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ABSTRACT OF THE DISSERTATION

Deconvolution of Transcript Profiling Data and

Asymptotic Inference of Cross Correlation in L
∞

by Die Sun

Dissertation Director: Dr. Han Xiao

In this dissertation, we consider two research projects: deconvolution of transcript

profiling data; and inferences for multivariate time series based on cross correlations,

especially under high dimensionality.

The study of transcript profiling data such as macro-arrays or deep sequencing,

has wide application in gene expression studies. A typical objective of gene expression

study is to identify genes that are differentially expressed between groups of samples,

such as normal vs. tumor tissue. However, most of the biological samples in scientific

researches are heterogeneous: for the samples with identical cellular types, they may

have very different proportions. Such variance in proportion will lead to confound-

ing effects (Shen-Orr and Gaujoux, 2013). For example, the reflected gene expression

variations are simply caused by the differences in proportions of cell subsets instead of

the characteristic condition of a sample (e.g. disease). In order to eliminate the con-

founding effect, one solution might be to focus on the single cell subset. The isolation

procedure, however, is limited by sample materials and financial budgets. Therefore,

statistical deconvolution, which does not require any isolation, becomes necessary and

practical. In the first project, we develop the Iterated Least Square (ILS) algorithms
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to estimate the cell specific signature and proportion matrix in complete blind case un-

der homoscedasticity assumption, and theoretically justify the consistency of signature

matrix estimate. We also find that the ILS estimate is equivalent to moment under

homoscedasticity assumptions, and establish the central limit theorems for the moment

estimates. In the heteroscedastic case, the ILS is no longer asymptotically unbiased.

Thus, we propose to use the moment estimate, and develop the asymptotics of signature

expression estimates. Both numerical examples and real data analysis are employed to

illustrate the estimation methods and their asymptotic properties.

Cross correlations are of fundamental importance in multivariate time series anal-

ysis. We consider tests for independence of component series based on sample cross

correlations. We start with a study of cross correlations between two time series. We

derive the central limit theorems for sample cross correlations at large lags, establish

convergence rates for maximum sample cross correlations, and demonstrate how they

can be used to identify the lead lag relationship for a bivariate time series. We also pro-

pose a window sum approach to reduce the computational cost when the series is long.

As a second problem, we consider tests for independence of components series under

high dimensionality. We propose to use the maximum sample cross correlation over a

large range of lags as the test statistic. We also consider an extension to Ljung-Box

type statistics. We show that the limiting distributions of the test statistics are extreme

value distribution of type I. Our results allow both the number of series, and the range

of lags to grow as powers of the sample size, and reveal that how large they can be is

determined by the dependence condition and moment condition. We also propose to

use the moving blocks bootstrap to improve the finite sample performance of these test

procedures.
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Chapter 1

Introduction

As stated by Trevor et al. (2001): “The field of Statistics is constantly challenged by the

problems that science and industry brings to its door.” In this dissertation, we consider

new theoretical results to address two specific problems of recent statistical research:

The first project studies the transcript profiling data such as macroarrays or deep

sequencing, and has wide application in gene expression studies. A typical objective

of gene expression study is to identify genes that are differentially expressed between

groups of samples, such as normal vs. tumor tissue. However, most of the biological

samples in scientific researches are heterogeneous: for the samples with identical cel-

lular types, they may have very different proportions. For example, in the context of

immunology study, the whole blood samples are used to compare the differential ex-

pression between groups of patients. As most of the genes are expressed in each cell

type, therefore, the reflected blood-level differential expression between groups might

be simply caused by the the differences in proportions of cell types instead of the char-

acteristic condition of a group (e.g. disease). In order to eliminate the confounding

effect, one solution might be to focus on the single cell subset. The isolation proce-

dure, however, is limited by sample materials and financial budges. As an alternative

approach, one can estimate the cell specific expression of each gene, as well as cell type

proportions in disease and normal groups. Since both cell specific expression levels and

cell type proportions are not observed, this approach has been described as a deconvo-

lution problem in the literature Shen-Orr et al. (2010). Although it is known that the

relationship between the expression levels of pure and mixed samples are not strictly

linear, the linearity assumption is reasonable as shown in previous research work Shen-

Orr et al. (2010). That is the global expression value of gene j in sample i is the sum
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of its expressions in the r cell types:

gij =

r∑

k=1

wikhkj + ǫij, and 1 ≤ i ≤ n, 1 ≤ j ≤ p (1.1)

where wik is the proportion of cell type k in sample i, which sum to 1, i.e.
r∑

k=1

wik =

1. hkj is the specific gene j’s expression in cell type k, whose value are non-negative,

i.e. hkj ≥ 0. ǫij is the random error term, which is independent across all sample i and

gene j. We also require p ≥ r.

Using matrices, we can rewrite Eq (1.1) into the following approximate matrix

decomposition problem:

Gnp = WnkHkp + Enp

where Gnp is the n × p global gene expression matrix, Wnk is the n × k fraction

matrix, Hkp is the k × p cell-specific matrix, and Enp is the n× p error matrix. And it

is required that p ≥ r.

Existing work focused on the estimation methods and applications (Shen-Orr et al.,

2010; Shen-Orr and Gaujoux, 2013; Yang et al., 2012). However, the statistical prop-

erties have not been discussed extensively. In the first project, we develop the Iterated

Least Square (ILS) algorithms to estimate both H (with constraints) and W under

homeostatic assumption, theoretically justify the associated statistical properties. As

a side product, we find that ILS is equivalent to moment estimate under homeostatic

assumption, and derive the joint limiting distribution of H in specific case when only

two cell types and two gene markers are considered. In the heteroscedastic case, the ILS

is no longer asymptotically unbiased. Thus, we propose to use the moment estimate,

and study its associated statistical properties. The underlying theory supporting our

limiting distribution are Multivariate Lindeberg-Levy CLT Greene (2002) and Multi-

variate delta Method van der Vaart (1998). We will illustrate the above estimation

method and statistical properties by using numerical example and real data analysis.

The second project considered the lead lag relationship among component time
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series. Lead lag relationship is an important type of cross correlations and tempo-

ral dependence. It is the cross correlation between time series shifted in time rel-

ative to one another. Suppose there is a p-dimensional stationary time series xjt,

1 ≤ j ≤ p and 1 ≤ t ≤ T . The cross covariance between j-th and k-th time series

at lag s is defined as γjk(s) = Cov(xjt, xk,t+s). In particular, γjj(·) gives the autoco-

variance function of the j-th component series. The cross correlation is then given by

ρjk(s) = γjk(s)/
√

γjj(0)γkk(0). Lead-lag correlation has been widely used in many en-

gineering and basic science fields, including electrical, acoustic, geophysical applications

and economics (Nelson-Wong et al., 2009), (Duffy and Hughes-Clarke, 2005), (Basappa

and Lakdawala, 2000), (Cohen, 1981). For example, Berndt and Ostrovnaya (2007)

indicated that investors absorb information revealed in the CDS market into option

prices within a few days, i.e. CDS market lead the option market. Ideally if γjk(s) is

zero for all positive s, and nonzero for some negative s, then there is a unidirectional

relationship from the j-th series to the k-th series.

More comprehensive relationship among the p series can be modeled by autore-

gressive (VAR) models. However, when p is large, fitting a VAR over all series is not

computationally or statistically feasible. The problem becomes easier if the p series

can be partitioned into smaller groups, where the between groups dependence is weak

or negligible, and VAR models can be built with each group. Cross correlations may

serve as a proxy of the distance or closeness, since they measure the linear relationship

between any two series. The problem can be viewed as a clustering problem, where it

may be assumed that different groups are not correlated. A closely related problem is

to test whether these p series are correlated at all. This can also be translated to the

following testing problem

H0 : γjk(s) = 0, ∀ j 6= k, s ∈ Z. vs H1 : γjk(s) for some j 6= k,

under the “large T , large p” paradigm, where the dimension p may be comparable to,

or even larger than the sample size T . The cross covariances can be estimated by the
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sample version:

γ̂jk(s) =
1

T

∑

1≤t,t+s≤T

(xjt − x̄j)(xk,t+s − x̄k)

where x̄j is the sample mean of the j-th series. We consider the maximum type test

statistic:

M̃1 = max
|s|≤sT , 1≤j<k≤p

γ̂jk(s).

Since the correlation between two series may exist at some unknown but very large

lag s, here we allow the range s to expand with the sample size, i.e. sT is allowed to

approach infinity as T increases. Sometimes the cross correlation between two series

may exist at many adjacent lags, but is weak at each of them. In this case, the following

test statistic can have larger power.

M̃m = max
|s|≤sT , 1≤j<k≤p

Q̃jk(s), (1.2)

where

Q̃jk(s) =
s+m∑

l=s+1

γ̂2jk(s).

We will show that the test statistics converge to extreme value distribution of type

I (also called Gumbel distribution) after proper normalizations. Due to the existence of

temporal dependence, we carry out theoretical analysis under the framework of causal

representation and physical dependence measures (Wu, 2005). Our proof makes use of

the Gaussian approximation result Zaitsev (1987).

On the other hand, it is well know that the Gumbel type convergence is usually slow.

In order to evaluate the finite sample test performance, we propose to use bootstrap

method to improve the finite sample performance. More specifically, we use the moving

blocks bootstrap of Liu and Singh (1992). Recently, Hill and Motegi (2016) and Zhang

and Cheng (2014) also considered bootstrap methods for the maximum type statistics

under the time series context.

We shall show two main results. The first theoretical results considers the simplest

scenario when there are only two time series. In section 3.3.1, we will show that under
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mild dependence condition and moment constraint (4th order moment) for bi-variate

stationary process, the maximum cross correlation can asymptotically identify the true

lead (or lag) even if it increases at a rate that is slower than the sample size. This

results provides mathematical explanation how maximum cross correlation works and

why it could be used to explore the lead-lag relationship. Furthermore, in order to

reduce computational cost, we also propose window sum approach, and theoretically

confirm its feasibility and accuracy. The second results considers high dimensional time

series. Under mild condition, we establish the the Gumbel convergence of maximum

cross correlation over wide rage of lags.

The rest of the thesis is organized as following. In Chapter 2, we consider the statis-

tical models for the deconvolution of transcript profiling data, and show the theoretical

results. In Chapter 3, we show the asymptotic results for maximum cross correlation

among bivariate and high dimensional series.
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Chapter 2

Deconvolution of Transcript Profiling Data

2.1 Introduction

A typical objective of gene expression study is to identify genes that are differentially

expressed between groups of samples, such as normal vs. tumor tissue. However, most

of the biological samples in scientific researches are heterogeneous. The main reason

for the heterogeneity is the variation in cell proportions: for the samples with identical

cellular types, they may have very different proportions. Such variance in proportion

will lead to confounding effects. For example, it might provide misleading information

Shen-Orr and Gaujoux (2013): The reflected gene expression variations are simply

caused by the differences in proportions of cell subsets instead of the characteristic

condition of a sample (e.g. disease). A second example is that it might cause signal

strength dilution: A gene that is differentially expressed in a cell subset presented in

low proportion in a sample might be masked by the signal from the same gene expressed

in a prevalent cell subset (Cobb et al., 2005). Therefore, in order to obtain a detailed

understanding of the role of each cell subset, the cell subset level measurement and

interpretation of phenotypic changes between specific conditions is critically important.

The heterogeneity problem mentioned above has been acknowledged for a long time

by Davey and Kell (1996). Experimental technique to isolate the mixed cell population

is one of the solutions. However, the isolation procedure might introduce bias and

entails a loss of a systems perspective (i.e. biologically meaningful changes happen

in multiple cell subsets and between them) (Whitney et al., 2003). And the variance

between expression values from different isolation methods is also recognized (Cobb

et al., 2005). Furthermore, it is limited by sample materials and financial budget.
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Computational deconvolution becomes an attractive way to deal with these con-

cerns: it is capable of extracting cell-specific information from heterogeneous samples.

Since the pioneering work of Venet et al. (2001), a variety of methods such as Rep-

silber et al. (2010); Lähdesmäki et al. (2005); Kuhn et al. (2011); Bolen et al. (2011)

have been proposed by many researchers, casting insights into how to estimate the cell-

specific signatures and/or relative cell type proportions from global gene expression

measurements, such as micro-array and RNA-seq.

Nonetheless, the statistical inference on these estimates is not extensively discussed,

especially in the complete blind case where both cell-specific and relative cell type

proportions are unknown. In this chapter, we develop a new iterative least square (ILS)

algorithm in the homoeostatic case, and derive the asymptotic statistical properties of

the estimates under mild assumptions. In the heteroscedastic case, we find that the ILS

is no longer asymptotic unbiased. Therefore we propose to use the moment estimate,

and consider the associated statistical inference.

Although the relationship between the expression levels of pure and mixed samples is

not strictly linear, the linearity assumption is reasonable as shown in previous research

Shen-Orr et al. (2010). That is the global expression value of gene j in sample i can be

characterized as the sum of its expressions in the r cell types,

gij =

r∑

k=1

wikhkj + ǫij, and 1 ≤ i ≤ n, 1 ≤ j ≤ p (2.1)

where wik is the proportion of cell type k in sample i, which sum to 1, i.e.
r∑

k=1

wik =

1. hkj is the specific gene j’s expression in cell type k, whose value are non-negative,

i.e. hkj ≥ 0. ǫij is the random error term, which is independent across all sample i and

gene j. We also require p ≥ r.

Using matrices, we can rewrite Eq (2.1) into the following approximate matrix

decomposition problem:

Gnp = WnkHkp + Enp (2.2)
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where Gnp is the n × p global gene expression matrix, Wnk is the n × k fraction

matrix, Hkp is the k × p cell-specific matrix, and Enp is the n× p error matrix. And it

is required that p ≥ r. We will suppress the subscript in the latter.

There are various methods developed under the linear model framework of G =

WH + E. With respect to the input data requirement, they can be classified into

two major types Gaujoux and Seoighe (2013): (1) Partial Deconvolution: either the

fraction matrix W or the cell-specific matrix H is known; (2) Complete Deconvolution:

both fraction matrix W and cell-specific matrix H are needed to be estimated from

the global gene expression data of the heterogeneous samples. It’s clearly that the

complexity of the latter increases due to more unknown parameters. More specifically,

we will described each type in details in the following:

1. Partial Deconvolution: Either the fraction matrix W or the cell-specific matrix

H is known.

1.1. The fraction matrix W is known: This is an over determined problem pro-

vided that there are more samples than the number of cell types. Shen-Orr

et al. (2010) proposed csSAM method. They regressed the global gene ex-

pression on the proportions using standard linear regression . Differential

expression analysis was proposed with error estimates cooperated into test

statistic. The approach was applied to whole-blood gene expression datasets

from post-transplant kidney transplant recipients (9 were stable and 15 were

experiencing acute rejection), identifying hundreds of genes that were dif-

ferentially expressed. Other examples could be also found in Erkkilä et al.

(2010); Stuart et al. (2004).

1.2. The cell-specific matrix H is known: This is also an over determined es-

timation problem, since for each sample, generally we have more observa-

tions (genes) than unknown parameters(proportion for each cell type), which

yields accurate estimate. Abbas et al. (2009) defined an optimised set of sig-

natures for 17 different immune cell types, and proposed a heuristic algorithm
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based on standard linear regression with nonnegative constrain. The esti-

mated proportion were scaled to sum-up to one after fitting. The method

was applied to white blood cell samples from a cohort of Systemic Lupus

Erythematosus (SLE) and healthy patients, and found increase in propor-

tions (NK, T and monocytes) that were consistent with SLEDAI (Systemic

Lupus Erythematosus Disease Activity Index). Gong et al. (2011) proposed

an alternative algorithm that incorporates the sum-up to one constraint on

the proportions within the fitting process . Wang et al. (2006) used sim-

ilar approaches to analyze yeast cell cycle expression patterns from global

mammary gene expression data .

2. Complete Deconvolution: Both fraction matrix W and cell-specific matrix H are

needed to be estimated from the global gene expression data of the heterogeneous

samples. Venet et al. (2001) pioneered the study of complete gene expression

deconvolution . They proposed an alternative nonnegative least-squares approach

by using a heuristic to limit the correlations between the estimated cell type

signatures. Repsilber et al. (2010) proposed an Nonnegative Matrix Factorization

(NMF) algorithm (deconf) . It corresponds exactly to Venet Venet et al. (2001)

algorithm, but drops the correlation constraints. Although it is called ‘complete’

deconvolution, some prior knowledge is still needed. Such information is often in

the form of marker gene sets, which are essentially expressed by the specific cell

type.

2.2 Complete Deconvolution Model in Homoscedastic Case

Following the same notation as in Section 2.1, we will describe the constraints that we

adopt on the model in the complete blind case, together with the method to compute

the coefficients. Consider the model in formula (2.2), i.e.

G = WH + E, and p ≥ r
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where G, W and H are defined as before, and E = (e1, . . . ,ep), where ej =

(e1j , e2j , . . . , enj). Furthermore, we assume ej are independent across all genes j, which

implies that cov(ej1 ,ej2) = 0, for any j1 6= j2. For each j, (j = 1, . . . , p), ej have mean

0n, and covariance matrix as σ2In.

2.2.1 Model Constraints

It is obvious that there might be a lot of such factorizations without any constraint. For

example, if W ∗ and H∗ is one solution, for any orthogonal matrix Q, W ∗Q , Q
′

H∗ is

also one of the factorizations that satisfying Eq. (2.2). Therefore, in order to make the

model both identifiable and meaningful, constraints are required. We adopt the same

constraint on signature matrix as proposed by Gaujoux and Seoighe (2012). They

used set of marker genes: which was known to be almost exclusively expressed by just

one specific cell type. Therefore, the column of the signature matrix H contains all

0 except the one that corresponding to the cell-type specific marker gene. Table 2.1

shows a specific example of matrix H where CD3G and CD3E are markers for T-cell.

Then the value of the corresponding columns will be 0 except for the row of T cells.

The other columns should be read in the same way.

CD3G CD3E ..... CD247 CD28

T-cell ∗ ∗ ... 0 0
B-cell 0 0 ... 0 0

Granulocytes 0 0 ... 0 0
Macrophage 0 0 ... ∗ ∗

Table 2.1: Signature Matrix with Gene Marker pre-specified

For the fraction matrix, the i-th row records the cell proportions for i-th sample

(e.g. patient). Naturally the value of each element should be between (0, 1), and the

sum of each row is 1.

For notational convenience, we denote Ω as the set of all the possible solution
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satisfying the constraints, i.e

Ω =






(W,H)

∣
∣
∣
∣
∣
∣

∑k=r
k=1wik = 1, wik ≥ 0(i = 1, 2, . . . , n.k = 1, 2, . . . , r)

H satisfies signature matrix constraint







2.2.2 Algorithm to compute the coefficient

W , H will be solved by minimizing the squared difference between the observed and

the modeled global expression matrix with constraints specified in Section 2.2.1, i.e.

(Ŵ , Ĥ) = arg(W,H)∈Ω ‖Gnp −WnrHrp‖2F (2.3)

where ‖.‖F denotes the Frobenius norm

Iterated least square method is applied to solve Eq. (2.3):

Step 1: Given an initial value of W 0, get the least square estimate of H with marker

gene pattern and nonnegative constraints, denote the solution by H(1).

Step 2: Given H = H(1), get the constrained estimate of W , denote the solution

by W (1).

Step 3: Repeat Step 1 and Step 2 (with the estimate from last step serving as

initial value), until the estimate numerically converges.

We notice that all the estimates are in matrix form. In order to make the standard

quadratic procedure applicable, we make some appropriate transformation.

Details about implementation for step 1 and step 2 are described below:

Step 1: For given W , denote the column of G and W by

gj = (g1j , g2j ...., gnj)
′

wk = (w1k, w2k, ...wnk)
′

ej = (e1j , e2j , ...enj)
′

Suppose the cell type k has kd gene markers. LetMk = {k1, . . . , kd} be the collection

of the gene markers for the cell type k , where k = 1, . . . , r. Besides, suppose there are

q genes that are expressed on all cell types, and denote the collection of these genes by
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Aj = {j1, j2, . . . , jq}.

With all these notation, now the objective function could be written as:

arg
hkj>0

min







r∑

k=1

∑

j∈Mk

‖gj − hkjwk‖2F +
∑

j∈Aj

‖gj −
r∑

k=1

hkjwj‖2F






(2.4)

Objective function (2.4) is familiar and standard. Quandratic programming with non-

negative constraints is applicable to solve hkj, and then transform back to H (hkj is in

the kth row and jth column). Note that all the hjk that does not appear in objective

function (2.4) are set as 0 as assumed.

Step 2: For fixed H,

Denote the row of G, W and E by the following:

gi. = (gi,1, gi,2...., gi,p)
′

wi. = (wi,1, wi,2, ...wi,r)
′

ei. = (ei,1, ei,2, ...ei,r)
′

The linear model can be rewritten as following:















g
′

1.

.

.

g
′

(n−1).

g
′

n.















=















w
′

1.H

.

.

w
′

(n−1).H

w
′

n.H















+















e
′

1.

.

.

e
′

(n−1).

e
′

n.















Now the objective function becomes:

argwi.,i=1,2,...,nmin

i=n∑

i=1

‖gi. −Hwi.‖2

subject to

r∑

j=1

wi,j = 1, wi,j ≥ 0, (i = 1, 2, . . . , n, j = 1, 2, . . . , r)

(2.5)
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Remark 1. For Eq. (2.5), it’s equivalent to do n independent optimizations for each

sample, i.e for each i, ŵi could be obtained through

argwi
min ||gi. −Hwi.||2 = argwi.

min{g′

i.gi. − 2g
′

i.H
′

wi. +wi.HH
′

wi.}

= argwi.
min{−2g

′

i.H
′

wi. +wi.HH
′

wi.},

with restrictions (only first equality holds) specified as below:



















1 1 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

































wi1

wi2

.

.

wik















≥















1

0

0

0

0















2.2.3 Asymptotic Properties of the Estimate when cell type number

r = 2

There is a lot of literature on the estimation methods and applications of the deconvo-

lution problem. However, the inference of these estimates are not extensively discussed,

especially in the complete blind case (neither W or H is known). In this section, we

will explore the statistical properties of the Iterated Least Square (ILS) estimate. To

be more close to practice, we also assume that the frequency matrix (W) is random and

from some unknown population. We start from the simplest case, where only two cell

types and two marker genes are under consideration.

Consider the model:

gj = hj0wj0 + ǫj (2.6)

where ǫ1 is independent of ǫ2, and E(ǫj) = 0n, Var(ǫj) = σ2
j I (j = 1, 2)

Here w10 and w20 are random vectors with entries between 0 and 1, and satisfy

w10 + w20 = 1, which is the vector with all entries equal to one. The two covariate
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vector wi0 are not observed, and the question is to estimate hi0 and wi0.

Define x10 = 1
′

w10/n, x20 =
√

w
′

10w10/n− x210, and assume there exists a constant

c, such that when n is large enough,

lim
n→∞

x10 > c, x20 > c, a.s. (2.7)

We first solve the following optimization problem:

(ĥ1, ĥ2, ŵ1, ŵ2) = argh1,h2,w1,w2
min ‖g1 − h1w1‖2 + ‖g2 − h2w2‖2 (2.8)

The common variance σ2 can be estimated by:

σ̂2 =
1

n

(

‖g1 − ĥ1ŵ1‖2 + ‖g2 − ĥ2ŵ2‖2
)

(2.9)

For notational convenience, we define:

µ(w) = E(wi1), and µk(wi1) = E(wi1 − µ(w))k, k = 1, 2, 3 . . .

