this. And We did it line by line by what with the partner recording what the other person said.
266		R1	Okay, okay.
267		VB	Because I do a resource room too. And with expressing, they had a hard time to do that they could tell me a second later but they forget it.
268	00:25:03	R1	Yeah. It is hard to do that. So that you had a couple of things you did that seemed to work for you and that's good. Um, if you have students that have their towers standing up, okay on the table and they are having trouble recording, as they do you put the tower down, once they record. And If they are both recording, they both have to be patient. You can't have one putting towers down and the other one still recording. But You have them working together that way, which you know is helpful.
269	00:25:34	GH	I had one group that was convinced there were 32 towers.
270		R1	Were they doing 5 tall?
271		GH	No. They were convinced that if they stood this way or laid down they were two separate towers.

Line	Time	Speaker	Transcript
272		R1	Okay.
273		GH	No matter what I said or did they...
274		R1	Okay. Interesting.
275		GH	it would not sink through to them because the nob was still at the top.
276		R1	Okay.
277		GH	No matter how they were lying, they were convinced.
278		R1	Okay, Did you put them next to each other?
279	00:26:01	GH	I did
280		R1	And?
281		GH	and they said but it doesn't matter. One is laying down.[laughter]
282		UCT	One of mine did that.
283		UCT	It doesn't matter. Yeah.
284		UCT	It was weird, I don't know how to get around that.
285		R1	Uh huh.
286		GH	And Another one said they put three up and then put some that way and then said This is four tall but it is four tall but they are not connected. So you can't make that claim.
287		R1	Okay so it was the idea of them thinking outside the box which is sometimes a good thing and sometimes gets you in trouble.
288	00:26:31	MM	One of my groups kind of like made the blocks so that were only partially connected and arched it. They were like Does this count as a tower? But they knew that it didn't count as a tower.
289		R1	Okay.
290		MM	I think they were just avoiding writing their argument down so they were trying all these different things. I looked at them and I was like do you think that is a different tower?
291	00:26:51	NL	I feel like A lot of mine did that They were completely trying to avoid the explanation part by continuing to find more, there's more..
292		R1	Well but there may be more but you don't want to cut them off if they really think there is. But Z------...?
293		NL	Z------, yeah.
294	00:27:06	R1	What I would probably want to do is if he had ten towers there, you say I love what you did. And that's telling them to that you need to see it again. Announcement: This is door $23 \ldots$. I need to see that on paper.
295		NL	I did. I said How am I going to look at your paper and know this was 3 yellow and one blue and this is 3 blue and one yellow. He was like it is right there and okay and I was like ..

Line	Time	Speaker	Transcript
296		R1	Uh huh., cause you have to see it.
297		NL	But this doesn't help me. I had him try it again on paper.
298		R1	Uh huh.
299		NL	And on the back he did come up with something, he said I drew the picture because I wanted to do something fun. He crossed that out and that's the way I want to make it.
300	00:27:48	R1	Okay, now I think that you have most students that if you are trying to explain to them you really want to see what's on their desk because you like what they did. Most of them will do it. Obviously Zachary didn't but um... Okay, thank you good job. Okay. Are we passing around the I pad?
301		UCT	No, mine doesn't connect.
302		R1	It doesn't connect. Okay.
303		UCT	It is different and I thought I had it. I have one it's not working...
304	00:28:18	R1	Before you begin, I want you to say what grade your teaching, and whether it is regular ed., special ed., resource room, inclusion...[long pause]
305	00:28:47	MC	Okay. Alright I am in Sayreville, and I teach seventh grade resource.
306		R1	So, This is pull out
307		MC	Yeah, pullout resource. I have 12 kids, 2 girls, ten boys. This is actually a group of girls. They probably did the best out of the entire class. Um, They arranged the blocks basically by the different patterns that they saw. And ...When it came to explanations, it was really more about what was in the blocks not why there was you know the reason of why there was only 16 . Uh, So if you look at the first one, there is one solid color and four blocks high and there is no other way of doing this.
308	00:29:21	R1	And why? Why is there no other way of doing it? Because there are only two colors okay so that....Before you go, look at what they did and read through and let's talk about it. [Long pause to read the following argument: There is one solid color, and 4 blocks high. There is no other way of doing this. There is only 1 yellow and 3 blues in each tower. There is a pattern, the yellow keeps moving up one. There is only 1 blue and 3 yellow in each tower. There is a pattern, the blue keeps moving up one. Two of the same color is touching, and one color isn't touching. Not one of the same color is touching. Both colors are next to their twin.]
309		UCT	I think that it is very good.
310		R1	I think that it is very good too. Remember this is what

Line	Time	Speaker	Transcript
			grade resource?
311		T3	Seventh grade resource.
312		R1	Seventh grade resource room. This is Spectacular, isn't it!
313		UCT	I like that they said she said twins.
314		R1	They did it together.
315		T3	So these two were the stair case thing that they called. This one I thought was interesting because they said that there was a pattern and they saw that The yellow one keeps moving up one and then the opposite they just said that was that The blue one keeps moving up one. And they kept referring to that as a staircase.
316	00:30:11	R1	And that's very good. Isn't it? What might you ask them to push them one step more for the three of one color and one of the other?
317		T3	Why can't you go up one more step?
318	00:30:22	R1	Good why can't you go up one more spot and then if they got that, that would be a really nice convincing argument. Keep going.
319		UCT	So the next group, um, they said two of the same color is touching and 1 color isn't touching. So they kind of said to me that two of the yellows are touching Then they alternated them so that none of the same color is touching. Both colors are next to their twin.
320		R1	What do you think of that I think if you wanted to get a convincing argument for the last 6 towers. What might you do? How do we know we have all the towers that are exactly two one color and two of the other. What would you ask them to do? Are you convinced?
321		UCT	That is the most convincing that I have read.
322		R1	This is excellent work. Okay, I would really say...You know what I am curious did they do this project last year with their teacher.
323		UCT	This particular girl is new to my school.
324		UCT	Rianna I had her last year.
325		R1	And she did not. Okay because This is really superb work. Whether it is regular ed or special ed. Right, remember when took 6 towers that were two of one color and two of the other and we said Can you group them another way. And That might give a possibility of a convincing argument. Okay, Very, very nice. That's neat!
326		MC	This group was a group of boys. And they immediately went to the math of it and said that there are two colors and they have to be four high. Two times four is 8 . And then once they made the first 8 blocks they realized they could do opposites. So they doubled them and made 16.

Line	Time	Speaker	Transcript
			[Actual student argument follows: We have 16 in all. We think we have all the towers because each tower has 4 blocks in it and there are 2 colors to make the tower so $2 \times 4=8$. Then we realized that we can invert the colors to double the towers so $2 \mathrm{x} 8=16$. Then we couldn't make any more so we think that we made all the towers. We put the towers this way because it's a pattern. Every time the pattern moves it always has one small difference.]
327	00:31:08	R1	Interesting that was the one you wrote about, right?
328		UCT	Yeah.
329		R1	What do you think of their argument? That there were two colors and four blocks high. Two times four is 8 . Yeah, two times four is 8 . But what do you think of that argument? Two times four is 8 and then you double it because they are opposites.
330	00:31:28	T3	I thought it was pretty good that they immediately jumped to the math of it and not just....
331		R1	Well but Does it make sense?
332		T3	No
333		R1	What mathematically...
334		T6	Yeah One of my kids said that it was oh well there is 16 because it's four times four and then so I asked him how does that make sense though? Why would that work and he said oh well there is four blocks.
335	00:31:51	R1	Right.
336		UCT	And then he was like Then the other four and he realized that it didn't work So then he went to this. Oh never mind it is two times four and then everything has enough and then he did the same thing 2 times 4 is 8 times 2 is 16 for 4 high.
337		UCT	That's what he said. First he realized that there are two colors that are four high and he then built the 8 and then they kind of looked at it and were like but wait you can switch them by doing like the opposite. And then they were like but we can just double the 8 to get 16 .
338	00:32:17	R1	Okay now go back to four towers. Say it again.
339		UCT	That doesn't work for other ones, though.
340		R1	Let's think about it. Let's take a different height. Let's take the towers that are 3 tall? Okay, Does that work? The 3 tall?
341		MC	No. because then he would think that there are 12.
342		R1	And they aren't. So Again, just the way the student says I got it. It's four times four. And Four times four is 16, isn't it alright? So then what are five tall? Oh that's five times

Line	Time		Speaker
		Transcript	
		five. Oh wait a second, that's 25 and it's a tower and its opposite. So there has to be an even number. And remember I told you that my middle school students when I did this the very first time, at Monroe township; they said oh I know what it is that's five times five minus one, okay. Students can take numbers and they can you know make the numbers into some mathematical sentence that is a correct sentence. But does it make any sense? It really doesn't. So the 2 times yeah 2 times four is 8; but then if you do powers 3 tall, 2 times 3 is 6, gets doubled is 12. And how many towers were there 3 tall?	
343		UCT	8 344
		U1	There were only 8.
345		UCT	I think they know it doesn't make sense but at least with that, they could rationalize where those numbers are two colors four high. So I know that doesn't mean you get the other towers. But I think from the students, at least they are saying subtracting one, they have no meaning.
346		R1	Those numbers do have meaning in the problem.
347		UCT	But they don't
348		R1	They have meaning but just the way 4 times 4 gives you the correct answer of 16 for towers that are four tall, that is not how you get the towers four tall. Do you Remember how we got them?
349	$00: 33: 51$		R1

Line	Time	Speaker	Transcript
361		MC	So I think for this, the math does make more sense to them because we are only doing the four tall.
362		R1	Let me go back. Cause you are saying something very powerful. Carolyn Maher is so against programming students. Did you see that on the video yet? Where Carolyn Maher comes on and she talks about how we don't want to do towers one tall, then towers two tall, then towers three tall, then towers four tall.
363		UCT	No.
364		R1	Okay, you didn't see it yet. Okay. You might be seeing it later. Um, She is..Carolyn Maher is a professor at Rutgers. Have you met her?
365		unison	No.
366	00:35:15	R1	No? She is in some of your videos when she is interviewing students. She is one of the people that worked in Kenilworth. She said the reason why we don't want to do that is we don't want to program students and it would be very easy to say first you start with one tall, then we go to two tall, then we go to three and then we... we are able to do that.... But If you start with 4 tall right away they have to develop a way of thinking about it that makes mathematical good sense without being programmed.
367	00:35:49	MC	But I feel like in the video that is what they did do. Like the start with showing the one tall, then building the two tall and then adding the red and the yellow.
368		R1	Are you talking about Milin?
369		MC	Yeah.
370		R1	Okay, But Milin was not the teacher doing it. Milin that's the way he thought about it. That was the student who said the way I see the problem. And He was using an inductive argument, remember we talked about that. When you start with one tall and then you can put two colors a red or a yellow on top of it. The student is coming up with that not the teacher. The teacher is not saying let's all start with towers one tall today. And then let's build, 2,3,4. So, It is different, okay. This also, even though, yes If they said to you I know there are two colors. Yes there are that's good and I know we are building them four tall, yes we are, but two times four is 8 doubled is 16 . Doesn't really make mathematical sense in getting your answer here. The way that four times four doesn't make sense in getting the answer. Yes, it works but it doesn't make sense.
371	00:37:00	T6	We know that right but could we say okay I like what you are thinking. Like Can we test your theory?

Line	Time	Speaker	Transcript
372		R1	Good! I love it! I love it.
373		UCT	If you have three towers high. What would you say?
374		R1	Good. And now build towers 3 tall.
375		UCT	So you would take the next two and then three tall and see how many you got....
376		R1	Good. That is beautiful What she is saying is let's have you tell me Make a prediction if this is the way you are thinking about 4 tall, make a prediction for 3 tall and they would come up with 12 And then What you are saying is beautiful, I love it!
377		UCT	So you are not telling them, right.
378		R1	No you are not. You are not telling them. And actually what you are doing is you are giving them the opportunity to get some disequilibrium. I say it is going to be 12 towers 3 tall. Wait a second I can't find 12 I am only finding 8 so maybe I better revise my theory. Okay, very good, that's nice, That's very very nice. Okay.
379	00:37:51	UCT	The only other thing I saw in this one that was really cool was he used vocab that I was kind of surprised about. Like He used the word dominant.
380		R1	Nice.
381		UCT	Where blue is dominant
382		R1	Nice.
383		UCT	Where yellow is dominant.
384		R1	And What did he mean by dominant?
385		UCT	That it was..In this case, Blue is dominant because it is the only one that is up there. For this one, he is saying like yellow is dominant because it is all yellow. He even wrote, instead of opposite, he wrote invert.
386		R1	Invert? Okay neat. so he is using language. Interesting I have seen kids use the word dominant. And they meant that if you have most of it...But You know I think that once they define it for you. That's their language. They are developing language. Um, So good!
387	00:38:32	UCT	And then the last one of mine is the one I wrote on-line.
388		R1	Okay.
389		MC	This group only came up with 12 towers and after they created the 12 they arranged them so that it spelled out the word math. So they literally had put the towers in the shape of an M, A, T, and H. They literally had none left over. So that is where they left off.
390	00:38:53	R1	Now, again I would encourage you do not celebrate their creativity when it is spelling out the word math or making a T or building a cube. Um, That is....I mean Sometimes we do want them to think outside the box, okay, but we

Line	Time	Speaker	Transcript
			want it to be mathematically sound and spelling out math is very cute, but it is not where we are going.
391	00:39:20	MC	Yeah, that's what I kind of said to them. Do you really think that's the purpose of this?
392		R1	Okay, Good!
393		MC	They were like no, but that is what we came up with, Alright so I let them keep going.
394		R1	How are they arranging their towers? Someone in the group.
395		UCT	Opposites.[multiple responses]
396		R1	It looks like opposites also. Doesn't it? Okay. And if you have opposites, I know someone on the group online said. And remember it is so hard. It is hard. It is almost impossible because with 16, you can find the 16 by doing opposites. How many of you have done 25 towers of? Sorry towers of 5 tall... you actually built the towers five tall?
397	00:40:06	UCT	I haven't started yet.
398		R1	Okay, Did any of you yourself build towers 5 tall? Do we have cubes in the..., [T1],
399		TD	I can get them.
400		R1	you might want to when we are done here.
401		TD	Okay.
402	00:40:19	R1	If you have them, or If you yourself build towers 5 tall with the strategy of using opposites, it ain't so easy finding all the towers. It really isn't. Okay it is kind of hard. So, I think that and forget about the um you know getting a convincing argument. It would be too hard to find them. Okay, good. [long pause] Okay, good. Great, Let's see what we got here. Okay, so what district, what grade?
403		T4	This one.is .So I am from Long Branch, the behavioral school. And I have the non-classified students but most of them probably should be classified as emotionally disturbed.
404		R1	Okay
405		JLB	Um This student I was kind of impressed with him because last year when I had him in seventh grade and now he is in eighth grade.
406		R1	Okay.
407		JLB	Um, In seventh grade, he did nothing.
408		R1	Okay.
409		JLB	It was almost like he was mute. The only time I ever heard him was when he was cursing in like a whisper.
410		R1	Okay.
411		JLB	So This year he came in with a completely different

Line	Time	Speaker	Transcript
attitude. He actually wants to do well in math.			
412		R1	Nice, Good.
413		JLB	So this was a good activity for him to do in the beginning of the year.
414		JLB	Good
415		He didn't organize his work. Him and his partner did not organize the work. They had them altogether. [The following student's work is projected on the screen. I started with red and the red kept going down one per row. The pattern goes diagonal. I started with yellow and on each one it would go down by one. The pattern goes diagonal. Two red and two yellow are opposite colors. I did 4 yellow on one side and 4 red on the other.]	
416		R1	Okay
417		UCT	And When I questioned him he kind of answered my question about why he can't go another red up and everything.
418		UCT	Right.
419		R1	Ue did answer my question
420		Ukay.	

Line	Time	Speaker	Transcript
435		UCT	It is a good start.
436		R1	It's a very good start. I mean there he did group it with the threes and ones and that's very good. He is using a proof by cases. That's what this is. When you have it grouped by all the towers that are three of one color and one of another; all the towers that are two of one color, two of the other.
437		UCT	Yeah.
438		R1	All the towers that are solid.
439		UCT	There are outer and inner. Then outer and inner.
440		R1	Right, okay.so he is doing a proof by cases. Is it complete? No, does he have it written down what the argument is; No. but his recording is beautiful and I bet if you questioned him.
441	00:44:08	JB	I did question him. He did say it verbally. But..
442		R1	Nice.
443		UCT	But speaking for him, it was overwhelming just talking I think for him.
444		R1	Okay.
445		JB	This is what he had.
446		R1	Okay, okay. Now if you have a child with special special needs. Um, you might want to even you know After they say it, you might want to be the recorder and write down the words he is saying, you know, Not editing. Also the idea for all children. They don't like to make mistakes. They want to get rid of whatever it is that that they don't want you seeing because it's not... But you do want to see where they started and where they are going. So if you let children know that it is okay to put a line through it and then I am not even going to look at it. Although you will look at it. This is nice
447	00:44:54	JB	Yeah. Another thing that motivated my kids was I constantly tell them what I am doing in class.
448		R1	Good.
449		JB	So I told them I was coming here.
450		R1	Nice.
451		JB	I was getting early dismissal so I told them I was coming here.
452		R1	Okay, okay, Good.
453		JB	That I think also motivated them.
454		R1	Nice.
455		JB	And that was this girl.
456		R1	Did you tell them that you were going to share their work?
457		UCT	Yeah
458		R1	and how proud you are...

Line	Time	Speaker	Transcript
459		UCT	Yeah.
460		R1	That's great. That's really good.
461	00:45:15	JLB	Yeah. This girl. She is in my six-seven class. She is a repeat sixth grader and she is 14 years old and she has been left back twice now. She has been trying really hard now so it is kind of nice and She she just couldn't put it into words at all really but she did get at least this down. The following student's work: [We started with yellow and then we moved them down and moved them down until yellow gets on the bottom or the same thing but the red going down.]
462		R1	Yep!
463		UCT	She did say For the same thing but red going down.
464		R1	Isn't that nice. So she actually saw that three yellow and one red would be the same as three red and One yellow.
465		UCT	Yeah.
466		R1	Very nice.
467		UCT	Yeah because she was working hard.[inaudible]
468		R1	Very nice. Good, that's great.
469		JLB	She doesn't have all of them here but. She kind of colored it funky but...she did what she told me she did but she didn't write it down. She saw the step thing going down.
470		R1	Okay, okay, And it looks like she has y's for the yellow.
471	00:46:06	JLB	Yeah.
472		R1	You see that? That I would celebrate and I would let her show the others how she can use the letter y to show the yellow.
473		JLB	Yeah
474		R1	Right.
475		JLB	Yeah, She did that and she didn't want to do the writing. So she asked for the markers. So then that started the whole trend of I want the markers too.
476		R1	Right. Right.
477		JLB	so they can avoid the writing a little bit. They all wrote something but....
478		R1	Okay, And you are going to want to push them for the second task a little bit more and help them if they need help writing with using your strategy tell me what you think for this group; write it down. Or your strategy which is you know asking them to tell you and then you record it. Good! Okay.
479	00:46:50	UCT	That's it!
480		R1	Okay.
481		UCT	You know it's funny my kids did this activity. I told them I am going to Rutgers. They loved it! And then We did

Line	Time		Speaker
		Transcript	
482	$00: 47: 10$	R1	something a couple days later on integers with cards. Oh this is so much fun, Is this from Rutgers too? I'm like ah no.
			Isn't that nice that they think this is fun. And you know what it is fun! I think that I can remember children in my school When they were working on these kinds of problems, when it was lunch time they said no, no, no, we don't want to go to recess. And you say, Oh my gosh, like That is unusual. Stay in from recess to do math. Okay. How many of you have let the children share their strategies yet or have you not gotten to that yet? What you might want to do, because they are probably curious to know that did I do something good, Am I on the right path? As you can fit it in, it would be good to let not the whole class share, because they will be bored out of their mind, but pick a few to share, it doesn't have to be the best and brightest with complete solutions pick some that have an interesting notation, pick some that have a code, pick some that have part of a convincing argument.
483			VB

Line	Time	Speaker	Transcript
			we are only doing four tall; well not this group.
496		R1	Right, right, right.
497	00:49:22	UCT	Um, So, I was pretty happy with them. It was really more the girl who was doing it.
498		R1	So, she was taking the lead. Are they about the same ability?
499		UCT	Yeah, yes they are
500		R1	Okay. Okay.
501	00:49:42	UCT	But like They were all about the same ability. But she usually did a little more generally [inaudible] but then when she started to get the ball rolling he was able to get on it.
502		R1	Okay, notice how she chose to use the blue to color in the b and then said I don't even have to that anymore because the key is telling you blue. So, that is the reason why I told you don't necessarily give them colored pencils or crayons or markers because P and S didn't need it and they were able to show you what the towers looked like. Good.
503		VB	Okay so with this group again. I found also with my kids. A lot first came up with 14 and then they said 18.
504		R1	Okay.
505		VB	So, it was weird. A lot of ...It was common in all my classes. And then um with them I believe they did get 18; and I told them double check maybe you have duplicates because I think this may be perceptually hard for them to see it.
506		R1	Okay.
507		VB	Even when they separated it and they rearranged them a couple of times. It was very difficult for them to see the opposites but again they were telling me since they didn't see there were duplicates. They were kind of saying to me too well [inaudible] I moved them over because they were in the same spot. So it says, I believe that I am done because we made the opposites from all the towers I have made. I built the towers from the way I can make them as many ways as I can. I have 18 towers and at the end I put the pairs in 2 s two each So I was done, I thought it would be the fast way to organize the towers, so it would be easier.. I thought the opposites were easier to handle than to just wing it.[laughter]
508		R1	To...
509		UCT	To handle than to just wing it.[laughter]

Line	Time	Speaker	Transcript
510		R1	Yeah, I love it!
511		UCT	Like I said a lot of them had their way [inaudible] I had one group of boys that had arranged it to where like they had the top colors blue yellow on top.
512		R1	Yeah so they used a constant. Very nice. Go back to,did they tell you I have them all I have 18 here. And what might you ask them to kind of you know to let them know that they are not convincing you? What is a question you can ask them? They have 9 groups of pairs, right? 9 groups of opposites. Any ideas?
513		UCT	Can you arrange it in a different way?
514		R1	You could do that but I am saying that if that is the way they are arranging it. If you said to them, Why can't you have a tenth pair of opposites? Why can't there be a tenth pair? I am not convinced there are only 9 pairs. In fact I don't even think there are 9 pairs. I am saying that if you ask them, I don't know Could there be another pair? And that is a way for them to you know may be thinking that it is not a convincing argument and then your question can be arranged in a different way into a very good one.
515	00:52:39	VB	They had it originally arranged straight out and
516		R1	Okay.
517		VB	and when I thought they had a duplicate. I said why don't you try and pair them up because they did have had it all scrunched together but it was laying in one and so I said separate into twos but they still put it the same.
518		R1	And Again, remember It is so hard. But Rather than say why don't you separate them into twos. Why don't you say Can you arrange them in a different way not all of them together, but can you arrange them in a different way that maybe I will be better able to figure out if you have them all. Alright because you are kind of like telling them to arrange it into twos. You are kind of forcing them into.. um..you know...going in a direction. Okay.
519	00:53:20	VB	This one I don't know why [unintelligible]. But I will get to the explanation.
520		R1	Okay.
521		VB	These two boys they thought mathematically right away.
522		R1	Okay.
523		VB	They were able to come up with it they knew it had to be an even number. So like two is even so it has to be four high, so it has to be an even amount of towers. We did it this way because we had two colors and they had to be four high, So you multiply them. Then they can be the opposite of what you have to add two more so then you get 16. So

Line	Time	Speaker	Transcript
			there could be only 16 different combinations and it looks like cowboys![giggling]. We organized them by opposites and combinations. So with them they did start with the math right away and once they got started; they were able to do classwork and then I could see them freeze a little bit; but then They were able to check to see which ones they had.
524	00:54:12	R1	Is this the same argument that um..which teacher had this argument? Four times 2 is 8 .
525	00:54:22	T3	I think that was mine.
526		R1	Is that what they are saying? 4 times 2 is 8 times 2 is 16.
527		UCT	Yeah they told me it is four high, there's only two colors and that's 8 . I know they have to be even. And then they were kind of talking well like this one is the figure; then They have to have the opposite of that one.
528	00:54:42	R1	Right right right.
529		UCT	So, I think they started with the math but then when they started building. I think they kind of threw it to the wayside and then they were kind of figuring it out as they were building.
530		R1	But again, there is math here. I am not saying there isn't math. But I am saying the mathematics is not really what is going to give you the solution. Because it doesn't work with towers that are three tall, five tall, 8 tall; It only happens to work here just the way that four times four works here because four times four is 16 and two to the fourth is 16 . Okay? Okay, good. [pause] I can remember um, I started as a middle school math teacher. I can remember very clearly when students would be able to force the numbers to get them the solution. And the solution happened to be the right answer. But the mathematics made no sense. And I had to try and let them know that I am not impressed when they get you know some Gobbeldegook that turned into an answer that happens to be correct when the process is wrong. When they do the state testing if the process is wrong do they get credit if the answer is right?
531		UCT	No.
532		R1	No. They may get something but they don't get credit for a wrong process. So you don't want to complement them on a wrong way of thinking. Okay, Looks like we got a lot of writing here, huh. It is hard when you are one person in the room and you have a whole class. It's hard to see what's going on. You'll get better at doing it. But It's not easy.
533	00:56:27	UCT	In my one class with my para. She wanted to say more but

Line	Time		Speaker		
Transcript					
534	$00: 56: 35$	R1	I'm like no you can't. But it's hard You see them getting frustrated you want to help them.		
535	$00: 56: 46$	MM	Absolutely. It is hard for you. But you have this course and this training. She is not in the class so of course she is going to want to. Um, Okay.		
536		So, I did a lot of the one and also the partner because it was kind of interesting how they recorded their drawings differently and some of them had a good argument for one part and the other partner had the better argument for the other part.			
537		R1	Okay, Good.		
538		R1	So this first one, um He has some organization to his picture but I think that his picture was kind of an afterthought. Um and He really wanted to get his explanation down first.		
539	$00: 57: 16$		MM		
		Okay.			
556		His first explanation is for the three with one color and one of the other color. He says First we put one yellow on the top and three reds under it. Then we moved the yellow down one and moved the three reds like this. And he drew the little picture from the original, he drew the little picture; then we moved the yellow down again and again.			
540		R1	R1		Okay.
:---					
541					

Line	Time	Speaker	Transcript
557		UCT	and moved everything one spot. So he moved Like he moved that red down one. That's what he is saying.
558		R1	Okay what is that called?
559		UCT	Recursive
560		R1	Someone said it,... a recursive argument.
561		UCT	Yeah. And then we did like this; and we moved it like this; and then so he is starting to get rushed.
562		R1	Nice, Okay, nice.
563		UCT	That is why I included his partners' work because he actually has a better explanation for when they get to the twos and the twos.
564		R1	Okay, And that is a hard one to write a convincing argument for.
565		MM	Yeah but..and his organization on the picture is a little bit better too.
566		R1	Okay. The other one I thought the organization was good. Didn't you? I mean he had...He had... well, does he or not?
567		MM	The way he grouped it.
568		R1	It was his description that was good.
569		UCT	Yeah.
570		MM	Like I said, I think their drawing was kind of an afterthought.
571		R1	Okay, okay.
572		MM	He was more concerned with writing...
573		R1	Uh huh.
574		MM	This was his partner.
575		R1	Okay.
576		MM	And The beginning part is the explanation of the one and the three so we don't have to go over that.
577		R1	sure.
578		MM	Then we took two reds and two yellows. We put the two reds on top of the two yellows.
579	00:59:31	R1	Okay.
580		MM	Um After that we took the two reds and put them in between the two yellows
581		R1	Okay.
582		UCT	Like if these are the...
583		R1	On the top...
584		UCT	two reds on top.
585		R1	Uh huh.
586		UCT	And the two reds in between...
587		R1	Okay.
588		UCT	Um If you make the opposite of the last two so here are the

Line	Time	Speaker	Transcript
			opposite of the last two and put them next to each other in a certain way then it will be a pattern of two. Then you can put two of each color in a pattern of red yellow red yellow and yellow red yellow red. Lastly you can only have four blocks in a tower and there are only two colors so you can have a tower of only red and only yellow. So they were partners and I thought that they did pretty well.
589	01:00:10	R1	What do you think? Are you convinced? That's pretty neat stuff. Now I see a star on the top, were they the ones that were in the Rutgers project before?
590	01:00:10	UCT	Oh No, I was just going through and reading them and starring the ones I wanted to show.
591		R1	Okay [laughter] good I got it! Okay.
592	01:00:31	UCT	The next group that I included actually said 20 towers. But the way that they grouped them was pretty interesting. So, His picture is down here but I will show you in a second his partner's picture was a little clearer cause he writes bigger. And They got this staircase pattern for the 3 and the one and they wanted to do the same thing with the two in the middle; but they actually wound up getting duplicates and I don't think that they saw that. So what he said was What we did we made the basics, all red, all yellow
593	01:01:09	R1	Do you like the language? We made the basics.
594		UCT	Then we did all the combos of one. Turns out all the combos of one were also 3. So I think he means one block of 3 .
595	01:00:20	R1	And that is what he means. Right. He is talking about all the towers that are exactly one of one color and three of the other.
596		UCT	It was three because there are four blocks in a tower. Um $(1=3)$ he put. That means that there are going to be 3 different color blocks. Next we did the twos. We had two of each color places back to the explanation of the four color towers since there are only four blocks in a tower so there are no other combos except for four. So they didn't do a really good job of writing it down but so they do their two plain ones and they have their stair case with the one. What they were trying to do, was do a staircase with 2,2,2 And then they broke it apart. But They did the opposite too so they wound up getting duplicates. I thought it was interesting to that they tried to take the argument from the 3 and one. Since a lot of them got that

Line	Time	Speaker	Transcript
			easily. And then move on to the bottom. And these last two are kind of just like the ones that don't belong.
597		R1	Like the candy cane...
598		UCT	Yeah.
599		R1	..or the barber pole. Did your kids give that a name like the alternating? No name? Okay.
600		MM	And then I have one more. And this is a girl that had a really good argument when she was talking to me, but she didn't finish.
601		R1	Okay
602		UCT	As you can see her last sentence just kind of stops.
603		R1	Okay.
604		MM	But She starts to talk about the twos really well and this is her drawing. So she again has the stair case and then she has the opposite.
605		R1	Right.
606		UCT	And she did the twos stuck together. Um, what is she saying?
607	01:02:59	R1	If you... read what she says; but not yet. Look at her second grouping where she has 2 of one color and two of the other. What did she do? [slight pause]
608		MM	She has a constant.
609		R1	She has a constant on the top do you see that? And in The third group, same thing, right? Constant on the top. Okay,
610	01:03:21	UCT	She said I used two of each color. The first one in the set has the colors together. So there's two of one color on the bottom and two of the other color on the top.
611		R1	Say that one more time. Two of one color on the bottom...?
612		MM	Two of one color on the bottom and two of one color on the top.
613		R1	Okay.
614		UCT	The second one of the group one only broke one color apart. With one color on top, two colors in the middle and one color on the bottom.
615		R1	Okay
616		UCT	And that is where she stops her explanation.
617	01:03:50	R1	Do we remember what some of you did? That you had a constant on the top and then how did you arrange the bottom three blocks? She has it done differently than what you did. What did you do to make your convincing argument?
618		UCT	We did it the same as this [pointing to what the student

Line	Time	Speaker	Transcript
			did] We had the red all on the top and it was the same thing.
619		R1	That's right.
620		UCT	and it was the same thing.
621		R1	So the middle block there um which has the red on the bottom. would be in your left position, the one on the right which is the red in the middle; would be in the second position and the red on the top would be third.
622	01:04:25	UCT	Yeah.
623		R1	And that would be really good to point out how they are using a constant.
624		UCT	And then a lot of my students...I had one that I was going to share with the same thing as you but there is really no point. 2 times the 4 times the two again. A lot of my students I had said that.
625	01:04:45	R1	Students want to show you that they are using symbolic notation to get an answer. And sometimes it's good but sometimes it's not good when mathematically it doesn't really lead to a good solution. Even by accident; okay. You are going to see later in the semester um, we are going to do a problem, that I guarantee someone in this room is going to want to use symbolic notation. And sometimes it is going to help you and sometimes it is going to hurt you. It depends on whether you remember the right symbolic notation. Okay, alright, good. Very nice. You are showing some good samples of work and again, is there anyone who has the whole you know work with a convincing argument. No, but there is a lot of things here that are working towards a good argument. And nice recordings. Nice grouping and nice notation. Holding constants all these things are things you want your students to do and to point out to others. If you have a class where they are ready to hear about holding a constant, then other children might say. Ooo, you know next time when I do this problem, I'm going to use Sara's strategy because I like holding the constant, it made it easier. If you have a student who really isn't ready to hear it, don't worry, it will go in one ear and out the other and they won't hear it. Okay.
626	01:06:17	CDR	So I had another $8^{\text {th }}$ grade class um track one.
627		R1	Track one means what?
628		CDR	Normal...It is the higher level.
629		R1	It is a regular ed.
630		CDR	Yeah. It is a track one, but then I have a track 2.

Line	Time	Speaker	Transcript
631		R1	Okay, and Is there something above than track 1?
632		T7	Yeah, there is pinnacle.
633		T6	That was what mine sixth grade pinnacle one was.
634		R1	Okay, good.
635		T7	Um so this was a student who had explained it to me using a recursive argument.
636		R1	oh
637	01:06:49	T7	But when they wrote it. It doesn't come out that clearly if they used it or not.
638		R1	Okay, okay.
639		T7	It took me a little while to follow what they had done. So when they drew their towers out, they drew them in the pairs.
640		R1	Okay.
641		T7	So they could show their opposites.
642		R1	Yep.
643	01:07:03	T7	So all those arrows are showing that they took the top block and moved it down which one it would give them.
644		R1	Oh, so that's interesting.
645		T7	But its' not the easiest to follow when they do it that way.
646		R1	Sure. Sure.
647		T7	But they said the first pair of two of all the same color is there because there are four blocks and all are the same color but opposite from its partner. And he said the second group of two pairs make four different groups so they are talking about the four pairs of opposites.
648		R1	Mmhh.
649		T7	But they link together because if you take the bottom or top and put it completely opposite of the top or the bottom one, it would make a different tower.
650	01:07:41	R1	Mmhh
651		T7	Which wasn't exactly what they were saying to me.
652		R1	Right
653		T7	They were explaining if they Take the top and put it on the bottom
654		R1	Sure.
655		T7	Then they started talking about switching.
656		R1	Okay.
657		T7	Then they said they can only do this process 8 times. Technically you only do it four times.
658		R1	Uh huh.
659	01:07:58	T7	Before it starts to repeat itself so their argument when they said it to me was much more convincing than when they started writing it.

Line	Time		Speaker
660		R1	Transcript
661		T7	Umay, okay. Uifferent groups. But they only link together twice. if you switch the top and bottom one with the opposite, it would be completely different towers and you can only do this with four towers. The last 2 towers are a set of two different colors mixed twice and switching them would just duplicate itself further. That is why there can only be 16 different towers without any duplicates. Following their argument on paper was much more difficult than listening to them.
662			R1 that

Line	Time	Speaker	Transcript
674		R1	So what do you think of that? [pause] That's some math also. What do they mean 64 blocks? What are they really saying?
675		UCT	The cubes.
676		R1	They are talking about the cubes, yeah. Does that mean anything for this problem? Not really. But Notice how they crossed out but you can still read it. That is really good that you can still read it.
677		UCT	So then they fixed their argument.
678		R1	Okay.
679		CDR	They said that there can only be two completely one cube tower (only two colors). There can be four, 3 red one yellow towers Because there are only four high towers and that is the same for red. And then they said For two red and two yellow towers there can only be 2 Because there are only two sides to switch to make two different towers. They were talking about two red on top and two red on the bottom. Then they said that for the towers in the center there can only be two because there are only two colors to put in center of the tower. And then they said that For the towers that have a pattern, there can be two because there are only two colors to make up the pattern starting from the top (or bottom). That was the alternating one.
680		R1	Right right.
681		UCT	So this is much better than their argument on the front.
682		R1	Absolutely absolutely, good.
683	01:11:34	UCT	Then,the last one was, she had a lot of difficulty with this one. When she wrote all hers out she wrote them in pairs.
684		R1	Now notice how she is recording her towers? What is unusual about that? [pause]
685		UCT	It is horizontal.
686		R1	Say it again.
687		UCT	It's horizontal.
688		R1	It's horizontal. Remember, I might have mentioned that. I have seen this before. Some teachers have the hardest time reading it this way. Because we don't think horizontal when we are thinking of building towers. Most of us think vertical. Okay, And uh...But Yet this child absolutely is thinking and having no trouble. Now The only problem with horizontal is they always have to make sure that the top of the tower is always pointing the same way. So if the tower is yellow, yellow, yellow, red. And yellow is on the

Line	Time	Speaker	Transcript
			bottom. Yellow yellow yellow red. It means the left side always has to be the bottom of the tower. If they start flipping it, then it is going to be hard for them to see the towers clearly. But this is absolutely fine and what also is unusual?
689	01:12:46	UCT	They wrote out the words.
690		R1	They wrote out the words. Okay. But this is how these children see it. And I think it is interesting for us to know that they don't all see it the way we see it. Good.
691		UCT	So, Then she had kept them in pairs. She hadn't grouped them in any way. She had a hard time finding an argument.
692		R1	Okay.
693		UCT	So she put a question mark and said We think we have all the towers because if you were to find or (try to find) another group of towers, you would realize that that group of towers had already been created. It would also begin a pattern of towers and if you located a tower in the pattern that hadn't been made, then you would know that you missed one. So I am not exactly sure what towers she was thinking of but I think she was talking about the opposites pattern.
694	01:13:27	R1	Uh huh
695		T7	Also the towers had a nob-like appendage at the top [laughter] Which you would not be able to flip the towers over to make the towers different. Example, flipping one tower over to create a reverse pattern. [inaudible] all the possible towers are created; unless you see the same type pattern.
696	01:13:43	R1	Okay that is cute. with the question mark there is that she is not 100% sure there. And I want to ask you she is saying that we think we have them all because if you found another one it would be a duplicate. Basically is what she is saying. Is that convincing? Not really. Okay, It is an argument that a lot of students use, though. But it is not a convincing one. Good, very nice. I love the way you are showing different ways for students to record their work. That's nice, good. How many of you have trouble reading that? [pause]
697	01:14:20	UCT	Well, I think it's a little blurry too.
698		R1	It is. It is. But I don't mean that. I mean reading that it is horizontal.
699		UCT	Oh yeah.[inaudible]
700		R1	I had a teacher last year actually that couldn't read that and said that I can't read that. I have to change that so that I can see it. Okay, nice, very nice. Next. [pause] So it is

\left.| | Tine | | Speaker |
| :--- | :--- | :--- | :--- |
| | | Transcript | |
| interesting that students don’t always need to be thinking | | | |
| of the problem the way you are. Also not only in the way | | | |
| they solve it but also in the way that they record. Because I | | | |
| think a bunch of you would have never thought to write it | | | |
| with words horizontally.[long pause multiple | | | |
| conversations-inaudible] | | | |$\right]$| Remember this is the first time. Okay. |
| :--- |
| 701 |
| 702 |
| $01: 15: 46$ |

Line	Time	Speaker	Transcript
715		T8	Um so, Being that the students knew they were supposed to find 16 and just weren't. Really I mean you're talking some of them have down's syndrome so it was really over some of their heads.
716	01:17:56	R1	Sure
717		T8	But for these two, I was pleasantly surprised when we sat there and worked through the problems. Um, they started with opposite pairs and I told them that I wasn't accepting that as an answer. They needed to look at it and figure out another way that they could show me the blocks or arrange them or tell me that's all that they have.
718	01:18:10	R1	Mmhh.
719		T8	Um, So it was a boy and a girl. The girl had taken them all and kept a constant. She rearranged it with all yellows on top and all reds on the bottom.
720		R1	I see that over here.
721		CP	I was like so happy when I saw her do that. So I was like okay, what else can you tell me about this. And then The boy picked up and this block here and said this one has 3 reds in it. I said okay, well what about that? So there are no other ones with 3 red in it. So then The girl ran with that and did the 2 reds, kind of once they got that concept they were counting down and They were able to do it group it like that. Um..
722	01:18:50	R1	So they were doing a proof by cases or the beginning of a proof by cases?
723		CP	Yeah. They were grouping them by how many....with a constant and then how many were in the bottom three.
724		R1	Okay.
725	01:19:04	CP	So, this is their drawing. They did have a hard time at first they weren't sure what to do or how to set it up or actually drawing it. They figured out to draw the pictures. So I will go on to his explanation. Um, Okay for the first,...Do you want me to show you this or show you his picture? Picture?
726	01:19:27	R1	Yeah, do that that would be helpful.
727		CP	Alright for the first one, he said only two different colors so that was for this group here and I was satisfied. Um, then for the next one, he said there are one yellow on the top and then three red on the bottom um You can't have red on the top on yellow because.. I am sorry his spelling is really bad so I'm trying to figure out what he wrote... [CP is reading from the following argument: 1.Only 2 different colors.

