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ABSTRACT OF THE DISSERTATION

Methodological study of computational approaches to

address the problem of strong correlations.

By JUHO LEE

Dissertation Director:

Prof. Kristjan Haule

The main focus of this thesis is the detailed investigation of computational methods to

tackle strongly correlated materials in which a rich variety of exotic phenomena are found.

A many-body problem with sizable electronic correlations can no longer be explained

by independent-particle approximations such as density functional theory (DFT) or tight-

binding approaches. The influence of an electron to the others is too strong for each

electron to be treated as an independent quasiparticle and consequently those standard

band-structure methods fail even at a qualitative level.

One of the most powerful approaches for strong correlations is the dynamical mean-

field theory (DMFT), which has enlightened the understanding of the Mott transition

based on the Hubbard model. For realistic applications, the dynamical mean-field the-

ory is combined with various independent-particles approaches. The most widely used one

is the DMFT combined with the DFT in the local density approximation (LDA), so-called

LDA+DMFT. In this approach, the electrons in the weakly correlated orbitals are calculated

by LDA while others in the strongly correlated orbitals are treated by DMFT. Recently, the

method combining DMFT with Hedin’s GW approximation was also developed, in which

the momentum-dependent self-energy is also added.
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In this thesis, we discuss the application of those methodologies based on DMFT. First,

we apply the dynamical mean-field theory to solve the 3-dimensional Hubbard model in

Chap. 3. In this application, we model the interface between the thermodynamically

coexisting metal and Mott insulator. We show how to model the required slab geometry and

extract the electronic spectra. We construct an effective Landau free energy and compute

the variation of its parameters across the phase diagram. Finally, using a linear mixture of

the density and double-occupancy, we identify a natural Ising order parameter which unifies

the treatment of the bandwidth and filling controlled Mott transitions.

Secondly, we study the double-counting problem, a subtle issue that arises in LDA+DMFT.

We propose a highly precise double-counting functional, in which the intersection of LDA

and DMFT is calculated exactly, and implement a parameter-free version of the LDA+DMFT

that is tested on one of the simplest strongly correlated systems, the H2 molecule. We show

that the exact double-counting treatment along with a good DMFT projector leads to very

accurate and total energy and excitation spectrum of H2 molecule.

Finally, we implement various versions of GW+DMFT, in its fully self-consistent way,

one shot GW approximation, and quasiparticle self-consistent scheme, and studied how well

these combined methods perform on H2 molecule as compared to more established methods

such as LDA+DMFT. We found that most flavors of GW+DMFT break down in strongly

correlated regime due to causality violation. Among GW+DMFT methods, only the self-

consistent quasiparticle GW+DMFT with static double-counting, and a new method with

causal double-counting, correctly recover the atomic limit at large H-atom separation. While

some flavors of GW+DMFT improve the single-electron spectra of LDA+DMFT, the total

energy is best predicted by LDA+DMFT, for which the exact double-counting is known,

and is static.
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Chapter 1

Introduction

The discovery of quantum mechanics in the early 20th century opened a completely different

viewpoint toward small scales and low energy of atom atom and subatomic particles. From

this fundamental microscopic theory, condensed matter physics has long sought to under-

stand the macroscopic properties of systems such as heat capacity, magnetism and electric

conductivity of materials. Nowadays, the field encompasses a wide range of phenomena in

solids including high Tc superconductivity, topological insulator and metal-insulator tran-

sition.

The development of condensed matter physics is tied to the interplay between experi-

mental and theoretical approaches. Experiment continues to raise questions based on new

observations owing to the development of fine technologies. For example, technologies such

as molecular beam epitaxy (MBE) now allow experimentalists to synthesize two-dimensional

materials, which is a whole zoo of exotic phenomena of low energy physics. These experimen-

tal observations then stimulate the development of theories which provide new frameworks

explaining such behaviors.

From the theoretical perspective, condensed matter physics is all about reasonable ap-

proximations to the exact solution, which is impossible to solve in most cases. For example,

in the Hartree-Fock (HF) approximation, the correlation effect is completely neglected (by

definition that the correlation energy is the exact energy minus the HF energy) where the

band gaps are severely overestimated. In the local density approximation (LDA), one of the

density functional theorem (DFT) schemes, the local electron density at each point in the

space is mapped onto the degenerate electronic gas and the exchange-correlation is taken

by that of the local electronic gas at the point. Therefore the spatial fluctuation is totally

frozen.
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Figure 1.1: Half-filled (one electron per site) 1-dimensional Hubbard model. When t >> U ,
the kinetic energy is so substantial that electrons behaves like independent particles and
therefore occupy N/2 states of the s-band (wave-like). On the other hand, in the regime
U >> t, the Coulomb interaction energy of a doubly-occupied site is too costly that electrons
do not jump into other site (particle-like)

Among theoretical approaches, the independent quasiparticle assumption is the most

frequently used framework, which is a good approximation for weakly correlated materials.

Those are materials where electrons are highly itinerant, i.e., electrons are quite delocalized

over the solid. In such cases, electrons can be depicted as wave-like independent quasipar-

ticles. In such systems, the kinetic energy of electrons dominates the interaction energy.

The most frequently used and notable method, density functional theory (DFT), where

the electron-electron interaction is incorporated as a static mean-field, has successfully pre-

dicted physical properties of these class of materials. In molecular systems, Hartree-Fock

(HF) is considered a good approximation for orbital energy calculation.

The independent-particle approximation is very intuitive and has been used as a primi-

tive basis to determine whether given materials are metals, insulators or semi-conductors.

However, in materials containing partially filled d- or f - orbitals, the Coulomb interaction

between electrons is so strong that the independent-particle picture simply breaks down.

These materials are often called strongly correlated systems.

Let us imagine a one-dimensional chain model with one electron per site (Fig. 1.1). We

allow electrons to move from one site to another with the transfer matrix t and require the
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Figure 1.2: Schematic representation of the energy level for a Mott-Hubbard insulator. [1]

onsite Coulomb energy U

U =

∫
dr1

∫
dr2|φ(r1)|2 1

|r1 − r2|
|φ(r2)|2. (1.1)

if two electrons occupy the same site. According to the band theory (independent-particle

approximation), the underlying band is always half-filled no matter what the ratio U/t is.

In the limit t << U , this is a correct picture and we can calculate the effect of on-site

interaction U using perturbation theory with the ground state as the Bloch solution (wave-

like). In the limit U/t >> 1, however, two electrons occupying the same site cost so much

energy (U) that the charge transfer process is suppressed. Therefore, in this limit, we should

conclude that the system becomes an insulator that contradicts the prediction of the band

theory.

This phenomena is known as “Mott transition” that was first recognized in 1937 [2]. It

can be found in a variety of transition metal oxides. For example, Peierls used the above

argument to explain the reason for NiO to be an insulator. In NiO, each Ni2+ ion keeps 8

d-electrons out of 10 vacancies in d-orbital but charge transfer does not occur because of

large Coulomb interaction which splits the 3d-band with the energy gap U − 2tz where z is

the number of nearest neighbors. (Fig. 1.2 [1])
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The most interesting case arises when the kinetic energy and Coulomb interaction energy

of a system are comparable to each other. In this middle regime, electrons exhibit both

itinerant and localized behaviors, giving rise to numerous fascinating phenomena such as

heavy fermions, Mott-Hubbard metal insulator transitions and High Tc superconductivity.

At the same time, this is the most difficult regime to solve because one should approach

the problem with a mixed representation of local basis and Bloch wavefunction to properly

describe the wave-particle duality.

Among many theoretical developments to deal with strongly correlated systems, the

dynamical mean-field theory (DMFT) [3, 4] has been very successful. Due to its non-

perturbative nature it was able to describe the phenomena of the first order metal insu-

lator transition even in its most simplistic form of the single band Hubbard model [4].

With realistic extension, DMFT has been combined with DFT within the LDA framework

(LDA+DMFT). This combination of LDA and DMFT has been very successful in describing

materials with open d and f shells both for their spectral properties, as well as comput-

ing total energy [5] and free energy [6] of crystal phases. Recently, DMFT has also been

successfully applied to molecules [7, 8].

Instead of LDA, Hedin’s GW approximation has been also suggested to combine with

DMFT to give a momentum-dependent self-energy to the system. Furthermore, since GW

is a diagrammatic method based on Green’s function formalism, it can easily interface

with DMFT without the double-counting issue, which indicates it can be a possibly better

alternative to LDA+DMFT.

In this thesis, we will mainly discuss the methodologies based on dynamical mean-field

theory and its applications. In Chapter 2, the main idea of dynamical mean-field theory

(DMFT) is discussed in the limit of large dimension and we will derive the self-consistent

DMFT equations based on the Hubbard model. We will also introduce the idea of mapping

the local site onto an auxiliary impurity system and briefly discuss one of the most powerful

impurity solvers, continuous time quantum Monte-Carlo (CTQMC). In Chapter 3, we will

present our recent work on 3-dimensional Hubbard model, where we model the interface

between the thermodynamically coexisting metal and Mott insulator and solve the problem

based on the DMFT framework. In Chapter 4, the general derivation of LDA+DMFT will be
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discussed as well as the double-counting issue. We will finally discuss the general formalism

of GW+DMFT and give a detailed comparison between various types of GW+DMFT in

Chapter 5.
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Chapter 2

Dynamical Mean-Field Theory

This chapter is devoted to dynamical mean-field theory (DMFT), the central theme of this

article. DMFT is a method to determine the physics of correlated electrons in solids. In the

materials where electrons are strongly correlated, independent-quasiparticle approximation,

which is the basis of conventional band theory techniques such as density functional theory,

breaks down. DMFT provides a non-perturbative treatment for correlated electrons, which

can apply not only to the fermi gas limit (band theory) and the atomic limit (t-J model and

etc), but also to the middle regime where kinetic and interaction energy compete within a

single framework.

Historically, there were two major steps for its formulation. First of all, Vollhardt

and Metzner [9] introduced the infinite lattice coordination limit to the many-body lattice

problem. In such a limit, they found that the diagrammatic analysis becomes substantially

simpler while the competition between the local interaction and kinetic term is still retrained

to give a qualitative picture of the 3-dimensional Hubbard model.

A second significant step was achieved by Kotliar and Georges [3] who mapped the a

lattice Hubbard model onto the Anderson impurity model that consists of interacting local

degrees of freedom in a non-interacting bath. This self-consistent mapping of local site onto

an auxiliary impurity is the essential basis of the dynamical mean-field theory. It allowed

theorists to develop and solve a wide range of models on the lattice based on both analytic

and numerical approaches such as continuous-time quantum Monte-Carlo (CTQMC) that

was developed to solve the Anderson impurity model (AIM).

In this chapter, we will explore the basic construction of the dynamical mean-field theory

and how it can be solved by mapping the lattice problem onto an auxiliary impurity system.

In the technical sense, the DMFT approach approximates the self-energy to be a local
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quantity. Using scaling analysis, we will show how the large lattice coordination number

(or a hypercubic lattice in the high dimension) leads to the local self-energy approximation.

2.1 Archetype: Mean-field theory for Ising model

Mean-field theory is one of the feasible techniques for many-body problems, which gives

a qualitative description for classical and quantum systems. A many-body problem is in

general very hard to solve because too many degrees of freedom are interacting with each

other. Mean-field theory typically approximates the effect of all other particles on a given

individual as an averaged field, thus reduces the many-body problem to an effective one-

body problem.

Although it is used widely, the term is rather vague because of no unique way of con-

structing a mean-field approximation. One of the well-established ways for lattice system

is to take an advantage the limit of large coordination number z (number of nearest neigh-

bors). This way of mean-field approximation turns the lattice problem into an effective

single-site problem. The key idea is to approximate the local dynamics by the single-site

interacting with the effective bath caused by the rest of the crystal.

To give a good intuition, we shall analyze a mean-fielt theory for the Ising model, which is

treated as a classical counterpart of dynamical mean-field theory for quantum many-boday

lattice problems.

The mean-field approach The Ising model with nearest-neighbor interaction is illustrated

by the following Hamiltonian:

H = −J
∑
〈ij〉

sisj − h
∑
i

si, (2.1)

where the system is ferromagnetic (J > 0) and the h is an external magnetic field uniformly

applied to this system. Let us focus on the local dynamics of a particular single-site o. A

mean-field approach suggests regarding the local magnetic field as the thermally-averaged
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magnetic field generated by nearest neighbors. Therefore, heff is described as:

heff = J
∑
i

〈si〉+ h = zJm+ h, (2.2)

where z is the coordination number of the site and we used translational invariance (〈si〉 =

m). This approximation is completely justified when z → ∞ by the general statistical

rule that the fluctuation of random variables falls off as 1/z. Then, the local dynamics of

a single-site is governed by the effective local Hamiltonian Hloc and its partition function

Zloc:

Hloc = −s0heff (2.3)

Zloc = cosh (βheff) (2.4)

From the statistical mechanics point of view, the local magnetization 〈so〉 = m is regained

by

m = − ∂

∂heff
f

∣∣∣∣
heff=0

=
1

β

∂

∂heff
lnZloc

∣∣∣∣
heff=0

= tanh(βheff)

= tanhβ(zJm+ h).

(2.5)

Therefore, local magnetization can be determined by this self-consistent equation. It is

easily noted that in the limit of z →∞, J has to be properly scaled by J = J∗/z, fixing J∗

to a finite value in order to prevent the blow-up of the free-energy per site. The Hubbard

- Stratonovich transformation [10] actually uses this scaled J = J∗/z to show that the

solution of Ising model exactly coincides with that of mean-field theory in the z →∞ limit,

in which mean-field theory is justified.

2.2 Dynamical mean-field approach for correlated electrons in lattice

2.2.1 Hubbard model

One of the simplest model for correlated electrons in solids is the single-band Hubbard model

which has been widely used to describe exotic phenomena such as Mott transition and high
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temperature superconductivity of strongly correlated correlated systems. Electrons in this

model are described by only two terms, the transfer matrix t (hopping) and the onsite

Coulomb interaction U when two electrons occupy the same site, which can be written as

H = −t
∑
〈ij〉,σ

(c†iσcjσ + h.c) +
∑
i

Un̂i↑n̂i↓ − µ
∑
i

c†iσciσ. (2.6)

where c†iσ (ciσ) is a creation (annihilation) operator of electrons with spin σ at the site i.

The competition between the kinetic energy and Coulomb interaction in the Hubbard

model captures the key feature of strongly correlated materials. When the second term

(U) is very small, the tight-binding solution dominates the physics and the second term

U only comes as perturbation, leading to quasi-particle with small shifted energy. On the

other hand, in the limit where U/t >> 1, t acts as perturbation on the isolated magnetic

moment leading to t-J model, giving rise to many interesting magnetic structure, such as

ferromagnetic, antiferromagnetic depending on the exact solutions of the model.

Despite its simple structure, it is very difficult to solve the Hubbard model in the regime

where U/t ∼ 1. As mean-field solution of the Ising model becomes exact in the large

coordination number limit, our goal is to develop a similar argument for many-body lattice

problems such as a Hubbard model.

Quantum theories for many-body problems generally relies on the Green function. A

Green function can be written in real and imaginary time axis but in this article, since most

of the implementation is based on the imaginary time and Matsubara frequency a a finite

temperature, we will focus on the imaginary time formalism.

The (imaginary) time-ordered single-particle Green’s function Gαβ(τ − τ ′) is defined as

Gαβ(τ) = −〈Tcα(τ)c†β(0)〉 (2.7)

where T denotes a time ordering operator. The Green’s function can be then interpreted

as the probability amplitude of between particles (for τ > 0) or holes (for τ > 0) in an

equilibrium state.

Not only does the single particle Green’s function serve as the smallest building block of
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Figure 2.1: The Cayley tree for connectivity z = 3. One can imagine z→∞ for the Bethe
lattice.

perturbation expansion, we can also directly calculate numerous important physical observ-

ables from it. For example, the electronic density ρ, total electronic energy E and spectral

function Ak(ω) of the system are given by (See Ref. [11]),

ρ(r, r′) = 〈ψ†(r)ψ(r′)〉 = −G(r, r′; τ = 0−) = −T
∑
iω

eiωn0+
G(r, r′; iωn), (2.8)

E = Tr(H0ρ) +
1

2
Tr(ΣG) (2.9)

A(r, r′;ω) = − 1

π
ImG(r, r′;ω + i0+). (2.10)

where the self-energy Σ can be also obtained by the Dyson equation G−1 = G−1
0 − Σ.

2.2.2 Proper scaling of coupling constant in infinite coordination lattice

We saw in the semi-classical Ising model that the coupling constant should be scaled as

J = J∗/z and the mean-field solution becomes exact as z→∞. Now it is natural to ask

what is the proper scaling for the coupling constant in the fully quantum-mechanical lattice

models.

To give an insight, let us consider the Hubbard model in the Bethe lattice with U = 0

to see what the Green’s function of the simple tight-binding Hamiltonian in the z→∞ limit

looks like. The Bethe lattice is a Cayley tree with the infinite connectivity as depicted in

the Fig. 2.1. As it will turn out shortly, we claim that the appropriate scaling for the

nearest hopping parameter is t = −t∗/
√
z. The on-site Green’s function of a given site is
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then written

G−1
00 (ξ) = ξ − t2∗

z

z∑
j=1

G̃
(0)
jj (ξ) (2.11)

where the summation is over the nearest neighbors of the site 0 and G̃
(0)
jj is the local green’s

function at site j with the site 0 removed. When the coordination number z goes to infinity,

we have G̃
(0)
jj ∼ Gjj = G00 and the equation becomes self-consistent:

G−1
00 (ξ) = ξ − t2∗G00(ξ), (2.12)

whose analytic solution is

G00(ξ) =
1

2t2∗
(ξ −

√
ξ2 − 4t2∗). (2.13)

In the solution, the sign is chosen in the way that G00(ξ)→0 as |ξ|→∞. One can see that

the self-consistent equation and its solution above can be justified due to the scaling of

t→t∗/z.

Another illustration for this scaling can be discussed in the d-dimensional hyperlattice

with nearest neighbor hopping at d→∞ where the dispersion is given by εk = −2t
∑d

n=1 cos(kn).

