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THESIS ABSTRACT

Models for Pattern Formation in Biological Systems

by NASTASSIA POURADIER DUTEIL

Thesis Director:
Benedetto Piccoli

This thesis presents models for two different kinds of pattern formation in biological systems.

Developmental patterning refers to pattern formation by cell differentiation during an organism’s

development. Cell differentiation is controlled by morphogens, signaling molecules that diffuse in

a growing organism. We focus on the specific case of the activation of the epidermal growth fac-

tor receptor pathway, a highly-conserved signaling pathway across animals, that controls both the

posterior-anterior and the dorso-ventral axes during Drosophila oogenesis. Not only can the dif-

fusion of morphogens control the growth of an organism, but the diffusion itself is influenced by

the changing geometry of the domain. We develop a mathematical framework enabling this double

coupling of the diffusion of a signal on a time-evolving Riemannian manifold and the evolution of

the manifold via a vector field depending on the diffusing signal: “Developmental Partial Differential

Equations”.

The second kind of pattern formation, behavioral patterning, arises from local interactions be-

tween individuals that lead to a global group behavior. We focus on several of these models, also

referred to as Social Dynamics systems. We examine how to control the dynamics to guide the

system to a target configuration. In particular, we study the optimal control of a collective mi-

gration model to guide the system to consensus at a target velocity, as well as the controllability

away from consensus of an opinion dynamics system. We analyze the influence of the state space

on the dynamics by designing a general opinion dynamics model on Riemannian manifolds. Lastly,

we investigate the role of the interaction network on the periodicity of the dynamics, specifically in

creating a “social choreography”.
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1

Introduction

There is a long history of collaboration between biologists and mathematicians, but recently the

interdisciplinary field of Systems Biology has seen an even greater burst of interest. This is due,

among other things, to advances in technology revealing the complexity of biological systems, to

an increase in computing power allowing to simulate with more and more accuracy very complex

systems, and to the new availability of data-rich information sets, difficult to interpret without

analytic tools.

Biological systems exhibit complex behaviors, and can naturally lead to fascinating patterns. For

example, in developmental biology, pattern formation refers to the generation of complex organiza-

tion of cell fates in space and time. Phenotypic structures such as stripes or spots can be explained

by the interaction and diffusion of morphogens in the developing organism, a mechanism known as

Turing patterning [125].

On a larger scale, patterns are found in animal behavior. Groups of autonomous agents like

animals exhibit strong coordination in their movements, which also leads to the creation of patterns

(some examples include lines of ants, murmuration in flocks of starlings, collective evasion in schools

of fish, etc.) [8, 24, 88, 89, 103, 124, 128]. In this case, the system’s global behavior emerges from

local interactions between individuals, a phenomenon referred to as self-organization.

The work presented in this thesis provides mathematical frameworks to investigate pattern for-

mation in two classes of systems, respectively describing developmental patterning and behav-

ioral patterning. These two classes of systems differ in their biological applications and in their

mathematical formulations. Therefore, this thesis is divided into two parts.

One of the first successful attempts at explaining patterning in developing organisms was pre-

sented in a seminal paper by Alan Turing in 1952 [125]. Turing showed that spatial heterogeneities

can arise from the reaction and diffusion of several competing chemical substances (known as mor-

phogens). Since then, his reaction-diffusion model was developed and exploited to justify periodic

patterning in various organisms, such as in the marine angelfish [64], or in digit formation during

limb development [78]. In early applications of Turing’s reaction-diffusion model, the mechanisms

of reaction and diffusion were considered to happen on a much shorter time scale than that of the

organism’s growth, and the domain was thus modeled with a constant size. However, it has recently

been suggested that domain growth has a non-negligible effect on the diffusion of morphogens - hence

on the patterning of the organism (see among others the works of Crampin et al. [27], Kondo et al.
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[64], Baker, Maini, Miura, Plaza [78, 98]). More specifically, growth of the domain has been shown

to increase the robustness of pattern formation [27], a characteristic of Turing’s model that had long

been lacking due to its extreme sensitivity to parameter choice and initial conditions [27, 76, 98].

Plaza et al. [98] analyzed numerically the effects of linear, exponential and saturated growth on

domain patterning in one dimension, as well as on a two-dimensional conic surface embedded in R3.

In addition to growth, curvature has also been shown to impact the reaction-diffusion dynamics. In

particular, Turing patterning has been studied on a sphere by Varea et al. [126, 127] and on a cone

by Plaza et al. [98]. It is thus clear that growth has a non-negligible effect on the patterns formed by

morphogens, as it expands the domain and changes its curvature. Conversely, several authors stud-

ied the interplay between growth and morphogen concentration by considering growth to be driven

by the local morphogens concentration. Lefèvre and Mangin were able to build a model reproducing

the progressive folding of the cortical surface during brain development by locally deforming the

surface based on the distributions of two morphogens (an activator and an inhibitor) [71]. Harrison

et al. showed how simultaneous growth, reaction and diffusion in an originally hemispherical domain

are able to trigger sequential dichotomous branchings, mimicking the growth of plants [52].

Inspired by the evidence that growth and diffusion are intrinsically linked during development,

we have sought to design a complete mathematical framework incorporating growth of the organism,

diffusion and reaction of signals on its surface, and relative cell movements. This was done in two

parallel lines of research.

In a first project, we constructed a detailed model specifically for the dynamics of the epider-

mal growth factor receptor (EGFR) activation in Drosophila oogenesis. This work emerged from

a collaboration between the Piccoli laboratory of Applied Mathematics and the Yakoby laboratory

of Developmental Biology of the Center for Computational and Integrative Biology at Rutgers Uni-

versity. The Yakoby laboratory studies the mechanisms underlying cell fate determination by cell

signaling in Drosophila ovaries. In particular, it focuses on the EGFR signaling pathway. The EGFR

is a transmembrane protein that is activated by the binding of its specific ligands. The EGFR sig-

naling pathway is a highly-conserved pathway, active in humans as well as in Drosophila. It controls

cell processes such as cell migration and apoptosis [20, 105]. It has been shown that mutations

leading to overexpression of EGFR are associated to the development of a numerous cancers [77].

Drosophila oogenesis (i.e. egg formation) provides a good model system to study the functioning

of the EGFR signaling pathway. During the early stages of oogenesis, EGFR signaling has been

shown to be regulated by the TGFα-like ligand Gurken [86]. Mathematically, the diffusion of the

Gurken protein and its interaction with other components of the pathway was modeled by the classic
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coupling of a PDE (for diffusion) with ODEs (for reactions). The curvature of the egg chamber was

taken into account by using the Laplace-Beltrami operator for the diffusion. The novelty of our

approach is our focus on the growth of the egg chamber and on the shift of the overlying cells. We

have developed a complete numerical tool to include all components of the model: growth of the

manifold, cell movement, diffusion and reactions. Comparing the simulations with experimental data

yielded convincing results, confirming the hypothesized crucial role of growth and cell movement in

shaping the Gurken signal. This constitutes Chapter 1 of this thesis.

A parallel line of work has led us to develop a theoretical framework for diffusion equations on

evolving manifolds, that we named Developmental PDEs. Although this has not been shown for

Gurken, there exist morphogens that influence the growth of organisms [52, 71]. For this reason,

we considered the growth vector-field to depend on the signal diffusing on the manifold. Here,

we present this new framework and provide results of existence and uniqueness for the solution to

this equation. We extended the definition of the Lie bracket to apply it to operators of different

nature: a usual first-order vector field (for growth) and the second-order diffusion operator. We

proved approximate controllability of the system, identified controls for particular final shapes, and

performed numerical analyses in order to show how the control acts on the manifold. This work was

published in [100, 104] and constitutes Chapter 2.

While the first part of this thesis deals with developmental patterning at the molecular level, our

second axis of research focuses on behavioral patterning by social interaction. The emergence of a

group’s global behavior from local interaction rules is referred to as self-organization. We use the

term Social Dynamics to indicate the study of such systems, with an emphasis on understanding the

mechanisms leading from local rules to global phenomena, as well as identifying the resulting global

pattern formation. A review of this field was published in [3].

Social dynamics models can be classified as first-order models and second-order models. In first-

order models, we refer to the variables of interest as opinions, even though such models can describe

a wide range of attributes such as positions, market shares or wealth. The opinion of each agent

is affected by neighboring agents’ opinions in the state space. On the other hand, in second-order

models, the variables of interest are the velocities, obtained as the time derivatives of the positions.

Each agent’s velocity is affected by the velocities of agents whose positions are close in the state-

space. First-order models (or opinion dynamics) can give rise to patterns such as consensus (i.e.

agreement of all states), polarization (i.e. disagreement between two opposite parties) or clustering

(i.e. break-down of the opinions into several subsets). A first formulation of opinion dynamics

can be traced back to French’s research on social influence [40], followed by works by Harary [51],
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De Groot [33] and Lehrer [72], all focusing on linear models. More recently, nonlinear models were

introduced and analyzed by Krause [66, 67], Dittmer [35], Hegselmann and Flache [54]. Second-order

models are commonly applied to animal groups to study coordinated collective behavior (as done by

Couzin et al. [26], Cristiani, Frasca and Piccoli [28], Giardina [43], Krause and Ruxton [65], Leonard

[73] and Sumpter [122]) for example in fish (Huth and Vissel [59], Parrish, Viscido and Grunbaum

[89]) or birds (Ballerini et al. and Cucker and Smale [6, 31]). Some models have been designed to

include simple interaction rules like attraction, short-distance repulsion and mimetic orientation or

alignment. Agreement of all agents in the velocity variable is referred to as alignment or flocking.

A large number of applications of Social Dynamics models involve the control of robotic networks

or autonomous vehicles, as done by Bullo, Cortés, and Martínez [15]. Control is used to impose

consensus or alignment when it is not reached naturally (see Caponigro, Fornasier, Piccoli, and

Trélat [17, 18]), or to guide the agents in a specific direction, as done by Leonard for the migration

of animal groups [73]. Ways of controlling the system include spreading leaders among the group or

acting on the network. The work presented in Chapters 3 and 4 focuses on how to influence pattern

formation by controlling the system in order to guide it to a target behavior.

In Chapter 3, we introduce a migration model inspired by the behavior of groups of migrating

animals all moving towards a common destination. We designed optimal control strategies to choose

leaders among the group in order to drive the group to consensus at the preassigned migration

velocity. This work was published in [94].

In Chapter 4 we studied avoidance of consensus, that is how to act on a system to keep the

agents as far from each other as possible. This approach aims to avoid “black swan” phenomena,

which characterize rare events with a large impact and a possible retrospective justification [7, 123].

Applications involve preventing various kinds of dangerous clustering, for instance of opinions (to

avoid single-party systems), of financial shares (to avoid collapse of the market), or of individuals

(to avoid high crowd densities that can lead to stampedes).

The last chapter of this thesis focuses on understanding the influence of the state-space on the

dynamics. Most studies have considered dynamics in Euclidean spaces (most often 1-dimensional

for opinion models and 2 or 3-dimensional for animal groups). One can also study opinion dynamics

on general Riemannian manifolds. For instance, Caponigro, Lai and Piccoli studied a nonlinear

model of opinion formation on the sphere [19], with a rich structure leading to unusual equilibria.

Consensus dynamics on special orthogonal groups were investigated, for example by Sarlette and

Sepulchre [106, 107, 108], motivated by applications to satellites or ground vehicles. Chapter 5

presents a general model for opinion dynamics on Riemannian manifolds.
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Part I

Reaction-diffusion equations on

time-evolving manifolds
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Chapter 1

Modeling the evolution of a ligand in

Drosophila

Introduction

Developmental biology is the study of how organisms grow and develop, and, in particular, of the

genetic control of cell growth, differentiation and morphogenesis. Tissue patterning and cell fates

are determined by cell signaling pathways, which are triggered by the binding of signaling molecules

to cell receptors. These molecules are referred to as “morphogens”, a term coined by Alan Turing

in his groundbreaking article “The Chemical basis of morphogenesis” [125]. The complexity of

signaling pathways has encouraged collaborative work between developmental biologists and applied

mathematicians, with the construction of mathematical models aiming to reproduce the interactions

between components of the pathways and justify the signaling patterns observed experimentally

[22, 45, 101, 102].

In this line of thought, a collaboration was created between the Piccoli laboratory of Applied

Mathematics and the Yakoby laboratory of Developmental Biology of the Center for Computational

and Integrative Biology at Rutgers University, with the aim of modeling the dynamics of the EGFR

signaling pathway in the fruit fly ovaries. The Yakoby laboratory studies the mechanisms underlying

cell fate determination by cell signaling in Drosophila species. Drosophila is a commonly used

model organism in genetics and developmental biology. Some of the practical reasons for its wide

use in research include its short life cycle, its cheap cost and its ability to survive and reproduce

in large numbers in a lab environment [118]. Moreover, the genomes of several species such as

D. melanogaster, D. willistoni and D. virilis have been fully sequenced [41]. Within Drosophila

development, oogenesis is the focus of this chapter. A female Drosophila has 2 ovaries made of

about 16 ovarioles [118]. Each ovariole contains egg chambers, the precursors of the mature eggs,

at all stages of egg development, as in an assembly line (Fig. 1.1a). For the purpose of this work,
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we focus on Stage 7 to Stage 10A of oogenesis. Egg chambers at these developmental stages consist

of 15 nurse cells, one oocyte, and a layer of about 1000 follicle cells surrounding the developing

oocyte [118]. The follicle cells are separated from the germ cells (nurse cells and oocyte) by a thin

region called perivitelline space. During these four stages, the egg chamber undergoes mechanical

transformations: its dimensions increase by a factor of four; the oocyte grows inside the egg chamber;

the oocyte nucleus transitions from being anchored at the posterior end to the dorsal anterior

position; the follicle cells shift from anterior to posterior (Fig. 1.1a).

In the early stages of Drosophila oogenesis, EGFR signaling is activated by the binding of the

TGFα-like ligand Gurken (GRK) to the EGF receptor [84, 85, 109]. This consequently sets the

dorso-ventral and anterior-posterior axes of the egg chamber by altering the fates of certain cells

[84, 85, 109]. Gurken is secreted from near the oocyte nucleus, diffuses in the thin perivitalline space,

is internalized by EGFR and triggers a signaling cascade resulting in the double phosphorylation

of ERK (extracellular signal-regulated kinases), dpERK, in the overlaying follicle cells (Fig. 1.1b

and 1.1c). These interactions are combined with a physical transformation of the egg chamber:

during this process, the egg chamber grows significantly and the follicle cells gradually shift from

the anterior to the posterior of the egg chamber [118].

(a) Growth of the egg chamber during early stages of oogenesis and its mechanical transformations,
with relative growth of the oocyte, transition of the nucleus’ position from posterior to dorsal
anterior, and shift of the follicle cells.

(b) Secretion of GRK from near the oocyte nu-
cleus, diffusion of GRK in the perivitelline space
and binding of GRK to the EGFR at the apical
surface of the overlying follicle cells.

(c) Internalization of GRK setting off the
RAS/RAF/MEK signaling cascade and the pro-
duction of inhibitors that act as negative feed-
back.

Figure 1.1: Schematic of the mechanisms responsible for the spatio-temporal GRK evolution.
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The community of biomathematicians has demonstrated the role of growth in shaping the distri-

bution of signals in developing organisms. The effects of growth rate, curvature and cell movements

on stability, geometry and growth of signaling patterns have been investigated in recent studies

[2, 5, 27, 52, 64, 78, 98, 110, 126, 127]. Although the importance of domain growth has been es-

tablished, there currently does not exist a complete model combining the physical transformation

of the organism with its effect on the various components of a signaling pathway. More specifically,

while the activation gradient of EGFR signaling was previously modeled, and it neglected the rel-

ative movement of cells and the growth of the egg chamber [45, 114, 133]. Here we present a fully

integrated model of the EGFR signaling pathway during oogenesis, by taking into account not only

the interaction between components of the pathway, but also the growth of the egg chamber, the

relative movement of the oocyte nucleus and the shift of the overlaying follicle cells.

This chapter introduces the system studied, presents a mathematical model integrating all its

components, describes the numerical challenges linked to numerical simulations, and compares nu-

merical results with experimental data, in the overall aim of explaining how growth and cell move-

ment contribute in shaping the distribution of the signals.

1.1 Modeling Gurken concentration in D. melanogaster

It has been shown that EGFR activation gives rise to cell differentiation and in particular to the

formation of various structures on the Drosophila eggshell, among which are the dorsal appendages

and the dorsal ridge [85, 86, 92]. The dorsal ridge is a lumen-like structure present along the

dorsal side of eggshells in certain Drosophila species. This structure extends from the anterior to

the posterior end of the eggshell and varies in length and width across species [86]. Niepielko and

Yakoby [86] have shown that the distribution of GRK is closely linked to the size and shape of

the dorsal ridge. Indeed, it was shown that the distribution of the GRK protein is consistent with

the activation of EGFR, while the EGFR activation pattern is itself consistent with the length and

shape of the dorsal ridge. More specifically, D. melanogaster does not have a dorsal ridge on its

eggshell, which is consistent with the restricted activation patterns of EGFR [86]. In species with

a dorsal ridge such as D. willistoni and D. cardini, the activation of EGFR localization extends

further towards the posterior end.

