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Thesis Director: Hoang Pham 

  

In the last decade, network science has been widely applied in engineering, financial, 

management and biological systems.  The study of network has emerged as a useful tool 

to investigate complex systems with interdependent components because a new set of 

theoretical tools and practical techniques have been developed to analyze data that can be 

modeled as networks.  The growing interest in network analysis encompasses the study of 

social media network structure, protein interaction network, and human brain functional 

network.  The objective of this study is to develop a new reliable framework for 

classifying network data evolved over time.   In particular, this research conducts a study 

on electroencephalographic (EEG) data as a form of multivariate time series modeled as a 

network during a period of time in which a treatment procedure called deep brain 

stimulation (DBS) is either set to be on or off.    

DBS is a procedure used to treat symptoms of neurological movement and 

neuropsychiatric disorders—most commonly for patients with Parkinson’s disease (PD) 

who do not respond well to medication.  The procedure involves the use of a surgically 
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implanted, battery operated neurostimulator to send electrical stimulation to targeted 

areas in the brain, and in PD, the brain areas targeted for stimulation are selected because 

the role that they are thought to play in controlling movements.  Currently, conventional 

DBS therapy is not suitable to be individualized: DBS is only able to deliver stimulation 

continuously and the DBS setting, such as amount of stimulation delivered, is adjusted 

based on a trial-and-error process involving subjective clinical assessment.  If DBS is 

able to deliver an adequate amount of stimulation only when it is necessary for an 

individual patient based on quantitative measurement, adjusting DBS setting will become 

a more objective process and the therapy will become more effective with less side effect. 

For such an adaptive DBS to be realized, a detectable feedback signal must be identified 

that can be used to adjust DBS setting in a feedback control system. Currently, there is 

lack of such definitive signals that are thought to be reliable as the basis for feedback.   

Electroencephalographic (EEG) recording is a clinical and electrophysiological 

monitoring tool used by physicians to diagnose and monitor patients with neurological 

conditions.  EEG measures regional electrical activity of the brain of an individual in the 

form of a multivariate time series dataset.  Because EEG has high temporal resolution on 

the order of milliseconds, it has a unique potential to measure feedback signals for DBS 

to operate in a feedback control system.   

In this study, a classification framework is developed to identify whether or not a set 

of EEG signals and its frequency components can be used to develop classifier for 

identifying EEG signals belonging to a state when the DBS is on vs. a state when the 

DBS is off.  In particular, the framework applies binary classifiers to features derived 

from networks constructed based on the multivariate EEG data.   The first part of this 
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study attempts to apply the classification framework by focusing on physiological 

frequency ranges with three different binary classifiers including logistic regression, least 

absolute shrinkage and selection operator (LASSO), and a new method known as 

principal component stepwise selection logistic regression (PCSSLR) that is developed in 

this thesis.  The second part attempts to identify potential biomarkers to be used as 

feedback control signals for an adaptive DBS device.  The results of both parts will help 

to address the question of whether or not EEG data can be used to detect feedback signals 

for use in adaptive DBS feedback control system and to establish a modeling framework 

to develop similar classifier for performing statistical classification based on network 

features to identify which group a temporal signal belongs to. 
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Chapter 1  Introduction 
 

1.1 Network and Brain Functional Connectivity 
 

Network science has been increasingly applied to study complex systems.  Example 

of systems that have recently been studied as networks include protein interaction 

network, communication network, infrastructure network, social medial network, 

financial network, and brain functional network [1].   A better understanding of the 

dynamics of these networks and the interrelationships of their components can be 

important because network features may reveal precursors of changes of the networks 

that are not easily detectable otherwise [1].  In the past decade, the understanding of 

networks has been applied in many different applications because a new array of tools 

and practical techniques has been developed to map and analyze networks [2].  In 

application s to understand different disease mechanism, for example, it is generally 

accepted now that it is not enough to identify the list of all genes associated with a 

genetic disease.  It is believed that it is also important to map the detailed connection of 

the cellular components that are influenced by such genes [2].   Brain functional 

connectivity network is another example of networks that have recently been analyzed to 

reveal discriminating network-based features using scalp EEG recordings.  In this study, 

EEG data are used to construct brain functional network for developing a classifier of a 

binary state related to a treatment procedure known as deep brain stimulation (DBS).  

Such a classifier may reveal features that can be used as potential biomarkers to assess 

treatment effects of deep brain stimulation and, ultimately, lead to the realization of 

reliable feedback control system of DBS in Parkinson’s disease (PD). 
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1.2 Electroencephalography (EEG) 
 

Electroencephalographic (EEG) recording is a clinical tool used by physicians to 

diagnose and monitor patients with neurological disorders [3]. An EEG recording records 

electrical activity of the brain of an individual in the form of a multivariate time series 

dataset. It is especially important for patients with epilepsy.  Abnormalities in EEG 

recording are used in clinical setting to confirm diagnosis of epileptic seizures [4]. In 

addition, accurate interpretation of EEG data by physicians is the key to monitoring other 

disorders including sleep disorders, coma and brain death [3]. 

1.2.1 Electroencephalographic Artifacts 

 

EEG recordings can become contaminated by data captured from non-cerebral 

signals.  The recordings often include electrical activity of both cerebral and non-cerebral 

origin [5].  The recoding activity that is not of cerebral origin is called artifact. EEG 

signals are susceptible to different types of artifacts, including ocular, muscular, 

movement and environmental types.  An EEG recording contaminated with artifacts 

reduces its interpretability by clinicians and neurologists [6].   

To overcome this problem, existing diagnostic systems commonly depend on 

experienced clinicians to manually select artifact-free epochs from EEG recording.  The 

clinicians would use only the artifact-free epoch from the EEG data to interpret the EEG 

signals from the patients. In addition, different approaches of recognition, source 

identification, and elimination of artifacts have also been developed to reduce 

misinterpretation of EEG recordings contaminated with different types of artifacts [7]. 
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1.3 Deep Brain Simulation (DBS) 
 

In recent years, deep brain stimulation neurostimulator (DBS) implant has become 

increasingly common among patients with neurological and psychiatric disorders [8].  

The DBS implant is a medical device that sends electrical impulses in the brain for 

treatment of movement and psychiatric disorder. Implanting a DBS involves surgical 

placement of electrodes into a number of specific anatomical structures including the 

ventrointermediate nucleus of the thalamus (VIM), globus pallidus internus (GPi), and 

subthalamic nucleus (STN) of the patient’s brain [9]. This procedure has been approved 

as treatment for treatment-refractory Parkinson’s disease and medication-resistance form 

of major depressive disorder.   In Europe and Canada, deep brain stimulation has also 

been approved by regulatory agencies to use as treatment to control epileptic seizures.  

1.3.1 Deep Brain Stimulation and Electroencephalographic Aliasing Artifacts 

 

Deep brain stimulation neurostimulator, however, has been shown to induce a 

peculiar form of aliasing artifacts in EEG recordings [10].  Jech at al. (2006) described 

these artifacts as distinctive vertical lines in power spectrum of EEG recordings 

contaminated with DBS-induced artifacts [8] that overlap with cerebral waveforms in 

frequency spectral density. These vertical lines occur at dominant frequencies that are 

harmonics of the stimulation frequency programmed for the DBS neurostimulator and 

occur due to aliasing [10].  Because there are indications that U.S. Food and Drug 

Administration will approve deep brain stimulation procedure as a treatment option to 

control seizure for patient with epilepsy in the United States., more patients with 

epilepsy, who would normally require EEG monitoring their conditions, will likely 
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receive deep brain stimulation as a treatment option.  However, DBS treatment will 

introduce EEG artifacts that overlap with cerebral waveforms in EEG recordings for this 

group of patients and significantly interfere with accurate interpretation of such EEG 

recordings by neurologists.  

1.3.2 Aliasing Artifact 

 

Aliasing is an undesirable effect arising from discrete-time sampling.  The Nyquist 

theorem states that at least twice the frequency of input signals are needed to accurately 

define the signals.  To accurately measure frequency (f) of a signal, it is necessary to use 

a sampling rate that is at least 2f.  If a sampling rate (2f) is used to measure a signal at 

frequency greater than f, the measured signals will contain aliasing artifacts [10].  This 

situation is relevant to DBS-induced aliasing artifacts because DBS electrical stimulation 

frequency of many clinical cases is programmed at a frequency just above the Nyquist 

frequency given a normal EEG sampling rate of 200Hz. For example, if DBS device is 

programmed to deliver electrical pulse at stimulation frequency of 105 Hz, DBS artifacts 

in EEG recordings will likely appear.  

Aliasing artifacts are false signals. This kind of artifacts has frequencies appear as 

mirror images of the original frequency and its harmonics around the Nyquist frequency 

as illustrated in Figure 1. 
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Figure 1. Stylized illustration of aliasing artifacts due to undersampling. 

 

In Figure 1, the aliased signal has frequency fa which occurs due to aliasing effect of 

the original signal which has frequency of 70 MHz.  In this illustration, R is the sampling 

frequencies at 100Hz and fN is the Nyquist frequency at 50Hz.  

The frequency of the aliased signal can be predictable and is found by 

fa=|R n - fs| 

where fa is aliased frequency, n is an integer multiple of sampling rate R and fs is 

frequency of the signals or its harmonic frequencies [10]. 

1.3.3 Frequencies of Electroencephalographic Aliasing Artifact Associated with 

Deep Brain Stimulation 

 

DBS artifacts consist of alias frequencies derived from the stimulator frequency and 

its harmonics [10].  According to Nyquist sampling criterion, when the sampling rate is 
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not sufficiently high to capture a signal, alias frequencies can be predicted based on the 

signal frequency of interest and its harmonics.  In the case of DBS artifacts in EEG data, 

it was shown that alias frequencies can be predicted up to a variable degree of accuracy 

[10]. However, predictability of the energy level of such kind of artifact remains elusive.  

Different EEG channels may have different patterns of alias, reflecting differences in 

how DBS signals are perceived at each electrode location due to volume conduction of 

inhomogeneous tissue.       

Because of the sampling rate of 200 Hz, if the programmed DBS stimulation 

frequency is over 100 Hz, a series of aliasing artifact may appear in the sampled EEG 

time series data.  For example if a DBS implant is programmed to stimulate at 105 Hz, 

then the following aliased frequencies may appear in any EEG electrode recording. 

105 Hz Signal 210 Hz Signal 420 Hz Signal 

F N Fa*(N)<100Hz F N Fa*(N)<100Hz F N Fa*(N)<100Hz 

105 1 94.95 210 1 10.1 420 2 20.2 

210 1 10.1 420 2 20.2 840 4 40.4 

315 2 84.85 630 3 30.3 1260 6 60.6 

420 2 20.2 840 4 40.4 1680 8 80.8 

525 3 75.75 1050 5 50.5    

630 3 30.3 1260 6 60.6    

735 4 65.65       

840 4 40.4       

945 5 55.55       

1050 5 50.5       

1156 6 44.45       

1261 6 60.6       

 

The aliased artifacts distort the underlying cerebral signals captured in EEG 

recordings. The most prominent issue occurs if aliased artifacts occurs among the alpha 

band (7-13 Hz) and beta band (13-31Hz) because these frequencies overlap with cerebra 

signals that can be captured in EEG recordings.  The overlapping of the aliasing artifacts 
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and cerebral signals can lead to difficulty for physicians to accurately interpret findings 

from EEG recordings, potentially leading to either false positive or false negative 

diagnoses. 

In this study, a proposed classification framework will be applied to such aliasing 

EEG artifacts associated with DBS at specific frequency ranges.  These aliasing artifacts 

will be used as a first attempt to develop a classifier that discriminate an EEG time 

segment associated with the DBS-on state from the DBS-off state.    

1.4 Physiological EEG Frequency Bands 
 

Most of the cerebral signals captured in clinical EEG recordings are within 1- 20Hz.  

Waveforms observed in EEG recordings are subdivided into frequency bands.  

Bands Frequency (Hz) 

Alpha 7-13 

Beta 13-31 

Gamma 32+ 

 

These cerebra signals are directly related to the physiological state of a patient.  In 

this study, the propose classification framework will be applied to these the alpha and 

beta frequency bands.  The application of the classification framework will attempt to 

develop a classifier that can discriminate an EEG time segment associated with the DBS-

on state from the DBS-off state.    

1.5 Electrodes Placement 
 

EEG recording is performed by placing electrodes on the scalp of an individual. The 

placement of the EEG electrodes in a clinical setting follows the 10-20 system 
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convention.  This system was developed to ensure standardized EEG recordings that can 

be compared over time and among patients [6].  The electrode names included in this 

convention are Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, 

and O2.   Figure 2 shows the 10-20 system map of the electrodes.  In a clinical setting, 

the actual EEG data read by clinicians are channels data which are calculated as the 

difference between a given pair of neighboring electrode in order to eliminate some 

amounts of artifacts. For example, the Cz-Pz channel represents the difference of the data 

recorded for electrode Cz and electrode Pz. 

 

Figure 2. 10-20 system used in placement of EEG electrodes 

 

1.6 Binary Classifier 
 

There is a number of methods that are commonly used to developed binary classifier. 

In this study, the following methods are used to train and test the classification model. 

1.6.1 Logistic regression  

 

Logistic regression estimates the relationship between the dependent variable and the 

independent variables by applying the logistic function to estimate probability of a data 

point belonging to a class represented by the dependent variable.  For binary 
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classification problem, the dependent variable can take either one of two values 

representing the classes. 

Given m independent variables, the logistic regression uses the following logistic 

function to estimate the probability of the dependent variable to be either one of the two 

classes. 

𝐹(𝑥) =
1

1 + 𝑒−(𝛽0+ 𝛽1𝑥1+⋯+𝛽𝑚𝑥𝑚)
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Chapter 2  Literature Review    

2.1 EEG Brain Functional Connectivity Networks 
 

In order to model and analyze EEG data, a number of recent studies have applied 

network science to model EEG data as complex brain functional connectivity networks.  

Zeng et al constructed EEG connectivity network from EEG data with characteristics of 

mean clustering coefficient and path length to assess whether or not such complex 

network-derived biomarkers can be effectively used to track cognitive impairment of 

patients with diabetes [11].  Jalili used correlation of EEG data from healthy subjects to 

construct binary connectivity network and computed global and local efficiency in order 

to compare and contrast network characteristics of left and right cerebral hemispheres 

[12].  Tóth et al analyzed brain connectivity network using EEG recordings with phase 

synchronization in different frequency bands to identify potentially predictive 

characteristic feature of mild cognitive impairment [13].   Sargolzaei et al proposes 

developing a method based on brain functional connectivity networks using scalp EEG 

data to classify whether a pediatric patient has epilepsy or not [14].   