First, we can think of a random variable Xn =
√

2coskn with uniform distribution ki ∈

[−π, π]. Note that the mean is
∫
−π π

dki
2π Xi = 0 and the variance

∫
−π π

dki
2π X

2
i = 1. Since

each Xn can be thought of as an independent and identical distribution (i.i.d.), from cen-

tral limit theorem X̄ = 1√
d

∑d
n=1Xn should follow a normal distribution N(0, 1) in the

limit of d→∞. Since the density of state can be thought of as the distribution function of

εk = −t
√

2dX̄, with the scaling t = t∗/
√

2d, we can write down a finite density of state

ρ(ε) =
1√

2πt∗
exp

[
− ε2

2t2∗

]
. (2.14)

Since the Green’s function is the probability amplitude between two electronic states,

the leading order of Green’s function between two nearest sites i, j is proportional to the

hopping parameter t: Gij ∼ t ∼ 1/
√
d. In general, it can be proven for any i, j that (see

Ref. [4])

Gij ∼ O(1/d
|i−j|

2 ) (2.15)
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Figure 2.2: An example of the 2nd-order self-energy component.

where |i − j| is Manhattan metric which counts the number of hops between i and j site.

It is important to note that although the propagator between two sites vanishes as 1/
√
d,

the electron is not localized at a site due to the infinite number of nearest sites. Indeed,

the probability to jump from a site 0 to the nearest neighbor j is
∑z

j=1 |G0j |2 ∼ O(1).

2.2.3 Simplification of diagrams in the d→∞ limit

Now, using the scaling property we derived above, let us consider irreducible single-particle

self-energy that connects i and j site, Σij(iω). In the Fig 2.2, we present a second order

diagram for example. Dots denote the corresponding on-site vertices while the lines repre-

sent the propagator between two sites. The site i and j is connected by three propagators

in the second-order diagram, which means this diagram scales as O(1/d3/2) or even smaller.

Therefore, it is at least a factor 1
d smaller than the direct propagator that connects i and j

site. Thus, non-local amputated diagrams should vanish as the factor 1
z . Since it becomes

even smaller in the higher order terms, we conclude that any non-local components of the

self-energy in the large d limit is excluded and only local skeleton terms survive, namely,

the self-energy becomes momentum independent:

Σij = δijΣii or Σk = Σii. (2.16)

In the limit of infinite dimension, therefore, the self-energy becomes local quantity which

can be solely determined by other local quantities such as the local Green’s function (equiv-

alently, a dynamical Weiss-field as we shall see later in the section) and local interaction.

Based on one-band Hubbard model with the local self-energy, we can simply obtain the

self-consistent equation for local Green’s function. Since the Green’s function is given by
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Gk(iω)−1 = (iω)+µ−εk−Σ, the local Green’s function is given by the Hilbert transformation

G(iω) = D̃(ξ) ≡
∫ ∞
−∞

dεD(ε)
1

ξ − ε
(2.17)

where ξ = iω + µ− Σ(iω). We define the inverse transformation R such that

R[D̃(ξ)] = R[G] = ξ. (2.18)

For the Bethe lattice, from (2.13) and D(ε) = − 1
π ImG(ε+ i0+) =

√
4t2∗ − ε2/2πt2∗, one

can easily show that

D̃(ξ) =
1

2t2∗
(ξ −

√
ξ2 − 4t2∗). (2.19)

Then by simply solving with respect to ξ, we can obtain the inverse transformation

R[G] = t2∗G+
1

G
= ξ = iω + µ− Σ(iω) (2.20)

and clearly the self-energy is obtained only from the local (interacting) Green’s function G.

2.2.4 Derivation of DMFT effective action: Reduction to a single-site problem

In order to formulate the mean-field theory for correlated lattice system similar to what we

did for Ising model, we need to derive an effective action of a local site by integrating out

the degrees of freedom of all other sites. We will develop this procedure for the case of a

single-band Hubbard model using the scaling analysis in the previous section. The partition

function of the system in the language of functional integral is written as

Z =

∫ ∏
iσ

Dc̄iσDciσ exp(−S[c̄iσ, ciσ]) (2.21)

where the index i denotes the site number. The imaginary-time action S within the func-

tional integral formalism is

S =

∫ β

0
dτ

[∑
i,σ

c̄iσ(τ)(
d

dτ
− µ)ciσ(τ) +H[c̄(τ), c(τ)]

]
(2.22)
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Figure 2.3: The lattice model divided into the three parts: the local site (S0), the hybridiza-
tion (Shyb) and the cavity (Scavity).

where the c̄(τ), c(τ) follow Grassmann algebra. H is the Hamiltonian of the one band

Hubbard model

H[c̄iσ, ciσ] = −t
∑
〈ij〉,σ

(c̄iσcjσ + h.c) +
∑
i

Uni↑ni↓. (2.23)

Since we eventually want to derive the effective action for a local site (denote it as 0th

site), we divide the system into the local site, the cavity, which is the lattice with the 0th

site removed, and the hybridization between them. Therefore we write down the action as

S = S0 + Scavity + Shyb. Each of the components is written as

S0 =

∫ β

0
dτ

[
c̄0σ(

d

dτ
− µ)c0σ + Un0↑n0↓

]
(2.24)

Scavity =

∫ β

0
dτ

[ ∑
i 6=0,σ

c̄iσ(
d

dτ
− µ)ciσ − t

∑
〈i,j 6=0〉,σ

(c̄iσcjσ + h.c) +
∑
i 6=0,σ

Uni↑ni↓

]
(2.25)

Shyb =

∫ β

0
dτ

[
− t

∑
〈i 6=0〉,σ

(c̄iσc0σ + h.c)

]
. (2.26)

To integrate out degrees of freedom of the cavity, we rewrite the partition function as

Z =

∫
Dc̄0σDc0σ exp(−S0)

∫ ∏
i 6=0,σ

Dc̄iσDciσ exp(−Scavity − Shyb). (2.27)

In the functional integral for cavity degrees of freedom, c̄0σ, c0σ in Shyb serve as source terms.

Using the perturbation theory (the linked-cluster theorem) with Scavity as the unperturbed
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action, we can evaluate the second integral as

∫ ∏
i 6=0,σ

Dc̄iσDciσ exp(−Scavity − Shyb) = Zcavity exp(−∆S[c̄0σ, c0σ]) (2.28)

where the Zcavity is the partition function of the cavity. ∆S is by definition

∆S[c̄0σ, c0σ] =
∞∑
n=1

∆S(n) =
∞∑
n=1

t2n
∑

i1,··· ,in,i′1,··· ,i′n

∫ β

0

n∏
j=1

dτjdτ
′
j

c̄0σ(τ1) · · · c̄0σ(τn)c0σ(τ ′1) · · · c0σ(τ ′n)G
(0)
i1,··· ,in,i′1,··· ,i′n

(τ1, ..., τn; τ ′1, ..., τ
′
n). (2.29)

where G
(0)
i1,··· ,in,i′1,··· ,i′n

(τ1, ..., τn; τ ′1, ..., τ
′
n) is n-point connected Green’s function of the fully

interacting cavity with the indices {i1, · · · , in, i′1, · · · , i′n} being nearest neighbors of 0th site.

The superscript (0) means that it is the cavity Green’s function with 0th site removed.

Considering the scaling t = t∗/
√
z, only the one-particle cavity Green’s functions (n = 1)

survive in the limit of infinite coordination number, that is, ∆S = ∆S(1). Therefore, the

effective action for the local quantity c̄0σ, c0σ is obtained by

Seff = S0 + ∆S(1)

= −
∫ β

0
dτ

∫ β

0
dτ ′c̄0σ(τ)G0(τ − τ ′)c0σ(τ ′) +

∫ β

0
dτUn0↑(τ)n0↓(τ) (2.30)

where the Weiss-field G0 is defined as

G−1
0 (τ − τ ′) = −(

d

dτ
− µ)δττ ′ −

∑
ij

t∗0iG
(0)
ij (τ − τ ′)t∗j0. (2.31)

The second term of the last expression originates from the first order term (n=1) of Eq.

(2.29). This construction of effective local action allows us to calculate any local observables

solely with Seff because

〈A[c̄0σ, c0σ]〉 =
Tr
[
A[c̄0σ, c0σ] exp(−S)

]
Tr exp(−S)

=
ZcavityTr

[
A[c̄0σ, c0σ] exp(−Seff)

]
ZcavityTr exp(−Seff)

=
Tr
[
A[c̄0σ, c0σ] exp(−Seff)

]
Tr exp(−Seff)

= 〈A[c̄0σ, c0σ]〉eff . (2.32)
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Since we obtain the Weiss field for the case of Hubbard model, the next step is to obtain

the self-consistent equation, a closed set of equations for local variables.

We consider the Bethe lattice, the Cayley tree of z =∞ . Since there is only one path

between any i, j that are nearest neighbors of 0th site in a Cayley tree, G
(0)
ij is always zero

unless i = j. Furthermore, in the limit of z→∞, the local Green’s function of the cavity

should not differ from that of the original site. Therefore in the Bathe lattice case, we have

G
(0)
ii = Gii = G00. So the local Weiss-field of Bethe lattice is given by

G−1
0 (iω) = iω + µ− t2∗G00(iω) (2.33)

We put this equation to construct Seff in (2.30) and then from Eq. (2.32), the local Green’s

function is obtained by

G00(τ − τ ′) = −〈Tc0σ(τ)c̄0σ(τ ′)〉eff = −
Tr
[
Tc0σ(τ)c̄0σ(τ ′) exp(−Seff)

]
Tr exp(−Seff)

. (2.34)

Hence, if we assume that we have a method to evaluate the Grassmann integral (2.34),

then (2.30), (2.33) and (2.34) form a closed set of equations and we can evaluate G00

self-consistently.

In the Bethe lattice, the Hilbert transform reads R[G00] = t2∗G00 + 1/G00 = iω+ µ−Σ.

Putting this relation into (2.33), we obtain the following Dyson equation

G(iω)−1 = G−1
00 (iω) = G0(iω)−1 − Σ(iω). (2.35)

Therefore the self-energy component obtained from the effective action (2.30) indeed coin-

cides with the actual local self-energy of the system.

This property also applies to a general lattice in the infinite dimension. First of all,

Hubbard showed in his early work [12] that the cavity Green’s function is related to the full

lattice Green’s function by

G
(0)
ij = Gij −

Gi0G0j

G00
(2.36)

In the above expression, the second term is subtracted because it is the term contributing
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to Gij but not to G
(0)
ij through 0th site. For an interacting Hamiltonian, this relation is

only true for d =∞. Then Eq. (2.31) becomes

G0(iω) = iω + µ−
∑
ij

t0iGijtj0 +

(∑
i t0iGi0

)2
G00

. (2.37)

The Green’s function of the lattice in the infinite dimension is Gk = 1
iω+µ−εk−Σ with a

k-independent self-energy Σ. Fourier analysis then gives us

∑
i

t0iGi0 =
∑
k

εkGk =
∑
k

(εk − ξGk + ξGk) = −1 + ξG00 (2.38)

∑
ij

t0iGijtj0 =
∑
k

ε2
kGk =

∑
k

(
εk(εk − ξ)Gk + ξεkGk

)
= −ξ + ξ2G00 (2.39)

where ξ = iω+ µ−Σ = R[G00]. Inserting into (2.37), we obtain the Dyson equation (2.35)

for a general lattice in d =∞ case.

In practice, we solve the closed set of self-consistent equations (2.31), (2.34) and (2.35)

in the following iterative loop:

(1) Starting with an initial guess self-energy Σ, we calculate the local self-energy:

G =

∫
dεD(ε)

1

iω + µ− ε− Σ(iω)
(2.40)

(2) From the Dyson equation, compute the Weiss-field:

G−1
0 = G−1 + Σ (2.41)

(3) Obtain the new local Green’s function G from the effective action

G(new) = −
Tr
[
Tc0σ(τ)c̄0σ(τ ′) exp(−Seff)

]
Tr exp(−Seff)

(2.42)

(4) Go back to step (1) with the new self-energy Σ(new) = Gnew −1 − G−1
0 .

Each of the steps is quite straightforward except the step (3). It is the heart of DMFT

loop, solving the new Green’s function given a effective single-site action. In the next
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chapter, we will focus on the formulation of Anderson impurity model and a state-of-the-

art technique continuous-time Monte Carlo as an impurity solver.

Finally, we mention in passing that the local interaction U is not affected when we

integrate out the cavity degrees of freedom because the local interaction is not coupled

with the other sites. In general interaction, however, the effective local interaction in the

auxiliary impurity must be calculated carefully similar to that of G0. The renormalization of

the impurity interaction makes the problem even more complicated especially when DMFT

is applied to real material calculation combined with band structure methods such as DFT.

2.2.5 Impurity representation

In the previous section, we have shown that one can solve the infinite coordination lattices

problem by solving an auxiliary single-site problem with action (2.34). We also have argued

that the lattice self-energy of this problem is purely local and the self-energy of the the

auxiliary single-site system is identical to the local self-energy of the lattice. To give some

physical insights, let us introduce the impurity representation, which provides a Hamiltonian

formulation for the effective action formalism that we derived above.

The Anderson impurity model (AIM) is given by

H = εdd
†
σdσ + Un̂d↑n̂d↓︸ ︷︷ ︸

Hatom

+
∑
k,σ

ε̃kc
†
kσckσ︸ ︷︷ ︸

Hbath

+
∑
k,σ

Vk(c
†
kσdσ + h.c)

︸ ︷︷ ︸
Hhyb

. (2.43)

Physically, AIM describes a fully interacting localized impurity surrounded by a non-

interacting conduction band (bath), where electrons can channel between them through

the transfer matrix Vk. This simple model is one of the canonical topics in solid-state

physics, which has stimulated many of physical ideas as well as the numerical techniques.

It is importance to notice that the corresponding effective impurity action of AIM, Seff ,

with the bath degrees of freedom integrated out,

Seff [d̄σ, dσ] = −
∫ β

0
dτ

∫ β

0
dτ ′d̄σ(τ)G0(τ − τ ′)dσ(τ ′) +

∫ β

0
dτUnd↑(τ)nd↓(τ), (2.44)
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has the same form as the local effective action of an infinite coordination lattice (2.30). In

AIM case, the Weiss-field G0 is given by

G0(iω) = iω − εd −∆(iω) (2.45)

where the hybridization function ∆, which is the consequence of renormalization of the bath

degree’s of freedom, reads

∆(iω) =
∑
k

|Vk|2

iω − εk
. (2.46)

The original infinite dimensional lattice problem is then equivalent to solving the corre-

sponding impurity problem which causes the same hybridization function given by the

cavity. That is why the impurity solver for AIM lies at the heart of DMFT.

2.3 Continuous-time Quantum Monte-Carlo

In this section, we introduce continuous-time quantum Monte-Carlo (CTQMC), one of the

start-of-the-art methods for AIM solution. CTQMC plays one of the most important roles

in the DMFT implementations since the quality of the computation directly relies on the

impurity solver.

In the strong coupling version of CTQMC [47, 48, 49], where the diagram expansion is

computed in powers of hybridization ∆(iω) with the local atomic limit as the unperturbed

solution. Then the Monte Carlo importance sampling is used to sample the Feynman

diagrams. For each perturbation order k, we regroup the diagrams into a determinant of a

matrix of size k × k

Zimp =

∫
Dd̄σDdσ exp(−Seff [d̄σ, dσ]) (2.47)

where the effective impurity action (2.44) can be rewritten as

Seff [d̄σ, dσ] = Satom[d̄σ, dσ] +
∑
α,α′

∫ β

0
dτ

∫ β

0
dτ ′d̄α(τ)∆α,α′(τ − τ ′)d′α(τ ′). (2.48)
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We can expand Eq. (2.47) in powers of hybridization function ∆(iω)

Zimp =

∫
Dd̄σDdσ exp(−Satom −∆S)

= Zatom

∑
k

1

k!

∫ β

0
dτ1

∫ β

0
dτ ′1 · · ·

∫ β

0
dτk

∫ β

0
dτ ′k

×
∑

α1,α′1,··· ,αk,α′k

〈
Tdα1(τ1)d̄α′1(τ ′1) · · · dαk(τk)d̄α′k(τ ′k)

〉
atom

× 1

k!
Dk (2.49)

where Dk is by definition a determinant of the k×k matrix whose component is ∆αiαj (τi, τ
′
j)

Dk = Det



∆α1α1(τ1, τ
′
1) · · · · · · ∆α1αk(τ1, τ

′
k)

· · · · · · · · · · · ·

· · · · · · · · · · · ·

∆αkα1(τk, τ
′
1) · · · · · · ∆αkαk(τk, τ

′
k)


(2.50)

Here, Satom is the impurity part of the action including the local interaction matrix,

[d, d†] is the fermion operator, and αk represents the bath degrees of freedom including spin

and orbital indices. The matrix in the determinant is the hybridization matrix regrouped

from the ∆ elements at each perturbation order k.

We need two Monte Carlo steps to be implemented: (i) the insertion of two kinks at

random times τnew and τ ′new (chosen uniformly [0, β)), corresponding to a random baths α

and α′, and (ii) removal of two kinks by removing one creation operator and one annihilation

operator. The detailed balance condition requires that the probability inserting two kinks

at random times τnew and τ ′new, which is chosen uniformly in the interval [0, β), is

Padd = min

[(
βNb

k + 1

)2Znew
Zold

Dnew
Dold

, 1

]
(2.51)

where Nb is the number of baths, k is the current perturbation order (number of kinks/2),

Znew is the cluster matrix element

Znew =

〈
Tdαnew(τnew)d̄α′new(τ ′new)dα1(τ1)d̄α′1(τ ′1) · · · dαk(τk)d̄α′k(τ ′k)

〉
atom

(2.52)
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and Dnew/Dold is the ratio between the new and the old determinant of baths ∆. The factors

of (βNb) enter because of the increase of the phase space when adding a kink (increase of

entropy) while the factor 1/(k + 1) comes from factorials in Eq. (2.49). Similarly, the

probability to remove two kinks, chosen randomly between [1, · · · , k] is

Prem = min

[(
k

βNb

)2Znew
Zold

Dnew
Dold

, 1

]
(2.53)

The expectation value of an observable (hatO), expressible in terms of local fermionic

operators d, d†, can be calculated by sampling over the atomic states by the Monte Carlo

method:

〈Ô〉 =
1

Zimp
Zatom

∞∑
k=0

1

k!

∫ β

0
dτ1

∫ β

0
dτ ′1 · · ·

∫ β

0
dτk

∫ β

0
dτ ′k

×
∑

α1,α′1,··· ,αk,α′k

〈
TÔdα1(τ1)d̄α′1(τ ′1) · · · dαk(τk)d̄α′k(τ ′k)

〉
atom

× 1

k!
Dk (2.54)

Then the imaginary time local Greens function can be written as:

Gαα′(τ − τ ′) = −〈Tdα(τ)d̄α′(τ
′)〉

=
1

Zimp
Zatom

∞∑
k=0

1

k!