These observations motivate the need to understand the spatio-temporal evolution of GRK dis-

tribution throughout oogenesis.
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1.1.1 Reaction-diffusion model

We first present a complete reaction-diffusion model describing the spatio-temporal evolution of

Gurken, EGFR and dpERK, neglecting the growth of the egg chamber and the shift of the follicle

cells. These two additions to the model will be presented in Sections 1.1.2 and 1.1.3.

The EGF ligand Gurken is secreted to the perivitelline space surrounding the oocyte from near

the oocyte nucleus, which is dynamically localized during oogenesis. As shown in Fig. 1.1a, the

oocyte nucleus is at the posterior end at Stage 8, and later becomes anchored at the dorsal anterior

of the oocyte where it remains as the oocyte grows [85, 109, 118]. The perivitelline space is an

open region where the ligand can diffuse and bind to the EGF receptor (EGFR) in the overlaying

follicle cells. This sets off the signaling cascade RAS/RAF/MEK. This phosphorylation cascade

targets ERK which activates the molecule dpERK, which can be detected by an antibody (Figure

1.2). Then dpERK activates or deactivates transcriptional regulators, while simultaneously being

inactivated via dephosphorylation or degradation by a protease (see Figure 1.1c).

We present a reaction-diffusion model that takes into account:

• The diffusion of Gurken into the perivitelline space by the moving morphogen source and its

internalization;

• The time evolution of the surface receptors, receptor-ligand complexes and internalized recep-

tors;

• The activation of dpERK through the EGFR signaling pathway;

• The action of inhibitors in a negative feedback loop.

Figure 1.2: dpERK staining in stages 7 through 10A of D. melanogaster. Images A and B offer
sagittal views and show the dynamic localization of the nucleus (indicated with an arrow) with
respect to the overlaying follicle cells. Images C and D offer dorsal views of dpERK staining. The
distribution of dpERK is short, in line with the absence of dorsal ridge observed in D. melanogaster
[86].
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Reactions

Let L denote the concentration of ligand. The ligand binds to the receptors that are on the apical

surface of the follicle cells (FC) facing the perivitelline space (PVS). R denotes the concentration of

free surface receptors, C denotes the concentration of ligand-receptor complexes and L̄ denotes the

concentration of the ligand on the surface PVS/FC.

Following [22], we also introduce the internalized receptor-ligand complexes Ci and the signal

(dpERK) S. The surface ligand-receptor complexes C are formed when the ligand binds to receptors,

with rate kon . The complexes can then be internalized with rate kec , or dissociated with rate koff. In

turn, a fraction αrec of the internalized complexes Ci is recycled back to the surface of the FCs with

rate krec and a fraction αdeg is degraded with rate kdeg [115]. The free receptors R are produced with

rate Qr. Their concentration increases when the surface complexes C dissociate, and decreases when

they bind to the ligand (with rate kon) or are internalized (with rate ker). From these equations we

can further compute the concentration of dpERK, which is produced by the phosphorylation cascade

triggered by the internalization of Gurken. The evolution of the signal S (dpERK) is characterized

by the phosphorylation of the complexes via the Ras/Raf/Mek cascade (with rate ks and by its

degradation with rate kd (encompassing the phenomena of dephosphorylation and digestion by

protease). This gives the following system of ODEs, for the complexes C, internalized complexes Ci,

receptors R and signal S:



∂C

∂t
= konRL̄− (koff + kec)C + αreckrecCi

∂Ci

∂t
= kecC − αreckrecCi − αdegkdegCi

∂R

∂t
= −konRL̄+ koffC − kerR+Qr

∂S

∂t
= ksCi − kdS

(1.1)

where:

• kec is the ligand-induced internalization rate constant (min−1),

• kon is the receptor-ligand association constant (M−1min−1 = mol−1cm3min−1),

• koff is the receptor-ligand dissociation constant (min−1),

• R0 is the number of receptors per cell surface area in the absence of ligand (mol cm−2),

• Qr is the receptor production rate (M min−1),

• αrec and αdeg are respectively the fraction of recycled and degraded receptors,
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• krec and kdeg are respectively the receptor recycling and degradation rates (min−1),

• kd is the degradation rate of dpERK,

• ks is the production rate of dpERK.

Diffusion

Following the work of Goentoro et al [45], we approximate the thin three-dimensional pervitelline

space by a 2-dimensional time-varying prolate spheroid (Fig.1.3a). Its dimensions at each stage are

extrapolated from experimental measurements (see Table 1.2 and Figure 1.5a).

To derive the reaction-diffusion equation describing the evolution of the concentration of Gurken

on the prolate spheroidal surface, we begin by considering the perivitelline space as a three dimen-

sional space enclosed between two surfaces that we denote by S0 (at the oocyte boundary) and SFC
(at the follicle cells boundary).

Definition 1.1.1. Let a > 0 and ξ0 > 0. We denote by Φ0 the map:

Φ0 : (η, θ) ∈ [0, π]× [0, 2π] 7→


a sinh ξ0 sin η cos θ

a sinh ξ0 sin η sin θ

a cosh ξ0 cos η

 ∈ R3.

We denote by S0 the prolate spheroid parametrized by Φ0, i.e. S0 := {Φ0(η, θ) | (η, θ) ∈ [0, π] ×

[0, 2π]}.

Now the surface SFC is assumed to be at a constant distance H from the surface S0. We define

a new map to parametrize each point of the perivitelline space enclosed by SFC and S0:

Definition 1.1.2. Let a > 0 and ξ0 > 0. Let n : [0, π] × [0, 2π] → S2 denote the function

that maps each point (η, θ) of S0 to the unit normal vector to S0 at that point, i.e. n(η, θ) =

∂ηΦ0(η,θ)∧∂θΦ0(η,θ)
‖∂ηΦ0(η,θ)∧∂θΦ0(η,θ)‖ . We denote by Φε : [0, π]× [0, 2π]× [0, H]→ R3 the map defined by:

Φε(η, θ, ε) = Φ0(η, θ) + ε n(η, θ).

We denote by SFC the manifold defined by: SFC := {Φε(η, θ,H) | (η, θ) ∈ [0, π]× [0, 2π]}.

Remark 1.1.1. Notice that manifold S0 can also be defined using the map Φε, with: S0 =

{Φε(η, θ, 0) | (η, θ) ∈ [0, π] × [0, 2π]}. However, the two manifolds are of different geometric na-

tures. Indeed, contrarily to S0, SFC is not a prolate spheroid.
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Remark 1.1.2. The parameters a and ξ0 are calculated from the measured dimensions of the oocyte,

with LAP = a cosh ξ0 and LDV = a sinh ξ0, see Figure 1.3a and Section 1.1.5.

One can verify that the metric tensor associated with these coordinates is a diagonal matrix of

the form:

Gε(η, θ, ε) = (gεij)1≤i,j≤3 =


hεη

2 0 0

0 hεθ
2 0

0 0 1


where hεη and hεθ are the scaling factors with respect to θ and η. Notice that the scaling factor with

respect to ε is equal to 1.

As in [101, 102] we model the diffusion of the ligand L in the three-dimensional perivitelline

space (PVS) as follows:
∂L

∂t
= D∆L (1.2)

where D denotes the diffusion rate, and ∆· denotes the Laplace operator in R3.

Equation (1.2) is supplemented with boundary conditions for L on the PVS/follicle cells and

PVS/oocyte surfaces:


(
D ∂L

∂ε − konRL
)
|ε=H = −koffC at the follicle cells boundary ε = H

D ∂L
∂ε |ε=0 = qV at the oocyte boundary ε = 0

(1.3)

where q is the source function, equal to 1 at the source location and 0 elsewhere (dimensionless),

and V is the flux of ligand (mol cm−2min−1).

As done in [45] and [101], we consider that the perivitelline space height H is negligible compared

to the other dimensions of the problem, see Figures 1.1 and 1.3b. Thus, in the following we make the

approximation that the ligand diffuses on the 2-dimensional surface of the oocyte. We now introduce

the Laplace-Beltrami operator.

Definition 1.1.3. The Laplace-Beltrami operator is a generalization of the Laplacian for general

Riemannian manifolds. Like the Laplacian, it is defined as the divergence of the gradient:

∆LBf = ∇ · ∇f.

Let M be a m-dimensional manifold, embedded in Rn, with metric tensor g. Then the Laplace-
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Beltrami can be expressed in local coordinates as:

∆LBf =
1√
|g|

m∑
i=1

∂i(

m∑
j=1

√
|g|gij∂jf)

where |g| denotes the determinant of the metric tensor and gij denotes the i, j-th component of the

inverse of g.

We also recall the definition of the metric tensor of a Riemannian manifold:

Definition 1.1.4. Let M be an m-dimensional Riemannian manifold embedded in Rn, equipped

with the metric g, denoted at each point p ∈ M by: gp : TpM × TpM → R. Let M be given by

the smooth parametrization: φ : (x1, . . . , xm) ∈ U ⊂ Rm 7→ (φ1, . . . , φn) ∈ Rn, where U is an open

subset of Rm. Let Jφ denote the Jacobian matrix of φ. Then the metric tensor at point p ∈ M is

defined by: Gp := (Jφφ−1(p))
T (Jφφ−1(p)).

We now compute the Laplace-Beltrami operator on S0.

Lemma 1.1.1. The Laplace-Beltrami operator of S0 expressed in the prolate spheroidal coordinates

given in Def. 1.1.1 is:

∆LBf =
1

a2(sinh2 ξ0 + sin2 η)
∂2
ηf +

1

a2
√

sinh2 ξ0 + sin2 η sinh ξ0 sin η
(∂η

sinh2 ξ0 sin2 η√
sinh2 ξ0 + sin2 η

)∂ηf

+
1

a2 sinh2 ξ0 sin2 η
∂2
θf.

(1.4)

Proof. We study the manifold S0 parametrized by Φ0 defined in Def. 1.1.1. Because the coordinate

vectors ∂η and ∂φ are orthogonal, we have: ∂ηΦ0 · ∂θΦ0 = 0 (see Def. 1.1.4). So Gp simplifies to:

Gp =

(h0
η)2 0

0 (h0
θ)

2

 , (1.5)

where h0
η and h0

θ are the scaling factors, defined by: h0
η =

√
∂ηΦ0 · ∂ηΦ0 and h0

θ =
√
∂θΦ0 · ∂θΦ0.
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The diagonal nature of the metric tensor allows us to compute explicitly:

∆LBf =
1√
|g|

m∑
i=1

∂i(

m∑
j=1

√
|g|gij∂jf)

=
1

h0
ηh

0
θ

(
∂η(h0

ηh
0
θ(h

0
η)−2∂ηf) + ∂θ(h

0
ηh

0
θ(h

0
θ)
−2∂θf)

)
=

1

h0
ηh

0
θ

(
∂η(

h0
θ

h0
η

∂ηf) + ∂θ(
h0
η

h0
θ

∂θf)

)
.

(1.6)

The scaling factors can be calculated:


h0
η =

√
∂ηΦ0 · ∂ηΦ0 =

√
a2 sinh2 ξ0 cos2 η + a2 cosh2 ξ0 sin2 η = a

√
sinh2 ξ0 + sin2 η

h0
θ =
√
∂θΦ0 · ∂θΦ0 = a sinh ξ0 sin η

Notice that the scaling factors do not depend on θ. Hence the Laplace-Beltrami operator rewrites

as:

∆LBf =
1

h0
ηh

0
θ

∂η(
h0
θ

h0
η

∂ηf) +
1

(h0
θ)

2
∂2
θf =

1

(h0
η)2

∂2
ηf +

1

h0
ηh

0
θ

(∂η
h0
θ

h0
η

)∂ηf +
1

(h0
θ)

2
∂2
θf. (1.7)

Theorem 1.1.1. Let L ∈ C2([0, π]× [0, 2π]× [0, H]), satisfying Equations (1.2) and (1.3). Suppose

that the perivitelline space height H is small enough that L, hεη and hεθ do not very appreciably along

the coordinate ε, i.e. for all (η, θ, ε) ∈ [0, π] × [0, 2π] × [0, H], L(η, θ, ε) = L(η, θ, 0), hεη = h0
η and

hεθ = h0
θ. Let L̃ :=

∫H
0
Ldε. Then integrating equation (1.2) between ε = 0 and ε = H yields:

∂L̃

∂t
= D∆LBL̃−

1

H
konRL̃+ koffC + qV. (1.8)

Proof. Denoting |gε| = det(gε), the diffusion operator can be written as:

∆L =
1√
|gε|

∂

∂ε

(√
|gε|∂L

∂ε

)
+ ∆surfL

where ∆surfL denotes the term involving the surface derivatives ∂
∂η and ∂

∂θ , i.e.

∆surfL =
1√
|gε|

[
∂

∂η

(√
|gε|

(hεη)2

∂L

∂η

)
+

∂

∂θ

(√
|gε|

(hεθ)
2

∂L

∂θ

)]
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Due to the particular form of the metric tensor, this rewrites as:

∆surfL =
1

hεηh
ε
θ

[
∂

∂η

(
hεηh

ε
θ

(hεη)2

∂L

∂η

)
+

∂

∂θ

(
hεηh

ε
θ

(hεθ)
2

∂L

∂θ

)]
=

1

hεηh
ε
θ

[
∂

∂η

(
hεθ
hεη

∂L

∂η

)
+

∂

∂θ

(
hεη
hεθ

∂L

∂θ

)]
.

Since hεη = h0
η and hεθ = h0

θ, we recognize the Laplace-Beltrami operator of S0, i.e. ∆surf = ∆LB.

Integrating Equation (1.2) between ε = 0 and ε = H then yields:

∂L

∂t
= D∆LBL+

1

H
(−konRL+ koffC + qV ). (1.9)

Let L̃ :=
∫H

0
Ldε = LH. This yields (1.8).

Remark 1.1.3. In [45], the surface separating the perivitelline space from the follicle cells is

parametrized by a slightly larger prolate spheroid. Consequently, when averaging L between the

two surfaces, the authors obtain an operator that differs from the Laplace-Beltrami one. This oper-

ator does not conserve mass, whereas the Laplace-Beltrami operator does. For this reason, we use

Equation (1.8) instead of the equation given in [45].

For simplicity of notation, we will now denote by L the surface concentration of ligand introduced

as L̃.
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(a) Prolate spheroidal coordinates for the
Drosophila oocyte
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(b) Coordinates at the boundaries of the periv-
itelline space

Figure 1.3: Oocyte as a prolate spheroid

Negative feedback

In addition to the mechanisms described in sections 1.1.1 and 1.1.1, we consider several feedback

loops.
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Recycling of receptors As represented in Equations (1.1) and (1.20), a fraction αdeg of the

internalized receptors Ri goes to degradation, while the fraction αrec = 1−αdeg is recycled and goes

back to the membranes of the follicle cells to be reused. In [115], Sigismund et al. showed that there

exist two different pathways for the EGFR internalization: clathrin-regulated endocytosis (CME)

and non-clathrin-mediated endocytosis (NCE).

While 70% of the receptors internalized through the CME pathway are recycled, only 15% of

the receptors undergoing NCE are recycled [115]. Importantly, at low level of ligand, almost all

receptors undergo clathrin-mediated endocytosis. At high level of ligand, 60% of EGFR undergo

CME and 40% undergo NCE. We incorporate this data in our model, considering that the fractions

of degraded and recycled receptors depend on the level of ligand. At low ligand, αdeg = 0.3, and at

high ligand, αdeg = 0.55. At intermediate level of ligand, we interpolate linearly as follows:

αdeg(t, η, θ) = 0.3 + 0.25
L(t, η, θ)− Lmin(t)

Lmax(t)− Lmin(t)
, αrec(t, η, θ) = 1− αdeg(t, η, θ) (1.10)

where Lmin(t) and Lmax(t) are respectively the minimum and maximum values of L at time t:

Lmin(t) = min{L(t, η, θ) | (η, θ) ∈ [0, π]× [0, 2π]}, Lmax(t) = max{L(t, η, θ) | (η, θ) ∈ [0, π]× [0, 2π]}.
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Figure 1.4: Fractions of recycled and degraded receptors as functions of the level of ligand.

Action of inhibitors We consider the action of two inhibitors of the EGFR pathway, Kekkon1

(Kek1) and Sprouty (Sty), see Figure 1.1. While both inhibitors share similar spatial domains of

expression, the repressive mechanism of each inhibitor is different [92]. The transmembrane protein
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Kek1 directly interacts with the EGF receptor to inhibit ligand-receptor interactions [42]. On the

other hand, Sty acts directly on Ras/MAPK to inhibit dpERK activation [92, 114]. Each inhibitor

has to be considered independently based on its inhibitory mechanism.

Kek1 targets EGFR dimerization, thus reducing GRK uptake and leaving higher levels of free

ligand. To account for this effect, we modify the receptor-ligand binding rate via Michaelis-Menten

kinetics. Let IK denote the space and time-varying concentration of Kek1. Then we write:

k̃on(t, η, θ) =
kon

1 + γKekIK(t, η, θ)/S̄
(1.11)

The parameter γKek is the strength of Kek1’s inhibitory feedback, and the constant S̄ is defined by:

S̄ = V ks
kdkdeg

. The new binding rate k̃on is now a space and time dependent variable, affected by Kek1.

In the absence of Kek1, k̃on ≡ kon and we recover the constant binding rate previously defined (See

Table 1.1).

