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ABSTRACT OF THE THESIS

Multilinear Algebra Based Techniques for Foreground and

Background Separation

by Neha Tadimeti
Thesis Director: Dr. Waheed U. Bajwa

The work presented in this thesis aims to understand the use of tensor algebra for
background and foreground separation in videos. Specifically, it tries to explore the
advantages of tensor-based approaches over the vector-based ones. In vector-based
approaches, video frames are vectorized and concatenated into columns of a matrix
for foreground and background separation. Through vectorization, one cannot explore
the multi-dimensional aspect of video frames. Recent research has shown that tensor
algebra can be helpful in extracting useful information from a multi-dimensional per-
spective. In this thesis, we propose two new algorithms which use tensor algebra to
solve for background and foreground separation.

In the first part of the thesis, we develop a mini-batch extension to Online Tensor
Robust Principal Component Analysis (OTRPCA). The proposed extension signifi-
cantly reduces the computational time in comparison to OTRPCA. It is also shown
that the accuracy levels of background separation are higher than OTRPCA for a de-
cent mini-batch size. As the mini-batch size further increases, accuracy levels fall as
the dictionary update is one-shot and non-iterative.

In the second part of the thesis, online vector-based Grassmanian Robust Adaptive
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Subspace Algorithm (GRASTA) is extended to tensor domain. The proposed Multi-
Linear GRASTA (MLG) is also an online algorithm, thus suitable for real-time appli-
cations. Unlike the vector-based implementation, MLG explores the multi-dimensional
nature of the video frames and solves for the separation problem across every dimen-
sion. MLG can process multiple frames at a time making it faster than other vector
and tensor based separation algorithms. Detailed results are discussed which show that

the accuracy of separation with MLG is competitive with the state-of-the-art.
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Chapter 1

Introduction

Subspace modeling has always been an important area of research [1-4]. Applications of
subspace models are profound in computer vision, medical imaging, etc. With the wide
spread ease of access to cameras, videos and images have become an important source
of information. However, the efficiency of usage of this information is questionable.
For instance, video surveillance cameras in most cases are visually monitored or are
used to revisit an event after it has occurred. With the current existing technology,
intelligent systems can be developed which automatically recognize activities and alert
the user of any anomalies beforehand. With such and more wide range of applications
in mind, a lot of research has been done on Human Activity Recognition (HAR) from
videos [1,5,6]. Often for HAR tasks, background of the image does not contain any
useful information. The main step in HAR tasks is to localize the human in the entire
image. Foreground and background separation techniques can automatically separate
the human from rest of the image without the need of drawing manual bounding boxes.

There are two main approaches for performing foreground and background separa-
tion. One is to go by a complete image processing perspective where the foreground
is detected by performing thresholded interest point tracking, texture recognition, mo-
tion estimation, etc. [7-9]. An alternative approach is to pose the problem as matrix
decomposition and estimation. The classical Principal Component Analysis (PCA) [10]
assumes that the background belongs to a low-rank subspace and is corrupted by ad-
ditive sparse noise. Through PCA, one estimates the basis of low-rank subspace by
maximum variance method.

Suppose for a given matrix M, L is the low rank component and S is the sparse



noise, then M can be decomposed as follows:

M=1L+S8,
where,
L - Low-Rank matrix (Background)

S - Sparse matrix (Foreground)

For a given video, background is defined as the part which is either static or has
very slow changing environment throughout the video frames. Under this definition,
we can model the low-rank matrix L as background. Similarly, foreground is defined
as the part that has relatively faster motion and does not occupy huge chunk of the
image. Under this definition, the sparse component of the matrix can be modeled as
foreground.

So, the problem formulation would be:

I}:liélRank(L) +1|S[lo subject to L+ .S = M. (1.1)

)

Here, || ||o is the lp norm defined as the number of non-zero elements in a given
matrix. However (1.1) cannot be solved via convex optimization since finding rank in
a convex setting is an NP-hard problem and /g norm is non-convex.

The problem formulation also seems ill-posed since the number of unknowns is twice
the number of known variables. But fortunately, it is possible to not only estimate the
values but also to find exact solution as is proved in [11].

PCA [10] tries to formulate (1.1) slightly differently as follows:
min ||[M — L||% subject to Rank(L) < k. (1.2)

In (1.2), || ||F is the Frobenious norm of the matrix defined as the square root of
sum of squares of all elements in a matrix. PCA is widely used as a pre-processing
step in many data-processing applications. It gives excellent results when the noise to
signal ratio is low. However, if the sparse matrix has arbitrarily large values, PCA fails
because Frobenious norm minimization cannot optimally account for gross errors and

also does not guarantee sparsity.