2.2 Biomarkers of Parkinson’s Disease and Deep Brain Stimulation 
 

A number of studies have established from Parkinson’s disease (PD) patient 

receiving DBS that power spectra tend to show high level of synchronization activity 

over the range of 13 – 30 Hz when recorded in the off-medication state [15].  Studies 

have shown that beta activity is suppressed with levodopa treatment and DBS treatment 

[15].  These studies point to an example of a potentially universal signal that can be used 

to discriminate effects of DBS treatments in patients with PD. 
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2.3 Existing Studies of Inter-channel Relation Analysis of EEG Data 
 

Inter-channel similarity and dissimilarity of EEG data are traditionally analyzed 

using several different numerical metrics.  The common methods to calculate associations 

in neurophysiological records are described in the following section.  These methods 

include linear correlation, coherence, mutual information and phase lag index [4].   

2.3.1 Linear Correlation 

 

The most common method applied in the literature to estimate inter-EEG-electrode 

relation is linear correlation in the time domain [4].  It is widely used to measure 

correlation between spikes discharges in microelectrodes studies.  The correlation 

between two discretized EEG signals, x(t) and y(t), is defined by Pearson correlation 

coefficient 

𝜌𝑥𝑦 =  
𝑐𝑜𝑣[𝑥(𝑡), 𝑦(𝑡)]

√𝑣𝑎𝑟[𝑥(𝑡)] √𝑣𝑎𝑟[𝑦(𝑡)]
 

 

𝜌𝑥𝑦 =  
∑ (𝑥(𝑘) − 𝑥̅)(𝑦(𝑘) − 𝑦̅)𝑁

𝑘=1

√∑ (𝑥(𝑘) − 𝑥̅)2 ∑ (𝑦(𝑘) − 𝑦̅)2 𝑁
𝑘=1

𝑁
𝑘=1  

 

Linear correlation compares the amplitudes of the signals in order to quantify the co-

movement of the data series over a measurement domain such as temporal domain.   

Pearson correlation coefficient estimates association between any two sets of data 

sets and is bounded from -1 to 1.  A value of -1 implies a perfect inverse linear relation 

between the two data sets whereas a value of 1 signifies a perfect direct linear relation.    
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2.3.1.1 Limitation 

 

The major limitation of linear correlation is that it measures only linear relations. 

Non-linear relation between two given signals is usually not sensitive enough to be 

detected as significant association by the use of linear correlation. Thus, the use of 

Pearson correlation coefficient may underestimate association between two EEG 

electrode recordings if the EEG recordings exhibit nonlinear relation.  Several studies, 

however, have found that linear correlation can perform as well as other nonlinear 

association measures when applied to neurophysiological data [16]. Linear correlation of 

a sampled set of data also does not converge to one finite value if the data sets are not 

stationary.  The estimate of correlation using Pearson correlation coefficient changes over 

time if the underlying x(t) and y(t) have means and variances change over time. 

2.3.2 Coherence 

 

Coherence is a measure of association of two signals in the frequency domain using 

cross-spectrum and power spectral density functions [4].  Coherence quantifies how 

similar two signals are in terms of phase difference and frequency. 

Coherence between two discretized EEG signals x(t) and y(t) is defined as 

𝐶𝑜ℎ𝑥𝑦(𝑓) =
|  𝑃𝑥𝑦(𝑓)|

2

𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)
 

where Pxy is the cross-spectral density of signal x and signal y, Pxx and Pyy are the power 

spectral density functions of x(t) and y(t).   
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Coherence estimates is a function of frequency and has values over the range of 

[0,1].  Coherence indicates how well a signal x corresponds to another signal y at a given 

frequency. 

If two sinusoidal signals are perfectly coherent, then the two signals can result in 

stationary interference. 

2.3.3 Mutual Information 

 

Mutual Information (MI) measures association between two signals based on 

information theory [4].  MI quantified the amount of information that are known about a 

signal, x, with the use of another signal y. An estimate of MI (x,y) measures the amount 

of uncertainty reduction in a signal x due to what is already known about the signal y.  

MI of two discrete signals x and y is defined as  

𝑀𝐼(𝑥, 𝑦) = ∑ ∑ 𝑝(𝑥, 𝑦)log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 

where p(x, y) represents the joint probability distribution function of x and y,  p(x) and 

p(y) are the marginal probability distribution of x and y. 

Given x and y are independent, MI(x,y) = 0.  If x is a function of y and there is no 

uncertainty in this functional relation, MI (x,y) is equal to the amount of uncertainty 

contained in x or y alone. Specifically, this amount of uncertainty is represented as 

information entropy 𝐻(𝑥) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖)
𝑛
𝑖=1  for x or  

𝐻(𝑦) = − ∑ 𝑃(𝑦𝑖)𝑙𝑜𝑔𝑃(𝑦𝑖)
𝑛
𝑖=1  for y.  MI is lower bounded by 0. Its upper bound 

depends on entropy of x or y such that  
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𝐼(𝑥, 𝑦) ≤ min [𝐻(𝑥), 𝐻(𝑦)]. 

2.3.4 Phase Lag Index 

 

Phase lag index (PLI) measures asymmetry of phase difference distribution between 

two signals calculated based on instantaneous phases. In EEG recordings, PLI is known 

to be less affected by influence of volume conduction due to signal sources that generate 

large electrical fields that propagate to more than one electrode [17]. 

In particular, PLI measures statistical interdependencies between two signals by 

focusing on the strength of association due to consistent and nonzero phase lag between 

the signals that cannot be explained by volume conduction from a single strong source 

[18]. PLI is defined as  

Φ ≡ | < 𝑠𝑔𝑛[sin (Δ𝜙(𝑡𝑘))] > | 

where < g > represent average of all element of g and Δ𝜙 is the phase different between 

two signals for each time point k. PLI has value ranges over the interval [0,1]. A PLI 

value of 1 indicates phase differences due to interactions not relating to volume 

conduction and noise.   

2.4 Existing Studies of Network Analysis 
 

A large number of existing studies involved with EEG data focus on using 

undirected networks to gain insight of network characteristics [19].  An undirected 

network is defined with a set of nodes and links with no specific orientation. A link 

represents a quantitative measure of relation between two nodes. The link from a node of 
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x to a node y is identical to the link from the node of y to the node of x in an undirected 

network. 

In the context of EEG data, nodes may represent the channels that capture signals 

from the brain while channels represent brain region.  Link may represent connections 

between channels or brain regions. These connections can be quantified using a range of 

metric.    Existing studies have used different inter-relation methods to quantify 

association among EEG channels or brain region. These methods include linear 

correlation, coherence, mutual information and phase lag index [4]. 

In order to construct a network for EEG data, a connectivity matrix  

𝐴 = [𝑎𝑖𝑗] 

is used to quantify all connection among the EEG-related nodes.  Two different types of 

connectivity matrix are used in existing studies.  

2.4.1 Binary Network 

 

A binary network is constructed by converting a connectivity matrix using a 

threshold.  Specifically, aij is set to be 1 if the underlying interrelation measures between 

node i and node j is > τ where τ is a pre-defined threshold, and 0 otherwise.  Because a 

pre-defined weight is used as threshold, this method is known as hard thresholding [19].  

Hard thresholding the interrelationship measure results in an unweighted network. 

Because hard thresholding encode connections between nodes in a binary fashion, it is 

sensitive to the choice of the threshold. 

2.4.2 Weighted Network 
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A weighted network is constructed with links that have weights assigned.  

Specifically,  aij is set to have a quantitative value assigned.  Unlike in a binary network, 

the connectivity matrix does not only have value of 0 or 1.  Rather, the connectivity 

matrix has values within a range. In practice, the connection matrix is normalized based 

on the mean weights in the matrix such that each aij can represents a Z-score calculated 

based on the mean and standard deviation of all  aij [19]. 

2.4.3 Relevant Network Measures from Existing Studies  

 

Network measures can be used to detect patterns of electrical signals and artifacts of 

EEG recordings.  The following describe the mathematical definitions of network 

measures commonly used to quantify EEG-based binary and undirected network [19].  

2.4.3.1 Basic Notation and Concept 

 

Given N is a set of all nodes in the network, n is the total number of nodes, L is the 

set of links in the network, and l is number of links.  (I, j) is link between nodes i and j 

where both i and j are in the set of N. aij  is the connection measure between i and j such 

that  aij = 1   where (i,j) exists and aij = 0  otherwise [19].  The number of links, l, is 

defined as 

l= ∑ aij

i,j∈N

 

2.4.3.2 Degree  

 

Degree is the number of links connected to a node and is defined as 
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𝑘𝑖 = ∑ 𝑎𝑖𝑗

𝑗∈𝑁

 

 

2.4.3.3 Shortest path 

 

Shortest path is a quantity used to measure integration of the network. The shortest 

path between node i and j is defined as  

𝑑𝑖𝑗 = ∑ 𝑎𝑢𝑣

𝑎𝑢𝑣∈𝑔𝑖↔𝑗 

 

where gi↔j is the shortest path between node i and j. 

2.4.3.4 Number of Triangles 

 

Number of triangles is a quantity used to measure segregation of network. The 

number of triangles around a node i is defined as 

𝑡𝑖 =
1

2
∑ 𝑎𝑖𝑗𝑎𝑖ℎ𝑎𝑗ℎ

𝑗,ℎ∈𝑁

 

2.4.3.5 Segregation Metrics 

2.4.3.5.1 Clustering coefficient 

 

Clustering coefficient of a network can be defined as  

𝐶 =
1

𝑛
∑ 𝐶𝑖 =

1

𝑛
∑

2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁𝑖∈𝑁

 

where Ci is the clustering coefficient of node i. A clustering coefficient of a node i 

measures the degree to which nodes in a graph tend to cluster together.  
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2.4.3.5.2 Efficiency  

 

Efficiency of a network measures how efficiently the network exchanges 

information. The local efficiency of a node i characterizes how well information is 

exchanged by its neighbors even if the node is removed. 

𝐸𝑙𝑜𝑐 =
1

𝑛
∑ 𝐸𝑙𝑜𝑐,𝑖 =

1

𝑛
∑

∑ 𝑎𝑖𝑗𝑎𝑖ℎ[𝑑𝑗ℎ(𝑁𝑖)]
−1

𝑗,ℎ∈𝑁,𝑗≠𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁𝑖∈𝑁

 

where Eloc,i is local efficiency of node i, and dj, h(Ni) is the length of shortest path 

between j and h that contains only neighbors of i. 

2.4.3.5.3 Modularity 

 

Modularity of a network measures strength of a subdivision of a network. Network 

with high modularity has many connections between nodes within modules but only 

sparse connections between nodes in different modules. 

𝑄 =
1

𝑙
∑ (𝑎𝑖𝑗 −  

𝑘𝑖𝑘𝑗

𝑙
) 𝛿𝑚𝑖,𝑚𝑗

𝑖,𝑗∈𝑁

 

where mi is module containing node i and 𝛿𝑚𝑖,𝑚𝑗
= 1 if 𝑚𝑖 = 𝑚𝑗 , and 0 otherwise. 

2.4.3.6 Centrality Metrics 

 

Centrality metrics are used to identify the node that is the most important for a given 

network. 

Closeness centrality is defined as 

𝐿𝑖
−1 =

𝑛 − 1

∑ {𝑑𝑖𝑗}𝑗∈𝑁,𝑗≠𝑖
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Betweenness Centrality is defined as 

𝑏𝑖 =
1

(𝑛 − 1)(𝑛 − 2)
∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗
ℎ,𝑗∈𝑁,ℎ≠𝑗,ℎ≠𝑖,𝑗≠𝑖

 

where ρhj is the number of shortest path between h and j, and ρhj  is the number of 

shortest path between h and j that pass through i. 

2.4.3.7 Measure of Resilience 

 

Degree of distribution defines the cumulative degree distribution of the network 

𝑃(𝑘) = ∑ 𝑝(𝑘′)

𝑘′≥𝑘

 

where p(k′) is the probability of a node having degree k′. 

 

2.5 Limitations and Challenges 
 

To analyze physiological alpha band, beta band and aliasing artifacts of DBS, it is 

necessary to isolate signals around the few artifactual frequencies.  Many existing studies 

of inter-channel relation of EEG data apply linear correlation of magnitude of signal in 

the time domain.  Since the raw EEG data consist of signals as a mixture of a spectrum of 

many frequencies, results obtained from analyzing network characteristics of raw EEG 

data are based on all available frequencies including both cerebral electrical signal and 

non-cerebral artifacts. As a result, time-based linear correlation and mutual information 

are not directly applicable to analyze EEG data of a particular frequency range.     
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2.6 Open Problems 
 

Network analysis is a useful approach to analyze connection measurement among 

EEG multi-channel data set as a complex system with inter-related components. 

 In order to model network effects specific related to alpha band, beta band and 

aliasing artifacts in EEG signals that are associated with DBS, an alternative 

modeling framework, including metrics and workflows, is needed.   

 In the context of DBS-associated effects, comparing network constructed with 

EEG data recorded while DBS was on and off for different physiological 

frequency ranges of alpha and beta bands may lead to insights of which 

combination of frequency ranges and channels may be used as potential 

biomarkers for the purpose of elucidating behavior of the EEG data as a network 

system.    
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Chapter 3  Research Objective and Problems 
 

3.1 Framework of Developing Classifier for EEG Networks 
 

The overall motivation of this study is to contribute to identify potential biomarkers 

that can be used as feedback signals in a DBS feedback control system.  An objective to 

achieve is to develop a framework to analyze the EEG segments over a particular 

frequency ranges as a network system.  A modeling framework suitable to capture 

behavior of EEG signals over time would likely lead to better classification performance 

of EEG segments associated with DBS.  In developing such a modeling framework, it is 

important to recognize that both prediction results and interpretability of the prediction 

results are important to clinicians.  Figure 3 summarizes the general process of 

developing and applying such a classification modeling framework. 
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Figure 3. Conceptual illustration of workflow involved in developing classification model using EEG channel data 
and network information to differentiate DBS-on vs. DBS-off state. 
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One relevant proposed idea to overcome the limitation of time-based correlation as a 

metric of association among EEG channels is to propose a new metric to measure 

association among EEG channel data that would focus on only the effect of EEG data 

over a particular frequency range.  In this thesis, a metric that is being developed is based 

on Pearson correlation coefficient that is computed over the frequency domain rather than 

over the time domain.  

The EEG recordings with DBS artifacts using 10-20 EEG system consist of temporal 

data recorded from 18 channels.  Using Pearson correlation coefficient of 1-minute 

discrete Fourier transform spectrum of original 19 electrode recordings with 200 Hz 

sampling rate, it has been demonstrated  in a previous study conducted hat there can be 

significant correlation among subsets of these 19 EEG electrode data using clinical data 

obtained from neurology cases.  In addition, the correlation coefficient is time-varying. 

