
REAL-TIME DYNAMIC PARTIAL ORDER
PLANNING FOR MEMORY RECONSTRUCTION IN

AUTONOMOUS VIRTUAL AGENTS

BY BHUVANA CHANDRA INAMPUDI

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Dr. Mubbasir Kapadia

and approved by

New Brunswick, New Jersey

January, 2017

c© 2017

BHUVANA CHANDRA INAMPUDI

ALL RIGHTS RESERVED

ABSTRACT OF THE THESIS

REAL-TIME DYNAMIC PARTIAL ORDER

PLANNING FOR MEMORY RECONSTRUCTION IN

AUTONOMOUS VIRTUAL AGENTS

by BHUVANA CHANDRA INAMPUDI

Thesis Director: Dr. Mubbasir Kapadia

This paper introduces a novel approach to generate narratives from the memories of in-

game agents. We propose an agent framework to accommodate memory and perception

in virtual agents. This system extracts agent auto-biographic memories as multiple

partial narratives, and generates possible complete narratives. We employ a novel

narrative merging and extrapolation technique to generate unique complete narratives

based on partial narratives of multiple agents. This is used to generate unique narratives

for specific narrative constraints. To generate narratives for massive open-world scenes

we introduce a novel algorithm that generates dynamic partial plans of large action

spaces in real-time. These plans repairs as per the user actions, there by generating

a unique narrative for every different user interaction. We conducted a comparative

study of our dynamic planning technique with existing planning techniques. Also, we

tested our agent framework for a complex environment to verify its robustness.

ii

Acknowledgements

I would like to thank my adviser, Prof. Mubbasir Kapadia, without whose help and

guidance I would not have achieved this. I would also like to thank Michael Dwyer,

Nilay Chakraborty and Kuan Wang who helped me build and test this application.

I would like to thank Prof. Norman Badler who gave me the opportunity to work

at SIGLAB, where I connected with amazing people and learned a lot. Last but not

least, I would also like to thank Dr.Lotzi Boloni, who provided assistance in helping me

understand the Xapagy cognitive architecture.

iii

Dedication

This work is dedicated to everyone who supported me through this endeavor.

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

1. Introduction . 1

1.1. Dynamic Planning . 2

1.2. Narrative Reconstruction from Agent Memories 3

2. Related Work . 4

3. Framework Overview . 6

3.1. Dynamic Planner . 6

3.1.1. Narrative State Manager . 6

3.1.2. Planner . 7

3.1.3. Narrative . 7

3.1.4. Game UI . 7

3.2. Event-based Memory Generation . 8

3.2.1. Narrative Module . 8

3.2.2. Message Bus . 8

3.2.3. System State . 9

3.2.4. Virtual Agent . 9

4. Dynamic Planner . 10

4.1. Partial Order Planner . 10

4.2. Accelerated POP . 11

4.3. Dynamic POP . 12

v

4.3.1. D-POP algorithm . 13

4.3.2. Update for User Interactions . 13

4.3.3. Consistency Propagation . 14

5. Narrative Generation from Agent Memories 18

5.1. Memory Representation . 18

5.2. Memory Generation . 19

5.3. Narrative Reconstruction . 20

5.3.1. Merging Agent Memories . 20

5.3.2. Narrative Validation . 23

5.3.3. Narrative Extrapolation . 28

6. Results . 35

6.1. Comparative Study . 35

6.1.1. Accelerated POP . 35

6.1.2. Dynamic planner . 36

6.2. User Study . 37

6.2.1. Hypotheses . 37

DPOP analysis . 38

Time to plan from Scratch . 38

Time to repair plan . 39

7. Conclusion . 42

7.1. Conclusion . 42

7.2. Future Work . 42

References . 44

vi

1

Chapter 1

Introduction

Video games these days are blurring the lines between virtual and real world by using

extremely realistic graphics and exhaustive open-world environments. Despite all the

above, very few games include strong narrative discourse that change according to player

interactions. The existing techniques allows a game to either have a strong narrative

with a selected decision points, or a dynamic narrative by sacrificing the possible user

interactions.

Narratives for the present day games are pre-scripted and coded into the game. So,

to make a game’s narrative truly dynamic, content editors have to script narrative for

every possible interaction for each step of the simulation. As it is very expensive and

impractical to do that, we explore automated narrative generation techniques.

Partial order planners are being used to generate complex Narratives with a lot of

user interaction. Since the plan time increases with the number of actions, using POP

for open world narratives is not time efficient. Furthermore, if those massive game

worlds are to accommodate free-form user interaction the plan should consider all the

possible conflicts to the Narrative. This in turn increases the plan space and effort

required from content editors to craft a complete narrative.

This thesis assumes the concepts of partial order planners as a basis and tackles the

problem of generating automated narratives by introducing

1. An agent architecture to perceive events and record auto-biographic memories,

discussed in section 3.2

2. An approach to generate narrative discourse from the partial memories of one or

more agents (See section 10)

2

3. A dynamic planner that repairs the narratives according to user interactions, as

discussed in chapter 4

1.1 Dynamic Planning

The motivation behind developing such a technique is to accommodates free-form user

interactions in a generated narrative with minimum re-planning. Such an approach can

be used to re-create any historic event and analyze how changes in various interactions

would have effected that event, or to generate interactive games.

For such a system, the planner should be able to generate plans in real-time by

using characters and actions that are relevant to that scene. The system should re-plan

for any changes in the environment in real time, there by accommodating free-form

user interactions. To validate or use such a planner the system architecture should be

modular, robust and scalable to generate extensive narratives.

Though there hasn’t been a single approach which tackles all the challenges, there

has been attempts to address individual problems.[1] introduced Parameterized Be-

havior Trees to improve the modularity and re-usability of Behavior Trees. [17] used

Interactive Behavior trees to incorporate free-form user interaction and conflict resolu-

tion. Decision trees can be used to generate believable by narratives, but they cannot

practically support free-form user interaction.

To reduce the plan time, we introduced a heuristic to define related actions, thereby

decreasing the plan space, thus decreasing the plan time. Inspired from the D* and

Partial Order Planner, we can up with an approach to incorporate dynamic characteris-

tic to the planner. This algorithm will repair the plan when a user interaction disrupts

the current plot.

The plan times using the improved dynamic planner are compared against the plan

times of a conventional partial planner with IBTs. The time of execution and the

optimality of the solution are taken as the measures to quantify the benefits of the

proposed solution.

3

1.2 Narrative Reconstruction from Agent Memories

This approach focuses on generating narratives from the past experiences/memories

of the in-game characters. Using an approach like that, multiple possible narratives

can be auto generated based on the past user interactions or a pre-determined plot, by

extracting the memories from one or more virtual agents in the simulation environment.