To make PCA robust against large but sparse errors, Candes et al. proposed Robust
PCA (RPCA) [11]. In RPCA, rank and lp norm are replaced by their convex surrogates

and then the problem can be solved via convex optimization.

min ||L||« + A||S||1 subject to L+ S = M. (1.3)
Here, || ||« is the nuclear norm of the matrix, i.e., it is the sum of all singular
values, while || || is the [; norm i.e., it is the sum of the absolute of all entries in the

matrix. The above objective function can be solved via Alternating Lagrange Multiplier
(ALM) to iteratively optimize for L, S and Y, where Y is the lagrange multiplier. A
rigorous proof about the convergence of the algorithm is provided in [11].

RPCA gives impressive results for gross noise removal tasks. However, RPCA is
a batch method. That is, RPCA relies on the nuclear norm which requires access to
entire dataset in question at once. If there are new additions in the data, the new data
has to be appended to the existing samples and RPCA has to be run again. This makes
it impractical for real-time applications.

Moreover, the above formulation works under the assumption that the low-rank
component is not sparse and sparse component is not low-rank. In applications like
background separation, often the sparse component refers to a human or some object
which moves slowly over time. This is a very strong example where the sparse compo-
nent is both sparse and low-rank.

There have been many research ideas to extend RPCA for real-time applications
[12-15]. Jiashi Feng et al. [16] proposed online robust PCA via stochastic optimization
to overcome the limitation of batch processing. In this paper, the low-rank matrix L
is re-written in matrix factorization form (L = DRT). The modified objective function

can then be written as follows:
min ||M — DRT = 8|3 + M {IDI + IRIF} + allSlh st DRT+5 =M. (1.4)

As can be seen from (1.4), the objective function is not jointly convex with respect
to D, R and T'. But, we can solve for each of the variables while fixing others. The idea

of online matrix factorization and online dictionary update is discussed in [17]. This



modification enables online separation and also adapts for changing backgrounds as the
dictionary is updated with every new frame that comes in.

Vaswani et al. [18] also proposed a version of real-time Principal Component Pursuit
(PCP) to address slowly changing subspaces and sparse matrices. In parallel, He et al.
proposed a robust online separation algorithm named GRASTA [13]. GRASTA will be
discussed in detail in Chapter 4.

All the works discussed so far have a common approach of vectorizing the input
frames. However, vectorization does not explore the multi-dimensional aspect of the
given data. There has been recent interest in exploring the possibilities of the same
task in multi-dimensional perspective using tensors. Tensors can be briefly defined as
multi-dimensional matrices. A vector is 1D tensor, matrix is 2D tensor and higher
dimensional objects are referred to as nD tensors. A detailed introduction to tensors is
provided in Chapter 2.

Goldfarb et al. [19] proposed Higher Order Robust PCA (HORPCA) which is an
extension of classical RPCA to tensors. Out of many versions of objective functions
proposed, singleton model (HORPCA-S) proved to give best results. Let’s consider
that a given N-th order tensor M can be written as the sum of a low-rank tensor £

and a sparse tensor S. The objective function can be written as follows:
N
; (@) — 1
(IOl 4 IS | LS = M. (15)

In (1.5), L® is the low-rank matrix for the corresponding mode of the tensor. The
notations of the tensor algebra and its basics are covered in Chapter 2. The nuclear
norm is minimized over all N modes of a tensor. The objective function is solved by
Alternating Direction Augmented Lagrange (ADAL). HoORPCA-S proves to have lower
error in accuracy when compared with classical RPCA. Zhang et al. [20] proposed an
alternative algebra for tensors and proposed Online Tensor Robust PCA (OTRPCA).
The details of the algorithm are presented in Chapter 6. As an exploratory exercise,
the above approach is extended to mini-batch in this thesis. The proposed mini-batch
RPCA speeds up the algorithms while maintaining the accuracy.

Sobral et al. [21] used traditional tensor algebra to propose another online tensor



RPCA algorithm with stochastic optimization. This method is formulated as below:

N
min {3 IIMO = £0 = SO+ LD+ 2llSOY (16)
=0

The above objective function basically tries to optimize for each of the modes of
the tensor. It can be solved via ADAL similar to its vector formulation. A lot of other
ideas have been explored in implementing higher-order Robust PCA. Interested readers
can refer to these works [22-25].

