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THESIS ABSTRACT

An Algorithm for Structural Variant Detection with

Third Generation Sequencing

by

HUI-JOU CHOU

Thesis Director:

Dr. Andrey Grigoriev

Structural variations are large variations in chromosome sturcture, including deletions,

duplications, insertions, inversions, and translocations. Many studies have shown the

importance of structural variants in genetic diversity and disease susceptibility. Most

structural variants are identified using next-generation sequencing paired-end or mate-

pair reads. Primarily due to short read lengths, structural variant detection methods for

NGS data tend to have low sensitivity and precision. Long-read sequencing technologies

generate continuous long reads which can span large genomic regions, especially critical

for insertions, and be mapped with high accuracy.

We developed an algorithm to predict structural variants using long reads. We ap-

plied multiple signals including split-read, alignment mismatching and read-depth to

identify structural variants in PacBio whole genome sequencing and found our results

to be comparable to other structural variant detection algorithms. Our approach pro-

vides an effective way of detecting structural variants in long read datasets that can

compensate for and complement the limitations and benefits of short reads.
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Chapter 1

Introduction

Genetic variation is the genetic differences within populations. For example, in the

human population, there may be multiple variants of any given gene leading to poly-

morphism. On average, all human genome are 99.5% similar to any other human

genomes [7]. No two humans are genetically identical. Even twins who develop from

one zygote have infrequent genetic differences because of mutations during development

and gene copy-number variation [2]. At the gene level, the variation can be identified as

a single nucleotide variant (SNV); while at the chromosome level, the variation can be

identified as a structural variant (SV). The study of genetic variation has been applied

in the evolutionary field and medical field. From the evolutionary view, it can help

scientists better understand how different human groups are biologically related to one

another. From the medical view, human genetic variation may be the reason of why

many diseases happen.

Although smaller-scale forms of genetic variation such as single nucleotide polymor-

phisms (SNPs) are more common, SVs have greater functional potential due to their

larger size and higher likelihood to alter gene structure and dosage. Structural vari-

ant consists of many kinds of variation in the genome of the species, usually including

deletions, duplications, insertions, inversions and translocations (Figure 1.1). Gener-

ally, SVs are defined as a region of DNA larger than 50 bp in size. Many SVs have

been implicated in human health with associated phenotypes ranging from disabilities

to obesity, cancers and other diseases [17]. For example, Charcot-Marie Tooth (CMT)

disease was the first autosomal dominant disease associated with a gene dosage effect

due to an inherited DNA rearrangement in 1991. The disease phenotype results from

having three copies of the normal gene [10].
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Figure 1.1: Structural variant classification

Due to the biological impact of SVs, we need technologies to call SVs. The tech-

nology advances in next-generation sequencing (NGS), or called second-generation se-

quencing, have become more prevalent across a large number of species. It allows us

to perform whole genome sequencing (WGS), so that we can study SVs by mapping

the reads to the reference genome. The commercialization of high-throughput tech-

nologies including Roche/454 pyrosequencing in 2005 and Illumina sequencing in 2007

have been applied to sequence many new genome along with widespread resequencing

effort to analyze genomic diversity. Basically, SV detection methods require comparing

the sample DNA sequences with a reference genome, known as mapping-based method

[5], which identify SV candidates from abnormally mapped reads. Such mapped reads

have different features including pair-end, single-end, mate-pair, soft-clipped and so on.

SV callers use these features to detect different types of variants. Second-generation se-

quencing has improved large-scale analyses of single nucleotide and small variants, and

a number of scientists have developed algorithms to analyze structural variation using

NGS dataset [14, 6, 3], however, the limitations from the nature of NGS technologies

itself is difficult to be overcome.
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One of the limitations is the read length. NGS generates shorter reads ranging

from dozens to hundreds of base pairs (bp), it will result in less confident mappings

in the repeat region and cause the SV callers to fail to detect a confident matching

breakpoint (Figure 1.2). Moreover, it is known that certain genomic regions are tough

to sequence such as GC-rich regions, which are difficult to map as well. According

to the mechanisms of SVs, SVs tend to occur more frequently in repetitive regions of

the genome [12]. Another limitation is from artificial chimeric reads, which are formed

during polymerase chain reaction (PCR) amplification step of NGS [1]. These artificial

reads may be misinterpreted as formed by SVs. Therefore, these flaws could result in

tens of thousands of structural variants missing, especially large size SVs.

