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The solution to the startup transient electroosmotic flow in an arbitrary rectangular micro-channel is derived 

analytically and validated experimentally.  This full two dimensional transient solution describes the 

evolution of the flow through five distinct time periods until a final steady state condition is reached.  The 

derived analytical velocity solution is validated experimentally for channels of different sizes and aspect 

ratios under time-varying pressure gradients.  The experiments used a Time Resolved Micro Particle Image 

Velocimetry technique (TR-µPIV) to visualize and measure the startup transient velocity profiles.  The results 

of this work captured the effects of time-varying pressure gradients across the microchannels and compared 

them to the results derived in the analytical solutions.  This was accomplished by using small reservoirs at 

both ends of the channel, which allowed a time-varying pressure gradient to develop with a time scale on the 

order of the transient electroosmotic flow.  Results showed that under these common conditions, the pressure 

build up between the reservoirs had a significant impact both on the transient startup of the electroosmotic 

flow and on the later temporal development of the velocity field in the channel.  Finally, analytical solutions 

are provided to portray the fluid velocity development in microchannels with non-uniform zeta potentials.  

Experimental results validate the posed solution by visualizing the transient fluid velocity in microchannels 

fabricated with three PDMS and one quartz glass wall.  These results show that the temporal development of 

the microchannel’s velocity field is independent of the zeta potential distribution within the device.
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1 Introduction 

Electrokinetics (EK) has become an important field of study for the design of 

microelectromechanical systems (MEMS), biomedical µTAS devices, and many other 

microfluidic apparatuses.  Electroosmotic-driven flow is a fundamental electrokinetic 

phenomenon that has become one of the preferred methods to drive and control fluid flows 

in such devices.  It is commonly used for particle manipulation at microscales.  For 

instance, when colloidal systems are subjected to an applied electric field, a variety of 

different effects arise.  These include the electrophoretic motion of charged particles 

relative to the liquid phase [1–2] and the electroosmotic fluid motion relative to a fixed 

surface-charged solid.  These electrokinetic effects (both electroosmosis and 

electrophoresis) are often exploited in lab-on-chip devices providing advantages in terms 

of ease of operation, parallelization of analytical processes, highly resolved separations, 

and even mixing of analytes within microreactors. 

Some authors have analyzed in great detail the characteristics of steady 

electrokinetically driven flows [3–13].  For instance, the steady electrokinetic flow in 

rectangular [3–4, 11] and circular [10] microchannels has been analyzed.  Additionally, the 

effect of finite size reservoirs has been studied [7, 9] by considering the effect of an induced 

pressure gradient.  Various experimental techniques have been applied to evaluate 

theoretical models of electroosmotic flows in microchannels.  Yang and Yan [13] first used 

µPIV to investigate the flow development of borate buffer in a 300 µm square glass 

microchannel.  This involved capturing images of the fluid flow at specific times after the 

electric field had been turned on.  Different µPIV techniques have been applied [5–6, 8, 

12] to calculate the steady electroosmotic velocity. 
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The transient electroosmotic flow has recently been studied in a range of 

electrokinetically driven devices [14–22].  Marcos et al. [14] investigated a frequency-

dependent laminar electroosmotic flow in a closed-end rectangular microchannel.  

Shinohara et al. [15] developed a high-speed µPIV technique by combining a high-speed 

camera and a continuous wave (CW) laser.  A similar µPIV technique [16–17] was used to 

investigate the transient development of the fluid flow in an electrokinetic closed cell.  

Researchers have also shown the development of a pressure gradient induced by the quasi-

steady electrokinetic fluid flow’s volumetric flow rate.  Chang and Wang [18] accounted 

for a finite double layer thickness in circular and rectangular microchannels, showing the 

transient development periods.  Chang and Wang [19] also described the theory for 

transient fluid flow in partially circular microchannels.  In related work, the temporal 

development of electrokinetic fluid flow in channels less than 100 µm in width was first 

shown by Kuang et al. [20].  This was accomplished by using the laser induced 

photobleaching (LIFPA) technique.  This same technique was employed to find the 

transient fluid development in a microchannel of only 10 µm in diameter [21].  Most 

recently, a technique [22] was proposed to find the transient development of particles’ 

velocities in a microchannel by using time resolved µPIV (TR-µPIV).  However, to date, 

the physics of the unsteady electrokinetic systems is still not fully understood, due to the 

lack of general solutions that can show all the transient effects. 

The transient startup of EK systems is commonly characterized by a drastic increase 

in the fluid shear stresses, diffusion rates, and heat transfer rates throughout the system.  In 

fact, such transient effects often result in a device performance that lies well outside the 

bounds of the normally observed the steady state operation.  The fluid’s transient 
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volumetric flow rate and the varying induced pressure gradient within a microdevice can 

greatly alter the system’s operation, perhaps even damaging sensitive components.  The 

impact of pressure variations within a device’s electrokinetic startup regime have not been 

investigated yet.  This paper proposes a theory to model the fluid behavior in arbitrary 

rectangular micro-channel and validates it experimentally. 

This work derives an analytical expression for the transient electroosmotic flow in 

an arbitrary rectangular micro-channel.  The proposed theoretical solutions are then 

validated by experiment.  First, the full two dimensional velocity profile is analytically 

derived for different microchannel sizes and aspect ratios.  This solution allows the 

identification of five distinct periods within the transient flow in a microchannel, which are 

then studied in detail for the geometries considered.  Next, the time-varying pressure 

gradient induced by the volumetric flow rate is analyzed and compared between channels.  

Lastly, experimental measurements of the transient velocity field within rectangular 

microchannels of different dimensions and wall surface charge distributions are used to 

validate the analytical results. 
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2 Materials and methods 

2.1 Analytical solution 

The electroosmotic flow behavior in a microsystem can be generally described by two 

governing relations.  The electrokinetic Navier-Stokes equations define the fluid’s 

response to an applied electrical field and pressure gradient while the Poisson-Boltzmann 

relation gives the electrochemical response of the fluid to a surface charge at a boundary.  

The following study seeks to characterize the full transient response of a microfluidic 

system to any suddenly applied electrical field and developing pressure gradient.  This 

study is applicable to any rectangular microchannel with an arbitrary zeta potential 

distribution at the walls.  This analysis is constrained to systems with incompressible fluid 

flow and negligible heat generation and thermal effects.  Reservoir effects will be included 

to account for a time varying volumetric flow rate and induced pressure gradient. 