In this thesis, we develop a simple extension of OTRPCA to mini-batch version. This
extension significantly improves the computational efficiency of the algorithm while not
having to sacrifice accuracy.

We also propose multi-linear GRASTA (MLG), a tensor extension of the GRASTA
algorithm proposed in [13]. Detailed experiments with artificial and real datasets show
that MLG is more computationally efficient and competent in accuracy compared to

other vector and tensor based approaches like [13], [21].

1.1 Thesis Outline

Rest of the thesis is organized as follows. In Chapter 2, the reader is introduced to
tensor algebra and other mathematical conventions that will be followed in the rest of
the chapters. In Chapter 3, we extend the online Tensor RPCA to mini-batch setting.
We discuss results of various experiments to show mini-batch is faster compared to
online. Chapter 4 elaborates the GRASTA algorithm. The extension of GRASTA to
tensors is discussed in Chapter 5. Chapter 6 mainly deals with numerical experiments to
test the performance of MLG. Experiments were done using both artificially generated
data and popular background separation datasets like Lobby dataset [26]. Results show
that MLG has computational edge over vector-based GRASTA and is competitive in

terms of accuracy. Summary and future prospects are discussed in Chapter 7.



Chapter 2

Introduction to Tensors

Tensors are multi-dimensional arrays. 1-d tensors are called vectors, 2-d tensors are
matrices and n-d tensors for n > 2 are called higher-order tensors. An n-dimensional
tensor is indexed by ‘n’ indices. For example for an n-tensor A € RU1x[2xxIn) = qp
element ‘a’ in the tensor A is denoted by @i, iy is.....i,,- All the definitions in this chapter
are taken from [27].

The tensor dimensions are also defined as ways/modes/order. For instance, a 3-d
tensor is referred to as 3-way tensor or 3-mode tensor.

Keep in mind, vectors are represented with small letters with an arrow on top
(7, 7,etc.) Matrices are represented as simple capital letters (A, B, etc.) Tensors are
represented in calligraphic capital letters like (A, B, etc.) For further discussion, let us
assume a 3-tensor A. Now, we introduce the notations and their meaning with respect
to tensor A.

Let the dimensions of A be i x j x k. Each element in A is represented as a;,. where
z, y and z can range from 0 to i —1,j — 1 and k — 1 respectively. A, is called the n-th
matrix in sequence of tensor A. That is, if we imagine A to be a stack of ‘k’ matrices
of size i X j, then A(,) is the n-th matrix in the stack where n can range from 1 to k.

Tensor equivalent of matrix rows and columns are called fibers. A fiber is defined
by fixing every index but one in a tensor. A matrix column is a mode-1 fiber and a
matrix row is a mode-2 fiber. Third-order tensors have column, row, and tube fibers,
denoted by z.;i, z;.x and x;;., respectively. When extracted from the tensor, fibers are
always assumed to be oriented as column vectors.

Two-dimensional sections of a tensor defined by fixing all but two indices are called

slices. The horizontal, lateral, and frontal slices of a third-order tensor X are denoted



by X(i::), X(:7:), and X(:: k) respectively.
Tensor Frobenious Norm: The Frobenious norm of a tensor A € R>¥J*k ig the

square root of sum of squares of all its elements, i.e.,

i—1 j—1k—1

[ZUEENDID BN

=0 y=0 2=0
This is analogous to the Frobenious norm of matrices.
Tensor Product: Inner product of tensors is element wise product of two tensors.

i—1 j—1k—1

<A7 B> = Z Z Z axyzbzyz-

=0 y=0 z=0
We can see that inner product of a tensor with itself is equal to its Frobenious norm.
Tensor Matricization: Elements of any tensor can be re-arranged in many ways into
matrix form. This process is called matricization. There are many ways of matriciza-
tion; the most relevant for this thesis is mode-n matricization.

The mode-n matrix of tensor A is denoted by A . The columns of matrix A™
are the mode-n fibers of the tensor A. The order of arrangement of columns is not
important as long as the arrangement is consistent throughout operations.

Tensor Rank: Tensor A is called a rank-1 tensor if it can be written as an outer
product of 3 vectors. In general, an N-th order tensor is rank-1 if it can be written as
an outer product of NV vectors.

