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ABSTRACT OF THE DISSERTATION 
 

Multiscale constitutive modeling of 

graphene-based and multiferroic composites 

by  ROOHOLLAH  HASHEMI 

 
Dissertation Director: 

Dr. George J. Weng 

    The main focus of this thesis is on the constitutive modeling of two important classes of 

advanced functional materials, that is graphene-based nanocomposites and piezoelectric-

piezomagnetic multiferroic composites. Along the way, several related issues with complex 

physical nature are essentially examined from a continuum-based viewpoint. Our study 

begins with the development of a homogenization scheme with several desirable features for 

determination of overall magneto-electro-elastic response of multiferroic composites 

containing periodic distribution of multi-inhomogeneities. The accuracy and applicability of 

proposed theory is verified through consideration of several examples of three-phase 

multiferroic composites with complex microstructures. Besides, the strong dependence of 

overall behavior of composites on the microstructure parameters, such as the interface 

condition, thickness, eccentricity and material properties of core inhomogeneities and their 

coating layers is well demonstrated. Through the second part of this investigation, we offer a 

robust analytical methodology to determine the magneto-electro-elastic scattered fields of a 

shear wave induced by a two-phase multiferroic inhomogeneity within a transversely 

isotropic piezoelectric or piezomagnetic medium. To put its wide range of applicability in 

perspective, the developed theory is applied to several descriptive examples with various 
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degrees of complexities. The numerical results thoroughly illustrate the influence of material 

properties of constituent phases, the thickness and eccentricity of coating layer, and the 

frequency of propagating SH-wave on the scattered fields induced by the multiferroic fiber. 

In the third part of this thesis, we aim to uncover how the imperfect load transfer at the 

graphene–matrix interface can affect the time-dependent viscoelastic response of 

graphene/polymer nanocomposites. To this end, different interface models are formulated 

within the framework of Mori-Tanaka homogenization theory. Through consideration of 

different sets of experimental data we demonstrate that, by adopting the weakened interface 

models in our homogenization theory, the quantitative behavior of creep response of 

graphene/polymer nanocomposites can be well captured. In addition, both stress relaxation 

and stress–strain relations are also found to greatly depend on the interface condition. In the 

closing part of this investigation, the effective electrical conductivity and permittivity 

constants of graphene/polymer nanocomposites are examined via the effective-medium 

theory. To do so, the microcapacitor and electron tunneling activities are taken as two 

interfacial processes that depend on the volume concentration of graphene fillers, and can be 

well modeled in a phenomenological way. The proposed model is shown to be able to 

successfully recover the experimental data of nanocomposite samples in AC electrical 

settings. 
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Chapter 1. 

Introduction 

 

1.1. Multiferroic composites 

The first focus of this thesis is on the study of multiferroic composites. These advanced 

functional materials usually consist of a piezoelectric phase (i.e. BaTiO3, PZT, etc) combined 

with a piezomagnetic material (i.e. CoFe2O4, Terfenol-D, etc). In the recent years, 

multiferroic composites have attracted tremendous attention from academic and industrial 

point of views due to the coupling effect among their elastic, electric and magnetic fields. As 

the most fascinating feature of these functional materials, they exhibit the magneto-electric 

coupling even though this effect is absent in their individual piezomagnetic and piezoelectric 

constituent phases. As schematically shown in Fig. 1.1, this magneto-electric coupling 

phenomenon results from the “product properties” of multiferroic composites (Van Suchtelen, 

1972; Nan et al., 2008): an applied electric field generates a deformation in the piezoelectric 

phase, which in turn generates a deformation in the piezomagnetic phase, giving rise to the 

magnetization. Noteworthy to mention that the magneto-electric coupling effect of a 

multiferroic composite can be achieved even at room temperature, whereas similar coupling 

phenomena in single-phase magneto-electric materials is often observed only at very low 

temperature. Such a strong magneto-electric coupling behavior of multiferroic composites is 

a key factor for their broad potential applications in new multifunctional materials and 

devices, such as four-state memories, low-power systems, magnetically controlled opto-
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electric devices, and smart sensors. Inspired by these applications, numerous studies in the 

literature are concerned with the determination of overall properties of multiferroic 

composites, in particular, their magneto-electric coupling moduli. It is further notable that, as 

a well-established phenomenon, the bond quality between inhomogeneities and surrounding 

matrix plays a significant role in microscopic fields and overall macroscopic response of 

multiferroic composites. In addition, thanks to recent advances in coating technology, a 

single or multiple active coating layers can be applied to inhomogeneites in order to achieve 

a better design flexibility and tailor the effective magneto-electro-elastic properties of these 

materials. In view of the physical contributions that can be made by the coating layers, the 

development of theoretical models with interphase effects then seems to be inevitable for the 

appropriate treatment of a real multiferroic composite. This is the first concern of this thesis. 

 

 
 

Fig. 1.1.  Schematic illustration of magneto-electro-elastic coupling in multiferroic composites. 
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1.2. Graphene nanocomposites 

Discovery of graphene and the subsequent development of graphene nanocomposite have led 

to a significant impact on the material science and technology (Novoselov et al. 2004; 

Stankovich et al., 2006). Graphene, a two-dimensional monolayer of sp2-bonded carbon 

atoms, exhibits a range of remarkable properties, including: exceptional Young’s modulus (~ 

1 TPa), high tensile strength (~ 130 GPa), excellent thermal conductivity (~ 5000 w/mK), 

superb electrical conductivity (~ 104-105 S/m), and high surface area (~ 2600 m2/g). These 

outstanding properties of graphene make it the basic building unit for an important family of 

nano-sized fillers, including: graphene nanosheet (GNS) which is a single or few-layered 

graphene sheet, and graphene nanoplatelet (GNP) which is a stack of multiple graphene 

layers. In fact, graphene can be considered as the most fascinating choice to enhance the 

thermal, electrical and mechanical properties of a broad range of materials, such as polymers, 

metals, and cement (see Fig. 1.2 for the morphology of a graphene-based material). In the 

context of electrical properties, the addition of highly conductive graphene fillers into 

polymer matrix has stimulated a surge of scientific interests from the research communities. 

It is noteworthy that there is a great demand in the electrical industry for flexible polymeric 

composites with excellent electrical performance and proper mechanical strength. The 

polymeric materials are insulator which can be made conductive by adding a large volume 

fraction of conventional conducting fillers in micrometer size, such as metal and graphite 

particles. However, the high loading of these fillers results in low mechanical strength, heavy 

weight and poor processability. In view of these shortcomings, highly conductive graphene 

fillers can be incorporated as alternative reinforcements to form the flexible functional 
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materials with desirable electro-mechanical properties. In this novel class of lightweight 

materials, the graphene fillers begin to contact to each other at a very low volume 

concentration, known as percolation threshold, owing to their extreme geometries. This 

process leads to the formation of percolating networks and micro-capacitor structures 

throughout the entire material, which eventually results in several orders of magnitude 

increase in the effective electrical properties of graphene nanocomposites. In the light of this 

unique characteristic, the graphene-based reinforcement of polymer materials has found a 

great potential application in sensors and stretchable electronics, electromagnetic shielding, 

super-capacitors, etc. As a result, a large number of conductive nanocomposites have been 

fabricated and characterized by incorporating graphene fillers in different polymeric 

matrixes, such as epoxy, polypropylene, poly(vinylidene fluoride), polystyrene, etc.  

 
Fig. 1.2. Schematic illustration of a graphene-based nanocomposite, showing graphene fillers 

with idealized disk-like microgeometries (FESEM image of GNP is from King et al., 2015). 
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Inspired by the unique properties mentioned above, a quantitative prediction on the overall 

mechanical and electrical behavior of graphene nanocomposites is essential. However, an 

accurate modeling of these materials is challenging due to the complex nature of existing 

physical processes. Because of the multi-scale nature of this problem, the other difficulty lies 

in relating the microscopic characteristics of their internal microstructures to the macroscopic 

properties of interest. For instance, the numerical contrast of graphene electrical conductivity 

compared with most polymers is in the order of 1012-1021. Moreover, the aspect ratio and 

surface area of graphene is very large in comparison with conventional fillers. Therefore, 

from the continuum prospective we are dealing with a high contrast and high aspect ratio 

problem which is dramatically different from the classical cases. A thorough investigation of 

literature reveals that although considerable experimental efforts have been made in 

exploring the properties of graphene composites, the theoretical and computational studies on 

these materials are rarely reported. As the most common computational treatment for this 

class of problems, Monte Carlo (MC) and Molecular Dynamics (MD) methods have been 

employed to study nanocomposites. These methods can provide a valuable insight into the 

microscopic processes; however, the high computational expense undermines their capability 

for the simulation of systems where fillers have extreme range of geometry and material 

properties. Recognizing the potential gain that theoretical models can deliver, it will be 

greatly beneficial to adopt them for studying the physical characteristics of graphene-based 

nanocomposites. This is the second focus of this thesis. We then aim to utilize some 

continuum-based theories for examining the effective viscoelastic and electrical properties of 

graphene/polymer nanocomposites. 
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1.3. Thesis outline  

This is the outline of succeeding chapters. Through Chapter 2, we first develop a robust 

homogenization scheme with several desirable features to determine the effective magneto-

electro-elastic properties of periodic multiferroic composites with multi-phase 

inhomogeneities. The theory is then applied to a wide range of problems to examine the 

influence of a variety of microstructural parameters on the overall behavior of multiferroic 

composites. Chapter 3 is devoted to a study on the scattered fields of a time-harmonic shear 

wave by an eccentric two-phase multiferroic fiber embedded in a third phase piezoelectric or 

piezomagnetic medium. For the theoretical treatment of such a complex dynamics problem, 

we then offer a new micromechanics-based approach formulated within a rigorous 

mathematical framework. Chapter 4 is concerned with the influence of imperfect interface 

condition on the overall viscoelastic response of graphene/polymer nanocomposites. To this 

end, we develop a novel theory that embody the most essential features of nanocomposites, 

i.e. the time-dependent viscoelastic behavior of polymeric matrix, the anisotropy of elastic 

graphene fillers, and the imperfect load transfer at the filler-polymer interface. In Chapter 5, a 

continuum-based theory for determination of the effective electrical conductivity and 

permittivity constants of graphene-based nanocomposites is developed. Along the way, upon 

statistical modification of interfacial properties of graphene fillers, we plan to model the 

microcapacitor and electron tunneling activities in a phenomenological way. At the end, 

Chapter 6 gives a brief overview of the future research possibilities in the field of graphene-

based and multiferroic composites.    
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Chapter 2. 

Multiferroic composites with periodic  

multi-phase inhomogeneities 

 

2.1. Overview  

As mentioned earlier, one of the most intriguing features of multiferroic composite is the 

presence of magneto-electric coupling coefficient, even though none of constituent phases 

possesses such a property. The magnitude of this coupling constant depends on many 

microstructural parameters, such as material property, volume concentration and 

configuration of fibers/particles, and the bound quality at inhomogeneity-matrix interface. 

Inspired by the potential applications of multiferroic composites, numerous studies in the 

literature are concerned with the determination of overall properties of these functional 

materials, in particular, their magneto-electric coupling moduli. For instance, the mean field 

models have been employed by Li & Dunn (1998), Huang (1998), Li (2000) and Srinivas et 

al. (2006) to estimate the effective properties of multiferroic composites. Benveniste (1995) 

employed a formalism approach discovered by Milgrom & Shtrikman (1989) to obtain the 

exact relations for the effective moduli of a multiferroic with cylindrical fibers. Nan (1994) 

and Huang & Kuo (1997) adopted the Green’s function approach to study the overall 

behavior of a fibrous multiferroic composite. In addition, a two-scale homogenization theory 

was employed by Aboudi (2001) to study the magneto-electro-elastic coupling and cross-

property connections in a two-phase composite. Liu and Kuo (2012) developed the 
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micromechanical approach of E-inclusions to determine the effective properties of fibrous 

multiferroics. Moreover, the finite element method (FEM) was developed by Liu et al. (2004) 

and Lee et al. (2005) to address the periodic multiferroic composites with general 

microstructures. 

All foregoing investigations are based on the simplifying assumption of the two-phase 

models with an abrupt inhomogeneity-matrix interface. However, it is greatly known that the 

bond quality between inhomogeneities and surrounding matrix plays a significant role in 

overall response of composite materials. The consideration of three-phase models with 

interphase effect then seems to be inevitable for the appropriate treatment of a real 

multiferroic composite. It is notable that, often, a transition zone with weakened material 

properties undesirably forms between reinforcements and the host matrix, as a result of the 

chemical interactions during the manufacture process of composite material. In other 

situations, the reinforcing fillers can be intentionally coated by interphase layers to improve 

the bonding strength. The interphase layers may have constant properties or spatially varying 

properties (Kuo, 2011; Hashemi et al., 2010 & 2015). Thanks to recent advances in coating 

technology, a single or multiple active coating layers also can be applied to inhomogeneites 

in order to achieve a better design flexibility and tailor the effective magneto-electro-elastic 

properties. In view of the physical contributions that can be made by the interphase layer, a 

number of theoretical investigations have paid special attention to this topic. For instance, 

Tong et al. (2008) adopted the generalized self-consistent method, while Camacho-Montes et 

al. (2009), Espinosa-Almeyda et al. (2011, 2014) and Guinovart-Díaz (2013) employed the 

asymptotic homogenization method to calculate the effective magneto-electro-elastic 
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properties of composites containing coated fibers. The classic Rayleigh’s formulism was 

generalized by Kuo (2011) and Kuo and Pan (2011) to determine the overall behavior of 

composites with multicoated fibers under anti-plane shearing and in-plane electro-magnetic 

fields. Wang & Pan (2007) and Dinzart & Sabar (2011) applied the Mori-Tanaka model in 

conjunction with two different approaches, i.e. complex variable method and Green’s 

function technique with interfacial operators, to determine the overall behavior of 

multiferroic composites with thinly coated inhomogeneities under anti-plane mechanical and 

in-plane electro-magnetic loadings. Yan et al. (2013) developed the eigenfunction expansion-

variational method (originally formulated by Yan et al., 2011) to address the anti-plane 

coupling problem of a three-phase multiferroic composite containing coated circular fibers 

with periodic distributions. In addition, Kuo & Peng (2013) and Wang et al. (2015c) adopted 

a two-level recursive Mori-Tanaka model to assess the interphase effect on the magneto-

electric coupling coefficients of multiferroic composites with random microstructures. All of 

these studies have demonstrated the significant impact of imperfect interface condition and/or 

the influence of active coating layer on the overall response of fibrous multiferroics. 

This chapter intends to develop a homogenization scheme for determination of the effective 

magneto-electro-elastic properties of a periodic multiferroic composite with general multi-

inhomogeneites. The proposed methodology is quite robust, so that it can be applied to a 

wide range of complex systems where the coating layers do not have to be thin, the shape and 

orientation of the core particle and coatings do not have to be identical, their centers do not 

have to coincide, their magneto-electro-elastic properties do not have to remain uniform, and 

the microstructure can be with the 2D elliptic or the 3D ellipsoidal inhomogeneity. Present 
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theory with such a desirable features is achieved based on the theoretical framework of 

Shodja & Roumi (2005) in conjunction with the superposition procedure of Kargarnovin et 

al. (2011) extended here for the treatment of magneto-electro-elastic multi-coated 

inhomogeneities. The development starts from the local equivalent inclusion principle 

through the introduction of the position-dependent equivalent eigenstrain-electric-magnetic 

fields. Then with a Fourier series expansion and a superposition procedure, the volume-

averaged equivalent eigenfields for each domain of multi-inclusion systems are obtained. 

This approach is very efficient regardless of the number of phases of the reinforcing particles, 

and yields accurate values of the eigenfields at any desired domain. The results for local 

fields over the constituent phases in turn are used in the energy equivalency criterion to 

determine the effective magneto-electro-elastic properties of composite material. To 

demonstrate wide range of applicability of this scheme, it will be applied to examine the 

properties of several multiferroic composites with different microstructures. The calculated 

results reflect the complex nature of interplay between the properties of core, matrix, and 

coating, as well as whether the coating is uniform, functionally graded, or eccentric.  

In what follows, an inhomogeneity is a subdomain of a medium whose magneto-electro-

elastic properties differ from its surrounding matrix; in contrast, an inclusion is a subdomain 

having the same material properties of as those of matrix, but possessing the eigenstrain-

electric-magnetic fields.    
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2.2. The theory 

Consider a multiferroic composite material which contains periodically distributed 

piezoelectric (or piezomagnetic) multi-inhomogeneitis of common geometry and dimensions 

within a piezomagnetic (or piezoelectric) matrix. The possible microstructure of inner 

particle (denoted by 1 1  ), and its surrounding coating layers (denoted by , 2,3,...,N  

) are depicted in Fig. 2.1(a). In view of such a multi-layer morphology for the inhomogeneity 

system, the sequence 1 2 1
, , ,

N

N 
   


  forms a set of nested ellipsoidal domains. The 

core and its coating have arbitrary material properties, positions and aspect ratios. It is 

notable that the individual piezoelectric and piezomagnetic phases of composite material has 

the usual electro-elastic and magneto-elastic coupling, respectively, but neither has the 

magneto-electric coupling. The multiferroic composite, however, has it. As a result, it is more 

convenient to write the set of constitutive equations for the constituent phases in its general 

form that also include this magneto-electric coupling term. In this light, we adopt the 

following coupled relations  

,

,

,

ij ijkl kl kij k kij k

i ikl kl ik k ik k

i ikl kl ik k ik k

C e E q H

D e E H

B q E H

 

  
  

  

  
  

 
(2.1) 

for the piezoelectric, piezomagnetic, and multiferroic responses. The constitutive equations 

involve 6 physical field quantities, i.e., mechanical strain ij  and stress ,ij  electric field Ei 

and displacement field Di, and magnetic field Hi and flux density Bi. The moduli ,ijklC  ij  

and ij  are, respectively, the elastic stiffness tensor, electric permittivity and magnetic 

permeability tensors. ij is the magneto-electric coefficient tensor, and ijke  and ijkq  are 
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piezoelectric and piezomagnetic constant tensors, respectively. In the following analysis, it is 

convenient to write all magneto-electro-elastic moduli in a unified fashion. To this end, we 

call upon the notations introduced initially by Barnett and Lothe (1975) for the treatment of 

piezoelectric materials, and generalized later by Alshits et al. (1992) to involve the magneto-

electric coupling. This notation is identical to the conventional notation with the exception 

that lowercase subscripts take the range from 1 to 3, while the uppercase subscripts range 

from 1 to 5, with the subscripts 4 and 5 referring to the electric and magnetic quantities, 

respectively. The repeated upper case subscripts then are summed over 1 to 5. According to 

this notation, the field variables of material take the following shorthand from:  

, 1,2,3,

, 4,

, 5,

ij

iJ i

i

J

D J

B J





 
      

, 1,2,3,

, 4,

, 5,

J

J

u J

U J

J





 
       

, 1,2,3,

, 4,

, 5,

Mn

Mn n

n

M

Z E M

H M

 
  
 

 (2.2) 

As a result, the general form of the linear constitutive relations can be written as: 

,iJ iJMn MnL   (2.3) 

in which  

, , 1,2,3,

, 1,2,3, 4,

, 1,2,3, 5,

, 4, 1,2,3,

, 5, 1,2,3,

, 4, 5,

, 5, 4,

, 4, 4,

, 5, 5.

ijmn

nij

nij

imn

iJMn imn

in

in

in

in

C J M

e J M

q J M

e J M

L q J M

J M

J M

K J M

J M









 
  
  


  
  
  

  
  


 

                                                      

(2.4) 

stands for the generalized moduli tensor of corresponding phase. In the light of this 

contracted notation, the magneto-electro-elastic moduli tensor of matrix is denoted by ,m
iJMnL  
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and the properties of the th phase of multi-coated inhomogeneity is differentiated with the 

corresponding superscript, as iJMnL  stands for the moduli tensor of  , 1,2, , .N    

The far-field mechanical displacement, electric and magnetic potentials prescribed on the 

boundary of multiferroic composite are given by ,o o
i ij ju x  o o

i iE x    and ,o o
i iH x    

respectively, which give rise to an overall strain-electric-magnetic field, denoted by o
MnZ , over 

entire composite material. This far-field loading will be disturbed due the presence of multi-

coated inhomogeneity in the matrix. We now adopt the Eshelby’s equivalent inclusion 

principle (Eshelby, 1957), but written for a heterogeneous medium with the coupled 

magneto-electro-elastic behavior, in order to determine the disturbed fields over each phase 

of multi-inhomogeneity system. 