Line	Time	Speaker	Transcript
			2.There are one yellow on top and three red on bottom and if you move the red on the top, then there is no yellow on the top. 3.There is a block with one that has yellow red yellow red and you switch to red yellow red yellow then you won't have the yellow on the top. There is another block with yellow, yellow red, red if you move the red to the top, you have yellow on top 2 red in the middle and you have yellow on the bottom. Any other move you can get a red on top. 4.There are 3 red across. If you put the red on top. Then you won't have the yellow on top. If you put another red on the bottom then you get 5 cubes and there only possible be for cubes.]
728		R1	And you know we are not worried about the spelling okay if we can read it we are fine. We don't care if it is spelled wrong.
729		CP	You can't have red on top of yellow because it is only one yellow and three red.
730	01:20:06	R1	Okay.
731		CP	So that was his explanation.
732		R1	Okay.
733		CP	Um, When I said how do you know you can't make another combination like that? He had actually taken the block and like maneuvered it around and ended up with a red on top so they were able to see that. Um, For the next one, he said two yellow on top 2 red on the...on the bottom. One yellow one...So what he started to do was actually like just identify each cube in his explanation. That was kind of their explanation too was going through it. So what they did was identify each one so I am going to skip reading it.
734		R1	Okay
735		CP	And then he said if you try another move one block you get a red on top.
736		R1	Was he using a recursive argument?
737		CP	Yeah. I mean That's where it started here.
738		R1	Okay.
739		CP	When He started to actually manipulating the one block.
740		R1	Okay.
741	01:21:03	CP	To see if they could make another; um then the next one was really confusing and he said. We have three red across and we have 3 yellow. But if you put the red on top you won't have the yellow on top. If you put another red on the bottom, then you get 5. And there has to be four. So I

Line	Time		Speaker		
		Transcript liked it here that he said there was 5 cubes, that was something but the 3 yellow across and 3 red did not really make much sense to me. Um, And then he said for the cube in red on top the same thing.			
742	$01: 21: 38$		R1		
743		CP	Okay. You know, I am thinking now how many of you have, you are saying some of them were down's syndrome		
744		R1	Yes Okay, If you have children that really are very low functioning. This might be too challenging a problem for them and maybe building towers three-tall might have been enough of a challenge. And maybe that would be something they would be more successful with.		
745	$01: 22: 00$	CP	Okay. I will try that with them because they were so confused.		
746		R1	That would be good. I would be curious to know if they had more success with that. I would do it with everyone. Um, you have an option. If you saw the groupings that you did, didn't work, you can change it up for the next task. You don't have to keep them if it didn't work, okay. If it did work, you can keep them.		
747	$01: 22: 27$		CP		I know that if I hadn't been sitting with these 2 students for
:---					
the entire time.	,				

$\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & & \text { Speaker }\end{array}$ Transcript $\left.\begin{array}{l}\text { So the first one she said only two different colors and } \\ \text { again, they were talking out their explanations together. } \\ \text { and then they put them down one by one and then she } \\ \text { actually went through and listed them. } \\ \text { There are one yellow on top. Three red on the bottom.and } \\ \text { if you move the red on top there is no yellow on the top. } \\ \text { For the next one, she goes through and lists out all the } \\ \text { blocks again, so like that was like their starting point } \\ \text { saying all the options that they had um and then she said } \\ \text { any other move you can get a red on top so that was pretty } \\ \text { much sums up all their arguments. she would go through } \\ \text { and list out each one in the group and say if you move one } \\ \text { any other way then you will have the same possibility. Um, } \\ \text { so I wanted to have more stuff to work with since I only } \\ \text { had the two kids in the one group and they both kind of } \\ \text { had the same thing. So I had this group of girls to come in } \\ \text { my class during their lunch period and kind of help out } \\ \text { with the kids. }\end{array}\right\}$

Line	Time	Speaker	Transcript
780		R1	Yep! Reds are separated there. So interesting way of grouping, huh. And that's kind of neat..
781		CP	That's what like Stephanie did in the video right.
782		R1	Stuck together, stuck apart. Um, what you want them to do now this is neat that you did it with kids that aren't even your kids. That it is kids that are helping your kids.
783	$01: 25: 50$	CP	Yeah
784		CP	What you want to do is, once kids have a grouping, you want to say well how do you know that there isn't another tower that can fit in this group. So that there would be a convincing argument. Okay, good.
785		CP	I have her written argument.
786	$01: 26: 11$	Okay.	
787		Alright So she said group one has 2 reds together every time you move it to the top, middle, and end. I guess she was saying that the 2 reds are at the top; middle; and at the bottom. She said For group 2 it just has four yellows and 4 reds on each. For group 3, it only had one yellow so the yellow cube started on top, and Went down one every time and it stopped at the bottom. For group 4 all the reds were separated. Uh, for group 5 the red cube started on the top and went down one every time and stopped at the bottom. And then at the end she said For each group, I couldn't make any more because there was no more possible combinations and if I added one more to it; it would be 5.	
793		CP	R1

Line	Time	Speaker	Transcript
796		R1	Do it a different way. Okay.
797		CP	Find another way.
798		R1	Good, good, okay neat. Okay, What you want to do while we are waiting for the next thing to be photographed you want when you are doing o the next task; to make sure that the pairings...both students are you know recording; where both students are um you know handing in a piece of paper that shows their work because you will find that it may not always be the same as the partner. They may be working together but thinking differently.
799		UCT	Should we keep them in the same pairs?
800		R1	Oh Yes you should go in the same class
801		UCT	No, I said should we use the same pairs?
802		R1	Oh, if you like the pairs, yes you can keep the same pairs. If you didn't like them, because the kids were arguing or one did the work and one just sat there and did nothing. Switch it up. But you must go into the same class that you did the first task with. Okay.
803	01:29:05	GH	Okay, so um This group which I didn't get to see, um I forgot to tell her to use a pen. Um But she wrote down the reason I think we are done with 16 combinations; are because I did it like Yellow, blue yellow, yellow So I moved the blue down one spot; yellow yellow blue yellow and one down yellow, yellow, yellow blue, then I did Blue yellow blue blue. Then I moved the yellow down. Blue Blue Yellow blue; down blue blue blue yellow then I did pairs of two colors; yellow yellow blue blue; blue blue yellow yellow; and yellow blue yellow blue; blue yellow Blue yellow and so on....
804	01:29:47	R1	And so she is telling you what she did. But she is not convincing you.
805		GH	But when I spoke to her, she was very clear about how she knew each one um I think towards the end of the period the time was running out and so she...she probably could have written a lot more than this.
806	01:30:04	R1	Okay
807		GH	But basically she just listed all of her towers.
808		R1	And that is a common thing where students just tell you what you can see when you are looking at their diagram. What you want to try and get them to do is some of you had where they grouped it and made a convincing argument for each group. Good.
809	01:30:26	GH	Now with this one, This is probably the best answer I got.
810		R1	Okay.
811		GH	From one of my students.

Line	Time	Speaker	Transcript
812		R1	And tell us again what grade?
813		UCT	Sixth grade and um this is....
814		R1	Regular ed.
815		GH	This is an in-class-support class.
816		R1	In class, okay.
817		UCT	Yeah, this actually has one regular ed student and 2 special ed. students for each grouping.
818		R1	Okay.
819		UCT	It is my only grouping of 3 .
820		R1	Okay.
821		UCT	So um this is the regular ed student talking right now
822		R1	Okay.
823		UCT	I made two whole towers and knew that there can only be two because there were 2 colors. Then I switch the first top color, the second color; the third color; and then the last color. She was moving it in pairs. She moved these down to here, down to here, and then down to there. So that was the three and one like staircase.
824	01:31:13	R1	So that is interesting. Say that one more time.
825		UCT	So first she switched the top color; and left the three next to these [pointing to the towers all blue and all yellow to the left]. And then she went the second and then the third, and then the fourth. So she moved them but with her opposites together so she didn't separate.
826		R1	Interesting, okay.
827		UCT	Um I then knew that I could only do these because I switched the colors for both towers. Then I started doing 2 and 2. I took the wholes; and switched the bottom two, the top two; and the middle two; Now, I couldn't really understand in the drawing what she was talking about that very much confused me. I know that these are the last ones, because there are four and if you are doing 2 and 2; then you know you can't do anymore; and finally I did the stripes. Which I don't know what she is talking about.
828	01:32:05	R1	Who knows what she is talking about the stripes?
829		UCT	Like yellow blue yellow blue.
830		R1	The alternating
831		UCT	OH!
832		R1	The barbershop
833		UCT	But that wasn't the last one.
834		R1	You're right.
835		UCT	That's why I was confused.
836		R1	Yeah. Yeah. Her writing is confusing. Cause it is not

Line	Time	Speaker	Transcript
			matching the top of it. The top is hard to follow. Absolutely.
837		UCT	Yeah.
838		R1	Uh Huh.
839	01:32:35	UCT	Now um I thought the next one was very interesting because he was in the group; but what he wrote was completely different and had nothing to do with what she said.
840		R1	Okay.
841		UCT	So he, grouped them a little differently than hers. Like He wrote...
842		R1	Ahh.... Look at his explanation.
843		GH	My group and I think this is all you can make because $4 x 4=16$. There are 16 different pillars of 4 . My teacher in Lloyd Road, which is our elementary school, said if there is a problem like this do the amount of the blocks in one stack and times it by itself so 4 times 4 is 16 .
844		R1	Oh, I bet that teacher didn't say that.
845		UCT	Well I found it interesting because they were the same group had the same conversation and I don't know where this came from?
846	01:33:07	R1	How many times do the students take what they remember you said which may not be what you said; that's what the teacher last year said. Right, um if you go back there again 4 times four is 16. That's a good mathematical sentence. It just has nothing to do with the problem. Okay, Good. Okay, nice. Good for you that you are picking up this stuff. You know that I think that it's very hard for students to see, um that you are You want them to connect symbolically. Pictorial with concrete work. You want them to do that. But You want it to be the right symbolic. You don't want it to be just some symbolic that is not making sense. Interesting stuff. Good.
847		UCT	It was like she was trying to bring back previous knowledge.
848	01:34:02	R1	Which is good, that is a good thing, to bring back previous knowledge or to connect it to previous knowledge. But you have to connect it to something that was really correct. Okay this is nice. Do You see how the towers are numbered and that they are also divided into 2 and 3 groups. So this is much easier for you as a teacher to look at and for them then to write an explanation than if they had one big log of towers. Good.
849	01:34:32	UCT	Um, I think that she just remembered to show the towers

Line	Time	Speaker	Transcript
			[inaudible].
850		R1	Also Did she talk about them?
851		UCT	No, she doesn't refer to the numbers at all.
852		R1	Okay.
853		UCT	But I think she just did it to show it.
854		R1	Okay.
855		UCT	So it says The towers you see above are all the possible combinations. To prove it keep reading. My partner and I started making the four length tower with 3 yellows um once we knew we had all of them, we went on to the next one; which is 3 blue. So I think they were talking about how they worked here and had 3 of one color and one of the other.
856		R1	Yep!
857		UCT	And then we did all the opposites.
858		R1	Good
859		UCT	And then she said we knew we were done with the three yellows because there was one blue per level and we knew that there couldn't be another level because the towers had to be four blocks in length.
860		R1	This is very good, isn't it? And what..what grade?
861		T10	This is $6^{\text {th }}$ grade regular.
862		R1	$6^{\text {th }}$ grade regular ed. That is very impressive for them to write that. You didn't help them, did you?
863		T10	No.
864		R1	That's very impressive.
865		T10	Um...We did the same for the 3 blue but there was one yellow per level. Then we went on to the four lengths all blue towers and all yellow towers. Since there was two two colors to work with so we knew we could only make two towers with it.
866	01:35:42	R1	Are you impressed, this is good stuff.
867		T10	The last part, then we did the two blue and two yellow and we knew we had them all because we tried and tried and tried and could not make anymore.[laughter] So we knew we were done with that one. We are absolutely positive that there are 16 towers.
868		R1	Now isn't that interesting. Perfect, perfect, perfect, and then it fell apart. Okay, But then, what they do...But you see that argument from students we tried and we tried and that we kept looking and looking and now we know we have them all. So she doesn't give a good convincing argument for the 2 and 2 but the others are wonderful.
869	01:36:23	UCT	Yeah she started out really great.
870		R1	Absolutely. Wonderful![inaudible response] Absolutely

Line	Time	Speaker	Transcript
			okay.
871		T10	Alright. This kid Chris, he was in my group of kids that I wrote about on the posts where they kept changing how they had the groups.
872	01:36:41	R1	Yes, How many of you had groups that kept rearranging the towers to show you different ways?
873		UCT	Yeah.
874		R1	You did. Who else?.. [hands are raised] You did. You did. Good. That is very very good. I mean If they can be flexible in their thinking to keep changing the way their towers are arranged it's really good.
875		UCT	So his explanation wasn't that great
876		R1	Okay.
877		T10	but the discussion I had with them was a lot better.
878		R1	Good.
879		UCT	So um this is exactly when they went through right away with their partners. They had to group it this way and they didn't go do opposite pairs at all. They went with where They saw this diagonal pattern, they wanted to work with that. Then they tried to do something similar with the ones that were two yellow and two blue but they couldn't really put it together.
880		R1	That's a hard one to do.
881		UCT	Um, So I was you know helping them with it and we were talking about it and they got to the ones that were 2 of each color and they were so stuck. So I was like alright, keep thinking about it and I will come back to you. When I came back to them, they had took all the opposite pairs and I am like what happened? [laughter] You just had a few of those left. And they were like oh. Okay, so then I was asking them how do you know that there isn't any more pairs or opposites?
882		R1	Right.
883	01:37:49	UCT	And they were like I don't know I can't tell you. Great keep working on what you were before or visit something new. So I went to the other group and came back and they had them all lined up. They had all the one color constant, and the other color constant, with the two things divided. So They were looking at them, well like how about this? Great, so what can you tell me about this?
884		R1	Yeah.
885		UCT	And They were looking at it and they were like well I don't know. They didn't even realize that they had the constant.
886		R1	Uh huh.
887		UCT	Well coming from my view, like I am standing up, what do

Line	Time	Speaker	Transcript
			I see when I look at the top of your towers.[laughter] And they were like oh, there's all the reds and there's all the yellows. But they still couldn't get how that could help them
888		R1	Okay.
889	01:38:27	UCT	So then I was like well what do you think you were both convinced by. Well definitely the beginning. So they went back to this [pointing at work on projector].
890		R1	Okay.
891		UCT	But then they still got very stuck.[inaudible]
892		R1	And this is still very nice. Talk to me what type of proof is this? When they arrange by towers that have exactly one of one color and three of another color. Towers that have exactly Two of each color towers that have four of each color... what kind of proof, do you remember what it is called?
893	01:38:55	UCT	Proof by cases.
894		R1	Proof by cases, good. And you have to get familiar with what these informal proofs are called. Okay, we talked about a bunch of them today. Recursive argument was one, Do you remember the one that Milin did? What did he do? Milin...
895		UCT	Inductive?
896		R1	Inductive argument was another; proof by cases was another okay. Good.
897		UCT	So their explanation wasn't really good but their discussion was.
898		R1	Excellent, and I like that you saw that they could rearrange it a different way.
899		UCT	Yeah and I didn't even ask them to do that. They just did that on their own.
900		R1	Alright very nice.
901		UCT	And then this is just one other one. [The following student argument is shown with the projector: We put them in different groups and there are no any other combinations to put in any of the groups. In group 6, there are only 3 blues and 1 yellow. In group 5 , there are only 3 yellows and 1 blue. In group 4, there are 2 blue and 2 yellow in half. In group 3, they are a tower of the same colors and 2 they are in a pattern. In group 2, they are in a pattern. In group 1, tow colors are the same. We try and find more to find but no more towers.] The student is in a group of 3 and He is really quiet. He hardly says anything. And He was working by himself on all of it and the other two were doing their own thing.

Line	Time	Speaker	Transcript
902		R1	right
903	01:39:46	T10	Then I asked them all to work on it together. So he really had the best understanding. So it was kind of the first time he was really talking about what he was doing with other students.
904		R1	Good. Good.
905		T10	Because he is very very quiet.
906		R1	Uh huh.
907		UCT	So I thought that was a good because it gave him an opportunity to actually talk about it and share with other kids.
908		R1	Very nice.
909		T10	So He also made groups and the letters are a little hard to read. They have these are The first few groups they have here.are the ones that are 2 color.
910		R1	Okay.
911		T10	Then you have the ones that are...
912		R1	Three and one.
913		T10	Yeah, 3 and 1. And then they have they have these like have the stair case.
914		R1	Okay. Okay.
915		T10	So, he goes to talk about it how he put them in different groups. And there wasn't any other combinations to put into the group. In group 6 there are only 3 blues and 1 yellow. So he doesn't really describe moving the pieces but when I talked to them that was what they were talking about. The same thing for group 5. In group four there are 2 blue and 2 yellow and they are split in half, so he has them where they are together;
916		R1	Right.
917		UCT	So it was the two blue and two yellow on top and the 2 yellow and 2 blue. I guess taking the solid towers.
918		R1	Sure.
919	01:40:56	UCT	In group 3 they are towers of the same color and 2 they are in a pattern. They were not sure what the pattern was.
920		R1	Okay.
921		UCT	Their writing wasn't that great but definitely in their group had good arguments.
922	01:41:06	R1	Very good. And how many of you need to think by yourself before you talk to someone else. Alright, some of your students are that way too. Before they can share and talk ideas with someone else they have to think first by themself. So you have to respect that and that is very nice. I think you have good stuff. I think that you can be very proud for the first time around. But your students did some

Line	Time	Speaker	Transcript
			really good stuff. And you want to celebrate what they did.

Description: Transcript of teachers working together on the pizza problem.
Advisor: Professor Carolyn Maher
Location: CS Middle School, Old Bridge, NJ
Date: October 2, 2013 part two

Author: Phyllis J. Cipriani Verified by: Simone Grey Date Verified: Summer 2015 Page 1 of 17

Line	Time	Speaker	Transcript
1	00:00:00	R1	Pair off with a partner and now you are going to be a problem-solver. And you will have a problem to solve. I want you to read it when you get it and I want someone to explain what they think the problem is asking of you, okay. Um, you want to work with someone so make sure you are sitting next to someone you can work with. And after you read it, if you think you understand the problem tell me what you think the problem is asking you to do. [long pause] [some inaudible conversations] Okay, what do you think? What is oh, I heard something... why is it okay?
2		UCT	First I was like okay just like thinking...1,2 but then Bri said she was like you don't know how many toppings you have so I was just like You don't know if it is one topping or two topping, 3 topping...
3		R1	Okay, lets...why don't we go back again. What is the problem asking of you?
4		UCT	How many combinations you have?
5		R1	Of what? What do you have?
6		UCT	Toppings
7		R1	You are making pizzas. Are you making pizzas choosing from what?
8		UCT	The different toppings.
9		R1	And how many toppings?
10		UCT	4 toppings
11		R1	Choosing from 4 toppings. And your job is to make as many pizzas as you can selecting from the four toppings. Okay. Any questions on what your job is to do?
12		UCT	Are we allowed to duplicate?
13		R1	Are you allowed to duplicate-what do you think?
14		UCT	Does the order of the toppings matter?
15		R1	Well that is something you and your partner will have to decide. Okay. Do you think you understand what you need to do?
16		UCT	Yeah!
17	00:02:18	R1	Begin. Work so that we can share, okay.[R1 begins to walk around monitoring]. [teachers working in pairs on the pizza problem for 17 minutes-multiple conversations-inaudible]

Line	Time	Speaker	Transcript
			[Some group conversations are recorded before instructor calls for everyone's attention] [R1 circulates and monitors work of the five groups.]
18		R4	Are you both from Toms River?
19		UCT	[first group] so sausage and mushrooms?
20		UCT	Uh huh.
21		UCT	And sausage and peppers.
22		UCT	Two peppers? Oh peppers and mushroom.
23		UCT	What? What did you say? [R1 looks over their shoulders at their work.] You can have sausage, pepper, mushroom. [Group one is solving the problem using proof by cases $0,1,2,3,4$. Both teachers are making a list of each pizza. One partner is spelling the entire word, the other partner starts to write the full word, and begins to write the first letter of each topping, then realizes that she needs to distinguish between peppers and pepperoni.]
24		R1	[second group R1 stops to discuss work][The teachers have drawn circles to represent pizzas.]
25		CP	No, Peppers, roni, sausage.... No, right? Is there going to be one less?
26		R1	[R1 stops at third group] Hmm, what do we have here? What is this here?
27		UCT	How many four topping pizzas, three topping, two topping you can make.
28		R1	Interesting. Very interesting. Do you see what she did? Did you do the same thing?
29		CDR	Yeah, I didn't number them. Well I said toppings from topping to topping.
30		R1	What? The same two?
31		CDR	The same what?
32		R1	She said there is one topping here.
33		CDR	Right.
34		R1	Then she said there was four here.
35		CDR	Then 6 then 4 then 1.
36		R1	Yeah. Did you ever see that anywhere before? Those numbers.1,4,6,4,1
37		UCT	Oh it's the Fibonacci numbers!
38		R1	Close! Try again!
39		CDR	Oh yeah, I know what you are talking about.
40		MM	Oh, it's Pascal's triangle.
41		R1	Have you seen Pascal's triangle before?
42		MM	Yeah, for the towers.
43		R1	Is this connected anywhere? Can you see a connection? [R1 waits with slight pause]

Line	Time	Speaker	Transcript
44		CDR	Well yes and no. Like Originally, there was 13 but it's not...
45		R1	I challenge you to find a connection. Because Your children may find a connection Because they don't look alike. I am challenging you to find a connection between the problems. Because they don't look alike, do they? See if you can make a connection. Do you need...We don't have the blocks here do we? [Video shows CDR's work where she began a list writing the topping word but then changed to write the first letter of each topping word. CDR decided to use the letter E to represent the topping of pepperoni.]
46		MM	Can we reorganize them?
47		R1	[fourth group R1 stops to discuss work] Are they the same or different?
48		R1	Why did you do that?
49		UCT	Cause I was going to do like that. Yeah.
50		R1	No the RONI won't cause you are telling me If it is on purpose. They put something in where Students will have to invent notation. And you did invent notation, Good.
51		UCT	Wait!
52		R1	Do you have all the....
53		UCT	We have. I'm trying to think of how many there are possible.
54		R1	Yeah but I don't think that's all. I think it's more.
55		UCT	It is more if you are allowed to have duplicates for orders. There would be more if you said peppers pepperoni or pepperoni peppers
56		R1	Well okay, so I am asking If you do a peppers, pepperoni pizza and a pepperoni, peppers pizza...are they the same pizza or are they different?
57		UCT	The same. [Video showed JLB's work where the words plain and all toppings were written at the top. This is the opposite strategy.]
58		R1	So you think it is the same. Then you wouldn't want to do it. Okay.
59		UCT	So no halfs or quarters. ALL or nothing.[laughter]
60		R1	Okay, okay. So I will ask you again, do you think you have them all?
61		UCT	I don't know!
62		R1	Did you try and try and try and couldn't find anymore? [laughter]
63		UCT	We think that now [laughter].
64		R1	Okay. Okay.

Line	Time	Speaker	Transcript
65		UCT	I figure you can have a plain no cheese.[inaudible]
66		R1	[R1 goes to group 5] Can you go to a pizza store and order that pizza?
67		NL	I have had done that plenty of times where I ordered no cheese.
68	00:09:37	R1	Okay, okay. What does it say here? [inaudible] Did you work in a pizza store?
69		NL	Yeah, that is probably why!
70		R1	Okay. And you know what your students are also going to have some questions.
71		NL	I know what it is saying you get a standard and then a topping.
72		R1	Okay, okay so what are they calling a standard plain pizza?
73		UCT	Cheese and sauce.
74		R1	Okay.
75		UCT	And then I read then you can select the toppings on top of the cheese.
76		R1	What do you think?
77		NL	I think you can go either way. I mean I do see it that way but I just think you can look at the toppings a different way.
78		R1	Okay so this problem isn't like the other. So in other words, when you did your....
79		UCT	She did cheese all over included and I took cheese out. So that's why I have more than she does.
80		R1	How many do you have?
81		UCT	I have 16
82		R1	That's 25?
83		UCT	Well this one doesn't count.
84		R1	Okay so you have 24. Alright, So the way You are getting more than her.
85		UCT	Yeah some of hers you are counting 2 times.
86		R1	How many toppings do you have if you count cheese as a topping?
87		MC	You have 5 toppings because if you count cheese it is like one of the toppings. Like yours is different because like for one topping you put the cheese where you are putting pepperoni just pepperoni on it. Just sausage. Just mushrooms, just peppers or whatever...
88		R1	And what are you saying?
89		MC	I am saying just cheese and then you can have just cheese and pepperoni is a two topping.
90		R1	As a 2-topping? So You are counting cheese as a topping also?

Line	Time	Speaker	Transcript
91		UCT	Yeah.
92		UCT	Also the cheese its, the same one I have.
93		R1	Okay, so I am still still confused here. You have this cheese is it a topping or not a topping?
94		UCT	Can we count it as a topping?
95		R1	Yes you could. Okay.
96		UCT	That is why it is in the front.
97		R1	Okay so, So that is a group, cheese, is that what you are saying?
98		UCT	Yeah, Just cheese.
99		R1	Okay, just cheese. Okay, okay.
100		UCT	So then I counted it as one topping which would really just be...
101		R1	So these your... are these your one topping pizzas?
102		UCT	Yeah but I counted it as like your first one is just cheese plain; with I guess you can put really no toppings.
103		R1	So.. This one means what? That's why I'm confused.
104		UCT	That it is just one item on the pizza. Just cheese, nothing else; Plain; a plain pie.
105		R1	Okay and now you're saying this looks like this I think.
106		UCT	It is. Yeah.
107		R1	So these are your one topping pizzas.
108		UCT	Yeah
109	00:12:30	R1	And these are your one topping pizzas?
110		UCT	I guess technically if you don't count cheese as a topping.
111		R1	Are we counting cheese or are we not counting cheese?
112		UCT	Well but just a plain cheese counts as one of your options. Because You can choose to not add any topping.
113		R1	Oh that's right. Okay.
114		UCT	That's why she is saying it.
115		R1	Okay, well you have it like that too.
116		UCT	I am just like listening and it sounds like a cheese pie and a pepperoni, a cheese pie and a sausage, ...[inaudible]
117		R1	But these are your one topping pies.
118		UCT	Yeah.
119		R1	So are these your one topping pies?
120		UCT	Yeah, I guess you can say that. Yes.
121		R1	Okay and what are these?
122		UCT	2 topping.
123		R1	And these are...?
124		UCT	3 and then 4 toppings
125	00:13:25	R1	Okay so you Both are doing it 1,2,3,4
126		UCT	Yeah.
127		R1	but how come you have different answers. Oh. You don't,

Line	Time	Speaker	Transcript
			oh did you cross these out.
128		UCT	Yeah, she crossed them out.
129		R1	Ahhh, Okay you got rid of some stuff. Okay.
130		UCT	Well I mean If Cheese was not a topping I am not going to write all these so I got rid of it.
131		R1	Okay you got rid of the C.
132		NL	I am missing one here.[video shows work of NL which is proof by cases counting cheese as a topping and using the first letter of each topping word to represent the topping with the exception of PR to represent pepperoni.]
133		R1	Ahh so you are missing a 3 topping. Okay.
134		UCT	Wait so it can it just be...
135		R1	No, How many 3 toppings do you have?
136		UCT	6
137		R1	Now which are your 3 toppings I am a little confused here.
138		UCT	I am counting it now.
139		R1	Okay.
140		NL	Mine are not very organized. She is more organized.
141	00:14:03	R1	No, You are both okay. But that's okay.
142		UCT	3 toppings, 2 toppings would be 6.
143		R1	So she has...
144		UCT	Oh yeah, 1,2,3,4,5,6...
145		R1	Okay, what's 3 toppings?
146		UCT	4
147		R1	Okay.[Teachers are counting their 3 topping pizzas.]
148		UCT	PRM
149		UCT	You have PMR? Oh that's right you used R for pepperoni.
150		UCT	Yeah I used R for pepperoni.
151		R1	So you both have 4. Okay. And so your... these are for 3 topping pizzas? These Over here.
152		UCT	MMhh.
153		R1	Okay, And your four topping pizzas?
154		UCT	Just [Teacher circles one pizza with symbols representing all 4 toppings]
155		R1	Only one. Okay, alright. Interesting, okay so... you have 16 ?
156		UCT	Yeah.
157		R1	Do you think you have them all? [slight pause]
158		UCT	Yes.
159		R1	Can You say it with conviction or....
160		UCT	Well, I mean if you do it like the tower problem and simplify it so you know what I am saying like if this is cheese, peppers, sausage, then you could just add a mushroom or add pepperoni.

Line	Time	Speaker	Transcript
161		R1	Oh that's interesting.
162		UCT	And then so like the same thing here was peppers and mushrooms, peppers, mushrooms and added a pepperoni. So like we just added the other 4 toppings we didn't include.
163		R1	Okay.
164	00:15:52	UCT	We both agreed that order didn't matter.
165		R1	That it didn't matter. Okay, so it was sausage pepperoni is the same as a pepperoni sausage. Okay. Some of your students might not be sure about that.
166		UCT	No, they probably won't.
167		R1	And if they are not, you are going to ask them to talk to each other and come up with what they think. I have a question, you got 16 pizzas. Does this problem remind you of any problem that you did?
168		UCT	towers
169		R1	Well or anything that you have done before...
170		UCT	There is an organized list problems.
171		R1	Okay.
172		UCT	That is just what I thought of while doing this problem and she wanted to do a tree diagram.
173	00:17:00	R1	Ahh, Interesting. Um, it would be interesting to see what happens when you do that. Um. Okay, um.. How can you um... talk with each other...how did this remind you of the tower problem, okay and then we will talk about it as a group. [leaves fifth group and goes back to fourth groupother conversations occurring]
174		R1	MMMhh, I see you did a tree diagram, is it easier?
175		UCT	Well it's going to be really big, I just know that many of my students are going to do that.
176		R1	MMHhh.
177		UCT	They are totally going to do that, I just know it. And um, then they are going to have their lists.[inaudible]
178		R1	MMhh.
179		UCT	We thought about a table but we don't know what to do with the 2 topping.
180		R1	MMHH.
181		UCT	And then you have to figure out what to do with the duplicates.
182		R1	And that would be confusing. Right.
183		UCT	[inaudible] So I think a lot will have the lists where they have to write out and...[inaudible]
184		R1	AAhhh. Okay.
185		UCT	Are we going to have to do this in class?

Line	Time	Speaker	Transcript			
186		R1	We will talk about that. And you are right when you do it this way, it is a lot easier. Alright, question for both of you...How many toppings... uhm how many pizzas did you get?			
187		UCT	16			
188		UCT	Does anybody want anything else?			
189		R1	Does this remind you of anything else?			
190		R1	Yeah, the handshake problem.			
191		R1	MMHH Well Talk with each other, how is it like that?			
192		R1	Like the towers[response is inaudible] 193			
		You have 2 things that you are telling me about. It is				
reminding you of the Handshake problem and it is						
reminding you of the towers problem. Talk with each						
other, How does this remind you of these problems? [R1						
monitors next group].				$	$	MMMhhh.
:---						
194						
195						

Line	Time	Speaker	Transcript
203		unison	yes
204		R1	Okay. Then you talked about one topping pies. How many pies could you make that had exactly one topping?
205		unison	4
206		R1	4 okay. Then you talked about 2 topping pies. And how many pies could you make that had exactly two toppings?
207		unison	6
208	00:21:02	R1	6, and Then you talked about 3 topping pies, how many?
209		unison	4
210		R1	4, And then you talked about a pie that had all 4 toppings and there were?
211		unison	1
212		R1	Okay, and if you looked at those numbers. It was 1,4,6,4,1 Have you seen that before?
213		UCT	yes
214		R1	Where?
215		UCT	Pascal's triangle.
216		R1	Pascal's triangle. Remember that?[slight pause] Where did we see Pascal's triangle? [slight pause] Very recently...
217		UCT	The towers.
218		R1	With the towers problem, when you were building towers 4 tall selecting from 2 colors, How many towers did we get? [slight pause]
219		unison	16
220	00:21:40	R1	How many pies did we get?
221		unison	16
222		R1	And we also saw the $1,4,6,4,1$. How did we see that? Um, can I....
223		UCT	Yeah, you can just pull it up.
224		R1	Okay. I am going to write right here! Okay, Remember when we were building... The pizza you are telling me has $1,4,6,4,1$ right? For the plain pie, one topping, two topping, 3 topping, 4 topping. Think of the towers problem. Building towers four-tall selecting from two colors. Okay. What did we get with that? [slight pause]
225		UCT	16
226	00:22:21	R1	How? Talk to me about the towers.
227		UCT	Well one would be all yellow.
228		R1	All yellow.
229		UCT	If you were starting with yellow, that would be all yellow.
230		R1	Okay
231		UCT	Then you move on to Three yellow, one red.
232		R1	Okay.
233		UCT	And then 2 red, 2 yellow. And then the one yellow, 3 red.