Rank of the tensor A is defined as the smallest number of rank-1 tensors that can
generate A as their sum. Finding the rank of tensors is an NP-complete problem [28].
For practical purposes, rank is defined as the number of components of Canonical
Polyadic (CP) decomposition that are required for a good reconstruction of the ten-
sor. CP decomposition can be seen as the tensor equivalent for matrix Singular Value

Decomposition (SVD).



Chapter 3

Online Tensor Robust PCA

The first contribution of this thesis is an extension of the online tensor robust PCA
algorithm to mini-batch setting. There are many versions of tensor RPCA [19], [21], [22].
In this chapter, we explain the online tensor RPCA algorithm and extend it to the mini-
batch setting and discuss results.

Below, we have briefly outlined the tensor algebra used in [20]. Detailed proofs can

be found in [29]. Discussion of the proofs is out of scope for this thesis.

3.1 Tensor Algebra

Given a tensor A € R™M*"2X"3 frames of a video are generally assumed to be stacked
as frontal slices of a tensor i.e., we assume that there are ng frames of size nq X no. In
the work proposed by Zhang et al. [20], the frames are arranged as lateral slices of A
i.e., there are ny frames of size nq x 1 X ng.

Let o € R11%73 he called a tubal scalar of tensor A. The t-product (represented

by *) between two tubal scalars is defined as follows:

nz—1
W)=+ = Wk)V((i - k)mod(ng)).

i=0
Given two third-order tensors A € R"1*"2X73 B ¢ R"2X"4X"3 " the ¢-product (C €

RmM>naxn3) of A and B is given as:

no—1

Cli L) =AxB= Y Ali,j,2) * B(j,1,2).

j=0
Based on the above formulation, tensor-SVD (¢-SVD) has been introduced in [29].

For a given tensor A, its --SVD can be written as A = U * S * VT where, i and V are



orthogonal tensors and S is a tensor whose frontal slices are diagonal matrices. The
proof can be found in [29].
Based upon these basics, we are now ready to describe the online tensor robust PCA

algorithm.

3.2 Online Tensor RPCA

Let’s assume a tensor Z € R™1X"2X73 gych that there are ny frames of size n; X n3. 2
can be decomposed into the sum of a low-rank tensor (X) and a sparse tensor (£) i.e.,
Z =X+ €. Given Z, the goal is to estimate X and £. Mathematically, the objective

function can be written as:

1
I}(ugi(HZ—X—EH%+)\1HXHTNN+)\2H5H1)7 (3.1)

where A\; and A\ are regularization parameters and ||X||7nyn is tensor nuclear norm
defined as the sum of singular values of a given tensor. To calculate the tensor nuclear
norm, one would need to perform ¢-SVD on the tensor which requires access to entire
dataset at once. Hence, this formulation is not suitable for real-time applications. As a
modification, X’ can be decomposed into product of a tensor basis (£) and a coefficient
tensor (R) i.e., X can now be written as X = £*R’. Both £ and R can be estimated
and optimized in an online setting. This transformation will alleviate the need for SVD
computation. However, it is important to note that the rank ‘r’ of the tensor has to be
defined by user. The algorithm does not have the capability to automatically estimate
the optimal rank. This can be done via running ¢-SVD once on few samples of dataset.
By Lemma 3.1 in [20], we can write

. n
¥y = inf {;mcn%ﬂmn%):Xzz*RT}- (32)

Using (3.2), we can re-write (3.1) as follows:

/\17”63
2

1
min §HZ—£*’RT—5H%+

min (LB +IIRIB) + dallEll st & = £5RT. (3.3

The objective function in (3.3) is not jointly convex with respect to all three variables

(L,R and &). It is convex with respect to each variable when the others are fixed.
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Consider sequentially observed data {Z1, Zs,..., Z,,} € R"*1X" Assuming that

the dictionary is fixed, the objective function in online setting can be written as follows:

A1ng
2

1
min 5[12: — £+ RT = €|} + 222 RIE + o] (3.4)

In (3.4), Z; is the i-th sequentially observed data. We can solve for R and & for
each sample through alternating minimization. When £ is fixed, estimating R reduces
to ridge-regression problem which has a closed-form solution.

When R is fixed, the objective function reduces to LASSO regression problem. £ can
now be estimated by soft-thresholding as described in [30]. Below, the soft-thresholding

Si[x] operator is given.

0, otherwise.