However, the Pearson correlation coefficients previously investigated measure spectrum 

correlation based on the entire spectral range of 0 – 100 Hz. Thus, the analysis did not 

specifically address correlation of the frequencies at which alpha activity, beta activity or 

DBS artifacts occur.  In this study, specific frequency range corresponds to alpha activity, 

beta activity and DBS artifacts are selected separately to develop networks based on 

correlation among the selected frequency range.  These networks are then used to derive 

network metrics to be used as features in developing classification model for 

differentiating EEG data recorded while DBS is on versus DBS is off. The resulted 

classification model will lead to biomarkers for identifying effects of DBS on 

physiological frequency range of EEG recordings and/or brain activity as recorded by 

EEG devices. 
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3.2 Classification of EEG Data Using Network Characteristics  
 

A main objective is to apply the proposed framework to model and to classify EEG 

data into DBS-on versus DBS-off based on characteristics of network constructed using 

association matrices focusing on isolating effects of alpha band, beta band and potential 

DBS aliasing artifact frequency ranges. The association metrics used in this study is 

Pearson correlation in frequency domain.  Frequency based correlation can isolate effects 

of a particular frequency ranges from EEG channel data.  The classification model is built 

by using training and testing EEG data sets focusing on network characteristic of 

clustering coefficient because clustering coefficient has previously been shown to lead to 

good binary classification performance for distinguishing EEG frequency correlation 

network into DBS-on or DBS-off states. The end result is a classification model that can 

be used to predict if a particular EEG data set was recorded while a DBS device is on or 

off.  The classification framework based on association among EEG channel data would 

represent method to isolate network features that are likely to be important in assessing 

treatment effects of DBS in patients with Parkinson’s disease.  

3.2.1 Classification Models based on Artifacts 

 

The classification framework is applied to attempt to use specific correlation of DBS 

artifacts among the 18 channel dataset to develop a classifier.   The correlation analysis is 

applied to a narrow range of frequencies around the artifactual frequencies such as 

10.1Hz, 20.2Hz, 30.3Hz and 40.4Hz.   The result would demonstrate associations among 

artifacts in the 18 channel recordings.  Since the characteristic of these artifacts are 

unique when DBS is on, the classifier developed should indicate predictive relationship 
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that can be used in classifying EEG data into DBS-on versus DBS-off categories.  The 

result of this part of the study will serve as a baseline control for comparing binary 

classifier performance with those resulted from physiological frequency bands. 

An objective criterion to assess relative performance of binary classifiers is Area 

Under Curve (AUC) of the corresponding Receiver Operating Characteristic (ROC) 

curve of the binary classifiers. 

3.2.2 Receiver Operating Curve (ROC) and Area Under the Curve (AUC) 

 

3.2.2.1 Receiver Operating Curve (ROC) 

 

Receiver Operating Characteristic (ROC) curve is a graphical tool that shows the 

performance of a binary classifier.  More specifically, a ROC curve is created by plotting 

True Positive Rate (TPR) against False Positive Rate (FPR) for various thresholds that 

are used to obtain the binary classification result of a binary classifier.  A ROC curve is 

used for various purposes.  This kind of plot provides  

1) An analytical tool to select an optimal threshold to apply for creating binary 

classification result of a binary classifier; and 

2) An indicator of relative performance of a binary classifier over the range of 

possible threshold. 

In this study, ROC is used to evaluate and compare the binary classification 

performance of different binary classifier over the range of all possible thresholds.  Such 

an evaluation will be useful to assess the binary classification performance of a given 

classifier over all possible range of cutoffs for the purpose of binary classification.   
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In an ROC curve, a completely random guess would result in a point along the 

diagonal line from the bottom left to the top right corners.  This diagonal line is also 

known as line of no-discrimination.   The perfect binary classifier with the best possible 

prediction result would give a point in the upper left corner of the ROC space with 0% 

FPR and 100% TPR.  An example ROC curve is show in Figure 4. 

3.2.2.2 Area Under the Curve (AUC) 

 

Area Under the Curve (AUC) is the normalized area between the ROC curve and x-

axis of the ROC space. The AUC of a binary classifier can be used to quantify the binary 

classification performance of a binary classifier.   AUC ranges from 0 to 1.  An AUC of 1 

indicates that a binary classifier has a perfect binary classification performance and an 

AUC of 0.5 indicates a binary classifier has a random classification performance.  An 

illustration of AUC is shown in Figure 4. 
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Figure 4. Example Receiver Operating Curve and illustration of Area Under the Curve. 

 

3.2.3 Classification Model based on Physiological Frequency Ranges 

 

After applying the classification framework to example EEG artifacts related to DBs, 

the same classification framework is applied to alpha frequency band and beta frequency 

band to attempt to build a binary classifier for DBS on and off state based on frequency 

AUC: Area under 

the curve is the area 

bounded by TPR vs 

FPR curve and the 

x-axis 
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ranges with physiological significance.  The alpha band consists of signal over 7-13 Hz 

and the beta band consists of brain activity over 13-31 Hz.  The result of a classifier that 

can discriminate DBS-on vs. DBS-off state would likely point to network features of 

alpha or beta activities over different brain regions that can be used to assess treatment 

effects of DBS for patients with Parkinson’s disease. 
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Chapter 4  Research Data 
 

De-identified set of EEG recording (12 hours duration) from a patient undergoing 

chronic bilateral subthalamic nucleus (STN) DBS treatment for Parkinson’s disease is 

used in this study. Of the 12 hours of EEG recording, 6 hours of recording were recorded 

while DBS was on and 6 hours of data were recorded while DBS was off.  The DBS was 

performed with an implanted Medtronic Activa PC deep brain stimulator [10].  The EEG 

data was acquired using a Nihon Kohden EEG-1200 system. 

4.1.1 Clinical EEG Data and DBS Aliasing Artifact   

 

Recognition of DBS artifacts is essential in understanding the importance of these 

artifacts. An example of EEG recordings before and after DBS was turned off is shown in 

Figure 5.  
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Figure 5. EEG Recording with DBS turned on and DBS turned off. The blue vertical line separates the 18-channel EEG 
data when the DBS was turned on versus when the DBS was turned off. Note that 10 Hz artifacts in Fp2-F8, P4-O2 
and P3-O1 channels are especially noticeable. 

 

According to Figure 5, the DBS aliasing artifacts observed for this EEG recording 

were diffuse and especially visible with 10 Hz frequency.  Converting the signals into 

frequency-based signal using fast Fourier transform reveals frequency characteristics of 

the EEG recordings contaminated with DBS-induced aliasing artifacts as shown in Figure 

6 [10]. 
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Figure 6  Example of EEG channel data in frequency domain. Notice the vertical artifactual signals at approximately 
10Hz, 20 Hz, and 40 Hz. 

 

Figure 7shows the spectrum of the EEG data for each channel.  The vertical lines are 

the DBS aliasing artifacts. These artifacts are prominent when DBS is on.  When DBS is 

off, the artifacts are no longer visible in EEG spectrum in shown in Figure 8. 
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Figure 7 Spectral density estimate of EEG data with DBS-on over an approximately 6-hour period. 
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Figure 8 Spectrum of EEG signals with DBS-off over an approximately 6-hour period. 
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Chapter 5  Research Methods 
 

5.1 Modeling Framework for Research Problem 
 

To quantitatively measure dependency among the electrode signals, a newly 

proposed method to measure association in frequency among discretized signals is used.  

Specifically, Pearson correlation coefficient of EEG electrode signals over a range of 

frequency in the discrete Fourier transform (DFT) of the original EEG data is estimated 

for 6-minute time window sample.  The range of frequency of interest corresponds to the 

artifactual frequencies resulted from aliasing effects of DBS signals and physiological 

frequency ranges with artifact removed.  A 6-min data sample consists of 72,000 data 

points for each of the 19 channel data set. 

A modeling framework is developed as summarized in Figure 9.  The steps are 

summarized as followed: 

 The multi-channel EEG data is processed into 6-min time segments for both DBS-

on and DBS-off labelled dataset.    

 Two thirds of data from DBS-on and DBS-off group is retained as training set and 

the rest as test set.   

 Pearson correlation coefficient is used to construct association matrix among 

channel data for each 6-min EEG segment.  The association metrics are calculated 

based on a small range of frequency around the artifactual frequencies for 

modeling artifact effects and on the physiological frequency ranges with 

artifactual frequency range removed.  For the dataset used, the artifactual 
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frequencies are 10.1 Hz, 20.2 Hz, 30.3 Hz and 40.4 Hz. The association metrics 

are also calculated based on 4 subsegments of the physiological frequency range 

including alpha bands (7Hz -9 Hz, 11Hz-13 Hz) and beta band (13Hz-19Hz, 21-

29Hz). 

 Based on the association matrix, construct binary undirected network.   

 A set of network measures are computed for each channel for each 6-min EEG 

segment.  Results derived from network can be compared among networks 

constructed over different frequency ranges. In this thesis study, the network 

measure of clustering coefficient is used as the predictor variables in the binary 

classifier of EEG data recorded when DBS is on vs. DBS is off.  

 For each 6-second EEG segment, several binary classifier models including 

logistic regression and other models (which will be introduced in section 7) are 

used to train the model separately for each network characteristics.  The response 

variable in each of these models is a binary variable represents the state of the 

DBS system with 1 assigned for DBS-on and 0 assigned for DBS-off.  The 

predictor variables are network metric of clustering coefficient of each channel i.  

The resulting binary classifier consists of model coefficient 𝐵𝑖 , which is 

regression coefficients corresponding to each channel i.  

 After a model is developed with the regression coefficients trained, the model is 

evaluated for its classification performance based on the remaining one thirds test 

dataset with the use of ROC curve and AUC.   
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Figure 9.  Modeling framework for processing and computing network measures as independent variables to model 
class labels of EEG data 

 

5.1.1 Model Training Procedure 

 

In order to assess binary classifier performance, the network measured derived from 

the EEG data are randomly split into training and test set.  The training set consists of 2/3 

of original data and the test set consists of 1/3 of the original data.   
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Using the training set, a binary classifier is developed and its performance is 

assessed using the test dataset. More specifically, the Area Under Curve (AUC) of the 

receiver operating characteristics (ROC) curve is used as a quantitative measure of 

classification performance of the binary classifier.  AUC is selected to be used as 

objective measure of binary classification performance. 

The cross validation is repeated 1,000 times for each combination of model, 

frequency range and Pearson correlation. Each cross validation run is done by randomly 

splitting the original data into different training set and test set.  For each of the random 

split, AUC is calculated. The distribution of all AUCs calculated from 1,000 random data 

splits is visualized using boxplot.  The corresponding features selected among the 1,000 

runs are examined. 
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Chapter 6  Challenges Encountered 
 

Logistic regression is used as an initial attempt to address the question of whether or 

not it is possible to develop a binary classifier based on clustering coefficients of the 

EEG-frequency-based network for the purpose of separating EEG data into DBS-on and 

DBS-off classes.  Two objectives are generally recognized to be important in developing 

binary classifier for the purpose of clinical application.  One objective is prediction 

accuracy.  A second objective is interpretation of the model for the purpose of identify 

important factors that may serve as potential biomarkers.  

6.1 A Simple Binary Classifier: Logistic Regression Model 
 

Given m independent variables, the logistic regression uses the following logistic 

function to estimate the probability of the dependent variable to be either one of the two 

classes. 

𝐹(𝑥) =
1

1 + 𝑒−(𝛽0+ 𝛽1𝑥1+⋯+𝛽𝑚𝑥𝑚)
 

 

where 𝑥𝑖 represents the clustering coefficient of each EEG channel which records 

electrical activity from a particular brain region. This research study focuses on using 

clustering coefficients calculated based on the networks derived from data of EEG 

channel as an example network measure to investigate binary classification of EEG 

frequency based network.  

 

  



39 
 

 
 

6.1.1 Comparison of Logistic Regression Training and Test Set Classification 

Performance Based on Clustering Coefficients: ROC Curve’s AUC vs. Pearson 

Correlation 

 

For each of the frequency range of interest, 1,000 samples of training and test data 

sets were randomly drawn from the original six-minute EEG data.  For each training and 

test data set, a logistic regression model was trained and tested in order to examine binary 

classification performance.    

6.1.1.1 Alpha Wave (7-9 Hz) 

 

The summary result of classification performance in terms of ROC curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 7-9 Hz frequency 

range is shown in Figure 10 .   For the detailed comparison classification performance of 

the training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 1,000 sampling 

iterations are show in Figure 11 to Figure 20 . The Pearson correlations used to construct 

the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  Below 

each of the boxplots of AUC distributions for training and test sets, a table summarizes 

the median AUC and mean AUC of training and test set, difference and percentage of 

difference between test set’s median and mean AUC with respect to training set’s AUC 

presented.  
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Figure 10.  Training and test set classification performance of logistic regression models over range of Pearson 
correlations used to construct EEG network for frequency of 7-9 Hz. 
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Figure 11.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.1 over frequency range of 7-9 Hz. 

 

  

 

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.9818 0.8132 -0.1687 -17.18% 

Mean 0.9809 0.8035 -0.1774 -18.08% 

Standard 
Deviation 

0.0196 0.0794 0.0598 304.98% 
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Figure 12.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.2 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.9505 0.7947 -0.1558 -16.39% 

Mean 0.9507 0.7875 -0.1632 -17.16% 

Standard 
Deviation 

0.0218 0.0701 0.0482 220.72% 
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Figure 13.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.3 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.948 0.7961 -0.1519 -16.03% 

Mean 0.9472 0.7911 -0.1561 -16.48% 

Standard 
Deviation 

0.0217 0.0728 0.0511 235.25% 
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Figure 14.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.4 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.9236 0.7961 -0.1275 -13.81% 

Mean 0.9227 0.7896 -0.1331 -14.42% 

Standard 
Deviation 

0.0215 0.0692 0.0477 221.89% 
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Figure 15.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.5 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.8158 0.7132 -0.1026 -12.58% 

Mean 0.8152 0.7088 -0.1064 -13.05% 

Standard 
Deviation 

0.0289 0.0725 0.0436 151.05% 
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Figure 16.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.6 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.6053 0.5474 -0.0579 -9.57% 

Mean 0.6031 0.5391 -0.0639 -10.6% 

Standard 
Deviation 

0.0176 0.0466 0.0289 164.15% 
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Figure 17.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.7 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5119 0.5 -0.0119 -2.33% 

Mean 0.5082 0.5 -0.0082 -1.6% 

Standard 
Deviation 

0.0055 0 -0.0055 -100% 
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Figure 18.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.8 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 19.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 0.9 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 20.  Training and test set classification performance of logistic regression models for EEG network 
constructed using Pearson correlation threshold of 1 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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6.1.2 Unsatisfactory Classification Results 

 

 For the network metric of clustering coefficients derived from the EEG data, logistic 

regression does not result in a statistically robust and parsimonious model even though 

the AUC distribution indicates relatively good performance. 

