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In recent years, a new information combining method that combines confidence dis-

tributions has been demonstrated as a powerful statistical inferential tool. One can

draw most types of frequentist inference based on confidence distributions (Singh et al.,

2007). The fact that a confidence distribution contains a wealth of information can

be leveraged for synthesizing information from multiple studies (Singh et al., 2005).

Xie et al. (2012) showed that by applying appropriate recipes when combining data,

the confidence distribution approach (hereinafter referred to as the CD approach) can

subsume most of the classical meta-analysis methods within a unified meta-analysis

framework. For a comprehensive review of the CD approach and recent developments,

see Xie and Singh (2013).

This dissertation extends the existing meta-analysis methods via combining confidence

distributions to overcome two challenges. First, most of the existing data situations

for which the CD approach has been examined have been to combine continuous data.

Therefore, we demonstrate a new CD method for discrete data and apply it to combine

2 x 2 tables from disparate sources. Second, as a major extension of the recent efforts on
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drawing joint inference for multiple related parameters from different studies through

combining multivariate confidence distributions (Liu et al., 2015; Yang et al., 2014),

we propose a CD based three-stage synthesis method to combine 13 parameters from

individual participant level data of 14 clinical studies.

The first part of this dissertation focuses on how to apply the CD approach to make

exact inferences on 2× 2 tables that may involve rare events. While most conventional

methods rely on large sample approximations, many 2 × 2 tables derived in medical

fields may have very limited total sample sizes, in which case the use of asymptotic

based approaches may lead to misleading conclusions. In addition, we also consider

the situations where study total sample size is large, but with zero observed events

in one or both treatment arms in a 2 × 2 table. This can happen in drug safety

studies where zero or rare cases of adverse effects are observed in large samples of

patients. The new CD method provides an exact inference and does not rely on large

sample approximations. In addition, by incorporating prior information, the proposed

CD approach can deal with zero events more systematically in contrast to a typical

approach adding a small constant (e.g., 0.5) to empty cells. This new approach accounts

for various data sampling schemes and can readily be generalized to most of the risk

metrics used for 2× 2 tables.

The second part of this dissertation focuses on how to synthesize multiple parameters

from various studies with heterogeneous designs and partial information. Such a data

situation is quite typical for synthesis of clinical studies. For instance, in our motivating

data example, individual participant data from Project INTEGRATE were obtained

from 24 clinical trials aimed at examining the efficacy of brief alcohol interventions

to reduce excessive alcohol use and to prevent harm among college students. Despite

having similar objectives among these trials, they differed in terms of the interventions

evaluated, covariates assessed, follow-up schedules, among others. With the existing

methods, one may have to limit the analysis to a subset of trials with all covariates or

to a subset of covariates for a reduced model, either of which excludes partially avail-

able data, resulting in an important loss of information. The new CD-based method
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can efficiently combine all studies with all the covariates, thus minimizing the informa-

tion loss that would have occurred under the existing synthesis methods. Moreover,

compared to the existing multivariate CD approach proposed by Yang et al. (2014),

the current work extends it to random-effects meta-analysis models and to a complex

model requiring synthesis of a large number of parameters.
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Chapter 1

Introduction

Meta-analysis can be broadly defined as any quantitative methods aimed at synthesiz-

ing information from multiple, independent sources. The first known use of a meta-

analytic method was by Karl Pearson in 1904. Pearson examined the association be-

tween inoculation and mortality from typhoid among soldiers who had volunteered for

inoculation against typhoid for their deployment in various places across the British

Empire (O’Rourke, 2007). Despite its deep root, meta-analysis as a method did not

take off until 1976 when the term “meta-analysis” was coined by Gene Glass as “the

statistical analysis of a large collection of analysis results from individual studies for

the purpose of integrating the finding.”. Meta-analysis has since caught on in many

substantive fields, especially in medicine. Recent methodological advances in the field

of meta-analysis include methods utilizing individual participant data (IPD) and com-

plex meta-analysis methods, such as multivariate meta-analysis and meta-regression.

In particular, Xie et al. (2012) proposed a broad unifying approach to combining data

from multiple studies. This unifying approach combines confidence distributions from

multiple sources in which a confidence distribution (CD) is a sample-dependent dis-

tribution function that can represent confidence intervals of all levels for a parameter

of interest. Accordingly, a CD contains much more information about data than a

point or an interval estimator. This CD-based approach can encompass most of the

classical methods, including those from model-based approaches (i.e., fixed-effects and

random-effects meta-analysis models using Maximum Likelihood estimator or Bayesian

estimator) under one inclusive theoretical umbrella.

Two recent developments for the CD approach to meta-analysis are as follows:
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– Liu et al. (2014): demonstrated exact inference for a meta-analysis of 2×2 tables

from clinical trials through combining p-value functions;

– Yang et al. (2014): jointly analyzed multiple parameters from individual studies

through combining multivariate CD functions;

This dissertation is aimed at extending the two approaches above as follows:

• For Liu et al. (2014): p-value functions (Fraser, 1991) obtained from the exact

tests associated with individual studies were used as the combining vehicle. How-

ever, Fisher’s exact test is based on the assumption that both margins of a 2× 2

table are fixed. This assumption is rarely met in actual data because most of the

2× 2 tables are observed under different data situations. In this dissertation, we

propose the confidence distribution approach for 2×2 tables that accounts for the

actual data generation process. One particular challenge is the discrete nature

of data, resulting in the confidence distributions that are not unique. Moreover,

to deal with the case of zero observed events, we incorporate prior information

when deriving confidence distributions instead of utilizing the ad-hoc 0.5 artificial

corrections. Finally, we adopt the same combining recipe used in Liu et al. (2014)

to combine confidence distributions from individual studies.

• For Yang et al. (2014): As pointed out in Jackson et al. (2011), under the mul-

tivariate meta-analysis setting, the assumption that there is no between-study

variation in any endpoints in a vector of parameters is implausible. So we extend

the existing multivariate CD approach for fixed-effects meta-analysis(Liu et al.,

2015; Yang et al., 2014) to random-effects meta-analysis model. Furthermore, in

our real data application, the dimension of the parameter vector to be synthesized

is much higher than the simulation studies conducted previously. Aside from the

methodology developments, both of these modifications requires much more ef-

ficient implementation from a computation perspective. In addition, instead of

combining effect sizes for multiple interventions as endpoints, we combine regres-

sion model parameters directly to facilitate model based inference. This will be
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illustrated in greater details at a later point.

This dissertation organizes each chapter as a self-contained paper. Specifically, Chapter

2 can be considered as an extension from Liu et al. (2014). We propose several ways to

construct confidence distributions of the log odds-ratio for a 2× 2 table under different

sampling schemes; compare them in simulation studies; and subsequently apply these

methods to synthesize information from multiple sources in the context of meta-analysis.

Real data analysis and simulation studies showed that the proposed CD approach often

outperforms classical methods such as Wald method. Sensitivity analysis also showed

that the proposed approach performs consistently well even when prior information

was mis-specified. Because the proposed method can easily be generalized to other

commonly used measures of association for two-way contingency tables and also because

it takes into account different sampling schemes, the proposed CD approach may provide

a general framework for 2×2 table inference. Chapter 3 builds upon Yang et al. (2014)

and provides a CD-based, three-stage synthesis method to combine multiple related

parameters in a multivariate random-effects meta-analysis of IPD from clinical trials.

This approach may provide a methodological solution to handle systematic study-level

missing data when synthesizing relatively high dimensional data from studies with

heterogeneous designs. We also report data from sensitivity analysis to investigate the

robustness of the proposed method. Chapter 4 contains some concluding remarks.
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Chapter 2

A Confidence Distribution Approach for Exact Inference

on 2× 2 Tables with Applications to Rare Event Data

In this chapter we discuss the challenges of drawing inference from 2 × 2 tables

and propose a confidence distribution (CD) approach to overcome the challenges.

The proposed method may be useful especially for studies on rare events because

it applies readily to 2 × 2 tables with zero observed counts without any artificial

corrections. It can explicitly account for the sampling scheme utilized and can eas-

ily be generated to any metrics, thus providing an unified framework for analyzing

2× 2 tables. As a demonstration, we apply the proposed CD approach to combine

information from multiple 2 × 2 tables in a meta-analysis context to investigate

drug safety.

2.1 Introduction

Two way contingency tables have been widely used in various scientific fields to study

relationships between two binary variables. Most of the existing inferences for 2 × 2

tables rely heavily on large sample approximations, which may not necessarily produce

valid inference when sample size is small. In such cases, Fisher’s exact test (Fisher,

1956) is usually advised. However, its applicability has long been questioned because

most 2 × 2 tables are not collected under the sampling constrains that both marginal

totals are fixed. Also, Fisher’s test is known to be overly conservative due to high

discreteness of the hypergeometric distribution, especially with small samples. In this

article, we propose to use a confidence distribution (CD) approach to analyze 2 × 2

tables. Specifically, we consider confidence intervals of log odds-ratio as an inferential
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tool. Our approach does not rely on limiting distributions. Thus, it can be considered

as exact inference (Agresti, 2003). In addition, the sampling method under which a

2 × 2 table was generated is reflected in the method, which may also be applicable to

any other metrics for the analysis of 2 × 2 tables. From these perspectives, the CD

approach to 2× 2 table inference provides a unified analytical framework.

Loosely speaking, a CD function is often referred to as a sample-dependent distribu-

tion function that can represent the confidence intervals of all levels for a parameter of

interest (see, e.g, Cox (1958); Efron (1993); Xie and Singh (2013)). It is a distribution

estimator developed under the pure frequentist framework, as a counterpart to Bayesian

posterior. One special case that is well known and extremely popular in modern statis-

tics is Efron’s bootstrap distribution (Efron, 1998), albeit the concept of CD is much

broader. Given sample data x ∼ Fθ(X), denote the CD function for parameter θ ∈ Θ

as H(·) = H(·,x), we can construct a random variable ξ such that conditional on the

sample x, ξ has the distribution H(·). We call ξ a CD-random variable (Singh et al.,

2007) and its density as CD density.

To further elaborate the CD concept, we provide two examples, one for parameter from

a continuous distribution and the other from a discrete distribution, the latter of which

is more closely related to our problem setting but more challenging.

Example 1. Assume X ∼ N (µ, 1), we can re-express X as

X = µ+ U, where U ∼ N (0, 1),

which is known as data generating equation Hannig et al. (2016). Inverting the above

equation and plugging in the observed sample X = x, we have

µ = x− u,

where u is an unobserved realization of U . If we estimate u by u∗ that is randomly

drawn from N (0, 1), then

µ∗ = x− u∗
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can be considered as an estimate of µ. By repeating this process many times, we obtain

a distribution estimator µ∗ ∼ N (x, 1). In this case, µ∗ is a CD-random variable and

N (x, 1) is CD function for µ.

Similar idea can be applied to discrete distributions except that a CD function is not

unique anymore. See the following example.

Example 2. The data generating equation for a Bernoulli distributed random variable

X ∼ Bernoulli(p) is

X = I(U ≤ p), where U ∼ U(0, 1).

Given an observed X = x, By inverting the data generating equation we obtain
u ≤ p ≤ 1 if x = 1

0 ≤ p < u if x = 0

,

where u is an unobserved realization of U . Consider a random sample u∗ from U(0, 1) as

an estimate for u, we obtain a CD-random variable for p. However, due to the intrinsic

discrete nature of Bernoulli distribution, inverting the data generating equation results

in an inequality. For instance, if we observe x = 1, the CD-random variable for the

lower bound follows U(0, 1) and the one for upper bound follows a distribution with all

the probability mass at a value of 1. We will discuss this in depth in later sections.

Given the CD for a parameter of interest, we can perform almost all types of frequentist

inference. For instance, consider i.i.d sample x1 · · ·xn, where xi ∼ N (µ, 1) for all i.

To make inference on µ, we normally use x̄n =
∑n

i=1 xi/n as a point estimate or

(x̄n − 1.96/
√
n, x̄n + 1.96/

√
n) as a 95% confidence interval. In comparison, under the

CD approach, we use a CD for µ, which is H(µ) = Φ(
√
n(µ−x̄n)) to conduct frequentist

inference. For example, (H−1(α/2), H−1(1−α/2)) = (x̄n+Φ−1(α/2)/
√
n, x̄n+Φ−1(1−

α/2)/
√
n) gives a (1 − α)100% confidence interval for µ, for any 0 ≤ α ≤ 1. In

addition, x̄n, mean/median of H(µ), provides a point estimate for µ. The tail mass

H(b) = Φ(
√
n(b − x̄n)) yields a p-value for the one-sided hypothesis test H0 : θ ≤ b

versus Ha : θ > b.
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Note that the CD functions mentioned above are also the fiducial distributions in

Fisher’s fiducial inference (see, e.g., Fisher (1935); Hannig (2009); Hannig et al. (2016)).

In essence, both CD and fiducial approaches share the same goal in common in that

both are aimed at providing a distribution estimator for parameters of interest via cap-

turing all information that any given data contain about these parameters. It is not

surprising that many fiducial distributions satisfy the conditions required for being a

CD function. In general, the relationship between the fiducial distribution and the CD

function is similar to the one between MLE and consistent estimator, where the latter

is a much broader concept (see Fraser, 2011). We highlight the fact that although

the idea originates from the fiducial approach, all of our interpretations and inferences

reside within the frequentist framework and do not require any fiducial reasoning.

Throughout the article, we assume a 2× 2 table with the following layout,

Events Non-events

Exposure X11 X12 n1

Non-exposure X21 X22 n2

m1 m2 N

We use Xij and X∗ij to indicate a random variable and its random copy, respectively,

while xij and x∗ij denote their corresponding realizations, for i, j ∈ {1, 2}. The column

variable represents an outcome of interest, such as cure and non-cure, and the row

variables is the explanatory variable, such as assigned treatment groups. In this paper,

we consider drawing inference based on confidence intervals for log odds-ratio.