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & & \text { Speaker } \\ \hline & & \text { Transcript } \\ \hline 234 & 00: 22: 45 & \text { R1 } & \begin{array}{l}\text { And then no yellow. } \\ \text { Isn't that interesting? Okay. So it looks like this problem, } \\ \text { structurally is the same as the pizza problem. The towers } \\ \text { problem building towers 4 tall selecting from 2 colors has } \\ \text { the same exact mathematical structure as building pizzas } \\ \text { selecting from four toppings. } \\ \text { Do the problems look alike without looking at the } \\ \text { mathematical structure? They look very different, don't } \\ \text { they? Building towers and building pizzas. They do not } \\ \text { look the same. } \\ \text { But they have the same mathematical structure. Do you } \\ \text { have any idea what that is called? When 2 problems have } \\ \text { the same mathematical structure?[slight pause] }\end{array} \\ \hline \text { Isomorphic problems. Okay, They are isomorphic. It is a } \\ \text { good word for you to know. Do your kids have to know it? } \\ \text { No, okay, but it is a good word for you to know and it is } \\ \text { also a good thing for you to know that those problems have } \\ \text { the same mathematical structure. Now I saw Toms river } \\ \text { was starting to come up with how you can actually say } \\ \text { those problems are the same. Okay, Can we copy your } \\ \text { work and just show it up and see if we can build on it? }\end{array}\right\}$

Line	Time		Speaker			
		Transcript				
		watch Brandon on video, I think you are going to be floored about what he was doing. Okay, I think you are going to have to watch the video several times to really understand what he was doing and yet he was in the bottom math group. So I want you to very carefully think about who your students are because I think you may have a Brandon in your class and some of them may make the same connection Brandon did. Now let's see what is up here. Oh my gosh, this is interesting. Talk to me about this.[slight pause]				
241		MM	Um, Well there's four possibilities. The first possibility is getting nothing so an x just means that it is not [a topping]..			
242		R1	Okay so these are your four toppings.			
243		MM	Yeah			
244		R1	And Notice this little I here.			
246	$00: 26: 02$		That's pepperoni.			
Okay. When you do this problem with your students and						
you will be, they are going to have to invent notation. I						
saw one group did an R for pepperoni,				$	$	Yeah.
:---						
247						

Line	Time	Speaker	Transcript				
262	$00: 27: 37$	R1	So it is a 2 topping pizza				
263		MM	Oh yeah sorry that one is peppers and mushrooms.				
264		R1	And this one is a..?				
265		MM	Peppers, mushrooms, and pepperoni pizza.				
266		R1	Interesting okay, and this is..?				
267		R1	Peppers, mushrooms, pepperoni, and sausage.				
268		So it is a 4 topping pizza.					
269		R1	Yeah.				
270		Mo, okay, The way she is building her pizzas is how?					
[slight pause] She is actually keeping a constant, isn't she?							
She is keeping her peppers constant and she is adding the							
mushrooms and then she is adding the pepperoni and then							
she is adding the sausage. How many of you built your							
pizzas that way? [pause]				$	$	I didn't build my pizzas that way.	
:---	:---						
271							

Line	Time	Speaker	Transcript
			not really?
289		MM	Well no, I didn't finish.
290		R1	Okay, so Let's just take with what we have and the unifix cubes are....here, just one bag is perfect, thank you so much.
291		UCT	I just brought a whole tub.
292	00:29:48	R1	Okay, all I need is....This is good. I'll just take 2. That's great, thank you. Okay, If we are going to look at...um the pizzas here. Like here is a pepperoni pizza. Okay. How could we build a tower that might look like that pepperoni pizza. Any ideas?
293		UCT	1 red, 3 yellow.
294		R1	Say it again.
295		UCT	One red three yellow.
296		R1	1 red, 3 yellow Okay, so what is the red? [holds up red cube] [pause]
297		UCT	pepperoni
298		R1	And what is the yellow?[pause]
299		UCT	Cheese.
300		R1	Good. Plain. [using the unifix cubes to show 1 red on top, 3 yellow] So this is a one topping pizza that is a pepperoni pizza. Okay. Yellow meaning the topping doesn't appear, red meaning the topping does appear and it is the pepperoni here. How would you build this pizza? What would it look like?
301		unison	2 red, 2 yellow
302		R1	Okay. [R1 using unifix cubes to show 2 red on top, 2 yellow on bottom] Oops, gotta get it on top. Alright So the toppings that appear are the reds and the ones that don't appear are the yellow. Okay, How about the third one?
303		unison	3 red and one yellow
304		R1	Okay, [building the tower of 3 red on top and yellow on bottom]You are going to see Brandon doing this, okay. And he is going to be working with a chart that is similar to this, but not exactly like it. What he actually does is he uses the numbers 1 and 0 ; okay; 1 being the topping appears. 0 being not on the pizza. After he did that, the interviewer said oh I know, His father must be a programmer. You know, Binary, right? 1s and 0s Guess what? His father wasn't a programmer. His father had nothing to do with anything that was math. So very Very interesting that Brandon came up with his way of recording rather than putting x 's or if it didn't appear; he put 0 . If it did appear, he put a 1. Alight, um What would be this pizza? What would it look like? [slight pause]

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & \text { Speaker } & \text { Transcript } \\ \hline 305 & 00: 31: 56 & \text { UCT } & \text { One red 2 yellow 1 red. } \\ \hline 306 & & \text { R1 } & \text { Say it again. } \\ \hline 307 & & \text { R1 } & \begin{array}{l}\text { One red 2 yellow 1 red. } \\ \hline 308 \\ \text { One red 2 yellow 1 red. Okay, so If you watched the video, } \\ \text { you are going to see how Brandon makes the connection } \\ \text { between the two problems. Alright and it is pretty neat } \\ \text { stuff. } \\ \text { I really encourage you if it means that you can't follow } \\ \text { him; Watch it again, because it is brilliant. Um, You want } \\ \text { to know what Brandon is today? He is probably older than } \\ \text { some of you. I think he is 30 at this point and remember } \\ \text { he was in the lowest math group. Today he is a } \\ \text { veterinarian. Pretty bright, okay. So I think when you are } \\ \text { looking at your students, sometimes we have an image in } \\ \text { our head of what we think they should do or what they } \\ \text { should be to be bright. But sometimes the kids who really } \\ \text { are bright, don't shine in the same way. They may not be } \\ \text { so good at a quick...you know spitting back quickly, but } \\ \text { they may be really brilliant if you give them time to think } \\ \text { and be thoughtful and to show you what they really know. } \\ \text { Okay how are we going to bring this into your class. } \\ \text { Because this is the next task that you are going to do with } \\ \text { the children. You are going to take again, pairs; if you can } \\ \text { pair except for maybe one triple. Don't do a lot of triples, } \\ \text { you saw you had trouble with triples. Take pairs. If you }\end{array} \\ \text { liked your pairs last time keep them. If you didn't like } \\ \text { them, switch them up. Keep the same class. Because } \\ \text { remember we are trying to look at growth over the course } \\ \text { of the semester and If you switch the class that you go into, } \\ \text { you are not going to be able to see growth because you } \\ \text { won't know where they were last time. So go into the same } \\ \text { class you were in, give the task, } \\ \text { Do not just let them read it but have it on the overhead, the } \\ \text { way we did with the first task. } \\ \text { Have a student read it and then have them talk about what } \\ \text { the problem means. } \\ \text { They are going have all the same issues that you had and } \\ \text { then some. They are going to say oh: }\end{array}\right\}$

Line	Time	Speaker	Transcript
			You are going to have some children jump right away into a tree. They are going to run into big trouble. Because it's going to give them lots of duplicates and they are going to get confused. Do not send them down the path of 1 topping pizza, 2 topping pizza, 3 topping; don't do that. Cause then you are going to tell them how you did it; and how they can do it easily. Let them you know work on their own how they want to solve the problem. Um By the way when you did 1 topping, 2 topping; 3 topping pizzas, 4 topping; what were you doing? What kind of proof?
309		UCT	Proof by cases.
310		R1	Good Proof by cases. Okay, You are going to want them to uh, work with each other. You are going to want them to find the number of pizzas. If they get done, what are you going to have them do? You are going to have them write a convincing argument. Why do you think you have them all? Have them write. Encourage them to write. Okay. Why do you think there aren't anymore? Okay. Again if they did it by a proof by cases, and If you say well you only have one four topping pizza? Do you think you have them all? Yeah, because there are only 4 toppings. There is only one way to get a four topping pizza. Okay. Um Again if they get done, and you have had them have written the convincing argument ask them does this problem remind you of any other? Now someone actually said the handshake problem, and then you want to see if they can find the connection there. Some of them will say oh those building towers. See if they can find the connection between the two. Again, they may not know Pascal's triangle. But they may say oh my gosh there is 16 for the number of pizzas here and there is 16 in the number of towers. Maybe that is the connection. Maybe they might.. Did any of your children see $1,4,6,4,1$ when they did towers? I doubt it, okay so if they didn't see it there; they probably won't be able to make that connection But ask them what kind of connections they see. you might be surprised. Maybe some of them will think back to the towers and be able to do what Brandon did and actually see how those problems are isomorphic or how they have the same structure. Question on how you are going to implement? [pause\}

Line	Time	Speaker	Transcript
			Okay now remember at the end of the semester, you are going to do a project that is going to be asking you to collect student work from the 3 tasks that you will be doing this semester. So you are looking for work that surprised you, that impressed you or that puzzled you. Those are the kinds of things you are looking for. So when you come next time again, you are going to bring 2 or 3 work samples from this pizza problem okay, that we can talk about. Okay, Question?
311	00:37:19	UCT	So when you come on the $22^{\text {nd, }}$ you are teaching the class? Is that the next lesson that we are doing?
312		R1	No, no, that's good. what we are doing now is you can implement... you already saw me do an implementation . You have already done one implementation yourself. You go ahead any time after today you can implement this problem. When you see it fits into your schedule. Our next regional meeting is which is going to be first is going to be followed by the classroom implementation. I will be doing the implementation of the problem with your class. However you should do it with a different class. Okay. Alright.
313		UCT	Okay, Yeah.
314		R1	Um and which is class that you are writing about? Which is the class that you did the implementation last time?
315		UCT	The class that you will be doing.
316		R1	So then, you will just use that work when you do it. Okay. In other words, I want you to have the practice of doing an implementation so
317		UCT	Just use their work.
318		R1	Do it with another class yes, because you want to keep the same class for all three. Okay, yeah.
319		UCT	So can I use the class that everyone came into, then?
320	00:38:33	R1	Yes. Is that the class that you are going into now?
321		UCT	Yes I would like to use that class because I have that extra 20 minutes.
322		R1	Absolutely you can. And what you did today, um that's fine. Because you had implemented it on your own.
323		UCT	With a different class.
324		R1	That's fine. That's fine. Any questions on implementation? Or on anything. Or okay.
325	00:38:50	UCT	So we have to do it before we see you next time.
326		R1	You have to it before because when you see me next time, you have to bring your work and you are going to be talking about it. So you absolutely have to do it before you see me. Okay.

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & \text { Speaker } & \text { Transcript } \\ \hline 327 & & \text { UCT } & \text { Do we have to figure out about the duplicates[inaudible] } \\ \hline 328 & & \text { R1 } & \begin{array}{l}\text { No, they have to figure out... you are not telling them. } \\ \text { You are listening, and you are questioning, but you are not } \\ \text { telling them. }\end{array} \\ \hline 329 & & \text { UCT } & \begin{array}{l}\text { But some of them might think that with the order of the } \\ \text { toppings, should we tell them that. }\end{array} \\ \hline 330 & & \text { UCT } & \begin{array}{l}\text { Wait, Stop one minute. We have 5 more minutes, because } \\ \text { we started late. And this is a very good question. Some of } \\ \text { your students and someone here came up with Can you } \\ \text { have half a pizza of this and a half of that. Who was that? }\end{array} \\ \hline 332 & & \text { Oh it was me, I said all or nothing. } \\ \hline 333 & 00: 40: 07 & \begin{array}{l}\text { Rut do you know what, Some of your kids are going to say. } \\ \text { I know I can go into a pizza store and I can get half a pie of } \\ \text { this and half of that and if they do that, they will get a } \\ \text { much more complicated problem. But but... } \\ \text { Don't stop them, let them go. They will get a different } \\ \text { answer and It will be a lot harder but if that is the direction } \\ \text { they want to go then let them do it. Okay. } \\ \text { You said also what was your question about the...? }\end{array} \\ \hline 334 & 00: 41: 17 & \text { UCT } & \begin{array}{l}\text { Ro I said You can get extra toppings so I might get } \\ \text { pepperoni twice. }\end{array} \\ \hline \text { R1 } & & \begin{array}{l}\text { Another group said can we have Double pepperoni. Right I } \\ \text { don't remember who it was but they said can we have } \\ \text { double pepperoni? The question is Again you did it } \\ \text { without having any doubling stuff. If they change the } \\ \text { problem because they are thinking outside the box or they } \\ \text { are thinking for reality. You worked in a pizza place and } \\ \text { she said, You can get a pie without cheese. Okay. Some of } \\ \text { them will get confused and say well is the cheese pie a } \\ \text { separate pie or is cheese the topping um you are going Let } \\ \text { them battle out What they think the parameters are. But the } \\ \text { parameters are what you did which is really that you have a } \\ \text { cheese pie which is your plain pie. And that is one of the } \\ \text { pies. And then you have 4 toppings to choose from, to } \\ \text { make your other pies. You are not going to tell them } \\ \text { because if you tell them you are making the problem you } \\ \text { know simpler for them. You are going to let them struggle }\end{array} \\ \text { a little bit. Struggling is good. Let them work with their } \\ \text { partner. You can listen. You don't want to lead them in the } \\ \text { wrong direction but don’t lead them in your direction. Any } \\ \text { other questions? Alright have a good couple of weeks. }\end{array}\right\}$

R1 - Dr. Judy Landis
R4 - Phyllis Cipriani
UCT - Unidentified Teacher
Initials - identified teacher

Description: Transcript of debrief meeting from in-
district classroom visit of the pizza problem.
Advisor: Professor Carolyn Maher
Location: TRIE
Date: October 22, 2013 part one

Author: Phyllis J. Cipriani Verified by: Simone Grey Date Verified: Summer 2015 Page 1 of 9

Line	Time	Speaker	Transcript
1	00:00:00	R1	[The two students used numbers to represent the toppings (peppers=1, plain=2, sausage $=3$, mushrooms=4, pepperoni $=5$). Then students had the following on their paper: $1+1$ $1+2 \quad 2+2$ just plain peppers=1 $1+3 \quad$ plain=2 $1+4 \quad$ sausage $=3$ $1+5 \quad$ mush=4 $2+3 \quad$ pepperoni=5 $2+4$ $2+5$ $3+4$ 3+5 Did anyone not see that group? [slight pause and No response.] Ok, everyone did see that them. And that was a very interesting notation, wasn't it? Very different. I don't think I've seen that before either. Did that get them into trouble? How did it get them into trouble?
2		UCT	Yes.
3		UCT	Well, at one point...she...the one...the girl...um..[inaudible]...she put one plus one, two plus two. And I was like.. well..does that mean...I think she gave like two peppers. Does that mean peppers and peppers? Then she was like no, that just means it only has peppers. Then she was like, maybe I should just erase the second two and only put one two. And I said, that's a good idea. And then she did went back because she had five plus five, and five just meant mushrooms [unintelligible].
4		R1	Ok. Ok, so their codes worked but also got them into trouble. Um...did they end up finding the 16 pizzas?
5		UCT	Yes. I think so.
6	00:00:50	R1	Ok. Ok. What other group did you find interesting? [Teachers point to a corner of the room.]
7		UCT	There was a...
8		UCT	Right over here.
9		R1	Those two boys. What did those two boys do?
10	00:01:00	UCT	They made the chart and put the X's. In each...

Line	Time	Speaker	Transcript
11		R1	How many of you saw the chart with the X's? [Teachers raise hands.]
12		UCT	In each row was a pizza.
13		R1	In each row was a pizza. Now what got them into trouble?
14		UCT	Their ordering at first, because they were just doing them all random. And then once they re-organized it [inaudible].
15	00:01:18	R1	Yes. And actually...um...uh...I thought it was very clever...um...they were checking themselves. They had 11 pizzas in their chart. And they were checking themselves to say what did they have. And they had a...uh...oh well they said well I have a mushroom and pepperoni pizza. I have a mushroom and pepper pizza. They were trying to keep all this in their head as to what that they had. And Margaret went over to them and simply said to them, you know why don't you write down what you are saying, rather than trying to keep it in your head. And that helped them by writing down what pizzas they found they...what did they figure out? What had they forgotten? Were you there when...They forgot the three topping pizzas. Okay, so, then they were able to add those in. But that was...[Margaret enters.] We just gave you a compliment. I thought your comment to the two boys that were doing the chart with the X's was really, um uh, very, very good. You didn't lead them. But as they were trying to figure out what pizzas they had on their chart or didn't have. You said, why don't you write that down as opposed to keeping that in your head.
16		UCT	Yeah.
17		R1	And that's how when they found out they were missing the three toppings. So that, that was really good.
18		UCT	Yeah. Thank you.
19	00:02:37	R1	What other group did you follow that you thought was interesting?
20		UCT	The girls back here had a little bit of difficulty at first actually.
21		R1	Okay.
22		UCT	So, I was watching how they were organizing and they would start with sort of like a tree diagram in a way. They would write plain and stem from that 3 toppings. And I would ask I asked them how many pizzas that represented and they'd said one. It's a plain base With those 3 toppings. And then...they've gone...But Then it also represents just the plain pizza because it said plain. And But then it also represented just each of those types. So

Line	Time	Speaker	Transcript
			they had a lot of difficulty following that and then they found out that as they were working through it, it and they started crossing things off because then they had a lot of doubles talking that it was double and it was harder for them to find all of the doubles to write. So, their organization was very challenging.
23	00:03:24	R1	Okay, okay.
24		UCT	They did end up getting it but it took a while.
25		R1	It was a struggle to get it. Okay. Any other group have a struggle? Who followed the group that was here? It was Paul and...who was Paul's partner?
26		R1	With the curly hair.
27		UCT	Oh, that was John and Caitlyn.
28		R1	John and Caitlyn. Anyone follow John and Caitlin?
29		TC	We were all trying.
30		UCT	[Several students speaking at once.] I thought that theirs was really..uh. ...Just for a little bit.... I saw theirs but I didn't...
31	00:03:49	R1	Okay. What did...what were they doing that got them into big trouble?
32		UCT	They counted a plain, a cheese, a sauce, and a nothing. But nothing meant nothing.
33		R1	Okay.
34		UCT	According to them. Like what, they didn't actually count the nothing.
35		UCT	Like white pizza. And they were even saying...
36		UCT	They didn't say the white to me.
37		UCT	They were even kept saying, well, no one's going to order that. So let's get rid of that.
38		R1	Right. Good, So they had 64...
39		UCT	They went from like 64...had like 19...I was'm like how did they even narrow this down..
40		UCT	Then they had like 16, then 17.
41		CP	Yeah, but at the... at the same time though, it's seemed like a valid argument because people order pizzas without cheese or pizzas without sauce. So, like when...
42		R1	It..It changes the problem.
43		CP	He explained it to me he was like okay...so, they had the 16 lined up and then they were like, underneath they had the plain and they had the option. He goes, well I am going to multiply each group by 3 because I can do each combination as it is with cheese and sauce or just with cheese or and just with sauce.
44	00:04:35	R1	Right.

Line	Time	Speaker	Transcript
45		CP	And I'm like...that actually...that works for me because its...
46		R1	Now, When did you go into a... a pizza store and order just cheese, no sauce pie? Has that...is that real...
47		UCT	Lots of times.
48		R1	You really can do that?
49		UCT	I have. I have.
50		R1	You have? Oh my gosh.
51		UCT	When I tried to make it a little bit easier for them. I said that that might be like a specialty thing so that they might not want to include it on their menu. Just like But there is always a lot of things we can do that we don't include on the menu.
52	00:05:00	R1	You know I think that was real world. And if that really does exist and...and we can follow their reasoning; of course their answer would be much bigger;. many more choices than if you just counted that plain pie as the base for adding all the four toppings. Um, they did decide though on their own that they were going to eliminate all those things, but they ended up with 17 pizzas. Do you see that? And what did they get as 17th pizzas? You have?
53		UCT	I didn't see their work. I heard them say 17 though.
54		UCT	I heard them say that to you but I didn't...
55		R1	And the reason why they had 17 is, they gave up the splitting the cheese and the...uh sauce on everything, but at the very end they said, well, we could have a plain pie with cheese and sauce or we could have just a white pizza.
56		UCT	Oh.
57		R1	I guess that's your pizza without the sauce.
58		UCT	Oh okay.
59		R1	So they didn't give it up entirely and that's why 17 would be a correct answer if they were considering getting a...a...a plain...a white pie. Interesting, huh? Good. Could we see some of the work? You're gonna take a picture?
60		UCT	Yeah.
61	00:06:13	R1	Great, okay. Neat stuff really did happen in this room. Um...really neat stuff. And I think that because there were so many of us, it gave you an opportunity to really listen to what they were saying. Was your questioning any better?
62		R1	Is that...is that provided by the school?
63		UCT	No
64		R1	Did you feel more secure with your questioning? Did you feel still like you were wanting to lead 'em? [unintelligible

Line	Time	Speaker	Transcript
			responses]
65		UCT	Not entirely.
66		R1	Not entirely. Okay so you felt...
67		UCT	I think because we did...well because I did the problem, that half the time I felt like it was a little bit...I kind of anticipated somethings.
68		R1	Good, good. Okay. Alright let's see. Can we make that bigger?
69		UCT	No that is as big as it goes.
70		R1	That is as big as it gets. I hope your eyes are good! Umm, and here's the [unintelligible]...
71		UCT	I can...but I can...uh...sometimes there's a delay with this.
72		R1	Okay, okay.
73		UCT	Because our wireless isn't...I'm trying to like zoom in but it's not really letting me.
74		R1	Uh..use the other one. Well, uh...Let's focus on this one. Woops!
75		UCT	Oh, which one?
76		R1	Let's focus on either one. Okay so, here we got this one. This is the one we talked about. This is really interesting. Now, what I noticed this group did, um, they copied over their work. Okay. They started all over because they were...they didn't want to hand in a paper that had the cross-outs. And I think you want to get your kids not to worry about cross-outs because if you didn't see what they were doing and then you just saw this you would miss everything that they eliminated. And that that really is important to know where they started and where they are going. Um...what they also tried to do, I said to them, that I really see their code and I see what they have, but I really don't know what pizzas they are. Could they tell it to me in English, I said. And um,...
77		UCT	This is..he had this down too..
78		R1	Right. And then he started to write what a $1+3+4+$ 5one-plus,-two plus three pizza was with it using the words. okay. Um, but I...I encourage... Like here is the original paper and he didn't like it that he had cross-outs on it.
79		MM	Ooops, sorry. This one.
80		R1	That one. Okay. But I really think that...You don't want your kids wasting time with crossing out and writing over. And you know, this is not a published work where you need to have it really looking beautiful and this and that. So you want them to just be able to get more time to write their thinking and their arguments down as opposed to

Line	Time	Speaker	Transcript
			copying over. Okay. Alrighty!
81		MM	And then Hayden he did and Phil were working over here and they started doing this right away.[On video a chart is shown with four toppings on the top written as words and X's in the cells to represent a topping on the pizza.]
82		R1	And isn't that interesting. Did any of your students do that? [Student raises hand.] Okay, you had uh someone student in your class do it too.
83		UCT	I had one but...he started making this chart and I was like, Oh snap this is really great like where are you going with this, explain it to me, and then all of a sudden, he was like said, naw I didn't like this. And Then he wrote ignore on it and started doing something completely different.
84		R1	Interesting. Interesting. Can you show us what he switched to?
85		UCT	He actually went..
86		R1	Can you show us what he switched to?
87		UCT	Yeah, he went to a number system.
88	00:09:22	R1	Interesting. Very interesting. Okay.
89		UCT	This is the back. So that was...Yeah.
90		R1	So now, go back to that...that first chart. I think you hit it on the head when you said they didn't really have organization when they put their pizzas down. They went from a four topping...to a two-topping...to a twotopping...to a three-topping. So, it was hard for them to know, did we have everything in each group. And that's why your question to them was really spot on, asking them to, you know, to write down what they found. And where did they write it? [Big pause.]
91		UCT	Hold on. Sorry. Here it is.
92	00:10:13	R1	Alright. So there they wrote the different pizzas down. Now, are they organized in terms of into groups?
93		UCT	Yeah
94		R1	Okay so what do they have first?
95		UCT	It says plain at the top.
96		UCT	It's hard to see.
97		R1	Okay, and then after the plain they did?...
98		UCT	Pepperoni and mushrooms.
99	00:10:30	R1	So they did two toppings.
100		UCT	Two-topping then one-topping then three-toppings.
101		UCT	Yeah.
102		R1	Okay. And then the fourth topping was last?
103		UCT	No.
104		UCT	No., well their fourth topping was 12 because they...they

Line	Time	Speaker	Transcript
			didn't have their 3 toppings.
105		R1	Okay. Okay.
106		UCT	So they thought it was 12 at first.
107		UCT	Yep and then added the 3 toppings.
108		UCT	So that's really neat. What kind of argument did they give? Did they write an argument?
109		R1 Umm, Yeah.	
110		MM	Okay can you read it for us? 111 112

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & & \text { Speaker } \\ \hline 123 & & \text { Uranscript } \\ \hline 124 & 00: 12: 57 & \text { R1 } & \begin{array}{l}\text { you agree? Okay. Alright! What else did they say? Three- } \\ \text { toppings. }\end{array} \\ \hline 125 & & \begin{array}{l}\text { Um..third we looked at the three-topping pizzas and got } \\ \text { four pizzas. Since there are only 4 toppings because we } \\ \text { took one topping off the pizza each time. }\end{array} \\ \hline 126 & & \text { UCT } & \begin{array}{l}\text { What do you think of that? [Pause.] Pretty neat, huh? How } \\ \text { many of you..., someone um... I responded to someone on } \\ \text { the line; I don't remember who it was anymore; but } \\ \text { someone wrote it was hard for the students to find 3 3 } \\ \text { topping pizzas. }\end{array} \\ \hline 127 & & \text { UCT } & \begin{array}{l}\text { I think I wrote that. I did and I said there wouldn't be any } \\ \text { more. }\end{array} \\ \hline 128 & & \text { R1 } & \text { Okay. And I said, what do you... } \\ \hline \text { They kept forgetting one. } \\ \hline 132 & & & \begin{array}{l}\text { Yeah..uh uh...elimination. There were a bunch of, uh, pairs } \\ \text { in this room that said, I'm going to elimination one topping } \\ \text { from each of the three-topping pizzas. Isn't that a brilliant } \\ \text { way to find the three-topping pizzas? Because how many } \\ \text { of you, if you could remember back, had having trouble } \\ \text { finding the three-topping pizzas? Either with a recursive } \\ \text { argument that you used or just by, you know, concentrating }\end{array} \\ \text { on what you were doing. It was hard to find all four three-3 } \\ \text { topping pizzas, right? But the idea of what these students } \\ \text { did is, they started with four and for each pizza they } \\ \text { eliminated one. One of the toppings. }\end{array}\right\}$

Line	Time	Speaker	Transcript
			peppers. And they got 8 of 'em? And then I was going to get the ones with...no? No one did it? I thought someone did?
140		UCT	No.
141		UCT	I think...
142		UCT	I had...I had a student do it.
143		R1	Okay. And then the next one.
144		R1	There's someone...there's a group in here that did that as well.
145		R1	Tell us what they did 'cause some. Someone may not have seen it.
146	00:15:00	CDR	So they started with holding peppers constant and they did all of the two-topping pizzas with peppers, but instead of moving on and continuing with three toppings, they kept peppers and then did three-toppings with peppers they got and they kept peppers with four-toppings.
147	00:15:17	R1	So, they got 8...8, right?
148		UCT	Yeah. Then they totally ignored the peppers and the sausage for the two-toppings and three-toppings.
149		R1	Do you remember how many pizzas they got with sausage?
150		UCT	Four
151		UCT	I think it was four.
152		UCT	Four.
153		R1	And then they went to another topping and this time they ended up with...2. Right? Um, so it would be $8,12,14$, a plain and a four-topping. So, that..that was pretty neat. Do you see where they have that?
154		UCT	I am not really sure if they wrote it actually. [unintelligible] I don't think they really wrote what they were saying, but when they were saying it, they were looking at their groupings. And they were saying that they should be each one grouped.
155		R1	Each something.
156		UCT	Three times.
157		R1	Three times...[unintelligible] And that is pretty neat. Right? Pretty neat that they know to be looking.
158		UCT	Yeah. That and they also said that they took one away.
159	00:16:14	R1	Good. Good. Yes. So the elimination method really works nicely. Good. Was there anything else we wanted to look at from your group?
160		UCT	Uh, well I did it...do you want me to do my other class, too then?

Description: Transcript of Teachers' own student samples of work.
Advisor: Carolyn Maher
Location: TRIE
Date: October 22, 2013 part two

Author: Phyllis J. Cipriani
Verified by: Simone Grey
Date Verified: Summer 2015
Page 1 of 28

Author: Phyllis J. Cipriani Verified by: Simone Grey Date Verified: Summer 2015 Page 1 of 28

Line	Time	Speaker	Transcript				
161		R1	Sure. Sure				
162		T6	So when I did it, uh, I did it with a similar sixth grade class. Pinnacle. It's called Pinnacle. It's gifted and talented. Just like you saw. Same amount of kids, grouped together in partners. Um so, this was an interesting thing that I saw because I was surprised that they actually got the right number of combinations. Because they made like a tree diagram; and it starts with peppers and then It branches out to the three other toppings and then it branches out again and again. And like each...It was like a directional thing. But he was getting confused when he was telling me about it. So he started to write out all of the different possibilities after I told him that that might be a good idea, um. But I... It is just a weird way to write it, and then still get the right answer, 'cause like he was saying peppers is one pizza, and um, these are another one pizza on their own. And then peppers and sausage. And peppers and mushroom. And peppers and pepperoni.				
And then he did these 3, and these 4, and these 3, and these							
3, but then you can go backwards to like mushrooms and							
peppers with the pizza.							
So it was really confusing when he was saying it to me, but							
he got the right number of combinations.				$	$		
:---	:---						

Line	Time	Speaker	Transcript
			then there's certain amounts that have all 3 .
170		R1	Okay, okay.
171		UCT	And then I was asking him if that's what he meant with these numbers.
172		R1	Okay, okay.
173		UCT	I think this was him tallying when he was counting them for himself.
174	00:18:27	R1	It is confusing, isn't it? Now, he was able to write down what he had and that helped you to know what he had. Good. Do you have one other?
175		MM	Okay so, this was another girl who organized it with her one-topping pizzas, and her twos, her threes and her fourths. And I just thought her think and her partner were interesting because, right off the bat, before they even started doing anything they said, I think it is going to be 4 times 4, and actually, he said I think it is going to be 5 times 5 gonna be 25 because...
176		UCT	The girl here had 25 also.
177	00:19:04	UCT	Right before...but before...like...we were talking about how they...like the block problem, how they try and make sense of the answer 16 after they get it. But this was before he even got anything.
178		R1	He was making a prediction.
179		UCT	Yeah, he made a prediction that it was five times five because he was counting plain as a topping.
180		R1	Right, right. Okay.
181		UCT	So then it was five times five. And then he fixed it to be 16, but then they also said, oh, but it's going to be an odd number because that plain one.
182		R1	Ahhh, interesting.
183	00:19:30	UCT	So they thought it was going to be an even number and then the plain one was going to be odd. So they were like, really thrown off when their answer was even at the end.
184		R1	So they didn't like 16. They wanted an odd answer because the plain pizza...
185		UCT	They thought that was something, like, that was added in.
186		R1	Interesting. Very interesting.
187	00:19:45	R1	Now When they did four times four, um is that why we got 16? No okay.
188		UCT	Another group did that back here did.
189		TD	Yeah, but her reason is, you probably can't read it, but she said, there's four different toppings and there's four mixes. So like you could...the puh...there's a potential to have 4 things on a pizza. So, 4 times 4 is 16 , and then plus one is the plain, so it's 17 .

Line	Time	Speaker	Transcript
190		R1	Now but uh...mathematically, is that why we're getting 16?
191		UCT	No.
192		UCT	No.
193		R1	No. Okay. So that again we had that confusion with the towers when they got 16 as the answer for towers four tall. And If their reasoning was four times four give you your answer, what did they say for three tall?
194		UCT	Nine.
195		R1	9. And, but when you build 3 tall you don't get 9 , do you? What do you get?
196		UCT	8.
197		R1	You get 8. And why do you get 8? How do you get 8?
198		UCT	Two cubed.
199		R1	Two to the third power, okay. So here, the same problem we have, if they're just multiplying 4 by 4 , yeah you get 16 , but it's not going to help you know any other problem. You won't be able to generalize pizzas with three-toppings or five-toppings. Okay. Good.
200	00:21:00	UCT	[Video shows student work of $\mathrm{P}=$ plain, $\mathrm{S}=$ sausage, $\mathrm{M}=$ mushroom, $\mathrm{PE}=$ peppers, and $\mathrm{PEP}=$ pepperoni.]So this one I included because, um, they kept a constant. So they kept, uh, peppers constant at first and added things, and then they moved on to sausage and added, and kept sausage constant. And then they did mushrooms, and then I think the sixteenth one was maybe one they forgot. But um, they got their, oh no, that's just pepperoni. PP. Sorry.
201		R1	Okay, okay.
202		UCT	So um...so yeah they ...It's a little confusing 'cause they used capital P and a capital E for peppers. And a capital P, capital E, capital P for pepperoni. But they kept something constant they whole time, and then they realized that it was getting smaller as you went because they were accounting for their duplicates.
203		R1	And here...here...this is good. This is what we were talking about before. These are all the pizzas that have pepper in them. How many pizzas did they get?
204		UCT	Well, they got 8.
205		R1	Yeah, can you count? Can you see 'em everybody? Okay, there are 8.
206		R1	1-2-3-4-5-6-7-8. Then they said, I'm going to move to a different topping. I'm going to move to pepper uh,
207		UCT	Sausage.
208		R1	Pizzas that have sausage in them. How many pizzas, not you, how many pizzas have sausage in 'em?

Line	Time	Speaker	Transcript
209		UCT	4.
210		R1	4. 1-2-3-4. Okay. Why only 4? Why can't there be a fifth?
211		UCT	Because there's only one topping?
212		R1	Well, no. Where...where...what would happen if we tried to build another pizza that had sausage?
213		UCT	You have a repeat.
214		R1	Where would we find it?
215		UCT	A repeat.
216		R1	It would be a repeated. We already would be up in here. Okay. And you don't want to repeat. So then they said, well now I'm going to go down to mushroom, pizzas that have mushrooms. And how many did you get?
217		UCT	She has all mushrooms.
218		UCT	2.
219		R1	2. Okay, so yuh had...yuh had 8 here, then you had, where is it? You had...4, you had 2 ...and...oh wait, you had another one here. Where...what is that one belong to?
220		UCT	That's just pepperoni.
221		R1	Oh that's a single.
222		UCT	Yeah.
223		R1	Okay. So it's a pepperoni.
224		UCT	Yeah 'cause they held the one ingredient constant the whole time, and by the time they got to the pepperoni, it was just pepperoni.
225		R1	Oh, and that is...and that is confusing; the PEP and PE.
226		UCT	That is what I said. I said I think that's a pepper one that they forgot, and then I said not it's...that's pepperoni.
227		R1	Yeah, yeah okay. So they were doing what we were talking about before, holding constants and exhausting, you know, everything in one category...
228		UCT	Yeah.
229		R1	Nice.
230		UCT	The...the...the group, this was a group of 3. And they jumped straight to that too. So it would have been interesting if they did the Tower Problem but we didn't.
231		R1	Good, And what was their argument?
232		MM	Um, we organized the choices by toppings as we went on. When we got to a new topping, we took out all of the duplicates from the other toppings. For example, we started off, out with all of the pepper combinations. There were 8 of them. When we got to the sausage, there were only 4 combinations because there were 4 duplicates from the pepper. We did the same thing for mushrooms and pepperoni. The only thing left to do was to add one plain to our list, which we added. And then they said we got 16 .

Line	Time	Speaker	Transcript
233	00:22:58	R1	What do you think of their explanation of their argument? Is it convincing?
234		MM	They're just saying that they found all of them and they took out the duplicates.
235		R1	Right, right.
236		UCT	It's not...
237		R1	Not...not totally convincing. Okay. Alright good, though. Nice...nice stuff. Let's let someone else go 'cause we wanna have lots of time for you to work on the problem. Okay.
238		R1	So you're looking for two pieces of work from your class; either work that you didn't understand, work that you thought was really impressive, or work that surprised you.
239		UCT	Some girls.
240		UCT	So none of my kids got the right answer. I only have 8 students, so in pairs, it was four.
241		R1	If we move that forward, would we make it bigger?
242		UCT	No, if we move it back.
243		R1	Move it back would it make it make it bigger?
244		UCT	It gets bigger but it's kind of [unintelligible].
245		R1	Blurry?
246		UCT	Yeah, it's...
247		R1	Okay, okay.
248		UCT	I don't know why it's so light either but...
249		R1	Woops! Now we see feet.
250		UCT	I don't think it's going to make it that much better.
251		R1	Okay. Alright, then let's leave it. Okay. So let's uh, go ahead and tell us about your students.
252		UCT	Okay, so as I was saying nobody got it. It was like a huge...I mean they were, for a while, they were going on about, you know...you know, plain is different, you know, plain is different than, you know, they wanted to make a pizza with plain and then a topping. Or they were saying that sausage first, and then mushrooms on top, is different than having mushrooms and sausage, and it was just this whole, you know, as we talked about, and I even wrote it down. So, the first, this one I thought this one was interesting because I, I actually wrote this, that she...Do you have? Oh. Well first of all, she wrote out, she made a key, A-B-C-D-E. So E was plain, A was a topping.
253	00:26:10	R1	Pretty neat. Almost like the 1-2-3-4, right?
254		TD	I thought that was really clever of her to do that. So she went through and she got to 24 , you know, and then I had to kind of guide her and we, you know, asked her questions, her and her partner. And then she realized that

Line	Time	Speaker	Transcript
			she had duplicates. So, she erased them and she rewrote it...oops...nicely. And then, she got 11. And we didn't get to explain...
255		R1	She got 11?
256		UCT	Yeah.
257		R1	So she...
258		UCT	And she didn't do any kind of pattern. They just kind of...
259		R1	Okay, randomly found them.
260		UCT	Yeah, randomly.
261		R1	Finding them randomly might work for some students, but it's hard. And if you gave them five-toppings, it would be really hard.
262		UCT	Yeah.
263		R1	Yeah, so...um...no convincing argument?
264		UCT	No, Everything was pretty much oral as I went around and it was like an hour, and they just didn't get to it. But, you know, like I...I... having four groups at least I can get around and talk to all of them a lot. And then the other, this one, this girl. She really didn't have any order either. But she, she found 14. She was a little closer, but then I noticed that she had duplicates in there. Mushroom. Peppers. Sausage.
265		R1	Can we move that down so that we can see the top?
266		UCT	No.
267		UCT	No.
268		R1	No? Can't even do that. Okay.
269		UCT	We can move it up so. But it'll just make it smaller.
270		UCT	[Inaudible] It'll probably get clearer.
271		R1	Oh, that's better.
272		UCT	Yeah.
273		R1	Okay, so...do you see...look at how she did it. What was the order that she wrote her pizzas in?
274		UCT	I see she really stuck to mushrooms a lot. I mean.
275		R1	Okay.
276		UCT	It's like mushroom. Mushroom. Mushroom. Mushroom. Mushroom. So that was, I guess, kind of her constant. But then she wound up having a duplicate here. Um...
277		R1	Okay. Now she's going down the way she's numbered it. She starts with the three-topping pizza, but then what does she do?
278		UCT	Go to two-topping.
279		R1	She goes to the two-topping. And how many two-topping pizzas does she find?
280		UCT	4.