For such a system to exist, one must first define an agent framework that allows

agent to observe its surroundings and record the events that it perceives. Since the

perception and memory generation in an agent are triggered by events, we call this

Event-Based Agent Framework (EBAF). Also, the memory representation should be

in a way such that, the narrative extraction can be done with out compromising the

basic understanding of memory. For example, one cant store the reason for an event to

happen in the memory as that should be left to the reasoning.

The proposed algorithm extracts the auto-biographic memories that are created by

EBAF, and generates possible narratives. The proposed system is tested for robustness

using multiple pre-authored narratives.

We describe the general architecture of the proposed approaches in chapter 3. Chap-

ter 4 & 5 describes the implementation of the Dynamic Planner and Memory Recon-

struction in detail, respectively. A comparative study of our Dynamic Planner is done

in chapter 6.

4

Chapter 2

Related Work

There has been several works on manual authoring techniques for narrative generation.

Work of [14] describes predefined behaviors, thus even small changes to the narrative

result in monolithic work. Structure of story graphs [5] allows to author huge believable

narratives with very little user interactions. In story graphs, the user interactions are

facilitated in the form of choices at key points in the narrative.

Partial order planning is often used to auto generate narratives. [4] describes the

basic algorithm of a partial order planner to generate partial plans. A comparative study

between total-order and partial-order planners has been done by [16]. Techniques like

D* are developed to incorporate make total-order planners dynamic. [13] describes

about techniques to incorporate Anytime Dynamic nature in total ordering planners.

[19] discusses a novel intent-driven planning technique to generative coherent narratives.

On the other hand [1] shows how Behavior trees can be parameterized to improve

the modularity and re-usability of the narratives. This helps in re-using similar story

arcs to generate rather complex narratives. [12] involves learning script-like narrative

knowledge from crowd sourcing to generate narrative. [15] explores design issues of

constructing a plot, creating AI characters, and using a director in an interactive sto-

rytelling environment. For implementing free-form user interactions [17] models an

architecture with Behavior Trees. It also provides a conflict resolution algorithm in

Interactive Behavior Trees. [7] describes a framework where virtual objects aid the

user to accomplish a pre-programmed possible interaction. An event-centric framework

for directing interactive narratives is shown in [22].

[8] presents a modular, and flexible platform for authoring purposeful human char-

acters in a virtual environment. The frame work of [9] generates complicated behaviors

5

between interacting actors in a user authored scenario. Mubbasir Kapadia et. al. in

[9] implemented a behavior authoring framework that provides domain control to user,

for multi-agent simuations. [21] describes a framework for mitigating individual agent

complexity while retaining agent diversity. The work of [14], provides a study for

creating believable agents.

A survey of various approaches to quantify the interestingness of a narrative is

provided by [11]. [18] is one of the early attempts to measure the interestingness

of a computer generated plot. It compares ideal story tension graphs to the one that

generated plot to find the interestingness. Although the framework in [10] can be

used to quickly generate complex and believable narratives, the memory requirements

increase exponentially as the number of possible actions increase.

Very few attempts have been made to introduce a memory model in virtual agents,

which can also be used to generate Narrative discourse. ADAPT is an agent architecture

[23] for designing and author- ing functional, purposeful human characters in a rich

virtual envi- ronment. It is versatile platform to implement character animation and

navigation functionalities. [24] discuss a event driven agent framework for steering in

a crowd. [20] proposes an agent model in which some agents can be affected by peer

agents, by introducing the concept of ’sphere of influence’.

SPREAD [6], is a novel agent-based sound perception model that employs a dis-

cretized sound packet representation with acoustic features including amplitude, fre-

quency range, and duration. Lotzi Boloni introduced a cognition architecture [3]

where agent auto-biographic memories are stored as concept overlays, and reasoning in

done using statistical approaches. He introduced a new pidgin language [2] which is

used for Language translation. Though Xapi is primitive enough to generate a Narra-

tive Discourse, we chose not to use Xapagy as its architecture does not support spatial

reasoning, and quantifying properties is not necessary for our approach.

6

Chapter 3

Framework Overview

3.1 Dynamic Planner

To build an open world game that supports auto-narrative generation for non-player-

characters (NPC) and free form user interaction for player controlled characters (PC),

the design of the system should be modular, scalable and robust. To satisfy those

constraints we introduce an architecture [see figure 3.1] that can be used by both NPCs

and PCs. An in-depth explanation of the architecture is provided in the following

sections of this paper.

Figure 3.1: Frame work of the Dynamic Planner

3.1.1 Narrative State Manager

The Narrative State Manager(NSM) keeps track of the state of the game. It maintains

the current plan/narrative, and state of the objects in the scene. Objects states are

updated when either

1. An action in the Narrative plot is executed, or

2. User performs an interaction with the simulation environment

7

Whenever the Object states are updated, NSM checks if the current plan is still valid.

If the plan is invalidated, NSM sends the current state to the Planner to repair the

Narrative. Using the plan received from the Planner, NSM generates a Behavior Tree

and sends it to Narrative component for execution.

3.1.2 Planner

As the name suggests, Planner module contains the logic to generate a partial plan given

a current-state and the goal state. This game is a open world game which supports

free-form user interaction, hence the planner should be able to provide partial plans

for a massive environment in real-time. Chapter 4 describes the approach adopted to

achieve that.

3.1.3 Narrative

Narrative module has the execution logic for a Behavior Tree. Given a Behavior Tree,

the Narrative module execute the nodes and sends

1. The effects/state changes to the NSM, and

2. The related animation of that node to the Game UI

3.1.4 Game UI

Game UI displays the animations provided by the Narrative. It also provides the user

interactions for the objects in the scene. The player can interact with the objects of the

scene and the effects/state changes caused by that interaction will be sent back to NSM.

The interactions supported by an Object in scene is determined by the affordances

that object has. Since both NSM and Game UI depend on the affordances of the

objects in scene, adding an affordance to the object will automatically create a new

user interaction.

8

3.2 Event-based Memory Generation

To generate autobiographic memories from agent experiences and to extract Narratives

from those memories, the architecture shown in figure 3.2 is employed.

Figure 3.2: Frame work of the event-based architecture

3.2.1 Narrative Module

Given the Behavior Tree of the narrative that has to be simulated, Narrative module

executes the tree nodes and sends

1. The executed event details (along with the time-stamp) to the Message Bus, and

2. The updated object states to the System State module

Narrative state sends a message for both start and end of an event.