The rest of this paper is organized as follows. In Section 2.2 we derive CD functions

of the log odds-ratio for 2 × 2 tables collected under all possible sampling schemes.

We discuss how to construct confidence intervals through CD functions since it is not

obvious for discrete distributions. In order to apply the proposed method to studies

with rare events, we discuss how to incorporate prior information when analyzing 2× 2

tables containing cells having zero counts. In Section 2.3, we conduct a simulation study

to compare performance of the proposed CD method with two traditional approaches,

namely confidence intervals from Wald method and Fisher’s exact test. We also present
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the sensitivity analysis to investigate robustness of the CD method under a rare events

setting when prior information is mis-specified. In Section 2.4, we apply this novel

approach to a real data set in a meta-analysis context to draw inference on drug safety.

Finally, we conclude the paper with discussion in Section 2.5.

2.2 Methodology

In subsection 2.2.1—2.2.4, we derive CD functions of log odds-ratios in 2×2 tables under

different sampling schemes. We then recommend two ways to construct confidence

intervals through lower and upper CD functions for a log odds-ratio in subsection 2.2.5.

To conclude this section, we explain how to handle 2× 2 tables with zero counts using

the CD approach.

2.2.1 Confidence distributions for the log odds-ratio from 2× 2 tables

without any sampling constraints

When the sampling scheme does not impose any constraints on marginal totals of a

2× 2 table, cell counts Xij are independent Poisson random variables denoted as

Xij ∼ Pλij , (2.1)

for i, j ∈ {1, 2}, where λij is the Poisson mean parameter. Though rarely seen in reality,

this can be the case for observational studies where data collection process is terminated

arbitrarily. We refer to such a sampling scenario as Poisson sampling. By definition,

the log odds-ratio θ is

θ = log(λ11)− log(λ12)− log(λ21) + log(λ22). (2.2)

In order to obtain the CD function for θ, we first derive CD function for the Poisson

mean parameter.

Theorem 1. If X ∼ Pλ, then CD-random variables for λ follows a mixture distribution

of Γ(x, 1) and Γ(x+ 1, 1), where Γ(·) denotes Gamma distribution.
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Proof. Proof. It is well known that X and λ can be interpreted as the observed and

expected number of times that an event occurred in a given time interval, respectively.

For simplicity, let’s assume it is the unit interval [0, 1]. Then the inter-arrival times

between two consecutive events satisfies Ui ∼ Exp(λ), for i = 1, · · · , X, where Exp(·)

denotes exponential distribution. And the arrival time of X-th event is defined as

TX =
X∑
i=1

Ui ∼ Γ(X,λ). It follows that

X ∼ Pλ ⇔ TX ≤ 1 < TX+1

⇔ EX
λ
≤ 1 <

EX+1

λ
, where EX , Γ(X, 1)

⇔ EX ≤ λ < EX + E
′
X , where E

′
X ∼ Exp(1). (2.3)

This shows that we have mapped the sample space X ∈ N to the parameter space{
λ : EX ≤ λ < EX + E

′
X

}
. Given the observed data X = x,

Ex ≤ λ < Ex + E
′
x. (2.4)

Since Ex and E
′

are unobserved quantities with known distributions, we can estimate

them by generating their corresponding random copies E∗x and E
′∗. By repeating this

many times and denoting CD-random variable of λ as Rλ, we have

E∗x ≤ Rλ < E∗x + E
′∗
x . (2.5)

If we define random variables for lower and upper bounds in (2.5) as Rλ,L and Rλ,U,

then Rλ,L ∼ Γ(x, 1) and Rλ,U ∼ Γ(x+ 1, 1) and any mixtures of Rλ,L and Rλ,U can be

considered as CD-random variables for λ. �

Remark 1. Alternatively, we can obtain CD functions for λ by directly working on

the cumulative distribution function of X. Define Hx(λ) , P (X ≤ x) as a sample

dependent function on λ, and its inverse w.r.t. λ as H−1x (α), where 0 ≤ α ≤ 1. Then

{X = k} ⇐⇒ {Hk−1(λ) < U ≤ Hk(λ),with U ∼ Uniform(0, 1)}

⇐⇒
{
H−1k−1(U) < λ ≤ H−1k (U)

}
, λL < λ ≤ λU . (2.6)
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Where (2.6) follows the fact that Hx(λ) is a decreasing function in λ. Then cumulative

distribution function of λL satisfies

GλL(t) = P (λL ≤ t)

= P (U ≥ Hk−1(t)) (Hk−1(λ) is decreasing in λ)

= 1−
k−1∑
x=0

tx

x!
e−t, (2.7)

which is exactly the cumulative distribution function of Γ(x, 1). Similarly, λU follows

Γ(x + 1, 1). This is a more standard way of obtaining a CD function, and it can be

particularly useful when there are no special distributional properties to exploit.

Apply theorem 1 to a 2× 2 table collected from Poisson sampling, we have

E∗ij ≤ Rij < E∗ij + E
′∗
ij , (2.8)

with E∗ij ∼ Γ(xij , 1) and E
′∗
ij ∼ Exp(1), where E∗ij , E

′∗
ij are mutually independent for

i, j ∈ {1, 2}. Since the sampling is completely unconstrained, it is also reasonable to

consider the sum of four cells X =
∑

i,j∈{1,2}Xij ∼ P∑
i,j∈{1,2} λij

, Therefore, we have∑
i,j

E∗ij ≤
∑
i,j

Rij <
∑
i,j

E∗ij + E
′∗, (2.9)

for i, j ∈ {1, 2}, where E
′∗ ∼ Exp(1). Combine conditions (2.8) and (2.9) and define the

CD random variable for the log odds-ratio as Rθ , log(Rλ11)− log(Rλ12)− log(Rλ21) +

log(Rλ22). Consequently,

E∗θ − log

(
1 +

E
′∗

min(E∗12, E
∗
21)

)
≤ Rθ < E∗θ + log

(
1 +

E
′∗

min(E∗11, E
∗
22)

)
(2.10)

Where E∗θ = log(E∗11)− log(E∗12)− log(E∗21) + log(E∗22). If any of Rij = 0, one or both

of the bounds is equal to ±∞, respectively.

2.2.2 Confidence distributions for the log odds-ratio from 2× 2 tables

with sampling conditional on one margin

Binomial sampling is one of the most popular sampling schemes in scientific research,

where either row or column marginal totals are fixed beforehand. For instance, a
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randomized clinical trial or cohort study have row totals fixed in advance, while case-

control has column totals fixed.

Without loss of generality, let’s assume the row totals are fixed, it follows directly that

X11 and X21 are independent binomial random variables denoted as X11 ∼ Bin(n1, p1)

and X21 ∼ Bin(n2, p2), where pi = λi1/(λi1 + λi2), for i ∈ {1, 2}. The log odds-ratio

can then be expressed as

θ = log(p1)− log(1− p1)− log(p2) + log(1− p2).

To derive CD function for θ, we first present CD function for parameter p in a binomial

distribution.

Theorem 2. If X ∼ Bin(n, p), then a CD random variable for p follows a mixture

distribution of B(x+ 1, n− x) where B(x, n− x+ 1), B(·, ·) denotes Beta distribution.

Proof. Proof By definition, we can write X =
n∑
k=1

Bk, where Bk are Bernoulli dis-

tributed random variables with P (Bk = 1) = p = 1− P (Bk = 0). As we demonstrated

earlier, for each trial k, 
Uk ≤ p ≤ 1 if Bk = 1

0 ≤ p < Uk if Bk = 0

, with Uk ∼ U(0, 1). With all n trials taken into considerations,

max {Uk, s.t. Bk = 1} ≤ p < min {Uk, s.t. Bk = 0} ⇒ U(X) ≤ p < U(X+1), (2.11)

where U(·) indicates the order statistics of Uk for k = 1, · · · , n. This shows that we have

mapped the sample space X ∈ N to the parameter space
{
p : U(X) ≤ p < U(X+1)

}
.

Given the observed data X = x, a CD random variable Rp of p satisfies

U∗(x) ≤ Rp < U∗(x+1). (2.12)

It is well known that U∗(x) ∼ B(x, n − x + 1) and U∗(x+1) ∼ B(x + 1, n − x). So CD

function for p is a mixture of B(x, n− x+ 1) and B(x+ 1, n− x). �
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Apply theorem 2 to a 2× 2 table with fixed row totals, we have

U∗(xi1) ≤ Rpi < U∗(xi1+1), (2.13)

for i ∈ {1, 2} . Use the notation in Section 2.1 and take advantage of the relation between

gamma and beta distribution, E∗i1/(E
′∗
i +E∗i1 +E∗i2) and (E∗i1 +E

′∗
i )/(E

′∗
i +E∗i1 +E∗i2)

can be shown to have the same distribution as U∗(xi1) and U∗(xi1+1), respectively. So

(2.13) can be rewritten as

E∗i1
E

′∗
i + E∗i1 + E∗i2

≤ Rpi ≤
E∗i1 + E

′∗
i

E
′∗
i + E∗i1 + E∗i2

, (2.14)

for i ∈ {1, 2}. A simple calculation shows that the CD random variable for θ satisfies

E∗θ − log

(
1 +

E
′∗
1

E∗12

)
− log

(
1 +

E
′∗
2

E∗21

)
≤ Rθ

≤ E∗θ + log

(
1 +

E
′∗
1

E∗11

)
+ log

(
1 +

E
′∗
2

E∗22

)
. (2.15)

If any of E∗ij = 0, one or both of the bounds is equal to ±∞, respectively.

Remark 2. Notice that (2.15) can also be obtained from the condition (2.8) in uncon-

strained case with additional constraints

2∑
j=1

R∗ij ≤ E
′∗
i +

2∑
j=1

E∗ij ,

for i ∈ {1, 2}. This change reflects the fact that we are conditioning on the observed

value of Xi1 +Xi2 = ni and, therefore it is not necessary to pool all cells as in Poisson

sampling.

2.2.3 Confidence distributions for the log odds-ratio from 2× 2 tables

with sampling conditional on the grand total

Under the Poisson model (2.1), when the grand total is fixed, X =

(X11, X12, X21, X22) ∼ multinomial(n, p11, p12, p21, p22) with pij = λij/
∑

k,l∈{1,2} λkl

for i, j ∈ {1, 2}. This sampling happens often in cross-sectional studies where only

total number of participants is predetermined and neither column nor row margins are
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known. We call this scheme as multinomial sampling. The log odds-ratio in this case

is defined as

θ = log(p11)− log(p12)− log(p21) + log(p22). (2.16)

Similarly, we present CD function for p = (p11, p12, p21, p22) first.

Theorem 3. If X = (X1, . . . , Xk) follows multinomial (n, p1, . . . , pk) with
∑k

i=1 pi = 1,

then a CD random variable for p = (p1, . . . , pk) satisfiesp : Wi ≤ pi ≤ 1−
n∑
j 6=i

Wi, i = 1, . . . , k


where W = (W0,W1, · · · ,Wk) follows Dirichlet(1, X1, · · · , Xk)

Proof. Proof. First, analogous to binomial distribution scenario, by considering each

pi separately, we have Vi ≤ pi ≤ 1 where Vi
i.i.d∼ B(Xi, n −Xi + 1). This is because Vi

has the same distribution as U(Xi) where Ui
i.i.d∼ U(0, 1) with i = 1, · · · , n. In addition,

since
∑k

i=1 pi = 1 we have
∑k

i=1 Vi ≤ 1. In summary, each pi satisfies

Vi ≤ pi ≤ 1−
∑
j 6=i

Vj . (2.17)

Consider the following random vector W whose distribution is taken as a conditional

distribution

W = (W0,W1, · · · ,Wk) , (1− V1 − · · · − Vk, V1, · · · , Vk)|{V1 + · · ·+ Vk ≤ 1} .

Then fW, the density of W, can be shown as

fW(w) ∝
k∏
j=0

Xjw
Xj−1
j ,

where X0 = 1. By definition it follows Dirichlet(1, X1, · · · , Xk). �

Follow the notations introduced before, by leveraging the relationship between Gamma

and Dirichlet distributions, we can show (E
′∗, E∗11, · · · , E∗22)/(E

′∗+E∗11 + · · ·+E∗22) has

the same distribution as W. So replacing all the Vi in (2.17) by E∗ij , for realization

x = (x1, . . . , xk) of X, it follows

E∗ij
E′∗ + E∗11 + E∗12 + E∗21 + E∗22

≤ Rpij ≤
E∗ij + E

′∗

E′∗ + E∗11 + E∗12 + E∗21 + E∗22
, (2.18)
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for i, j ∈ {1, 2}. Since
∑

k,l pkl = 1, it is reasonable to assume
∑

k,lRpkl ≤ 1. Basically,

this yields the same conditions for Rθ as in the Poisson sampling, so the resulting CD

function for θ in this case is identical to (2.10).

2.2.4 Confidence distributions for the log odds-ratio from 2× 2 tables

with sampling conditional on both margins

Though hardly seen in practice, a classic example of such sampling scheme is Fisher’s

tea tasting experiment (Fisher, 1956). In this setting, assume only X11 can vary after

conditional on both marginal totals, we have

P (X11 = x|m1,m2, n1, n2) =

(
n1

x

)(
n2

m1−x
)
eθx∑u

k=l

(
n1

k

)(
n2

m1−k
)
eθk

,

where l = max(0, x11 − x22), u = min(n1,m1). This is Fisher’s non-central hyper-

geometric distribution and, when θ = 0, it reduces to a hypergeometric distribution.