Theorem 1. Let ǫ1,1, ǫ2,1, . . . , ǫn,1 are i.i.d with mean 0, and variance σ2
1, and ǫ1,2, ǫ2,2, . . . , ǫn,2

are i.i.d with mean 0, and variance σ2
2. Assume σ2

1 = σ2
2 = σ2, and Eq. (2.7) holds,

then

1) (ĥ1, ĥ2) → (h10, h20) a.s

2) σ̂2 → σ2 a.s

3) Assume ǫj ∼ N (0n, σ
2In), and 0 < µ(w) < 1, then

√
n








ĥ1

ĥ2



−




h10

h20








D
=⇒ N (0,Σ1)

Where Σ1 = ▽f
′

(u1)Σ▽f(u1), and ▽f(u1), Σ = (σij) are given by
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▽f(u1) =


















1 h20
h10

h10
h20

1

(1− µ(w))h10
(h210 + h220)µ2(w)

− µ(w)h20
(h210 + h220)µ2(w)

− (1− µ(w))h10
(h210 + h220)µ2(w)

µ(w)h20
(h210 + h220)µ2(w)

(h210 − h220)(1 − µ(w))

h20(h210 + h220)µ2(w)

(h220 − h210)µ(w)

h10(h210 + h220)µ2(w)


















σ11 = σ2 + h210µ2(w)

σ22 = σ2 + h220µ2(w)

σ33 = h410(u4(w)− µ2
2(w)) + 2σ4 + 4h210µ2(w)σ

2

σ44 = h420(u4(w)− µ2
2(w)) + 2σ4 + 4h220µ2(w)σ

2

σ55 = h210h
2
20(u4(w)− µ2

2(w)) + h210µ2(w)σ
2 + h220µ2(w)σ

2 + σ4

σ12 = −h10h20µ2(w)

σ13 = h310µ3(w)

σ14 = h10h
2
20µ3(w)

σ15 = −h210h20µ3(w)

σ23 = −h210h20µ3(w)

σ24 = −h320µ3(w)

σ25 = h10h
2
20µ3(w)

σ34 = h210h
2
20(µ4(w)− µ2

2(w)) + 2σ4

σ35 = −h310h20(µ4(w) − µ2
2(w)) − 2h10h20µ2(w)σ

2

σ45 = −h10h
3
20(µ4(w) − µ2

2(w)) − 2h10h20µ2(w)σ
2

(2.10)

Remark 2. For the limiting distribution part, the calculation of the covariance matrix

is tedious. Here we derived some useful results of the covariance between sample mean

and sample central moments, as well as the covariance of sample central moments.

Define

w̄1 =

i=n∑

i=1

wi1

n
and mk(w) =

i=n∑

i=1

(wi1 − w̄1)
k

n
, k = 2, 3, . . . (2.11)
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Then:

Cov(w̄1,m2) =
µ3(w)

n

Cov(w̄1,m3) = −3(−2 + n)(−1 + n)µ2
2(w)

n3
+

(−2 + n)(−1 + n)µ4(w)

n3

Var(m2) =
µ4(w)

n
− µ2(w)

2(n− 3)

n(n− 1)

Cov(m2,m3) =
(−2 + n)(−1 + n)2µ5(w)

n4
− 2(−2 + n)(−1 + n)(−5 + 2n)µ2(w)µ3(w)

n4

Var(m3) =
3(−2 + n)(−1 + n)(20 − 12n+ 3n2)µ2(w)

3

n5
−

(−10 + n)(−2 + n)2(−1 + n)µ3(w)
2

n5
− 3(−2 + n)2(−1 + n)(−5 + 2n)µ2(w)µ4(w)

n5

+
(−2 + n)2(−1 + n)2µ6(w)

n5

Remark 3. Sometimes, people treat wj as deterministic. In this case, we have the

following central limit theorem:

√
n(




ĥ1

ĥ2



−




h10

h20



)
D
=⇒ N (0,Σ2)

where Σ2 = ▽f(u1)
′















σ11 0 0 0 0

0 σ22 0 0 0

0 0 σ33 0 σ35

0 0 0 σ44 σ4,5

0 0 σ53 σ54 σ55















▽f(u1)

With f(u1) and σij defined as following:

▽f(u1) =


















1 h20
h10

h10
h20

1

(1− w̄1)h10
(h210 + h220)m2(w)

− w̄1h20
(h210 + h220)m2(w)

− (1− w̄1)h10
(h210 + h220)m2(w)

w̄1h20
(h210 + h220)m2(w)

(h210 − h220)(1 − w̄1)

h20(h210 + h220)m2(w)

(h220 − h210)w̄1

h10(h210 + h220)m2(w)

















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





σ11 = σ2,2 = σ2

σ33 = 2σ4 + 4h210m2(w)σ
2

σ44 = 2σ4 + 4h420m2(w)σ
2

σ55 = (h210 + h220)m2(w)σ
2 + σ4

σ35 = σ4,5 =
2h10h20σ

2w
′

1w2

n
− 2h10h20σ

2w̄1(1− w̄1)

(2.12)

Note that w̄1 and mk(w) are defined in Eq. (2.11).

Remark 4. As we do not know the true parameters of w1 in neither Eq.(2.10) or

Eq.(2.12), we plug in the LS estimate conditional on ĥ1, ĥ2. Solve:

ŵLS
1 =argw1

min ‖g1 − ĥ1w1‖2 + ‖g2 − ĥ2(1−w1)‖2

=
(g1ĥ1 − g2ĥ2 + ĥ22)

(ĥ21 + ĥ22)

Plugging gj = hj0w1 + ǫj in the solution ŵLS
1 , as (ĥ1, ĥ2) is consistent estimate

of (h10, h20), it’s not difficult to see that ûLS2K(w) =

∑i=n
i=1 (ŵ

LS
i,1 − ¯̂wLS)2K

n
is biased

estimate of µ2K(w) (or m2(w) if w1 is deterministic). Yet, it can be corrected by

removing the bias.

For example, for the 2nd and 4th moment, the unbiased estimates are as following.

û2(w) = ûLS2 (w)− σ̂2

(ĥ21 + ĥ21)

û4(w) = ûLS4 (w)− 6û2(w)σ̂
2

(ĥ21 + ĥ21)
− 3σ̂4

(ĥ21 + ĥ21)
2

Remark 5. The individual wi,1 might not be a reliable estimate, but we could still get

a consistent estimate of the mean value w̄1. Plugging in the consistent estimate of h10,
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h20, the estimated proportion could be expressed

ŵ1 = w10 +
ĥ1ǫ1 − ĥ2ǫ2

ĥ21 + ĥ22
,

So µ̂(w) =
1

′

ŵ1

n
is consistent estimate of µ(w)

2.2.4 Asymptotic Properties of the Estimate when cell type number

r > 2

Theorem 1 summarizes the asymptotic unbiasedness of ILS in the case when there are

only two cell types and two marker genes. In this section, we will generalize the results

in a more common case when the cell type number r > 2, p ≥ r > 2.

Consider the model:

gj = hj0wj0 + ǫj , (j = 1, 2, . . . , r) (2.13)

where ǫj1 is independent of ǫj2 if j1 6= j2, and E(ǫj) = 0n, Var(ǫj) = σ2I (∀j =

1, . . . r

Similarly, we first solve the optimization problem:

(ĥ1, . . . , ĥk, ŵ1, . . . , ŵk) = argh1,...,hk,w1,...,wk
min

r∑

j=1

‖gj − hjwj‖2

And the common variance is estimated by

σ̂2 =
1

n

r∑

j=1

‖gj − ĥjŵj‖2

Theorem 2. Let ǫ1,j , . . . , ǫn,j are i.i.d with mean 0 and variance σ2
j (j = 1, 2, . . . , p).

Consider model (2.13), assume σ2
j = σ2, and E(wi,k) > 0,Var(wi,k) > 0 for i =
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1, 2, . . . , n, k = 1, 2, . . . , r. Then







(ĥ1, . . . , ĥK) → (h10, . . . , hK0) a.s

σ̂2 → σ2 a.s

2.2.5 Simulation Study

Simulation study for consistency

For simplicity, we consider the case when there are only two cell types. Let p = 2,

h10 = 5, h20 = 10. w10 is generated from i.i.d. U(0, 1) distribution, and w20 = 1−w10.

The error terms ǫ1 and ǫ2 are independent on each other, and from some distribution

with mean 0 and common covariance matrix σ2I. More specifically, for Table 2.3, and

2.2 both ǫ1 and ǫ2 are from standard Normal distribution, while for Table 2.5 and 2.4,

ǫ1 is generated from standard Normal distribution, and ǫ2 from scaled t distribution

(df = 10) with variance 1. gj j = 1, 2 is generated from Model (2.6). We try two

scenarios:

1. wj0 (j = 1, 2) is refreshed in every repetition, i.e w10 is treated as random factor

(See table 2.5 and 2.4).

2. wj0 (j = 1, 2) is generated only once and then set constant over all repetitions

(See table 2.3 and 2.2)

We repeat the simulation 1000 times, and summarize the results in Table 2.3, 2.2,

2.5 and 2.4. The simulation results are consistent with Theorem 1, regardless of how

wj0 and ǫ1 is generated, as long as the error terms share common variance, the average

value of ĥ1, ĥ2, and σ̂2 are close to the true values, and the average of squared deviation

from true value is close to 0.
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True h1 5 True h2 10

h̄1 5.015387490 h̄2 9.94706873

∑i=1000
i=1

(ĥi,1 − h10)
2

1000
0.002970813

∑i=1000
i=1

(ĥi,2 − h20)
2

1000
0.01353201

∑i=1000
i=1

(ĥi,1 − h̄1)
2

1000
0.002736775

∑i=1000
i=1

(ĥi,2 − h̄2)
2

1000
0.01013745

σ̄2 =
∑i=1000

i=1

σ̂2
i

1000
1.0003802743

∑i=1000
i=1

(σ̂2
i − σ2)

1000
0.0009686540

∑i=1000
i=1

(σ̂2
i − σ̄2)

1000
0.0009685094

Table 2.2: n = 2000, ǫ1, ǫ2 ∼ N(0, σ2 = 1), w10 is regenerated in each repetitions. The
results are based on 1000 repetitions

True h1 5 True h2 10

h̄1 5.017013194 h̄2 9.94575772

∑i=1000
i=1

(ĥi1 − h10)
2

1000
0.003056476

∑i=1000
i=1

(ĥi2 − h20)
2

1000
0.01306953

∑i=1000
i=1

(ĥi1 − h̄1)
2

1000
0.002769797

∑i=1000
i=1

(ĥi2 − h̄2)
2

1000
0.01013745

σ̄2 =
∑i=1000

i=1

σ̂2
i

1000
1.0002860431

∑i=1000
i=1

(σ̂2
i − σ2)

1000
0.0009624148

∑i=1000
i=1

(σ̂2
i − σ̄2)

1000
0.0009623330

Table 2.3: n = 2000, ǫ1, ǫ2 ∼ N(0, σ2 = 1), w10 is constant over all repetitions. The
results are based on 1000 repetitions
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True h10 5 True h20 10

h̄1 5.019446510 h̄2 9.94229294

∑i=1000
i=1

(ĥi1 − h10)
2

1000
0.002997989

∑i=1000
i=1

(ĥi2 − h20)
2

1000
0.01345285

∑i=1000
i=1

(ĥi1 − h̄1)
2

1000
0.002619822

∑i=1000
i=1

(ĥi2 − h̄2)
2

1000
0.01012274

σ̄2 =
∑i=1000

i=1

σ̂2
i

1000
1.001095167

∑i=1000
i=1

(σ̂2
i − σ2)2

1000
0.000966829

∑i=1000
i=1

(σ̂2
i − σ̄2)2

1000
0.000966829

Table 2.4: n = 2000, ǫ1 ∼ N(0, σ2 = 1), ǫ2 ∼
√

8

10
t(10), w10 is regenerated in each

repetition. The results are based on 1000 repetitions

True h10 5 True h20 10

h̄1 5.018015363 h̄2 9.94678378

∑i=1000
i=1

(ĥi1 − h10)
2

1000
0.003139444

∑i=1000
i=1

(ĥi2 − h20)
2

1000
0.01341119

∑i=1000
i=1

(ĥi1 − h̄1)
2

1000
0.002814890

∑i=1000
i=1

(ĥi2 − h̄2)
2

1000
0.01057922

σ̄2 =
∑i=1000

i=1

σ̂2
i

1000
1.001095167

∑i=1000
i=1

(σ̂2
i − σ2)2

1000
0.001015405

∑i=1000
i=1

(σ̂2
i − σ̄2)2

1000
0.001014206

Table 2.5: n = 2000, ǫ1 ∼ N(0, σ2 = 1), ǫ2 ∼
√

8

10
t(10), w10 is constant over all

repetitions. The results are based on 1000 repetitions

Simulation study for limiting distribution

Similarly, we try two scenarios:

1. Random:Every repetition, we regenerate w10

2. Constant: w10 is generated only once and then set as constant over all repetitions

Let h10 = 10, h20 = 8 and sample size n = 105. w10 is generated from U(0, 0.5),

with w20 set as: w20 = 1 − w10. And the error terms ǫ1, ǫ2 are independent, from

N (0, 0.7). g1 and g2 are generated through model (2.6). Afterwards, we can compute
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the LS estimate of (ĥ
(i)
1 , ĥ

(i)
2 ). Meanwhile, the covariance matrix Σ̂(i) can be calculated

from Eq. (2.10), with estimates plugged in the formula. Thus, (ĥ
(i)
1 , ĥ

(i)
2 ) can be

normalized by left multiplying the square root of Σ̂(i). The procedure is repeated

104 times. As mentioned in Remark 4, we make correction of the bias introduced by

the even-order moments. Figure 2.1 shows the histogram of the normalized ĥ
(i)
1 , ĥ

(i)
2

under both scenarios. The empirical probability function density lines (blue) of the

normalized ĥ
(i)
1 and ĥ

(i)
2 , i = 1, . . . , 104 coincides with that of standard normal (red).
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Figure 2.1: Empirical pdf of ĥ1 and ĥ2, the upper plots are for the case when w10 is
refreshed every repetition, i.e. random , the bottom plots are for the case when w10 is
deterministic

Besides, we conduct another simulation study with smaller sample size and larger

noise variance. Now we decrease sample size to n = 100, and increase the noise variance

to σ2 = 4. The true signature expression values are: h1 = 10, h2 = 5. Other parameters



23

are generated in the same way as the previous simulation study. Each time, based on

the limiting distribution, we can calculate the confidence interval for the estimates

(ĥ
(i)
1 , ĥ

(i)
2 ). and checking if it covers the true parameter of h10, h20. Here, we define

’Exact CI’ as the confidence interval calculated by plugging the true parameters in Eq.

(2.10), and ’estimated CI’ as the one calculated by plugging the estimates in Eq. (2.10).

On the other hand, the confidence interval could be also constructed from bootstrap: we

re-sample the 100 observations with replacement, and compute the moment estimates

(ĥb1, ĥ
b
2) for each sampling b = 1, . . . , 1000. Base on the quantile of these 1000 estimates,

we could construct 1−α confidence interval. We summarize the coverage probability and

confidence interval length in Table 2.6 and 2.7. It is interesting to find that the coverage

probability for both methods are close to the pre-specified level (1 − α). However, the

confidence interval length we derive from theorem is shorter than that from bootstrap,

and more computationally efficient.

Exact CI estimated CI Boostrap

99% Coverage Probability 0.973 0.977 0.987
99% CI Length 4.102 4.212 4.958

95% Coverage Probability 0.931 0.928 0.943
95% CI Length 3.128 3.212 3.594

90% Coverage Probability 0.877 0.874 0.885
90% CI Length 2.618 2.688 2.959

Table 2.6: Coverage Probability and CI length for ĥ1,n = 100, σ2 = 4, h1 = 10, h2 = 5,
wi generated from Beta(a = 5, b = 5)

Exact CI estimated CI Boostrap

99% Coverage Probability 0.977 0.977 0.980
99% CI Length 2.051 2.039 2.181

95% Coverage Probability 0.933 0.932 0.936
95% CI Length 1.564 1.555 1.656

90% Coverage Probability 0.874 0.870 0.884
90% CI Length 1.309 1.301 1.385

Table 2.7: Coverage Probability and CI length for ĥ2,n = 100, σ2 = 4, h1 = 10, h2 = 5
,wi generated from Beta(a = 5, b = 5)
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2.2.6 Real Data Analysis

We apply our method on the gene expression profiles of peripheral blood RNA, named

as GSE33566. The data is from Yang et al. (2012). It consists of 123 samples. Among

these 123 samples, 93 are pulmonary fibrosis (IPF) patients, while 30 are healthy, used

as control group. Note that the data is on log2 scale and normalized already.

As we know that blood consists of several cell types, in this analysis, we decompose

it into four categories: T cells, B cells, Granulocytes and others. Since it’s very difficult

to find the gene marker that are exclusively expressed in one specific cell type, instead

of using the exact makers, we found eight approximate gene markers:

Makers for T cells: ”CD3G”,”CD3D”,”CD28”

Makers for B cells: ”CD19”,”CD22”,”CD79B”

Makers for Granulocytes: ”CEACAM1”,”CEACAM3”

Assessment of the genes’ quality as potential markers is important before estimate.

Pairwise correlation is a good way to check whether the marker assumptions are rea-

sonable or not. If there are multiple makers for one cell type, the correlation between

these markers’ global expression (tissue level, i.e. gj) will be large. The logic is simple.

If M1 and M2 are marker genes for k-th cell type:

gM1
= hM1wk + ǫM1 ,gM2

= hM2wk + ǫM2 .

Then cor(gM1
,gM2

) = cor(hM1wk+ǫM1 , hM2wk+ǫM2) =
hM1hM2µ2(w)

√

h2M1
µ2(w) + σ2

√

h2M2
µ2(w) + σ2

.

We notice that the correlation gets larger as the ratio of
σ2

µ2(w)
gets smaller. When

σ2 = 0, they are perfectly correlated with correlation equals to 1.
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Figure 2.2: Heat map of the pairwise correlation

Fig. 2.2 is the heatmap of pairwise correlation. The row/column names start with

the first letter of its specific expressed cell type. The gene markers exhibit clear block

pattern(green square) across their specific cell.

Therefore, The marker information provided in Table 2.8 is reasonable in our data

set. Besides the 8 markers, we also choose ”HBA2” which have strong signal across all

samples. So the cell specific expression matrix will be like below:
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CD3G CD3D CD28 CD19 CD22 CD79B CEACAM1 CEACAM3 RHOA

T-cell ∗ ∗ ∗ 0 0 0 0 0 ∗
B-cell 0 0 0 ∗ ∗ ∗ 0 0 ∗

Granulocytes 0 0 0 0 0 0 ∗ ∗ ∗
Others 0 0 0 0 0 0 0 0 ∗

Table 2.8: Cell Specific gene expression for GSE 33566

Iterative Least Square algorithm described in Section 2.2.2 is implemented.

The proportion estimates for both IPF and CTRL group are shown in Fig. 2.3.

Table 2.9 summarizes the estimated cell specific expression matrix for both groups.
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Figure 2.3: Estimated Proportions
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Control IPF

T-cell B-cell Granulocytes Others T-cell B-cell Granulocytes Others

CD3G 72.8 0.0 0.0 0.0 74.5 0.0 0.0 0.0
CD3D 61.9 0.0 0.0 0.0 60.5 0.0 0.0 0.0
CD28 45.4 0.0 0.0 0.0 44.8 0.0 0.0 0.0
CD19 0.0 84.4 0.0 0.0 0.0 90.1 0.0 0.0
CD22 0.0 56.3 0.0 0.0 0.0 61.6 0.0 0.0

CD79B 0.0 68.9 0.0 0.0 0.0 72.6 0.0 0.0
CEACAM1 0.0 0.0 14.8 0.0 0.0 0.0 15.0 0.0
CEACAM3 0.0 0.0 13.4 0.0 0.0 0.0 14.1 0.0

HBA2 15.4 8.3 13.8 5.9 24.0 0.0 14.5 3.2

Table 2.9: Estimated Signature matrix Ĥ

We see that there is no big changes for the gene markers between the two groups.

Yet, It’s interesting to find that the proportion for T cell and B cell from IPF patients

are smaller than those of normal samples. Furthermore, we conduct permutation test

to see if such downward bias is statistically significant. Every time, we permute the

labels (labels that indicate whether the sample is IPF or healthy), and calculate the

marginal proportional difference between the ‘new’ groups (after permutation). We

repeat the permutation 1000 times, based on which, we can compute the pvalues. The

test results are summarized in table 2.10, p-values for T cell and B cells suggests that

such downward bias is significant.

Mean for IPF Mean for CTRL P value (Permutation Test)

T-cell 0.149 0.157 0.002
B-cell 0.107 0.122 0

Granulocytes 0.573 0.575 0.745

Table 2.10: Test of the estimated proportion

2.3 Equivalence of Moment Estimate and ILS in Homoscedastic Case

In this section, we will discuss the equivalence of ILS estimates and moment estimate

under homoscedastic assumption. We will also show the the limiting distribution of

ILS estimate of (ĥ1, ĥ2) by the equivalence.
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Consider the same Model (2.6), i.e.







g1 = h10w1 + ǫ1

g2 = h20(1−w1) + ǫ2

Where gj =












g1j

g2j

...

gnj












, ǫj =












ǫ1j

ǫ2j

...

ǫnj












, ǫj ∼ N(0, σ2I), j = 1, 2

By first and second moment, we have







E(ḡ1) = h10µ1(w)

E(ḡ2) = h20(1− µ1(w))

E( ˆV ar(g1)) = h21µ2(w) + σ2

E( ˆV ar(g2)) = h22µ2(w) + σ2

E( ˆCov(g1, g2)) = −h1h2µ2(w)

where V̂ar(g1), V̂ar(g2) is sample variance, ḡ1, ḡ2 is sample mean, and ˆCov(g1, g2) is

sample covariance. By solving the equalities, we have:







ĥ1 = ḡ1 + kḡ2

ĥ2 = ḡ2 +
1

k
ḡ1

(2.14)

where k =
c+

√
c2 + 4

2
, and c =

V̂ar(g2)− V̂ar(g1)

ˆCov(g1, g2)

On the other hand, we derive the explicit solution of ILS in the proof of (1) in The-

orem 1. For more details, please refer to section 2.5.1. Compared the solution in (2.14)

to the LS solution in Eq. (2.29), they are exact the same. Therefore, the equivalence

is shown.
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Next, we will show the limiting distribution of (ĥLS1 , ĥLS2 ). Because of the equiva-

lence, it’s sufficient to show the limiting distribution of moment estimate:

Let u1 =















h10µ(w)

h20(1− µ(w))

h210µ2(w)− σ2

h220µ2(w)− σ2

−h10h20µ2(w)















, v1 =















ḡ1

ḡ2

V̂ar(g1)

V̂ar(g2)

ˆCov(g1, g2)















By Multivariate Lindeberg-Levy CLT Greene (2002), the joint distribution of the

sample statistics is:

√
n(v1 − u1)

D
=⇒ N (0,















σ11 σ12 σ13 σ14 σ15

σ22 σ23 σ24 σ25

σ33 σ34 σ35

σ44 σ45

σ55















)

As (ĥ1, ĥ2) is function of v1

f1(v1) =




ĥ1

ĥ2



 =




ḡ1 + kḡ2

ḡ2 +
1
k ḡ1





By Multivariate delta Method van der Vaart (1998):
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√
n(f(v1)− f1(u1))

D
=⇒√

n▽f(u1)
T {















ḡ1

ḡ2

V̂ar(g1)

V̂ar(g2)

Ĉov(g1, g2)















−















h10µ(w)

h20(1− µ(w))

h210µ2(w) − σ2

h220µ2(w) − σ2

−h10h20µ2(w)















}

D
=⇒▽f1(u1)

TN (0,















σ11 σ12 σ13 σ14 σ15

σ22 σ23 σ24 σ25

σ33 σ34 σ35

σ44 σ45

σ55















)

(2.15)

Where ▽f(u1) is derivative of f w.r.t u1. The closed form of ▽f1(u1) and σij are

summarized in Eq.(2.10).

Note that the calculation of the covariance matrix Σ = (σij) is standard, though

tedious, thus we omit the details. And the results in remark 2 is useful for the cal-

culation. All the above results are based on the assumption that w10 is random. For

the special case when w10 is deterministic, the proof is almost the same, except for the

calculation of Σ = (σij). The calculation of Σ under the deterministic assumption will

be simpler. The closed form of Σ is given in Eq. (2.12)

2.4 Complete Deconvolution Model in Heteroscedastic Case

Section 2.4 summarizes both algorithm and asymptotic unbiasedness of the estimate

when the error term share common variance across all genes. Figure (2.6) in the proof

section (2.27) explains the rationale from geometric view. However, if the homoscedas-

ticity is violated, iterated LS will be biased and not appropriate. We will illustrate

the biasness by a simple simulation study. With very similar generating scheme as

described in section 2.2.5, instead of common error variance, we set them differently: ǫ1
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is from standard normal distribution, while ǫ2 is from normal distribution with mean 0

and variance 0.5. The results are summarized in the table below based on 1000 repeti-

tions. The average deviation of ĥ1 and ĥ2 from true values are 0.7945747 and 0.1518678

respectively.

True h1 10 True h2 15

Average Estimate h̄1 10.8798 Average Estimate h̄2 14.61578

∑i=n
i=1

(ĥi1 − h1)
2

n
0.7945747

∑i=n
i=1

(ĥi1 − h1)
2

n
0.1518567

∑i=n
i=1

(ĥi1 − h̄1)
2

n
0.0205309

∑i=n
i=1

(ĥi1 − h̄1)
2

n
0.004235257

Table 2.11: n = 2000,ǫ1 ∼ N(0, σ = 1), ǫ2 ∼ N(0, σ = .5), based on 1000 repetitions

Due to the limitation of ILS in heteroscedastic case mentioned above, we propose

to use moment estimate. Later, we will also show the joint limiting distribution of

(ĥ1, ĥ2).

