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ABSTRACT OF THE THESIS 
 

Limited responses of benthic marine communities to local temperature changes  
 

by PATRICK HILTON FLANAGAN 
 
 

Thesis Director: 
Malin Pinsky 

 
 
 
 

As global climate change and variability drive changes in regional and local 

temperatures, species’ distributions are shifting, leading to changes in ecological 

communities. One approach to the problem of anticipating community change has been 

to characterize communities by a collective thermal preference, or community 

temperature index (CTI), and then to compare changes in CTI with changes in 

temperature. However, this method has been tested in only a few ecosystems, and it 

carries untested assumptions about the responsiveness of communities to changes in their 

local thermal environments. We used CTI to analyze changes in benthic marine 

communities along the continental shelf of the Northeast United States. We found that, 

while community composition was associated with bottom temperature, communities 

responded much more strongly to interannual variation than to long-term trends in 

temperature, and a mixed-effects model found that for every 1 ºC increase in bottom 

temperature, CTI increased by 0.38 ºC. We also showed that nonlinear species’ responses 

to temperature scale up to nonlinear community responses to temperature change. Future 

research into community change with increasing global temperatures should take into 

account these nonlinear responses, as well as examine the relative importance of 

interannual fluctuations and decadal trends. 
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Introduction  

Anthropogenic climate change is altering nearly every natural environment across the 

planet (Parmesan & Yohe, 2003; Cheung et al., 2013; IPCC, 2014). Unprecedented 

trends and fluctuations in the climate are contributing to complicated and unanticipated 

changes in biotic and abiotic environments (Walther et al., 2002; Hoegh-Guldberg & 

Bruno, 2010; Urban et al., 2012; IPCC, 2014). Recent research has shown that many 

species are responding to climate change by shifting their distributions and by altering the 

timing and extent of migrations (Parmesan et al., 1999; Davis & Shaw, 2001; Parmesan 

& Yohe 2003; Kleisner et al., 2016). These distribution shifts have often followed the 

same trajectories as the species’ preferred climates (Parmesan et al., 1999; Dulvy et al., 

2008; Bertrand et al., 2011; Pinsky et al., 2013).  

 

However, these same studies have documented substantial heterogeneity in the direction 

and magnitude of each species’ response to climate change, even among species within 

the same ecosystem (Dulvy et al., 2008; Moritz et al., 2008; Sunday et al., 2012, Kleisner 

et al., 2016). Unequal responses by coincident species may be due to differences in their 

thermal performance curves: two species of ectotherms experiencing the same 

temperature change at different points in their thermal performance curves may undergo 

disparate changes in metabolism, affecting their respective energetic demands and ability 

to catch prey or evade predation (Pörtner, 2001; Pörtner & Knust, 2007), or triggering the 

timing of migration or reproduction (Dunn & Winkler, 1999; Parmesan, 2006). An 

increase in temperature may be detrimental if it is above a cold-adapted species’ thermal 

optimum, but beneficial if it moves the environment closer to the optimal temperature for 
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a cohabitating warm-adapted species  (Menendez et al., 2006; Moritz et al., 2008; 

Bertrand et al., 2011; Kordas et al., 2011).  

 

For this study, we focus on temperature, which has been a useful, first-order 

approximation of environmental suitability (Sunday et al., 2012; Pinsky et al., 2013). 

However, differences in individual species’ responses to climate change may result from 

diverse physical and biological niche requirements, such as habitat structure, nutrient 

levels, and light, or from predators, prey, and symbionts that may enhance or counteract 

the effects of temperature (Lenoir et al., 2010; Svenning et al., 2014). In addition, human 

activities such as harvest, pollution, or habitat destruction can amplify or mediate the 

effects of climate change on already climate-stressed species and communities (Anderson 

et al., 2008; Lucey & Nye, 2010; Planque et al., 2010). Increased temperature variation, 

in addition to long-term temperature change, also plays a significant role in determining 

species’ and communities’ responses to change (Paaijmans et al., 2013; Vasseur et al., 

2014).  

 

As climate change drives increases in mean temperature in many coastal regions (IPCC, 

2014), we expect that communities will also change as in-migrating or growing 

populations of warm-adapted species outcompete or replace out-migrating or declining 

cold-adapted species. Species turnover from cold-adapted to warm-adapted species 

causes a change in the community’s mean thermal preference, also known as community 

temperature index (CTI). CTI has been used in a variety of recent studies as a metric for 

evaluating how well communities are suited to their thermal environments and for 
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comparing community changes in marine and terrestrial ecosystems on regional and 

global scales (Devictor et al., 2008; Zografu et al., 2014; Stuart-Smith et al., 2015; 

Cheung et al., 2013 as “Mean Temperature of the Catch”). While we may broadly expect 

communities and CTIs to change in response to climate change, we have a poor 

understanding of the shape of those responses and the rates at which they will change, 

particularly at the smaller spatial scales most relevant to community formation and 

species interactions (Menge & Olson, 1990; Levin, 1995; Leibold et al., 2004). 