Figure 1.2: Ambiguities in read mapping

The new single-molecule sequencing technologies that produces average read lengths

of more than 10,000 bp have greatly improved analysis of genomic structural variation.

This technology is also known as third-generation sequencing (TGS) (Table 1.1). The

most commercially established sequencer is Pacific Biosciences (PacBio) Single Molecule

Real Time (SMRT) Sequencing, which was introduced in 2010 [15](Roberts, Carneiro,

and Schatz 2013). Longer read length can span more repetitive elements and thus

increase mapping confidence. Also, longer reads enable an improved split-read method

so that deletions, inversions, insertions and other structural changes can be more easily

recognized. Furthermore, TGS can produce more uniform coverage of the genome,
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because it is not as sensitive to GC content as NGS, which tends to have reduced or

completely absent coverage over regions [16].

Table 1.1: Performance comparison of sequencing platforms

In this research, we present an algorithm of integrating multiple signals including

split-read alignment, read depth and alignment mismatching in an efficient parallel

pipeline to identify different types of structural variants via PacBio sequencing. Our

aim is to provide a method that can complement the limitation of short reads. We

evaluated our algorithms performance by comparing with two recent well-known long-

read SV callers: PBHoney [4] and Sniffles. We take advantage of seven different sets

of high-confidence SV calls for NA12878 human genome as gold standard SV call sets

to validate our results. We also evaluated the results of these three SV callers with

Illumina call sets generated from GROM, which is a short-read caller developed by our

lab post-doc. Our results have shown improved sensitivity in deletions, insertions and

inversions discovery.
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Chapter 2

Materials and Methods

2.1 Description of Data

2.1.1 BAM/SAM data format

Sequence Alignment Map (SAM) format consists of a header section and an alignment

section [9]. Each alignment line has 11 mandatory fields for essential alignment in-

formation and a variable number of optional fields for aligner specific information. It

typically represents the linear alignment of a segment. Table 2.1 shows an overview

of the mandatory fields in the SAM format. A BAM file is the binary version of a

SAM file. The goal of BAM along with BAM index file is to achieve fast retrieval of

alignments without going through the whole alignments.

Table 2.1: An overview of the mandatory fields in the SAM format.
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2.1.2 PacBio datasets used for this study

Three whole-genome PacBio sequencing datasets, which are 10x, 12x and 44x cover-

age of the NA12878 human genome, were used to test the performance of SV calling

pipelines. The 10x NA12878 datasets mapped with NGM-LR aligner was downloaded

from Pacbio website. The 12x NA12878 datasets was from Mount Sinai Hospital which

has been mapped using BWA-SW aligner. The 44x NA12878 dataset was obtained

from NCBI SRA database [13]. After we obtained raw data with fastq format, we

mapped the sample reads to the human reference hg19 genome (GATK resource bundle

https://software.broadinstitute.org/gatk/download/bundle) using BWA-MEM (version

0.7.15) [8]. The output bam files were input to our algorithm, PBHoney or Sniffles.

2.1.3 Illumina dataset

Raw short-read Illumina platinum WGS data for NA12878 was obtained from the Il-

lumina website (https://www.illumina.com/platinumgenomes/). Its mapping coverage

was approximately 51x. NA12878 Illumina platinum fasta files were mapped to hu-

man reference hg19 using BWA-MEM (version 0.7.15) with the -M parameter to mark

shorter read splits as secondary. The output bam file was input to GROM (Genome

Rearrangement Omni-Mapper), which is a comprehensive variant detection method for

analysis of a wide range of variants including SNVs, indels (< 50 base insertions and

deletions), and SVs. Then, the generated SVs call sets with mapping quality ≥ 35, SV

length ≥ 50 bp and at least two variant-supporting reads were used for validation.