 

 
                                       (a)                                           (b) 

Fig. 2.1. Schematic diagram of (a) an ellipsoidal multiphase inhomogeneity replaced by (b) an 

equivalent multi-inclusion system with proper eigenfields )Z over regions , 1,2,..., .N    

According to this methodology, we replace the multi-inhomogeneity that carry different 

moduli with the equivalent multi-inclusions with the properties of the matrix but carrying 

certain equivalent eigenstrain-electric-magnetic field, denoted by stared the quantities, 

1
1 ,  L

2
2 ,  L

, N
N

 L

1 , m L

, m
N L

2 , m L

1*( )Z

2*( )Z

*( )NZ
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) ( ) .MnZ  x  The configuration of such a multi-inclusion is schematically shown in Fig. 2.1(b). 

It is evident that, due to inter-particle interactions and the complex nature of the 

microgeometry, the eigenfield is position-dependent. The magnitude of this quantity can be 

determined on the basis that the fields in the original heterogeneous system and in the 

equivalent homogeneous system, but carrying this specified eigenfield, would be identical. 

This equivalency then holds for a proper choice of ) ( )MnZ  x  defined over region

, 1,2,..., .N    Since the multi-inhomogeneities have a periodic distribution, the associated 

equivalent eigenstrain-electric-magnetic fields can be expressed in terms of the Fourier series 

expansion, as 

) ) i( ) ( ) . ,.
Mn MnZ Z e     



 xx
 

(2.5) 

where 

) ) i1
( ) ( ) ,Mn Mn

RVE

Z Z e d
V

        .xx x  (2.6) 

and i 1  and 
is, in general, a triple summation corresponding to ( 1,2,3)i i  which 

are in turn associated with the periodicity of the eigenstrain-electric-magnetic field in the 

directions xi. Moreover, RVE stands for the representative volume element of composite 

material distributed periodically throughout the entire domain. The volume of this 

fundamental element is denoted by 1 2 3V   , in which i  is the dimension of the 

parallelepiped unit cell along the respective xi-coordinate ( 1,2,3).i   We now decompose the 

multi-inclusion into a series of single inclusion problems by means of a superposition scheme 

in which the eigenstrain-electric-magnetic of each phase is first introduced into itself, and 
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then that of the kth phase is introduced into the (k-1)th region for subtraction (Shodja & 

Roumi, 2005; Kargarnovin et al., 2011). As we count the phase outward so that the inner 

inclusion is phase 1, this introduction of the eigenfield actually starts from the outermost 

phase. The schematic representation of such a decomposition of multi-inclusion system is 

illustrated in Fig. 2.2, where the top figures indicate the introduction of their own eigenfield 

and the bottom ones with a minus sign reflect the subtraction of eigenfield from its 

immediate outer layer. 

 
Fig. 2.2. Superposition scheme for the determination of disturbed strain-electric-magnetic field. 

The multi-inclusion system has been decomposed to single-inclusions with proper eigenfields. 

 

In view of an individual single-inclusion problem shown in subfigures of Fig. 2.2, the 

eigenfield  *( ) , 1,2, ,Mn iZ i N      distributed over the ellipsoidal region j 

 1,2, ,j N   in turn produces a disturbed magneto-electro-elastic field, to be denoted by 

mLmL

1 , m
N  L

*( )NZ 1 , m L

2*( )Z

1*( )Z

1 , m L

mL

*( )NZ 1*( )N Z

1 , m
N  L

mL
, m

N LmL
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*( , )( ; ),d
MnZ  x Z in the entire body which carries the properties of the matrix, m

iJMnL . In this 

light, the magneto-electro-elastic field for such a single-inclusion system can be written as 

*( , ) *( )( ) [ ( ; ) ( )], .      m o d
iJ iJMn Mn Mn MnL Z Z Zx x Z x x  (2.7) 

which must satisfy the equilibrium equation,  

, 0. iJ i  (2.8) 

Upon substitution of expression of eigenfield from Eqs. (2.6) and (2.7) into the equilibrium 

equation, and by invoking the definition of strain, electric and magnetic fields through the 

relevant calculation process, one can arrive at the following unified expression for the 

disturbed field induced by a the corresponding single-inclusion system with periodic 

distribution,  

*( , ) *( ) i ( )1
( ; ) ( ) ( ) ,d

Mn MnKl KlZ Q Z e d
V





   



    . x- xx Z x x



  (2.9) 

where 

1

1

( ) / 2, 1,2,3,
( )

, 4,5.

m
iJMn i n MJ M nJ

MnKl m
iJMn i n MJ

L D N N M
Q

L D N M

  

 





   


  (2.10) 

In this formula, ( )D   and ( )MJN  are the determinant and cofactor of ,m
MJ iJMn n iK L    

respectively. Now, using Eq. (2.9) and with the aid of the superposition scheme shown in Fig. 

2.2, the overall disturbed strain-electric-magnetic field at every point in the matrix and the 

equivalent multi-inclusion can be written as 
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1

1

1

1
*( , ) *( , )

1 1

1
*( , ) *( , ) *( , )

1

1
*( ) *( ) i ( )

1

( ) ( ; ) ( ; )

( ; ) ( ; ) ( ; )

1
( ) [ ( ) ( )]

1

N N

N N
d d d
Mn Mn Mn

N
d d d
Mn Mn Mn

N

MnKl Kl Kl

M

Z Z Z

Z Z Z

Q Z Z e d
V

Q
V

   

   


  

 

   

 

     



  

 









 










 

    

   



 



  . x - x

x x Z x Z

x Z x Z x Z

x x x





*( ) i ( )( ) ( ) .
N

N N

N
N

nKl KlZ e d




 



   . x - xx x





 

 

 

 

(2.11) 

To obtain the equivalent eigenstrain-electric-magnetic field pertinent to the th phase, we 

now recall Eshelby’s equivalent inclusion principle in the local form 

 
 *( )

( ) ( )

( ) ( ) , , 1,2, , .










 

 

  

     

o d o d
iJ iJ iJMn Mn Mn

m o d
iJMn Mn Mn Mn

L Z Z

L Z Z Z N

x x

x x x
 

 

(2.12) 

Since only the average field is needed for the calculation of effective moduli, this local form 

can be integrated over each subdomain to yield the averaged quantities 

 
 *( )

( ) ( )

( ) ( ) , 1,2, , .



  



 



  



 

 



  

    

o d o d
iJ iJ iJMn Mn Mn

m o d
iJMn Mn Mn Mn

L Z Z

L Z Z Z N

x x

x x
 

 

(2.13) 

where the bracket 


 denotes the volume average of the said quantity over region  , 

1,2, , .N    The volume average of ( )d
MnZ x  over the th phase in turn can be evaluated 

from Eq. (2.13), as 

1

1
*( ) *( ) i

1

*( ) i

1
( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ,

N
N

N
N

N
d
Mn MnKl Kl Kl

MnKl Kl

Z Q G Z Z e d
VV

Q G Z e d
VV


 

  






 


 















      

 

 

 

.x

.x

x x x x

x x









 

 
 (2.14) 

in which i( )G e d



 

   .x x  is readily available with the aid of 
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i
3

3(sin cos )
,e d V 







  



  .x x     2 2 2
1 1 2 2 3 3( ) ( ) ( ) ,a a a       (2.15) 

where ai (i=1,2,3) are the principle half-axes of the ellipsoidal domain. Finally, substituting 

Eq. (2.14) into the second equality of Eq. (2.13), and after some rearrangement, we obtain 

1

1 *( )

1
*( ) *( ) i

1

*( ) i

1
( ) ( ) ( ) ( )

1
( ) ( ) ( ) , ( 1,2, , ),

 




 


 






 



 


 


 



 












   

      

   

 

  N
N

N
N

o m m
Mn iJMn iJMn iJKl Kl

N

MnKl Kl Kl

MnKl Kl

Z L L L Z

Q G Z Z e d
VV

Q G Z e d N
VV









 

 

. x

. x

x x x

x x x

 

 

 

(2.16)  

when this relation is written for all N subdomains, it provides N simultaneous equations for 

*( ) ,KlZ 






 which then can be solved in terms of the averaged strain-electric-magnetic field in 

the matrix. The complex structure of Eq. (2.16) suggests a method for estimating *( )
KlZ 






 

in terms of ,m
MnZ  in which the eigenfield in each phase will be replaced by its average value, 

leading to 

1

1

1 *( )

1
*( ) *( )

1

*( )

1
( ) ( ) ( )

1
( ) ( ) ( ) , ( 1,2, , ),

 



 

   



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(2.17) 

where i( ) .G e d



 

     .x x  We thus have N equations for the N unknowns eigenfields, 

*( ) .KlZ 






 The result can be expressed in the general form of 

*( ) 



 


 o

Mn MnKl KlZ T Z  (2.18) 
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where MnKlT   is eigenfield concentration tensor of the said domain. Denoting the effective 

moduli tensor of composite system by iJMnL , the general form of constitutive relation between 

the macroscopic field quantities can be written as 

.o o
iJ iJMn MnL Z   (2.19) 

As well, under a uniform far-field loading, o
MnZ the total energy of the effective medium can 

be written as: 

.
2

 o o
iJMn Ji Mn

V
W L Z Z  (2.20) 

On the other hand, the total energy of a homogenous domain, D with distribution of multi-

inclusions may be written as: 

  *1
,

2
    m o d o d

iJMn Mn Mn Mn Mn MnD
W L Z Z Z Z Z dx  (2.21) 

Since applied strain-electric-magnetic fields, o
MnZ is uniform, Eq. (2.21) becomes: 

* ,
2 2

  m o o m o
iJMn Ji Mn iJMn Ji MnD

V V
W L Z Z L Z Z dx  (2.22) 

In arriving at (2.22), it has been assumed that the average of disturbed fields over the entire 

domain is zero, ( ) 0.d
Mn D

Z x  Upon consideration of the multi-inclusion systems with 

average equivalent eigen fields, Eq. (2.22) yields: 

*( )

1

1
( ) ,

2 2
 



 


 

  
N

m o o m o
iJMn Ji Mn iJMn Mn Ji

V
W L Z Z L Z V Z x  (2.23) 

where the volume of each constituent phase, V , provides the weighted mean for the 

corresponding average eigen field in the summation. Upon recalling Eq. (2.18), the 

equivalent energy criterion yields: 
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*( )

1

( ) , 



 


 

  
N

o o m o o m o
iJMn Ji Mn iJMn Ji Mn iJMn Mn JiL Z Z L Z Z L Z f Z x  (2.24) 

where f   stands for the volume fraction of matrix and the th phase of particle ensemble. 

Having determined the average value of the eigen fields from Eq. (2.18), the effective 

magneto-electro-elastic properties of multiferroic composite with periodic microstructure can 

be obtained from Eq. (2.24).   

Before we proceed to the numerical examples, some remarks on the applicability and 

robustness of the present methodology, which led to Eq. (2.24), can be highlighted in 

passing. In particular, several desirable features have been built into Eqs. (2.14) and (2.17) 

which enable us to determine the effective properties of multiferroic composites with the 

complex microstructures. For instance, the quantity ( )G   can reflect the ellipsoidal geometry 

of the particle core and its coatings, and the infinite series can account for the particle–

particle interactions. Accordingly, in multiferroic composites with multiphase 

inhomogeneities, as long as the core particles and their surrounding interphase layers are 

ellipsoidal or possess geometries which are limiting case of an ellipsoid, the developed 

formulation would be applicable. Moreover, since the proposed theory is based on a multi-

inhomogneneity system wherein the core and its coating layers can have distinct periodicity, 

the present theory is quite versatile, and it can be applied to a wide range of coating 

problems, i.e. thin or thick, single-layer or multi-layer, functionally graded (FG) and even 

eccentric coatings. In addition, we have observed that the summation over the infinite series 

in Eq. (2.17) always converge. This can be seen from the fact that function ( )MnKlQ  remains 

finite as ( 1,2,3)i i   takes on large values, and that the integral terms ( )G

  and ( )G

   
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in the series go to zero like 21/ i  as i  approaches to infinity. Accordingly, the infinite series 

in Eq. (2.17) are of order 41/ i  for large value of i , and this leads to a rapid convergence. 

 

Table 2.1. Magneto-electro-elastic properties of BaTiO3, CoFe2O4, Terfenol-D and Epoxy: 

ijklC (GPa), ij (nC2/Nm2), ij (N/s2C2), ijke (C/m2) and ijkq (N/Am). 

Properties BaTiO3 

(BTO) 
CoFe2O4 
(CFO) 

Terfenol-D 
(TD) 

Epoxy 

1111C  150.37 286 8.54 8 

1122C  65.63 173 0.65 4.4 

1133C  65.94 170.3 3.91 4.4 

3333C  145.52 269.5 28.3 8 

1313C  43.86 45.3 5.55 1.8 

11  9.87 0.08 0.05 0.037 

33  11.08 0.093 0.05 0.037 

11  5 590 8.64 2.51 

33  10 157 2.26 2.51 

311e  -4.32 0 0 0 

333e  17.36 0 0 0 

113e  11.4 0 0 0 

311q  0 580.3 5.4 0 

333q  0 699.7 270.1 0 

113q  0 550 155.56 0 
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2.3. Numerical results and discussion 

In this section, for a comprehensive demonstration on the generality and efficacy of present 

theory, we apply it to several problems of multiferroic composites with various complexities. 

In this process, the influence of microstructure parameters, such as the thickness, eccentricity, 

shape and magneto-electro-elastic properties of core inhomogeneities and their coatings on 

the overall response of composites also is illustrated. In what follows, all piezoelectric and 

piezomagnetic phases are transversely isotropic, with the respective poling and magnetization 

directions pointing along x3-direction. The material properties used in the numerical 

calculations are listed in Table. 2.1. 

 

2.3.1. Comparison with Kuo and Peng (2013) for BTO/CFO/TD composite 

We first consider a multiferroic composite consisting of BaTiO3 fibers coated by CoFe2O4 

layers, embedded within a Terfenol-D matrix. For the sake of convenience, we denote the 

composite as BTO/CFO/TD. Kuo and Peng (2013) recently employed the finite element 

method (FEM) to obtain the effective properties of similar composite material. To make the 

necessary contact with their FEM results, three particular radius ratios, Rfiber/Rcoating =0.4, 0.6 

and 0.8 have been considered for the BTO/CFO inhomogeneity system. Thus, this study will 

serve to make contact with the existing literature. We now adopt the present theory to 

determine the effective magneto-electric voltage coefficients of this BTO/CFO/TD 

composite, 11E  and 33E , for the specified radius ratios. /Eij ij ij    (no summation) is an 

important set of parameters with practical importance for the measurement of magneto-
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electric coupling in multiferroic materials. In comparison with the FEM results of Kuo and 

Peng (2013), our theoretical results for 11E  and 33E  are respectively illustrated in Fig. 

2.3(a) and (b), as a function of the volume concentration of BTO/CFO inhomogeneity 

system, f fiber + f coating. It is evident from both figures that theoretical results reasonably match 

with the corresponding FEM results. The quantitative agreement between two sets of results 

can be observed over the entire range of volume concentrations of coated fibers. 

 

2.3.2. Comparison with Kuo (2011) for BTO/TD/CFO composite 

In present analysis, we consider a multiferroic composite consisting of BTO fibers with thick 

TD coatings, distributed periodically within a CFO matrix. Such a problem has been 

examined previously by Kuo (2011), who combined the methods of complex potentials with 

a re-expansion formulae and the generalized Rayleigh’s formulation (1892) to obtain a 

complete solution of the multi-inclusion problem. We have employed the present theory to 

determine the overall behavior of composite material at three different volume concentrations 

of inhomogeneity system, f fiber + f coating = 0.2, 0.4 and 0.6. In present analysis, the radius ratio 

of BTO fiber to its TD coating is kept fixed at Rfiber/Rcoating = 0.8. Table 2.2 displays our 

calculated results together with those of Kuo (2011) for the effective properties of 

BTO/TD/CFO composite, including 2323C  (elastic modulus), 113e  (piezoelectric constant), 

11  (dielectric permittivity), 11  (magnetic permeability), 113q  (piezomagnetic constant) and 

11 (magneto-electric coefficient). It is readily observed that, for all specified volume 

fractions of BTO/TD inhomogeneity system, the results of proposed methodology is in a very 
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good agreement with those reported by Kuo (2011). This quantitative harmony between two 

sets of results points to the accuracy of our proposed approach for the theoretical treatment of 

multiferroic composites with coated fibers. 

    
(a) 

    
 

 
(b) 

 
Fig. 2.3. Effective magneto-electric voltage coefficient of a fibrous BTO/CFO/TD composite, (a)

E11 and (b) E33 , in comparison with the FEM results of Kuo and Peng (2013). 
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Table 2.2. Effective moduli of a fibrous BTO/TD/CFO composite for different volume fraction of 

BTO/TD fibers (Rfiber / Rcoating = 0.8).  

f fiber + f coating  2323C  

(GPa) 

113e  

(C/m2) 

11  

(nF/m) 

113q  

(N/Am) 

11  

(N/s2C2) 
11  

(Ns/VC) 
        

0.2 
Present model 42.0 0.020 0.049 390.6 390.1 15.7 x 10-12 
Kuo (2011) 42.5 0.020 0.049 390.0 390.0 16.0 x 10-12 

        
        

0.4 
Present model 38.93 0.040 0.097 276.4 255.3 36.8 x 10-12 
Kuo (2011) 39.25 0.040 0.098 275.0 255.0 37.5 x 10-12 

        
        

0.6 
Present model 36.26 0.058 0.144 177.5 140.9 62.1 x 10-12 
Kuo (2011) 37.00 0.060 0.147 175.0 140.0 63.0 x 10-12 

 

2.3.3. Comparison with Yan et al. (2013) for TD/BTO/CFO composite 

We now determine the effective moduli of a fibrous TD/BTO/CFO composite by utilizing the 

newly developed theory. A similar problem recently was studies by Yan et al. (2013), by 

utilizing the so-called eigenfunction expansion-variational (EEV) method. For the sake of 

comparison with their theoretical results, we now adopt the present theory to calculate the 

effective magneto-electric coefficient of composite, 11 , for two particular volume 

concentrations of TD/BTO inhomogeneity system, f fiber + f coating = 0.3 and 0.6. Our 

calculated results together with those of EEV model are illustrated in Fig. 2.4, as a function 

of the square of radius ratio, (Rfiber/Rcoating)2. Here, Rfiber and Rcoating stand for the radius of TD 

core and its BTO coating, respectively, such that (Rfiber/Rcoating)2= f fiber / (f fiber + f coating). 

Needless to mention that limiting value of Rfiber/Rcoating   0 (or 1) indicates the TD fibers are 

coated by very thick (or very thin) BTO layers. From Fig. 2.4 one can examine the influence 

of coating thickness on the accuracy of our theoretical results. 
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Fig. 2.4. Effective magnetoelectric constant of a fibrous TD/BTO/CFO composite, 11 , in 

comparison with the   results given by Yan et al. (2013) for the similar composite. 