3.3 Extension to Mini-batch Setting

In this section we will discuss an extension of above formulation to mini-batch setting.
In general, batch-mode processing has better performance compared to online process-
ing methods. However, batch mode is much slower compared to online setting. Hence,
it is desirable to have an algorithm which is faster than the batch-mode processing and
also has better accuracy compared to online processing. Mini-batch implementations
usually fall in this trade-off. Mini-batch methods tend to be slower than online but
deliver better performance. In mini-batch processing, we process more than one frame
at a time. The choice of number of frames to process at once is empirically determined.
However, in the mini-batch extension proposed here, we show that the mini-batch pro-
cessing is both faster and has better performance compared to online method. This is
because the dictionary update step in the algorithm is not iterative; it updates only
once per sample (sample here can be single frame or multiple-frames).

The mini-batch formulation diverges from the online setting starting from (3.4).

Let the size of the mini-batch be ‘b’ i.e., instead of processing one frame at a time, we
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process ‘b’ frames at a time. Consider the input samples {21, Za,... Z,, } € R™ xbxng,

Aing
2

.1
min S[12: — £+ RT = €|+ 222 RIE + €], (36)

where R € R™*0X"3 and £ € R™M*bxns

Equation (3.6) can be solved for R by ridge-regression while keeping & fixed. £ can
be estimated via soft-thresholding when R is fixed. The dictionary or the spanning
tensor basis £ is updated as described in Algorithm 3. The proof of online dictionary
update can be found in [17]. The mini-batch extension algorithm is outlined below.
It is known that convolution in time domain is equivalent to multiplication in Fourier
domain. Since t-product is nothing but circular convolution, it is performed via Fourier
domain multiplications in the following algorithm. This transformation is more com-
putationally efficient than performing circular convolution. Tranformations to Fourier
domain and back are done through Fast Fourier Transformation (fft) and Inverse fft
(ifft). Note that fft of a tensor A along its third dimension is denoted by fft(.A, [],3) in
the following algorithms.

Mini-Batch Tensor Robust PCA (MBTRPCA) Algorithm:

Input: Mini-batch samples Z; € R™1xbxn3,

Initialize: £y € R™*™X"s Ry € R™*0Xns &) ¢ RMxbxns

1. for each mini-batch sample

2. Find Ry, & using Algorithm 2.

{Re, &} = mingr e 5[|12 — L+ RT = €T + Aing/2||RI[7 + Ao €]

- W

Compute Ay = A1 + Ry« RY, By = By + (2 — &) * R}

5. Update spanning Tensor basis £; using Algorithm 3.
. 1 T T
Ly = min itr[ﬁ (A¢ +nsMI) L] — tr(L7 By)

6. end for
.Return X = L+RT and &

IN|

Algorithm 2: Find R; and &
1. 2 = fit (2,]],3), Li—1 = fft (£4-1,]],3)
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2. while not converge do
fori=1,2,...n3do
A= (C2)T L) + D2

end for

3

4

5

6. R = ifft(7,[],3).

7. & = Sy[Zi — LiilT x Ry]
8. end while

9

. Return R;, &;.

Algorithm 3: Tensor basis update
1. Ly =Ly, Ly = Ft(L4,]],3)

2. By = fit(B4,[],3)

3.C, = A+ MT, G = f1t(C,,[],3)
4.for j=1,2,...r do

5. for k=1,2,...n3 do

6. L k) = BLIRELRGEID L £y ()
7. end for

8. end for

9. Return £; = ifft(L,[],3).

3.4 Results and Discussion

To validate the algorithm, an artificial data set of 500 frames of size 100 x 100 was
generated as the sum of a low-rank tensor and a sparse tensor. The entries of the low-
rank tensor are i.i.d. random Gaussian N (0,1). Entries of the sparse tensor are i.i.d.
random Gaussian N (0,10). The rank was pre-defined as 5. The error metric used for
the estimation of low-rank component is Relative Squared Error (RSE). RSE is defined
as following: )

L= GilF

E(t) = ——M—
RSE® = g

where £, is the estimated low-rank component and G; is the ground truth.
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OTRPCA vs MBTRPCA(b=5) - RSE

0.5 . : ,
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0.45 | ]
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" .
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Figure 3.1: RSE of mini-batch (b=>5) converges almost similar to Online Tensor RPCA.
The mini-batch implementation is 3.75 times faster than the online implementation.

RSE is measured for every input sample i.e., in the case of OTRPCA, RSE is mea-
sured after for every frame while in the case of mini-batch one RSE value corresponds
to the set of ‘b’ frames taken as input. Figure 3.1 shows the RSE curve of OTRPCA
and MBTRPCA (b = 5) across 500 frames. We notice that mini-batch convergence is
very similar to OTRPCA.