The Navier-Stokes equation for the electroosmotic flow can be expressed as: 

 21
( ) ( )eU

U U p t U
t

E t



 


       


 (1) 

 0U   (2) 

  ,0 0U x x   (3) 

    , ,wallU x t U x t x   (4) 

whereU is the flow velocity,  E t is the applied electric field,  p t  is the pressure gradient, 

x is the position vector, t is the time, ρ is the fluid density, μ is the viscosity, and ρe is the 

charge density.  
wallU is a known function defining the Dirichlet boundary condition at the 

walls.  Ω is the cross-section of a microfluidic channel.  ∂Ω is the boundary of this domain. 
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The charge density is obtained from the Poisson-Boltzmann relation and the potential 

distribution ψ: 

  0r e        (5) 
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where 0  is the permittivity of free space, r  is the relative permittivity of water, Bk  is 

Boltzmann’s constant, T is temperature, q is the elementary electrical charge, zi is the 

number of valence charges on the molecule, 0

in  is the concentration of the molecule in the 

free stream, and ψ is the induced electrostatic voltage in the fluid.  Under the Debye-Hückel 

approximation ( ) /( ( )B iT qk z  ), equations 5 and 6 can be linearized as: 
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In cases where the Debye length (λ) is small compared to the dimensions of the 

channel, the effects of the electrokinetic double layer can be represented as a slip velocity 

at the boundary [23]: 

  
 

 ,
wall

wall

x
U E xtx t




    (9) 

where ςwall is the potential induced at the boundary between the stern layer and the diffuse 

layer by the surface charge of the wall.  Since the Debye length is small compared to the 

dimensions of the channel and the temperature and concentration gradients are both zero 

in the bulk of the fluid, the electrokinetic double layer of the channel’s walls does not 

fluctuate along the length of the channel.  Additionally, the slip velocity at any point on the 
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boundary will depend on neither the gradient of the zeta potential along the channel wall 

nor on the zeta potential distribution of another portion of the wall in the channel. 

For a symmetric electrolyte, the time scale to establish the Smoluchowski velocity 

within the Debye layer is estimated from Minor et al. [24] as 2 12( ) ~ 10dl O D s s  , where 

D is the ion diffusion coefficient.  The time scales for electrophoretic and electroosmotic 

velocities can be estimated [24] as 7(10 )ep O s   and 3(10 )eof O s  respectively.  Therefore, 

the electrokinetic startup of the fluid’s double layer can be taken as instantaneous compared 

to the fluid transient velocity due to differences in time scales ~dl ep eof   . 

An initial electric field and a pressure gradient applied across the channel induce 

fluid flow between the finite reservoirs.  The relative fluid volume in each reservoir 

changes in proportion to the volumetric flow rate.  For two reservoirs with the same 

constant cross-sectional area, the induced pressure gradient can be written as a function of 

time and the volumetric flow rate: 

    
0

0

1 1
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t

Ch resv
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p t p Q d

L A
 

 
      (10) 
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where Q is the volumetric flow rate, n̂  is the unit vector parallel to the axis of the channel, 

LCh is the length of the channel, g is gravity, and Aresv is the cross-sectional area of the 

reservoirs.  0p  is the initial pressure gradient in the system.  With the time varying pressure 

gradient expressed in this manner and with ρe taken to be zero everywhere in the domain 

except for the boundaries, Eq. (1) can be written as an integral-differential equation: 
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Figure 1.  Cross section of the microfluidic channel with the electric field and 

pressure gradient acting in the z-direction.  The fluid velocity also is aligned with 

the z-direction.  The boundaries are numbered for convenience. 

The domain Ω is constrained to a rectangle of width L and height H, as shown in 

Fig. 1.  The origin of the coordinates system is located at the center of the channel and the 

z-axis is orthogonal to the channel’s cross-section.  The geometry does not change in the 

z-direction.  The boundaries of the rectangular domain are numbered (1-4) for convenience 

in the following discussion. 

The flow is considered fully developed inside the channel and the electric field lines 

are considered parallel to the z-direction.  This simplifies Eq. (12) to a single equation with 

a given set of boundary conditions and an initial condition: 
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where
 

 i x  refers to the zeta potential distribution along the ith channel wall, i ranges from 

1 to 4.  wslip,i is the slip velocity along the ith wall.  The initial condition is  , ,0 0w x y   

everywhere except at the boundaries where the slip condition applies.   
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A solution to this transient electrokinetic flow field relevant to many realistic 

scenarios encountered in the lab and in industry will be presented next.  It will be 

demonstrated from the analytic solution that the time scales associated with the startup of 

the electroosmotic flow field are independent of the zeta potential distribution in the 

channel.  This will be validated by experiment later in this work.
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2.1.1 Special Cases 

Many microdevices encountered in lab or industrial use are fabricated by a select set of 

methods.  In some cases, every wall of the microchannel is composed of borosilicate or 

quartz glass.  In other cases, the microfluidic device is fabricated from casting PDMS in a 

mold.  This PDMS is then bonded to either a sheet of glass, or it is bonded to another layer 

of PDMS.  For each of the listed cases, each wall that is comprised of the same material 

exhibits the same zeta potential.  Since the top of the channel and the side walls consist of 

the same material: 

 
31 4       (15) 

The bottom of the channel, 
2 , can be either equal to the zeta potentials of the other 

boundaries or independent, as in the case of PDMS bonded to glass.  Therefore, the 

boundary conditions for this problem can be written as: 

  2, ,
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w x t E t
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 
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 
 (16) 
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w y t w y t w x t E t
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     

 (17) 

The solution to Eq. (13) is then found by using the method of separation of variables 

(Appendix A).  The velocity at every point and time of the cross section can be expressed 

as: 
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 (18) 

The transient volumetric flow rate is then found by integrating the flow velocity 

profile across the microchannel’s cross-section (Eq. (11)).  Knowledge of the volumetric 

flow rate is important to understanding how a microfluidic system will perform and to 

improve the design of such a system.  Many microfluidic systems are designed to deliver 

exact amounts of fluid to various sensors and locations as well as to specifically regulate 

the fluid transport throughout the device.  Knowledge of the transient volumetric flow rate 

will increase the accuracy of such devices.   