2.1.4 Gold standard SV call sets

We applied three deletions call sets, two duplications sets, one insertions set and an

inversion set as gold standard call sets. Deletion and Insertion benchmarks for NA12878

were obtained from Genome in a Bottle (GIAB), in which most of the calls were refined

by experimental validation or other independent technologies. Deletion and duplication

benchmarks for NA12878 were from the LUMPY [6] and Mills [11] papers, respectively.

We also downloaded the Database of Genomic Variants Gold Standard (DGV-GS) from
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dgv.tcag.ca/dgv. For the NA12878 DGV-GS benchmarks, all deletions and duplications

with NA12878 tag were extracted from the DGV-GS. An inversion benchmark was

obtained from Pendleton et al.(Pendleton et al. 2015)

2.2 Variant detection

In our algorithm, we analyze various features through a BAM file generated by PacBio

SMRT sequencing. Our algorithm can detect all types of SVs using evidence from

read depth, alignment reads mismatching and split-read alignment. The BAM file can

be from NGM-LR, BWA-MEM or BWA-SW aligner. The workflow is designed for

parallelization. We calculate variants in each chromosome individually, therefore it can

be constructed in parallel. We output our SV call sets with at least two reads support,

mapping quality threshold 35 and minimal SV length 50 bp for evaluation. Figure 2.1

summarizes our algorithm workflow.

Figure 2.1: The workflow of our algorithm
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2.2.1 Read depth

Read depth (RD) analysis is a method to detect deletions and duplications. By looking

for genome regions that have significantly reduced or increased coverage, we can identify

the potential variants. To detect such an event, we first calculate the average read

depth (r) and its standard deviation (sd) from a set of windows in the dataset. Then,

we estimate RD in non-overlapping intervals with fixed-size windows of 1000 bp. For

an interval of consecutive windows, we call it an unusual event if the read depth mean

in the region is > r + 3 × sd, a potential duplication, or < r − 3 × sd, a potential

deletion. Next, we merge the consecutive events. More formally, a variant event is

a tuple X =
〈
E, s, e

〉
, where X.E is the set of evidence type; X.s and X.e are start

breakpoint and end breakpoint. If there are two events A, B in the set of the variants,

B.s is equal to A.e, then A and B are merged to event M , M.s = min(A.s,B.s),

M.e = max(A.e,B.e). The merge step for deletion events and duplication events is

performed separately. The variants identified by read depth analysis are annotated

with RD in evidence type field.

2.2.2 Alignment reads mismatching

We use linear alignment mapping information to identify deletions and insertions, whose

information is included in the CIGAR field of the alignment section. When sample reads

map to the reference genome, every spot in the sample reads can agree with the reference

or produce a mismatch, deletion or insertion. This information is collected in CIGAR

string, and we apply it along with mapping position to compute the breakpoints of a

deletion or insertion within the alignment. The minimum SV length is 50 bp. The

variants found by alignment mismatching are annotated with MM in the evidence type

field.

2.2.3 Split-read alignment

A split-read alignment is a single read X that does not contiguously align to the ref-

erence genome. Therefore, X contains a set of linear alignments (X = x1, x2, ..xn.).
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We call these linear alignments subreads in X. All the linear alignments in a split-read

alignment have same the QNAME in the SAM records. If a linear alignment belongs to

a part of a split-read alignment, there will be a SA tag in the option field recording the

supplementary alignments information (the other parts of the split-read) of this linear

alignment. We apply the SA tag record with the representative alignment record to

identify all types of SVs.