With a more detailed examination, it can be observed that the relevant logistic 

regression modeling results for binary classification of the EEG network data have at 

least some regression coefficients not having sufficient power to reject null hypothesis of 

𝛽𝑖 = 0.  The test statistics is 𝑊 =  
(𝛽𝑖̂−0)

𝑆𝐸(𝛽𝑖̂)
  where SE represents the standard error of 𝛽𝑖. 

The hypothesis test results correspond to the test statistics of 𝑊 =  
(𝛽𝑖̂−0)

𝑆𝐸(𝛽𝑖̂)
  that are not 

extreme enough to be considered significant at 0.05 level.  For these non-significant p-

values (> 0.05), the corresponding 𝛽𝑖̂ is considered to be no different than 0 due to either 

one of the following two reasons: 

 𝛽𝑖̂ is very close to 0. 

 𝑆𝐸(𝛽𝑖̂) is very large  

In addition, all predictor variables are retained by modeling the network measure 

data using a logistic regression approach. The process of training a logistic regression 

model does not result in selecting a subset of most relevant predictor variables. Selecting 

a subset of independent variables in the model developed is an important consideration 

for identifying potential biomarkers using EEG data.  In addition, feature selection can 

also simplify the trained model to make the model easier to interpret.    
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Because the logistic regression models trained and tested result in good overall 

classification performance but many coefficients have non-significant p-value, the dataset 

may exhibit multicollinearity characteristic.   

6.1.3 Example of Network Metric EEG Data with Multicollinearity  

 

Figure 21 is an example correlation matrix of the clustering coefficients of EEG 

data.  Given correlation value of at least 0.4 considered to represent high degree of 

correlation, the correlation matrix shows that there are pairs of EEG channels that have 

relative high level of correlation coefficients of their clustering coefficients. The network 

association threshold is 0.2. 
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Figure 21. Example of correlation matrix of predictor variables (clustering coefficients) that are used to construct 
binary classifier. Based on a criteria of pairwise correlation of 0.4 or above as indicator of high level of 
multicollinearity, the predictor variables exhibit relatively high level of pairwise correlation.  

   

6.1.3.1 Variance Inflation Factor (VIF) 

 

Variance inflation factor is an indicator that can be used to quantify the degree of 

multicollinearity in the predictor variables used to build a generalized regression model 

including logistic regression model.  It measures how much the variance of an estimated 

regression coefficient (𝛽_𝑖̂) is increased due to correlation with other predictors in the 

model. More specifically, VIF is defined as 
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𝑉𝐼𝐹 =
1

1 − 𝑅𝑗
2 

where  𝑅𝑗
2 is the coefficient of determination of the following regression model: 

𝑋𝑗 = 𝑐 + ∑ 𝛼𝑖𝑋𝑖

𝑖≠𝑗

 

where 𝑋_𝑗 is the j
th

 predictor variable in the regression model that is used to construct a 

binary classifier.  A VIF(𝛽𝑗̂) of 1 indicates that 𝑋𝑗  is orthogonal to all other predictor 

variables in the model.  A VIF(𝛽𝑗̂) > 1 indicates that 𝑋𝑗  is not orthogonal to all other 

predictor variables. The square root of VIF shows the number of multiples that standard 

error associated with coefficient of the relevant predictor variable compared with what it 

would be if the predictor variable were uncorrelated with all other predictor variables in 

the model.  A generally acceptable rule that degree of multicollinearity is high if    

VIF(𝛽𝑗̂) > 5. 

For the example data shown in Figure 21 , VIF for all predictor variables is shown in 

Figure 22.  The VIF plot shows that there are multiple predictor variables with VIF > 5.  

The combination of these VIF indicates that the predictor datasets as a whole has serious 

multicollinearity issue. 

 



55 
 

 
 

 

Figure 22.  Variance inflation factor of example network metric (clustering coefficient) of EEG data. 

 

6.2 Existing Studies of Modeling Multidimensional EEG Data with 

Multicollinearity Characteristics 
 

Multicollinearity refers to a situation in which two or more predictor variables in a 

regression model are highly correlated.   When a multidimensional dataset that is used 

exhibits multicollinearity, one or more variables of the dataset can be linearly predicted 

from the other variables to a high degree of accuracy.   
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Multicollinearity can lead to problem of interpreting multivariate models with 

predictor variables that are correlated with each other.  More specifically, McFarland 

specifically discusses one issue with multicollinearity is the potential difficulty of 

interpretation of the regression weights [20].  According to McFarland, the weight of a 

given EEG spectral feature in a regression model is affected both by the covariance of the 

feature itself and the covariance with other features in the model.  EEG features that are 

used as predictor variables that correlate less with other predictor variables in a 

regression model would tend to have larger weights than EEG features that are highly 

correlated with other EEG features in the model.  This issue of interpretation persists 

even for cases in which the predictor variables have the same scale.  Because of the 

difficulty of interpretation, the possible impact of multicollinearity should be considered 

when interpreting the regression weights of a regression model. 

6.3 Modeling Challenges – Multicollinearity 
 

In modeling classification of binary classes using multiple variables, a commonly 

used method is to use all variables as possible predictor variables in a logistic regression 

model. However,  the outcome of developing a model is highly dependent on correlation 

structure among predictive variables.  This is especially the case given the objectives of 

developing binary classifier in this study are both prediction and interpretation of the 

modeling results.  Because inference involved in training classifier assumes that all 

predictive variables are uncorrelated, any high degree of correlation among the predictive 

variables may seriously violate such assumptions. When the covariates in the model are 

not independent from one another, multicollinearity problems arise in developing the 

model, which can lead to biased coefficient estimation and a loss of power. [21] 
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Multicollinearity is a characteristic of independent variables in a statistical model.  

With multicollinearity present, some independent variables in a multiple logistic 

regression model are highly correlated.  A challenging of modeling the EEG derived 

network measures is to overcome the effect of high level of multicollinearity attributed to 

the network measures of the EEG channels when the dataset exhibits strong 

multicollinearity. 

6.3.1 Modeling Issues Due to Multicollinearity 

 

Multicollinearity makes it challenging to meaningfully model a dataset. The 

following issues are attributed to multicollinearity: 

a) Basic assumption of regression model is violated 

Logistic regression model assumes that all independent variables are 

linearly independent from each other.  With two or more independent 

variables correlated with each other, a logistic regression model does not 

give valid results about a particular individual independent variable. 

b) Interpretation of the model’s regression coefficient are misleading 

A regression coefficient estimate is supposed to specify the effect of one 

unit change in one independent variable holding all other independent 

variables constant.  With multicollinearity, it is not possible to hold all 

independent variables constant while increasing the value of an 

independent variable that is correlated with other independent variables by 

one unit. 
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c) Standard errors of the regression coefficients tend to be large 

The standard errors of affected logistic regression coefficients of are large, 

resulting in test statistics of 𝑊 =  
(𝛽𝑖̂−0)

𝑆𝐸(𝛽𝑖̂)
  to be small.  This makes it more 

difficult to reject a false null hypothesis that 𝛽𝑖 = 0. As a result, type II 

error is more likely to occur for the affected logistic regression coefficients. 

d) Overfitting 

Overfitting of the logistic regression model can occur if there is redundancy 

in the dataset.  As a result, small change of the independent variables may 

lead to large changes in affected logistic regression coefficients. 

For logistic regression coefficients with p-value less than 0.05, the meaning of the p-

value is not useful in identifying important variables because  

 The test done is based on testing a particular regression coefficient given 

all other variables are also in the model. Thus, all regression coefficients 

would still need to be retained in the model in order to make classification 

prediction.  Thus, no subset of predictor variables is identified as a result. 

  If another logistic regression model is developed using only the 

corresponding subset of independent variables with regression coefficients 

that are less than 0.05, the resulted regression model can result in 

insignificant p-value (> 0.05) for the regression coefficients of these 

remaining independent variables. 
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6.3.2 Minimum p-value in Each Model 

 

P-value is the probability of getting a result equal to or more extreme than what we 

observed if 𝐻𝑂 is true. Within the context of assessing regression coefficient of 𝛽𝑖,  𝐻𝑂 

represents the hypothesis test that 𝛽𝑖 = 0.  If the p-value is lower than a pre-defined limit, 

then it is customary to reject 𝐻𝑂  and conclude that there is statistical evidence that 

𝛽𝑖 ≠ 0.  . 

An experiment was conducted for developing logistic regression models for 100 

randomly select training sets of the EEG network data for 11-13 Hz frequency range. For 

each the model developed, the minimum p-value among 20 logistic regression 

coefficients of the 20 predictor variables is selected.  These selected minimum p-values 

are then compared with a cut off value of 0.05. 

The experiments were repeated six times. The following shows the number of 

models with at least one p-value that are less than 0.05 for each of the six experiments. 

27, 33, 23, 36, 28, 34 

Out of 6 experiments of 100 randomly select dataset, the corresponding model 

developed have only on average 30.2 dataset that have at least one minimum p-value less 

or equal to 0.05.  This results show that the dataset potentially have dimensions that are 

correlated with each other to a large degree. 

6.3.3  𝛃𝐢  with Significant  p-value (10 examples) 

 

Another experiment would illustrate the modeling challenge.  An experiment was 

run to examine samples of  βi  with significant p-value at 0.05 level using EEG network 



60 
 

 
 

data for 11-13 Hz frequency range. The following shows a sample set result of 

developing logistic regression using 10 different training sets and applying the resulted 

models to the corresponding test set. 

1. 2     3     4     6     7    15    16 

2. 0     2     4    11    16 

3. No Significant p-value 

4. No Significant p-value 

5. 16 

6. No Significant p-value 

7. No Significant p-value 

8. No Significant p-value 

9. No Significant p-value 

10. 4     7    16 

As seen from the sample result, it is possible for no independent variables with 

logistic regression coefficient that are significant at 0.05 level.  For those models that do 

have significant p-values, the independent variables with the regression coefficient that 

are significant vary from one model to another. 

In conclusion, modeling the data using logistic regression indicates the data contains 

characteristic of multicollinearity.   The effect of multicollinearity lead to serious 

violation of assumptions required to develop an appropriate and meaningful logistic 

regression model. Depending on the dataset, applying simple logistic regression model 

may lead to statistically invalid results, which would lead to model overfitting. The 

resulting model is not statistically robust and not parsimonious.  In addition, logistic 
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regression model does not perform variables selection, and thus all 𝛽𝑖 with non-

significant and significant p-value are needed to estimate classifier response variable of 

the logistic regression model. A research objective is to overcome these challenges 

inherent in the EEG-data derived network metrics. 
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Chapter 7  Research Results and Analysis 

7.1 Alternative Binary Classification Models 
 

Because the EEG network datasets exhibit multicollinearity characteristic, simple 

logistic regression modeling approach may not result in statistically robust classification 

results with respect to the objectives of the current study.   As a result, alternative binary 

classification modeling approaches are examined to attempt to address the question of 

whether or not additional binary classifiers can be developed in order to compare binary 

classification results derived from different binary classification modeling approaches. 

7.1.1 Model Formulation: Modeling Methodology for EEG Data with 

Multicollinearity - Principal Component Stepwise Selection Logistic 

Regression (PCSSLR) 

 

A new modeling approach, Principal Component Stepwise Selection Logistic 

Regression (PCSSLR), is developed specifically for this study for the binary 

classification step of the modeling framework.  PCSSLR is developed to overcome 

potential multicollinearity effects of the network metrics of the EEG data. This new 

modeling approach is applied in step VI of the modeling framework and the 

corresponding results are compared with results derived using LASSO. 

PCSSLR is developed to attempt to overcome challenges of obtaining more 

satisfactory results in predicting classes of DBS on vs DBS off given only the 

connectivity metrics derived from EEG electrode data.  Logistic regression is a 

component of this modeling approach, but additional steps are added to prepare the data 

that are modeled to overcome multicollinearity. 
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The steps of PCSSLR are: 

1. Derive principal components from the training data (PC step)  

The step linearly transforms training data to corresponding data in the 

principal component space. Because each principal component is 

independent and orthogonal from each other, this linear transformation 

solves the problem of correlation among linearly dependent independent 

variables related to multicollinearity. In a sense, this step imposes 

constraint on the original features to require the newly linearly 

transformed features to be independent of each other. 

2. With stepwise forward selection (SS step) 

Starts with zero independent linearly transformed variable, this step tests 

whether the addition of one more transformed variable would improve the 

model based on error rate. The transformed variables that lead to models 

with the least errors would be added to the model at each stepwise 

selection iteration. This feature selection step would stop when overall 

model error cannot be improved beyond a predefined tolerate level. 

3. Develop final logistic regression model (LR step) 

Using the selected independent variables identified in step 2 to estimate a 

final logistic regression model.  The resulted logistic regression model 

would have all regression coefficients that are significant partly because 

features are transformed into linearly independent variables by step 1 and 

the resulted model is parsimonious because feature selection has been 

performed by step 2. 
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When testing the model using test set, the same PCSSLR steps are performed. For 

the PC step, the original principal component loadings (weights, w) are multiplied with 

each new test data to obtain linearly transformed data (X’) X’= 𝑤 𝑋. For the LR step, 

Logistic Regression coefficients (𝛽𝑖) are estimated. These coefficients are multiplied with 

linearly transformed data (X’) to arrive at estimated logistic regression output (y). 

PCSSLR is a method to identify important features and to impose constraints on 

dataset which exhibits multicollinearity in order to develop a generalized linear model 

with regression coefficients that are statistically valid without explicitly solving a 

minimization problem (LASSO). 

7.1.1.1 Modeling Data Using PCSSLR 

 

The modeling results give good or better AUC performance that simple logistic 

regression for modeling the network metric data derived from the EEG data obtained 

with DBS on vs DBS off. The final logistic regression model is more parsimonious due to 

use of stepwise selection than simple logistic regression. 

The following shows an example of the final logistic regression coefficients. The 

model consists of 8   independent variables and 1 constant term, all of which leads to 

significant p-values (<0.05) of the corresponding hypothesis test. 

p-values of regressions coefficients:  

0.0086    0.0042    0.0062    0.0012    0.0055    0.0425    0.0006    0.0009    0.0073 
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7.1.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

 

LASSO is a method that performs both regularization and variable selection.  This 

method is often used in the machine learning community for modeling multi-dimensional 

data with correlated covariates.  LASSO can be used to  

 Identify important features 

 Reduce number  of predictors  

 Improve model predictive error compared to ordinary least square regression 

The LASSO is formulated as followed 

min
Β0 ,𝚩

{
1

𝑁
‖𝑦 − Β0 − 𝑿Β‖2

2}  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖Β‖1 ≤ 𝑡  

which can be expressed in Lagrangian form: 

min
Β0 ,𝚩

{
1

𝑁
‖𝑦 − Β0 − 𝑿Β‖2

2 + 𝜆‖Β‖1}   

Notice that for every t, there is a corresponding 𝜆 in the Lagrangian form. 