3.2.2 Message Bus

When message bus receives event notifications from Narrative module, it broadcasts

them to all agents. Notifications received in a simulation cycle are pushed into an

9

array of messages. At the end of the simulation cycle all the messages in the message

bus are published. Message bus is refreshed/cleared at the start of every cycle. So,

at any given time, message bus contains notifications for the events happened at that

simulation cycle.

3.2.3 System State

System state keeps track of all the object states in the simulation. Starting with the

initial state of the system, the System State keeps updating the object states after every

event execution. So, if queried, the System State module returns the state of an object

at that point of time in the simulation.

3.2.4 Virtual Agent

Each virtual agent has a cognition module attached to it. Cognition includes percep-

tion, memory, reasoning etc. Though in our current system we implemented just the

perception, memory and spatial reasoning, this architecture can be further extended to

incorporate other elements of human cognition.

Observer Module handles the perception of a virtual agent. Perception can be

visual, auditory, written etc. We just considered visual perception for our system.

So, when a observer notices an event notification from the Message Bus, it verifies

whether that event is related to the objects in its field of view. If it is, observer gets

the state of the object from the System State and creates a memory with the object

state, perception data and event notification. These memories are stored as Agent

Auto-biographic Memories in the Memory module.

10

Chapter 4

Dynamic Planner

In the following sections we have made an attempt to describe the implementation of

the dynamic planner. Below are some terminology that we will be using to describe

our system.

Smart Object Objects in a scene that support a behavior or action. Smart Objects

have affordances associated with them. (Ex: Door, Doctor, Gun etc.)

Affordance Affordance is an action that involves two objects (Affordee and Affor-

dant). Affordee enables the action, and Affordant exerts that action. For example,

Person Opens the Door. In this, Person and Door are smart objects, Open is an affor-

dance. Door is the affordee of that action while Person is the affordant. Throughout

this article, terms Affordance and Action are used interchangeably. Every affordance a

has a set of Pre-Conditions and Effects (< {Φ}, {Ω} >). Pre-Conditions are required

for the action to execute, and Effects are the state changes produced by the action after

execution. Every affordance in our system also has a PBT [1] associated with it, that

provides corresponding animation for the affordance.

Causal Link Two actions a1 and a2 have a causal link over a condition φ , if a pre-

condition φ of a2 is satisfied by executing a1. In other words, executing a1 produces an

effect φ which allows a2 to execute. An entry in causal link is denoted as < a1, φ, a2 >.

Ordering Constraint An order constraint a1 ≺ a2 between actions a1 and a2 indicates

that a1 should execute before a2

4.1 Partial Order Planner

Since our algorithm is based on a Partial Order Planner, We introduced this section to

discuss the basic properties and working mechanics of a partial order planer. Partial

11

order planners generate partial order of actions i.e. they commit to ordering only

when forced. In contrast,a total order plan provides ordering of all actions even if not

necessary. So, a solution of a partial order planner can generate one or more total order

plans.

Given a start state and a goal state, a partial planner gives the affordances that

needs to be executed and the ordering constraints(if any) to reach the goal state. It

does that by solving for each pre-condition in goal state by adding affordance that

satisfy them. That is, for each precondition, action pair < φ, a >, find an action a0

whose effect satisfies the precondition in the pair. Then add all the preconditions of

a0 to the agenda. By repeating this process until there are no open preconditions left,

partial planner finds a partial plan between start and end states. See [4] for a detailed

description of the algorithm.

In case of a conventional Partial Order Planner the plan time increases exponentially

with the plan space. So, for an open-world environment where there are numerous ob-

jects with multiple affordances, using a ordinary partial planner would be impractical.

4.2 Accelerated POP

We tried to make improvements to the existing partial planner so that it can be used

online in open world games. We introduced a heuristic ActionRelationMap (ARM)

to reduce the plan time. Given a condition φ, action-relation map gives all the possible

actions that can satisfy that condition, i.e. ARM [φ] = ∀a ∈ As.t., φ ∈ a→ {Ω}.

Algorithm 1 describes the construction of the action relation map. All the effects of

the actions in action space Aare iterated in lines 2 & 3 of the algorithm, and ARM is

populated in the following lines. If an action contains a condition in its effects, it implies

that action can be used to satisfy the condition. By using ARMas a heuristic to search

of possible actions for an agenda item < φ, a >, the search space can be drastically

reduced, there by reducing the plan times.

Since the possible actions remains constant for given Affordances and SmartObjects,

ARM is calculated only when new a Affordance or a SmartObjects is added to the scene

12

Algorithm 1: Algorithm to construct the action-relation map

1 ConstructActionRealtions ()

2 foreach a ∈ ActionSpace do

3 foreach φ ∈ a→ {Ω} do

4 if φ ∈ ARM → Keys then

5 ARM [φ] = ARM [φ] ∪ a

6 else

7 ARM [φ] = a

and stored. ARM is loaded once during the start of the simulation and used through

out the simulation. This decreases the plan time furthermore.

4.3 Dynamic POP

All the existing techniques either preemptively plan for user interactions or replan the

Narrative from scratch. Neither of those approaches will be efficient to update the

Narrative in real time, when dealing real world simulation (as the number of objects

and interactions will be prolific). To tackle that issue, we propose an algorithm which

incorporates the concepts of D* algorithm [13] in Partial Order Planner. Below is some

related terminology.

Running Causal Links A causal link l < a1, φ, a2 > is said to be a running causal

link rl if action a1 is running and a2 is not yet executed.

Heuristic We are using the action relations (ARM) described in section 4.2 as the

heuristic for the algorithm.

Over-Consistent Links A causal link will be in over-consistent state if the condition

of the causal link is already present in the current state of the system.

Under-Consistent Links A running causal link is said to be under consistent if the

condition is negated by the current state. A user action negating a running causal link

will result in an under consistent link.

13

4.3.1 D-POP algorithm

The planner keeps executing on open conditions to be satisfied. Initial plan is generated

using A-POP defined in section 4.2. Later, for every user action, NSM checks for any

over consistent and under consistent states. If an in consistent state is found, it is

added to the open conditions of the planner. In case of over consistency, consistency

propagation is performed before the plan repair is done. Consistency propagation is

discussed in detail in section 4.3.3

The Dynamic planner is implemented using the algorithm described in Algorithm 2.

Agenda Φopenis a stack that contains all the open condition, action pairs. A is a set of

all the actions currently in the plan, while O and L contains all the ordering constraints

and causal links respectively.