 

Previous studies have measured community response to temperature change at regional 

and global scales by directly comparing the values and trends in both CTI and 

temperature. This comparison is based on the assumption that species turnover and 

community change should occur linearly with temperature change. More specifically, the 

(often unstated) null hypothesis is that there should be a one-to-one relationship between 

change in temperature and change in CTI.  However, species’ thermal performance 

curves are typically dome shaped, non-monotonic functions of temperature (Huey & 

Stevenson, 1979) and the shape of this dome is both asymmetric and varies among 

species. Changes in environmental temperature may thus lead to nonlinear responses in 

performance and abundance of each species (Deutsch et al., 2008). Since communities 

are often comprised of multiple species with overlapping and often asymmetrical thermal 

performance curves of different heights and widths, we cannot necessarily assume that 

CTI and temperature change will be linearly correlated. In addition, marine communities 

tend to be “thermally biased,” or dominated by species that have higher or lower thermal 

preferences than their local environments (Stuart-Smith et al., 2015), which may lead to 
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communities lagging environmental changes until threshold-crossing temperature change 

drives a rapid community-wide shift. This combination of asymmetrical thermal 

performance curves and community thermal biases suggests that CTI may change 

nonlinearly in response to temperature change (Fig. 1). With the increasing use of CTI for 

measuring community response to climate change, a quantitative analysis of the effects of 

these nonlinearities is needed. 

 

The Northeast U.S. continental shelf is home to a Large Marine Ecosystem (LME) that 

has experienced substantial warming over the last three decades, with the Gulf of Maine 

warming faster than nearly any other ocean environment in the world (Friedland & Hare, 

2007; Belkin, 2009; Shearman & Lentz, 2009; Pershing et al., 2015). This has led to a 

general shift in isotherms and in the species assemblage to the northeast (Pinsky et al., 

2013). Previous studies have also found that climate changes have led to changes in the 

distribution of several large species assemblages within the LME (Kleisner et al., 2016), 

as well as to changes in species composition in four large sub-regions within (Lucey & 

Nye, 2010). While these large-scale and long-term climate and ecological changes are 

evident across the region, species interactions and communities are formed as much finer 

spatial scales, and it is not clear whether the same responses to climate change can be 

seen at these local scale of species interactions. 

 

In this manuscript, we investigated (1) how benthic marine communities along the 

Northeast U.S. continental shelf have changed over the last 25 years, as quantified by 

changes in CTI, (2) how these marine communities would have changed if they were 
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only responding to temperature, and (3) whether temperature is an important factor 

driving these communities to change over both long and short time-scales. To answer 

these questions, we evaluated temperature and community change in 146 fine-scale 

spring and fall assemblages, compared them to interannual variations and long-term 

trends in the environment, and analyzed whether marine communities in this region are 

changing at the same rates and with the same sign as their local thermal environments.   
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Materials and Methods 

Survey method and study extent 

We used species and temperature data from the Northeast Fisheries Science Center 

(NEFSC) biannual (spring: March-May; fall: September-November) stratified random 

bottom trawl surveys of the Northeast U.S. continental shelf (Azarovitz, 1981). The 

survey area was divided into 198 strata of varying sizes, with stratum extent determined 

in part by depth contour.  

 

The time of year at which the fall surveys were conducted changed over time from the 

1960s to the 1980s, potentially creating artificial trends in observed temperatures and 

communities (Fig. S1). To avoid this possibility, we used data from 1963-1989 only as a 

training set for calculating species’ thermal distribution curves, and restricted our analysis 

of temperature and community change to the period from 1990-2014. While the fall 

surveys earlier in the training set sampled cooler temperatures than did surveys later in 

the time-series, these temperatures were similar to those seen throughout the spring time 

series, suggesting that training on the first half of the dataset did not skew our calculated 

thermal preferences. Most strata were surveyed every season of every year, though not all 

strata had complete bottom temperature data.  

  

Species thermal distributions 

Using modeled biomass distribution across temperature as a measurement of realized 

thermal niche (Rutterford et al., 2015), we derived thermal distribution characteristics for 

each of the 92 most common species in the survey (found in 100 or more tows in the 
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1963-1989 training dataset). For each species, we fit a two-stage Generalized Additive 

Model (GAM) (Hastie & Tibshirani, 1990) based on presence/absence and biomass in the 

training dataset. This two-stage approach is an effective technique for addressing zero-

inflation (Barry & Welsh, 2002, Jensen et al., 2005), a common feature of two-level 

biomass estimates in this data set (Pinsky et al. 2013) and, more generally, of species 

abundances in trawl or dredge surveys. Generalized Additive Models were fit using the 

mgcv package (Wood, 2011) in R (R Core Team, 2015), which allows the flexibility of 

the models (i.e., the number of knots) to be optimized using generalized cross validation.  

 

The first stage of each GAM estimated the probability of presence with binomial errors 

and a logit link function. The second stage estimated log(biomass) with Gaussian errors 

and an identity link function, only for tows where a species was present. Explanatory 

factors in each model included the bottom temperature recorded in situ and the species’ 

mean biomass for the year in all spring and fall tows of the testing dataset (including 

zeroes).  