The log odds-ratio in this case is θ itself. And we may call such sampling scheme

hypergeometric sampling.

Similar to remark 1, we derive a CD function for θ by directly inverting the above

conditional distribution. Define Hx(θ) = Pθ(X11 ≤ x) as a sample dependent function

on θ and its inverse w.r.t. θ as H−1x (α) where 0 ≤ α ≤ 1, then

{Observing X11 = x} ⇐⇒ {Hx−1(θ) < U ≤ Hx(θ),with U ∼ U(0, 1)}

⇐⇒
{
H−1x−1(U) < θ ≤ H−1x (U)

}
, θL < θ ≤ θU , (2.19)

where (2.19) follows the fact that Hx(θ) is a decreasing function in θ. The cumulative

distribution function of θL can then be obtained as

GθL(t) = P (H−1x11−1(U) ≤ t)

= P (U ≥ Hx11−1(t)) (H(·) is decreasing in t)

=

∑u
k=x11

(
n1

k

)(
n2

m1−k
)
etk∑u

k=l

(
n1

k

)(
n2

m1−k
)
etk

(2.20)

and similarly,

GθU (t) =

∑u
k=x11+1

(
n1

k

)(
n2

m1−k
)
etk∑u

k=l

(
n1

k

)(
n2

m1−k
)
etk

, (2.21)
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Any mixtures distributions between θL and θU is a CD function for θ.

2.2.5 Constructing confidence intervals using CD functions

So far, we have obtained lower and upper CD functions for the parameter of interest

in a discrete distribution, now we discuss two ways of constructing confidence intervals

from them. The first one is to use [q {α/2,CDlower} , q {1− α/2,CDupper}], we call it raw

method since we merely take quantiles from both lower and upper CD functions without

melding them into a single one. The second way is to meld a CD function first through

a 50-50 mixture between the lower and upper densities, i.e., CDmeld = b × CDlower +

(1 − b) × CDupper, where b ∼ Bernoulli(0.5), and then construct the 1 − α confidence

interval from the melded CD in a usual way as [q {α/2,CDmeld} , q {1− α/2,CDmeld}].

We may also refer to it as a half-corrected version. See Figure i as an illustration.

Regardless of how we meld a single CD function from the lower and upper CDs, all CD

functions should converge to the true distribution when sample size goes to infinity.

Their corresponding asymptotic properties are guaranteed and have extensively been

studied (e.g., see theorem 3 in Hannig (2009)).

2.2.6 Inference on 2× 2 table with zero events

When there are observed zero events in a 2× 2 table, the corresponding E∗ij = 0. This

would leads to infinite confidence bounds on the log odds-ratio for (2.10) and (2.15).

We must keep this bound when using conservative (raw) version of the proposed CD

approach. However, with the melded version we can use a weak a-prior to replace

E∗ij = 0 in order to obtain a non infinite confidence bound for the parameter of interest.

Let rij denotes the lower bound on the expected number of observed counts. This is

often available. For instance, in mortality studies that usually suffer from low observed

event counts, we have rij = nip0, where ni is the number of participants in a control

or treatment arm, p0 is the background mortality rate, i.e., the rate of people dying

during the course of the study from unrelated causes, which is usually well known.
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Figure i: CD densities and the corresponding 95% confidence intervals for data
(x11, x12, x21, x22) = (1, 9, 3, 7). In the upper panel, lower and upper CD densities
are plotted along with lower 2.5% and upper 97.5% quantile from lower and upper CD
densities, respectively. The bottom panel shows the half-corrected melded version of
the CD density and its associated 95% confidence interval.
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Then, whenever xij = 0, we replace E∗ij = 0 with Ẽ∗ij ∼ Γ(rij , 1).

Effectively, with such modifications, when generating samples for confidence bounds

(2.10) developed under Poisson or multinomial sampling, we use rij = min(nip0, 1/4),

we also need to replace E
′∗ with Ẽ

′∗ ∼ Γ(1−
∑
{ij:xij=0} rij , 1). For confidence bounds

(2.15) obtained from binomial sampling, we use rij = min(nip0, 1/2) and substitute E
′∗
i

with Ẽ
′∗
i ∼ Γ(1 −

∑
{j:xij=0} rij , 1). There is no update for the zero events case to the

melded version for the hypergeometric sampling scheme.

2.3 Simulation Studies

We now proceed to examine the performance of our approach through simulation stud-

ies. First, we evaluate actual coverages and median widths of the 95% confidence

bounds constructed from the proposed approach and two classical methods, Wald and

Fisher’s exact method, for 2 × 2 tables that were simulated under different sampling

schemes. Second, we conduct sensitivity analysis to investigate robustness of the pro-

posed method against mis-specified prior information for 2 × 2 tables collected under

binomial sampling with low event rates.

2.3.1 Simulations for the comparison of three different methods

The simulation setting for the first analysis is described as below. Within each sampling

scheme, we generate 200 2× 2 balanced tables (i.e., expected row totals are the same),

with an expected study total sample size of 20 for the unconstrained sampling and

with exactly 20 for all other sampling methods. For Poisson case, λ11 varies from 1

to 9, and the rest of the parameters are set as λ22 = 10 − λ12 = 10 − λ21 = λ11 so

that the true log odds-ratio = 2log(λ11/(10 − λ11)) is a monotonic function of λ11.

Similarly, for multinomial sampling, we have p11 ranging from 0.01 to 0.49 with p22 =

0.5 − p12 = 0.5 − p21 = p11. For the binomial case, p1 ranges from 0.01 to 0.99 with

p1 = 1 − p2. We directly vary odds-ratio in the hypergeometric sampling scenario.

Subsequently, we use the original parameters in each sampling scheme rather than log
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odds-ratio to track performance since this gives us a clearer picture when rare events

arise. In terms of results, all the methods are compared regardless of under which

sampling scenario data were simulated. Finally, in the case of cell with zero observed

counts, when generating CD-random variable samples for melded confidence intervals,

we apply prior information as rij = min(λij , 1/4) for Poisson; rij = min(20pij , 1/4) for

multinomial; and rij = min(10pij , 1/2) for binomial sampling to accommodate different

simulation settings.

Simulation results are summarized in Figures ii to v and Tables i to iv. In general, we

observe similar patterns across all sampling schemes. First, between different CD ap-

proaches, we see that when the sampling method used to construct confidence intervals

is aligned with the one used to generate data, the corresponding confidence intervals

perform the best in terms of both empirical coverage and median width. Second, for

the CD approach, raw versions of confidence interval are always more conservative than

the melded versions, meaning that their empirical coverages are always greater than the

nominal ones, while the melded versions can guarantee coverage on average and they

tend to have a narrower width. Third, despite the fact that CD based confidence in-

tervals behave similar to the ones built from traditional methods in the middle range

of the parameter space, their performance was clearly better when parameters fell on

boundaries of their domain. Finally, across all sampling schemes, the melded version of

confidence intervals from binomial sampling performed consistently well. Considering

the binomial sampling scheme is widely seen in scientific research, we recommend confi-

dence intervals constructed under binomial sampling when the actual sampling scheme

is unknown.

2.3.2 Simulation for sensitivity analysis

As discussed in Section 2.5, when there are zero observed cells in a 2 × 2 table, we

adopt a weak prior for the melded versions of the CD based confidence interval in

order to obtain finite bounds. Here, we perform a sensitivity analysis to investigate the

impact of prior used on the constructed confidence intervals. The simulation generates
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Figure ii: Empirical coverage (top) and median width (bottom) of 95% confidence in-
tervals constructed using different methods for data generated under Poisson sampling.
X-axis is the expected counts for X11. Original distribution parameters are set up as
λ11 = λ22 = 10−λ12 = 10−λ21 so that log odds-ratio is monotonic in λ11, where λij is
the mean parameter for Xij in a 2× 2 table. Results are calculated based on 200 simu-
lated 2× 2 tables with an expected total sample size of 20. Plots for different methods
are shown in columns. “CD-0,” “CD-1,” and “CD-2” indicate CD approaches under
Poisson/multinomial, binomial and hypergeometric sampling, respectively. “Fisher”
and “Wald” denote confidence intervals using Fisher’s exact test and Wald method.
For CD based methods, red solid lines connected with (•) are confidence intervals using
the raw method described in the text, and the blue dashed lines connected with (2)
are confidence intervals using the half-corrected method.
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Table i: Empirical coverage and median width of 95% confidence intervals for data generated
under Poisson sampling

Method Empirical Coverage Median Width Empirical Coverage Median Width

λ11 = 1 (LOR = −4) λ11 = 5 (LOR = 0)
CD-0.raw 1.00 Inf 0.98 4.46
CD-0.hc 0.96 12.11 0.96 3.98
CD-1.raw 0.99 Inf 0.99 4.67
CD-1.hc 0.99 12.85 0.98 4.08
CD-2.raw 0.99 Inf 1.00 4.44
CD-2.hc 0.98 Inf 0.97 3.91
Wald 0.98 6.42 0.98 3.76
Fisher 0.99 Inf 1.00 4.54

Note: λ11 is the Poisson mean parameter for X11. Two log odds-ratio (LOR) values are shown, one in the
middle range and the other close to the boundary of the parameter space of λ11 for a rare events scenario.
CD-0, CD-1, and CD-2 are CD methods derived under Poisson/multinomial, binomial and hypergeometric
sampling, respectively. Both raw and half-corrected (hc) versions described in the article are presented.
“Inf” stands for infinity.

Table ii: Empirical coverage and median width of 95% confidence intervals for data generated
under multinomial sampling

Method Empirical Coverage Median Width Empirical Coverage Median Width

p11 = 0.01 (LOR = −9) p11 = 0.25 (LOR = −2)
CD0 (raw) 1.00 Inf 0.97 4.46
CD0 (hc) 0.99 18.04 0.95 3.92
CD1 (raw) 0.99 Inf 0.98 4.68
CD1 (hc) 0.99 10.73 0.96 4.16
CD2 (raw) 0.99 Inf 0.99 4.41
CD2 (hc) 0.97 Inf 0.96 3.83
Wald 0.95 8.04 0.97 3.70
Fisher 0.99 Inf 0.99 4.46

Note: p11 is the probability parameter for X11 in a multinomial distribution. Two log odds-ratio (LOR)
values are shown, one in the middle range and one close to boundary of parameter space of p11 for rare
events scenario. CD-0, CD-1 and CD-2 are CD methods derived under Poisson/multinomial, binomial and
hypergeometric sampling, respectively. Both raw and half-corrected (hc) versions described in the article
are presented. “Inf” stands for infinity.
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Figure iii: Empirical coverage (top) and median width (bottom) of 95% confidence
intervals constructed for different methods for data generated under multinomial sam-
pling. X-axis is the probability parameter for X11. Original distribution parameters are
set up as p11 = p22 = 0.5 − p12 = 0.5 − p21 so that log odds-ratio is monotonic in p11,
where pij is the probability parameter for Xij in a multinomial distribution. Results
are calculated based on 200 simulated 2 × 2 tables with sample size of 20. Plots for
different methods are shown in columns. “CD-0,” “CD-1,” and “CD-2” indicate CD
approaches under Poisson/multinomial, binomial and hypergeometric sampling, respec-
tively. “Fisher” and “Wald” denote confidence intervals using Fisher’s exact test and
Wald method. For CD based methods, red solid lines connected with (•) are confi-
dence intervals using the raw method described in the text, and the blue dashed lines
connected with (2) are confidence intervals using the half-corrected method.
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Figure iv: Empirical coverage (top) and median width (bottom) of 95% confidence
intervals constructed for different methods for data generated under binomial sampling.
X-axis is the probability parameter for X11. Original distribution parameters are set
up as p1 = 1− p2 so that log odds-ratio is monotonic in p1, where pi is the probability
parameter for Xi1 in a binomial distribution. Results are calculated based on 200
simulated 2 × 2 tables with a total sample size of 20. Plots for different methods
are shown in columns. “CD-0,” “CD-1,” and “CD-2” indicate CD approaches under
Poisson/multinomial, binomial and hypergeometric sampling, respectively. “Fisher”
and “Wald” denote confidence intervals using Fisher’s exact test and Wald method.
For CD based methods, red solid lines connected with (•) are confidence intervals using
the raw method described in the text, and the blue dashed lines connected with (2)
are confidence intervals using the half-corrected method.
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Table iii: Empirical coverage and median width of 95% confidence intervals for data generated
under binomial sampling

Method Empirical Coverage Median Width Empirical Coverage Median Width

p1 = 0.01 (LOR = −9) p1 = 0.5 (LOR = 0)
CD-0 (raw) 1.00 Inf 0.96 4.28
CD-0 (hc) 1.00 19.05 0.93 3.83
CD-1 (raw) 1.00 Inf 0.98 4.51
CD-1 (hc) 0.99 10.87 0.95 3.96
CD-2 (raw) 0.99 Inf 0.97 4.34
CD-2 (hc) 0.99 Inf 0.95 3.81
Wald 0.86 8.03 0.96 3.70
Fisher 0.99 Inf 0.99 4.41

Note: p1 is the probability parameter for X11 in a binomial distribution. Two log odds-ratio (LOR) are
shown, one in the middle range and the other close to boundary of the parameter space of p1 for a rare
events scenario. CD-0, CD-1, and CD-2 are CD methods derived under Poisson/multinomial, binomial and
hypergeometric sampling, respectively. Both raw and half-corrected (hc) versions described in the article are
presented. “Inf” stands for infinity.