LASSO seeks to find the solution of (Β0, 𝚩) such that the L1 norm of 𝚩 is 

minimized with the given Lagrangian factor and the deviance of the model compared to 

the data ‖𝑦 − Β0 − 𝑿Β‖2
2 is minimized.  As 𝜆 increases, the number of nonzero 

coefficients (Β0, 𝚩) would decrease. 

LASSO has the following characteristics: 

a) Original Predictors are retained ( no linear transformation ) 

As a result, more physiologically relevant interpretation (brain-regions 

related insights) can be made for the independent variables.  
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b) Minimize estimated errors to result in the best estimate of regression 

coefficient. 

A typical analysis of LASSO involves with identifying the model parameter, 𝜆, 

which gives a low deviance with respect to the data. For a particular value of 𝜆, non-zero 

coefficients in the linear model are the solutions to the minimization problem. 

For one training data randomly selected using EEG network data for 11-13 Hz, 

LASSO estimates the following coefficients as non-zero for 𝜆 that gives cross-validation 

error within 1 standard deviation of the minimum cross-validation error. 

Index of coefficients identified: 

4    15    18    19 

The value of 𝜆 which leads to cross-validation error within 1 standard deviation of 

the minimum and a minimum number of coefficient is shown in Figure 23. 
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Figure 23. Example of cross validation errors for selected value of 𝝀 for solutions that satisfies the minimization 
problem of LASSO. 

 In this thesis study, classification results derived using LASSO will be used to 

compare with those derived using PCSSLR and logistic regression. 

 

 

 

 

 

 

 

 



68 
 

 
 

7.2 Characteristics of EEG Network Data 
 

7.2.1 Data for Training and Testing Classifier  

 

Before deriving EEG network, the EEG data are pre-processed into 6-minute time 

segments. This leads to 62 time segments in the DBs-on group and 57 time segments in 

the DBS-off group.  For each network features used to develop a classifier, 2/3 of data set 

is used as training set and 1/3 of data set is used as test set. This results in 80 time 

segments in the training set and 39 time segments in the test set. 

7.2.2 Example Association Matrix 

 

An example association matrix developed based on frequency-based Pearson 

correlation coefficients calculated for all given pair of EEG electrode data is shown in 

Figure 24. 
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Figure 24.  Example association matrix for a 6-minute time segment with DBS-on for frequency range near 10.1 Hz 

 

7.2.3 Example EEG Network 

 

An example EEG binary and undirected network constructed using an association 

matrix with arbitrary hard thresholding of 0.6 and DBS-on is presented in Figure 25.  The 

lines in Figure 25 represents links with association metrics defined based on Pearson 

correlation coefficient for frequency range around 10.1 Hz computed between all pairs of 

18 channel data 
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Figure 25. Example network constructed based on association matrix of a 6-minute EEG segment for frequency 
range around 10.1 Hz.  Network features are computed based on this type of EEG network. 

 

7.3 Modeling and Analysis Results  
 

7.3.1 Model Classification Performance (Classifier based on Artifacts) 

 

7.3.1.1 Network Clustering Coefficient (10.1Hz) 

 

The classification performance of the test data set of the classifier model with 

network clustering coefficient is shown in Figure 26 as a receiver operating characteristic 

curve for 6-minute time segment.  The corresponding confusion matrix is listed below. 
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The result of this classifier shows the model shows a good performance to discriminate 

EEG data with DBS-on from EEG data with DBS-off.  

 

 Predicted  

DBS off 

Predicted 

DBS on 

DBS off 18 1 

DBS on 0 20 

 

Fraction of samples misclassified: 0.0256  
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Figure 26 Receiver operating characteristic curve of DBS-on and DBS-off classifier developed using clustering 
coefficient of individual EEG channel as predictor variable. 
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7.3.2 Physiological Frequency Range Classification Modeling 

 

The modeling framework is applied to derive network based on Pearson correlation 

coefficient for physiological range of frequency over 6-minute interval. These frequency 

ranges include alpha (7-13 Hz) and beta (13-31 Hz) bands.   The network measures can 

be used to characterize the network for a particular period of time.  These network 

measures are used to train classifier for binary classes of network activities that occur 

during DBS-on session or DBS-off session.  The classifier performance is assessed using 

ROC curve and AUC.  The classifier modeling will result in identification of potential 

and unique EEG biomarkers which can indicate treatment effect of DBS on EEG 

recording and brain activity. 

Most of the cerebral signals captured in clinical EEG recordings are within 1- 20Hz.  

Waveforms observed in EEG recordings are subdivided into frequency bands.  

Bands Frequency (Hz) 

Alpha 7-13 

Beta 13-31 

Gamma 32+ 

 

7.3.3 Example Receiver Operating Characteristics (ROC) Curve of Training and Test 

Set  

 

Classification model is developed for physiological frequency range. The 

physiological frequency range corresponds to cerebral signals that are directly related to 

physiological state of a patient. The physiological frequency ranges are divided into 4 

segments. To remove effect of artifact, each segment is specifically divided to exclude 

artifactual frequency range around 10.1 Hz, 20.2 Hz and 30.3Hz. 
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  In this research study, the propose classification framework is applied to the alpha 

and beta frequency bands.  The application of the classification framework will attempt to 

develop a classifier that can discriminate an EEG time segment associated with the DBS-

on state from the DBS-off state.  More specifically, the frequency bands are divided into 

4 segments to isolate non-artifacts effects that are known to occur at 10.1 Hz, 20.2 Hz, 

and 30.3 Hz.  

Segments Frequency Range (Hz) 

Alpha 1   7 <= frequency < 9 

Alpha 2 11 <  frequency < 13 

Beta 1 13<= frequency < 19 

Beta 2 21 <  frequency < 29 

 

For each data split sample, the data set is randomly divided into 2/3 for training set 

and 1/3 for test set. Using training set data, attempts were made to develop a model with 

good prediction for the test set.  Examples of ROC curve for the training set of one 

sample of cross validation data set is shown in Figure 27. The corresponding ROC curve 

for the test set is shown in Figure 28. 
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Figure 27 Example ROC curve of training data set. 
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Figure 28 Example ROC curve of test data set. 
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7.3.4 Comparison of PCSSLR Training and Test Set Classification Performance Based 

on Clustering Coefficients: ROC Curve’s AUC vs. Pearson Correlation 

 

One split of the original data leads to one set of training and data.  The training data 

are used to develop model that would result in one AUC for the ROC curve.  Since 

PCSSLR uses a forward selection step, only a subset of the original full set of predictor 

variables would be included in the model developed. Based on the 1,000 samples derived 

using the cross validation method, 1,000 set of AUC and ROC curves are resulted. 

7.3.4.1 Alpha Wave (7-9 Hz) 

 

The summary result of classification performance in terms of ROC curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 7-9 Hz frequency 

range is shown in Figure 29.   For the detailed comparison classification performance of 

the training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 1,000 sampling 

iterations are show in Figure 30 to Figure 39 . The Pearson correlations used to construct 

the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  Below 

each of the boxplots of AUC distributions for training and test sets, a table summarizes 

the median AUC and mean AUC of training and test set, difference and percentage of 

difference between test set’s median and mean AUC with respect to training set’s AUC 

presented.  
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Figure 29.  Training and test set classification performance of PCSSLR over range of Pearson correlations used to 
construct EEG network for frequency of 7-9 Hz. 
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Figure 30.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.1 over frequency range of 7-9 Hz. 

 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.9461 0.8316 -0.1145 -12.11% 

Mean 0.9457 0.8259 -0.1198 -12.67% 

Standard 
Deviation 

0.0299 0.0684 0.0385 128.75% 
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Figure 31.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.2 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.9123 0.8447 -0.0675 -7.4% 

Mean 0.9116 0.8384 -0.0732 -8.03% 

Standard 
Deviation 

0.0292 0.0667 0.0375 128.46% 
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Figure 32.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.3 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.9035 0.8105 -0.093 -10.29% 

Mean 0.902 0.8025 -0.0996 -11.04% 

Standard 
Deviation 

0.0319 0.0654 0.0335 104.96% 
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Figure 33.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.4 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8835 0.7842 -0.0992 -11.23% 

Mean 0.8817 0.78 -0.1017 -11.54% 

Standard 
Deviation 

0.0343 0.0657 0.0315 91.81% 
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Figure 34.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.5 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.7888 0.6737 -0.1152 -14.6% 

Mean 0.7823 0.6679 -0.1144 -14.63% 

Standard 
Deviation 

0.0563 0.0768 0.0206 36.51% 
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Figure 35.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.6 over frequency range of 7-9 Hz. 

 

  

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5833 0.5263 -0.0570 -9.77% 

Mean 0.5816 0.5384 -0.0431 -7.42% 

Standard 
Deviation 

0.0557 0.0433 -0.0124 -22.22% 
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Figure 36.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.7 over frequency range of 7-9 Hz. 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 37.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.8 over frequency range of 7-9 Hz. 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 38.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.9 over frequency range of 7-9 Hz. 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 39.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 1 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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7.3.4.2 Alpha Wave (11-13 Hz) 

 

The summary result of classification performance in terms of ROC Curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 11-13 Hz frequency 

range is shown in Figure 40.   For the detailed comparison classification performance of 

the training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 1,000 sampling 

iterations are show in Figure 41 to Figure 50. The Pearson correlations used to construct 

the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  Below 

each of the boxplots of AUC distributions for training and test sets, a table summarizes 

the median AUC and mean AUC of training and test set, difference and percentage of 

difference between test set’s median and mean AUC with respect to training set’s AUC is 

presented.  
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Figure 40. Training and test set classification performance of PCSSLR over range of Pearson correlations used to 
construct EEG network for frequency of 11-13 Hz.  
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Figure 41.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.1 over frequency range of 11-13 Hz. 

 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.8904 0.8474 -0.043 -4.83% 

Mean 0.8921 0.8446 -0.0475 -5.32% 

Standard 
Deviation 

0.029 0.0646 0.0356 123.03% 
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Figure 42.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.2 over frequency range of 11-13 Hz. 

 

¶  

  

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8929 0.7401 -0.1527 -17.11% 

Mean 0.8889 0.7374 -0.1515 -17.04% 

Standard 
Deviation 

0.048 0.075 0.0271 56.39% 
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Figure 43.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.3 over frequency range of 11-13 Hz. 

 

  

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.7351 0.5882 -0.147 -19.99% 

Mean 0.7242 0.5864 -0.1377 -19.02% 

Standard 
Deviation 

0.0777 0.0765 -0.0013 -1.63% 
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Figure 44.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.4 over frequency range of 11-13 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5602 0.5526 -0.0075 -1.34% 

Mean 0.5628 0.5564 -0.0064 -1.14% 

Standard 
Deviation 

0.0405 0.0366 -0.0039 -9.66% 
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Figure 45.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.5 over frequency range of 11-13 Hz. 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 46.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.6 over frequency range of 11-13 Hz. 

 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 47.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.7 over frequency range of 11-13 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 48.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.8 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 



99 
 

 
 

 

Figure 49.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.9 over frequency range of 11-13 Hz. 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 50.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 1 over frequency range of 11-13 Hz. 

 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 



101 
 

 
 

7.3.4.3 Beta Wave (13-19 Hz) 

 

The summary result of classification performance in terms of ROC Curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 13-19 Hz frequency 

range is shown in Figure 51 .   For the detailed comparison classification performance of 

the training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 1,000 sampling 

iterations are show in Figure 52 to Figure 61 . The Pearson correlations used to construct 

the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  Below 

each of the boxplots of AUC distributions for training and test sets, a table summarizes 

the median AUC and mean AUC of training and test set, difference and percentage of 

difference between test set’s median and mean AUC with respect to training set’s AUC is 

presented. 
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Figure 51. Training and test set classification performance of PCSSLR over range of Pearson correlations used to 
construct EEG network for frequency of 13-19 Hz.  
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Figure 52.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.1 over frequency range of 13-19 Hz. 

 

 

 

  

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8365 0.6632 -0.1733 -20.72% 

Mean 0.8327 0.66 -0.1727 -20.74% 

Standard 
Deviation 

0.0517 0.0808 0.0291 56.34% 
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Figure 53.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.2 over frequency range of 13-19 Hz. 

 

 

  

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8195 0.6605 -0.159 -19.4% 

Mean 0.8133 0.6577 -0.1555 -19.12% 

Standard 
Deviation 

0.068 0.0787 0.0107 15.77% 
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Figure 54.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.3 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.7838 0.5862 -0.1977 -25.22% 

Mean 0.7642 0.5899 -0.1743 -22.8% 

Standard 
Deviation 

0.0761 0.0668 -0.0093 -12.23% 
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Figure 55.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.4 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.6165 0.5526 -0.0639 -10.37% 

Mean 0.6083 0.5585 -0.0498 -8.19% 

Standard 
Deviation 

0.0536 0.0514 -0.0021 -4.01% 
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Figure 56.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.5 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5 0.5 0 0 

Mean 0.5082 0.4969 -0.0113 -2.22% 

Standard 
Deviation 

0.0181 0.014 -0.0041 -22.54% 
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Figure 57.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.6 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0 

Mean 0.5098 0.5 -0.0098 -1.92% 

Standard 
Deviation 

0.0195 0 -0.0195 -100% 
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Figure 58.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.7 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 59.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.8 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 60.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.9 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 61.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 1 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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7.3.4.4 Beta Wave (21-29 Hz) 

 

The summary result of classification performance in terms of ROC Curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 21-29 Hz frequency 

range is shown in Figure 62.   For the detailed comparison classification performance of 

the training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 1,000 sampling 

iterations are show in Figure 63 to Figure 72 . The Pearson correlations used to construct 

the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  Below 

each of the boxplots of AUC distributions for training and test sets, a table summarizes 

the median AUC and mean AUC of training and test set, difference and percentage of 

difference between test set’s median and mean AUC with respect to training set’s AUC is 

presented. 
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Figure 62. Training and test set classification performance of PCSSLR over range of Pearson correlations used to 
construct EEG network for frequency of 21-29 Hz.  
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Figure 63.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.1 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.9298 0.8211 -0.1088 -11.7% 

Mean 0.9305 0.8112 -0.1192 -12.82% 

Standard 
Deviation 

0.0319 0.0673 0.0354 110.83% 
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Figure 64.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.2 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.8424 0.7592 -0.0832 -9.88% 

Mean 0.8424 0.7505 -0.0918 -10.9% 

Standard 
Deviation 

0.0363 0.0773 0.041 112.84% 
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Figure 65.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.3 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.7492 0.6368 -0.1124 -15.0% 

Mean 0.7486 0.6248 -0.1237 -16.53% 

Standard 
Deviation 

0.0527 0.0839 0.0312 59.08% 
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Figure 66.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.4 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5833 0.5 -0.0833 -14.29% 

Mean 0.5811 0.5214 -0.0597 -10.27% 

Standard 
Deviation 

0.0694 0.0419 -0.0275 -39.6% 
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Figure 67.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.5 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5476 0.5204 -0.0272 -4.97% 

Mean 0.5468 0.5239 -0.0229 -4.19% 

Standard 
Deviation 

0.0453 0.0369 -0.0084 -18.51% 
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Figure 68.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.6 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 69.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.7 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 70.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.8 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 71.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 0.9 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 72.  Training and test set classification performance of PCSSLR for EEG network constructed using Pearson 
correlation threshold of 1 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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7.3.5 Comparison of LASSO Training and Test Set Classification Performance Based 

on Clustering Coefficients - ROC Curve’s AUC vs. Pearson Correlation 

 

In order to develop LASSO binary classifier for the EEG frequency network data,  𝜆  

corresponding to average minimum 10-fold cross validation error is used to select the 

final binary classifier for each training and test data set split.  