A quick re-visit to Algorithm3 shows that the subspace update is independent of
the mini-batch size ‘b’. This means that for OTRPCA the subspace update takes place
after every frame, while for MBTRPCA the subspace update happens only every ‘b’
frames. Hence, MBTRPCA is much faster than OTRPCA. Moreover, since the dictio-
nary has access to more than one frame at a time, the dictionary update also converges
faster in MBTRPCA as is seen in Figure 3.1.

Next, we test both the algorithms on the basketball video from [29]. This video has

40 frames of size 144 x 256. To these frames, i.i.d. random Gaussian noise was added
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Groundtruth: LowRank Tensor

50 100 150 200 250
Reconstructed: LowRank Tensor OTRPCA

50 100 150 200 260

Reconstructed: LowRank Tensor minibatchTRPCA

50 100 150 200 250

Figure 3.2: Low-rank reconstruction of basketball video using OTRPCA and MBTR-
PCA. The first subplot shows the ground truth and next subplots show the reconstruc-
tion by OTRPCA and MBTRPCA.

in pre-determined sparse locations. The idea is that the algorithms should successfully
separate the sparse noise while preserving the low-rank background information. The
results can be seen in Figure 3.2. We can see that MBTRPCA has separated out sparse
noise better than OTRPCA.

A total of 1000 Monte-Carlo simulations were run on both algorithms using the bas-
ketball video data set. Table 3.1 shows the RSE values of OTRPCA and MBTRPCA
for five iterations where each iteration is one run of Monte-Carlo. We observe that
the RSE of MBTRPCA is always lower than OTRPCA. Table 3.2 shows the amount
of time taken to separate 40 frames. As can be seen from the table, MBTRPCA is

approximately 3.7 times faster than OTRPCA for a mini-batch size of 5.
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LowRank Reconstructed Frame - OTRPCA

Sparse Reconstructed Frame - OTRPCA

20

120

Figure 3.3: Sparse and low-rank decomposition of basketball video without any additive
sparse noise using OTRPCA. OTRPCA does not succeed in separating humans as
sparse foreground.

Method/RSE | TIterl Iter2 | Iter3 | Iterd | Iterb | Avg RSE
OTRPCA | 0.4306 | 0.4662 | 0.4648 | 0.4304 | 0.4326 0.445
MBTRPCA | 0.3849 | 0.3581 | 0.3922 | 0.3869 | 0.4020 0.384

Table 3.1: RSE for first 5 iterations of Monte-Carlo simulation

Next, we explore if the algorithm would succeed in separating out humans from the
video when no other noise is added. We can see the results in Figure 3.3 that OTR-
PCA does not succeed. This is mainly because both the algorithms do not have any
background training phase. Also, the dictionary update algorithm as discussed previ-
ously is non-iterative, In the next chapter, we discuss an algorithm GRASTA which

overcomes the limitations of the algorithms discussed in this chapter.

Method/Time(sec) Iterl Iter2 Iter3 Iter4 Iterd Avg time
OTRPCA 275.9967 | 280.9400 | 260.1825 | 294.9070 | 280.3871 | 278.4826
MBTRPCA 90.3468 | 87.9617 | 81.6807 | 91.4076 | 85.7323 87.426

Table 3.2: Computational time for first 5 iterations of Monte-Carlo simulation
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Chapter 4

Vector-based Grassmanian Robust Adaptive Subspace
Tracking Algorithm (GRASTA)

In this chapter we discuss the background separation algorithm GRASTA [13] and form
basics for the next chapter where we extend GRASTA to tensor-setting.

Assume at time ‘t’, a vectorized image frame Uf arrives. Uj can be decomposed as the
sum of a low-rank vector (Z_Z) and a sparse vector (?g) l_; can further be decomposed
as the product of a low-rank subspace basis and a coefficient vector i.e., l_; = UtﬁT.
Ug can be written as follows:

v = U’ + 5. (4.1)

Given FZ, the task is to estimate Uy, w, and 5. The loss function for quantifying

subspace error is defined as
F(S,t) = min ||Usw! — vy]1. (4.2)
w

|| ||z is the /; norm defined as the sum of absolute values of a vector. If Uy is known
or estimated, then (4.1) can be solved via Alternating Directions Method of Multipli-
ers (ADMM). The above loss function can alternatively be written in the augmented

Lagrangian form as follows:
L(Uuws,y) =T+ 70T +F —0)+ gHUﬁ +7% - 7|3 (4.3)

where p is the regularization parameter and 3§ € R™ is the dual vector. The above
expression is not jointly convex with respect to all the variables. However, if we assume
U, is known or fixed, then rest of the variables can be easily updated using ADMM in
the following way. If all other variables except w, are fixed, then the problem reduces

to a ridge regression problem. Ridge regression has a closed form solution as long as
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the covariance matrix U/ U; is invertible.