 

2.3.4. CFO/BTO/Epoxy composite with FG interphase layer 

Consider an epoxy material containing periodically distributed CFO fibers with BTO coating 

layers. We assume that an elastic interphase layer exists between the BTO coatings and the 

surrounding epoxy matrix. The stiffness, dielectric and permeability moduli of such a thin 

interphase is assumed to vary linearly from those of coating to the matrix, as 

interphase coating

interphase coating

interphase coating

( )( ) / ,

( )( ) / ,

( )( ) / ,

coating matrix coating
ijkl ijkl ijkl ijkl

coating matrix coating
ij ij ij ij

coating matrix coating
ij ij ij ij

C C C C r R t

r R t

r R t

   

   

   

   

   

 

(2.25) 

where t is the thickness of interphase layer, r is the radial distance from the center of fiber, 

and Rcoating is the radius of the outer boundary of BTO coating layer. We also consider various 

volume fractions for the interphase layer, f interphase / (f fiber + f coating) = 0 (no interphase) and 
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0.05 and 0.1, so that one can examine the influence of thickness of the interphase layer on the 

overall response of multiferroic composite. It is notable in passing that in some real situations 

an undesirable phase undesirably forms between the inhomogeneities and the matrix, as a 

result of the chemical interactions during the manufacturing process of composite materials. 

The property of this transition zone can be functionally graded (FG), i.e. its composition 

varies continuously from the reinforcing fiber (or particle) to the surrounding matrix. In other 

situation, the FG interphase layers is deliberately applied to reinforcing fillers in order to 

reduce the large residual stress between constituent phases, prevent the matrix cracking 

during the manufacturing process, increase the fatigue and fracture strengths of composite 

materials, or improve their thermomechanical behavior for a reliable performance in high-

temperature environments. Recognizing the potential gain that the FG coating could deliver, 

in present analysis we assumed the presence of such a thin layer with linearly varying 

properties between the CFO/BTO fibers and surrounding epoxy matrix. 

The present formulation has been employed here to determine the effective properties of 

CFO/BTO/Epoxy composite material with various microstructures mentioned above. Our 

numerical results for the effective moduli  311e ,  311q , E11  and E33  are illustrated in Fig. 2.5 

(a)-(d), as a function of total volume fraction CFO fiber and its BTO coating, f fiber + f coating. 

For the sake of conciseness in the corresponding legends, the relative volume fraction of 

coating layer, f coating / (f fiber + f coating), and that of FG interphase,  f interphase / (f fiber + f coating) 

have been represented by coating  and int, respectively. A close look at Fig. 2.5 reveals some 

interesting characteristics of CFO/BTO/Epoxy composite material.  
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(a) 
 

           

(b) 
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(c) 
 

      

          

(d) 
 

Fig. 2.5. Piezoelectric constant, 311,e  piezomagnetic constant, 311,q and magneto-electric voltage 

coefficients, E11 and E33  of CFO/BTO/Epoxy composite with FG interphase layer between 

fibers and matrix. Note that coating  = f coating / (f fiber
 + f coating)and int  = f interphase / (f fiber

 + f coating). 
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For instance, it is evident from Fig. 2.5 (a) and (b) that at a given value for total volume 

fraction of CFO/BTO fibers, the overall piezoelectric (piezomagnetic) coefficient of 

composite material increases (decreases) with increasing the thickness of BTO coating, 

coating. However, when we introduce the FG interphase layer around the CFO/BTO fillers, 

311e  and 311q both tend to increase. In fact, an increase in int enhances both piezoelectric and 

piezomagnetic constants, although there is no electro-elastic and magneto-elastic coupling 

effects in the FG interphase layer. Besides, it is seen in Fig. 2.5(c) and (d) that the effective 

magneto-electric voltage coefficients of composite, E11  and E33  decrease with increasing 

the thickness of BTO coating, coating. Moreover, for a given concentration of CFO fiber and 

its BTO coating, the introduction of such a FG interphase around the CFO/BTO fibers brings 

down the magneto-electric voltage coefficients of composite material; both E11  and E33  

decrease when we increase the relative concentration of FG interphase layer, int. Moreover, 

Fig. 2.5 in general illustrates that the influence of FG interphase on the overall response of 

multiferroic composite becomes more pronounced with increasing the volume fractions of 

CFO/BTO fibers, f fiber + f coating; as it can be expected. 

 

2.3.5. Particulate BTO/CFO/Epoxy composite with weak interface 

We now consider a multiferroic composite consisting of BTO spherical particles with CFO 

coatings, distributed periodically within an epoxy matrix. For now, the composite material is 

supposed to have a perfect interface condition; namely, the BTO/CFO particles are perfectly 

bonded to the epoxy matrix. However, we know that in reality the interface condition is not 
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perfect. The load transfer from matrix to reinforcing fillers can be significantly hindered due 

to the weak fillers/matrix surface condition; as a result, the imperfect interface has a profound 

influence on the overall behavior of composite materials. For a demonstration on the 

inevitable contribution that can be made by a weak interface condition, let us further assume 

that the interface between the BTO/CFO particles and the surrounding epoxy matrix is not 

perfect. To model this imperfect interface in the context of our proposed theory, we consider 

a very thin spherical layer of transition zone around the double-phase BTO/CFO particles. 

This diminishing layer (say interface) is then assumed to be significantly weaker than other 

constituent phases of composite material, as it is the case in the real situation. It is notable in 

passing that similar approach has been successfully adopted by Wang et al. (2015c) to 

address the issue of imperfect interface in random multiferroic composites.  

We now employ present methodology to calculate the effective properties of abovementioned 

multiferroic composite, under distinct assumptions of perfect and weak interface conditions. 

In present analysis, three particular volume fractions have been considered for the BTO/CFO 

particle ensembles, f particle + f coating = 0.2, 0.35 and 0.5. On the other hand, the interface 

volume concentration is taken to to be 1% of the BTO/CFO particles, f interface = 0.01 (f particle + 

f coating). Besides, to illustrate the effect of weakened interface condition, following isotropic 

material properties have been assumed for the interface (Wang et al, 2015c),  

 

interface interface
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11 33
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(2.26) 

Fig. 2.6(a)-(d) display our theoretical results for effective properties of composite materials, 

311e ,  311q , E11  and E33 , as a function of the cube of radius ratio, particle coating 3( / ) .R R  Here, 
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particleR  and coatingR  stand for the radius of the BTO particle and its CFO coating, respectively. 

Needless to mention that particle coating 3 particle particle coating( / ) / ( )R R f f f  . At a fixed volume 

concentration of inhomogeneity system (i.e. f particle + f coating=constant), the limiting ratio of 

particle coating/R R  0 (or 1) indicates that the BTO particles have been coated by very thick (or 

very thin) CFO layers. Fig. 2.6 reveals the complex nature of interplay between the various 

constituent phases of composite material. For instance, it is evident from Fig. 2.6(a) that, at a 

given volume concentration of BTO/CFO fillers, the overall piezoelectric constant increase 

with increasing the radius ratio, particle coating/ .R R  Fig. 2.6(b) shows an inverse trend for the 

effective piezomagnetic constant, such that 311q  decreases when particle coating/R R  increases. 

However, Fig. 2.6(c) and 2.(d) show that there is a critical value for particle coating/R R  in which 

constants E11  and E33  reach to their maximum values. After their picks, both magneto-

electric voltage coefficients decrease down to zero when particle coating/R R  approaches to 

limiting values of zero or one; as it can be expected. It is evident that the critical value of 

radius ratio is a function of the total volume fraction of BTO/CFO fillers. For instance, for 

the volume concentrations of f particle + f coating = 0.2 and 0.5, the maximum value of E33  have 

been achieved at different ratios of particle coating 3( / ) 0.7R R  and 0.6, respectively. Figs. 2.6(c) 

and (d) further demonstrate that the presence of a weak interface between BTO/CFO particles 

and surrounding epoxy brings up the effective magneto-electric voltage coefficients of 

composite material.  
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(c) 
 

           

               

(d) 
 

Fig. 2.6. Effective piezoelectric constant,  311,e  piezomagnetic modulus, 311,q  and magneto-

electric voltage coefficients, E11 and E33  of a particulate BTO/CFO/Epoxy composite with 

perfect and weak interface condition between coated particles and matrix. 
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On the contrary, it is evident from Figs. 2.6(a) and (b) that the imperfect interface condition 

reduces the overall piezoelectric and piezomagnetic moduli of particulate BTO/CFO/Epoxy 

material. It is also observed that, in general, the interface condition has a more substantial 

influence on the piezoelectric and piezomagnetic constants, compared to its effects on the 

corresponding magneto-electric voltage coefficients. 

 

2.3.6. Particulate BTO/CFO and CFO/BTO composites with eccentric void 

cores: coating layer with non-uniform thickness 

Let us consider a multiferroic composite material consisting of BTO (or CFO) spherical 

particles distributed periodically within a CFO (or BTO) matrix. We further assume that an 

eccentric spherical void core has been located inside each BTO (or CFO) particle. Such a 

configuration for the double-phase inhomogeneity system with eccentricity vector   is 

schematically shown in Fig. 2.7. In present analysis, the void core is assumed to take various 

volume concentrations, denoted by the ratio /void particlef f  0 (no void core), 0.1 and 0.2. 

Besides, three different cases of eccentricity are considered for the void, as  

- Case 1:       Rparticle  Rparticle  Rparticle (Concentric void core)

- Case 2:       Rparticle  Rparticle  Rparticle 

- Case 3:      Rparticle  Rparticle  Rparticle  

in which Rparticle is the radius of spherical piezoelectric (or piezomagnetic) particle. 
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Fig. 2.7. A spherical particle with eccentric void core contained in the RVE. This typical 

configuration pertains to the particulate BTO/CFO and CFO/BTO composites. 

 

Employing the developed theory, the foregoing set of problems has been solved for the 

particle volume fraction of f particle =0.4. For the sake of demonstration, our calculated results 

for the effective stiffness, piezoelectric and piezomagnetic moduli of BTO/CFO and 

CFO/BTO composites with abovementioned microstructures are listed in Tables 2.3 and 2.4, 

respectively. It is seen that the multiferroic composite exhibits an overall tetragonal 

symmetry for case of 1 and 2 of eccentricity, but for the case 3 it is orthogonal. The 

calculated results demonstrate that, in general, the effective properties of multiferroic 

composites strongly depend on the microstructure of their constituent phases. 
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Table 2.3. (a) Effective elastic properties of BTO/CFO multiferroic composite consisting of 

spherical particles with eccentric void core, calculated at volume fraction of  f particle =0.4. 

particleR


 

void

particle

f

f
 

1111C  1212C  1122C  3333C  1313C  1133C  2222C  2323C  2233C  

           
__  0 226.5 52.2 122.0 227.6 48.9 120.1 226.5 48.9 120.1 

           

 R 
 R 
 R 


0.1 204.4 48.5 107.4 205.5 45.0 106.3 204.4 45.3 106.3 
0.2 185.3 45.1 95.1 185.9 41.4 94.5 185.3 41.5 94.5 

          

          

 R 
 R 
 R 
 

0.1 199.3 47.6 104.0 209.8 45.3 105.1 199.3 45.3 105.1 
0.2 177.5 43.7 90.3 193.6 41.8 92.8 177.5 41.8 92.8 

          

          

 R 
 R 
 R 
 

0.1 209.1 48.7 107.1 201.2 45.1 105.8 199.8 44.0 104.4 
0.2 193.3 45.4 94.8 179.3 41.5 93.9 178.3 39.9 91.7 

          

          

 

Table 2.3. (b) Effective piezoelectric and piezomagnetic properties of BTO/CFO composite 

consisting of spherical particles with eccentric void core, at volume fraction of f particle =0.4. 

particleR


 

void

particle

f

f
 

333e  311e  113e  322e  223e  333q  311q  113q  322q  223q  

            
__  0 0.255 -0.049 0.158 -0.049 0.158 337.7 265.4 264.0 265.4 264.0 

            

 R 
 R 
 R 


0.1 0.270 -0.029 0.155 -0.029 0.155 318.7 247.5 258.6 247.5 258.6 
0.2 0.283 -0.012 0.151 -0.012 0.151 302.3 232.2 253.3 232.2 253.3 

           

           

 R 
 R 
 R 
 

0.1 0.273 -0.032 0.162 -0.032 0.162 319.9 244.3 259.0 244.3 259.0 
0.2 0.288 -0.019 0.165 -0.019 0.165 304.8 227.6 253.9 227.6 253.9 

           

           

 R 
 R 
 R 
 

0.1 0.270 -0.032 0.151 -0.016 0.148 315.9 248.6 258.7 245.0 257.2 
0.2 0.28 -0.018 0.145 -0.10 0.140 298.1 234.3 253.4 228.7 251.0 
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Table 2.4. (a) Effective elastic properties of a CFO/BTO multiferroic composite consisting of 

spherical particles with eccentric void core, calculated at volume fraction of  f particle =0.4. 

particleR


 

void

particle

f

f
 

1111C  1212C  1122C  3333C  1313C  1133C  2222C  2323C  2233C  

           
__  0 202.7 48.9 104.7 200.9 45.1 105.3 202.7 48.9 104.7 

           

 R 
 R 
 R 

 

0.1 181.2 45.3 90.5 177.8 41.9 90.2 181.2 41.9 90.2 
0.2 162.4 41.9 78.4 157.9 38.9 77.7 162.4 38.9 77.7 

          

          

 R 
 R 
 R 

 

0.1 177.3 44.6 87.9 182.7 41.9 90.0 177.3 44.6 87.9 
0.2 156.4 40.7 74.8 166.4 38.8 77.6 156.4 40.7 74.8 

          

          

 R 
 R 
 R 

 

0.1 185.4 45.5 89.2 172.9 41.9 89.3 174.9 41.3 86.5 
0.2 170.0 42.1 77.0 150.7 38.9 76.8 152.8 38.0 72.5 

          

          

 

Table 2.4. (b) Effective piezoelectric and piezomagnetic properties of a CFO/BTO composite 

consisting of spherical particles with eccentric void core, at volume fraction of f particle =0.4. 

particleR


 

void

particle

f

f
 

333e  311e  113e  322e  223e  333q  311q  113q  322q  223q  

            
__  0 8.82 -2.7 5.97 -2.76 5.97 46.8 34.6 10.5 34.6 10.6 

            

 R 
 R 
 R 

 

0.1 8.91 -2.41 5.83 -2.41 5.83 44.1 32.2 10.5 32.2 10.5 
0.2 8.98 -2.10 5.70 -2.10 5.7 41.6 30.0 10.4 30.0 10.4 

           

           

 R 
 R 
 R 

 

0.1 9.02 -2.30 5.83 -2.30 5.83 44.3 30.9 10.8 30.9 10.8 
0.2 9.15 -1.93 5.70 -1.93 5.70 42.1 27.8 11.1 27.8 11.1 

           

           

 R 
 R 
 R 

 

0.1 8.90 -2.48 5.84 -2.35 5.81 43.2 32.6 10.32 31.4 10.30 
0.2 8.95 -2.23 5.70 -2.01 5.6 40.1 30.8 10.1 28.6 10.0 
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2.4. Concluding remarks  

In this chapter, a micromechanical homogenization scheme has been developed to determine 

the effective moduli of a multiferroic composite containing periodic distribution of 

multiphase inhomogeneities. To treat the multi-coated inhomogeneity, we have divided it 

into different regions, and then each replaced by an inclusion system with certain amount of 

equivalent eigenstrain-electric-magnetic fields. Due to the periodic structure, the eigenfields 

are expanded in terms of the Fourier series. In conjunction with a superposition scheme, the 

local form of equivalent inclusion principle is then called upon, and integrated to give 

expressions for the average eigenfields. Finally, upon consideration of energy equivalency 

criterion the overall effective moduli of composite are obtained in terms of the derived 

average eigenstrain-electric-magnetic fields. This newly developed scheme is quite robust. It 

can be applied to a wide range of complex systems where the coating does not have to be 

thin, the shape and orientation of the core and coatings do not have to be the same, the layout 

of the coated layers can be eccentric, the properties of each layer can be functionally-graded, 

and the periodically distributed particles can be of the 2-D elliptic or the 3-D ellipsoidal 

shape. In this scheme the short-range inter-phase interactions, the particle-matrix interactions, 

and the long-range interactions between the periodically distributed inhomogeneities have all 

been fully accounted for, so the theory is applicable to high volume concentration and high 

property contrast problems. In view of the generality and efficacy of proposed methodology, 

we applied it to examine the properties of several multiferroic composites with different 

microstructures. The calculated results revealed the complex nature of interplay between the 

properties of core, matrix, and coating, as well as whether the coating is uniform, functionally 
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graded, or eccentric. In addition, the influence of imperfect interface condition on the overall 

magneto-electro-elastic behavior of three-phase composites has been well demonstrated. It is 

hopeful that the proposed theory can serve as a simple and yet widely useful tool for further 

development of high performance multiferroic composites with the optimized 

microstructures. 
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Chapter 3. 

Magneto-electro-elastic scattered fields of a SH-wave induced 

by a two-phase multiferroic fiber in a piezoelectric or 

piezomagnetic medium 

 

 

3.1. Overview  

In many practical applications the devices incorporating piezoelectric-piezomagnetic 

multiferroic materials may be subjected to dynamics loadings. Accordingly, the study of 

wave propagation in multifrroic composites, and pertinent scattering phenomenon by the 

multi-phase inhomogeneities made of distinct piezoelectric and piezomagnetic materials is of 

great theoretical and practical interest. To date, the subject of wave propagation in the elastic 

heterogeneous media has been extensively studied during past decades; see, for example the 

fundamental works of Eringen and Suhubi (1975), Mikata and Nemat-Nasser (1991), Liu and 

Kriz (1996), Shindo et al. (1997) Selsil et al. (2001), Sato and Shindo (2001), and 

Michelitsch et al. (2003). However, only a few investigations addressing the wave 

propagation phenomenon in a piezoelectric-piezomagnetic media have been reported in the 

literature. Chen and Shen (2007) extended the work of Levin et al. (2002), who studied the 

elastic wave propagation in composites with piezoelectric fibers, to multiferroic composites. 

They first solved the problem associated with a single cylindrical fiber, and then considered 

the problem associated with multiple fibers by employing the effective field approach. Soh 

and Liu (2006) studied the propagation of an interfacial SH-wave in two bonded semi-infinite 
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piezoelectric-piezomagnetic materials. Chen et al. (2007) presented an analytical treatment 

for the propagation of harmonic waves in magneto-electro-elastic multilayered plates. Liu et 

al (2007) and Wang et al. (2007) demonstrated the propagation of a SH-wave in a semi-

infinite medium with magneto-elastic coupling effect and hexagonal symmetry. Pang et al. 

(2008) and Liu et al. (2008) investigated the propagation of Rayleigh-type surface waves and 

Love waves in a piezoelectric-piezomagnetic layered half-space. Effects of the imperfect 

interface on SH-waves in two-phase multiferroic composites were also studied by Du et al. 