∫ β

0
dτ1

∫ β

0
dτ ′1 · · ·

∫ β

0
dτk

∫ β

0
dτ ′k

×
∑

α1,α′1,··· ,αk,α′k

〈
Tdα(τ)d̄α′(τ

′)dα1(τ)d̄α′1(τ ′1) · · · dαk(τk)d̄α′k(τ ′k)

〉
atom

× 1

k!
Dk (2.55)

One can compute the Greens function of conduction bath electrons. As the conduction

electron operators are added in the partition function, the size of the hybridization matrix

is increased from k×k to (k+1)×(k+1) by adding one row and one column. The impurity

Greens function is obtained from the relation between the impurity Greens function and

the conduction electron Greens function. The local Greens function can be obtained by

sampling the determinant of hybridization matrix from which one row and one column are

removed. This procedure is explained in Ref. [81] in details.
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Chapter 3

DMFT calculation on 3D Hubbard model: metal-insulator

interface

The metal-insulator transition is one of the fundamental phenomena for understanding

phases of matter in interacting solid state systems. In these materials, a transition between

a metal and a Mott insulator is driven by temperature, pressure or chemical doping drives.

In large classes of materials [13], the Mott transition has dominantly been found to be

first-order and its understanding is key to eventual device applications [14]. First-order

transitions exhibit phase separation, and the thickness of the interface between the two

thermodynamic phases contains information about the free energy functional [15]. Specif-

ically, the thickness of the interface allows direct access to the ratio of the potential to

kinetic energy terms in the free energy, which is related to the barrier height between the

two minima of the double-well. While phase separation at the Mott transition is theoret-

ically well-studied [16, 17, 18, 19, 20, 21], the interface between the thermodynamically

coexisting metal and Mott insulator is not. The recent development of experimental probes

with nanometer-scale spatial resolution [22, 23, 24] has allowed the direct observation of the

real-space structure of these interfaces.

As a first step towards characterizing the metal-Mott interface [25], we compute the

real-space structure of the interfaces for the canonical example of a correlated system,

the single-band Hubbard model. We use techniques in the spirit of work on correlated

surfaces [26, 27] and heterostructures [28, 29, 30, 31, 32]. We extract the evolution of

the density, double-occupancy and spectral features across the interface, allowing us to

determine the parameters of the underlying free energy across the phase diagram.
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Figure 3.1: Evolution of the local spectra (top panel), density (middle) and double oc-
cupancy (bottom) across the interface between a correlated metal (left edge) and a Mott
insulator (right edge). Clearly visible is the transfer of spectral weight from the low-energy
quasiparticles to the Hubbard bands as we spatially traverse the interface. We have chosen
parameters of the Hubbard model where the transition from the insulator is to a hole-doped
metal: µ = 0.95(U/2), U = 1.97D and T = 0.01D, where D = 6t is the half-bandwidth.
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3.1 Landau free energy

The Mott transition can be tuned by two parameters besides temperature: the chemical

potential µ and correlation strength U . At half-filling, extensive work has shown the first-

order transition is analogous to the liquid-gas transition, placing the Mott transition within

the Ising universality class [33, 34, 35, 36, 37, 38, 39, 40]. In this work, we extend the

construction away from half-filling into the µ-U plane [41]. Since we are interested in the

metal-Mott interface, we work at temperatures below the critical point to construct our

Landau theory.

We choose our fields to be the quantities conjugate to the external parameters (µ,U),

namely the density n = 〈n〉 and double occupancy d = 〈n↑n↓〉, a construction hinted at

in [42]. The transition between the metal and paramagnetic Mott insulator does not break

any symmetries [13, 43], so the terms in the free energy functional F [n, d] are unconstrained.

The free energy generically will have one global minimum, and should a transition exist,

it will occur via the switching between two discrete minima as no symmetry forces a locus

of states to simultaneously lower in energy. We will explicitly construct the scalar order

parameter in the following

Along the Mott transition line in the µ-U plane, the two minima will have the same

energy. To facilitate analytic calculation, we take the two minima to be symmetric, an

assumption certainly not justified by symmetry, but which will prove to be a good approx-

imation. Writing the fields as ~φ = (n, d), the free energy functional takes a double-well

form,

F [~φ] =
1

2
D(∇~φ)2 + λ(~φ− ~φi)

2(~φ− ~φm)2, (3.1)

where ~φi = (ni, di) and ~φm = (nm, dm) are the insulating and metallic minima. A note on

units: we work on a discrete lattice to easily connect with computation and set the lattice

spacing a = 1. Thus the gradient is understood to be discrete ∇~φj ∼ ~φj+1 − ~φj , where j

is the lattice site, the free energy F =
∑

j F [~φj ], and both λ and D have units of energy.

We choose D to be the half-bandwidth and omit an overall (dimensionless) normalization

to the free energy.
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Figure 3.2: Generic Mott phase diagram, as realized by the single-band Hubbard model on
a cubic lattice at T = 0.005D, where D = 6t is the half-bandwidth. Dots label values of
(µ,U) lying on first-order Mott transition line used for interface calculations. Lines mark
the spinodals Uc1 and Uc2 where the insulating and metallic solutions respectively vanish.
The diagram is symmetric about µ/(U/2) = 1.

A domain wall is given by the standard solution used, e.g. in the theory of instantons [44],

~φ(xj) =
~φm + ~φi

2
+
~φm − ~φi

2
tanh

(
xj − x0

2l

)
(3.2)

where xj is the coordinate of the jth site and the wall thickness is l−2 = 2(λ/D)(~φm −

~φi)
2. Note the fields ~φ do not transform as a vector and the notation is for convenience.

Determining the dependence of ~φi, ~φm and λ/D on (U, T ) requires microscopic modeling.

3.2 Modeling the Interface

The Hubbard hamiltonian is the “standard model” of correlated electrons. Its two terms

describe the competition between kinetic energy, which delocalizes electrons to promote

metallic behavior, and mutual electron repulsion, which tends to localize electrons onto

sites and drive the transition to a Mott insulator. We work with the simplest one-band case
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Figure 3.3: Geometry used to model the metal-Mott interface. The transition region,
described by site-dependent self-energies Σi, is sandwiched between a semi-infinite bulk
Fermi liquid and Mott insulator by fixing the bulk self-energies to Σmetal and Σins on the
left and right. We assume translational invariance in the y and z directions.

on a cubic lattice,

H =
∑
kσ

(εk − µ)nkσ + U
∑
j

nj↑nj↓, (3.3)

where we take εk = −2t(cos kx + cos ky + cos kz) and use the half bandwidth D = 6t

as the unit of energy in all the following. We will index the sites by j = (n1, n2, n3) in

the following. Ignoring ordered phases, which is a reasonable assumption at intermediate

temperatures or in the presence of frustration, the phase diagram generically consists of a

Mott insulating region for large U and a range of µ corresponding to half-filling, and a Fermi

liquid everywhere else. To find the first-order transition line, we use standard single-site

dynamical mean-field theory (DMFT) [9, 45, 46] with a continuous-time quantum monte

carlo (CTQMC) hybridization expansion impurity solver [47, 48, 49]. The phase diagram

at T = 0.005D is plotted in Fig. 3.2, along with the two spinodals Uc1 and Uc2 between

which both solutions exist.

To model the interface in the coexistence regime, we fix our parameters to a point on

the first-order line (dots in Fig. 3.2), then partition the lattice into three regions along

the x-axis (see Fig. 3.3): metal (n1 ≤ 0), insulator (n1 ≥ N + 1), and a transition region

(1 ≤ n1 ≤ N). Here n1 is the site index along the x-axis and we take N = 20 large enough

to capture the interface. We perform an inhomogenous DMFT calculation by setting the
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self-energy of the lattice Σn1n′1
= δn1n′1

Σn1 to

Σn1 =


Σmetal n1 ≤ 0

Σn1 1 ≤ n1 ≤ N

Σins n1 ≥ N + 1

. (3.4)

Only the self-energies Σn1 in the transition region are updated, while Σmetal and Σins are

fixed boundary conditions taken from the single-site DMFT solution. Our setup assumes the

interface is perpendicular to one of the crystal directions (x) and the system is translationally

invariant in the other two (y and z) so self-energies are independent of n2 and n3.

To render the equations soluble in the transition region, we compute the lattice Green’s

function and use its local component Gn1n1 to map the system to a chain of N auxiliary

impurity problems [32],

Gn1n1(iωn) =
1

iωn − Eimp −∆n1(iωn)− Σn1(iωn)
. (3.5)

Using the extracted impurity levels Eimp and hybridization functions ∆n1 , we obtain the

new local self-energies Σn1 and iterate to convergence. The procedure for computing the

local Green’s function is provided in the Supplementary Material.

3.3 Calculation details

The Green’s function of the lattice is given by

GRR′ = [(iω + µ)δRR′ − tRR′ − ΣRR′ ]
−1 (3.6)

where R is a lattice vector R = (n1, n2, n3) with the cubic primitive lattice vector and tRR′

denotes the nearest neighbor hopping. To see the spatial variation across the two different

phases, we divide the lattice into three regions: metallic (M : −∞ < n1 ≤ 0), insulating

(I : N + 1 ≤ n1 < ∞) and transition (T : 1 ≤ n1 ≤ N) region. So T is sandwiched by M
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Figure 3.4: Variation of the density (top) and double occupancy (bottom) across the inter-
face at several points along the Mott transition line at T = 0.01D. Thin lines are fits to the
standard solution for a double-well potential a+ b tanh((xi−x0)/2l), allowing extraction of
the parameters for the underlying free energy. Curves are shifted horizontally by varying
amounts for clarity. The chemical potential is in units of U/2, as detailed in the right-hand
table of Table 3.1
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and I. Then we assign to each site the localized self-energy Σn1n′1
= δn1n′1

Σn1 with

Σn1 =


Σmetal (n1 ∈M)

Σn1 (n1 ∈ T )

Σins (n1 ∈ I)

(3.7)

Note that in the metallic and insulating regimes, the self-energy is fixed to Σmetal and Σins

respectively, while we allow the local self-energy in the transition regime to vary across the

sites.

The Fourier transformation of Eq. (3.6) along y and z directions gives the following

matrix form of Green’s function in the mixed representation (n1; ky, kz) (n1 is the site index

of x):

[
G(ky, kz; iω)

]
n1n′1

=

[[
(iω + µ− ε(ky, kz)

− Σn1(iω))Î − t̂
]−1
]
n1n′1

(3.8)

where t̂ = −t(δn1,n′1+1+δn1,n′1−1) and ε(ky, kz) = −2t(cos(kya)+cos(kza)). To apply DMFT

to the transition regime, we must calculate the local component of the Green’s function at

each site and map each onto an auxiliary impurity.

We can rewrite Eq. (3.8) in a block matrix divided into the three regimes M, T and I,

that is,

[G(ky, kz; iω)]n1n′1
=



FM

t

t

FT

t

t

FI



−1

(3.9)
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where we define the three block matrices by

[FM]n1n′1
= (iω + µ− ε(ky, kz)− ΣM(iω))︸ ︷︷ ︸

≡zM

δn1n′1
− tn1n′1

[FT ]n1n′1
= (iω + µ− ε(ky, kz)− Σn1(iω))︸ ︷︷ ︸

≡zn1

δn1n′1
− tn1n′1

[FI ]n1n′1
= (iω + µ− ε(ky, kz)− Σins(iω))︸ ︷︷ ︸

≡zI

δn1n′1
− tn1n′1

.

Note that zM and zI are fixed while zn1 varies across the sites.

Using block matrix inversion

 A B

C D


−1∣∣∣∣∣∣∣
∈A

= [A−BD−1C]−1 (3.10)

we obtain the complete form of Green’s function in the transition regime T (a N×N matrix)

into which all the degrees of freedom of metallic and insulating regions are incorporated:

[G(ky, kz)]|n1,n′1∈T =
[

[FT ]︸︷︷︸
A

−(t̂TM[FM]−1t̂MT + t̂T I [FI ]
−1t̂IT︸ ︷︷ ︸

BD−1C

]−1

=



z11 − t2RM t 0

t z22 t

t
. . .

. . .

. . .
. . . t

t zN−1,N−1 t

0 t zNN − t2RI



−1

(3.11)

where RM ≡ [F−1
M ]00, RI ≡ [F−1

I ]N+1,N+1 and t̂TM(I) is the overlap between T andM(I).

The effect of integrating out the degrees of freedom in M and I is captured by t2RM and

t2RI at the (1, 1) and (N,N) components respectively.

To compute RM and RI , we again rely on Eq. (3.10). Since [FM] takes a symmetric
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tridiagonal matrix form equal to

FM =



zM t

t zM t

t zM
. . .

. . .
. . .


=



zM t

t

FM


(3.12)

we see the matrix repeats itself inside. As a direct consequence of (3.10), we obtain the

following recursive equation:

[F−1
M ]00 = RM =

1

zM − t2RM
(3.13)

where the solution is

RM =
zM −

√
(zM)2 − 1

t
. (3.14)

RI is obtained by the same procedure.

Finally, we need to convert the mixed representation form (3.9) into the pure real-space

representation. Performing the inverse Fourier transformation with respect to ky and kz,

we can obtain the local Green’s function at the site n1

[G]n1n1 =

∫
d2k

(2π)2
[G(ky, kz)]n1n1

=

∫
dε[G(ε)]n1n1D

2D(ε) (3.15)

where the ε dependence of G comes from ε = ε(ky, kz). Here, D2D(ε) is the density of states

of non-interacting 2D square lattice whose analytic expression is known and the integration

(3.15) is performed numerically.

3.4 Results

The evolution of the density n double occupancy d for along the Mott transition line is

displayed in Fig. 3.4 at a temperature of T = 0.005D. At the particle-hole symmetric

point, there is no jump in density between the metal and Mott insulator, while the change



32

µ/(U/2) U/D ni di nm dm λ/D α

1.00 2.04 1.0000 0.0241 1.0000 0.0357 2410 0◦

0.95 2.05 1.0000 0.0238 0.9978 0.0330 3170 13◦

0.90 2.08 0.9999 0.0229 0.9960 0.0297 2510 30◦

0.85 2.13 0.9998 0.0216 0.9947 0.0262 1780 48◦

µ/(U/2) U/D ni di nm dm λ/D α

1.000 1.962 1.0000 0.0261 1.0000 0.0353 1420 0◦

0.975 1.965 1.0000 0.0259 0.9997 0.0341 1590 2◦

0.950 1.970 1.0000 0.0258 0.9994 0.0330 1890 5◦

0.925 1.985 0.9999 0.0253 0.9992 0.0306 2480 8◦

0.900 2.005 0.9998 0.0248 0.9991 0.0283 3190 12◦

Table 3.1: Extracted parameters of Landau free energy for T = 0.005D (left) and T = 0.01D
(right), where D = 6t is the half-bandwidth. The position along the Mott transition line
is parameterized by the chemical potential µ, or equivalently, the electron repulsion. The
shifts in the density and double-occupancy for the Mott insulator (ni, di) and metal (nm, dm)
are quite small for the one-band model, which when combined with fact that the interface
widths l ∼ O(1), produces large values of λ/D. The angle α specifies how much of n is
admixed into the d to form the Ising order parameter (see Eq. 3.16).

in double-occupancy is maximal. As we progress along the transition line (which we param-

eterize with the chemical potential µ) towards the hole-doped side, the density difference

between the metal and insulator increases. Additionally, the density of the insulator drops

below unity because we are at finite temperature. In contrast, the jump in double occupancy

decreases.

The variation of both quantities fit well to Eq. 3.2 for the double well potential, albeit

with slightly different length scales, and we use the average of the two wall widths to compute

λ. The small difference in length scales implies the potential is not perfectly symmetric (as

expected), and that the path in (n, d) space between the two minima is close to, but not

exactly, a straight line (see Fig. 3.5). The extracted parameters for the Landau free energy

are presented in Table 3.1.

We also analytically continue the Matsubara self-energies produced by the impurity

solver to the real axis to compute the variation of the spectral density across the interface.

We plot in Fig. 3.1 the spectra for parameters µ = 0.95(U/2), U = 1.97D and T = 0.01D,

which is slightly on the hole-doped side. Starting from the metallic solution, we find that

the quasiparticle peak shift slightly downwards and disappears into the lower Hubbard band

as we progress to the Mott insulator. The gap between the Hubbard bands slightly narrow.
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Figure 3.5: Trajectory in (n, d) space as the system evolves across the interface from the
insulating to the metallic minima at µ = 0.95(U/2), U = 2.05D, T = 0.005D. The extracted
Landau parameters are used to plot the contours of the double-well potential. The dotted
lines trace the shift of the minima along the Mott transition line at T = 0.005D.

The extracted parameters combined with our ansatz (Eq. 3.1) allow us to reconstruct the

free energy. Shown in Fig. 3.5 is a representative case for µ = 0.95, U = 2.05, T = 0.005D.

We have plotted the trajectory in (n, d) space as the system evolves from the metallic

to insulating minima, superimposed with contour lines of the potential constructed using

the extracted parameters. The movement of the two minima as we step along the Mott

transition line is shown in the dotted lines.

As promised, we explicitly construct the order parameter field ∆ as a linear combination

of n and d, owing to the fact that the trajectory is almost straight. The construction is

essentially geometric: we take the line segment joining the two minima and parameterize it

with an angle α:

∆ = (n− n̄) sinα+ (d− d̄) cosα (3.16)

where n̄ = (ni + nm)/2 and d̄ = (di + dm)/2. The angles are tabulated in Table 3.1.

At particle-hole symmetry, the angle is zero and the variation of the order parameter is

entirely driven by the double occupancy. Increasing angles imply the density becomes a

larger component of the order parameter, which occurs as we progress to larger correlation
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strengths.

3.5 Summary

In this work, we have taken a first step towards characterizing the metal-Mott interface

by modeling its spatial properties, constructing a Landau free energy and identifying an

Ising order parameter. The key parameter of the free energy which could not be obtained

by previous solutions in homogenous geometries is the interface width l, which is directly

related to the double-well barrier height via λ/D. We also comment that while in general

for first-order transitions which do not possess an organizing symmetry, any number of fields

can be chosen to construct the free energy [34, 35, 40], the choice of the quantities conjugate

to the physical tuning parameters µ and U allow for an especially transparent construction

of the order parameter which can uniformly treat both the bandwidth and filling controlled

transitions.

We want to point out the simplifying assumptions used: (1) we took the interface to be

perpendicular to a crystallographic axis, (2) we only included nearest-neighbor hopping to

simplify the formulae, (3) we made the slow-varying approximation, assuming each site was

an independent impurity affecting the others only via the hybridization, and (4) we have

ignored the long-range Coulomb interaction. Relaxing these assumptions to capture more

realistic scenarios warrant further investigation.