1 oaTa o
whtt = ;(Ut U)'U (p(vy — s) — y"),

sPTL = 8T 1 (v — Uw*! —y¥), and (4.4)

T+p

ykJrl _ yk + p(ﬁwarl + SkJrl o Ut)a

is the soft thresholding operator. The augmented Lagrangian minimiza-

+p

where ST11
tion (4.4) only works when Uy is known. Hence, U; has to be updated separately. To
this end, GRASTA proposes Grassmanian subspace update. Grassmanian is the set of
all linear subspaces of fixed dimension ‘d’. It can be concisely represented as G(d,n) or
G(d, V) where ‘n’ is the ambient dimension of the vector space V. When vector space
V is real or complex, the Grassmanian is a smooth manifold. Hence it has a continuous
gradient. When a gradient step of length 7 is taken along the geodesic of Grassmanian,
we end up with the following for subspace update:

Uw;  (w;)" L (w)”

Umn) =U+ (cos(no) — 1 — sin(no ,
(n) = U (eos(no) = Dtz Twelle ~ S T Tl

where I’ = (ﬂt)* + p(Utu_J;* + 5t — Ug))(l — U,Ul). Detailed proof for this expres-
sion can be seen in [13]. GRASTA is currently the state-of-the-art for background and
foreground separation. However, GRASTA dos not consider the multi-dimensional in-
formation from the videos. In the next chapter, we try to incorporate multi-dimensional

information by extending GRASTA to tensor setting.
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Chapter 5

Multi-Linear GRASTA (MLG)

Let us rewrite the problem formulation from previous chapter in tensor setting : M =
L+ S. Here, M is the n-th order observation tensor, while £ and S are low-rank and
sparse tensors, respectively.

Suppose at time ‘¢’, an image frame M; arrives. From the above formulation, M

can be decomposed as follows

M =L+ &,

Mt = Z/[tWtT + 8157

where ¢ = 0,1, ...n are the number of modes of the tensor, I4; is the low-rank subspace,
W is the coefficient tensor, and vt(i) is the vectorized i*" mode tensor. For each mode,
if Ut(i) is known or estimated, then the above problem can be solved via ADMM. The

augmented Lagrangian form of the objective function is written as follows. For each

mode 1,

LU, 0, 50,y 0) = [lsO |1+ )T (0w 450 —o@) 4 G U w0 +50 —u] 3
(5.1)
where y(® € R” is the dual vector. The above expression is not jointly convex with

)

respect to all variables. However, if we assume Ut(i is known or fixed, then rest of
the variables can be easily updated using ADMM in following way. When all other

variables except w(?) are fixed, problem reduces to ridge regression and we can estimate
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w as long as (Ut(i))TUt(i) is assumed to be invertible:

Nl @O)T A G T i i i
wk—l—l(z) — p(Ut() Ut( ))—IU(z) (P(Ug ) _ 5( )k> o y( )k:)7

GhH1() — ST . (Ugi) _ @k +16) y(i)k)’ and

T+p

yk—i-l(i) _ y(i)k 4 p(fj(i)wkﬂ(i) 4 k10 _ Ut(i))’

where ST 1
1

is the soft thresholding operator. The augmented Lagrangian minimiza-
+p

tion only works when U; is known. Hence, U; has to be updated separately.
For a gradient step of length 7 along the geodesic of grassmanian, the updated

subspace for each mode can be written as follows :

‘ , ORNOLIOEN (D)yT
U0n) = U0+ (eosne) ~ 1) -t WL i
|| [y ] ITI o]

The results are discussed in next chapter. MLG can actually be used to process
single or multiple frames at once. We show in the next chapter that processing mutiple-
frames at once improves the accuracy as well as computational efficiency as compared

to vector-based GRASTA.
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Chapter 6

Results and Discussion

This chapter discusses various experiments done with multi-linear GRASTA and its
results. There were a series of experiments performed with the algorithm which all
revealed various advantages of the tensor setting.