Sty acts on the intracellular components, affecting signal propagation (Fig. 1.1). We model its

effect by modifying the internalization rate of dpERK, also via Michaelis-Menten kinetics. Let IS

denote the concentration of Sty. We define:

k̃s(t, η, θ) =
ks

1 + γStyIS(t, η, θ)/S̄
(1.12)

where γSty is the strength of inhibitory feedback.

In turn, as targets of the pathway, the concentrations of Sty and Kek1 depend on the concentra-

tion of dpERK and are modeled by standard linear kinetics:


∂IK

∂t
= kKekS − kKek

d IK

∂IS

∂t
= kStyS − kStyd IS

(1.13)

where kSty, kStyd , kKek and kKek
d are the production rates and degradation rates of Sty and Kek1.

With this added mechanism, the complete dynamics form the following system of coupled PDE-
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ODEs: 

∂L

∂t
= D∆LBL− 1

H k̃onRL+ koffC + qV

∂C

∂t
= 1

H k̃onRL− (koff + kec)C + αreckrecCi

∂Ci

∂t
= kecC − αreckrecCi − αdegkdegCi

∂R

∂t
= − 1

H k̃onRL+ koffC − kerR+Qr

∂S

∂t
= k̃sCi − kdS

(1.14)

1.1.2 Growth of the egg chamber

In the model described by equations (1.14)-(1.11)-(1.12)-(1.13), the growth of the oocyte is not taken

into account. However, experimental measurements show that as oogenesis progresses from Stage 7

to Stage 10A, the anterior-posterior dimensions of the egg-chamber increase by a factor of 4 and the

dorso-ventral ones by a factor of 3 (see Table 1.2). This hints that growth may play a fundamental

role in shaping the distributions of ligand and signal. Using our new framework of Developmental

PDEs (see Chapter 2), we now include the evolution of the shape of the domain.

Let v ∈ Lip(R3,R3) be a Lipshitz vector field. The perivitelline space, approximated by a 2-

dimensional compact manifold embedded in R3 now considered to vary with time, is denoted by St.

Its evolution can be described as the push-forward of the initial manifold via the vector field v. Let

us denote by φtv the flow of v at time t. Then, denoting by S0 the manifold at time 0, St is given by:

St = φtv#S0. (1.15)

We rewrite equations (1.14) and (1.13) as follows:



∂L

∂t
= D∆LBL+∇ · (vL)− 1

H k̃onRL+ koffC + qV

∂C

∂t
= ∇ · (vC) + 1

H k̃onRL− (koff + kec)C + αreckrecCi

∂Ci

∂t
= ∇ · (vCi) + kecC − αreckrecCi − αdegkdegCi

∂R

∂t
= ∇ · (vR)− 1

H k̃onRL̄+ koffC − kerR+Qr

∂S

∂t
= ∇ · (vS) + k̃sCi − kdS

(1.16)
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and 
∂IK

∂t
= ∇ · (vIK) + kKekS − kKek

d IK

∂IS

∂t
= ∇ · (vIS) + kStyS − kStyd IS.

(1.17)

Notice that this is a modified version of the equation developed in Chapter 2. Indeed, the vector

field v does not depend on the measure diffusing on its surface. Furthermore, the quantities L, R, C,

Ci, S, IK and IS have time-varying mass, hence they cannot be considered as probability measures.

To give a rigorous mathematical definition of equations (1.16) and (1.17), it is necessary to extend

the framework of DPDEs. This is a future direction of this thesis.

1.1.3 Shift of the follicle cells

The follicle cells overlaying the perivitelline space are known to gradually shift from the anterior

to the posterior of the egg chamber (see Figure 1.1) [118]. Since the receptors, complexes, signal

and inhibitors are located inside or on the membrane of the follicle cells, they are affected by this

movement. This phenomenon can be transcribed mathematically by adding a transport term to the

equations of these variables. We introduce a time-dependent vector field tangent to the surface of

the prolate spheroid. Let wt ∈ Lip(St, TSt). The full set of equations including the phenomena of

growth and shift of the follicle cells rewrites:



∂L

∂t
= D∆LBL+∇ · (vL)− 1

H k̃onRL+ koffC + qV

∂C

∂t
= ∇ · (vC) +∇ · (wtC) + 1

H k̃onRL− (koff + kec)C + αreckrecCi

∂Ci

∂t
= ∇ · (vCi) +∇ · (wtCi) + kecC − αreckrecCi − αdeg + kdegCi

∂R

∂t
= ∇ · (vR) +∇ · (wtR)− 1

H k̃onRL̄+ koffC − kerR+Qr

∂S

∂t
= ∇ · (vS) +∇ · (wtS) + k̃sCi − kdS

(1.18)

and 
∂IK

∂t
= ∇ · (vIK) +∇ · (wtIK) + kKekS − kKek

d IK

∂IS

∂t
= ∇ · (vIS) +∇ · (wtIS) + kStyS − kStyd IS.

(1.19)
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1.1.4 Rescaling

We rescale Equations (1.18)-(1.19) by the quantities L0 = HV/kI, C0 = V/kec, R0 and S0 = V/kd.

These constants respectively represent the concentrations of ligand, complexes, receptors and signal

in the absence of spatial and temporal variation (i.e. setting all spatial and temporal derivatives to

0). The constant kI defined by kI = (keckonR)/(koff + kec) is the rate of internalization of ligand

at steady-state. Its fundamental role in determining the shape of the signal at steady-state was

discussed in [45].

Rescaling by L0, C0, R0 and S0 renders the variables dimensionless. It also ensures that the new

variables l = L/L0, c = C/C0, ci = Ci/C0, r = R/R0, s = S/S0, iK = IK/S0 and iS = IS/S0 are of

the order of 1, which allows greater numerical precision. We rewrite the system of equations (1.14)

in terms of the dimensionless distributions l, c, ci, r and s:



∂l

∂t
= D∆LBl +∇ · (vl)− 1

H k̃onR0rl + koff
C0

L0
c+ q VL0

∂c

∂t
= ∇ · (vc) +∇ · (wtc) + k̃on

R0L0

HC0
rl − (koff + kec)c+ αreckrecci

∂ci

∂t
= ∇ · (vci) +∇ · (wtci) + kecc− αreckrecci − αdegkdegci

∂r

∂t
= ∇ · (vr) +∇ · (wtr)− 1

H k̃onL0rl + koff
C0

R0
c− kerr + Qr

R0

∂s

∂t
= ∇ · (vs) +∇ · (wts) + k̃s

C0

S0
ci − kds.

(1.20)

and 
∂iK

∂t
= ∇ · (viK) +∇ · (wtiK) + kKeks− kKek

d iK

∂iS

∂t
= ∇ · (viS) +∇ · (wtiS) + kStys− kStyd iS.

(1.21)

1.1.5 Calibration of the model

The model parameters are carefully chosen taking values from the literature. The following table

summarizes the values that we use and their justification:

Source of ligand Gurken RNA is secreted from the nurse cells on the anterior of the oocyte and

it gets localized around the oocyte nucleus. The source of ligand can be approximated from images

of Gurken RNA in Drosophila melanogaster. We model it as a triangular shape with dimensions
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Parameter Definition Typical Value or Range Reference
H Perivitelline space thickness 0.5 µm Measurements
D Diffusion rate 3, 600− 360, 000 µm2 hr−1 [102]

36− 360, 000 µm2 hr−1 [22]
kec Complex internalization rate 6 hr−1 [102]
kon Receptor-ligand association rate 1022 − 1025 mol−1µm3hr−1 [102]
koff Receptor-ligand dissociation rate 6 hr−1 [102]

R0
Number of receptors per surface
area in the absence of ligand 6.7× 1022mol µm−2 [102]

ker Free receptor internalization rate 0.6− 6 hr−1 [102]
αrec Fraction of recycled receptors 0.45− 0.7 [115]
αdeg Fraction of degraded receptors 0.3− 0.55 [115]
krec Receptor recycling rate 2.3 hr−1 [115]
kdeg Receptor degradation rate 2.3 hr−1 [115]
kd dpERK degradation rate 2.5 hr−1 [97]

Table 1.1: Justification of the chosen values of parameters.

Stage S7 S8(E) S8(L) S9(E) S9(L) S10A
Time (hr) 3 7.5 10.5 13.5 16.5 19.5
LAP (µm) 71 99 132 190 246 304
L0 (µm) - 19 31 63 111 152
LFC (µm) 71 99 132 127 131 152
Lsource/L0 1 - 0.4 0.4 0.4 0.4

Table 1.2: Measured dimensions of the egg chamber. See Figure 1.5a for schematic of measurements.

based on experimental measurements at each stage (see Table 1.2 and Figure 1.5a).

Time-varying dimensions The evolving dimensions of the egg chamber such as anterior-posterior

length, dorso-ventral length, length of follicle cells, length of the oocyte and dimensions of the source

were measured at different stages of oogenesis (see Figure 1.5a and Table 1.2). Then they were

interpolated so as to get a continuous description of the dimensions over time (see Figure 1.5b).

These measurements allowed us to calibrate the growth vector field v and the cell shift vector field

wt.

1.2 Numerics

The complete model that we are studying is composed of several components that each pose nu-

merical challenges in specific ways. Solving Equation (1.20) numerically requires finding a suitable

spatial discretization of the domain, in this case a two-dimensional prolate spheroid. The most

natural parametrization of such a symmetric surface is done with the prolate spheroidal coordinates.

However, this system of coordinates is degenerate at the two poles of the spheroid. As a conse-
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(a) Schematic of the measurements of the egg
chamber. Measurements were done at each stage
(see Table 1.2).
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(b) Interpolation of the measurements.

Figure 1.5: Measurements of the egg chamber’s dimensions

quence, the corresponding mesh constructed with prolate spheroidal coordinates is ill-suited for the

numerical approximation of diffusion. As an alternative to prolate spheroidal coordinates, we used

cubed spheroidal coordinates, adapted from the cubed sphere coordinates developped in [47, 83].

Before exploring in detail the numerics of each component of the model, we first describe these two

possible spatial discretizations.

1.2.1 Spheroidal and cubed spheroidal parametrizations

Let (η, θ) ∈ [0, π] × [0, 2π]. Let (LDV, LAP) ∈ (R+)2 denote the half lengths of the small and big

axes respectively. Let (a0, ξ0) ∈ (R+)2 such that

LDV = a0 sinh ξ0 and LAP = a0 cosh ξ0,

i.e.

tanh ξ0 =
LDV

LAP
and a0 =

√
L2
AP − L2

DV.

In what follows, we use both the parameters (LDV, LAP), coming from the notations of the biological

application, and the parameters (a0, ξ0).

A prolate spheroid S obtained by rotating an ellipse around its big axis can be described in R3
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by the parametrization (η, θ) 7→ (x, y, z) with:


x(η, θ) = LDV sin η cos θ = a0 sinh ξ0 sin η cos θ

y(η, θ) = LDV sin η sin θ = a0 sinh ξ0 sin η sin θ

z(η, θ) = LAP cos η = a0 cosh ξ0 cos η,

(1.22)

where LAP and LDV denote the half lengths of the big and small axes, respectively. This parametriza-

tion is not a diffeomorphism from [0, π] × [0, 2π] to S. Indeed, notice that for all θ ∈ [0, 2π],

(x, y, z)(0, θ) = (0, 0, LAP) and (x, y, z)(π, θ) = (0, 0,−LAP).

Spheroidal parametrization

We construct a prolate spheroidal mesh as follows. Let (Nη, Nθ) ∈ N2. We define ∆η = π/Nη and

∆θ = π/Nθ. For all i ∈ {1, . . . , Nη} , for all j ∈ {1, . . . , Nθ}, let

ηi = i∆η, and θj = j∆θ

and we define 
xij = LDV sin ηi cos θj

yij = LDV sin ηi sin θj

zij = LAP cos ηi.

Due to the non-diffeomorphic coordinates, this mesh contains two singularities, or overlapping points,

at (0, 0, LAP) and (0, 0,−LAP). As a consequence, the discretization points close to the poles are

much closer than those towards the equator z = 0. This characteristic implies that the mesh has very

irregular cell sizes, which makes it ill-suited for the finite-differences approximation of the diffusion

operator. For this reason, we present another system of coordinates that provides a more regular

discretization of the domain.

Cubed spheroidal parametrization

A way to construct a more regular discretization of the spheroid is to divide it into several subdo-

mains, each endowed with their own coordinate system. We developed the cubed spheroid coordinate

system by extending the “cubed sphere” approach introduced in [47, 83] in the context of the dis-

continuous Galerkin numerical scheme.
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In order to extend the cubed sphere parametrization, we define a homemorphism between each

point of the prolate spheroid S of small axis length LDV and big axis length LAP parametrized

by (1.22), and the sphere SLAP of radius LAP given by the equation x2 + y2 + z2 = L2
AP. Let

Φs ∈ C(S, SLAP) be defined by:

Φs : (xs, ys, zs) 7→ (x, y, z) = (xs tanh ξ0, ys tanh ξ0, z) = (
LDV

LAP
xs,

LDV

LAP
ys, z). (1.23)

The homeomorphism (Φs)
−1 transforms each point P of the prolate spheroid S to a point Ps of the

sphere SLAP by projection along the direction
−−→
PzP , where Pz is has coordinates (0, 0, z) (see Figure

1.6a).

The division of the sphere into “cubed” subdomains was introduced in [83]. We recall it here.

Let Ca be the cube of radius 2a inscribed in SLAP , oriented such that the 3D Cartesian axes are

orthogonal to its faces (see Figure 1.6). By definition, a = 1√
3
LAP. We define the mapping Φc :

Ps ∈ SLAP 7→ Pc ∈ Ca by projection along the direction
−−→
OPs. Let (xc, yc) be local coordinates

on each face of Ca. Then the point Ps can be parametrized by the coordinates (xc, yc) and the

parametrization depends on the face of Ca. Let F0 be the face of Ca belonging to the plane z = a.

Let (xc, yc) ∈ [−a, a] × [−a, a] be the local coordinates on F0 (see Figure 1.6). Geometrically, we

have the following relation between (xc, yc) and (xs, ys, zs):


xc = axs

zs

yc = ays
zs
.

Then Φ0
c : F0 → SLAP is defined by:

Φ0
c : (xc, yc) 7→ (xs, ys, zs) =

(
xcLAP√

a2 + x2
c + y2

c

,
ycLAP√

a2 + x2
c + y2

c

,
aLAP√

a2 + x2
c + y2

c

)
. (1.24)

Similar parametrizations can be given by defining local coordinate systems on the other faces of the

cube.

Composing Φc and Φs gives a parametrization of the prolate spheroid S that we name cubed

spheroid parametrization. The respective images of the faces Fi of Ca by Φs ◦Φic (for i ∈ {1, . . . , 6})

divide the spheroid into 6 domains Si. For instance, the local coordinates on F0 define a subdomain
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of S that we denote by D0 and that can be parametrized combining (1.23) and (1.24):

(x, y, z) = Φs ◦ Φ0
c(xc, yc) = (

xcLDV√
a2 + x2

c + y2
c

,
ycLDV√

a2 + x2
c + y2

c

,
aLAP√

a2 + x2
c + y2

c

). (1.25)

In practice, we restrict ourselves to a quarter prolate spheroid (see Figure 1.6a). In this case, only

four faces of the cube are needed to parametrize it, which divides the spheroid into four subdomains,

denoted by D0, D1, D2 and D3. The coordinates on the total prolate spheroid can be obtained by

symmetry.

(a) Image Ps(xs, ys, z) ∈ SLAP of the point
P (x, y, z) ∈ S by the homeomorphism (Φs)

−1.

(b) Image Pc(xc, yc, zc) of the point
Ps(xs, ys, zs) ∈ SLAP by the homeomorphism
(Φ0

c)
−1.

Figure 1.6: Construction of the image Pc of P ∈ S by the homeomorphism (Φ0
c)
−1 ◦ (Φs)

−1.

As with the prolate spheroidal parametrization, we create a cubed spheroidal mesh by discretizing

the coordinates (xc, yc) in each subdomain. As an example, we focus on the subdomain D0. Let

(N0
x , N

0
y ) ∈ N3. We define ∆x0 = 2a/Nx and ∆y0 = a/Ny. For all i ∈ {1, . . . , N0

x} , for all

j ∈ {1, . . . , N0
y }, let

xci = i∆x0, and ycj = j∆y0

and in D0, we define 

xij = xciLDV√
a2+xc2i+yc

2
j

,

yij =
ycjLDV√
a2+xc2i+yc

2
j

,

zij = aLAP√
a2+xc2i+yc

2
j

.

In practice, we create a mesh over a quarter prolate spheroid and obtain the full spheroid by

reflecting the mesh along the planes (X0Z) and (X0Y ) (see figure 1.7a).
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(a) Division of the prolate spheroid into four sub-
domains. Here, the discretization is done with
nx = 40, ny = 20, ny1 = 20.
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(b) Full cubed spheroidal mesh obtained by re-
flecting the quarter spheroid along the planes
(X0Z) and (X0Y ).

Figure 1.7: Cubed spheroidal mesh.

1.2.2 Comparison of the two parametrizations

Each parametrization has its own advantages and inconveniences. We conducted a first analysis by

computing the surface area of the prolate spheroid with the two discretizations and comparing the

results to the known theoretical surface area.