Line	Time	Speaker	Transcript
281		R1	That's really...
282		UCT	5
283		R1	Well, 2-3-4-5. She found four in a row, right? That's pretty good. That's pretty good. Okay, and then what did she do? She then went...
284		R1	She went to just one-topping.
285		UCT	One-topping.
286		R1	And she found how many one-topping?
287		UCT	3.and then plain.
288	00:28:22	R1	She only found...okay so, she found 3. She skipped one of those. Okay. Then she has the plain. And now she went back and she found another two-topping. Is that different than the one she has?
289		UCT	Yes.
290		R1	So that's pretty neat, right? And then what did she do?
291		UCT	She tried making three.
292		R1	Three-toppings?
293		UCT	Yup!
294		R1	And it looks like she found the single pizza that she had forgotten. Is 13 a [unintelligible]?
295		UCT	Oh yeah. Pepperoni. Yup!
296	00:28:47	R1	So, I think there's a lot of good stuff here. And I think, um, you want to try and get a student like this to talk about...uh ah...obviously she knew that she had to find more two-topping pizzas. She had to find another single topping pizza. And to push her to the next level of, how do you know you have all the one-topping pizzas? You had 3 and you weren't satisfied, you knew there was another one. How did you know you there was going to be another one?
297	00:29:13	UCT	Yup!
298		R1	Okay, okay, next [big pause]
299		UCT	Okay.
300	00:29:36	R1	Now remember, we talked about if your students can't write that you can be their scribe and write for them. Because you really want to see something down as to why they think they have them all. At least the beginning of a convincing argument. Because that's what this is all about. We're not so much interested in just that they can do the problems, we are interested in, can they provide a convincing argument?
301		UCT	Okay.
302		UCT	Let me just scroll [unintelligible].
303	00:30:05	VB	[Video of work shows a chart with 3 columns with peppers, sausage and mushroom at the top of the columsn. With 3 toppings in the cells underneath the aforementioned

Line	Time		Speaker
		Transcript	
			words. A list of 13 possible pizzas is under the chart with 7 pizza combinations holding peppers as the constant; 3 holding sausage and 3 holding mushroom. Student wrote $7+3+3+3=16]$ Okay so, I, she got the right, um, answer. She got 16. Think I only had like one or two kids that did get 16. A lot of my kids struggled with... putting like T1 said, like sausage mushroom, mushroom sausage, or putting...I had kids that are like, well if it's 12 slice pizza, then I can put one topping on each slice so...I had a lot of big numbers, let's just say..
304	$00: 30: 26$		R1
305		VB	Okay.
306		But she had, she did get it right and I liked because in here, she did this chart in the beginning and she had it very well organized and she counted up and then showed her addition. But then on the next page, it's almost like she reorganized it different times. I think this was part of her way of proving it but also part of her way to see if she had any duplicates or not.	
317	$00: 31: 47$		R1

Line	Time	Speaker	Transcript
318		VB	And then the same thing she did with the mushrooms. So then, I don't know where her like, her plain [unintelligible]. Maybe she just didn't put that in there.
319		R1	So they, she has 7 and 3 and 3 is not 16. So, what is she...what...how many pizzas should there be that have peppers?
320		UCT	8

Line	Time	Speaker	Transcript
334		R1	What do you think of that argument? (Pause.) Read it again. I don't think...we need to...
335		T5	There are 10 possibilities from the topping in order, I can reverse them and in the middle I can use them too. If all the ten combinations are reversed then it would still be the same. I, I think he understands about the whole duplication of it. But I think he just, maybe he could of done a little bit more were as maybe just even realize, okay, we could do a plate. We could come up with, well he has the one with the all, then to make the next set of three combinations.
336	00:34:30	R1	So, is his argument convincing?
337		T5	No.
338		R1	No, okay. So, but I think what you want to do is you want to point out what's good about it. And you found good stuff in it. So you want to share, when you're sharing, share what's good and then see if you can get them to go to the next level. Good.
339		UCT	I'll go. [Teacher gets up.] Oh. [Unintelligible.] Alright.
340		R1	Oh, I see a lot of pizza there.
341		UCT	[Several teachers speaking at once.] Wow!...Woah!
342		R1	Yeah!
343		R1	Wow. How many of your students did slices of pizza?
344		UCT	[Several teachers speaking at once.] I had a kid...I had a lot of kids draw it...
345		R1	Or half-pizzas? How many did half-pizzas?
346		UCT	[Several teachers speaking at once.] I had whole...I had half...I had some do slices.
347		R1	And that makes a much more complicated problem. It's, it's a problem that can be solved. Much more difficult than solving this problem. Oh my, it looks like little sailboats.
348		CP	Yeah! It was uh...okay so, when I gave my kids the problem, the first thing they started doing was just drawing slices of pizza. And it was just kind of at random, whatever they came up with in their head. Um, both the students were doing it kind of at the same time, they were almost like racing against each other. And uh, so that's why you see like the Xs there. Because once they had them, I was like alright guys, well this is like a mess, isn't it? And they're like yeah, okay. And I go uh, can you do it another way to show me, and organize these so that you know you have all the options? So they started comparing answers, they had more than this one sheet; I just want to show you [unintelligible].
349		R1	Okay, okay.
350		CP	I had originally given them the problem like the paper that,

Line	Time	Speaker	Transcript
			you know, we handed out in class today. But because they started drawing it and their squares were, I mean you saw how big this, they did it on this big piece of paper. I didn't want to limit 'em, I said here's as much paper as you want. I said have at it.
351		R1	Mhm.
352		CP	Um, so then they sat together and they organized 'em by group. Um, they did keep a constant. There wasn't a lot of order, um, as to like why they them 'em it in certain spots. And they did have doubles. Um, and actually, as you'll see over here, you can't see up top but this is labeled Group One, this is Group Two, Group Three and Group 4.
353		R1	So, the group goes down. So there are 1-2-3-4-5-6.
354	00:37:11	CP	Yes, so you have the...you have the single toppings here you [pointing to board], then you have the two toppings.
355		R1	Okay.
356		CP	Down here [pointing to board] plain kind of just got thrown in [unintelligible]. And then, as I go, what about all the 3 toppings pizzas that you did? They forgot to put them in. Um, I think part of it might have been because they ran out of room on the bottom of the page. So they just started making those groups here, so like this is all peppers [pointing to the board. And then they labeled it Group 1. And this is all sausage as the first topping; so they labeled it Group 2. And the same with mushrooms. And the same with, uh, pepperoni. Um, so then they had that, and I was like of like, well isn't, if you go to the store and order sausage and peppers, you go behind him and order peppers and sausage, aren't you going to get the same pizza? And they're like, oh, okay. So then they started going through and crossing out the doubles. Um, and I think they did get... they got close to 16 . I don't think they got exactly 16. I am trying to see where they're four topping pizza was, they did have it somewhere. Where is it? Okay. Here it is. On the bottom. So they did four toppings with each one as a constant. So like peppers was first with the four toppings [pointing to the board], then sausage was the first there. So they did end, I think they did have 16 altogether. Um, their explanation I found it interesting. I brought the...the girl from...this...the boy's drawing. But the girl...
357		R1	The girl's writing.
358		CP	The girl is a bit of better writer. May I share her theory?

Line	Time	Speaker	Transcript
359		R1	Ok. Read us what she wrote.
360		CP	It's a lot easier for me to read.
361		R1	Good, absolutely
362		CP	[Students written argument: Group one. I started with pepperoni, then I did two toppings; there is pepperoni in each one. If I put another one I get 3 toppings. I did 3 toppings with pepperoni in each one. Group two. I started with mushroom. Then I did two toppings; mushroom in each one. If I put another one I get three toppings. I did 3 topping with mushrooms. Group three. I start with sausage. I did two other topping. There is sausage in each one. If I put other topping I get three. I did three topping with sausage. Group four. I start with pepper. I did two other topping. There is pepper in each one. If I put other topping, I get three. I did three topping with pepper.] Um, so...it's...her arguments, uh, Group one. I started with pepperoni, then I did two toppings; there is pepperoni in each one. She's basically talking about two toppings now where pepperoni is the first one. Then she says, if I put another one I get 3 toppings. And I was like, alright. It kind of almost sounded like the same argument that she had made for, uh, the towers argument. Where she was like, if I put another one, then I get something different. So I like that she was kind of taking her previous knowledge from the argument and applying it but I don't really think it, kind of, I mean I guess it works; but I don't really think it went with what they were doing there. Uh, then she did, said I did 3 toppings with pepperoni in each one. For group 2, I started with mushroom and then I did...two toppings; there is mushroom in each one. And if I put another one I get three toppings. And she kind of went on to do that for each argument for each group. So, I don't know, what do you guys think? You think that works as an argument?
363	00:39:43	R1	Is it convincing? [slight pause]She's telling you what she did, right?
364		UCT	[Several teachers speaking at once.] Yeah.
365		UCT	Yeah.
366		UCT	I mean it could be if she just went in depth a little further.
367		R1	If she...if...also...also...isn't, when you have an argument by a student, it's not our job to interpret what we think they mean.

Line	Time	Speaker	Transcript
			Um, because we really don't know what they mean until they tell us what they mean, okay, And even if it look, we could guess! Um, there are times that I'll look at student work and I'll say, oh I think that he was thinking this, but I don't really know. The only way I know whether he was thinking this is by asking the student was he thinking this. What was he thinking? And same here. It's not clear exactly to me what she was thinking. And it could be developed but, right now what it is, isn't convincing. Okay.
368		CP	Alright, and then my other, uh, the other student that I work with, the $8^{\text {th }}$ grader who comes in and helps out in the class, um, I gave it to her, I don't know if you guys can see all that well.
369		R1	No. Read to us.
370		CP	She started with plain and then she did single toppings, and then she did all four.
371		R1	Okay.
372		CP	Um, then she went to 3 toppings. She kept peppers as a constant and she only had two.
373		R1	Okay.
374		CP	Then she continued with two toppings as peppers as a constant. Then she went to mushrooms with two toppings and mushrooms as the constant. Then pepperoni, um, she just had one. Then she ended with 14 , and I was just like, well, do you think you have all of them? And she said no. So okay, how....what do you think...how many are you going to have? And she said 16.
375		R1	Now, why?
376		CP	Well, that's what I said. She goes well, because 4 times 4 is 16.
377		R1	Okay.
378		CP	And I was like, what does that have to do anything with the problem? And she's like, well yeah, I guess that really doesn't have to do with the problem. But I just know that there's gonna be 16 .
379		R1	Did she find two more?
380		CP	She did. She wrote the two... she wrote the two with the three toppings on the bottom. But I was like, but how did you know there was gonna to be 16 . She's like I don't really know, she like, I just knew that...
381		R1	Okay.
382		CP	I don't know if she was making the connection.
383		R1	She was making a prediction based upon maybe something that was four times four. What...where is her convincing argument? What did she write?
384		CP	She said, uh, for the first five choices I put the toppings by themself and then I combined all four. I guess for the one topping and the two topping, and for the three She doesn't really say but She held it constant.
385		R1	Okay.
386		CP	So she...the five choices is plain and the single toppings. Then I

Line	Time	Speaker	Transcript
			combined all four of the toppings together. After that I took one topping and put it two toppings and not to get it to repeat. After that I took one topping and put it with one other topping to get it to repeat. So I guess for the one-topping and the two-topping, she's doing the three with all the constants. But she doesn't really say that she kept a constant or anything like that.
387		R1	What is her argument that she writes, is it convincing?
388		T8	I don't really think that it's that convincing.
389		R1	No, it's really not. Why not? She is telling you what she did. But she is not really giving an argument why there are exactly that number pizzas in each group. She is not really telling you why there are exactly that many.
390		T6	I feel like that's the case most of the time. They just tell you what they do, instead of how.
391		R1	It's hard, yeah. But, there were some kids here though that actually had more convincing arguments in the class that we looked at. Which group had more of a convincing argument? At least you saw pieces of it, right. You saw some kids that were telling you about the one-topping pizzas, pretty convincing. Four-topping pizzas, pretty convincing. The plain pizza, pretty convincing. Again, we ran into trouble with the two-topping and the three-topping. So okay, who's next? Yep. Okay. It's hard to write a convincing argument, isn't it? Alright. How many of you would know how to write a convincing argument for the twotopping pizzas? [Pause.] Harder than writing it for a fourtopping, right? Harder than writing it for the one-topping. Oh my...we can't read it. Help us.
392		R1	Ok...this...we can zoom in on this, right?
393		UCT	It's not work...I had [unintelligible].
394		R1	It works better than this?
395		UCT	This was the class that you had all come into the last time. And they had a lot of difficulty with this problem. I had a lot of huge numbers and a lot of students that didn't finish.
396		R1	Okay. Ooo! 145, huh?
397		CDR	And that's not even their final answer. [Laughter] So...this group had the idea that each slice was considered a different part.
398		R1	Ah...okay.
399		UCT	So when they were, I asked them about it, and I said, would you go in and order a different slice on a pizza? And the one boy responded, well my father use to have a pizzeria and if someone ordered that, he sure he would do it. And I said, okay, and I kind of let them go with it.
400		R1	Right
401		UCT	So on the back here, it is a little hard to see but, what they wrote up here was, he said, okay, I gonna start with one slice peppers and then 7 slices of sausage. Or 7 slices of mushroom. 7 slices of plain. Whatever it was.

Line	Time	Speaker	Transcript
402	$00: 45: 56$	R1	Ahhhh, wow!
403		UCT	Then he went to two with peppers and then six with each of the other four toppings because they're including plain as a topping.
404		R1	Oh my, oh my!

that's only two toppings with peppers.\end{array}\right|\)| Unt |
| :--- |
| 405 |
| 406 |

Line	Time	Speaker	Transcript
			was one group that went off the other...because they were independent thinkers they were thinking outside the box. Which is, it sounds like you might have a whole class of outside the box and...poor teacher. [Chuckles.] Sometimes it's good when they think outside the box. It really is.
422		T7	So this is that other student that I was talking about, um. And she broke it into quarters first and then she said, well, this quarter could have four different toppings on it [pointing to board], this one could have four different toppings on it, this one, and then...and then she took that and said, well there is 13 toppings technically here and multiplied it by 4 because there is four quarters that each of them could be moved into.
423		R1	Right. Right.
424		T7	So that was another big mess. They didn't get an answer.
425		R1	These are bright children?
426		T7	This is a normal level $8^{\text {th }}$ grade class.
427		R1	This is normal? Well, they should be Pinnacle because usually it's your Pinnacle students who think outside the box. How many of you went down this road? None of you, right! Where you came up with dividing the pizzas, either in quarters. Oh, you did?
428		UCT	[Multiple conversations happening - inaudible] I thought about it, but then you came over and I was like, alright, I think I'm going too far into this, so I went back.
429		R1	Okay. [Multiple conversations - inaudible] I think a lot of us were just like too, and then...Okay, okay. Because these are really...was this someone who went down?
430		UCT	[video shows a numbered list of 16 boxes with possible pizza combinations inside the boxes.]So this is someone who had all 16. So he started this first section up here [pointing to board] is his one-toppings ones.
431		R1	Right.
432		UCT	And then he went to his two-toppings, keeping a constant peppers.
433		R1	Nice.
434		UCT	Then moving to the sausage, then mushrooms.
435		R1	Okay.
436		UCT	Then he did the three-toppings.
437		R1	Right
438		UCT	Again keeping peppers and sausage, then getting rid of the sausage and so on. Then he listed all his 16 down here [pointing to board].
439	00:48:42	R1	And you know, I think it would probably not be a bad idea for the student like this who went down the straight and narrow path, made the problem uncomplicated, to let him show the others what he did and let them react to it.
440		UCT	Right. He had to explain it to his partner though...
441		R1	Ah.

Line	Time	Speaker	Transcript				
442		UCT	His partner had started with listing it as well but she didn't take into account her duplicates so she ended up with 32.				
443		R1	Okay. Did you, um, get any justification, here? Any?				
444		CDR	From him? Yeah, he explained it to me not...				
445		CDR	No, but did he write anything?				
446		Yes. His writing was not good, but his explanation to me was good.					
447		CDR	Okay. 448				
		R1 writing just said, there is one plain pizza, you start with					
individual toppings; there's four. From this, you group them in							
lists such as 2-topping and 3-toppings. Then you make sure you							
didn't repeat a combination. There are 16 possible combinations.							
To check there are four original topping. Four can evenly go into							
16.				$	$	Okay.	
:---	:---						
449							
450							

Line	Time	Speaker	Transcript
			And we do, um, high-level pizza activities every other Friday. They were off topic pretty much the whole time because they were thinking about pizza; because they were high level. But this first one is one of my students Y \qquad . He started a tree diagram and was running into so many problems. And, um, Lesley was also in his group, she was doing the same thing and she was flirting with Yaniq so they didn't really get very far. Um, it's really funny because he doesn't realize she's flirting with him. Um, but the third, the other kid in the group was John, and John started doing...he...it's like he started copying them with the tree diagram to start with the plain pizza, and then he started going off on his own. He just started drawing circles and I asked him why, and why would he labeled some of them with the spokes and some not. And he said, he didn't know. Um, but he did the pepperoni, the mushrooms, the peppers, and then sausage he forgot it, so it came down at the bottom [pointing to the board]. Then he did a combination of two, then a combination of three, then a combination of two, then a three, then a three and then all.
465		R1	Okay.
466		T4	And then I asked him why he organized his work the way he did, he's like, I don't know. And I said, do you think that you're done? He's like, probably not, I don't really care. He was very like...so once I talked to that group and I said, wow John, this looks really interesting then Y \qquad all of a sudden asked for another piece of paper.
467		R1	Okay.
468		UCT	[video shows Y's work where he began by listing pizza combinations using letters for the pizza toppings. Then Y decided to use his partner's idea of using proof by cases.]Um, he started making a list first, he didn't like his list because he knew he had duplicates. And then he started doing what John did, but he actually organized his work in the one, two, three, four...list.
469		R1	Okay.
470		UCT	So...at least I got one right answer in the class. [Laughs]
471		R1	Well, you know, I...I think that's really nice that Yaniq decided that he would take [pointing to the board]...
472		UCT	He tried three different ways before he got it.
473		R1	That's good. That's really good.
474		UCT	Yeah. And he, and he listened to the comments that I made to John...and made sure that, he actually took it seriously. He took what John did and realized John had 1-2-3, and then he fixed it so that it was all the twos, all threes.
475		R1	Isn't that nice?
476		UCT	Yeah.
477		R1	So that they were building upon what each, you know, their partner said. That's good.
478		UCT	Yeah, and then John copied Yaniq, so I had to put John second

Line	Time	Speaker	Transcript
			here.
479		R1	Did you ask them how does he know he has all the one-topping pizzas?
480		UCT	Yeah, and they were like, I don't know, we're just going to copy. He did know either. He didn't realize either. They were very all over the place. They just didn't know...yeah. But I was happy that at least he, he was able to articulate - This was all the one-toppings, two-toppings, three-toppings...
481		R1	Okay. But that's good.
482		UCT	He...he used his example from the book [unintelligible]...it said that I had a duplicate here so....he was able to.
483		R1	Good. Okay. And, you know, you might want to...maybe the easiest question is, how do you know there is only one pizza with all four toppings.
484		UCT	Yeah.
485		R1	Alright. And they may be able to answer that. And if you can get 'em just to do a convincing argument for something that simple, that's a start. You know, don't expect them to write a convincing argument for everything. But you want them to be writing something. And if they can't write 'cause they have special needs, it's okay to write for them; if you're writing their words. Okay. Alright. [Extensive pause.]
486		R1	So what is that white box? It's not a projection camera?
487		UCT	That's just a projector.
488		R1	It's just a projector. So you can't...so the Elmos, there are none in the school, huh? The Elmo? Okay.
489	00:54:43	MC	Okay. This is a group of girls that I had and they...were actually were my only group that came up with the 16 possibilities. Um, they first started listing them out using just the one-toppings. And when I went back and they had the 16.
490		R1	Hmm.
491		T3	They showed me that, or what they said rather, was that they used a system. And they use it by describing arrows. So they kind of showed me that they listed each of individual toppings; so peppers, sausage, pepperoni, mushrooms. And then they went peppers sausage with the pizza, pepperoni sausage pepperoni with the pizza, pepper sausage pepperoni mushrooms and they kind of used the arrows to come up with the $16 \ldots$
492		R1	Okay
493		T3	Uh, combinations. So I thought that was pretty good.
494		R1	Uh huh.
495		MC	They were...understood it pretty quickly. And...they were pretty decent with their explanations. This is as far as written wise that they could give me. Written argument: The first pair of 2 of all the same color is there because there are 4 blocks and all are the same color; but opposite from its partner. The second group of 2 pairs makes 4 different groups, but they link together because you can take the

Line	Time	Speaker	Transcript
			bottom or top and put it completely opposite of the top or the bottom.
496		R1	Uh huh.
497		MC	And that was their convincing argument with that.
498		R1	Okay, so is it convincing to you? [Extensive pause.] Blank looks. Does that mean you're asleep or does that mean...?
499			[Multiple conversations.]
500		T3	I liked the way that they organized it with the arrows but there is no real argument there about why they have all of them.
501		R1	Exactly, okay. But it is a neat way to find the pizzas. Not as convincing as to, do you have them all? Okay, but that, that's neat.
502		UCT	And then the next one, actually I wanted to go this first...
503		R1	Okay.
504		UCT	So this group, um, actually started with a tree diagram and they thought that was their best way to start it. And then you can kind of see that, they kind of erased it. Cause after they started to make the tree diagram, they realized they were having duplicates. And they kind of looked at me and said; this isn't going to work anymore. So I said, okay, well can we do it another way? [Announcement: Inaudible.]
505	00:56:33	UCT	So after they realized that they were making duplicates they thought that they could use another way; that's when they changed to do a list, which is ...this. And they kind of just organized them at random and they only came up with 13.
506		R1	Okay, that random organization is not a good one. Right? Yeah.
507		UCT	Yeah, but at least, I kind of liked that they started with the tree diagram...
508		R1	And moved away from it.
509		UCT	And saw that they were duplicates and realized that wasn't working for them, so then they went to the list. But with the list they only came up with 13 .
510		R1	Okay, and how many of you, when you started with a tree diagram, said uh uh, this isn't working so good.
511		UCT	I know that I did.
512		UCT	Yeah. This group in the front did the same thing. They started with a tree diagram and then they realized it wasn't gonna work.
513		R1	Okay, good. Alright. [Extensive pause.] So again, the third task, you want to push the children to the next level wherever they are, okay. If they haven't been writing at all, you really want them to write a little bit, because, uh, we're hoping to see growth, you know, from wherever they started. If they, even if they don't have a whole solution, if their organization is there in the third task than it was in the first and second, that's a good thing.

Line	Time	Speaker	Transcript		
514		NL	Okay. So I pretty much had the same difficulties as everybody else.		
515		R1	Okay		
516		UCT	Um, but through constantly, like this girl Jenna asked me like a million questions. And it was really hard for me to tell her, like I can't really answer it. But I just kept like stating, just read the question .What is they problem asking you? And she'd be like, can we have no cheese? And I was like, what does the problem say? So I just kept saying that because I didn't know what else to say half the time because her questions were really like...I would have led her too much and she would've...she would have gotten the answer from me.		
517		R1	Okay, okay.		
518		UCT	But eventually, she was like, can we have more than one topping? I said, ask your partner, I am not sure.		
519		R1	Good.		
520		UCT	Can we have two? So on and so forth. So, eventually she figured it out.		
521		Okay.			
522		So she came up with 16. And she organized it like, she made me a little key, I don't know if you can see it over here [pointing to board]. But one box, she said was one pie.			
523		UCT	One box is a pie, okay.		
524		R1	UCT		
525		So like, one rectangle is a pie.			
526		Okay, neat. Uh huh, okay.			
527		One box is a pie neat			
528	$00: 58: 56$	UCT	UCT		Very nice. It's a neat organization, isn't it? What grade is this?
:---					
529	\quad	She's seventh.			
:---	:---				
530					

Line	Time	Speaker	Transcript
538		UCT	[video shows The student's written argument and diagram was placed on the screen. The diagram had 8 pairs of 4 tall towers where P was written inside the square to represent a yellow cube for plain pizza and T was written inside the square to represent a blue cube for a topping. The written argument from this student was "I use the blocks for the pizza that I just did. I use blue for the topping, yellow plain only" And then, this guy actually surprised me a little bit. Um, he was the only one to say, this is like the towers.
539		R1	And why did he think that?
540		UCT	He came out with it right away. And then I asked him why, and he's like, I don't know. He's like it's 16. And I was like, well, why is it 16 ? And he's like, I don't know. I said, well, why don't you just play around with it, so...Initially, he didn't write this. I didn't bring his, like, original because he wrote on a scrap piece of paper. He was just making a diagram, just like tree diagram, then he made a list. But then, when he realized that he was convinced it was for the towers, he couldn't explain to me why. I said, well, can you build them? So I gave him the towers, and I was like, alright, well, you have yellow and blue, how does that relate to your toppings? And then he couldn't really explain. But he figured that drawing it would make more sense. So he...his only explanation was this little bit. He is a hearing impaired student, so his language isn't the greatest.
541		R1	Okay.
542		UCT	He said, I used the blocks for the pizza that I just did. I used blue for the topping and yellow for the plain. So then the first one is like TTTP, and the second was PPPT.
543		R1	Okay so TTTP, meaning?
544		UCT	Three toppings, and...three toppings and blank; he said it was plain, but it would be just like 3 toppings.
545	01:01:04	R1	Meaning that the fourth topping, whatever it was, didn't appear in the pizza.
546		UCT	Yes.
547		R1	That's kind of neat, huh?
548		UCT	Yes. And he did kind of the opposite thing like he did initially solving the towers; and just fill it in with Ts and Ps.
549		R1	Right.
550		UCT	To meaning three-topping, or one-topping, or two-topping. So, I thought, he was just convinced. And then, the one thing that he did say to me, I actually wrote it in the post, was that he thought it was related to the towers because they had to choose from four toppings. And I was like, okay. And he's like, and for the towers you build four high, so those fours relate somehow. And I was like, oh okay, so then that's when I told him to build, at that point but... he ran out of time; so he just finished whatever he finished.

Line	Time	Speaker	Transcript
551		R1	Yeah. Okay, okay. This is the beginning of seeing a connection, isn't it? Alright. Um, and it's neat that he is kind of saying, it either appears or doesn't appear. We just don't know which toppings are appearing.
552		UCT	Yeah.
553		R1	But that's...that's neat. Good. Okay. [Extensive pause.] It's really hard to get them not to erase if they're using pencil. And you really want to see why they are changing, and what thinking they started with, and where they're going. And that why I urge you to let them use, uh, you know, pens. That they can't erase. Or if they have to use pencil, a line through it, no erasing. Because you want to know where they went, where they started, and where they're going.
554		UCT	My kids were surprised when I said you could use pen. Like some of them didn't want to.
555		R1	Right.
556		UCT	But some of them were like...yeah? Really? Okay!
557		R1	Yeah. Okay.
558	01:02:52	UCT	Uh, so Daniel started out with this web looking thing.
559		R1	Hmm.
560		UCT	I had a few kids do this. They kind of just drew pizza, and then just drew all of their pieces off of it.
561		R1	Hmm.
562		UCT	And I kind of asked him like, how do you know you have all of them? What's your organization? He tried a tree diagram, but it didn't really work out. So, him and his group decided, they realized they all had these webs, but some had different amount than others, because they had missed things. So then they went for this organization, which was much nicer. And found [Laughter.], zero-toppings, one-topping, two-topping, threetopping, and four-topping. So they were able to take their work from their webs and reorganize it into this and find the 16.
563		R1	So that's good! How many of you think that you could interpret that web?
564		UCT	I was having a lot of trouble.
565		R1	I don't think I could. Yeah...
566	01:03:32	UCT	And I mean, I asked them about it, and they were saying like, oh well, we first...you know...this is what they did. They wrote down the one-topping, and they wrote down the two-toppings, but in their web they were kind of just trying to fit in things later. So it got really unorganized and hard to follow.
567		R1	Okay, okay. Look how neat their listing is.
568		UCT	The, the list got really awesome.
569		R1	Do you notice how they're keeping constants peppers in those two-topping pizzas?
570		UCT	Um huh.
571		R1	First the pepper pizzas, and the one that have pepperoni, and the one with sausage. [Someone sneezes.] Bless you. Very nice. Did

Line	Time	Speaker	Transcript
			they write a convincing argument?
572		UCT	They wrote that, I think that 16 is all the possible combinations because we can't do anymore without them repeating for fourtoppings. Uh, we know that all the toppings on a pizza is a choice, and that plain pizza is a choice too. That makes two pizzas total. And then there were four toppings, and thought we could just put one topping per pizza, so that would make 6 pizzas total.
573	01:04:23	R1	Hold on! Hold on! Read that last sentence.
574		UCT	Then there were 4 toppings, and thought we could just put one topping per pizza. And that would make 6. So they so far explained the all and the none. That's two. And all the onetopping pizzas.
575		R1	And then 4 one-topping pizzas. Okay. Everyone following so far? Okay, now let's see how they get complicated.
576		UCT	Then it says, next we put two different toppings without repeating them again. We got 6 total pizzas for two toppings, and that makes 12 pizzas total.
577		R1	Hold on. Is that convincing...why they have two... 6 twotoppings?
578		T10	Not really.
579		R1	No.Their argument there falls apart. Go ahead...three-topping...
580		UCT	Uh, three-toppings [unintelligible] we put three toppings on each pizza without repeating. It's pretty much what they said, they just did them without repeating.
581		R1	Okay.
582		UCT	Which isn't very convincing.
583		R1	Okay, okay.
584		UCT	I know one of the kids in this group, I don't think it was Daniel, but his partner, was talking about, for the three-toppings, how they eliminated one. And that's how he came up with his way to write it down.
585		R1	And isn't that neat? Yeah. Cause I don't think that any of you thought to eliminate a topping, but isn't that a neat strategy? To find those three-topping pizzas, which could be hard, right. Good. Very nice.
586		UCT	And my other student, Scott. So Scott was first really concerned about creating the menu because it says, uh, it says, they ask you to help design a form to keep track of certain pizza choices...
587		R1	Got it. Got it.
588		UCT	So he was really concerned about making a form that you could fill out for the pizza. [Laughter.]
589		R1	Okay.
590		LC	[Video shows This student created a table with the topping words at the tops of the columns and the rows were numbered on the left margin 1-16. In the row and column cells, there were checkmarks to represent the toppings used

Line	Time		Speaker			
		Transcript				
591		R1	for the pizza combinations] So that was his first work. And then, he realized this wasn’t getting anywhere, so his next idea was the chart. Which I was like, oh great work! So he was doing the chart...			
592		UCT	Look at that And he had it in a nice organized system where he was going through it.			
593		R1	Yes!			
594		UCT	I was just so excited. And then, he got to somewhere and then he just kind of messed up. And his partner didn't really like the chart idea, and his partner was writing out lists of words. Um...			
595		UCT	Uh huh. 596			
And so then, Scott was like, well no, I don't want to do this						
anymore. I want to do what he's doing. So that's why he wrote						
"ignore" on the side. So that's no longer his work. He didn't						
want you to look at that.				$	$	W1
:---						
597						
$01: 06: 16$						

Line	Time	Speaker	Transcript			
611		R1	Yes! And it looks like they erased it though.			
612		UCT	Yeah, cause he was going through it later... and			
613		UCT	Right, right.			
614		And then he was realizing, there were some things he already had. But what I thought was kind of neat was that, he left all this space, and he put the one at the bottom because he knew at the end, he'd have everything. And he kind of like, left a lot of room to work. But then, he decided...yeah.				
615		R1	That's really nice, though. This is really, really neat it, cause kind of looks similar to, uh, what Brandon was doing, right? Except Brandon was used zeroes and ones.			
616		UCT	So then when he decided he didn't want to do this because his partner was doing something else, he went to the number system.			
617		UCT	Okay. 618			
		R1 And he actually only had, um, he didn't have that 5 for plain. He				
only had one through 1 through 4 for the toppings.				$	$	Okay
:---						
619						
620						

Line	Time	Speaker	Transcript
			work. That's what I love doing.
630		UCT	He went through a lot with that...
631		R1	He went through a lot of work, and some really neat stuff. Okay, last one...but not least. Do you find it interesting to see what the kids are doing? Interesting to kind of play detective and figure out what they're thinking, and how they're thinking. I know. That's, that's what I love doing. My best part of teaching was when I was able to get into the mind of the students who thought differently than I did
632		R1	Especially when you don't think they are capable of it, and you actually see that they get. It's pretty cool stuff.
633		UCT	And then you actually see they are capable.
634		UCT	Yeah. They might not be able to write it down in words, but if they can come close to explaining it, I mean, that's pretty cool.
635		R1	Absolutely.
636			[Conversation not related to lesson study. Not included.]
637	01:11:27	UCT	Okay, so this first one, I could not follow when she was doing. Um, so she made this web, she has a standard pizza in the middle, and then she goes all around. And I really didn't understand this, and I wasn't until I was just sitting there with Lori that I was like, ok look! All the mushroom pizzas are together.
638		R1	Uh, huh.
639		UCT	And then all her pepper pizzas are together.
640		R1	Okay.
641		UCT	And then there's sausage and pepperoni.
642		R1	Interesting.
643		UCT	And I didn't notice that until just today.
644		R1	Okay.
645		UCT	And she numbered them...7...she had 7 with mushroom, 4 with peppers, 3 with sausage and 1 with pepperoni.
646		R1	Okay.
647		UCT	Um, and she originally had 15 here because that add to 15 . I don't know what she considered to be her $16^{\text {th }}$.
648		R1	Did she have the all four topping pizza anywhere?
649		UCT	Um, from this I couldn't tell. And then I said, this really make no sense, is there any way you can re-write that so that when I read it later, I can see. And she listed her combinations, and she does. She starts with standard pizza and then she has the four topping pizza here. And you can see, she kept mushroom, and then the peppers, and the sausage, and then the pepperoni. Um, but...oh yeah, the standard pizza, I was gonna say there's no plain but there is, that's the standard pizza.
650		R1	Okay.
651		UCT	So she did get it from that crazy web. And, and what she wrote was, We believe that have found all the combinations. We

Line	Time	Speaker	Transcript
			believe this because first we used the web to see how much combos we could make. We also did them all because when I checked them off there were none left, because I once...I did a combo... once I did a combo, I took one thing off. I also added them altogether. You could do 4 by 4 because there are four toppings to pick out of, that's how I got 16 . But she did mention that she was taking one thing off each time. Um, but that's, that was her argument.
652		R1	Okay, okay. Did she mean she was taking one item off each time...
653		UCT	One item off each time.
654		R1	Or was she taking it off the web and then putting it in her list?
655		UCT	Good question.
656		R1	Yeah, because those are two very different interpretations. Um, again. We need more of an argument but, nice the way they're getting, generating the lists. There's a lot of organization there.
657		UCT	Yeah.
658		R1	Good.
659		UCT	And then, the next student, um, he is high level on the spectrum and I paired him with someone, but he doesn't work well with others. So they kind of just worked side by side.
660		R1	Okay, okay. That's okay.
661		UCT	And so he...wrote this. And this was very confusing. He had so many different webs; I couldn't figure it out. And then when I talked to him, he said, each of those webs is a different pie.
662		R1	Okay.
663		UCT	So, um, PI stood for his pizza. [Pointing to the board.] So this was a plain pizza, and this was a pizza with mushrooms, a pizza with sausage. And he had a key down here. You can't really see it. And he did get all 16 , but he started with a 4 pizza, the fourtopping, and then went to three, and then two...one, and then none.
664		R1	Is that interesting. Okay, okay.
665		UCT	So he kind of did it backwards, but the most I could get from writing, he doesn't write very much, was, I got 16 combinations. I used factor trees to help me out by abbreviating the toppings and replacing the numbers with letters. I'm not really sure what he meant by that...
666		R1	Okay, okay. And that's interesting notation, isn't it? It helped him, because he really didn't use factor tree, right?
667		UCT	No.
668		R1	Because each one was a separate pizza, and that's why it worked for him.
669		UCT	Yeah.
670		R1	Just need a convincing argument, huh? You know, it's a hard thing to do. And hopefully, some of your children will get closer to doing it as the semester goes on. Okay, are you ready to do a problem?

Line	Time	Speaker	Transcript
671		UCT	Sure.
672	$01: 14: 38$	R1	Okay, break into pairs.

R1-Dr. Judy Landis
UCT- Unidentified Cohort Teacher
Initials - Identified Cohort Teacher

Description: Transcript of teachers doing Cycle 3
towers 3-tall with 3 colors \& Ankur's challenge
Advisor: Carolyn Maher
Location: TRIE
Date: October 22, 2013 part 3

Author: Phyllis J. Cipriani Verified by: Simone Grey Date Verified: Summer 2015 Page 1 of 36

Line	Time	Speaker	Transcript
1	00:00:00	R1	Thank you for bringing them.
2		UCT	You're welcome. They are what?
3		R1	Okay, you are going to have 3 different colors and they are coming now. And can someone tell me what the problem means?[pause]
4	00:00:27	UCT	Building towers three-high selecting from 3 different colors, instead of two, now.
5		R1	You got it! And then writing a convincing argument why you think you have them all. Okay, everyone know what to do? Then begin. [teachers work together in pairs on Cycle 3 task of building towers 3 -tall with three colors for 30 minutes-begins monitoring groups] [R1 monitors the teachers on line 86 calls for whole group attention][the conversation between CDR and CP is filmed by the second camera]
6		UCT	We need paper!
7		R1	Say that again. Oh, I think you do need paper. Let me give it to you.
8		UCT	I have paper.
9		R1	No they didn't get the problem, I'll do that.
10		CP	Does there have to be one color in each tower?
11		R1	Question:ask your partner. What does your partner think?
12		CP	She thinks I should ask you![laughter]
13		R1	Good answer! But try again!
14		R4	That's funny!
15		R1	Okay. [video shows NL and MC working on the 3-tall towers. Video also shows LC and GH laughing when instructor asked why they were laughing LC said that GH wanted the tower diagonal to go up and LC wanted the tower to go down. Instructor said isn't it interesting that it wouldn't bother you but it bothered her.] [multiple inaudible conversations]
16		CDR	They were all mixed up in the bags.
17		R1	They should...they actually should.
18		R4	You are from Toms River, right?
19		CDR	Yes.
20		R4	You are not Tara, you're..?

Line	Time	Speaker	Transcript
21		CDR	Christine
22		R4	Christine. We were in your class the first time.
23		CDR	Yeah.
24		R4	Do you mind if I focus on you guys is that alright?
25		CDR	No that's fine. To CP, maybe I should have asked you first! CDR drops the cubes and says maybe not we can't even keep the cubes together! [teachers work in pairssmall] We have 1 yellow do you want to put it on the top?
26		CP	Do you want to....
27		CDR	On the bottom? And a yellow on the bottom?
28		CP	I'll do like the yellows and the reds.
29		CDR	Oh, you mean like that one? [building towers with unifix cubes] I thought you...[laughter] Sorry, I thought you were doing these... 2 reds. We just need one with the yellow on the bottom. The 2 reds and the yellow on the bottom. That much, alright.
30		CP	See I would do it with the yellows on top.
31		CDR	Oh, okay.
32	00:02:50	CP	How would you do it?
33		CDR	I would have done, First position, second position, and then third position.
34		CP	Third position, Okay.
35		CDR	Alright But we can do it that way.
36		CP	No that's fine.
37		CDR	Alright however you want to work it. I am so confused right now.
38		CP	So that is first position, second position, third...
39		CDR	Right, third. And then the yellows are in the...
40		CP	And then we have twos,
41		CDR	..first, second, third. so that is one and two. No, cause that is all red, then we have two red one yellow; One red two yellow and Then we do yellow. I think we are good. Now we are going to do red with blue and then we need to do the yellow the same way.
42		CP	Shouldn't it be 12?
43		CDR	[begins to count] Wait, what?
44		CP	Four tall times 3 is 12.
45		CDR	There should be 8. So if we just focus..
46		CP	8 that's right.
47		CDR	Yeah, there should be 8, okay.
48		CP	Okay.
49		CDR	Alright, so now we need to do...do you want to do the reds and the blues the same way? And I will do the yellows and the blues the same way?

Line	Time	Speaker	Transcript
50		CP	Okay.
51	00:04:05	R1	So, did you answer the question for each other? [R1 moves to CP and CDR].[CDR \& CP use unifix cubes to build towers]
52		CDR	Yes.
53		CP	Yes [R1 moves to a different group and circulates].
54		R1	Okay.
55		CDR	Here's the reds...I need the yellows, thank you. Okay so you are doing red and I am doing yellow.[CDR \& CP using unifix cubes to build towers] [pause] we are doing 3 tall using 3 colors.
56		CP	You are fast! [small group conversation between CP \& CDR]
57		CDR	Thank you. I don't know why, I guess cause I am use to doing it that way. Or are you use to doing it that way. We have all the twos then. So Red and Yellow.
58		CP	We should have 6 of the two color combinations.
59		CDR	Right.
60		CP	6 of each
61	00:05:33	CDR	Red yellow, Red blue; yellow blue; okay; so we can do all 3 colors.
62		CP	Okay.
63		CDR	So let's start with this maybe red as the constant on the top. So we can have Red, yellow, blue or we can have red blue yellow;
64		CP	Okay.
65		CDR	We have 6 but we have to use all the colors. Right, so it would be yellow blue blue yellow.
66		CP	Yeah we have to change it.
67		CDR	Right, so yellow is the constant on top. So we should do Yellow... what are you doing?
68		CP	Yellow, red blue
69		CDR	So then yellow red
70		CP	Yellow on top,Then blue yellow red.
71		CDR	[laughter] They are going to have so much difficulty with this! [counting]...24,25,26,27.
72		CP	Nice!
73		CDR	I think we're good! Alright.
74		CP	Get ready to convince.
75		R4	Would it be alright if you laid them flat on the desk?
76		CDR	Sure.
77		R4	It makes it easier to take the picture of it. Of course it helps to press the button! There we go!
78		CDR	Oh, nice!