Table iv: Empirical coverage and median width of 95% confidence intervals for data generated
under hypergeometric sampling

Method Empirical Coverage Median Width Empirical Coverage Median Width

LOR = -5 LOR = 0
CD-0 (raw) 1.00 Inf 0.96 4.05
CD-0 (hc) 0.99 17.10 0.95 3.70
CD-1 (raw) 1.00 Inf 0.98 4.40
CD-1 (hc) 1.00 10.11 0.96 3.89
CD-2 (raw) 0.99 Inf 0.97 4.10
CD-2 (hc) 0.99 Inf 0.97 3.58
Wald 0.97 8.03 0.97 3.58
Fisher 1.00 Inf 0.97 4.23

Note: Two log odds-ratio (LOR) are shown, one in the middle range and the other close to boundary of
its parameter space for a rare events scenario. CD-0, CD-1, and CD-2 are CD methods derived under
Poisson/multinomial, binomial and hypergeometric sampling, respectively. Both raw and half-corrected (hc)
versions described in the article are presented. “Inf” stands for infinity.



24

CD-0 CD-1 CD-2 Fisher Wald

0.80

0.90

1.00

 3.00

 6.00

 9.00

12.00

15.00

E
m

p
irical C

o
verag

e
M

ed
ian

 W
id

th

-5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0

Log Odds Ratio

Figure v: Empirical coverage (top) and median width (bottom) of 95% confidence
intervals constructed for different methods for data generated under hypergeometric
sampling. Results are calculated based on 200 simulated 2×2 tables with a total sample
size of 20. Plots for different methods are shown in columns. “CD-0,” “CD-1,” and “CD-
2” indicate CD approaches under Poisson/multinomial, binomial and hypergeometric
sampling, respectively. “Fisher” and “Wald” denote confidence intervals using Fisher’s
exact test and Wald method. For CD based methods, red solid lines connected with (•)
are confidence intervals using the raw method described in the text, and the blue dashed
lines connected with (2) are confidence intervals using the half-corrected method.



25

samples under binomial sampling, and the methods considered are melded versions of

the CD-based confidence intervals for Poisson/multinomial and binomial sampling.

To resemble large size clinical trials with low rates of event, we simulate data sets with

a fixed total sample size of 1000 for both control and treatment arms. One thousand

2 × 2 tables are generated for each of three different true log odds-ratios, -1, 0 and 1.

To ensure low counts in the events cells X11 and X21, first, the probability of the events

of interest for a control group, p2, is randomly generated from U(0.001, 0.005), and p1

for a treatment group is then calculated as logit(p1) = log(odds-ratio) + logit(p2). In

addition, we set the true global background events rate p0 = 10−4 and impose that

rate on the simulated 2× 2 tables by generating events cells Xi1 as the sum of samples

from Bin(1000, pi) and Bin(1000, p0), for i ∈ {1, 2}. Then, for each generated table,

we construct the melded confidence intervals under background rates p̃0 ranging from

0.01p0 to their upper bound, depending on the method used.

Figures vi and vii show the results for sensitivity analysis. In Figure vi, we see that both

melded confidence intervals can achieve nominal coverage, on average,e across different

p̃0 as well as true log odds-ratios. Meanwhile, Figure vii indicates that the median

width is relatively stable for different p̃0, although it decreases when true log odds-ratio

increases, which is reasonable given our simulation setting. In addition, analyses with

sample sizes of 100 and 10000 are also conducted and we observe similar themes. In

summary, it is clear that neither empirical coverage nor median width is influenced too

much by the prior information used. This demonstrates robustness of the proposed CD

methods when analyzing 2× 2 tables with zero cell counts.

2.4 Real Data Analysis

Rare events data can often be seen in large-sample clinical trials with extremely low

events rates. In such cases, a single study may be inadequate for drawing reliable

conclusions, yet it usually can be strengthened by using meta-analysis to synthesize

information from multiple similar studies. In this section, we apply the proposed CD
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Figure vi: Empirical coverage of 95% confidence intervals constructed under Pois-
son/multinomial and binomial sampling. X-axis shows adjusted Gamma shape pa-
rameters values r̃ij = 1000p̃0 in log scale. A vertical line indicates a true value for the
adjusted shape parameter used to generate data. Panels from top to bottom are shown
for three different true log odds-ratios. Red solid lines connected with (•) and the blue
dashed lines connected with (N) denote the melded version of confidence intervals from
data generated under Poisson/multinomial and binomial sampling, respectively.
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Figure vii: Median width of 95% confidence intervals constructed under Pois-
son/multinomial and binomial sampling. X-axis shows adjusted Gamma shape param-
eters values r̃ij = 1000p̃0 in log scale. A vertical lines indicates true value of adjusted
shape parameter used to generate data. Panels from top to bottom are shown for three
different true log odds-ratios. Red solid lines connected with (•) and the blue dashed
lines connected with (N) denote the melded version of confidence intervals from data
generated under Poisson/multinomial and binomial sampling, respectively.
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approach in the context of meta-analysis to a real data set from Nissen and Wolski

(2007) for drug safety evaluation. The data contains 48 clinical trials that were used to

assess the risk of myocardial infarction and death from cardiovascular causes associated

with the drug Avandia. Several methods are considered in our analysis, namely, the well

known Mantel-Haenszel and Peto’s methods both with and without artificial correction

for zero events studies, the approaches by combining p-value functions and our proposed

CD functions, using the combining recipe discussed in Liu et al. (2014). In addition,

we also conduct a small simulation study to validate the performance of the proposed

method.

Table v: Analysis result of the Avandia data

Myocardial infarction Cardiovascular death
method 95% CI p-value 95% CI p-value

Peto (1.031,1.979) 0.032 (0.980,2.744) 0.060
Peto-0.5 (0.921,1.659) 0.158 (0.760,1.690) 0.538
MH (1.029,1.978) 0.033 (0.983,2.929) 0.057
MH-0.5 (0.919,1.647) 0.163 (0.759,1.689) 0.541
Liu et al. (0.972,2.001) 0.071 (0.765,2.965) 0.252
proposed CD (0.975,2.013) 0.067 (0.758,2.904) 0.257

Note: CI denotes confidence interval; method names ending with “0.5” indicates
0.5 is added to zero cells; Liu et al. is the exact meta-analysis method by combing
p-value functions discussed in Liu et al. (2014); proposed CD is the method by
combining melded version of CD densities derived from binomial sampling.

2.4.1 Real data analysis results

Table v presents meta-analysis results under various methods for both odds-ratios of

myocardial infarction and death due to cardiovascular causes. For the endpoint of my-

ocardial infarction, when there is no artificial correction for zero cells, neither confidence

intervals obtained from Mantel-Haenszel (MH) nor Peto’s (Peto) method contains 1,

indicating a significant association between Avandia and myocardial infarction at 95%

confidence level. However, after applying the 0.5 correction to zero events, both con-

fidence intervals yield conclusions of no associations at 95% confidence level. Such

observations imply that the use of corrections to zero events may result in contradic-

tory conclusions, which has been discussed extensively in J Sweeting et al. (2004). In
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comparison, combining the proposed melded CDs from binomial sampling performed

similarly to the exact analysis by combining p-value functions using the combining

recipe discussed in Liu et al. (2014), although the former produced narrower confidence

intervals.

2.4.2 Meta-analysis simulations

In this simulation, we generate meta-analysis data sets that mimic the structure of

Avandia data and compare the behaviors of different approaches across a range of true

odds-ratios. binomial sampling is used to generate data for individual studies and

the row marginal totals in each study are set to the numbers as those in the Avan-

dia data. The 2 × 2 table for study i is formed by pairs of independent binomial

random variables (X11,i, X21,i) with X11,i ∼ Bin(n1,i, p1,i) and X21,i ∼ Bin(n2,i, p2,i),

where first and second rows denote treatment and control groups, respectively. To

ensure a low event rate, p2,i in the control arm is generated from a uniform distribu-

tion U(0, 0.01). Consequently, the event rate in the treatment arm is determined by

logit(p1,i) = log(odds-ratio) + logit(p2,i) for a fixed odds-ratio ranging from 1 to 10.

Figure viii shows the empirical coverage and median width of constructed 95% con-

fidence intervals for the combined odds-ratio. Coverage of Mantel-Haenszel method

with artificial corrections to zero events , Peto’s method with and without artificial

corrections to zero events drops quickly as the true odds-ratio increases. On the other

hand, both CD-based approach (combining the proposed CD densities derived from

binomial sampling and combining p-value functions discussed in Liu et al. (2014)) and

Mantel-Haenszel method without correction to zero events yield confidence intervals

with proper coverage. In terms of median width, these three methods behave similarly.

2.5 Discussion

In this article, we have proposed a new CD based approach to draw exact inferences on

2×2 tables. As mentioned in Agresti (2007), an inferential procedure is valid only to the



30

CD-based Mantel-Haenszel Peto

0.00

0.25

0.50

0.75

1.00

1.00

2.00

3.00

4.00

5.00

E
m

p
irical C

o
verag

e
M

ed
ian

 W
id

th

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0
Odds Ratio

Figure viii: Empirical coverage (top) and median width (bottom) of 95% confidence
intervals for odds-ratios ranging between 1 and 10. Results are calculated based on 2000
data sets simulated based on Avandia data. Plots for three different methods are shown
in columns. For the “CD-based” column, red solid lines connected with (•) and blue
dashed lines connected with (2) indicate results from combing proposed CD densities
using binomial sampling (melded version) and from combing p-value functions proposed
in Liu et al. (2014), respectively. For both “Mantel-Haenszel” and “Peto” columns, red
solid lines connected with (•) and blue dashed lines connected with (2) indicate the
corresponding method without and with the addition of 0.5 to the cells of the 2 × 2
tables for a zero event, respectively.
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extent that sampling assumptions upon which it is based are met. Our simulations agree

with this viewpoint as we observe that within each sampling scenario the confidence

intervals from the CD approach performs best when the underlying assumption it based

off aligned with the one used to generate data. To this point, our approach may be

particularly appealing since sampling schemes are directly taken into account when

deriving inferential procedures under the CD framework. Furthermore, even the current

paper focuses on inferences for odds-ratio and log odds-ratio, the general applicability

of the approach to any commonly used measure in a 2×2 table is obvious. By providing

such an unified framework under the CD umbrella, our approach offers great flexibilities

in terms of sampling schemes, outcome of interest and even inferential procedures.

Performance of the CD approach has been extensively investigated through numerical

studies for small sample as well as rare events settings and its large sample properties

has already been proved in Hannig (2013). Simulation studies show that our approach

is favorable in comparison to other traditional methods like asymptotic based Wald

method and Fisher’s exact test. Especially, for binomial sampling, the most widely seen

sampling method in scientific research, Wald method fails to maintain nominal coverage

when event rate is low and Fisher’s exact test is too conservative. In contrast, our

melded version of CD approach with binomial sampling achieves nominal coverage while

maintaining a narrower median width. For 2× 2 tables with observed zero event cells,

we also performed sensitivity analysis to examine behaviors of the proposed method

when prior information is mis-specified. Based on our simulation, we find that the

proposed approach is relatively robust to the incorrect prior information applied.

As mentioned, no unique CD exists for parameter of interest for discrete data. We

study two approaches to construct (1 − α) confidence intervals from the lower and

upper CD densities, one with lower α/2 quantile in lower CD function and upper α/2

quantile in upper CD function, we call it a raw method, and another one with middle

1 − α quantiles from the 50-50 mixture of lower and upper CD densities and we call

it a half-corrected melded version. Results from simulation study suggest, within each

sampling scheme, the raw version is more conservative, meaning its actual coverage
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is usually greater than the nominal one. On average, the melded version can achieve

nominal coverage across all values of parameter of interest, and its confidence interval is

narrower than the raw method. In addition, across different sampling schemes, we see

that the melded confidence interval using binomial sampling performs well consistently

in terms of both empirical coverage and median width. Based on these observations, in

general, we advise to use the half-corrected melded version of the CD approach when

analyzing 2 × 2 tables, and pick the melded version from binomial sampling when the

underlying data generating process is unknown.

We also apply the proposed approach in context of meta-analysis on Avandia data

to study the drug safety development where events of interest are rarely seen. Our

simulation results are similar to those reported in Liu et al. (2014). The traditional

methods like Peto’s and Mantel-Haenszel method with and without artificial corrections

can yield conflicting conclusions. In addition, exact analyses like combining our CD or

p-value functions provide similar results, although we recommend our method since it

gives narrower confidence intervals. As for future research, it is possible to study other

ways to meld a single CD function from lower and upper CD densities. In addition, the

current method may be extended to analyze N-way contingency tables.
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Chapter 3

Multivariate Random-effects Meta-analysis of Individual

Participant Data from Clinical Trials with Heterogeneous

Designs and Partial Information

In this chapter, we propose a novel multivariate random-effects meta-analysis

model to analyze individual participant data (IPD) from trials with heterogeneous

designs and partial information. The proposed model is fitted through multi-

variate CD method. We subsequently apply the approach to data from project

INTEGRATE.

3.1 Introduction

Meta-analysis is a well-established statistical procedure for quantitatively synthesizing

evidence from independent studies (Norman, 1999). In recent years, meta-analysis has

increasingly been discussed as an important research method to strengthen statistical

inference (Ioannidis, 2005), although meta-analysis reviews can generate divergent and

confusing answers (Ioannidis, 2010). The number of publications on meta-analysis has

also grown exponentially (Cheung, 2015; Sutton and Higgins, 2008), including those

featuring individual participant data (IPD; Riley et al. (2010)). Meta-analysis of IPD,

compared to meta-analysis of aggregate data (AD), can expand the scope of possible

investigations and produce clinically more meaningful results. When IPD are available,

one can ensure that the same model is applied across studies. In addition, it is possible

to address more complex research questions with more appropriate and sophisticated

models. IPD across all studies can be combined in a one-stage meta-analysis in advanced

models that correctly reflect the hierarchical data structure. Alternatively, IPD can
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be analyzed sequentially for each study in the first stage, generating multiple related

coefficients, which are subsequently combined in the second stage of a two-stage analysis

through the use of multivariate meta-analysis models that take into account within-

study and between-study correlations (Jackson et al., 2011; Raudenbush and Bryk,

2002). In the past, IPD have been used primarily to derive AD for two-stage analyses

Simmonds et al. (2005). More recently, however, IPD have been utilized in one-stage,

two-stage, or combined meta-analysis methods (Simmonds et al., 2015).