Majority of the algorithms for foreground and background separation only consider
gray-scale images as input. Since MLG considers multi-dimensional input, we explore
if retaining all channel information would help in improving the foreground and back-
ground separation. For this, we take one frame at a time but as an RGB tensor instead
of a gray-scale matrix. For the experiments, we work with the Lobby video dataset [13].
The video consists of an indoor static environment where occasionally humans pass by.
Video consists of 1546 frames of size 144 x 256. Figure 6.1 shows the background and
foreground separation of RGB image using MLG. While the separation is successful, it
is observed that the accuracy of estimation has not improved as compared to using just
the gray-scale images for separation. The ground truth for foreground was available in
thresholded format i.e., all the foreground pixels correspond to 1 and background pixels
are 0. We try to compare the performance of MLG with other algorithms by measuring
error against this ground truth. For this, we perform hard thresholding on the estimated
foreground by forcing pixels less than a chosen threshold to be 0. We measure pixel-wise
error for the foreground. True positives correspond to the number of foreground pixels
that match the ground truth. False positives are the number of pixels that are wrongly

estimated as foreground. False negatives are the number of pixels that are wrongly

no. of false pos + no. of false negs
total no. of pixels in image

estimated as background. Error is now defined as Error =
MLG can process multiple frames at a time, which means that we can use MLG in

both online and mini-batch setting. We conduct experiments by varying the order of
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Figure 6.1: MLG on RGB tensor. The left most image is the input to MLG. The second
subplot shows the reconstructed foreground and the last image is the reconstructed
background using MLG.

the tensor (n) as well as the batch size (b) given as input to MLG. Table 6.1 compares

vector-based GRASTA [13] and Online Stochastic Tensor Decomposition (OSTD) [21]

algorithms with MLG in terms of performance and computational time for foreground

and background separation on Lobby dataset. For all the algorithms, time per frame

is calculated as the ratio of total-time taken for processing all frames and the total no.
total time for all frames

of frames i.e., Time per frame = 5 Eet L D80 All experiments were coded in

MATLAB and tested on an Intel core i5 with 1.7GHz clock speed and 64GB RAM.

As can be seen from the table, MLG in mini-batch setting is the fastest amongst other
algorithms. It is worthwhile to notice that none of the GRASTA versions actually have
any false positives in estimation.

Figure 6.2 shows the gray-scale reconstruction of MLG performed with a mini-batch
size of 8. We see that the reconstruction is very accurate even with a relatively big
mini-batch size. The Lobby video has dynamic lighting condition in the video frames.
The lighting of video changes over time. When the lighting changes, MLG takes about

30 frames to get adjusted to the new background which is similar to vector-GRASTA.
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Method Error | False Pos | False neg | Time per frame (sec)
GRASTA [13] | 0.0128 0 257 0.6752
MLG(b=1) | 0.0128 0 257 0.7
MLG (b=5) | 0.0132 0 271 0.01
OSTD [21] | 0.0164 84 173 0.03

Table 6.1: Time per frame and error for foreground separation on Lobby dataset. MLG
(b = 1) corresponds to processing one frame at a time, MLG (b = 5) corresponds to
processing 5 frames at a time.
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Figure 6.2: Lobby Dataset Sparse and Low-Rank reconstruction by MLG (b = 8).
The plots from left to right show input image, estimated foreground and background
respectively. The first row shows the reconstruction when there is no foreground and
the second row shows successful separation of foreground when human is present in the

frame.
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Chapter 7

Conclusion and Future Work

In the first part of this thesis, we have developed a mini-batch extension to OTRPCA.
We show that the extension helps improve performance as well as computational effi-
ciency. However, we also notice that the error in low-rank subspace estimation is pretty
high. This could be because there is no background training phase initially. One of the
future directions would be to incorporate background training to improve the results.

In the second part of the thesis, we extend vector-based GRASTA to multi-linear
setting. Two main pre-requisites of GRASTA and MLG are that the rank must be
pre-defined and the background must be pre-trained. A possible future work could
be to explore ways of smartly initializing the background with minimal or no training
required. That can further reduce the computational cost.

It would also be interesting to incorporate block sparsity or similar structured con-
straints on sparse tensors to get better separation results. Since MLG is capable of
processing multi-channel data, one can also explore using multi-spectral channel data

for improved separation using MLG.
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