Line	Time	Speaker	Transcript			
79		R4	Thank you.			
80		CDR	Thank you. There's yellow [hands yellow unifix cubes to CP]			
81		CP	Alright.			
82		CDR	We always start listing it I guess.			
83	$00: 07: 41$		CP			
84		Is there another way we can do this?				
85		CD	Yeah I guess we can switch these. That's all I would do. Well, We did all of our solids, then we did red and yellow or we can say yellow and blue then yellow and red; and then last do blue red; So that is all our pairs. And each time...So that each time we changed our position and like here we kept our constant red.			
86		CDR	Okay. She might have us....I mean The other way you could do it is the recursive thing where if you are looking at this one and then the blue goes to the top so then it is this one and then move blue down so it looks like that and then this yellow would move and move them like that. That's the other way.			
87			CP			
88		CD	Ilike the recursive way.			
89		CP	CDR			
90		The recursive what?		$	$	I feel like that is good.
:---						
91						

Line	Time	Speaker	Transcript
103		CDR	So then we said we could have yellow and blue. And in that case it could be two yellow one blue or it could be two blue one yellow.
104		R1	Got it.
105		CDR	And we used placements, so...
106		R1	Okay.
107		CDR	Blue could be in 3 positions
108		R1	Nice
109		CDR	For those 3 and the yellow
110		R1	Okay.
111		CDR	And then we said instead of yellow blue we can also have yellow \& red.
112		R1	MMHH
113		CDR	Then we are done with our yellow.
114		R1	MMhh.
115		CDR	And then the only ones that are left are the blue and red.
116		R1	Okay.
117		CDR	So we are done with all of our just 2 colors in the tower.
118		R1	Okay.
119		CDR	Then we had our 3 color towers. And we had thought about each of these differently.
120		R1	Okay.
121		CDR	So do you want to go? [speaking to CP]
122	00:12:19	CP	Sure. So for this one we kind of did the same concept as these towers.
123		R1	Okay.
124		CP	We add the one yellow.
125		R1	Oh that's interesting, uhhuh.
126		CP	And then it worked itself down.
127		R1	Okay.
128		CP	And then we just did each place.
129	00:12:30	R1	Now how do you know you have all the towers that can be in this grouping?
130		CP	Well
131		R1	By putting the yellow down.
132		CP	If you take this one, first if you put the yellow down then there would be 4 towers tall; and that wouldn't work
133		R1	Okay you are saying you can't have, you can't have
134		CP	Yeah and if you tried because we were doing where you just take one and put it back on top to the corresponding one again.
135		R1	AHHHhh. I see. So you used a recursive argument to form this. Okay, okay, alright. Interesting.
136		CP	And It works the same for this one except for the blue and

Line	Time	Speaker	Transcript
			the red are switching positions.
137	00:13:00	R1	Got it.
138		CP	So if you took these and we used our recursive argument and moved this one again...
139		R1	How about if you did that again?[pause]
140		CP	Do it again?
141		R1	Yeah.
142		CDR	Then your red one would be on top.
143		R1	Yeah.
144		CP	Oh, did I do that wrong?
145		R1	Yeah.[laugh]
146		CP	Okay, where do I go since I messed myself up.
147		CDR	So you put your yellow and then you do your red again and then your red is on top.
148		R1	Yeah, put the red on top. And then what happens?
149		CP	Then you end up with the middle one.
150	00:13:26	R1	Okay. Okay. Good very nice. Okay.
151		CDR	What I had originally thought about.
152		R1	Yes.
153		CDR	I had thought of um...a constant on top
154		R1	Okay.
155		CDR	so I had originally thought a red on the top a blue or yellow will alternate on the bottom, If the yellows are on top, the red and blue will switch.
156		R1	MMhh. MMhh. Okay.
157		CDR	The third one would be the blues on top.
158	00:13:46	R1	What do you think of her argument?
159		CP	I think it works.
160		R1	I think both are good. Okay, Record your towers on your paper and write your convincing argument. Good. [R1 moves to a different group and the conversation is audible.]
161	00:14:12	R1	Where is my group that is arranging it differently, but I bet you changed it didn't you?
162		UCT	Is it us?
163		R1	Yes, it is you. [laughter] It is you..
164		UCT	What did we do?
165		R1	You are arranging it differently than everyone. Um at least unless you are...
166		UCT	That was just to help us count.
167		R1	And how did that help?
168		UCT	Well she saw something that I didn't do and then she told me to do it this way [laughter].
169		R1	Okay, okay, now;
170		UCT	So I looked at all of them that had the red on top.

Line	Time	Speaker	Transcript
171		R1	Okay, and how many....?
172		UCT	And there were 9.
173		R1	Okay.
174		UCT	And then We looked at the blues that were on top and we only had 7 and 8 yellow.
175	00:14:47	R1	Good. Ahh. And that bothered you.
176		UCT	Yeah. Because that gave us the 24 and we were trying to get 27.
177		R1	And you were hoping to get 27? And you had the 9 here and said...
178		UCT	We are missing The 2 from the blue the one from the yellow.
179	00:15:00	R1	And did you find them?
180		UCT	Yeah.
181		R1	Okay, now Can you convince me, that there are only 9 with red tops and only 9 and you can't have no more? if you convince me of this, I won't make you convince me of this. Okay.
182		UCT	Okay so you want to know why there are only 9 red.
183		R1	Exactly right. I want to know why there are only 9.[huge pause]
184		NL	So if you were to move it, you would move it twice.
185		MC	I know but I am just saying it worked.
186		NL	Yeah, so if we moved it once it would be this; if we moved it twice it would be one of the yellows.
187		MC	MMhh.
188		NL	With a red on top.
189		MC	It would be the same thing we are keeping the red on top, so we are keeping the red on top. If I move it once the reds will be on top but then if I move it again it has two categories and that is not what I want.
190		NL	Right. And then this is the same thing with this one but with blue....And then this one....The only way you can have a red on top with two of the same colors on the bottom with a yellow. And then this one has the same thing red on top with two of the same color on the bottom where the constant is either yellow or blue.
191		R1	Why can't you have red on the top and red on the bottom? [pause]
192		NL	Well that would be two colors together. I'm saying...
193		R1	Yeah, well why can't you have red; and then two more red?
194		MC	We already have 3 red.
195		R1	Ahh, okay. Now, Again, I asked you that, but I really knew

Line	Time	Speaker	Transcript
			the answer. But that is what you want to do to your students; ask them to be sure that they got it. How about these?
196		NL	The same argument.
197	00:16:50	MC	With the red on top?
198		R1	MMhh.
199		NL	You can either get a yellow or blue or a blue or a yellow. And if you were to move it this would be one of these...
200		MC	So it will be this one.
201		R1	You want to keep the red on top. I heard you tell me that. Is there any other way to put a blue and a yellow on the bottom with red on top? Other than these two
202		MC	No because we would only have 2 colors
203		NL	There's only three positions.
204		MC	Yeah, there is only three positions if there were four positions, then yes.
205		CDR	I started writing yellows and reds first.
206		CP	You know what I did? I just went...
207		CDR	Down and I know I should have done that first.
208	00:17:50	R1	Really neat. Your argument is different than everyone elses. I want you to record it.
209		MC	How about that we are different!
210		R1	I want you to record it as groups of nine with solid color tops. Okay and then write a convincing argument for one of the three groups. Okay and then write a Convincing argument for this and that there are no more in this group. Now you want to write a convincing argument that is convincing. Okay; a convincing argument that is convincing. Do not tell me how you grouped them. Tell me why there are no more in the groups. Okay. [pause]
211		GH	I feel like I wrote the same thing five times.
212		R1	[R1 goes to another group] You mean for each of these?
213		GH	Yeah.
214		R1	Well that is because the argument is very similar.
215		GH	Yeah. Even this one too.
216		R1	How is that similar?
217		GH	Because all three are on the bottom one each time.
218		R1	So you used a recursive argument?
219		GH	That is how we did all of them.
220		R1	Okay, okay. But here, is this a recursive argument?
221		LC	Yeah because this is the bottom, the middle and the top
222		R1	And what other argument can you use here?
223		GH	Stair case \{actually is elevator but GH calls it staircase \}Red in every position.

Line	Time	Speaker	Transcript
224		R1	You have one red and 2 yellows there are 3 positions. You have the red in each of the 3 positions. Is there any other place to put one red?
225		UCT	No
226		R1	So that is another argument. Okay.
227		UCT	Right, But if we say we took the bottom and moved it to the top and exhausted it until.
228	00:18:59	R1	That's a recursive argument.
229		GH	Yeah.
230		R1	It's another argument but I am saying that when it looks like this... you don't even have to use a recursive argument.
231		GH	Right.
232	00:19:09	R1	Okay, good. You are doing nicely on this. How do you think your students will do?
233		unison	Not good! Laugh [unaudible multiple responses]
234		R1	Not sure?
235		MC	I think it will be very hard for them.
236		R1	Did any of you besides this group make a prediction of how many towers you were going to find before you found them?
237		TD	We did, we said 27.
238		R1	And why did you go 27?
239		TD	Because we did three to the third.
240		R1	And why did you do three to the third?
241		TD	The other one we did two to the third.
242		R1	You did! And what is the base?
243		UCT	The colors the three colors.[inaudible multiple conversations at once]
244		R1	Good. Good. Good. And I predict that some of your students will do the same. If they knew that the towers were two to the fourth, I think some of them will be able to say like you did that these are three to the third. [pause] If they didn't do two to the fourth and they did four times four, aint gonna help them.
245		UCT	But the way that I am explaining it, it makes sense of it that you get 32 .
246		R1	Why?
247		MM	Because there's three colors and there's three rows and each time...we kept an odd number on the first and second row.
248		R1	Okay. Okay.
249		MM	So for every time we can have the bottom row change color you can change the second row three times.

Line	Time	Speaker	Transcript
250		R1	Okay.
251		MM	So each time you change the second row, there is that alternating with the 3 colors.
252		R1	Now it is interesting. You have 9 groups of 3 and you have it different than the others. That's really neat. That's really neat. Very very neat. Okay, so I see 3 different ways that you've done this. Um, I hope we are going to get these up on with uh taking a picture of it. Cause some of your stuff is really really good. Get that convincing argument down. Okay. Cause if you can do it, you'll believe that some of your students will be able to do it too. [pause] [laugh] Did you get it? The angle is off...
253		NL	I gotta weird angle but...
254		R1	Yeah; As long as we can see the top constant.
255		NL	Yeah. That is why I am taking another one. Good, good.
256		R1	How did you get.. convince me that you had them all?
257		UCT	I am just drawing them out [inaudible response]
258		R1	Good. Good. Now when your students are recording the towers do not let them pull out their Iphone and take a snapshot. [multiple conversations-inaudible].
259		UCT	I don't let them be on their phone cause I will take them.
260		R1	Okay. [laughter] [multiple inaudible low conversations]
261		R1	Are you still working?
262		UCT	Yeah we are still working on it. We just realized and we were rearranging it.
263		R1	Why are you rearranging?
264		VB	We have like the one yellow and two blue; and here is one yellow and two blue...all the combos just making it look organized. [multiple conversations occurring at once]
265		R1	I see. Okay. Okay. So you were trying to exhaust yellow and blue and the yellow and the red.
266		VB	Yeah. Either way.
267		R1	So you were trying to exhaust... Yellow and the blue and the red the yellow and the blue and... Okay! I gotcha! I gotcha! Now you feel better about it?
268		UCT	Yeah, now if I show that to them, they will be fine.
269		VB	I just wrote that we used the recursive method and we moved each one into the other ones.
270		R1	And did you do that for... all of them?
271		UCT	yeah.
272		R1	Do you need a...
273		VB	We did it for these ones but for These we kept a constant.
274		R1	Okay so this you didn't do recursive but you kept the tops and then you said that the bottom are going to be the other

Line	Time	Speaker	Transcript
			two colors so there is only this way to do it. Going back to here, you really don't need to do a recursive argument. You have a single blue in each of the 3 positions. Right? There is no other place to put that single blue. There are only 3 spots. Towers are only 3 tall. Right? That's convincing in itself. You have exhausted all the possibilities.
275		VB	Okay.
276		R1	Okay. [inaudible] No, no, no!
277	00:20:39	CP	[multiple conversations at the same time as above]What did you say for this one?
278		CDR	I said yellow and blue can be compared as 2 yellow and one blue or one blue and 2 yellow. And the single color can be moved to the other positions in the towers. Meaning that there are 6 towers that are yellow or blue. So basically that is the other color blue. Because we have 3 spots here and three spots there. And then for the other ones we kept yellow and paired it with red and followed it. We could have put red constant on the top; the red constant in the middle; and the red constant on the bottom. I don't know why I just thought of that by talking to myself!
279	00:22:19	R1	When we..if we took a picture...
280		UCT	It would be easier if we took it of the towers.
281		R1	Yeah, What we will do is we will take a photo of it so everyone can see it.
282		UCT	Of the towers.
283		R1	Yeah of the towers. Remember you are writing a convincing argument. You are really trying to show why you have all the possibilities and there are no more. [slight pause]. So we want Your group to show it. We want your group to show it. And We want one of the other 3 which are all the same. Okay. Can we get you since you are done to take a picture of your towers and you are going to be talking about giving us a convincing argument as to why you arranged them the way they are. [Ipad says Siree not available]OOooo, Siree.
284		CDR	She has a password on hers I have to wait and get it from her.
285		R4	So who is going to show theirs?
286	00:23:43	R1	Okay. [pause] So it will be interesting for you to watch whether your students do it differently that the way you did it. [multiple conversations] Good. [R1 to R4] We got this group to show and we got this group to show and you have to take a picture of this one. Okay, alright. Good, Alright. You are flipping em! Okay. Alright. So now your ah..use

Line	Time	Speaker	Transcript
			of camera is not a bad thing for your students, but don't let it replace the students need to record. That's fine, that's fine. Okay. Can we have... what is the 3 groups? Do you want to start?
287		CP	If you want us to.
288		R1	Sure. Alright, this is the way 3 of the groups that are sitting here did the problem okay and it was the most common solution. Alright. [slight pause] So you whizzed through this but there will be an extension coming up that I don't think you are going to whiz through easily. Okay, okay, while it is warming up. You are going to see, most of you um four of the groups in the room did the problem by grouping it into 9 groups of 3 . Okay, Or a variation sometimes you left the the...candy cane ones; you left them in groups of 2 . Okay, but it was mostly 9 groups of 3 . However, there was one group in this room, our Sayreville teachers [Sayreville teachers holler woo woo!] who thought in a different way and how did you group it? In groups of ...?
289		UCT	9
290	00:26:16	R1	Three groups of 9 by holding the top cube constant alright I have seen students do it that way. I also have seen students do it by holding the bottom color constant. And on a real variation, I have seen the outside of the box thinker hold the middle cube constant. Okay, so expect all of the above. Okay. Oh, this is much better, isn't it, huh? Okay, much better. Can we get it.. Oh that's great. Alright. Okay so now you have the cubes, we are really looking for a convincing argument. Okay we are ready!
291	00:26:36	CP	[video shows the nine groups of 3 towers organized using the elevator strategy] Okay. The first one is pretty clear. It is the bottom one. Solid colors. Three different colors, 3 towers solid colors. Do you want to go with the twos?
292	00:26:59	CDR	Sure. So then what we did was that we could have one color and then we have two different colors in it. So we said the first one would be yellow and blue. And we could either have it with the 2 yellow and one blue or we could have it with the two blue and the one yellow.
293		R1	Good! Keep pointing! Good!
294		CP	Okay.
295		CDR	So what we did in each of those groups, is we held our single cube and we put that in each of the 3 positions. So we had that. Then we said okay, instead of yellow and blue we can keep the yellow and pair it with the red this time. There were two yellow one red, or Two red one yellow.

Line	Time	Speaker	Transcript
			We took our single cube and moved it through to each position. Yellow was paired with both of our colors So our last one which was red and blue and again we kept our single cube and moved that into 3 positions, then we were done with this.
296	00:27:43	R1	Before you leave the two of one color and one of the other. What's your convincing argument why you have every possibility of 2 of one color and one of the other? If you convince us of one group you don't have to go through the other groups.
297	00:28:00	CDR	Alright, So we said if you have the yellow and blue for example. If we had it 2 yellow and the one blue there is only 3 ways to do that. Our single cube can move to each of the positions. If we were to move that again, we would either need a fourth row or we would be repeating it.
298	00:28:18	R1	Does everyone buy that? And that's convincing in itself. You don't have to do recursive. Okay, that is a convincing argument.
299		unison	MMhh [unison response]
300	00:28:28	UCT	The only other option would be the yellow and the blue would be if there are now 2 blue and one yellow and it is the same argument for that.
301		R1	Same argument for all the top group.
302		CDR	Right.
303		R1	What is the argument for the candy cane or the 3 colored colors in a tower?
304	00:28:47	CP	Okay, so Christine and I did this a little bit differently. This was the idea I had, was having the yellow kind of go through each position kind of the same way that we had the one cube go through in the other positions.
305		R1	Okay.
306	00:29:00	CP	And it is the same concept, of actually moving the yellow all the way through. If you were to move it to another place, it would come back to the top and it would result....
307	00:29:08	R1	We better see that. Can you get three and show us? [used unifix cubes to illustrate] Now they are using a recursive argument. Okay cause that's not quite as easy to see why you have them all and why there can't be another tower. So they have the 3 towers there, okay.
308		CP	So as you go through the first you get the yellow to move down to the middle place
309		R1	How about if I hold 2 and you three? [offering and then holding the towers]
310		CDR	Okay, so....

Line	Time	Speaker	Transcript
311		CP	Go ahead.
312		CDR	Then at the end, you take the yellow one and move it back on the top we are back at the first one that he had.
313		R1	Okay
314		CDR	Originally there.
315		R1	Alright.
316		CDR	Oh I thought...[laughter] Do you want to do those?
317		R1	Well is that the only other way to do it?
318	00:29:54	CDR	Well so then the other way, well then so, what we did was we kept the yellow there but we switched the red and the blue and did the same thing. Now what I originally thought about it. Um, I had done it differently.
319	00:30:06	R1	Okay.
320		CDR	I held a constant at the top so I had held the red constant first at the top and then I said the yellow and blue could be in two different ways then I had the yellow constant same thing.
321		R1	So you made pairs, you didn't make triples.
322		CDR	Right.
323	00:30:20	R1	And I saw that with a bunch of you. And that's a good way to do it. Because if you have the top red, and you're using all 3 colors, the bottom has to be yellow and blue. And then it can either be yellow or blue or blue and yellow. Good. Okay, questions? Alright, nice. I hope you wrote that what you said because what you said was good. Good! Another group that did it differently.
324		UCT	I have to take a picture.
325	00:30:48	R1	Okay. Um, okay, good. Now these are going to be the towers that are solid color on the top. Again be prepared your students might want to put the solid color on the bottom or the solid color in the middle. The first time I saw the solid color in the middle I went Wooo; I wasn't expecting it. Isn't that nice? Whoa, okay. Okay. Can we move it down a little bit?
326		UCT	I can take another picture.
327	00:31:32	R1	Yeah, take another picture. It is blurry. Isn't that nice, the way... you might want to do that when talking about your children and stuff even though you are going to have them record, ooo that is good. Woops, that is not as good. Okay, isn't that nice? Really nice. Okay. Woops, it's gone. Okay. She is annoyed with your phone. It didn't bother me. So you are going to make sure your students record because none of you drew the cubes, did you? How many of you used an R Y B, most of you. Okay and I bet a lot of your students will too. Okay. Keep going.[Asked next group to

Line	Time	Speaker	Transcript
			explain their solution]
328	00:32:18	MC	So we started off before we actually started building them, we made a prediction that there were going to be 27 similar to the two to the fourth power and the 3 to the third power. So we knew that there were going to be 27 so we actually started building them the same exact way that Chris and Christine did. And Then we kind of got stuck and there were only 24 and we were like we're missing 3 . So then I kind of looked and we decided to group them differently. And this is where we put all the...keeping the red constant, the blue constant, and the yellow constant. When we did it that way, We then saw that there were 9 that had red constant, 7 that had blue constant, and 8 that had yellow constant so that kind of gave us the 3 that we were missing.
329	00:32:59	R1	And that bothered you. And that's the key, your students will have the same thing. They like...Remember how they found 3 of each topping across all the pizzas. If they are building towers with red tops they want if they have 9 there, they are going to want theirs to be the same number for the blue tops and the yellow tops so that when you didn't have it, even if you didn't know 27, I think it would cause you some agita that you didn't have the same number in each group. Okay keep going.
330	00:33:28	UCT	So then we kind of just looked to see of what of the 9 towers that did have the right constant. Where we were missing The two from the blue constant and the one from the yellow being constant. And then we were kind of able to create the 9 different towers in each of the different groups.
331	00:33:44	R1	Okay.
332		MC	And then we kind of looked and then we kind of organized...
333		R1	Did you see one she didn't see?
334	00:33:53	NL	Well I saw the constant but the one we were missing I couldn't figure out.
335		R1	Okay
336		NL	So she was able to pick it up before I could.
337		R1	okay
338		NL	And then I saw what she was doing.
339		R1	Okay. Okay.
340	00:34:08	MC	So we kind of organized it with the first 3 in each group is the following color. And then the next two is where you held that particular color constant. So for the first group where the red was constant you can only then have one yellow in position 2 and position 3 which would be the

Line	Time		Speaker
		Transcript	
341		NL	second and third tower. And then if you do the same thing with the blue it could then only be a second position and a third position.
342	$00: 34: 47$		Then working with two colors but keeping red as a constant you can only have just 2 of yellow if you move it around you are going to come up with something else. So you could only have 2 yellow or 2 blue to be no repeats, no duplicates. And Then the same thing with the yellow and the blue we just switched them, the position.
343	$00: 34: 51$		CP
344		R1	Are you convinced?
345		It's pretty neat, isn't it? Now if your students do this kind of a thing, Don't torture them to convince you of the blue tops and the yellow tops after they convinced you with the red tops. Because the argument should be the same.	
346		UCT	Right.[inaudible] 347

Line	Time	Speaker	Transcript
			the bottom row constant 3 different times. And then within the row of holding the bottom constant, we held the second one constant as well so the second one is yellow, the second one is blue, and the second one is red and we Can't have anymore groups of 3 because there's 3 colors.
357	00:36:47	R1	MMhh
358		MM	And that leaves the last row to kind of alternate between the colors. And it's either red, yellow, or blue....
359		R1	Very nice. Very nice. What kind of argument did they use?
360		UCT	Recursive?
361		R1	Noooo, remember Milin? Milin used that argument. It was an inductive argument. It really is when you think about it. Think about this as your bottom. Okay, This is your base, okay. On this base in the second position we have 3 colors to choose from so the second row can either be yellow blue or red. Is that right, okay. So now let's just look at this one. The third row on top of this cube. What could you put? You have 3 choices again. What could you put?
362		UCT	Yellow red blue
363		R1	And on top of this row?
364		UCT	Yellow red blue
365		R1	And on top of this row?
366		UCT	Yellow red blue
367		R1	Inductive argument.
368		TD	And then when I was writing it, it actually made sense that it was going to be 3 times 3 times 3 because for each constant row at the bottom, there can be 3 colors for each one of those, there is 3 for the different second row and then for each one on top of that 3 colors.
369		R1	Do you see the inductive argument? Yes?
370		UCT	Yes!
371		R1	Some of you do, some of you aren't answering me. Okay, but it is pretty neat, isn't it? Okay And that's really really powerful in terms of a proof. Okay, very nice proof. Good job! Okay, Did you write it as an inductive argument your proof? Can you read what you wrote?
372	00:38:47	MM	Um, Yeah, I said...
373		R1	Nothing like putting you on a spot!
374		MM	well I didn't use complete sentences!
375		R1	That's okay.
376		MM	I said I keep the bottom block constant and then you keep the second block constant and there are 3 different ways that you can change that. Well actually I kind of drew out

Line	Time	Speaker	Transcript
		one, like I drew out the first group of 3 and I said keep the bottom block constant yellow, keep the second row constant, or second block constant yellow and then alternate the red blue \& yellow for the third spot so there's 3 different towers here because There is only one spot you are changing and there's three colors. And then I said: Repeat with changing the second row to blue first one is still yellow, still 3 towers, for the same reason, and then you can repeat this one more changing the second row to red. It says there are 3 colors, the first row is staying constant the second row is constant and The top is alternating in 3 colors And then I just got lazy and said you can repeat this process changing the color of the bottom row Two additional times and you can do this three total times because there are 3 total colors.	
377	$00: 39: 47$	R1	And that is just fine. Remember what I said, I am not going to beat your students over the head! Nor am I going to beat you over the head. If you have provided a good inductive convincing argument for the yellow base then I guarantee you that you are going to be able to do it for the other 2 colors bases. Okay, That's great! Alright Ready for the challenge! How many of you have students in your class that would say: Oh we did this problem but What if we changed it up a little bit, okay Well I would say that your class would do that. That came up with all those crazy solutions. Well in Rutgers, they did this problem with I believe they were high school students and Ankur was one of the students. And he said I have another problem. Okay, I would like to know, what would you get if you build the towers four tall selecting from 3 available colors so that the resulting towers have at least one of each color. Okay, he changed the problem up. And Carolyn Maher was the person in the room with the student and she said oh that is a neat problem! Let's do Ankur's challenge. So let's do it! Okay, here you go. [R1 hands out paper, teachers begin to work in pairs on Ankur's challenge - multiple inaudible conversations].
378	$00: 41: 04$		CP
379	R1		There has to be one of each color? Well read the problem and make sure you understand the problem before you begin it. teachers work on Ankur's problem in pairs or small groups for 30 minutes. R1 calls for the attention of the group on line]. [multiple

Line	Time	Speaker	Transcript
			conversations occurring] Margaret can we open the door now?
380		CDR	He said there was going to be a fire [drill].
381		MM	Really? [laughter]
382		CP	We will do the top group on top and the bottom group on the bottom.
383		CDR	Alright, sounds good.
384		R1	Read the problem and see what it says.
385		R1	[R1 circulates and stops at the pair of CP and CDR.] Look at all those towers!
386		CP	Pumping them out!
387		R1	Pumping them out!
388		CP	So We took the ones we already had and we and we doubled them. So the color could go on the top of it or it could go on the bottom of it.
389		R1	Aahhh.
390		CDR	So these are the ones we had from last time and we added a color to the top and the bottom.
391		R1	Interesting.
392		CDR	Which originally I hadn't realized until they could also go on the top. So it was the same thing here.
393		R1	Okay, very interesting. So you used what you had rather than start over.
394		CDR	Right.
395		R1	Did you eliminate any of your towers?
396		CDR	The solid towers 4 tall towers
397		R1	The solid towers.
398		CDR	Yeah because We only had one other option.
399		R1	Got it. Okay. Okay. [monitoring work of CP \& CDR moving towers around to organize groups]
400		CP	This is like a mess!
401		CDR	I know [laughs]. Alright so, we have....
402		CP	We can kind of use our same number and put them on the top and the bottom.
403		CDR	We can do that [CP moves blocks up that have all blue as a constant on top] I'm thinking do we still have options. Two yellow and one blue and a red; okay so should have two yellow and one blue. But the red can also be...[inaudible] we have the elevator with two yellows and one blue. Do we? Oh yes we do. Two yellow one blue. The red in the second position. Okay so we do have that.
404	00:45:04	CP	Do you want to make constants?
405		CDR	Sure. [laughter] I am so against... never mind we'll do it!
406		R1	You don't like constants?

Line	Time	Speaker	Transcript
407		CDR	I do to a degree. Like the whole one long line of all reds.
408		R1	[laughter] That bothered you?
409		CDR	A little bit, yeah.
410		R1	Okay.
411		CDR	But it's alright, I can follow it.
412		CP	So what do you want to do?
413		CDR	Let's do all red on the top and then all yellow on top; okay let's do all red on top and then... well let's just put red on the top and then reorganize. [R1 moves to a different group.]
414	00:48:44	CP	Otherwise I would be lost.
415	00:48:46	CDR	Yeah I know I agree I think I am lost as well. [CP says something but it is inaudible] So then what I would do is I would keep...,
416		CP	A constant?
417		CDR	I would move, yeah the second row and all the reds. We move this here. The second row there is no other reds. Second row with the blues... Then we have to reorganize these somehow. Oh we have doubles! We have another double. Alright so, This makes sense because we only have yellow or blue. Then we have this here. Let's keep the third row constant yellow we can have yellow or blue [CP says something inaudible];
418		CP	We are missing one.
419		CDR	Right so you are saying we are missing one here because we have red blue and we keep the third one yellow we can still have a red on the bottom. So we need that one. Red blue yellow and this red. Red blue yellow red...[CDR builds this tower with the unifix cubes]
420		CP	Okay, I don't know how it works at all...
421		CDR	I don't know why. Well it did sort of okay so here is the red that are on top and the red in the center and we only have yellow so we have to use yellow as the only option; then we kept red and blue we said we could have...
422		CP	Red blue and yellow.
423		CDR	Oh right so then we kept the red with the blue with the yellow. Then we have a red; we are keeping the blue; we have red, yellow. We could also have another one in here. We could have Red, then blue, then red, Oh no we can't because we can't have a blue there, it has to be a yellow. This goes red blue red it has to be a yellow. So that is our only option there, then we have red blue blue then it has to be yellow. So that is our only option there.
424		CP	Okay.
425		CDR	So are we okay so far?

Line	Time	Speaker	Transcript
426		CP	Yeah.
427		CDR	So red yellow, then let's keep them together.[CDR moves tower with red yellow blue blue next to tower with red yellow blue yellow] So we have 2 blues and blue yellow so here is one tower that we are missing. We are missing Red yellow blue blue
428		CP	Wait, you have red yellow blue blue there.
429		CDR	Oh I am sorry I mean red yellow blue red.
430		CP	Right.
431	00:49:59	CDR	Red yellow blue red [CDR builds the tower using unifix cubes], so that much is here. Then we have red yellow keep it yellow it has to be blue; red yellow red blue okay so that looks good so then we have basically...
432		CP	Alright you got 2,3, 2,3, like the...
433		CDR	Well I just...I kept this was red in the third row; for the third row since these were both reds at the top the bottom had to be yellow. These were reds and yellows at the top; the bottom had to be blue.[laughter] Alright but I think that yeah, ... we have our reds down;
434		CP	Are we going to have to write the towers down?
435		CDR	I don't think so.
436		CP	So maybe just the ones we were missing?
437		CDR	Probably. So now we need to do the yellows group. Yellow and yellow are these. Yellow and blue so those have...
438		CP	It should be like the same thing.
439		CDR	Yellow blue 2 reds; yellow.. yellow blue red blue; yellow blue.. Oh yeah here and then we have our two colors have to be red on the bottom.
440		CP	Why don't we have 3 color constants up here.
441		CDR	Yellow, blue,...That's what we are missing. Yellow blue red yellow; yellow blue red yellow; okay. Then here's our yellow blue blues. This one is holding yellow constant.
442		CP	Would you hand me the yellow.
443		CDR	Sure.
444		CP	Yellow red blue yellow.
445		CDR	Yellow red blue yellow. We kept yellow; then we put red; here we have 2 in the middle. Then we have that; alright. Two blues; then the blue and the yellow I guess.
446		CP	Then the red.
447		CDR	Then the red so we have 2 yellow. Alright we have our alternating red, with yellow. And the yellow constant and it has to be red on the bottom.
448		CP	So you are working with 2 constants on the top and the bottom.

Line	Time	Speaker	Transcript
449		CDR	Right. The blue stay constant, the yellow stay constant. Then we did red constant with this then we did blue constant but it would have to only be red. [inaudible] or it would have to be the same color...then the yellow with the red; I keep forgetting that that's what we're doing. So then blue constant with red constant.
450		CP	Red and yellow.
451		CDR	Yellow constant. Yellow red and then we take blue; red yellow blue. Blue constant then red constant, red constant. It has to be yellow. Blue constant, red constant; blue constant, it has to be yellow. And we should have... all of them.[pause] 12.
452		CP	So for pretty much every one except for the first one, all these are 3 constants.[counts towers]
453		CDR	Right. Right. I thought about it a little bit differently like that's true; I was, I was thinking red constant at the top; then we had red constant and the alternating which is true. And then the red constant and the blue constant; then I thought..these are my 3 constants so I switched the third row to be a red constant; and this is my only option with this color here [pointing to yellow unifix cube]. Then I switched my third row to a blue constant with that being yellow. So I took like this and I figured yellow in my third row, red in my third row and blue in my third row, and one of my options left. So then this already had 3 colors; but these only had 2 colors. I have to put that $3{ }^{\text {rd }}$ color there.
454		CP	Okay.
455		CDR	But either way it works. I just find it more easier to use this constant because I don't know why you would move it down....
456		CP	Because there are 4 rows and 3 colors
457		CDR	Right.
458		CP	So that's the difference so like basically... I guess either way, it works.
459		CDR	Cause then why isn't there a red and a color constant? Right because the red constant that is why they're down here. We have all the red constant. Then we have red blue and yellow constant. Then we have our yellow constant red constant blue constant in the third row. Those are the options but either way... Wow! Could you imagine doing this? What grade do you have?
460		CP	6th
461	00:58:17	R1	[R1 returns to CDR,CP pair]. Let's see what you got.
462		CDR	We found double as we started to do that.
463		R1	Ahhh, okay. So you got those red tops, yellow tops, blue

Line	Time	Speaker	Transcript					
		CDR	tops. He convinced you?					
464		Yeah!		$	$	465	$00: 58: 25$	R1
:---	:---	:---						
466		Ah, You are pretty persuasive there.						
467		CDR						
468		So we started with the red constant in the top row.						
469		CDR						
470		R1						
471		And then we moved to keeping the second row constant as						
well.			,	Okay.				
:---								
472								

Line	Time	Speaker	Transcript
493		R1	Okay. [R1 walks away to monitor another group]
494	$00: 59: 42$	CP	This is scary-looking. [CP takes a picture][R1 moves to another group.]
495		CDR	You know what, when we have teachers convention, we have off on Tuesday so we are only going to see the kids Monday, and they take their quarterly next Friday so when am I going to do this with them? [CDR takes picture with iphone].[inaudible conversation between CP \& CDR].
496		R1	If you can find a convincing argument. Okay. How are you doing here?
497		CDR	Margaret did you ever find out who had yours here? When are you thinking about doing this?
498		MM	I don't know.
499		CDR	Other schools did it; Kelly did it and she had to get it from somewhere. Yeah they have a set in the district. 500

Line	Time	Speaker	Transcript
			have?
517		MM	I guess. I didn't really do much.
518		R4	Thanks.
519		MM	Um the ones with the silver lining have grape.
520	01:05:13	R1	Good. Good. About 5 more minutes on this and then we are going to share solutions. [multiple conversations continue...] Good, good. Now you got 12.
521		UCT	Yeah I am trying to figure out...
522		R1	Okay you are trying to sort it out.
523		UCT	I don't remember which one I found!
524		R1	When you share your solution you are going to talk about why....[inaudible]
525		UCT	So far, Blue is constant on the bottom. And blue is constant in the second spot then a yellow or a red. And with the blue yellow and red there are only 2 colors. Blue is constant and then yellow is second. You can have a yellow or a red. Here you can have a blue for the third color... This is way too long...
526		R1	No that's very good though, it is very good and it's an inductive argument. Right? [inaudible]
527		UCT	I'm trying to think how they would do it.
528		R1	Well you are not going to need to do that.
529		UCT	I know but I think about how they think.
530		R1	That's good.
531		MM	We did these ones with blue and blue and we did the next ones with blue and blue too. But there are more.
532		UCT	There are more so that is what I am thinking.
533		MM	So we should have nine right?
534		UCT	So I have to try and match them up a little bit. Blue red blue yellow; blue red blue yellow. Then we don't have that one anywhere. Okay Then we are going to have blue red yellow red. Then red... okay there's $2,4,6,8,9,12$ so there's 36.
535		R1	What do you think? She is making a prediction.
536		MM	Good.
537		R1	Very nice, very nice. What I want you to do is Get a picture of it of the top middle and bottom and then I want you to convince others. Okay, alright. You are ready guys? Who is ready to present? Okay come on up. They got theirs very fast um and I am not sure which strategy they used but they will share it with us. And I see two different ways of arranging going on. I see grouping in groups of 3, I see grouping in groups of 6 , I see grouping in groups of 12 . There are 3 different ways. So let's look at this is the grouping of 6 . It is not as easy a problem, is it? Was it

Line	Time	Speaker	Transcript
			easy to make a prediction?
538	01:09:15	unison	No
539		R1	Uh uh. What made it hard to make a prediction?
540		UCT	This is it. You need to get 3 colors all at one time.
541	01:09:27	R1	That Each tower had to have each of the 3 colors. That made it a little tricky, right? If we didn't put that restriction in, if I just told you to build towers that are 4 tall selecting from 3 colors. How many would you get?
542	01:09:48	UCT	Four tall so Three to the four so 81
543		R1	81, right? But You are not going to get 81 . Why do you only going to get 36 ? [pause]
544		UCT	Because you are getting rid of the ones that have only 2 colors or one color.
545	01:10:00	R1	Exactly, okay they have to have all 3 colors. Alright, So take a look here. This is a way of arranging it. Talk to us about it.
546		UCT	Okay, So we have groups of 6. [Video shows a picture on the screen with six groups of six four tall towers. Three of the groups had constant colors of red, then yellow, then blue positioned at the bottom of the towers for three groups of towers. The other three groups had constant colors of yellow, red and blue positioned at the top of the towers for the other three groups.]
547		R1	Good.
548	01:10:14	TD	Um. Well, First of all, Since there's four cubes \& 3 colors and you have to use all the colors you know that only 2 cubes will be the same color. So we basically just stuck the reason why we pretty much got it really fast is like that is because we stuck with what we just did. So here we knew we exhausted all the options for yellow and the yellow because we used it in every position. Then we just added all the reds to the bottom because that we knew that took up all or used every color.
549	01:10:40	R1	Do you see what they did? They didn't start over. They took what they had from the other problem. And what they had in the other problem is ...
550		TD	The two blue and the yellow. yeah
551		R1	Two blue and the one yellow or the 2 yellow and the one blue. Once they had that, ...Keep going.
552	01:10:58	TD	So then we just took, we picked a color and we said let's start with red. So then we used red as the constant and we added it to the bottom and made that the constant for the bottom. Then we did the same thing with our next tower or our other 3 towers. We had two blue and one red and we knew we already exhausted all the options for blue and red

Line	Time	Speaker	Transcript
553	$01: 11: 18$	R1	so we just decided to go with the yellow on the bottom.
554		Tsn't that kind of ingenius? Kind of nice, huh? Go ahead.	
555		R1	And then we did the same to the other colors and we just added blue to the bottom so now we have red on the bottom, yellow on the bottom, blue on the bottom.
556		Okay.	
557	$01: 11: 36$	UCT	then we were left with our little candy cane ones that we went with.
558	$01: 12: 04$	And then like for our 3 color ones, our multicolor ones. Basically we kind of you know we had these 2 let's just say the Blue, yellow, red and the blue, red yellow. We rebuilt the top of that making sure that we could use Two blue at the bottom, 2 yellow at the bottom and two red at the bottom. So then, if you look at it Blue, red yellow red and the inside is kind of flipped. So we kind of used one color as the constant and used it with 2 different colors there.	
568		R1	So it is kind of like...I heard students call that the sandwich. They have the sandwich here here is the bread and here the bread is the same on top and bottom. And the only middle if you are using all three colors can either be yellow and red or red and yellow. Right? Now you have a sandwich but you have 2 different kinds of bread, right? But again what can your middle be?
569			CDR

Line	Time	Speaker	Transcript		
570		CDR	Alright. Do you want to? [CDR asks CP]		
571	$01: 13: 21$	CP	Okay, sure. Alright So we did all yellow tops constant on the first row. And then For the first group of 2, we did yellow constant in the middle row. And We alternated the blue and red. And we said we couldn't put another yellow in either one of those positions.		
572	$01: 13: 37$		R1	Why? $\left.\quad$	Wecause then we would only have two of the colors, rather
:---					
than all 3.	\right\rvert\,	573		CP	R1
:---	:---	:---	:---		

Line	Time	Speaker	Transcript
593	01:14:57	CP	From my explanation.
594		R1	Okay.
595		CP	Because it was just...I don't know if it was right.
596		R1	What did you change?
597		CP	I switched these 2 groups around.
598		R1	Which two groups?
599		CP	These 2 and these 3.
600		R1	Okay. Okay.
601		CP	I did these 3 first.
602		R1	Okay
603		CP	And what I did was basically just say I alternated
604	01:15:14	R1	Uh huh Uh huh.
605		CP	The constant keeping all 3 rows constant. And for this group, I labeled it as the first row constant, the second row constant, and the third row constant.
606		R1	Okay.
607		CP	And alternated out the middle two.
608		R1	Uh huh. Uh huh.
609	01:15:27	CP	You can't uh... what was I going to say? I just finished writing it down and so it was right on my paper.
610		R1	Okay
611	01:15:34	CP	If you put another piece in there and there is only 2 options instead of 3 because if you put the... where am I?....If you put a red in here..
612	01:15:47	R1	Okay.
613		CP	We already have that one right here and if you put a blue...you can't put a blue, it is already there! So basically if you put a red in the third row, it would have already shown up.
614		R1	In that one.
615		CP	In that one, yeah.
616	01:16:01	R1	Good. Very good. And that's neat. That is To look and to see you know you are thinking of a lot of dimensions. You are thinking of What do you have to have? Have All 3 colors and do you already have it and how can you change it up, it's really nice.
617		CDR	Yeah, Cause at First we ended up with doubles.
618		R1	Okay.
619		CDR	Not that many.
620		R1	Okay, alright.
621	01:16:20	CDR	We were building off of what we already have.
622		R1	Uh huh, uh huh and you do have when you try and build off of what you already have you could end up with duplicates that you then have to eliminate. Good, very nice.