Meta-analysis of IPD (also called integrative data analysis in the social and behavioral

sciences; Hussong et al. (2013); Mun et al. (2015a)) provides unparalleled flexibility for

analysts. More can be done to actually check and correct data and harmonize different

measures across different studies, compared to what is feasible for meta-analysis of AD.

For example, with IPD, a commensurate metric can be established across studies via

advanced latent variable modeling approaches using item-level IPD, which is critical for

the inclusion of informative psychological covariates and behavioral outcome variables

in an analysis (Bauer and Hussong, 2009; Curran et al., 2008, 2014; Huo et al., 2015).

At the same time, it is not always possible to obtain commensurate scores (see Mun

et al. (2015a)). In extreme data situations, no study may provide chains to link dif-

ferent measures across studies (no between-study overlap; see Siddique et al. (2015)).

As research questions get more complex, study-level missing data inevitably go up be-

cause answers to these questions require multiple variables to consider and also because

many clinical studies differ in key study features, including their designs, populations,

measures, or settings (Hofer and Piccinin, 2009; Simmonds and Higgins, 2007). For

example, with respect to different measures, a commonly used screening equipment

in medical settings may not always be available in other locations. Newer and better

screening tools may replace the older ones over time. In psychological research, some

studies may use a multi-informant and multi-method measurement approach for the

assessment of psychological and behavioral variables, which may not be feasible for

other studies with limited resources. Furthermore, longitudinal clinical trials included

in a meta-analysis typically differ in their study duration and follow-up schedule (Jones

et al., 2009; Trikalinos and Olkin, 2012). It is also not uncommon that binary covariates
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may not have any variability either by design (e.g., a study of all women) or naturally in

a data set (e.g., Debray et al. (2013)). Any one of these situations can pose significant

estimation challenges for an IPD meta-analysis.

In the past, IPD meta-analysis applications have included a subset of studies with

targeted covariates or developed a reduced model, either of which essentially deletes

partially available data (i.e., list-wise deletion). Therefore, the exclusion of eligible

studies or informative covariates in a meta-analysis represents an important loss of

information, precision, power, and generalizability, and also diminishes the usefulness

of the tested meta-analysis model. Although this discussion may be most salient for

IPD, we briefly review and discuss the existing multivariate synthesis approaches to

missing data for both AD and IPD because AD can be derived from IPD and also

because AD and IPD can be jointly used in synthesis (e.g., Riley et al. (2008); Riley

and Steyerberg (2010); Yamaguchi et al. (2014).

In the context of multivariate synthesis methods for AD, Becker and Wu (2007) showed

that regression slope coefficients and their covariance estimates can be combined us-

ing a multivariate generalized least squares method. However, the slope estimates are

assumed to have the same or similar measurement scales and to have come from the

same or equivalent regression model in original studies and, consequently, have the same

interpretation across different studies. These are strong assumptions for real applica-

tions. Furthermore, the covariance estimates associated with the slope coefficients are

typically unavailable in published studies. Wu and Becker (2013) circumvented the re-

quirement that all estimates be from the same regression model by combining bivariate

correlations instead and, subsequently, analyzing a structural equation model using the

pooled correlation matrix. However, this factored likelihood method by Wu and Becker

uses standardized z scores to sidestep the issue of ensuring a commensurate metric

across studies and requires a monotone missing data pattern to accommodate system-

atically missing data. Furthermore, both of these approaches (Becker and Wu, 2007;

Wu and Becker, 2013) assume a common vector of coefficients across studies (i.e., fixed

effects), which may not be reasonable. Recently, Wilson et al. (2016) illustrated the
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use of a multilevel random-effects model to combine bivariate correlations from studies

that contribute more than one correlation matrix to a pooled correlation matrix, which

is then analyzed in the second stage for a meta-regression analysis. Collectively, the ex-

isting AD approaches to multivariate synthesis by combining correlations across studies

and analyzing them via structural equation modeling techniques can be referred to as

meta-analytic structural equation modeling (MASEM; see Cheung and Hafdahl (2016)

for an introduction to the special issue in Research Synthesis Methods). The MASEM

methods require the missing at random (MAR) assumption. However, if correlations

were not reported in original studies because they were statistically insignificant, it

would not satisfy the MAR assumption (Cheung and Cheung (2016)). Similarly, with

published AD, it would be impossible to check whether assumptions for structural

equation modeling are reasonable. At present, it remains an outstanding challenge to

overcome between-study heterogeneity, including different measures and sample sizes

across studies (see the special issue for more through discussion on MASEM).

In the context of IPD meta-analysis, a bivariate random-effects meta-analysis was pro-

posed to combine fully and partially adjusted parameters (Collaboration et al., 2009),

which requires a monotone missing data pattern. In addition, the number of monotone

missing data patterns needs to be reduced to use a multivariate meta-analysis model,

which limits the utilities of this approach. Other investigators have used imputation

methods: a multiple imputation by chained equations (MICE) approach adapted for

imputing systematically missing covariates (Resche-Rigon et al., 2013); a multilevel

multiple imputation (MLMI) method, an extension of the Resche-Rigon et al. method

(Jolani et al., 2015); and a multiple imputation approach (Reiter, 2008) to fill in sys-

tematically missing data at the study level, with the help of external calibration trial

data (Siddique et al., 2015). These multiple imputation methods may be seen as making

up data for an entire study and simultaneously for several studies. Furthermore, the

MLMI method may not be feasible under certain data situations (Jolani et al., 2015).

The approach by Siddique et al. (2015) appears to be encouraging in the context of

their extreme data condition (i.e., no overlap in measures across studies, and only five

studies). However, their imputation model does not have any terms to indicate study
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membership, which may be difficult to justify. In sum, the available approaches to

accommodating missing data for meta-analysis of IPD and AD suggest a need for more

research in these relatively early stages of method development.

In the present study, we propose a novel three-stage approach, based on confidence

distributions (CDs), to fit and combine IPD for studies with systematically missing

data by design (e.g., not asked; Gelman et al. (1998)) or with non-estimable covariates

(e.g., no variability) without imputing missing data. The three-stage approach consists

of the following three steps: (1) the development of an underlying full (big) model for

all studies included in a meta-analysis; (2) the separate analyses of IPD for each study

to obtain all within-study estimates while identifying their appropriate connections to

the estimates of the full model via mapping matrices; and (3) the estimation of the

population-level parameters of the full model in a multivariate random-effects meta-

analysis model. In short, we propose to combine data across studies to derive the full

model, which we subsequently use to generate specific inferences about point estimates.

Our approach to multi-parameter synthesis (Ades and Sutton (2006)) is similar to the

method demonstrated in Gasparrini and Armstrong (2011); Gasparrini et al. (2012),

but faces an additional challenge. Gasparrini et al. (2012) had little to no missing

data because of the nature of the data examined (complex nonlinear associations be-

tween temperature and non-accidental across multiple cities using time-series data).

For a multi-parameter synthesis of clinical trial data, however, it is critical to combine

partially available information across studies. To address this need, we utilize a new

information combination method that combines confidence distributions (called the CD

approach; Xie and Singh (2013)). A confidence distribution (CD) is a sample-dependent

distribution function that contains information about confidence intervals of a param-

eter of interest at all levels. It can be referred to as a confidence density if presented in

a density function form (Liu et al., 2015). This new method of combining information

has been demonstrated as a powerful inference tool in connection with meta-analysis

(Claggett et al., 2014; Liu et al., 2015; Xie et al., 2012; Yang et al., 2014, 2016). The

current study extends the CD approach to a multivariate random-effects meta-analysis
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model, which is based on a more reasonable assumption but computationally more

challenging, compared to a multivariate fixed-effects meta-analysis model (Liu et al.,

2015). The setup of the current method development, which includes heterogeneous

designs and partial information, is also more general than Zeng and Lin (2015) for

random-effects models.

3.2 Motivating Data Example

The current study was motivated by Project INTEGRATE (Mun et al., 2015a), which

combined IPD from 24 clinical trials aimed at examining the efficacy of brief motiva-

tional interventions (BMIs) to reduce excessive alcohol use and prevent harm among

college students. De-identified IPD from the 24 trials were obtained through a net-

work of interested collaborators for the purpose of better delineating the mechanisms

of behavior change. With the exception of two small studies that had only scale-level

IPD, item-level IPD were obtained from all other studies. Typical BMIs are brief, and

provide personalized feedback on alcohol use and alcohol-related problems, as well as

educational information on alcohol.

Figure ix: A diagram of the evidence network (numbers in parenthesis indicate studies).

IPD for the current analysis come from 8,920 participants from 14 trials at baseline

(see Figure ix). From the original 24 studies, a subset of studies that featured a sin-

gle intervention (i.e., no comparison group) or interventions that were one of its kind

were excluded in the current study, resulting in a stand-alone, personalized feedback
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intervention (PF); an in-person motivational intervention with personalized normative

feedback profile (MI + PF); and a no-treatment control group. Forty three percent

of the participants were men; 76% White; 60% first-year or incoming students who

were assessed two or more times up to 12 months post intervention (see vi for different

assessment schedules). Note that studies 13 and 14 were originally two independent

trials but were combined in the present analysis, given their similarities in key study

characteristics and relatively small samples, and the fact that no systematic differences

existed across groups at baseline.

Table vi: Baseline and follow-up assessment schedule by study.

Time in months (0 = baseline)
Study 0 1 2 3 4 5 6 7 8 9 10 11 12

1 X X X

2 X X X

8a X X

8b X X

8c X X

9 X X X

10.1 X X

11 X X X

12 X X X X

13/14 X X X X

18 X X X

20 X X

21 X X X X

22 X X

Notes: X indicates that baseline or follow-up outcome data exist at the
given time.

3.2.1 Intervention and control groups

With the exception of study 1, all studies had a control group (see Figure ix). Eleven

of the 14 studies had an assessment-only control group, and the remaining two studies

(studies 18 and 20) had a control group who received a single page information sheet.

Individuals in the latter control groups were provided with very limited, generally-

written information about alcohol use. The information content was not targeted at the
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participants drinking behavior, which is a critical characteristic of a BMI. Rather, it was

written like a typical awareness campaign (i.e., alcohol has no nutritional value; space

your drinks) on college campuses. For Project INTEGRATE, we quantitatively coded

all content components of BMIs, as well as their delivery characteristics, and checked

their group labels in relation to those in other studies, and appropriately renamed a

few groups based on our detailed coding and analysis (Mun and Ray, 2016; Ray et al.,

2014).

3.2.2 Measures

We focus on alcohol-related problems (e.g., neglecting responsibilities; friends and rel-

atives avoiding you) as the outcome variable in the current study. Because this out-

come variable was assessed differently across original studies (i.e., different items or

questionnaires, referent time frames, and response options), we previously utilized a

2-parameter logistic item response theory (2-PL IRT) model to derive commensurate

latent trait scores (also called theta [ ] scores) across studies and time. This IRT

model was developed and implemented from a Bayesian perspective for Project INTE-

GRATE (see Huo et al. (2015) for technical details on the multi-unidimensional 2-PL

IRT model for IDA applications). Latent trait scores from IRT models can be inter-

preted with direct reference to item parameters, and are independent of which items

that participants were tested on or who else was tested together (Embretson, 2006).

IRT models are widely used in educational test settings to estimate latent trait (ability)

scores and increasingly for psychological and medical research. In the present study,

alcohol-related problems trait (theta) scores at baseline ranged from -2.02 to 3.50 (mean

= 0.11, standard deviation = 1).

Latent trait scores for the tendency to adopt protective behavioral strategies prior to,

during, and after drinking to protect oneself from experiencing negative consequences

from drinking (Martens et al., 2005), such as setting limits or alternating drinks, were

derived from a generalized partial credit IRT model (Muraki, 1992) to accommodate

polytomous responses for Project INTEGRATE (see Huo et al. (2015) for technical
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details; see Mun et al. (2015a,b)). The estimated trait scores (PBS) for protective

behavioral strategies were drawn from a standard normal distribution with an expected

population mean of 0. In the present study, the trait (theta) scores at baseline ranged

from 2.47 to 3.44 (mean = 0.45, standard deviation = 1).

3.2.3 Motivating examples

Example 1: Heterogeneity in the assessment of covariates. The studies included in

Project INTEGRATE differed in their assessment of key covariates. For example, first-

year college students typically are at risk for excessive drinking and alcohol-related

problems. Therefore, whether students are in their first year in college is an important

risk variable to take into account. However, several studies included in Project INTE-

GRATE recruited exclusively first-year students. In these studies (studies 9, 10, 11,

and 22; see Table vii), the coefficient for the binary covariate corresponding to first-year

student status (1 = first-year; 0 = other) is not estimable. In addition, the intercept

estimates from these four studies would indicate outcome levels of first-year students,

whereas the intercepts from other studies would reflect outcome levels of the students

in 2nd year and above (i.e., reference demographic group; see the full model in Sec-

tion 3.3.1, assuming all other covariates are fixed. Therefore, without a methodological

intervention, the intercept estimate of the full model across studies would become a

mixture of the outcome levels for students in their 2nd year and above for some studies

and those of the first-year students for studies 9, 10, 11, and 22, rendering the combined

estimate uninterpretable and confounded with other study-level differences. If one were

to merely drop this covariate from the full model, the studies consisting of exclusively

first-year students would be retained. However, it would be impossible to examine or

adjust for the effect of first-year student status on the outcome variable. Furthermore,

resulting inferences may suffer from loss of power, and be also biased because of the

omission of a well-known informative covariate in the analysis. Therefore, either op-

tionexcluding the studies or covariatescan result in non-negligible loss of information in
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a typical meta-analysis. Clearly, there is a need to properly separate the effect of inter-

est from potential confounding effects when combining coefficients from heterogeneous

studies.