 

To calculate the full thermal distribution curve for each species, we multiplied the 

probability of presence from stage one by the exponent of the estimated log biomass from 

stage two for all temperatures from 0 to 28 °C. Because the use of the exponent of the log 

transformation creates a biased estimate of the untransformed expectation, we corrected 

estimated biomass from stage two by multiplying by Duan’s smearing estimate (Duan, 

1983). The species temperature index (STI), or species’ mean temperature, was then 

calculated by finding the biomass-weighted mean of the modeled thermal distribution for 
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each species (Devictor et al., 2008). The GAM allowed us to calculate the full thermal 

distribution for each species, which was needed both for calculating STI and for our null 

model. Given that many species’ geographic ranges extend outside the survey, their 

thermal distributions may similarly extend below or above the temperatures sampled 

(Devictor et al., 2008). We accounted for this as much as possible by generating species’ 

thermal distributions from both colder spring and warmer fall surveys, which 

encompassed a range of bottom temperatures from 0 – 28.3ºC. 

 

Community temperature index (CTI) calculation 

For our working purposes, we defined a “community” as all species present in all tows in 

a survey stratum in the same season and year. Survey strata ranged in area from 178 to 

13,956 square kilometers (see map in Fig. S2) and represented both the level at which 

tow locations were randomized and the smallest geographical areas that were consistently 

sampled across the entire time series.  

 

We measured community change through short- and long-term variations in CTI. CTI 

was calculated in each stratum, season and year from 1990 – 2014 by multiplying each 

species’ STI by its relative biomass in the community (species biomass divided by the 

total biomass of all species in the community), and summing across all species: 

 

where bi was the biomass of species i (i from 1 to n total species in the community). 
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Null model for CTI change 

Given that the shapes of species’ thermal distributions may cause communities to respond 

to temperature in a nonlinear fashion, we created a null model of the “idealized” 

community for each temperature in the dataset. For each temperature from 0-30 ºC, we 

created an idealized community containing all species whose thermal distributions 

included that temperature, with each species’ biomass in the community represented by 

their GAM-predicted biomass at that temperature. Using the above formula, we then 

calculated a null CTI of the ideal community (assuming temperature is the only factor 

shaping community composition) for each environmental temperature between 0 ºC and 

30 ºC (in 0.01 ºC increments) (see example Fig.1). Once null CTI was calculated, we 

matched observed bottom temperatures in the testing dataset with null model CTI values 

to generate null time series for each stratum and season. 

 

Bottom temperature and CTI 

Of the 198 strata sampled in the trawl survey, 73 had recorded community and bottom 

temperature values in at least 20 of the 25 years of each spring and fall time series in the 

testing dataset from 1990-2014. We tested these 73 strata in both spring and fall, for a 

total of 146 time series. For each season and year, we aggregated all trawls across each 

stratum and calculated mean bottom temperature and mean CTI for the stratum. In years 

when bottom temperature was not available for a stratum, we omitted CTI for those same 

years for consistency in time series analysis. 
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To evaluate how well CTI followed bottom temperature, we analyzed the relationship 

between the two on both long-term and interannual time scales in the testing dataset 

(1990-2014). In order to directly compare how well communities matched their 

environment, we conducted several analyses:  

(1) To evaluate static patterns, we calculated time-series mean bottom temperature and 

CTI values for each stratum and season, and compared them with a linear model. 

(2) To evaluate overall correlation, we fit linear mixed-effects models to the biannual 

bottom temperature and observed CTI data, with CTI as the response variable, bottom 

temperature as the fixed effect, and season nested within stratum as random effects. We 

then evaluated statistical significance by fitting a null model without bottom temperature 

and comparing the two models with a likelihood ratio test, as implemented in the lmer 

package in R (Bates et al., 2015). 

(3) To investigate the relationship between long-term trends in bottom temperature and 

CTI, we fit linear models to each stratum time series of bottom temperature, null CTI, 

and observed CTI from 1990-2014. We then compared the slopes of these bottom 

temperature and CTI trends in each survey stratum to evaluate the extent to which long-

term bottom temperature trends or long-term null CTI trends explained long-term 

observed CTI trends. Because the slopes involved observational error in both variables, 

we evaluated slope-slope fit using Model II Major Axis regression using the lmodel2 

package in R (Legendre, 2014). 

(4) Based on the hypothesis that climate variability affects community response to long-

term change (Paaijmans et al., 2013; Vasseur et al., 2014), we also evaluated whether 

temperature variability, depth or latitude helped explain the relationship between bottom 
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temperature trends and CTI trends by including them as interactions in multiple linear 

regression models. 

(5) To test for interannual correlations, we detrended the annual values of bottom 

temperature, null CTI and observed CTI in each stratum, and then calculated the Pearson 

product-moment correlation between each variable. We fit a linear mixed effects model 

with detrended CTI as the response variable, detrended bottom temperature or detrended 

null CTI as a fixed effect, and season nested within stratum as random effects, again 

comparing to a null model without bottom temperature or null CTI to evaluate statistical 

significance. We also tested for lags between temperature fluctuations and CTI change by 

conducting cross-correlation analysis of the detrended time series for each stratum in 

each season.  
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Results 

Species thermal distributions 

We calculated thermal distribution curves and STI values for 92 fish and invertebrate 

species found on the Northeast U.S. continental shelf (Table S1). Species temperature 

index (STI) values ranged from 2.4 ºC to 27.7 ºC, with a median thermal range of 14.3 ºC 

(standard deviation across species = 7.8 ºC). Most species’ thermal distributions were 

dome-shaped and asymmetrical, and a few were multimodal (the latter likely the result of 

different habitat temperatures in spring and fall). 