We expect that future calculations on realistic systems will provide quantitative results

for comparision with near-field optics and STM observations, and more speculatively, could

provide a new constraint on the value of U in these compounds. Finally, while we have

guessed the form of the Landau free energy and numerically determined its parameters,

especially satisfying for future work would be a microscopic derivation from the appropriate

mean-field theory.
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Chapter 4

Combined DFT and DMFT: Exact double-counting

formulation

Over the past few decades, many theoretical frameworks have been developed to describe

real materials with strong correlation, in which quasi-particle approaches such as density

functional theory (DFT) [50, 51] essentially fail due to the large Coulomb interaction be-

tween electrons. As we discussed, dynamical mean field theory (DMFT) [3, 4] has brought

about a revolution in the theory of strong correlations after its exact treatment of local

dynamic correlations successfully described the Mott transition in lattice models such as

the Hubbard model [52]. Since the method is very flexible and versatile, and scales linearly

with the system size, it has been quickly adapted for many solid state problem, including

electronic structure calculations.

The most commonly used DMFT approximation in solid state is combination of LDA and

DMFT (LDA+DMFT) [53], where some selected correlated orbitals are treated by DMFT

while the rest of the electronic states are treated by LDA. The LDA+DMFT method has

been very successful in various problems involving strong electronic correlations in solids

and very recently it was also applied to molecules [7, 54] and nano-systems [55, 56].

However, the application of this methodology to solids has a few ambiguities, which limit

the precision of the method: i) the DMFT method needs the partially screened Coulomb

interaction, which is hard to predict from first principles, ii) the part of the correlations

treated by both LDA and DMFT – called double-counting – is not known exactly, and a

phenomenological form [57] has been most often used (for discussion see [58] and [59]).

In this chapter we introduce the general formalism of LDA+DMFT and also propose

a double-counting functional for LDA+DMFT, which is an exact intersection of the two

methods and results in highly precise electronic structure method with no ambiguity in
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subtracting doubly counted correlation effect [60]. We implemented and test this idea of

exact double-counting in one of the simplest strongly correlated systems, H2 molecule, where

we can neglect the screening effect. We also suggest the extension of this double-counting

functional to the solid state calculations, where additional complexity of screening will need

to be addressed.

4.1 Density functional theory

Density Functional Theory (DFT) is a quantum mechanical theory of many-body system.

It is a powerful and popular used in condensed matter physics as well as quantum chemistry

for calculating electronic structure of an electronic system.

The main idea of DFT is that any property of a system of many interactiong particles

can be viewed as a functional of the ground state density. This idea was initiated early by

Thomas [61] and Fermi [62], and the modern formulation of DFT is wrriten by P. Hohenberg

and W. Kohn in their famous paper[50, 63].

In this section, we introduce DFT briefly by first considering the cornerstones of mod-

ern DFT, the Hohenberg-Kohn theorems. We then move to the Kohn-Sham ansatz to

DFT. Next we consider the practical approximations of exchange correlation and ionic core

potentials.

4.1.1 Hohenberg-Kohn theorem

The idea of Thomas and Fermi was intuitive, but a proof of this had to waited for a long

time. In 1964, Hohenberg and Kohn [50, 63] formulated and proved a theorem that gave

solid mathematical background for that idea. The formulation applies to any system of

interacting particles in an external potential V (~r)ext, including any problem of electrons

and fixed nuclei, where hamiltonian can be written

Ĥ = − ~2

2me

∑
i

~∇2
i +

∑
i

Vext(~ri) +
1

2

∑
i 6=j

e2

|~ri − ~rj |2
. (4.1)

Hohenberg-Kohn theorem are summarized as follwing two theorem.
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Theorem 1. The external potential V (~r)ext is univocally determined by the electronic den-

sity n(~r), apart from a trivial addictive constant

Proof. We prove this theorem by using reductio ad absurdum. Suppose that there are two

different potentials V
(1)
ext and V

(2)
ext which differ by more than only a additive constant and

which lead to same ground state density n(~r). These two potential lead to two different

Hamiltonian, H(1) and H(2), which have different ground state wavefunctions, Ψ(1) and

Ψ(2), and corresponding ground state energies E
(1)
0 and E

(2)
0 . According to Rayleigh-Ritz’s

variational principle we have:

E
(1)
0 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = 〈Ψ(2)|Ĥ(2)|Ψ(2)〉+ 〈Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)〉

= E
(2)
0 +

∫
d3~r[V

(1)
ext (~r)− V

(2)
ext (~r)]n(~r). (4.2)

By interchanging superscript (1) and (2), we have:

E
(2)
0 < E

(1)
0 +

∫
d3~r[V

(2)
ext (~r)− V

(1)
ext (~r)]n(~r). (4.3)

Adding these two inequalities we arrive an at the contradictory inequality E
(1)
0 +E

(2)
0 <

E
(1)
0 + E

(2)
0 . Therefore, there can not be two potential V

(1)
ext and V

(2)
ext , which differing by

more than a addictive constant and correspond to the same ground state electronic density.

This proves the first theorem of Hohenberg and Kohn.

Corollary. Since n(~r) univocally determines the Hamiltonian (Vext(~r)) except for a constant

shift of energy, it also determise the many-body wavefunctions for all states (ground and

excited), which should be obtained by solving Schödinder equation. Therefore, all properties

of the system are completely determined given only the ground state density n(~r).

Theorem 2. An universal functional for the energy E[n] in terms of the density n(~r) can

be defined, valid for any external potential Vext(~r). For any particular Vext(~r) the ground

state is the global minimum value of this functional and the density that minimizes this
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functional is the ground state density.

Proof. Since all properties such as kinetic energy, interaction energy, etc., are uniquely de-

termined if the density n(~r) is specified. So that such properties can be viewed as functionals

of density n(~r) and we can write total energy as a functional of density as

EHK [n] = T [n] + Eint[n] +

∫
d3rVext(~r)n(~r)

≡ FHK [n] +

∫
d3rVext(~r)n(~r). (4.4)

The functional FHK [n] defined above includes all internal energies, kinetic and potential,

of the interacting electron system,

FHK [n] = T [n] + Eint[n], (4.5)

which must be universal by construction since the kinetic energy and interaction energy of

the electron are functionals only of the density.

If the electron system has ground state density n(1)(~r) corresponding to external po-

tential Vext(~r). The Hohenberg-Kohn functional defined above is equal to the expectation

value of the Hamiltonian in the unique ground state, which has wavefunction Ψ(1)

E(1) = EHK [n(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉. (4.6)

If n(2)(~r) is a different density, which corresponding to a different wavefunction Ψ(2), it

follow immediately that the energy E(2) of this state is greater than E(1), since

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = E(2). (4.7)

Thus, the energy given by Eq. 4.4 in terms of the Hohenberg-Kohn functionals evaluated

for the correct ground state density n0(~r) is indeed lower than the value of this expression

of any other density n(~r).

It follows if the Hohenberg-Kohn functional FHK [n] was known, by minimizing the total

energy of the system, Eq. 4.4, with respect to variations of density function n(~r), one would
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find the exact ground state density and energy.

Here, we want to note that DFT can describe both ground and excited states. In

fact, since the density determines the potential univocally, by solving the full many-body

Schrödinger equation we can determine univocally the many-body wave functions, ground

and excited states. The only problem is practical rather than conceptual, because of the

inherent difficulty in solving the full many-body problem.

4.1.2 Kohn-Sham ansatz

The density functional theory does not provide us a way to understand the properties of

considering interacting system merely by looking at the form of density. In addition, there

is no known way to directly connect kinetic energy and density. The only way to calculate

the kinetic energy exactly is to revert kinetic energy functionals to the usual expression

in term of a set of N wavefunctions of system of N non-interacting particles. This is the

idea of Kohn-Sham approach [51, 63] to density functional theory. The ansatz of Kohn

and Sham is assuming that the ground state density of considering interacting system is

equal to that of some chosen non-interacting systems. The independent-particle equations

for the non-interacting system can be solved exactly (by analysis or numerical) with all

difficulties of many-body problem incorporate into an exchange-correlation functional of

the density. By solving the equations, we find the ground state density and energy of

the original interacting system with the limitation of accuracy of that of approximation in

exchange-correlation functional.

The Hamiltonian of the non-interacting reference system can be written

ĤR =
∑
σ

Nσ∑
i=1

[
− ~2

2m
~∇2
i + vσR(~ri)

]
, (4.8)

where, σ is spin index and number of electron is N = N↑ + N↓. The potential vR(~r), or

reference potential, is such a potential that the ground state density of this non-interacting

system coincides with that of original interacting system, n(~r). The ground state has one

electron in each of Nσ orbitals ϕσi (~r) with lowest eigenvalues εσi of independent-particle



40

Hamiltonian

ĤR = − ~2

2m
~∇2 + vσR(~r). (4.9)

The electron density of reference system is

n(~r) =
∑
σ

n(~r, σ) =
∑
σ

Nσ∑
i=1

|ϕσi (~r)|2, (4.10)

the independent-particle kinetic energy TR is given by

TR = − ~2

2m

∑
σ

Nσ∑
i=1

〈ϕσi |~∇2|ϕσi 〉 = − ~2

2m

∑
σ

Nσ∑
i=1

|~∇ϕσi |2, (4.11)

the Hartree energy

EH [n] =
1

2

∫
d3~rd3~r′

n(~r)n(~r′)

|~r − ~r′|
. (4.12)

The Kohn-sham approach to the full interacting many-body problem is to rewrite the

Hohenberg-Kohn expression for the ground state energy 4.4 in the form

EKS = TR[n] +

∫
d3~rVext(~r)n(~r) + EH [n] + Exc[n]. (4.13)

Comparing Hohenberg-Kohn expression for the total energy 4.4 and that of Kohn-Sham

4.13 shows that Exc can be written in terms of the Hohenberg-Kohn functional 4.4 as

Exc[n] = FHK [n]− (TR[n] + EH [n]), (4.14)

or in a more other form

Exc[n] =
(
〈T̂ 〉 − TR[n]

)
+
(
〈V̂int〉 − EH [n]

)
. (4.15)

This exchange-correlation functional accounts also for the kinetic correlation ignored in

TR[n].

Varying the wavefunction of independent-particle on Kohn-Sham expression for the total
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energy 4.13 we can drive the variational equation

δEKS
δϕσ∗i (~r)

=
δTR

δϕσ∗i (~r)
+

[
δEext
δn(~r, σ)

+
δEH

δn(~r, σ)
+

δExc
δn(~r, σ)

]
δn(~r, σ)

δϕσ∗i (~r)
= 0, (4.16)

subject to the orthonormalization conditions

〈ϕσi (~r)|ϕσ′j (~r)〉 = δi,jδσ,σ′ . (4.17)

Using expressions for density n(~r) 4.10 and kinetic energy TR 4.11,

δTR
δϕσ∗i (~r)

= − ~2

2m
~∇2ϕσi (~r);

δn(~r, σ)

δϕσ∗i (~r)
= ϕσi (~r), (4.18)

the variation equation leads to the Kohn-Sham equation:

(Hσ
KS − εσi )ϕσi (~r) = 0, (4.19)

where the εi are the eigenvalues, and HKS is the effective Hamiltonian

Hσ
KS(~r) = − ~2

2m
~∇2 + V σ

KS(~r), (4.20)

with

V σ
KS(~r) = Vext(~r) +

δEH
δn(~r, σ)

+
δExc

δn(~r, σ)

= Vext(~r) + VH(~r) + V σ
xc(~r). (4.21)

Equations 4.19, 4.20 and 4.21 are the Kohn-Sham equations. The equations are in

the same form of independent-particle equations with a potential that must be found self-

consistently with the resulting density.

4.1.3 Approximation of exchange-correlation energy: LDA

In order to perform a calculation based on DFT with Kohn-Sham approach we need to

know the last unknown term, exchange-correlation term, in the Kohn-Sham expression for
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total energy 4.13. In the Kohn-Sham’s seminal paper [51], they suggested an approximation

for this term, in which the exchange-correlation energy is simply an integral over space of

exchange-correlation energy of homogeneous electron gas with density value assumed to

be that of the considering system at that point. In other word, they considered a general

inhomogeneous electron gas system as a locally homogeneous electron gas system. This

approximation is called Local Density Approximation (LDA). We can write the exchange-

correlation energy as

ELDAxc [n] =

∫
d3~rn(~r)εLDAxc (n(~r)), (4.22)

where εLDAxc (n(~r)) is the density of exchange-correlation energy of homogeneous electron

gas of density n(~r) and can be further split into exchange and correlation contributions

εLDAxc (n(~r)) = εLDAx (n(~r)) + εLDAc (n(~r)). (4.23)

The exchange term is exactly given by Slater’s expression

εDx (n(~r)) = −3

4

(
3

π

)1/3

n(~r)1/3 = −3

4

(
9

4π2

)1/3 1

rs
, (4.24)

where rs = (3/4πn)1/3 = (9π/4)1/3kF is the average distance between electrons. The

correlation term parameterized by Perdew and Zunger [64] based on Ceperley and Alder’s

quantum Monte Carlo simulation result [65]

εPZC (n(~r)) =


Alnrs +B + Crslnrs +Drs, rs ≤ 1,

γ/(1 + β1
√
rs + β2rs), rs > 1.

(4.25)

where, A = 0.0311, B = −0.048, C = 0.002, D = −0.0116, γ = −0.1423, β1 = 1.0529 and

β2 = 0.334.
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4.2 Functional Formalism of LDA+DMFT

To construct the DMFT framework, we resort to the Baym-Kadanoff formalism [66, 67],

which defines a functional of the full Green’s function by (see also [53])

Γ[G] = Tr log(G)− Tr((G−1
0 −G

−1)G) + Φ[G]. (4.26)

where the G0 is the non-interacting Green’s function in the absence of the Coulomb inter-

action

G0(r, r′; iω) = [(iω + µ+∇2 − Vext(r))δ(r− r′)]−1, (4.27)

and Vext is the potential created by the ions. Φ[G] is the so-called Luttinger-Ward functional

and is equal to the sum of all skeleton Feynman diagrams consisting of G and Coulomb

interaction v(r, r′) = 1
|r−r′| . Γ[G] is extremized by the exact Green’s function and gives the

free energy of the system in the extremum.

In the LDA+DMFT formalism, we approximate the Luttinger-Ward functional with

ΦLDA+DMFT[G] = EH [ρ] + ELDA
xc [ρ] + ΦDMFT[Gloc]− ΦDC [G] (4.28)

where ELDA
xc [ρ] is the LDA exchange-correlation functional (4.22) introduced in the previ-

ous section, ΦDMFT[Gloc] is the DMFT functional that only depends on the local Green’s

function Gloc and the local interaction, and lastly ΦDC is the double-counting functional

which subtracts the correlation part that is counted twice by DMFT and LDA. In the next

section, we will introduce so-called exact double-counting functional.

In terms of the LW functional language, the DMFT functional ΦDMFT[Gloc] approximates

the exact Luttinger functional Φ[G] by its local counterpart [53],

ΦDMFT[Gloc] =
∑
R

ΦU [GRloc] (4.29)

which contains all skeleton Feynman diagrams constructed from the local Green’s function

GRloc centered on the local site R, and the corresponding local Coulomb repulsion UR.

Notice that the exact functional Φ and the DMFT functional ΦDMFT have exactly the same
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topological structure in terms of Feynman diagrams. The only difference is that Φ is a

functional of full Green’s function G and bare Coulomb interaction v while ΦDMFT is a

functional of GRloc and UR.

The essential DMFT variable GRloc can be computed by projecting the Green’s function

of the whole system onto the defined DMFT local orbitals. We define here the projection

operator P̂ as

GRloc = P̂RG ≡ |χLR〉〈χLR|G|χL
′

R 〉〈χL
′

R | (4.30)

where {|χLR〉} is a local orbital set centered on a given nucleus at R, and L is an orbital

index. To compute ΦU [GRloc] the system is mapped to a quantum impurity model, for which

Gimp = GRloc so that the exact solution of the impurity problem ΦU [Gimp] delivers desired LW

functional. The DMFT self-energy is then obtained from the auxiliary impurity self-energy,

as required by the Baym-Kadanoff formalism:

ΣDMFT =
δΦDMFT

δG
=
∑
R

δGRloc
δG

δΦv[GRloc]
δGRloc

=
∑

R,LL′

|χLR〉Σ
R,LL′

imp 〈χ
L′
R | ≡ ÊΣimp (4.31)

where we define the embedding Ê. This embedding process is the inverse operation of the

projector P̂ , mapping the self-energy of the auxiliary impurity back into the Hilbert space

of the original system.

4.3 Exact Double-Counting of LDA+DMFT

To derive the double-counting functional, we need to identify the exchange-correlation over-

lap between LDA and DMFT. However, there is a discrepancy between the DMFT func-

tional ΦDMFT[Gloc] and the LDA functional ELDA
xc [ρ] because DMFT consists of all skeleton

diagrams computed in the corresponding auxiliary impurity system while LDA takes the

highly nonlinear exchange-correlation of uniform electronic gas that cannot separate orbital-

wise. The double-counting issue arises because it is not clear how to identify the exact

overlap between the two methods, that is, what physical process in one is also accounted

in the other and vice-versa. In practice, it is usually approximated by the the atomic limit
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formula in the context of LDA+U [57, 68]. In this section, we give a rigorous derivation for

the double-counting formula of LDA+DMFT which has not been proposed before and will

be tested on H2 molecule, one of the simplest strongly correlated systems.

We first note that the DMFT approximation can be obtained by replacing the full

Green’s function G and bare Coulomb interaction v(|r − r′|) with the local counterpart

Gloc and U in the exact LW functional, that is, Φ[G]→ΦDMFT
U [Gloc]. For diagrammatic

approximations such as Hartree-Fock or GW , v→U and G→Gloc directly give the DMFT

truncation of these methods. For Hartree functional, the local DMFT counterpart is

EH [ρ] =
1

2

∫
rr′
ρ(r)ρ(r)v(r− r′) −→ EHU [P̂ ρ] =

1

2

∫
rr′

[ρloc(r)][ρloc(r)]U(r− r′) (4.32)

where the P̂ ρ(r) = ρloc(r) = −P̂G(r, r; τ = 0−). On the other hand, for the GW functional,

we have

ΦGW [G] =
1

2
Tr log(1−GGv) −→ ΦGW

U [P̂G] =
1

2
Tr log(1− GlocGlocU). (4.33)

For both methods, we can analytically evaluate the double-counting terms as long as we

are given the form of the screened interaction U .