(2004), Huang et al. (2009), Sun et al. (2011) and Kuo and Yu (2014). Overall, to the best of 

author’s knowledge none of these treatments addresses the dynamics problem with greater 

generality associated with the wave scattering phenomenon in a three-phase multiferroic 

medium, in which the constituent phases (i.e. fiber, coating and matrix) may consist of 

different piezoelectric and piezomagnetic materials. The present chapter aims to formulate a 

robust analytical methodology, named as magneto-electro-mechanical dynamics equivalent 

inclusion method (DEIM), which is suitable for studying the scattering of SH-waves by a 

multiferroic fiber-coating system embedded in piezoelectric or piezomagnetic matrix. For 

further generalization of problem, we consider an eccentric configuration for the coating-

fiber ensemble.   
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3.2. The theory 

3.2.1. Problem statement and basic constitutive equations 

As shown in Fig. 3.1, consider a two-phase cylindrical fiber with circular cross-section, in 

which the core,  and its coating layer,  are made of different piezoelectric and 

piezomagnetic materials. The fiber ensemble, U is embedded in another piezoelectric or 

piezomagnetic medium, D The regions  and U with radii, respectively, R1 and R2 are 

assumed to be generally eccentric; thus, the thickness of interphase layer is non-uniform. The 

origin of Cartesian coordinate system (x1, x2, x3),  and corresponding polar coordinates (r, 

in x1x2-plane are set at the center of core fiber. To keep the symmetry with respect to x1-axis, 

we further assume that the center of region U is located at (-,0,0), where  stand for the 

eccentricity between  and U(Fig. 3.1). As mentioned above, regions  and D 

consist of distinct transversely isotropic piezoelectric and piezomagnetic materials. The x3-

axis is then assumed to be the axis of rotational symmetry which coincides with the poling 

and magnetization directions of available piezoelectric and piezomagnetic materials, 

respectively. It is known that the magneto-elastic (or electro-elastic) coupling is absent in an 

individual piezoelectric (or piezomagnetic) constituent phase. However, to present the 

succeeding mathematical formulation in a concise fashion, we write the linear constitutive 

equations of either piezoelectric or piezoelectric phases in the following unified format: 

,   ij ijkl kl kij k kij kC e E q H  

,  i ikl kl ik kD e E  

,  i ikl kl ik kB q H  

 
(3.1) 
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Fig. 3.1. Two-phase multiferroic fiber subjected to a SH-wave propagating in x1-direction. 

which simultaneously includes both electro-elastic and magneto-elastic coupling terms. The 

strain, electric field and magnetic field all can be derived from the gradients of displacement, 

ui, and electric and magnetic potentials,  and, respectively, as: 

 , ,

,

,

/ 2,

,

.

ij i j j i

i i

i i

u u

E

H







 

 

 

 
 (3.2) 

In addition, the balance of linear momentum in the absence of body forces, the Gauss’s law, 

and the condition of no magnetic poles requires that the stress, electric displacement, and 

magnetic flux satisfy the following equilibrium equations: 

,

,

,

,

0,

0,

 





ij j i

i i

i i

u

D

B

 
(3.3) 

where is the mass density and symbol “.” over a quantity indicates its time derivative.  
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Suppose that ascribed double-inhomogeneity system is subjected to an incident anti-plane 

SH-wave,  3 ,iu tx  which is polarized along x3-direction and is propagating in the positive x1-

direction, as schematically shown in Fig. 3.1. The incident wave in the matrix then may be 

described as following time harmonic functions:  

   cos
3 0, ,   i r tiu t u ex  

   

   

cos
0

cos
0

, ,

, ,

  

  















i r ti

i r ti

e
t u e

q
t u e

x

x
 

(3.4) 

where  , i tx  and  , i tx  are the incident electric and magnetic potentials, respectively, 

due to the electro-elastic and magneto-elastic coupling effects in the matrix. In above 

expressions, ou denotes the amplitude of the incident SH-wave,  is the circular frequency of 

the elastic wave,  is the corresponding wave number. Note that when the matrix consists of 

a piezoelectric material,  2/ ;    c e  otherwise, when the matrix is made of a 

piezomagnetic material,  2/ .     c q  Moreover, in Eq. (3.4) 

1313 113 11 113, , ,    c C e e q q  and 11   for the sake of brevity. At any field point 

the total displacement,  3 , ,u tx total electric field,  , , tx  and total magnetic flux,  , tx  

can be written as: 

     
     
     

3 3 3, , , ,

, , , ,

, , , .

i s

i s

i s

u t u t u t

t t t

t t t

  

  

 

 

 

x x x

x x x

x x x

 

(3.5) 
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in which  3 , ,su tx   , s tx  and  , s tx  are the scattered fields induced by the multiferroic 

double-inhomogeneity system. The scattered field has to be evaluated in such a way that the 

total fields satisfy the following governing equations:  

       
   
   

2 2 2
3 3

2 2
3

2 2
3

,

0,

0.

   

  

  

             

       

       

c c u e e q q u

e e u

q q u

 

(3.6) 

This system of coupled differential equations has been obtained by utilizing Eqs. (3.1-3), in 

which 2  stands for the two-dimensional Laplacian operator in the cylindrical coordinates. 

In addition, it was supposed that the material property , , , , , or  i i i i i i ic e qM  belongs to 

the core fiber,  for i =1, the coating layer,  for i =2, and the matrix, D if no index is 

attached. Accordingly, M in Eq. (3.6) is defined as: 

1 1

2 2

,

,

0 .

 
   



in

in

in D

M M
M M M  

(3.7) 

 

3.2.2. Magneto-electro-mechanical dynamics equivalent inclusion method 

(DEIM) 

We now propose an analytical micromechanics-based methodology, so-called Magneto-

electro-mechanical DEIM, to calculate the scattered fields for the above-mentioned problem. 

It is noteworthy to mention that the DEIM was originally proposed by Fu and Mura (1983) 

for the determination of the elastic scattered fields of an ellipsoidal inhomogeneity subjected 

to time harmonic waves. The formulation of DEIM given by Fu and Mura (1983) has some 

shortcomings in employment of the notion of the homogenizing eigenstrain field. Sarvestani 
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el al. (2008), Shodja and Delfani (2009) and Shodja et al. (2014) remedied the shortcomings 

through introduction of the concept of eigenbody-force field and the pertinent consistency 

conditions. Moreover, they extended the theory to consider the elastic multi-inhomogeneity 

system with eccentricity. Extending their fundamental methodology to a multiferroic medium 

with constituent piezoelectric and piezomagnetic phases, we now replace the double-

inhomogeneity ensemble with an equivalent double-inclusion system. As shown in Fig. 3.2, 

both regions of double-inclusion system are made of the same piezoelectric or piezomagnetic 

material as the matrix, but they are carrying appropriate distributions of time harmonic eigen 

fields, including eigen body-force,  *
3 , ,Q tx  eigen stress,  *

3 , , j tx eigen electric 

displacement,  * , ,jD tx  eigen magnetic flux,  * ,jB tx  (j = 1 and 2). The magnitude of eigen 

fields can be determined on the basis that the stress fields, electric displacement, magnetic 

flux as well as their gradients must be identically equal in two equivalent double-

inhomogeneity and double-inclusion systems. This scheme is called the magneto-electro-

mechanical DEIM. For the double-inclusion problem, the governing differential equations in 

the presence of eigen fields become:  

2 2 2 * * *
3 3 3 31,1 32,2

2 2 * *
3 1,1 2,2

2 2 * *
3 1,1 2,2

,

,

.

    

 

 

        

    

    

c u e q u Q

e u D D

q u B B

 

(3.8) 

In view of Eq. (3.8), we may assume the time harmonic solutions for the total fields, as 

 3 , ( ) , i tu t u ex x  , ( )    i tt ex x  and  , ( )    i tt ex x . Upon substitution of these 

functions with unknown amplitudes ( ),u x ( ) x  and ( ) x  into the governing Eq. (3.8), one 

can arrive at   
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Fig. 3.2. Equivalent double-inclusion system carrying appropriate distribution of eigen fields. 

 

2 2 2 2 * * *
3 3 3 31,1 32,2

2 2 * *
3 1,1 2,2

2 2 * *
3 1,1 2,2

( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) .

    

 

 

        

    

    

c u e q u Q

e u D D

q u B B

x x x x x x x

x x x x

x x x x

 

(3.9) 

Upon utilizing the Green’s function technique, the amplitude of total fields then can be 

calculated by the simultaneous solution of Eqs. (3.9), as: 

1 2

1 2

1 2

* * *
3 3 33 31,1 32,2 3

* *
34 1,1 2,2

* *
35 1,1 2,2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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          

       
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* * *
53 31,1 32,2 3

* *
55 1,1 2,2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .
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 

 

          
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x x x x x x x x
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(3.10) 

Here ( )ijG x x  (i, j = 3, 4 and 5) are the corresponding two-dimensional steady state 

Green’s functions, associated with the propagation of the SH-wave in a transversely isotropic 

piezoelectric (or piezomagnetic) medium with electro-elastic (or magneto-elastic) coupling. 

For the piezoelectric matrix, the non-zero components of Green’s function have been given 

by Levin et al. (2002), as:  

 
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c e
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c e
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(3.11) 

Likewise, when the matrix consists of a piezomagnetic material the non-zero components of 

corresponding Green’s function become: 

 
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(3.12) 

In Eqs. (3.11-12), (1)
0H  is the Hankel function of the first kind of zero order.   

According to the magneto-electro-mechanical DEIM, we now can enforce the consistency 

conditions between the double-inhomogeneity system and its equivalent double-inclusion 
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system. Subsequently, the equivalency of the stress, electric displacement and magnetic flux 

in Eq. (3.6) with the counterpart field variables in Eq. (3.8) leads to following coupled 

consistency conditions:   

*
3, 3

2 *
3 3

*
3,
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(3.13) 

Note that total displacement, electric potential and magnetic potential are already known in 

terms of the incident fields and unknown eigen fields, thanks to the Green’s function solution 

given by Eqs. (3.10-12) for the equivalent double-inclusion problem. In this light, upon 

substitution of 3 ( ),u x  ( )jE x  and ( )jH x  (j= 1, 2) from Eq. (3.10) into consistency equations 

(3.13), the exact solution to the unknown eigen fields can be conveniently obtained, as it will 

be explained in the next section.  

 

3.2.3. Analytical solution procedure for determining eigen fields and scattered 

fields from consistency equations 

Realizing the physical nature of this problem a priori, it will be proved useful to express all 

field quantities in the form of following series expansions. In so doing, the incident wave in 

the matrix may be expanded in terms of Fourier-Bessel series (Shodja et al., 2014), as:  
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(3.14) 
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where nJ  is the Bessel function of the first kind of order n. Moreover, the eigen fields over 

the double-inclusion system can be expressed in the following series form: 

        
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where  
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(3.16) 

in which (1)
mH  is the Hankel functions of the first kind of order m, and 

( ) ( ) ( ) ( ) ( ), , , ,j j j j j
nm nm nm nm nmA B C D K  and ( )j

nmL  (j = 1, 2, 3, 4, 5, 6 and 7) are the unknown coefficients to 

be determined. In addition, the Bessel and Hankel functions appeared in the Green’s 

functions (11) and (12) can have the following representations in the cylindrical coordinate 

system (Shodja et al., 2014): 
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where 0 1a  and 2na  for n = 1, 2, 3, … . In this expressions, ( )r,  and ( )r', '  are 

associated with the Cartesian coordinates of the field and source points indicated by x and ,'x

respectively.  

Upon substitution of series expansions (3.14), (3.15) and (3.17) into the corresponding terms 

appearing in Eqs. (3.10-12), the analytical expressions for the total displacement, electric 

potential and magnetic potential can be obtained. To this end, a careful treatment of the 

involved integrals is required. The corresponding precise and rigorous remedy is given in 

Appendix. When the matrix is piezoelectric (i.e. q = 0), the scattred field quantities will have 

the following forms at a field point at * **
1   x : 
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(3.18) 

where regions *  and **  are defined in Appendix. Otherwise, when domain D is made of a 

piezomagnetic material (i.e. e = 0) the following expressions hold for the scattered fields at 

* **
1   x :  



53 
 

 
 

 



(3) (1) (2) (6) (7)
3 1 1 1 1

0

(1) (2) (6) (7)
1 1 1 1

(1) (4)
0 0

1
( ) 2 ( ) + ( ) + ( ) + ( ) + ( )

1
( ) ( ) + ( ) ( ) cos( )

( ) + ( ) cos ,







   


   

         
         

   

s
n n n n n

n

n n n n

n d
u W r W r W r qW r qW r

r dr

n d
W r W r qW r qW r n

r dr

d
W r qW r

dr

x

 

 

 

(4) (5)

1

(4) (5) (4)

1

( ) ( ) + ( ) cos ( 1)

( ) ( ) cos ( 1) ( )cos ,

 

 









         
          





s
n n

n

n n
n

n d
V r V r n

r dr

n d
V r V r n Z r

r dr

x

 

 

 

(6) (7)
3

1

(6) (7) (6)

1

( ) ( ) ( ) + ( ) cos ( 1)

( ) ( ) cos ( 1) ( )cos .

 


 









         
          





s s
n n

n

n n
n

q n d
u V r V r n

r dr

n d
V r V r n Z r

r dr

x x

 

 

 

 

 

 

 

 

 

 

 

(3.19) 

 

Functions ( ) ,j
nU ( ) ,j

nW  ( )j
nV and ( )jZ  appearing in expressions (3.18) and (3.19) are given 

through Appendix. In view of Eqs. (3.18-19), we now have the analytical expressions for the 

total fields in terms of unknown coefficients appearing in Eq. (3.16) for the Fourier-Bessel 

series expansion of eigen fields. Subsequently, with the aid of consistency Eqs. (3.13) the 

coefficients ( ) ( ) ( ) ( ) ( ), , , ,j j j j j
nm nm nm nm nmA B C D K  and ( )j

nmL  (j = 1, 2, 3, 4, 5, 6 and 7) can be determined. 

To this end, suppose that for N terms of the series in expressions (3.15) together with M 

terms of the series in Eq. (3.16) the eigen fields are represented with satisfactory accuracies. 

This assumption gives rise to 14 N x M unknowns, ( )j
nmA and ( )j

nmB  pertinent to the region 1  

and 28 N x M unknowns, ( ) ( ) ( ), ,j j j
nm nm nmC D K and ( )j

nmL  associated with the coating 2 . Thus, for 

the complete determination of the unknown coefficients, the consistency Eq. (3.13) should be 

written at 2 N x M points inside 1  and at 4 N x M points inside 2  to obtain 42 N x M 

equations needed to solve for 42 N x M unknowns.  
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Once the eigen fields are obtained by abovementioned procedure, it is desirable to compute 

the scattered fields within the matrix. For the piezoelectric matrix, the scattered displacement, 

electric and magnetic potentials at  * **
1     Dx  are of the following form:   
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(3.20) 

in which  
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(3.21) 

The expression for functions ( ) ( )jT r , ( ) j
n , and ( ) ( ) j

n r  (n = 0, 1, 2, …) appearing in (3.20-21) 

are given in Appendix. On the other hand, when matrix consists of a piezomagnetic material 

the scattered fields at  * **
1     Dx  can be calculated by following series:  
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(3.22) 

in which 
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where the coefficients ( ) ( ) j
n r  (n = 0, 1, 2, …) are given in Appendix, as well.  
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This completes our micromechanics formulation for determining the scattered fields of an 

incident SH-wave over each of fiber, coating and matrix phases made of different 

piezoelectric and piezomagnetic materials. 

 

3.3. Numerical results and discussion 

In this section, through consideration of various examples the effects of several parameters, 

such as material properties and eccentricity of fiber and its coating, as well as the wave 

number of incident SH-wave on the scattering phenomenon in a multiferroic fiber are 

thoroughly examined. Along the way, the robustness and applicability of proposed theory 

also is well demonstrated. The material properties of constituent phases, used in the 

numerical calculations of this section, are listed in Table. 3.1.  

Before we proceed, let us introduce the total scattering cross-section, SH  which is an 

importance parameter with great practical interest in the non-destructive evaluations. This 

parameter is defined as the ratio of the mean scattered energy in all directions to the mean 

energy of the incident wave per unit area normal to the direction of propagation. Using 

expansions for Eqs. (3.20) and (3.22) at infinity and after some mathematical manipulations, 

the expression for the total scattering cross-section can be obtained, as: 
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and 
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Table 3.1. Magneto-electro-elastic properties of BaTiO3 (BTO), CoFe2O4 (CFO), Terfenol-D 

(TD), Al, SiC and Epoxy. 

Properties BTO CFO TD SiC Al Epoxy 

 c (GPa) 43.86 45.3 5.55 188.1 26.5 1.8 

 (nC2/Nm2) 11.2 0.08 0.05 0.088 0.016 0.037 

 (N/s2C2) 5 590 8.64 1.4 1.26 2.51 

e (C/m2) 11.4 0 0 0 0 0 

q (N/Am) 0 550 155.5 0 0 0 

 (Kg/m3) 6000 5200 9210 3181 2706 1202 

 

for the piezoelectric or piezomagnetic matrixes, respectively. Needless to mention that the 

coefficients E
nS  and M

nS  in Eqs. (3.24) and (3.25) includes the effects of magneto-electro-

elastic couplings in the corresponding constituent phases. In following numerical examples 

we evaluate the total scattering cross-section in different cases to examine the effect of 

various material parameters on the pertinent scattered fields. 

 

3.3.1. Scattered fields by a SiC fiber with elastic coating layer in an Al matrix: 

Comparison with Shindo and Niwa (1996) 

To verify the accuracy of present analytical solution, we first consider the problem of a 

cylindrical SiC fiber with concentric elastic interphase layer inside an infinite Al matrix. The 

material properties of the coating are assumed to be the mean value of those of the SiC fiber 

and Al matrix. This simple bench mark problem has been previously examined by Shindo 

and Niwa (1998), who utilized the wave-function expansion methodology to address the 

effect of interphase layer on the scattering of SH-wave in fibrous composites. So, this 

example will serve to make contact with the existing literature. To do so, we apply present  
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Fig. 3.3. Variation of dimensionless total scattering cross-section with normalized wave number, 
for a SiC fiber with elastic coating in Al matrix. 
 

 

 
 
Fig. 3.4. Variation of dimensionless total scattering cross-section as a function of normalized 
thickness of coating layer, for a SiC fiber with elastic coating in Al matrix. 
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micromechanical theory to this problem, by considering just the first 6 terms of the 

expansions (3.15) and (3.16). For the coating thickness of 10.1h R , the variation of 

dimensionless total scattering cross-section, 1/ SH R  is computed, and displaced in Fig. 3.3 as 

a function of the normalized wave number, 1R . Moreover, the effect of thickness of coating 

layer, h on the variation of 1/ SH R  for a SH-wave with dimensionless wave number is 

depicted in Fig. 3.4. From Figs. 3.3 and 3.4 it can be readily observed that, for the entire 

range of wave numbers and coating thickness, our results are in good agreement with the 

previous solution reported by Shindo and Niwa (1996).  

 

3.3.2. Scattered fields by a BTO fiber in a CFO matrix: Comparison with Kuo 

and Yu (2014) 

For further validation of current analytical solution, the problem of a cylindrical BTO fiber 

embedded in an infinite CFO matrix subjected to a SH-wave is examined via present theory. 

Fig. 3.5 shows the dimensionless total scattering cross-section, 1/ SH R  calculated in terms of 

the normalized wave number, 1R . Our results in this figure are shown along with those of 

Kuo and Yu (2014); they utilized the wave-function expansion technique in their analysis. It 

is readily seen that two sets of results are in good quantitative agreement, even for high 

frequency ranges.   
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Fig. 3.5. Variation of dimensionless total scattering cross-section as a function of normalized 

wave number, for a BTO fiber in CFO matrix. 

 

3.3.3. Scattered fields by a CFO fiber with concentric BTO coating embedded in 

a TD matrix  

Consider a piezomagnetic fiber made of CFO material having a piezoelectric coating of 

uniform thickness which is made of BTO material. This two-phase multiferroic fiber is 

embedded in an infinite piezomagnetic medium made of TD material. An incident anti-plane 

SH-wave propagating in the TD matrix can be scattered by the CFO-BTO inhomogeneity 

system. By employing the present formulation at different dimensionless wave numbers (

1 0.5, 1, 2 R  and 3), the total scattering cross-section, 1/ SH R  is computed and displaced 

in Fig. 3.6 as a function of normalized coating thickness, 1/h R . It is evident that the effects 

of BTO interphase layer on the scattered fields is quite substantial; it causes a nearly linear 

increase in the dimensionless total scattering cross-section as 1/h R  varies from 0  to 0.25.   
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Fig. 3.6. Variation of dimensionless total scattering cross-section with normalized thickness of 

coating layer, for different wave numbers, 1.R  Results pertain to a CFO fiber with concentric 

BTO coating in a TD matrix. 

 
Fig. 3.6 also shows that the effect of BTO coating on the scattered field is more pronounced 

at larger values of the wave number. For a demonstration of the convergence behavior of our 

solution, the trend of the convergence of 1/ SH R  with the considered number of terms in the 

series expansion (3.15) are depicted in Fig. 3.7. The lower and upper curves pertains to 

different wave numbers of 1 1 R  and 3, respectively, which have been obtained for the 

coating thickness of 1/ 0.1h R . Fig. 3.7 shows that the discrepancy between the value of 

1/ SH R  corresponding to n = 6 and 7 is only about 1.7% for 1 1 R  and 1.3% for 1 3 R ; 

this reveals the high convergence rate of the present solution.  