7.3.5.1 Alpha Wave (7-9 Hz) 

 

The summary result of classification performance in terms of ROC curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 7-9 Hz frequency 

range is shown Figure 73.   For the detailed comparison classification performance of the 

training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 100 sampling 

iterations are show in Figure 74 to Figure 83 . The Pearson correlations used to construct 

the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  Below 

each of the boxplots of AUC distributions for training and test sets, a table summarizes 

the median AUC and mean AUC of training and test set, difference and percentage of 

difference between test set’s median and mean AUC with respect to training set’s AUC 

presented.  
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Figure 73.  Training and test set classification performance of LASSO over range of Pearson correlations used to 
construct EEG network for frequency of 7-9 Hz. 
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Figure 74.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.1 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.9179 0.8566 -0.0613 -6.68% 

Mean 0.9008 0.8379 -0.0629 -6.98% 

Standard 
Deviation 

0.0713 0.0705 -0.0008 -1.11% 
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Figure 75.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.2 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.9081 0.8592 -0.0488 -5.38% 

Mean 0.9094 0.8568 -0.0526 -5.79% 

Standard 
Deviation 

0.0291 0.0562 0.027 92.89% 
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Figure 76.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.3 over frequency range of 7-9 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8952 0.8178 -0.0774 -8.65% 

Mean 0.8918 0.807 -0.0848 -9.51% 

Standard 
Deviation 

0.0656 0.0753 0.0097 14.83% 
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Figure 77.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.4 over frequency range of 7-9 Hz. 

 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8752 0.8026 -0.0725 -8.29% 

Mean 0.8685 0.7887 -0.0798 -9.19% 

Standard 
Deviation 

0.0616 0.0743 0.0127 20.63% 
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Figure 78.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.5 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.7617 0.6684 -0.0933 -12.25% 

Mean 0.6937 0.6425 -0.0512 -7.38% 

Standard 
Deviation 

0.1303 0.1078 -0.0225 -17.27% 
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Figure 79.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.6 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5771 0.5263 -0.0508 -8.79% 

Mean 0.5565 0.5321 -0.0245 -4.39% 

Standard 
Deviation 

0.0462 0.0377 -0.0085 -18.39% 
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Figure 80.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.7 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 81.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.8 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 82.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.9 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 83.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 1 over frequency range of 7-9 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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7.3.5.2 Alpha Wave (11-13 Hz) 

 

The summary result of classification performance in terms of ROC Curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 11-13 Hz frequency 

range is shown Figure 84.   For the detailed comparison classification performance of the 

training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 100 sampling 

iterations are show in Figure 85 to Figure 94. The Pearson correlations used to construct 

the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  Below 

each of the boxplots of AUC distributions for training and test sets, a table summarizes 

the median AUC and mean AUC of training and test set, difference and percentage of 

difference between test set’s median and mean AUC with respect to training set’s AUC is 

presented.  
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Figure 84. Training and test set classification performance of LASSO over range of Pearson correlations used to 
construct EEG network for frequency of 11-13 Hz.  
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Figure 85.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.1 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8853 0.8434 -0.0419 -4.73% 

Mean 0.8765 0.8273 -0.0492 -5.62% 

Standard 
Deviation 

0.0824 0.0792 -0.0032 -3.88% 
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Figure 86.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.2 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8199 0.7809 -0.0389 -4.75% 

Mean 0.7799 0.7424 -0.0375 -4.81% 

Standard 
Deviation 

0.1181 0.1167 -0.0014 -1.17% 
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Figure 87.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.3 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.7135 0.6434 -0.0701 -9.82% 

Mean 0.6657 0.6282 -0.0375 -5.63% 

Standard 
Deviation 

0.113 0.1 -0.013 -11.5% 



142 
 

 
 

 

Figure 88.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.4 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5714 0.55 -0.0214 -3.75% 

Mean 0.5634 0.5396 -0.0238 -4.23% 

Standard 
Deviation 

0.0329 0.0343 0.0014 4.28% 



143 
 

 
 

 

Figure 89.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.5 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5095 0.5 -0.0095 -1.87% 

Standard 
Deviation 

0.0118 0 -0.0118 -100% 
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Figure 90.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.6 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 91.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.7 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 92.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.8 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 93.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.9 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 94.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 1 over frequency range of 11-13 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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7.3.5.3 Beta Wave (13-19 Hz) 

 

The summary result of classification performance in terms of ROC Curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 13-19 Hz frequency 

range is shown in Figure 95.   For the detailed comparison classification performance of 

the training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 1,000 sampling 

iterations are show in Figure 96 to Figure 105. The Pearson correlations used to construct 

the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  Below 

each of the boxplots of AUC distributions for training and test sets, a table summarizes 

the median AUC and mean AUC of training and test set, difference and percentage of 

difference between test set’s median and mean AUC with respect to training set’s AUC is 

presented. 

 

 

 

 

 

 

 



150 
 

 
 

 

Figure 95. Training and test set classification performance of LASSO over range of Pearson correlations used to 
construct EEG network for frequency of 13-19 Hz.  
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Figure 96.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.1 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8195 0.7158 -0.1038 -12.66% 

Mean 0.8110 0.6996 -0.1115 -13.74% 

Standard 
Deviation 

0.0872 0.0803 -0.0069 -7.87% 
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Figure 97.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.2 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.634 0.5767 -0.0574 -9.05% 

Standard 
Deviation 

0.1541 0.0943 -0.0598 -38.8% 
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Figure 98.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.3 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.714 0.6395 -0.0745 -10.43% 

Mean 0.7104 0.6394 -0.071 -9.995 

Standard 
Deviation 

0.0552 0.0587 0.0034 6.25% 
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Figure 99.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.4 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.6175 0.5678 -0.0497 -8.05% 

Mean 0.5946 0.5584 -0.0362 -6.09% 

Standard 
Deviation 

0.0559 0.0501 -0.0058 -10.42% 
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Figure 100.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.5 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5238 0.5 -0.0238 -4.55% 

Mean 0.5194 0.5048 -0.0146 -2.81% 

Standard 
Deviation 

0.0178 0.0163 -0.0015 -8.58% 
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Figure 101.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.6 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5012 0.5 -0.0012 -0.24% 

Standard 
Deviation 

0.0061 0 -0.0061 -100% 
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Figure 102.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.7 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 103.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.8 over frequency range of 13-19 Hz. 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 



159 
 

 
 

 

Figure 104.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.9 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 105.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 1 over frequency range of 13-19 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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7.3.5.4 Beta Wave (21-29 Hz) 

 

The summary result of classification performance in terms of ROC Curve’s AUC 

distribution for selected value of Pearson correlation coefficient used as thresholds to 

construct undirected EEG/brain network based on channel data for 21-29 Hz frequency 

range is shown in Figure 106 .   For the detailed comparison classification performance of 

the training datasets and that of the test datasets focusing on only one Pearson correlation 

value, the distributions of corresponding ROC curve’s AUC for the 1,000 sampling 

iterations are show in Figure 107 to Figure 116. The Pearson correlations used to 

construct the EEG frequency network are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  

Below each of the boxplots of AUC distributions for training and test sets, a table 

summarizes the median AUC and mean AUC of training and test set, difference and 

percentage of difference between test set’s median and mean AUC with respect to 

training set’s AUC is presented. 
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Figure 106. Training and test set classification performance of LASSO over range of Pearson correlations used to 
construct EEG network for frequency of 21-29 Hz.  
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Figure 107.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.1 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.8869 0.8421 -0.0448 -5.05% 

Mean 0.8943 0.8417 -0.0526 -5.88% 

Standard 
Deviation 

0.0451 0.0549 0.0098 21.70% 
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Figure 108.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.2 over frequency range of 21-29 Hz. 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.2) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.8161 0.8138 -0.0023 -0.28% 

Mean 0.82 0.8079 -0.0122 -1.48% 

Standard 
Deviation 

0.0261 0.053 0.027 103.48% 
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Figure 109.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.3 over frequency range of 21-29 Hz. 

 

 ROC Curve’s AUC (Network Association Threshold: 0.3) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.6922 0.6678 -0.0244 -3.53% 

Mean 0.6766 0.6541 -0.0225 -3.33% 

Standard 
Deviation 

0.0707 0.0756 0.0049 6.90% 
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Figure 110.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.4 over frequency range of 21-29 Hz. 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.4) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5414 0.5094 -0.032 -5.91% 

Standard 
Deviation 

0.0619 0.026 -0.0359 -58.05% 
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Figure 111.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.5 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.5) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of 
Test Set’s AUC 

Median 0.5537 0.5243 -0.0294 -5.31% 

Mean 0.542 0.5254 -0.0167 -3.08% 

Standard 
Deviation 

0.0354 0.0297 -0.0057 -16.09% 
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Figure 112.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.6 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.6) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 113.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.7 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.7) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 114.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.8 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.8) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 115.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 0.9 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 0.9) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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Figure 116.  Training and test set classification performance of LASSO for EEG network constructed using Pearson 
correlation threshold of 1 over frequency range of 21-29 Hz. 

 

 

 

 

 ROC Curve’s AUC (Network Association Threshold: 1) 

 Training Set Test Set Difference   
(Test Set’s AUC  - Training Set’s 
AUC) 

% Change of Test 
Set’s AUC 

Median 0.5 0.5 0 0% 

Mean 0.5 0.5 0 0% 

Standard 
Deviation 

0 0 0 0% 
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7.3.6 Comparison of Model Classification Performance Based on Clustering 

Coefficient: ROC Curve’s AUC vs. Pearson Correlation (PCSSLR, LASSO, Logistic 

Regression) 

 

The summary result of classification performance of LASSO, PCSSLR, and logistic 

regression in terms of ROC curve’s AUC distribution for selected value of Pearson 

correlation coefficient used as thresholds to construct undirected EEG/brain network 

based on channel data are presented for four different physiological frequency ranges. 

7.3.6.1 Alpha Wave (7-9 Hz) 

 

The summary result of classification performance of LASSO, PCSSLR, and logistic 

regression in terms of ROC curve’s AUC distribution for selected value of Pearson 

correlation coefficient used as thresholds to construct undirected EEG/brain network 

based on channel data for 7-9 Hz frequency range is shown in Figure 117 for training sets 

and Figure 118 for test sets.   The VIFs of the clustering coefficient covariates are shown 

in Figure 119 to Figure 125.  
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7.3.6.1.1 AUC Comparison of Models – Training Sets 

 

 

Figure 117.  Training set DBS-on vs. DBS-off classification performance of PCSSLR, LASSO and logistic regression 
over range of Pearson correlations used to construct EEG network for frequency of 7-9 Hz. 
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7.3.6.1.2 AUC Comparison of Models – Test Sets 

 

 

Figure 118.  Test set DBS-on vs. DBS-off classification performance of PCSSLR, LASSO and logistic regression over 
range of Pearson correlations used to construct EEG network for frequency of 7-9 Hz. 
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7.3.6.1.3 Network Constructed Using Pearson’s Correlation Cutoff: 0.1 

7.3.6.1.3.1 Variance Inflation Factors (VIF) 

 

Figure 119.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.1 as threshold and frequency range of 7-9 Hz. 

The VIFs of the 19 clustering coefficients corresponding to 18 EEG channels and the 

EKG data. As seen from Figure 119, the covariates with index of 11 and 18 have VIFs > 

5, indicating that the multidimensional data set exhibits strong multicollinearity. 

The following table shows comparison of model classification performance. 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.9461 0.8316 0.9179 0.8566 0.9818 0.8132 

Mean 0.9457 0.8259 0.9008 0.8379 0.9809 0.8035 
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7.3.6.1.4 Network Constructed Using Pearson’s Correlation Cutoff: 0.2 

 

7.3.6.1.4.1 Variance Inflation Factors (VIF) 

 

 

Figure 120.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.2 as threshold and frequency range of 7-9 Hz. 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.9123 0.8447 0.9081 0.8592 0.9505 0.7947 

Mean 0.9116 0.8384 0.9094 0.8568 0.9507 0.7875 
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7.3.6.1.5 Network Constructed Using Pearson’s Correlation Cutoff: 0.3 

 

7.3.6.1.5.1 Variance Inflation Factors (VIF) 

 

 

Figure 121.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.3 as threshold and frequency range of 7-9 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.9035 0.8105 0.8952 0.8178 0.9480 0.7961 

Mean 0.9020 0.8025 0.8918 0.8070 0.9472 0.7911 
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7.3.6.1.6 Network Constructed Using Pearson’s Correlation Cutoff: 0.4 

 

7.3.6.1.6.1 Variance Inflation Factors (VIF) 

 

 

Figure 122.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.4 as threshold and frequency range of 7-9 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.8835 0.7842 0.8752 0.8026 0.9236 0.7961 

Mean 0.8817 0.7800 0.8685 0.7887 0.9227 0.7896 
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7.3.6.1.7 Network Constructed Using Pearson’s Correlation Cutoff: 0.5 

 

7.3.6.1.7.1 Variance Inflation Factors (VIF) 

 

 

Figure 123.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.5 as threshold and frequency range of 7-9 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.7888 0.6737 0.7617 0.6684 0.8158 0.7132 

Mean 0.7823 0.6679 0.6937 0.6425 0.8152 0.7088 
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7.3.6.1.8 Network Constructed Using Pearson’s Correlation Cutoff: 0.6 

 

7.3.6.1.8.1 Variance Inflation Factors (VIF) 

 

 

 

Figure 124.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.6 as threshold and frequency range of 7-9 Hz. 

 

The following table shows comparison of model classification performance. 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5833 0.5263 0.5771 0.5263 0.6053 0.5474 

Mean 0.5816 0.5384 0.5565 0.5321 0.6031 0.5391 
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7.3.6.1.9 Network Constructed Using Pearson’s Correlation Cutoff: 0.7 

 

7.3.6.1.9.1 Variance Inflation Factors (VIF) 

 

 

Figure 125.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.7 as threshold and frequency range of 7-9 Hz. 