 

Null model for CTI 

The influence of species’ asymmetrical, nonlinear thermal distributions was evident in 

the relationship between bottom temperature and null model CTI (solid line, Fig. 2). In 

colder temperatures, null model CTI was higher than bottom temperature, and in warmer 

temperatures, null model CTI was lower than bottom temperature. With increasing 

temperature from 0-15 °C, null model CTI increased in a relatively linear fashion, though 

the slope of null model community change was less than 1. Above 15 ºC, the slope of null 

model CTI change increased to near 1, continuing until 22.5 ºC, above which the slope of 

null model CTI dropped off sharply.  

 

Similar to the null model predictions, time-averaged observed CTI in the testing dataset 

was correlated with bottom temperature, though the relationship was not one-to-one 

(linear model slope = 0.757 ± 0.031, r2  = 0.802, P < 0.001) (black points, Fig. 2). Also 

similar to the null model, communities in colder environments (< 15 ºC) in both spring 
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and fall had CTI values that tended to be slightly higher than local bottom temperature, 

while in warmer environments (≥ 20 ºC), CTI tended to be slightly lower than bottom 

temperature. On average, time series mean observed CTI values exceeded the predictions 

of the null model by 1.58 ºC (t-test: 95% CI: 1.29-1.87 ºC, P < 0.0001). 

 

Correlation of bottom temperature and CTI 

In a mixed-effects model fit to CTI and bottom temperature, we found that for every 1 ºC 

increase in bottom temperature, CTI increased by 0.38 ºC (95 % CI: 0.35-0.42, P < 

0.0001). Comparing observations to our null model predictions, observed CTI increased 

only 0.48ºC for each 1 ºC increase in null model-predicted CTI (95% CI: 0.44 – 0.53, P < 

0.0001). 

 

Long-term trends in bottom temperature and CTI   

Over the period 1990-2014, mean bottom temperature across the region increased by 0.34 

± 0.003 ºC/decade in the fall (P < 0.0001) and 0.24 ± 0.003 ºC/decade in the spring (P < 

0.0001), but showed substantial spatial variation (Fig. 3a,b). In the same time period, CTI 

in individual strata changed greatly, but across all strata showed small but significant net 

change in the fall (mean -0.050 ± 0.005 ºC/decade, P = 0.008) and no significant net 

change in the spring (mean -0.001 ± 0.004 ºC/decade, P = 0.526). Long-term trends in 

CTI were also highly variable across the region (Fig. 3c,d). Comparing spring and fall 

trends, there was no indication that temperature or CTI in individual strata tended to 

change in the same direction between seasons (bottom temperature: r2  = 0.006, P = 

0.259; CTI r2  = 0.001, P = 0.41)  
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There was some indication that long-term bottom temperatures and CTI trends had 

similar signs and magnitudes in the same strata, though there was little discernable 

geographic pattern and the overall relationship was very weak (both seasons combined: r2  

= 0.037, P = 0.01). Of the two seasons, CTI trends were somewhat more closely 

correlated to temperature trends in the fall than in the spring (spring: r2  = 0.021, P = 

0.123; fall: r2  = 0.054, P = 0.028) (Fig. 4, Fig. S2). The null model provided little 

additional explanatory power: as with bottom temperature, observed CTI was weakly but 

significantly correlated to null-model predicted CTI (r2  = 0.038, P = 0.013, Fig. S3). 

Interaction terms with latitude (P = 0.186), depth (P = 0.370), and standard deviation of 

bottom temperature (P = 0.892) did not help further explain the relationship between 

long-term bottom temperature trends and CTI trends. 

 

Interannual changes in bottom temperature and CTI 

Individual strata experienced interannual temperature ranges as narrow as 1.6 to as wide 

as 14.8 ºC over an entire same-season time series (detrended, average range across strata 

= 5.6 ºC). Communities experienced fluctuations in CTI of similar magnitudes, with 

interannual ranges from 1.4 to 12.5 ºC (detrended, mean = 5.7 ºC). We found a weak 

negative relationship between the survey stratum area and standard deviations of bottom 

temperature (r2  = 0.038, P = 0.03) and of CTI (r2  = 0.077, P = 0.003).  

 

Within a small majority of individual strata (57%), annual values of bottom temperature 

and observed CTI were moderately to strongly correlated (r ≥ 0.3) (Pearson’s correlation, 



 15 

r mean across strata = 0.33, Fig. S4a), suggesting that interannual variations in bottom 

temperatures were sometimes reflected in local CTI. Of the 146 time series correlations, 

however, only 21 (14%) had P < 0.05, reflecting the limited strength of correlations at an 

individual stratum level (Fig. S4b). Pearson correlation between null model and observed 

CTI values revealed a similarly moderate effect size (r mean = 0.31, Fig. S4c,d) 

 

Detrending the data suggested that much of the overall relationship between bottom 

temperature and CTI change is due to community response to interannual temperature 

changes: a mixed effects model fit to the detrended dataset supported the conclusion that 

annual anomalies in CTI and temperature were significantly related, with CTI increasing 

by 0.34 °C (95% confidence interval 0.31–0.37) for each 1 °C increase in bottom 

temperature (P < 0.0001). Cross-correlation analysis of detrended time series suggested 

that the majority of communities were most correlated with temperature or null model-

predicted CTI at time lag zero (Fig. S5).  
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Discussion 

Interannual and long-term changes in CTI demonstrate that marine communities across 

the Northeast U.S. continental shelf have changed substantially over the last 25 years, 

with some evidence that they are following changes in environmental temperature. 