 

 

 



61 
 

 
 

 

 

 
Fig. 3.7. Convergence of normalized total scattering cross-section with the number of terms, n 

considered in the corresponding series solution. Results pertain to a CFO fiber with concentric 

BTO coating in a TD matrix. 

 

3.3.4. Scattered fields by a BTO fiber with eccentric CFO coating embedded in a 

TD matrix  

This example is devoted to an eccentric double-inhomogeneity system, in which a BTO 

piezoelectric fiber is coated by a CFO piezomagnetic interphase with non-uniform thickness. 

The surrounding matrix is made of a TD piezomagnetic material. Throughout this example, 

the radius of the coating layer to that of fiber is 2 1/ 1.5;R R  however, three different coating 

eccentricity of 1/ 0 R (concentric), 0.2 and 0.4 are considered in our numerical calculations. 

The dimensionless wave number of incident SH-wave, 1R  is allowed to vary from 0 to 4. 

The variations of the normalized total scattering cross-section, 1/ SH R  in terms of the 

dimensionless wave number for abovementioned scenarios of eccentricity are illustrated in  
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Fig. 3.8. The variations of the total scattering cross-section with the normalized wave number, for 

different coating eccentricities, 1/ . R  Results pertain to a BTO fiber with eccentric TD coating 

in a CFO matrix. 

 

Fig. 3.8. It can be inferred from the figure that total scattering cross-sections tend to increase 

with increasing the wave number. Moreover, a comparison between different curves at a 

given wave number reveals that the value of SH  increases with increasing the coating 

eccentricity, . This influence of coating eccentricity becomes more pronounced at larger 

value of the wave number. As a result, nearly beyond 1 1 R  the difference between curves 

of 1/ SH R  begins to show and become increasingly notifiable as 1R  increases.  
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(a) 
 

 
 

(b) 
 

Fig. 3.9. Variations of (a) 3 31/ s i  and (b) 3 31/ s i
r along fiber-coating interface just inside the 

fiber, for different eccentricities, 1/ . R  Results pertain to a BTO fiber with CFO coating in an 

Epoxy matrix. 
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3.3.5. Scattered interface stresses in a CFO fiber with BTO coating embedded in 

an Epoxy matrix 

In this example, the fiber, coating and matrix are made of CFO, BTO and Epoxy, 

respectively. Two cases of concentric and eccentric coating are considered here; for both 

cases the radius of the CFO fiber, R1 is the same, and 2 1/ 1.5R R  for the radius of BTO 

coating layer. For different normalized values of coating eccentricity, 1/ 0 R (concentric), 

0.2 and 0.4, we utilize the present micromechanical theory to calculate the scattered fields of 

a SH-wave induced by the ascribed mutliferroic sensor. For the dimensionless wave number, 

1 2 R  the distribution of normalized stress components 3 31/ s i  and 3 31/ s i
r  along the 

fiber-coating interface (just inside the fiber) are illustrated in Figs. 3.9(a) and (b), 

respectively. These figures then demonstrate the effect of the coating eccentricity on the 

corresponding scattered interface stresses. As it is seen in Fig. 3.9(a), the 3 31/ 0  s i  at 

 and  for both concentric and eccentric coatings. For the case of concentric coating 

3 31/ s i  attains its minimum at  and its maximum at  However, in the case 

of the coating with non-uniform thickness the maximum and minimum values of 3 31/ s i  

shifts a little to left. For instance, for eccentricity of 1/ 0.4 R  the maximum and minimum 

values of 3 31/ s i  pertains to and , respectively. Beside, Fig. 3.9(b) shows the 

absolute maximum value of 3 31/ s i
r  along the interface of fiber for all eccentricity scenarios 

occurs at , which located on the interface opposite to the one facing the incident wave. 

Also, in all cases 3 31/ s i
r  has a local maximum at . The case of eccentric coating in 
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comparison to concentric coating leads to a higher and lower values of 3 31/ s i
r  at  and 

, respectively. For eccentricities 1/ 0 R  and 0.4 the minimum value of 3 31/ s i
r  occurs 

at 1.68 and 1.43, respectively, indicating that the minimum values of 3 31/ s i
r  shifts to the 

left with increasing the coating eccentricities. 

 

3.4. Concluding remarks  

In this chapter, an analytical methodology (so-called magneto-electro-mechanical DEIM) has 

been developed for determination of the magneto-electro-elastic fields of an SH-wave 

scattered by a two-phase multiferroic inhomogeneity embedded in an infinite transversely 

isotropic piezoelectric or piezomagnetic medium. To put its wide range of applicability in 

perspective, the present formulation was applied to several descriptive examples with various 

degrees of complexities. The calculated results revealed the profound influence of magneto-

electro-elastic properties of constituent phases, the thickness and eccentricity of coating 

layer, as well as the frequency of propagating SH-wave on the pertinent scattered fields 

induced by the multiferroic fiber within a piezoelectric or piezomagnetic medium. We expect 

that this investigation (i.e. the developed formulation together with the illustrated numerical 

results) can serve as a useful reference for further development of three-phase multiferroic 

composites with a durable and reliable performance under dynamics loadings. 

 



66 
 

 
 

 

Chapter 4. 

Overall viscoelastic response of graphene/polymer 

nanocomposites with imperfect interface   

 

4.1. Overview  

As mentioned earlier, the outstanding properties of graphene make it actually the most 

fascinating choice to enhance the thermal, electrical and mechanical properties of polymers.  

In this context, we know that there is a great demand in the electrical industry for polymer 

composites with excellent electrical performance and high mechanical strength. The 

polymeric materials are insulator which can be made conductive by adding a dilute volume 

fraction of graphene fillers. The recent achievements in surface functionalization 

technologies has made it possible to tailor the quality of graphene/matrix interface to meet 

various desirable specifications (Novoselov et al., 2004; Ramanathan et al., 2008; Kuilla, 

2010;Zhang et al., 2012; Yuan et al., 2014; Wan et al., 2014). For instance, as a primary 

challenge in the manufacturing processes of graphene nanocomposites, it is known that the 

pristine graphene is not compatible with organic polymers, and usually do not form a 

homogeneous composite material. The electrochemical modification of graphene surface is 

then an essential step to address this issue, and obtain a uniform molecular level dispersion of 

fillers in the polymer matrix (Worsley et al., 2007; Park et al., 2008; Bai et al., 2009; Zhang 

et al., 2012; Wan et al., 2014). However, it is a noted phenomenon that the interface 
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condition between graphene inclusions and the host matrix is never perfect. This mainly 

originates from the high property contrast between the graphene and host polymers. Besides, 

due to the chemical interactions during the fabrication of nanocomposites a very thin 

interphase layer often forms between the fillers and surrounding matrix. Even though the 

interface layer virtually is very thin, it plays a significant role in controlling the physical 

processes inside the carbonaceous nanocomposites, owning to the high specific area of nano-

sized fillers. For example, in the study of electrical properties of nanocomposites the 

interfacial resistance and capacitance are known to play a critical role (Seidel and Puydupin-

Jamin, 2011; Bao et al., 2012; Wang et al., 2014), and in the investigation on their thermal 

conductivity the interfacial thermal resistance has proven to be a dominant factor (Nan, et al., 

2004; Chen et al., 2005; Yavari et al., 2011). In addition, the quality of load transfer at filler-

matrix interface is also known to have a profound effect on the effective Young’s modulus 

and yield strength of nanocomposites (Hashemi et al., 2015; Meguid et al., 2010; Barai and 

Weng, 2011; Pan et al., 2013). In view of all substantial contributions that can be given by 

the interface, the surface functionalization of graphene fillers and its influence on the 

effective properties of graphene-based nanocomposite remains a stimulating problem in the 

design and fabrication process of these materials. 

While the benefits of utilizing graphene fillers in a polymer material can be seen in many 

ways, our main concern here is on the mechanical properties, with special reference to 

viscoelasticity. Needless to mention that when the graphene fillers are loaded into a polymer 

the outcome is a viscoelastic nanocomposite, whose time-dependent behavior necessarily 

should be studied for its durable and reliable performance in many engineering applications, 
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specifically at high environment temperatures. In retrospect, the viscoelastic behavior of 

graphene-based nanocomposites recently has received some attentions. Among them, the 

experimental contributions of Zandiatashbar et al. (2012a, b), Stanier et al. (2014), Tang et al. 

(2014), King et al. (2015), Wang et al. (2015a) and Wang et al. (2015b) have shed significant 

insights into the viscoelastic characteristics of graphene/polymer nanocomposites, but none 

has touched this issue from a theoretical standpoint. Such a shortcoming motivated us to 

present a theory for the viscoelastic analysis of nanocomposites, which can be regarded as a 

simple but widely useful alternative to heavy computational simulations and onerous 

experimental investigations. In particular, by developing an effective medium theory with 

two different interface models we intend to uncover how the interface condition affects the 

overall creep, stress relaxation and strain-rate sensitivity of nanocomposites as the volume 

fraction and aspect ratio of graphene fillers increase. It is notable in passing that the quality 

of interfacial interactions between the graphene fillers and polymer matrix plays a crucial 

role for determining the final creep and recovery performance of graphene/polymer 

nanocomposites. In fact, the vast interfacial area created by well-dispersed graphene fillers 

can influence the behavior of surrounding polymer matrix even at a very low content, leading 

to the formation of a co-continuous network of greatly altered polymer chains. In this light, 

some factors such as the tailored surface chemistry, high specific area and corrugated feature 

of graphene fillers can favorably improve the interfacial adhesion, restrict the segmental 

movement of polymer chains, and eventually alter the viscoelastic characteristics of 

nanocomposite. Otherwise, the polymer molecules can easily slide along the weak interfaces. 

This interfacial sliding hiders the load transfer from matrix to inclusions, and substantially 
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brings down the extent of beneficial impact that can be made by graphene fillers. In the 

context of viscoelastic response of graphene/polymer nanocomposite, condition of interface 

then has a profound influence on the effectiveness of graphene reinforcement.  

In this chapter, we aim to develop a homogenization theory that can embody the most 

essential features of a graphene nanocomposite, i.e. volume concentration of fillers, 

randomness of their orientations, the elastic anisotropy of graphene fillers under the assumed 

condition of homogenous dispersion, and the relevant parameters of imperfect interface. To 

this end, we essentially adopt the correspondence principle as the backbone of our 

formulation, in a way that some known schemes and mathematical formulations for the 

treatment of elastic composites can be utilized here to disclose the time-dependent 

viscoelastic behavior of graphene nanocomposites. It is remarkable that, in retrospect, the 

correspondence principle has been proved as the most convenient rout for the theoretical 

analysis of viscoelastic composites under various loading conditions (Hashin, 1965; Fisher 

and Brinson, 2001; Li and Weng, 2013). In this light, we call upon the Mori-Tanaka scheme 

for a two-phase composite with random microstructure in order to obtain the effective 

viscoelastic properties of the graphene nanocomposites with perfect interface. As a result, the 

closed form expressions for the overall bulk and shear moduli of graphene/polymer 

nanocomposite are obtained in the transformed Laplace domain. Afterwards, we will adopt 

two different approaches in order to include the interface effect in our homogenization 

theory. At the end, through consideration of different sets of experimental data, we apply the 

proposed scheme to uncover the interface effect on the time-dependent creep, stress 

relaxation and strain-rate sensitivity of graphene/polymer nanocomposites.  
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4.2. The theory 

4.2.1. Constitutive equations of constituent phases 

Consider a two-phase nanocomposite with a polymer matrix and 3-D randomly oriented 

graphene inclusions, carrying the volume concentrations of c0 and c1, respectively (c0 + c1 = 

1). The microgeometry of the composite system is schematically shown in Fig. 4.1. The 

polymer matrix is assumed to be an isotropic material with the time-dependent viscoelastic 

behavior. In order to make the necessary connection with available literature, and for the sake 

of comparison with experimental data of Wang et al. (2015a) and Wang et al. (2015b) we 

suppose that the mechanical behavior of pure polymer matrix can be represented by the 4-

parameter Burgers model.  

 

Fig. 4.1. A schematic diagram of viscoelastic graphene/polymer nanocomposite. Polymer is 

modeled by a Burgers rheological model with four parameters, and graphene fillers are treated as 

transversely isotropic material with five independent elastic constants. 
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In this way, the Burgers parameters reported in previous studies can be used as the input 

parameters of the present micromechanical formulation. This rheological model has the 

following one-dimensional governing differential equation: 

0 0 0 0 0 0 0
11 11 11 0 11 11

0 0 0 0 0 0

,
M V M M V M V

M
M V V M V VE E E E E E

           
     

          
     

                                                 (4.1) 

where 0 ,ME  0 ,M  0
VE  and 0

V  are associated with the Maxwell and Voigt spring and dashpot 

models. These material parameters can be directly identified from the tensile creep test on the 

corresponding polymer matrix. As mentioned earlier, for the study of creep, stress relaxation 

and strain-rate sensitivity of nanocomposite material, we conveniently call upon the 

correspondence principle in the Laplace transformed domain. In this way, we carry the 

Laplace transform into the viscoelastic constitutive equation of polymer matrix, Eq. (4.1), to 

obtain its stress-strain relation in the transformed domain (TD). Accordingly, it is 

straightforward to show that the transformed Young’s modulus of viscoelastic matrix can be 

written as: 

 
0 0 0 0

0 2
0 0 0 0 0 0 0 0 0

( )
.

M V V V
TD

M V V M M M V M V

E E s s
E

E E E E s s

 
    




     
                                                           (4.2) 

In addition, the Poisson’s ratio of polymer matrix has been assumed to remain unchanged in 

the course of deformation, i.e. 0 0
TD   (one may assume that 0 0

TD   for the transformed 

bulk modulus of matrix, but as the viscoelastic behavior of most polymers are known to be 

pressure dependent, this does not seem to be a good assumption). Other moduli of matrix in 

the transformed domain, such as its bulk and shear moduli, then follow from the isotropic 
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connections, such that 0 0 0/ 3(1 2 )TD TD TDE    and 0 0 0/ 2(1 ).TD TD TDE    At the end, the 

constitutive equation of polymer matrix in the transformed domain can be written as: 

(0) (0)
0 ˆˆ ( ) ( ),TDs s L     where   0 0 0(3 ,2 ).TD TD TD L                                                                  (4.3) 

where (0)̂  and (0)̂  are Laplace transform of stress and strain tensors in polymer matrix, as 

0

ˆ ( ) ( ) . ,stf s f t e dt
                                                                                                                      (4.4) 

and 0
TDL  is the transformed moduli tensor, expressed in terms of corresponding bulk and 

shear moduli. The explicit form of Eq. (4.3) can be written in terms of the hydrostatic and 

deviatoric parts, respectively, as: 

(0) (0)
0 ˆˆ ( ) 3 ( ) ( ),TD

kk kks s s    

(0) (0)
0 ˆˆ ( ) 2 ( ) ( ).TD

kk kks s s                                                                                                    (4.5) 

In present analysis, the reinforcing fillers have been supposed to possess common spheroidal 

shapes with almost same dimensions, as shown in Fig. 4.1. It is noted that the graphene fillers 

in the composite are somewhat in the wrinkled and curved configurations. Since relating the 

complex geometrical details of such a disordered reinforcement to the overall behavior of the 

nanocomposite is not straightforward, some priori assumptions have to be made here. In this 

light, to present our theory in a simple and analytical form the graphene fillers have been 

necessarily idealized as thin oblate inclusions under an assumed condition of homogenous 

dispersion in the corresponding matrix. Compared to the graphene fillers, a disk-like 

inclusion possesses almost the same shape when its thickness-to-diameter ratio is sufficiently 
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small, as is usually the case. In addition, we suppose that the graphene fillers are virtually 

defect-free, and their mechanical response can be considered as predominantly elastic. In 

fact, the hexagonal distribution of carbon atoms on the graphene surface renders its in-plane 

property isotropic; however, the stiffness of graphene in normal-to-plane direction is 

substantially lower than its in-plane one (Lee et al., 2008; Michel and Verberck, 2008; 

Cadelano et al., 2010; Scarpa et al., 2010; Bera et al., 2010; Gao and Huang, 2014). In view 

of that, both GNS and GNP can be treated as transversely isotropic materials. Following the 

Hill’s notation for the constitutive equation of a transversely isotropic material, the moduli 

tensor for reinforcing fillers can be written in terms of five independent constants (Hill, 

1964): 

1 1 1 1 1 1(2 , , ,2 ,2 ),k l n m pL  (4.6) 

where k1, l1, n1, m1 and p1 are the plane-strain bulk modulus, cross modulus, through-the-

thickness modulus, in-plane shear modulus and transverse shear modulus, respectively. In 

terms of the common engineering constants with direction 1 symmetric and plane 2-3 

isotropic, Eq. (4.6) can alternatively be recast into 1 23 12 11 23 12(2 , , ,2 ,2 ).C C  L  The 

through-the-thickness Young’s modulus and transverse Poisson’s ratio also are given by 

2
11 1 1 1/E n l k   and 12 1 1/ 2 .l k  To make use of correspondence principle, we now write the 

constitutive equation of inclusions in the transformed domain, as: 

(1) (1)
1 ˆˆ ( ) ( ),TDs s L     where   1 1 1 1 1 1(2 , , ,2 ,2 ),TD k l n m pL  (4.7) 
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where (1)̂  and (1)̂  are the Laplace transform of associated stress and strain tensors in phase 

1. This stress-strain relation in graphene fillers then carries the following explicit form: 

22 33 1 22 33 1 11 11 1 22 33 1 11

22 33 22 33 23 1 23 12 1 12

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) 2 ( ) 2 , ( ) ,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) 2 ( ), 2 , 2 .

k l l n

m m p

        

       

      

    
 (4.8) 

The advantage of invoking such a notation is that Walpole’s scheme (1969, 1981) for the 

manipulation of transversely isotropic tensors, such as inner product and inverse, can be 

called upon to obtain the explicit results for the effective properties of graphene/polymer 

nanocomposite.  

 

4.2.2. Effective properties of graphene nanocomposite with perfect interface 

Let the overall stress-strain relation of nanocomposite be written as: 

ˆˆ ( ) ( ),TDs s L   (4.9) 

where TDL  is the effective moduli tensor in the transformed domain. In view of the random 

microstructure of nanocomposite, the effective medium can be envisioned to be isotropic, 

such that: 

(3 ,2 ),TD TD TD L  (4.10) 

where TD and TD  represents the effective bulk and shear moduli of nanocomposite, 

respectively. According to correspondence principle, the overall viscoelastic moduli of our 
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nanocomposite with perfect interface can be determined by calling upon the Mori-Tanaka 

method for a heterogeneous medium with random microstructure, as: 

    1

1 1 0 0 1 0 ,TD TD TD TD TDc c c c


  L L A L A I with    11

0 1 0 .TD TD TD TD
    A I S L L L  (4.11) 

In this formula,   represents the orientational average of the said quantity, I is the fourth-

rank identity tensor, and S  is the Eshelby’s tensor, evaluated with the Poisson’s ratio of 

matrix, 0 ,TD  and the aspect ratio of spheroidal inclusions, . Noteworthy to mention that 

several micromechanical theories could be invoked here, but in order to keep the results 

explicit we adopted the Mori–Tanaka approach developed by Weng (1984, 1990), Qiu and 

Weng (1990) and Benveniste (1987). This model provides sufficiently accurate estimates 

when the inclusion concentration is not particularly high, as it is usually the case for graphene 

nanocomposites. Now, upon substitution of 1
TDL  and 0

TDL  from Eqs. (4.3) and (4.7) into Eq. 