 

The following table shows comparison of model classification performance. 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5119 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5082 0.5000 
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7.3.6.1.10 Network Constructed Using Pearson’s Correlation Cutoff: 0.8 

 

7.3.6.1.10.1 Variance Inflation Factors (VIF) 

 

All 19 predictor variables have VIF values exceed 1014. The following table shows 

comparison of model classification performance. 

 

7.3.6.1.11 Network Constructed Using Pearson’s Correlation Cutoff: 0.9 

 

All 19 predictor variables have VIF values exceed 1014. The following table shows 

comparison of model classification performance. 

 

7.3.6.1.12 Network Constructed Using Pearson’s Correlation Cutoff: 1 

 

All 19 predictor variables have VIF values exceed 1014. The following table shows 

comparison of model classification performance. 

 

 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
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7.3.6.2 Alpha Wave (11-13Hz) 

 

The summary result of classification performance of LASSO, PCSSLR, and logistic 

regression in terms of ROC curve’s AUC distribution for selected value of Pearson 

correlation coefficient used as thresholds to construct undirected EEG/brain network 

based on channel data for 11-13 Hz frequency range is shown in Figure 126 for training 

and Figure 127 for test sets.   The VIFs of the clustering coefficient covariates are shown 

in Figure 128 to Figure 132.  
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7.3.6.2.1 AUC Comparison of Models – Training Sets 

 

 

 

Figure 126.  Training set DBS-on vs. DBS-off classification performance of PCSSLR, LASSO and logistic regression 
over range of Pearson correlations used to construct EEG network for frequency of 11-13 Hz. 

 

 

 

 

 

 

 



186 
 

 
 

 

7.3.6.2.2 AUC Comparison of Models – Test Sets 

 

 

Figure 127.  Test set DBS-on vs. DBS-off classification performance of PCSSLR, LASSO and logistic regression over 
range of Pearson correlations used to construct EEG network for frequency of 11-13 Hz. 
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7.3.6.2.3 11-13 Hz, AUC and Network Constructed Using Pearson’s Correlation Cutoff: 0.1 

 

7.3.6.2.3.1 Variance Inflation Factors (VIF) 

  

Figure 128.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.1 as threshold and frequency range of 11-13 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.8904 0.8474 0.8853 0.8434 0.9330 0.7789 

Mean 0.8921 0.8446 0.8765 0.8273 0.9341 0.7703 
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7.3.6.2.4 Network Constructed Using Pearson’s Correlation Cutoff: 0.2 

 

7.3.6.2.4.1 Variance Inflation Factors (VIF) 

 

 

 

Figure 129.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.2 as threshold and frequency range of 11-13 Hz. 

The following table shows comparison of model classification performance. 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.8929 0.7401 0.8199 0.7809 0.9417 0.7579 

Mean 0.8889 0.7374 0.7799 0.7424 0.9365 0.7520 
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7.3.6.2.5 Network Constructed Using Pearson’s Correlation Cutoff: 0.3 

 

7.3.6.2.5.1 Variance Inflation Factors (VIF) 

 

 

Figure 130.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.3 as threshold and frequency range of 11-13 Hz. 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.7351 0.5882 0.7135 0.6434 0.7801 0.5895 

Mean 0.7242 0.5864 0.6657 0.6282 0.7760 0.5858 
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7.3.6.2.6 Network Constructed Using Pearson’s Correlation Cutoff: 0.4) 

 

7.3.6.2.6.1 Variance Inflation Factors (VIF) 

 

 

Figure 131.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.4 as threshold and frequency range of 11-13 Hz. 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5602 0.5526 0.5714 0.5500 0.5827 0.5250 

Mean 0.5628 0.5564 0.5634 0.5396 0.5798 0.5322 
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7.3.6.2.7 Network Constructed Using Pearson’s Correlation Cutoff: 0.5) 

 

7.3.6.2.7.1 Variance Inflation Factors (VIF) 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5119 0.5000 

Mean 0.5000 0.5000 0.5095 0.5000 0.5161 0.5113 
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7.3.6.2.8 Network Constructed Using Pearson’s Correlation Cutoff: 0.6 

 

7.3.6.2.8.1 Variance Inflation Factors (VIF) 

 

 

Figure 132.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.6 as threshold and frequency range of 11-13 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5119 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5082 0.5000 
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7.3.6.2.9 Network Constructed Using Pearson’s Correlation Cutoff: 0.7 

 

7.3.6.2.9.1 Variance Inflation Factors (VIF) 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

 

7.3.6.2.10 11-13Hz Network (Pearson’s Correlation Cutoff: 0.8) 

 

7.3.6.2.10.1 Variance Inflation Factors (VIF) 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

 

 

 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
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7.3.6.2.11 11-13Hz Network (Pearson’s Correlation Cutoff: 0.9) 

 

7.3.6.2.11.1 Variance Inflation Factors (VIF) 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

7.3.6.2.12 11-13Hz Network (Pearson’s Correlation Cutoff: 1) 

 

7.3.6.2.12.1 Variance Inflation Factors (VIF) 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

 

 

 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
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7.3.6.3 Beta Wave (13-19Hz) 

 

The summary result of classification performance of LASSO, PCSSLR, and logistic 

regression in terms of ROC curve’s AUC distribution for selected value of Pearson 

correlation coefficient used as thresholds to construct undirected EEG/brain network 

based on channel data for 13-19 Hz frequency range is shown in Figure 133 for training 

sets and Figure 134 for test sets.   The VIFs of the clustering coefficient covariates are 

shown in Figure 135 to Figure 140.  
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7.3.6.3.1 AUC Comparison of Models – Training Sets 

 

 

Figure 133.  Training set DBS-on vs. DBS-off classification performance of PCSSLR, LASSO and logistic regression 
over range of Pearson correlations used to construct EEG network for frequency of 13-19 Hz. 
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7.3.6.3.2 AUC Comparison of Models – Test Sets 

 

 

Figure 134.  Test set DBS-on vs. DBS-off classification performance of PCSSLR, LASSO and logistic regression over 
range of Pearson correlations used to construct EEG network for frequency of 13-19 Hz. 
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7.3.6.3.3 Network Constructed Using Pearson’s Correlation Cutoff: 0.1 

 

7.3.6.3.3.1 Variance Inflation Factors (VIF) 

 

Figure 135.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.1 as threshold and frequency range of 13-19 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.8365 0.6632 0.8195 0.7158 0.9048 0.7237 

Mean 0.8327 0.6600 0.8110 0.6996 0.9046 0.7163 



199 
 

 
 

7.3.6.3.4 Network Constructed Using Pearson’s Correlation Cutoff: 0.2 

 

7.3.6.3.4.1 Variance Inflation Factors (VIF) 

 

 

Figure 136.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.2 as threshold and frequency range of 13-19 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.8195 0.6605 0.5000 0.5000 0.8954 0.7013 

Mean 0.8133 0.6577 0.6340 0.5767 0.8945 0.6944 
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7.3.6.3.5 Network Constructed Using Pearson’s Correlation Cutoff: 0.3 

 

7.3.6.3.5.1 Variance Inflation Factors (VIF) 

 

 

Figure 137.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.3 as threshold and frequency range of 13-19 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.7838 0.5862 0.7140 0.6395 0.7895 0.6145 

Mean 0.7642 0.5899 0.7104 0.6394 0.7890 0.6131 
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7.3.6.3.6 Network Constructed Using Pearson’s Correlation Cutoff: 0.4 

 

7.3.6.3.6.1 Variance Inflation Factors (VIF) 

 

 

Figure 138.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.4 as threshold and frequency range of 13-19 Hz. 

The following table shows comparison of model classification performance. 

 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.6165 0.5526 0.6175 0.5678 0.6190 0.5526 

Mean 0.6083 0.5585 0.5946 0.5584 0.6200 0.5592 
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7.3.6.3.7 Network Constructed Using Pearson’s Correlation Cutoff: 0.5 

 

7.3.6.3.7.1 Variance Inflation Factors (VIF) 

 

 

Figure 139.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.5 as threshold and frequency range of 13-19 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5238 0.5000 0.5357 0.5250 

Mean 0.5082 0.4969 0.5194 0.5048 0.5319 0.5183 
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7.3.6.3.8 Network Constructed Using Pearson’s Correlation Cutoff: 0.6 

 

7.3.6.3.8.1 Variance Inflation Factors (VIF) 

 

Figure 140.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.6 as threshold and frequency range of 13-19 Hz. 

The following table shows comparison of model classification performance. 

 

 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5247 0.5000 

Mean 0.5098 0.5000 0.5012 0.5000 0.5249 0.5038 
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7.3.6.3.9 Network Constructed Using Pearson’s Correlation Cutoff: 0.7 

 

7.3.6.3.9.1 Variance Inflation Factors (VIF) 

 

All 19 predictor variables have VIF values exceed 1014. The following table shows 

comparison of model classification performance. 

 

7.3.6.3.10 Network Constructed Using Pearson’s Correlation Cutoff: 0.8 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

7.3.6.3.11 Network Constructed Using Pearson’s Correlation Cutoff: 0.9 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

7.3.6.3.12 Network Constructed Using Pearson’s Correlation Cutoff: 1 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
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All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

7.3.6.4 Beta Wave (21-29Hz) 

 

The summary result of classification performance of LASSO, PCSSLR, and logistic 

regression in terms of ROC curve’s AUC distribution for selected value of Pearson 

correlation coefficient used as thresholds to construct undirected EEG/brain network 

based on channel data for 21-29 Hz frequency range is shown in Figure 141 for training 

sets and Figure 142 for test sets.   The VIFs of the clustering coefficient covariates are 

shown in Figure 143 to Figure 149.  

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
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7.3.6.4.1 AUC Comparison of Models – Training Sets 

 

Figure 141.  Training set DBS-on vs. DBS-off classification performance of PCSSLR, LASSO and logistic regression 
over range of Pearson correlations used to construct EEG network for frequency of 21-29 Hz. 
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7.3.6.4.2 AUC Comparison of Models – Test Sets 

 

 

Figure 142.  Test set DBS-on vs. DBS-off classification performance of PCSSLR, LASSO and logistic regression over 
range of Pearson correlations used to construct EEG network for frequency of 21-29 Hz. 
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7.3.6.4.3 Network Constructed Using Pearson’s Correlation Cutoff: 0.1 

 

7.3.6.4.3.1 Variance Inflation Factors (VIF) 

 

 

Figure 143.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.1 as threshold and frequency range of 21-29 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.9298 0.8211 0.8869 0.8421 0.9668 0.8158 

Mean 0.9305 0.8112 0.8943 0.8417 0.9661 0.8067 
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7.3.6.4.4 Network Constructed Using Pearson’s Correlation Cutoff: 0.2 

 

7.3.6.4.4.1 Variance Inflation Factors (VIF) 

 

 

Figure 144.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.2 as threshold and frequency range of 21-29 Hz. 

The following table shows comparison of model classification performance. 

 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.8424 0.7592 0.8161 0.8138 0.8916 0.6697 

Mean 0.8424 0.7505 0.8200 0.8079 0.8888 0.6694 
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7.3.6.4.5 Network Constructed Using Pearson’s Correlation Cutoff: 0.3 

 

7.3.6.4.5.1 Variance Inflation Factors (VIF) 

 

 

Figure 145.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.3 as threshold and frequency range of 21-29 Hz. 

 

The following table shows comparison of model classification performance. 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.7492 0.6368 0.6922 0.6678 0.7776 0.6099 

Mean 0.7486 0.6248 0.6766 0.6541 0.7756 0.6049 
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7.3.6.4.6 Network Constructed Using Pearson’s Correlation Cutoff: 0.4 

 

7.3.6.4.6.1 Variance Inflation Factors (VIF) 

 

Figure 146.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.4 as threshold and frequency range of 21-29 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5833 0.5000 0.5000 0.5000 0.6291 0.5487 

Mean 0.5811 0.5214 0.5414 0.5094 0.6330 0.5446 
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7.3.6.4.7 Network Constructed Using Pearson’s Correlation Cutoff: 0.5 

 

7.3.6.4.7.1 Variance Inflation Factors (VIF) 

 

 

Figure 147.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.5 as threshold and frequency range of 21-29 Hz. 

 

The following table shows comparison of model classification performance. 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5476 0.5204 0.5537 0.5243 0.5602 0.5500 

Mean 0.5468 0.5239 0.5420 0.5254 0.5642 0.5426 
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7.3.6.4.8 Network Constructed Using Pearson’s Correlation Cutoff: 0.6 

7.3.6.4.8.1 Variance Inflation Factors (VIF) 

 

 

Figure 148.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.6 as threshold and frequency range of 21-29 Hz. 

 

The following table shows comparison of model classification performance. 

 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5132 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5166 0.4892 
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7.3.6.4.9 Network Constructed Using Pearson’s Correlation Cutoff: 0.7 

7.3.6.4.9.1 Variance Inflation Factors (VIF) 

 

 

Figure 149.  Variance inflation factors of 19 clustering coefficients for EEG network created with Pearson correlation 
of 0.7 as threshold and frequency range of 21-29 Hz. 

 

The following table shows comparison of model classification performance. 

 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5132 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5084 0.5000 
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7.3.6.4.10 Network Constructed Using Pearson’s Correlation Cutoff: 0.8 

 

7.3.6.4.10.1 Variance Inflation Factors (VIF) 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

7.3.6.4.11 Network Constructed Using Pearson’s Correlation Cutoff: 0.9 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 

7.3.6.4.12 Network Constructed Using Pearson’s Correlation Cutoff: 1 

 

All 19 predictor variables have VIF values exceed 1014.  The following table shows 

comparison of model classification performance. 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

 PCSSLR LASSO Logistic Regression 

 Training Set Test Set Training Set Test Set Training Set Test Set 

Median 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

Mean 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
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7.3.7 Comparison of Physiological Frequency Range Classification Performance 

Based on Clustering Coefficients:  ROC Curve’s AUC vs.  Physiological 

Frequency Range 

 

The summary result of classification performance of LASSO, PCSSLR, and logistic 

regression in terms of ROC curve’s AUC distribution for the four physiological 

frequency ranges (Alpha Wave (7-9 Hz),  Alpha Wave (11-13 Hz), Beta Wave (13-19 

Hz), Beta Wave (21-29 Hz)  are presented.  Because the binary classification of all three 

binary classifiers shows the best performance for the correlation threshold of 0.1, the 

comparison is conducted for correlation threshold value of 0.1. 