However, while CTI is moderately correlated with temperature on an interannual basis, 

long-term trends in CTI are less strongly connected. 

 

Community implications of nonlinear thermal distribution curves  

As with prior studies of community change, we used species’ weighted mean temperature 

(STI) to calculate CTI. However, species’ thermal distributions were rarely symmetrical, 

and in many cases, mean temperature was below or above the temperature of peak 

predicted abundance. Consolidating these thermal distributions into a single STI value 

that over- or underestimates species’ peak preferred temperature has consequences for the 

calculated community thermal preference. These abundance curves also influence the rate 

of community change as temperature changes: rather than seeing a linear turnover of 

species in the community, we can expect the relative abundance of each species to 

change at substantially different rates over narrow temperature ranges. Overlaying these 

species thermal distributions to create a null model of CTI, we uncovered this nonlinear 

community response to temperature. The slope of community change with warming 

temperatures depended on the starting temperature, with slower turnover at colder 

starting temperatures and higher turnover at warmer starting temperatures. There was a 

notable drop-off in CTI change across the highest temperatures, but this may have 

appeared because these temperatures exceeded the STI of most species we sampled. This 
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pattern may also have resulted from the limits of our data: with fewer samples at the 

highest temperatures and no samples in the training dataset above 28.3 °C, we likely 

underestimated the STI of the warmest-water species.  

 

The step-wise pattern we found in both the null model and observed CTI qualitatively 

echoes global patterns of marine community composition (Stuart-Smith et al., 2015). 

These communities tend to fall into thermal guilds, with CTI higher than habitat 

temperatures in cooler environments (below approximately 18 °C) and lower than habitat 

temperatures in environments warmer than approximately 27 °C (Stuart-Smith et al., 

2015). At intermediate temperatures, communities comprise a mix of cold-water and 

warm-water species, and CTI increases rapidly with temperature change. The nonlinear 

CTI-temperature relationship we saw in our null model and in our observed CTI may 

represent a cold-water extension of these guilds below 15 °C. As temperatures rise, this 

division into thermal guilds would lead communities to be resistant to change over colder 

or warmer temperature regimes, while changes at intermediate temperatures may result in 

rapid change as one thermal guild mixes with and replaces another.   

 

Regardless of cause, the implications for predicting future community change remain 

clear: whether considering idealized communities or real-world communities affected by 

fishing and other ecological changes, our expectation should be that climate-driven 

community change will often occur at very different rates than environmental change. 
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Thermal impacts on community structure 

Previous studies have often found that species assemblages follow local temperature 

changes through geographic or compositional shifts, though often with some degree of 

lag (Lucey & Nye, 2010; Bertrand et al., 2011; Devictor et al., 2012; Menendez et al., 

2006; Stuart-Smith et al., 2015; Kleisner et al., 2016). In our examination of fine-scale 

community composition changes on a temperate continental shelf, we find that CTI 

change is associated with environmental temperature, but that the strength of this 

relationship depends on temporal scale. While we found evidence that interannual 

community composition responded to changes in bottom temperature without lags, the 

relationship between long-term community and environmental changes was weak and 

limits our ability to anticipate future change from temperature alone. 

 

The contrast between our results and those of prior studies may arise from differences in 

scales of space and time, and the nature of our ecological system. Other studies have 

examined change at geographic scales of countries, regions, or entire continents 

(Bertrand et al., 2011; Devictor et al., 2012; Stuart-Smith et al., 2015). While this 

approach is good for general observations of ecological phenomena, it is less applicable 

to specific habitats (e.g. shallow vs. deep, sandy-bottom vs. rocky-bottom), where species 

interact and communities are formed (Menge & Olson, 1990; Levin, 1995; Leibold et al., 

2004). Community analysis on finer geographic scales is also particularly important for 

management, especially when applied to specific ecosystem types or legal jurisdictions. 

Finally, some studies have examined community change at two distinct time periods 

rather than every year across a time series (Zografou et al., 2014; Stuart-Smith et al., 
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2015). This “before and after” snapshot method may reveal long-term changes, but loses 

detail about seasonality and interannual variability, and, depending on the time frame 

chosen, may result in different conclusions about the rates of environmental and 

community change (sensu Pershing et al., 2015). Indeed, by comparing interannual and 

long-term changes, our analysis reveals that weak long-term trend correlations may mask 

a higher degree of community responsiveness on an interannual basis.  