The pressure gradient a microchannel can generate is also vital to the performance 

of many devices.  The transient pressure gradient across a microchannel can be calculated 
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from Eq. (10).  The steady state maximum pressure gradient that can be developed is found 

when the volumetric flow rate is zero.  At this point, the averaged cross-sectional 

electroosmotic velocity and the average velocity induced by the pressure gradient are equal 

to and opposite each other.  When such a condition is met within a microchannel, the fluidic 

behavior is entirely dependent on the hydrodynamic and electrokinetic properties of the 

channel and is independent of the fluidic system’s reservoirs.  This is commonly the case 

for a closed cell, in which an electric field is used to drive fluid into a sealed reservoir.  

This condition might also arise in more complicated microfluidic devices where gates can 

keep channels sealed while an electric field is applied. 

Regardless of whether the zeta potential is the same for all the walls in the 

microchannel, or whether the zeta potential distribution is asymmetric, the temporal term 

in the microchannel’s velocity field is unchanged (Eq. (18)).  This can be extended to show 

that the time constants pertaining to the transient development of the electroosmotic flow 

in any microdevice are functions only of the viscosity of the fluid and the geometry of the 

channel.  
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2.2 Experimental method 

2.2.1 Electrophoretic and electroosmotic velocities 

To validate the theory and numerical results, a time-resolved micro particle image 

velocimetry (TR-µPIV) technique is used to obtain the experimental transient 

electroosmotic flow velocity.  Fluorescent microspheres are used as tracer particles.  The 

velocity of the particle at every time and position of the cross-section area can be expressed 

as: 

 PIV ep eof presw w w w    (19) 

where PIVw  is the velocity of the particle measured from the PIV system, epw  is the 

electrophoretic velocity of the tracer particle, eofw  is the electroosmotic flow velocity, and 

presw  is the velocity induced by the adverse pressure gradient.  The time scale differences 

between electrophoretic 7(10 )ep O s   and electroosmotic velocities 3(10 )eof O s   [22, 24] 

allow calculating epw  and eofw  simultaneously when the induced velocity created by the 

pressure gradient is negligible.  However, if the pressure gradient evolves rapidly within 

the startup transient electroosmotic flow, the electroosmotic velocity field is unable to fully 

develop before being affected by the velocity induced by the adverse pressure gradient.  

This effect is shown in the results section for channels larger than 800 µm per side, where 

the fluid velocity in the center of the channel does not reach a steady electroosmotic 

velocity.  Consequently, the experimental unsteady flow velocity in the channel can be 

written as: 

 eof pres PIV epw w w w w     (20) 
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To calculate the electrophoretic velocity of the tracer particles, a high speed camera 

is needed to capture the movement of the particles at the center of the channel while the 

flow is still at rest ( 0w  ).  During this period of the transient development, the 

electrophoretic velocity is equal to the measured velocity ( PIV epw w ).  Since the 

electrophoretic velocity becomes independent of time after it is fully developed, the flow 

velocity can be calculated thereafter by Eq. (20). 

To understand the influence of the induced pressure driven velocity profile, and to 

verify if the flow has reached a steady state electroosmotic flow velocity, the 

electroosmotic velocity can be approximated by the linear Helmholtz-Smoluchowski 

equation for rectangular channels that do not present an overlapped EDL.  In this case, the 

steady state electroosmotic flow velocity in the cross section of the rectangular channel is 

obtained by solving the Poisson equation with a zero pressure gradient: 
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where the boundary conditions are obtained from Eqs. (16) and (17) for a channel 

composed of two different materials.  The analytical solution is obtained by separation of 

variables [6] and used as a reference in the result section.  It can be written as: 
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(22) 

After the steady state velocity profile has been reached, the effect of the induced 

pressure gradient driven velocity profile can be obtained by using the Navier-Stokes 

equations for zero slip velocity at the walls: 
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The analytical solution is obtained by separation of variables [6] and it can be 

written as: 

 
 

1

12

3 3

cosh
1 2

sin

cosh

12
1

2

j

pres

j

j x
j

H d

H
y

H
w

j

p

dz Hj L

H




 






   

       
 

 
 


   
  
  
  
  

   

  (24) 

The evolution of the flow rate can then be obtained from 
,ss eof presQ Q Q  .  The flow 

rate per cross-sectional area due to the steady state electroosmotic velocity for zero pressure 

gradient can be expressed as the average cross-sectional electroosmotic velocity: 
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The evolution of the flow rate per cross-sectional area due to the adverse pressure 

gradient can be expressed as the average cross-sectional pressure induced velocity: 
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The minus sign refers to the negative induced flow rate due to the pressure gradient.  

After the electroosmotic steady state is reached, the evolution of the flow rate is dependent 

only on the pressure gradient differences due to the finite size of the reservoirs. 
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2.2.2 Experimental setup 

To further validate the theory, a TR-µPIV system is used to measure the transient velocity.  

The conceptual layout of the system is sketched in Fig. 2.  A picture of the experimental 

setup is provided in Fig. 3.   

 

Figure 2.  Conceptual sketch of the TR-µPIV system used to measure the 

instantaneous velocities of the tracer particles. 

 

Figure 3.  A picture of the experimental setup used throughout this set of 

experiments. 
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The experimental setup is comprised of an epi-fluorescence microscope (Model 

ECLIPSE E600FN, Nikon) with a 40x (NA = 0.75) objective lens and a 2 Gb Photron 

Ultima APX-RS high-speed digital camera (10-bit CMOS sensor, 1024 × 1024 pixel with 

17.5 µm2 pixel size) capable of 3000 fps at the maximum resolution.  The light source is a 

pulsed high-speed Nd-YAG laser (Pegasus, New Wave Research).  The light passes 

through an optical filter cube with a dichroic mirror to reach the microfluidic device.  The 

fluorescent tracer particles suspended in the working solution are excited by the light, and 

the emitted fluorescent light is captured by the high-speed camera.  Several image planes 

are taken within the height of the channel to capture the full velocity field in the cross 

section of the channel.  The obtained PIV images are cross-correlated using INSIGHT 3G 

PIV software (TSI) to find the instantaneous velocity vector fields.  To ensure that the 

voltage drop from the high-voltage power supply (model SL2KW by Spellman) is applied 

instantaneously, a high-speed switch circuit was built to act as a gate between the power 

supply and the microdevice.  The high speed power supply switch has the capability of 

ramping to full voltage and current within 1.2 µs of receiving a trigger pulse.  This pulse is 

supplied by the camera to ensure proper synchronization. 