Table vii: Estimable covariates for the underlying full model by study and by mapping matrix
pattern.

Study N
Covariate position in the full model

Mapping matrix pattern
0 1 2 3 4 5 6 7 8 9 10 11 12

1+ 348 X X X X X - X X X - X - X 1

2 230 X X X X X X - X - X - - -

2
8a 1486 X X X X X X - X - X - - -
8b 2155 X X X X X X - X - X - - -
8c 600 X X X X X X - X - X - - -

9 507 X X X - X X X X X X X X X 3

10.1 435 X X X - - - X X - - X - - 4

11 383 X X X - - X - X X X - X - 5

12 335 X X X X X - X X X - X - X 6

13/14 138 X X X X - X X X X X X - X 7

18 329 X X X X X X - X X X - X - 8

20 928 X X X X - - X X - - X - - 9

21 288 X X X X X X X X X X X X X 10

22 758 X X X - X - X X - - X - - 11

Notes: “X” indicates estimable parameters whereas “-” indicates inestimable parameters. Covariate in the full
model are (0) intercept; (1) Man (=1 vs. woman = 0); (2) White (=1 vs. non-white=0); (3) First-year (=1 vs.
other=0); (4) PBS (Estimated latent trait (θ) scores for utilizing protective behavioral strategies) at Baseline; (5)
PF (stand-alone personalized feedback intervention) (=1 vs. control=0); (6) MI + PF (in-person motivational
intervention with personalized normative feedback profile) (=1 vs. control=0); (7) LS (Linear slope of time in
month); (8) QS (Quadratic slope of time in month); (9) LS × PF (vs. control); (10) LS × (MI + PF) (vs. control);
(11) QS × PF (vs. control); (12) QS × (MI + PF) (vs. control). + = Study 1 did not have a control group, thus,
PF served as a comparison group.

Example 2 : Availability of follow-up assessments. In the Project INTEGRATE data

set, some studies had a single post-intervention follow-up assessment whereas others

had at least two follow-up assessments (see Table vi). Such design differences can cause

study-level missing data under certain full models. For example, in a longitudinal model

requiring two terms to fit data over time (e.g., linear and quadratic terms) one may be

forced either to choose a simpler model that may not correctly reflect change process

or to limit the analysis to a subset of studies with a sufficient number of follow-up

assessments. As before, either option is not optimal. Both of the motivation examples

discussed are not a missing data problem within individual studies. However, when

different studies are pooled in a meta-analysis, their heterogeneous designs can create

a study-level missing data problem and a significant estimation challenge. We describe
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our method in Section 3.3 and illustrate it using real IPD from Project INTEGRATE

in Section 3.4.

3.3 Methods

3.3.1 Underlying full model specification

Consider k independent studies each with ni observations for i = 1, · · · , k. We formulate

the underlying full model as a generalized linear mixed model to highlight the flexibility

of the proposed approach in terms of modeling choice. Specifically, we assume a random-

intercept model with a total of p− 1 covariates across k studies:

g(E(yijt)) = β0i + β1ix1ijt + β2ix2ijt + β3ix3ijt + · · ·+ βp−1,ixp−1,ijt + uij0,

where g(·) is the link function and E(·) denotes expectation. yijt indicates the outcome

for participant j in study i at time t, and xdijt is value of the dth covariate for participant

j in study i and time t. βdi indicates the coefficient associated with the dth covariate

for study i with d = 0, · · · , p − 1. The term uij0 indicates participant-specific random

intercept effects. The link function can be an identity link for a linear model with a

continuous normal outcome; a logit link for a logit model with a binary outcome variable

(see Yang et al. (2014) for a binary data example); and a log link for a loglinear model

with a count variable. In the present study, we use an identity link function for a

normally distributed outcome. For clarity, the full model in the current study is:

yijt = β0i + β1imaleij + β2iwhiteij + β3ifreshmanij + β4im0pbsij + β5iPFij

+ β6i(MI + PF)ij + β7imonthij + β8imonth2
ij + β9i(PF×month)ij

+ β10i((MI + PF)×month)ij + β11i(PF×month2)ij + β12i((MI + PF)×month2)ij

+ uij0 + εijt,

where male, white, freshman, PF and (MI+PF) are binary indicator variables; m0pbs

and month are continuous variables; and the rest of the terms are either interaction

terms between the aforementioned ones and/or a quadratic form. The last term εijt
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represents a residual error term for participant j in study i at time t, and uij0 and εijt

are independent.

3.3.2 Mapping matrix approach to partial information

At the second stage of the analysis, separate analyses are conducted sequentially for

each and every study. Upon obtaining regression parameter estimates from all studies

and their covariance matrices, they can be connected to the full model via mapping

matrices. For a special case where all original studies have the p − 1 covariates, the

estimates for the assumed full model shown in Section 3.3.1 can be combined directly

using the standard multivariate random-effects meta-analysis model discussed by, for

example, Jackson et al. (2010, 2011) and others. However, for more typical situations

where some trials provide partial information, one can obtain the pi length parameter

vector βi for study i with pi ≤ p. Our task is to appropriately link the estimates from

studies with partial information to the estimates from other studies, and to incorporate

all available evidence for efficient and valid inference for the entire parameter vector of

interest β. Let M i be the mapping function that links βi to β, i.e., βi ≡M i (β). In

a linear model, in which we often have linear mapping, the relationship βi ≡ M i (β)

can typically be simplified to the following linear equation: βi ≡M iβ, where M i is a

pi × p matrix.

As a simple illustration of this method, let us assume that we fit a response variable y

with two continuous covariates and x1 and x2 in a fixed-effect full model:

E(yij) = β0i + β1ix1ij + β2ix2ij

where subscripts i and j index studies and participants, respectively. If study i has all

the covariates available, then

M i =


1 0 0

0 1 0

0 0 1

 .
Let us consider a situation where β2i cold not be estimated for study i because x2i was
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not assessed. If we can assume that x2 has an expected zero mean, then

M i =

1 0 0

0 1 0

 .
Consequently, the resulting vector of estimable parameters for study i would be reduced

to βi = M iβ = (β0, β1)
T .

If x2 is a binary variable with a constant value x2i = 1 for study i, then β2i could

not be estimated because there is no variability. In this data situation, an appropriate

mapping matrix is

M i =

1 0 1

0 1 0

 ,
with βi = M iβ = (β0 + β2, β1)

T , where an estimable intercept term in study i in the

context of the full model is a sum of β0 and β2. The identification of two different

mapping matrices for the seemingly similar situations shows that it is necessary to take

into account between-study differences in designs and measures from the perspective of

estimating all parameters of the full model. For more technical details and nonlinear

mapping functions, see Liu et al. (2015) and Yang et al. (2014).

Let us consider a few specific data examples in our project. Study 1 (White et al.,

2007) from Project INTEGRATE (Mun et al., 2015a) tested the efficacy of two BMIs

(i.e., MI + PF and PF) without a no-treatment control group, whereas typical trials

included in Project INTEGRATE were two-arm trials with a single intervention arm

and a control arm (see Figure ix). In the context of a network meta-analysis (Cipriani

et al., 2013; Jansen et al., 2011), the relative intervention benefit between two BMIs

(MI + PF and PF) can be seen as the difference of the differences between MI + PF

and control and between PF and control. In other words, MI + PF vs. PF = (MI + PF

vs. control) (PF vs. control). Therefore, the study-specific (within-study) parameter

of the relative intervention effect from study 1 can provide valuable information in the

context of a network analysis as long as it can properly be linked to other parameters

of the intervention effects from other studies. Clearly, we can estimate study-specific

parameters βi for study 1 that correspond to the true effects of demographic and other
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model covariates, which include sex (1 = man; 0 = woman), race (1 = White; 0 =

nonwhite), first-year status (1 = first-year student; 0 = other), protective behavioral

strategies (PBS) at baseline, the effect of the MI + PF intervention in comparison

with PF, the effects of linear and quadratic slopes, and the interaction effects between

growth slopes and intervention groups using IPD, but not the population parameter

vector, β, which additionally includes three parameters involving PF in comparison to

control. See Section 3.4.1 for justification of the full model for our motivation example.

To include data from study 1 in our meta-analysis and draw valid inferences from the

combined estimates, we need to identify an appropriate mapping matrix to link βi to β.

This mapping matrix can be identified as follows (see also Table 3). First, remove the

6th, 10th, and 12th rows from a 13×13 identity matrix by changing the diagonal 1s into

0s. These three rows correspond to the parameters comparing PF with control (i.e., PF

vs. control; [PF vs. control] linear growth slope; and [PF vs. control] quadratic growth

slope, respectively). Second, change the first row to indicate that the intercept estimate

from study 1 describes the study-specific average outcome response of PF, rather than

control, in the full model. Third, contrast MI + PF against PF when applicable. The

resulting vector of parameters for study 1 is

β1 = (β0 + β5, β1, β2, β3, β4,−β5 + β6, β7, β8,−β9 + β10,−β11 + β12)
T .

Table viii: Mapping matrix pattern. The pattern indices here correspond to the num-

bers shown in the last column in Table vii. Bold and underlined elements indicate

how the identity matrix for the full parameter vector was modified to link partial data

between studies.

Covariate 0 1 2 3 4 5 6 7 8 9 10 11 12

Pattern 1 (Study 1)

0. Intercept 1 0 0 0 0 1 0 0 0 0 0 0 0

1. Man (=1 vs. woman=0) 0 1 0 0 0 0 0 0 0 0 0 0 0

2. White (=1 vs. nonwhite=0) 0 0 1 0 0 0 0 0 0 0 0 0 0

3. First-year (=1 vs. other=0) 0 0 0 1 0 0 0 0 0 0 0 0 0
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Table viii Continued from previous page

Covariate 0 1 2 3 4 5 6 7 8 9 10 11 12

4. PBS at Baseline 0 0 0 0 1 0 0 0 0 0 0 0 0

5. PF (=1 vs. control=0) 0 0 0 0 0 0 0 0 0 0 0 0 0

6. MI + PF (=1 vs. control=0) 0 0 0 0 0 -1 1 0 0 0 0 0 0

7. LS 0 0 0 0 0 0 0 1 0 0 0 0 0

8. QS 0 0 0 0 0 0 0 0 1 0 0 0 0

9. LS * PF (vs. control) 0 0 0 0 0 0 0 0 0 0 0 0 0

10. LS * MI + PF (vs. control) 0 0 0 0 0 0 0 0 0 -1 1 0 0

11. QS * PF (vs. control) 0 0 0 0 0 0 0 0 0 0 0 0 0

12. QS * MI + PF (vs. control) 0 0 0 0 0 0 0 0 0 0 0 -1 1

Pattern 3 (Study 9)

0. Intercept 1 0 0 1 0 0 0 0 0 0 0 0 0

1. Man (=1 vs. woman=0) 0 1 0 0 0 0 0 0 0 0 0 0 0

2. White (=1 vs. nonwhite=0) 0 0 1 0 0 0 0 0 0 0 0 0 0

3. First-year (=1 vs. other=0) 0 0 0 0 0 0 0 0 0 0 0 0 0

4. PBS at Baseline 0 0 0 0 1 0 0 0 0 0 0 0 0

5. PF (=1 vs. control=0) 0 0 0 0 0 1 0 0 0 0 0 0 0

6. MI + PF (=1 vs. control=0) 0 0 0 0 0 0 1 0 0 0 0 0 0

7. LS 0 0 0 0 0 0 0 1 0 0 0 0 0

8. QS 0 0 0 0 0 0 0 0 1 0 0 0 0

9. LS * PF (vs. control) 0 0 0 0 0 0 0 0 0 1 0 0 0

10. LS * MI + PF (vs. control) 0 0 0 0 0 0 0 0 0 0 1 0 0

11. QS * PF (vs. control) 0 0 0 0 0 0 0 0 0 0 0 1 0

12. QS * MI + PF (vs. control) 0 0 0 0 0 0 0 0 0 0 0 0 1

Pattern 4 (Study 11)

0. Intercept 1 0 0 1 0 0 0 0 0 0 0 0 0

1. Man (=1 vs. woman=0) 0 1 0 0 0 0 0 0 0 0 0 0 0

2. White (=1 vs. nonwhite=0) 0 0 1 0 0 0 0 0 0 0 0 0 0

3. First-year (=1 vs. other=0) 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table viii Continued from previous page

Covariate 0 1 2 3 4 5 6 7 8 9 10 11 12

4. PBS at Baseline 0 0 0 0 0 0 0 0 0 0 0 0 0

5. PF (=1 vs. control=0) 0 0 0 0 0 1 0 0 0 0 0 0 0

6. MI + PF (=1 vs. control=0) 0 0 0 0 0 0 0 0 0 0 0 0 0

7. LS 0 0 0 0 0 0 0 1 0 0 0 0 0

8. QS 0 0 0 0 0 0 0 0 1 0 0 0 0

9. LS * PF (vs. control) 0 0 0 0 0 0 0 0 0 1 0 0 0

10. LS * MI + PF (vs. control) 0 0 0 0 0 0 0 0 0 0 0 0 0

11. QS * PF (vs. control) 0 0 0 0 0 0 0 0 0 0 0 1 0

12. QS * MI + PF (vs. control) 0 0 0 0 0 0 0 0 0 0 0 0 0

Note that all study-specific parameters βi are within-study estimates. When study-

specific, within-study estimates are combined to obtain the population-level parameter

vector of the full model (see Section 3.3.3), the intercept term from study 1 correctly

contributes to the estimation of two different parameters β0 and β5 of the full parameter

vector. Similarly, the study-specific parameters involved in the contrasts between MI

+ PF and PF contribute to the estimation of the β5, β6, β9, β10, β11 and β12 of the full

model.