Results show that the prolate spheroidal mesh is more precise by a full order of magnitude,

irrespective of the total size of the mesh (i.e. total number of discretization points).
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Figure 1.8: Comparison of the performance of the spheoridal mesh and the cubed spheroidal mesh in
the computation of the total surface area of the prolate spheroid. Numbers in parentheses indicate
the number of discretization points (Nθ, Nη).
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1.2.3 Numerical approximation of the diffusion process

We compare the two parametrizations in the computation of the diffusion term. We chose to use

finite differences method to approximate the diffusion process. We first explain the advantage of

using the cubed spheroidal coordinates over the spheroidal ones.

Spheroidal coordinates

We recall that the CFL condition of the explicit scheme for diffusion on a rectangular domain of

R2, with time-step ∆t and spatial steps ∆x and ∆y is classically given by D(D∆t
∆x2 + D∆t

∆y2 ) ≤ 1
2 .

Heuristically, this hints why the grid obtained with the spheroidal coordinates is ill-suited for the

discretization of diffusion: it implies very small distance steps near the poles, thus requiring a very

small time step ∆t to be stable.

More rigorously, let us compare the CFL condition near the pole (η = 0) and near the equator

(η = π/2).

Let fni,j := f(n∆t, ηi, θj). From equation (1.7), we can compute the discrete Laplace-Beltrami

operator using centered finite differences:

∆LBf
n
i,j ≈

1

(h0
η)i,j(h0

θ)i,j

1

2∆η

(
(h0
θ)i+1,j

(h0
η)i+1,j

fni+2,j − fni,j
2∆η

− (h0
θ)i−1,j

(h0
η)i−1,j

fni,j − fni−2,j

2∆η

)
+

1

(h0
θ)

2
i,j

fni,j+2 − 2fni,j + fni,j−2

4∆θ2

(1.26)

with 
(h0
η)i,j = a

√
sinh2 ξ0 + sin2 ηi

(h0
θ)i,j = a sinh ξ0 sin ηi.

Notice that when ηi → 0, (h0
η)i,j ≈ a sinh ξ0 and (h0

θ)i,j ≈ a sinh ξ0ηi. Hence, near the pole η = 0,

∆LBf
n
i,j ≈

1

a2 sinh2 ξ0ηi

1

2∆η

(
ηi+1

fni+2,j − fni,j
2∆η

− ηi−1

fni,j − fni−2,j

2∆η

)
+
fni,j+2 − 2fni,j + fni,j−2

4(a sinh ξ0ηi)2∆θ2

≈ 1

(a sinh ξ0 i∆η)2

fni,j+2 − 2fni,j + fni,j−2

4∆θ2

(1.27)

as the second term clearly dominates the first one.
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Hence solving the heat equation numerically yields:

fn+1
i,j ≈ fni,j+∆t∆LBf

n
i,j ≈ fni,j+

∆t

L2
DV i24∆η2∆θ2

(fni,j+2−2fni,j+f
n
i,j−2) = (1−2δ)fni,j+δf

n
i,j+2+δfni,j−2,

where δ := ∆t
L2

DV i24∆η2∆θ2
. This means that fn+1

i,j is a convex combination of fni,j+2, fni,j and fni,j−2

if and only if 2δ ≤ 1, i.e. if and only if:

∆t

L2
DV i24∆η2∆θ2

≤ 1

2
. (1.28)

This condition ensures that the maximum principle is satisfied, implying stability of the scheme.

Now, near the equator, i.e. when ηi → π/2, notice that (h0
η)i,j ≈ a

√
sinh2 ξ0 + 1 and (h0

θ)i,j ≈

a sinh ξ0. This implies:

∆LBf
n
i,j ≈

1

(h0
η)2
i,j

1

2∆η

(
fni+2,j − fni,j

2∆η
−
fni,j − fni−1,j

2∆η

)
+

1

(h0
θ)

2
i,j

fni,j+1 − 2fni,j + fni,j−1

4∆θ2

≈ 1

a2(sinh2 ξ0 + 1)

fni+2,j − 2fni,j + fni−2,j

4∆η2
+

1

a2 sinh2 ξ0

fni,j+1 − 2fni,j + fni,j−1

4∆θ2
.

Let δ1 := ∆t
4a2(sinh2 ξ0+1)∆η2

and δ2 := ∆t
4a2 sinh2 ξ0∆θ2

. Solving the heat equation numerically yields:

fn+1
i,j ≈ fni,j + ∆t∆LBf

n
i,j ≈ fni,j + δ1(fni+2,j − 2fni,j + fni−2,j) + δ2(fni,j+2 − 2fni,j + fni,j−2)

≈ (1− 2δ1 − 2δ2)fni,j + δ1f
n
i+2,j + δ1f

n
i−2,j + δ2f

n
i,j+2 + δ2f

n
i,j−2.

So fn+1
i,j is a convex combination of fni,j , fni+2,j , fni−2,j , fni,j+2 and fni,j−2 if and only if 2δ1 + 2δ2 ≤ 1,

i.e. if and only if:
∆t

4a2(sinh2 ξ0 + 1)∆η2
+

∆t

4a2 sinh2 ξ0∆θ2
≤ 1

2
. (1.29)

The CFL condition near the equator η = π/2 (1.29) is thus much less stringent than the one at

the pole η = 0 (1.28). This shows that such an irregular mesh is not adapted to solving the heat

equation on a spheroidal shape.
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Cubed spheroidal coordinates

Using the cubed spheroidal parametrization, one can compute the metric tensor of S in each sub-

domain. Let r = (x, y, z). Then in D0, the metric tensor G0 is given by:

G0 =

g11
0 g12

0

g21
0 g22

0

 ,

with 
g11

0 := ‖∂xcr‖2 = 1
(a2+x2

c+y
2
c)3 (L2

DV(a2 + y2
c )2 + L2

DVx
2
cy

2
c + L2

APa
2x2
c)

g22
0 := ‖∂ycr‖2 = 1

(a2+x2
c+y

2
c)3 (L2

DVx
2
cy

2
c + L2

DV(a2 + x2
c)

2 + L2
APa

2y2
c )

g12
0 = g21

0 := (∂ycr) · (∂xcr) = 1
(a2+x2

c+y
2
c)3 (−L2

DV(2a2 + x2
c + y2

c ) + L2
APa

2x2
cy

2
c ).

Notice that the cubed spheroidal coordinates are not orthogonal, hence the metric tensor is not

diagonal, unlike the metric tensor GP calculated using the prolate spheroidal coordinates (1.5). Its

expression is thus more complicated, but the coordinates do not have any singularity.

The expression of the metric tensor allows to compute the Laplace-Beltrami operator in the

cubed spheroid coordinates in each domain. For example, in D0,

∆LBf =
1√
|g0|

2∑
i=1

∂i(

2∑
j=1

√
|g0|gij0 ∂jf). (1.30)

Using cubed spheroidal coordinates requires subdividing the prolate spheroid into several subdo-

mains, and treating the interfaces between domains with appropriate boundary conditions. Notice

that as stated in (1.18), due to to the symmetry of the source function with respect to the (X0Z)

plane, the whole system is symmetric with respect to the (X0Z) plane. It is then sufficient to solve

numerically system (1.18) on a half prolate spheroid, and to recover the solution on the full domain

by symmetry with respect to (X0Z). The boundaries between domains (see Figure 1.7a) are treated

with Dirichlet boundary conditions. The boundaries of the quarter spheroid inscribed in the (X0Z)

plane are treated with Neumann boundary conditions, for reasons of symmetry (see Figure 1.9).
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Figure 1.9: Interface conditions and boundary conditions for each subdomain of the quarter prolate
spheroid. Blue: Dirichlet conditions. Red: Neumann boundary conditions.

1.3 Numerical results and experimental validation

Figure 1.10 shows the concentration of dpERK, the output of the model, at various stages of de-

velopment. We tested our model by comparing its output (the spatio-temporal concentration of

dpERK) with experimental measurements of the signal’s intensity, with two different perturbations.

Figure 1.11 shows the concentration of dpERK along the AP axis at stage 10A (t = 21h) in three

different simulations. The wild-type simulation corresponds to the parameters defined in Table 1.1.

The Sty RNAi perturbation corresponds to a modified γSty for all t > 6, to cancel the effect of Sty

on the dynamics after Stage 7. The EGFR RNAi perturbation corresponds to a reduced level of

available receptors at the surface of the follicle cells. Several simulations were run to estimate the

severity of the receptors reduction in the EGFR RNAi perturbation. Indeed, the exact proportion

by which they are depleted is unknown. However, we are able to measure the resulting intensity of

the signal, and working backwards we are able to estimate the amount of available receptors.
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(a) Stage 7 (t = 3h) (b) Stage 8 (t = 9h)

(c) Stage 9 (t = 15h) (d) Stage 10A (t = 21h)

Figure 1.10: Numerical results: concentration of dpERK (in mol/µm2) at four different times.

(a) dpERK concentration at Stage 10A along the
anterior-posterior axis

(b) Experimental measurements of dpERK con-
centration (arbitrary units)

Figure 1.11: Comparison of simulation results to experimental measurements of dpERK intensity.
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Chapter 2

Developmental Partial Differential

Equations

Our work in developing a model for the spatio-temporal evolution of the Gurken morphogen (the

initiator of the EGFR signaling pathway) in Drosophila melanogaster (see Chapter 1) has led us to

identify the need for a suitable mathematical framework for reaction-diffusion equations in developing

organisms.

Modeling the growth of living organism attracted the interest of many investigators both in the

field of Developmental Biology and in the field of Applied Mathematics. Developmental biologists

have shown that development is primarily induced by morphogens, which act on the organism

as signals by triggering signaling pathways and provoking a response resulting in cell growth or

differentiation [133]. Several modeling approaches have been explored from the mathematical point

of view. From a microscopic standpoint, tissues are considered as a collection of cells, and discrete

models such as cellular automata are used. We instead adopt a macroscopic standpoint, where the

relevant quantity is the density of the signal on a manifold.

As seen in Chapter 1, Gurken diffuses in a thin space, called perivitelline space, which can be

modeled by an evolving surface. This leads naturally to model the growing organism by coupling

a growing surface with a signal diffusing on it, see [100]. Because of the biological motivation, this

framework was called Developmental Partial Differential Equations.

We consider a general model, where the boundary of the organism is described by a Riemannian

manifold, that evolves with respect to time due to the growth induced by the signal on it. In turn

the evolution (for instance, heat diffusion) of the signal on the manifold is affected by the shape of

the manifold. Indeed, intrinsic heat diffusion is described by the heat equation with the Laplace-

Beltrami operator. Our aim is to investigate the coupling between growth and diffusion. There is

a wide literature of studies for PDEs on manifolds, see for instance [113, 120], or Turing Patterns

on evolving manifolds, see for instance [5, 76]. However the coupling of PDE and time-evolving
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manifold was newly introduced in [100].

As a first step to understanding what shapes of the manifold can be attained from an initial

configuration, we explore the non-commutativity of the growth (manifold change in time) and the

diffusion operator (on the manifold itself). A newly defined concept of Lie bracket between the diffu-

sion (2nd order operator) and growth (1st order operator) is able to capture such non-commutativity

and thus provide new shapes towards which the manifold may evolve. As in classical geometric con-

trol theory [1, 13, 117], the concept of Lie bracket may indeed enclose all the needed information

to capture the controlled dynamics. Moreover, such bracket can be understood as a new available

direction for the growth of the organism.

We begin by introducing the general model, or Developmental Partial Differential Equation

(DPDE) describing the coupling of growth and diffusion on a Riemannian manifold. We then prove

existence and uniqueness of the solution to the DPDE by introducing a numerical scheme that

discretizes time and solves diffusion and growth independently on each time interval. We prove that

the limit of the scheme is the solution to the DPDE. We then use the scheme to define a new kind of

Lie bracket between the diffusion and the growth operators. By computing the bracket explicitly, we

show that it is not zero. Numerical simulations confirm the analytical computation of the bracket.

Lastly, we study the control of a simplified problem: leveraging on natural symmetries of the egg

chamber we choose asM a one-dimensional symmetric manifold embedded in R2 and initially equal

to S1. Our main aim is to show controllability in terms of the possible shapes reachable from S1

regulating one or more sources. We show how to adapt the approach of Laroche, Martin and Rouchon

[69], proving flatness of the heat equation, to our setting and then provide numerical studies.

2.1 The heat equation on time-varying manifolds

Let Pc(Rd) denote the space of probability measures in Rd with compact support. We endow this

space of measures with the weak topology of measures. Then, for example, we write limn→∞ µn = µ∗

to denote µn ⇀ µ∗ when n→∞. Let P(Rd) denote the space of probability measures on Rd. Lastly,

let P(M) denote the space of probability measures on M, endowed with the Wasserstein distance

Wp, whose definition is recalled below (see Definition 2.1.1).

2.1.1 The heat and transport evolutions

Let Mt be a time-evolving compact manifold embedded in Rd, endowed with the Riemannian

structure induced by the embedding. Let µt ∈ P(Mt) be a probability measure on Mt. Remark
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that sinceMt is embedded in Rd, µt can also be considered as a probability measure with compact

support in Rd, i.e. µt ∈ Pc(Rd). Both points of view will be useful. The manifold Mt evolves

according to a vector field depending on the measure itself, v[·] : Pc(Rd) → Lip(Rd,Rd) ∩ L∞(Rd),

with the following assumptions on v:

• v[µ] is uniformly bounded, i.e. there exists M > 0 such that for all µ ∈ Pc(Rd), for all x ∈ Rd,

|v[µ](x)| ≤M

• v[µ] is uniformly Lipschitz, i.e. there exists L > 0 such that for all µ ∈ Pc(Rd), for all x, y ∈ Rd,

|v[µ](x)− v[µ](y)| ≤ L|x− y|

• v is a Lipshitz function, i.e. there exists K such that for all µ, ν ∈ Pc(Rd), ‖v[µ]− v[ν]‖C0 ≤

KW2(µ, ν)

In the third assumption, W2(µ, ν) denotes the 2-Wasserstein distance between µ and ν. We

recall the definition of the Wasserstein distance (see [129]). For every probability measure µ and

measurable map φ, the push-forward φ#µ is defined by φ#µ(A) = µ(φ−1(A)).

Definition 2.1.1. Let p ≥ 1. Given two probability measures µ, ν ∈ P(Rd), the p-Wasserstein

distance between µ and ν is given by:

Wp(µ, ν) := min
π∈Π(µ,ν)

(∫
Rd×Rd

|x− y|pdπ(x, y)

)1/p

where Π(µ, ν) is the set of transference plans from µ to ν, i.e. of the probability measures on Rd×Rd

with marginals µ, ν, respectively. In other words Px#π = µ and Py#π = ν (where Px, respectively

Py denote the projection on the first, respectively second, component of (x, y).)

The transference plans in Π(µ, ν) can be seen as methods to transport µ to ν and the term∫
Rd×Rd |x − y|pdπ(x, y) can be interpreted as a cost (as p-power of the distance) to move the mass

of µ onto the mass of ν via the plan π. Hence, the Wasserstein distance is the minimal cost to move

one mass over the other. For a complete introduction to the topic of Wasserstein distances we refer

the reader to [129].

For each time t ∈ [0, T ], the manifoldMt is endowed with the following elements:

• the volume form dmt, given by the Riemannian structure;

• the intrinsic Laplacian ∆t (also called the Laplace-Beltrami operator), that is intrinsically

defined by the Riemannian structure;
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• the heat kernel pτMt
(x, y) that provides the solution of the heat equation ∂τµ = ∆tµ with

initial data µ(0, x) by convolution as follows:

µ(τ, x) =

∫
Mt

pτMt
(x, y) dµ(0, y).

We also denote the solution of the heat equation onMt by the following semigroup notation:

µ(τ) = eτ∆tµ(0).

Remark that all these elements are defined for a fixed t, hence for a fixed manifoldMt.

The measure µt is affected by the evolution of the manifold via the vector field v[µt] and by the

diffusion via the Laplace-Beltrami operator ∆t. The combination of these two phenomena give the

evolution of µt through the following Developmental Partial Differential Equation:

∂tµt +∇ · (v[µt]µt) = ∆tµt, (2.1)

where the manifoldMt is the support of µt at each time t > 0. Since µt are measures in Rd, such

equation needs to be interpreted in the weak sense, i.e. for all f ∈ C∞(Rd) it holds

∂t

∫
Rd
fdµt −

∫
Rd

(∇f · v[µt])dµt =

∫
Mt

∆tf dµt. (2.2)

We prove existence and uniqueness of a solution to Equation (2.1).

Theorem 2.1.1. Let µ0 ∈ Pc(Rd) be a probability measure with compact support in Rd. Let M0

denote the support of µ0, and suppose thatM0 is a compact Riemannian manifold embedded in Rd.

Let v[·] : Pc(Rd)→ Lip(Rd,Rd) ∩ L∞(Rd), satisfy the following assumptions:

• there exists M > 0 such that for all µ ∈ Pc(Rd), for all x ∈ Rd, |v[µ](x)| ≤M

• there exists L > 0 such that for all µ ∈ Pc(Rd), for all x, y ∈ Rd, |v[µ](x)− v[µ](y)| ≤ L|x− y|

• there exists K such that for all µ, ν ∈ Pc(Rd), ‖v[µ]− v[ν]‖C0 ≤ KW2(µ, ν).