Line	Time	Speaker	Transcript
			Which was another group that did it differently? Was it your group?
623	01:16:35	UCT	Yeah, but our work is not on the....
624		R1	Okay, well let's get it on the camera. The power of the Ipad! Looks nice. [brief pause to take pictures using the Ipad] Okay, let's see what we got. Now we don't have 3 groups of 12 , we don't have 6 groups of 6 , we have.. what do we have?
625	01:17:20	UCT	12 groups of 3 .
626		R1	12 groups of 3 . Who else did 12 groups of 3? Anyone? What do you have?
627		UCT	We kept changing it around [laughter]
628		R1	[laughter] Okay, so let's talk about 12 groups of 3.
629	01:17:36	UCT	[Video shows: This teacher pair organized their towers in groups of twelve each with three towers. The top row of twelve towers had four groups. The first group had a three-block blue row on top of a three- by three-tall subgroup of towers made using two colors with the elevator strategy. The diagonal of the first three- by threesubgroup was made of red cubes moving down one position at a time with yellow cubes in the other positions.] Alright so we started with what we had in dealing with the previous problem and we saw that we had you know two yellow and one red. And we decided to take the blue and put it on the top and then take it and put it in the second position. And then take it and put it into the third position and then in the fourth position.
630	01:17:55	R1	What do you think of that? That's kind of neat, isn't it? Huh? Now did the red and the yellow you still have two yellows and one red [cough] Okay, in each of them. Isn't that a neat way to do it? Okay and you did the same with the others, didn't you?
631		UCT	Then we did the same with two red and one yellow moving the blue down.
632	01:18:16	R1	Uh huh.
633		UCT	And then we realized the only one we don't have 2 of is the blue.
634		R1	Right.
635		UCT	So had we just chose 2 blue and 1 yellow.
636		R1	Sure. Sure.
637		UCT	We could have did two blue and one red and then we just moved the opposite color down.
638	01:18:31	R1	Very nice. Isn't that neat? And isn't it interesting how you all thought about it differently but got the same answer.

Line	Time	Speaker	Transcript
639		UCT	We couldn't convince or write an argument for it though.
640		UCT	Well I didn't even think that about the fact that we were going to have 2 of one color and one of each of the others until I saw this.
641		R1	Uh huh.
642		UCT	Which is always true but this actually shows it.
643		R1	Isn't that neat?
644	01:18:53	UCT	For the other tower that we started with, I think maybe for if like you said If we had two blue and one red. We realized that after we built these that if we built these we had the same thing two of the same color.
645	01:19:06	R1	Now what you just discovered, Romina is a student who discovered it in solving Ankur's challenge. And she did something called Romina's proof. Which talks just about what you are talking about. And you are going to see a video of it. Okay, so what I want you to do is Start rearranging the cubes back into stacks of ten by color. And as you are doing it, multi task, I am going to talk to you about how to implement this with the students alright. because this is going to be your next task. Not this one, alright Ankur's challenge is not what you are starting with. You are going to start with the problem that is building towers 3 tall selecting from 3 colors. Okay? And that may be all that you do. However, Some of you some have some very bright students that might [someone sneezes] bless you [another sneeze] bless you!...that might be able to take the challenge and do Ankur's challenge after they built the other one and provided a convincing argument. If they don't do that, do not go onto Ankur's challenge. Okay, you got that! Now, your job is to find the cubes number one. Okay, how many of you know where the cubes are in your building? Well you do because you just got them. You do because you have them. You know where they are?
646		UCT	I know.
647		R1	And How about the rest of you? Um, do you know where they are?
648		UCT	I used Christine's.
649		R1	Okay so You may need to do that again. Um And Sayreville is going to find theirs.
650		UCT	We have blue and yellow we just have to find the other color.
651		R1	Good. What you are going to do is you are going to get big baggies. Because if you take the time from what we did

Line	Time		Speaker
			Transcript today, to give out the cubes, the period will be half over when you have a whole class. We only have 10 people. Okay, So you are going to get big baggies. And in each baggy, you are going to put 10 stacks of yellow, or whatever 3 colors you have, ten stacks of blue, and ten stacks of red. So you will have 100 of each color. You will have 300 pieces in each bag, okay ten stacks of each color. But you can do it because actually some of your schools had it arranged that way. I am not sure whether they are anymore. Um if you can't find really good baggies, then you will have to just put 2 colors together and one separate. And then you know rather than having to dig out of the bag a third color just have 100 cubes of a third color and give it to the students. Okay, you are going to have the students do the problem. You are going to have them convince you. And you are going to have them write. Please have everyone write. Okay.
652			UCT
653		R1I'm trying! I know and you are doing a good job. It's not easy.	
654	$01: 21: 59$	$01: 22: 00$	UCT
655	Yeah.		

R1- Dr. Judy Landis
R4- Phyllis Cipriani
UCT - Unidentified Cohort Teacher
Initials - Identified Cohort Teacher

Description: Transcript of Regional Meeting -
Debriefing of classroom implementation
Advisor: Carolyn Maher
Location: MAMS, NJ
Date: November 20, 2013

Author: Phyllis J. Cipriani
Verified by: Simone Grey
Date Verified: Summer 2015
Page 1 of 12

Line	Time	Speaker	Transcript
1	00:00:00	R1	[class was 16 sixth-grade students sitting in pairs at student desks] Why don't we talk about you know the class we just did. And Harrison is up there with Michael.
2	00:00:05	LC	Harrison was sitting over there.
3	00:00:06	R1	the corner.
4	00:00:07	LC	Yeah.
5	00:00:08	R1	Okay, okay. Um I think..., Did you get a chance to see them, Harrison and Michael? [video shows the student's work described below: Top of the columns student had written blue, red, and yellow. B to represent blue cubes, R to represent red cubes and Y to represent yellow cubes. Under the blue column, 2 rectangles with seven 3-tall tower. In the first rectangle, there were four 3- tall towers. The first all blue-colored cubes. The second YBB The third tower BYB and BBY for the fourth tower. The second rectangle under first rectangle with R as the diagonal through three towers and B for other positions The towers under the red and yellow columns were similar to the towers under the blue column except for the diagonal positions. In the red column, red was dominant; in yellow column; yellow was dominant] Okay, take a minute to look at how they arranged their...look how nice they did their um... recording. And that that's not always easy. I saw two groups having a hard time the group that we are going to talk about here had a very hard time recording. One of them wanted to do letters. Um... The boy on the left facing me like um, on on the right,
6	00:00:41	LC	That's Aidan.
7	00:00:42	R1	Aidan wanted to just put a letter for the color but his partner is his name?
8	00:00:50	LC	Tommy
9	00:00:51	R1	Tommy had the wisdom of let's use colored pencils. And When he used colored pencils, It took them forever um to do the recording. But let's take a look. [pause]

Line	Time	Speaker	Transcript
10	00:01:03	UCT	I like randoms. [laughter]
11	00:01:04	R1	Yeah, isn't that neat? Their vocabulary is really interesting and nice. This group also had another interesting thing I think this was the group that said the blue category, uh, meaning if there were two blues if it was mostly blue that was the blue category. Um, so How did they arrange, how did they form their groups? How many in each group? How many groups? Anyone?
12	00:01:39	UCT	They used a main color.
13	00:01:40	UCT	They used a dominant color.
14		R1	Okay, good. Alright. They used a dominant color. And randoms really meant what?
15		unison	All 3 of them.
16		R1	Yeah, okay Alright so each group had how many?
17		UCT	7 towers.
18		R1	Okay And the reason why they had 7 was. ..?
19		UCT	They stuck to solid colors.
20		R1	They stuck to solid towers in the predominant color the dominant color. Alright, If they didn't do that, you would have seen four groups of six with 3 solid color towers. Okay, and within the blue group what was their convincing argument? Did they write? Can you read for us? Wow!
21	00:02:22	LC	I think there's 27 towers are all the possible explanations because for each group there is a pattern that goes diagonal through each tower. In that pattern is one single opposite block. We have the towers below each category as red blue and yellow. The reason we have categories is because there are two main blocks in each tower.
22	00:02:40	R1	Okay, we can.. we understand what he is saying he is telling you what is he is saying? Two main blocks...
23		UCT	Two main blocks in that color.
24		R1	Okay, Keep going.
25	00:02:51	UCT	These Two blocks are the same, and the blocks that made the pattern are different. So in the blue category, there will be one yellow block on a stack of two blue blocks. This helps prove our theory. We also have a random category where each tower contains one different block. So, one of our towers is red on the bottom, blue in the middle, and yellow on top. If we changed the order of the blocks, it would have a different tower we already have.
26	00:03:18	R1	Okay, so are you...which parts of their argument are convincing and which aren't?
27		MC	It is not really convincing anywhere.
28		R1	Okay. Cause...
29		UCT	He gave us one example and then his partner said to.. then

Line	Time	Speaker	Transcript
			he switched it up.
30	00:03:36	R1	Okay. Absolutely. Okay, how about are you I mean we know what he mean s when he is talking about the other groups with the blue category, red category. But Are you convinced there? What is his argument there?
31		LC	He said he has a pattern that goes diagonal through each tower.
32	00:03:55	R1	Right.
33		LC	So, like he went...
34		R1	Okay, So he is telling you and verbally they actually said you have the other color in each of the positions.
35		UCT	Right
36	00:04:00	R1	Only 3positions...They verbalized all that. It would have been nice if they put some of that in their writing. But they are using a diagonal strategy and it is very very convincing so that is really nice. Good.
37	00:04:30	LC	[student work shown on video: $\mathrm{B}=\mathrm{blue} ; \mathrm{R}=\mathrm{red}$; $\mathrm{Y}=$ yellow; 5 groups: argument on screen: Group 2: There are no more combinations for the solids because we already used all of the colors. Group 1: We used each block once in each tower and we also used one colored block twice for the top. So for example: BB YR RY That's how we know there are no more possible ways. Group 3: We used one color twice in the middle row. Example: YB RR BY Group 4: We used one color twice and put it on the top. For example: RR RR YB] This is Carlos and...
38		R1	Okay, Carlos was sitting where?
39		UCT	Over in that corner.
40		R1	Yeah. Okay. Alright so take a look at Carlos's work and see how they arranged it and what strategy they used. [long pause] Can you distinguish between the B's and the R's? Sometimes that's hard. [pause]
41	00:04:59	UCT	Well he did the same as the last group but this time he kept the blues, the yellows, and reds of the solid towers by themselves. So that is why there is 6 , four groups of 6 .
42		R1	Okay, and in that...look at group one, how did he arrange

Line	Time	Speaker	Transcript
			group one? [unintelligible response or question] Yeah.
43		UCT	Tops are the same.[multiple responses] Well like he had a pair of blues on top, and a red and yellow on the bottom.
44		UCT	Yeah. It looks like they were reversed on the bottom.
45		R1	Uh huh, okay and I think that is actually what I remember them hearing that is what they did. So even though they grouped them they didn't use the diagonal. Um, They kept the two with the same top and they said that the the bottom could be Y and R or R and Y. Okay and There was no other way to do it. And then they kept the two tops red, and did the same thing with the other two colors. Then the two tops yellow and bottoms are the other two colors in both positions. So even though it looks the same, they should have a different argument, shouldn't they? Okay, let's see what their argument is. [pause] Can you read it for us? Oh group 2. So Which was group 2?
46	00:06:09	UCT	Well I think group one, was the solids.
47		R1	So let's do group one. Yep it is.
48		UCT	We used each block once in each tower and we used
49		UCT	The solid towers.
50		R1	Perfect we are just going over student solutions.
51		UCT	We used each block once in each tower and we also used one colored block twice for the top.
52	00:06:26	R1	Okay so that is confusing but they are giving us an example to help us understand. So, what is the example?
53	00:06:39	UCT	They kept the top block the same and
54		UCT	Okay.
55		UCT	And switched the bottom two
56		UCT	And switched the bottom
57		R1	Good And that is the strategy they used. Um, what..and group 3, what are they saying?
58	00:06:45	UCT	Use one color twice in the middle. So I guess twice would mean twice for both two towers.
59		R1	That is exactly right. They are showing you which is really good so that we don't have to guess what they mean. Okay, and Then what? So what did they do? They have the red in both middle positions and what did they do with the top and the bottom?
60	00:07:08	UCT	Switched them.
61	00:07:09	UCT	Switch the yellow and the blue.
62		R1	Good. They have the other two colors and they are flipping them again. So they are using..it is very clever, isn't it? They are using The same strategy, they are

Line	Time	Speaker	Transcript
			keeping one color constant and then they are using the other 2 colors in the other 2 remaining positions.It's Neat, isn't it? Did any of your students do that? Nobody?
63		UCT	Use That strategy?
64		R1	Did anyone use that strategy? It is a neat strategy.
65	00:07:39	UCT	I kind of think my kids that it is the opposite.
66		R1	The opposite?
67		UCT	Like he kept two red on top and two red down the bottom and he called it like a sandwich.
68		R1	Absolutely.
69		UCT	And then he switched the yellow and the blue and called that the meat of the sandwich.
70		R1	That's neat, that's very neat and I heard sandwich before and it is a sandwich and absolutely, that is a good strategy too. Okay, Anything else. And they are showing you group 4. What did they do there?
71	00:08:03	UCT	We used one color twice and put on the top.
72		R1	Okay.
73		UCT	And this one they actually did twice in one tower.
74		R1	Uh huh. Uh huh Language is hard but what did you think of their writing?
75	00:08:19	P	You can be honest.
76		R1	The principal is here but just ignore him! Okay. Were you impressed with how they wrote?
77		UCT	Yeah I think they did a lot better verbally than they wrote it out.
78		R1	I think their writing is pretty darn good. I know some struggled more than others. But I say their writing... Remember, this is sixth grade. They are little. They are not seventh and $8^{\text {th }}$ graders, they are little and they did really, I say their writing for $6^{\text {th }}$ grade was pretty good. Okay, let's see another paper.
79	00:08:52	UCT	The last one.
80		R1	[Student's written argument on screen: I know I got all of them because all the groups I got the same amount of 3 towers.] Okay, Perfect, oh these were my friends! Right?
81		UCT	Yeah.
82		R1	Okay, These were the two boys that were over here. And Laurie said, they happened to not be strong students. And who was here I know they kind of and some of you were here watching them.and they kept struggling. Was it you?
83	00:09:12	CDR	Yeah. I watched them for a while in the beginning.
84		R1	Talk to us. Tell us what you saw.
85		CDR	Well towards the end when I had gone over there later I had watched them for a while in the beginning and they

Line	Time	Speaker	Transcript
			were just kind of going through them randomly and they started putting them in groups but by the end; the boy on the left, Tommy
86	00:09:28	R1	Yeah.
87		CDR	He had started saying okay let's do, they organized them so that there were all the yellow on the bottom or all red on the bottom or all blue on the bottom. He said Let's do all the ones with just the one color on the bottom and a different group with 2 colors on the bottom and then the different color on the top.
88	00:09:42	R1	Right.
89		CDR	Okay, he was telling Aidan. Let's do all the other ones like that But then when Tommy went to do his own..
90		R1	Right.
91		CDR	He did it differently.
92		R1	Yes.
93		CDR	He did all the ones with um red on the bottom and he didn't care if it had two colors or one color.
94	00:10:00	R1	Right.
95		CDR	And so his argument was different than Aidan's because Aidan was telling him what he had done the first time and They were really getting confused with that.
96		R1	Yeah and also.
97		CDR	And then they kept making doubles again.
98		R1	Yeah. Yeah.
99		CDR	Then he said oh well it could have been red on top not realizing that he had them in another group.
100		R1	Exactly. And that...
101		LC	And you started to help them with that. And like go though it.
102	00:10:21	R1	Right
103		LC	Aidan started doing what Tommy had.
104		R1	right
105		LC	And Tommy was confused by it.
106		R1	Right.
107		LC	But that is what you had written down![laughter] How is it confusing to you?
108		R1	Well, I think also. Remember how hard it is. Think about you, not your students, think about you when you were doing this problem with a partner. And you r partner was thinking about it differently than you. [laughter] right. You are laughing because remember it wasn't so easy.
109	00:10:46	UCT	We were doing it in a different way.
110		R1	Uh huh, and to get into the mindset of doing it a different

Line	Time	Speaker	Transcript
			way than the way you are thinking is hard. It really is hard and you have to let go of your own way of thinking about it and try and understand what your partner is doing. They had a hard time with that. But I was thrilled that they were able to at the end get it to a point where they agreed they were going to use one strategy which was to keep a solid color.
111	00:11:16	UCT	They kept a solid color on the bottom and then the top. They changed the colors in the middle.
112		R1	Yes and that was again another really neat thing and they came up with this. And I thought it was clever. And I wish they didn't used colors because you really can't tell. Can you see? Oh you don't even have the paper do you?.
113		LC	Oh yea it's over here.
114		R1	Okay, If this were the problem, they took one color, the same color, and put it on the top. Then they had a sandwich and then they had a different color on the bottom.
115	00:11:47	UCT	There you go.
116		R1	Oh this is better okay because you can't see it up here. So they used In group one, they used it was the blue bottom group and the first one would be three red on top three blues on the bottom and they used an inductive argument. So what do you think did they put in the middle? They are using an inductive argument. What did they put in the middle?
117	00:12:11	UCT	The three different colors that they had.
118		R1	Exactly. They put each of the colors they could choose from so they put a red, yellow, and blue in the middle. Isn't that a neat strategy? I think it's neat. I don't think you look impressed but I am impressed. Okay, and then they did the same thing all along. Okay, this is again, this is all the bottoms are the blue, The bottoms are always blue. And They even carried it a step further. The bottoms are always blue Again, they are using an inductive argument. So What could the top be? What colors could the top be?
119	00:12:49	UCT	Red yellow or blue.
120	00:12:51	R1	Red, yellow, or blue. So they are using an inductive argument even for having chose the tops. And then the middle could be...
121		UCT	Red, yellow or blue
122		R1	Red yellow or blue And that's what the middles are and that is how they found all nine towers in the blue bottom group. Isn't that brilliant? These are from the weaker students in the class? I think it is brilliant, I really do; I

Line	Time	Speaker	Transcript
			think that it is very very systematic and they carried it through in groups 2 and 3. Now what was hard for them was writing. In fact, one of the boys really, really had a hard time writing. Who was the one who went on to do something else? one went to the bathroom and the other one had trouble writing.
123	00:13:33	LC	It was probably Tommy.
124		R1	Okay, so...And what did he write?
125		LC	I know I got all of them because all of the groups I got the same amount exactly.
126		R1	Okay, Now that was interesting too. They had at first when they finally said okay we are going to use a solid bottom. Okay so they said Okay I am using a solid bottom. In the blue bottom group I have 11, In the yellow bottom group I have 9. And In the red bottom group I have ten. And I can't remember who it was, I think Tommy said it didn't bother him he was fine with it and Aidan said it bothered him so they kept looking and then they found duplicates. So, they got rid of the 11 group and made it a 9. They got rid of the ten group and made it 9. And that is what he is saying now. He thinks he is good because all the groups have the same number of towers. So Is it convincing?
127	00:14:32	UCT	No
128	00:14:33	R1	No, not really, okay. But is it a good thing for him to notice. Absolutely. Could we...Do we know... you just have the paper up of his partner. I think Aidan wrote more than Tommy. Um But this is really neat like it is not often do students use an inductive argument. It's a harder argument to see. So that They are using it to get their groups or their towers. I think is really brilliant.
129	00:15:00	UCT	Nah, He has the same thing.
130		R1	He has the same thing. Okay so they had trouble writing. While they were doing it though...They used a very ...they could have had a very convincing argument. Cause what they did was brilliant. Okay, Is this all the ones from today?
131	00:15:15	LC	Yeah
132		R1	Okay, Was there any one else you wanted to talk about from today that we didn't talk about?
133		CDR	The extension problem.
134		R1	Yeah.
135		CDR	The one group in the center, Kyle and Ronnie where the food is. The students that where here.
136		R1	Right here oh, they were there; where the food is. Okay.

Line	Time	Speaker	Transcript
137		CDR	They went through the extension problem without much help.
138	00:15:36	R1	Really.
139		CDR	They went through and they first started to that, they realized there were going to be two of the same color.
140		R1	Okay.
141		CDR	And they started to put them together in the top two or the bottom two and put them in the middle.
142		R1	Okay
143	00:15:48	CDR	And they alternated the other colors. So they would do like whatever the other two colors were
144		R1	Sure
145		CDR	and they switched them around.
146		R1	Okay.
147		CDR	And then they went to putting them on the top and the bottom.
148		R1	Okay.
149		CDR	In the same color And then they..It was interesting to watch because Ronnie had all that done and Kyle had started to work on the other ones where none of the two colors were next to each other.
150	00:16:10	R1	Okay
151		CDR	But he was thinking about it totally differently instead of focusing on two colors that are not the same but not next to each other, he was focusing on just having a red on the bottom and all the other colors yellow and blue but alternating.
152		R1	Ohhhh!
153		CDR	So he was missing some at first.
154		R1	Okay
155		CDR	He was getting some duplicates and
156		R1	right
157	00:16:27	CDR	And then when I asked him He said he was thinking about it differently that Ronny was. And I said well that's okay, Well let's think about how can we maybe build off that. And eventually he realized what he had to do.
158		R1	Okay
159		CDR	As soon as he clicked He just went right through and he ended up with all 36 .
160		R1	That's amazing. That really is.
161		CDR	And they did it pretty quickly too.
162		R1	Did they have groups?
163		CDR	They had em in the groups.
164		P	They had a great teacher. [laughter]

Line	Time	Speaker	Transcript
165		R1	Yeah! Were they groups of 12?
166		CDR	No, they had them ...Originally they had them in groups of 4.
167		R1	Okay
168		CDR	Two red on the bottom, or two red on the top. Two of 'em two red on the bottom, two of them.
169		R1	Okay
170		CDR	And then as they were explaining to me, they realized oh well I can take the two that are together in the middle and move those over there so they had a group of 6 .
171		R1	Okay.
172		CDR	So you have 6.
173		R1	6 versus 6. Did they have 6 versus 6?
174		CDR	Yeah. Yeah.
175	00:17:14	R1	Yeah, very neat;yeah.. nice. And that they did it quickly is pretty impressive. I can remember that you know that problem can cause trouble very easily. Right I think some of you struggled with some of it right? When we met because it is not easy It is not a trivial problem at all. It is quite a complicated problem and there is no numerical easy trick to find the answer like when you are doing the towers 3 tall selecting from 3 colors. And you get 27. Why is that? What mathematical....
176	00:17:47	UCT	Oh, Exponents.
177	00:17:14	R1	It's three to the third power, right? Three colors, three high. But when you are doing it where you put in that tricky sentence where you want each tower to have at least one of each color; it changes the idea. You can't get an easy way to get the answer. Unless you are Romina and then you come up with something, right! Good. Okay, Let's take a look at some of your students' work. We have that too! Laurie, thank you so much. This makes it so much easier isn't to look at the work when it is already up. Okay.
178	18:34	P	Does that help?[lights get shut off].

Description: Transcript of Regional Meeting, Students' Samples
Advisor: Professor Carolyn Maher
Location: MAMS, NJ
Date: November 20, 2013, part 2

Author: Phyllis J. Cipriani
Verified by: Simone Grey
Date Verified: Summer 2015
Page 1 of 24

Author: Phyllis J. Cipriani Verified by: Simone Grey Date Verified: Summer 2015 Page 1 of 24

Line	Time	Speaker	Transcript
1	00:00:00	R1	Good. Okay, Let's take a look at some of your students' work. We have that too! L-----, thank you so much. This makes it so much easier isn't to look at the work when it is already up. Okay. [Video of clock shows 2:00 pm exactly] Does that help?[lights get shut off]. I am just afraid that some people may fall asleep. Okay, whose work is this?
2	00:00:09	T10	That is Mine.
3	00:0010	R1	Good. So why don't we let you talk about it.
4		T10	I can't see at all right now.
5		T10	They created 7 different groups.
6		R1	Okay
7		T10	So actually 8 groups. Sorry.
8		R1	Okay, Give us a minute to look at the 8 groups. Does it go up and down?
9		T10	No.
10		R1	Let's see, don't you like their code?
11		T10	Yeah, that's actually what I thought was the neatest part about what they did. I like the code they used. Like, in all the individual groups they created, You can see the pattern. So I thought that was nice.
12		R1	Okay. And you can. What patterns do you people see? Talk about a group and what pattern are you picking up.
13		UCT	Group one is where they are moving the yellow down in each original.
14		R1	Good, okay. Yep.
15		UCT	I think the groups are labeled below it, which is a little bit confusing.
16		UCT	Blue and two are yellow.
17		UCT	One is labeled group one and one is labeled group 2.
18		R1	Okay, Okay, Okay, okay, if that is what they are doing. That's good. What other things do you people see?
19		UCT	Go ahead.
20		UCT	They did the same thing across group 4. They just switched the dominant color.
21		R1	Okay.
22		UCT	The only one that was different for me was when they did all 3 colors. One was blue and one was red.

Line	Time	Speaker	Transcript
23		R1	Good.
24		UCT	They did that for two of them.
25		UCT	They seem to keep the..
26		UCT	The only one that was different was 8 but that was where they had all 3 colors.
27		R1	Okay
28		UCT	I think they kept the top color the same and reversed what the bottom colors were.
29		R1	Okay, nice. Very nice and what was their argument?
30		T10	We know there are no more towers in each group because if you added another there would be a duplicate. For example, three towers each with the same colors and then one more. There is not much on top there.
31		R1	So what do you think of the argument?
32		UCT	Not good.
33		R1	It is not, [laughter] because what they did was they are saying basically you can't find any more because you will get a duplicate. That's not a good argument. But interesting code.
34	00:02:34	UCT	Yeah I thought their grouping was good
35		R1	Absolutely. And their strategy is good too. That group 8 to keep a constant on the top. Yeah Is it better?
36		R4	for the camera.
37		R1	Okay, alright okay. Can you all see with the light on?
38		LC	So this is another one of my students but it is light and hard to read.
39		R1	It is. Maybe you can read to us. What was their argument?
40		LC	He had 5 different groups. He had one group that was all the solid towers.
41		R1	Okay.
42		LC	And then their other group had the same color top and bottom so their group twos have blue red blue and blue yellow blue
43		R1	Okay.
44		LC	The second ones in that group had yellow top and bottom
45		R1	Okay. Neat.
46		LC	The third group over here. Um, they have one color on top and then two of the same color.
47		R1	Okay.
48	00:03:34	LC	Above it. And The fourth group they had two of the same color on top and the opposite color below. Or a different color below. Here they have all 3 colors so they have the same color on top and they switched the bottom .
49		R1	Okay

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & \text { Speaker } & \text { Transcript } \\
\hline 50 & & \text { LC } & \begin{array}{l}\text { They said there are 27 towers of three cubes. We know } \\
\text { this because each color has 2 combinations except for ones } \\
\text { that are all the same color. }\end{array}
$$

\hline 51 \& \& R1 \& LC

\hline 52 \& \& Ray that one more time. We have...

\hline 53 \& \& LC

Each color has 2 combinations except for ones that are all

the same color.\end{array}\right\}\)| Okay Okay. |
| :--- |
| 54 |

Line	Time	Speaker	Transcript
			belongs to this?
72		NL	Oh that's mine.
73		R1	However you want to do it.
74	00:05:58	NL	Um..You want me to start explaining it?
75		R1	Yeah, yeah. Tell us what your students did.
76		NL	Okay, she grouped them similar to Laurie's first student.
77		R1	Okay
78		NL	They did ten groups but they did 7 groups of 3
79		R1	Okay.
80		NL	And then instead of keeping that last group of 6, they did it in pairs so they had 8,9 , and 10 are the alternating as pairs.
81		R1	So they were doing all 3 colors.
82		NL	Yeah. So they had Yellow as a constant and then they did the bottom.
83	00:6:30	R1	Good, good. And when they did the first groups when there were three in the group. What was their strategy?
84		NL	Well this is how they kind of solved the Towers of a single color. So they went to that right away.
85		R1	Now that's very good and that is very nice. Again refresh me you are special ed?
86		NL	MMhh
87		R1	So this is pretty neat, isn't it? Pretty neat work from special ed.
88		NL	Yeah they are seventh grade.
89	00:06:59	R1	Very, very Good. Good. Did they write anything?
90		NL	Yeah, she actually did.
91		R1	Oh good.
92		NL	She said I know the answer is 27. I know there is no more possible ways because in group 2, I moved the blue cube in each position in every way I could. There was only three positions because it could only be three high. I did the rest for groups $3,4,5,6$, and 7 . So she just said she did this strategy...
93		R1	Did she do this by herself?
94		NL	Yes.
95		R1	Cause this is pretty impressive, isn't it? Right?
96		NL	Yeah.
97		R1	It is good writing.
98		NL	Yeah she had definitely wanted to improve her explanation from the beginning.
99	00:07:32	R1	Good, Okay.
100		NL	Then she wrote in group one I made three different towers solid colors yellow blue and red because I only had 3 colors.

Line	Time	Speaker	Transcript
101		R1	Okay
102		NL	For 8, 9, and 10, I kept one color on top and switched around the two underneath them.
103		R1	For 8, 9, and 10
104		NL	So that is the alternating ones.
105		R1	Yep! Okay
106		NL	So she said for each of them, two like red on top and then switched the bottom.
107		R1	Good, good. So she is really explaining what she did and keep going or was that it?
108		NL	That was it.
109		R1	Good. What do you think of that? Special ed.!
110		UCT	Impressive!
111	00:08:03	R1	Very impressive, isn't it? Very, very impressive, nice and Even her writing..
112		NL	She was a hard-working student so she was determined.
113		R1	She did a real good job.
114		NL	She did.
115		R1	Okay, what's next?
116		NL	And then I accidentally chose her partner. I didn't even realize I did.
117		R1	Okay
118		NL	But again she used a bunch of colors. She liked to use colors and highlighters so I let her go for it.
119		R1	Okay.
120		UCT	But so the solid colors are the reds.
121		R1	Yep
122		NL	And the Everything else is blue and yellow.
123		R1	Yep.
124		NL	So She did the same organization as Jenna.
125		R1	Okay
126	00:08:34	UCT	In group 6, she messed up. She made a blue and it was supposed to be red but she didn't fix it. That one.
127		R1	Okay.
128		UCT	She usually doesn't write much at all... she actually...they wrote their explanation separate. This is what...
129		R1	And this.. It's kind of color here is very helpful to see patterns and to see what she did in terms of strategy.
130		NL	Yeah
131		R1	The color actually stands out. I don't know how it does when it's on paper.
132		NL	Because she like made it nice and big, I said Yeah, I liked it. It was just very appealing. [laughter]
133	00:09:06	R1	Good. Okay and what did she write?

Line	Time	Speaker	Transcript
134		NL	She wrote: The answer is 27 . There is no other way without duplicates. I know there is no other way because In group 2, I moved the blue cubes in each possible way I can. There is only 3 positions because it can only be three high. So, I guess like maybe Jenna helped here a little bit with this.
135		R1	Okay.
136		NL	I, I... The rest of the groups. I guess she said I did the rest of the groups like this. I only had 3 solid colors to choose from and that is how I got my answer. So hers is a little less detail than Jenna's.
137	00:09:35	R1	Yeah, but Still that is pretty good, isn't it? Again not complete but really good pieces of a convincing argument . Very nice work. Good. Okay, who belongs to..
138	00:09:51	MC	This is mine.
139	00:09:53	R1	Okay.
140		MC	[Video shows student's argument projected on the screen: We can't make any more than 27 because the combinations were all used the same way. Each group made the same shape combination. But the bottom block will always have a different color per group but the shapes also will be the same but different color. The combination is the same, but in different colors. The bottom block is the leader. When changed, it will never change its combinations. But it will change its colors.] This is my student. He did three groups of 9 and I was really surprised actually when I went over to him.
141		R1	MMMhhh.
142		T3	He is Probably one of my lower level students.
143		R1	Okay.
144		MC	And he arranged it in three groups of nine by keeping the bottom cube a constant.
145		R1	Yeah I can see that. Isn't that neat?
146		MC	Which is what he did because he put one single cube in front and he used colors too to show which is constant.
147		R1	Nice.
148		MC	But then he wrote his explanation real quick because he was the one who was talking about the sandwich.
149		R1	Yep.
150		MC	But then I got I came up with 27 in all. One group and then the other and then the other. which is basically 9 times 3.
151		R1	Okay
152	00:10:35	MC	So this is when he showed I mean he talked about like the different shapes. So if you look at the first example and it

Line	Time	Speaker	Transcript
153		is right there on the bottom of the four towers.	
154		MC	Okay
155		R1	And made the shape of almost like a turned L which are both yellow and a turned blue.
156		Now I am confused with that.	
157		R1	She is using the cross on the screen to show you, Yeah, right there. Ohhhhh! I see 158

Line	Time	Speaker	Transcript
			the only way to have all 3 colors used once in a 3 stack high and only have red on the top. Each one has only one solid color.
175		R1	Mmhh.
176		MC	Then the next..she made 3 groups of 2 ; and for each argument she wrote: This is the only way to have all 3 colors used once in a 3 stack high and only have blue on the top.
177		R1	Okay. So that is down at the bottom.
178		MC	It is the second middle one. Where the ones are crossed out.
179		R1	Okay, okay.
180	00:12:44	MC	[inaudible] You can't see them here. She kept the top two blue
181		R1	Yep.
182		MC	Then she changed the red then yellow.
183		R1	Okay.
184		MC	And the next one she did the same thing. She kept yellow at the top and switched.
185		R1	Okay.
186		MC	Then the third group she had the same with red on top and switched the bottom two.
187		R1	Okay.
188		MC	And then the last group she wrote each one has only one solid color.
189	00:13:03	R1	Okay, So it's nice so they are really doing some good stuff. Very good. Again when You have students that are struggling in the very beginning when you see progress you should feel very proud. Good. Okay.
190	13:21	UCT	[video shows student work: four groups 1 crossed out. Group 1: ggb; gbr, bgr Group 2 rrr, ggg, bbb Group 3: rbg,rrr,rgg and Group 4: rgr,grb, bgr]This one was mine, the student I had did not get the answer but..
191		R1	It doesn't matter, we are looking process.
192		UCT	The ones that did get the answer, I couldn't do any more.
193		R1	Okay.
194		UCT	He actually recorded wrong. But I chose and I remember him getting it He was doing the recursive argument.
195		R1	Okay, nice
196	13:41	UCT	He was saying group one the blue goes down, Which it does go down.[inaudible]
197		R1	Okay
198		UCT	Group 2 has all the reds going down and again he is not following what he put; what he actually had.