To provide another example, study 11 exclusively recruited first-year students, did not

assess protective behavioral strategies at baseline, and tested the efficacy of PF against

a control in a two-arm trial. Therefore, to map estimable parameters from study 11

into the full parameter vector, the rows of an identify matrix corresponding to these

variables were removed by changing the diagonal 1s into 0s. In addition, the first row of

the mapping matrix was modified to indicate that the intercept parameter from study

11 is essentially the average outcome of first-year students in the context of the full

model. The row for PBS could be removed because the estimated PBS trait scores

were drawn from a standard normal distribution with an expected population mean of
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0 in a previous IRT analysis. The resulting, reduced vector of parameters for study 11

is

βi = (β0 + β3, β1, β2, β5, β7, β8, β9, β11)
T .

3.3.3 Estimation of a multivariate random-effects meta-analysis

model using the CD method

Once we obtain all study-specific parameters and identify their connections to the full

model, we now obtain estimates of the full-length, population-level parameter vector

β ≡ (β0, β1, β2, · · · , βp−1)T by assuming a multivariate random-effects meta-analysis

model, which is an extension of its univariate counterpart (Normand, 1999). Specifically,

following the notations from Section 3.3.1, we denote bi as the study-specific estimate

of the corresponding population-level sub-vector βi for study i. Accordingly, we have

Level 1 : bi|βi,Si ∼ MVNpi (βi,Si)

Level 2 : βi|β,Σ ∼ MVNpi

(
M iβ,M iΣM

T
i

)
,

for study i = 1, 2, · · · , k and covariate d = 1, 2, · · · , p − 1. MVNpi stands for the

multivariate normal distribution with dimension pi; Si is the observed covariance matrix

for study i; M i denotes the mapping matrix for study i; and Σ is the unknown between-

study covariance matrix that needs to be estimated.

To estimate β, first, one needs to estimate the between-study covariance matrix Σ. In

our implementation, we use the restricted maximum likelihood (REML) method while

using the estimates from the method of moments (Chen et al. (2012)) as starting values

to achieve faster convergence. Estimation of Σ follows the formula given by Jennrich

and Schluchter (1986):

Σ̂REML = arg max
Σ

{
− 1

2

k∑
i=1

log
∣∣Si +M iΣM

T
i

∣∣− 1

2
log

∣∣∣∣∣
k∑
i=1

M+
i

(
Si +M iΣM

T
i

)−1
M i

∣∣∣∣∣
−1

2

k∑
i=1

(
bi −M iβ̂

)T (
Si +M iΣM

T
i

)−1 (
bi −M iβ̂

) }
,
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Where

β̂ =

(
k∑
i=1

M+
i

(
Si +M iΣM

T
i

)−1)−1( k∑
i=1

M+
i

(
Si +M iΣM

T
i

)−1
M iM

+
i bi

)
.

Once Σ̂REML is estimated, β can be estimated from a combined multivariate normal CD

as follows. First, to accommodate the multidimensional nature of β (see Xie and Singh

(2013) for the CD approach for univariate applications), we construct a multivariate

normal CD function for β (Singh et al., 2007). By definition, H (·) is a multivariate

normal CD function for a p × 1 vector β if and only if the projected distribution of

Hλ (·) on a p×1 vector λ, for any given λ ∈ Rp, is an univariate normal CD for λTβ. At

the study level, Hi (βi) is a corresponding multivariate CD function for study i, where

βi = M iβ. On the conditions that M i is positive or semi-positive definite and that

all parameters can be linked across studies, the combined multivariate CD function for

the population-level parameter vector β has been shown as

H(c) (β) = Φp

(
Σ−1/2

(
β − β̂(c)

))
,

where H(c) (·) is the combined CD and Φp(·) is the cumulative distribution function

for the standard multivariate normal distribution with p dimensions (see Yang et al.

(2014) for a formal definition). β can then be directly estimated from the combined

multivariate normal CD, H(c) (β), by using the following formulas,

β̂
(c)

=

(
k∑
i=1

W i

)−1( k∑
i=1

W iM
+
i bi

)
for the estimated mean vector and ,

Σ̂
(c)

=

(
k∑
i=1

W i

)−1
for its covariance matrix,

where W i is defined as W i = M+
i

(
Si +M iΣ̂REMLM

T
i

)−1
M i, and M+

i is the

Moore-Penrose generalized inverse of Mi. Therefore, β̂
(c)

is the vector of CD point

estimator for β with the CD covariance matrix Σ(c). Note that we use the sample co-

variance estimators Si and Σ̂REML because the combined CD function H(c) (β) would

be an asymptotic multivariate normal CD as long as these estimators are consistent

(see Yang et al. (2014)). The CD-based approach yields estimates with several de-

sirable properties (e.g., asymptotically as efficient as the MLE; robust against model
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misspecification). More detailed technical descriptions and proofs are provided in Liu

et al. (2015) and Yang et al. (2014).

3.3.4 Inference

Upon obtaining all estimates of the full model across studies, inferences can be made

flexibly using the combined full model. For example, to interpret time-related interven-

tion effects, one can estimate and compare outcomes at a given time across intervention

groups. To estimate outcomes at specific values of the covariates, the estimated param-

eters (β̂) in the present study) can be used to construct the estimated full model. We

can then use the full model to obtain model-based mean ŷ0 and its variance by plugging

in a set of in-sample covariate values x0 using the following formula

ŷ0 = xT0 β̂ and var(ŷ0) = xT0 Cov (β)x0,

We will illustrate this using real data in the next section.

3.4 Data Example

3.4.1 Underlying full model specification

Alcohol use trajectories among college students after interventions typically show a

sharp decline, followed by a rebound over time (Huh et al., 2015; White et al., 2007).

Therefore, we chose a quadratic growth model and tested it using IPD from several

individual studies separately, which supported the use of the model. To test inter-

vention effects over time, we included interaction terms between time and intervention

groups. We included gender, first-year student status, and race (white or otherwise)

as demographic covariates. In addition, we conducted a separate analysis within in-

dividual studies to see if attrition at follow-ups can be explained by participant-level

covariates. Based on this attrition analysis, we discovered that the tendency to use

protective behavioral strategies prior to and while drinking, such as setting drinking

limits, was related to greater chances for participants to drop out at follow-ups in some
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of the studies. We subsequently added this covariate to the full model. All analyses

were performed using R (version 3.2.3). The nlme R package (Pinheiro et al., 2014)

was used to fit a random-intercept growth model. We developed R codes to identify

patterns of estimable covariates and to construct mapping matrices and used the op-

timx package (Nash et al., 2011) to obtain the REML estimates of the between-study

covariance matrix.

3.4.2 Partial information and mapping matrices

Table 1 shows all 13 coefficients included in the current analysis and their availability

by study. Coefficients could not be estimated because (1) variables were unassessed

by study (e.g., PBS; studies 10.1, 11, 13/14, and 20); (2) the entire sample consisted

of only first-year students (studies 9, 10.1, 11, and 22); (3) not all intervention groups

were included (studies 1, 2, 8a, 8b, 8c, 10.1, 11, 12, 18, 20, and 22); and (4) only one

follow-up assessment was available (i.e., only a linear slope term could be estimated;

studies 2, 8a, 8b, 8c, 10.1, 20, and 22). A total of just three covariate coefficients

were estimable across all studies (i.e., man vs. woman, white vs. non-white, and a

linear slope of time), and only one study (study 21) had the necessary data to estimate

all coefficients. Thus, it is clear that, without a methodological solution to combine

data from studies providing partial information, the underlying full model could not be

estimated. There were a total of 11 different partial data patterns across 14 studies,

requiring 11 different mapping matrices. With the exception of study 21, all other

studies required mapping matrices with reduced dimensions.

3.4.3 Estimation and interpretation

The combined estimate β̂ (see Table ix) and its covariance matrix Cov(β̂) were obtained

by applying the estimation method described in Section 3.3.3. Table x shows that all

correlation estimates of the coefficients were not boundary estimates (i.e., away from

±1), which can be sometimes observed in multivariate meta-analysis models, suggesting

estimation difficulties (Riley et al., 2007). Substantively, results indicated that there
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was a significant interaction between MI + PF and the linear slope of time. To interpret

this interaction effect, we calculated model-implied outcome values for all groups based

on the estimated full model. Namely, we used in-sample covariate values (i.e., first-

year, male, white students, a mean PBS score) and obtained model-implied means for

alcohol-related problems and their estimated variances at 6 months and 12 months

post intervention. Figure x shows the expected mean levels for all three groups, which

showed a reduction in alcohol-related problems at 6 months, followed by a rebound at

12 months. When we further probed this by comparing PF and MI + PF with control

at three time points (Figure xi), a statistically significant group difference was found

for MI + PF (vs. control) at 12 months (p-value = 0.023).

Table ix: Combined parameter estimates from the mul-
tivariate random-effects meta-analysis.

Covariate Estimate p value

0. Intercept 0.4276 0.0046
1. Man (=1 vs. woman=0) 0.0191 0.6857
2. White (=1 vs. nonwhite=0) 0.0511 0.1308
3. First-year (=1 vs. other=0) 0.0530 0.0541
4. PBS at Baseline -0.2796 0.0000
5. PF (=1 vs. control=0) -0.0045 0.8781
6. MI + PF (=1 vs. control=0) 0.0946 0.1180
7. LS -0.0469 0.0082
8. QS 0.0046 0.0091
9. LS * PF 0.0035 0.3514
10. LS * MI + PF -0.0293 0.0213
11. QS * PF -0.0007 0.3880
12. QS * MI + PF -0.0003 0.8026

Notes: PBS = Estimated latent trait (θ) scores for utilizing
protective behavioral strategies; PF = stand-alone personal-
ized feedback intervention; MI + PF = in-person motivational
intervention with personalized normative feedback profile; LS
= Linear slope (time in month); and QS = Quadratic slope
(months squared).

3.4.4 Sensitivity analysis

To examine if the reported results were overly influenced by outlying studies, we further

conducted a sensitivity analysis by excluding one study at a time and repeating the
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Figure x: Model-based mean estimates for three different groups using the estimated
full model shown in Table ix. Theta score = latent trait severity score for alcohol-
related problems. PF = stand-alone personalized feedback intervention; MI + PF
= in-person motivational intervention with personalized normative feedback profile.
Values for covariates were set for White, first-year, male students with a mean PBS
score at baseline. Vertical dotted lines indicate 95% confidence intervals.

Table x: Synthesized between-study correlation matrix of the combined parameter estimates.

0 1 2 3 4 5 6 7 8 9 10 11 12

0. Intercept 1 0.31 -0.68 -0.07 -0.4 -0.03 -0.61 0.22 -0.61 0.63 0.53 0.56 0.21
1. Man (=1 vs. woman=0) 1 -0.52 -0.66 0.01 -0.09 -0.39 0.4 -0.34 0.66 0.55 -0.21 -0.02
2. White (=1 vs. nonwhite=0) 1 0.12 0.36 0.24 0.64 -0.56 0.75 -0.47 -0.77 -0.52 0.34
3. First-year (=1 vs. other=0) 1 0.18 0.23 0.18 -0.68 0.44 -0.3 -0.64 0.2 0.34
4. PBS at Baseline 1 -0.49 -0.27 -0.62 0.81 0.36 -0.36 -0.88 0.49
5. PF (=1 vs. control=0) 1 0.77 -0.22 0.01 -0.45 -0.52 0.34 0.22
6. MI + PF (=1 vs. control=0) 1 -0.2 0.28 -0.84 -0.67 0.04 -0.06
7. LS 1 -0.87 -0.02 0.86 0.43 -0.84
8. QS 1 -0.1 -0.83 -0.75 0.61
9. LS * PF 1 0.46 -0.27 0.44
10. LS * MI + PF 1 0.31 -0.56
11. QS * PF 1 -0.38
12. QS * MI + PF 1

Notes: PBS = Estimated latent trait (θ) scores for utilizing protective behavioral strategies; PF = stand-alone personalized feedback intervention;
MI + PF = in-person motivational intervention with personalized normative feedback profile; LS = Linear slope (time in month); and QS =
Quadratic slope (months squared).
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Figure xi: Model-based mean difference estimates of the two intervention groups, com-
pared to control, in alcohol-related problems. Theta score = latent trait severity score
for alcohol-related problems. PF = stand-alone personalized feedback intervention; MI
+ PF = in-person motivational intervention with personalized normative feedback pro-
file. Vertical dotted lines indicate 95% confidence intervals. A horizontal dashed line
at zero indicates no group difference.
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analysis. Results indicated that while individual regression parameters changed in

magnitude to some extent, the overall findings remained largely the same (results not

reported in the current study but available upon request). The most influential study

was study 9. Without the contribution of study 9, the average outcomes of the MI + PF

group across time were similar to those of other groups, showing a more pronounced

rebound at 12 months. This was perhaps due to the fact that study 9 was one of

the few studies that had almost all estimable parameters and, consequently, had a

greater influence on the final estimates, which may not be a surprise given that studies

with more information are weighed more in estimation. In addition, we sequentially

removed two different covariates from the analysis at two different stages of the analysis

and examined their impact on two key coefficients (PF x Month and [PF + MI] x

Month). Figure xii shows the results when we removed PBS (top) and first-year student

status (bottom) in the final stage of the analysis, whereas Figure xiii shows the results

when we removed them throughout the entire analysis. Both of the sensitivity results

suggest that the estimated full model (shown in filled diamond symbols in bottom) was

fairly robust and that an omitted covariate made little impact on the final estimates,

regardless of whether it was a continuous or binary covariate. We also inspected other

coefficients in the full model. The reported robust findings from the sensitivity analyses

were also observed for other coefficients.