Finally, let us derive the exact double-counting, for the LDA exchange-correlation func-

tional, i.e., taking the DMFT truncation on it. However, this case is not so simple as we did

for Hartree and GW because it is not explicit how the LDA correlation functional depends

on the given interaction U . As discussed in 4.1.3, the correlation part ELDA
c [ρ] is obtained

by quantum Monte-Carlo simulation based on the bare Coulomb interaction v(r, r′).

In the following work, we investigate this double-counting in the H2 molecule, where

there is virtually no screening effect. Therefore, we can take for this problem the bare

Coulomb interaction as the effective interaction in the DMFT local space, i.e., U ∼ v. Since

there is no need to change the form of the LDA functional, the truncation G→P̂G = Gloc

simply gives the double-counting functional

ΦDC [P̂ ρ] =
∑
R

(
EH [ρRloc] + ELDAxc [ρRloc]

)
(4.34)
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and we will discuss the quality of this double-counting functional in the result section.

Although LDA+DMFT is very often used in solid-state electronic structure calculations,

such a rigorous approach has never been suggested before. This is because in the solids,

there is additional complexity of screening, whereby the core, semicore and other states

excluded by the DMFT model screen the Coulomb interaction in the DMFT correlated

space. Therefore the derivation of the DMFT Luttinger-Ward functional in solids requires

not only the substitution of the total Green’s function G by Glocal but also unscreened

Coulomb repulsion v = 1
|r−r′| by screened one

U =
e−λ|r−r

′|

|r− r′|
. (4.35)

For solid state calculations, therefore, in order order to use a similar functional as (4.34),

we need to recompute the LDA exchange-correlation functional for the electron gas model

based on the Yukawa screened potential (4.35) using the quantum Monte-Carlo calculation.

Now the parameter space is two-dimensional: one is rs, a function of density, and the other

is the inverse screening length λ. The same screened form of the Coulomb repulsion has to

be then used in the DMFT impurity calculation, i.e.,

Um1m2m3m4 = 〈m1m2|
e−λ|r−r

′|

|r− r′
|m3m4〉. (4.36)

Notice that the screening length λ is uniquely determined by the screened Coulomb

parameter U , which can be estimated by constrained LDA [69] or constrained RPA [70]. In

other words, we first calculate the Um1m2m3m4 using cRPA or whatever reasonable method,

and the corresponding λ is determined by (4.36). Our double-counting term is then written

as

ΦDC [P̂ ρ] =
∑
R

(
EH [ρRloc;λ] + ELDAxc [ρRloc;λ]

)
. (4.37)

This idea has been recently realized in [71] by K. Haule, the academic advisor of the author

of this article. The quality using this functional tested in SrVO3 and LaVO3 was improved

showing better agreement to experiment. The work also showed that among the convention-

ally used double-counting schemes, the nominal double-counting was in the best agreement
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to this exact double-counting scheme.

4.4 Implementation in H2 molecule

The study of correlations in small molecules can be a testbed for the quality of electronic

structure methods because numerically exact results exist. From the DMFT view point,

this has a particularly strong appeal because the screening of the Coulomb repulsion can

be negligible and therefore the ambiguities due to screening, present in solid state, can

be decoupled from the issues concerning construction of the functional and its precision.

In addition, the short-range nature of dynamical correlation in molecules [72, 73] further

justifies the applicability of DMFT to molecules. While Hn clusters [7] and H- cubic solid

[54] have been investigated within the DMFT framework, the simplest case of H2 molecule,

which shows very strong correlations at large nuclear separation, has not been studied yet

by DMFT.

We apply the LDA+DMFT formalism with the exact double-counting that we proposed

in the previous section to H2 molecule. Since we can neglect the screening effect in H2, this

simple toy model allows us to focus on the quality of the newly proposed double-counting

functional free from the issue of determining the effective interaction in the DMFT local

space.

Our basis set is the eigenfunctions of H+
2 exactly solved by the methodology of Ref. [74].

We denote the ground state and the first excited state by |1σg〉 and |1σu〉, respectively.

Typically between other 20-30 excited states are used as a basis for H2 calculation for good

convergence.

Since DMFT is a basis set dependent approximation, its quality depends essentially on

the choice of the projector [75, 76, 77, 78, 79, 80], which maps the continuous problem to

a discrete set of sites (lattice), each consisting of only a few important degrees of freedom

(orbitals). In this work, we restrict our discussion to the simplest possible DMFT approx-

imation, taking only one correlated orbital per site. Since the two sites are equivalent by

the symmetry, the problem reduces to a single site one orbital impurity problem, which can

be solved to very high precision by the continuous time quantum Monte Carlo method [47],
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as implemented in Ref. [81].

A good choice of the DMFT projector should have large overlap with the most active

states around the Fermi level, should be well localized on an atom, recover atomic solution

in the large separation limit, and finally should not depend on the self-consistent charge

density. Without the last condition, it is impossible to obtain a stationary solution by

extremizing Luttinger-Ward functional.

A natural choice of the DMFT projector of this H2 problem is the linear combination

of the lowest bonding |1σg〉 and anti-bonding state |1σu〉 of H+
2 system, which we define as

the “left” (L) and the “right” (R) localized orbital,

|χL〉 =
1√
2

(|1σg〉 − |1σu〉),

|χR〉 =
1√
2

(|1σg〉+ |1σu〉). (4.38)

that naturally recover 1s state of each site at large atomic separation. Over 96% of the

electronic charge of the DMFT solution is contained in these two states and since they do

not explicitly depend on the DMFT Green’s function, these are a good choice for DMFT

orbital.

We define the DMFT local Green’s function for the left atom by the projection

GLloc(ω) ≡ P̂LG = |χL〉〈χL|G(r, r′, ω)|χL〉〈χL| (4.39)

where no orbital index appears since each impurity has only one orbital. The impurity

self-energy is embedded into real space by the inverse of the projection, i.e., Σ(r, r′, ω) =

|χL〉ΣL(ω)〈χL| + |χR〉ΣR(ω)〈χR|. Due to the symmetry of the problem, ΣL = ΣR and

GL = GR.

We mention in passing that the alternative choice of projector, which selects as the

correlated orbital 1s state of each atom, leads to a result of worse quality than presented

here, because such choice does not capture the majority of the active degrees of freedom

at equilibrium internuclear separation. Consequently, more time consuming cluster-DMFT

method needs to be used to obtain similar quality results, as recently found in Ref. [7]. We
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discuss the quality of other choices of the local orbital in detail in Appendix.

In this work, we want to compare the LDA+DMFT result with a variety of other meth-

ods. First, we discuss the Hartree-Fock approximation. In this case,

ΦHF[G] = EH [ρ] + EX [ρ], (4.40)

where the each component is

EH [ρ] =
1

2

∫
rr′
ρ(r)v(r− r′)ρ(r′) (4.41)

EX [ρ] = −1

2

∑
σ

∫
rr′
ρσ(r, r′)v(r− r′)ρσ(r′, r). (4.42)

The potential is then computed by

vH + vX =
δΦHF

δGσ(r, r′; iω)
=
δ(r− r′)ρ(r)− ρσ(r, r′)

|r− r′|
(4.43)

The flexibility of the DMFT approximation allows one to treat some parts of the

functional exactly, such as the Hartree-Fock terms. This approximation is denoted by

HF+DMFT, i.e.,

ΦHF+DMFT[G] = EH [ρ] + EX [ρ] + ΦDMFT[Gloc]− ΦHF
DC [ρloc] (4.44)

Since local part of the Hartree and exchange term is present also in DMFT, we have to

subtract terms counted twice

ΦHF
DC [ρloc] =

∑
R

EH [ρRloc] + EX [ρRloc] (4.45)

=
1

2

∫
rr′
ρRloc(r)v(r− r′)ρRloc(r

′)− 1

2

∑
σ

∫
rr′
ρR,σloc (r, r′)v(r− r′)ρR,σloc (r′, r) (4.46)

where ρRloc = |χR〉〈χR|ρ|χR〉〈χR|. In the application of H2, the site index R takes {L,R}.

Finally, we implement the LDA+DMFT functional for the application of H2, in which

the DMFT correlations (truncated to small subset of important degrees of freedom) and
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LDA static correlations complement each other. The functional is

ΦLDA+DMFT [G] = ΦH [ρ] + ΦX [ρ] + ΦLDA
c [ρ] +

∑
R

ΦDMFT [GRloc]−
∑
R

ΦDC [ρRloc] (4.47)

where the LDA correlation functional is characterized by the parametrization used in (4.25).

Note that in this implementation the exact-exchange functional ΦX [ρ] is used because the

non-local exchange is large in molecular systems. We also discuss the implementation based

on the Slater exchange functional (4.24) and present its result in the Appendix.

The doubly counted correlation term is contained in

ΦDC [ρloc] =
∑
R

ΦH [ρRloc] + ΦX [ρRloc] + ΦLDA
c [ρRloc], (4.48)

where the double-counted LDA correlation is

ΦLDA
c [ρRloc] =

∫
r
εc(ρ

R
loc(r))ρRloc(r). (4.49)

This is the exact intersection between LDA and DMFT approximation since it parallels

the derivation of the DMFT approximation starting from the exact functional (For details,

see Appendix). The double-counting term is hence a “DMFT”-like approximation to the

LDA correlation functional. Namely, just as the replacement of the total G by its local

counterpart GRloc in the exact functional leads to the DMFT approximation, replacing total

ρ by ρRloc in LDA functional gives the intersection of the two methods.

4.5 Results

In Fig. C.1 we compare the total energy curves of the H2 molecule versus nuclear separation

obtained by different electronic structure methods to the exact result from Ref. [82]. The

Hartree-Fock method describes the equilibrium distance quite well (R ≈ 1.39 compared to

exact 1.402), but the energy is severely overestimated, in particularly upon dissociation.

This well-known problem is attributed to static correlation that arises in situations with

degeneracy or near-degeneracy, as in many transition metal solids and strongly correlated

systems.
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Figure 4.1: (Color online) Total energy curves of the H2 molecule versus interatomic distance
R calculated by different methods: LDA+DMFT, HF+DMFT, LDA, and HF. The GW and
exact result are also presented for comparison.

Due to missing correlations, at large distance the Hartree-Fock method predicts that

the two electrons is both found at one nucleus with the same probability as finding them

away from each at its own nucleus. By including static local correlations, the LDA method

improves on the energy at large distance, although it is still way higher than the energy

of two hydrogen atoms. The equilibrium distance is overestimated by LDA (R ≈ 1.46)

and the total energy at equilibrium is similar to its Hartree-Fock value. We also include in

the plot the result of the self-consistent GW calculation from Ref. [83], which gives a quite

lower total energy at equilibrium and severely overestimated dissociation energy which is

comparable to that of LDA.

At large interatomic separation, the static correlations are not adequate because of the

near-degeneracy of many body states, which can not be well described by electron density

alone. The DMFT uses the dynamical concept of the Green’s function and captures correctly
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the atomic limit. This is because at large interatomic distance the impurity hybridization

function, which describes the hoping between the two ions, vanishes, and consequently the

impurity solver recovers the exact atomic limit. The inclusion of dynamic correlations by

DMFT (HF+DMFT) also substantially improves the total energy for all distances, including

at equilibrium, and the error of the total energy is below 1% for almost all distance, except

around R ≈ 3.6, where error increases to 2%. This transition region close to dissociation is

notoriously difficult, because correlations beyond single site have significant contribution,

and therefore the cluster DMFT is needed to avoid this error [7]. The predicted equilibrium

distance is slightly overestimated (R ≈ 1.44).

Finally, the combination of LDA and DMFT gives surprisingly precise total energy curve.

Except around the transition to dissociation (R ≈ 3.6), it predicts total energy within 0.2%

of the exact result, and correct equilibrium distance R ≈ 1.4. Such success of LDA+DMFT

implies that LDA and DMFT capture complementary parts of correlations. While DMFT

includes all local dynamical correlations at a single H-ion, it neglects Coulomb repulsion

between electrons that are located at different ions, and poorly describes the correlations

in the regions close to the midpoint, where ρRlocal(r) and ρLlocal(r) are comparable in size. In

this case, DMFT correlations are approximated by a linear sum of two independent terms,

the left and right correlations, which misses the essential non-linearity of the electronic

correlations. This situation is very common in solid state calculation, where charges solely

from the most localized orbitals (such as d or f) are treated by DMFT, while majority of

the electronic charge is described by the LDA correlations. On the other hand, LDA adds

correlations due to all electronic charge, which is a static and purely local approximation.

The two methods are clearly complementary, and lead to extremely precise total energy

when correctly combined.

To gain deeper insight into correlation energy, we plot in Fig. B.1 the correlated en-

ergy of the LDA and LDA+DMFT versus ion separation. The LDA correlation energy

slightly decreases with increasing distance [84] in contrast to physical expectations. On the

other hand, the LDA+DMFT correlation is small when the two ions are close, and it in-

creases sharply with increasing distance, signaling a Mott-like transition, where we find the

DMFT self-energy develops a non-analytic pole between highest occupied molecular orbital
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Figure 4.2: (Color online) (a) Correlation energy of LDA and LDA+DMFT versus inter-
atomic separation in H2 molecule. The DMFT correlation is evaluated by ΦLDA+DMFT,C =
ΦLDA,C +

∑
iE

DMFT,i −
∑

i ΦDC [ρilocal], where potential energy EDMFT,i = 1
2Tr(Σi

locGiloc).
(b) LDA+DMFT double-counting potential VDC versus R, which is defined as the functional
derivative of ΦDC [ρilocal] given in Eq. 4.49.

(HOMO) and lowest unoccupied molecular orbital (LUMO).

In the lower panel of Fig. B.1, the exact double-counting potential within LDA+DMFT

defined as VDC = 〈χi|δΦDC/δρilocal|χi〉 versus R is displayed. The often used phenomeno-

logical form U(n − 1/2), first introduced in the context of LDA+U [57], is also shown for

comparison. The exact double-counting is kept somewhat smaller than the phenomenolog-

ical form, and its variation is almost entirely due to variation of local Coulomb repulsion

U = 〈χiχi|v(r − r′)|χiχi〉, with proportionality constant VDC ≈ 0.412U . In the solid state

calculations, the self-consistent form of the double-counting U(n− 1/2) is also often found

too large and is many times reduced (see discussion in Ref. [58].)

In Fig. 4.3, we plot the LDA+DMFT spectral function at equilibrium distance R =

1.4, which has been analytically continued to the real axis by Padé method. The highest
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Figure 4.3: (Color online) LDA+DMFT spectral function (red) presented with the HOMO
and LUMO energy of LDA (blue), and the exact −IE and EA (black).

occupied quasi-particle peak (HOMO, below 0) has the physical meaning of minus the

ionization energy (−IE = EH2 −EH+
2

) while the lowest unoccupied peak (LUMO, above 0)

corresponds to electron affinity (EA = EH−2
−EH2). These quantities are called vertical IE

and vertical EA, respectively, because these energies of removal/addition of an electron are

calculated with fixed interatomic separation R. The exact −IE (−1.207 Ry) and EA (0.224

Ry) are presented as black vertical lines, calculated from the total energy difference using

the exact methods [74, 82, 85]. We also mark the position of LDA HOMO (−0.754 Ry) and

LDA LUMO (0.084 Ry) with blue lines.

The LDA HOMO is almost 40% off the −IE and the LDA LUMO is around 60% off

the EA. This failure of Kohn-Sham (KS) eigenvalues is due to delocalization error of LDA

functional, connected with the well known underestimation of band-gaps by LDA [86, 87].

On the other hand, the spectral function of LDA+DMFT, in which the KS eigenvalues are

renormalized by DMFT self-energy, shows a sharp resonance around −1.110 Ry (7% of error

bar), a substantial improvement from 40% error bar of LDA HOMO. The LUMO peak is

also refined from 0.084 Ry (LDA) to 0.192 Ry which is only 0.032 Ry off the exact value.

Although LDA+DMFT spectral function considerably improves the LDA excitations,

it still deviates from the exact result (for −IE, it is about 7% off). In order to obtain an

insight into this mismatch of the LDA+DMFT spectral function and the exact result, we
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investigated H2 in two different ways using GW-RPA approach: (a) one considering GW

correlation in the entire Hilbert space and (b) the other where GW is solely confined to the

DMFT projected space (Eq (5.43)). Firstly, we found no significant total energy difference

(∼ 0.005Ry) between two schemes. On the other hand, for spectral function, the scheme

(a) yields its −IE peak very close to the exact value within 0.1% error while that of the

scheme (b), in which GW correlation is restricted to the minimal DMFT orbitals, is also 7%

off the exact −IE peak. This indicates that the correlation of the rest of the Hilbert space

needs to be included to predict an accurate spectra of H2 although the correlation within

the minimal orbital set (Eq. (5.43)) is enough to capture the total energy precisely. We

believe that multi-orbital LDA+DMFT framework, where the DMFT correlations are also

extended to higher excited states of the system, would lead to progressively better results.

4.6 summary

In summary, a good implementation of LDA+DMFT with a high-quality projector and

exact double-counting that have been introduced here, can rival many quantum chemistry

methods in its precision. In the DMFT case, since the most time consuming part of the

method – the inclusion of correlations on a given ion – scales linearly with the system size,

it holds great promise in future quantum chemistry and solid state applications, although

it still needs to be tested in other molecular systems to establish its ultimate usefulness

in quantum chemistry applications. We have showed that the H2 molecule is a very good

testing ground for electronic structure methods addressing correlation problem, especially

because the screening effects are not obscuring problems connected with the choice of the

functional to be minimized. The present methodology will be useful in further developing

other electronic structure methods such as GW+DMFT, where the precise form of the

functional, the level of self-consistency, screening, and double-counting still need to be

adequately addressed.
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Chapter 5

Combined GW and DMFT

The dynamical mean-field theory (DMFT) [3, 4] has been very successful to describe corre-

lated electrons, and due to its non-perturbative nature it was able to describe the phenomena

of the first order metal insulator transition even in its most simplistic form of the single

band Hubbard model [4]. Due to the flexibility of the DMFT, it has been extended in

many directions, adding bosonic bath to treat long range spin [88, 89] or coulomb interac-

tions [90], extending the range of correlations from a site to clusters [91] to address the issue

of momentum space differentiation, and finally it has been combined with DFT to become

more realistic [53]. This combination of DFT and DMFT (DFT+DMFT) has been very

successful in describing materials with open d and f shells both for their spectral properties,

as well as computing total energy [5] and free energy [6] of crystal phases. Recently, DMFT

has also been successfully applied to molecules [7, 8].