Assuming each subread is denoted as xi =
〈
c, s, e, o, rc, lc, ql

〉
, where c represents

chromosome; s and e are the start mapping position and end mapping position; o is

orientation; rc and lc are right clipping length and left clipping length; ql is sample

read mapped length. We consider mapping location, orientation and chromosome to

infer breakpoints and SV type. When the orientations and chromosome match xi.o =

xi+1.o, xi.c = xi+1.c, the event could be a deletion, duplication or insertion. If xi.e <

xi+1.s − min sv length, the default min sv length is 50 bp, it indicates a gap caused

by a deletion; if xi.e > xi+1.s + min sv legnth, it indicates a duplication; if xi.e and

xi+1.s are close within 10 bp , it could be a potential insertion location. When the

orientations do not match xi.o! = xi+1.o, the event is marked as inversion. When xi

and xi+1 align to different chromosomes, the event is marked as translocation (Figure

2.2).

We introduce a clipping difference in order to filter out possible false positives. Be-

cause rc + ql + lc equals the total length of a split-read alignment X, we can know the

relative position of a subread in a single sample read by checking rc or lc. The relative

distance between xi and xi+1 is computed as xi+1.lc− (xi.lc + xi.ql), we call this clip-

ping difference, denoted by cd. For deletion, duplication, inversion and translocation,〈
xi, xi+1

〉
should satisfy −cd threshold < cd < cd threshold, we want the relative loca-

tion of xi+1 right after xi, it means if xi+1 is far from xi, or xi+1 overlap with xi, there

could be more complicated structure variation involved that we dont consider here. For

insertion, if
〈
xi, xi+1

〉
are very close on the reference coordinate, then we check cd; if

cd > abs(xi.e − xi+1.s), it indicates an insertion. We further illustrate the algorithm

for inversion. When xi.o = + and xi+1.o = −, the potential breakpoints pair could be〈
xi.s, xi+1.s

〉
or xi.e could be another potential start breakpoint, then the algorithm
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Figure 2.2: SV detection method of split read

searches for the next subread until it finds a subread that has different orientation

xi+n.o = +, so another breakpoints pair could be
〈
xi.e, xi+n−1.e

〉
. Therefore, there are

two potential events for inversion when orientation changes.

2.2.4 Clustering

To cluster two or more SV calls with close breakpoints, we provide two clustering meth-

ods. The first clustering method is that we first sort the SV list by start breakpoints,

then sort end breakpoints. Then, the combined condition is to check if the breakpoints

of one item close to the breakpoints of the other item by considering the starting point

and end point at a distance less than a buffer length. Buffer length is set to 150 bp in

this method. After combining the close events, the breakpoints of the new merged event

is the average position of each event which have been combined. The second clustering

method is similar to the first one, but the combined condition is different. We check

if the two SV calls have 90% reciprocal overlap, so buffer length will be automatically

changed based on the seed SV length every time. Due to insertions only having one

breakpoint on the reference coordinate and translocations having two breakpoints in

different chromosomes, our clustering method 2 is not applied to cluster insertions and

translocations. The clustering step for different SV types is performed separately.



12

2.3 Representative algorithms for comparison

2.3.1 Sniffles

Sniffles, developed by Cold Spring Harbor Laboratory is a structural variation caller

written in C++, and it analyzes TGS to detect SVs using evidence from split-read

alignments, high-mismatch regions, and coverage analysis. sniffles analyzes noise regions

by extracting the differences in the alignment and detecting the noisy regions by using

plane sweep algorithm. Then the potential regions are stored in a self-balancing binary

tree. We ran Sniffles on the 10x, 12x and 44x NA12878 datasets, the command line

used here is

$ ./sniffles -m mapped.sort.bam -v output.vcf -s 2 -q 35 -l 50

We modified the default parameter in order to compare with our algorithm. The

minimum number of reads that support a SV was 2, minimum mapping quality was 35,

minimum length of SV to be reported was 50.

2.3.2 PBHoney

PBHoney identifies genomic variants via two algorithms, long-read discordance (PBHoney-

Spots) and interrupted mapping (PBHoney-Tails). PBHoney-spots used intra-read dis-

cordance to identify deletions and insertions. They obtained the error rate at each

position, then they applied a smoothing kernel and a slope kernel on this error rate.