Moment estimate is algebraically complicated if there are too many unknown pa-

rameters. Therefore, for simplicity, we will investigate on the case when there are only

two cell types and two signatures, i.e. r = 2, p = 2.

Consider the model:







g1 = h10w10 + ǫ1

g2 = h20(1−w10) + ǫ2

(2.16)

where gj =












g1j

g2j

...

gnj












, ǫj =












ǫ1j

ǫ2j

...

ǫnj












, and ǫj ∼ N(0, σ2
j I), j = 1, 2, σ2

1 6= σ2
2

2.4.1 Moment Estimate when W is asymmetric

Assume w10 is from some unknown population, and for j = 1, 2
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µ(w) = E(wij) > c, for some c > 0

µ3(w) = E((wij − µ(w))3) 6= 0

(2.17)

Note that the nonzero assumption of µ3(w) requires that w10 be asymmetric. Oth-

erwise, we need to consider higher order moments.

Solution of the moment estimate

Define:







ḡ1 =
∑n

i=1

gi1
n

ḡ2 =
∑n

i=1

gi2
n

µ̂11 =

∑i=n
i=1 (gi1 − ḡ1)

2

n

µ̂22 =

∑i=n
i=1 (gi2 − ḡ2)

2

n

µ̂12 =

∑i=n
i=1 (gi1 − ḡ1)(gi2 − ḡ2)

n

µ̂122 =

∑i=n
i=1 (gi1 − ḡ1)(gi2 − ḡ2)

2

n

µ̂112 =

∑i=n
i=1 (gi1 − ḡ1)

2(gi2 − ḡ2)

n

(2.18)

We first calculate







E(ḡ1) = h10µ(w)

E(ḡ2) = h20(1− µ(w))

E(µ̂11) = h210µ2(w) + σ2
1

E(µ̂22) = = h220µ2(w) + σ2
2

E(µ̂12) = −h10h20µ2(w)

E(µ̂122) = = h10h
2
20µ3(w)

E(µ̂112) = −h210h20µ3(w)

(2.19)

Where ḡ1, ḡ2, µ̂11, µ̂22, µ̂12, µ̂112, µ̂122 are defined in Eq (2.18). From the last two

equality, we obtain the ratio of
ĥ1

ĥ2
. Together with the first two equalities, we are able
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to solve ĥ1, ĥ1, and µ̂(w). Plug in these estimate in the left equalities, we could get the

solutions below:







ĥ1 = ḡ1 + λḡ2

ĥ2 = ḡ2 +
1

λ
ḡ1

µ̂(w) =
ḡ1

ĥ1

µ̂2(w) =
µ̂12

ĥ1ĥ2

σ̂2
1 = µ̂11 − ĥ21µ̂2(w)

σ̂2
2 = µ̂22 − ĥ22µ̂2(w)

û3(w) =
û122

ĥ1ĥ22

(2.20)

where λ = −−µ̂112

µ̂122

Remark 6. We notice that only the first, second, sixth and seventh equalities are used

in calculating ĥ1 and ĥ2.

Let v2 =












ḡ1

ḡ2

û112

û122












, then




ĥ1

ĥ2



 = f(v2) =




ḡ1 + λḡ2

ḡ2 +
1
λ ḡ1





Asymptotic properties of the moment estimate

Theorem 3. Let ǫ1,j, ǫ2,j , . . . , ǫn,j be i.i.d, with mean 0 and variance σ2
j (j = 1, 2).

Consider the model in (2.16), where σ2
1 6= σ2

2. Assume w1 is from some unknown

random population, with 0 < E(wi) < 1, and µ3(w) 6= 0, for i = 1, 2, . . . , n Then

√
n(




ĥ1

ĥ2



−




h10

h20



)
D
=⇒ N (0,Σ3)



34

where Σ3 = ▽f(u2)
′

Σ▽f(u2), and ▽f(u2), Σ = (σij) are given by:

σ11 =h210µ2(w) + σ2
10

σ22 =h220µ2(w) + σ2
20

σ33 =h410h
2
20(µ6(w)− 6µ2(w)µ4(w) − µ2

3(w) + 9µ3
2(w)) + h410σ

2
20(µ4(w)− µ2

2(w))+

3σ4
10σ

2
20 + 4h210h

2
20(µ4(w) − µ2

2(w))σ
2
10 + 3h220µ2(w)σ

4
10+

h210h
2
20σ

2
10(µ4(w)− 3σ4

w) + 4h210µ2(w)σ
2
10σ

2
20

σ44 =h210h
4
20(µ6(w)− 6µ2(w)µ4(w) − µ2

3(w) + 9µ3
2(w)) + h420σ

2
10(u4(w) − µ2

2(w))+

3σ2
10σ

4
20 + 4h210h

2
20(µ4(w) − µ2

2(w))σ
2
20 + 3h210µ2(w)σ

4
20+

h210h
2
20σ

2
20(µ4(w)− 3µ2

2(w)) + 4h220µ2(w)σ
2
10σ

2
20

σ12 =− h10h20µ2(w)

σ13 =− h310h20(µ4(w)− 3µ2
2(w))

σ14 =h210h
2
20(µ4(w)− 3µ2

2(w))

σ23 =h210h
2
20(µ4(w)− 3µ2

2(w))

σ24 =− h10h
3
20(µ4(w)− 3µ2

2(w))

σ34 =− h310h
3
20(µ6(w)− 6σ2

wµ4(w)− µ2
3(w) + 9µ3

2(w)) − h310h20σ
2
20(µ4(w)−

3µ2
2(w)) − 2h310h20σ

2
20(µ4(w) − µ2(w)

4)− 2h10h
3
20σ

2
10(µ4(w)− µ2(w)

4)−

9h10h20µ2(w)σ
4
10σ

4
20 − 4h10h20µ2(w)σ

2
10σ

2
20

(2.21)

▽f(u2) =













1 h20
h10

h10
h20

1

−(1− µ(w))

h10h20µ3(w)

µ(w)

h210µ3(w)
−(1− µ(w))

h220µ3(w)

µ(w)

h10h20µ3(w)













(2.22)

Remark 7. Under the same condition of Theorem 3, in a special case, let w10 be

deterministic, then
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√
n(




ĥ1

ĥ2



−




h10

h20



)
D
=⇒ N (0,Σ4)

where Σ4 = ▽f(u2)
′

Σf(u2), where f(u2) is defined as before with µk(w) replaced

by mk(w), and Σ = (σij) is defined as below. Note that all the σij not listed below are

0.

σ11 =σ2
1

σ22 =σ2
2

σ33 =2m2(w)h
2
20σ

4
1 + 4h210h

2
20m4(w)σ

2
1 − 4h210h

2
2σ

2
1m

2
2(w) + h410m4(w)σ

2
2

− σ2
2h

4
10m

2
2(w) + 2σ2

2σ
4
1 + 4h210m2(w)σ

2
2σ

2
1

σ44 =2m2(w)h
2
10σ

4
2 + 4h210h

2
20m4(w)σ

2
2 − 4h210h

2
20σ

2
2m

2
2(w) + h420m4(w)σ

2
1

− σ2
1h

4
20m

2
2(w) + 2σ2

1σ
4
2 + 4h220m2(w)σ

2
1σ

2
2

σ34 =− 2m4(w)h
3
10h20σ

2
2 + 2h310h20σ

2
2µ

2
2(w)− 2h10h

3
2σ

2
1m4(w)+

2h10h
3
20σ

2
1m

2
2(w)− 4m2(w)h10h20σ

2
1σ

2
2

(2.23)

Remark 8. Let v20 =






















ḡ1

ḡ2

µ̂11

µ̂22

µ̂12

û112

û122






















, the covariance matrix of v20 is also calculated, and

the results are given in formula (2.32) (when W is random ), and (2.33) (when W is

deterministic).

Remark 9. The covariance matrix in the limiting distribution involve 4th order mo-

ment estimate of µ4(w). One may estimate through higher order of moments. As a

simpler way, it can also be solved by LS method conditioning on the moment estimate
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of ĥ1, ĥ2. Similar as remark 4, the even order moment estimate of µ2K(w) is biased, and

can be corrected by removing the bias. For example , the second and fourth moment

with bias corrected are:

û2(w) = ûLS2 (w)− (ĥ21σ̂
2
1 + ĥ22σ̂

2
2)

(ĥ21 + ĥ21)
2

û4(w) = ûLS4 (w)− 6û2(w)(ĥ
2
1σ̂

2
1 + ĥ22σ̂

2
2)

(ĥ21 + ĥ21)
2

− 3(ĥ21σ̂
2
1 + ĥ22σ̂

2
2)

2

(ĥ21 + ĥ21)
4

Simulation study for limiting distribution

Let h10 = 10, h20 = 5 and sample size n = 105 (n = 106 for the case when w10 is

random). w10 is generated from B(2, 5), and w20 is set as: w20 = 1 − w10. The

distribution of of w10 is shown in figure 2.4 below, which is asymmetric.
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Figure 2.4: Histogram of w1

Similar as the previous simulation, we try two scenario: first, in each repetition, we
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regenerate w10 and w20. Second,we generate w10 and w20 only once and keep it as

constant over all repetition.

Each time, ǫ1∼N (0, 0.7), ǫ2∼N (0, 1), and g1, g2 are generated through formula

(2.16). By Eq. (2.20) we can estimate (ĥ
(i)
1 , ĥ

(i)
2 ). Meanwhile, we can calculate covari-

ance matrix Σ̂(i) from theorem 3. Note that if w10 is considered as deterministic, we use

the Eq. (2.23) in Remark 7. Thus we can normalized (ĥ
(i)
1 , ĥ

(i)
2 ) by by left multiplying

the square root of Σ̂(i). One thing we need to be cautious about is that the covariance

matrix formula involves the forth central moment, i.e. µ4(w), which is biased if we

directly plug in ĥ1, ĥ2 and solve the least square of w10. For details please see remark

9. We repeat the procedure 104 times. Fig. 2.5 shows the histogram of the normalized

ĥ
(i)
1 and ĥ

(i)
2 , i = 1, . . . , 104 under both scenarios. The empirical pdf of the normalized

ĥi1,ĥi2 (blue) are close to that of standard normal (red).
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(d) pdf of ĥ2 when w1 is deterministic

Figure 2.5: Empirical pdf of ĥ1 and ĥ2, the upper plots are for the case when w10 is
random and regenerated in every repetition. The bottom plots are for the case when
w10 is deterministic

Besides, we conduct another simulation study with smaller sample size n = 103,

and larger noise variance σ1 = .9, σ2 = 1.2. The signature expression values are

h10 = 30, h20 = 50, and other parameters are generated the same way as the previ-

ous study. Every time, we can compute moment estimate of (ĥ
(i)
1 , ĥ

(i)
2 ), together with

the covariance matrix Σ̂(i) from the limiting distribution of Theorem 3. Thus, we are

able to construct the (1 − α) confidence interval for both ĥ
(i)
1 and ĥ

(i)
2 . On the other

hand, bootstrap is also conducted, based on which, we can obtain another confidence

interval. The coverage probability and confidence interval length for each approach are

summarized in Table 2.12 and 2.13: The coverage probability for both methods are

quite close to the pre-specified level (1 − α). However, the confidence interval length
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we derive from Theorem 3 is shorter than that from bootstrap.

Exact CI estimated CI Boostrap

99% Coverage Probability 0.971 0.967 0.983
99% CI Length 2.651 2.611 2.946

95% Coverage Probability 0.912 0.910 0.938
95% CI Length 2.021 1.991 2.252

90% Coverage Probability 0.844 0.839 0.886
90% CI Length 1.691 1.666 1.891

Table 2.12: Coverage Probability and CI length for ĥ1, n = 1000, σ10 = 0.9, σ10 =
1.2, h10 = 30, h20 = 50

Exact CI estimated CI Boostrap

99% Coverage Probability 0.972 0.962 0.982
99% CI Length 2.525 2.501 2.812

95% Coverage Probability 0.909 0.911 0.936
95% CI Length 1.926 1.907 2.151

90% Coverage Probability 0.842 0.847 0.886
90% CI Length 1.611 1.596 1.804

Table 2.13: Coverage Probability and CI length for ĥ2,n = 1000,σ10 = 0.9, σ10 =
1.2, h10 = 30, h20 = 50

2.4.2 Moment Estimate when W is unknown constant and symmetric

In section 2.4.1, we have studied the asymptotic properties when w10 is asymmetric. In

this section, we will investigate in the case where w10 is symmetric. w10 is considered

as constant over this subsection 2.4.2

Consider the same model as Model (2.16). Assuming that wj0, j = 1, 2 is unknown

constant vector, and if

lim
n→∞

m3(w) =

∑i=n
i=1 (wi(10) − w̄1)

3

n
= 0a.s

lim
n→∞

w̄j0 > 0, j = 1, 2a.s

lim
n→∞

m4(w) 6= 0a.s

(2.24)

Note that the zero assumption of m3(w) makes the third order moment in Equation

(2.19) invalid as both sides of the equality are 0. Thus we need to consider higher order

moment.



40

Solution of the moment estimate

Based on the first, second and fourth moment, we could get the following equalities:







E(ḡ1) = h10w̄1

E(ḡ2) = h20(1− w̄1)

E(u11) = E(v̂ar(g1)) = h210m2(w) + σ2
1

E(u22) = E(v̂ar(g2)) = h220m2(w) + σ2
2

E(u12) = E( ˆcov(g1, g2)) = −h10h20m2(w)
2

E(u1112) = E(

∑i=n
i=1 (gi,1 − ḡ1)

3(gi,2 − ḡ2)

n
) = −h310h2m4(w)− 3h10h20m2(w)σ

2
1

E(u1222) = E(

∑i=n
i=1 (gi,1 − ḡ1)(gi,2 − ḡ2)

3

n
) = −h10h

3
20m4(w) − 3h10h20m2(w)σ

2
2

(2.25)

It’s not difficult to solve the equations:







ĥ1 = ḡ1 + λ2ḡ2

ĥ2 = ḡ2 +
1

λ2
ḡ1

where λ2 =

√
û1112 − 3û12û11
û1222 − 3û12û22

Asymptotic properties of the moment estimate

Theorem 4. Consider the model in (2.16), assume (2.24) holds. In the special case

when w10 is deterministic. Then

√
n(




ĥ1

ĥ2



−




h10

h20



)
D
=⇒ N (0,Σ5)

Where Σ5 = ▽f
′

(u3)Σ▽f(u3) with Σ and ▽f(u3) defined as following:
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Σ =






















σ11 0 0 0 0 0 0

σ22 0 0 0 0 0

σ33 0 σ35 σ⋆
36 σ⋆

37

σ44 σ45 σ⋆
46 σ⋆

47

σ55 σ⋆
56 σ⋆

57

σ⋆
66 σ⋆

67

σ⋆
77






















where σij are same as listed in Eq. (2.33), except for those marked with ⋆. σ⋆
ij are

given as following

σ⋆
66 =h610m6(w)σ

2
2 + 15h220m2(w)σ

6
1 + 15σ6

1σ
2
2 + 9h410h

2
20m6(w)σ

2
1 + 9h410m4(w)σ

2
1σ

2
2+

18h210h
2
20m4(w)σ

4
1 + 27h210m2(w)σ

4
1σ

2
2 + 3h410m4(w)σ

2
1σ

2
2 + 9h210h

2
20m4(w)σ

2
1 + 9h210m6(w)σ

4
1σ

2
2

σ⋆
77 =h620m6(w)σ

2
1 + 15h210m6(w)σ

6
2 + 15σ6

2σ
2
1 + 9h420h

2
10m6(w)σ

2
2 + 9h420m4(w)σ

2
2σ

2
1+

18h220h
2
10m4(w)σ

4
2 + 27h220m2(w)σ

4
2σ

2
1 + 3h420m4(w)σ

2
2σ

2
1 + 9h210h

2
20m4(w)σ

2
2 + 9h220m2(w)σ

4
2σ

2
1

σ⋆
36 =− 12h10h20σ

4
1m2(w)− 6h310h20m4(w)σ

2
1

σ⋆
37 =− 2h10h

3
20m4(w)σ

2
1

σ⋆
46 =− 2h310h20m4(w)σ

2
2

σ⋆
47 =− 12h10h20σ

4
2m2(w)− 6h320h10m4(w)σ

2
2

σ⋆
56 =h410m4(w)σ

2
2 + 3h210m2(w)σ

2
1σ

2
2 + 3h220m2(w)σ

4
1 + 3h220h

2
10m4(w)σ

2
1 + 3σ2

2σ
4
1 + 3h210m2(w)σ

2
2σ

2
1

σ⋆
57 =h420m4(w)σ

2
1 + 3h220m2(w)σ

2
1σ

2
2 + 3h210m2(w)σ

4
2 + 3h210h

2
20m4(w)σ

2
2 + 3σ2

1σ
4
2 + 3h220m2(w)σ

2
1σ

2
2

σ⋆
67 =3h410m4(w)σ

4
2 + 3h410h

2
20m6(w)σ

2
2 + 3h420m4(w)σ

4
1 + 9h220m2(w)σ

4
1σ

2
2 + 9σ4

1σ
4
2 + 9h220m2(w)σ

4
1σ

2
2+

3h210h
4
2m6(w)σ

2
1 + 9h210h

2
2m4(w)σ

2
1σ

2
2 + 9h210m2(w)σ

2
1σ

4
2 + 9h210h

2
20m4(w)σ

2
1σ

2
2 + 9h210m2(w)σ

2
1σ

4
2
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And ▽f(u3) is:

▽f(u3) =


























1
h20
h10

h10
h20

1

3m2(w)w̄2

2h10| −m4(w) + 3m2
2(w)|

− 3m2(w)h20w̄1

2h210| −m4(w) + 3m2
2(w)|

− 3w̄2h10m2(w)

2h220(−m4(w) + 3m2
2(w))

3w̄1m2(w)

2h20(−m4(w) + 3m2
2(w))

3w̄2(h
2
10σ

2
20 − h22σ

2
10)

2h210h
3
2(3m2(w)2 −m4(w))

−3w̄1(h
2
10σ

2
20 − h220σ

2
10)

2h310h
2
20(3m

2
2(w)−m4(w))

w̄2

2h210h20| −m4(w) + 3m2
2(w)|

− w̄1

2h310| −m4(w) + 3m2
2(w)|

− w̄2

2h320(−m4(w) + 3m2
2(w))

w̄1

2h10h
2
20(−m4(w) + 3m2

2(w))


























(2.26)

2.5 Proof of the theorems

2.5.1 Proof of Theorem 1

Proof of (1) in Theorem 1

Proof. Let w10 = x101n + x20η10, where η10 ⊥ 1n, ‖η10‖ = n.

and the coefficients are

x10 =
1

′

nw10

n
, x20 =

√

w
′

10w10 − n||x10||2
n

.

Consider new orthogonal basis in Rn:

{z1,z2,z3, ...,zn},

where z1 =
1n√
n
,z2 =

η10√
n
.

Let {(w1,w2) | w2 = 1n−w1} be the colloction of all possible solution that satisfy

Eq. (2.7). Now we will project w10,w20, ǫ1, ǫ2,w1,w2 on the new orthogonal basis.
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w10 = x101n + x20η10

w20 = (1− x10)1n − x20η10

ǫ1 = e111n + e12η10 + ζ1

ǫ2 = e211n + e22η10 + ζ2

w1 = x11n + x2η10 + ζw

w2 = (1− x1)1n − x2η10 + ζw

By Central Limit Theorem, there are some interesting observations on the coeffi-

cient. Proof of these observations are provided in Remark 11.

1. Observation 1: For any ǫ > 0,

lim
n→∞

P (|e11| ≤ ǫ) = 1, lim
n→∞

P (|e21| ≤ ǫ) = 1

lim
n→∞

P (|e12| ≤ ǫ) = 1, lim
n→∞

P (|e22| ≤ ǫ) = 1

2. Observation 2: For any ǫ > 0,

lim
n→∞

P (
∣
∣‖ζ1‖ − (n− 2)σ2

∣
∣ ≤ ǫ) = 1, lim

n→∞
P (
∣
∣‖ζ2‖ − (n− 2)σ2

∣
∣ ≤ ǫ) = 1

3. Observation 3: For any ǫ > 0,

lim
n→∞

P (| ζ
′

1ζ2
(n − 2)σ2

| ≤ ǫ) = 1

Observation 2 and 3 state that if sample size n is large enough, the length of ζ1 and

ζ2 will be (n− 2)σ2, and that they will be orthogonal to each other.

With the representations in new orthogonal space, the original problem (2.8) could

be rewritten as
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argmin
x1,x2,h1,h2,ζw

‖h10(x101n + x20η10) + e111n + e12η10 + ζ1 − h1(x11n + x2η10 + ζw)‖2

+ ‖h20 ((1− x10)1n − x20η10) + e211n + e22η10 + ζ2 − h2 ((1− x1)1n − x2η10 − ηw) ‖2

⇐⇒

arg
h1,h2

arg
x1,x2,ζw

min{||h10x101n + e111n − h1x11n||2 + ||h10x20η10 + e12η10 − h1x2η10||2

+ ||ζ1 − h1ζw||2 + ||h20(1− x10)1n + e211n − h2(1− x1)1n||2

+ || − h20x20η10 + h2x2η10 + e22η10||+ ||ζ2 + h2ζw||2}

Now, we are going to show that:

arg
h1,h2,ζw

min{‖ζ2 + h2ζw‖2 + ‖ζ1 − h1ζw‖2} = (n− 2)σ2

which is independent of the choice of h1, h2

For any fixed h1, h2, take derivative with respect of ζw, it’s easy to get

ζ̂w =
h1ζ1 − h2ζ2

h21 + h22
(2.27)

Plugging in ζ̂w, together with the Observation 2 and 3, for any ǫ > 0, let ǫ⋆ =

h21 + h22
(h1 + h2)2

ǫ, we have:

arg
h1,h2

arg
ζw

min{||ζ2 + h2ζw||2 + ||ζ1 − h1ζw||2}

= arg
h1,h2

min{||ζ2 + h2
h1ζ1 − h2ζ2

h21 + h22
||2 + ||ζ1 − h1

h1ζ1 − h2ζ2
h21 + h22

||2}

= arg
h1,h2

min{(h
4
1 + h21h

2
2)||ζ2||2 + (h21h

2
2 + h42)||ζ1||2 + (2h31h2 + 2h1h

3
2)ζ

′

1ζ2

h21 + h22
}

≥(h41 + h42 + 2h21h
2
2)((n − 2)σ2 − ǫ⋆) + (2h31h2 + 2h32h1)(−ǫ⋆)

h21 + h22

=(n− 2)σ2 +
(h1 + h2)

2

h21 − h22
ǫ⋆

=(n− 2)σ2 − ǫ

(2.28)
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Since ‖1n‖2 = ‖η10‖2 = n, together with Observation 1 and Eq. (2.28), now the

original problem could be further simplified to:

arg
x1,x2,h1,h2

min{n||h10x10 − h1x1 + oP (n)||2 + n||h10x20 − h1x2 + oP (n)||2+

n||h20(1− x10)− h2(1− x1) + oP (n)||2 + n|| − h20x20 + h2x2 + oP (n)||2}+ (n− 2)σ2

≥ (n− 2)σ2

The equality holds if and only if

h10x10 = h1x1

h10x20 = h1x2

h20(1− x10) = h2(1− x1)

h20x20 = h2x2

Therefore, (ĥ1, ĥ2)
n→∞−→ (h10, h20) almost surely.

Remark 10. Fig. 2.6 provides an intuitive way to understand why Eq. (2.28) holds.

For any h1, h2, the vector that minimized the {‖ζ2 + h2ζw‖2 + ‖ζ1 − h1ζw‖2} could be

computed from Eq. (2.27). As we already observed that ζ1 ⊥ ζ2 (black solid line), it’s

easy to see that the red(or blue) triangles are congruent. Therefore the the minimum

value is just the length of ‖ζ1‖2(or ‖ζ2‖2), which is (n− 2)σ2
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●

●

●

●

case:h1=10,h2=20

case:h1=20,h2=30

ζ1
ζ2

Figure 2.6: Geometric interpretation of argh1,h2,ζw
min{||ζ2+h2ζw||2+ ||ζ1−h1ζw||2},

black solid line are ζ1 and ζ1, red(blue) dashed line connected by solid circle is ζ̂w from
formula (2.27) by different h1, h2 values

Remark 11. A short sketch of proof for Observation 1, 2 and 3 are provided below:

First, let’s discuss why Observation 1 holds.