The planner instantiates A, Φopen, O and L with the astart and agoal states (see

lines 2-5 of Algorithm 2). If Φopenis not empty, one open condition is removed from it

and checked if any existing action satisfies the open condition (see Algorithm 3). If no

existing affordance satisfies the open condition, the heuristic defined in section 4.2 is

used to get an action from the ActionSpace(lines 10,11 in Algorithm 2). The suggested

affordance is added and any conflict are resolved by calling ResolveConflict method

(lines 12-16 in Algorithm 2). The preconditions of the newly added affordance are added

to the open conditions (lines 17,18 in Algorithm 2). Causal link for the condition is

added and the plan is again checked for conflicts

Conflict Resolution Conflict arises if the effect of an affordances acontradicts with

the condition on a causal link < a1, φ, a2 >. In such a case, the conflict is resolved by

imposing a constraint such the aeither happens before a1 (a ≺ a1) or ahappens after

a2 (a2 ≺ a)

4.3.2 Update for User Interactions

The dynamic planner repairs the plan for user interactions. Algorithm 5 determines

whether an user action auidamages the consistency of the current narrative. If it does,

14

the Φopenare updated the Algorithm 2 is used to repair the plan. The narrative is made

inconsistent if

1. The user action satisfies a condition on causal link, resulting Over-Consistent

links, or

2. It negates the condition on a causal link, thereby generating Under-Consistent

links

Algorithm 5 checks for over consistent links in lines 3 through 8. The over consistency

is propagated in the narrative by using consistency propagation algorithm discussed in

section 4.3.3. Running causal links are verified for possible under-consistent links and

open conditions are updated accordingly in lines 11-15.

4.3.3 Consistency Propagation

Over-consistent links can make some states in the narrative as redundant. For example,

in figure 4.1, the User Action has made C1 over-consistent. Hence, Action1 is already

satisfied by the User Action. So, Action2 becomes redundant and is no longer required

in the narrative. Removing redundant states from the Narrative is called Consistency

Propagation. Algorithm 6 describes the logic we employed to find and remove the

redundant states from the narrative (Note: ocActions in Algorithm 6 denotes the set

of over consistent actions).

Figure 4.1: Example of an over consistent link leading to redundant states

15

Algorithm 2: DynamicPlanner()

1 begin

2 Φopen = {< φ, agoal > |∀φ ∈ goal→ {Φ}}

3 A = {astart, agoal}

4 O = {astart ≺ agoal}

5 L = ∅

6 isInitialP lanGenrated = false

7 repeat

8 if Φopen 6= ∅ then

9 < φ, ac >= pop(Φopen)

10 if !IsConditionAlreadySatisfied(φ, as) then

11 as = SelectActionFromRelations(φ)

12 A = A ∪ as

13 O = O ∪ {astart ≺ as}

14 foreach l ∈ L do

15 if l is not executed then

16 O = ResolveConflicts(l, as,O)

17 foreach Φ ∈ as → {Φ} do

18 Φopen = Φopen ∪ {< as,Φ >}

19 O = O ∪ {as ≺ ac}

20 L = L ∪ {< as, φ, ac >}

21 foreach a ∈ A do

22 if a is not executed then

23 O = ResolveConflicts(< as, φ, ac >, a,O)

24 else

25 isInitialP lanGenerated = true

26 if useraction aui && isInitialP lanGenerated then

27 UpdatePlannerSpace(aui)

28 until forever

16

Algorithm 3: Method to check if plan has an action that satisfies a condition

1 IsConditionAlreadySatisfied(φc,out as)

2 foreach a ∈ A do

3 foreach φ ∈ a→ {Ω} do

4 if φ == φc then

5 as = a

6 return true

7 return false

Algorithm 4: Method to get action from action-relations map

1 SelectActionFromRelations(φ)

2 if ARM [φ] 6= ∅ then

3 foreach ainARM [φ] do

4 if a /∈ A then

5 return a

17

Algorithm 5: Update planner space after user interaction aui

1 UpdatePlannerSpace(aui)

2 A = A ∪ aui

3 foreach l ∈ L do

4 if l→ φ ∈ aui → {Ω} then

5 remove lfrom L

6 ocActions = ocActions ∪ l→ {a1}

7 foreach φ ∈ l→ a2 → {Φ} do

8 Φopen = Φopen ∪ {< l→ a2, φ >}

9 if ocActions 6= ∅ then

10 PropagateConsistency(ocActions)

11 foreach rl ∈ RL do

12 if ¬rl→ φ ∈ aui → {Ω} then

13 remove rl from RL

14 foreach φ ∈ rl→ a2 → {Φ} do

15 Φopen = Φopen ∪ {< rl→ a2, φ >}

Algorithm 6: Algorithm to propagate consistency in BT

1 PropagateConsistency(ocActions)

2 foreach a ∈ ocActions do

3 if a /∈ {L← {a1}} then

4 RemoveActionFromAffordancesAndConstarints(a)

5 foreach l ∈ L do

6 if a ∈ l← {a2} then

7 ocActions = ocActions ∪ l← {a1}

8 if ocActions 6= ∅ then

9 PropagateConsistency(ocActions)

10 else

11 return

18

Chapter 5

Narrative Generation from Agent Memories

In section 3.2 the general framework of our agent model is introduced. In the following

chapters we explain how an agent memory is represented, how EBAF is used to generate

memories and the implementation details of narrative discourse generation.

5.1 Memory Representation

The implementation is broadly divided into two parts viz., Memory Generation in

agents and Narrative Reconstruction from the agents. Before starting with any

algorithmic details, it is vital that we declare what a Memory object looks like. A

Memory or ’A Memory Event’ (m) has following data

• memoryName - The memory name is a sentence of three words ′actor1−actionName−

actor′2 (For example : John opens Door). So, an affordance can be extracted from

a memory as each action has a unique ’actionName’, and each smartObject has

a unique ’name’.

• type - A memory event can either be start event or an end event denoted by

mstart and mend respectively. By default, start events only have startT ime and

end events only have endT ime.

• startT ime - The time at which the event began.

• endT ime - The times at which the event has completed.

• actorOneState(S1) - The state of actorOne noticed at the time of event. State of

an object is a set of conditions {φ} related to that object at a given time.

• actorTwoState(S2) - The state of actorOne noticed at the time of event.

19

• perceptionData - Data recorded by the observers (see section 3.2.4). Currently

the system only recorded visualPerceptionData. It records the spatial information

of the objects in the memory event at the time happened.

