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ABSTRACT OF THE THESIS

IDENTIFYING SMARTPHONE USERS BASED ON
SMARTWATCH DATA

by SIDHIKA VARSHNEY
Thesis Director: DR. JANNE LINDQVIST

In recent years, smartphones have become part and parcel of peoples life. Smartphones
are used for all day-to-day critical tasks like money transfer, storing important docu-
ments and other information. This thesis presents, a user identification system based
on smartwatch data. For identification of a user, walking activity and call receiving ac-
tivity are analyzed when the phone is on the table and in pocket or bag. The recorded
data from four smartwatch sensors enables the calculation of mean, variance, skewness,
and gamma distribution parameters. These features are used to train the model. The
presented system was tested on 20 participants and has an Equal Error Rate (EER) of
0.052.
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Chapter 1

Introduction

In today’s time, the most common methods for authenticating a user on a mobile
or desktop system requires a password at the entry point. These methods have both
usability and security flaws. If the user inputs the correct password, then only he or she
is granted access to the device. From a usability perspective, users have to focus on each
step of authentication every time they interact with their devices. These steps cause
more inconvenience in the case of mobile devices because their usage period is short.
Having to enter a PIN or Password every time is too cumbersome and time consuming
for small activities like checking e-mails, or surfing on social media. This is why users
generally keep weak and short passwords, thus resulting in the weak authentication
system. For these conventional methods, once the entry point authentication is passed
correctly the device is not capable of finding the intruders. This research deals in
developing an identification system which is based on behavioral biometrics for securing
mobile devices.

Biometrics is the science of establishing the identity of an individual on the basis of
physiological or behavioral attributes of the person. It is an automated method of iden-
tifying an individual because biometric authentication techniques are done completely
by machine [1]. Biometric identifiers are distinctive to each individual rather than the
token id number, password, and number for verifying or recognizing the identity of an
individual [2]. Examples of physiological characteristics, which are currently used for
automatic identification, include retina, finger vein patterns, iris features, voice or face
patterns, biological characteristics, and user keystroke-which is a way of determining
how fast a user types, and the amount of time they spend pressing each key.

A Biometric system should fulfill the following properties:



1. Universality: Every person should have the biometric identifier which is being in

the system.
2. Uniqueness: No two persons should have the same biometric identifiers.

3. Permanence: The Biometric identifier in the system should be invariant with

time.

4. Collectability: Biometric characteristics must be measurable quantitatively and

easy to acquire.
5. Performance: The Biometric technique accuracy level.
6. Acceptability: The level of user acceptance of the biometric system.

7. Circumvention: The level of difficulty in order to forge an identification/ authen-

tication [3].

Smart cards having fingerprint, face, and hand geometry, are used as access devices
in centralized systems; fingerprints and signature are taken as a mandatory requirement
for a driver license [4]; visa on passports has both a hand measurement and photograph
[5]; season pass for amusement parks is linked to the finger prints of the purchaser
together with a unique barcode [6]; home automation system are linked by automatic
voice recognition systems [7]; and delivery of confidential files through iris recognition
and finger print matching [8]. All of these seem completely different in terms of purpose,
procedures, and technologies, but each system uses biometric authentication in one way

or another.

1.1 Motivation

The motivation of the thesis is to develop a novel system based on a smartwatch and an-
droid device which can be used for the identification of a user. Nowadays smartwatches
have functionality that is enhanced beyond timekeeping. These are full-edged digital
tools. Smartwatches are capable of collecting information from internal and external

sensors in addition to retrieving data from devices like desktop and laptop computers.



Smartwatches have sensors like heartrate sensor, temperature sensor and other that
could be used to collect information of a user which are unobservable. Thus, making
applications like gesture-based passwords and devices more secure while authenticating

the user.

1.2 Contribution

In this study, an identification system using a smartwatch has been developed. Every
person has a unique style of walking and receiving a call. Therefore, for the purpose of
identification only, call receiving and walking activities are considered. The smartwatch
under test has 12 software plus hardware sensors available out of which only 4 sensors
are used for this study. First, we developed an application for data collection. This
is followed by a feature extraction in order to train the classifier. The Support Vector
Machine (SVM) classifier, with different types of kernels is used for the identification
purpose. The system is tested with data of 20 participants and has achieved an Equal
Error Rate (EER) as low as 0.052 for the SVM with Gaussian kernel.

1.3 Outline

In Chapter 2, previous work related to this field is described. Chapter 3 has detailed
information about the hardware used in this research. Chapter 4 elaborates the design
of whole identification system and implementation for data collection. In Chapter 5
and 6, the methods and results of data analysis are discussed respectively. In Chapter
7 results achieved in this research are discussed. Discussions and conclusion are in

chapter 8 and 9 respectively.



Chapter 2

Related Work

This chapter discusses the related work in the field of behavioral biometrics. Due to the
rapid growth of cities by the mid-1800s along with the industrial revolution, there was
a formal need to recognize human physiology. In 1858, the first systematic capture of
hand images, for the purpose of identification was recorded by Sir William Herschel. He
recorded handprints on the back of a contract for each worker to distinguish employees
from others who might come and claim to be the worker when pay day arrived [9]. H.
Gamboa et al. presented a verification technique based on the behavioral biometrics.
In this research, they verified the user from the human computer interaction through
a pointing device, typically a mouse pointer. The interaction of the user and pointing
device is analyzed for extracting behavioral information which was used to authenticate
the user [3].

Other than the PIN-based, geometry of hand and patterns, gestures based authen-
tication also gained importance in this field. In 2003 Rekimoto et al. introduced a
technique based on synchronization tapping of digital devices to make a network con-
nection. In SyncTap if a user wants to connect two devices, he or she has to press
and release the connection button on both devices synchronously. The system works
by comparing the recorded timings locally on both the devices to authenticate. This
system can also be used for making secure connections [10]. Another application based
on synchronous gestures is for connecting multiple devices bumping into each other
for interaction [11]. In Lester et al. a method based on coherence function was pre-
sented. The walking data is recorded using a low-cost micro electro-mechanical systems
(MEMS) accelerometer used for detecting whether the two devices are associated with

the same person or not. The system is 100% accurate when comparing 8 seconds of



data using a sliding window and tolerant to inter-device communication latencies and
requires little communication bandwidth [12].

Many techniques have been promoted recently as alternative forms of authentication
systems. In 2007 M. Shahin presented a system based on the hand vein authentication
system utilizing the fast-spatial correlation of hand vein patterns. The results verified
that there is no matching between the left and right hands vein pattern of the same
person. Therefore, the probability that two people could have the same vein pattern
is very low. Their system operated at a 97% genuine acceptance rate and a 99.98%
genuine reject rate [13]. In 2012, M. Frank et al. investigated whether a classifier can
continuously authenticate users based on the way they interact with the touch screen of
their phone. They proposed a set of 30 behavioral touch features that can be extracted
from raw touch screen logs and demonstrated that different users populated distinct
subspaces of these features. The experimental results of the proposed system failed as
a standalone authentication mechanism for long-term authentication [14].

L. Ballard et al. took a step to develop methodologies which considered the threat
models that have been widely ignored. The research also presented a generative attack
model based on concatenative synthesis that can provide a rapid indication of security
afforded by the system [15]. In 2012, N. Sae-Bae et al. presented a novel multi-
touch gesture based authentication system, recording gestures from all five fingers which
achieved accuracy of 90% [16]. However, the system is prone to shoulder surfing, finger
oil traces and potentially provides significantly large entropy.