Then there exists a unique solution to the developmental partial differential equation (2.1):

∂tµt +∇ · (v[µt]µt) = ∆tµt,

with initial data µ0, where ∆t denotes the Laplace-Beltrami operator ofMt, the support of µt.
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We prove existence of a solution to (2.1) as the limit of a numerical scheme performing alternating

steps of diffusion and transport for fixed time intervals. The idea of defining the solution as the limit

of a discrete scheme was introduced in [95, 96] for the transport equation:

∂µt +∇ · (v[µt]µt) = 0. (2.3)

The main difference between the transport equation 2.3 and our developmental PDE (2.1) is the

diffusion term ∆tµt. The idea of the proof lies in decoupling the diffusion and transport phenomena.

More specifically, let T ∈ R be the final time and let µ0 ∈ Pc(Rd) denote an initial compactly

supported measure. For a given discretization parameter n ∈ N, we define a sequence of curves (µns )

via the following scheme:

Scheme S

Define τn = tn := 2−nT . Let µn(0) := µ0, and Mn
0 := M0. On the nodes ltn (with

l ∈ {0, ..., 2n − 1}) we define µn((l + 1)tn) from µn(ltn) as follows:

1. Define µ̃n(ltn) := e∆n
ltn

τn(µn(ltn)), i.e the solution of the heat equation on Mn
ltn

with initial data µn(ltn) at time τn.

2. Let φn,lt be the flow of v[µ̃n(ltn)] and let µn((l + 1)tn) := φn,ltn #µ̃n(ltn), i.e. the

push-forward of µ̃n(ltn) via the flow φn,ltn . We define: Mn
(l+1)tn

:= φn,ltn #Mn
ltn

.

In between nodes, for s ∈ [0, tn/2], we define µn(ltn + t) := e∆n
ltn

2s(µn(ltn)), a measure on

Mn
ltn

. We define µn((l+ 1
2 )tn+s) = φn,l2s #(e∆n

ltn
tn(µn(ltn))), a measure onMn

(l+ 1
2 )tn+s

:=

φn,l2s #Mn
ltn

.

In the definition of S, we distinguish tn and τn for better description and approximation of the two

phenomena of deformation and heat diffusion. This is only for clarity and in reality we will study

the limit of the scheme when n→∞ for tn = τn.

We first give properties regarding the commutativity of the push-forward and heat operators.

Indeed in order to prove convergence of the scheme S we need an estimate of the error made when

performing a step of diffusion followed by transport compared to performing a step of transport

followed by diffusion. Lemma 2.1.2 provide this estimate for a given vector field v independant of µ.

Lemma 2.1.1. Let µ0 ∈ P(M) and t > 0. Let v : Rd → Rd be a vector field. Let δx denote the

Dirac measure at x ∈ M. Let pt(·, ·) : M×M 7→ P(M×M) denote the heat kernel on M and
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p̃t(·, ·) : M̃ × M̃ 7→ P(M̃ × M̃) the heat kernel on the pushforward M̃ of M via φtv. There exists

x ∈M such that

W2(φtv#(pt ∗ µ0), p̃t ∗ (φtv#µ0)) ≤ W2(φtv#(pt ∗ δx), p̃t ∗ (φtv#δx)).

Proof. Let µ0 ∈ P(M). Let F : µ 7→ W2(φtv#(pt ∗ µ), p̃t ∗ (φtv#µ)). F is a continuous function

from P(M) to R. We construct a sequence (µ̄k)k∈N such that µ̄0 = µ0, and for all k ∈ N, F (µ̄k) ≤

F (µ̄k+1) and diam(supp(µ̄k)) −−−−→
k→∞

0. Let k ∈ N and εk = 1
2k

diam(supp(µ0)). By compactness

of supp(µ̄k), there exists a finite set {xki }i∈{1,...,Nk} such that supp(µ̄k) ⊂ ∪Nki=1B(xki , εk), where we

denote by B(x, r) the geodesic ball centered at x ∈ M and of radius r. Define νk1 = µ̄k|B(xk1 ,εk)

and for all i ∈ {1, ..., Nk}, νki = µ̄k|B(xki ,εk)
−∑i−1

j=1 ν
k
j |B(xki ,εk)

. Let ν̄ki =
νki
|νki |

and λki = |νki |. Then

µ̄k =
∑Nk
i=1 λ

k
i ν̄
k
i , and for all i ∈ {1, ..., Nk}, λki ∈ [0, 1] and

∑Nk
i=1 λ

k
i = 1.

F (µ̄k) =W2(φtv#(pt ∗ µ̄k), p̃t ∗ (φtv#µ̄
k)) =W2(φtv#(pt ∗

Nk∑
i=1

λki ν̄
k
i ), p̃t ∗ (φtv#

Nk∑
i=1

λki ν̄
k
i )))

≤
Nk∑
i=1

λkiW2(φtv#(pt ∗ ν̄ki ), p̃t ∗ (φtv#ν̄
k
i ))) ≤ max

i∈{1,...,Nk}
W2(φtv#(pt ∗ ν̄ki ), p̃t ∗ (φtv#ν̄

k
i ))).

Let m := arg maxi∈{1,...,Nk}W2(φtv#(pt ∗ ν̄ki ), p̃t ∗ (φtv#ν̄
k
i ))) and define µ̄k+1 := ν̄km. Then F (µ̄k)) ≤

F (µ̄k+1) and diam(supp(µ̄k+1)) = εk = 1
2k

diam(supp(µ0)). The support of the constructed sequence

(µ̄k) tends to a single point, while for all k ∈ N, |µ̄k| = 1. Hence there exists x ∈ M such that

limk→∞ µ̄k = δx. By continuity of F , F (µ0) ≤ F (µ̄1) ≤ F (µ̄2)... ≤ F (δx).

We now use Lemma 2.1.1 to bound from above the Wasserstein distance between the transport

of the convolution of a measure with the heat kernel and the convolution of its transport with the

heat kernel.

Lemma 2.1.2. Let µ0 ∈ P(M) and t > 0. Let v ∈ Lip(Rd,Rd) be a vector field. As previously, let

pt(·, ·) : M×M 7→ P(M×M) denote the heat kernel on M and p̃t(·, ·) : M̃ × M̃ 7→ P(M̃ × M̃)

the heat kernel on the pushforward M̃ of M via φtv. Then there exists a constant β such that for t

small enough,

W2(φtv#(pt ∗ µ0), p̃t ∗ (φtv#µ0)) ≤ βt
√
t.

Remark 2.1.1. As a first approach, we give a proof of Lemma 2.1.2 in the simplified case: M = Rn.

The generalization to any Riemannian manifold will require additional assumptions on the curvature

ofM.
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Proof. From Lemma 2.1.1, it is sufficient to prove that for all x ∈M,

W2(φtv#(pt ∗ δx), p̃t ∗ (φtv#δx)) ≤ βt
√
t.

Let x ∈ M . We first suppose that M = M̃ = Rn. Let y ∈ M. The vector field evaluated at y

satisfies:

v(y) = v(x) + Jv(x) · (y − x) +O(‖y − x‖2)

where Jv(x) denotes the Jacobian of v at x. Let x̃ = φtv(x) and ỹ = φtv(y). We have:

ỹ = φtv(y) = y + tv(y) +O(t2) = y + t[v(x) + Jv(x) · (y − x) +O(‖y − x‖2)] +O(t2).

Hence, denoting by I the identity matrix, ỹ − x̃ = (I + tJv(x)) · (y − x) + t O(‖y − x‖2) +O(t2), so

y − x = (I + tJv(x))−1(ỹ − x̃+ t O(‖ỹ − x̃‖2) +O(t2)), which can be rewritten as:

y − x = (I − tJv(x))(ỹ − x̃) +O(t)O(‖ỹ − x̃‖2) +O(t2).

Let µ1 := φtv#(pt ∗ δx) and µ2 := p̃t ∗ (φtv#δx). By definition of the push-forward and of the heat

kernel,

µ2 = p̃t ∗ δφtv(x) = p̃t(x̃, ·)

i.e.

µ2(ỹ) =
1

(4πt)n/2
exp

(
−‖ỹ − x̃‖

2

4t

)
.

On the other hand, ∀A ⊂ M̃,

µ1(A) =

∫
A

φtv#(pt ∗ δx) = (pt ∗ δx)(φ−tv (A)) =

∫
φ−tv (A)

pt(x, y)dy

=

∫
φ−tv (A)

1

(4πt)n/2
exp

(
−‖y − x‖

2

4t

)
dy.
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By change of variable y 7→ ỹ, with: y = φ−tv (ỹ), dy = |det(I − tJv(x))|dỹ,

µ1(A) =

∫
A

|det(I − tJv(x))|
(4πt)n/2

exp

(
−‖(I − tJv(x))(ỹ − x̃) +O(t)O(‖ỹ − x̃‖2) +O(t2)‖2

4t

)
dỹ

=

∫
A

|det(I − tJv(x))|
(4πt)n/2

exp

(
−‖(I − tJv(x))(ỹ − x̃)‖2

4t

)
exp

(
− (O(t)O(‖ỹ − x̃‖2) +O(t2))2 + (1 +O(t))O(‖ỹ − x̃‖)(O(t)O(‖ỹ − x̃‖2) +O(t2))

4t

)
dỹ

=

∫
A

|det(I − tJv(x))|
(4πt)n/2

exp

(
−‖(I − tJv(x))(ỹ − x̃)‖2

4t

)
exp

(
O(t3) +O(t)O(‖ỹ − x̃‖2) +O(t2)O(‖ỹ − x̃‖)

)
dỹ

=

∫
A

|det(I − tJv(x))|
(4πt)n/2

exp

(
−‖(I − tJv(x))(ỹ − x̃)‖2

4t

)
(
1 +O(t3) +O(t2)O(‖ỹ − x̃‖) +O(t)O(‖ỹ − x̃‖2)

)
dỹ.

Hence µ2 is a Gaussian of covariance matrix Σ2 = ( 1
2tI)−1 = 2tI centered at x̃, while µ1 is a

perturbed Gaussian of covariance matrix Σ1 = ( 1
2t (I−tJv(x))T (I−tJv(x)))−1 = 2t((I−tJv(x))T (I−

tJv(x)))−1 centered at x̃. Let us denote by N1 the Gaussian centered at x̃ of variance Σ1, and by

N2 the Gaussian centered at x̃ of variance Σ2. Then µ1 and µ2 write:

µ1 = N1 + ρ1 and µ2 = N2,

with: 
N1(ỹ) = | det(I−tJv(x))|

(4πt)n/2
exp

(
−‖(I−tJv(x))(ỹ−x̃)‖2

4t

)
ρ1(ỹ) = (O(t3) +O(t2)O(‖ỹ − x̃‖) +O(t)O(‖ỹ − x̃‖2))N1(ỹ)

N2(ỹ) = 1
(4πt)n/2

exp
(
−‖ỹ−x̃‖

2

4t

)
.

We now estimate the Wasserstein distance between µ1 and µ2. Let R > 0. We denote by µR the

restriction of µ to the ball centered at x̃ of radius R, i.e. µR := µ|B(x̃,R). Notice that µ1 and µ2 are

probability measures, hence of the same mass. This is not the case with µR1 and µR2 . Since we will

deal with measures of different masses, we use the generalized Wasserstein distance Wa,b
2 (see [96]

for a definition). From the triangular inequality we write:

Wa,b
2 (µ1, µ2) ≤ Wa,b

2 (µ1, µ
R
1 ) +Wa,b

2 (µR1 ,NR
1 ) +Wa,b

2 (NR
1 ,N1) +Wa,b

2 (N1,N2). (2.4)
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Let us study the first term of (2.4). Notice that

Wa,b
2 (µ1, µ

R
1 ) =Wa,b

2 (µR1 + (µ1 − µR1 ), µR1 + 0) ≤ Wa,b
2 (µR1 , µ

R
1 ) +Wa,b

2 (µ1 − µR1 , 0) ≤ a|µ1 − µR1 |

where the last inequality is a direct application of Proposition 2 in [96]. Hence we are left with the

task of estimating the mass of the “tail” of the perturbed Gaussian µ1:

|µ1 − µR1 | := 1−
∫
‖ỹ−x̃‖≤R

µ1(ỹ)dỹ.

One can prove that for a Gaussian defined by a positive-definite covariance matrix A,

∫
‖x‖≤R

e−x
TATAxdx ≥ 1

det(A)
(π(1− e−nRλm(A)))n/2

where λm(A) denotes the smallest eigenvalue of A. Applied to N1, we have:

∫
‖ỹ−x̃‖≤R

|det(I − tJv(x))|
(4πt)n/2

exp

(
−‖(I − tJv(x))(ỹ − x̃)‖2

4t

)
dỹ

≥ |det(I − tJv(x))|
(4πt)n/2

(π(1− e−nRλm))n/2

det(I − tJv(x))
.

where λm denotes the smallest eigenvalue of I − tJv(x). For t small enough, det(I − tJv(x)) > 0, so

∫
‖ỹ−x̃‖≤R

|det(I − tJv(x))|
(4πt)n/2

exp

(
−‖(I − tJv(x))(ỹ − x̃)‖2

4t

)
dỹ ≥

(
1− e−nRλm

4t

)n/2
.

Let R = − 1
nλm

ln
(
1− 4t(1− t

√
t)−n/2

)
. Then

∫
‖ỹ−x̃‖≤R

|det(I − tJv(x))|
(4πt)n/2

exp

(
−‖(I − tJv(x))(ỹ − x̃)‖2

4t

)
dỹ ≥ 1− t

√
t. (2.5)

We now compute

∫
‖ỹ−x̃‖≤R

µ1(ỹ)dỹ =

∫
‖ỹ−x̃‖≤R

N1(ỹ)(1 +O(t3) +O(t2)O(‖ỹ − x̃‖) +O(t)O(‖ỹ − x̃‖2))dỹ

=

∫
‖ỹ−x̃‖≤R

N1(ỹ)dỹ(1 +O(t3) +O(t2)O(R) +O(t)O(R2)).

Notice that for t small enough, R = − 1
nλm

ln
(
1− 4t(1− n

2 t
√
t+O(t3))

)
= O(t). Then

∫
‖ỹ−x̃‖≤R

µ1(ỹ)dỹ =

∫
‖ỹ−x̃‖≤R

N1(ỹ)dỹ(1 +O(t3) +O(t2)O(t) +O(t)O(t2)) ≥ 1− t
√
t+O(t3).
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This means that we can estimate the first term of (2.4) as follows:

Wa,b
2 (µ1, µ

R
1 ) ≤ at

√
t. (2.6)

We now look at the second term of (2.4).

Wa,b
2 (µR1 ,NR

1 ) =Wa,b
2 (NR

1 + ρR1 ,NR
1 ) ≤ Wa,b

2 (NR
1 ,NR

1 ) +Wa,b
2 (ρR1 , 0) ≤ a|ρR1 |

where again the last inequality comes from Proposition 2 of [96]. We then compute:

|ρR1 | =
∫
‖ỹ−x̃‖≤R

N1(ỹ)(O(t3) +O(t2)O(‖ỹ − x̃‖) +O(t)O(‖ỹ − x̃‖2))dỹ

=

∫
‖ỹ−x̃‖≤R

N1(ỹ)dỹO(t3) = O(t3).

Hence we estimated:

Wa,b
2 (µR1 ,NR

1 ) ≤ O(t3). (2.7)

Now the third term of (2.4) can be estimated by the mass of the tail of the Gaussian N1, as follows:

Wa,b
2 (NR

1 ,N1) ≤ Wa,b
2 (NR

1 ,NR
1 ) +Wa,b

2 (0,N1 −NR
1 ) ≤ a|N1 −NR

1 |

From the estimate (2.5), |N1 −NR
1 | = 1− |NR

1 | ≤ t
√
t. So the third term of (2.4) becomes:

Wa,b
2 (NR

1 ,N1) ≤ at
√
t. (2.8)

Lastly, we are left with estimating the Wasserstein distance between two Gaussians N1 and N2

centered at x̃ and of covariance matrices Σ1 = 2t((I − tJv(x))T (I − tJv(x)))−1 and Σ2 = 2tI. From

[44], we have:

W2(N1,N2)2 = ‖x̃− x̃‖22 + Tr (Σ1) + Tr (Σ2)− 2Tr
(

[
√

Σ1Σ2

√
Σ1]1/2

)
.

For t small enough,

Σ1 = 2t(I + tJv(x)T + t2(Jv(x)T )2 +O(t3))(I + tJv(x) + t2Jv(x)2 +O(t3))

= 2tI + 2t2(Jv(x)T + Jv(x)) + 2t3
(
(Jv(x)T )2 + Jv(x)2 + Jv(x)TJv(x)

)
+O(t4).
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Then we have:

Tr (Σ1) = 2Nt− 4t2Tr (Jv(x)) + 2t3(2Tr
(
Jv(x)2

)
+ Tr

(
Jv(x)TJv(x)

)
),

and

Tr (Σ2) = 2Nt.

Furthermore, Tr
(
[
√

Σ1Σ2

√
Σ1]1/2

)
=
√

2tTr
(√

Σ1

)
, with:

√
Σ1 =

√
2t(I − 1

2
tJv(x)T +

3

8
t2(Jv(x)T )2O(t3))(I − 1

2
tJv(x)T +

3

8
t2Jv(x)2 +O(t3))

=
√

2t

(
I − 1

2
t(Jv(x)T + Jv(x)) +O(t2)

)
.