ǫ1 =
√
ne11

1n√
n
+

√
ne21

η10√
n
+ e31z3 + ....+ en1zn,

where {z1,z2, . . . ,zn} is the orthogonal basis defined above.

Note that ‖ǫ1‖2 = nσ2, by CLT

√
ne11 =

ǫ
′

11n√
n

=

∑i=n
i=1 ǫi,1√

n
=

√
nǭ1 ∼ N(0, σ2)

Therefore, for any ǫ > 0, P (e11 > ǫ) = P (
N (0, σ2)√

n
> ǫ)

n→∞−→ 0 in probability.

By the same logic, we could get P (e21 > ǫ)
n→∞−→ 0

For e12 and e22, by CLT

√
ne21 =

ǫ
′

1η10√
n

=

∑i=n
i=1 ǫi,1η10,i√

n
∼ N (0, σ2)

Therefore, for any ǫ > 0, P (e21 > ǫ) = P (
N (0, σ2)√

n
> ǫ)

n→∞−→ 0.

With the same argument, we could get P (e22 > ǫ)
n→∞→ 0.

As to Observation 2, it’s easy to see ‖ζ1‖ = ‖ζ2‖ = (n − 2)σ2
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And Observation 3 is implied by Chebyshev Inequality:

P (| ζ
′

1ζ2
(n − 2)σ2

| > ǫ) ≤ E(‖ζ ′

1ζ2‖2)
(n− 2)2σ4ǫ2

= 0

Thus, for individual ŵi,1, the estimate might not be reliable due to the two noise

term. But by CLT,
1

′

ŵ1

n
is still consistent estimate for the population mean.

Alternative Proof of (1) in Theorem 1

Proof. We provide another way to prove Theorem 1 which concentrates on computation.

As a side product, we can get the closed form of the ILS estimate. Let g1 = ḡ11n +

θ1,g2 = ḡ21n + θ2,w1 = w̄11n + γ1, where θ1,θ2,γ1 is orthogonal to 1n, thus the

original problem could be rewritten as follows:

arg
h1,h2,w1

min{‖g1 − h1w1‖2 + ‖g2 − h2(1n −w1)‖2}

= arg
h1,h2,γ1

min{||ḡ11n + θ1 − h1(w̄11n + γ1)||2 + ‖ḡ21n + θ2 − h2((1− w̄1)1n − γ1)‖2}

= arg
h1,h2,w̄,γ1

min{(ḡ1 − h1w̄1)
2n+ ||θ1 − h1γ1||2 + ||g2 − h2(1− w̄1)||2n+ ||θ2 + h2γ1||2}

= arg
h1,h2

{argw̄1
min{(ḡ1 − h1w̄)

2n+ (ḡ2 − h2(1− w̄1))
2n}

︸ ︷︷ ︸

I

+

arg
γ1

min{‖θ1 − h1γ1‖2 + ‖ − θ2 − h2γ1‖2}}
︸ ︷︷ ︸

II

For any fixed h1, h2, the second term is minimized when γ̂1 =
h1θ1 − h2θ2

h21 + h22
, plug in

γ̂1

arg
h1,h2

arg
γ1

min{||θ1 − h1γ1||2 + || − θ1 − h2γ1||2}

= arg
h1,h2

min {||h
2
1θ1 + h22θ1 − h21θ1 + h1h2θ2

h21 + h22
||2 + ||h

2
1θ2 + h22θ2 − h22θ2 + h1h2θ1

h21 + h22
||2}

=arg min
h1,h2

{h
4
2θ

′

1θ1 + h21h
2
2θ

′

2θ2 + 2h1h
3
2θ

′

2θ1 + h41θ
′

2θ2 + h21h
2
2θ

′

1θ1 + 2h31h2θ
′

1θ2

(h21 + h22)
2

}

=arg min
c=h1

h2

{||θ1 + cθ2||2
1 + c2

}
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Furthermore, for part I, we will show that its low bound is 0.

arg
h1,h2,w̄1

min{(ḡ1 − h1w̄)
2n+ (ḡ2 − h2(1− w̄1))

2n}

= arg
c=

h1
h2

arg
h1,w̄1

{(ḡ1 − h1w̄)
2n+ (ḡ2 −

h1
c
(1− w̄1))

2n}

For any fixed c, part I is minimized to 0 when







w̄1 =
ḡ1

ḡ1 + cḡ2

ĥ1 = ḡ1 + cḡ2

Thus the original problem now becomes (it can be solved analytically):

arg
c=h1

h2

min
(θ1 + cθ2)

2

1 + c2

 10  5 0 5 10

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

c

f(
c
)

●

●

Figure 2.7: plot of f(c) =
(θ1 + cθ2)

2

1 + c2
,with Asymptote as y = θ

′

2θ2
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∂f(c)

∂c
=

(2θ
′

2θ2c+ 2θ
′

1θ2)(1 + c2)− 2c(θ
′

1θ1 + c2θ
′

2θ2 + 2cθ
′

1θ2)

(1 + c2)2
= 0

c10 =
b+

√
b2 + 4

2
, c20 =

b−
√
b2 + 4

2
,

where b =
θ

′

2θ2 − θ
′

1θ1

θ
′

1θ2

, and c20 is maximum, while c10 is minimum.

As a side product, we get the explicit formula of the least square (LS) estimate:







w̄1 =
ḡ1

ḡ1 + c10ḡ2

ĥ1 = ḡ1 + c10ḡ2

ĥ2 = ḡ2 +
ḡ1
c10

ŵ = w̄11+ γ̂1 =
ḡ1

ḡ1 + c10ḡ2
1+

ĥ1θ1 − ĥ2θ2

ĥ21 + ĥ22

(2.29)

Since θ1, θ2 are observed(just centered g1, g2), the formula is explicit.

As we already shown in Section 2.3 that moment estimate is consistent. Therefore,

the consistency of ILS of is shown.

Remark 12. Compared to the moment estimate in Eq. 2.14, the formulas are exact

the same. This means that ILS and moment estimate are equivalent when the error

term share common variance. In addition, from the above formula, it’s not difficult to

see that the LS estimate is biased if the homoscedastic assumption is violated.

Proof of (2) in Theorem 1

Proof. As we already show from Remark 5, ŵ1 = w10 +
ĥ1ǫ1 − ĥ2ǫ2

ĥ21 + ĥ22
, plug ŵ in Eq

(2.9), we get
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σ̂2 =
1

n
(‖h10w10 + ǫ1 − ĥ1(w10 +

ĥ1ǫ1 − ĥ2ǫ2

ĥ21 + ĥ22
)‖2

+ ‖h20(1−w10) + ǫ2 − ĥ2(1−w10 −
ĥ1ǫ1 − ĥ2ǫ2

ĥ21 + ĥ22
)‖2)

=
1

n
(‖(h10 − ĥ1)w10 +

ĥ22ǫ1 + ĥ1ĥ2ǫ2

ĥ21 + ĥ22
‖2+

‖ − (h20 − ĥ2)w10 +
ĥ21ǫ2 + ĥ1ĥ2ǫ1

ĥ21 + ĥ22
‖2)

=
1

n
(‖(h10 − ĥ1)w10‖2 + ‖ − (h20 − ĥ2)w10‖2) + σ2

As we already show that for any ǫ > 0,

P (‖ĥ1 − h10‖ < ǫ/2/µ(w)) = 1, P (‖ĥ2 − h20‖ < ǫ/2/µ(w)) = 1

Therefore,

P (‖σ̂2 − σ2‖ < ǫ) = P (
1

n
(‖(h10 − ĥ1)w10‖2 + ‖ − (h20 − ĥ2)w10‖2) < ǫ)

= P (w̄1‖h10 − ĥ1‖+ w̄1‖h20 − ĥ2‖ < ǫ)

= 1

Proof of (3) in Theorem 1

Proof. The proof is shown by equivalence between moment estimate and LS. Details is

provided in Section 2.3.
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2.5.2 Proof of Theorem 2

Proof. Similar as the proof of Theorem 1, let

w10 = x101n + x11η10, where η10 ⊥ 1n and ‖η10‖ = n

w20 = x201n + x21η10 + x22η20, where η20 ⊥ Span{1n,η10} and ‖η20‖ = n

. . .

w(K−1)0 = x(K−1)01n +
K−1∑

i=1

x(K−1)iηi0, where η(K−1)0 ⊥ Span{1n, . . . ,η(K−2)0} and ‖η(K−1)0‖ = n

wK0 = (1−
i=K−1∑

i=1

xi)1n −
K−1∑

i=1

x(K−1)iηi0

ǫk = ek,01n +

k=K∑

j=1

ek,jηj0 + ζk, where k = 1, . . . ,K

Let (ǫn) be a sequence of positive numbers which converges to 0 slowly, we will have

similar observations:

P (|ei,k| > ǫn) = 0 where i = 1, . . . ,K and k = 1, . . . ,K

P (|ζi − (n−K)σ2| > ǫn) = 0 where i = 1, . . . ,K

P (|
ζ

′

iζ
′

j

(n −K)σ2
| > ǫn) = 0 where i 6= j

Note that {1n,η10, . . . ,η(K−1)0} is orthogonal space spanned by {1n,w10, . . . ,w(K−1)0}

with ‖ηj0‖ = n, where j = 1, . . . ,K − 1

Represent wi with the new basis {1n,η10, . . . ,η(K−1)0}:

wi = yi01n +

j=K−1
∑

j=1

yijηj0 + ηwi
, where i = 1, 2, . . . ,K − 1

wK = (1− yi0)1n −
j=K−1
∑

j=1

yijηj0 −
j=K−1
∑

j=1

ηwi

Plug wi,wi0, ǫi, i = 1, . . . ,K in the objective function (2.30):
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arg(w1,...,wK ,h1,...,hK)min

k∑

i=1

‖gi − hiwi‖2

⇐⇒ arg(w1,...,wK ,h1,...,hK)min

k∑

i=1

‖hi0wi0 + ǫi − hiwi‖2
(2.30)

With similar arguments, we can show that:

argηw1
,...,ηwK−1

min{
i=K∑

i=1

‖ζi − hiηwi
‖2 + ‖ζK + hK

j=K−1
∑

j=1

ηwi
‖2}

= (n−K)σ2

which is independent of the choice of h1, h2, . . . , hK . With exact same arguments, we

could show that

(ĥ1, ĥ2, . . . , ĥK)
n→∞→ (h10, h20, . . . , hK0)

And

σ̂2 =
1

n

K∑

j=1

‖gj − ĥjŵj‖2

is consistent estimate of σ2

2.5.3 Proof of Theorem 3

Proof. Define v20 =






















ḡ1

ḡ2

V̂ar(g1)

V̂ar(g2)

ˆcov(g1, g2)

û112

û122






















u20 =






















h10uw

h20(1− uw)

h21σ
2
w + σ2

1

h220σ
2
w + σ2

2

−h10h20σ
2
w

u3(3)h10h
2
20

−u3(3)h
2
10h20






















We will divide the proof into two steps. In the first step, we will show the limiting
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distribution of vT
20 by multidimensional CLT Greene (2002). In the second step, we

will show the asymptotic results of (ĥ1, ĥ2) by multivariate delta method van der Vaart

(1998).

Step 1 :

By multidimensional CLT, we could get the joint distribution of v20. The computation

of the covariance matrix is standard, thus we omit the details. The joint distribution

of v20 is:

√
n(v20 − u20)

D
=⇒ N (0,






















σ11 σ12 σ13 σ14 σ15 σ16 σ17

σ22 σ23 σ24 σ25 σ26 σ27

σ33 σ34 σ35 σ36 σ37

σ44 σ45 σ46 σ47

σ55 σ56 σ57

σ66 σ67

σ77






















)

where σij is defined in Eq. (2.21).

Step 2 :

As shown in Eq. (2.19) ĥ1, ĥ2 are functions of v2. Specifically, they are:

f(v2) =




ĥ1

ĥ2



 =




ḡ1 + λḡ2

ḡ2 +
1
λ ḡ1





By Multivariate Delta Method, we have:
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√
n(f(v20)− f(u20))

D
=⇒√

n▽f(u20)
TN (0,






















σ11 σ12 σ13 σ14 σ15 σ16 σ17

σ22 σ23 σ24 σ25 σ26 σ27

σ33 σ34 σ35 σ36 σ37

σ44 σ45 σ46 σ47

σ55 σ56 σ57

σ66 σ67

σ77






















)
(2.31)

where ▽f(u20) is the derivative of f with respect of u20, and are given by

▽f(u20) =























1 h20
h10

h10
h20

1

0 0

0 0

0 0

−w̄2

h10h20u3(w)

w̄1

h210u3(w)−w̄2

h220u3(w)

w̄1

h1h20u3(w)

























55

σ11 =h210µ2(w) + σ2
10

σ22 =h220µ2(w) + σ2
20

σ33 =h410(µ4(w)− µ2(w)) + 2σ4
10 + 4h210µ2(w)σ

2
10

σ44 =h420(µ4(w)− µ2(w)) + 2σ4
20 + 4h220µ2(w)σ

2
20

σ55 =h210h
2
20(µ4(w)− µ2

2(w)) + h210µ2(w)σ
2
20 + h220µ2(w)σ

2
10 + σ2

10σ
2
20

σ66 =h410h
2
20(µ6(w)− 6µ2(w)µ4(w) − µ2

3(w) + 9µ3
2(w)) + h410σ

2
20(µ4(w)− µ2

2(w))+

3σ4
10σ

2
20 + 4h210h

2
20(µ4(w) − µ2

2(w))σ
2
10 + 3h220µ2(w)σ

4
10+

h210h
2
20σ

2
10(µ4(w)− 3σ4

w) + 4h210µ2(w)σ
2
10σ

2
20

σ77 =h210h
4
20(µ6(w)− 6µ2(w)µ4(w) − µ2

3(w) + 9µ3
2(w)) + h420σ

2
10(u4(w) − µ2

2(w))+

3σ2
10σ

4
20 + 4h210h

2
20(µ4(w) − µ2

2(w))σ
2
20 + 3h210µ2(w)σ

4
20+

h210h
2
20σ

2
20(µ4(w)− 3µ2

2(w)) + 4h220µ2(w)σ
2
10σ

2
20

σ12 =− h10h20µ2(w)

σ13 =h310µ3(w)

σ14 =h10h
2
20µ3(w)

(2.32)
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σ15 =− h210h20µ3(w)

σ16 =− h310h20(µ4(w) − 3µ2
2(w))

σ17 =h210h
2
20(µ4(w) − 3µ2

2(w))

σ23 =− h210h20µ3(w)

σ24 =− h320µ3(w)

σ25 =h10h
2
20µ3(w)

σ26 =h210h
2
20(µ4(w) − 3µ2

2(w))

σ27 =− h10h
3
20(µ4(w) − 3µ2

2(w))

σ34 =h210h
2
20(µ4(w) − µ2

2(w)) + 2σ2
10σ

2
20

σ35 =− h310h20(µ4(w) − µ2
2(w)) − 2h10h20σ

2
10µ2(w)

σ36 =− h410h20(µ5(w) − 4µ2(w)µ3(w)) − h210h20µ3(w)σ
2
10 − 4h210h20µ3(w)σ

2
10

σ37 =h310h
2
20(µ5(w) − 4µ2(w)µ3(w)) + h310µ3(w)σ

2
20 + 2h10h

2
20µ3(w)σ

2
10

σ45 =− h10h
3
20(µ4(w) − µ2

2(w)) − 2h10h20σ
2
20µ2(w)

σ46 =− h210h
3
20(µ5(w) − 4µ2(w)µ3(w)) − h320µ3(w)σ

2
10 − 2h210h20µ3(w)σ

2
20

σ47 =h10h
4
20(µ5(w) − 4µ2(w)µ3(w)) + h10h

2
20µ3(w)σ

2
20 + 4h10h

2
20µ3(w)σ

2
20

σ56 =h310h
2
20(µ5(w) − 4µ2(w)µ3(w)) + h310µ3(w)σ

2
20 + 2h10h

2
20µ3(w)σ

2
10

σ57 =− h210h
3
20(µ5(w) − 4µ2(w)µ3(w)) − 2h310h20µ3(w)σ

2
20 − h320µ3(w)σ

2
10

σ67 =− h310h
3
20(µ6(w) − 6σ2

wµ4(w)− µ2
3(w) + 9µ3

2(w)) − h310h20σ
2
20(µ4(w)−

3µ2
2(w)) − 2h310h20σ

2
20(µ4(w)− µ2(w)

4)− 2h10h
3
20σ

2
10(µ4(w) − µ2(w)

4)−

9h10h20µ2(w)σ
4
10σ

4
20 − 4h10h20µ2(w)σ

2
10σ

2
20

It follows immediately that theorem 3 holds as the third, fourth and fifth elements

of v20 does not contribute to the calculation of ĥ1, ĥ2

Remark 13. As a special case, when W is unknown constant, we can still get similar

conculusion, with Σ = (σij) given by:



57

σ11 =σ2
1

σ22 =σ2
2

σ33 =σ4
1 + 4h210m2(w)σ

2
1

σ44 =σ4
2 + 4h220m2(w)σ

2
2

σ55 =h210m2(w)σ
2
2 + h220m2(w)σ

2
1 + σ2

1σ
2
2

σ66 =2m2(w)h
2
20σ

4
1 + 4h210h

2
20m4(w)σ

2
1 − 4h210h

2
2σ

2
1m

2
2(w) + h410m4(w)σ

2
2

− σ2
2h

4
10m

2
2(w) + 2σ2

2σ
4
1 + 4h210m2(w)σ

2
2σ

2
1

σ77 =2m2(w)h
2
10σ

4
2 + 4h210h

2
20m4(w)σ

2
2 − 4h210h

2
20σ

2
2m

2
2(w) + h420m4(w)σ

2
1

− σ2
1h

4
20m

2
2(w) + 2σ2

1σ
4
2 + 4h220m2(w)σ

2
1σ

2
2

σ35 =− 2h10h20σ
2
1w̄1(1− w̄1) + 2h10h20σ

2
1

w
′

1w2

n

σ3,6 =− 4m3(w)h
2
10h20σ

2
1 −m3(w)h10h20σ

2
1

σ37 =2m3(w)h10h
2
20σ

2
1

σ45 =− 2h10h20σ
2
2w̄1(1− w̄1) + 2h10h20σ

2
2

w
,
1w2

n

σ46 =− 2m3(w)h
2
10h2σ

2
2

σ47 =4m3(w)h10h
2
20σ

2
2 +m3(w)h10h20σ

2
2

σ56 =m3(w)h
3
10σ

2
2 + 2m3(w)h10h

2
20σ

2
1

σ57 =−m3(w)h
3
20σ

2
1 − 2m3(w)h20h

2
10σ

2
2

σ67 =− 2m4(w)h
3
10h20σ

2
2 + 2h310h20σ

2
2µ

2
2(w)− 2h10h

3
2σ

2
1m4(w)+

2h10h
3
20σ

2
1m

2
2(w)− 4m2(w)h10h20σ

2
1σ

2
2

(2.33)

2.5.4 Proof of Theorem 4

Proof. The arguments are quite similar as that of the proof of theorem 3. Thus we

omit the details.
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Chapter 3

Asymptotic Inference of Maximum Cross Correlation of

Stationary Process

3.1 Introduction

In the era of big data, there has been extensive research on the dependence among large

number of variables (Bühlmann and Van De Geer, 2011; Bickel and Levina, 2008a,b; Cai

et al., 2010). Statistical analysis are usually carried out based on independent samples.

Recently multivariate analysis has also undergone rapid developments to study this type

of cross sectional dependence among the variables, as well as the temporal dependence

among the samples (Song and Bickel, 2011; Davis et al., 2015; Basu and Michailidis,

2015; Raskutti and Yuan, 2015).

Cross correlations play fundamental roles in measuring and analyzing cross-sectional

and temporal dependence simultaneously. Suppose there is a p-dimensional stationary

time series xjt, 1 ≤ j ≤ p and 1 ≤ t ≤ T . The cross covariance between j-th and

k-th time series at lag s is defined as γjk(s) = Cov(xjt, xk,t+s). In particular, γjj(·)

gives the autocovariance function of the j-th component series. The cross correlation

is then given by ρjk(s) = γjk(s)/
√

γjj(0)γkk(0). One important type of cross-sectional

and temporal dependence is the lead lag relationship among component series, i.e. ob-

served values from one series may have an impact on another series a few time units

later. Lead-lag relationship has been widely studied in many scientific fields, including

economics, engineering, finance, geophysical sciences, and neuro-sciences (Nelson-Wong

et al., 2009), (Duffy and Hughes-Clarke, 2005), (Basappa and Lakdawala, 2000), (Co-

hen, 1981). For example, Conover and Peterson (1999) found that before the passage

of the Insider Trading Sanctions Act (ITSA) in 1984, the options market leads the

stock market before negative surprises but that the stock market leads prior to positive
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surprises, while after the passage of ITSA there is no leading role for either market un-

der positive or negative surprises. Berndt and Ostrovnaya (2007) provided a rigorous

analysis on the relationship between credit market and option market. Their results

indicated that investors absorb information revealed in the CDS market into option

prices within a few days, i.e. CDS market lead the option market. Cross correlations

may be used to infer such kind of relationship among different series. Ideally if γjk(s)

is zero for all negative s, and nonzero for some negative s, then there is a unidirectional

relationship from the j-th series to the k-th series.

More comprehensive relationship among the p series may be modeled by vector

autoregressive (VAR) models. However, when there are many series, i.e. p is large,

fitting a VAR over all series is not computationally or statistically feasible. The problem

becomes easier if the p series can be partitioned into smaller groups, where the between

groups dependence is weak or negligible, and VAR models can be built with each group.

Cross correlations can be used to measure the linear relationship between any two series,

and may serve as a proxy of the distance or closeness between them.

The aforementioned problem can be viewed as a clustering problem, where it may

be assumed that different groups are not correlated. A closely related problem is to test

whether these p series are correlated at all. It is also a preliminary step before fitting

a VAR to the data. This testing problem is related to, but different from the classical

multivariate white noise test (see for example Chitturi, 1974). The most important

distinction is that each individual series may have its own temporal dependence, and

may not be a univariate white noise. However, similarly as the multivariate white noise

test, cross correlations can be used to construct the test statistic.

Motivated by the preceding discussion, we consider the following testing problem

H0 : γjk(s) = 0, ∀ j 6= k, s ∈ Z. vs H1 : γjk(s) for some j 6= k, (3.1)

under the “large T , large p” paradigm, where the dimension p may be comparable to,

or even larger than the sample size T . The cross covariances can be estimated by the
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sample version:

γ̂jk(s) =
1

T

∑

1≤t,t+s≤T

(xjt − x̄j)(xk,t+s − x̄k) (3.2)

where x̄j is the sample mean of the j-th series. We consider the maximum type test

statistic:

M̃1 = max
|s|≤sT , 1≤j<k≤p

γ̂jk(s). (3.3)

Since the correlation between two series may exist at some unknown but very large

lag s, here we allow the range s to expand with the sample size, i.e. sT is allowed to

approach infinity as T increases. Sometimes the cross correlation between two series

may exist at many adjacent lags, but is weak at each of them. In this case, the following

test statistic can have larger power.

M̃2m = max
|s|≤sT , 1≤j<k≤p

Q̃jk(s), (3.4)

where

Q̃jk(s) =
s+m∑

l=s+1

γ̂2jk(s).

The testing problem is related to the classical white noise tests in time series analysis.

The later is often used for diagnostics after a model being fitted to the data, see for

example (Wikle and Hooten, 2010) for spatial-temporal modeling, and Tao et al. (2012)

for a study of a large number of assets. Many classical tests have been invented for

univariate time series, including Robinson (1991), Durbin and Watson (1950, 1951), Box

and Pierce (1970), Durlauf (1991); Hong (1996), and many variants. A multivariate

version of the Box and Pierce test was proposed by Chitturi (1974). Hosking (1980,

1981) gave several equivalent forms of this statistic, see also Ahn (1988); Escanciano

et al. (2013); Mainassara (2011). Most of these tests are essentially based on sample

autocovariances and cross covariances. Usually they involve a finite number of lags.

Hong (1996) and Hong and Lee (2003) were the first to allow the number of lags to

grow with the sample size. Xiao and Wu (2013) considered the maximum deviation of

the sample autocovariances.

We will show that the test statistics converge to extreme value distribution of type
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I (also called Gumbel distribution) after proper normalizations. Due to the existence of

temporal dependence, we carry out theoretical analysis under the framework of causal

representation and physical dependence measures (Wu, 2005). Our proof makes use of

the Gaussian approximation result Zaitsev (1987).