Since every affordance has a Behavior Tree associated with it, working with af-

fordances indirectly means working with BehaviorTrees. So, memory objects have all

the data that is required to create a behavior trees, which are used to represent the

Narrative

5.2 Memory Generation

Every agent in the scene that has cognition has an observer attached to it. The observer

constantly checks the objects in its field of view. Whenever an event notification appears

in the MessageBus, observer verifies if any the object of that event are present in its

field of view (See figure.5.1). If yes, then the observer creates a memory object by

populating the spatial information and getting the object state from SystemState. All

the memories of an agent are stored in its auto-biographic memory (Mobs). Pseudo-code

for this is defined in Algorithm 7.

Algorithm 7: Method to generate autobiographic memories of an agent

1 RecordMemories()

2 repeat

3 msgs = MsgBus→ {msgs}

4 foreach msg ∈ msgs do

5 foreach Objmsg ∈ msg → {objs} do

6 if Objmsg ∈ ObjectsInFOV then

7 S1 = GetObjStateFromSystemState(msg → {Obj1})

8 S2 = GetObjStateFromSystemState(msg → {Obj2})

9 Mobs = Mobs ∪ memory(msg,SpatialInfo, S1, S2)

10 until MsgBus.hasMsgs()

20

(a)

(b)

Figure 5.1: The field of view of an observer is denoted by green lines. Red lines in

figures (a) & (b) indicate that an object has entered the field of view of the observer.

5.3 Narrative Reconstruction

Generating possible narratives can be dived into three steps(see figure 5.2). First

the selected agent memories are merged and start & end time are populated. Then,

the consistency of the generated narrative is validated. If there are any inconsistencies,

dynamicPlanner is used to extrapolate the missing parts of the narrative. These

steps are discussed in detail following sections.

5.3.1 Merging Agent Memories

21

Figure 5.2: Overview of Narrative Reconstruction process

In this module, the memories from the selected agents are merged and the result-

ing start & end events are paired. For memories with no existing counter part, the

corresponding event is estimated and then added.

As discussed in section 5.1, memory events are of two types

• START MEMtype - Memories that are created when an event is initiated.

• END MEMtype - Memories that are created when viewing the completion of

an event/action.

Having a respective start event for every end event is necessary as these pairs are used

to validate the narrative in section 18.

Algorithm 8 is used for merging, pairing & estimation of memories. First, the mem-

ory traces of all selected agents (SelectedObserverTraces) are extracted and merged as

shown in Algorithm 9. Then the Memories are sorted into start and end events (Mstart&

Mendrespectively) based on the typeof the memory event (see Algorithm 10). Figure

5.3 shows the step-by-step process of how the extracted memories are categorized using

an example.

The pairing of the events is done in two steps. If the end event for a start memory is

already present in the current memory collection, the start & end times for the events

22

Algorithm 8: Method to merge memories, pair events and estimate times

1 begin

2 MergeAgentMemories()

3 CategorizeMemories()

4 PairStartAndEndEvents()

5 SortMstart bymstart → startT ime

6 SortMend bymend → endT ime

Algorithm 9: Method to merge memories extracted from different agents

1 MergeAgentMemories()

2 foreach Mobs ∈ SelectedObserverTraces do

3 foreach m ∈Mobs do

4 if m /∈M then

5 M = M ∪m

Algorithm 10: Method to classify memories into start and end events

1 CategorizeMemories()

2 foreach m ∈M do

3 if m→ type == START MEM then

4 Mstart = Mstart ∪ {m}

5 else

6 Mend = Mend ∪ {m}

are populated using their counter part (See lines 4-7 of Algorithm 11). For memories

whose counter-parts does not exist in the agent memories, an estimate for the time taken

for that event is calculated using EstimateTimeForMemory function. The time esti-

mate for an action is defined in that affordance definition. For example, GoTo action will

have an estimation function described as [distanceToTheLocation / agentV elocity].

Also, an estimated memory (mEst) is created for this, which will be used for Narrative

Validation. Lines 9-18 of Algorithm 11 describe the implementation of the estimation,

23

Algorithm 11: Method to pair start and end events and populate start and end

times. If the counter part of a memory does not exist, the time is estimated.

1 PairStartAndEndEvents()

2 foreach mstart ∈Mstart do

3 if mstart → endT ime == −1 then

4 mend = FindCounterPartForMemory(mstart)

5 if mend → Exists() then

6 mstart → endT ime = mend → endT ime

7 mend → startT ime = mstart → startT ime

8 else

9 timeForCompletion = EstimateTimeForMemory(mstart)

10 mstart → endT ime = mstart → startT ime+ timeForCompletion

11 mEst = CreateEstimatedEndEvent(mend)

12 Mend = Mend ∪ {mEst}

13 foreach mend ∈Mend do

14 if mend → startT ime == −1 then

15 timeForCompletion = EstimateTimeForMemory(mend)

16 mend → startT ime = mend → endT ime− timeForCompletion

17 mEst = CreateEstimatedStartEvent(mend)

18 Mstart = Mstart ∪ {mEst}

and figure 5.4 shows an example of the estimated event.

By sorting the start events (Mstart) we get the temporal structure of the narrative.

In section 18 we check whether the narrative deduced from the agent memories is

complete/consistent.

5.3.2 Narrative Validation

In Narrative Validation phase we check whether the narrative generated is con-

sistent. Since the goal is to construct a Narrative on which a partial planner can work,

this phase also have to generate causal links between the memory events. Also in order

24

(a) (b)

(c) (d)

Figure 5.3: Figure (a) shows the memory events in the auto-biographic memory of

agents. In figure (b) you can see that, start memories have no end time(= -1) and end

memories have no start time. Figure (c) shows the events after categorizing into start

and end events, and in figure (d) the existing memory events are paired and start &

times are populated.

to simulate the narrative, the start state of the objects before the narrative execution

has to be determined. Summarizing everything, this phase does the following things

• Check whether the Narrative is consistent.

• Derive possible start state of the simulation.

• Establish causal links between memory events.

• Determine inconsistencies in the Narrative, as inconsistent causal links.

25

(a) (b)

Figure 5.4: The estimated times for the events in figure (a) are calculated and updated

as shown in figure (b).

To calculate the start state of the system is to calculate the start state of all the

objects in the system. This is calculated by determining the state of each object at their

first occurrence(FirstOcc[Obj]) in the narrative. Algorithm 12 describes the implemen-

tation details for calculating the start state of the narrative. First, the initial occurrence

of each object in start memories is stored in a FirstOccurrences map (FirstOcc) [see

lines 2-13]. If an end event happened before a start event, it means that the start state

we assumed for that object is not actually the start state of that object as an event hap-

pened before that. So, we remove that object from the FirstOccurrences map [see lines

14-21]. Please note that we did not consider the estimated events while calculating the

start state, as the estimated events do not the actual state of objects. Finally, in lines

22 & 23, we merge the object states to determine the start state of the narrative(Φstart).