Then

Σ
1/2
2 − Σ

1/2
1 =

√
2tI −

√
2t(I + t(Jv(x) + Jv(x)T ) + t2Jv(x)Jv(x)T )1/2

= −
√

2

2
t
√
t(Jv(x) + Jv(x)T ) + o(t

√
t).

Hence ‖Σ1/2
1 −Σ

1/2
2 ‖2Frobenius = CΣt

3 + o(t3) where CΣ is a constant depending only on v. In a finite

dimension, the norms W2 and Wa,b
2 are equivalent, hence

Wa,b
2 (N1,N2) ≤ CgW2(N1,N2) ≤ C̃Σt

√
t. (2.9)

Now plugging in the estimates (2.6), (2.7), (2.8) and (2.9) into equation (2.4) and by equivalence of

the norms, we showed that there exists β > 0 such that

W2(µ1, µ2) ≤ βt
√
t.

Another useful estimate is that of the Wasserstein distance between a measure µ ∈ P(M) and

its convolution with the heat kernel ofM. We have the following result (on a fixed manifoldM):

Lemma 2.1.3. Let M be a Riemannian manifold, with Ricci curvature globally bounded below.

Define its heat kernel by pt(x, y)dy, providing the solution at time t of the heat equation ∂τµ = ∆Mµ

by convolution with the initial data (where ∆M denotes the Laplace-Beltrami operator of M). Let
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µ0 ∈ P(M). There exists C > 0 independent ofM such that for t small enough,

W(µ0, p
t ∗ µ0) ≤ C

√
vol(M)

√
t.

Proof. First remark that the boundedness from below of the Ricci curvature ensures the existence

of a unique heat kernel pt(x, y) onM (see [129]). We evaluate the distance between a measure and

its convolution with the heat kernel. To estimate it, we remind estimates on the distance between

a measure µ on a Riemannian manifold M and its convolution with the heat kernel pt(x, y)dy

where µ(t, x) = µ0 ∗ pt(x, y) =
∫
M pt(x, y)dµ0(y). From the definition of the Wasserstein distance,

W 2(µ0, µ0 ∗ pt) ≤
∫
M×M d(x, y)2dπ(x, y) for all transference plan with marginals µ0 and µ0 ∗ pt.

Let π(x, y) = pt(x, y)dµ0(y)dy. We show easily that its marginals are µ0 and µ0 ∗ pt. Indeed, for all

E ⊂M,

π(E ×M) =

∫
E×M

dµ0(x)pt(x, y)dy =

∫
E

dµ(0, x) = µ(0, E)

and

π(M× E) =

∫
M×E

dµ(0, x)pt(x, y)dy = (µ ∗ P )(t, E).

Hence

W 2(µ0, µ0 ∗ pt) ≤
∫
M×M

d(x, y)2dµ0(x)pt(x, y)dy.

Varadhan’s estimate for the heat kernel on a close manifolfM (see [79]) gives:

lim
t→0

(
−2t ln(pt(x, y))

)
= d(x, y)2.

Hence for t small enough, pt(x, y) ≤ e− d(x,y)
2

4t . Then

W2(µ0, µ0 ∗ pt) ≤
∫
M
pt(x, y)d(x, y)2dy ≤

∫
M
e−d(x,y)2/(4t)d(x, y)2dy ≤

∫
M

4e−1tdy

≤ 4e−1vol(M) t.

In order to prove Theorem 2.1.1, we first prove the following:

Lemma 2.1.4. Let s ∈ [0, T ]. Then there exists µ∗s := limn→∞ µns . Moreover, µ∗ is a continuous

curve in Pc(Rd), satisfying µ∗0 = µ0.
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The proof of Lemma 2.1.4 requires the use of the Arzelà-Ascoli theorem and Prokhorov’s theorem.

We recall the Arzelà-Ascoli theorem generalized for topological vector spaces [62].

Theorem 2.1.2 (Arzelà-Ascoli). Let X be a compact Hausdorff space and Y a metric space. Then

a family F ⊂ C(X,Y ) is relatively compact in the compact-open topology if and only if:

1. F is pointwise relatively compact

2. F is equicontinuous

Let us also recall the definition of tightness.

Definition 2.1.2. A set of measures P is tight if and only if for all ε > 0, there exists a compact

K such that for all µ ∈ P , µ(Rd \K) ≤ ε.

Lastly, Prokhorov’s theorem states:

Theorem 2.1.3 (Prokhorov). Let X be a Polish space (i.e. a separated, completely metrizable

topological space). A set P in the space of probability measures P(X) is relatively compact if and

only if it is tight.

We now prove Lemma 2.1.4.

Proof. We will use the Arzelà-Ascoli theorem to prove that there exists a converging subsequence

of (µn). In our setting, X = [0, T ] is a compact Hausdorff space, and we take Y = P(Rd),

the space of probability in Rd, endowed with the Wasserstein metric Wp. We study the family

F := (µn)n∈N ∈ C([0, T ],P(Rd)).

(i) We start by showing that F is pointwise relatively compact.

Let t ∈ [0, T ]. According to Prokhorov’s theorem, F ⊂ P(Rd) is relatively compact if and only

if it is tight. Each µn(t) is compactly supported. Hence, to prove that (µn(t))n∈N is tight, we

need to show that Mn
t := supp(µn(t)) is bounded independently of n. Let n ∈ N and xnt ∈ Mn

t .

Let s ∈ [0, tn) and l ∈ {0, ..., 2n − 1} such that t = ltn + s. Then there exists x0 ∈ M0 such

that xnt = φn,ls (φn,l−1
tn (φn,l−2

tn (...φn,0tn (x0))...))). Since the vector field v[·] is bounded, we have

‖xnt ‖ ≤ ‖x0‖+ ‖v[·]‖∞t. HenceMn
t is bounded independently of n. This implies that for t ∈ [0, T ],

(µn(t))n∈N is tight. So (µn)n∈N is pointwise relatively compact.
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(ii) Let us now show that F is equicontinuous (equivalent to uniform equicontinuity since [0, T ]

is compact). We will prove that each µn is 1/2-Hölder as function of time with values in the space

of probability measures (endowed with the Wasserstein distance).

We give several estimates that will prove useful in what follows.

Let µ, ν ∈ Pc(Rd). The distance between a measure and its transport was was estimated in [95]:

W(µ, φtv#µ) ≤ ‖v‖∞t, (2.10)

where we use the boundedness of v. Furthermore

W(φtv[µ]#µ, φ
t
v[ν]#ν) ≤

(
e

3
2Lt +

K

L
e
L
2 t(eLt − 1)

)
W(µ, ν). (2.11)

From Lemma 2.1.3, W(µ, µ ∗ pt) ≤ C
√

vol(M)
√
t. Here, since v is uniformly bounded, there

exists C̄ > 0 independent ofM such that

W(µ, µ ∗ pt) ≤ C̄
√
t. (2.12)

Now we give a similar estimate as (2.11) but for the heat evolution. From [38], for µ, ν ∈ P(M)

whereM is a smooth, connected and complete Riemannian manifold with Ricci curvature bounded

from below, i.e. Ric(M) ≥ κ, we have:

W(pt ∗ µ, pt ∗ ν) ≤ eκtW(µ, ν). (2.13)

Let n ∈ N and tn = 2−nT . Let l ∈ N and k ∈ N such that (l+k)tn ≤ T . We want to estimate the

Wasserstein distance between µn(ltn) and µn((ltn + s). Suppose that s = 2k−1tn for some k ∈ N.

Let µn(ltn) be fixed. For economy of notation, we will also denote it by µnl . Then there exists 2k−1

flows and 2k−1 heat kernels such that

W2(µ(ltn), µ((l +m)tn)) =W2(µ(ltn), φtn
2k

#ptn
2k−1

∗ ... ∗ φtn2 #ptn1 ∗ µ(ltn)).

We prove by induction on k that for each k there exists Rk such that

W2(µ(ltn), φτ2k#pτ2k−1 ∗ ... ∗ φτ2#pτ1 ∗ µ(ltn)) ≤ Rk(s+
√
s) (2.14)

where τ = 2−k+1s.
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For k = 1, let τ = s. From (2.10) and (2.12), we have:

W2(µ(ltn), φτ2#pτ1 ∗ µ(ltn)) ≤ W2(µ(ltn), pτ1 ∗ µ(ltn)) +W2(pτ1 ∗ µ(ltn), φτ2#pτ1 ∗ µ(ltn))

≤ C̄√τ + ‖v‖∞τ.

and we set R1 := max(C̄, ‖v‖∞).

Now suppose that (2.14) holds true for some k ∈ N. Let τ = 2−ks. Then

W2(µnl , φ
τ
2k+1#pτ2k+1−1 ∗ ... ∗ φτ2#pτ1 ∗ µnl )

=W2

µnl , 2k+1−1∏
j=0

(φτ2k+1−4jp
τ
2k+1−4j−1φ

τ
2k+1−4j−2p

τ
2k+1−4j−3)µnl


≤W2

µnl , 2k−1−1∏
j=0

(φτ2k+1−4jφ
τ
2k+1−4j−2p

2τ
2k+1−4j−3)µnl

+

W2

(
2k−1−1∏
j=0

(φτ2k+1−4jφ
τ
2k+1−4j−2p

2τ
2k+1−4j−3)µnl ,

2k−1−1∏
j=0

(φτ2k+1−4jp
τ
2k+1−4j−1φ

τ
2k+1−4j−2p

τ
2k+1−4j−3)µnl

)
.

(2.15)

The first term of (2.15) can be estimated using the induction hypothesis for k:

A1 =W2

µnl , 2k−1−1∏
j=0

(φτ2k+1−4jφ
τ
2k+1−4j−2p

2τ
2k+1−4j−3)µnl

 ≤ Rk(s+
√
s).

For the second term of (2.15) we write:

A2 =W2

(
2k−1−1∏
j=0

(φτ2k+1−4jφ
τ
2k+1−4j−2p

2τ
2k+1−4j−3)µnl ,

2k−1−1∏
j=0

(φτ2k+1−4jp
τ
2k+1−4j−1φ

τ
2k+1−4j−2p

τ
2k+1−4j−3)µnl

)

≤
2k−1−1∑
i=1

W2

(
P−i φ

τ
2k+1−4iφ

τ
2k+1−4i−2p

2τ
2k+1−4i−3P

+
i µ

n
l ,

P−i φ
τ
2k+1−4ip

τ
2k+1−4i−1φ

τ
2k+1−4i−2p

τ
2k+1−4i−3P

+
i µ

n
l

)
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where P−i and P+
i are two operators defined as:


P−i =

∏i−1
j=0(φτ2k+1−4jp

τ
2k+1−4j−1φ

τ
2k+1−4j−2p

τ
2k+1−4j−3)

P+
i =

∏2k−1−1
j=i+1 (φτ2k+1−4jp

τ
2k+1−4j−1φ

τ
2k+1−4j−2p

τ
2k+1−4j−3).

From (2.11) and (2.13), we write:

W2

(
P−i φ

τ
2k+1−4iφ

τ
2k+1−4i−2p

2τ
2k+1−4i−3P

+
i µ

n
l ,

P−i φ
τ
2k+1−4ip

τ
2k+1−4i−1φ

τ
2k+1−4i−2p

τ
2k+1−4i−3P

+
i µ

n
l

)
≤ e2i(L−κ)τ+LτW2

(
φτ2k+1−4i−2p

τ
2k+1−4i−3µ̃

i(ltn), pτ2k+1−4i−1φ
τ
2k+1−4i−2µ̃

i(ltn))
)

≤ e2i(L−κ)τ+Lτβτ
√
τ

where µ̃i(ltn) := pτ2k+1−4i−3P
+
i µ(ltn) and the last inequality comes from the bracket estimation in

Lemma 2.1.2. Then

A2 ≤
2k−1−1∑
i=1

e2i(L−κ)τ+Lτβτ
√
τ = eLτβτ

√
τ

2k−1−1∑
i=1

e2i(L−κ)τ = eLτβτ
√
τ
e2(L−κ)τ(2k−1−1) − 1

e2(L−κ)τ − 1

≤eLτβτ√τ e
2(L−κ)τ(2k−1−1)

2(L− κ)τ
= eLτβ

1

2(L− κ)

√
τe(L−κ)s−2τ(L−κ) =

e(−L+2κ)τβ

2(L− κ)

√
τe(L−κ)s

≤J√τ

where J = max(1,e(−L+2κ)s)β
2(L−κ) e(L−κ)s. Plugging in A1 and A2 in (2.15), we have:

W2(µ(ltn), φτ2k+1#pτ2k+1−1 ∗ ... ∗ φτ2#pτ1 ∗ µ(ltn)) ≤ A1 +A2 ≤ Rk(s+
√
s) + J

√
2−ks

≤ (Rk + 2−k/2J)(s+
√
s) = Rk+1(s+

√
s).

Hence (2.14) is satisfied for all k ∈ N. Furthermore, notice that (Rk)k∈N is a converging sequence:

Rk =

k∑
i=2

2−i/2J +R1 −−−−→
k→∞

R̄ :=
J

1− 2−1/2
+R0

Since (Rk) is monotonically increasing, Rk ≤ R̄ for all k ∈ N. Hence for s = 2k−1tn,

W2(µ(ltn), µ(ltn + s)) =W2(µ(ltn), φtn
2k+1#ptn

2k+1−1
∗ ... ∗ φtn2 #ptn1 ∗ µ(ltn)) ≤ R̄(s+

√
s)

where R̄ is independent of n, l and s. This proves that each µn is Hölder of order 1/2. Thus F



48

is equicontinuous and according to the Arzelà-Ascoli theorem, there exists a limit to the sequence

(µn)n∈N.

We now state the main result of this section, that describes locally the dynamics of µ∗.

Theorem 2.1.4. Let µ∗ be defined in Lemma 2.1.4, with a given initial data µ0 ∈ Pc(Rd). Then

we have

lim
s→0

µ∗s − e∆0sµ0

s
= −∇ · (vµs). (2.16)

Hence µ∗ is the unique solution of


∂sµs +∇ · (vµs) = ∆sµs

µ(s = 0) = µ0.

(2.17)

2.1.2 The intrinsic Laplace-Beltrami operator

We describe the evolution of the cell as follows: consider its shape at time 0 and call itM = M0, that

is an oriented compact manifold, and a sub-manifold of Rd. Its shape then evolves by the flow Φt

of a vector field v defined on the whole Rd, or at least in a whole neighborhood of M0 as a subset of

Rn. The new shape is thenMt = Φt(M0), that is a sub-manifold of Rn since Φt is a diffeomorphism.

Observe that both M0 and Mt are Riemannian manifold, with Riemannian structure induced by

their embedding in Rn. We then represent the structure as follows: we fix the manifold M = M0

and change its Riemannian structure < ., . >t with respect to time. We have

Φt :

 M → Rn

x 7→ Φt(x)

and we endowM with the Riemannian structure < ., . >t induced by the pull-back of the Riemannian

structure of Φt(M) = Mt ⊂ Rn. This implies

< w1, w2 >t=< Φ∗tw1,Φ
∗
tw2 >E , (2.18)

where < ., . >E is the standard Euclidean structure in Rn (or eventually any other Riemannian

metric in Rn).
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The manifold (M,< ., . >t) is Riemannian, then the Laplace-Beltrami operator ∆t is intrinsically

defined. We are interested in describing such operator as a function of t. Recalling that it is the

divergence of the gradient, we aim at describing divt and gradt as a function of time. In particular,

we aim at computing first-order development of such operators with respect to time.

Remark 2.1.2. The operator ∆t is intrinsically defined as the divergence of the gradient for the

time-evolving metric gt on the fixed manifoldM0. It differs from the Laplace-Beltrami operator used

in Chapter 1, which is computed as the divergence of the gradient on the time-evolving manifoldMt,

for the metric inherited from the embedding in the ambient Euclidean space. In a parallel line of

work not presented in this thesis, we compare these two intrinsic and extrinsic operators.

We first have

Φ∗tw = w + tJv · w + o(t),

where J is the Jacobian with respect to the Euclidean structure of Rn and · represents the linear

action of the linear operator Jv on w. This implies

< w1, w2 >t=< w1, w2 >E +t (< Jv · w1, w2 >E + < Jv · w2, w1 >E) + o(t).

Since vectors w1, w2 belong to TxM , we will denote with JMv the restriction of Jv to TxM by

projection, i.e.

JMv :

 TxM → TxM

w 7→ (Jv · w)M ,

where zM is the component of the vector z ∈ TxRn on the subspace TxM . Observe that we are

using here the Riemannian structure of Rn to define projections.

We now study the gradient gradtf for a function f ∈ C∞(M), via its intrinsic definition. For all

w ∈ TxM it holds

< gradt(f), w >t= Lwf

Since the identity at time t = 0 holds for grad0, we have gradtf = grad0f + tB1, for a vector field
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B1 to be found, We have in particular

< grad0(f) + tB1 + tJv · grad0(f) + o(t), w + t Jv · w + o(t) >E= Lwf

t
(
< B1, w >E + < Jv · grad0(f), w >E + < grad0f, Jv · w >E

)
+ o(t) = 0.