Hedin’s GW approximation [92, 93] is a many-body perturbative technique, which ap-

proximates the self-energy by the lowest order diagram in the screened Coulomb interaction:

Σ = −GW . As opposed to the ground state nature of DFT, where the gaps of the Kohn-

Sham spectrum have no physical meaning, in GW approximation the target is the single

particle Green’s function and therefore the single particle excitation spectrum of GW is

expected to be a better prediction than the Kohn-Sham spectrum. Since GW is a diagram-

matic method, and DMFT can also be expressed in the diagrammatic form, the combination

of the GW and DMFT (GW+DMFT) was proposed [94, 95] as a possibly better alternative

to DFT+DMFT. Furthermore, the momentum dependence of GW self-energy is expected

to complement the local nature of the DMFT, in particular when the DMFT locality is

enforced in less localized basis, such as in the basis of Wannier orbitals. [96, 97, 98].

Most of GW calculations for solid-state systems in practice rely on one-shot GW scheme
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(generally denoted as G0W0). In this scheme, the GW self-energy is computed only once

and the non-interacting Green’s function G0 is obtained from the Kohn-Sham DFT spec-

trum [99]. The one-shot GW method has been successful for many materials with weak to

moderate electronic correlation, giving very good approximation for bandgaps in semicon-

ductors [100]. To remove the dependence on the DFT spectrum through G0, the scheme

called quasiparticle self-consistent QS-GW was developed [101, 102, 103] where the non-

interacting G0 is determined in a self-consistent way from the GW spectrum.

While the success of the DFT+DMFT is now supported by the numerous applications to

solid state systems, which are too numerous to review here, the GW+DMFT method is still

in its infancy. Nevertheless, several calculations implementing some flavor of GW+DMFT

have been reported recently, both for real materials [104, 105, 106, 107, 108] and for mod-

els [109, 110, 111]. However a comprehensive test of numerous GW+DMFT schemes, and

their appropriateness for calculating spectra or energy, is still lacking.

Small molecules have served as very good test beds to investigate electronic structure

methods. For example, Lin et al. [7] applied DMFT to hydrogen chain (Hn) where they

found the cluster DMFT produces comparable accuracy to density matrix renormalization

group (DMRG). Our previous study of LDA+DMFT on H2 molecule [60] demonstrated that

single-site DMFT with a good choice of local orbitals and exact double-counting method

gives extremely precise total energy, and also considerably improves the spectra, as com-

pared to LDA.

In this chapter we perform a comprehensive test of various flavors of GW+DMFT, from

fully self-consistent GW+DMFT to G0W0+DMFT and QSGW+DMFT [112]. We compute

the total energy and the spectra of H2 molecule for all these methods, and compare them

to DFT+DMFT and the exact solution.

We find that the strongly correlated regime is very challenging for most of GW+DMFT

methods, and most of them fail due to causality violation, which has not been properly

addressed before. The only exception is the quasiparticle self-consistent method, i.e.,

QSGW+DMFT. The latter recovers the correct atomic limit only when combined with

the static double-counting, in which case it gives comparable spectra and energy to the

results of LDA+DMFT.
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Close to the equilibrium volume, which can be characterized as the weakly to moder-

ately correlated regime, most of GW+DMFT schemes considerably improve the spectra, as

compared to LDA+DMFT, however, the total energy rivals LDA+DMFT total energy only

in the fully self-consistent version, which however breaks down in the correlated regime.

The quasiparticle method with static double-counting, which performs well in the corre-

lated regime, does not give very accurate total energy in the moderately correlated regime,

as it is not derivable from a functional.

Our study demonstrates that the QSGW+DMFT, in combination with static double-

counting, is a promising direction for computing spectra of correlated systems both in

moderate to strongly correlated regime. On the other hand, the GW+DMFT methods

tested in this work, do not rival LDA+DMFT in predicting the total energy of the system.

5.1 Functional approach for DMFT, GW and GW+DMFT

Let us start by refreshing the Baym-Kadanoff (BK) formalism [66, 67], which provides the

functional of the Green’s function G

Γ[G] = Tr logG− Tr((G−1
0 −G

−1)G) + Φv[G], (5.1)

that is stationary for the exact Green’s function G, and gives the grand potential, when

evaluated on the exact Green’s function G (for details see also [53]). Here G0 is the non-

interacting Green’s function G−1
0 = [iω + µ−∇2 + Vext(r)]δ(r, r′) and Vext is the potential

due to nuclei. The last term Φv[G] is the so-called Luttinger-Ward (LW) functional, which

is the sum of all skeleton diagrams constructed by the Green’s function G and the Coulomb

repulsion v(r, r′) = 1
|r−r′| . The derivative of the LW functional with respect to G gives the

exact self-energy of the system

δΦv[G]

δG
= Σ. (5.2)

The stationarity of the functional Γ[G] at the exact G (δΓ/δG = 0) is ensured by the Dyson

equation

G−1 − [iω + µ−∇2 + Vext(r)]δ(r, r′) + Σ = 0. (5.3)
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The functional Φv[G] is diagrammatically known, but its evaluation is extremely difficult

due to fermionic minus sign problem [113]. Nevertheless, this formalism is extremely useful

because many good approximations can be devised by approximating Φ rather than Γ, and

such approximations were shown to be conserving [66, 67].

One can classify these approximations into two classes: those that truncate correlations

in the real space, and those that truncate in the space of Feynman diagrams. In LDA the

functional Φ is truncated in real space so that exchange and correlations are local to a point

in 3D space, i.e., each point in 3D space is mapped to an independent auxiliary problem of

electron gas. In the DMFT the functional Φ is also truncated in real space, but the locality

is constraint to a site on the lattice, which is mapped to an auxiliary problem of quantum

impurity.

On the other hand, in Hartree-Fock and GW theories, the truncation is done in the

space of Feynman diagrams but the complete space dependence of the self-energy is kept.

The GW+DMFT can then be seen as the hybrid between these two classes of approaches,

as it truncates Feynman diagrams only for the long range part of the correlations, while the

short-range correlations can be exactly accounted for by the DMFT.

5.1.1 DMFT

In DMFT method, the locality of correlations is explored and the LW-functional is truncated

so that it is a functional of the local Green’s function (Gloc) only, i.e., it contains all skeleton

Feynman diagrams that are constructed from Gloc and interaction v, and all diagrams that

are outside this range, are removed. In realistic systems, the DMFT method is defined only,

once the projector to the local Green’s function is specified. In this work, we will use the

real space projectors, defined by

GR
loc = P̂G ≡

∑
LL′

|χLR〉 〈χLR|G|χL
′

R 〉 〈χL
′

R |. (5.4)

where {|χLR〉} is a local orbital set centered on a given nucleus at R, and L is an orbital

index. In the single-orbital DMFT case, which we will test in this work, no sum over L is

needed.
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The DMFT LW-functional is then

ΦDMFT[G] =
∑
R

Φv[G
R
loc]. (5.5)

and the functional Φv[Gloc] has the same dependence on Gloc as the exact functional Φv[G]

on G, except that it has finite range. This is because any Feynman diagram of arbitrary

topology that is contained in exact Φv[G] is also contained in approximate Φv[Gloc]. In solid

state applications of DMFT, the interaction v has to be replaced by the screened interaction

U due to the fact that many degrees of freedom are being removed from consideration.

Screening in molecules is negligible, hence we can safely take U = v for the molecular

systems.

5.1.2 GW

Hedin found a closed set of equations based on a Greens function formalism whose solution

is the answer to the many-body problem [92]. The variables of those equations that are

coupled with each other are the one-particle Greens function G, the screened interaction

W , the polarization P , the vertex Γ and the self-energy Σ:

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (5.6)

Σ(1, 2) = i

∫
d(3, 4)G(1, 3+)W (1, 4)Γ(3, 2, 4) (5.7)

P (1, 2) = −i
∫
d(3, 4)G(1, 3)Γ(3, 4, 2)G(4, 1+) (5.8)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2) (5.9)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (5.10)

Those coupled equations above are called Hedin’s equations, which provides the exact solu-

tion to given many-body system. Although one might attempt to solve Hedin’s equations

self-consistently, in the technical sense, the problem is quite impossible to solve exactly.

In order to make the problem more feasible to solve, Hedin suggested so-called GW

approximation, where we only take the first order of Γ(1, 2, 3) = δ(1, 2)δ(1, 3). Then the



61

equation becomes

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (5.11)

Σ(1, 2) = iG(1, 2)W (2, 1+) (5.12)

P (1, 2) = −iG(1, 2)G(2, 1+) (5.13)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2). (5.14)

The name GW is named after the form Σ = iGW and the polarization calculated by

P = −iGG is also called random-phase approximation (RPA).

A further approximation Σ = iG0W0 is the most widely used scheme, often called one-

shot GW or simply G0W0, in which the Green’s function is fixed with some non-interacting

Green’s function. In many cases, we calculate G0 based on the eigenvalues of the DFT

solution [99].

On the other hand, If we solve the equations above equations in a fully self-consistent

manner, the scheme is called self-consistent GW . It is only the self-consistent GW scheme

where we can define the Luttinger-Ward functional for GW diagrams. Now we follow here

the sign convention of the imaginary time formalism so the equations become ΣGW = −GW

and P = 2GG. The factor 2 is for spin degrees of freedom. From (5.2), its functional form

can be written as

ΦGW
v [G] = −

∞∑
n=1

1

2n
[Tr(2GvG)]n =

1

2
Tr log(1− 2GvG) (5.15)

where the first term (n=1) corresponds to the exchange functional EXv [ρ].
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5.1.3 GW+DMFT

Just like in LDA+DMFT, LW functional of GW+DMFT is a combination of GW functional

augmented with the DMFT functional for the local degrees of freedom, i.e.,

ΦGW+DMFT[G] =EHv [ρ] + ΦGW
v [G]

+
∑
R

(Φv[G
R
loc]− ΦDC [GR

loc]). (5.16)

The double-counting of GW+DMFT is obtained by applying the DMFT approximation on

the GW functional, leading to

ΦDC [GR
loc] = EHv [ρRloc] + ΦGW

v [GR
loc]

= EHv [ρRloc] +
1

2
Tr log(1− 2GR

locvG
R
loc). (5.17)

To converge the GW+DMFT equations, we implemented the following steps:

(1) Starting with an initial non-interacting Green’s function G = G0, we construct

P (τ) = 2G(τ)G(−τ) (5.18)

W (iν) = v/(1− P (iν)v) (5.19)

where all variables above are general matrices.

(2) The GW self-energy is given by:

ΣGW (rr′; τ) = −G(rr′; τ)W (rr′; τ) (5.20)

(3) From (5.17), we see that the double-counted GW contribution to the self-energy is :

ΣGW
DC (τ) =

δΦGW
v [GR

loc]

δGR
loc

= −GR
loc(τ)Wloc(τ) (5.21)
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where the local components are computed by

GR
loc = P̂RG (5.22)

Ploc(τ) = 2GR
loc(τ)GR

loc(−τ) (5.23)

Wloc(iν) = v/(1− Ploc(iν)v). (5.24)

(4) Electron density is given by ρ = G(τ = 0−).

(5) Next we calculate the Hartree potential

V H(r) =
δΦH [ρ]

δρ(r)
=

∫
dr′v(r− r′)ρ(r′). (5.25)

(6) (DMFT loop) Using local Green’s function at each site GR
loc = P̂RG and the interaction

v, we construct the auxiliary impurity model, which delivers the impurity self-energy

Σimp =
δΦv[G

R
loc]

δGR
loc

(5.26)

(7) Putting together GW, DMFT and DC, the total self-energy is obtained by

Σ =ΣGW +
∑

R,LL′

|χLR〉(Σ
R,LL′

imp − ΣR,LL′

DC )〈χL′R | (5.27)

The double-counting is ΣDC(iω) = V H
loc + ΣGW

DC (iω), with ΣGW
DC evaluated in (3), and

the local Hartree V H
loc is

V H
loc =

δΦH [ρloc]

δρloc

=
∑
LL′

|χLR〉 〈χLR|V H [ρloc]|χL
′

R 〉 〈χL
′

R |. (5.28)

(8) From Dyson equation (5.3), the total Green’s function is given by

G−1 = [iω + µ+∇2 − Vext − V H ]δ(r− r′)− Σ(rr′; iω), (5.29)
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where the chemical potential is determined by enforcing charge neutrality, i.e.,

∫
drρ(r) =

∫
drG(r, r; τ = 0−) = Znuclei (5.30)

(9) For Fully self-consistent GW+DMFT , go back to (1). All variables are updated until

self-consistency is reached. For G0W0+DMFT , go to (4). Therefore the GW self-

energy (5.20) and its local counterpart (5.21) do not change over the iterative process

while the impurity self-energy, total density and the Green’s function are updated.

5.1.4 Quasiparticle self-consistent GW+DMFT and its double-counting

First, let us discuss the quasiparticle self-consistent GW [101, 102, 103]. It is similar to

G0W0 in that the polarization P = 2GQPGQP and the self-energy Σ = −GQPWQP are

computed from a free-particle Green’s function GQP = 1/(ω + µ−HQP), in which HQP is

a Hermitian non-interacting Hamiltonian, which is however determined in a self-consistent

way from the GW spectra.

Refs. [101, 102, 103] proposed to solve the following quasiparticle equation

[
−∇2 + Vext + V H + ReΣGW (En)− En

]
|ψn〉 = 0. (5.31)

to determined the Hermitian quasiparticle Hamiltonian with the form
[
HQP−En

]
|ψn〉 = 0.

Since the GW self-energy has a weak frequency dependence, we may use ReΣGW (ω) ≈

ReΣGW (0)+ ∂ReΣGW (0)
∂ω ω = ReΣGW (0)+(1−Z−1)ω where the quasiparticle renormalization

amplitude matrix is

Z−1 = 1− ∂ReΣGW (0)

∂ω
, (5.32)

which gives the following form for the quasiparticle Hamiltonian

HQP = Z1/2
[
−∇2 + Vext + V H + ReΣGW (0)

]
Z1/2. (5.33)

Since the QSGW procedure provides a static effective Hamiltonian in which the GW

spectral information is encoded, one might think that QSGW Hamiltonian can simply
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replace the KS Hamiltonian of DFT+DMFT and yield better accuracy. However, to imple-

ment QSGW+DMFT, there is a subtle issue concerning the double-counting between the

HQP and DMFT correlation.

Since HQP is constructed based on the real part of GW self-energy, one may attempt

to approximate HQP + Σ(iω) = HQP + Ê(Σimp(iω) − ReΣGW
DC (iω)). But this self-energy

obviously violates the causality condition as it does not respect the Kramers-Kronig relation.

In the following, we will introduce two double-counting schemes, which obey the Kramers-

Kronig relation.

Static double-counting (SDC)

In the simplest approach, we can take the double-counting as the zero-frequency value of

the local-GW self-energy, i.e.,

ΣSDC = V H
loc + ReΣGW

DC (ω = 0) (5.34)

where ΣGW
DC is the exact DC given by Eq. (5.21). Recently, the combined method QSGW+DMFT,

has been implemented for real materials in Ref. [108], in which the static double-counting

was employed.

We implement QSGW+DMFT as follows:

(1) We start with initial values for GQP, ρ(r) and Σimp(iω). We take their LDA coun-

terparts HKS , (GQP)−1 = iω + µ−HKS and ρLDA. For the impurity self-energy, we

start with the local Hartree-Fock.

(2) Self-energies are constructed ΣGW = −GQPWQP and ΣGW
DC = −GQP

locW
QP
loc and then

we obtain the double counting ΣSDC = V H
loc + ΣGW

DC (w = 0).

(3) Next, the Hartree potential is computed from the density

V H(r) =
δΦH [ρ]

δρ(r)
=

∫
dr′v(r− r′)ρ(r′). (5.35)

(4) The quasiparticle HamiltonianHQP is computed using Eq. (5.33), so that new (GQP)−1 =
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iω + µ−HQP.

(5) The total Green’s function is then given by

G =
1

iω + µ−HQP − Ê(Σimp − ΣSDC)
. (5.36)

(6) The density and the chemical potential are computed from ρ(r) = G(r, r, τ = 0−1).

(7) (DMFT loop) from the local Green’s function GR
loc = P̂RG and the interaction v, the

impurity solver calculates a new impurity self-energy:

(GR
loc, v) → Σimp(iω). (5.37)

(8) With updated variables GQP, ρ and Σimp, go to the step (2).

The main difference between our QSGW+DMFT and that of Ref. [108] is that the quasi-

particle HQP in Ref. [108] was calculated from QSGW only, and the feedback of the DMFT

self-energy on HQP was ignored. In our case, we recompute HQP from the physical self-

consistent Green’s function in every iteration.

Dynamical double-counting (DDC)

Although the static local GW term is subtracted, one can expect that the spectral function

is possibly over-renormalized because HQSGW , which is renormalized by GW , is again

renormalized by the DMFT self-energy.

This is a very subtle issue for QSGW+DMFT because the dynamical effects of GW

self-energy are incorporated in the static QSGW Hamiltonian HQP, therefore we would like

to subtract the local part of this renormalization.

To overcome this problem, we first construct a non-local quasiparticle Hamiltonian

HQP
nonloc where not only GW but also the subtraction of the local GW is incorporated.

The bandwidth of correlated orbitals of HQP
nonloc must be wider than HQP because we un-

renormalize the local GW effect in HQP
nonloc. This widened band is then corrected by the
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impurity self-energy, which is expected to be more accurate than the local GW self-energy.

In order to define the non-local quasiparticle Hamiltonian HQP
nonloc, using the non-local

GW self-energy we write

ΣGW
nonloc(ω) = ΣGW (ω)− ΣGW

DC (ω), (5.38)

and we compute

Z̄−1 = 1−
∂ΣGW

nonloc(0)

∂ω
(5.39)

and then we define

HQP
nonloc = Z̄1/2

[
−∇+ Vext + V H + ΣGW

nonloc(0)
]
Z̄1/2. (5.40)

The above algorithm then has to be modified so that the step (5) in computing the total

Green’s function uses

G =
1

iω + µ−HQP
nonloc − Ê(Σimp − V H

loc)
. (5.41)

rather then (5.36).

This DDC approach shares the basic idea of the scheme introduced by Tomczak in

Ref. [114], where he calculated the HQP
nonloc along the real frequency. On the other hand, we

implement the scheme based on the Matsubara formalism using linearization of the GW

self-energy.

5.1.5 Causal double-counting scheme for GW+DMFT

We propose here another type of double-counting for GW+DMFT, which we denote as

causal double-counting (CDC). As will be clear in the III. A. 1, GW+DMFT with the exact

double-counting (Eq. (5.21)) suffers a causality violation that does not allow GW+DMFT

to work in the strongly correlated regime. To avoid the causality breakdown, we introduce

causal double-counting (CDC) functional

ΣDC = P̂ΣGW . (5.42)
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and we will discuss why this double-counting scheme allows us to avoid the causality issue

in the III. A. 2.