Error rate :

Eij =
Aji

Ci

where Aji is the value of the jth channel at position i in the reference and Ci is the

coverage at that position.

Smoothing kernel:

Mji =
1

2B + 1

i+B∑
k=i−B

Ejk

Slope kernel:

Sji =
1

B

(
i−1∑

k=i−B

Mjk −
i+B∑

k=i+1

Mjk

)
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using the above approach, they identify possible structural variants by extracting

regions that contain increases in discordance followed by decreases in discordance, which

corresponding to the starts and ends of genomic variants, respectively.

We used PBHoney-Spots data run on 10x NA12878 BAM file mapped with NGM-LR

aligner downloaded from http://www.pacb .com/blog/identifying-structural-variants-

na12878-low-fold-coverage-sequencing-pacbio-sequel-system/. The command line used

here is

$ Honey.py spots mapped.sort.bam –reference ref.fa -E 2 -i 50 –consensus None

The default minimal read support was 3, we modified to 2 (-E), and minimal SV

length was modified to 50 bp for comparison.

2.4 Performance Evaluation of SV callers

The predicted SVs of each caller were compared with the gold standard SV sets. We

used 50% reciprocal overlap for the matching. We used sensitivity, precision and F1

score to evaluate the performance of the callers. Sensitivity is the probability that

a reference variant is called as a variant. Precision estimates the probability that a

variant call is truly a reference variant. Sensitivity, precision and F1 were calculated as

follows:

Sensitivity =
TP

TP + FN

precision =
TP

TP + FP

F1 = 2 × sensitivity × precision

sensitivity + precision

Where TP is the number of true positives, FP is the number of false positives, and

FN is the number of false negatives. We defined TP as variants called by a SVs caller

and matching with the gold standard set, FP are variants called by a SVs caller but not

in the gold standard set, and FN are variants in the gold standard set but not called
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by a SVs caller.
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Chapter 3

Results

3.1 IGV visualization for deletion and duplication

Integrative genomics viewer (IGV) is a visualization tool that enables intuitive real-time

exploration of diverse, large-scale genomic datasets. As shown in figure 3.1, we used

IGV to show examples of a deletion in chromosome 3 starting from position 228971 to

position 233971 which was found by RD algorithm and a duplication in chromosome 17

starting from position 122686 to position 123426 which was found by SR algorithm.

3.2 Clustering method 1 and method 2 comparison

We compared the performance of clustering method 1 and clustering method 2 in 12x

NA12878 data to evaluate which method is optimal. The combined condition of clus-

tering method 1 is to check if the distance of the breakpoints of two predicted SVs is

within a buffer length; while the combined method of clustering method 2 is to check

if two SVs are 90% reciprocal overlapping. As Table 3.1 shown, Method 1 has higher

sensitivity for calling deletions, duplications and inversions. Though Method 2 has

higher precision for deletions, we desire higher sensitivity in the SV calling algorithm

to achieve the completeness of a SV call set. Thus, we chose Method 1 to do the

following evaluation.

3.3 10x NA12878 dataset with NGM-LR aligner

To evaluate the SV calling performance of our algorithm, we downloaded a 10x PacBio

data set of NA12878 aligned with NGM-LR and compared with Sniffles, and PBHoney-

spots. NGM-LR is a long-read mapper designed to correctly aligned reads spanning

complex structural variations. The resulting calls were compared with the gold standard
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(a) Deletion evidence

(b) Duplication evidence

Figure 3.1: IGV visualization
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Table 3.1: Clustering methods comparison

SV set including 2676 deletion calls and 68 insertion calls from the Genome in A Bottle

(GIAB) consortium. We calculated sensitivity, precision and F1 scores to evaluate the

SV callers. For deletions, we consider a predicted call is TP if it has 50% reciprocal

overlapping with a SV in true set, otherwise, it is FP. For insertions, there is only one

breakpoint identified, so we defined a called SV is TP if its breakpoint is within 50bp

of the breakpoint of a true SV. As shown in Figure 3.2 and Table 3.2, our algorithm

shows somewhat higher sensitivity for deletions. For insertions, the sensitivity of our

algorithm and Sniffles were both 0.51, which is higher than PBHoney-spots. In Table

4, our algorithm identified more TPs than Sniffles for insertions, because there may be

multiple called SVs matched to one true SV.