Liu et al. presented a recognition algorithm named as uWave using a single three
axis accelerometer. This system required a single gesture pattern for training and
achieved 98.6% accuracy [17]. Mayrhofer et al. presented two concrete methods for
authentication, ShaVe and ShaCk. In these methods, sensing and analysis of shaking
movements were combined with the cryptographic protocol for secure authentication.
ShaVe (Shacking for Verification) use accelerometer data to verify whether the key
agreement has taken place with the intended devices by comparing the similar move-
ments. ShaCk (Shake to Construct a key) use accelerometer data for the extraction

of feature vectors for the construction purpose. ShaVe technique is more secure than



ShaCk. However, ShaCk is computationally less expensive [18]. Wu et al. presented an
acceleration based recognition approach known as Frame-based Descriptor and multi-
class SVM. This research represented acceleration data as a frame based descriptor
for the extraction of discriminative information. A SVM-based classifier used for the
recognition purpose resulted in 98.93% for 4 gestures and 89.29% for 12 gestures for
the user-independent case; whereas, for the user-dependent case, the recognition rate is
99.38% for the 4 gestures and 95.21% for all of the 12 gestures [19]. In further research
to improve the results, the team developed an efficient adaptive update method. They
used a minimum route determination algorithm in DP matching which achieved an
equal error rate of 4.0%. This system employs dynamic time warping and affinity prop-
agation algorithms for training and for recognition purpose it utilizes the sparse nature
of gesture sequence by implementing compressive sensing for gesture recognition [20].

In 2012, researchers from Carnegie Mellon University showed that accelerometer
readings could be used to extract entire sequences of entered text on a smartphone
touch screen keyboard [21]. They trained their system only on the acceleration mea-
surements of a security sensitive task of password entry. Researchers also presented
that accelerometer readings can be used to infer location and named the system as
ACComplice [22]. In this system, it is demonstrated that the device owner could be
located within 200 meters radius using accelerometer reading. Fujinami et al. proposed
a system for recognizing the storing position of the phone on the body as a context
of device and user. The system employed 3 axis readings of the accelerometer for rec-
ognizing 9 positions using Machine learning algorithms with 60 features. The result
of the offline experiment showed an overall accuracy of 74.6% in a strict condition of
Leave-One-Subject-Out test [23].

Li et al. proposed a novel system for continuous authentication. The system uses a
classifier for learning owners finger movement patterns and matches the current users
finger pattern without hindering the working of any other application. In this way, the
system keeps re-authenticating the true owner of the smartphone [24]. In Tian et al. a
unique authentication method was proposed named as KinWrite. It authenticates using

handwriting, in which a user can write a password in a space provided instead of typing



it. Writing in space adds behavioral biometric characteristics like handwriting and
personalized passwords, which are difficult to replicate by another user. In KinWrite,
Kinect was utilized to capture the handwriting. Experimental results showed that with
100% precision, 70% accuracy or a 99% accuracy could be achieved [25].

In 2012, J. Guerra-Casanova and his team members proposed an innovative bio-
metric technique for mobile devices based on hand gesture movements in the air. A
sequencing algorithm is implemented to correct the hand gesture movements because
it is not possible to repeat the same gesture movement every time in the air. User au-
thentication involves user enrollment and verification. For enrollment, it is important
for the user to perform the same 3-D hand gesture several times to create a biomet-
ric template. The system is only utilizing the 3 axis readings of the accelerometer.
The research team performed a complete evaluation of this technique by analyzing 100
user’s databases including real attempts at falsification [26]. Another similar work was
proposed by Okumura and his team. They proposed a method that authenticates the
owner using acceleration signal from an embedded accelerometer in the mobile device.
The user has to shake the device to unlock it, and the system verifies the owners accel-
eration signal by using a DP matching algorithm which can adapt fluctuations caused
by different grips [27]. R. Murmuria et al. proposed a continuous authentication system
based on the power consumption, touch gestures, and physical movement. They were
one of the first research groups to propose power consumption as one of the authenti-
cation systems in Android devices. They employ the fact that different users perform
different tasks on various applications while modeling user behavior. They also em-
ployed an anomaly detection algorithm for each model and placed a limit on a fraction
of anomalous activities which can be considered as normal for any given users [28].

Mantyla et al. built a box including several types of sensors attached to the mobile
devices in order to automatically deduce what is the state of the phone when the
user is using it. They divided the gestures into two categories: static and dynamic.
Static is when the user keeps the phone on one ear and talks to someone: whereas,
dynamic is when a person is moving the phone from one ear to another while talking.

For phone gesture recognition purposes, they used Hidden Markov Model (HMM) and



the Self-Organizing Map of Kohonen [29]. Feng et al. designed a continuous mobile
authentication system, FAST. It works on the fact that all users have different touch
features such as pressure and speed and acceleration of finger movements. FAST has
a unique feature, it collects the sensor data without disrupting the working of other
applications. It first detects whether the user is the owner of the device or not. If
it determines that user is different, post authentication techniques are performed [30].
In 2014, Michael Sherman and his team presented a free form of gesture password for
authentication. In this they showed that signatures and angular shapes are the best
remembered passwords [31]. S. Li et al. implemented a user authentication system,
Headbanger for head-worn devices by monitoring the head movement in response to
an external audio stimulus. They showed that it is robust against imitation attacks,
accurate and light weight. The processing latency on Google Glass was around 1.9

seconds [32].



Chapter 3

Hardware

This chapter describes in detail smartwatch, smartphone and technology used for this

project.

3.1 Smartwatch: Motorola Moto 360 (1st Generation)

Wristwatches have evolved significantly over the last half-century from the introduction
of the first digital watches in the 1960s to what we now term “smartwatches”—fully
programmable watches containing active electronics mostly in the form of sensors and
with the capability to interact with other devices. The first smartwatch was introduced
in 2000 by IBM, which demonstrated a prototype watch running Linux and powered
by an ARM processor [33].

(a) Moto 360 watch front view. (b) Moto 360 watch back view.

Figure 3.1: Moto 360 with a front and a back view.

The Motorola Moto 360 watch has a design that is more reminiscent of a regu-

lar watch with a circular design, supporting capacitive touch display with a Atmel

MXT112S Capacitive Touchscreen Controller. The watch is 46mm in diameter and
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11.5mm thickness paired with a leather band. It is encased in stainless steel and glass,
and the straps are made of leather sourced from the Chicago tannery [34].

It weighs 49 grams and has a screen size of 1.56 inches across with a resolution of
320 x 290 that results in a pixel density of 205 pixels per inch. It has only one physical
button for activating the display of the watch. There is a black slice at the bottom
of the screen in which an ambient light sensor has been placed [35]. Moto 360 is the
first Android Wear smartwatch to feature inductive charging. It charges wirelessly via
Qi magnetic induction and a Qi standard charger; it can simply be charged using any
Qi wireless charger. It has two microphones, Wolfson Microelectronics WM7121 at
the Top and a Wolfson Microelectronics WM7132 MEMS at the bottom Port Analogue
Silicon Microphone, and a Bluetooth 4.0 and Wi-Fi for connecting to other devices. The
Moto 360 watch has the Android Wear operating system. The system on chip is the
Texas Instruments X3630ACBP OMAP 3 (Open Multimedia Application Platform)
application process and 1 GHz Cortex A8 CPU. It has a fixed point digital signal
processor and a 4GB (512 MB) Mobile LPDDR. It also has a 3.8 V, 300 mAh battery
rated at 1.1 Wh of energy [36].