On the other hand, it is well know that the Gumbel type convergence is usually slow.

As a result, tests based on asymptotic limiting distribution may be distorted when the

sample size is not large enough. We propose to use bootstrap method to improve the

finite sample performance. More specifically, we use the moving blocks bootstrap of Liu

and Singh (1992). Recently, Hill and Motegi (2016) and Zhang and Cheng (2014) also

considered bootstrap methods for the maximum type statistics under the time series

context.

The problem under consideration is also closely related to high dimensional covari-

ance structure testing, which is of fundamental importance in high dimensional statis-

tics. Let X = (xij)1≤i≤n,1≤j≤p be the data matrix, whose n rows are independently

and identically distributed, with mean vector µn and covariance matrix Σn = (σij). In

many empirical studies, it is often assumed that Σn = Ip, where Ip is the p× p identity

matrix. Therefore, it is important to test whether Σ is an identity or a diagonal ma-

trix. Due to high dimensionality, the convectional LRT is drifted to infinity to when

p is large (Bai et al., 2009). Chen et al. (2013) found that the empirical distance test

Nagao (1973) is not consistent when both p and n are large, and proposed corrections

to the empirical distance test. Assuming that the population distribution is Gaussian

with mean µn = 0, Johnstone (2001) used the largest eigenvalue of the sample co-

variance matrix XT
n Xn as the test statistic, and proved that its limiting distribution

follows the Trac-yWidom law Tracy and Widom (1994). His work was extended to the

non-Gaussian case by Péché (2009); Soshnikov (2002). Other literature concerning on

the second order properties among high dimensional data includes Cai et al. (2013);

Tony Cai et al. (2014); Chen and Qin (2010). Let x̄j = 1
n

∑n
i=1 xij , then the sample

covariance between j-th and k-th column is σ̂jk =
1

n

∑

1≤i≤T
(xij − x̄j)(xik − x̄k). Jiang

(2004) used max1≤i<j≤p |σ̂jk| as the test statistic, and established the Gumbel type con-

vergence under the assumption that the entries of X are independent and identically
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distributed. His result was followed by Li et al. (2010); Zhou (2007) and Liu et al.

(2008). In recent paper, Cai and Jiang (2011) extended the results in the way that each

row of X is Gaussian and can be m-dependent. Xiao and Wu (2013) also showed the

Gumbel convergence of a self-normalized version of max1≤i<j≤p |σ̂jk − σjk|, allowing Σ

to be a general non-diagonal matrix.

The rest of this chapter is organized as follows. We first consider the cross covariance

between two series in section 3.3.1, and show that under mild dependence and moment

conditions, the maximum deviation of the sample cross covariance converges to extreme

value distribution. This result can help to identify the true lead (or lag) if there is a

underlying lead lag relationship. Furthermore, in order to reduce the computational

cost, we also propose a window sum approach, where the lead (or lag) window can be

identified. We then study the cross correlations among high dimensional time series

in section 3.5. Under mild conditions, we establish the the Gumbel convergence of

maximum sample cross correlation. We also propose to use the moving blocks bootstrap

to improve the finite sample performance in section 3.5.2.

3.2 Physical Dependence Measurement

To develop an asymptotic results for the times series, it’s necessary to impose suitable

measures of dependence. We consider our theory in the general physical dependence of

Wu (2005). Assume that (Xi) is a stationary causal process of the form:

Xi = g(. . . , ǫi−1, ǫi),

where g is a measurable function for which Xi is a properly defined random variables.

For notational simplicity, we define the operator:

Ωk(X) := g(ǫj , ..., ǫk+1, ǫ
′

k, ǫk−1, . . . ), where (ǫ
′

k)k∈Z is an i.i.d copy of (ǫ
′

k). Namely

ǫk in X is replaced by ǫ
′

k.

For a random variable X and p > 0, we write X ∈ Lp if ‖X‖p := (E(‖X‖p))1/p < ∞

and in particular, use ‖X‖ for the L2-norm ‖X‖2.

Assume X ∈ Lp, p > 1. Define the physical dependence measure order of p as
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δp(i) = ‖Xi − Ω0(Xi)‖ ,

which quantifies the dependence of Xi on the innovation of ǫ0. Let p
′

= min(2, p)

and define

Θp(n) =

∞∑

i=n

δp(i),

Ψp(n) =

( ∞∑

i=n

δp(i)
p
′

)1/p
′

,

∆p(n) =

∞∑

i=0

min{CpΨp(n), δp(i)}

where

Cp =







(p− 1)−1, if 1 < p < 2;

√
p− 1, if p ≥ 2.

Besides, for i ≤ j, define F j
i =< ǫi, ǫi+1, . . . , ǫj > be the σ − field generated by the

innovation ǫi, ǫi+1, . . . , ǫj , and the projection operator Hj
i = E(·|F j

i ).

Set Fi := F∞
i ,F j := F j

−∞, and define Hi and Hj similarly. Define projection opera-

tor Pj(·) = Hj−Hj−1, and Pi(·) = Hi−Hi+1, then (Pj(·)j∈Z) and (P−i(·)i∈Z) becomes

martingale difference sequence with respect to filtration F j and (F−i) respectively.

3.3 Maximum Covariance for Bi-Variate Stationary Process

Consider the bi-variate stationary time series x(t) = (x1t, x2t)
′ of the form

x(t) = g(ǫt, ǫt−1, . . . )

where ǫt, t ∈ Z are i.i.d two dimensional random vector.

Let γ12(k) = Cov(x1t, x2,t+k). Assume without loss of generality that

γ12(k
⋆) = max

k∈Z

{|γ12(k)|} =: γ⋆12
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We also assume that |γ12(k)| < γ⋆12 whenever k 6= 0. Suppose we have observed x1t

for 1 ≤ t ≤ T . At each 1 ≤ t ≤ T , we also have an observation on the second process,

but with a time lead k⋆, i.e. we observe x2,t+k⋆ . Therefore, the data are

x1t, . . . , x1T , x2,k⋆+1, . . . , x2,k⋆+T

The time lead k⋆ is unknown, which we would love to identify from the data. We

allow k⋆ to depend implicitly on T, and always assume |k⋆| ≤ cT for some constant

0 < c < 1. Theorem 5 shows that asymptotically, k⋆ can be identify by

k̂ = max
−T<k<T

|γ̂12(k)|

where γ̂12(k) is the sample cross covariance and defined as:

γ̂12(k) =
1

T

T∑

t=|k|+1

(x1t − x̄1)(x2,t−k − x̄2)

3.3.1 Theoretical Results

Theorem 5. Assume EXi = 0, Xi ∈ Lp for some p ≥ 4, and Θp(m) = O(m−α),

∆p(m) = O(m−α
′

) for some α ≥ α
′ ≥ 0. If α > 1/2 or α

′

p > 2 then there exists some

constants cp such that

lim
T→∞

P

(

max
−T<k<T

|γ̂12(k)− Eγ̂12(k)| ≤ cp

√

logT

T

)

= 1

Corollary 1. Assume the condition of Theorem 5,Then,

lim
T→∞

P (k̂ = k⋆) = 1.

3.3.2 Simulation

AR(1) Example:
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(x1t, x2t) are generated from the Model (3.5), where x1t follows AR(1), and x2t is a

simple shift of x1t by k⋆







X1t = αX1,t−1 + ǫt where ǫt ∼ N (0, 1)

X2t = X1,t+k⋆

(3.5)

Figure 3.1 shows the moving trend of (X1(t),X2(t)) in a specific case when k⋆ = 10.

Time

0 20 40 60 80 100

−
4

−
2

0
2

4
6

x1

x1 shifted with lead value 10

Figure 3.1: moving trend of (X1(t),X2(t)) with leading shift k⋆ = 10

Different AR coefficients α are considered in the simulation. We consider the sample

size from T = 50 up to T = 500, and allow the leading values of k⋆ to be dependent

on the sample size. Every time, for fixed leading value and sample size, we calculate

the maximum cross covariance, and compare the corresponding lead (or lag) to the

true value k⋆. If they are identical, we count it as 1, otherwise, set it as 0. We repeat

the procedure 1000 times, based on which, the average probability of identifying k⋆ is

calculated. Table 3.1 shows the final results. As a characteristic of AR(1) model, larger

α indicates stronger dependence between observations. We notice that the smaller the

α and true leading value, the larger the identification rate. And as the sample size gets

bigger, the probability of identifying the true lead values becomes higher.
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log(T ) T 0.5 T 0.8 T 0.9 T/3

α = 0.3

T = 50 1.000 1.000 0.920 0.060 0.850
T = 100 1.000 1.000 1.000 0.680 0.980
T = 250 1.000 1.000 1.000 1.000 1.000
T = 500 1.000 1.000 1.000 1.000 1.000

α = 0.5

T = 50 1.000 1.000 0.843 0.046 0.739
T = 100 1.000 1.000 0.999 0.517 0.938
T = 250 1.000 1.000 1.000 1.000 1.000
T = 500 1.000 1.000 1.000 1.000 1.000

α = 0.8

T = 50 0.998 0.982 0.559 0.020 0.450
T = 100 1.000 1.000 0.938 0.223 0.626
T = 250 1.000 1.000 1.000 0.938 0.928
T = 500 1.000 1.000 1.000 0.999 0.992

α = 0.9

T = 50 0.982 0.929 0.375 0.015 0.285
T = 100 1.000 0.999 0.778 0.121 0.399
T = 250 1.000 1.000 0.996 0.715 0.695
T = 500 1.000 1.000 1.000 0.992 0.908

Table 3.1: The first column shows the value of α in the generating model 3.5. The
second column shows the sample size, and the first row shows the true leading value
k⋆. The number in each cell is the proportion of identifying the true lead values.

VAR(1) Example:

In this example, xt = (x1t, x2t) are generated from the following VAR(1) Model:




x1t

x2t



 =




0.7 0.2

0.2 0.7








x1,t−1

x2,t−1



+




ǫ1t

ǫ2t



 (3.6)

where ǫt = (ǫ1t, ǫ2t) ∼ N(0, I2)

Then We make a shift of the second series x2(t), i.e. x
s
2t = x2,t+k⋆ .

Figure 3.2 show the moving trend of (x1t, x
s
2t, x2t). Similar as the AR(1) exam-

ple, different k⋆ depending on sample size are tried. Table 3.2 summarize the final

identification rate. Same conclusion can be drawn as that of AR(1) example.
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Figure 3.2: Example: series from VAR(1) with second series shifted by lead 10

log(T ) T 0.5 T 0.7 T/10

T = 100 0.64 0.47 0.15 0.47
T = 500 0.90 0.85 0.69 0.76

T = 1000 0.94 0.88 0.78 0.81
T = 10000 0.99 0.95 0.88 0.86

Table 3.2: Estimated proportion of identifying k⋆ out of 1000 simulations

3.4 Window Sum Approach

Section 3.3 describes the maximum cross covariance approach to identify the lead-lag

value between two series. The approach is time-consuming if both sample size T and

time lead k⋆ is large. A direct approach is window sum approach. The approach splits

the samples into blocks with size B = T η, compute the sum in each block, and then

calculate the cross covariance using the sum. Let B be the window size, which implicitly

depends on T. It’s naturally to assume as B → ∞ and 1/N = B/T → 0. Define the

window sum:

x̄1i =

(i∗B)∨T
∑

(i−1)∗B+1

x1t, and x̄2i =

(i∗B)∨T
∑

(i−1)∗B+1

x2,t+k⋆ (3.7)
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for 1 ≤ i ≤ N . Then we compute

γ̄12(j) =
1

T

N−j+
∑

1+j−

x̄1,t+jx̄2,t+k⋆

and find out

j̄ = max
−N<j<N

|γ̄12(j)|

Let k̄⋆ = [k⋆/B]. Theorem 6 shows that with high probability, j̄ ∈ {k̄⋆−1, k̄⋆, k̄⋆+1}

3.4.1 Theoretical Results

Theorem 6. Assume the condition of Theorem 5.

lim
T→∞

P

(

max
−N<j<N

|γ̄12(j)− Eγ̄12(j)| ≤ cp

√

logN

N

)

= 1

Corollary 2. Assume the condition of Theorem 6, assume the cross spectral density

f12(θ) of {xj(t)} is nonzero at θ = 0. Then

lim
T→∞

P
(
j̄ ∈ {k̄⋆ − 1, k̄⋆, k̄⋆ + 1}

)
= 1

3.4.2 Simulation

AR(1) Example

(x1t, x1,t+k⋆) is generated from the same AR(1) Model define in Eq. (3.5) with α =

0.8. In this exercise, we adopt the window sum approach described in section 3.4,

with different window size B = T 0.3, T 0.4, T 0.5 considered, The identification rate are

summarized in Table 3.3. The results show that for fixed leading value k⋆, the smaller

the window size B, the higher the identification rate. And also we notice that for fixed

sample size and block size, the larger the true lead value is, the smaller the identification

rate is.
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log(T ) T 0.5 T 0.7 T/4

B = T 0.3

T = 100 1.000 0.999 0.778 0.778
T = 500 1.000 1.000 1.000 0.999
T = 1000 1.000 1.000 1.000 0.999
T = 10000 1.000 1.000 1.000 0.999

B = T 0.4

T = 100 0.999 0.969 0.711 0.711
T = 500 1.000 1.000 0.991 0.836
T = 1000 1.000 1.000 1.000 0.980
T = 10000 1.000 1.000 1.000 1.000

B = T 0.5

T = 100 0.959 0.961 0.498 0.498
T = 500 1.000 1.000 0.835 0.653
T = 1000 1.000 1.000 1.000 0.960
T = 10000 1.000 1.000 1.000 0.999

Table 3.3: The first column shows block size. The second column shows the sample
size, and the first row in shows the true leading value k⋆. The number in each cell is
the proportion of identifying the true lead values.

VAR(1) Example

(x1t, x1,t+k⋆) is generated from the same VAR(1) Model in define in Eq. (3.6). In

this exercise, we adopt the WSA described in section 3.4, with different window size

B = T 0.3, T 0.4, T 0.5 considered. The results are summarized in Table 3.4. Same con-

clusion as that in the AR(1) example can be reached .

log(T ) T 0.5 T 0.7 T/4

B = T 0.3

T = 100 0.883 0.773 0.346 0.338
T = 500 1.000 1.000 0.989 0.858
T = 1000 1.000 1.000 1.000 0.990
T = 10000 1.000 1.000 1.000 0.999

B = T 0.4

T = 100 0.905 0.768 0.313 0.311
T = 500 0.999 1.000 0.938 0.666
T = 1000 1.000 1.000 0.999 0.929
T = 10000 1.000 1.000 1.000 1.000

B = T 0.5

T = 100 0.857 0.810 0.289 0.271
T = 500 0.995 0.999 0.575 0.267
T = 1000 0.968 1.000 1.000 0.664
T = 10000 1.000 1.000 1.000 1.000

Table 3.4: The first column shows block size. The second column shows the sample
size, and the first row shows the true leading value k⋆. The number in each cell is the
proportion of identifying the true lead values.
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3.5 Maximum cross correlation among multiple series

We consider a collection of p time series of length T , denoted by (xjt), 1 ≤ j ≤ p, 1 ≤

t ≤ T . Assume the p series are independent. We allow each individual series to have

its own temporal dependence. To quantify it, we assume each series {Xi·} has the

causal representation. Let δ
(i)
q (k) be its physical dependence measures, and ∆

(i)
q (k) the

corresponding tail sums. Set ∆q(k) := supi ∆
(i)
q (k). To begin with, we will introduce

Lemma 1:

Lemma 1. For each pair of series xj· and xk·, Let τ2jk =
∑

s∈Z
γjj(s)γkk(s). If ∆

(j)
2 <

∞ and ∆
(k)
2 < ∞ , then

√
T γ̂jk(s) → N(0, τ2jk)

According to Lemma 1, the sample cross covariances from different pairs of series can

have different asymptotic variances. Due to this reason, we need to standardized them

to have the same scale asymptotically. The asymptotic variance τ2jk can be estimated

as

τ̂2ij =

νT∑

k=−νT

γ̂ii(k)γ̂jj(k),

where νT satisfy the condition νT → ∞ and νT /T → 0. The first statistic we consider

is

M1 = max
|k|≤sT ,1≤i<j≤p

|γ̂ij(k)|/τ̂ij . (3.8)

On the other hand, as it is often assumed that the error terms in time series models

(for example VAR model) are white noise, as a diagnostic procedure, it is necessary to

perform white noise test. Therefore, for the second statistic, we assume each {Xi·} is a

white noise, and the test statistic is

M2m = max
|k|≤sT ,1≤i<j≤p

Qij(k,m), (3.9)

where Qij(m,k) =
∑k+m

l=k+1 ρ̂
2
ij(l), and

ρ̂ij(k) := γ̂ij(k)/
√

γ̂ii(0)γ̂jj(0).
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Our main result is summarized in Theorem 7 and Theorem 8, establishing the

Gumbel convergence of maximum deviations (M1 and M2m) across all possible pair

and over a wide range of lags.

Theorem 7. Assume the p series are independent. Their physical dependence measures

satisfy the uniform rate ∆q(k) = O(k−α) for some α > 0 and q > 2. Assume the

p spectral densities of the p series are uniformly bounded below from zero. Assume

p = O(T γ) for some γ > 0, and sT = O(T η) for some 0 ≤ η < 1. Let n = nT =

(2sT + 1)p(p− 1)/2. Then if







η + 2γ < αq if α ≤ 1/2− 2/q;

η + 2γ < q/2− 1 if α > 1/2− 1/q;

we have

lim
T→∞

P (TM2
1 − 2 log n+ log(log n) + log π ≤ z) = exp

(

−e−z/2
)

.

Theorem 8. Assume the same conditions of Theorem 7. Furthermore, assume each

series is a white noise. Then

lim
T→∞

P [TM2m − 2 log n− (m− 2) log(log n) + 2 log Γ(m/2) ≤ z] = exp
(

−e−z/2
)

.

3.5.1 Useful Intermediate result

In order to accomplish the main theoretical results in Theorem 7 and Theorem 8, in this

section, we provide some useful intermediate results. Lemma 2 presents the limiting

distribution of the maximum of independent observations from chi-squared distribution

after appropriate centering and scaling. Lemma 3 extends the result by replacing the

independent chi-squared random variables with sum of consecutive squared standard

normal. We notice that some of the sums are correlated with each other due to the

overlapping terms. For example,see Qk,m =
∑i=k+m−1

i=k Z2
i and Qk+1,m =

∑i=k+m
i=k+1 Z2

i .

Later, we find that these with overlapping terms contribute little in probability to

the limiting distribution as sample size gets larger enough. As a consequence, we
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could conclude the same asymptomatic distribution. Lemma 3 could be regarded as an

approximation of Lemma 4. In Lemma 4, we generalize the results to the maximum of

sum of consecutive observation with unknown distribution. By making use of Gaussian

approximation Zaitsev (1987), we show the similar convergence.

Lemma 2. Suppose X1,X2, . . . ,Xn
i.i.d.∼ χ2

m, and Mm,0 = max{X1,X2, ...,Xn}, then

lim
n→∞

P

(
Mm,0 − dn

cn
≤ z

)

= ee
−z
,

where dn = 2 log n+ (m− 2) log(log n)− 2 log Γ(m/2) and cn = 2.

This is directly from Embrechts et al. (1997) (in table 3.4.4 on page 156).

Lemma 3. Let Zi, i = 1, 2, 3, ..., n be n independent random variables from N(0, 1),

and define

M2
m,1 = max

1≤k≤n−m+1
Qk,m,

where Qk,m =
∑i=k+m−1

i=k Z2
i . Then

lim
T→∞

P
[
M2

m,1 − 2 log n− (m− 2) log(log n) + 2 log Γ(m/2) ≤ z
]
= exp (exp(−z/2)) .

Let Y = (yij)1≤i≤n,1≤j≤p be a data matrix whose n rows are independent and iden-

tically distributed (i.i.d.) as some population distribution with mean 0p, and covariance

matrix Ip.

The sample mean of j-th column is: ȳj =
1

n

i=n∑

i=1
yi,j, (j = 1, 2, ..., p).

Define:

Q
′

1,m = n
(
ȳ21 + ȳ22 + · · ·+ ȳ2m

)

Q
′

2,m = n
(
ȳ22 + ȳ23 + · · ·+ ȳ2m+1

)

. . .

Q
′

p−m+1,m = n
(
ȳ2p−m+1 + ȳ2p−m+2 + · · · + ȳ2p

)

Lemma 4. Suppose m is constant, and E(|Yj |q) < ∞. Let Mm,2 = max
{

Q
′

1,m, . . . , Q
′

p−m+1,m

}

.
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Suppose the dimension p = nr, where 1 + r <
q

2
,

lim
p→∞

P
[
M2

m,2 − 2 log p− (m− 2) log(log p) + 2 log Γ(m/2) ≤ z
]
= exp (exp (−z/2)) .

3.5.2 Simulation

Wild bootstrap

As it is well known that Gumbel convergence is slow (See examples in Hall (1979)). The

empirical distributions of TM2m−2 log n− (m−2) log(log n)+2 log Γ(m/2) is not close

to the limiting distribution if the sample size is not large enough. Therefore, it is not

reasonable to use the limiting distribution to approximate the finite sample distribution.

As the limiting distribution does not depend on the data generating scheme, we draw

the samples from i.i.d standard normal distribution, and then use its corresponding

quantile as approximated critical values, based on which, we are able to compute the

p-values. We will consider the following models. Please note that ǫi(t) are i.i.d standard

normal distribution in the whole section 3.5.2.

I.I.D. Xi(t) = ǫi(t) (3.10)

ARMA Xi(t) = α1Xi(t− 1) + θ1ǫi(t− 1) + ǫi(t) (3.11)

Bilinear Xi(t) = (a+ bǫi(t))Xi(t− 1) + ǫi(t) (3.12)

ARCH Xi(t) = σtǫi(t), where σ2
t = a+ b1Xi(t− 1) (3.13)

GARCH Xi(t) = σtǫi(t), where σ2
t = a+ b1Xi(t− 1) + b2σ

2
t−1 (3.14)

Linear Process Xi(t) =
50∑

j=1

ǫi(t)

jαj
, where 2 < αj < 4 (3.15)

AR and MA Xi(t) =







φjXi(t− 1) + ǫi,t if j = 1, . . . , [p/2]

θjǫi,t−1 + ǫi,t if j = [p/2] + 1, . . . , p

. (3.16)
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TAR Xi(t) =







φ1Xi(t− 1) + ǫi(t) if Xi(t− 1) < 0

φ1Xi(t− 1) + ǫi(t) Otherwise

. (3.17)

• Step 1: generate samples xij from some pre-specified model (e.g. model 3.10 )

where i = 1, . . . , T , j = 1, 2, . . . , p;

• Step 2: for each pair 1 ≤ j1 < j2 ≤ p, compute correlation at lag k

ρj1j2(k) =
γ̂j1j2(k)

τ̂j1j2
,

where γ̂j1j2(k) =
1

T

∑

1≤t<t+k≤T = (xj1,t − x̄j1)(xj2,t+k − x̄j2), and

τ̂j1j2 =
√∑vT

s=−vT
γ̂j1j1(s)γ̂j2j2(s).

• Step3: Find M2
1 = max

1≤j1<j2≤p,−ST≤k≤ST

{ρ2j1j2(k)};

• Step4: rescale and center M2
1 with the formula below:

M∗
n = TM2

1 − 2 log(n) + log log(n) + 2 log Γ(1/2)

• Repeat Step 1-4 for 5000 times, and record all the values from step 4.