Fluorescent polystyrene particles of 1 µm diameter (Thermo Scientific FLUORO-

MAX R900) are used as tracer particles.  These particles are added to the buffer solution 

in an amount of 1 × 10−3 mg/mL.  The peak values for the absorption and emission 

fluorescent wavelengths are 542 nm and 612 nm, respectively, with a density of 1.05 g/cm3 

and an index of refraction of 1.59 (589 nm, 25º C).  These properties, in combination with 

a 40x objective (NA = 0.75), result in a depth of field during the measurements of 5.3 µm 

[12].  The particles’ surfaces are treated with carboxyl groups (−COOH), which become 
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negatively charged (-COOH−) when suspended in most aqueous solutions.  The particles 

are suspended in a 100 mM borate buffer solution (pH 8.7), which is the working fluid used 

throughout these experiments. 

The experiments were conducted at the center of five different sizes of rectangular 

glass channels, each with a length of 50 mm.  Three of the glass channels were square in 

cross-section, measuring 300, 500, and 800 µm per side.  The other two glass channels 

were rectangular in cross-section, measuring 500×5000 µm and 800×8000 µm in size.  

Each channel was operated with an applied electric field of 100 V/cm.  Additionally, two 

PDMS/glass channels with cross-sectional dimensions of 360×1000 µm and 460×1000 µm 

were tested with an applied electric field of 200 V/cm and a channel length of 15 mm. 

Since the borate buffer solution is 100 mM, the Debye length is λ=9.6×10-10 m.  

This gives a ratio between Debye length and channel width on the order of λ/H ~ 10-6.  

Therefor the effects of the electrokinetic double layer can be represented as a slip velocity 

at the boundary of the channel. 
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3 Results 

3.1 Analytical results 

The solution for the transient electroosmotic flow derived analytically in Sec. 2.1 will be 

presented graphically and validated by experiment for microchannels of different sizes, 

aspect ratios, and zeta potentials.  The analytical solution for the transient velocity profile 

allows the identification of five distinct periods within the transient flow in a microchannel.   

In Period 1, the electroosmotic flow, EOF, is initiated as a slip velocity at the 

channel’s walls induced by an instantly applied electric field.  Period 1 is characterized by 

the slip velocity along each wall diffusing towards the center of the channel.  As such, the 

fluid at the center of the microchannel is approximately at rest throughout this phase and 

is not accelerated until Period 1 has ended.   

Fluid velocity measurements taken at the center of a microchannel during Period 1, 

away from the walls, would therefore not see the EOF.  For instance, particle velocity 

measurements taken at the center of a microchannel during Period 1 would show a constant 

velocity due only to electrophoresis.  For most microchannels encountered in normal lab 

and industrial use, the duration of Period 1 is short (typically t < 5-10 ms).  A more general 

approximation of the time constant associated with the end of Period 1 is  

𝜏1 = 𝑂(𝑑2 (20 ∗ 𝜐)⁄ ), where d is the shortest cross-sectional dimension of the 

microchannel (either the channel’s height or width), and 𝜐 is the kinematic viscosity of the 

fluid.  This time constant approximates when the electrokinetically induced slip velocity 

of the channel’s walls has diffused into the center of the channel, accelerating the fluid at 

the center of the channel to 10% of it its fully developed EOF velocity.   
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In Period 2, the electrokinetically induced velocity at the walls has diffused into the 

center of the channel, and the fluid across the entire channel is now accelerating towards a 

fully developed EOF velocity profile.  Particle measurements performed during this phase 

in the center of the channel will visualize this acceleration as they transition from being 

only affected by the electrophoretic velocity to being affected by the combined 

electrophoretic velocity and the developing EOF velocity.  Similar to Period 1, the length 

of Period 2 is typically short for most microchannels encountered in the lab and in industry 

(5-10 ms < t < 20-100 ms).  As a general approximation, the time constant associated with 

the end of Period 2 is typically ten times longer than the time constant associated with the 

end of Period 1.  𝜏2 = 𝑂(10 ∗ 𝜏1).   

Period 3 of the microchannel’s transient development is characterized by a quasi-

steady state flow field due to a constant and fully developed EOF.  Particle measurements 

collected anywhere in the channel during this phase will show a steady velocity resulting 

from the steady and fully developed EOF and electrophoretic velocities.  The beginning of 

Period 3 is typically when t > 20-100 ms.  Period 3 is also most crucially characterized by 

the absence of a pressure gradient (or negligible pressure gradient) across the channel.  

When operating the microchannel with finite reservoirs at each end, a pressure differential 

builds up as fluid is pumped from the inlet reservoir to the outlet reservoir.  At some point, 

depending on the channel’s volumetric flow rate and reservoir sizes, the induced pressure 

gradient will give rise to a flow similar in magnitude and opposite in direction to the fully 

developed EOF velocity field characterizing Period 3.  The result is that the measured flow 

field is not only affected by the EOF but also by a time-varying pressure gradient.  The 
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beginning of this phenomena marks the end of Period 3 and the beginning of Period 4 in 

the microchannel’s transient development. 

Period 4 of the microchannel’s transient development is characterized by the 

induced pressure gradient across the channel growing in strength as more fluid is pumped 

between the inlet and outlet reservoirs.  As this occurs, an adverse velocity field induced 

by the pressure gradient is becoming stronger and counteracting the steady EOF velocity 

in the channel.  This in turn decelerates the volumetric flow rate within the microchannel, 

driving the rate at which fluid is being pumped from the inlet reservoir to the outlet 

reservoir closer and closer to zero.  Throughout Period 4, any measurements made of the 

particles’ velocities will be affected by the electrophoretic velocity, the EOF, and a time-

varying pressure gradient.   

The end of Period 4 and the start of Period 5 is marked when the volumetric flow 

rate within the channel has reached zero.  This signifies that rate at which the fluid is being 

pumped by the induced electric field has been completely counteracted by the adverse flow 

rate induced from the pressure gradient developed between the reservoirs.  Period 5 is the 

final steady state condition for the microchannel’s flow field.   