Altogether there are 12 hardware and software sensors, listed using the listing func-
tion in Android. Accelerometer, step counter, light sensor, and gyroscope for example
are few sensors out of the 12. For this project, readings of following sensors have been

recorded for the purposes of our analysis:

e Accelerometer is used for measuring the acceleration of force in metre/s? in all the
three physical axes (x, y, and z) including the force of gravity that is applied to
the device. It is a hardware type of sensor which is commonly used in motion

detection applications.

e Light Sensor is used for measuring illumination lux (Ix). It is hardware type of

sensor used for controlling screen brightness.

e Magnetic field Sensor is used for measuring the ambient geomagnetic field for the
three physical axes (x, y, z) in microT. It is also a hardware type of sensor used

for creating a compass.
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e Gravity Sensor is used for measuring the force of gravity in metre/s? that is applied
to a device on all three physical axes (x, y, z). It can be a software or a hardware

type of sensor used in motion detection applications.

e Linear Acceleration Sensor is used for measuring the acceleration force in all of
the three physical axes excluding the force of gravity. Linear acceleration is equal
to the subtraction of force of gravity from the accelerometer sensor’s readings.
It is the type of hardware and software sensor used for monitoring acceleration

along a single axis.

e Rotation Vector Sensor is used for measuring the three elements of the device’s
rotation vector resulting in orientation of a device. It can be a software or hard-

ware type of sensor which is used in detecting motion and rotation [37].

3.2 Why Smartwatch?

Today, smartwatches have become a daily use electronic device, they connect to a
smartphone through a Bluetooth link and rely on them for updating applications and
transferring data to the internet. We chose a smartwatch over a smartphone for our
experiments because a smartwatch is worn on the wrist which helps in receiving highly
accurate data of their hand movements from various sensors. In addition to the sensors
offered by smartphones, a smartwatch has additional sensors like heart rate and gesture
sensor. Since heart rate and hand gesture are unique for every person, this can be
utilized for identification purposes.

To summarize we discussed the hardware of smartwatch, sensors we are using in

this study and why we selected smartwatch data for identifying the users.



Chapter 4

Design And Implementation

12

This chapter describes the flowchart of the identification system. The chapter starts

with the flowchart explaining all steps taken which led us to our final results. The

second section of this chapter, explains the implementation and working of applications

used for the data collection.

4.1 Flowchart

Figure 4.1 shows the flowchart of the data flow system from the collection step to the

identification step. The first block is the Android Watch which is used in this study

to collect the data. The users were asked to wear this Android watch and perform

activities discussed in section 5.1.2.

Android Wear
and Android
phone

Recorded Data . Feature
*  from Sensors »  Data Analysis » Calculation
Identification . .
Classifier Data Fil
Result a— ata tre

Figure 4.1: Flow chart of the identification system.

The second block is the data collection step from four sensors gravity sensor, ac-

celerometer, linear accelerometer and rotation vector sensors in x, y and z directions.

The collected data is processed and saved in separate files. This data is used to calculate
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the magnitude and features which are employed to train the classifier for identification.
This process will be elaborated in the next section. The last block is the classifier
which will be trained by the training data obtained from the feature calculation block
and tested by testing data. The classifier identifies the user and returns the maximum
probability of the matching class. The probability of all users is then used to calculate
the equal error rate (EER).

4.2 Apparatus

For data collection, an Android application was developed for our phone and Android
Wear (Moto 360 watch) using Android Studio. The android application for the smart
watch is a non-launching application displaying a notification if the application is run-
ning in the background. Android wear connects to the phone via Bluetooth.

The mobile application had three functional buttons:

e START: This button sends a message to the Android Wear to enable the sensors

and keep recording the data from these sensors onto the watch in JSON format.

e STOP: This button sends a message for disabling the sensors and hence stops the

recording.

¢ EXPORT: This button sends a message for exporting the sensor’s data from the

watch to the phone.

In Android Wear application, a receiver is made which performs operation upon

receiving the following messages from the phone:

e Start Message: When this message is received, Sensor Service starts which enables
the four Sensors: gravity sensor, accelerometer, linear accelerometer and rotation

vector sensors.

e Stop Message: When this message is received, Sensor service is stopped, resulting
in disabling all four of the sensors which were enabled when a start message is

received.
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o Export Message: When this message is received, Android Wear starts sending the

data to the phone. It stops the application once the data transfer is complete.

4.2.1 Flowchart of Data Collection

Figure 4.2 shows the flowchart explaining the message flow and actions performed when
the phone is the sender and the Android watch is a receiver. As explained in Section
4.2, the phone application has three buttons. When any button is pressed, a message
is sent to the Android watch via Bluetooth using Message API. When watch receives
any message, it checks whether the message is “START”,“STOP” or “EXPORT.” Ap-
plication in the Android watch runs in the background, displaying a notification when

data collection starts.

Export Connection is checked and
data is sent using Data API

Message sent via
h Start the Readings are recorded
l —p| message APT using ((th‘)) Gensor Service | in JSON array
2 Bluetooth -
Stop the
Stop Sensor Service

Figure 4.2: Flow of messages from phone and actions performed in Android watch.

Upon pressing the Start button on the phone application it sends a START message
to the watch. On receiving this message the Sensor Service is started, enabling all the
four sensors: gravity sensor, accelerometer, linear accelerometer and rotation vector
sensors with a 20,000 microseconds delay. Whenever there is a change in the sensor
value, sensors reading in three directions namely x-direction, y-direction and z-direction
are recorded in a JSON array. When the Stop button is pressed, then a STOP message
is sent. Once the Android watch receives the STOP message, disables all of the sensors

and stops the sensor service.
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On receiving data is written Data is sent in 3000 character ol
in text file. (@*D) size packets using Data APT 0819 "
-

Figure 4.3: Flow of data from android watch to phone.

When the export button is pressed, an EXPORT message is sent, and the Android
watch starts sending data in batches of 3000 characters each using the Data API. At
this point the phone becomes the receiver, and the Android watch becomes the sender,
as shown in Figure 4.3. Before the Android watch sends data, it checks the Bluetooth
connection and starts sending it. When data comes on the receiver, it starts appending
the data into text file and upon completion saves the data in the phone’s internal
memory.

In summary, this chapter describes the steps for the identification model. The
second section of this chapter discusses the apparatus used to collect the data from
participants. We have a total of four files of sensor readings in three directions from
which the magnitude is calculated using three direction readings. In the next chapter,

we will discuss the participants and activities performed.
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Chapter 5

Method

This chapter describes in detail the data collection method used for this experiment.
The first subsection in this chapter discusses the participants and the second subsection

explains the procedure of data collection and activities.

5.1 Data Collection

5.1.1 Participants

In this experiment, 20 participants took part voluntarily. Out of 20 participants, 10
were female, and 10 were males between the ages 20—30 and the number of participants
that wore the smart watch in left, and right hands were equal. They received the
instructions for all of the activities they were supposed to perform for this experiment.

The information about the participants is listed in Table 5.1.