One can notice that the CDC is not exact because this double-counting contains the

diagrams in which the degrees of freedom of the DMFT local orbitals and the rest of the

space interact through the screened interaction W , which is not contained in the DMFT

self-energy. Nevertheless, it allows GW+DMFT to work in the strongly correlated regime

without violating the causality.

5.1.6 Computational details

In this work we use only the single site DMFT combined with LDA and various flavors

of GW. We use the same choice of the DMFT projector as in our previous study of

LDA+DMFT [60], the linear combination of the lowest two orbitals of H+
2 cation, |1sσg〉

(bonding) and |1pσu〉 (anti-bonding) state. We denote them as the “left” (L) and the “right”

(R) localized orbital:

|χL〉 =
1√
2

(|1sσg〉 − |1pσu〉),

|χR〉 =
1√
2

(|1sσg〉+ |1pσu〉). (5.43)

This orbital set is a good choice for the DMFT projector because i) they are well-localized

at each atomic site, ii) they naturally recover 1s orbital (the ground state of H) on each

site at large atomic separation, iii) over 96% of the electronic charge of the DMFT solution

is contained in these two states, which implies most of correlation can be captured within

the single site approach, and iv) they do not explicitly depend on the self-consistent charge

density. The last condition is especially important for a stationarity of the DMFT solution,

given that we are extremizing the Luttinger-Ward functional.

Since H+
2 is a one-electron problem, the solution is achieved by solving the single-particle

Schrödinger’s equation. We follow a recursive approach (see Ref. [74]) to solve H+
2 cation

and several lowest orbital energies are presented in Fig. 5.1.

The entire Hilbert space of H2 is spanned by approximately 30 Gaussian orbitals (correlation-

consistent basis set, cc-pVTZ [115]). We want to emphasize that the GW calculation in
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Figure 5.1: (Color online) The lowest two orbital energies of H+
2 cation as a function of R,

which are taken to define the DMFT projector (Eq. (5.43)).

this study is converged with respect to the size of the basis set, which is very challenging

in solid state applications, and this is another reason why such tests of GW+DMFT are

important and useful.

We evaluate the ground state energy of GW+DMFT schemes using the Galitskii-Migdal

formula

E = Tr(H0ρ) +
1

2
Tr(ΣG) (5.44)

where H0 is the non-interacting part of Hamiltonian H0 = −∇2 +vext, ρ is the total electron

density, and G is the total Green’s function of the system.

The inverse temperature is set to be β = 1/kBT = 100Ry−1. Since the orbital energy

gap of H2 is order of several Ry, this temperature is sufficiently low and therefore describes

the ground state.

5.2 Results and discussion

The H2 molecule is a archetypical correlated system, often taken as an example to demon-

strate the failure of methods that use the single slater determinant ansatz, such as Hartree-

Fock and LDA. In the dissociation limit, such methods predict delocalized ground state,

which never recovers correct atomic limit. GW approximation, a many-body perturba-

tive method, only slightly improves on LDA in this strongly correlated limit as well. The
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electronic correlations are only moderate around equilibrium distance (R = 1.4 a.u.), nev-

ertheless none of these methods (LDA, HF or GW) give an accurate total energy compared

to the exact solution, achieved by the configuration interaction (CI) method.

In addition the prediction of the ionization energy (IE) from single particle spectral

function is a very good indicator of the quality of the predicted single particle spectra

within a given approximation. As is known from the exact solution, the ionization energy

is the energy required to remove a single electron, i.e.,

H2 + IE → H+
2 + e−

⇒ IE = E(H+
2 )− E(H2) (5.45)

where E(H+
2 ) is the ground state energy of H+

2 . We computed the single particle Green’s

function in all tested approaches, and checked how well they predict the position of the

peak in the spectral function corresponding to the IE energy.

5.2.1 GW+DMFT

Total energy

Fig. C.1 show the total energy of several GW+DMFT methods and compares it to the results

of LDA+DMFT, HF, GW and the exact solution. The LDA+DMFT results were already

presented in our previous work [60], where we checked the accuracy of this approximation,

and we showed the importance of using the exact double-counting within LDA+DMFT.

The accuracy of the predicted total energy within LDA+DMFT is excellent, giving correct

limit at large distance R of −2.0 Ry, and overall error below 1%, with only exception around

the breking of the molecule (R = 3.5 − 4), where non-local corrections become important.

At equilibrium distance, the error is less than 0.2%.

As shown in Fig. C.1 all methods tested here give better total energy than Hartree Fock

(3.5% error) around the equilibrium distance (R = 1.4). The self-consistent GW gives error

of approximately 1.3%. Inclusion of the correlations captured by the DMFT improves the

total energy substantially, for example the fully self-consistent GW+DMFT has an error

of 0.3% (very similar to 0.2% in LDA+DMFT), In G0W0+DMFT calculation, with G0
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Figure 5.2: (Color online) The ground state energy of GW+DMFT versus R presented with
the HF, GW, LDA+DMFT and exact result for comparison. (inset) We also added the
total energy results of G0W0+DMFT without charge self-consistency (dashed lines).

being based on the Hartree-Fock Hamiltonian ([G0W0]HF+DMFT), the accuracy is almost

as good as in GW+DMFT, while in [G0W0]LDA+DMFT, the total energy is slightly less

precise.

To show the effects of self-consistency of GW+DMFT in detail, we display in the inset

of Fig. C.1 the G0W0+DMFT result at different self-consistent level. The dashed line

shows G0W0+DMFT calculation where the total electronic charge is not updated, which

is the common practice in solid state applications. In this approach, we first perform self-

consistent LDA (or HF) calculation, and then we fix the Hartree potential V H and GW self-

energy ΣGW = G
LDA(HF)
0 W

LDA(HF)
0 at the LDA (HF) level, and we perform self-consistent

DMFT calculation. Alternatively, when the electronic charge is updated self-consistently

on the GW+DMFT charge, the accuracy of the total energy clearly improves.

It is interesting to note that the charge self-consistency has much stronger effect on

the total energy than the choice of the non-interacting G0 in G0W 0. Both G0W 0+DMFT

methods are quite close to the GW+DMFT results when the charge is updated, and much

worse when charge is fixed at the LDA/HF level. Perhaps this is not very surprising, as the

Hartree term contributes most to the total energy. For total energy calculation, the charge
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self-consistency is then much more important than the choice of G0, despite the fact that

the G0 based on LDA is substantially worse (37% error for IE) than the HF spectra (2%

error for IE).

In Fig. C.1 we could not continue GW+DMFT methods towards the the atomic limit,

most interesting correlated regime. The fully self-consistentGW+DMFT andGHF
0 WHF

0 +DMFT

break down around R = 3 a.u, while GLDA
0 WLDA

0 +DMFT breaks down already at R =

2.5 a.u.. The reason for such dramatic failure of GW+DMFT is the causality violation,

which we will address in the next section. This is one of the most significant findings of

our work, which shows that the self-consistent GW+DMFT or G0W0+DMFT, when using

exact double-counting, have no future in addressing the problem of strong correlations.

Causality breakdown

To solve the DMFT problem, and sum all local skeleton diagrams Φv[G
R
loc] we construct an

auxiliary impurity problem, which has the same interaction v as the original problem, and

GR
loc = Gimp. Note that in solid-state systems we need to renormalize interaction v due to

screening effects, which is not needed here. Note also that this mapping of the local skeleton

diagrams to an impurity model is exact, and no further approximation is made in this step.

Furthermore, it is convenient to represent the impurity Green’s function in terms of proper

and improper self-energy ( Σimp and ∆), i.e.,

Gimp =
1

ω − εimp −∆− Σimp
(5.46)

where Σ is the self-energy due to the Coulomb interaction, while improper part ∆ is due

to the hybridization of this site with the medium, and is therefore commonly referred to as

the Weiss mean field. The causality is violated if any of the three quantities Gimp, Σimp, or

∆ acquire positive imaginary part at any frequency point on the real or imaginary axis.

We want to write the DMFT self-consistency condition Gimp = P̂G in such a way that

the Weiss mean field ∆ from Eq. 5.46 is expressed explicitly. To derive ∆, we will first

eliminate the degrees of freedom which are not corrected by the DMFT (the 30 Gaussian

orbitals Hilbert space, which has no overlap with the DMFT projectors). We will call this
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part of the Hilbert space r. The part of the Hilbert space, which is corrected by the DMFT

will be denoted by d. In the second step, we will extract the Green’s function of a single site,

which is needed by the single site DMFT, and appears in the equation for hybridization ∆.

We start with the Green’s function of GW+DMFT from Eq.5.29:

G =
(
ω + µ−HH − ΣGW − Ê(Σimp − ΣGW

DC )
)−1

(5.47)

where we denoted HH = −∇2 + vext + vH . We next write it in the block form, where dd

part of the matrix is corrected by the DMFT, and the rest is not:

G =


[
ω + µ−HH − ΣGW

]
dd
− Σimp + ΣGW

DC −
[
HH + ΣGW

]
dr

−
[
HH + ΣGW

]
rd

[
ω + µ−HH − ΣGW

]
rr


−1

(5.48)

We then eliminate the r part of the matrix, so that the Gdd becomes

Gdd =
[
1(ω + µ− Σimp + ΣGW

DC )− (HH + ΣGW )dd −MdrM
−1
rr Mrd

]−1
(5.49)

where we denoted

Mdr(rd) = [HH + ΣGW ]dr(rd)

Mrr = [ω + µ−HH − ΣGW ]rr. (5.50)

We emphasized here that the dd part of G is still a matrix, in our case 2 × 2 for the two

H atoms. In solid state, the dd part would be an infinite matrix, containing the correlated

degrees of freedom, but written in real space. In the second step we express the Green’s

function of a single site, as needed by the DMFT. We first define a matrix S:

S ≡ (HH + ΣGW )dd +MdrM
−1
rr Mrd (5.51)
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so that

Gdd =
[
1(ω + µ− Σimp + ΣGW

DC )− S
]−1

(5.52)

and then the local Green’s function becomes

Gloc =
1

ω + µ− Σimp + ΣGW
DC − S11 − S12

1
ω+µ−Σimp+ΣGWDC −S22

S21
(5.53)

The crucial point is that in the correlated regime Σimp becomes large (diverges) and

therefore we can neglect the last term in the denominator. Physically, this comes from the

fact that in the correlated regime the correlated sites (H-atoms) decouple, and the effective

hopping between them is thus cut-off by the appearance of large local Σimp, and therefore

DMFT is able to recover the correct atomic limit. We thus have

Gloc =
1

ω + µ− Σimp + ΣGW
DC − S11 −O( 1

Σimp
)

(5.54)

and comparing Eq. 5.54 with Eq. 5.46 revelas

∆ = (Mdr
1

(ω + µ)1R −HH
rr − ΣGW

rr

Mrd)11︸ ︷︷ ︸
≡∆R

+(Σ̃GW
11 − Σ̃GW

DC ) +O( 1
Σimp

) (5.55)

where the tilde notation on the self-energy means Σ̃(ω) = Σ(ω) − Σ(∞), and εimp =

−µ+HH
dd + ΣGW

dd (∞)− ΣGW
DC dd(∞). Note that ΣGW

11 = P̂ΣGW .

Although we used in Eq. 5.53 the fact that S is a 2× 2 matrix, it is very easy to check

that the resulting Eq. 5.55 is valid in general, even in the solid state with infinite number

of correlated sites, a long as Σimp is large, and sites decouple.

While the first term in Eq. 5.55 (∆R) is always causal, the second term is generally not,

and its imaginary part can have any sign. It has usually the non-causal sign, because the

ΣGW
DC tends to be larger than ΣGW

dd . As we will show in the section below, in the correlated

regime ∆R becomes small, and then the hybridization becomes non-causal.



75

Naively one would expect that ΣGW
11 and ΣGW

DC would cancel, but they do not, because

the projected local self-energy ΣGW
11 = P̂ΣGW is

ΣGW
11 = [−GW ]11 = −GlocW1111 −

∑
r 6=1

GrrW1r1r (5.56)

with the screened Coulomb interaction W = v[1 − Pv]−1. Here G11 = Gloc. On the other

hand, the double-counted term ΣGW
DC is

ΣGW
DC = −GlocWloc. (5.57)

with the screened local interaction defined by Wloc = v[1 − GlocvGloc]−1. The two terms

are then always different.

Note also that within LDA+DMFT, this problem does not occur, because DC is static,

and projected Kohn-Sham hamiltonian is also static, hence causality can not be violated.

In the dissociation regime (R > 3.5 ∼ 4.0) the hopping between the two H-atoms should

vanish, and this can be achieved by diverging impurity self-energy, so that the last term

in the denominator of Eq. 5.53, vanishes. In this way we recover the exact atomic limit.

And indeed this is how LDA+DMFT achieves the exact atomic limit. On the other hand

GW+DMFT breaks down in this regime, and we will show below that this is because

ImΣGW
11 < ImΣGW

DC .

In Fig. 5.3(a) we show the imaginary part of ∆ on the imaginary frequency axis. It is

clear that for R & 3.5 the imaginary part of ∆ becomes positive in some frequency regime,

violating the causality. In Figs. 5.3(b) and (c), we also present the terms appearing in

Eq. 5.55, i.e., ∆R and (P̂ Σ̃GW − Σ̃GW
DC ). Clearly ∆R is always causal, while (P̂ Σ̃GW − Σ̃GW

DC )

has the wrong sign. In the weakly to moderately correlated regime, the last term in the

denominator of (5.53) is large since the hopping between the two DMFT orbital, S12, is

substantial as the two site are close to each other. Therefore, this term outweighs the non-

causal term (P̂ Σ̃GW − Σ̃GW
DC ) and the causality is not yet violated in the weakly correlated

regime.

One might ask then how is such causality violation avoided in the exact solution, .i.e.,
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Figure 5.3: (Color online) The imaginary part of (a) the hybridization function ∆(iω), and
its component (b) ∆R(iω) and (c) ∆ΣGW

DC (iω)of Eq. (5.55). For the two cases (R=4.0 and
5.0) in which the causality break down, we took the result of the first iteration.

when we replace ΣGW with sum of all non-local Feynman diagrams. We know that in this

case we should recover the exact solution. In this particular case, ΣDC would vanish, as all

terms are non-local and thus nothing is double-counted. We would then need to see that

the projection of the non-local diagrams to the correlated site is positive. But there is a

second possibility, which is more likely in low dimensional systems and molecules, namely

that the non-local part of the self-energy diverges simultaneously with the local part, and

therefore the separation into diverging local and well-behaved non-local part is not possible.

In another words, we would not be able to neglect the last term in the denominator Eq. 5.53,

because S12 is as large as Σimp. In GW+DMFT, the GW self-energy is always Fermi-liquid
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Figure 5.4: The total energy result of GW+DMFT with causal double-counting (CDC)
scheme

like and it never diverges.

As clear from the above argument, the causality is not violated if we take the CDC

(Eq. (5.42)) because P Σ̂GW − ΣDC = 0. We present the total energy of this scheme in the

Fig. 5.4.

In the moderate correlated regime (around R = 1.4), the CDC scheme is worse than

exact double-counting scheme both in total energy and spectral function. The error of the

total energy of GW+DMFT with CDC, 0.8%, is worse than that of LDA+DMFT (0.2%) or

GW+DMFT with exact DC (0.3%). However, it is very important that the CDC double-

counting works correctly at the large distance regime, where all the exact double-counting

schemes fail due to the causality violation. As clearly seen, the CDC total energy converges

to -2.0.

Although CDC is an ad-hoc scheme, it allows GW+DMFT to work in the strongly

correlated regime without violating the causality. Since GW+DMFT is meant for strongly

correlated solids where Z is typically small, we argue that the GW+DMFT for solid-state
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calculation is better when the CDC scheme is used and the effect of using the CDC instead

of the exact double-counting should be investigated systematically.

Spectral function

In this section, we present the spectral function, the imaginary part of the Green’s function

summed over all diagonal component. We choose the zero of energy corresponding to disso-

ciation of the molecule, so that the negative peak in spectra corresponds to the ionization

energy. The Padé method is used for analytic continuation from imaginary frequency to

real frequency. We mention in passing that Padé approximation is very accurate here, and

we found only very minor sensitivity of the pole position (around 0.1%) depending on the

choice of the input parameter for Padé method.

In Fig. 5.5 we display the spectral function for R = 1.4 (the equilibrium distance), which

corresponds to the moderately correlated regime. The peak position, measured from the

vacuum (not from the chemical potential) corresponds to the IE. The LDA prediction for

IE is 40% off the exact value. This failure is related to the band gap underestimation in

solid-state calculation. On the contrary, the HF prediction is very good in this regime, and

is only 1.5% off the exact value. The GW approximation slightly improves on HF, and its

IE in the moderately correlated regime is only 1.2% of the exact value.

In Fig. 5.5a we also show the LDA+DMFT prediction, which substantially improves the

LDA value from 40% error down to 7.6% error. Nevertheless, the LDA+DMFT spectra is

not very accurate, as it builds on too inaccurate starting spectra.

We expect that GW in combination with DMFT improves the GW result. Indeed when

combining GW and DMFT in a fully self-consistent way, the error is only 0.9% and when

using G0W0 from HF (which itself is quite precise), the error is only 0.7%. Somewhat

worse is the result of G0W0+DMFT when G0 is taken from LDA. The error in this case is

quite comparable to LDA+DMFT error, but it seems the combination of DMFT and G0W0

overcorrects the LDA.

Notice also that the charge self-consistency has almost no effect on the spectra, while

we showed before that charge self-consistency is crucial for the accuracy of the total energy.

On the other hand, the choice of G0 is crucial for spectra, but not for the total energy.
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Figure 5.5: (Color online) Spectral function for R = 1.4 where the exact IE is −1.206 a.u.
Each errorbar is presented in the legend. (upper panel) GW , LDA, HF and LDA+DMFT for
comparison. (lower panel) GW+DMFT schemes with different self-consistent conditions.
The dashed lines indicates the result without charge self-consistency

We note that the GW+DMFT with CDC is worse than . We attribute this inaccuracy

to the fact that the CDC scheme includes the interactions between the DMFT space and the

rest of Hilbert space, which is not supposed to be involved in the local impurity self-energy.

Therefore, CDC scheme in this scheme is less precise than the GW+DMFT with the exact

DC.