7.3.7.1 Correlation Threshold of 0.1 

 

The summary result of classification performance of the training sets in terms of 

ROC curve’s AUC distribution for the four physiological frequency ranges is shown in 

Figure 150.   The corresponding summary result of the test set is shown in Figure 151. 
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 Figure 150.  Training set classification performance of PCSSLR, LASSO and logistic regression for EEG network 
constructed using Pearson correlation threshold of 0.1 over four physiological frequency ranges of 7-9 Hz, 11-13 Hz, 
13-19 Hz, and 21-29 Hz. 
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Figure 151.  Test set classification performance of PCSSLR, LASSO and logistic regression for EEG network 
constructed using Pearson correlation threshold of 0.1 over four physiological frequency ranges of 7-9 Hz, 11-13 Hz, 
13-19 Hz, and 21-29 Hz. 

 

7.4 Brain Regions and EEG Channels Selected in Binary Classification 

Model 
 

For binary classifier trained using LASSO method, a subset of covariates is selected 

to be used in the final model that is developed using all observations.  LASSO regression 

coefficients are constrained to minimize difference between observed classes of the EEG 

data and the classes predicted by the LASSO model.  As a result of the constraint, a 

subset of coefficients is set to zero. By forcing a subset of regression coefficients to be 

zero, LASSO effectively results in a model with only the covariates that are strongly 
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associated with the DBS-on and DBS-off classes.  In this study, these selected covariates 

are clustering coefficients of individual EEG channel which represents specific brain 

region. 

7.4.1 Brain Regions and EEG Channels Selected by LASSO for Correlation Threshold 

of 0.1 

 

Topographic map of EEG channels that are selected in the LASSO models with 

correlation threshold of 0.1 are presented.  The topographic map is created based on non-

zero regression coefficient weights of the LASSO model developed using all networks 

derived from original EEG data. 

7.4.1.1 Beta Wave (21-29 Hz) 

 

Figure 152.  Topographic map of regression coefficient weights of LASSO model using EEG data from 21-29 Hz and 
correlation threshold of 0.1. 
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As seen in Figure 152, the selected regression coefficient weights of the LASSO 

model are highly concentrated around midline plane of the parietal lobe (Cz-Pz channel). 

7.4.1.2 Beta Wave (13-19 Hz) 

 

Figure 153.  Topographic map of regression coefficient weights of LASSO model using EEG data from 13-19 Hz and 
correlation threshold of 0.1. 

 

As seen in Figure 153, the selected regression coefficient weights of the LASSO 

model are mostly concentrated around the right temporal and occipital lobe regions (T6-

O2 channel). 
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7.4.1.3 Alpha Wave (11-13 Hz) 

 

 

Figure 154.  Topographic map of regression coefficient weights of LASSO model using EEG data from 11-13 Hz and 
correlation threshold of 0.1. 

 

As seen in Figure 153, the selected regression coefficient weights of the LASSO 

model are mostly concentrated around the right temporal and occipital lobe regions (T6-

O2 channel). 
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7.4.1.4 Alpha Wave (7-9 Hz) 

 

 

Figure 155.  Topographic map of regression coefficient weights of LASSO model using EEG data from 7-9 Hz and 
correlation threshold of 0.1. 

 

As seen in Figure 155, the selected regression coefficient weights of the LASSO 

model are more diffuse for the 7-9 Hz frequency range relative to the other three 

physiological frequency ranges.  The regression coefficient mostly concentrated around 

the left frontal region near the left parasagittal plane (F3-C3 channel), the left temporal 

lobe region (T5-O1) and the right frontal lobe region (F8-T4 channel). 
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Chapter 8  Discussion  
 

The binary classification framework that was developed in this study attempts to use 

only information of EEG channel data network to perform classification for EEG data. 

More specifically, the binary classification involves with distinguishing EEG data into 

either DBS-on class or DBS-off class by using inter-channel correlation of EEG 

recordings.  In developing the classification framework, both prediction and 

interpretation of the results are important to practicing clinicians who are interested in 

analyzing the EEG dataset. Given binary classification models that shows sufficient 

classification performance, results that can be readily interpretable from a clinical point 

of view may more easily lead to identification of potential biomarkers of DBS effects.   

8.1 Comparison of Classification Results of Training and Test Data Set 

with Different Network Association Cutoffs 
 

As seen in section 7.3.4 and section 7.3.5, the classification performance as 

measured by ROC curve’s AUC has an inverse relationship with Pearson correlation 

thresholds that are used to construct the EEG frequency network.   The relationship 

makes sense given that fact that the value of Pearson correlation is used as cutoff to 

derive a binary network.  For a relatively high value of Pearson correlation used as 

threshold (e.g. 0.9), relatively few channel pairwise correlations are selected as realized 

connections of the network because most of the underlying correlations of the pairwise 

EEG channel in frequency space are less than that the threshold. Given very few 

connections in the network, the interconnectivity network metric derived does not contain 

enough information to differentiate networks into either DBS-on or DBS-off state. As a 
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result, the binary classifiers developed with a high value of Pearson’s correlation 

threshold tend to have lower median ROC curve’s AUC than the binary classifiers 

developed with a lower value of Pearson’s correlation regardless the binary classifiers are 

trained based on PCSSLR, LASSO or simple logistic regression.  From the series of 

binary classification results, it can also inferred that a Pearson correlation threshold of 0.1 

generally results in the best classification results of EEG network with DBS on vs. DBS 

off for all four physiological frequency ranges defined in this study.  

8.2 Comparison of Classification Performance of Different Models 
 

Based on comparison shown in section 7.3.6, it can be seen that all three binary 

classifier modeling approaches have advantages and disadvantages.  

The binary classification based on logistic regression tends to result in large 

percentage drop in median and mean AUC for the test dataset with respect to the AUC of 

the training set.  This indicates that the binary classifier may over-fit the training data. 

The average percentage drop is 12.6% compared to 10.1% for PCSSLR and 8.3% for 

LASSO. As a result, the binary classifier developed based on simple logistic regression 

leads to relatively modest binary classification performance for the test dataset with 

respect to the training dataset.  In addition, simple logistic regression model do not result 

in identification of subset of features that are important in separating the data into the 

DBS-on and DBS-off classes because no specific feature selection step is deployed 

within the context of developing a logistic regression model. An advantage of logistic 

regression is its relative ease of use in quickly developing a binary classifier. Thus, 
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simple logistic regression is often a good modeling method to use as a first attempt to 

develop a binary classifier for a dataset as was done in this current study.  

The binary classification based on LASSO tends to result in good binary 

classification performance. The average ROC curve’s AUC of binary classifiers 

developed based on LASSO is approximately 0.7511 for the range of Pearson 

correlations defined in this study. In addition, the difference in percentage change of 

median AUC between the training set and test set models is only 8.3%.  However, the 

LASSO method requires selecting the value of the parameter of 𝜆, the choice of which 

has a large impact of the binary classification performance of the model developed.  In 

addition, cross validation is needed to determine the relative merit of what value to use 

for 𝜆 which leads to increased time requirement to develop an appropriate LASSO model. 

The binary classification based on PCSSLR tends to result in binary classification 

performance similar to the performance of binary classifier based on LASSO.  The binary 

classifiers based on PCSSLR perform better than those based on LASSO with Pearson 

correlation of 0.1 for frequency range of 11-13 Hz.  One disadvantage of PCSSLR is that 

the covariates need to be linearly transformed. These transformed variables of the 

original clustering coefficients of the EEG frequency networks may be more difficult to 

interpret because each of the transformed variables is a combination of all the original 

variables. As a result, the features selected by a PCSSLR binary classifier model requires 

more abstract interpretation with respect to the features selected by binary classifier 

developed based on LASSO.   
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8.3 Comparison of Physiological Frequency Range Classification 

Performance  
 

Based on results from section 7.3.7, it can be seen that different physiological 

frequency range segments tend to results in different classification performance with 

respect to the binary classifier modeling methods used. Using median of the AUC 

distribution from the cross validation samples, it can be seen from Figure 151 that 

PCSSLR performs the best among the three binary classification methods for alpha wave 

of 11-13 Hz.  LASSO performs the best among the three binary classification methods 

for alpha wave of 7-9 Hz and for beta wave of 21-29 Hz.  Logistic regression performs 

the best among the three classification methods for beta wave of 13-19 Hz. It can also 

been seen from Figure 151 that beta wave of 13-19 Hz leads to an inferior binary 

classification with respect to other three defined physiological frequency ranges.   

8.4 Potential Biomarkers: Brain Regions and EEG Channels Selected in 

Binary Classification Model 
 

As shown in Figure 152 to Figure 155, different brain regions and EEG channels are 

selected in different physiological frequency ranges by the LASSO model developed 

using all EEG network-derived clustering coefficients.  For 20-28 Hz of beta activity, the 

model coefficient weights are highly concentrated around the midline plane of the 

parietal lobe (Cz-Pz channel). This result is interesting in view of the fact that the target 

of the DBS treatment received by the patient in this study is the subthalamic nucleus 

(STN) and the horizontal plane location of the STN is approximately centered around 

anterior and posterior commissures [22]. In addition, elevated beta activity has been 

proposed to be associated with slowing of spontaneous movements in Parkinson’s disease 
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[23].  The channels selected in the model suggest that the clustering coefficients of these 

channels are highly associated with the DBS-on and DBS-off state.  Since clustering 

coefficient of a node in a network measures the proportion of the connections among  the 

neighboring nodes that are realized compared to all possible connections,  the modeling 

results indicate that the proportion of realized connections among channels other than  

those selected channels may be significantly different while DBS is on related to while 

DBS is off. 

In addition to the selected channels and brain regions for 21-29 Hz beta activity, the 

model also indicates another selected channel for beta activity of 13-19 Hz and alpha 

activity of 11-13 Hz.  For these two physiological frequency ranges, the coefficient 

weights of the LASSO model are highly concentrated at T6-O2 channel corresponding to 

the right temporal and occipital lobe regions of the brain.  For alpha activity of 7-9 Hz, 

the model has coefficient weights concentrated around F3-C3, T5-O1, and the F8-T4 

channels. 

Extract potentially new biomarkers using brain network data is an important 

challenge for a number of neurological disorders including Alzheimer’s disease, multiple 

sclerosis and epilepsy [24].  The result of the this study indicates that it is possible to 

apply the modeling framework developed to extract potential biomarkers using only 

inter-channel correlation of EEG recordings to identify effects of treatment procedure 

such as deep brain stimulation and other physiological states including disorders such as 

Parkinson’s disease.  
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8.5 Network Interpretation of Potential Biomarkers of DBS Effects 
 

In this study, a framework is developed that can be used to develop binary classifier 

to select EEG segments into binary categories of DBS-on and DBS-off states.  The binary 

classifier is trained based on only inter-channel correlation of pairwise EEG data.  Binary 

classifiers that are developed using LASSO result in a subset of channels that are selected 

to be included in the classifier model.  This subset of channels is hypothesized to be 

potential biomarkers related to the effects of deep brain stimulation (DBS). 

An important issue in examining the study results and any potential biomarker is 

whether or not these selected channels and their clustering coefficients of the EEG 

network are biomarkers for the effects of DBS on EEG data or for therapeutic efficacy of 

DBS on reducing motor symptoms such as those associated with Parkinson’s disease. 

Even though there are effects on the physiological range of brain waves uncovered based 

on the classification framework developed in this study, it is not clear within the context 

of this study the true nature of these effects. It is possible that the effects found are simply 

another set of artifacts that are not directly related to physiology of brain wave. On the 

other hand, it is also possible that the subtle difference in inter-channel frequency 

correlation of EEG data that seems to contain information to differentiate EEG data into 

DBS-on vs DBS-off state may have an underlying physiological basis that can be used 

for diagnostic and therapeutic purposes. This issue is outside the scope of the current 

study.  In order to examine the direct therapeutic effects of DBS on motor symptoms 

associated with Parkinson’s disease, it will be necessary to also acquire and analyze 

quantitative data from a patient population of sufficient size. In addition, the data would 
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need to be used to measure severity of symptoms of Parkinson’s disease based on rating 

scale such as the unified Parkinson’s disease rating scale (UPDRS) [25]. 

Regardless the true nature of the potential biomarkers from this study, it can be 

determined based on the modeling framework investigation conducted in this study that a 

network approach can help gain insights into characteristics of EEG data that are not 

normally noticeable to neurologists and neurophysiologists. The modeling framework 

developed in this study can potentially help guide discovery of other EEG signal of 

interest in the future. 

The potential biomarkers found in this study can be useful for future workflow of 

providing DBS treatment to patients and the design of new DBS devices.  In order to 

properly use DBS to treat motor symptoms of Parkinson’s disease for a patient, it is 

necessary to adjust parameter settings over the course of a few months through 

interactions between clinicians and patients.  The current approach requires multiple 

office visits which are costly, slow and inefficient. A closed loop, adaptive DBS system 

that can adjust itself automatically to be on or off based on a measureable biomarker from 

the patients would provide clinical benefits to both clinicians and patients. The potential 

biomarkers that are found in the current study may be used in such close loop system.  

More specifically, one or several of these EEG biomarkers can be used as a proxy of 

EEG effects of DBS and serve as the measureable variables for the closed loop adaptive 

system. Thus, these potential biomarkers may be useful as long as these variables can be 

measurable directly or indirectly from the patient by the use of EEG devices. 
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Moreover, the general classification framework developed in the study can be used 

to identify other potential biomarkers that may only become noticeable by examining the 

interrelationship of multiple EEG channel data as a whole.  Thus, the classification 

framework can service as a good basis that allow researchers to examine network effects 

by using EEG data.  
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Chapter 9  Conclusion 
 

In this study, a framework to combine inter-EEG-channel association measures and 

network features to train binary classifiers was developed to distinguish EEG data into 

either one of the two binary categories of DBS-on state and DBS-off state.  

The comparison of AUC obtained using PCSSLR,  LASSO and logistic regression 

shows the binary classification performance of the three methods are comparable over 

certain physiological frequency range.  Each of these methods results in the best binary 

classification performance among the three methods for different physiological frequency 

range. Moreover, each method has advantages and disadvantages and it is prudent to 

employ multiple binary classification approaches to compare and confirm classification 

prediction results. 

An advantage of using network characteristics such as clustering coefficient is that 

such network-based metric offers objective measures to quantify interactions of EEG 

recordings from all pairs of EEG channels.  Based on result from current study, it is 

reasonable to conclude that characteristics of network constructed based on correlation 

among pairs of EEG channel data are suitable to be used as features to train classifier for 

DBS-on and DBS-off classification.   

In addition, the general classification framework developed in this study can be used 

to identify potential biomarkers that may only become noticeable by examining the 

interrelationship of multiple EEG channel datasets as one whole system. These potential 

biomarkers can be further investigated for use in adaptive DBS feedback control system 

to improve DBS therapy for patients and clinicians. The classification framework 
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established in this study can serve as a good basis to enable researchers to examine the 

network effects of EEG data and brain activity.   
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