Line	Time	Speaker	Transcript
199		R1	Okay.
200		TD	Group 3 I made all the greens go down. Group 4 they were all in the same category. Green was with the..green was with the blue...was with the red was with the blue. I think he means the candy cane.[fifth group crossed out]
201	00:14:11	R1	Yeah one of each color.
202		UCT	So again, he didn't copy it right and neither did his partner. But then he said
203		R1	What he had on his paper on the desk
204		MC	What he had on his desk; he did not record it right. He didn't explain it.
205		R1	Yeah, yeah. No that is hard to do so. Yeah, but that is hard to do. But what he did write is nicely done. Is this also special ed.?
206	14:33	UCT	Yeah, resource pull out.
207		R1	Yeah, and what grade?
208		UCT	Seventh. But as a whole I think they did a lot better on this one.
209		R1	Good
210		UCT	They knew they needed a strategy. They knew they had to have a pattern.
211		R1	Good.
212		UCT	They all tried their best.
213		R1	Very good. Okay That's great.
214	14:52	TD	[video shows student work and following written argument: Explanation: We got the amount of 23 by taking certain groups of 2,3 , or 4 based on the pattern. Ex. 1:GGG,BBB,YYY. Example 2: YBB>BYY Ex. 3: GYB,BGY,GBY,YGB and example 4: GGY>YGG]And then She, she got 23. But all she did missed the four so then she had to take it off and take opposites of four. But everything else is...If you look down at this. We got the amount 23 by taking certain groups of two, three or four based on the pattern; so if you look at example one, you know it is just green green green; blue blue blue yellow yellow yellow. That she is counting that as three.
215	00:15:30	R1	Okay.
216		TD	And then um... example 2 No I'm sorry, example 2 is yellow blue blue; blue yellow yellow and she shows that I guess she pairs them together. She did the opposite and those two would be paired together.
217		R1	Okay,
218		TD	And then 3 I just read that example one and three are put together. and if you look at example 3 she had those four paired together. So she paired them in groups of 2,3 , and

Line	Time	Speaker	Transcript
			4.
219	15:46	R1	Okay, interesting.
220		TD	Yeah
221		R1	Interesting. Okay.
222		TD	But she didn't write it like that again.
223		R1	Okay, It is interesting that she didn't have groups that were the same size.
224		TD	Yeah, that was different that most of them.
225		R1	Uh huh. Okay, good. And who is this?
226	16:14	JLB	[video shows student work : three groups of nine Blue on top yellow on top red on top] Yes. I chose this one because she actually had to do it on her own. She had been absent a lot. She is on a special schedule. She comes in to, she is in $8^{\text {th }}$ grader but she comes in to my 6-7 class. She did this all on her own. And She messed up on the bottom with the last row. But the way she had it on her desk she had the red on top and was she started combining and her recording doesn't make as much sense as she goes down the row.
227	00:16:48	R1	Okay so she used a constant on the top.
228		JLB	Yeah, And then she was rushing; she had to get to gym. so that's why she didn't record them very well.
229		R1	Okay.
230		JLB	Then she said How I did it was that I made it just different ways with red, blue and yellow. Just with these 3 different colors, then When I didn't see I didn't form the tower a different way. I made it. There wasn't much of a good strategy.
231	00:17:13	R1	Okay it wasn't a convincing argument but that she used the strategy of holding a constant, is a very good strategy. Very good strategy. Excellent Okay.
232		JLB	[video shows student work with ten towers: G1: rry, rrb G2: ybr,bbr,rbr G3: rby; bby, yby; G4: rrr, ryr,rbr G5:bbb,bby, bbr G6: ybr,yrb,ryb G7: byr, byb, byy G8:rbb, yrb G9: yyy, yby,yry, G10: yyr, yyb And then the other one I have mine are very short. They don't like to write at all. This one is Y----. Y---- got it very quickly but he had a hard time putting it on paper.
233	00:17:43	R1	To record the towers on paper.
234		JLB	Yeah, yeah. There were times when he recorded like an opposite pair. Then there was other times where he recorded three together where he kept the bottom constant the middle constant the Top constant. He was kind of all over the place with his reasoning.
235		R1	MMhh

Line	Time	Speaker	Transcript		
236	$00: 17: 59$	JLB	And then when it came time to write his explanation all he said was I changed the colors each time duplicating patterns. He did write more for his explanation. Did you copy the back?		
237		ULT	Yeah!		
238		He put for example, and he actually explained that he did red...red, red, yellow; red, red, blue; then yellow yellow red and yellow yellow blue they are the same pattern but using different colors so he was on the right track.			
239	$00:$		R1		Absolutely.
:---					
240					

Line	Time	Speaker	Transcript
			My partner was very helpful. We had the best way to organize it and we shared it and we got to 27 towers. but when we started with 31 ; we had we were not thinking completely [chuckle]. But we were close to our estimate. So They don't really explain but a lot of my kids when they did this; they kind of like did the all 3 colors 3 times 3 is 9 and then times it by three so I would ask where did you get the 3 ?
255		R1	Good for you!
256	00:20:33	VB	And they were like I don't know, so a lot of my kids tried to put that together but had no idea how to get that.
257		R1	Okay, And that is very good that you questioned them where is that other 3; what is it?
258		VB	Yeah.
259		R1	Good. Now what happened with..when they did the two groups they had pairs.
260		VB	Yeah.
261		R1	Did you question them why can't there be another pair. Rather than 12 pairs or a $13^{\text {th }}$ pair. Because when you are doing pairs it is hard to see that you have them all. How did they know they had them all?
262		VB	Well And then, these two cracked me up because one day...we did it in two days. One day they built them and the second day they finally organized the way they were done with it.
263		R1	Okay.
264	21:15	VB	Well all they kept saying is how do you know you can't do anything different here.
265		R1	okay
266		VB	And then they would build them and just lay them across the desk to see if they had another.
267		R1	Okay.
268		VB	Then they were just saying we cannot do anymore pairs so then they would be done. So that I questioned that.
269		R1	Okay.
270	21:39	VB	But my next group.
271		R1	Okay
272	21:39	VB	[video of student work shows 3 groups of nine with red, yellow and blue on top. Red group is colored with markers, yellow and blue groups have letters in boxes]There we go. This I thought was cool. With them, they held the constant at the top. So they had the nine blues the nine yellows. These two guys are pretty low functioning so I was pretty proud when they did that.
273		R1	Absolutely.

Line	Time	Speaker	Transcript
274		VB	And they had one group of ten and two groups of nine. So I tried to questioning them, well you have 3 colors don't you think you should have at least 3 . And they were...And I was prompting them and they were able to figure out that they had one too many. Just to be sure of themselves they rebuilt the towers and scanned to check. I had a lot of kids do that
275		R1	Okay, that is a strategy to find duplicates.
276		VB	I think because it was 3 colors it was harder to find the duplicates.
277		R1	Uh huh.
278		VB	So we put them in order and we came up with three rows of nine buildings and multiplied them together and our total was 27.
279	00:22:27	R1	Okay, It is nice that they have groups of 9. I think it's easier in a group of nine if they arranged it, easier to make a convincing argument when you have 12 pairs. So you keep a constant that is wonderful. These are all special ed.
280		VB	Yes.
281		R1	So we have a lot of special ed kids doing neat stuff.
282		VB	MMhh.
283		R1	Good
284	00:22:50	CP	Alright, That's me! [Video shows following student argument: There's all 3 colors in each tower. There two yellow in the bottom. The red and the blue switch spots. There no way to move the red and the blue. I did the same thing for the red and the blues on the bottom. There are two blues on the top and bottom. There yellow, red, in the middle. There no other color for the middle. I did the same for the red and yellow. The red is in the top and bottom G1: rrr,bbb,yyy G2: rby,bry,byr,ybr,ryb,yrb G3: byb,brb,rbr,ryy, yry,yby G4:ryr,rry,rbb,rrb, yyb,ybb,yrr,yrr,bby,byy,brr,bbr.] so Um, So for the first group the student said the cubes that are red, blue, and yellow. The red has 3 cubes, blue has 3 cubes, and yellow has 3 cubes. So she is still working on clearly explaining those groups but she definitely got it right away.
285		R1	Uh huh.
286		CP	For the next one, she said uh..there is all 3 colors in each of the towers.
287		R1	Okay
288	00:23:19	CP	And then what she did was she kept a constant on the bottom. She said I put yellow on the bottom. The red and blue switch spots. I told her she could write the same

Line	Time	Speaker	Transcript			
thing for the other colors.						
289		R1	Okay.Uhuh, Okay.			
290		CP	Do I really have to write this out over and over again? I said that it was good.			
291		CP	Okay 292 $00:$			
293		R1 you scroll down a little more, that's good. Alright. So for				
this one. There are two blues on the top and bottom. So						
she kept a constant on the top and on the bottom.				$	$	Yep!
:---	:---	:---				

Line	Time	Speaker	Transcript
310		CP	So..
311		R1	Yep.
312		R1	So she did a good job. 313
		Absolutely. Absolutely. Good. And this is also special ed. Who are the regular ed teachers here? 1,2,3 and the rest are special ed. So we are talking about A lot of kids that are being exposed to math which really has them thinking which is a good thing. Because you really don't want your special ed kids to just do arithmetic...It doesn't cut it anymore. Good.	
314	$00: 26: 02$		CP
315		Alright so this one is the student that comes to my class room and helps out.	
316		R1	Look how neat that student is.[video shows student work: G1:yyy,rrr,bbb G2:byr,bry,yrb,ybr,rby,ryb G3: yyb,yby,byy,bby,ybb,byb G4:bbr,brb,rbb,rrb,rbr,brr G5: yyr;yry;ryy;rry;ryr;yrr
317		CP	She flew through this. I was like shocked by what she did. 318 Okay. 327

Line	Time	Speaker	Transcript
			yyr,yyb,rrb,rry,bby,bbr G3: yrr,ybb,byy,brr,rbb,ryy G4: byb,brb,yby,yry,rby,ryr, G5: byr,bry,ybr, yrb,rby,rybThat is mine. I had two students do it the same way but their arguments were different.
329		R1	Were they partners?
330		CDR	No. they weren't
331		R1	Okay.
332	27:56	CDR	So This is someone who had a lot of trouble with the pizza problem. He was one of the ones who thought that it had endless possibilities because you could have every slice different,
333		R1	Okay.
334		CDR	So coming into this one. He was able to make all the towers.
335		R1	Okay.
336	28:13	CDR	So he started off first we did the 3 original colors. Then he did two colors on the top and one on the bottom six times. But he never explained why it was 6 times.
337		R1	Okay.
338		CDR	The we did 2 colors on bottom and one on top 6 times. Then we did the top bottom are same colors is different 6 times.
339		R1	Uh huh.
340		R1	Then we decided to do all 3 different colors 6 times in 6 different patterns and we came out to be 27 towers. though he explained a little bit about what he did, he doesn't go why it was 6 or anything like that.
341		R1	Right.
342	28:48	CDR	But the next girl says
343		R1	Before you leave it. The way he arranged it; it is very systematic and brilliant and he could very easily get it to a good convincing argument.
344		CDR	Right he has everything organized when you look at it.
345		R1	Absolutely.
346		CDR	And you see that throughout but his explanation
347		R1	Absolutely.
348	00:29:09	CDR	[Video shows work of student: G1:yyy,bbb,rrr G2: yrr,brr,rbb,ybb,byy,ryy G3:rry,rrb,yyr,yyb,bby,bbr G4:yry,brb,rbr,yby,ryr,byb G5: ryb,rby,bry,byr,ybr, yrb So the next one is a different group and this girl used the same set up. But her explanation was a little bit clearer.
349		R1	Okay, let's hear what she says.
350	29:34	CDR	She writes a little bit about each one. All 3 are the same color. Then she says there are Two of the same color on bottom, one different on top. Then two of the same color

Line	Time	Speaker	Transcript
			on top, one different on the bottom. Then she says 2 of the same color on the top and bottom, opposite color in the middle. Then she says all 3 colors assorted in different patterns.
351		R1	Okay
352		CDR	And then she goes on to explain that a little more. She says the towers (in each group) have two similar towers. For example, if you have 2 reds on the bottom, you can only have a blue or a yellow on top (2 different towers). If you wanted a third tower, it would be all of the same colored cubes (red, red, red) which was already constructed.
353		R1	Very nice writing.
354		CDR	Yeah, I would have liked to see her explain 3 different colors more. [bell sounds] Because that would have been nice.
355		R1	Yeah
356		CDR	But for her other ones. Her explanation was much better than the previous ones.
357		R1	Very good. Very good. It is very nice too the way she has the groups so neatly shown.
358		CDR	Yeah
359		R1	And she is telling you how she got the groups.
360		CDR	Right.
361		R1	And now what we want to see more of is the bottom of why the groups are complete.
362		CDR	right
363		R1	Good, very nice though. And that is $8^{\text {th }}$ grade?
364		CDR	$8^{\text {th }}$ grade regular.
365	00:30:00	R1	Okay, Good.
366		MM	Okay this is mine. The first student that I chose I was a little confused because if you scroll down to where the work is and his drawing. And you can see way down at the bottom of the page you see the key which is blank for yellow, the shaded one is red and striped is...
367		R1	Checkerboard.
368		MM	Is blue. So when he did it, when he actually drew it out he has all these different groups and he is Moving the one color down and exhausting that. And then he is doing the two at the bottom constant for the last groups.
369		R1	MMhh
370		MM	[Video shows groups A: 3 colors B: red and yellow elevator C: elevator with blue and red D: elevator with blue and yellow E: rby, bry F: byr,bry G: yrb, ryb]

Line	Time		Speaker
		Transcript	
371		R1	But then if you read his explanation, he says first off there were 3 towers of one color each. Next I made 9 towers of two of one color.
372		MM	9 towers of 2 but he really didn't And one of another. And then did the alternate colors. After that I made 9 towers containing 3 colors each.
373		R1	Yes[someone sneezes]
374		R1	But he was basically saying... He started off explaining his picture
375		M1	Okay. For group A Yes. But then on the back; he starts talking about he has three groups of 9.
376		R1	Yeah. 377 378

Line	Time	Speaker	Transcript		
392		MM	So those went were all done.		
393		MM	Is that what he actually wrote? Read to us what he actually wrote.		
394		First we made 3 towers each only using one color. Second we made 2 towers each with two red on the bottom and one yellow on the top and one blue on the top. Then we put two yellow on the bottom and put one of each of the other colors on top. After that, we did the opposite with two blues on the bottom. Third we put two yellows on the top, no wait then he is talking about the next group after that. So he didn't really explain...			
395	$00: 34: 19$		R1		Okay. Get it down. Okay, okay.
:---					
396					
397					

Line	Time	Speaker	Transcript
410	00:36:05	UCT	Some of my kids thought double 16 because there were 16 last time.
411		R1	Oh okay.
412		UCT	But we had a Different height last time and different amount of colors.
413		R1	Right right.
414		VB	I think someone here also said that too. That we just got 16.
415		R1	Yeah. Yeah. I heard that before where they want it to be even. So were they upset when they got 27?
416		MM	Um, They were at first. But then they looked at it and they organized it. And they were able to convince themselves. It was interesting because the task changed from them trying to convince me
417		R1	Right
418		MM	to for them to try and be able to accept that it was 27.
419		R1	Okay, okay.
420		MM	I had a lot of students too who jumped right away to three to the third power.
421		R1	That's good. Why did they say that?
422		MM	Well I actually, I didn't include....
423		R1	That's great. Did any of your students connect it to 3to the third?
424		UCT	I had some students too that had 3 groups of 9
425		R1	Okay.
426		MM	I had one girl and maybe I should have maybe showed you this one but she had 3 groups of 9 keeping the top constant Top yellow; top red, top blue.
427		R1	Yep Yep!
428		MM	She said um, we found the algorithm and we realized that was 27 . We did 3 to the 3 because there were 3 colors 3 blocks high.
429		R1	That is very good. This is $7^{\text {th }}$ grade?
430		MM	sixth grade.
431		R1	Sixth grade! Very impressive!
432		MM	This is not really one of my top students either so I was surprised that she said that to back up further that she knows that 27 is a Multiple of 9 and can have 3 groups of 9.
433		R1	Okay. Okay. That was very interesting that she knew something about exponents when they did the towers 4tall, did she know that was two to the fourth.?
434		MM	Well a lot of people knew that but they weren't actually

Line	Time	Speaker	Transcript
			able to explain where the two and where the four came from.
435		R1	Okay.
436		MM	This was the first time that I heard them make the correlation between the colors and how many high.
437		R1	Okay.
438		MM	A lot of them said you would get 16 but they really didn't have any idea how they were getting it.
439		R1	Okay. Okay. Interesting, very interesting. Okay, good.
440		UCT	That's the end.
441		R1	That's the end. Good everyone shared. Good. Nice stuff. I hope you see progress because there was definite progress. I think you have to do is know where they started and therefore where they are now. Good questioning going on when I was not only talking to students but I was listening to you talk to the students. And There were good questions that were being asked. And again it is very hard and you are going to have to keep telling yourself Don't lead them, don't push them a certain way. Because you saw today they went ways that maybe you wouldn't have gone. And that's nice. You want them to do that. Okay? Any questions or comments on the student work? Yeah?
442		UCT	I actually had my students walk around.
443		R1	Okay
444		UCT	At the end we were done, and they thought that was kind of cool cause each group shared what they thought.
445		R1	Okay. That is nice. That's good. Very good. Any other comments on the work? Okay, why don't I show you what the final project will be.

Description: Transcript of 2nd on-campus Meeting
- northern, central and southern regions
Advisor: Professor Carolyn Maher
Location: Rutgers Graduate School of Education
Date: December 7, 2013

Author: Phyllis J. Cipriani Verified by: Victoria Krupnik Date Verified: Fall 2015
Page 1 of 39

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & \text { Speaker } & \text { Transcript } \\ \hline 1 & 00: 00: 00 & \text { R2 } & \begin{array}{l}\text { Whatever works for you. Um, I know for my 2 regions, did } \\ \text { you send these to yours as well?... }\end{array} \\ \hline 2 & 00: 00: 09 & 00: 00: 10 & \text { R1 } \\ \hline 3 & \text { R2 } & \begin{array}{l}\text { Mmhh [shook head no] } \\ \text { Just in this last day or so. I sent you an email with 4 things } \\ \text { to think about. And I don't expect you spent a great deal of } \\ \text { time on this [laughter]. For the people from the southern } \\ \text { region, hey forget it! [laughter] And so I think for that } \\ \text { reason, um that we are going to do a sort of back and forth, } \\ \text { and what I am going to do since Judy's voice is not letting } \\ \text { her... } \\ \text { I have laryngitis. }\end{array} \\ \hline 5 & 00: 00: 46 & \text { R2 } & \begin{array}{l}\text { [laughter] So when she says something, it is really } \\ \text { important that we all listen. But What I think I'll do if it is } \\ \text { okay with you all, just take the four questions that I was } \\ \text { thinking and if Judy agrees and if Marjory agrees, that } \\ \text { perhaps were a way to talk about what we have been } \\ \text { through together over the last several months. Um I am } \\ \text { going to read one of them and then I am going to ask each } \\ \text { of you in your groups, your group being your table. Um } \\ \text { and in some of your groups there is at least an outlier from } \\ \text { another region. Um I think everywhere there is because } \\ \text { there you are! [laughter] }\end{array} \\ \text { And so your job is to not, not let the rest of the group sort } \\ \text { of dominate inside so that you so can say what do you } \\ \text { think about that, really? And In each of your groups... } \\ \text { In Each of your groups because as Judy and I was just } \\ \text { saying; what we really want because Judy and I was } \\ \text { saying, what we really want to do is hear from all of us } \\ \text { together so in each of your groups there should be at least } \\ \text { one of you or several of you take down notes of the major } \\ \text { points that you're making. Because we will all come } \\ \text { together and ask for sharing. Does that make sense? Okay, } \\ \text { alright. Especially you guys But all of you might want to } \\ \text { jot down what it is that I am going to say. [multiple } \\ \text { conversations] } \\ \text { Okay! Before I do give it to you the email that I wrote to } \\ \text { the northern and central region the other night um said } \\ \text { something like this... }\end{array}\right\}$

Line	Time	Speaker	Transcript
			It said that uh today that we will be asking you to reflect about the activities of this topics in lesson study course, and you can refer, please do, to specifically to any... You can make specific reference to anything that's in your portfolio because as we share ideas it makes much more sense if it is done by student A and student B and it is really an example of what you are trying to talk about. Does that make sense? So in your jotting down, make sure you have some samples. Anyway, after we have given you about ten minutes to talk at your group, then we are going to share with all of us. But the first one that I want you to think about is of particular interest about your own doing of mathematics. Does that make sense? What was important or what was frustrating. Whatever, about your doing the task yourself and then the connection between your doing the task yourself and your implementing the tasks with your students. This is really thinking about the mathematics. It is a little bit about you as the implementer, cause this is something you might have known, whatever or how do you bridge that. But you are focusing on the math. Now what I went on to say is, Thinking about the 3 or 4 tasks that I think we have all done. We have all shared in the towers, 4,3 , 5 with 2 colors selecting from the 2 colors with all that math. We have all done some renderings of the pizza problems, the four um the four toppings with the whole, the halves, the halves just with 2 toppings, the halves with 4. So when you are thinking about the mathematics, you might be thinking about some of those differences. And then I think everybody worked with three colors of unifix cubes ${ }^{\text {TM }}$. You may have done different things. I know that in our two groups we did some different things. In some cases it was just building with the kids and ourselves building towers with 3 colors and others and I think most everybody, uh, uh, at least with some of their kids, and I think of course with themselves did Ankur's challenge of you know of how many are there with one of each color. So I think those are shared tasks. One of my groups also explored the taxicab problem. So if you sort of want to show off you can talk about that as well. But I think the ones that we all shared which were the three color ones.

Line	Time	Speaker	Transcript
			Now what I ask you and what I want you to think about. Are there any characteristics and what are they about these tasks and about the way that we used them with ourselves and our kids. That are consistent with what we were trying to talk about with the Common Core Standards. And in general the common core for content and the common core for practices. Of here you can also as we did and really share the frustration that if there is some constraints about what is going on with common core. But for most of what I would like you to talk about right now Given that the Common core state standards, and in particular the mathematical standards for practice, giving it the benefit of the doubt that This is really what we are trying to do. Let's talk about the consistences right now. Okay questions? Okay, talk to each other. [teachers discuss in their groups for ten minutes]
6	00:10:35	RW	[some teachers discussing -inaudible] Verbally they could do it. But they were looking at each other like... are we done, is this what you want? There was a lot of pushing them and pushing them...to put what they did mathematically in writing... yeah
7	00:10:55	KK	I had the same thing. They were okay with building the towers and everything like that but when I said write what they did they were like...[using hand motion to show blank face] ...what? even to draw something or make a diagram to pick up the pencil and write something down....it was really hard for them to write something down.
8		MC	But even when they wrote something, I found they just wrote what they did. Or how they did it.
9		KK	Right, I started with this color...
10		MC	Yeah! Writing what they did and not why they did it. [inaudible conversations]
11		LC	There were so many personality conflicts, all this stuff and you would not think it was a regular class.
12		KK	Maybe because it was fun and there were more teachers.
13		NL	Maybe in a perfect world, there is a one to one ratio [laughter]
14	00:13:22	R4	Do you think these tasks helped you to promote attending to students' reasoning?
15		RW	Um..
16		R4	What do you think?
17		RW	I think yes but I don't think it's practical to do regularly

Line	Time	Speaker	Transcript
			because students fall behind and we have tests that my district paid for the marking period and it is hard to balance. To be open enough to drag out a one problem concept for like 2 to 3 days of a lesson and then have to deal with the stress of having to catch them up to prepare for test items that would be on the marking period like with the marking period benchmarks. So I think it does help but if I were to do this more often, So like, I think the focus has to would have to change on the amount I will be able to teach each marking period. Like with common core, it's less information and you are supposed to go deeper. But in my district, we still got a pacing guide that says we should cover all this and prepare them for you know. So okay in our district what happens is like they'll say if they ask all the students. Like on the benchmark, they say these students during this period missed one to 3 , you should have done this or these projects. So it is very scripted and you have very little room to...
18	00:15:11	GH	In our district, they want us to cover the entire curriculum before the NJASK.
19	00:15:12	RW	See?
20	00:15:13	GH	So we have 7 weeks after the NJASK we do everything we need to cover. Everything is so rushed to get it done by that time.
21		RW	Yeah, by the state test. That's something that needs to be worked out.
22		NL	Ours is more structured. So we don't have math, we have problem-solving. So math is more structured, we do have something we need to follow but problem-solving is kind of like a free for all so this is perfect for our class.
23	00:15:39	KK	So do you have that every other day, problem-solving?
24		NL	No, every day.
25		KK	Wow!
26		NL	But they don't have a block. It's like period 1 will be math and period 8 will be problem-solving.
27		MC	And they could have 2 different teachers.
28		NL	Yeah.
29		KK	Wow!
30		NL	They usually do.
31		KK	Do you like that?
32		MC	No. Problem-solving has no text book, there's no workbook, so it's literally you have to find something for them to do for an hour.
33		NL	So you have to do something that will last for almost a week.

Line	Time	Speaker	Transcript
34		KK	Wow!
35	00:16:04	RW	How long is your math class?
36		MC	It's only 40 minutes. So it's 40 minutes of math, 40 minutes of problem-solving.
37		NL	So at least we kind of had the freedom to not worry about falling behind in problem-solving but we did fall behind in math.
38		MC	Yeah it was easy to stretch it out in 40 minutes.
39		RW	What grade?
40		MC	$7{ }^{\text {th }}$ grade.
41		KK	Our superintendent at our district, we have 4 middle schools and he says everybody should be within a couple of days with each other if you are teaching the same thing. So every time I took, a day away to teach this, I felt like I gotta catch my kids up because now I am behind everybody else. And we have the same thing, benchmarks. So I had to make sure that the curriculum is covered before they have the benchmark test or else my kids are at a disadvantage. So, It is hard. It is hard to keep that balance. Okay, now I have to do 2 lessons at once because we spent a day playing with blocks. Which I saw value in doing the tasks, they really got a lot out of it. But it was stressful for me to try and fit everything in.
42	00:17:00	R4	So what grade level do you teach?
43		KK	Um, I did it mostly with my $6^{\text {th }}$ grade honors.
44		R4	$6{ }^{\text {th }}$ grade honors.
45		KK	I only have one group of them so granted I only have one class that I would fall behind in. [inaudible]
46		R4	What I am saying is I am hearing like time issues and...um pacing guide issues, um and then you said something about testing... that you were concerned with about testing.
47	00:17:27	RW	Yeah, I guess cause for them being so concerned with making sure that the student should have that support to do better on the standardized test than the year before, so like a child got 221 and then gets 232 . So in our district what they do is they use the benchmark as a scale or kind of like try and predict how they will do on the state test. So since they are so concerned with the test, teachers are making sure they are ready for the standardized test In our district we use the benchmark as a scale of since they are so concerned, teachers teach to the test. These are the skills are concerned because I had to prepare for the benchmark the whole marking period what I have been doing. We don't get the test until the week before but they give us the skills that will be on the test and an overview of how to

Line	Time		Speaker				
		Transcript					
prep the students but teachers are concerned about the							
benchmark because it is 30 percent of their grade.							
Making sure they are ready for the standardized test In our							
district we use the benchmark as a scale of since they are							
so concerned, teachers teach to the test. These are the							
skills				,	30% wow!		
:---	:---	:---					
48							
49		LC					
50		RW		30!			
:---							
51							

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & & \text { Speaker } \\ \hline 63 & & \text { Transcript } \\ \hline 64 & & \text { R4 } & \text { The superheroes are right here at this table. } \\ \hline 65 & & \text { R4 } & \begin{array}{l}\text { That's true. } \\ \text { The math teachers of the world are the superheroes } \\ \text { because you got to do a lot! Believe me I am talking } \\ \text { because I am one of you! I also teach high school so I } \\ \text { know.. the stresses. Thanks for your input. Hi everybody, } \\ \text { do you want to trade tables? }\end{array} \\ \hline 66 & 00: 21: 52 & \text { R2 } & \begin{array}{l}\text { Okay, can we all have your attention. Okay, What I think I } \\ \text { will do is sort of jump around from group to group. And } \\ \text { um and maybe start right here with this group and whoever } \\ \text { is your spokesperson or if you are helping each other. } \\ \text { Would you begin this first group by sharing with all of us. } \\ \text { What I want you first to do is restate what you think we } \\ \text { were supposed to talk about. }\end{array} \\ \hline 67 & 00: 22: 37 & \text { AT } & \begin{array}{l}\text { Well, we started and we kind of took your question and } \\ \text { divided it in half and we only got through the first half. } \\ \text { We talked about us doing the problems versus the students } \\ \text { doing the problems during implementation. Um and we } \\ \text { really focused on talking about that. Um like for example, } \\ \text { we discussed using a tree diagram versus not using a tree } \\ \text { diagram. And then we also talked about just right now } \\ \text { before you stopped us was the pizza diagrams of how we } \\ \text { interpreted the pizza versus how our students interpreted } \\ \text { pizza and how like life experience could really really }\end{array} \\ \text { impact how they notice what they think about. Um so for } \\ \text { example one of my students said well sausage and } \\ \text { pepperoni is different than pepperoni and sausage because } \\ \text { if you say sausage first, it really means you want more } \\ \text { sausage than pepperoni. [laughter] Or if you say pepperoni } \\ \text { first then you want more pepperoni than sausage. So like } \\ \text { and you were saying about that too. }\end{array}\right\}$

Line	Time	Speaker	Transcript
			understand how his experiences impacted that so much. I just... I really learned from the pizza problem that the experiences that they have, are going to make them interpret these problems so differently than how we would expect them to interpret it.
69	00:24:33	R2	You know that is really interesting. Because from what I am hearing, I would like if we stop right there and let other people respond to that. The issue that I think is emerging here and this is something that the Common Core standards practice really talks about is embedding what you are doing in mathematics, in real situations and what I am hearing you say is an okay thing that there are real issues that come up with that. They came up with you a little bit with you as adults working but you have enough classroom experience to push that away. But that it really made a difference in interpretation of the problem. Is that what you are saying?
70	00:25:28	CDR	Yeah
71		R2	Moreso than any of the other problems.
72		CDR	Right. For the other problems, they had concrete solutions and they kind of could work through it. But for this problem, it was a little more interpretation.
73	00:25:42	R2	Okay so what you have really done here is you connected your own thinking about the math. You talked a little bit about...about differences with your kids. And I would say you also said. Okay, these are something we think we have a value in doing. But that there are issues having to do with it and the pizza problem becomes sort of a metaphor for us to think about. Um, others? Did anyone else talk about that?
74	00:26:13	TD	Yeah. We said the same thing. We said that we thought that it would be more effective if the directions were more specific for them. And like if it said you can't do this, you can't do that. I know that part of this is working through that but I felt that my kids spent a lot or most of their time trying to figure that out. Rather than actually working on the task and trying to figure it out.
75		R2	This was just the pizzas and not the others?
76	00:26:36	TD	Yeah, just the pizzas.
77		R2	What about anybody else? What about this notion of embedding problems in real situations? Does this mean that it is hard to do? Or that you have to be so specific that it is not real anymore?

Line	Time	Speaker	Transcript
78	00:27:02	NV	Well you have to be either really specific or you have to be willing to accept that there is a solution that you may not come up with yourself. And um, Emily, Jen, and I, we teach in the same district and we talk about that in our common planning. When we are grading or checking responses for open-ended type questions, you can't anticipate what students will give you or what they come up with but it.. it doesn't necessarily mean that their response is wrong.
79	00:27:40	R2	I think that is the answer to a totally different question!
80	00:27:45	MM	Yeah I totally agree with what Natalie just said. Um I think that if you make what they are supposed to say too black and white you are kind of stunting their reasoning skills and their problem-solving skills. If they come up with something that is totally out there. It should be acknowledged and celebrated and then talked about how oh maybe that's not what we meant but I think it is still logical thinking which is math in a sense.
81	00:28:13	R2	Yeah. Now what you are doing is sort of jumping ahead except I don't think, I don't think so and I think it has to do with some of the role of the teacher and the role of instructor. What I am hearing is this real tension between Okay. We know there are particular mathematical ideas that they want to get and so we don't want to lose that. But that if there is anything to this notion of the kids thinking and building. We have to hear what they are saying and go from there. And this was a pretty good example of that. Others of you, this notion, this is something I would like you to talk a little bit more in small groups Is in terms of the role of the teacher, This notion of listening which is what you were talking about Helena and what you are talking about: hear what they are saying. I know in our groups, that I pushed you all to do the shirts and pants in the very beginning because I think it is another example where the context really can.... You know what I mean.
82	00:29:37	MM	One of the students said the colors that matched.
83		R2	Yeah.
84		MM	And that is an example.
85	00:29:46	UCT	And also students who knew it was 6 combinations but put there was one combination that yellow pants and blue shirt didn't match so... It was a different color they said. [multiple conversations- inaudible]

Line	Time	Speaker	Transcript
86	$00: 30: 00$	R2	Well and if you remember in the clip the little boy the first half of it he would only accept you know he got 2 pairs of pants therefore he can only have 2 outfits and they have to go with the colors they go with. Do you remember? Then he invented another pair of pants so he had 3. Uh and so they were little kids so they exaggerated a little bit but for me so frequently an outfit is layering the clothes which we learn as teachers but your notion, Margaret, of what your saying is that it is the part of the teacher to listen and understand. How about over here? Did y'all talk about this characteristic?
87	$00: 31: 19$		KK
88	One of my students interpreted it as two pairs of pants meaning 4 instead of 2. For him, you wear a pair of pants, he didn't get it.		
89	$00: 32: 06$	Very interesting. And this is a little bit different from the people who are talking about all these different possibilities for pizzas. This is really that math practice thing about precision about how you hear and then what you do with mathematical language starting with the boy who was told one thing but said it was 2. Any other of let's see now let's talk about how did you respond a little bit what did you say about this person?	
91	$00: 32: 56$	RW	Um, well we were discussing we said that um here what we did when we worked through the problem and A lot of us were shocked about how well the students worked in class because they struggle with getting it. The information that was written down on a paper so that probably took 2 to 3 sessions to work through the process in terms of motivating them to get through the problem. Cause they have to do the problem and then get their thoughts on paper um but that was something we brought up in our discussion. And then The second thing we brought up in our discussion was because of timing how we get concerned about falling behind in terms of our district responsibilities and having to pay for that.

Line	Time	Speaker	Transcript
			disadvantage. But when the benchmarks come up, so we were discussing that and then the last thing brought up was How... we noticed that when we did this, the type of pacing that took place in the classroom that we were visiting in and because of the amount of adult to student interaction that is so much different than our experiences doing it alone in our classroom. Because that one on one conversation and the questioning that each student was allowed to give or to receive helped push the process along the way we expected to see it without all the adults around. So when you go into that session, you leave with Wow those kids did all that! [laughter] And in one session they got through their thoughts, they wrote it down, they defended it, they were able to express it. And then when you go back to your class and say Now wait a minute, [laughter] what happened? Like how come my kids can't do nothing [laughter], I can't see that and you start thinking there is only one of me [laughter] and all of them. And you can't kind of like foster the same amount of motivation as it did. So I think the...you said that the benefit of experiencing a lesson study is what's going to be helpful. It shows you that if given the right resources and the right setting that students can also do that but it takes the resources and appropriate setting. And then the class that did so well, is usually like a problem class so it shows that when you have a lot of teachers there...
92	00:35:11	R2	When there is more individual attention they will listen?
93		RW	Yeah it's like a whole new class. It fixes the attitude when a group of teachers comes in [laughter] for math classes.
94		R2	Well I guess the advocacy is for this kind of lesson study. Collegial working together either within schools or across schools in the district that does this every now and then.
95		RW	Yeah.
96		R2	I thought that all the classes we went to they were excited that we were there. And I never saw and even in the interviews that we did altogether with the teachers and the little guys. They thought that was great stuff. And so I think that what you are saying is that we do learn from that and it would be good to continue it But the number of issues that you are faced with are a lot.
97	00:36:13	RW	MMHH! [laughter]
98		R2	A lot. Yeah, Natalie.
99	00:36:18	NV	Just to go off what Roberta said. I know we kind of discussed it with our trip to Edison, but um, I personally am a little disappointed in the lack of the alignment that

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & & \text { Speaker } \\ \hline 100 & 00: 36: 36 & & \begin{array}{l}\text { Transcript } \\ \text { this course had with the content of the common core } \\ \text { standards and with the university. }\end{array} \\ \hline 101 & \text { R2 } & \begin{array}{l}\text { The content? } \\ \text { The content. But with a university as big as Rutgers, that it } \\ \text { is coming down from the state to the teachers. I would } \\ \text { have thought that the tasks that were given, would have } \\ \text { been better aligned to what we were teaching our students. } \\ \text { The tasks were discrete math. Discrete math is not } \\ \text { something that is covered in common core standards. So } \\ \text { what we were asked to do is take a day out of our } \\ \text { classroom to visit a class in addition to taking a day away } \\ \text { from our curriculum to teach something or to do something } \\ \text { with our kids that they are not being tested on. So in } \\ \text { moving forward, in the future, my recommendation, well it } \\ \text { is just me, but would be that the task that you give be better } \\ \text { aligned so that it is a seamless transition from one day to } \\ \text { the next so that whatever they used. That whatever they }\end{array} \\ \text { learned the day before so they can connect it directly to the } \\ \text { task that they are working on. But My kids were working } \\ \text { on ratio and proportion and then all of a sudden, we would } \\ \text { walk in and there is towers. Then we leave ratio and } \\ \text { proportions and go into expressions and equations and . } \\ \text { Now they are dealing with pizza toppings. So although you } \\ \text { can connect little pieces, it's not so direct for these kids } \\ \text { who are struggling day to day. And then to take 2 days out } \\ \text { of the classroom. It's a little frustrating um and with } \\ \text { everything that a teacher has to do, including teaching, } \\ \text { grading, SGOs. I mean it's a lot so.... }\end{array}\right\}$

Line	Time	Speaker	Transcript
104	00:39:22	NV	I agree with you that it is mathematical practices across the board.
105		RW	Right, right, right.
106		NV	But the task in my opinion should have been connected to a content that we were teaching. So that they can incorporate those mathematical standards or mathematical practices with the content. It was too separate for me.
107	00:39:46	RW	Yeah, yeah, but I think for me it helped me give them the lesson I pulled out for them, and was able to give back to them because they were frustrated at first, was that it was important to be able to document what you can verbalize. So that was my big lesson. The content, like we didn't even get to talk about Pascal's triangle. I didn't even touch none of that. Because they weren't there cognitively but what I did use the lesson for was the opportunity to give them feedback on the importance of being able to work through a problem, come up with some type of verbal reasoning and then get that down on paper. Because out of my whole class, like one group was able to achieve it and I used the opportunity to highlight that and say you know when you problem-solve this is your goal, think about it, work with the problem, talk to your members and then get down in writing. So I think I saw the lesson more as a piece of mathematical practice than for mathematical content.
108	00:40:52	R2	You know I think and I would like to hear from other people on this and I know that some of us are more vocal on this though I don't know why because we are all teachers! [laughter] Please say what you would like to say at the risk of not hearing it because I want to know what you would say. Solariz-
109	00:41:08	SO	Although I didn't feel comfortable deviating from the pacing guide for the same reasons as Roberta, cause we work in the same district. And we have to give benchmarks on certain dates and we are expected to cover a certain amount of material so that the students will be prepared for it. I actually enjoyed the task and I think it was something different that the kids weren't use to doing in the classroom. And they enjoyed it and I think they always looked forward to that one day that month they were going to do something new that they didn't do in the classroom. And I think they did a great job at doing it.
110	00:41:41	R2	So were talking about both sides of an issue. What about from this group?
111		UCT	Kind of like what Roberta was saying, if you have a kid

Line	Time	Speaker	Transcript
			that can say and write how to explain the tower problem. There is no question on the NJASK or PARCC that comes up that is going to be that in depth where they are going to have to explain step by step by step by step especially with the 8 teachers in the room pushing them constantly and saying like no, but I don't know what that means. A couple times with Dr. Alston was talking to the kids, I'm like this kid is going to throw something. [laughter] So in the end I said that this kid explained it seven times and then he explained it to me again and then he went and he wrote it after all that and then typed it up. So if he was able to do that he is going to soar through any standardized test, because what we put them through is nothing compared to an open-ended question on the state assessment.
112	00:42:28	UCT	I definitely see all those things so I get it! Graphic functions, then we did towers in my algebra course. So I get it that it is a huge transition, but um and if it's more aligned but my kids do this all the time. We do constantly different things. Like with our benchmarks we have to show that because we teach an algebra course in the $8^{\text {th }}$ grade, they still have to take an $8^{\text {th }}$ grade standardized test. So I have to find a way to teach them algebra as well as constantly incorporate other kinds of mathematics for the Common Core. So for me it is kind of nice because that was a part of the second half of class, incorporating the different kinds of tasks and I loved the idea of sticking through a common theme, and from here on out I am going to try to figure out a way to do that.
113	00:43:13	R2	When you say common theme, in terms of the task?
114		UCT	The task. Where they are building and building. So I now moved to ratios and proportions and we are using that as an opener for the next month and I am focusing on that as my open-ended questions.
115	00:43:26	R2	That is really interesting. Hopefully what we are learning from each other from our own experiences and from this is oh okay, I have this... this issue, how is it that we can learn from the good here and also you guys are just look at you! You are a really wonderful bunch of teachers but you are really different from each other. I mean really different from each other. Some of you are special ed teachers, some of you are general ed., some of you are high school teachers, some of you are $6^{\text {th }}$ grade teachers. Um and so there is sort of a challenge to come up with common tasks that can work for this. Which is different from the challenge that I am hearing

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & & \text { Speaker } \\ \hline & & \begin{array}{l}\text { Transcript } \\ \text { Melissa say which is now what did we learn from this? } \\ \text { And how do we now so that we don't have to have that sort } \\ \text { of grip of whatever subject that a task might work and um I } \\ \text { remember... } \\ \text { In that particular class and also in the high school task that } \\ \text { Alice and Bhupinder were doing. } \\ \text { So what you take from this, like say you do proportions, is } \\ \text { kind of interesting. What else? Anybody? Yeah. }\end{array} \\ \hline 116 & 00: 44: 57 & & \text { TD } \\ \hline 117 & 00: 45: 19 & \text { R2 } \begin{array}{l}\text { I can.. I am seeing both sides of it. Now that I am thinking } \\ \text { about it. But I just think it might have been more effective } \\ \text { if and just nice to have another resource you know to teach } \\ \text { something that is in the curriculum like say area and } \\ \text { perimeter; something they always see. They could have } \\ \text { done something hands on with that, I just think it would be } \\ \text { like so much more effective for them to do something that } \\ \text { they are going to use. }\end{array} \\ \hline 123 & & \begin{array}{ll}\text { Okay then that's your task; your challenge. To make sure } \\ \text { you do this. And ya'll are going to be talking about this to } \\ \text { each other you have another course together and you are } \\ \text { going to be sharing ideas about this. Because we are } \\ \text { moving on in time, obviously these are fantastic these }\end{array} \\ \text { questions. I would like you to take just a couple of } \\ \text { minutes at your group and then come back because to hear } \\ \text { the feedback that I have gotten especially from you two is } \\ \text { something we struggle with all the time. Um and and and it } \\ \text { is a tough one and and we need to make in terms of } \\ \text { resourcing each other as we go. What I'd like you to do } \\ \text { now is to just } \\ \text { Talk 3 minutes about the following question: what if } \\ \text { anything was added to the course by studying the video } \\ \text { clips from the VMC? Does that make sense? Is that a } \\ \text { simple question? [teachers talk] }\end{array}\right\}$

Line	Time	Speaker	Transcript
124		UCT	I don't think they did.
125		UCT	No I think they were drawing circles.
126		UCT	Yeah.
127		BK	[New group] We both ended up being the only ones from high school. We were not able to do it with solid classes like algebra, it was like our enrichment class that we were able to do it. So we still are following a pacing guide for that. But every now and then, we would use this as a break and that way before we start the next thing. But otherwise it would have never fit in. [inaudible conversations]
128	00:48:50	UCT	It takes too much time.
129		R4	So you are saying when it doesn't fit in, you are saying because it is not tested on a standardized test like the ASK or the HSPA?
130		UCT	It's not in the curriculum at all. It is discrete math.
131		R4	Okay, but is it tested on the standardized test that is required?
132		NV	It is not a tested area. It is not a tested area.
133		R4	It's not a tested area.
134		NV	Our students have to take the PARCC assessment and it is not on the PARCC Assessment.
135		R4	Would it fit under patterns?
136		NV	No there is no patterns in $7^{\text {th }}$ grade.
137		R4	Not in $7^{\text {th }}$ grade?
138		NV	It is not a major cluster area.
139		R2	Are all of you teaching $7^{\text {th }}$ grade? Or is there... Okay so you 2 , okay you 3 .
140		NV	[inaudible at first] Patterns are not a focus. It is hard to find out where it fits in. If you are teaching this, then it fits in somewhere over here. There is no collaboration.
141		R4	There is a disconnect between...
142		NV	Absolutely.
143		R4	The standards that you have to teach and what's being expected of you in the test.
144		TD	And it would be great if we had another resource for us to use. Like this could be a great resource for us to use like in our middle school teaching.
145		R4	Like what type of resource to attend to...?
146		TD	Something that would have to do with the curriculum.
147		R4	What type of resource would help you to attend to?
148		TD	Well like I said before something with perimeter and area so that oh my gosh, we could do that next year. Or it could open my eyes as a teacher to do more things in the curriculum.