 

While not explicitly discussed, interannual variability in both temperature and 

community thermal preference is apparent in similar studies of climate and community 

change in this region (Lucey & Nye, 2010; Kleisner et al., 2016). The magnitude of 

interannual fluctuations is often much larger than long-term changes in temperature or 

CTI. At the smaller geographic and ecological scale of our analysis, the nuances of 

interannual variation may mask a long-term climate signal. This effect is in line with 

previous work suggesting that climate may influence large-scale population and 

assemblage dynamics across large spatial scales, but at smaller spatial scales, particular 

species interactions more strongly mediate community response to climate change 

(Pascual & Levin, 1999; Walther et al., 2002). 

 

One potential explanation for interannual variation in the community and temperature 

time series is the survey method, given the challenge of repeating measurements through 

random trawls in large strata. However, we found that large strata were somewhat less 

variable than small strata in both mean bottom temperature and CTI from year to year, 

possibly because large strata often received greater sampling effort. Alternatively, large 



 20 

strata may be less variable because they are less influenced by inter-annual changes in the 

position of sharp temperature breaks, such as the edge of the Gulf Stream. 

 

It appears that other ecological factors beyond temperature are playing a substantial role 

in shaping community composition from year to year. Temperature is merely one element 

of a diverse set of biotic and abiotic factors that shape species’ ideal niches into their 

realized ones and influence community dynamics (Hutchinson, 1957; Dunson & Travis, 

1991; Kordas et al., 2011). Though the thermal environment may change, a variety of 

other factors govern (and may buffer) the responses of species and their communities.  

 

Other physical features may also shape community composition (Dunson & Travis, 

1991). The abiotic environment of the Northeast U.S. continental shelf ecosystem is 

highly diverse, with bathymetric features ranging from submarine canyons to seamounts, 

and substrates from bedrock to gravel to fine silt (Stevenson et al., 2004). For species 

closely tied to certain habitats, the spatial distribution of these physical features may 

inhibit or enable migration in response to temperature change and partially determine 

which species are available to enter an assemblage. Furthermore, during the time period 

we studied, the non-thermal physical environment also underwent changes in circulation. 

Shifts in the Gulf Stream were associated with anomalous temperatures that altered cod 

migration times, exposing them to greater predation risk and decreased recruitment 

(Pershing et al., 2015). Seasonal changes in circulation, such as the influx of cool, low-

salinity water from the Scotian Shelf, may have contributed to stratification in the Gulf of 

Maine that drove changes in primary productivity and the distribution and abundance of 
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higher trophic levels (Mountain, 2004; Stevenson et al., 2004; Friedland & Hare, 2007). 

Beyond long-term temperature trends, these changes in circulation may have contributed 

to changes in local food webs and community composition. 

 

Interactions among species have direct and indirect effects that also shape the realized 

distributions of each species and the communities they form (Gilman et al., 2010; Link et 

al., 2010; Kordas et al., 2011, HilleRisLambers, 2013). Competition may limit the 

communities that otherwise thermally suited species can inhabit, while positive 

interactions may allow other species to persist longer in environments at the extremes of 

their thermal preferences (Gilman et al., 2010; Kordas et al., 2011; HilleRisLambers, 

2013; Milazzo et al., 2013). Indeed, Liu et al. (2012) found a spectrum of nonlinear 

dynamic relationships, ranging from strongly positive to strongly negative, in an 

assemblage of 26 fish species in Georges’ Bank. The low correlation between our null 

model (only temperature) and observed CTI change suggests that species interactions 

may have strongly mediated the responsiveness of marine communities to changing 

temperatures. The tendency for observed CTI to be higher than the null model prediction 

may indicate that existing communities are already capable of persisting in warmer 

environments, and may continue to show lagged responses to future temperature change.  

 

Layered on top of the “natural” influences of the abiotic and biotic environment are the 

strong effects of fishing in this ecosystem, which has been highly variable in location, 

intensity, and selectivity over this time period. Throughout the course of this study, 

fisheries have shifted in response to changes in species’ distributions, stock sizes, and 
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management practices (Stevenson et al., 2004; Lucey & Nye, 2010; Link et al., 2011; 

Pinsky & Fogarty, 2012; Pershing et al., 2015). Fishing activity has been shown to 

change trophic interactions and alter species’, communities’, and even entire 

assemblages’ ability to respond to climate change (Lucey & Nye, 2010; Planque et al., 

2010). Fishing pressure in Georges Bank from 1970-2000 changed the abundance and 

distribution of both heavily-exploited species, decreasing their spatial and dietary overlap 

with other species, while allowing minimally-exploited species to expand into new areas 

at greater rates and overlap with more species (Garrison & Link, 2000). In addition, Nye 

et al. (2013) showed that, depending on the trophic level, the removal of top predators in 

this system works synergistically or antagonistically with climate change to dramatically 

alter marine community dynamics. Of the many influences mediating community 

response to temperature change in this ecosystem, fishing may have been the strongest.  