The flow profile exhibited in Period 5 is the same as is developed in a closed 

electroosmotic cell microdevice.  In such a device, fluid moves in one direction along the 

walls due to the electroosmotic effect, while simultaneously flowing in the opposite 

direction along the center of the channel in order to balance the pressure build up in the 

sealed reservoir.  This steady state condition results in a zero net volumetric flow rate and 

a negative fluid velocity along the center of the channel (opposite the direction of the EOF). 
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Some variants of the five periods occur depending on the size and aspect ratio of 

the channel and they will be explained next. 

 

Figure 4.  The temporal evolution of the analytical velocity at the center of the glass 

channels (wc) under an applied electric field of 100 V/cm for both (A) square and 

(B) rectangular channels. 

The five periods previously described can be observed when plotting the transient 

flow velocity along the center of the channel as a function of time, as shown in Fig. 4.  This 

figure illustrates the results from Eq. (18) for three different sizes of square microchannels, 

as well as for three higher aspect ratio rectangular channels.  The depicted velocity profiles 

show a well define Period 1 (t < 5-10 ms) where the flow velocity in the center of the 

channel is zero, followed by a Period 2 (5-10 ms < t < 20-100 ms) where the flow velocity 

increases rapidly.  Next, in Period 3 (20-100 ms < t < 200-1×104 ms), the EOF portion of 

the flow profile has reached steady and fully developed conditions, as shown by the 

constant velocities.  In Period 4, which has a starting time that varies significantly 
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depending on the channel dimensions (i.e.: 200-1×104 ms < t < 1×104-1×107 ms for the 

geometries considered here), the velocity quickly decreases due to the developing adverse 

pressure gradient between the reservoirs.  In Period 5, the velocity in the center of the 

channel is once again constant, and will remain constant for all later times.   

When comparing the different channel sizes in Fig. 4, a number of observations can 

be made.  First, an increase in channel size results in an increase in the duration of Period 

1.  This is a result of it taking longer for the EOF to diffuse all the way to the center of the 

channel.  Second, an increase in the channel size results in a decrease in the duration of 

Period 3.  The microchannels with larger dimensions take less time for a pressure gradient 

to build up and start affecting the steady state EOF.  Third, as the channel keeps increasing 

in size, especially for larger aspect ratio channels, the pressure effects can arrive so early 

as to preclude the development of a Period 3.  Fig. 4.b demonstrates that the pressure affects 

within the 800 x 8000 µm channel began to impact the fluid velocity within Period 2.  This 

prevents the fluid flow in the largest channels from reaching Period 3 where steady state 

EOF occurs.  Fourth, when comparing Period 2 across all the channel sizes and aspect 

ratios, it is shown that the flow acceleration is independent of the channel dimensions.  It 

is only affected by a change in electric field or electrolyte and zeta potential, not shown 

here for brevity. Last, when comparing square channels with rectangular channels with the 

same height dimension but larger widths, the rectangular channels show earlier transition 

into Periods 4 and 5 as a result of a faster pressure build up. 
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Figure 5.  Temporal evolution of the velocity profile in the 800 µm square glass 

channel under an applied electric field of 100 V/cm. 

To better understand the fluid flow behavior throughout the five periods described 

previously, a 2D representation of the full transient solution of the flow velocity is shown 

in Figs. 5 and 6.  Results are presented as contour surface plots of the fluid velocity in the 

microchannel cross-section at four different times of interest (due to symmetry, only a 

quarter of the cross-section is shown).  The time series in Fig. 5 shows the solution for an 

800 µm square channel for an applied electric field of 100 V/cm.  At time 0t  , the velocity 

at the walls is the slip velocity, while the velocity at the rest of the cross section is zero.  

Within the first 10 ms, the electroosmotic velocity propagates to the center of the channel, 

resulting in a parabolic velocity profile that can be considered at the limit between regions 

1 and 2 in this transient process (see also Fig. 4a).  Between Periods 2 and 3 the fluid is 

accelerated till it reaches the electroosmotic steady state velocity (
, 405 /ss eofw m s ), which 
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happens at 400ms and determines the end of Period 2 and the beginning of Period 3.  At 

this time, the velocity profile is nearly flat and the flow is moving at the slip velocity.  For 

this geometry, Period 3 only lasts for a short duration (as previously discussed in Fig. 4) 

and Period 4 begins shortly afterwards at t > 400-500 ms, immediately after the velocity 

starts dropping due to the adverse pressure gradient.  Period 4 extends up to t ~ 4×105 ms 

as shown in Fig. 4.  A typical velocity profile during Period 4 is presented in Fig. 5 for 

t=4×104 ms, showing that at the center of the channel the normalized velocity is nearly -1.  

This indicates that the flow moves in one direction along the walls due to the electroosmotic 

effect, while simultaneously moving in the opposite direction along the center of the 

channel due to the buildup of the adverse pressure gradient.  Period 5 is presented in Fig. 

5 for t = 4×105 ms showing the final 2D steady state velocity profile for this flow which 

results in a net zero flow rate across the channel.  This velocity profile will remain the same 

for any time t > 4×105ms. 

To study the effect of channel aspect ratio on the transient velocity profile, contour 

plots of the fluid flow velocity in a rectangular channel (800×8000µm, AR=10) are shown 

in Fig. 6 for four different times.  These can be compared to the square channel 

(800×800µm, AR=1) results in Fig. 5.  The velocity has the same parabolic profile for both 

channel types during Period 1 and most of Period 2.  For the rectangular channel the fluid 

flow is accelerated but does not reach the steady electroosmotic velocity everywhere.  A 

maximum velocity in the center of the channel of ax ,321 /m ss eofw m s w   is reached, and the 

peak in velocity determines the end of Period 2.  For this large microchannel geometry, 

Period 3 does not exist and Periods 2 and 4 overlap due to the speed at which the pressure 

gradient grows, even extending into the early startup periods of the electroosmotic flow.  
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Therefore, both the electrokinetically induced acceleration and the developing pressure 

induced velocity are important during Periods 2 and 4.  The flow is then further decelerated 

until it reaches zero flow rate at the onset of Period 5. 

 

Figure 6. Temporal evolution of the velocity profile in the 800 x 8000 µm 

rectangular glass channel under an applied electric field of 100 V/cm. 
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Figure 7.  Temporal evolution of the analytical flow rate under an applied electric 

field of 100 V/cm for both (A) square and (B) rectangular glass channels. 