Left Hand | Right Hand
Male 4 4
Female 2 3
Total Participants 10 10

Table 5.1: Information about the participants

5.1.2 Procedure

This section elaborates the procedure for recording the data for call receiving and
walking activities which will be for the identification experiment.

All of the participants were asked to wear the smartwatch on their hands in which
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they usually wear their normal watch. The smartwatch was connected to the Android
phone in which data files will be saved. Once the Start message is sent to the Android
Wear, the data recording starts and participants perform the activities described below.
While the participants are performing the activities, the data is getting recorded in the
background whenever there is a change in any of the four sensors. After the completion
of each activity, a stop message is sent to the device and data is exported to the phone

device.

5.1.2.1 Call Receiving (Phone on Table)

Figure 5.1 shows the activity performed. In this activity the following steps were

performed to record the data:

Figure 5.1: The hand movements of a participant receiving the call when the phone is

on table.

1. Participants were asked to sit on a chair, and the phone was placed on a table.
They were requested to receive a phone call normally as they would while at work.

They were also asked to pick up the phone from the table.

2. Participants got a call from the person who was monitoring the experiment. They

both talked for 10 seconds before the call is ended.
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3. Participants then placed their phones back on the table. Few participants kept
their phone after locking and a few did not. One of the participants had a cover

on his phone, so he kept his phone after closing the cover.

4. Repeat steps 1-3 for 9 times.

Figure 5.2a shows when a participant took out the phone and received the call and
Figure 5.2b shows how the participant received the phone when it is in a sling bag. In

this activity, following steps were performed to record the data:

1. Participants were asked to stand normally and keep their phones in a pocket
or sling bag, whichever they usually preferred to carry. They were requested to

receive the phone as they normally would

2. Participants got a call in the same way as in step 2 of section 5.1.2.1.

3. Participants kept their phones either in their bags or pockets. Few participants
kept their phones in their front pockets and a few in their back according to their

usual habits. Two female participants kept their phone in a sling bag.

4. Repeat steps 1-3 for 9 times.

(a) Shows the hand movement of a participant receiving the call when the phone is in

their pocket.
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(b) Shows the hand movement of a participant receiving the call when the phone is in

a sling bag.

Figure 5.2: Shows the two different types of methods when one of the participants took

out the phone from their pocket and the other from the sling bag.

5.1.2.2 Walking

Figure 5.3 shows the walking action used for this experiment. In this activity, the

following steps were performed to record the data:

Figure 5.3: Shows the hand movements when the participant walks.



20

1. Initially participants were asked to stand straight without making any motion.

2. An alarm rang which gave them the signal to start walking. They were requested
to walk as they walk on the street. Participants were engaged in conversations so

that they did not get conscious while walking.

3. Another alarm rang after 1 minute giving them the signal to stop.

4. Repeat steps 1-3 for 9 times.

In each activity, readings in three directions, namely x-direction, y-direction and
z-direction, were recorded for all four sensors enabled for this experiment. The text file
in which readings were stored at the end of the activity is further processed to save the
sensors reading in four separate files for the four sensors.

In summary, this chapter discusses about participants and activities they performed.
We have a total of four files of sensor readings in three directions for each activity, and
the magnitude is calculated using three direction readings. In the next chapter, we
will discuss the graphical techniques to analyze the data and the features which can be

computed to train the classifier for identification.
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Chapter 6

Data Analysis

This chapter discusses the graphical techniques used to analyze the data. This chapter
also discusses the feature selection and classifiers used for this experiment.

The techniques used to find the essential characteristics are as follows:

6.1 Histogram

A histogram is a graphical representation of the continuous data. Its inspection tells us
about the distribution, outlier and other characteristics of the data. Here the amplitude
of sensors is random within the finite set of values. The distribution of values is assumed
to belong a gamma distribution family. Figure 6.1 shows the histogram plots fitted with
a gamma distribution curve of the Accelerometer in the x-direction for participant 1

and participant 2 for three activities.
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(a) Histogram plot fitted with a gamma distribution curve of accelerom-
eter data in the x-direction obtained from the smartwatch, when partic-
ipant 1 is receiving a call. Shape and scale value for gamma distribution
curve is 0.83 and 0.32 respectively. Maximum frequency range for this

activity is between 0 and 0.1.
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(b) Histogram plot fitted with a gamma distribution curve of accelerom-
eter data in the x-direction obtained from the smartwatch, when partic-
ipant 2 is performing the same activity performed in Figure 6.1a. Shape
and scale value for gamma distribution curve is 5.85 and 0.135 respec-
tively. Maximum frequency range for this activity is between 0.9 and

1.0.
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(¢) Histogram plot fitted with a gamma distribution curve of accelerom-
eter sensor data in the x-direction obtained from the smartwatch, for
the activity in which participant 1 received the call when phone is in
their pocket. Shape and scale value for a gamma distribution curve is
0.72 and 0.45 respectively. Maximum frequency range for this activity

is the same as in Figure 6.1a.
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(d) Histogram plot fitted a gamma distribution curve of accelerometer
data in the x-direction obtained from the smartwatch, when participant
2 is performing the same activity performed in Figure 6.1c. Shape and
scale value for a gamma distribution curve is 3.0 and 0.21 respectively.

Maximum frequency range for this activity is same as Figure 6.1b.
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Plot of walking activity
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(e) Histogram plot fitted with a gamma distribution curve of accelerom-
eter data in the x-direction obtained from the smartwatch, when par-
ticipant 1 is walking. Shape and scale value for a gamma distribution
curve is 4.22 and 0.10 respectively. Maximum frequency range for this

activity is between 0.2 and 0.3.
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(f) Histogram plot fitted with a gamma distribution of accelerometer
data in the x-direction obtained from smartwatch, when participant 2
is walking. Shape and scale value for a gamma distribution curve is 11.87
and 0.0502 respectively. Maximum frequency range for this activity is

between 0.6 and 0.7.

Figure 6.1: Shows the difference between different participants performing the same

activities and similarity in call receiving activities for the same participant.
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From Figure 6.1a) and 6.1b) observe that for participant 1 the maximum frequency
is in the range of 0-0.1 and for participant 2 it is 0.9-1.0 in the case of call receiving
activity when the phone is on the table. Figure 6.1a and 6.1c shows that for participant
1’s call receiving activity the maximum frequency range is the same i.e. 0-0.1; whereas,

for participant 2 Figure 6.1b and 6.1d indicates that it is in the range of 0.9-1.0.

6.2 Winsorized Mean and Winsorized Variance

In winsorized mean, the average value of all the observations is calculated using arith-
metic formula after replacing the p% of smallest and the largest observations in the
data by the closest observation to them. Winsorized mean is an improvement over the
standard mean in this data analysis because it removes the outliers from the data. For
this experiment, 10% of the largest and smallest observations of the data are replaced
by the closest values. Similar to the standard mean, the standard variance estimate
also is widely affected by the outliers; that is why 20% of observations are winsorized

for calculating variance.

Accelerometer Sensor data with an outlier
. . . T

300

250

)

200
o~

100 -
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50 ‘ . . . .
0 20 40 60 80 100 120
Number of Samples

(a) Data with an outlier.
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Accelerometer Sensor data without an outlier

magnitude (mfsecQ)

) 0 20 40 60 80 100 120
Number of Samples

(b) Data without an outlier.