Line	Time	Speaker	Transcript
149		VB	I think that the first task was a good way to get to know your students. That was a good icebreaker.
150	00:50:01	TD	Yeah it would be good for the beginning of the year.
151		VB	Yeah like I would do that every year.
152		TD	Yeah or at the end of the year.
153		BK	Yeah like even my kids were like oh we get to play with the blocks today, yay! Okay, fine. But then the next day we are like where did we leave off before and it was like they couldn't remember what we had done and forgot what we did. So it was like...[inaudible conversations]
154		UCT	Yeah that's what mine were like.
155		UCT	before and it was like they could remember the pizza problem but forgot what we did. So it was like...[inaudible conversations]
156		R4	I know.
157		UCT	What was the question?
158		BK	She said Video-how did we find the videos helpful?
159		NV	In the beginning actually.
160		UCT	[multiple responses] Brandon's video.
161		NV	Brandon's video was good.
162		R4	What about Brandon's video made it good?
163		NV	Because it was a completely different way of solving the problem. So it was...
164		UCT	Like the 1 and 0
165		NV	Binary system like what he had to use to solve the problem. And I was amazed that this kid could think on that level. And it seemed logical and right but I think the logic in the video in particular with the first one with Milan, Jenna, Michelle, and Stephanie. Very confusing very hard to follow.
166		TD	Because they were saying okay yeah this, no this. And I am looking at the transcript trying to see what they are saying.
167		NV	Yeah it is not clear.
168		TD	And they're like ah no...
169		BK	But also then I noticed Jeff in high school and you can see that lack of motivation go down, and there is a difference when you do this in elementary school they are like yay! Kids in high school are like twirling their hair. They learn so much along the way that even then... even then you ask them what do they recall....
170	00:52:33	R2	[R2 calls for group attention] What did you all say about the videos?
171	00:52:45	UCT	We were pretty much saying that we understood the problem and the different viewpoints from the videos as far

Line	Time	Speaker	Transcript
			as understanding. But it did really change our view as far as instructing and implementing but I felt that I was more amazed when we went into these classrooms and saw firsthand that watching the videos. The videos helped me see a different point of view or a different perspective though.
172	00:53:12	R2	Yeah. And so what you're saying is the same thing I heard over here that Roberta, Laurie and others said that somehow throughout the course of the year and to me why I feel that lesson study is pretty fabulous is that being able to share experiences in classrooms with each other is important. Oh okay.
173	00:53:39	DH	One of the things I liked is my kids didn't believe me that second graders could solve the towers problem. But I was able to show them on the video that they were able to. They was like Are those kids geniuses? [laughter] They are at a second grade level. I just told them that they were really focused on the problem. I don't remember what grade they were in. but they were like...
174	00:54:00	R2	They should have...The first one they were third graders when they first actually did it. So you were actually right.so what you did was to use the video to actually convince them that they could do it.
175		DH	And then I watched the Romina video and like I kept watching it and I had to watch it 2 or 3 times to really see. But then when the people sitting in my group that were watching this task like they were able to ask like I felt like I was asking Romina when I was able to ask them well why did you do it this way or what did you mean? It was nice to have the connection, of seeing people do it in your room the also do it in the same way that the people in the video did it.
176		R2	So what you are talking about now, is what you learned from the video as compared to your own ...
177		DH	Like with the conversation from the other people.
178		R2	What did others, back in Solaris' group back in there-what did you say?
179		UCT	Well we were talking mainly about Ankur's challenge and how that video really got our attention because it was such a different approach to solving that problem. Like I would not have thought of using 0 's and 1 's to show the use of the colors and the way he came up with the chart.
180		SO	No it was Brandon!
181		UCT	Oh I'm sorry I apologize. It was the video of Brandon.
182		R2	No but I am glad that you caught that because to me both

Line	Time	Speaker	Transcript
			of my ecollege groups the discussion about the Brandon interview video tape, um is always good.
183	00:55:47	UCT	We were also talking about the first video when they were very young. How it is really hard to understand students and what they are trying to say to each other. We don't know if it is because they are at such a young age or how they were trying to communicate with each other and if the language wasn't there to try to get across. It was hard to follow even with the transcripts to match to go along with the video. So um...I had to watch it a couple of times.
184	00:56:13	R2	The issue that you are underscoring right there. I know because I worked with the little guy Milin, Do all of you remember Milin? Both in the gang of 4 ; which was your assessment video. And then in the guess my tower, that series of em, where Milin seems to have a strategy that he has really got, but then he has a really hard time communicating and I think that is what you are saying.
185	00:56:46	JU	Yeah and I think that if it wasn't something that I was able to see. I would have a hard time understanding what that...because we all have problems with different points of view; and if someone were trying to explain it like to a student at the table with him; I wouldn't be able to understand his approach. So that I could see it was more connected. It was hard to follow the video.
186	00:57:06	R2	But you know not only does it say gosh that it is hard to follow but it doesn't say like what Margaret was saying when we were talking a little while ago was that somehow what we come away from this as teachers is that is part of what we have to do. We have to figure out how to get into that kid's head. And how hard that is. When the other thing that all of you or at least in our group have indicated is that one of the biggest struggles is to get them to clearly communicate what they are thinking. As you are saying verbally, and as other people had said, when we ask them to write things down. Don't you think? What else, what did you all think about the video?
187	00:57:59	CP	Uh, we said we thought it was helpful just to see like examples of questioning for the students and to see their responses and to kind of have an idea you know what to expect. Or to see all the different possibilities of what you are going to get as a teacher with all the different students. You know see all their different examples of their work. Different methods that they used to solve the problems.

$\left.\begin{array}{|l|l|l|l|}\hline \text { Line } & \text { Time } & \text { Speaker } & \text { Transcript } \\ \hline 188 & 00: 58: 24 & \text { UCT } & \begin{array}{l}\text { So we talked about a couple of more things. That it was } \\ \text { good to see the problem worked out before. And kind of to } \\ \text { get an idea of what to expect. But then we were also } \\ \text { impressed with that you saw these kids and they were and } \\ \text { their solutions and their responses were so amazing that we } \\ \text { kind of wanted our classrooms in conducting that and then } \\ \text { when we didn't get that we were like Uhhh [laughter]. } \\ \text { Our kids were not as good as the kids in the video. So I } \\ \text { think that kind of made it like it really um raised our } \\ \text { expectations then when they weren't met, we kind of felt } \\ \text { like we did something wrong. Or I don't know. But I } \\ \text { mean it was good to see different points of view that I } \\ \text { suppose some of us probably didn't do on our own. }\end{array} \\ \hline 189 & 00: 59: 02 & \text { MC } & \begin{array}{ll}\text { We thought it kind of would be helpful if um I kind of } \\ \text { wanted to see the videos where the kids were not }\end{array} \\ \text { successful [laughter]. To see how the teacher dealt with } \\ \text { the kids struggled. I mean not all the kids are going to get } \\ \text { it and that was the case. I mean I teach special ed. and } \\ \text { some of those kids were you know... completely lost. So I } \\ \text { guess to see videos where kids were not successful and to } \\ \text { see how that teacher responded and how they walked } \\ \text { through it without leading them on probably would have } \\ \text { probably been helpful. }\end{array}\right\}$

Line	Time		Speaker
		Transcript much thought other than. but then they were all good open- endeds so why not because I have no idea what the state is going to be testing them on.	
192	$01: 01: 24$	R2	Did you do it the day before Thanksgiving?
193	$01: 01: 26$	UCT	Oh no, every day we do it. Every day open-ended.
$194: 30$	R2	Yeah I think you raised what I hope other people agree with what Melissa is saying if that these problems are important that and this is also back to what Natalie said, they are totally non-contextualized with the curriculum in general or if they don't become um sort of a metaphor to stay with other problems and where people says this is a lot like that towers thing and that is really good. Hopefully the video clips and the strand will match as well. Okay, moving right along. Uh, the third question that I want you all to work together with is I want you now to think about your own portfolios or whatever type of productions they are, and for those of you who didn't do this, you might learn, I think that there is a few people at each table who are from the central and northern region who did this. I want you to think about something that was important to you. And go around the circle to whatever works with your group that was important to you about your how your students were reasoning about the mathematics that they were doing. Does that make sense as a question? And I want you to back it with examples and I want you Gina to say my kid Joey used this kind of strategy which was really interesting to me because it showed me something about his reasoning. Does that make sense? And for those of you and I know for our two groups I pushed you to do this, um if there was a student that you tracked across the different problems. Also think a little about were there differences? I mean was a kid who could not write down the first sentence at the beginning, did they begin to be able to record or did they stay that way? Do you understand? So talk! [teachers begin to talk in groups]	
195	$01: 04: 00$	[one group] So I will just read the question. Something	
that was important to you about students' reasoning about			
mathematics? - Backed by evidence from student samples			
that you have selected from your portfolios.			

Line	Time	Speaker	Transcript
			like they had...,I don't know did it so much faster. Well they were all like to the point that well it is 3 times 3 times 3. Well why? Why is that? Because they told me like that the two threes were for the numbers of colors and one was for the height, but they couldn't tell me the third three. And then they tried to explain about exponents but it was the first time we did them so they had no idea and we didn't really talk about four-tall towers at all, or exponents like we didn't talk about that at all. [inaudible]
197		CDR	I had a student who did the same thing, 3 times 3 times 3 where one 3 was the height but then she did 3 times 3 is 9 and then 9 times 3 is 27 with no explanation.
198		UCT	Right.
199		KK	[New group] So he set it equal to 36 and he started to try to back up but he wouldn't even build the towers. He was so focused on making it notation. And did that from the first one, and with the pizza problem he tried to do it. He was so unsuccessful and so stuck on that he wouldn't make anything.
200	01:05:30	GH	I wrote about one student who went from being completely wrong to really getting it quickly.
201		KK	Mine were so stuck on their strategies because like their so...the honors kids are still taught that there is a set way to do it and this is how you have to do it. So he was stuck on that he wasn't going to try and find anything. I got to find the answer and write it down.
202		GH	This kid was so stuck with equations, and I showed him page 24 of the book and he went on e-bay and bought it. He needed to have it all the time.I bet if he did this again, he would get it. I thought he would realize and get it but It was just weird.
203		KK	The first tower problem he did, he was writing four squared that was what was convincing to him. So then I said, well what if it is 3 towers? Then it would be threesquared. So it would be 9 , so I said show them to me. And he came up with these and he said I guess I must be missing one. Like he was so....no he said it has got to be 9, look here is my paper. He was so stuck on it. He could not get past it. But he is the same kid that we were talking about you know perimeter of a triangle and he is trying to tell people that it is going to be the sum of the two lengths and the hypotenuse. Like he tries to make everything more difficult. Well what if it is not a right triangle? Well. I am like no there is no well, add up all the 3 sides, it is that simple! He tries to make everything harder. And this was

Line	Time	Speaker	Transcript
			impossible for him to do. He just couldn't think outside of I need a set of rules. He couldn't do it.
204		GH	You know I wonder because it was four towers...So my student had to use the four. But then it was 3 towers 3 colors, 3 to the third. Like it just fit in his thinking. I wonder if it was just luck.
205		KK	Yeah, like whether he really realized it.
206		GH	He was able to build em and explain it clearly. And he kept the bottom constant. And so he got 9, and then he said well there are 3 colors so it has got to be 3 times 3 equals 9 , and times 3 is 27 . So he was able to communicate that.
207		KK	Right. [inaudible]. He was never going to get passed that. I didn't know what he was talking about so It will be a mystery forever. I was okay with that.
208		RW	Well I made it hard on myself because I chose taxicab.
209		UCT	What was that?
210		RW	So taxicab was is like a problem where you had to find all the streets.
211		NV	[new group] [inaudible] So at first, one day I was out, they asked can we do the blocks again? So I tell them that we are learning, when we come back, we can show them what we did the day before. So they find it is funny that we do the work before we give it to the kids.
212		UCT	My students said you did this project? What did you get? Tell me the answer and I was like no!
213		BK	I was like I don't know what the answer is.
214		R4	Do you think it is necessary to work it out before um..?
215		NV	Absolutely. Absolutely.
216		R4	What are some reasons why?
217		NV	I think that it gives you a good outlook to where your kids may have common misconceptions that may be brought up during solving what are the possible solutions like I said earlier. Solutions that a kid may say that may not be something that I thought of but when the cohort sits down that day and solves it together, somebody else might bring it to my attention. So I am walking in not blinded by my thoughts. Right.
218		R4	So did doing the problem beforehand help you attend to the reasoning of your students?
219		NV	I think for me I think so. I can't speak for everybody else but...
220		VB	It also helps you with questioning. And if students had a problem with it.
221		TD	Yeah, right. And not lead them.

Line	Time	Speaker	Transcript
222		VB	Maybe a student will struggle with what you went through.
223		TD	Like if we did something in class that we didn't do ourselves they wouldn't do it.[inaudible] [laughter]
224		R4	Did your students find it meaningful...the tasks?
225		VB	I just think that they thought it was a fun activity but it wasn't related to what we were learning so they just thought it was fun. Like a free day [inaudible]
226		BK	I had a lot of trouble with the tasks because in my district, I teach $9^{\text {th }}$ grade now. So we were like okay, towers? No. with the videos presented; the kids remember the cubes but they don't remember any sort of a method or technique.
227		UCT	Right Yep!
228		NV	That was the whole issue with the video like I was saying earlier. You see Stephanie as a small child that is very engaged, and questioning and she's energetic and you see another video of her when she is in high school and they ask her oh what about this and she says I don't know. I don't remember.
229		BK	Yeah! When I got to high school, I didn't feel so bad anymore!
230		R4	Do you teach high school?
231		BK	Yeah.
232		R4	What grade?
233		BK	Grade 9. I used the tasks with... not with my main algebra kids I used them with my enrichment classes only because that was the only place I could squeeze problems like these. Especially with the lower kids, and like I said they remember using cubes but they do not remember anything else about the task and it was a distractor.
234		R4	Now is enrichment class another class besides their math class?
235		BK	It is.
236		R4	It is.
237		BK	So it is in addition to you know their algebra block but if they score don't score a proficient on the NJASK, they are placed into this supplemental class.
238		R4	Oh, so it is a supplemental class.
239		BK	They are required to take it. [inaudible] They get placed in it based on their test score. They lose an elective.
240		R4	And you only can do math in there or can you do other subjects?
241		BK	Only mathematics, Right.
242		R4	Okay.
243		BK	This is fine but like I said. I can use these problems when I finish a chapter like writing equations or graphing

Line	Time	Speaker	Transcript
			equations. I can use this as like a day in between. Otherwise you are doing it in the middle of it won't make sense.
244		R4	So you are saying you are trying to find a way to connect these tasks to what's being taught in the curriculum or tested.
245		BK	Basically yeah.
246		R4	So Pascal's triangle is not something....
247		BK	I would not come across that in enrichment class. No. I could have done this with my algebra but I have a block class that I meet every other day and that pacing guide is a lot more rigorous but I would not be able to fit something in like this every day. Hopefully I have kids that were in both classes and when we get to something like Pascal's triangle, they might be able to make the connection.
248		R4	I completely understand. I also teach high school. So, I understand your position.
249		BK	Motivation is lacking for sure. So when I saw Stephanie as a high school student that was very pleasing because I didn't feel bad.
250		R4	Okay, anything else that this group wants to add that maybe we can find a way to help you with resources or whatever...
251		JU	The tasks that were given, we are a $6,7,8$, high school, there are different teachers in our cohort. And maybe they can make like a pool of tasks we can choose from that are more like aligned to maybe what we do. Depending on whether you are from September to December or January to March for Fall and Spring semesters that lies with Common Core. Because if you teach the same grade, We are supposed to be doing the same thing at about the same time. So if there was more tasks that the cohort can choose from, then they can pull it and it would fit more seamlessly into the curriculum. So you can have it be part of the curriculum and have an open-ended discussion so that is my suggestion.
252		R4	Okay. Good. Those are all great suggestions. Thank you!
253	01:09:22	R2	I think we will start with the group in the back by Solariz [group called back] Just start talking...remember the question: something that was important to you about students' reasoning about mathematics with any examples that you might have.
254		VB	I don't know if mine is an example but I was just impressed with my one group of students are pretty low functioning how they organized their 3 groups which they

Line	Time	Speaker	Transcript
			were very disorganized and when I came over, they had the constant, um the top one, like blue blue, red yellow. So I was pretty impressed with that because they figured out how to...had a disorganized mess and they put it together like that. And then they could see like that had 2 groups of 9 and one group of ten. And I didn't really prompt them that much. Well if you have two groups of 9 and you have 3 colors. Why do you think we have this extra group of ten? And they were able to come up with if they had a duplicate. They didn't really give me a detailed explanation. But I was just proud of them that they could figure it out on their own.
255		R2	And they began with a strategy of holding a constant.
256		VB	Yeah.
257		R2	How about other people?
258	01:10:40	NV	Yeah. Solaris and I kind of came up with the same thing. We would agree once the other one started talking. It was interesting for us to see is that when you looked at how the kids organized the towers when they were completing... It was either both tower activities, the first and the third. But how they grouped certain towers that they believed belonged in a...yeah together and again it goes back to what I said earlier. It may not be how I grouped them but once you ask them what was your thinking with this group? Why is this a group and why is this particular tower not a part of the group? And they offer that explanation, they were right. It was just a different approach than what others or including myself would have come up with.
259	01:11:35	R2	I think that is really interesting. And maybe somebody... I can't remember if it was the interview in Brunswick or Edison or if it was the interview in wherever the other one was [laughter] but in one of those 2 interviews, when we asked the kids, was it yours? Or was it yours? When they asked the kids to compare tasks, they were saying that this one which was Ankur's challenge was so much easier for them. Was that in your group? And in your school? And it blew my head because they were saying it was so much easier than the four tall with 2 colors, selecting from 2 colors. And they said this one was so much easier. After they had gone through all this stuff that had been so challenging to you in terms of solving Ankur's challenge. And they found it easier for exactly that reason because all of a sudden well not all of a sudden; but over what they had been doing. They had begun to think about strategies

Line	Time	Speaker	Transcript
			like what you were just describing. Okay we are going to hold these red ones constant and work with them that way. Which they didn't do for the first one. Okay, that's really interesting. How about this group? What did you learn?
260	01:13:14	UCT	My group thought that it was interesting how they did the first tower task, most of my students either didn't organize or just did opposites. Um and then obviously like with some teacher prompting they reorganized them to a way that they could prove that there weren't anymore But then when I did the 3 tall with the 3 colors, they got it so quickly and they immediately went to multiplication. They didn't have the exponents but they were doing 3 times 3 times 3, and they could explain to me what two of the those three 3's stood for. We hadn't talked about the towers at all and so it was interesting to me that they made this huge jump. That I don't know where it happened, but it was really good thinking then I had two students that could actually explain to the class the exponents behind it. So it was very interesting because we hadn't discussed it at all. Somehow they pulled it out where they did it the first time. So...
261	01:14:08	R2	What else?
262	01:14:10	ES	It was neat to go back and look at the kids work. And kind of at that point see some connection between what they did on the first task and the second task; and the first task to the third. And really see the way there were commonalities and how they were um...approaching it. Um we have this new rotate and drop schedule in our school and my kids coined this phrase when using our rotate strategy. So they had figured it out the first time, and then they just kept talking and talking about that because of the tasks.
263	01:14:45	R2	That is really interesting. Can you explain what the rotate strategy was?
264	01:14:50	ES	Yeah. So, for our schedule, you know there is 8 classes but 2 drop every day. One in the morning and one in the afternoon, and then they pick up the next day at the top and then they just keep moving so you never have the same kids at the same time of day. And so their classes are constantly moving and they made that connection to the towers that this yellow block on the top is now in the middle and is now at the bottom. And now it is back at the top, and I can't move it again because they are four-tall or you would be back at the top again.
265	01:15:26	R2	Did ahh.. you know that is really interesting. And in so

Line	Time	Speaker	Transcript
			many of the classes where other, I don't know if Judy,... whether it was yours...so many of the students really solved those towers both with 3 colors and also with especially with 2 colors. Uh as what we call rotational groups. And so they would lump em together. They would say oh don't you see these four towers that if you take the top one off and put it on the bottom, or the other way, whatever and you keep doing that. You get back to where you started which means you can't have any more in that group. And then they move to another one, and they do the same thing. So what you just gave me as information as maybe it is because of your schedule ...
266	01:16:17	ES	And they told it to me. They said well this is like our schedule. Remember, so like for the third task ... remember we talked about that. [laughter] It is the rotation strategy. I am like okay! [laughter\}
267	01:16:31	R2	There's the metaphor! What about you guys?
268	01:16:35	HS	Um, I saw growth, between the first tower task and the...the third tower task as well. It wasn't quite as much growth as Brittany's saw with her kids but when they first did um the tower activity. They just went at it and they built them and used opposites to check and make sure that they had them all and there were no duplicates. By the time they got to the third task. Um which was towers as well but then I had students who were creating groups. Um and like Natalie said they weren't grouped the way I would group them but they were able to name the groups and explain like this is why these belong together and they were able to use that as a strategy for checking. So it is nice to see that you know we went from very loose organizational strategy and just using uh opposites to check to having now I have an organization system that will help me to confirm that I have them all and there are no duplicates.
269	01:17:29	R2	What about organizational structures for the pizza problem? Was it among all your students was it different from the others?
270	01:17:44	DH	Well for the first ones for the pizzas. I had a lot of kids just started just trying to make pies and like drawing circles for pies. After like 5 or 10 minutes, they were kind of like this is dopey and I am not doing it. Because all they really were doing is they were just writing out a pie and writing pepperoni, sausage mushrooms and they realized they didn't have to keep making a circle for the pie over and over again. But I mean Solaris do you want to talk about

Line	Time	Speaker	Transcript
			the connection? Because I think everyone should hear about this. We had this wonderful student in Solaris' class.
271	01:18:16	SO	Um I had a Brandon in my class who...
272	01:18:18	DH	Way smarter than Brandon! [laughter]
273	01:17:21	SO	Who was able to make a connection between the pizza task and the towers problem and I was definitely blown away because I said it's not the same problem. It's not related at all. And he is like...yes it is! And he was able to um to explain it to probably almost every single teacher that was there and that's why Dan said before he probably wanted to throw something because he had to explain it over and over because we were so impressed that we wanted him to share with everyone. But he visualized um the toppings being the towers and having a certain topping be um a certain position in the tower. And then the colors being either being the actual topping being that they were being the absence of the topping and he was able to explain that and that was great to see him make that connection which is why I featured him in my portfolio!
274	01:19:18	DH	It was awesome Solariz because we got to the point where Dr. Alston asked where is pepperoni and sausage? And he was like here. Where is sausage mushroom? And it was kind of like duh.. they are right here! What's wrong with you guys? [laughter] We would be like uh this one? And he was like no, that one. But he was flying through it. It was amazing.
275	01:19:46	NV	I am trying to think who's class we were in.
276	01:19:59	HS	It was me! Where he made the pyramid?
277		NV	No. Where the kid made he invented his own pizzas and he combined it was mush pepperoni. [Ohhh-multiple unison responses and conversations inaudible] Yeah. It was the way he was organizing it.
278		UCT	It might have been mine. I didn't write a paper so he didn't have the solution.
279	01:20:19	R2	Oh and we were looking at his work. It was when we were studying pizzas.
280		HS	Yeah he made up his own pizzas and a name.
281		R2	At this point, before I move back over here in terms of that I have my two high school teachers, Alice and Bhupinder, how would you respond to this or any of the questions?
282	01:20:44	A	The pizzas? Towers?
283	01:20:45	R2	No the question about kid's reasoning strategies and any changes?
284		A	Um...I'll be honest, my kids did not show like any reasoning. I really had to explain...

Line	Time	Speaker	Transcript
285	01:21:00	BK	We both mutually decided how to use these tasks because being at the high school level, and throwing it into one of our regular classes it was too hard to you know put it in the pacing guide. So Alice and I both teach an enrichment class which I guess if you want to think about the kids who have not passed the state test the year before. They get an additional class.
286	01:21:21	R2	So it is not really enrichment. It's remedial.
287		BK	Well I guess so. So we were able to use the tasks like in between chapters like starting or ending a chapter before starting the next one. So that way it would not mess up the whole constant flow. But um yeah obviously we had like the lower level kids so the reasoning with them was not the same as what we saw on the videos or what we saw in the regular general ed. classes. Like I used the first few tasks, shirts and pants and the first towers task and maybe one student in a class of 18 was able to get the answer.
288	01:22:00	A	I agree.
289	01:22:01	BK	So the reasoning was a lot different. I had to work on them with their organization skills as a way to guide them through their problems. Because they didn't understand the convincing part. Like they were like How can I use organization to convince you about a math problem. And I was like no you are proving to me that you have taken care of all the possibilities. And that's when they started realizing like okay so this is the way I should go. So at one point what I did with the pizza problem with them and that was the complicated one, it was four toppings, and he said you could do it on a whole pie or a half a pie or the mix and matching of all that. And I showed them the way we did it together in class in terms of our organization. And thereafter, their towers their reasoning got better with organizing it. But prior to that, being that they were the lower level kids. They struggled a lot. Even shirts and pants, like shirts and pants hey did tree diagrams and as soon as we started pizza problem, they wanted to do tree diagrams. And it got too overwhelming for them to even realize what they were doing.
290	01:23:08	R2	So even with the ability to select an appropriate strategy....is something uh... and yet doesn't it make you feel uh sort of surprised that they came up with it.
291	01:23:23	UCT	A little bit.
292		R2	So here we have talked about kids that are from that strata of class who surprised you and did very, very well. And yet something is happening or something is not happening

Line	Time	Speaker	Transcript
that that there is discovery.			
293	$01: 23: 45$	A	They really get they get frustrated I think like just our lower levels and we are not at the same school district but we have the same type of classes. Um, they get very frustrated when you expand a problem at all. Like in any way shape or form. So like if I gave them, everything from the very beginning. And they created whatever they could, they came up with whatever they could most of the time it was just random. And then I would say to them, about half-way through the class like to the whole class I would say okay well you guys came up with this stuff and you know how do you know. And I was trying to get them to come up with a reason. And they were like I don't know, I just did that is what came to mind. And then I would say okay well that's fine I let that go. What about grouping them into categories? That's too much. No way I can't do that. I can’t put them in categories they are all different towers. And that would be their response. So even with that of just the simple idea of making the towers and thinking about well how are they related from one I created was too much for them. And I really had to push to get them to write a sentence. Like even just a sentence. They were like no, that is not that!
297	$01: 26: 17$		
$01: 26: 19$	R2		KK

Line	Time	Speaker	Transcript
			them to write down an explanation of what they did or how they did it. It was like overwhelming for them. So I think that's going to be a test for them. You know with the common core to actually explain why it works.
299		R2	Do they even know what that means? Because I remember some of the little guys in your class. They were so little and they really had done such a good job. But for them to to... have enough confidence about themselves to say Oh, this is very obvious. You know I think rotational was one of them. Some of them said can you just put an arrow. What else while we are over here? As we go now, because we only have about 5 more minutes. And we have already done this. The last question that I asked you all was sort of about the role of the teacher and the decisions of the teacher and the tasks. We have been talking about it all morning but we are specifically talking about that right now. What other kind of... yes right here?
300	01:27:29	CP	One of the things um that I saw was growth of confidence and perseverance through the problem-solving process and in particular with the writing process of the explanation. Luckily I have a very small class. And I was able at one point to sit with my two students who were excelling in solving the problem but really couldn't get their thoughts into words. Um so I was able to sit there, kind of help them get each idea down to kind of get them started. Um I mean one of um.. my girls struggled so bad that she actually started crying at one point. Because she got so frustrated with it. Um but then to go to the third problem, the other tower problem, she didn't even really ask for much help with the writing. She kind of because I was able to sit there with her and give her such guidance with that one the first time.
301	01:28:23	R2	For the first one.
302	01:28:24	CP	Getting her thoughts into words and figuring out how to write what she is trying to say and explain. She was able to do it that much better the third time to where she didn't really ask for much help and she was able to organize it and describe them group by group. For how she grouped them and I was really happy to see that.
303	01:28:43	GH	I think I saw tremendous growth in just their understanding of the words, convincing argument. Write a convincing argument, justify the reasoning, explain your way of thinking to them in September was this is what I did step by step. And then the last task they could say I knew there were only 3 solid towers because there were 3 colors. Like

Line	Time		Speaker
$\begin{array}{l}\text { Transcript } \\ \text { they were able to justify the reasoning and it was that } \\ \text { progression that I saw of just the understanding of what } \\ \text { that meant to convince us. }\end{array}$			
304	$01: 29: 14$	R2	$\begin{array}{l}\text { And if only those 2 high school classes had some other } \\ \text { opportunity in the years moving up where other than } \\ \text { always being hit by the word, explain. Which means } \\ \text { You were going to say..... }\end{array}$
305	$01: 29: 37$	RW	$\begin{array}{l}\text { Um, I was going to say that I did not experience some of } \\ \text { the teachers' tremendous growth because of which } \\ \text { problem I selected. But I think that from listening to the } \\ \text { other teachers reflections, I realize the importance of some } \\ \text { type of continuity. Because if I were to have chosen }\end{array}$
Ankur's challenge as opposed to the taxicab problem, I			
think my students may have experienced that but the			
problems that I chose, every session was uh like frustrating			
because it was a new problem. For the same type of			
dynamics that I experienced that I had with the first tower			
problem, I experienced with pizza, I experienced with			
taxicab. And so I am like okay this is just a challenge			
across the board. After it was all over and I took a step			
back and I am thinking that I should have chosen the			
Ankur's challenge because they may have been able to			
make that leap or to express themselves clear in their			
writing instead of all these problems being new. Because			
my thinking was that out of these three, One of them are			
going to click and they are going to get the ah ha moment.			
But...			

Line	Time	Speaker	Transcript
			out.
314		R2	But you know what I would do?
315		RW	What?
316	01:32:06	R2	Unless you think that the other thing is something that you are just going to throw out, come back to it. Come back and do the 3. [laughter] but in February sometime or maybe next school year. I haven't heard from this table at all about...
317		RW	Next year.
318	01:32:19	R2	but in February sometime or maybe next school year. I haven't heard from this table at all about...
319	01:32:33	MM	I just want to make a comment about somebody said that the students didn't think it was math writing down their reasoning. Cause I find that I did the problems with gifted and talented students. And I found that they struggled as well with writing down their reasoning. They all saw it was four times four and then they said they found the 16 towers by doing four times four. That's not how they got the 16 towers but I think that they grasp onto a process because we kind of trained them to think math is just plugging and chugging. And here is an equation, solve the problem, don't explain your reasoning, get the right answer. And now when we try and incorporate more with the Common Core, more of the mathematical practices, students are use to math being and especially the gifted and talented students I think that they... I think that is why they like math so much because it's just doing something that...
320	01:33:33	R2	Can I ask you as teacher questioning...when they all see that four times four [laughter] what did they say with 3 colors?
321	01:33:44	MM	Um they said it was 3 times 3 times 3 .
322		R2	No, no, no. I am talking about when you make.. I mean that is the reason we start with towers four tall because almost always they say four times four is 16 which is the reason that you don't start with the little ones and get bigger. Bu then when you can say what about selecting from two colors when you are building them 3 tall? Almost every child probably said 9 and they did it in every class we went to said 9. And then you say well find them. And then they come up with saying there are 8. But then they say it has to be an even number. Because of the opposites which is great and so it is 8 . And then when you say what about when there are 5 tall? They all still want to say 25 , well it has got to be even, so 24 . And then you begin to build so that they can see that four times

Line	Time	Speaker	Transcript
			four...you understand what I am saying? And so just to reflect back on the nature of the tasks and the nature of the questioning in it. And I am so glad that you brought that up! What else from this group?
323	01:35:15	UCT	Well I noticed that when my students feel success in doing the tasks. Because when we did the last task with Ankur's challenge, I hadn't heard a single question, am I doing this correctly? For the first task, is this correct? For the second task pizza is this correct? For the last one, Ankur's challenge, okay this is what we did and this is why we did it.
324	01:35:41	UCT	Wow![some hand-clapping]
325	01:35:42	R2	What a wonderful way to finish! But I know in both of the central and northern regions that we were so surprised at the number of different methods those kids had in Edison and in Lyndon and more than we did. When we did it, we made it a very fruitful problems and which is what does the task have to do with it. The fact is that almost all of them got the 36 relative but for them the 36 wasn't the answer. But this is really great! Okay so in our final 5 minutes Marjory is going to talk to you a little bit about.
326	01:36:44	R3	Sure, I have a bunch of things to cover so. Okay. You know that there is a post test that you all need to do.

[^0]: ${ }^{1}$ The research was supported by grants from the National Science Foundation: (DR:-0822204, REC 9814846, dIIS-1217087, directed by C.A. Maher, and MDR 9053597, directed by R. B. Davis and C.A. Maher).

[^1]: ${ }^{2}$ EXP: Constructing Multimedia Artifacts Using a Video Repository, Award IIS-1217087 was supported by grants from the National Science Foundation, C. A. Maher (PI), C. E. Hmelo-Silver, G. Agnew, and M.Palius.

[^2]: ${ }^{3}$ NJ Partnership for Excellence in Middle School Mathematics was supported by a grant from the National Science Foundation, Award DUE-0934079 (with A. Cohen (PI), C. A. Maher, J. W. Bennett, J. Coleman, and R. M. Beals). Any opinions, findings, conclusions, and recommendations expressed in this proposal are those of the author and do not necessarily reflect the views of the National Science Foundation.

[^3]: ${ }^{4}$ The Video Mosaic Collaborative (VMC) is a research and development project sponsored by the National Science Foundation, award DRL-0822204 directed by Carolyn. A. Maher, Rutgers University. Any opinions, findings, conclusions, and recommendations expressed in this proposal are those of the author and do not necessarily reflect the views of the National Science Foundation.

[^4]: ${ }^{1}$ Building Towers, Selecting from two colors for Guess My Tower, Clip 2 of 5: Does the Number Double? [video]. Retrieved from: http://dx.doi.org/doi:10.7282/T32V2FBZ

[^5]: ${ }^{2}$ This work was partially supported by a grant from the National Science Foundation, REC-0309062 (directed by Carolyn A. Maher, Arthur B. Powell, and Keith Weber). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of the National Science Foundation.

[^6]: ${ }^{1}$ NJ Partnership for Excellence in Middle School Mathematics was supported by a grant from the National Science Foundation, Award DUE-0934079 (with A. Cohen (PI), C. A. Maher, J. W. Bennett, J. Coleman, and R. M. Beals). Any opinions, findings, conclusions, and recommendations expressed in this proposal are those of the author and do not necessarily reflect the views of the National Science Foundation.
 ${ }^{2}$ Video Mosaic Collaborative was supported by a grant from the National Science Foundation, Award DRL-0822204 directed by C. A. Maher, Rutgers University. Any opinions, findings, conclusions, and recommendations expressed in this proposal are those of the author and do not necessarily reflect the views of the National Science Foundation.

[^7]: ${ }^{1}$ A description of the heuristics/strategies is provided in chapter 3.

[^8]: i
 i
 i