Knowledge of the full 2D velocity profile allows a direct calculation of the transient 

volumetric flow rate Q(t) by integrating this velocity profile (Eq. (18)).  The evolution of 

the flow rate per unit area for the six different geometries is shown in Fig. 7.  The five 

different developmental periods can also be identified within the transient volumetric flow 

rate in all the microchannels.  In Period 1, as the EOF diffuses towards the center of the 

channel, the flow rate is very small.  This is followed by Period 2, where Q(t) quickly 

increases as the EOF fully develops.  The volumetric flow rate reaches a quasi-steady 

maximum flow rate at the onset of Period 3.  This period is defined by a near constant flow 

rate that expands up to t = 1×104 ms for the 300 x 300 µm channel.  For larger channels, 

Period 3 is significantly reduced (i.e.: t = 1×103 ms for 500 x 500 µm), and in the limit (i.e.: 

t~1-2×102 ms for 800 x 800 µm) the steady state EOF is barely reached before the 

developing adverse pressure gradient across the finite reservoirs begins to decrease the 



27 

 

flow rate.  Period 4 is characterized by the growing adverse pressure gradient effect, which 

gradually decreases the flow rate until the average velocity across the channel’s cross-

section is zero.  Period 5 starts when the volumetric flow rate has become zero across the 

channel, with the reservoir/channel system acting similarly to a closed cell. 

To analyze the differences between channel sizes, Fig. 7a and 7b show the evolution 

of the flow rate for both square and rectangular channels respectively.  The comparison 

shows that the onset of Period 2 is earlier for the smaller channels.  This allows the smaller 

channels to achieve a fully established Period 3 earlier, and it gives rise to a maximum 

normalized flow rate 100-400 ms faster than seen within the larger channels considered.  

Furthermore, the maximum flow rate seen within the smaller channels remains constant 

for longer durations in Period 3.  Next, the smaller microchannels have less volumetric 

flow rate, which in turn slows down the development of the adverse pressure gradient 

across the finite reservoirs.  Finally, Period 5 is reached later for smaller channels compared 

to bigger channels since the deceleration rate is the same for all channel sizes.  A similar 

behavior is observed within the rectangular channels as shown in Fig. 7b. 

The impact of the channel’s aspect ratio on the fluid’s transient development is 

investigated by comparing Figs. 7a and 7b.  The time constant signifying the start of Period 

2 is nearly the same between the different aspect ratio channels.  This follows as the time 

constant for the electrically induced wall slip velocity to diffuse into the center of the 

microchannel is a function only of the smallest channel cross-sectional dimension.  

However, the electroosmotic steady state (Period 3) is reached later for larger aspect ratios 

since more fluid needs to be accelerated.  Alongside this, the end of Period 3 and the 

beginning of Period 4 is reached sooner for channels of higher aspect ratio due to the larger 
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volumetric flow rate, leading to a more quickly developing pressure gradient across the 

finite reservoirs.  Together these effects cause Period 3 to be shorter in duration for larger 

aspect ratio channels.   

The phenomena by which Period 4 can arrive much sooner in a larger aspect ratio 

channel is illustrated by the velocity development at the center of the 800×8000µm 

rectangular channel, shown in  Fig. 7b.  In this illustration, the pressure induced velocity 

becomes significant even before the electroosmotic flow has achieved its steady, fully 

developed condition.  As such, Period 3 is never able to fully manifest itself in this 

channel’s transient development.  Instead an overlap of regions 2 and 4 is obtained for this 

channel geometry. 

 

Figure 8.  Temporal evolution of the analytical pressure differences across the 

channels under an applied electric field of 100 V/cm for both (A) square and (B) 

rectangular glass channels. 
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The nature of the electroosmotic flow, combined with the use of finite reservoirs, 

results in a time-varying pressure gradient that needs to be accurately determined in order 

to predict the velocity profile and the flow rate in a microchannel.  The pressure difference 

between the channel’s reservoirs is solved as a function of time using Eq. (10), and typical 

results are shown in Fig. 8 for the channels and geometries considered in Figs. 4 and 7.  

Three distinct phases are identified in the developing pressure difference between the finite 

reservoirs of a microchannel.  In the first phase, the pressure difference remains small and 

is negligible within the flow development.  In the second phase, the pressure gradient starts 

to increase (t ~ 102 – 103 ms), and continues to increase until it reaches a maximum pressure 

difference between the reservoirs.  This is followed by a steady state third phase during 

which the pressure difference between the reservoirs is at a maximum and constant value.  

The effect of channel size on the developing pressure gradient between the 

reservoirs is presented in Fig. 8a.  It shows a sudden increase in pressure difference 

occurring earlier for channels of larger dimensions.  This is the result of higher volumetric 

flow rates in larger channels inducing a more rapidly developing pressure gradient.  This 

also means that the maximum pressure difference across the channel is reached in a shorter 

time in larger channels.  However, the maximum pressure difference that can be achieved 

across a device’s reservoirs is smaller for larger channels as the pressure is acting over a 

larger cross sectional area.  A similar behavior is observed within the rectangular channels 

shown in Fig. 8b.  The effect of the channel aspect ratio on the pressure differences induced 

across the channel is obtained by comparing Figs. 8a and 8b.  Results show that the onset 

of phase 2 of the pressure development occurs earlier for larger aspect ratio channels since 

flow rate is considerably higher and the pressure builds up faster.  In addition, the 
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maximum pressure difference between the reservoirs is reached earlier for larger aspect 

ratio channels.  However, the maximum pressure that can be achieved across the channel 

is smaller for larger aspect ratios since the pressure acts in a larger channel cross-sectional 

area.  This is expected since the adverse pressure induced flow rate per unit area given by 

Eq. (26) increases with aspect ratios for a fixed channel height, while the steady state 

electroosmotic flow rate per unit area is independent of the aspect ratio. 
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3.2 Experimental results 

 

Figure 9.  Temporal evolution of the velocity at the center of square glass channels 

under an applied electric field of 100 V/cm.  Lines represent the theory and symbols 

represent the experimental data. 

The analytical solution for the transient electroosmotic flow is validated experimentally 

from particle velocity measurements during the five periods previously identified.  