3.4 12x NA12878 dataset with BWA-SW aligner

We next tested our algorithm with a higher coverage dataset. The resulting calls were

compared with different gold standard SV sets from different sources including 3 deletion

sets, 2 duplication sets, 1 insertion set and 1 inversion set, as shown in Table 3.3. 83%

deletions and 51% insertions in the GIAB gold standard set can be detected by our

algorithm, which is higher than Sniffles. Although only 57% deletions in the DGV

gold standard set and 61% deletions in Mill gold standard set were detected by our
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Table 3.2: SV calling performance for each SV caller on the 10x NA12878 with NGM-LR
aligner

algorithm, which is slightly less than Sniffles which detected 66% deletions in DGV and

61% deletions in Mill, our algorithm had higher precision in deletions, so that F1 scores

for deletions based on three gold standard sets are higher. The precision and sensitivity

for insertion calls of our algorithm was higher.

We also used NA12878 SV set from Illumina data, called by GROM, as validation set

to assess our result. As shown in Figure 3.4 and Table 3.4, 65% deletions, 20% insertions,

52% inversions in illumina SV sets were matched by our algorithm. The precision for

deletion calls and insertion calls of our algorithm shown higher than Sniffles. However,

our algorithm has lower sensitivity for duplications and translocations than Sniffles

either in the gold standard set or the Illumina set.

3.5 44x NA12878 dataset with BWA-MEM aligner

We further assessed our algorithm with 44x NA12878 dataset with a different aligner. As

shown in Figure 3.5, 3.6 and Table 3.5, 3.6, the sensitivity and precision for insertions

of our algorithm in the GIAB set and Illumina set are higher. The sensitivity and

precision for deletions of our algorithm in all Gold standard sets and illumina set are

slightly lower than Sniffles. For inversions, our algorithm perform better in the Illumina

set. For duplications and translocations, our algorithm still showed lower sensitivity and
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precision. The entire performance of SV calling in 44x NA12878 dataset was 6% ∼ 30%

less than the performance of SV calling in 12x NA12878 dataset.

3.6 Running time and memory cost

Table 3.7 summarizes running time and memory cost of our algorithm for different

datasets in both parallel and serial modes to show workload distribution and method

efficiency. We used four threads in our parallel mode. All timings were performed on a

Intel Xeon CPU E5-1620 v2 processor, 3.7 GHz with 16GB RAM. For a 20 gigabytes

BAM file, it took about 0.2 hr to run. The largest file, which has 267 gigabytes, took

about 2.4 hr in parallel mode. The parallel mode is about 3 times faster than serial

mode.
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Figure 3.2: SV calling performance for each SV caller on the 10x NA12878 with NGM-
LR aligner
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Figure 3.3: SV calling performance for each SV caller on the 12x NA12878 with BWA-
SW with Gold standard
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Table 3.3: SV calling performance for each SV caller on the 12x NA12878 with BWA-
SW with Gold standard



23

Figure 3.4: SV calling performance for each SV caller on the 12x NA12878 with BWA-
SW with Illumina dataset
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Table 3.4: SV calling performance for each SV caller on the 12x NA12878 with BWA-
SW with Illumina dataset
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Figure 3.5: SV calling performance for each SV caller on the 44x NA12878 with BWA-
MEM with Gold standard



26

Table 3.5: SV calling performance for each SV caller on the 44x NA12878 with BWA-
MEM with Gold standard
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Figure 3.6: SV calling performance for each SV caller on the 44x NA12878 with BWA-
MEM with illumina dataset
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Table 3.6: SV calling performance for each SV caller on the 44x NA12878 with BWA-
MEM with Illumina dataset