Now that we have determined the start state, we next check the consistency of the

narrative and form the causal links. A narrative is inconsistent/incomplete if one or

more events are missing in the discourse. In other words, the store is incomplete if the

object state changes in between two consecutive events. For example, in two consecutive

events E1 and E2, at the end of event E1 if character Rob is at location L1 and, before

the start of E2 he is at L2 - then an inconsistency in the narrative arises between E1

and E2. The proposed algorithm verifies the consistency by updating the narratives

26

Algorithm 12: Method to calculate the possible start state of the narrative

1 CalculateStartState()

2 foreach mstart ∈Mstart do

3 if !mstart → IsEstimated() then

4 Obj1 = mstart → actor1

5 if Obj1 /∈ FirstOcc then

6 FirstOcc[Obj1] = mstart

7 else if mstart → startT ime < FirstOcc[Obj1]→ startT ime then

8 FirstOcc[Obj1] = mstart

9 Obj2 = mstart → actor2

10 if Obj2 /∈ FirstOcc then

11 FirstOcc[Obj2] = mstart

12 else if mstart → startT ime < FirstOcc[Obj2]→ startT ime then

13 FirstOcc[Obj2] = mstart

/* Remove the object if it appeared in an end event before it

appeared in a start event */

14 foreach mend ∈Mend do

15 if !mend → IsEstimated() then

16 Obj1 = mend → actor1

17 if (Obj1 ∈ FirstOcc) && (mend → endT ime < FirstOcc[Obj1]→

startT ime) then

18 RemoveFirstOcc[Obj1] fromFirstOcc

19 Obj2 = mend → actor2

20 if (Obj2 ∈ FirstOcc) && (mend → endT ime < FirstOcc[Obj2]→

startT ime) then

21 RemoveFirstOcc[Obj2] fromFirstOcc

22 foreach Obj ∈ FirstOcc→ Keys do

23 Φstart = Φstart ∪ {FirstOcc[Obj]→ ObjectState}

27

state(Ωopen) by adding effects(Ω) and preconditions(Φ) of affordances, derived from end

and start events respectively in a chronological manner(See Algorithm 15).

By now, it is evident that an affordance can be derived from a memory using the

memoryName. A start-end memory pair have the same affordance, but while exe-

cuting the start event we verify Ωopenwith preconditions(line 8 of Algorithm 15) and

while executing end event Ωopenis updated with the effects of that affordance(line ll of

Algorithm 15).

In our algorithm Ωopen is defined as the set of action, effect pairs({< a, φ >}) where

a is the last executed action with φ as an effect. Ωopenis initialized with the effects of

the start affordance(astart).

Updating with effects(Algorithm 13) : While updating the Ωopen with effects of

an action,

• If the condition already exists in Ωopen, replace the action with the new ac-

tion(lines 11-14).

• For every contradicting < a, φ > in Ωopen, remove it and replace it with the new

action, effect entry(lines 6-10).

• If the condition is not present in Ωopen, create a new entry(line 16).

Updated narrative state(Ωopen) is useful to generate causal links and determine incon-

sistencies while verifying with action preconditions.

Verifying with preconditions(Algorithm 14) : The preconditions of an action

are verified with current narrative state when a start memory is being processed.

• If a precondition Φ is present in the Ωopen, then a causal link is formed with that

action over Φ (line 7).

• If a < a, φ >contradicts with the Φ, then it means there is an inconsistency in

the story. Hence an inconsistent link is added (line 11).

• If a Φis not present in the Ωopen, it means that a part of narrative that gives rise

to that condition is missing. So, an inconsistency is added (line 15).

28

Finally if the number of inconsistencies(#IL) in more than 0, then the narrative is

inconsistent. We generated agent memories for a sample narrative show in this video.

As shown in figure 5.5, start state is derived and examples of consistent and inconsistent

narratives are shown in figures 5.6 & 5.7 respectively.

Algorithm 13: Method to add effects to Narrative state

1 AddEffectsToNarrativeState(mend)

2 conditionExists = false

3 ae = mend → GetAffordance()

4 foreach Ω ∈ ae → {Ω} do

5 foreach < a, φ >∈ Ωopen do

6 if Ω contradictsφ then

7 φ = Ω

8 a = ae

9 conditionExists = true

10 break

11 else if Ω == φ then

12 a = ae

13 conditionExists = true

14 break

15 if !conditionExists then

16 Ωopen = Ωopen∪ < ae,Ω >

17 else

18 conditionExists = false

5.3.3 Narrative Extrapolation

In this phase, each inconsistency generated by Algorithm 15 in Narrative Valida-

tion phase is fed to a planner to generate possible narratives. We use a slightly tweaked

version of the dynamic planner defined in chapter 4 to generate the plans.

https://www.youtube.com/watch?v=o-_e3_GTP8s

29

Algorithm 14: Method to check the consistency current narrative state(Ωopen)

for a start memory and add causal links

1 UpdateCurrentNarrativeStateForStartMemory(mstart)

2 conditionExists = false

3 as = mstart → GetAffordance()

4 foreach Φ ∈ as → {Φ} do

5 foreach < a, φ >∈ Ωopen do

6 if Φ == φ then

7 L = L∪ < a,Φ, as >

8 conditionExists = true

9 break

10 else if Φ contradictsφ then

11 IL = IL∪ < a,Φ, as >

12 φ = Φ conditionExists = true

13 break

14 if !conditionExists then

15 IL = IL∪ < astart,Φ, as >

16 else

17 conditionExists = false

30

Algorithm 15: Method to check the narrative consistency and form causal links

1 CheckNarrativeConsistency()

2 i = 0, j = 0

3 isNarrativeConsistent = true

4 CalculateStartState()

5 astart = CreateAffordaceWithEffects(Φstart)

6 repeat

7 if Mstart[i]→ startT ime < Mend[j]→ endT ime then

8 UpdateCurrentNarrativeStateForStartMemory(Mstart[i])

9 i = i+ 1

10 else

11 AddEffectsToNarrativeState(Mend[j])

12 j = j + 1

13 until (i < #Mstart && j < #Mend)

14 if #IL > 0 then

15 isNarrativeConsistent = false

31

Figure 5.5: Displaying the start state (full video)

The dynamic planner defined in section 4.3 stops after finding a plan. But for our

case, we tweak the algorithm to do an exhaustive search all possible plans. We populate

an initial partial plan(πi) by generating ordering constraints as shown in Algorithm 16.