Experimental and analytical results showed good agreement for three different sized square 

channels, as shown in Fig. 9.  These results show that the theory is able to capture the 

acceleration of the flow and predict the steady state electroosmotic velocity.  During the 

measurements in Fig. 9, recording time was limited by the hardware to ~500ms, which 

covered only Periods 1, 2 and 3 for the geometries used.  In Period 1, the measurements in 

the center of the channel show that electroosmotic slip velocity induced at the walls has 

not yet reached the center.  Transition to Period 2 occurs when the fluid at the center of the 
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channel starts to accelerate from the induced electrical field.  Period 3 in the transient 

development begins after the flow has reached EOF steady state.  Onset of Period 4 occurs 

when the pressure gradient becomes significant and induces an adverse velocity in the 

channel.  This is illustrated in Fig. 9 by the deceleration of the measured flow velocity for 

the 800 µm channel.  For this same channel, the steady state electroosmotic velocity is not 

fully achieved and Period 3 is not able to fully develop.  For the 300 and 500µm channels, 

the velocity decay associated with the start of Period 4 occurs beyond the experimental 

measurement range.  For those two cases, the value of the pressure gradient and the time 

to reach zero volumetric flow rate can be estimated from the theory, as shown in Figs. 7 

and 8. 

 

Figure 10.  Temporal evolution of the velocity at the center of the rectangular glass 

channels under an applied electric field of 100 V/cm.  Lines represent the theory and 

symbols represent experimental data. 
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To evaluate the effect of the channel aspect ratio on the transient velocity, 

measurements are performed on two channels with rectangular cross-sections, 

500×5000µm and 800×8000 µm in size.  Experimental and analytical results are presented 

in Fig. 10 for each channel tested.  Similar behaviors are observed for both square and 

rectangular channels when comparing Figs. 9 and 10.  Results from Period 1 and 2 show 

good agreement between theory and experiments.  Period 3 is unable to be achieved in both 

geometries. Period 4 appears earlier during the experiments for the larger 800×8000µm 

channel.  In this case, the fluid flow in the channel is affected very early on by the 

development of the adverse pressure gradient and the fluid in the channel is unable to reach 

more than 60% of the expected maximum electroosmotic velocity.   

The experimental results agree qualitatively with those predicted by theory.  

However, there are deviations from the expected results, most markedly being the earlier 

than expected development of the pressure gradient induced velocity component in the 

800×8000 µm channel.  This difference is attributed to experimental error in the setup of 

the microdevice and inaccurate measurement of the channel’s reservoirs.  It is also possible 

that non-ideal conditions associated with the laboratory environment, or affects not 

captured in the theoretical model such as surface tension in the reservoirs, could have 

impacted the results. 
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Figure 11.  Temporal evolution of the velocity at the center of the rectangular 

PDMS channels under an applied electric field of 200 V/cm.  Lines represent the 

theory and symbols represent the experimental data. 

Channels with different wall surfaces are common in microfluidics, in particular 

PDMS channels with the bottom wall made out of quartz to facilitate microscope 

visualization.  The proposed analytical model is able to handle channels comprised of 

different walls with different zeta potentials.  To test this capability, measurements were 

performed on channels with three PDMS walls and the fourth wall made out of quartz 

glass.  The results are compared to the analytical model in Fig. 11, showing excellent 

agreement during Periods 1, 2, 3 and 4.  Due to the large aspect ratios of the channels and 

the stronger applied electric field (E = 200 V/cm), each channel maintained a large 

volumetric flow rate.  As such, Period 3 was kept very short, with the onset of Period 4 

occurring early (t ~100 ms) due to the rapid development of the adverse pressure gradient.  
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This analysis shows that the analytical model can handle asymmetric flows resulting from 

channels with different wall boundary conditions and zeta potentials. 
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4 Concluding remarks 

An analytical and an experimental study of the transient startup electroosmotic flow in 

rectangular channels was presented in this work.  The analytical solution is obtained from 

the two most general governing relations for electroosmotic flows, the Navier-Stokes 

equations and the Poisson-Boltzmann equation.  The analytical solution allows the 

identification of five distinct periods within the transient flow in a microchannel.  In Period 

1, the electroosmotic flow, EOF, is initiated at the wall by an instantly applied electric field.  

Period 1 is characterized by the electrokinetically induced slip velocity diffusing from the 

walls but having not yet reached the center of the channel.  In Period 2, the EOF has reached 

the center of the channel, and the fluid is accelerating towards a fully developed and steady 

state EOF profile throughout the cross-section of the channel.  In Period 3, the flow has 

reached a quasi-steady state due to a constant and fully developed EOF.  Period 4 occurs 

when the adverse pressure gradient induced velocity is large enough to significantly affect 

the channel’s velocity profiled.  Period 4 is characterized by a reversal of the velocity 

profile in the center of the channel, driving the volumetric flow rate in the channel towards 

zero.  When the volumetric flow rate in the channel reaches zero, Period 5 is reached and 

the fluid has reached its final steady state profile.  In this state the microchannel performs 

as if it were a closed cell system, with the fluid moving in one direction along the walls 

due to the electroosmotic effect while moving in the opposite direction along the center of 

the channel due to the pressure gradient.  

Variants of the five periods are observed depending on the cross-sectional size and 

aspect ratio of the channel.  An increase in channel size results in a lengthening of Period 

1 but a decrease in the duration of Period 3.  Period 2’s duration was largely unaffected by 
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channel size.  Also, when comparing the transient development of square channels with 

rectangular channels of the same height but larger width, the rectangular channels show 

earlier transitions into Periods 3, 4 and 5 as a result of a larger volumetric flow rate and 

corresponding pressure build up.  For the largest channels tested, Period 3 did not develop 

as a distinct phase, as the pressure gradient was already significant compared to the EOF 

in Period 2.  

The analytical solution for the 2D velocity profile allows the calculation of the 

transient volumetric flow rate Q(t).  Results show that the five periods proposed can also 

be identified during the time evolution for Q(t) for the channel sizes and aspect ratios 

considered.  For example, the flow rate remained constant in Period 3 for longer durations 

for the smaller channels considered, and the duration of Period 3 decreased as the channel 

size was increased.  Similarly, Period 5 was reached later as the channels’ cross-sectional 

dimensions became smaller.  The effect of the time-varying pressure gradient on the 

velocity profile was also investigated, giving rise to three distinctive periods.  In the first 

period, the pressure gradient remains small and has a negligible impact upon the flow 

development in the channel.  In the second period, the pressure gradient starts to increase 

(t ~ 102 – 103 ms), continuing to rise until it reaches a maximum pressure difference across 

the channel.  This is followed by a third period characterized by a constant and maximum 

pressure difference across the channel.   