Table 3.7: Running time and memory cost summary
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Chapter 4

Discussions

Due to the higher per-nucleotide error rates (∼ 15%) in single-molecule sequencing

technologies, to mitigate false positive caused by high error rates is a challenge. As

shown in Table 4.1, we analyzed a 44x SV call set to categorize SV calls based on differ-

ent evidence support. We observed that split-read alignment method has significantly

higher precision than read depth and alignment mismatching. Alignment mismatching

contributed most of the false positives for deletions and insertions, which might be due

to the nature of high per-nucleotide error rates in SMRT sequencing. To reduce FPs,

we might increase the threshold in read support for alignment mismatching approach,

but strict filtering criteria may loss some potential TPs and leave the call set incom-

plete. The SV call sets with two signals support have higher precision for deletions.

For example, SV call set with SP, MM signals has 86% precision. Although read depth

method contribute fewer TPs and the breakpoints resolution is lower than split-read,

it can find unique and large size SVs which split-read might not find. For instance, our

read-depth algorithm found 4 duplications in DGV gold standard set that Sniffles didnt

find. We acknowledge that the read-depth algorithm needs to be improved in future

work, and we believe that the read-depth approach is a complement method that will

help us to find more potential SVs.

We used different coverage datasets to assess the performance of our algorithm.

The results showed that our algorithm performed better on low coverage NA12878

dataset rather than high coverage dataset. We might need to test different datasets

such as a recently published Chinese genome HX1 to avoid a bias performance on

our algorithm. Different aligners used might also be a factor affecting our algorithms

performance. Our algorithm showed better results when the genome data was aligned

by NGM-LR and BWA-SW. Allowing BAM files from different aligners as input is a

merit of our algorithm. Compared with some SV callers that depend on a specific
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Table 4.1: SV signals comparison

aligner, for example, PBHoney-tails have to depend on BLASR, which is also a long

read aligner, and now BLASR have been changed to a new version, PBHoney-tails

have been incompatible with BLASR and it might no longer be used. Our algorithm

accept BAM file from at least three different aligners which provides flexibility and less

limitations for users. We also attempted to run a BAM file from BLASR. The RD

and MM algorithms were adequate to detect SVs, but our split-read algorithm was not

applied because BLASR doesnt find chimeric reads and mark SA tags to be applied by

our algorithm.

Our duplication call set is called by SR and RD algorithms which we expected to

find more TPs and increase sensitivity, but it was not as our expectation. To improve

duplication detection, we observed that the length of our duplications ranged from 50

∼ 10000 bp, but the length of gold standard duplications are distributed from 100 ∼

100000 bp (Figure 4.1). We might try to merge overlapping duplications to produce

longer duplications in the SR algorithm. For the RD algorithm, we selected duplication

regions which have abnormal coverage of three times standard deviation more than

average. This threshold might be too stringent. An alternative way, we might increase

the window size which we used to calculate our read depth mean and standard deviation.

Our algorithm integrates split-read, read-depth and alignment mismatching signals

to detect SVs which is comprehensive discovery of structural variation. Table 4.2 sum-

marize the methods used by each caller. Compared with PBHoney-spots and Sniffles,
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our approach included read depth signal which might find more different variants from

them. In addition to facilitating signal integration, our use of parallel computing dur-

ing SV discovery should reduce time consummation which could help analyze increasing

amounts of data on WGS efficiently.

Table 4.2: Algorithms comparison
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Figure 4.1: Length distribution of duplication
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Chapter 5

Conclusion

Structural variation detection faces many challenges when creating a completely char-

acterized genome with identified large and complex variants. Here, we describe an

algorithm simultaneously integrating multiple SV detection signals with high mappa-

bility of long-reads during structural variation discovery. Our approach is flexible to

support bam file from several aligners and analyze large-scale SV calling efficiently.

We expect our method will be a community resource to facilitate practical and routine

structural variant analysis in genome sequencing research.
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