 

The use of a single quantitative measure for evaluating climate-community fit is an 

attractive idea. But while CTI has been used effectively to quantify community change in 

some systems, this analytical approach carries several assumptions about the rate and 

linearity of community response to temperature change and may be highly dependent on 

the scale of time and space. Our findings suggest that ecologists should use caution when 

applying CTI-based analyses to other systems, particularly when projecting community 

dynamics into the future at the local scales of community assembly and species 

interactions.  
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The northeast U.S. continental shelf ecosystem has been one of the longest and most 

intensely studied of any marine system in the world, yet quantifying and anticipating how 

communities will respond to change remains a challenge. It is clear that temperature 

plays an important role in shaping community assembly, and interannual and long-term 

trends and fluctuations will certainly influence community reorganization. However, we 

must account for variables beyond temperature when anticipating community response to 

future climate change.  
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Figure 1. Example species’ thermal distributions and change in CTI. The standard null 

expectation of change in CTI with change in temperature is that, independent of other 

ecological factors, CTI will change linearly with temperature (b). This would be true if 

species’ thermal distribution curves were uniform in shape, height, and spacing (a). 

However, species’ thermal distributions are rarely symmetrical, have varying degrees of 

overlap, and constitute a range of proportions of the community (c), suggesting that the 

null expectation may not be a linear change in CTI with changing temperature (d). 
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Figure 2. Community temperature index (CTI) in relation to environmental (bottom) 

temperature. Each point represents a stratum mean in either spring or fall for 1990-2014. 

The gray line represents null model predicted CTI for each temperature from 0–30 ºC. 

Dashed gray line indicates what would be a 1:1 correlation between bottom temperature 

and CTI.  
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Figure 3. Map of survey area with strata colored by magnitude of long-term change in 

bottom temperature in spring (a) and fall (b), and CTI in spring (c) and fall (d).  
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Figure 4. Relationships between change in bottom temperature and observed change in 

CTI. Model II major axis linear regression using Ordinary Least Squares in spring (a) and 

fall (b) communities. Black line indicates Major Axis OLS regression fit, gray lines 

indicate 95% confidence interval.  
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Appendices 
 

 

  

 
Figure S1. Survey characteristics over time. Boxplots of survey day of year per year in 

spring (a) and fall (b), bottom temperature per year in spring (c) and fall (d), and bottom 

temperature per day of year in spring (e) and fall (f) time series. Black bars indicate 

mean, gray boxes include 95% of range, and whiskers include entire range of data points.   
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Figure S2. Maps of the difference in slopes of long-term trends in bottom temperature 

and CTI. Bottom temperature slope minus CTI slope in (a) spring and (b) fall strata.  
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Figure S3. Relationships between change in null model CTI and change in observed CTI. 

Model II major axis linear regression between change in null model CTI and change in 

observed CTI in spring (a) and fall (b) communities. Spring slope = 15.405, r2  = 0.017, P 

= 0.126; fall slope = 7.824, r2  = 0.060, P = 0.015.  
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Figure S4. Pearson’s correlations between interannual values of bottom temperature or 

null model CTI and observed CTI in each stratum and season. (a) Histogram of r values 

between bottom temperature and observed CTI, with dashed line denoting r of 0.5 (n = 

146, mean r = 0.327). (b) Histogram of P values between bottom temperature and 

observed CTI, with dashed line denoting P = 0.05 (n = 146, n(P ≤ 0.05) = 21). (c) 

Histogram of r values between null model and observed CTI, with dashed line denoting r 

of 0.5 (n = 146, mean = 0.308). (d) Histogram of P values between null model and 

observed CTI, with dashed line denoting P = 0.05 (n = 146, n(P ≤ 0.05) = 25).  
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Figure S5. Histograms of the lag with the highest cross-correlation between detrended 

time series. (a and b) Frequency of lags between bottom temperature and observed CTI in 

(a) spring and (b) fall time series. (c and d) Frequency of lags between null model and 

observed CTI in (a) spring and (b) fall time series.  
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Table S1. Species temperature index (STI) values and number of observations in training 

and testing data sets for 92 species found in the Northeast U.S. Continental Shelf 

ecosystem. Thermal preferences were calculated by fitting a two-part GAM of 

presence/absence and abundance to trawl data in spring and fall from 1963-1989 (training 

set) and then calculating the biomass-weighted mean temperature of model predictions 

across 0.00-30.00 °C. The training set was 1963-1989, and the testing set was 1990-2015. 

  

Scientific name Common name Species 
temperature 
index ( ºC) 

Obs. 
(training 
set) 

Obs. 
(testing 
set) 

Alosa aestivalis Blueback herring 7.09 741 2112 

Alosa pseudoharengus Alewife 7.46 2534 4353 

Alosa sapidissima American shad 9.08 563 1546 

Amblyraja radiata Thorny skate 5.68 3160 1633 

Ammodytes dubius Northern sand lance 8.13 864 802 

Anarhichas lupus Atlantic wolffish 2.39 782 268 

Anchoa hepsetus Striped anchovy 22.83 396 720 

Anchoa mitchilli Bay anchovy 19.14 508 961 

Argentina silus Atlantic argentine 8.10 295 229 

Brevoortia tyrannus Atlantic menhaden 18.66 169 251 

Brosme brosme Cusk 6.84 1040 367 

Calamus leucosteus Whitebone porgy 26.30 162 6 

Callinectes sapidus Blue crab 22.71 141 261 

Cancer borealis Jonah crab 10.55 909 2407 
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Caranx crysos Blue runner 25.11 156 312 