Using step 1-4, we tried all the models listed in Eq. (3.10) through Eq. (3.17). Let

dimension p = 50, sample size T = 600, lag range ST = 10, and the lag number used to

compute variance vT = 10. For Model (3.11) and Model (3.16), the AR coefficients are

generated from Beta(1,5), and the MA coefficients are generated from Beta(3,2). For

Model (3.12), a, b are generated from U(0, 0.4). For Model (3.13), a is generated from

U(0, 0.3), and b1 is generated from U(0, 0.5). For Model (3.14), a, b1 are generated in

the same way as that of Model (3.13), and b2 is generated from U(0, 0.3). For Model

(3.15), αj, j = 1, . . . , 50 are generated from −U(2, 4) For Model (3.17), φ1 is generated

from −U(1, 1.5), and φ2 is generated from U(0.3, 0.8). All the coefficients are only

generated once and then fixed across all the repetitions.
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First, we calculate the 90% and 95% quantile of the results from Model (3.10),

i.e., i.i.d standard normal distribution. The critical values are q0.9 = 6.133861 and

q0.95 = 7.450773 respectively. Then for each other Model, we average the number that

exceeds the critical values, i.e. #(M∗
n > qα)/5000. The results are summarized in table

3.5. We see that for linear process (ARMA, mixed AR and MA, and Linear Process),

the empirical rejection rate (ERR) is around the pre specified level α. However, for the

non-linear process, the ERR is larger than nominal size, especially for the BiProduct

Process. Fig. (3.3) and (3.4) shows the CDF from each model against that from the

i.i.d standard normal:
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Figure 3.3: CDF from each model against that from i.i.d Standard Normal. Black line
in each subplot represents the CDF from the i.i.d standard normal model, and red line
represents the model in comparison with
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Figure 3.4: CDF from each model against that from i.i.d Standard Normal. Black line
in each subplot represents the CDF from the i.i.d standard normal model, and red line
represents the model in comparison with

The rejection rates at different significance level α are shown below:

α = 10% α = 5%

AR and MA 0.1056 0.0538
ARMA 0.0872 0.0422
ARCH 0.124 0.0682
Garch 0.1202 0.0598

Bilinear 0.1292 0.0718
TAR 0.1224 0.0616

Linear Process 0.1086 0.0552
BiProduct 0.3524 0.2336

Table 3.5: Empirical Rejection rate with i.i.d
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Moving window bootstrap

We notice that for the nonlinear process, the rejection probability is larger than the

nominal size. As a remediation, we also conduct the moving-window Bootstrap. For

some block size bT , the ith block is denoted by Bi = c(Xj(i),Xj(i+1), . . . ,Xj(i+bn−1)),

where i = 1, 2, . . . , T − bT + 1. For simplicity, assume hT = T/bT is an integer. The

procedure is as following:

1. Step 1. generate samples xij from some pre-specified model (e.g. model 3.10 )

where i = 1, . . . , T , j = 1, 2, . . . , p. Calculate M2
1 using formula (7).

2. Step 2. For the j-th series, sample hT times with replacement from {B1,B2, . . . ,BT−bT+1}

to obtain blocks {B⋆
i1
, . . . ,B⋆

ihT
}, and then they are laid end-to-end to form X⋆

j =
(

X⋆
j (i1),X

⋆
j (i1 + 1), . . . ,X⋆

j (ihT
+ bn − 1)

)

. Perform the re-sampling procedure

for all the series 1 ≤ j ≤ p

3. Step 3. pretend that X =
(
X⋆

1,X
⋆
2, . . . ,X

⋆
p

)
is random samples of size T, calculate

the M∗
B = TM⋆

1 − 2 log(n) + log log(n) + 2 log Γ(1/2), where M⋆
1 is defined as Eq.

(3.8) using the new samples.

4. Repeat Step 1, 2 and 3 1000 times, and calculate the empirical rejection rate

#(M∗
B > MT )/1000.

Different block size are tried. Table 3.6 shows the empirical rejection rates when

dimension p = 10. All the results are in percentage, for example, 10.2% is written as

10.2 in the table. The Column named ’Test’ described the model under which the series

are generated. We see that when p = 10 the empirical rejection rates are close to the

nominal ones. Furthermore, we increase the variable dimension p to 20, and run the

bootstrap again. The results are summarize in Table 3.7.
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Test bT = 10 bT = 15 bT = 20 bT = 25 bT = 30

α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%

IID 10.2 5.5 9.7 4.3 10 5.8 10.4 3.8 10.4 5.6

ARMA 10.2 4.7 9.5 5.7 9.8 5.8 8.1 3.4 10.4 5.2

ARCH 9.2 5.3 9.1 5.0 10.8 5.9 10.1 5.1 8.7 4.9

GARCH 11.5 5.4 9.5 4.8 10.9 5.5 10.1 4.9 10.6 6.2

BiLINEAR 8.1 3.8 10.3 5.7 10.1 5.0 9.8 4.6 11.5 6.1

BiProduct 11.1 5.9 10.6 4.8 11.1 5.5 11.2 5.2 10.2 4.8

TAR 9.7 4.9 11.1 5.6 9.1 4.2 10.3 5.3 10.1 4.9

Table 3.6: Rejection Probabilities in percentage, where p = 10, sT = 10, Different block
size bT is considered

Test bT = 10 bT = 15 bT = 20 bT = 25 bT = 30

α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%

IID 12.0 6.2 9.2 4.8 9.4 5.2 10.2 6.4 8.4 3.6

ARMA 9.2 4.8 7.8 5.4 8.0 4.6 9.6 4.4 9.8 5.0

ARCH 11.4 4.8 9.6 5.6 12.8 7.4 9.8 5.2 8.0 4.0

GARCH 9.2 5.4 8.2 3.6 10.4 5.4 10.2 5.4 10.4 6.8

BiLINEAR 11.0 5.4 8.6 4.6 11.4 5.8 10.6 5.0 10.2 4.6

BiProduct 11.8 7.2 12.2 5.6 11.4 4.4 12.0 6.6 11.0 6.0

TAR 11.0 6.0 10.4 5.0 10.2 5.0 8.6 5.4 10.8 6.4

Table 3.7: Rejection Probabilities in percentage, where p = 20, sT = 10, Different block
size bT is considered

BOB bootstrap

In addition to window-moving alike bootstrap, we also conduct BOB procedure as

described in Horowitz et al. (2006). From the jth series X1j ,X2j , . . . ,Xnj , for the

specified number of lag sT and block size bT , form Yij = (Xij ,Xi+1j , . . . ,Xi+sT j)
T ,

1 ≤ i ≤ T − sT , and blocks Bk,j = (Ykj , . . . ,Yk+bT−1,j) where 1 ≤ k ≤ T − sT − bT +1.

For simplicity, assume hT = T/bT is an integer. And we form such block for each series

j = 1, 2, . . . , p.

1. Step 1. generate samples xij from some pre-specified model (e.g. model 3.10 )

where i = 1, . . . , T , j = 1, 2, . . . , p. Calculate M1 using formula (3.8). Note that

the coefficients are generated in the same way as described in the wild bootstrap

approach. And they are set constant over all repetition once it’s generated.



79

2. Step 2. For jth series, we sample hT blocks with replacement from

{B1,j ,B2,j , . . . ,BT−sT−bT+1,j}, to obtain blocks {B⋆
1j ,B

⋆
2,j , . . . ,B

⋆
T−sT−bT+1,j},

which are laid end to end to form a series of vector Y ⋆
1,j, Y

⋆
2,j , . . . , Y

⋆
T−sT ,j . We do

such sampling over all series j = 1, 2, . . . , p

3. Step 3. Pretend Y ⋆
1j, Y

⋆
2j , . . . , Y

⋆
T−sT j , for j = 1, 2, . . . , p are random samples from

sT dimensions with sample size T . Denote the k th row element in Y ⋆
1,j by Y ⋆

1,j(k),

for k = 1, . . . , sT . Thus, the cross covariance of γj,l at lag k could be calculated

by: γjl(k) =
1

T

∑T
t=1 Y

⋆
tj(1)Y

⋆
tj(k + 1). Furthermore, we can calculate the cross

correlation of ρ̂jl(k) =
γ̂jl(k)

τ̂jl
where τ̂jl =

√∑vT
s=−vT

γ̂jj(s)γ̂ll(s). Afterwards, we

can calculate M⋆
B = max1≤j1<j2≤p,−sT≤k≤sT ρ2j,l(k)

4. Step 4. Repeat Step 2 and Step 3 1000 times, and calculate the and calculate the

empirical rejection rate #(M⋆
B > MT )/1000.

The simulation results are summarized in Table 3.8.

Test bT = 10 bT = 15 bT = 20 bT = 25 bT = 30

α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%α = 10%α = 5%

IID 10.7 4.7 10.4 5.5 9.7 4.9 8.9 4.8 10.3 5.4

ARMA 12.5 6.4 10.5 6.2 10.6 4.6 10.1 5.6 10.4 4.5

ARCH 7.9 3.2 8.7 4.5 7.9 4.5 7.5 2.9 10.8 5.6

GARCH 8.4 4.2 8.8 4.5 8.9 4.9 9.7 5.0 9.6 3.3

BiLINEAR 8.7 5.4 8.6 4.6 10.1 5.6 8.9 4.2 8.5 4.1

BiProduct 7.0 2.7 8.6 3.5 8.4 4.4 10.4 5.0 10.0 5.2

TAR 8.7 4.8 9.0 5.0 10.1 4.9 9.1 4.7 11.3 5.7

Table 3.8: Rejection Probabilities in percentage, where p = 10, sT = 10, vT = 3.
Different block size bT is considered

3.5.3 Real Data Analysis

Consider the simple returns of monthly indexes of U.S. government bonds with matu-

rities in 30 years, 20 years, 10 years, 5 years, and 1 year. The data is obtained from

Wharton Research Data Services (WRDS), and have 600 observations starting Jan-

uary 1942 to December 1991. Figure 3.5 shows their historical trend: the volatility of

the 1-year bond returns is much smaller than that of returns with longer maturities.



80

Table 3.9 gives the lag 1 and lag 2 cross-correlation matrices of rt. Most of the sig-

nificant cross correlations are at lag 1. And there exhibits stronger linearity between

longer term bonds than those between shorter bonds. Here we consider the cross cor-

relations excluding the concurrent ones. More specifically, we want to test ρij(l) = 0

∀l 6= 0 and i 6= j. We perform the bootsrap test and the pvalue is 0,
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Figure 3.5: Monthly indexes of U.S. government bonds with maturities in 30 years, 20
years, 10 years, 5 years, and 1 year

Lag 1 Lag 2

0.08 0.06 0.10 0.12 0.16 -0.02 -0.01 -0.00 -0.03 0.03
0.09 0.07 0.12 0.13 0.18 -0.02 -0.01 -0.01 -0.04 0.02
0.07 0.06 0.08 0.12 0.18 -0.01 0.00 0.01 -0.02 0.08
0.13 0.10 0.14 0.13 0.22 -0.04 -0.03 -0.01 -0.04 0.08
0.17 0.15 0.22 0.22 0.40 -0.03 -0.01 0.02 0.02 0.23

Table 3.9: Sample Cross-Correlation Matrices of Monthly Simple Returns of Five In-
dexes of U.S. Government Bonds: January 1942 to December 1991

Latent factors factor model Lam et al. (2011b) is considered to capture the linear

dynamic panel dependence of the bond indexes rt:
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rt = f t + ǫt

= Axt + ǫt

(3.18)

Where xt is r × 1 latent process with r < p, A is p × r unknown constant matrix,

and ǫt ∼ WN(0p,Σǫ). More detailed assumptions are described in Lam et al. (2011a).

Let L =
∑k=k0

k=1 Σr(k)Σr(k)
′

, where Σr(k) = cov(rt+k, rt+k).

We choose the number of factor using the method propose by Lam et al. (2011b).

Denote the j-th eigen value of L̂ as λ̂j , then if we have strong r factors, the following

holds:

λj+1

λj
≍ 1, j = 1, 2, . . . , r − 1, and

λj+1

λj
= Op(

1

n
) (3.19)

Suggested by the eigen value of L̂ (See Figure 3.6), we select the factor number

r = 1.
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Figure 3.6: Eigen value of L̂

We tried different k0, and the corresponding loading matrix Ap×1 is shown in Table

3.10. The first factor under different k0 is also shown in Figure 3.7. After we calculate
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f t in Model 3.18, we can also compute the residual ǫ̂t. Now we want to test whether

there is any non-concurrent cross correlation among {ǫ̂t}. We perform the bootstrap

test, and report the p values in table 3.11. Note that st and bt are defined as lag

range and block size. It seems that the results from k0 = 1, 2 are very similar, and the

assumption of uncorrelated residuals is reasonable.

k0 = 1 k0 = 2

-0.53 -0.53
-0.57 -0.57
-0.38 -0.38
-0.43 -0.44
-0.25 -0.25

Table 3.10: Constant Matrix A, each column represents the solution with different k0
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one is from when k0 = 2
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bt = 10 bt = 15 bt = 20 bt = 25 bt = 30

k0 = 1
st = 5 5.41% 5.11% 5.71% 7.41% 8.51%
st = 7 5.71% 6.31% 9.31% 8.81% 12.31%
st = 10 6.71% 7.61% 10.01% 9.31% 12.41%

bt = 10 bt = 15 bt = 20 bt = 25 bt = 30

k0 = 2
st = 5 5.21% 5.81% 6.01% 5.41% 9.31%
st = 7 7.41% 6.71% 8.71% 8.91% 11.71%
st = 10 8.21% 7.71% 10.61% 11.01% 13.61%

Table 3.11: H0: The residual is uncorrelated with each other. P value of maximum
CCF over lags −ST ,−ST + 1, . . . ,−1, 1, . . . , ST − 1, ST from bootstrap

3.6 Proof

3.6.1 Proof of Theorem 5

Proof. Without loss of generality, assume the true lead of X2 over X1 is k⋆ > 0. Let

mT = T β, where β ∈ (0, 1), define the m-dependent approximation series: X̃j(i) =

E(Xj(i) | Fi−mT
), where j = 1, 2. Define:

RT,k =

T∑

k+1

(X1(i)X2(i− k + k⋆)− γ12(k)) ,

R̃T,k =

T∑

k+1

(

X̃1(i)X̃2(i− k + k⋆)− γ̃12(k)
)

,

where γ12(k) = Ex1(i)x2(i− k + k⋆) and γ̃12(k) = Ex̃1(i)x̃2(i− k + k⋆).

In order to prove max
−T+1<k<T−1

|RT,k| = op(
√
T log T ), it’s sufficient to show (a) and

(b) listed below:

(a) max
−T+1<k<T−1

∣
∣
∣RT,k − R̃T,k

∣
∣
∣ = op(

√
T log T )

(b) lim
T→∞

P

(

max
−T<k<T

∣
∣
∣R̃T,k

∣
∣
∣ ≤ cp

√
T log T

)

= 1

(a): Effect of m dependent approximation:

By Proposition 8 in Xiao and Wu (2014), we have:
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∥
∥
∥RT,k − R̃T,k

∥
∥
∥
p/2

≤ Cp

√
Tkp∆p(mn + 1), where kp = ‖X0‖p

Therefore, ∀δT > 0 which goes to 0 slowly,

T−1∑

k=1−T

P (|RT,k − R̃T,k| > δT
√

T logT )

≤
T−1∑

k=1−T

E|RT,k − R̃T,k|p/2
(δ
√
T logT )p/2

=

T−1∑

k=1−T

Cpm
−α

′

p/2
n T p/4

T p/4 log(T )p/4δ
p/2
T

=
2CpT

1−α
′

pβ/2

log(T )p/4δ
p/2
T

With the assumption that α
′

p/2 > 1, we can always find β ∈ (0, 1), such that

1− α
′

βp

2
< 0. Therefore:

P

(

max
−T+1<k<T−1

∣
∣
∣RT,k − R̃T,k

∣
∣
∣ > δT

√

T logT

)

<

T−1∑

k=1−T

P
(∣
∣
∣RT,k − R̃T,k

∣
∣
∣ > δT

√

T logT
)

=
2CpT

1−α
′

pβ/2

δ
p/2
T log(T )p/4

T→∞−−−→ 0

(b): Upper bound of the m dependent series:

We prove (b) by splitting k into two cases: (1) k ≥ 3mT ; (2) k < 3mT .

When k ≥ 3mT :

(i) We split [k+1,T] into following blocks, with size k −mT :

Hj : [k + (j − 1)(k −mT ) + 1, k + j(k −mT )], (1 ≤ j < wT )

HwT
: [k + (wT − 1)(k −mT ) + 1, T ],

where wT is the smallest integer that k + wT (k −mT ) ≥ T .
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(ii) Furthermore we split Hj into smaller blocks with size 2mT

Kj,l : [k + (j − 1)(k −mT ) + (l − 1)2mT + 1,k + (j − 1)(k −mT ) + 2lmT ],

(1 ≤ l ≤ vj − 1)

Kj,vj : [k + (j − 1)(k −mT ) + (vj − 1)2mT + 1,k + (j − 1)(k −mT ) + |Hj|],

where vj is the smallest integer that 2vjmT ≥ |Hj|.

Define Uk,j,l =
∑

i∈Kj,l

X̃1(i)X̃2(i− k + k⋆)− γ̃(k)

R̃u,o
T,k =

∑

u≡j(mod 3)

∑

o≡l(mod 2)

Uk,j,l

Note that R̃u,o
n,k(u = 1, 2, 3, o = 1, 2) is sum of independent random variables. Be-

sides, we observe that X̃1(i) is independent of X̃2(i− k+ k⋆) because k ≥ 3mn. There-

fore, the upper bound of ‖Uk,j,l‖p is:

‖Uk,j,l‖p
≤
√
2mT

∥
∥
∥X̃1(i)X̃2(i− k + k⋆)

∥
∥
∥
p

≤
∥
∥
∥X̃1(i)

∥
∥
∥
p

∥
∥
∥X̃2(i− k + k⋆)

∥
∥
∥
p

=
√
2mTk

2
p

Furthermore, let λ > 0, we have:

P
(∣
∣
∣R̃T,k

∣
∣
∣ > 6λ

√

T logT
)

<

2∑

u=0

1∑

o=0

P
(

R̃u,o
T,k ≥ λ

√

T logT
)

≤
2∑

u=0

1∑

o=0






P (Uk,j,l ≥ λ

√

T log T ) + exp

{

−cp log T

mT

}

+

(

cpTm
p/2
T√

T logT (
√
T )p−1

)cp
√
log T







=I + II + III

(3.20)
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Eq. (3.20) is held by Corollary 1.7 in Nagaev (1979), and we resolve all constants

into cp.

For II, II = CP
T

2mT

(
1

T

)Tβ

= CpT
1−Tβ−β, which implies that

T∑

k=3mT

II ≤ CpT
2−β−Tβ T→∞−−−→ 0 (3.21)

On the other hand, for I and III:

I ≤ T

2mT

(
√
2mT k

2
p)

p

(
√
T logT )p

=
T (1−p/2)(1−β)

log T
,

III ≤ CpT
1−β

(

T 1+(β−1)p/2

√
log T

)cp
√
log T

.

Since p > 4 we could find β ∈ (0, 1), such that:

1 + (1− p/2)(1 − β) < 0 and 1 + (β − 1)p/2 < 0.

Therefore,
T∑

k=3mT

I ≤ T 1+(1−p/2)(1−β)

log T
T→∞−−−→ 0, (3.22)

T∑

k=3mT

III = CpT
2−β

(

T 1+(β−1)p/2

√
log T

)cp
√
log T

T→∞−−−→ 0. (3.23)

Eq.3.21, Eq. 3.22 and Eq. 3.23 implies that:

T∑

k=3mT

P
(∣
∣
∣R̃T,k

∣
∣
∣ > 6λ

√

T logT
)

When k < 3mT :
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Split [k + 1, T ] into blocks with size 4mT .

Hj : [k + (j − 1)(k −mT ) + 1, k + j(k −mT )], (1 ≤ j ≤ wT )

Hwn : [k + (wT − 1)(k −mT ) + 1, T ],

where wT is the smallest integer that k + wT (k −mT ) ≥ T .

R̃o
T,k =

∑

i∈H2N−1

X̃1(i)X̃2(i− k + k⋆)− γ̃12(k)

R̃e
T,k =

∑

i∈H2N

X̃1(i)X̃2(i− k + k⋆)− γ̃12(k).

Obviously, R̃o
T,k and R̃e

T,k is sum of independent random variables.

Similarly as the case when k ≤ 3mT , we show that

3mn−1∑

k=1

P
(∣
∣
∣R̃T,k − γ̃12

∣
∣
∣ ≥ 2λ

√

T log T
)

T→∞−−−→ 0.

Combine both k > 3mT and k ≤ 3mT cases, we have:

P

(

max
−T<k<T

|γ̂12(k)− Eγ̂12(k)| > cp

√

logT

T

)

≤
T−1∑

k=−T+1

P

(

|γ̂12(k)− Eγ̂12(k)| > cp

√

logT

T

)

=
∑

k>3mT

P

(

|γ̂12(k)− Eγ̂12(k)| > cp

√

logT

T

)

+
∑

k≤3mT

P

(

|γ̂12(k)− Eγ̂12(k)| > cp

√

logT

T

)

T→∞−−−→ 0

i.e.

lim
T→∞

P

(

max
−T<k<T

|γ̂12(k)− Eγ̂12(k)| ≤ cp

√

logT

T

)

T→∞−−−→ 1
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Proof of Corollary 1

Proof. First we observe that |γ12(k)| k→∞→ 0.

Here is a short proof of the above observation:

|E (x1(k)x2(0))| =

∣
∣
∣
∣
∣
∣

E(
k∑

j=−∞
P jx1(k)

0∑

w=−∞
Pwx2(0))

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

E(

−∞∑

j=0

P jx1(k)P
jx2(0))

∣
∣
∣
∣
∣
∣

≤
∞∑

j=0

E
∣
∣P jx1(k)||P jx2(0)

∣
∣

≤
∞∑

j=0

δ2(k + j)δ2(k)

≤ Θ(0)Θ(k)

= O(k−α)

Therefore, there exists such L that when | k |> L,γ12(k) <
1− c

2
.

Without losing generality, we assume γ⋆12 = max
k∈Z

{|γ12(k)|} = 1 and k⋆ = cT for

some c ∈ (0, 1).

On the event

{

max
−T<k<T

‖γ̂12(k)− E(γ̂12(k))‖ ≤ cp

√

log T

T

}

.

1. γ̂12(k
⋆) ≥ T − k⋆

T
γ12(k

⋆)− cp

√

log T

T
= (1− c)− cp

√

log T

T

so lim
T→∞

γ̂12(k
⋆) ≥ (1− c).

2. if |k − k⋆| > L, |γ̂12(k)| < (1− c)/2 + cp

√

log T

T

lim
T→∞

γ̂12(k) ≤ (1− c)/2.

3. if |k − k⋆| ≤ L,|γ̂12(k)| <
T − k

T
|γ12(k)|+ cp

√

log T

T
<

T − L+ k⋆

T
+ cp

√

log T

T

lim
T→∞

γ̂12(k) ≤ (1− c).
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Therefore, for k 6= k⋆

lim
T→∞

γ̂12(k
⋆) > lim

T→∞
γ̂12(k)

This implies that as if the sample size T goes to infinity, maximum cross correlation

method can asymptotically identify the true lead k⋆.

For k⋆ < 0, with the same argument, the theorem still holds true.

3.6.2 Proof of Theorem 6

Proof. Define ǫBi = (ǫ(i−1)B+1, ǫ(i−1)B+2, . . . , ǫiB∨T ), thus xj is:

xj(i) = g2(∞, ..., ǫBi−1, ǫ
B
i ), (j = 1, 2)

With similar mT -dependence approach as the proof in Theorem 5, define

x̃j(i) = E
(
xj(i)|(ǫBi−mn

, ..., ǫBi−1)
)

It’s not difficult to see that for {x̃j(i)},







∆̄p(mn + 1) = O((mnB)−α
′

)

Θ̄(mn) = O((mnB)−α)

Without losing of generality, assume k⋆ > 0. Define:

R̄N,k =

N∑

k+1

= x̄1(i)x̄2(i− k + k⋆)− γ̄12(k),

˜̄RN,k =

N∑

k+1

= ˜̄x1(i)˜̄x2(i− k + k⋆)− ˜̄γ12(k),

where γ̄12(k) = E(x̄1(i)x̄2(i− k + k⋆)), ˜̄γ12(k) = E(˜̄x1(i)˜̄x2(i− k + k⋆))

Similarly, by Proposition 8 Xiao and Wu (2014), together with the fact ‖x̄j(i)‖p ≤

BKp, we have:
∥
∥
∥R̄N,k − ˜̄RN,k

∥
∥
∥
p/2

≤ cp
√
N(mB)−α

′

BKp,
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For any δ > 0, which converges to 0 slowly,

P
(

| R̄N,k − ˜̄RN,k |> δB
√

N logN
)

≤
(

cpKp

√
N(mB)−α

′

B

δB
√
N logN

)p/2

=

(

cpKpm
−α

′

n B−α
′

δ
√

log(N)

)p/2

Assume B = T η, thus N = T 1−η

N∑

k=0

P (
∣
∣
∣R̄N,k − ˜̄RN,k

∣
∣
∣ > δB

√

N logN)

≤c2,pN
1−α

′

pβ/2B−α
′

p/2

(
δ
√
logN

)p/2

Under the condition of Theorem 6, we can always find β ∈ (0, 1), s.t.

N1−αpβ/2B−αp/2

(logN)p/4
T→∞−−−→ 0.