(4.11), effective bulk and shear moduli of viscoelastic nanocomposite can be explicitly 

calculated in the transformed domain, as: 
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 (4.12) 

in which   

       
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Constants , , , ,b d e f g  and h are transversely isotropic parameters that appear in Walpole’s 

scheme for the manipulation of transversely isotropic tensors, as summarized in Qiu and 

Weng (1990). These six parameters depend on the transformed moduli of matrix (i.e. 0
TD  

and 0
TD ), five elastic constants of fillers (i.e. 1 1 1 1, , ,k l n m and 1p ), and Eshelby’s S-tensor of 

the oblate inclusions with direction-1 as their symmetric axis, such that: 

 
 

    
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(4.14) 

where 0 0 0 0, , ,TD TD TD TDk l n m and 0
TDp  are the counterparts of 1 1 1 1, , ,k l n m  and 1p  for the 

viscoelastic isotropic matrix, given by 0 0 0 / 3,TD TD TDk     0 0 02 / 3,TD TD TDl     

0 0 04 / 3TD TD TDn     and 0 0 0 .TD TD TDm p     

The fundamental viscoelastic characteristics of graphene nanocomposites can be readily 

examined once the expressions for TD  and TD  are known from expressions (4.12).  For the 

study of time-dependent creep under constant stress, 11 ,constant   the overall strain in the 

transformed domain can be expressed as 11 11
ˆ / ( ),TDs E s   in which 

9 / (3 ).TD TD TD TD TDE       The time-dependent strain then can be obtained from the 

standard Laplace inversion, as:  
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 (4.15) 

where  is a positive and i is the imaginary number. Likewise, under a constant applied 

strain, 11 ,constant  the stress relaxation follows from: 

11
11 11

( )1 ˆ( ) ( ) ( ) .
2 2

TD
i iTD st st

i i

E s
t E s s e ds e ds

i i s

 
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 
 

   

   
    (4.16) 

In the same fashion, for the study of strain-rate sensitivity we suppose that nanocomposite is 

under a constant strain rate, 11 constant.   Accordingly, the evolution of flow stress can be 

obtained from: 

11
11 2

( )
( ) .

2

TD
i st

i

E s
t e ds

i s








 

 
 


 (4.17) 

This completes the formulation for determining the overall time-dependent behavior of 

graphene nanocomposite with perfect interface. 

 

4.2.3. The interface effects 

We now consider the interface effect on the effective viscoelastic properties of graphene 

nanocomposites. Eq. (4.12) was derived based on the assumption of perfect interface; but in 

reality, the interface condition is never perfect. In this light, the interface contribution in the 

overall time-dependent behavior of nanocomposite is inevitable. It will be shown later that 

the consideration of interface effect gives the best prediction for the experimental data. To 
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address the issue of interface effect in the context of homogenization theory presented in 

Section 4.2.2 we call upon two different interface models, as follow. 

4.2.3.1. Model 1: Weakened interphase layer with a diminishing thickness 

introduced between graphene fillers and polymer 

In this section, the interface effect will be modeled by the introduction of a diminishing layer 

of interphase between the graphene fillers and surrounding matrix. It is noteworthy that, in 

retrospect, similar approach has been adopted previously by some notable contributions for 

treatment of imperfect interface in various composite materials. Among others, we mention 

in particular the investigation of Wang et al. (2014) for determining the electrical properties 

of graphene and CNT nanocomposites, and the contribution made by Wang et al. (2015c) for 

the study on magnetoelectric coupling in multiferroic composites with imperfect interface. 

According to this methodology, we first consider the existence of a spheroidal layer of 

interphase by adding a thickness t to the semi-axis of original inclusion. Interphase is then 

taken to surround the inclusion, making it similar to a “thinly coated” graphene filler. In other 

words, this thin layer and the core particle are taken to form an inclusion system, in which the 

volume concentration of the interface is denoted as cint, and that of the inclusion as (1- cint). 

Compared to dimensions of original inclusion, coating thickness is taken to be diminishingly 

small; we now intend to make it zero to turn the interphase into an interface. (1-cint) is the 

volume fraction of the original graphene in the “coated” graphene, given by 

  22
int1 / 2 ,c D R D t R t       where D and R are the thickness and radius of thin oblate 

inclusions, respectively. Now, by taking ,t D  it is straightforward to show that: 
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 int 2 1 2 / ,c t D   (4.18) 

where / 2D R   denotes the aspect ratio of graphene fillers. The interphase layer is further 

assumed to be viscoelastic with stiffness tensor of int
TDL  in transformed domain. In this light, 

we suppose that the viscoelastic behavior of interface layer can be described by a Voight 

rheological model, such that its constitutive equation under tension can be represented by: 

11 int 11ˆˆ ( ) ( ),TDs E s     where   int int int .TD V VE E s   (4.19) 

In this formula, int
VE  and int

V  are unknown interfacial constants which are associated with the 

Voight spring and dashpot model. As it will be demonstrated later in the numerical studies, 

due to the imperfect interface the interfacial stiffness are usually much lower than the 

intrinsic stiffness of core graphene filler. Besides, the Poisson’s ratio of interface layer is also 

assumed to remain unchanged, and be equal to that of matrix, int 0 .TD   In this light, the 

transformed moduli of interface layer then can be recast into int int int(3 , 2 ),TD TD TD L  in which 

int int int/ 3(1 2 )TD TD TDE    and int int int/ 2(1 ).TD TD TDE    Now, the effective viscoelastic property of 

inclusion system, denoted by coat
TDL , can be obtained by using the Mori-Tanaka method for a 

composite with aligned fillers (Weng, 1984 & 1990): 

    11

coat int int 1 int int int int 1 int(1 ) ,TD TD TD TD TD TD TDc c
       L L L L I S L L L  (4.20) 

where intS  means that the Eshelby’s tensor is evaluated with the property of the interface; 

however, in the limiting case of diminishing thickness for the interface layer, the “thinly 

coated” inclusion and original inclusion share the same shape and the same S-tensor, int S S , 
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since the Eshelby’s tensor depends only on the interface Poisson’s ratio and the shape of core 

inclusion. Finally, upon substitution of 1
TDL , int

TDL  and int
TDS  into Eq. (4.20), the explicit 

expressions for the overall viscoelastic moduli of inclusion system, 

(2 , , ,2 ,2 ),TD TD TD TD TD TD
coat coat coat coat coat coatk l n m pL  can be determined. Accordingly, five effective constants 

of the particle ensemble (i.e. graphene filler and its thin coating) are obtained to be:  

        
       

int int int 1 1 int int

int int int int 1 1

2 1 2 1

1 2 1 2 / ,

             

       

         

     

TD TD
coat

TD

k c k b d g h c k d l g c b d g h c b

c g c l b d g h c l b k h
 

 

 

        
       

int int int 1 1 int int

int int int int 1 1

2 1 2 1

1 2 1 2 / ,

             

       

         

     

TD TD
coat

TD

l c l b d g h c l d n g c b d g h c b

c g c n b d g h c n b l h
  

        
       

int int int 1 1 int int

int int int int 1 1

2 1 2 2 1

2 1 2 1 / ,

             

       

         

     

TD TD
coat

TD

n c n b d g h c n b l h c b d g h c d

c h c l b d g h c l d n g
  

    int int int 1 int int1 / 1 ,TD TD
coatm c m e c m c e c          

    int int int 1 int int1 / 1 ,TD TD
coatp c p f c p c f c      

   (4.21) 

in which          2

int int int int int2 1 2 1 2 1 .c b d g h c d c b d g h c b c g h               
            In this 

formula, , , ,b d e   ,f g   and h  are six transversely isotropic parameters that appear in 

Walpole’s notations, given by:  
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 
 

    
 

1 int 0 2222 2233 0 2211 int

1 int 0 1122 0 1111 int
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(4.22) 

where constants int int int / 3,TD TD TDk     int int int2 / 3,TD TD TDl     int int int4 / 3TD TD TDn     and 

int int int
TD TD TDm p    stand for the viscoelastic interface.  

For the study of interface effect, the inclusion system is then embedded into the original 

polymer matrix to determine the effective viscoelastic properties of corresponding 

nanocomposite, again by Eq. (4.12). In doing so, material parameters 1 1 1 1, , ,k l n m  and 1p  in 

expressions (4.12), (4.13) and (4.14) should be replaced by the counterpart effective 

constants of thinly-coated inclusion system, i.e. , , ,TD TD TD TD
coat coat coat coatk l n m  and TD

coatp  given by Eq. 

(4.21). In this way, the overall bulk and shear moduli, TD and ,TD  for the 

graphene/polymer nanocomposite with a weakened interface condition can be calculated. 

This completes our first methodology (referred to as model 1) for the theoretical treatment of 

imperfect interface. 
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4.2.3.2. Model 2: Displacement jump at graphene-polymer interface, 

characterized by sliding parameter  

In formulation of Section 4.2.2, no discontinuity between the graphene filler and adjacent 

matrix in terms of corresponding traction or displacement has been considered. In reality, 

however, such a perfect continuity in displacement at the graphene-polymer interface cannot 

be assured. In this light, we now call upon the concept of slightly weakened interfaces Qu 

(1993a, b) to model the imperfect interface condition in graphene/polymer nanocomposites. 

According to this methodology, the traction continuity will be maintained,  

( ) 0,ij j ij jn n     x  (4.23) 

but, the displacement jump will be taken to follow the linear spring layer model proposed by 

Benveniste (1985), Hashin (1990) and Qu (1993a, b), as 

 ( ) ,i i ij jk ku u n   x  (4.24) 

Here,    represent the jump of the said quantity at the interface with an outward normal, ni, 

from graphene filler to the matrix, and ij  represents the compliance of interface layer. A 

particularly useful form of this interface parameter is  

( ) .ij ij i jn n        (4.25) 

When  =0, the interface is allowed to slide but not to have normal separation or 

interpenetration, as it is usually the case in graphene/polymer nanocomposites. This condition 

will be assumed in present methodology. Our concern then will be the influence of sliding 
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parameter  on the overall viscoelastic response of nanocomposite. It is evident that, when 

0,   it becomes a perfectly bonded interface, and when    the interface is totally 

unbonded. According to present scheme for treatment of imperfect interface condition, the 

Eshelby’s S-tensor in Eq. (4.11) should be modified to ,mS  to account for the effect of 

interface sliding parameter, , as: 

   0 ,m TD   S S I S H L I S  (4.26) 

with  = . H P Q  This relation for modified Eshelby’s tensor has been taken from Eq. 

(2.13) of Qu (1993a), but written in the transformed domain. In Eq. (4.26), S  is the regular 

Eshelby’s tensor, 0
TDL  is the transformed stiffness moduli of polymer matrix, I is the identity 

tensor, and H represents the imperfection compliance tensor. The formula to derive the 

expression for the components of the H-tensor is provided in Appendix C of Qu (1993a). 

Considering only the tangential imperfection, , and making the normal imperfection zero,  

= 0, one can write the imperfection compliance tensor as 

 = , ijkl ijkl ijklH P Q  (4.27) 

where 

 

 

2 1

0 0

2 3

0 0

3
sin ,

16
3

sin ,
4

 

 

      


  






              

       

 

 

ijkl ik j l jk i l il k j jl k i

ijkl i j l ki

P n n n n n n n n n d d

Q n n n n n d d

 
 

(4.28) 

with  cos , sin cos , sin sin /in D         and i in n n  . Using this formulation, the 

nanozero components of tensors P and Q can be obtained to  
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(4.29) 

and 
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(4.30) 

in which D and , respectively, are the thickness and aspect ratio of the graphene fillers. 

Now, the modified Eshelby’s tensor mS  can be substituted into Eq. (4.11). As a result, in 

parallel to Eq. (4.12) but including the additional contribution from the displacement jump at 

the interface, the effective bulk and shear moduli of graphene/polymer nanocomposite with 

an imperfect interface can be obtained as 

 
0 0 1 I

0 1 II H

,
3

TD TD
TD

TD TD

c c

c c

 


 



 

       
0 0 1 I

0 1 II H

,
2

TD TD
TD

TD TD

c c

c c

 


 



 

 (4.31) 

in which the expressions of I ,TD  II ,TD  I
TD  and II

TD  have been already given in Eq. (4.13). 

Because of the effect of imperfect interface, contained by tensor H, the only extra terms that 

go into Eq. (4.31) are H
TD  and H .TD  These additional terms, respectively, are the hydrostatic 
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and deviatoric components of the isotropic tensor   11

1 0 1 0 ,TD m TD TD TD
   H L I S L L L  by 

which values of H
TD  and H

TD  can be readily determined after calling upon the Walpole’s 

mathematical scheme for evaluating the relevant orientational average. The modified TD  

and TD  given by Eq. (4.31) can be employed in conjunction with Eqs. (4.15) and (4.17) to 

predict the creep, relaxation and strain-rate sensitivity of graphene/polymer nanocomposites 

with weakened interface. 

 

4.3. Numerical results and discussion 

In this section, through consideration of some real examples of nanocomposites, we intend to 

uncover the interface effects on the fundamental viscoelastic characteristics of 

graphene/polymer composite materials. In this process, the applicability and robustness of the 

homogenization theory with proposed interface models also will be placed in perspective. 

Two different sets of experimental data available in the literature will be reconsidered in 

following sections. Section 4.3.1 is devoted to graphene/Polystyrene nanocomposite that has 

been tested by Wang et al. (2015a) at different volume concentrations of GNS fillers. Next 

example, posted in Section 4.3.2, is associated with a nanocomposite for which the graphene 

fillers with different aspect ratios have been incorporated into a Polylactide matrix. The 

measured creep data for such a material has been given by Wang et al. (2015b). For more 

illustration on the microstructure of abovementioned graphene nanocomposites, their 

microscopic images at some selected filler loadings have been depicted in Fig. 4.2. This 
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figure shows a sufficiently homogenous dispersion of graphene fillers in the corresponding 

matrix, a condition that is inherent in our preceding formulation.  

In what follows, by making use of experimentally measured data for each type of 

nanocomposites, we first identify the corresponding interfacial parameters to well capture the 

quantitative creep behavior of that material. Once the interface constants are determined, 

their values will be employed in subsequent numerical calculations for the relaxation and 

strain-rate sensitivity analysis of pertinent nanocomposite. It is remarkable in passing that, to 

the best of author’s knowledge, the strain-rate sensitivity and stress relaxation of 

graphene/polymer nanocomposites have not been studied in the preceding investigations, 

neither experimentally nor numerically.   

 

   

(a) 

 

(b) 

Fig. 4.2. Microscopic images of graphene nanocomposites that will be examined numerically in 

Section 3 of present study: (a) TOM image of GNS/Polystyrene with filler content of 1.4 vol. % 

(Wang et al., 2015a), and (b) Optical image of GNS/Polylactide with filler content of 3 wt.% 

(Wang et al., 2015b). 
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4.3.1. Viscoelastic characteristics of graphene/Polystyrene nanocomposite 

We first consider a nanocomposite consisting of graphene nanosheets distributed randomly 

within a Polystyrene matrix. The time-dependent creep behavior of such a material has been 

tested by Wang et al. (2015a) under tensile stress 11 5 MPa,   at temperature 70 oC. For the 

numerical calculations, the graphene nanosheets are supposed to possess the average 

thickness of D = 0.5 nm with approximate aspect ratio of  = 1 x 10-3 (Tong et al., 2014; 

Wang et al., 2015a). Moreover, the in-plane elastic moduli of graphene fillers are considered 

to be 33 231TPa and 0.17.E    These constants have been determined by Cadelano et al. 

(2010) based on the first-principles total-energy calculations in combination with the 

continuum elasticity. It is notable that these numerical values are in good agreement with the 

results of other investigations reported for the stiffness moduli of graphene and also bulk 

graphite in their basal plane (Scarpa, et al., 2010; Bera et al., 2010; Michel and Verberck, 

2008; Gao and Huang, 2014; Kelly, 1981). The other three constants of graphene fillers, 

associated with its normal-to-plane properties, are assumed to be equal to those of single 

crystal graphite, such that 11 12 1236.5 GPa, 4 GPa and 15 GPaE C    (Kelly, 1981). 

Besides, the material constants of pure Polystyrene matrix, used in our numerical 

calculations, are supposed to be:  

0 1.95 GPa,ME   0 1805 GPa.s,M   0 7.5 GPa,VE   0 352 GPa.sV   and 0 0.35.   
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As mentioned earlier, we first examine the time-dependent creep of GNS/Polystyrene 

nanocomposite under the constant stress of 11 5 MPa.   The calculated creep strains are 

shown in Fig. 4.3 at four graphene concentrations of c1=0, 1.4, 2.4 and 3.9 vol.%.  

 

          
(a) 

 
 

           
(b) 
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(c) 

 
Fig. 4.3. Experimental data (dashed lines from Wang et al., 2015a) and theoretical results (solid 

lines) for creep response of graphene/Polystyrene nanocomposite with different GNS loadings. 

The solid curves in (a) were calculated under assumption of perfect interface, and curves in (b) 

were obtained by adopting model 1, with interfacial properties int
VE  270 MPa and int

V  18 

GPa.s, and theoretical results in (c) were calculated by using model 2, with = 10-7.55 nm/MPa.  

 

The solid curves in Fig. 4.3(a) were obtained by assuming that there is no interface effect, 

whereas the dashed curves are the experimental data taken from Wang et al. (2015a). It is 

evident that the theoretical curve for c1 = 0% matches sufficiently well with the test data, 

implying that the four-parameter Burgers model is adequate to describes the creep behavior 

of Polystyrene. However, direct comparison between the computed results at c1 = 1.4%, 2.4% 

and 3.9%, and the relevant experimental curves immediately reflects that our numerical 

results for the assumption of perfect interfacial bonding are substantially lower than the 

measured creep data. This is a strong evidence that the load transfer from matrix to graphene 

fillers, and vice versa, is not perfect. As a result, the weakened interface condition is 
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considered to calculate the creep strain for the same set of graphene loadings. In doing do, we 

first adopt the interface model 1 with interfacial properties int
VE  270 MPa and int

V  18 

GPa.s, in which the imperfect interface condition has been modeled by introduction of a 

weakened interphase layer with diminishing thickness between fillers and surrounding 

matrix. It is notable that there is no experimental measurement for the values of interfacial 

parameters. In view of that, the unknown constants int
VE  and int

V  were determined numerically 

by matching the theoretical prediction with corresponding experimental results for creep 

behavior of GNS/Polystyrene nanocomposite. The theoretical results are illustrated as solid 

curves of Fig. 4.3(b). The calculated curves are now significantly higher than those 

theoretical results in Fig. 4.3(a). Even though the calculated results for c1 = 1.4% and 2.4% 

are slightly different with the corresponding test data, the overall agreement is substantially 

better. In a similar fashion, we now call upon the interface model 2 with sliding parameter = 

10-7.55 nm/MPa to model the imperfect GNS-Polystyrene bonding by a displacement jump at 

the interface. Since our computed results were sensitive to the imperfect parameter, the value 

of  was determined by matching the theoretical predictions with the corresponding test data 

for the creep response of nanocomposite. Fig. 4.3(c) shows the theoretical results (solid 

curves) along with the experimental data (dashed curves) for specified volume concentrations 

of GNSs. A comparison of new results with those of Fig. 4.3(a) reveals that the consideration 

of such a sliding interface significantly brought up the theoretical curves. In this way, the 

quantitative agreement between theoretical and experimental data sets now is substantially 

better, even though theoretical curves for c1 = 1.4% and 2.4% are somewhat lower than the 

relevant test data. In general, Fig. 4.3 demonstrates that the measured creep data cannot be 
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well captured without considering the additional contribution of weakened interface 

condition; however, employing the imperfect interface models gives a very good prediction 

for the experimental data of GNS/Polystyrene nanocomposite. This clearly confirms the view 

that the interface effect is important, and it is the combination of our theory with the 

imperfect interface models that gives rise to a complete methodology for viscoelastic analysis 

of graphene/polymer nanocomposites.   