We deduce that an action a1 happens before a2 is a2 starts after a1 finishes(see line 8

of Algorithm 16).

For each inconsistency in IL, a set of possible partial plans(Π) is generated by

executing the dynamicPlanner in plan space π(line 6 of Algorithm 17). Then the

user selects of the plans(Narrative discourse) and the πis updated accordingly(see line

8 of Algorithm 17). This procedure is repeated until all the inconsistencies are resolved.

Figure 5.8 shows an example where partial plans are generated for inconsistencies.

https://www.youtube.com/watch?v=0OLCz0yPGWI

32

Algorithm 16: Method to generate ordering constraints(O) and populate

affordances(A)

1 GenerateOrderingConstraints()

2 foreach mstart ∈Mstart do

3 a = mstart → GetAffordance()

4 A = A ∪ a

5 O = O ∪ {astart ≺ a}

6 foreach mstart ∈Mstart do

7 foreach mend ∈Mend do

8 if mstart → startT ime > mend → endT ime then

9 O = O ∪ {mend → GetAffordance() ≺ mstart →

GetAffordance()}

Algorithm 17: Algorithm to generate possible complete narratives

1 begin

2 GenerateOrderingConstraints()

3 πi =< A,L,O >

4 π = πi

5 repeat

6 Π = DynamicPlanner(IL→ pop(), π)

7 if Π 6= ∅ then

8 π = SelectNarrativeFromUI(Π)

9 else

10 Show(”Nopossible narratives found”)

11 until #IL > 0

33

Figure 5.6: Message if narrative is consistent (full video)

Figure 5.7: Example of inconsistent narrative (full video)

https://www.youtube.com/watch?v=0OLCz0yPGWI
https://www.youtube.com/watch?v=3J8Srf4Rvm8

34

(a)

(b) (c)

Figure 5.8: Figure (a) shows the inconsistencies generated by the Narrative Valida-

tor. Drop down in figure (b) shows the plans generated by dynamicPlanner. When a

plan is selected, it is added and the next inconsistency is solved(see (c). The full video

of demo is available here.

https://www.youtube.com/watch?v=3J8Srf4Rvm8

35

Chapter 6

Results

6.1 Comparative Study

The planner is tested for three different scenes with varying number of smart objects

and affordances. The quantitative details of the experiments are shown in figure 6.1

Figure 6.1: For homogenous objects, average of 10 observations(time in ms)

For each experiment, the data is collected for 3 cases; (i) Initial plan (ii) Re-

pair/Replan success [when planner is able to repair the narrative] (iii) Repair/Replan

failure [when planner is not able to repair the narrative]

6.1.1 Accelerated POP

For initial tests, the speed-up planner is run in a scene with varying number homogenous

objects and the times are compared against the normal planner. The tabulated results

of the experiment are present in figure 6.3

The Initial Plan case of the experiments corresponds to the Accelerated POP.

The A-POP displayed significant improvements over the general POP.The plan time

improvements were exponential. Results of Experiment 3 implied that A-POP was 3.6

to 3.9 times faster than POP with 95% confidence (see figure 6.2).

36

(a) Average for all expertiments

(b) For 90% confidence

(c) For 95% confidence

Figure 6.2: The data from all experiments is presented above. The metric for the data is

”Times Faster”, i.e. D-POP is ’x’ times faster than POP [Formula : avg(POP time/D-

POP time)]

6.1.2 Dynamic planner

In initial tests, the average of 26 observations in an action space size of 10, showed

DPOP to be 10.9 percent faster than regular partial planner (see figure 6.7).

37

Figure 6.3: For homogenous objects, average of 10 observations(time in ms)

A detailed analysis is done for the experiments 1, 2 and 3 and the data is split in

two cases. Case one where the D-POP tries to repair the plan and succeeds. Case two,

when no plan exits between current state and goal state. For case one, D-POP showed

similar improvements as A-POP. D-POP was 3.7 to 3.9 times faster than POP with 90%

confidence (See figure 6.2). For case two, D-POP is almost as fast as POP(sometimes

slower). This behavior is expected as D-POP does an exhaustive search just like POP.

Detailed analysis is found in figure 6.2.

6.2 User Study

6.2.1 Hypotheses

There are two major hypotheses for our application

1. Dynamic Planner can reconstruct/repair the plan in real-time and faster than a

partial planner. Metrics : Time for replan using POP and DPOP, Time for

replan from scratch using POP and DPOP.

2. This framework could be used to generate real-world like narratives with free-

from interactions. Metrics : How close the simulation is to the original event,

complexity of the narrative.

In this user study, we did a quantitative analysis of the Dynamic Planner from the

experimental results discussed in Results section. An in-game questionnaire is done to

do a qualitative analysis of the system.

38

(a) Initial narrative is auto-generated and displayed in journal

(b) UI invalidates the narrative and D-POP repairs it

Figure 6.4: Screenshots from exp 3 demonstrating a case where narrative is repaired by

D-POP

DPOP analysis

The following metrics have been collected from game plays of 23 people. The game

environment consists of 11 affordances and 4 heterogeneous smart objects.

Time to plan from Scratch

For an experiment, the time take to generate initial plan was recorded for Dynamic

POP and POP. During the initial plan, the speed-up planned discussed in section 4.1

is implemented. A comparative study is depicted in figure 6.6.

39

(a) When no user intervention, NPC opens the door, walks in and buys the weapon.

(b) Player opens the door before NPC. NPC walks in(without opening the door). Player

buys the weapon before NPC and the narrative fails to repair.

Figure 6.5: 6.5a and 6.5b are two different cases of experiment 1

Time to repair plan

The dynamic planner mentioned in section 4.2 is evaluated by this metric. The time to

repair a plan using DPOP is compared with the time to generate a partial plan from

scratch using POP. The results are shown in figure 6.7

40

Figure 6.6: Time taken to generate a partial plan (in ms)

Figure 6.7: Time taken to repair the plan (in ms)

41

(a) (b)

(c) (d)

Figure 6.8: Player responses for the user study questionnaire

42

Chapter 7

Conclusion

7.1 Conclusion

We conclude by saying that, the techniques introduced in this paper to reconstruct

narratives from multiple agent memories are tested for different scenarios and are proven

robust. Though the agent architecture was introduced to support narrative recreation,

this in itself can further be extended to implement a complete cognition architecture.

As per our user study results so we have deduced that

• The A-POP and D-POP has shown improvements over POP for the test data.