Therefore:

P ( max
0<k<N

∣
∣
∣R̄N,k − ˜̄RN,k

∣
∣
∣ > δB

√

N logN)

≤
N∑

k=0

P (
∣
∣
∣R̄N,k − ˜̄RN,k

∣
∣
∣ > δB

√

N logN)

T→∞−−−→ 0

i.e.,
∥
∥
∥R̄N,k − ˜̄RN,k

∥
∥
∥ = op

(
B
√
NlogN

)
.

Similar as the proof of Theorem 5, we can show that

N∑

k=0

P
(∣
∣
∣
˜̄RN,k − ˜̄γ12(k)

∣
∣
∣ ≥ B

√

NlogN
)

= 0.

Therefore lim
T→∞

P

(

max
N<k<N

|γ̄12(j) − Eγ̄12(j)| ≤ cp

√

logN

N

)

.
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3.6.3 Proof of Corollary 2

Proof. First, Let’s compute E(γ̄12(j))

E(γ̄12(j)) =
1

T
E





N−j+
∑

i=1+j−

x̄1(i+ j)x̄2(i+ k⋆)





=
1

T

N−j+
∑

i=1+j−

E







(i+j)B∨T
∑

t1=(i+j−1)B+1

x1(t1)

(i)B∨T
∑

t2=(i−1)B+1

x2(t2 + k⋆)







=
1

T

N−j+
∑

i=1+j−







−(j−1)B
∑

k=−jB

γ12(k + k⋆)((−j + 1)B − k + 1)

+

−jB
∑

k=−(j+1)B

γ12(k + k⋆)((j + 1)B + k)







=







0, as B → ∞ and k⋆ 6∈ [(j − 1)B, (j + 1)B + 1];

6= 0, as B → ∞ and k⋆ ∈ [(j − 1)B, (j + 1)B + 1].

(3.24)

Therefore,

E(γ̄12(j − 1)) + E(γ̄12(j)) +E(γ̄12(j − 1))

=
N − j

N
{(B + 1)

−(j−1)B
∑

k=−(j+1)B

γ12(k + k⋆)

+

−(j−2)B
∑

k=−(j−1)B

γ12(k + k⋆)((−j + 2)B − k + 1) +

−(j+1)B
∑

k=−(j+2)B

γ12(k + k⋆)((j + 2)B + k)}

If k⋆ ∈ [(j − 1)B, (j +1)B +1], then the underlined part goes to 0 as B → ∞. This

implies that

E(γ̄12(j − 1)) + E(γ̄12(j)) + E(γ̄12(j − 1))
B→∞−−−→ 2πf12(0).

By assumption that f12(0) 6= 0, therefore, at least one of the three terms are nonzero.

Thus, on the event

max
−N<j<N

|γ̄12(j) −Eγ̄12(j)| ≤ cp

√

logN

N
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





|γ̄12(j)| > Eγ̄12(j)− cp

√

logN

N
> Eγ̄12(j) > 0, j ∈ {k̄⋆ − 1, k̄⋆, k̄⋆ + 1};

|γ̄12(j)| ≤ cp

√

logN

N

T→∞−−−→ 0, otherwise.

This implies that:

lim
T→∞

P
(
j̄ ∈ {k̄⋆ − 1, k̄⋆, k̄⋆ + 1}

)
= 1

3.6.4 Proof of Lemma 2

Proof. The density of χ2
m distribution is:

f(x) =
xm/2−1 exp {x/2}

2m/2Γ(m/2)
,

where Γ (x) =
∫∞
0 sx−1e−sds.

First, we will show that F (χ2
m > x) ∼ 2f(x). (Here the sign ∼ means that the

quotient of the two functions converges to 1 as x → +∞.)

lim
x→∞

F (χ2
m > x)

xm/2−1 exp {x/2} 1

2m/2Γ(m/2)

= lim
x→∞

∞∫

x
tm/2−1 exp {−t/2}dt

xm/2−1 exp {−x/2}
L′H
= lim

x→∞
−xm/2−1 exp {−x/2}

(m/2− 1)xm/2−2 exp{−x/2} − 0.5xm/2−1 exp {−x/2}

= 2

Define F = F (χ2
m > x), and a(x) =

F

f(x)
= 2, it’s easy to see a(x)

′

= 0 so F has

representation

F = exp

{

−
∫ x

−∞

1

a(t)
dt

}

.

It implies that F is Von Moses function. If we interpret 2f(x) as tail of some df G, then



93

by Proposition 3.3.28 in Embrechts et al. (1997), G and F have same norming constant

cn (scale) and dn (center).

By Proposition 3.3.25 in Embrechts et al. (1997)

dn = inf

{

x ∈ R,G(x) ≤ 1

n

}

and cn = a(dn) ≡ 2 (3.25)

Hence look at the solution of log(G(x)) = − log(n), i.e.

(m

2
− 1
)

log
(x

2

)

− x

2
− log (Γ(m/2)) = − log(n)

dn = 2 log(n) + (m− 2) log log(n)− 2 log
(

Γ
(m

2

))

+ γn, where γn = o(1).

Furthermore, we could show that the order of γn = O

(
log log(n)

log(n)

)

.

Plug in dn in Eq. 3.25,

log log(n)− γn
m− 2

= log

(

log(n) +
m− 2

2
log log(n)− log Γ

(m

2

)

+
γn
2

)

=log log(n) + log

(

1 +
(m− 2) log log(n)− log(Γ(m/2)) + γn/2

2 log(n)

)

i.e. − γn
m− 2

≈ (m− 2) log log(n)− log(Γ(m/2)) + γn/2

2 log(n)

which implies that γn = O

(
log log(n)

log(n)

)

.

Remark 14. Let zn,m = z + 2 log(n) + (m− 2) log log(n)− 2 log(Γ(
m

2
)). By Theorem

2, P (Mm,n ≤ zn,m) = (1− F (zn,m))n = ee
−z/2

, take logarithms

n log(1− F (zn,m)) = e−z/2

since log(1− F (zn,m)) ∼ F (zn,m),this implies that nF (zn,m) ∼ e−z/2
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3.6.5 Proof of Lemma 3

Proof. Suppose we select d distinct numbers i1, i2, . . . , id from 1, 2, 3, . . . , n, where n is

an integer. What is the total possibilities that there exist at least two numbers whose

difference are less than m, i.e |ih − ij | < m, for any h, j ∈ {1, 2, 3, . . . , d}?

The answer is:
(
n

d

)

−
(
n+m+ d−md− 1

d

)

≤ mnd−1.

Let N =
∑

k 1{Qk > zn,m}. Thus, P (Mm ≤ zn,m) = P (N = 0). It’s equivalent to

prove N
D−−−→

n→∞
Poisson(exp(−z/2)).

Using moment method, it’s sufficient to prove

E(N(N − 1)...(N − d+ 1)) −→ exp

(

−zd

2

)

(3.26)

i.e.
∑

1≤i1≤i2,...id≤n−m+1
P (Qi1 ≥ zn,m, ...Qid ≥ zn,m)

n→∞−−−→ exp(−zd/2)

d !
.

We’ll prove the result by induction.

• When d = 1, directly from Theorem 2,

E(N) =

(
n−m+ 1

1

)

P (χ2
m ≥ zn,m)

n→∞−−−→ λ = exp{−z/2}

• When d = 2, W.L.G, 1 < i1 < i2 < n−m+ 1,

E
N(N − 1)

2 !
=

∑

i2−i1≥m

P (Qi1 ≥ zn,m, Qi2 ≥ zn,m) +
∑

i2−i1<m

P (Qi1 ≥ zn,m, Qi2 ≥ zn,m)

= I + II

For I, by independence

lim
n→∞

∑

i2−i1≥m

P (Qi1 ≥ zn,m, Qi2 ≥ zn,m) = lim
n→∞

n !

2
P 2(Qi1 ≥ zn,m) → λ2

2 !
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For II, with the help of Figure 3.8, let δn =
log log(n)

2

P (Qi1 ≥ zn,m, Qi2 ≥ zn,m)

≤P (Z2
i1+1 + ...Z2

i1+m−1 ≥ zn,m − δn, Qi1 ≥ zn,m, Qi2 ≥ zn,m)

+ P (Z2
i1+1 + ...Z2

i1+m−1 < zn,m − δn, Qi1 ≥ zn,m, Qi2 ≥ zn,m)

≤P (Z2
i1+1 + ...Z2

i1+m−1 ≥ zn,m − δn) + P (Qi1 ≥ zn,m, Z2
i1+m + ...Z2

i2+m ≥ δn)

≤P (χ2
m−1 ≥ zn,m − δn) + P (Qi1 ≥ zn,m)P (χ2

m ≥ δn)

≤P

(

χ2
m−1 ≥ zn,m−1 +

log log(n)

2

)

+ P (Qi1 ≥ zn,m)P
(
χ2
m ≥ δn

)

This implies that

II ≤ n{P (χ2
m−1 ≥ zn,m−1 +

log log(n)

2
) + P (Qi1 ≥ zn,m)P (χ2

m ≥ δn)}

≤ nP (χ2
m−1 ≥ zn,m−1 +

log log(n)

2
) + exp{−λ}P (χ2

m ≥ δn)

n→∞−−−→ 0

Therefore, we prove that when d = 2, E
N(N − 1)

2 !
−→ λ2

2 !

• Assume i1 < · · · < il, Define

Ll = {(ik, ik+1), k = 1, . . . , l − 1 | Qij ≥ zn,m,∀j = 1, . . . , l}

Suppose for d− 1, d− 2, Eq. (3.26) holds. which follows that if there exists some

adjacent pair (ik, ik+1) ∈ Ll l = d− 2, d− 1 satisfying ik+1 − ik < m,

∑

ik+1−ik<m,i1,...,il

P (Qi1 ≥ zn,m, . . . , Qil ≥ zn,m) = 0

And if ∀(ik, ik+1) ∈ Ll l = d− 2, d− 1 satisfying ik+1 − ik ≥ m

∑

ik+1−ik≥m,∀k=1,...,l

P (Qi1 ≥ zn,m, . . . , Qil ≥ zn,m) =
exp{−lz/2}

l !
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For d ≥ 3, Define

Id = {1 ≤ i1 < i2 < · · · < id ≤ n}

Sk,d = {1 ≤ i1 < i2 < ... < id | ih+1 − ih < m, for1 ≤ h ≤ k, ik+1 − ik ≥ m}

Sd = {i1 < i2 < · · · < id | ih+1 − ih ≥ m,∀h = 1, 2, . . . , d}

E
N(N − 1)...(N − d+ 1)

d !

=
∑

Id
P (Qi1 ≥ zn,m, . . . , Qid ≥ zn,m)

=
∑

Id∈S1,d∩Sc
d

P (Qi1 ≥ zn,m, . . . , Qid ≥ zn,m)

︸ ︷︷ ︸

A

+

d−1∑

k=2

∑

Id∈Sk,d

P (Qi1 ≥ zn,m, . . . , Qid ≥ zn,m)

︸ ︷︷ ︸

B

+
∑

Id∈Sd,d

P (Qi1 ≥ zn,m, . . . , Qid ≥ zn,m)

︸ ︷︷ ︸

C

+
∑

Id∈Sd

≥ zn,m, . . . , Qid ≥ zn,m)

︸ ︷︷ ︸

D

We will calculate each term:

A =
∑

i1

∑

(i2...id)∈Sc
d−1

P (Qi1 ≥ zn,m)P (Qi2 ≥ zn,m, . . . , Qid ≥ zn,m)

<nP (Qi1 ≥ zn,m)
∑

(i2...id)∈Sc
d−1

P (Qi2 ≥ zn,m, . . . , Qid ≥ zn,m)

<λo(1) = o(1) (by assumption (3.26) holds for d-1)

B =
d−1∑

k=2

∑

(i1,...ik)∈Sk,k

∑

(ik+1...id)∈Sd−k

P (Qi1 , . . . , Qik ≥ zn,m)P (Qik+1
≥ zn,m, . . . , Qid ≥ zn,m)

=

d−1∑

k=2

∑

(i1,...ik)∈Sk,k

P (Qi1 , . . . , Qik ≥ zn,m)
∑

(ik+1...id)∈Sd−k

P (Qik+1
≥ zn,m, . . . , Qid ≥ zn,m)

≤
d−1∑

k=1

o(1)
λd−k

d !
= o(1) (by assumption (3.26) holds for d-1 and d-2)

C <nmd−1P (Qi1 ≥ zn,m, Qi2 ≥ zn,m) = 0

D =

(
n+m+ d−md− 1

d

)

P d(Qi1 ≥ zn,m)
n→∞−−−→ λd

d !
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Therefore, for the case d ≥ 3 (3.26) still holds. Since we already prove d = 2, d = 1,

so (3.26) holds.

Figure 3.8: overlapped Qi1 and Qi2

3.6.6 Proof of Lemma 4

Proof. Assume i1 < i2 < · · · < id, and let K be the collected set of integers such that

h ∈ K if and only if h can be written as h = ij+k for some 1 ≤ j ≤ d and 0 ≤ k ≤ m−1.

Let x
˜
= {xi}j∈K.

Define

A = {x
˜
| x
˜
satisfy (3.27)},

B = {x
˜
| x
˜
satisfy (3.28)},

Where (3.27) and (3.28) are defined as:







x2i1 + x2i1+1 + ...+ x2i1+m−1 ≥ h2

x2i2 + x2i2+1 + ...+ x2i2+m−1 ≥ h2

. . .

x2id + x2id+1 + ...+ x2id+m−1 ≥ h2

(3.27)







x2i1 + x2i1+1 + ...+ x2i1+m−1 ≥ (h− θ)2

x2i2 + x2i2+1 + ...+ x2i2+m−1 ≥ (h− θ)2

. . .

x2id + x2id+1 + ...+ x2id+m−1 ≥ (h− θ)2

(3.28)
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Define the λ-neighbourhood of set A as

Aλ =

{

x ∈ Rκ, inf
y∈A

|x− y| < λ

}

, where κ = |K| .

if y
˜
∈ Aθ, then there ∃ x

˜
∈ A,s.t. |y

˜
− x

˜
| < θ. In particular,

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥















yj1

.

.

.

yj1+m−1















−















xl1

.

.

.

xl1+m−1















∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤ θ =⇒

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥















yj1

.

.

.

yj1+m−1















∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

≥ (h− θ)2

=⇒y
˜
∈ B

Therefore Aθ ⊆ B: We divide the proof into two steps. The first step is truncation

step, which makes the Gaussian approximation theorem applicable. Next, we will show

that the truncation does not change the limiting distribution.

Step 1: Truncation.

Let us define Eo (X) = X − E (X) for any random variable X. Set δn = o(1).

Define

ỹi,j = Eo yi,j1{|yi,j | ≤ K},
(

K =

√
nδn

(√
log p

)3

)

,

where 1{.} is the indicator function. Define:

Q̃1,1 = n(¯̃y21 + ¯̃y22 + ...+ ¯̃y2m)

Q̃2,1 = n(¯̃y22 + ¯̃y23 + ...+ ¯̃y2m+1)

. . .

Q̃p−m+1,1 = n(¯̃y2p−m+1 + ¯̃y2p−m+2 + ...+ ¯̃y2p)

And Mp,1 = max{Q̃1,1, . . . , Q̃p−m+1,1}



99

Step 2: Scale: in order to make the normal approximation theorem applicable, we

also normalize ỹi,j

Define

y̆i,j =
ỹi,j
σj

, where σj =
√

Var(ỹi,j)

Similar as in step 1, let Mp,2 = max{Q̆1, . . . , Q̆p−m+1}, where Q̆j could be computed

as below :

Q̆1 = n(¯̆y21 +
¯̆y22 + ...+ ¯̆y2m)

Q̆2 = n(¯̆y22 +
¯̆y23 + ...+ ¯̆y2m+1)

. . .

Q̆p−m+1 = n(¯̆y2p−m+1 +
¯̆y2p−m+2 + ...+ ¯̆y2p)

Let N̆ =
∑

k 1{Q̆k > zn,m}, thus,P (M̆p,2 ≤ zn,m) = P (N̆ = 0). It’s equivalent to

prove N̆
D−−−→

n→∞
Poisson(exp(−z/2)).

On the hand, Let z1, z2, ...zp
i.i.d∼ N(0, 1)

Q1 = (z21 + z22 + ...+ z2m)

Q2 = (z22 + z22 + ...+ z2m+1)

. . .

Qp−m+1 = (z2p−m+1 + z2p−m+2 + ...+ z2p)

And Mp = max{Q1, . . . , Qp−m+1},N =
∑

k 1{Qk > zp,m}. We already show that

N
D−−−→

n→∞
Poisson (exp(−z/2))

So it’s sufficient to prove N̆ and N has same limiting distribution

since | y̆i,j |≤ 2K, x
˜
∈ B(κ, 2K),where x

˜
∈ A. Let θp = o

(

1
√

log (p)

)

, by the normal
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approximation theorem, we could get

P (Q̆
1/2
i1

≥ z1/2p,m, ..., Q̆
1/2
id

≥ z1/2p,m)

≤P (Q
1/2
i1

≥ z1/2p,m − θp, ..., Q
1/2
id

≥ z1/2p,m − θp) + C exp

{

−
√
nθp

CdK
)

}

=P (Qi1 ≥ zp,m + θ2p − 2z1/2p,mθp, ..., Qid ≥ zp,m + θ2p − 2z1/2p,mθp) + C exp

{

− log(p)

δn

}

Therefore, as n → ∞, we could get the following inequality:

∑

1≤i1≤i2,...id≤p−m+1

P (Q̆i1 ≥ zp,m, ...Q̆id ≥ zp,m)

≤
∑

1≤i1≤i2,...id≤p−m+1

(

P (Qi1 ≥ zp,m + o(1), ..., Qid ≥ zp,m + o(1)) + C exp

{

− log(p)

δn

})

≤
∑

1≤i1≤i2,...id≤p−m+1

P (Qi1 ≥ zp,m + o(1), ..., Qid ≥ zp,m + o(1)) + C exp

{

d log(p)− log(p)

δn

}

n→∞−−−→
∑

1≤i1≤i2,...id≤p−m+1

P (Qi1 ≥ zp,m, ..., Qid ≥ zp,m)

n→∞−−−→ exp{−zd/2}
d!

Similarly,we could get:

∑

1≤i1≤i2,...id≤p−m+1

P (Q̆i1 ≥ zp,m, ...Q̆id ≥ zp,m) ≥ exp{−zd/2}
d!

Thus we have proved that

lim
n→∞

E (N(N − 1) . . . (N − d+ 1)) = lim
n→∞

E

(

N̆(N̆ − 1) . . . (N̆ − d+ 1)
)

.

It implies that P (N = d) = P (N̆ = d).

Step 3: Effect of Truncation and normalization.
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In this section, we’ll show
∣
∣
∣M̃ −Mp,2

∣
∣
∣

P−−−→ 0.

∣
∣
∣M̃ −Mp,2

∣
∣
∣

≤|M̃ −Mp,1|+ |Mp,1 −Mp,2|

≤ max
1≤i≤p

∣
∣
∣Q̃i − Q̃i,1

∣
∣
∣+ max

1≤i≤p

∣
∣
∣Q̃i,1 − Q̆i,2

∣
∣
∣

So it is sufficient to prove that







max
1≤i≤p

∣
∣
∣Q̃i − Q̃i,1

∣
∣
∣

P−−−→ 0

max
1≤i≤p

∣
∣
∣Q̃i,1 − Q̆i,2

∣
∣
∣

p−−−→ 0

max
1≤i≤p

(

Q̃i − Q̃i,1

)

= max
1≤i≤p

n

j=i+m−1
∑

j=i

(ȳj − ¯̃yj) (ȳj + ¯̃yj)

≤ max
1≤i≤p

√
n

i+m−1∑

j=i

|ȳj − ¯̃yj| max
1≤i≤p

√
n

i+m−1∑

j=i

(ȳj + ¯̃yj)

≤m2 max
1≤i≤p

√
n |ȳi − ¯̃yi|

︸ ︷︷ ︸

E

max
1≤i≤p

√
n (ȳi + ¯̃yi)

︸ ︷︷ ︸

F

For term F , we’ll show F = O
(√

log(p)
)

, and for E, we’ll show E = o

(
1√
log p

)

.

To show E = o

(
1√
log p

)

, it’s sufficient to show that, there ∃ {ηn} n→∞−−−→ 0, such

that

P

(

E ≥ ηn√
log p

)

= 0.
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P

(

max
1≤i≤p

√
n |ȳi − ¯̃yi| ≥

ηn
√

log(p)

)

≤
i=p
∑

i=1

P

(

√
n|ȳi − ¯̃yi| ≥

ηn
√

log(p)

)

=

i=p
∑

i=1

P

(∣
∣
∣
∣
∣

n∑

l=1

(yl,i − ỹl,i)

∣
∣
∣
∣
∣
≥

√
nηn

√

log(p)

)

=

p
∑

i=1

P

(
n∑

l=1

(yl,i − ỹl,i) ≥
√
nηn

√

log(p)

)

≤c1,qp

n∑

l=1

∫

0
uqidFl(ui)

(
log(p)

nη2n

)q/2

+ exp

{

−c2,q
nη2n

log(p)B2
n

}

≤ c1,qn
1+r

∫

0
uqidFl(ui)

(
log(p)

nη2n

)q/2

︸ ︷︷ ︸

G

+exp

{

−c2,q
nη2n

log(p)B2
n

}

︸ ︷︷ ︸

H

where ui = yl,i − ỹl,i, and B2
n =

∑n
i=1 Var(yl,i − ỹl,i).

ui = yl,i − ỹl,i

= yl,i − y1,i1 {|y1,i| ≤ K}+ E (y1,i1{|y1,i| ≤ K})

= y1,i1{|y1,i| > K} − E (y1,i1{| y1,i |> K})

= y1,i1{|y1,i| > K}+ o(1)

B2
n =

n∑

i=1

E (y1,i1 {|y1,i| > K} − E (y1,i1{|y1,i| > K}))2

≤
n∑

i=1

E
(
y21,i1{|y1,i| > K}

)

≤ nE(Y q)

Kq−2

Therefore, since 1 + r − q/2 < 0, we can see that:

G ≤ c1,qn
1+r−q/2

(
r log n

η2n

)q/2

E(|yi|q) n→∞−−−→ 0

H ≤ exp

{

−c2,q
η2n(r log n)

3

δ2n

}

n→∞−−−→ 0
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Thus, E = o

(
1√
log p

)

Now we’ll show for F = O(log(p)), let M > 0,

P

(∣
∣
∣
∣
max
1≤i≤p

√
n(ȳi + ¯̃yi)

∣
∣
∣
∣
> M

√

r log n

)

≤
i=p
∑

i=1

P
(√

n(ȳi + ¯̃yi) > M
√

r log n
)

≤pP

(
l=n∑

l=1

(yli + y̆li) > M
√

nr log n

)

≤n1+rP
(

(yli + y̆li) > M
√

nr log n
)

+ exp
{
−cqM

2nr log n/C2
n

}

≤n1+rP
(

yli > M
√

nr log n, yli > K
)

+ n1+rP
(

2yli > M
√

nr log n, yli < K
)

+ exp
{
−cqM

2nr log n/C2
n

}

=n1+rP
(

yli > M
√

nr log n
)

︸ ︷︷ ︸

J

+exp
{
−cqM

2nr log n/C2
n

}

︸ ︷︷ ︸

K

where C2
n =

n∑

i=1
Var(yl,i + y̆l,i) ≤

n∑

i=1

(

4E
(

|yi|2
)

+ o(1)
)

.

Thus,

J ≤ n1+r E(Y q)
(
M

√
nr log n

)q
n→∞−−−→ 0

K ≤ exp
{
−cqM

2nr log n/C2
n

}
≤ exp

{

−cqM
2r log n/4E(|yi|2)

}
n→∞−−−→ 0

Thus, F = O
(√

log(p)
)

, together with E = o

(

1
√

log(p)

)

, we’ve already prove

that
∣
∣
∣M̃ −Mp,1

∣
∣
∣

P−−−→ 0.

Similarly, we could prove |Mp,2 −Mp,1| P−−−→ 0.

Note that M̃ = M̃ −Mp,1 +Mp,1 −Mp,2 +Mp,2
D−−−→ Mp,2 as n → ∞,
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3.6.7 Proof of Theorem 7

Proof. We will divide the proof into seven steps. The first one is m-approximation

step, followed by block sum and truncation steps. These three steps make gaussian

approximation result applicable. We consider the effect of using sample means and

sample autocovariances in the fourth and fifth steps. Gaussian approximations are give

in Step 6 and 7.

Define γ̂ij(k) =
1

T

∑T−k
t=1 Xt,iXt+k,j , and

step 1: m-approximation For an arbitrary integer l, define

X̃i,t = E
(
Xi,t|F t

t−l

)

For l-dependence approximation, we already have

‖
∑

t

Xt,iXt+k,j −
∑

t

X̃t,iX̃t+k,j‖q < cq
√
Tl−α.