We now study the time-dependent relaxation behavior of GNS/Polystyrene nanocomposite 

under a constant strain 11 0.01.   Needless to mention that both imperfect interface models 

can be adopted here for the relaxation analysis of nanocomposite. For the sake of 

conciseness, however, we only demonstrate the theoretical results determined by employing 

the interface model 1. In doing so, we have used the interfacial constants int
VE  270 MPa and 

int
V  18 GPa.s identified previously through the creep analysis of nanocomposite. The 

computed results for this nanocomposite with the perfect and weakened interface are shown 

in Fig. 4.4(a) and (b), respectively. It is obvious that the initial stress state under prefect 

interface condition is visibly higher due to the higher overall stiffness of composite system, 

while the stress state with an imperfect interface is lower. For instance, with the graphene 

concentration of c1 = 3.9% the initial stresses are 56 MPa and 30 MPa for the perfect and 

imperfect interface conditions, respectively. This implies that the overall stiffness in the real 

graphene/Polystyrene is only about 54% of the ideal case of perfect bonding. This 

observation points to the importance of having a prefect interface in order to develop a stiffer 

graphene nanocomposite.  
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(a) 

 
 

 
(b) 

   
 

Fig. 4.4. Relaxation behavior of the graphene/Polystyrene nanocomposite with different GNS 

loadings, calculated for 11 0.01  , under the assumptions of (a) perfect, and (b) weakened 

interface conditions. 
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Fig. 4.4 also reveals that the difference in the relaxation curves for various graphene loadings 

is more significant under the assumption of perfect interface than the imperfect one. In other 

words, the more interface contribution due to higher interface area at 3.9 vol.%  in Fig. 4.4(b) 

has dramatically lowered its stress level to close the gap with the 2.4 vol.% one.  

The stress-strain relations of graphene/Polystyrene nanocomposite are strain-rate dependent, 

due to the rate form of the constitutive equation of the polymer matrix. We now intend to 

study this issue by means of interface model 1 with interfacial constants int
VE  270 MPa and 

int
V  18 GPa.s. In doing so, three orders of strain rates, at 4 3

11 10 , 10   and 10-2 /s are 

employed in our calculation. For pure Polystyrene and nanocomposite with 3.9 vol.% 

graphene loading, the computed results are shown in Fig. 4.5(a) and (b) under the 

assumptions of perfect and imperfect interface conditions, respectively. It is seen from Fig. 

4.5(a) that, for the perfect interface condition at each of the corresponding strain rates, the 

follow stress of nanocomposite is substantially higher than that of pure matrix. However, as 

shown in Fig. 4.5(b) for the case of imperfect interface, the flow stress of the graphene 

nanocomposite has significantly decreased. In fact, the viscoelastic stiffness of our 

nanocomposite is seen to be greatly compromised due to interface weakness regardless of the 

level of strain rate. It is conceivable that if the value of interfacial constant int
VE is too low, the 

viscoelastic stiffness of the nanocomposite could become even lower than that of the pure 

matrix. This again points to the urgency of surface functionalization of graphene fillers for 

achieving an improved interface condition.  
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(a) 

 
 
 

 

(b) 
 

Fig. 4.5. Strain-rate sensitivity of the graphene/Polystyrene nanocomposite at the GNS loading of 

3.9 vol.%, obtained under the assumptions of (a) perfect, and (b) weakened interface conditions. 
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4.3.2. Viscoelastic characteristics of graphene/Polylactide nanocomposites 

We now employ the present theory to study the overall viscoelastic behavior of 

graphene/Polylactide nanocomposites. The time-dependent creep behavior of such a material 

has been tested by Wang et al. (2015b) under tensile stress 11 1 MPa,   at temperature 35 oC. 

In order to make necessary contact with the existing literature, we particularly consider 

following nanocomposites reported by Wang et al. (2015b), 

-  Thick GNP/Polylactide composite: Long stacks of graphene layers (say thick GNPs), 

with the average thickness and aspect ratio of D = 25 nm and  = 2 x 10-3, have been 

incorporated in the polymer matrix.  

- Thin GNP/Polylactide composite: Short stacks of graphene layers (say thin GNPs), with 

the average thickness and aspect ratio of D = 5 nm and  = 10-3, have been involved in 

the polymer matrix.  

- GNS/Polylactide nanocomposite: GNSs, with the average thickness and aspect ratio of D 

= 1 nm and  =0.2 x 10-3, have been incorporated in the Polylactide matrix. 

It is notable that the filler loading in all abovementioned nanocomposites is taken to be 

identical at 3 wt.%, as specified in Wang at al. (2015b). In the light of these case studies, we 

can also uncover the influence of geometries of fillers on the viscoelastic characteristics of 

graphene/polymer nanocomposites with the imperfect interface. In following numerical 

calculations, the material constants for polymer matrix are considered to be 

0 2.3 GPa,ME   0 3300 GPa.s,M   0 14 GPaVE  , 0 390 GPa.sV   and 0 0.36.   
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which have been determined from the corresponding creep test data for pure Polylactide.  

We first study the creep behavior of the graphene/Polylactide nanocomposite, under the 

constant stress of 11 1 MPa.   The calculated creep strains are shown in Fig. 4.6 for pure 

Polylactide matrix and three examples of nanocomposites listed above. The dashed curves in 

Fig. 4.6(a) pertain to experimental data taken from Wang et al. (2015b), whereas solid curves 

have been obtained by the present theory for the perfect interface condition. We readily 

recognize that the theoretical curve for pure Polylactide fully captures the corresponding test 

data, implying that the four-parameter Burgers model well describes the creep behavior of 

Polylactide matrix. However, a comparison between the solid and counterpart dashed curves 

for nanocomposites immediately reveals that theoretical results for perfect interfacial bonding 

are significantly lower than the experimentally measured data. This implies that the load 

transfer between inclusions and surrounding Polylactide matrix is not perfect. To address this 

issue we then call upon interface model 2, by which the imperfect interface condition is 

modeled by a displacement jump at the graphene-Polylactide interface (interface model 1 

also could be used in present analysis, but, for the sake of conciseness we only demonstrate 

the results obtained by adopting interface model 2). In this process, interfacial sliding 

parameters are identified by matching our theoretical results with corresponding creep data 

for each case of graphene/Polylactide nanocomposite, as: 

-  Thick GNP/Polylactide nanocomposite:   =10-4.53 nm/MPa 

-  Thin GNP/Polylactide nanocomposite:   =10-4.86 nm/MPa 

-  GNS/Polylactide nanocomposite:  =10-5.59 nm/MPa 
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(a) 

 
 

        
(b) 

 

Fig. 4.6. Experimental data (dashed lines from Wang et al., 2015b) and theoretical results (solid 

lines) for the creep response of graphene/Polylactide nanocomposite with different types of fillers 

at identical concentration of 3 wt.%. The solid curves in (a) were calculated under the assumption 

of perfect interface, and curves in (b) were obtained by employing imperfect interface model 2.  
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The computed results for nanocomposites with imperfect interface are shown as solid curves 

of Fig. 4.6(b), along with the dashed lines which pertain to corresponding test data. It is 

evident that our theoretical calculation now matches almost perfectly with the experimental 

measurements for all types of nanocomposites. This observation proves that it is the 

combination of our original homogenization scheme with the imperfect interface models that 

eventually leads to a complete theory for the viscoelastic analysis of graphene-based 

nanocomposites.  

Next, we examine the relaxation behavior of graphene/Polylactide nanocomposite under 

constant strain, 11 0.01.   For pure Polylactide matrix and subsequent graphene-based 

nanocomposites, the calculated results have been depicted in Fig. 4.7(a) and (b), respectively, 

under the assumption of perfect and imperfect interface conditions. As we expected, for all 

cases the initial stress state under the perfect interface is higher due to higher overall stiffness 

of corresponding nanocomposite, while the stress state with a weak interface is significantly 

lower. Moreover, it is evident that the initial stresses at GNS/Polylactide nanocomposite are 

113 MPa and 55 MPa for perfect and weakened interface conditions, respectively, implying 

that stiffness in the real GNS/Polylactide nancomposite is only 48% of the ideal case of 

perfect bonding. On the other hand, for the thin and thick nanoplatelets the overall stiffness in 

real nanocomposites with imperfect interface are respectively about 60% and 68% of the 

ideal composites with the perfect interfacial bonding. Accordingly, we can conclude that the 

interface condition plays a more profound role in the overall response of GNS/Polylactide 

nanocomposite.  
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(a) 

 
 

          
(b) 

   
 

Fig. 4.7. Relaxation behavior of graphene/Polylactide nanocomposites with different types of 

fillers at the identical concentration of 3 wt.%, calculated for 11 0.01  : (a) perfect interface 

model, and (b) weakened interface model. 
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As shown in Fig. 4.7(a), under the assumption of perfect interface condition the difference in 

relaxation curves between GNS/Polylactide nanocomposite with the other composites is 

relatively significant. However, it is evident from Fig. 4.7(b) that the interface effect has 

lowered the stress level of GNS/Polylactide nanocomposite, more drastically than the stress 

level in thin and thick GNP/Polylactide composites. This observation indicates that, in 

comparison with GNP/Polylactide composites, the overall behavior of GNS/Polylactide 

nanocomposite is relatively more sensitive to its interface quality. This higher sensitivity to 

the interface condition is due to the extreme geometry of graphene nanosheets which 

intensifies the influence of weak interface condition on the overall response of GNS/polymer 

composite. In view of this observation, one can conclude that a little improvement in the 

GNSs-polymer interface condition can lead to a significant beneficial impact on the stiffness 

and long-term performance of a GNS/Polymer nanocomposite.  

The closing part of this section is devoted to strain-rate sensitivity analysis of 

graphene/Polylactide nanocomposites. Let us consider the constant strain rate of 2
11 10  /hr. 

The theoretical prediction for strain-stress relations of Polylactide matrix and nanocomposites 

are illustrated in Fig. 4.8(a) and (b), respectively, for the conditions of perfect and imperfect 

interfacial bondings. The nonlinear strain-stress relation for all graphene/Polylactide 

nanocomposites is evident in these figures. It is further seen from Fig. 4.8(a) that the flow 

stress of GNS/Polylactide nanocomposite with perfect interface is substantially higher than 

that of thin or thick GNP/Polylactide composites. However, as shown in Fig. 4.8(b), the flow 

stress of the GNS/Polylactide composite with a weakened interface has significantly 

decreased to a lower state, to close the gap with other nanocomposites, implying that the 
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viscoelastic stiffness of that nanocomposite is greatly compromised due to the imperfect load 

transfer at GNSs-Polylactide interface.  

  
(a) 

 

 
(b) 

 

Fig. 4.8. Strain-stress relation of nanocomposites with different types of graphene-based fillers at 

the identical concentration of 3 wt.%, under assumptions of (a) perfect and (b) weakened 

interface conditions. 
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4.4. Concluding remarks 

In order to study the viscoelastic characteristics of a graphene/polymer nanocomposite, first 

we presented a homogenization scheme in conjunction with two different approaches for 

treatment of imperfect interface between the constituent phases. Next, we applied the 

proposed theory to uncover the interface effect on the time-dependent creep, stress relaxation 

and stress-rate sensitivity of nanocomposite at various concentrations and aspect ratios of 

graphene fillers. Through consideration of experimentally measured data for various 

examples of nanocomposites, i.e. graphene/Polystyrene and graphene/Polylactide materials, 

we have demonstrated that without accounting for the imperfect interface the predicted creep 

compliances are too stiff; however, with the introduction of a weakened interface in our 

model, the quantitative behavior of experimental creep curves can be well captured. In 

addition, both stress relaxation and stress-strain relations were also found to greatly depend 

on the interface condition. The findings of this investigation could have a significant impact 

on the long-term durability and reliability of graphene nanocomposites, indicating that 

continued improvement in the surface functionalization is necessary to realize the full 

potential of graphene reinforcement. Besides, the robustness and applicability of developed 

theory encouraged us to propose it as a simple but yet widely useful tool for the viscoelastic 

analysis of graphene-based nanocomposites, instead of doing heavy computational 

simulations or recurring onerous experimental investigations. The availability of such a 

explicit expressions for the overall viscoelastic properties of graphene/polymer 

nanocomposites with imperfect interface can be greatly valuable in the design and 

optimization of high performance materials for a broad range of new applications.  
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Chapter 5. 

Electrical conductivity and permittivity of graphene 

nanocomposites with percolation threshold, microcapacitor 

and electron-tunneling effects 

 

5.1. Overview 

As mentioned earlier, the addition of highly conductive graphene fillers into polymer matrix 

to form a nanocomposite with tunable electrical properties has stimulated a surge of scientific 

interests from the research communities. In this regard, a large number of conductive 

nanocomposites have been fabricated and characterized by incorporating graphene fillers in 

different polymers, e.g. epoxy, polypropylene, poly(vinylidene fluoride), polystyrene, etc. 

The most interesting common aspect of reported composites is that all enhancements in their 

electrical properties are observed at a very low concentration of graphene fillers, referred to 

as percolation threshold. This fundamental characteristic is the result of several possible 

mechanisms with complex natures. Even at extremely low filler concentrations many 

graphene fillers may be in direct contact with each other, because of their high aspect ratios. 

This results in the formation of several macroscale conductive pathways through the entire 

composite. Moreover, originated from the quantum mechanics of materials the electrons have 

the ability of hoping through two neighboring graphene sheets separated by a thin insulating 

film; this hoping property could enhance the conduction along the pathways. In view of this, 

a combination of mechanisms (i.e. direct particle-particle contact, electron tunneling and 
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intrinsic conduction of fillers) is responsible for the formation of conductive networks in 

graphene composites, which contributes to a sharp increase of their effective conductivity 

over a very narrow range near the percolation threshold.  

Furthermore, graphene nanocomposites are very appealing for recent applications in 

electromagnetic shielding and high-energy-density capacitors, owing to unique property of 

dramatic increase in their dielectric constants near the percolation threshold (see Liang et al., 

2009; Varrla et al., 2011; Singh et al., 2011; Gómez et al., 2011; Zhang et al., 2010; Huang et 

al., 2014). The pronounced enhancement in effective permittivity of graphene 

nanocomposites near their percolation threshold can be explained in the light of so-called 

microcapacitor effect (Wang et al., 2013; Liu et al. 2014; Shang et al., 2012; Kim et al., 2013; 

Cui et al., 2011; Fan et al., 2012; Dang et al., 2012). In fact, around the percolation limit 

many graphene fillers are isolated by very thin layers of polymer. This forms lots of 

microcapacitor structures throughout the composite, which significantly increase the intensity 

of local electric filed just around the conductive fillers. Consequently, this process promotes 

the charge carriers to migrate and then accumulate at the fillers-matrix interfaces. This 

interfacial effect, also known as Maxwell-Wagner-Sillar polarization, is the main reason for 

enhancement of effective dielectric property of pertinent graphene nanocomposites at low 

frequency. However, some geometrical and manufacturing parameters, e.g., aspect ratio of 

graphene sheets, electrochemical functionalization of graphene-matrix interface, and the 

homogeneity of filler dispersion in matrix, can affect the probability of microcapacitor 

formation in nanocomposite material.  
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Inspired by the unique properties mentioned above, a quantitative prediction on the overall 

electrical behavior of graphene composites is essential for the design and optimization of new 

high performance materials and devices. However, an accurate modeling of graphene 

composites is challenging due to the complex nature of existing physical processes, i.e. 

formation of percolation networks and microcapacitors throughout the composite material. 

Because of the multi-scale nature of this problem, the other difficulty in modeling of these 

nanomaterials lies in relating the microscopic characteristics of their internal microstructures 

to the macroscopic properties of interest. For instance, the numerical contrast of graphene 

electrical conductivity compared with most polymers is in the order of 1011-1021. Moreover, 

the aspect ratio and surface area of graphene is very large in comparison with conventional 

fillers. Therefore, from the continuum prospective we are dealing with a high contrast and 

high aspect ratio problem which is dramatically different from the classical cases treated by 

the conventional continuum models. A thorough investigation of literature reveals that 

although considerable experimental efforts have been made in exploring the properties of 

graphene composites, the theoretical and computational studies on these materials are rarely 

reported. As the most common computational treatment for this class of problems, Monte 

Carlo (MC) simulation recently has been employed to calculate the conductivity of graphene 

composites (Hicks et al., 2009; Fan et al., 2015; Li and OStling, 2013; Safdari and Al-Haik, 

2012). MC simulation can provide a valuable insight into the microscopic processes; 

however, its high computational expense undermines its capability for the simulation of 

systems where fillers have extreme range of geometry and material properties. Recognizing 

the potential gain that theoretical models could deliver, several notable investigations with 
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the continuum backbone have been reported for the treatment of different types of conductive 

carbonaceous nanocomposites, in particular CNT-based composites (Yan et al., 2007; Deng 

and Zheng, 2008; Seidel and Puydupin-Jamin, 2011; Berhan and Sastry, 2007; Gardea and 

Lagoudas, 2014; Wang et al., 2014). A series of homogenization theories, addressed in these 

investigations, potentially could be developed and then applied to the graphene 

nanocomposites. To the best of authors’ knowledge, existing models suffer from several 

limitations. As the most important shortcoming, all previous investigations are pertinent to 

the Direct Current (DC) conductivity of carbonaceous nanocomposites; none addressed the 

Alternating Current (AC) properties of these materials in the light of homogenization models. 

Besides, some of adopted models in previous investigations did not possess a percolation 

threshold and had to borrow this critical feature from other models. For instance, Kim et al. 

(2015) recently employed the modified Mori-Tanaka theory to calculate the effective 

conductivity of graphene composites. However, in order to incorporate the important 

parameter of percolation threshold in their formulation they had to adopt the hard/soft core 

model, which was originally developed by Berhan and Sastry (2007) based on the MC 

simulation. It is notable that when the percolation threshold has to be borrowed from other 

theory, it implies that the developed homogenization scheme is not self-contained. This is an 

issue that we want to avoid in present study.  

This chapter concerns with the determination of effective conductivity and permittivity 

constants of graphene nanocomposites in the AC electrical conditions. To do so, we first call 

upon a self-consistent effective medium theory as the backbone of our analysis. Although the 

formation of conductive networks and microscale capacitors is difficult to be simulated in a 
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continuum methodology, we will include their effects in a phenomenological way so that 

these physical processes will not be completely lost. Accordingly, the electron tunneling and 

formation of microcapacitors will be taken as two statistical processes that their effects on the 

interfacial properties can be characterized by the appropriate probability functions. At the 

end, upon consideration of an example of graphene/polymer nanocomposite it will be shown 

that the proposed methodology can quantitatively capture the experimental data of 

corresponding material. 

 

5.2. Theory 

Consider a two-phase heterogeneous body with a polymer matrix and 3D randomly oriented 

graphene fillers of common spheroidal shapes and almost same dimensions. Suppose that 

graphene nanocomposite is subjected to an AC electrical loading, say harmonic electric field. 

Subsequently, the long-term response of the composite material and its constituent phases is 

also harmonic. In order to keep the necessary connection with the literature, the parallel 

combination of a capacitor and a resistor could be employed here as the equivalent circuit 

model for the simulation of the nanocomposite in the AC setting. In light of this equivalency, 

the electric field in the composite system, E and corresponding electric density, J  are then 

related to each other through 

* ,eJ = E  (5.1) 

in which *
e is the effective complex conductivity tensor of the nanocomposite, written as  

* ,e e ej      (5.2) 
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where e  and e , respectively, are unknown conductivity and permittivity tensors of 

effective medium, j is the imaginary number, and 2 ,f   in which  f  is the corresponding 

AC frequency. Likewise, the electric density amplitude vector of kth constituent phase, kJ

( or ),k m g  can be expressed in terms of associated electric field, ,kE  as *
k k kJ = E in 

which * . k k kj    Our objective in the present study is to establish how the effective 

conductivity and permittivity of nanocomposite, e  and e  depend on the electrical 

properties of its constituent phases for a given frequency.  