Figure 6.2: Accelerometer data in x direction for call activity. Here in graph (a) the
outlier is positioned at sample number 58 with a magnitude of 256.66 will affect the
mean. Graph (b) shows the plot after the replacement of the outlier sample with the

closest smallest value.

From the above plot of the call activity, we can see that there is an outlier of value
256.66. This outlier will affect in the mean value of readings. To remove the effect of
outliers, the winsorized mean and winsorized variance are calculated.

Figure 6.3 is a mean versus variance plot of Accelerometer data in the x-direction for
six trials for all of the activities. In this graph, we can see that for different participants,
and activities there are different clusters. From this, we conclude that the mean and

variance can be possible features for training the classifier.
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Figure 6.3: Mean versus variance plot of Accelerometer data in in x-direction for 3
participants and all the activities. All the subjects can be grouped into clusters. Thus,

mean and variance are the possible features for the identification model.

In Figure 6.4 we observe that the magnitude of gravity for all of the users and for
the activities lies in the range of 9.80 ms~2 to 9.81 ms~2. Due to this observation, the
mean and variance of the magnitude of the gravity sensors is not used for training the
model. Similarly, in the case of the rotation vector sensor readings in the x-direction, y-
direction and z-direction are not distinguishable in clusters. This can be seen in Figures

6.5, 6.6, 6.7.
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Figure 6.4: Mean versus variance plot of the magnitude of the gravity sensor data for 3
participants and all the activities. For all of the participants the value lies in the range

of 9.8 to 9.81 ms—2.
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Figure 6.5: Mean versus variance plot of the rotation vector sensor data in the x-
direction for 3 participants and all the activities. All of the subjects and activities

points are not forming clusters as in Figure 6.3.
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Figure 6.6: Mean versus variance plot of the rotation vector sensor data in the y-

direction for 3 participants and all of the activities. All of the subjects and activities

points are not forming clusters as in Figure 6.3.
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Figure 6.7: Mean versus variance plot of the rotation vector sensor data in the z-

direction for 3 participants and all the activities. All of the subjects and activities

points are not forming clusters as in Figure 6.3.
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6.3 Cross-Correlation

Cross-Correlation is a method to determine to what degree the signals are related to
each other. Suppose there are two signals X and Y. When X and Y are similar, their
integral product is maximized. If X and Y are the exact opposite of each other, then
the product of negative-negative is also maximized. On the other when two signals, do
not match then cross-correlation is minimum. In this experiment, we have found the
cross-correlation between each participant and each activity for all the sensors in three

directions and magnitude.

Correlation between three subjects and three activities for magnitude of Accelerometer Acceleration Sensor

1
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Figure 6.8: Shows the cross-correlation calculated between 3 participants and all the
activities. The yellow color is showing that they are highly correlated as the cross-
correlation is computed between the same person and activity. Dark shades of blue
demonstrate that the activities and person are not related; therefore, they can be

identified using the information of these activities.

From Figure 6.8 we can see that the participants are not correlated to each other.
Correlation cannot be used as a possible feature to train the system because it is
dependent on the activities and future participants. If we are training the system with
new activity, then the cross-correlation between all activities and new activity has to be
calculated. Whereas if we are using statistical features like mean-variance then simply

adding these features of new activity will work.
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6.4 Features

6.4.1 Winsorized Mean and Winsorized Variance

In Section 6.2 we see that winsorized mean and variance form clusters when plotted.
Therefore, for training the classifier winsorized mean and variance of Accelerometer and
Linear Acceleration data in the x, y, z directions and their magnitude will be used. In
the case of Gravity sensor, we are using only data in the x, y and z-direction because
magnitude is not different for various activities as observed in Figure 6.4. Similarly, in
the case of the Rotation Vector Sensor we are only using mean and variance calculated
from the magnitude of the sensor data because in every trial the x, y and z-directions
are not lying in the same range. From the Figure 6.5 we can also see that they are

distinguishable in clusters.

6.4.2 Gamma Distribution

Gamma Distribution is a two parameters type of continuous probability distributions.
It is related to the beta distribution. The two free parameters are o and 6 [38]. In this
chapter, we saw that the Gamma distribution curve fits the histogram well. Shape and
scale factor for each participant lies in the same range and for different participants
they are different. From this observation, they are considered as a possible feature for

the identification model.

6.4.3 Skewness

Skewness is a measure of the asymmetry of the probability distribution of the data
around the sample mean. The skewness of any perfectly symmetric distribution is zero,
for example the normal distribution. If the skewness is negative, it means that the data
is spread out more to the left of the mean. If the skewness is positive, the data are

spread out more to the right than to the left. Skewness is given by the formula below:

(6.1)
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where, E(t) is the expected value of the quantity, p is the mean and o is the standard
deviation. As skewness also depends on the mean and standard deviation, which is equal
to square root of the variance, it can also be a possible feature for training the classifiers

of the identification system.

6.5 Feature Set

Figure 6.9 shows the feature matrix for one subject. Section 6.2 concludes that the
magnitude of the gravity sensor and data of the rotation vector sensor of three directions
is not useful. Therefore, for the extraction of features, only 12 sources of data are
considered. For one subject, each activity has a feature vector of size 1 x 60 as five

features are calculated for each data source. There are nine trials of each activity.

9 trials Rotation Linear
Gravity
Accelerometer Vector _ Acceleration

T T

. Trial2 - di ) Y-dir. )
Subject 1 cal2 — Vit | Magnitude o Y-dir. | Magnitude

i ; X-dir. . i
Walldng | Trim9 <O g gy Magnitude L Xdic g gy

3 Activities
» 4

Gamma Distribution Winsorized Winsorized Skewness
(Shape & Scale) Variance Mean

12 sources of data over
which feature
extraction has been

Figure 6.9: Shows the feature array for training the classifier.

So, stacking all of the nine trials row-wise, we have a feature matrix of size 9 x 60.
Now, there are three activities, and each activity has a 9 x 60 feature matrix. Stacking
each 9 x 60 matrix row-wise one beneath the other, we end up now having a final
27 x 60 feature Matrix. While training, all of these 27 rows will have the same label

representing that they all collectively represent one specific subject.
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6.6 Classifier

6.6.1 Support Vector Machines (SVMs)

Support Vector Machines (SVM) are popular machine learning methods that belongs
to a group of supervised learning algorithm. SVM was invented by Vladimir N. Vapnik
and Alexey Ya. Chervonenkis in 1963. It can be used for classification, regression,
and other learning tasks. Classification of two or more classes is a very common task
in machine learning. In SVM, classification is performed by constructing a multidi-
mensional hyperplane. There can be many hyperplanes classifying the same data, so
the best hyperplane is the one having the largest distance to the nearest data point
of any class. Such a hyperplane is known as a maximum-margin hyperplane. The
first maximum-margin hyperplane algorithm is best for linear classification. In 1992,
Vladimir N. Vapnik, Bernhard E. Boser and Isabelle M. Guyon suggested replacing
every dot product in the original algorithm with a nonlinear kernel function [39]. Some
popularly used kernels are Linear, Polynomial, Radian basis function (RBF)and Sig-
moid. RBF and Polynomial kernels are popularly employed in SVM for classifying
non-linear separable data-points. In this research, Linear, RBF and Sigmoid Kernel is

used for classification.