In this step we’ll show that

P

(

max
i,j,k

| γ̂ij(k)
τi,j

− γ̃ij(k)

τi,j
|
)

= oP

(
1√

T log n

)

(3.29)

Set m := mT = O(T η) such that sT ≤ mT , and define X̃i,t = E
(
Xi,t|F t

t−m

)
. Applying

the nested m-approximation technique as given in Xiao and Wu (2013), we have for

any δT > 0 which converges to zero slowly enough,

P

(

max
i,j,k

∣
∣
∣
∣

γ̂ij(k)

τij
− γ̃ij(k)

τij

∣
∣
∣
∣
>

δT√
T log n

)

≤







nδ−q
T · T−αq + o(1) if α ≤ 1/2− 1/q;

nδ−q
T · T 1−q/2 + o(1) if α > 1/2− 1/q.

Note that n = O(T 2γ+η), so (3.29) holds under the conditions of Theorem 7.

Step 2: throw away small blocks

Divide the sample size T into blocks, where the odds block contains small sample size

w = 2m, while the even ones contains larger ones S = T v, where S >> w.
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• B1: k + w < t < s,

• B2: l + w < t < w + S,

• B3: w + S + 1 < t < 2w + S,

• B4: 2w + S + 1 < t < 2w + 2S,

• . . .

• B2uT−1: (w + L)(uT − 1) < t < T ,

where uT is the smallest integer that (w + L)(uT ) > T .

For any 1 ≤ k ≤ n, denote X̃i,t = E
(
Xi,t|F t

t−l

)

Sij(k) =

T∑

t=k+1

X̃i,tX̃j,t−k

=

uT∑

j=1

∑

t∈B2u−1

X̃i,tX̃j,t−k

︸ ︷︷ ︸

S
(1)
ij (k)

+

uT∑

j=1

∑

t∈B2u

X̃i,tX̃j,t−k

︸ ︷︷ ︸

S
(2)
ij (k)

In this step, we will show that

lim
T→∞

max
i,j,k

{Sij(k)} D
= lim

T→∞
max
i,j,k

{

S
(2)
ij (k)

}

.

In order to prove that, it’s equivalent to show that:

lim
T→∞

max
i,j,k

{S(1)
ij (k)} = op

( √
T√

log n

)

.
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For any δn,

P

(

max
i,j,k

S
(1)
ij (k) >

√
Tδn√
log n

)

<
∑

i,j,k

P

(

S
(1)
ij (k) >

√
Tδn√
log n

)

=nP





uT∑

j=1

∑

t∈B2u−1

X̃i,tX̃j,t−k >

√
Tδn√
log n





=n

uT∑

j=1

P




∑

t∈B2u−1

X̃i,tX̃j,t−k >

√
Tδn√
log n



+ exp

(

− cqTδ
2
n

uTvar(
∑

t∈B2j−1
X̃i,tX̃j,t−k) log n

)

=n

uT∑

j=1

P




∑

t∈B2u−1

X̃i,tX̃j,t−k >

√
Tδn√
log n





︸ ︷︷ ︸

P1

+exp

(

− cqTδ
2
n

2CquT l log n

)

︸ ︷︷ ︸

P2

P1 <







nT 1−v




cq(2l)

q/2−αq∆q
q

( Tδn
logn)

q/2
+ Cq exp(−

(
√
Tδq√
logn

)q/2

2Cq∆2
ql

)



 if α <
1

2
− 1

q

nT 1−v




cq(2l)

q/2−αq∆q
q

( Tδn
logn)

q/2
log(2l) + Cq exp(−

(
√
Tδq√
logn

)q/2

2Cq∆2
ql

)



 if α =
1

2
− 1

q

nT 1−v




cq(2l)∆

q
q

( Tδn
logn)

q/2
+ Cq exp(−

(
√
Tδq√
logn

)q/2

2Cq∆2
ql

)



 if α >
1

2
− 1

q

Note that 0 < β < v < 1,and l = T β, UT = T 1−v it’s not difficulty to see that

P1
T→∞−−−→ 0, P2

T→∞−−−→ 0

Therefore, we have shown that P

(

maxi,j,k S
(1)
ij (k) >

√
Tδn√
log n

)

T→∞−−−→ 0

step 3: Truncation

Define:
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Ξij(k, u) =
1

τij

∑

t∈B2u

X̃i(t)X̃j(t− k)

And let

Ξ̃ij(k, u) = E0Ξij(k, u)1

{

Ξij(k, u) <

√
TδT

(log n)3/2

}

where E0(X) = X − E(X)

Besides, we denote the difference between Ξij(k, u) and Ξ̃ij(k, u) as Rij(k, u), i.e.

Rij(k, u) = Ξij(k, u) − Ξ̃ij(k, u) = E0Ξij(k, u)1

{

Ξij(k, u) ≥
√
TδT

(log n)3/2

}

Therefore, in order to prove that the truncation has no effect on limiting distribution,it’s

sufficient to prove that

max
i,j,k

UT∑

u=1

Rij(k, u) = op

( √
T√

log n

)

For any δn > 0

P

(

max
i,j,k

UT∑

u=1

Rij(k, u) >
δT

√
T√

log n

)

<
∑

i,j,k

P

(
UT∑

u=1

Rij(k, u) >
δT

√
T√

log n

)

<n

UT∑

u=1

P

(

Rij(k, u) >
δT

√
T√

log n

)

+ exp

{

− cqδ
2T

log nvar(
∑UT

u=1 Rij(k, u))

}

≤n

UT∑

u=1

P

(

Ξij(k, u) >
δT

√
T√

log n

)

+ exp

{

− cqδ
2T

log nvar(
∑UT

u=1Rij(k, u))

}

≤n

UT∑

u=1

P




1

√
σij

∑

t∈B2u

X̃i(t)X̃j(t− k) >
δT

√
T√

log n





︸ ︷︷ ︸

P3

+exp

{

− cqδ
2T

log nvar(
∑UT

u=1Rij(k, u))

}

︸ ︷︷ ︸
p4
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P3 <







nT 1−v




cq(S)

q/2−αq∆q
q

( Tδn
logn)

q/2
+ Cq exp(−

(
√
Tδq√
logn

)q/2

2Cq∆2
qS

)



 if α <
1

2
− 1

q

nT 1−v




cq(S)

q/2−αq∆q
q

( Tδn
logn)

q/2
log(2l) + Cq exp(−

(
√
Tδq√
logn

)q/2

2Cq∆2
qS

)



 if α =
1

2
− 1

q

nT 1−v




cq(S)∆

q
q

( Tδn
logn)

q/2
+ Cq exp(−

(
√
Tδq√
logn

)q/2

2Cq∆2
qS

)



 if α >
1

2
− 1

q

Note that 0 < v < 1,and S = T v, UT = T 1−v it’s not difficulty to see that

P3
T→∞−−−→ 0, P4

T→∞−−−→ 0

Therefore, we’ve shown that truncation has no effect on limiting distribution.

step 4: effect of estimated mean X̄i

Set X̄i =
1

T

∑T
t=1 Xt,i. Define γ̂mij (k) =

1

T

∑T−k
t=1 (Xt,i − X̄i)(Xt+k,j − X̄j)

max
i,j,k

{γ̂mij (k)− γ̂ij(k)}

=max
i,j,k

1

T

(
T−k∑

t=1

(Xt,i − X̄i)(Xt+k,j − X̄j)−Xt,iXt+k,j

)

=max
i,j,k

{−X̄j

T

T∑

t=k+1

Xi(t)−
X̄i

T

T∑

t=k+1

Xj(t− k) +
T − k

T
X̄iX̄j}

≤max
i,j,k

{|X̄j

T

T∑

t=k+1

Xi(t)|}
︸ ︷︷ ︸

P5

+max
i,j,k

{|X̄i

T

T∑

t=k+1

Xj(t− k)|}
︸ ︷︷ ︸

P6

+max
i,j,k

{|T − k

T
X̄iX̄j |}

︸ ︷︷ ︸

P7

As we already know that

max
i

X̄i = OP

(√

log p

T

)

Therefore, P7 = OP

(
log p

T

)

= oP

(√

log p

T

)

Next, we’ll show that P5 = oP

(√

log p

T

)

,
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in order to do that, it’s sufficient to prove

max
i,j,k

{∣
∣
∣
∣
∣

1

T

T∑

t=k+1

Xj(t− k)

∣
∣
∣
∣
∣

}

= oP

(√
log p

T
1
3

)

For any δT > 0, which converges to 0 slowly, we could have:

P

(

max
i,j,k

{| 1
T

T∑

t=k+1

Xj(t− k)|} >

√
log p

T
1
3

)

≤







n

(

cqT
−q/6−αq∆q

q

(log p)q/2
+ Cq exp(−

T 1/3 log p

2Cq∆2
q

)

)

if α <
1

2
− 1

q

n

(

cqT
−q/6−αq∆q

q

(log p)q/2
log T + Cq exp(−

T 1/3 log p

2Cq∆2
q

)

)

if α =
1

2
− 1

q

n

(

cqT
1−2q/3∆q

q

(log p)q/2
+ Cq exp(−

T 1/3 log p

2Cq∆2
q

)

)

if α >
1

2
− 1

q

Therefore,

P

(

max
i,j,k

{γ̂mij (k)− γ̂ij(k)}
)

= oP

(√

log p

T

)

Step 5: effect of estimated variance τ̂ij

In this step, we show that the effect of plugging the estimate variance of σij is

negligible:

max

{
γ̂ij(k)

τ̂ij
− γ̂ij(k)

τij

}

= op

(√
1

T log n

)

(3.30)

As we already show that maxi,j,k |γ̂i,j(k)| = Op

(√

log n

T

)

, in order to prove Eq.

(3.30), it’s equivalent to show that

max
1≤i≤j≤p

‖τ2i,j − τ̂2i,j‖ = op

(
1√
log n

)

where τ̂ij =
√∑

k∈Z γ̂ii(k)γ̂jj(k) and τij =
√∑

k∈Z γii(k)γjj(k)
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τ̂2ij − τ2ij

≤
∑

k≥vT

‖γ̂ii(k)γ̂jj(k)− γii(k)γjj(k)‖
︸ ︷︷ ︸

R1

+
∑

k≤vT

‖γ̂ii(k)γ̂jj(k)− γii(k)γjj(k)‖
︸ ︷︷ ︸

R2

Let vT = T υ, It’s obvious to see that R1 < v−2α
T . For R2,

R2 =
∑

k≤vT

‖γ̂ii(k)γ̂jj(k)− γii(k)γjj(k)‖

≤
∑

k≤vT

‖γ̂ii(k) (γ̂jj(k)− γjj(k)) ‖+ ‖(γjj(k)− γ̂jj(k))(γ̂ii(k)− γii(k))‖ + ‖γ̂ii(k)(γ̂jj(k)− γjj(k))‖

when 2 < q ≤ 4, 1 < q/2 ≤ 2, by Burkholder inequality Burkholder (1973), as long as

υ < 1/2

P

(

‖γ̂jj(k)− γjj(k)‖ ≥ δT√
log nvT

)

≤CqT (log n)
q/4v

q/2
T

δ
q/2
T T q/2

≤T 1−q/2+υq/2Cq(log n)
q/4

δ
q/2
T

T→∞−−−→ 0

when q > 4, for any δT > 0, which converges to 0 slowly, we could have:

P

(

γ̂jj(k)− γjj(k) >
δT√

log nvT

)

≤







(
cqT

−q/4−αq/2+υq/2∆q
q/2(

√
log n)q/2

δ
q/2
T

+ Cq exp(−
Tδ2T

2Cq∆2
q

)

)

if α <
1

2
− 1

q
(
cqT

−q/4−αq/2+υq/2∆q
q/2(

√
log n)q/2

δ
q/2
T

log T + Cq exp(−
Tδ2T

2Cq∆2
q

)

)

if α =
1

2
− 1

q
(
cqT

1−q/2+υq/2∆q
q/2(

√
log n)q/2

δ
q/2
T

+Cq exp(−
Tδ2T

2Cq∆2
q

)

)

if α >
1

2
− 1

q
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Therefore, for any q > 2, P

(

γ̂jj(k)− γjj(k) >
δT√

log nvT

)

= 0

This implies P

(

R2 >
δT√

log nvT

)

= 0, and thus the proof of step 5 is complete.

step 6: Consider d-tuples

Consider d-tuples {γ̂i1,j1(k1), . . . , γ̂id,jd(kd)},where is 6= js, for s = 1, 2, . . . d,i.e. γ̂is,js is

cross covariance instead of variance.

First, we’ll show that if we draw d such pairs (is, js) from 1, 2, . . . , p, the probability

that these 2d numbers are distinct will go to 1 as p → ∞

Instead of calculating it directly, we calculate the probability that at least two of

these 2d numbers are same, i.e. is1 = is2 , or js1 = js2 for some s1, s2 which is
p
(
d
2

)
(p − 1)2d−2

pd(p − 1)d
.Therefore, the probability that all these 2d numbers are different is

1− p
(
d
2

)
(p− 1)2d−2

pd(p− 1)d
= 1−

(
2d
2

)

p
(
p − 1

p
)d−1 p→∞−→ 1

Define

A = {
γ̂2i1,j1(k1)

σ2
i1,j1

, . . . ,
γ̂2id,jd(kd)

σ2
i1,j1

| for some is1 = is2 or js1 = js2 , s1 6= s2}

B = {
γ̂2id,jd(k1)

σ2
id,jd

, . . . ,
γ̂2id,jd(kd)

σ2
id,jd

| i1, j1, . . . , id, jd are all different}

Next, we’ll show that

lim
p→∞

D(max{A,B}) = lim
p→∞

D(max{B})

where D denotes the limiting distribution.

Since max{A,B} = max{B}+(max{A}−max{B})1{max{A} > max{B}}, it’s equiv-

alent to prove:

lim
p→∞

P (max{A} > max{B}) = 0

let n1 = |A|, n2 = |B|, as we’ve shown that n1 = o(n2). let ηn =
1

2
log(n2/n1)

P (T max{A} > 2 log(n1) + ηn) <
supi,j EXq

i X
q
j

(σi,j(2 log(n1) + ηn))q
→ 0 as p → ∞
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P (T max{B} < 2 log(n2)− ηn) = (1− P (Z >
√

2 log(n2)− ηn))
n2

= exp
(

n2 log(1− P (Z >
√

2 log(n2)− ηn))
)

∼ exp(−n2P (Z >
√

2 log(n2)− ηn))

Note that

n2P (Z >
√

2 log(n2)− ηn)

=n2P (Z2 > 2 log(n2)− ηn)

∼n2
2√
2π

(2 log(n2)− ηn)
−1/2 exp(− log(n2) + ηn/2)

∼ 2 exp(ηn/2)
√

2π(2 log n2 − ηn)

=
exp(log(n2/n1)/4)
√

2π(2 log(n2)− ηn)

=
(n2/n1)

1/4

√

2π(2 log(n2)− log(n2/n1)/2)

→∞ as n2 goes to ∞

This implies that

P (T max{B} ≥ 2 log(n2)− ηn) → 1 as n2 goes to ∞

Therefore

P (T max{B} ≥ 2 log(n2)− ηn > 2 log(n1) + ηn ≥ T max{A}) = 1

i.e. limp→∞ P (max{A} > max{B}) = 0

LetΥd be the set of {(i1, j1, k1), . . . , (id, jd, kd)} among which all ih, jh, h = 1, . . . , d

are distinct. Furthermore, we could write it as:

Υd = {{(i1, j1, k1), . . . , (id, jd, kd)} | 1 ≤ ih < jh ≤ p,−ST ≤ kh ≤ ST , h = 1, . . . , d}
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Based the fact that limp→∞D(max{A,B}) = limp→∞D(max{B}), it’s sufficient to

consider d-tuples γd ∈ Υd.

Since we’ve already shown that throwing away the small blocks has no effect on the

limiting distribution, we only consider the larger blocks.

γ̂i1,j1(k1) =
1

T

∑

t∈B2

X̃i1,tX̃j1,t−k1 +
1

T

∑

t∈B4

X̃i1,tX̃j1,t−k1 + · · ·+ 1

T

∑

t∈B2uT −2

X̃i1,tX̃j1,t−k1

γ̂i2,j2(k2) =
1

T

∑

t∈B2

X̃i2,tX̃j2,t−k2 +
1

T

∑

t∈B4

X̃i2,tX̃j2,t−k2 + · · ·+ 1

T

∑

t∈B2uT −2

X̃i2,tX̃j2,t−k2

...

γ̂id,jd(kd) =
1

T

∑

t∈B2

X̃id,tX̃jd,t−kd +
1

T

∑

t∈B4

X̃id,tX̃jd,t−kd + · · ·+ 1

T

∑

t∈B2uT −2

X̃id,tX̃jd,t−kd

For any γd ∈ Υd,

let ε(γd, h) =












∑

t∈B2h
X̃i1,tX̃j1,t−k1

∑

t∈B2h
X̃i2,tX̃j2,t−k2

. . .
∑

t∈B2h
X̃id,tX̃jd,t−kd












where h = 1, 2, . . . , uT − 1.

And it’s easy to see that ε(γd, h1) is independent of ε(γd, h2) if h1 6= h2 since X̃i. is l-

dependent approximation ofXi.. Therefore, we could regard ε(γd, h)(h = 2, . . . , 2uT−2)

as uT − 1 independent observations from some distribution

step 7: Gaussian Approximation

It’s obvious to see that ε(γd, h) has mean 0d,and covariance matrix Id.

Assume Z1, . . . ,ZuT−1 ∈ Rd are from i.i.d N (0, Id),and

εT (γd)

T
=

Ut−1∑

h=1

ε(γd, h)

T
>

√
zn1d (3.31)

ZT =

Ut−1∑

h=1

Zh > (
√
zn − θn)1d (3.32)
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Where zn = Denote set

C = {εT ∈ Rd : εT satisfy (3.31)}

D = {ZT ∈ Rd : Z satisfy (3.32)}

Let Dθn = {x ∈ Rd : infZ∈D |x− εT | < θn},where θn =
δT

√

log(n)

and it’s easy to see that Dθn ⊂ C

By the gaussian approximation theorem, denote (x). as the smallest element in x ∈ Rd,

we have:

∑

Υd

P ((
εT (γd)

T
). > zn)

≤
∑

Υd

P ((ZT ). > (zn − θn)) + exp(− δnθn
c2,dK2/T

)

<
−zd/2

d !
+
∑

Υd

exp(−δn log(n)
√
T )

=
−zd/2

d !
+ exp(−δn

√
T )

→−zd/2

d !

We have shown the proof of Theorem 7

3.6.8 Proof of Theorem 8

Proof. The proof of Theorem 8 is similar with the one for Theorem 7, and we omit

details.
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S. Péché. Universality results for the largest eigenvalues of some sample covariance

matrix ensembles. Probability Theory and Related Fields, 143(3-4):481–516, 2009.

G. Raskutti and M. Yuan. arXiv preprint arXiv:1512.01215, 2015.

D. Repsilber, S. Kern, A. Telaar, G. Walzl, G. F. Black, J. Selbig, S. K. Parida, S. H.

Kaufmann, and M. Jacobsen. Biomarker discovery in heterogeneous tissue samples

-taking the in-silico deconfounding approach. BMC Bioinformatics, 11(1):1–15, 2010.

P. Robinson. Testing for strong serial correlation and dynamic conditional heteroskedas-

ticity in multiple regression. Journal of Econometrics, 47(1):67 – 84, 1991.

S. S. Shen-Orr and R. Gaujoux. Computational deconvolution: Extracting cell type-

specific information from heterogeneous samples. Curr Opin Immunol, 25(5):10.1016,

Oct 2013.

S. S. Shen-Orr, R. Tibshirani, P. Khatri, D. L. Bodian, F. Staedtler, N. M. Perry,

T. Hastie, M. M. Sarwal, M. M. Davis, and A. J. Butte. Cell type-specific gene

expression differences in complex tissues. Nature Methods, 7(4):287–289, Apr 2010.

S. Song and P. J. Bickel. Large vector auto regressions. arXiv preprint arXiv:1106.3915,

2011.

A. Soshnikov. A note on universality of the distribution of the largest eigenvalues in

certain sample covariance matrices. Journal of Statistical Physics, 108(5-6):1033–

1056, 2002.



121

R. O. Stuart, W. Wachsman, C. C. Berry, J. Wang-Rodriguez, L. Wasserman, I. Kla-

cansky, D. Masys, K. Arden, S. Goodison, M. McClelland, et al. In silico dissection

of cell-type-associated patterns of gene expression in prostate cancer. Proceedings of

the National Academy of Sciences of the United States of America, 101(2):615–620,

2004.

M. Tao, Y. Wang, Q. Yao, and J. Zou. Large volatility matrix inference via combining

low-frequency and high-frequency approaches. Journal of the American Statistical

Association, 106(495):1025–1040, 2012.

T. Tony Cai, W. Liu, and Y. Xia. Two-sample test of high dimensional means under

dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 76(2):349–372, 2014.

C. A. Tracy and H. Widom. Level-spacing distributions and the airy kernel. Commu-

nications in Mathematical Physics, 159(1):151–174, 1994.

H. Trevor, T. Robert, and F. Jerome. The elements of statistical learning: data mining,

inference and prediction. New York: Springer-Verlag, 1(8):371–406, 2001.

A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

D. Venet, F. Pecasse, C. Maenhaut, and H. Bersini. Separation of samples into their con-

stituents using gene expression data. Bioinformatics, 17(suppl 1):S279–S287, 2001.

M. Wang, S. R. Master, and L. A. Chodosh. Computational expression deconvolution

in a complex mammalian organ. BMC Bioinformatics, 7(1):1–26, 2006.

A. R. Whitney, M. Diehn, S. J. Popper, A. A. Alizadeh, J. C. Boldrick, D. A. Relman,

and P. O. Brown. Individuality and variation in gene expression patterns in human

blood. Proceedings of the National Academy of Sciences, 100(4):1896–1901, 2003.

C. K. Wikle and M. B. Hooten. A general science-based framework for dynamical

spatio-temporal models. Test, 19(3):417–451, 2010.



122

W. B. Wu. Nonlinear system theory: Another look at dependence. Proceedings of the

National Academy of Sciences of the United States of America, 102(40):14150–14154,

2005.

H. Xiao and W. B. Wu. Asymptotic theory for maximum deviations of sample covari-

ance matrix estimates. Stochastic Processes and their Applications, 123(7):2899 –

2920, 2013.

H. Xiao and W. B. Wu. Portmanteau test and simultaneous inference for serial covari-

ances. Stat. Sin., 24(2):577–599, 2014.

I. V. Yang, L. G. Luna, J. Cotter, J. Talbert, S. M. Leach, R. Kidd, J. Turner, N. Kum-

mer, D. Kervitsky, K. K. Brown, et al. The peripheral blood transcriptome identifies

the presence and extent of disease in idiopathic pulmonary fibrosis. PloS one, 7(6):

e37708, 2012.

A. Y. Zaitsev. On the gaussian approximation of convolutions under multidimensional

analogues of sn bernstein’s inequality conditions. Probability theory and related fields,

74(4):535–566, 1987.

X. Zhang and G. Cheng. Bootstrapping high dimensional time series. arXiv preprint

arXiv:1406.1037, 2014.

W. Zhou. Asymptotic distribution of the largest off-diagonal entry of correlation matri-

ces. Transactions of the American Mathematical Society, 359(11):5345–5363, 2007.


	Abstract
	Acknowledgements
	Dedication
	Introduction
	Deconvolution of Transcript Profiling Data
	Introduction
	Complete Deconvolution Model in Homoscedastic Case
	Model Constraints
	Algorithm to compute the coefficient
	Asymptotic Properties of the Estimate when cell type number r=2
	Asymptotic Properties of the Estimate when cell type number r>2
	Simulation Study
	Real Data Analysis

	Equivalence of Moment Estimate and ILS in Homoscedastic Case
	Complete Deconvolution Model in Heteroscedastic Case
	Moment Estimate when W is asymmetric
	Moment Estimate when W is unknown constant and symmetric

	Proof of the theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4


	Asymptotic Inference of Maximum Cross Correlation of Stationary Process
	Introduction
	Physical Dependence Measurement
	Maximum Covariance for Bi-Variate Stationary Process
	Theoretical Results
	Simulation

	Window Sum Approach
	Theoretical Results
	Simulation

	Maximum cross correlation among multiple series
	Useful Intermediate result
	Simulation
	Real Data Analysis

	Proof
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Corollary 2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 7
	Proof of Theorem 8


	Bibliography

