Staff View
Plasma synthesis and HPHT consolidation of bn nanoparticles, nanospheres, and nanotubes to produce nanocrystalline cubic boron nitride

Descriptive

TitleInfo
Title
Plasma synthesis and HPHT consolidation of bn nanoparticles, nanospheres, and nanotubes to produce nanocrystalline cubic boron nitride
Name (type = personal)
NamePart (type = family)
Stout
NamePart (type = given)
Christopher
NamePart (type = date)
1984-
DisplayForm
Christopher Stout
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Kear
NamePart (type = given)
Bernard
DisplayForm
Bernard Kear
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Tse
NamePart (type = given)
Stephen
DisplayForm
Stephen Tse
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
co-chair
Name (type = personal)
NamePart (type = family)
Klein
NamePart (type = given)
Lisa
DisplayForm
Lisa Klein
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Carlucci
NamePart (type = given)
Donald
DisplayForm
Donald Carlucci
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2017
DateOther (qualifier = exact); (type = degree)
2017-01
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2017
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Plasma methods offer a variety of advantages to nanomaterials synthesis. The process is robust, allowing varying particle sizes and phases to be generated simply by modifying key parameters. The work here demonstrates a novel approach to nanopowder synthesis using inductively-coupled plasma to decompose precursor, which are then quenched to produce a variety of boron nitride (BN)-phase nanoparticles, including cubic phase, along with short-range-order nanospheres (e.g., nano-onions) and BN nanotubes. Cubic BN (c-BN) powders can be generated through direct deposition onto a chilled substrate. The extremely-high pyrolysis temperatures afforded by the equilibrium plasma offer a unique particle growth environment, accommodating long deposition times while exposing resulting powders to temperatures in excess of 5000K without any additional particle nucleation and growth. Such conditions can yield short-range ordered amorphous BN structures in the form of ~20nm diameter nanospheres. Finally, when introducing a rapid-quenching counter-flow gas against the plasma jet, high aspect ratio nanotubes are synthesized, which are collected on substrate situated radially. The benefits of these morphologies are also evident in high-pressure/high-temperature consolidation experiments, where nanoparticle phases can offer a favorable conversion route to super-hard c-BN while maintaining nanocrystallinity. Experiments using these morphologies are shown to begin to yield c-BN conversion at conditions as low as 2.0 GPa and 1500°C when using micron sized c-BN seeding to create localized regions of high pressures due to Hertzian forces acting on the nanoparticles.
Subject (authority = RUETD)
Topic
Materials Science and Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_7827
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (x, 149 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Boron nitride
Subject (authority = ETD-LCSH)
Topic
Nanoparticles
Note (type = statement of responsibility)
by Christopher Stout
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3PZ5C80
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Stout
GivenName
Christopher
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2017-01-08 12:48:06
AssociatedEntity
Name
Christopher Stout
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2017-01-26T19:34:58
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2017-01-26T19:34:58
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024