6.6.1.1 Linear Kernel

Linear Kernel is one of the simplest kernel functions. The difference between the Stan-
dard SVM classification and SVM with a linear kernel is of a constant. In standard
SVM, classification is done using just the dot product; whereas, the linear kernel func-
tion is the dot product plus a constant. Linear kernel performs well when the number

of features is larger than the training data.
Bo,y) = Ty +c (6.2)

In SVM with a linear kernel, only Cost Factor (C) or penalty factor is critical. The
cost factor is also known as a Soft margin. A soft margin is useful when the data is not

linearly separable as it ignores few data points or places them on the wrong side of the
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margin. If C is very high, then the model becomes sensitive to outliers and overfitting
occurs. If it is too small, then under fitting occurs. In Training a SVM model, a linear

kernel performs faster than training with another kernel.

6.6.1.2 Gaussian Kernel

Gaussian Kernel is a type of radian basis function (RBF) kernel. The RBF kernel
is generally used when data is not linearly separable. So data can be mapped into
higher dimensional space using this kernel where separation can be easily achieved. A

Gaussian kernel is implemented by the equation given below:

k(z,y) = exp(—|lz — y||?) (6.3)

In the RBF kernel, there are two parameters which play important role in classification.
The first parameter is the cost factor C as explained in section 5.1.1.1. It also controls
the tradeoff between errors of the SVM on training data and margin maximization. The
second parameter is Gamma, which is also known as the kernel coefficient. If gamma is
small, then Gaussian is with a large variance, implying that if y is a support vector then
this will have more effect on deciding the class of vector x even if the distance between
them is large. Small gamma leads to low bias and large variance models, and vice-versa.
If gamma is large, then the variance is small, implying y will not have influence on the
decision making of class of vector x. Using Grid Search we can find the best possible

combination of C and gamma [40].

6.6.1.3 Sigmoid Kernel

Sigmoid Kernel is a popular kernel in SVM because its origination is from the neural
networks. Sigmoid Kernel is also known as Hyperbolic Tangent Kernel and as the
Multilayer Perceptron (MLP) kernel. The SVM model using a sigmoid kernel works
equivalent to perceptron neural network of two layers. The Sigmoid kernel function is

given below in equation 6.4

k(z,y) = tanh(azly + c) (6.4)
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It has two parameters which can be adjusted, the slope alpha and the intercept
constant c. If alpha is greater than 0, it can be considered as a scaling parameter of the
input data and c as a threshold controlling shifting parameter of mapping. If « is less
than 0, then the dot product is reversed together with scaling. When « is positive and ¢
is negative then it is more suitable for the sigmoid kernel function. In this combination
of o and ¢, if ¢ is small enough then the sigmoid kernel matrix is conditionally positive
definite (CPD) and thus a valid kernel. When « is also small then the sigmoid kernel
will behave like the RBF kernel [41].

In summary of this chapter, we discussed the different graphical techniques to un-
derstand the characteristics of the data. In the chapter, later we discussed the possible
features which can be used to identify the subjects. In the last section, we discussed
the classifiers which will be used in identification of the subjects. In the next chapter,

we will discuss the results using features and classifiers as were above.
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Chapter 7

Results

This chapter discusses our results using the SVM classifier with a different kernels. We
are following the forward feature selection procedure to analyze the performance of a
classifier with different kernels. In the first section, all of the calculated features will
be used individually to train the system and calculate the Equal Error Rate (EER)
for all of the different kernels. Then combinations of the best feature from the first
section, with other features, is used to determine the improvement in performance.
The effect on EER due to the parameters of the kernel is also presented. In the last
section, the selected parameters and features are used which resulted in the lowest
EER which allowed us to observe the performance of the system with a fewer number

of participants.

7.1 Equal Error Rate EER

A receiver operating characteristic (ROC), or ROC curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR). For an ideal result, the ROC
curve passes through the upper left corner. The EER is the point where ROC curve
intersects the line FPR=1-TRP. In the ideal case, the value of EER is 0. Therefore,

the lower the EER, the higher the overall accuracy.

7.2 k-fold Cross-Validation

Cross-validation is a technique used to evaluate the predictive performance of the sta-
tistical model. Cross-validation is performed to avoid the over fitting and evaluate how
the model will perform with independent data. In the original model, the data is par-

titioned into training data and test data. The Cross-validation technique introduces
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the data to test in the training phase. This data is known as validation data. We are
using the k-fold cross validation technique in which training data is divided into k-folds
roughly containing an equal number of samples in each fold. Here in this experiment,
k is equal to 4. In the k-fold cross-validation one-fold is used as the validation data
and remaining k-1 folds are used for training. This process is repeated k times in-order
to use each fold one time as a validation data. The single cross-validation accuracy is

obtained by averaging the k results from all the folds.

7.3 Why Forward Feature Selection 7

We are using the forward feature procedure. In this we first analyze the accuracy of
the model using one feature at a time. Then selecting the best from this analysis
and making combination with other features. By using this technique, we are able to
select out three feature from the combination array to analyze the model. We used this
approach in order to avoid over fitting by using a high dimension feature set. Thus, by

using only the best features we are able to determine the lowest EER.

7.4 1 Feature Array

In this section, we first calculate the cross-validation accuracy by dividing training data
(70% of data ) into k folds. We are using only one estimated features of all the sensors
data shown in Figure 6.9. Figure 7.1 shows that the mean feature is results in the lowest
cross-validation error percentage which indicates that we are training our classifiers only
with all of the training data. This process allows us to determine which feature gives
the lowest possible EER with all of the kernels. When using the mean, variance or
skewness feature, the array size is 27x12; whereas, when the system is trained with
gamma distribution parameters (shape and scale) feature array is of 27x24 dimension.
In MATLAB, a program was written for 10 test cases to randomly select from 1, 2, . .
. 10 testing samples at a time from each subject and train with the remaining samples.
For the SVM classifier, the LIBSVM library is available for MATLAB. To analyze the

performance of the kernels, an Average EER of 100 iterations is calculated.
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Figure 7.1: k-fold Cross-validation error percentage where k=4. Here the model is

trained with one feature from the feature set.

7.4.1 SVM Classifier with Linear Kernel

In Figure 7.2 we observe that the Lowest EER values for all of the test cases are obtained
when training the system with feature mean. The lowest EER is when the number of
test sample selected from each participant data set is 1. Therefore, testing dataset
is of 20 test samples. In the case of training set, there are 520 training samples, 26
for each participant. The lowest EER among all of the features is 0.2375 when the
system is trained with the Gamma Distribution parameters, and 4 test samples from

each participant are selected.
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Figure 7.2: Performance of the system when trained with different 1 features array
sets. Here the classifier is SVM with Linear kernel. The Mean feature is performing
well for all of the test cases. The lowest EER for this system is 0.2375 when trained

with Gamma Distribution parameters.

7.4.2 SVM Classifier with Gaussian Kernel

When a Gaussian kernel is used with SVM the EER is less in the case of mean as
a feature. This can also be observed from the Figure 7.3. The lowest EER is 0.058
when two samples are randomly selected for testing the system from 27 trials of each
participant. The remaining 25 trials will be used for training the system. This result
shows that SVM with the Gaussian kernel is working better than the SVM with the

linear kernel.
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Figure 7.3: Performance of the system when trained with different 1 features array sets.
Here the classifier is SVM with Gaussian kernel. Mean feature is performing well for

all of the test cases.