This system should be tested for more complex scenarios across different systems

to get more diverse data

• From user study questionnaire, the complexity of the simulation can be further

increased

• Also, from the questionnaire it can be deduced that Dynamic Planner is able to

repair plans in real-time

7.2 Future Work

The agent architecture should further be tested for more complex scenarios and should

be checked for its robustness to see if it can be used in real world scenarios like surveil-

lance & crime solving. For the planner, the system used in this paper facilitates to

prove the working and efficiency of the D-POP and accelerated POP, it could only do

so for a predetermined number of affordances and smart objects. Hence we need a

system that can procedurally generate smart objects and affordances so that universal

43

statistics of a planner can be measured. The output(Narrative) quality of the planner

can improved by using a better heuristics like interesting-ness or tension induced in the

story if an action is added.

44

References

[1] Alexander Shoulson, Francisco M. Garcia, M. J. R. M. N. I. B. Param-
eterizing behavior trees. In 4th International Conference, MIG 2011, Edinburgh,
UK, November 13-15, 2011. Proceedings (2011).

[2] Boloni, L. A cookbook of translating english to xapi.

[3] Boloni, L. Xapagy cognitive architecture.

[4] David Poole, Alan Mackworth. Partial order planning.

[5] Gordon, A. S., van Lent, M., van Velson, M., Carpenter, P., and Jhala,
A. Branching Storylines in Virtual Reality Environments for Leadership Develop-
ment. In Proceedings of the 16th Innovative Applications of Artificial Intelligence
Conference (IAAI-04) (San Jose, CA, 2004), AAAI Press, pp. 844–851.

[6] Huang, P., Kapadia, M., and Badler, N. I. Spread: Sound propagation and
perception for autonomous agents in dynamic environments. In Proceedings of the
12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (New
York, NY, USA, 2013), SCA ’13, ACM, pp. 135–144.

[7] Kallmann, M., and Thalmann, D. Direct 3d interaction with smart objects.
In Proceedings of the ACM Symposium on Virtual Reality Software and Technology
(New York, NY, USA, 1999), VRST ’99, ACM, pp. 124–130.

[8] Kapadia, M., Marshak, N., and Badler, N. I. ADAPT: The Agent De-
velopment and Prototyping Testbed. IEEE Transactions on Visualization and
Computer Graphics 99, PrePrints (2014), 1.

[9] Kapadia, M., Singh, S., Reinman, G., and Faloutsos, P. A behavior-
authoring framework for multiactor simulations. Computer Graphics and Applica-
tions, IEEE 31, 6 (nov.-dec. 2011), 45 –55.

[10] Kartal, B., Koenig, J., and Guy, S. J. User-driven narrative variation in
large story domains using monte carlo tree search. In Proceedings of the 2014
International Conference on Autonomous Agents and Multi-agent Systems (Rich-
land, SC, 2014), AAMAS ’14, International Foundation for Autonomous Agents
and Multiagent Systems, pp. 69–76.

[11] Li., B. Learning Knowledge to Support Domain-Independent Narrative Intelli-
gence. PhD thesis, 2015.

[12] Li, B., Lee-urban, S., and Riedl, M. O. Crowdsourcing narrative intelligence.
Advances in Cognitive Systems 2 (2012).

45

[13] Likhachev, M., Ferguson , D., Gordon, G., Stentz , A. T., and Thrun,
S. Anytime dynamic a*: An anytime, replanning algorithm. In Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS) (June
2005).

[14] Loyall, A. B. Believable agents: building interactive personalities. PhD thesis,
Pittsburgh, PA, USA, 1997.

[15] Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., and Stokes, D. AI
Characters and Directors for Interactive Computer Games. Artificial Intelligence
1001 (2004), 877–883.

[16] Minton, S., Bresina, J. L., and Drummond, M. Total-order and partial-order
planning: A comparative analysis. CoRR abs/cs/9412103 (1994).

[17] Mubbasir Kapadia, Jessica Falk, F. Z. M. M. R. W. S. M. G. Computer-
assisted authoring of interactive narratives.

[18] Pérez, R. P., and Ortiz, O. A model for evaluating interestingness in a com-
puter–generated plot,. In Proceedings of the Fourth International Conference on
Computational Creativity (Sydney, Australia, jun 2013), p. 131–138.

[19] Riedl, M. O., and Young, R. M. An intent-driven planner for multi-agent
story generation. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 1 (Washington, DC, USA,
2004), AAMAS ’04, IEEE Computer Society, pp. 186–193.

[20] Schuerman, M., Singh, S., Kapadia, M., and Faloutsos, P. Situation
agents: agent-based externalized steering logic. Comput. Animat. Virtual Worlds
21 (May 2010), 267–276.

[21] Shoulson, A., and Badler, N. I. Event-centric control for background agents.
In ICIDS (2011), pp. 193–198.

[22] Shoulson, A., Gilbert, M. L., Kapadia, M., and Badler, N. I. An event-
centric planning approach for dynamic real-time narrative. In Proceedings of Mo-
tion on Games (New York, NY, USA, 2013), MIG ’13, ACM, pp. 99:121–99:130.

[23] Shoulson, A., Marshak, N., Kapadia, M., and Badler, N. I. Adapt: the
agent development and prototyping testbed. In I3D (2013), M. Gopi, S.-E. Yoon,
S. N. Spencer, M. Olano, and M. A. Otaduy, Eds., ACM, pp. 9–18.

[24] Singh, S., Kapadia, M., Hewlett, B., Reinman, G., and Faloutsos, P.
A modular framework for adaptive agent-based steering. In Symposium on In-
teractive 3D Graphics and Games (New York, NY, USA, 2011), I3D ’11, ACM,
pp. 141–150 PAGE@9.

	Abstract
	Acknowledgements
	Dedication
	Introduction
	Dynamic Planning
	Narrative Reconstruction from Agent Memories

	Related Work
	Framework Overview
	Dynamic Planner
	Narrative State Manager
	Planner
	Narrative
	Game UI

	Event-based Memory Generation
	Narrative Module
	Message Bus
	System State
	Virtual Agent

	Dynamic Planner
	Partial Order Planner
	Accelerated POP
	Dynamic POP
	D-POP algorithm
	Update for User Interactions
	Consistency Propagation

	Narrative Generation from Agent Memories
	Memory Representation
	Memory Generation
	Narrative Reconstruction
	Merging Agent Memories
	Narrative Validation
	Narrative Extrapolation

	Results
	Comparative Study
	Accelerated POP
	Dynamic planner

	User Study
	Hypotheses
	DPOP analysis
	Time to plan from Scratch
	Time to repair plan

	Conclusion
	Conclusion
	Future Work

	References