We then have B1 = −(Jv ·grad0(f))M −B where (Jv ·grad0(f))M is the component of Jv ·grad0(f)

on the tangent space ofM , and B(f, v) is intrinsically defined by the following rule: for all w ∈ TxM

it holds

< B(f, v), w >E=< grad0(f), Jv · w >E . (2.19)

Summing up, we have

gradt(f) = grad0(f)− t(Jv · grad0(f))M − tB(f, v) + o(t) (2.20)

with B(f, v) defined by (2.19).

We now study the divergence divt(X) for a vector field X ∈ Vec (M). Given volt the volume

form of the Riemannian manifold, it holds

divt(X)volt = LXvolt. (2.21)

Observe that volt =
√
|gt| dX1 ∧ dX2 ∧ . . . ∧ dXm for any base X1, . . . , Xm of the Riemannian

manifold (M,< ., . >t). We choose an orthonormal basis for (M,< ., . >0) and study the evolution

of volt. Since g0 = Id and |Id + tA| = 1 + tTr (A) + o(t), we have

|gt| = 1 + 2t

m∑
i=1

< Jv ·Xi, Xi >E= 1 + 2tTr (Jv)M ,

where the operator Jv is restricted to the tangent space of M . This implies
√
|gt| = 1 + tTr (Jv)M .

Writing divt(X) = div0X + tf + o(t) for a function f to be found, it holds from (2.21)

((div0(X) + tf)(1 + tTr (Jv)M ) + o(t))vol0 = (LX(1 + tTr (Jv)M )) vol0 + (1 + tTr (Jv)M )LXvol0

= (LX(1 + tTr (Jv)M )) vol0 + (1 + tTr (Jv)M )div0(X)vol0,
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hence

divt(X) = div0(X) + tLXTr (Jv)M . (2.22)

Observe that this formula is intrinsic, since the trace of the linear operator Jv does not depend on

the chosen orthonormal frame.

We now compute the Laplace-Beltrami operator ∆t. Since ∆tf = divt(gradt(f)) by definition,

and observing that it holds Lgrad0(f)Tr (Jv)M =< grad0(f), grad0(Tr (Jv)M ) >E , we have

∆t(f) = ∆0(f) + t
(
< grad0(f), grad0(Tr (Jv)M ) >E −div0(B(f, v) + (Jv · grad0(f))M )

)
+ o(t).

2.2 Noncommutativity of heat and transport evolutions

2.2.1 Commutator of the Laplace-Beltrami operator with the vector field

In this section we consider the following phenomenon. Let us assume that one is allowed to vary

slightly the values of t, τ (that are no more identical) in the scheme S. Then, we will prove then the

final value of the scheme S will be different than the (unique) of (2.17). In terms of reachability:

authorising a slight variations of t, τ implies a larger set of attainable final configurations. The goal

of this section is to prove that the set of attainable configurations is larger, and to describe such set.

For finite dimensional systems, this phenomenon is studied for the so-called switching systems.

Consider two vector fields X0, X1 and a measurable switching function u : [0, T ]→ {0, 1}. Then one

can consider the dynamics of the system


ẋ = Xu(t)

x(0) = x0.

The solution at time T of this system, denoted by x(T, u), is unique. Nevertheless, if one chooses

another switching function v : [0, T ] → {0, 1}, one has in general x(T, u) 6= x(T, v). Then, it is of

interest to study the set of all possible final states, at least for small T . A classical result in control

theory, the Orbit theorem, (roughly) states that the set of attainable configurations is related with

the Lie bracket [X0, X1], and in particular that one can choose good switching functions to drive

the system along a direction arbitrarily close to the vector field [X0, X1].

For this reason, we study in this thesis the bracket between the “heat vector field” and the
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“transport vector field”. Indeed, one can consider the solution of an heat equation as a continuous

(and even differentiable) curve in P2(X) endowed with the Wasserstein distance. The, the time

derivative of this curve in a point µt (that is clearly the Laplacian ∆µt) can be considered as a

vector field, that we call the heat vector field. Similarly, we define the transport vector field

as the derivative of the solution of the transport equation in a point.

By borrowing the notation from Lie brackets of vector fields, we define

[∆, v]µ := lim
t,τ→0

Φ−t#
(
eτ∆t

(Φt#µ)
)
− eτ∆0

µ

tτ
, (2.23)

where Φt# is the push-forward of a measure via the flow generated by the vector field v, and eτ∆t

is the semigroup generated by ∆t at time τ .

Observe that, for any measure µ ∈M0(R2d)(M0), it holds Φt#µ ∈M0(R2d)(Mt). If one chooses

the coordinates on the manifoldMt induced by the diffeomorphism Φt, then it holds Φt#µ = µ in the

sense that their expression with respect to coordinates is the same. Similarly, it holds Φ−t#µ = µ

for any measure µ ∈M0(R2d)(Mt).

Then, for any test function f ∈ C∞c (M), one can write (2.23) as follows:

([∆, v]µ)(f) = lim
t,τ→0

∫
M

f

tτ
d
(

Φ−t#
(
eτ∆t

(Φt#µ)
)
− eτ∆0

µ
)

= lim
t,τ→0

∫
M

f

tτ
d
(
eτ∆t

µ− eτ∆0

µ
)

= lim
t→0

∫
M

f

t
d
(
∆tµ−∆0µ

)
= lim
t→0

∫
M

(∆t −∆0)
f

t
dµ

=

∫
M

< grad0(f), grad0(Tr (Jv)M ) >E −div0(B(f, v) + (Jv · grad0(f))M ) dµ,(2.24)

where we used
∫
f d∆µ =

∫
∆f dµ as the definition of the Laplace-Beltrami operator as an operator

on the space of measures. Then (2.24) is the intrinsic formula for the bracket (2.23).

2.2.2 An example: the sphere S1 in R2

We now compute the bracket [∆, v] for an example. We consider the unit circle S1 in R2 parametrized

by an angle θ as the initial manifold M , and the vector field v = (x − 1, 2y). It is easy to verify

that at time t the unit circle is transported to an ellipse of equation:
(
x−xc
et

)2
+
(
y
e2t

)2
= 1 where

xc = 1− et (see Fig. 2.1).

First, we fix the constant initial data µ0 = dθ as the Riemannian volume form on the sphere.

We consider the Euclidean metric on R2, i.e. Riemannian structure given by the orthonormal

frame ∂x, ∂y at each point. The corresponding Riemannian structure on S1 is given by ∂θ = −y∂x+
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Figure 2.1: Transport of the unit sphere (in blue) by the vector field v(x, y) := (x − 1, 2y). At
t = 0.25, the resulting ellipse (red) is centered at (1− e0.25, 0).

x∂y. This implies

(JMv) · δθ =

 −y
2x


M

= (1 + x2)∂θ,

thus Tr (JMv) = 1 + cos2. Since the initial data is the Riemannian volume form, the divergence

theorem implies

([∆, v]µ)(f) =

∫
M

<
∂f

∂θ
∂θ,

∂(1 + cos2(θ))

∂θ
∂θ >E +0 dθ

=

∫
M

−f ∂
2 cos2(θ)

∂θ2
dθ =

∫
M

2f cos(2θ) dθ.

Hence for an initially constant signal, [∆, v] = 2 cos(2θ).

Now for a more complicated initial data µ0 = (1 + cos(θ))dθ, the second term in (2.24) is no

longer 0. First, notice that:

< grad0(f), grad0(Tr (Jv)M ) >=<
∂f

∂θ
∂θ,

∂(1 + cos2(θ))

∂θ
∂θ >=

∂f

∂θ
(−2 cos θ sin θ).

Secondly, we calculate the term B(f, v) knowing that 〈B(f, v), w)〉E = 〈grad0(f), Jv · w〉E . Taking
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a vector w = (wx, wy)T , we write:

Bxwx +Bywy = 〈grad0(f), Jv · w〉E = 〈

∂xf
∂yf

 ,

 wx

2wy

〉E = ∂xfwx + 2∂yfwy.

Hence we have :

Bθ = 〈

Bx
By

 , ∂θ〉 = 〈

 ∂xf

2∂yf

 ,

−y
xf

〉 = −y∂xf+2x∂yf = sin2 θ∂θf+2 cos2 θ∂f = (1+cos2 θ)∂θf.

Similarly,

(Jv · grad0(f))M = 〈

 ∂xf

2∂yf

 , ∂θ〉∂θ = (1 + cos2 θ)∂θf ∂θ.

So

div0(B(f, v) + Jv · grad0(f))M = 2∂θ((1 + cos2 θ)∂θf) = 2(1 + cos2 θ)∂2
θf − 4 cos θ sin θ∂θf.

We calculate separately the two terms in Equation (2.24) :

(i)

∫
M

< grad0(f), grad0(Tr (Jv)M ) > (1 + cos θ)dθ =

∫
M

∂f

∂θ
(−2 cos θ sin θ)(1 + cos θ)dθ

=

∫
M

2f
∂

∂θ
((cos θ sin θ)(1 + cos θ))dθ =

∫
M

f(6 cos3 θ + 4 cos2 θ − 4 cos θ − 2)dθ.

(ii)

∫
M

−div0((B(f, v) + Jv · grad0(f))M )(1 + cos θ)dθ

= −2

∫
M

((1 + cos2 θ)
∂2f

∂θ2
− 2 cos θ sin θ

∂f

∂θ
) cos θdθ

= 2

∫
M

[
∂f

∂θ
(− sin θ − 3 cos2 θ sin θ)− 2f(−2 cos θ sin2 θ + cos3 θ)]dθ

= 2

∫
M

f(− cos θ + 3 cos3 θ)dθ.

(2.25)

Summing the two terms we get:

([∆, v]µ)(f) =

∫
M

f(12 cos3 θ + 4 cos2 θ − 6 cos θ − 2)dθ

In order to study the bracket [v,∆], we use two schemes S and S̃ that discretize the diffusion-

growth problem described above. We define S̃ similarly to S (defined in Sec. 2.1.1, but inverting

steps 1 and 2. Hence S does a series of growth and diffusion operations on the function µ0 starting
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with growth, while S̃ does the same starting with diffusion. Figure 2.2 shows the first two iterations

of each scheme, starting from the same function µ0 (renamed x0 and y0 for notation convenience),

and denoting respectively by xn and yn the solutions after each iteration of S and S̃.

Figure 2.2: Two iterations of the schemes S and S̃ starting from the same point x0 = y0.

We apply this scheme to the signal initially given by the constant function µ0(θ) = 0.1.

Numerically, we apply the schemes S and S̃ to µ0 and compute the numerical bracket given by

[∆, v]num = limε→0(y1 − x1)/ε2 (where x1 and y1 respectively correspond to the first iterations of S

and S̃).

Figure 2.3 (left) shows the evolution of the initially constant signal µ0 = 0.1 after one iteration

of each scheme S and S̃, with a vector field v = (x − 1, 2y) and time-steps t = τ = 0.05 (so

T = t+ τ = 0.1).

Figure 2.3 (right) shows the convergence of the bracket when the time step T = t + τ tends

to 0. In the case of the previously defined initially constant signal, the bracket converges to the

theoretical value [∆, v]theo(µ0) = 0.2 cos(θ). Figure 2.4 shows the convergence of the bracket for the

inital signal µ0(θ) = 0.1(cos(θ)+1)dθ. The bracket converges to the theoretical value [∆, v]theo(µ0) =

12 cos3 θ + 4 cos2 θ − 6 cos θ − 2.

2.3 Control of growth via a signal

2.3.1 Model

The development of an organism is caused by morphogens, signaling molecules that diffuse in the

organism and act on cells to produce local responses depending on their local concentration. Growth
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0 π/2 π 3π/2 2π
3/(8 π)

1/(2 π)

Initial signal

Diffusion-growth

Growth-diffusion

Figure 2.3: Left: Evolution of the signal µ0(θ) = 0.1 after a time-step T = 0.1 for the two schemes.
Right: Convergence of the bracket to the theoretical one for the initial signal µ0(θ) = 0.1dθ .

Figure 2.4: Convergence of the bracket for the initial signal µ0(θ) = 0.1(cos(θ) + 1)dθ.

is thus induced by the distribution of a signal, and the diffusion of the signal is itself affected by the

changing shape and size of the organism. In other words, there is a complete coupling between a

PDE describing the signal’s evolution and a time-varying manifold. In this section we give a setting

to describe this coupling. More specifically, we model the signal’s diffusion from a source using the

time-dependent Laplace-Beltrami operator defined by the Riemannian structure on the manifold,

and the evolution of the manifold depends on the concentration of the signal. Our first objective is

to study the controllability of the manifold’s shape from a source with variable intensity.

We consider a 1D model to describe a cell membrane. Given an angle variable θ ∈ S1, we describe

the position of the membrane by a function r = r(t, θ) representing the radius. We also consider a

signal s = s(t, θ) on the cell, that pushes the cell to grow in its radial direction. Then ∂tr = s.
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The dynamics of s are given by the heat equation on the cell. Since the shape of the cell is

defined by r, we denote the Laplacian on the cell by ∆r, the Laplace-Beltrami operator on the cell

with shape r. Moreover, our control is the value of s in a given point, say in θ = 0, the point in

which the nucleus sends the growing signal to the boundary.

Hence, the dynamics satisfies: 
∂tr = s,

∂ts = ∆rs,

s(t, θ = π) = u(t).

(2.26)

We now assume that the initial configurations of both r and s are symmetric with respect to

θ, i.e. r(0,−θ) = r(0, θ) and, similarly, s(0,−θ) = s(0, θ). The simplest example is r(0, θ) = 1

and s(0, θ) = 0, i.e. a round cell and a zero signal on it. One can easily prove by that, for any

choice of the control u(t), both r and s stay symmetric. Indeed, using the explicit expression of the

Laplace-Beltrami operator (2.30), we prove that (s(t, θ), r(t, θ)) and ((s(t,−θ), r(t,−θ)) solve the

same differential system. Since the two couples have identical initial conditions, by uniqueness of

solution we deduce that they are equal and thus symmetric.

Since s is the solution of a heat equation, it is a C∞ function far from θ = π for all time. As

a consequence, symmetry also implies ∂θs(t, 0) = 0 for all t. Hence, we reduce our study to the

half-circle θ ∈ [0, π] and consider the following dynamics:



∂tr = s,

∂ts = ∆rs,

s(t, θ = π) = u(t),

∂θs(t, θ = 0) = 0.

(2.27)

We now study the Riemannian structure on the cell induced by a shape r. As already stated, s

is C∞ except in 0, since its value there depends on u(t). Assuming that the choice of u implies that

s is C∞ at 0 too, we have that r is a C∞ function too. Consider the coordinate θ on the circle, and

observe that a displacement ∂θ on the coordinate induces a displacement in the r variable that can

be estimated by
√
r2 + r2

θ∂θ, where rθ = ∂θr is the derivative of r with respect to θ. The estimate

is due to a simple geometric first-order estimate of the length of the curve r(θ). As a consequence,
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one can define the following metric on S1:

gθ is bilinear and satisfies: gθ(∂θ, ∂θ) = r2(θ) + r2
θ(θ). (2.28)

This uniquely defines the metric on S1. It is also clear that the inverse of the metric satisfies

gθ(dθ, dθ) = 1
r2(θ)+r2θ(θ)

. Such an operator is never zero since the radius is supposed to be positive

for all θ. Then, a direct computation gives the explicit expression of the Laplace-Beltrami operator

∆r. We have:

∆rs =
1√
|gθ|

∂θ

(√
|gθ|gθ∂θs

)
=

1√
r2 + r2

θ

∂θ

(
1√

r2 + r2
θ

∂θs

)

=
1

r2 + r2
θ

∂2
θs−

rrθ + rθ∂
2
θr

(r2 + r2
θ)

2
∂θs.

(2.29)

Hence the system we want to study is the following:



∂tr = s,

∂ts = 1
r2+r2θ

∂2
θs−

rrθ+rθ∂
2
θr

(r2+r2θ)2
∂θs,

s(t, θ = π) = u(t),

∂θs(t, θ = 0) = 0.

(2.30)

We want to prove controllability for system (2.30) in a specific case, that is to find a control

u that drives a (symmetric) cell shape to another (symmetric) cell shape in a given time interval

[0, T ], together with having a signal s that is zero at the initial and final times. In mathematical

terms, we consider initial and final configurations r0, r1 and a time T > 0. We want to find a control

u : [0;T ] → R such that the unique solution of (2.30) with r(t = 0) = r0 and s(t = 0) = 0 satisfies

r(t = T ) = r1 and s(t = T ) = 0. This goal is called exact controllability. It is known that this goal

is impossible to be achieved in general, since we already know that some configurations (for instance

non-smooth final configurations) cannot be reached with a heat equation.

Hence, we instead aim to prove approximate controllability, defined as follows: considering initial

and final configurations r0, r1 and a time T > 0, for every ε > 0, we want to find a control

u : [0;T ] → R such that the unique solution of (2.30) with r(t = 0) = r0 and s(t = 0) = 0 satisfies

‖r(t = T )− r1‖L2 < ε and ‖s(t = T )‖L2 < ε.
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It was shown in [69] that the 1-D generalized heat equation


∂tφ = f(θ)∂2

θφ+ g(θ)∂θφ+ h(θ)φ,

φ(t, θ = π) = u(t),

∂θφ(t, θ = 0) = 0

(2.31)

is approximately controllable where f > 0, g and h are analytic functions. Moreover, [69] proves

a stronger condition: (approximate) motion planning or (approximate) tracking, defined as follows.