Several micromechanical theories could be invoked here as the backbone of present study; 

however, in order to capture the important futures of the percolative conduction as an integral 

part of our continuum model, we shall adopt the self-consistent effective medium theory in 

conjunction with complex conductivity moduli for the constituents. In retrospect, different 

ways can be adopted here to derive the self-consistent effective medium theory. The simplest 

one is the Maxwell’s approach of far-field matching, as recently formulated by Weng (2010).  

So, in order to pave the way for our analysis in the most concise way, we then briefly 

recapitulate the Maxwell’s approach, but written in terms of complex conductivity tensors of 

the constituents. Consider a representative volume element (RVE) of composite system, 

which is embedded in an infinitely extended homogenous reference medium with 

conductivity tensor of * .r  The matrix and graphene fillers in corresponding RVE carry 

volume concentrations of cm and cg, respectively (with cm + cg =1). Now, suppose that the 

RVE under consideration could be replaced by an equivalent homogenous composite element 

with the same volume but yet unknown effective tensor, * ,e which is embedded in the same 
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infinitely extended reference medium. According to the Maxwell’s far-field matching 

principle, this equivalency is theoretically possible just if the scattered field in both cases can 

be equal. Accordingly, the consistency condition associated with these equivalent RVEs can 

be written as: 

     
1 1 11 1 11 1 1

* ** * * * * * * ,
                            m m r m r g g r g r e r e rc cS S S          (5.3) 

in which S is the shape-dependent depolarization tensors of associated phases. Now, 

according to the self-consistent theory the electrical property of the reference medium can be 

assumed to be that of the effective medium, so that * *.r e    Since there is no scattering field 

induced by the effective medium RVE, embedded in an infinitely extended effective medium, 

the right-hand side of Eq. (5.3) then automatically vanishes. Meanwhile, since the inclusions 

are randomly oriented in the 3D space the orientational average of remaining terms must be 

taken. In this way, the effective medium theory for the overall electrical behavior of a 

medium with random microstructure can be represented by:  

   
1 11 11 1

* ** * * *
0 1 0,

                 m m r m r g g r g rc c c cS S       (5.4) 

where the curly brackets .  denotes the orientational average of the said quantity. This 

equation applies to constituent phases with general anisotropy, but in following formulation 

we will focus on our specific case of study, in which the matrix is isotropic and graphene 

fillers are transversely isotropic. In view of this methodology, the conductivity and 

permittivity of matrix will be taken to be 0 and 0 ,  respectively. On the other hand, taking 

direction-3 as the symmetric axis of a given graphene filler with idealized oblate geometry, 

its transvers (or normal-to-plane) conductivity and permittivity will be denoted by 3  and 
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3 ,  respectively, while its associated in-plane properties will be considered to be 2 1   

and 2 1 .   Meanwhile, in the view of axisymmetric geometry of graphene fillers their 

depolarization tensor is also transversely isotropic. The nonzero components of tensor 1S for 

the oblate inclusions can be expressed as: 

 
 

1
1 2 2

11 22 3
2 2

cos 1 ,

2 1

S S
   


 
    

 
 (5.5) 

and 33 111 2 ,S S  where  is the aspect ratio (thickness-to-diameter ratio) of graphene fillers 

with the range of . On the other hand, owing to random microstructure of 

nanocomposite and subsequent isotropic nature of effective medium, the effective shape of 

matrix could be envisioned to be spherically symmetric, so that mS  carries the components of 

1/3 in all directions. Now, upon substituting the depolarization and complex conductivity 

tensors of the graphene fillers, polymeric matrix and the composite material into Eq. (5.4), 

the effective medium formula for the graphene nanocomposite can be written as: 

 
 

 
 

 
 

* * * * * *
0 0 1 31

* * * * * * * * *
0 11 1 33 3

2
0

3/ 3

       
       

e e e

e e e e e e

c c

S S

     

        
 (5.6) 

Upon substitution of *
n  (n = 0, 1 and 3) in this formula, one can obtain the effective 

conductivity and permittivity of nanocomposite, e  and .e   

The percolation threshold, *
gc  at low frequencies ( 0)   can be determined directly from Eq. 

(5.6) by adopting following procedure. In general, the matrix is almost insulating while 

graphene fillers are highly conducive. Therefore, i  (i = 1 or 3, the same below) are usually 

several orders of magnitude larger than 0 ,  which makes 0 / 0.i    According to the 
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percolation theory, when *
g gc c , e  will have almost the same order of magnitude as 0 ,  

but after *
g gc c , e  will approach .i  Therefore at *

g gc c , e is at the transition stage, with 

both / 0e i    and 0/e    at the same time. Applying these conditions to Eq. (5.6) 

and solving for * ,gc  we arrive at 

2
11 11*

2
11 11

18 9
,

18 3 4g

S S
c

S S




 
 (5.7) 

in which, 11S  depends on the aspect ratio of the oblate graphene fillers, .  So, *
gc  is strictly a 

geometrical parameter, which represents the onset of the connective networks through the 

nanocomposite. We use Eq. (5.7) to plot the dependence of *
gc  on   in Fig. 5.1. This figure 

also shows a dashed curve plotted by the equation * ,gc   which is given by Pan et al. (2011) 

for the onset of percolation in a composite material with oblate particles. Their formulation 

was based on consideration of a Ponte Castaneda Willis  (PCW) microstructure for a 

nanocomposite. It can be seen in Fig. 5.1 that *
gc  decreases by decreasing aspect ratio of 

oblate fillers, as we expected. Moreover, for spherical inclusions, we get * 1 / 3,gc   which is a 

value in agreement with published results (Pike and Seager, 1974; Balberg et al., 1984). 

Also, for the thin oblate inclusions ( 0.1)   it appears that the feature of our results for 

onset of percolation is in close agreement with *
gc  given by Pan et al. (2011).   

As mentioned earlier, as a result of chemical interactions during the manufacturing process of 

nanocomposites, a transition zone undesirably forms between the reinforcing inclusions and 

the matrix. Even though this interphase layer is very thin (say interface), its condition plays a  
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Fig. 5.1. Percolation threshold for the graphene fillers as a function of the inclusion aspect ratio. 
 

profound role in controlling the mechanical, thermal and electrical phenomena in 

nanocomposites. On the other hand, the influence of some complex physical phenomenon, 

such as the interfacial tunneling and Maxwell-Wagner-Sillars polarization effects, can be 

characterized in a phenomenological way by the statistical modification of interfacial 

properties. It is a well-established phenomenon that the electron hoping from one filler to the 

surface of other fillers can lead to an enhanced conductivity in the graphene nanocomposite. 

The electron tunneling is of quantum nature, hence, it is difficult to be simulated in a 

continuum fashion. However, through a phenomenological way we can model it as a physical 

process which substantially enhances the electrical connectivity between the graphene filler 

and its surrounding effective medium. In this light, the tunneling activity will be taken as an 

added contribution to the interfacial conductivity of fillers, which can be facilitated with the 

formation of percolating paths throughout the nanocomposite. Besides, the significant 
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increase of effective dielectric constant around the percolation threshold can be mainly 

attributed to the formation of microcapacitor structures in nanocomposite which leads to 

interfacial polarization at the fillers-matrix interfaces. Namely, each of two neighboring 

graphene fillers can be treated as a local microscale capacitor with the fillers as two 

electrodes and a very thin polymer layer in between as dielectric. This gives rise to a 

substantial increase in the intensity of local electric field around the fillers, which 

subsequently promotes the charge carriers to migrate and accumulate at the interface of 

electrodes. The large specific area of fillers provides numerous sites for this interfacial 

polarization. Accordingly, a network of microcapacitors expands throughout the 

nanocomposite with increasing the filler content. Around the percolation threshold each 

microcapacitor contributes an abnormally large capacitance because of small distance 

between the electrodes. This large capacity is correlated with a significant increase in the 

effective permittivity of nanocomposite. Upon adopting a phenomenological approach, the 

formation of microscale capacitors can then be modeled as an additional contribution to 

interfacial permittivity of fillers, through the observation that the charge carriers accumulate 

at the fillers’ interface due to abovementioned microcapacitor effect. 

In view of the physical motives mentioned above, the incorporation of interphase effect into 

our continuum theory is inevitable. To address this issue, we assume that a very thin layer of 

material with uniform thickness exists between the graphene fillers and matrix. This thin 

layer and the core filler then from a thinly-coated inclusion system, in which the volume 

concentration of the interface (or thin interphase) is denoted as cint, and that of core inclusion 

as 1-cint. In this way, the volume fraction of original graphene in the inclusion system can be 



114 
 

 
 

 

written as    23
int1 / 2 2 ,     c D D t D t  where t denotes the thickness of interlayer, 

and D and  are the thickness and aspect ratio of thin oblate inclusions, respectively. We 

further assume that interphase property is isotropic, with int and int  as its conductivity and 

permittivity constants, respectively. Now, the effective properties of thinly-coated graphene 

filler, denoted by coat
i  and coat ,i  can be obtained in an explicit form by employing the Mori-

Tanaka scheme (Weng, 1990): 

 
 

int
intcoat int

int int
int

(1 )
1 ,

 
 

  
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  

   
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c S
  

 
 
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 
 

  

  
  

   

i

i

ii i

c

c S
 (5.8) 

where  1 or 3 no sum over ,i i  and Sii is the component of depolarization tensor evaluated 

with property of interphase. It should be emphasized that, in limiting case of diminishing 

interphase thickness, the “coated” inclusion and original inclusion share the same shape and 

subsequently the same S-tensor. As mentioned above, we take the electron tunneling activity 

and formation of microcapacitors as two statistical processes that depend on the volume 

concentration of graphene fillers, * .gc  In establishing the corresponding probabilistic 

functions, we divide the evolution process of these phenomena into three stages. Initially, 

when small amount of fillers are incorporated into the matrix, i.e. at dilute concentration, the 

distance between fillers is large and there is a little possibility for tunneling activity and also 

for the formation of microcapacitors. With increase of graphene content in polymer matrix, 

the distance between neighboring fillers are continuously reduced, resulting in a network of  
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virtual microcapacitors to be slowly built up throughout the nanocomposite. However, near 

the percolation threshold the distance between the graphene fillers is greatly reduced. As a 

consequence, the capacitance of microcapacitors undergoes a sharp increase, and the 

tunneling activity also will become intense. Above the * ,gc  the distance between the fillers 

gets closer, so that even some fillers get in direct contact with each other due to their high 

aspect ratio. Accordingly, new microcapacitor structures with high virtual capacitance are 

formed by those graphene fillers which are not yet in contact with each other. Meanwhile, the 

electron tunneling still takes place between neighboring fillers and/or clusters. In view of 

that, after the percolation threshold the tunneling activity and microcapacitor effects will 

continue to be at high level. It was found that the Cauchy’s probabilistic model to be 

particularly well suited to describe these complex phenomena in a continuum fashion. This 

model can be presented by a cumulative distribution function, F, as 

*
* 1 1

( ; , ) arctan ,
2

g g
g g

c c
F c c 

 
 

   
 

 (5.9) 

where   is a scale parameter which denotes the rate of change for function F around * .g gc c  

For a schematic demonstration on the nature of Cauchy’s distribution, it is plotted in Fig. 

5.2(a) as a function of graphene volume concentration, for the given numerical values of 

* 0.05gc   and     As shown in this figure, function F shows a rapid increase as gc  

passes through * .gc  It is the overall spectrum of the cumulative function that can signify the 

added contributions to the interfacial conductivity and capacitance of fillers by the electron 

tunneling and formation of microcapacitors, respectively. In this light, with the Cauchy’s  
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(a) 

 
 

 
(b) 

Fig. 5.2 (a) Cauchy’s distribution function, (b) the effects of microcapacitor (or  electron-
tunneling) activities on the increase of interfacial permittivity (or conductivity), as filler 
concentration increases. 
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function the interfacial conductivity and permittivity in Eq. (5.8) can be set to depend on 

filler concentration, respectively as: 

int int * *[1 (0, , )] / [1 ( , , )],       g g gF c F c c   

int int * *[1 (0, , )] / [1 ( , , )],      
g g gF c F c c  (5.10) 

in which int  and int , respectively, are the interlayer conductivity and permittivity at 0 .gc  

Eqs. (5.10) then play the role of electron tunneling and microcapacitor effects in our 

formulation. To see their implications more clearly, we plot functions 

* *[1 (0, , )] / [1 ( , , )]  g g gF c F c c  in Fig. 5.2 (b), for 0.003   and * 0.05gc . In the end, upon 

substitution of expressions (5.10) into Eq. (5.8) one can obtain the modified conductivity and 

permittivity constants of a thinly-coated graphene filler, coat
i  and coat ,i  respectively. This 

coated graphene is then embedded into the original matrix to compute the effective properties 

of nanocomposite with the interfacial tunneling and polarization effects, by Eq. (5.6), where 

i and i  are now replaced respectively by those of the thinly coated inclusion, coat
i  and 

coat ,i  given in Eq. (5.8). In this way, the effective conductivity and permittivity moduli of the 

graphene nanocomposites with an interface effect, e  and ,e  can be obtained.  

This completes our continuum-based formulation for determination of the effective properties 

of graphene/polymer composites in AC setting. 
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5.3. Numerical results and discussion 

To put the applicability of developed theory in perspective, we consider a nanocomposite 

material made of the graphene nanoplatelets (GNPs) and Polyvinylidene fluoride (PVDF) 

matrix. The experimental data for AC conductivity and permittivity moduli of this 

GNP/PVDE nanocomposite have been given by He et al. (2009). The percolation threshold 

of * 0.0105gc  was reported for the material. Employing the present model with the set of 

physical parameters listed in Table 5.1, the conductivity and permittivity constants of 

nanacomposite are calculated as a function of graphene volume concentration, .gc  The 

numerical calculation is implemented separately for three selected frequencies of  f = 50, 

1000 and 5000 Hz. For these frequencies, the calculated results along with the corresponding 

experimental data are plotted in Figs. 5.3, 5.4 and 5.5, respectively, in which the effective 

permittivity was normalized with respect to the vacuum permittivity, v = 8.85 x 10-12 F/m. 

From all figures it is evident that our numerical results for a given frequency could 

successfully capture the quantitative behavior of relevant experimental data for both 

conductivity and permittivity constants. Overall, this demonstrates that the combination of 

effective-medium theory and the phenomenological modification of interlayer properties due 

to microcapacitor and tunneling activities gives rise to a complete theory for the 

graphene/polymer nanocomposites in AC electrical settings.  
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Table 5.1.  Physical values used in the numerical calculation for effective AC 
conductivity and permittivity of GNP/PVDF nanocomposite 
 

Properties  Numerical values 

Percolation threshold, *
gc  0.0106 

Aspect ratio of GNPs,  0.00607 

Thickness of GNPs, D  (nm) 20 

Thickness ratio of interlayer, t/D 0.01 

In-plane conductivity of GNPs, 1  (S/m)  8.5 x 104 

Out-plane conductivity of GNPs, 3  (S/m) 85 

In-plane permittivity of GNPs, 1 v/   15 

Out-plane permittivity of GNPs, 3 v/   9 

AC frequencies,  f  (Hz) 50 1000 5000 

Matrixconductivity, 0  (S/m) 1 x 10-9 8 x 10-9 35 x 10-9 

Permittivity of matrix, 0 v/   8 7 6 

Interlayer conductivity, int (S/m) 0.4 x 10-5 0.4 x 10-5 0.4 x 10-5 

Interlayer conductivity, int
v/   4080 0.25 0.0001 

Electron-tunneling scale parameter,   0.002 0.002 0.002 

Microcapacitor scale parameter,   1.2 x 10-11 5.9 x 10-13 6 x 10-15 
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(a) 

 

 
(b) 

 
Fig. 5.3.  Effective (a) conductivity and (b) permittivity of the graphene nanocomposite, predicted 

by present model for f = 50 Hz, along with experimental data of He et al. (2009). 
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(b) 

 
Fig. 5.4. Effective (a) conductivity and (b) permittivity of the graphene nanocomposite, predicted 

by present model for f = 1000 Hz, along with experimental data of He et al. (2009).  
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(a) 

 
(b) 

Fig. 5.5. Effective (a) conductivity and (b) permittivity of the graphene nanocomposite, predicted 

by present model for f = 5000 Hz, along with experimental data of He et al. (2009). 
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5.4. Concluding remarks 

In this chapter, we formulated a homogenization scheme for determination of the effective 

AC electrical properties of graphene nanocomposites. The proposed theory embodies the 

most fundamental characteristics of the graphene nanocomposites, i.e. percolation threshold, 

and additional contribution of microcapacitor structures and electron-hoping phenomenon to 

interfacial properties. The outcome is a simple and yet useful model that has the necessary 

connection with the physics of electrical process in graphene nanocomposites, despite the 

corresponding formula involves only limited number of input parameters. The applicability 

of developed model was verified through consideration of experimental data for a real sample 

of nanocomposite at different loading frequencies. It was demonstrated that the proposed 

model can successfully recover the quantitative behavior of various data sets in AC electrical 

settings. The availability of such a robust model can be useful for the design and optimization 

of high performance materials, needed for new advanced applications, such as the 

electromagnetic shielding, high-energy-density capacitors and etc.  
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Chapter 6. 

Future works 

In the study of multiferroic composites, via a robust analytical solution we examined the 

scattered fields of a SH-wave induced by an eccentric multiferroic fiber. Through that 

investigation, the fiber ensemble was perfectly bonded to the surrounding piezoelectric or 

piezomagnetic matrix. However, it is well known that the interface in real composites is 

usually not perfect, and a weak interface can greatly affect the local microscopic fields as 

well as the overall macroscopic response of composite materials. In this regard, utilizing the 

methodology proposed in chapter 3 one may assess the effect of interface condition on the 

wave scattering phenomenon in the three-phase composites. This study will be of practical 

and theoretical interest, in that the forgoing studies on the dynamics of composite materials 

with imperfect interface have been sparse in literature. 

In the study of graphene-based nanocomposite, we have shown that the imperfect interface 

plays a crucial role in the determination of the overall creep, stress relaxation and strain-rate 

sensitivity responses of graphene/polymer materials. Extending that investigation it is 

valuable to examine the interface effects on the storage and loss moduli of graphene/polymer 

composites under harmonic mechanical loadings. This issue is of particular importance for 

the long-term reliability of the graphene-based nanocomposites. The methodology proposed 

in chapter 4 also can be developed to uncover the effects of interface condition as well as 

other micromechanical parameters (e.g. the agglomeration phenomenon) on the overall 

elastoplastic response of graphene/metal nanocomposites.  
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Appendix 

In order to carry out the integrations involved in Chapter 3, we adopt the following approach 

for the decomposition of the integration region into some subdomains. To do so, first let 

1 2 I  denotes the integration over U in expressions (3.10). To calculate this integral, 

we introduce new circular regions *  and ** (Shodja et al., 2014), as: 

 *
1 2: ,    R Rx x  

 **
2 2: ,      R Rx x   

where point x associated with the polar coordinates (r, ) is the observation point. On the 

other hand, in the light of Eqs. (3.11) and (3.12) point 'x  pertinent to ( )r', '  is the location 

of the applied unit impulse load. Associated to each point 'x  there is a point on the boundary 

of U with position vector   , R  in such a way that 

    2 2 2
2cos( ) cos .            RR   

According to the location of observation point x in each of regions  1, *  and ** the 

integration 
1 2 I  then can be evaluated conveniently as follows: 
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r
 . On the other hand, when the point x is outside 

mentioned regions, the integrations simply become: 



126 
 

 
 

 

 
1 2

2 ( ) * **
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


           I dr d D
R

x   

In light of this integration process, the functions ( ) ,j
nU ( ) ,j

nW  ( )j
nV and ( ) ( )jZ r  associated with 

Eqs. (3.18) and (3.19) can be evaluated in terms of the unknown functions ( ) ( )j
nf r  and 

( ) ( )j
ng r  (n = 0, 1, 2, … ; j = 1, 2, 3, 4, 5, 6, 7). Accordingly, the expression of these functions 

for the field point, x within each of the regions 1, *  and ** are the following forms: 
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