Centropristis striata Black sea bass 21.54 911 1681 

Citharichthys arctifrons Gulf stream 
flounder 

11.08 442 2246 

Clupea harengus Atlantic herring 3.94 1820 6364 

Conger oceanicus Conger eel 14.25 226 201 

Cyclopterus lumpus Lumpfish 7.99 121 216 

Cynoscion regalis Weakfish 21.00 877 1161 

Dasyatis centroura Roughtail stingray 23.83 168 333 

Dasyatis say Bluntnose stingray 19.94 295 391 

Decapterus punctatus Round scad 26.23 361 411 

Diplectrum formosum Sand perch 25.09 143 18 

Dipturus laevis Barndoor skate 8.48 288 1447 

Enchelyopus cimbrius Fourbeard rockling 5.87 308 1108 

Gadus morhua Atlantic cod 5.37 4658 3161 

Glyptocephalus 
cynoglossus 

Witch flounder 5.82 2708 2859 

Gymnura altavela Spiny butterfly ray 20.88 175 320 

Haemulon aurolineatum Tomtate 24.29 168 21 

Hemitripterus americanus Sea raven 5.36 2630 3101 

Hippoglossoides 
platessoides 

American plaice 4.68 3658 3561 

Hippoglossus 
hippoglossus 

Atlantic halibut 5.71 383 317 

Homarus americanus American lobster 10.72 3397 4932 
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Illex illecebrosus Northern shortfin 
squid 

11.15 3278 3904 

Lagodon rhomboides Pinfish 27.66 185 129 

Larimus fasciatus Banded drum 24.72 118 207 

Leiostomus xanthurus Spot 22.64 886 965 

Lepophidium profundorum Fawn cusk-eel 12.62 450 1014 

Leucoraja erinacea Little skate 10.00 5008 6993 

Leucoraja garmani Rosette skate 14.26 182 608 

Leucoraja ocellata Winter skate 8.81 2563 4480 

Limanda ferruginea Yellowtail flounder 5.54 3722 3305 

Limulus polyphemus Horseshoe crab 17.78 926 718 

Loligo pealeii Longfin squid 16.77 5239 7535 

Lophius americanus Goosefish 9.41 3663 3968 

Malacoraja senta Smooth skate 6.17 1081 1463 

Melanogrammus 
aeglefinus 

Haddock 6.31 3960 3329 

Menticirrhus americanus Southern kingfish 22.41 238 423 

Menticirrhus saxatilis Northern kingfish 21.51 243 459 

Merluccius bilinearis Silver hake 9.30 7646 9035 

Micropogonias undulatus Atlantic croaker 22.05 704 1118 

Mustelus canis Smooth dogfish 17.59 1266 1704 

Myoxocephalus 
octodecemspinosus 

Longhorn sculpin 6.19 3514 4190 

Myxine glutinosa Atlantic hagfish 7.48 268 543 

Ophidion marginatum Striped cusk-eel 19.38 166 192 
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Opisthonema oglinum Atlantic thread 
herring 

26.68 163 310 

Orthopristis chrysoptera Pigfish 26.42 186 232 

Ovalipes ocellatus Lady crab 17.89 357 607 

Ovalipes stephensoni Coarsehand lady 
crab 

24.25 100 265 

Pandalus borealis Northern shrimp 3.93 368 1078 

Paralichthys dentatus Summer flounder 18.00 2514 3933 

Peprilus triacanthus Butterfish 18.06 3516 5959 

Peristedion miniatum Armored searobin 11.41 174 239 

Placopecten magellanicus Sea scallop 10.17 1616 3737 

Pollachius virens Pollock 6.96 2153 1589 

Pomatomus saltatrix Bluefish 19.56 1153 1590 

Porichthys plectrodon Atlantic 
midshipman 

25.57 103 36 

Prionotus carolinus Northern searobin 17.95 1677 2632 

Prionotus evolans Striped searobin 18.53 772 1106 

Pseudopleuronectes 
americanus 

Winter flounder 8.53 3343 4164 

Raja eglanteria Clearnose skate 18.35 780 1527 

Rhizoprionodon 
terraenovae 

Atlantic sharpnose 
shark 

25.45 158 240 

Rhomboplites aurorubens Vermilion snapper 25.45 101 19 

Scomber scombrus Atlantic mackerel 9.81 1021 2605 

Scomberomorus 
maculatus 

Spanish mackerel 26.13 145 163 
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Scophthalmus aquosus Windowpane 12.03 3628 4439 

Scyliorhinus retifer Chain dogfish 11.77 110 730 

Sebastes fasciatus Acadian redfish 6.22 2585 2672 

Sphoeroides maculatus Northern puffer 20.61 229 530 

Squalus acanthias Spiny dogfish 10.89 6031 7143 

Squatina dumeril Atlantic angel shark 18.55 287 261 

Stenotomus chrysops Scup 23.22 1667 2333 

Synodus foetens Inshore lizardfish 25.85 467 448 

Tautogolabrus adspersus Cunner 10.62 343 515 

Trachinocephalus myops Snakefish 24.01 127 115 

Trachurus lathami Rough scad 24.62 135 398 

Triglops murrayi Moustache sculpin 5.77 153 205 

Urophycis chuss Red hake 9.13 4918 6377 

Urophycis regia Spotted hake 14.48 1893 4664 

Urophycis tenuis White hake 7.92 3923 3415 
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