3.5 Discussion

The current study adopted a new estimation approach to IPD for multivariate random-

effects meta-analysis applications, which incorporates partially available information

by utilizing the CD concept (Xie and Singh, 2013; Xie et al., 2012). The CD concept

has been studied in connection with meta-analysis in recent literature (Claggett et al.,

2014; Liu et al., 2015; Yang et al., 2014, 2016). We extended the CD-based approach to

a multivariate random-effects meta-analysis model in the current study from the multi-

parameter synthesis perspective (Ades and Sutton (2006)). The three-stage CD-based

approach differs from the existing complex synthesis approaches in the sense that the
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Figure xii: Results from sensitivity analyses where each covariate from each study was
treated as systematically missing in the final-stage of the analysis. The effects of the
exclusion of a continuous covariate (PBS at baseline; top) and a binary covariate (first-
year student status; bottom) on the combined estimates of PF x Month (left) and
(MI+PF) x Month (right) are shown, respectively. Filled diamond symbols indicate
the combined estimates from all 14 studies as reported in Table ix. The estimates from
sensitivity analyses are shown in filled squares.
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Figure xiii: Results from sensitivity analyses where a covariate from each study was
sequentially removed throughout the entire analysis. The effects of the exclusion of a
continuous covariate (PBS at baseline; top) and a binary covariate (first-year student
status; bottom) on the combined estimates of PF x Month (left) and (MI+PF) x Month
(right) are shown, respectively. Filled diamond symbols indicate the combined estimates
from all 14 studies as reported in Table 4. The estimates from sensitivity analyses are
shown in filled squares.
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former is aimed at combining the entire full model, which is subsequently used to derive

model-based estimates for flexible inference, whereas the latter is focused on deriving

point estimates. In the present study, the combined full model had 13 point estimates

and their 13 x 13 covariance estimates across 11 different estimable patterns of coeffi-

cients for 14 different clinical trials. We used a mapping matrix approach to identify

appropriate connections of the study-specific estimates to the full model vector and,

subsequently, combined all estimates using a multivariate CD-based approach. The ap-

proach we illustrated may provide the field with a valuable methodological approach to

consider, in connection with methods of aggregating published prediction models (De-

bray et al., 2012, 2014), dealing with systematic missing data (Collaboration et al.,

2009; Jolani et al., 2015; Resche-Rigon et al., 2013; Siddique et al., 2015), exploring

subgroups that may respond differently to an intervention (Fisher et al., 2011; Riley

et al., 2015b), and combining multiple parameter estimates from AD or IPD (Cheung

and Hafdahl, 2016; Gasparrini et al., 2012).

The promise of the current method may be helpful for a situation described by Riley

et al. (2015b). Riley and colleagues explored an extension application in which different

treatment effects are examined separately for each subgroup using a multivariate meta-

analysis formulation. However, this approach, as Riley et al. discussed, can result in a

confounded estimate when some of the studies included in a meta-analysis do not have

all subgroups. For example, when there are studies of only men or women, the resulting

treatment difference for men vs. women from the bivariate meta-analysis approach as

formulated in Riley et al. would include not only the within-study, relative treatment

difference estimate but also the estimate difference between a set of studies with all

men and another set of studies with all women. This approach may be defensible

if within-study and between-study covariate interactions are the same, which may be

unrealistic for clinical trials. Riley et al. discussed the advantages (e.g., power) and

disadvantages (e.g., ecological bias and study-level confounding) of combining within-

study estimates with study-level, between-study estimates of the approach. The method

we illustrated in the current study may offer a more favorable solution to this challenge.

Instead of quantifying a few isolated treatment effect sizes for different subgroups in
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a synthesis, we estimate a full model that includes treatment by covariate interaction

terms and derive model-based estimates of subgroup responses to a treatment. Via

mapping matrices, all study-specific coefficients combined for the full model would be

within-study interaction terms that are made comparable to the estimates from other

trials by taking into account between-study differences. Therefore, there would be no

study-level confounding. Although we illustrated this method using IPD, it can also

apply to AD.

One of the most important advantages of the CD-based method may be that it helps to

expand the dimension of evidence from which inference can be drawn by combining the

entire full model rather than a few point estimates. Multivariate meta-analysis, despite

its well established rationale and promise, has resulted in a rather small improvement

in the statistical properties of the individual estimates (Jackson et al., 2011; Trikalinos

et al., 2014). In typical multivariate meta-analysis applications, the dimension of coef-

ficients combined has been rather limited, which may have been a contributing factor

for the marginal gain reported in multivariate applications. In contrast, we had more

to draw on when we borrowed information from within-study correlations (up to 13

coefficients). In addition, through the use of a multivariate random-effects model, we

borrowed from the between-study correlations across 14 studies. As expected, trials

with large intervention effects for one treatment arm tended to have large effects for

the other treatment arm in the current study (see Table 5). In sum, compared to a

typical multivariate meta-analysis of just a few point estimates, the proposed method

can make more specific inferences, which may be helpful for the development of per-

sonalized treatment approaches using clinical trial data (i.e., the Precision Medicine

Initiative; Collins and Varmus (2015)).

It is also important to note that the proposed CD-based method is flexible with respect

to different types of multiple related coefficients or different outcome distributions. In

the current study, we simultaneously combined three different types of related coeffi-

cients: the relative intervention benefits (network), informative covariates (regression),

and longitudinal associations (longitudinal). The modeling flexibility of the current
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method also extends to outcome data distributions because there are no restrictions on

the distributions of outcome variables for the underlying full model.

Having discussed the promise of the proposed CD-based approach, it may be helpful to

draw attention to the assumptions utilized in the current study and potential caveats.

First, we made an assumption that the underlying full model is the correct model for all

studies. We developed the full model by drawing on expertise in alcohol interventions for

college student populations and also by closely checking individual data sets. We fully

leveraged modeling flexibilities of having IPD, such as the ability to check data quality;

check any imbalance in RCTs; check model assumptions; and perform attrition/missing

data analysis and any other additional analyses. However, this process took considerable

time. Furthermore, the identification of appropriate mapping matrices is needed for

each missing data pattern. In sum, the proposed synthesis method can take considerable

time and efforts and require a wide range of complementary expertise and skills. If the

full model is incorrect or if mapping matrices are incorrect, how robust the method is

to model misspecification is unknown and remains to be fully studied. Although the

sensitivity analyses suggested that our approach was generally robust, future simulation

studies of this new approachs empirical performance under various data situations,

relative to other approaches, would be informative.

Second, the included studies should be sufficiently similar in terms of their methodolog-

ical and clinical characteristics to justify combining data. In the present study, we used

new measures that had been harmonized and analyzed in previous studies via advanced

IRT models so that covariates and outcomes could be meaningfully compared and in-

terpreted across different studies (Huo et al., 2015; Mun et al., 2015a). Moreover, the

original 24 studies included in Project INTEGRATE were selected for their similarity

in interventions and target populations, and the specific 14 studies included in the cur-

rent synthesis met the additional inclusion criteria. Furthermore, because we combined

data from RCTs, participants did not self-select into a trial or an intervention group

in the current synthesis. Consequently, there was little evidence of covariation among

the covariates included in the full model. In essence, we made an assumption that the
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underlying full model is a true model for all studies except that some of the covariates

may not be estimable for the reasons that do not affect the derived estimates, which

directly leads to the next assumption.

Third, our approach assumes that the pattern of omitted covariates at the study level

meets the MAR assumption, which may be quite reasonable for RCTs (Riley et al.,

2015a). All of the study-level missing data occurred because the original studies did

not assess the covariates included in the analysis or did not have all intervention groups

by design. This is a reasonable assumption in our case because we had access to all

IPD in all studies and the combined coefficients did not come from published studies.

Therefore, the results from the current study may be less prone to selective reporting

bias, under which the MAR may not be reasonable.

Some of the limitations of the present study are that we did not accommodate any

uncertainty surrounding the covariance estimators Si and Σ̂REML. However, individ-

ual studies in our motivated data example had moderate to large sample sizes and the

number of studies analyzed was not small. In future meta-analysis studies, this uncer-

tainty may be reflected, for example, by inflating confidence intervals for the REML

method (Jackson and Riley, 2014). Second, to make IPD comparable across studies

for the proposed method, an additional set of complex analyses using item-level IPD

may be required, which can take considerable efforts and time and may not always be

feasible especially in a large synthesis study (Mun et al., 2015a). Third, when a data

set for synthesis differs from the larger data set used to calibrate item parameters and

derive commensurate latent trait scores across studies because of an additional inclu-

sion criteria needed for synthesis, this difference, as well as the assumptions and model

specifications used in the IRT analysis, may need to be carefully evaluated. Fourth,

the CD-based approach to combine information may not work well for other studies if

covariates are expected to be highly correlated within studies. In such situations, the

interpretation of each coefficient reflects the list of all other predictors in the model.

Consequently, submodels may not be comparable across different studies, and the re-

sulting study-specific coefficients may not validly be linked to the full model. In the
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current synthesis of RCTs under the specific full model with mostly binary covariates,

the CD-based approach worked quite well. However, how this method works under

different conditions may require more carefully planned simulation studies.

Substantively, we found the positive effect of the MI + PF intervention on alcohol-

related problems, which is consistent with the findings reported by Huh et al. (2015),

despite using a different methodological approach to IPD meta-analysis. Huh et al.

(2015) estimated a Bayesian three-level model in a one-stage analysis of IPD using the

MCMCglmm R package (Hadfield et al., 2010). In addition, Huh et al. (2015) used

a different full model, which specified alcohol-related problem scores at baseline as a

covariate. In terms of taking advantage of within- and between-study correlations, the

highest level was set at the level of the randomized groups within studies (or study

group), instead of at the level of studies. This model specification was a practical com-

promise to simultaneously analyze IPD in a one-stage analysis using data from studies

with heterogeneous designs. Consequently, the correct data structure that multiple

intervention groups were nested within studies was overlooked in Huh et al. (2015).

Moreover, studies without a control group were excluded in the analysis because the

intervention effect size was estimated by comparing the estimates of intervention groups

with their corresponding control group within study. The covariates examined were also

limited in Huh et al. (2015). because only a common set of covariates available across

all studies could be considered.

From the comparison of the one-stage approach (Huh et al., 2015) and the current

three-stage CD-based approach, albeit indirectly, we reach two conclusions. First, the

convergent findings from the two studies increase our confidence in the substantive con-

clusion that MI + PF has an advantage over PF in terms of reducing alcohol-related

problems for college students. Second, the three-stage CD-based approach to IPD mul-

tivariate meta-analysis may be better suited to build a scalable evidence base, compared

to the one-stage approach utilized in Huh et al. (2015). The term scalable applies not

only to the number of studies but also to the number of informative covariates that can

be examined in a meta-analysis. Given that the resources and time required for IPD
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meta-analysis are considerable (Berlin et al., 2013; Hussong et al., 2013; Mun et al.,

2015a; Mun and Ray, 2016; Steinberg et al., 1997), especially in the context that both

IPD meta-analysis and AD meta-analysis produce similar conclusions about main treat-

ment effects (e.g., (Olkin and Sampson, 1998)), the best use of IPD may be to examine

informative covariates and subgroups (Tian et al., 2012; Zhang et al., 2008). Toward

this end, the CD-based method may be an important new tool. In conclusion, to pro-

vide answers to complex questions from the available large-scale data, it is critical to

account for between-study differences, which has been discussed as the most significant

challenge for the current meta-analysis field (Hedges, 2016). The proposed method is

aimed at promoting large-scale, complex evidence synthesis of IPD to shed light on

complex phenomena by offering one methodical route to overcome this critical barrier

for multivariate meta-analysis models and meta-analysis of IPD.
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Chapter 4

Concluding Remarks

In this dissertation, we briefly review the existing CD-based inference methods and

extend them in several important ways. We also apply these novel approaches to real

world problems. With a confidence distribution as the synthesizing instrument, CD

approaches showed its potential and promise, compared to conventional meta-analysis

methods based on point or interval estimates. The CD approach is more efficient,

can be more flexible to incorporate prior information, and can mitigate the influence

of outlying studies. Furthermore, it is generally robust to model mis-specifications.

More importantly, it provides a unified meta-analysis framework that subsumes most

conventional methods.

In Chapter 2, we develop the CD framework to analyze 2 × 2 tables. The proposed

method can takes into account of the data sampling scheme used to obtain data and

can be applied to develop confidence distributions for most commonly used metrics of a

2×2 table. By incorporating prior information, the approach can also be applied to rare

events data for 2×2 tables with zero observed events without any artificial corrections.

In Chapter 3, we extend the current method of combining CD random vectors to a

multivariate random-effects meta-analysis model and tackle the challenge of applying

the methodology to real word complex data sets with a higher dimension and incomplete

data. Conclusion from the analysis of Project INTEGRATE are consistent with current

fundings in the field. The sensitivity analysis shows that the results is robust. Future

studies should investigate the empirical performance of the proposed method under

various data situations and examine robustness of the method under different types of

model mis-specifications, such as incorrectly specified mapping matrices.
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To close this dissertation, we remark that the idea of combining confidence distributions

to synthesize information is very powerful and can be potentially used to deal with other

open and challenging problems in the field of meta-analysis.
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