7.4.3 SVM Classifier with Sigmoid Kernel

Figure 7.4 show that for all the test cases the lowest values of EER occur when the
skewness feature is used for training and testing. But the lowest EER is 0.41 in case of

mean as the feature for 1 test sample from each participant.
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Figure 7.4: Performance of the system when trained with different 1 features array sets.
Here the classifier is SVM with a Sigmoid kernel. Skewness feature is performing well

for all the test cases.

As can be determined from the above graphs, the identification system performed
well when the mean is used as the feature set for training the system. In this case,
SVM with Gaussian kernel is performing better than the other two kernels. This can

also be seen in Figure 7.5.
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Figure 7.5: Performance of different kernels when the mean is used as a feature for

training and testing the identification system.

7.5 2 Features Array

In Section 7.4, it was concluded that the mean outperformed all the other features by
giving the lowest EER when SVM with a Gaussian kernel is used for classification.
In this section, we begin by first calculating the cross-validation accuracy by divid-
ing training data ( 70% of data ) into k folds. We are using a combination of the
mean with other calculated features. Figure 7.6 shows that combination of the mean
with skewness and gamma distribution with the Gaussian kernel is resulting in the
lowest cross-validation error percentage. There are three possible combinations: mean-
variance, mean-skewness, and mean-gamma distribution parameter (Shape and scale).
So the feature vector would be of dimension 1x24 for the case of the case of mean-
variance and mean-skewness; whereas, for the mean-gamma distribution parameters it

has a dimension 1x36.
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Figure 7.6: k-fold Cross-validation error percentage where k=4. Here the model is

trained with a combination of mean feature with other features.

7.5.1 SVM Classifier with Linear Kernel

In Figure 7.7, we observe that the lowest EER occur for the mean-variance feature set
for all the test cases when SVM, with the Linear kernel, is used for the classification.
In this identification system, the lowest EER is 0.139, when the number of test samples
selected are 1 and 8 randomly from each participants data set. In the case where
number of test samples = 8, training set is of size 380x24 and testing data set size is

160x24.
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Figure 7.7: Performance of the system when trained with different 2 features array sets.
Here the classifier is SVM with a Linear kernel. Combination of mean and variance

features is performing well for all the test cases with lowest EER equal to 0.139.

7.5.2 SVM Classifier with Gaussian Kernel

From Figure 7.8, it can be seen that in this identification system, a combination of
mean and skewness performs better than the other two feature sets. In this case, the
lowest EER observed is 0.04 when the number of test samples from each participant is
equal to 1. For 10 randomly selected test samples from each participants dataset, the
average EER for 100 iterations is 0.06. This identification system is performing better

than the identification system discussed in Section 7.4.2.
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Figure 7.8: Performance of the system when trained with different 2 features array

sets. Here the classifier is SVM with a Gaussian kernel. The combination of mean and

skewness features is performing well for all the test cases with lowest EER equals to

0.048.

7.5.3 SVM Classifier with Sigmoid Kernel

From Figure 7.9, it is observed that the EER is higher for all of the test cases than the

last discussed classifiers. Though the EERs are higher for all the test cases, the overall

mean-variance combination is identifying objects more accurately among the all feature

sets.
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Figure 7.9: Performance of the system when trained with different 2 features array sets.
Here the classifier is SVM with Sigmoid kernel. The combination of mean and variance

features is performing well for all the test cases, but this classifier is performing worse.

In summary, the SVM classifier with a Gaussian kernel is performing better than
the other kernels, such as those discussed in Section 7.4. Here the combination of
mean-variance and mean skewness performed more accurately than the other feature
sets. Therefore, in the next section, the system is trained with three features array

combining mean-variance and mean-skewness with other remaining features.

7.6 3 Features Array

In the last section, we observed that the combination of mean-variance and mean-
skewness performed well. So in the section we will first calculate the cross validation
accuracy of the system with the mean-variance-skewness, mean-variance-gamma distri-
bution parameters and mean-skewness-gamma distribution parameters features arrays.
Figure 7.10 shows the model results in the lowest cross-validation error percentage when

we cross validate with the combination of mean, variance, and skewness.
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Figure 7.10: k-fold Cross-validation error percentage where k=4. Here the model is

trained with the combination of three features from the feature set.

7.6.1 SVM Classifier with Linear Kernel

From Figure 7.11 we observe that for all the cases, except when the number of test
samples =1, the combination of mean, variance and skewness identifying participants
accurately achieving the lowest EER of value 0.11. Therefore, from this system we
conclude that the mean, variance and skewness features could be used to train the final

identification system.
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Figure 7.11: Performance of the system when trained with different 3 features array
sets. Here the classifier is SVM with Linear kernel. Combination of mean, variance and
skewness features is performing well for all the test cases with lowest EER equals to

0.11.

7.6.2 SVM Classifier with Gaussian Kernel

As we observed in section 7.6.1 the mean, variance and skewness features performed
well. From Figure 7.12, we can also observe that this feature set is performing better
than others when the classifier is SVM with a Gaussian kernel. Here the feature vector
is of size 1x36. The lowest EER achieved is 0.04 for the number of test sample =1 from

each participant.
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Figure 7.12: Performance of the system when trained with different 3 features array
sets. Here the classifier is SVM with Gaussian kernel. Combination of mean, variance
and skewness features is performing well for all the test cases with the lowest EER

equal to 0.044.

7.6.3 SVM Classifier with Sigmoid Kernel

Figure 7.13 shows the performance analysis of the SVM classifier with a Sigmoid kernel.
The performance of this classifier, when trained with the combination of mean, variance,
and skewness, is better when the number of the test samples from each participant is
equal to 1. The EER, in this case, is 0.45 which is worse than the EER we obtained in
the previous section. For a few tests cases the mean, variance, and skewness feature set
is performing better by giving low EER and for few test cases feature set comprising

mean, skewness and gamma distribution parameter is performing better.
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Figure 7.13: Performance of the system when trained with different 3 features array
sets. Here the classifier is SVM with Sigmoid kernel. Combination of mean, variance
and skewness features is performing well for all the test cases with the lowest EER

equal to 0.45.

In summary of this section we trained our system with 3 features being mean,
variance and skewness. From the above results, we can also conclude that the Gaussian
kernel is performing better than the other two kernels. So, in the next we will vary the
parameter of Gaussian kernel and analyze the performance when features are mean,

variance and skewness for training the system.

7.7 Performance Using SVM with Gaussian Kernel and Different Pa-

rameters

In the last section, we concluded that 3 feature array of mean, variance and skewness
yields the lowest EER. In this section, we are analyzing the predicted EER by selecting
75% of data for training and 25% of data for testing from the data set of each participant.
Therefore, we have randomly selected 5 samples from the feature array for testing data
set and remaining for training. In the last three sections, we observed that the SVM

classifier with a Gaussian kernel is performing better than the kernel type ‘linear’ and
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‘sigmoid’. So, we are analyzing the performance of the SVM classifier with the Gaussian

kernel by varying the gamma and cost function.

EER with different Gamma and C value in SVM with 'Gaussian' kernel
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Figure 7.14: Predicted EER with different values of kernel co-efficient of Gaussian(rbf)
kernel and cost function. The figure shows that the lowest EER is achieved when

gamma is 0.01 and C=100.