On the other hand, at the large separation limit (Fig. 5.6) where the correlation effects

are strong, the CDC scheme is the only GW+DMFT method that works without causality

violation. It successfully reproduces the spectral function close to the exact value and
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Figure 5.6: The spectral function (upper panel R=1.4, upper panel R=5.0) calculated by
GW+DMFT with causal double-counting (CDC) scheme

its quality is comparable to that of LDA+DMFT. All other methods without the DMFT

treatment, LDA, HF and GW , are far from the exact ones due to the failure of perturbation

theory.

We notice that DMFT considerably improves the total energy of GW in this regime,

while the spectra seems barely affected. This is because the renormalization amplitude

from local GW self-energy and the DMFT self-energy are almost the same in this weakly

correlated regime, and their values are 0.935 and 0.928, respectively.

5.2.2 QSGW+DMFT

As shown above, the self-consistent GW+DMFT fails in the correlated regime due to causal-

ity violation, which comes from the fact that double-counted self-energy is dynamic and too

large. In QSGW the GW spectra is represented by an approximate static Hermitian Hamil-

tonian, and in this case we expect that approximating the double-counting by a static value

might be a reasonable choice. We denoted this choice by SDC. As discussed above, the
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Figure 5.7: (Color online) The ground state energy of the QSGW+DMFT results with
two different schemes of double-counting. The inset shows the magnification around the
equilibrium distance.

static DC term tends to over-count the renormalization effects, and this can be somewhat

remediet by choosing dynamic double counting, which we denote by DDC.

In Figs. 5.7 we display the total energy of QSGW+DMFT together withGW , LDA+DMFT

and exact total energy. Because the quasiparticle approximation is not derivable from a

functional, the energies are unfortunately not very good. At equilibrium, the QSGW+DMFT

energy is very similar to GW energy, while in the correlated regime the addition of DMFT

slightly improves the GW energy. Nevertheless, the dynamic double-counting does not re-

cover correct atomic limit, even though DMFT is expected to be exact in the atomic limit.

This failure is again due to the double-counting issue, namely, when impurity self-energy

is diverging, the hybridization should vanish, but when a dynamic double-counting is used,

hybridization does not vanish, and the atomic limit is not reached. In solid state applica-

tions, this would correspond to a missed Mott transition in the strongly correlated limit. We
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Figure 5.8: (Color online) The QSGW+DMFT spectral results with two different double-
counting schemes at R = 1.4, compared with GW, LDA, HF and LDA+DMFT

see in Fig. 5.7 that only a static DC correctly reproduces atomic limit. But unfortunately

the total energy is substantially worse than corresponding LDA+DMFT result. This is not

unexpected, as only methods derivable from a functional are expected to give precise total

energies. [83]

Next we show the spectral functions of QSGW+DMFT at equilibrium position. Fig. 5.8

compares the GW, LDA+DMFT and two version of QSGW+DMFT schemes with the exact

solution. For the static double-counting (SDC) scheme, the spectra is not good, and very

comparable to LDA+DMFT result. The origin of the error is however quite different, in

QSGW it is due to the double renormalization by both the GW and DMFT, while in

LDA+DMFT it is due to missing non-local correlations.

The dynamic double-counting scheme (DDC) substantially improves the spectra in this

weakly correlated regime, and the error of IE is only 1%, comparable to the fully self

consistent GW+DMFT. However, the DDC scheme is much worse in the strongly correlated

regime, both for energy and for spectra.
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Figure 5.9: (Color online) Spectral function for R = 5.0. (upper panel) Perturbative
schemes: HF, LDA and GW . (lower panel) LDA+DMFT and QSGW+DMFT with two
different double-counting functional.

In Figs. 5.9 we present results at R = 5.0, deep in the correlated regime, where excita-

tions of two almost independent H atoms are expected, with the value close to −1.0 Ry. In

this regime QSGW+DMFT with static double-counting (SDC) and LDA+DMFT perform

reasonably well, while dynamic double-counting (DDC) fails very similarly to GW approx-

imation. This failure of DDC was also reported in Ref. [105], where a similar scheme to our

DDC was tested on SrVO3.

5.3 Summary

We have implemented GW+DMFT and QSGW+DMFT scheme for H2 molecule, and we

compared the total energy and spectral function with the exact result, and LDA+DMFT.

For GW+DMFT, five different calculations have been performed: (i) fully self-consistent

GW+DMFT, (ii) [G0W0]HF+DMFT where G0 is taken from Hartree-Fock,

(iii)[G0W0]LDA+DMFT with G0 from LDA, (iv) [G0W0]HF+DMFT but without charge

self-consistency, (v) [G0W0]LDA+DMFT without charge self-consistency.
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1) In the strongly correlated regime only LDA+DMFT and QSGW+DMFT with static

double-counting give good spectra, and only LDA+DMFT gives good total energy.

2) Most of GW+DMFT schemes fail in the correlated regime due to causality violation.

While QSGW+DMFT does not suffer causality violation, it performs reasonably well in

the correlated regime only when using the static double-counting.

3) In the Fermi liquid regime of weak to moderate correlations, fully self-consistent

GW+DMFT is excellent, both for total energy and spectra.

4) The spectra in the weakly correlated regime is also very accurately obtained by

[G0W0]HF+DMFT, but less precise with [G0W0]LDA+DMFT. The QSGW+DMFT with

static double-counting, which performs well in correlated regime, is less precise here, as it

renormalizes spectra twice. The dynamic double-counting remedies this shortcoming in the

weakly correlated regime, but fails in the strongly correlated regime.

5) Total energy in the weakly correlated regime is good in all GW+DMFT schemes (but

not in QSGW+DMFT), provided the charge is computed self-consistently.
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Chapter 6

Conclusion

In this thesis, we have investigated various applications of the dynamical mean-field theory

focused on the methodological aspects: 3D tight-binding model with DMFT, LDA+DMFT

and GW+DMFT.

In the 3D Hubbard model, we have given rise to the metal-Mott interface by solving

its spatial properties based on DMFT, constructing a Landau free energy and identifying

an Ising order parameter. From the solution of the inhomogeneous geometries of metal

and Mott insulator, we could relate the interface width l directly to the double-well barrier

height via λ/D. We also show that the choice of the quantities conjugate to the physical

tuning parameters µ and U allow for an especially transparent construction of the order

parameter which can uniformly treat both the bandwidth and filling controlled transitions.

In the study of LDA+DMFT, we proposed the exact double-counting scheme, from

which we could reach a very accurate total energy and spectral result in H2 molecule. In

this small molecule, the LDA+DMFT approach becomes a parameter-free scheme since

the effective interaction in the DMFT space is simply calculated by the bare Coulomb

matrix due to the lack of the screening effect. Our careful construction of the exact double-

counting functional and a good projector has led to a highly precise results in total energy

and excitation spectrum. This exact double-counting scheme has been recently extended to

solid-state application.

Finally, we have implemented GW+DMFT and QSGW+DMFT scheme and compare

the total energy and spectral results for H2 molecule. For GW+DMFT, we tested the fully

self-consistent GW+DMFT, and G0W0+DMFT where G0 is taken from Hartree-Fock and

LDA. We also investigated the effect of charge self-consistency in G0W0+DMFT schemes.

It is shown in our work that due to the mismatch of the projected GW self-energy and
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the exact double-counting, causality violation prevents most of GW+DMFT schemes from

working in the correlated regime. In the strongly correlated regime only LDA+DMFT and

QSGW+DMFT with static double-counting give good spectra, and only LDA+DMFT gives

good total energy. While QSGW+DMFT does not suffer causality violation, it performs

reasonably well in the correlated regime only when using the static double-counting.

In the Fermi liquid regime of weak to moderate correlations, however, fully self-consistent

GW+DMFT is excellent, both for total energy and spectra. For G0W0+DMFT in this

regime, we found that the spectra does not sensitively depend on the charge self-consistency

but largely depend on the method which the G0 is based on. On the other hand, the total

energy is largely affected by the charge self-consistency while both GHF
0 and GLDA

0 give a

good accuracy. The QSGW+DMFT with static double-counting, which performs well in

correlated regime, is less precise in the weakly correlated regime, as it renormalizes spectra

twice while the dynamic double-counting scheme improves this shortcoming in this regime.

In summary, the strongly correlated regime is more challenging to describe byGW+DMFT

as previously thought, and the causality violation seriously impacts the prospects of using

GW+DMFT in this regime. On the other hand, using QSGW+DMFT in this regime leads

to somewhat better spectra than employing less demanding LDA+DMFT, but it does not

lead to better total energies.
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Appendix A

The double-counting functional in detail

We firstly define the projected local Green’s function for the i-th atom using the DMFT

projector |χi〉 (Eq. (5.43)):

Gi(ω) = 〈χi|G(ω)|χi〉 (A.1)

where the index i specifies the atomic site L or R and in position space it takes the form of

Gi(ω; r, r′) = χi(r)Gi(iω)χ∗i (r
′). (A.2)

For more complete model, we define projectors containing orbital index α as well as the

site index i, |χiα〉, which is relevant for molecules with heavier atoms. The local Green’s

function in DMFT basis is then written as Giαα′ = 〈χiα|G(ω)|χiα′〉 and its position space

version is Gi(r, r′) =
∑

α,α′ χ
i
α(r)Giαα′χ

i∗
α′(r

′).

The Luttinger-Ward functional for LDA+DMFT approximation is

ΦLDA+DMFT = (A.3)∑
i

ΦDMFT [Gilocal] + ΦLDA[ρ]−
∑
i

ΦDC [ρilocal].

Here the local density ρilocal is defined in the same way as Gi(r, r′) from G(r, r′), namely,

ρilocal(r) = χi(r)nilocalχ
∗
i (r) (A.4)

where nilocal is local occupation.
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The double-counting energy can be split into Hartree-Fock part ΦDC
HF and the correlation

part ΦDC
c . The Hartree-Fock part is straightforward to evaluate in DMFT basis as

ΦDC
HF [ρilocal] =

1

2

∑
σσ′

〈χiχi|UC |χiχi〉× (A.5)

(nilocal,σn
i
local,σ′ − δσσ′nilocal,σnilocal,σ).

When a single orbital per site is considered with the above defined projector, the Hartree-

Fock energy and potential simplify to

ΦDC
HF [ρilocal] =

1

4
Ulocal(n

i
local)

2 (A.6)

V DC
HF [ρilocal] ≡

δΦDC
HF [nilocal]

δnilocal
=

1

2
Ulocaln

i
local (A.7)

where Ulocal = 〈χiχi|UC |χiχi〉 is the local Coulomb matrix element. When multiple orbitals

are considered by DMFT, the Hartree-Fock double counting term generalizes to ΦDC
HF =

1
2

∑
αβγδ,σσ′〈χiαχiβ|UC |χiγχiδ〉(nσαδnσ

′
βγ − δσσ′nσαγnσβδ). where αβγδ run over active orbitals

on a given atom.

The double-counting for correlation energy within LDA+DMFT we propose here is

ΦDC
c [ρilocal] =

∫
r
εLDAc (ρilocal(r), UC)ρilocal(r) (A.8)

This is exactly DMFT approximation of LDA correlation functional, truncating G(r, r′)→

Gi(r, r′) that yields ρ(r)→ ρilocal(r). The expression εLDAc (ρilocal(r), UC) in Eq. (A.8) implies

that it is a functional of both density and Coulomb interaction UC(r, r′) = 2
|r−r′| . In solid

state, we should replace UC(r, r′) with a screened one UλC(r, r′) = 2e−λ|r−r′|

|r−r′| and therefore we

need to obtain the LDA correlation functional with respect to two parameters ρ and λ for

exact double counting. In small molecular systems such as H2 screening effect is negligible

(UλC(r, r′) ≈ UC(r, r′)) and therefore the functional form of the LDA correlation εLDAc in

double-counting (A.8) is intact.
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The double counting potential V i
DC in the DMFT basis can be easily computed:

V i
DC ≡

δΦDC
c [ρilocal]

δnilocal

=

∫
r
|χi(r)|2V LDA

c [ρilocal(r)] (A.9)

where V LDA
c is the LDA correlation potential that takes the form of V LDA

c ≡ εLDAc +

δεLDAc /δρ. In derivation, we used the relation (A.4) and the chain rule. In more general

case with multiple local degrees of freedom, the form of local density (A.4) should be replaced

with ρlocal(r) =
∑

α,α′ χ
i
α(r)ρiαα′χ

i∗
α′(r) where ρiαα′ = 〈χiα|ρ̂|χiα′〉 is projected density matrix

onto site i.
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Appendix B

DMFT on H2 Problem: Orbital Dependence

A good choice of DMFT orbital should be orbitals that consist of most active levels near

the Fermi level, well localized, and moreover, should not depend on the self-consistent

charge density. Also the result becomes better if more orbitals are treated dynamically.

But of course the basis set convergence is at present not possible to achieve in solid-state

applications, so it is important to study such simple systems.

In solid state applications, it is also important that the occupation of the correlated or-

bital is not too far from nominal valence. And typically well localized orbitals in transition

metal oxides give the best nominal occupancy, because oxygen has very long tails which

penetrated into transition metal muffin-thin sphere. Nevertheless, it is important to con-

strain the orbital to have the symmetry of the most active narrow state, i.e., t2g symmetry

for early transition metal oxides (TMO), or eg symmetry for late TMO’s.

The most popular choice of correlated orbitals in the context of DMFT are either i)

quasi-atomic orbitals, or ii) Wannier functions.

The quasi-atomic orbitals are typically constructed in real space from the solution of the

Schroedinger equation of a subsystem (in solid state usually the solution of the Schroedinger

equation centered at the correlated ion having certain relevant spherical symmetry, i.e., d or

f), and hence their projection into the LDA Kohn-Sham orbitals can span very large energy

range. The physical choice of orbitals is such that they have the largest overlap to Kohn-

Sham states near the Fermi level, however, due to their strong localization there is nonzero

overlap even at very high energy. Typically such orbitals are a very good starting point for

DMFT calculation because they avoid mixing excessive amounts of electron-negative ion

charge (such as oxygen) into correlated orbital.

The alternative is to more aggressively constrain the energy range of the projection to
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the Kohn-Sham space, which is achieved by construction of the Wannier orbitals. These

orbitals typically faithfully represent all states of Kohn-Sham Hamiltonian in some chosen

energy window, but are as local as possible, given the constraint. When the energy range

in constructing Wannier orbitals is large, there is very little difference between the quasi-

atomic orbitals and Wannier orbitals. However, when the energy range is small, it can lead

to severe overestimation of valence, i.e., can give valence very far from nominal valence (for

concrete example see PRB 90, 075136 (2014)).

There is another important consideration, which is usually overlooked. The DMFT

approximation is stationary only if the projector does not depend on the Green’s function.

Let’s define local Green’s function by the projector P̂i,

Gilocal = P̂iG (B.1)

The DMFT approximation is the stationary solution of the LDA+DMFT (or HF+DMFT)

Luttinger-Ward function only if

δPi
δG

= 0, (B.2)

hence, the projector should not dependent on the electron density or the Kohn-Sham or-

bitals. Only such stationary formulation of DMFT leads to robust solution of the DMFT

equations (independent of small details of the implementation) and allows precise evalua-

tion of the total energy. It is clear that the popular choice of Wannier orbitals, which in

the simplest case takes the form

|Wα〉 =
∑
k,i

|ψik〉〈ψik||φβ〉(
1√
Ok

)βα (B.3)

(Okαβ =
∑

i 〈φα|ψik〉 〈ψik|φβ〉), lead to neither stationary DMFT solution nor stationary

total energy since Kohn-Sham states ψik depend on the electron density and hence on G.

It is hence important to have a projector that does not depend on the solution itself (on

the self-consistent G) and at the same time has correct limits. For example, at large R, we

want to project to 1s state of a single H atom. Similarly, in more general case of a solid,
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Figure B.1: (Color online) The total energy curve of LDA+DMFT scheme with the local
orbital from the lowest even and odd orbital of non-interacting H+

2 Hamiltonian (the original
orbitals used in the main article, red), of LDA effective Hamiltonian (blue), and with 1s
orbital itself as the local orbital (green).

we want to recover atomic orbitals in the limit of large separation.

Hence, the lowest bonding and anti-bonding orbital of H2+, the combinations of which

are local orbitals centered on the right/left atom, are an obvious choice, but of course not

the only choice.

To show how results depend on the choice of the orbital, we show in Fig. B.1 LDA+DMFT

results obtained by three different choices of the local orbital. i) Projected localized orbitals

(PLO): We constructed Wannier-like orbital using Eq. B.3, where ψik are self-consistent

Kohn-Sham orbitals from LDA step, and |φ〉α is Hydrogen 1s orbital. ii) “1s”: We used

Hydrogen 1s orbital, but orthogonalized function centered on the right/left site to obtain

normalized projector. iii) The original choice used in the manuscript, which uses the exact

solution of H+
2 problem.
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The (PLO) Wannier orbital seems to be quite accurate very near the equilibrium volume,

but strongly deviates at larger volumes from the exact result. Since the DMFT solution is

not stationary for such orbital, the results are numerically less stable and, in our opinion,

less reliable.

The Hydrogen 1s orbital, when properly normalized, performs equally well at large

distance. This is not surprising since H+
2 solution does not deviate much from 1s orbital

at large R. But this choice is inaccurate near equilibrium distance, because some of the

active degrees of freedom are not properly captured by such fixed orbital. Namely, the local

charge ρlocal, obtained by projection to local orbital, deviates substantially from the total

charge of the system at small R, hence larger error is found in this method.
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Appendix C

Exact Double-Counting Based on Slater Exchange Functional

In the implementation of LDA+DMFT on H2 in Chapter 4 and 5, we used the exact

exchange functional instead of the Slater exchange scheme, which is a local theory mainly

used in LDA calculation. This is because the local approximation for the exchange is very

poor in molecular systems, even worse than in solids. While correlations are very local,

the exchange is not. We rephrased the sentence in the manuscript to be more clear on this

point.

We also tested a simplified version of the semilocal exchange to show how one can

cheaply improve semilocal exchange in molecular systems. The most important non-local

part of the exchange is the following term

Φleading−nonlocal[ρ] = −1

2

∑
σσ′

〈φR(r)φL(r′)|VC |φL(r′)φR(r)〉 〈φR|ρ|φL〉 〈φL|ρ|φR〉 (C.1)

If one adds to LDA semilocal exchange ΦX,LDA[ρ] the leading non-local correction

Φleading−nonlocal[ρ], the result is already better than HF+DMFT at equilibrium R, and

much better than HF or LDA alone. Figure C.1 compares this approximations (named

“LDA(semi-local)+DMFT”) with the other two approximations presented in the manuscript

HF+DMFT, and LDA+DMFT to show that the quality of such approximation is reason-

able considering its simplicity.
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