The analytical solution for the transient electroosmotic flow was validated using a 

TR-µPIV system.  The electroosmotic velocity is calculated by subtracting the tracer 

particles’ electrophoretic velocity from the PIV measured velocity.  As predicted by the 

analytical model, the measurements also demonstrated the five developmental periods 



38 

 

previously identified.  Experimental and analytical results showed good agreement for all 

periods compared.  The measurements captured the acceleration of the flow during Period 

2 and predicted the steady state electroosmotic velocity in Period 3.  Measurements also 

showed that during Period 4 the pressure gradient becomes important and induces an 

adverse velocity that decelerates the flow.  Results showed that Period 3 was missing from 

the larger microchannels, as predicted by the theory.  This is due to the rapid development 

of the adverse pressure gradient induced velocity, which prevented the fluid from reaching 

the typical quasi-steady state EOF profile in Period 3.  Lastly, channels with three PDMS 

walls and a fourth wall made out of quartz were also tested and compared to the theory to 

demonstrate the capabilities of the analytical model to handle channels with different wall 

zeta potentials.  Experimental results showed excellent agreement with the theoretical 

model, with accurate predictions being made for the time durations and fluid flow 

velocities during Periods 1, 2, 3, and 4 of each channel’s development.  This analysis shows 

that the analytical model can handle asymmetric flows resulting from channels with 

different wall boundary conditions and zeta potentials. 
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5 Appendix A 

The solution to Eq. (13) is found by using the method of separation of variables.  Since 

Eq.(13) is linear, the solution can be separated into the transient and steady state portions 

as: 

      , , , , ,tran SSw x y t w x y t w x y    (27) 

where the subscript “SS” stands for steady state. By substituting Eq. (27) into Eq. (13) and 

rearranging terms we get: 

 
2 2 2 2

2 2 2 2

1 SS Stran tran tran Sw w w w wdp

t dzx y x y
 



     
        

      






 . (28) 

The steady state fluid velocity must satisfy: 

 
2 2

2 2
0 SS SSwdp

dz x y

w

 

   
 




 . (29) 

Since the governing equation for the steady state fluid velocity (29) is also linear, the 

velocity can be further separated into the electrokinetic and pressure gradient terms: 

 pressure

SS SS SS

EKw w w   . (30) 

Substituting Eq. (30) into Eq. (29) yields: 

 
   2 2

2 2
0

Epressure pressure

SS SS S

K E
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K

Sdp

dz x

w w w w

y

 
    




 









 . (31) 

Simplifying Eq. (31) yields: 

 2 20 pressure

SS S

K

S

Ew w
dp

dz
        (32) 

The portion of the solution associated with the fluid being electrokinetically driven must 

satisfy the following condition: 

 2 0SS

EKw    (33) 
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As given in Eqs. (16-17), the electrokinetically driven boundary conditions are: 

 2, ,
2

SS

EK H
x t Ew





 
   

 
  (34) 

 1, , , , , ,
2 2 2
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EK EK EK

S SS

L L H
y t y t x tw w w E





     
         
     

  (35) 

The solution to this governing equation is given by [6]: 
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 

1

1

1 2

1

2
sinh

1 12 2
sin

sinh

,

k

EK

SS

k

H
k y

LL
k x

k Hk L

E
w x

L

E
y





 
 

  








  
   
  

    
         

     
   

  
  

  

 (36) 

Returning to Eq. (32), a solution is sought for the pressure driven portion of the steady state 

velocity field: 

 20 pressure

SSw
dp

dz
      (37) 

The boundary conditions for Eq. (37) are: 

 , , , , , , , ,
2 2 2 2

0pressure pressure pressure pressure

SS SS SS SSw w w
L L H H

y t y t x t x tw
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  (38) 

The solution to this governing equation and the associated conditions is given by [6]: 
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From Eq. (28), the transient equation must satisfy: 

 2 0tran

tran

w

t
w


  


 . (40) 
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The boundary conditions for the transient solution are given by: 

 , , , , , , , ,
2 2 2 2

0tran tran trtr na an

L L H H
w y t w y t w x t w x t

       
            
       

.  (41) 

The transient solution’s initial condition is given by: 

      , ,0 , ,0 ,
tran SSw x y w x y w x y    (42) 

This yields: 
 

    , ,0 ,
tran SSw x y w x y  .  (43) 

The solution to Eq. (40) is found by the method of separation of variables: 

        , ,tranw x y t X x Y y T t  . (44) 

Substituting Eq. (44) into Eq. (40) gives the following relation: 

 21 ' '' ''T X Y

T X Y



    .  (45) 

Isolating T(t) from Eq. (45) yields: 

 
2

( ) tT t Ae    (46) 

Revisiting Eq. (45) leaves: 

 2'' ''X Y

X Y
     (47) 

Isolating X(x) from Eq. (47) gives: 

   cos sin
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The boundary condition at the left wall from Eq. (41) can now be applied as: 

    cos 0 sin 0 0
2

n n

L
X FE
 
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Similarly, we can also solve for Y(y) to obtain: 

   2 2 2 2cos sin
2 2

m m

H H
y H yY y G    

      
          

    


 
 . (51) 

The boundary condition at the bottom wall from Eq. (41) can now be applied as: 
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2

m m
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Next, applying the boundary condition at the right wall and the top of the channel from Eq. 

(41) yields two additional relations: 
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Eqs. (54-55) lead to the following relations for α and κ: 
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Substituting Eqs. (56) and (57) into Eqs. (46), (48) and (51) and combining terms, the total 

transient solution from Eq. (44), can now be expressed as: 
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The next step is to apply the initial condition from Eq. (43), which results in: 
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The terms Cm,n in Eq. (59) are found via the integral: 
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where, pressure

SS SS SS

EKw w w  .    
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Finally, the equation for the velocity field in a fully developed channel with an arbitrary 

pressure gradient, electric field, and zeta potentials at each of its walls is: 
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