From Figure 7.15 it can be observed that on varying the gamma and cost parameters
of kernel function the value of EER is also varying. In this figure the X-axis represents
Gamma which contains kernel co-efficient ranging from 0.0001 to 0.1. The Y-axis
represents parameter C which is cost function, ranging from 0.001 to 10000. The Z-axis
represents the predicted EER value when the system is trained with 75% of data from
the feature array of each participant. When the value of Gamma=0.01 and C=100, the
lowest EER 0.052 is predicted. The highest value of EER is 0.465 when Gamma=0.0001
and C=0.001.
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7.8 Performance When Less Number of Participants

In this section, the performance of the system is being analyzed when it is trained with
a fewer number of participants. The system is tested with 4 test cases: 5 participants,
10 participants, 15 participants and 20 participants. From Figure 7.15 we observe that
lowest EER is when Gamma and C parameters are 0.01 and 100 respectively in the
SVM with a Gaussian kernel. So, to check the performance with fewer participants we

are using the same parameters in the SVM classifier.

Performance EER for SVM with kemel type 'Gaussian’
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Figure 7.15: Predicted EER when the number of participants are varied. Here the
classifier is SVM with Gaussian kernel. Parameters of Gaussian kernel set in this

system: Gamma=0.01 and C=100.

Figure 7.15 shows that when the number of participants is 5, the system is iden-
tifying participants more accurately with an Avg. EER of 0.0483. As the number of
participants is increased the avg. EER for 100 iterations is also increasing. When the
number of participants is 15, avg. EER is 0.059.

To summarize, this section analyzed the performance of three classifiers by training
the identification system with various feature combinations. It can be concluded that

for this identification system, SVM with ‘Gaussian’ Kernel or SVM with ‘rbf’ kernel is
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performing best. When the system is trained with 75% of 3 feature array data set and
the remaining 25% for testing of 20 participants, then the avg. EER for 100 iterations
is 0.052. In the case of 5 participants with the same identification system, the lowest

EER achieved is 0.048.
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Chapter 8

Discussion

In this chapter, we present a discussion of the results obtained in this study and suggest
future work to further improve the system.

In Section 7.4, we observed that when only the mean is considered as a feature
the system performs better as compared to when the variance, skewness, and gamma
distribution parameter as the feature with all the kernels. In Figure 7.5 it is observed
that SVM with a Gaussian kernel is outperforming the linear and sigmoid kernels with
the default parameters C=1, and gamma= 1/ (Number of features) in one feature array.
Similarly, the low cross-validation error percentage of 5.48% is observed in the case of the
mean feature when the classifier is SVM with a Gaussian kernel. The cross-validation
is performed to see how well the model will perform with a real dataset.

In Section 7.5, we observed that when the number of features in the feature set
is increased, the value of EER decreased. Therefore, two feature array in which the
combination of mean with other features is used to train the SVM classifier with a
Gaussian kernel which results in 0.058 EER when the number of test samples selected
equals 5 from the dataset of each participant. This low EER performance can be seen
in Figure 7.8, where the feature set comprises of mean, variance, and skewness, is
performing and the predicted EER is the lowest for the same number of test samples
as mentioned above.

After analyzing two feature array combinations, we analyzed the model with three
feature combinations of mean, variance, gamma distribution parameters and skewness.
We observed in Figure 7.12 that the combination of mean, variance and skewness is out
performing other feature combinations with the SVM classifier with a Gaussian kernel.

Similar results were observed in the cross-validation analysis. The cross-validation
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error percentage is lowest for mean, variance and skewness when analyzed with a SVM
classifier with a Gaussian kernel.

Further on we analyzed the performance of the SVM classifier with a Gaussian
kernel by varying the value of C and gamma (kernel co-efficient). In Figure7.15, we
can see that on tweaking the value of Gamma and Cost function (C), the predicted
EER is also varying. C is the regularization parameter. It chooses the margin in the
hyperplane. If we choose a smaller C, then the optimizer in SVM will look for a larger
margin hyperplane. If the value of C is larger, smaller - margin hyperplane is selected
for classifying the training points correctly. When C is low, the variance is also low and
the risk of under fitting increases. When C is high, the variance increases and chances
of overfitting also become significant. In this study, we obtained the lowest EER when
the value of C is 100 and gamma is 0.01. Finally, we varied the number of participants
to examine the performance of the classifier with a fewer number of participants. As
expected, with the lower number of participants the system yielded a lower EER, thus
resulting in higher accuracy. The explanation for this unexpected high accuracy is
as follows. If we increase the number of participants the chances some of them might
receive calls and walk in similar way walking increases thus the accuracy would decrease.
In this research, we are only using four sensors for data. In future work, we could utilize
more sensors data like a Gyroscope Sensor, Magnetometer, pedometer, and heart rate
sensor to derive more physical and behavioral characteristics of users. More data will
give more information about the users which will increase the identification accuracy
of users. We only derived mean, variance, and skewness as features for this study.
Other features like wavelet decomposition and Fourier transform could be calculated
to see whether these features will improve the performance or perhaps the results will
be the same. Principal Component Analysis (PCA) which is a dimension reduction
tool would also help us to see if the reduced dimensional features can predict, with the
same or higher performance, than the one which was obtained in this study. Different
Machine learning approaches such as Decision Tree, Neural networks, Nearest Neighbor
Algorithm, and random forest can be used to identify Users. These algorithms could

reduce the memory as well as computational cost of identification. Also in this work,
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we only studied three activities, phone receiving activity when it is on a table, in pocket
or bag and walking. We could record other daily life activities like exercising, eating

and typing which are unique to the users.
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Chapter 9

Conclusion

With the advancement of technology, internet, and application development, people are
using mobile phones for communication as well as other important activities. People
are using smartphones for money transfer, documents sharing, photographs and other
crucial information saved in the mobile device. This demands to increase the security
of information stored on the phone. Today we have PIN passwords, pattern passwords
and other types of user authentication system, but all are failing due to numerous
factors such as smudge attack and common passwords. Many researchers are trying
to utilize common human behaviors and physical characteristics to identify the mobile
users. This thesis seeks to identify users by their hand gesture while receiving a call and
during walking activity. The system is built using the smartwatch sensors for recording
the activity of users. The challenge here was to identify users on the basis of only four
sensors and activities. The four sensors values are used for feature extractions. We are
performing the k-fold cross-validation where &k = 4. We observed that the highest cross-
validation accuracy when the system is trained with mean, variance, and skewness. We
then train and test our model with the test data using the same features. The SVM
classifier with a Gaussian kernel is used to identify the users with the lowest possible
equal error rate of 0.06 for 20 participants with parameters: C=1, gamma= 1/(number
of features). On varying C and gamma, we achieved 0.052 average EER when C= 100
and gamma=0.01. When the number of participants considered is five the average EER
is 0.048. In the future, this system can be trained by more activities like walking, eating,
exercising and other daily activities. Instead of using a SVM classifier, other classifiers
like KNN and Hidden Markov model can be employed. The complexity of the system

would increase with the growth in number of users and activities. In such scenarios,
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Neural Networks can be used to make more accurate predictions. In this work, we
selected smartwatch instead of phone to collect data because smartwatch gives more
personalized behavioral characteristics. For example, the way in which the user receives

the phone, how often they move their hand while talking and doing other gestures.
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