Given a reference trajectory, we want to find a control such that the solution of the system (2.31)

stays close to the reference trajectory for each time. In mathematical terms, one has the following

result.

Theorem 2.3.1. Consider a time horizon [0, T ] and a smooth trajectory f̄ : [0, T ]→ L2(0, π). For

every ε > 0, there exists u : [0, T ]→ R such that the solution of (2.31) with initial data f̄(0) satisfies

‖f(t)− f̄(t)‖L2 < ε for all time t ∈ [0, T ].

We use this result to prove approximate controllability of (2.30). Moreover, we will show a

stronger condition, that is approximate tracking of the r variable, together with the condition

‖s(t = 0)‖L2 < ε and ‖s(t = T )‖L2 < ε. Since we need analytic coefficients for the second equation

of (2.30), we need a reference trajectory that is analytic for all t, i.e. r : [0;T ]→ Cw(0, π), together

with smoothness with respect to t. We can prove the following main theorem.

Theorem 2.3.2. Let r̄ : [0, T ] → Cw(0, π) be a reference trajectory. Then for all ε > 0, there

exists a control u : [0, T ] → R such that the unique solution of (2.30) with r(t = 0) = r̄(t = 0) and

s(t = 0) = 0 satisfies ‖r(t)− r̄(t)‖L2 < ε for all t ∈ [0, T ].

Proof. (Sketch). First observe that an approximate tracking of ∂tr̄ by s implies approximate tracking

of r̄ by r. Indeed, one has

‖r̄(t)− r(t)‖L2 ≤‖r̄(0)− r(0)‖L2

+

∫ t

0

‖∂tr̄(τ)− s(τ)‖L2dτ

≤0 + tε ≤ Tε.

For simplicity, we define s̄ = ∂tr̄. We now prove approximate tracking of s̄ by s. There are two main

differences between our system (2.30) and the generalized heat equation (2.31) used in Theorem

2.3.2. Firstly, we require the bounds ‖s(t = 0)‖L2 < ε and ‖s(t = T )‖L2 < ε, while s̄ does not satisfy
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this condition. Secondly, coefficients f , g, h in (2.31) do not depend on the solution φ. Instead, in

our case the coefficients in (2.30) depend on r, which itself depends on s. The first difficulty can be

overcome by tracking the following trajectory. Given η > 0, consider

s̃(τ) :=

{ τ
η s̄(τ) τ ∈ [0, η[,

s̄(τ) τ ∈ [η, T − η[,

T−τ
η s̄(τ) τ ∈ [T − η, T [

The definition of s̃ satisfies the conditions ‖s̃(t = 0)‖L2 = ‖s̃(t = T )‖ = 0, hence the tracking of s̃

by s will give the conditions ‖s(t = 0)L2 = 0 < ε and ‖s(t = T )‖L2 < ε. The corresponding solution

r̃ satisfies

‖r̃(t)− r̄(t)‖L2 ≤
∫ T

0

‖s̃(τ)− s̄(τ)‖dτ ≤ max
t∈[0,T ]

‖s̄(t)‖L2 .

Then, a choice of η sufficiently small gives the tracking of r̄ by r̃, hence of r̄ by r.

The second difficulty can be overcome by a sample-and-hold method for the second equation of

(2.30). For a given natural number n ∈ N, define {t1; ...tn} as tk := k
nT and consider the following

equation for t ∈ [tk; tk+1[:

∂ts =
1

r2(tk) + r2
θ(tk)

∂2
θs−

r(tk)rθ(tk) + rθ(tk)∂2
θr(tk)

(r2(tk) + r2
θ(tk))2

∂θs (2.32)

For this equation one can directly use the results in [69] for each time interval, since for each

interval the coefficients in (2.32) are analytic functions, not depending on s. Then, given the reference

trajectory s̃, one can iteratively solve the tracking problem as follows:

• Find the control un ∈ [0, t1[ such that the solution sn of (2.32) satisfies ‖s̃(τ)− sn(τ)‖L2 < ε

for all t ∈ [0, t1[, by using Theorem 2.3.2.

• Compute rn(t) as the solution of ∂trn = sn with r(t = 0) = r0 for t ∈ [0, t1]. Observe that it

is analytic.

• Plug rn(t1) in (2.32) and find the control un ∈ [t1, t2[ such that the solution sn of (2.32)

satisfies ‖s̃(τ)− sn(τ)‖L2 < ε for all t ∈ [t1, t2[, by using Theorem 2.3.2.

• Continue until tn = T .

This iterative method provides a control un : [0, T ] → R such that the solution sn of 2.32 satisfies

‖s̃(τ)− sn(τ)‖L2 < ε for all time t ∈ [0, T ]. We plug such control un := un into 2.30 and we find a

pair (rn, sn) that is somehow close to (rn, sn) for big n. We need a detailed estimate of such distance
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(that is exponential), but there is no problem due to analyticity. Since sn tracks s̃, then sn tracks s̃

too, hence rn tracks r̄.

2.3.2 Equilibria

We look for equilibria of the form: u(t) = ue and s(t, θ) = se(θ), that solves the system:



∂tre = se,

∂2
θse =

re∂θre+∂θre∂
2
θre

(re)2+(∂θre)2
∂θse,

se(θ = π) = ue,

∂θse(θ = 0) = 0.

(2.33)

From (2.30), we deduce that for all θ, re(t, θ) is a linear function of se(θ):

re(t, θ) = se(θ)t+ r0(θ), (2.34)

where r0(θ) := re(0, θ). One obvious possible equilibrium is obtained when there is no control, i.e.

for a zero signal (since se then solves a Laplace equation with the boundary condition se(θ = π) = 0).

One gets: 
ue = 0,

se(θ) = 0 for all θ ∈ [0, π],

re(t, θ) = r0(θ) for all t ∈ [0, T ], for all θ ∈ [0, π].

Hence, if se and ue are at an equilibrium such that ue = 0, there is no signal and the radius is

constant in time.

On the other hand, if ue > 0, then se solves a Laplace-type equation with a non-zero Dirichlet

boundary condition at θ = π, so se(θ) > 0 for all θ ∈ [0, π]. Hence re(t, θ) grows linearly with

time and does not reach an equilibrium. We instead look for an equilibrium in the shape of the

membrane, by defining ρe(t, θ) = re(t,θ)
re(t,θ=π) (notice that this is possible since re 6= 0). Then ρe is

constant in time if ∂tρe = 0, which gives:

∂tre(t, θ)re(t, π)− ∂tre(t, π)re(t, θ) = 0.
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Since ∂tre(t, θ) = se(θ), we get:

∂tρe(t, θ) = 0 ⇐⇒ re(t, θ)

re(t, π)
=
se(θ)

se(π)
.

This means that at each time t, the membrane re is a dilation of the signal se. In particular, at

t = 0, r0(θ) = r0(π)
se(π)se(θ) for all θ. Hence from (2.34) we get: re(t, θ) = se(θ)(t+ r0(π)

se(π) ). Since se(θ)

and re(t, θ) are proportional, the second equation of (2.33) becomes:

∂2
θse =

se∂θse + ∂θse∂
2
θse

(se)2 + (∂θse)2
∂θse,

which, after simplification, gives:

se∂
2
θse = (∂θse)

2.

One solution to this nonlinear differential equation is the constant signal se(θ) = ue, where se

satisfies both the Neumann and Dirichlet boundary conditions prescribed in (2.33).

We relax our conditions and look for a solution se that satisfies se(π) = ue but not ∂θse(0) = 0.

In particular, if we suppose that ∂se(θ) 6= 0 for all θ ∈ [0, T ], we can write:

∂2
θse
∂θse

=
∂θse
se

.

Then ∂θ(ln(∂θse)) = ∂θ(ln(se)), so we get: se(θ) = uee
λ(θ−π), where λ is a constant. Notice that

then we can bring ∂θse(0) = ueλe
−λπ arbitrarily close to zero by choosing λ, so we partially recover

the original Neumann boundary condition.

2.3.3 Simulations

We simulate diffusion of the signal by discretizing the second equation of system (2.30) using Finite

Differences, supplemented by a Neumann boundary condition at angle θ = 0 (∂θs(t, 0) = 0) and a

Dirichlet boundary condition at angle θ = π (s(t, π) = u(t)). Then the radius of the manifold at

each time-step is obtained by simple integration of the signal.

Comparison of diffusion on a static vs growing manifold

We run simulations for a constant control u1 ≡ 1, an initial signal s0(θ) = 0 and an initial radius

r0(θ) = 1 for all θ ∈ [0, π]. We notice that s reaches an equilibrium after time t = 2. After that

point, the radius grows in a linear way, i.e. ρ(t) = const. See Figure 2.5.
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We then turn our attention to the comparison with the case in which we neglect the growth of

the manifold (this would correspond to an egg chamber of constant size). In this case, taking as

initial condition a circle, the radius r is constant both w.r.t. time and the θ variable, thus r ≡ 1

and rθ ≡ 0. Plugging this information into equation (2.30), the Laplace-Beltrami operator reduces

to standard diffusion and we get the following system:



∂tr = s,

∂ts = ∂2
θs

s(t, θ = π) = u(t),

∂θs(t, θ = 0) = 0.

(2.35)

The simulations for a constant control u ≡ 1 are very different from those obtained by using the

system (2.30): Figure 2.6 shows the evolution of the signal and the radius with constant control for

system. The signal s reaches an equilibrium s(t, θ) = 1, which means that the growth of the radius

tends to be uniform with respect to the angle θ. Therefore, as expected, neglecting the growth of

the manifold generates uniform growth and, in the biological system, would give rise to spherical

egg chambers opposed to the spheroidal ones observed in nature.

Figure 2.5: Signal s (left) and radius r (right) for a constant control u ≡ 1 at times t = 0.1, t = 2
and t = 8. The source correponds to the angle θ = π, so in the signal picture it is located on the
left end of the equator line corresponding to coordinates (−1, 0).
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Figure 2.6: Signal s (left) and radius r (right) for a constant control u ≡ 1 at times t = 1, t = 2,
t = 5 and t = 8.

Single source

A source placed on the first axis (at angle θ = π) allows us to control the diameter of the manifold

along the same axis. In Figure 2.5, the manifold is stretched along the first axis direction at final

time, with an emphasis on the left side, i.e. r(T, π) > r(T, 0). Using the source to impose negative

values of the signal (which has a mathematical meaning but not a biological one), we can control

the final shape of the manifold to achieve r(T, π) < r(T, 0). In order to do that we set the control

as:

u(t) =

 0.5 · sin(ωt) t ∈ [0, 5]

0 t ∈]5, 10]
,

where ω = 2π
5 so that we obtain a complete sinusoidal oscillation up to time 5 then the signal

is vanishing (which coincides with control u2 depicted in Figure 2.7). The final result is a apple

shape manifold with pitch located at the signal source point, see Figure 2.8. To better visualize the

relationship between the signal and the shape we visualized the signal on the manifold itself, so for

positive values the signal will be outside the manifold and inside for negative ones.

Using a single source it is also possible to induce an homogeneous growth along all directions,

but with time-dependent signals. We first give an impulse and then turn off the signal. Define the

control by:

u(t) =

 0.2 · sin(ωt) t ∈ [0, 2.5]

0 t ∈]5, 10]
, (2.36)
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Figure 2.7: Control functions u1, u2 and u3

Figure 2.8: Radius r (in blue) and signal s (plotted as r + s in red) for a control u = u2 at times
t = 1, 3, 5, and 10.

where ω = 2π
5 , so that the half sinusoidal oscillation gives an always positive signal (this correspond

also to the control u3 depicted in Figure 2.7). The final shape is close to that of a circle, but with a

larger radius than that at initial time (see Figure 2.9).

Double source

As observed above, a single static source allows us to control the radii r(T, 0) and r(T, π), i.e. the

horizontal growth. In order to achieve a larger growth along the vertical axis, we consider a system

with double source: one locate at angle θ = 0 and the second (as before) at angle θ = π. We obtain
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Figure 2.9: Radius r (in blue) and signal s (plotted as r + s in red) for a control u = u3 at times
t = 1, 3, 5 and 10.

the system: 

∂tr = sL + sR,

∂tsL = 1
r2+r2θ

∂2
θsL −

rrθ+rθ∂
2
θr

(r2+r2θ)2
∂θsL

∂tsR = 1
r2+r2θ

∂2
θsR −

rrθ+rθ∂
2
θr

(r2+r2θ)2
∂θsR

sL(t, θ = π) = uL(t), sR(t, θ = 0) = uR(t),

∂θsL(t, θ = 0) = 0, ∂θsR(t, θ = π) = 0.

(2.37)

If we use the control given by formula (2.36) for both sources, we obtain a final manifold stretched

more in the vertical direction, i.e. r(T, π/2) > r(T, 0) = r(T, π), see Figure 2.10.
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Figure 2.10: Radius r (in blue) and signals sL (plotted as r + sL in red) and sR (plotted as r + sR
in green) for controls uL = uR = u3 at times t = 1, t = 3, t = 5 and t = 10.
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Part II

Social dynamics models
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Chapter 3

Achieving consensus: Optimal control

of a collective migration model

Introduction

A fascinating feature of large groups is their self-organization ability, i.e. the emergence from local

interaction rules of certain global patterns. For instance, animal groups such as schools of fish, flocks

of birds or herds of mammals exhibit strong coordination in their movements [7, 8, 18, 24, 25, 87, 88,

89, 103, 124, 128]. This collective behavior in animal groups also inspired applications to robotics

[9], in which the aim is to coordinate autonomous vehicles[23, 60, 74, 121] and flight formations

[91, 111]. Other interests concern models in microbiology [57, 58, 61, 90, 93], pedestrian and crowd

motions[29, 30] and financial markets [4, 37, 70]. Such systems are usually referred to as social

dynamics. Examples of self-organization include clustering of the agents, alignment of velocities, or

other kinds of equilibria [16, 50, 82, 87, 88, 89, 124]. This raises the question of understanding the

mechanisms behind the global pattern formation.

A well-known model was proposed by F. Cucker and S. Smale [31] to describe the phenomenon

of consensus in terms of alignment of velocities in a group on the move. The Cucker-Smale model

in formula is written as:
ẋi = vi

v̇i =
1

N

N∑
j=1

vj − vi
(1 + ‖xj − xi‖2)β

for i ∈ {1, ..., N}, (3.1)

where β > 0, and xi ∈ Rd and vi ∈ Rd are respectively the state and velocity. This model was

originally designed to describe the formation and evolution of language, and the variables vi can

more generally represent opinions, preferences or invested capital. The system converges to consensus
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if β ≤ 1
2 , which corresponds to a strong interaction even between distant agents [18, 18]. On the

other hand, if β > 1
2 , i.e. if the interaction is too weak, convergence to consensus only happens under

certain conditions. More generally, the term (1 + ‖xj − xi‖2)−β can be replaced by a(‖xj − xi‖).

Intuitively, it is natural to define a as a non-increasing function, since proximity often encourages

interaction. On the other hand, it was proven that interactions modeled by non-decreasing functions

a, called heterophilious, in fact enhance consensus [82]. When the system does not converge to a

desired state, a natural question is to study the possibility of steering it via controls functions ui, in

which case the second equation of (3.1) becomes: v̇i = 1
N

∑N
j=1 a(‖xj−xi‖)(vj−vi)+ui [17, 18, 39].

In the collective migration problem [75], not only do agents interact with one another to travel

as a group, but they also gather clues from the environment guiding them towards a global target

velocity. In the case of migrating birds, for instance, this velocity can be sensed through a magnetic

field, the direction of the sun, or environmental features. However, sensing the migration velocity

is costly, both in used time and energy. A trade-off thus occurs between gathering this information,

which ensures more precision, and following the group, which is less costly and saves time and

energy for other tasks such as surveying for predators [32, 48]. This problem also applies to the

field of robotics, in which gathering information from the environment is done at the expense of

communicating with other robots (or planes, drones, etc.) or performing other tasks, and to the

field of economics when one aims to influence decisions of a group based on limited information.

This trade-off naturally separates the group into leaders, who gather information, and followers,

who only interact with the other agents [48]).

We study a Collective Migration Model, where the agents’ dynamics is determined by two forces:

the attraction towards a target velocity V (which we assume can be sensed) and the consensus

dynamics as in the Cucker-Smale model. More precisely, each agent’s evolution is governed by a

parameter αi ∈ [0, 1] which provides the balance between the two forces. The system can be written

as: 
ẋi = vi

v̇i = αi(V − vi) + (1− αi)
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi)
for i ∈ {1, ..., N}, (3.2)

where xi ∈ Rd and vi ∈ Rd are the state and velocity, V ∈ Rd is the target velocity, and αi ∈ [0, 1]

is the control, with the constraint
∑
i αi ≤ M , M > 0. Here, we choose to set a ≡ 1, so that the

strength of interaction does not depend on the agents’ positions. This is a reasonable hypothesis for

instance if we consider groups of planes or drones that can communicate just as easily from great
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distances.

While the Cucker-Smale model leads to alignment of all velocities to the average one (when there

is consensus), the migration model tends to align all velocities to the preassigned target velocity. Our

work focuses on finding optimal control strategies in order to achieve consensus to the target velocity,

and in particular on selecting optimal controlled leaders among the agents when the control strength

M is small with respect to the size of the group. In order to do that, we define the cost function

Ṽ = 1
N

∑
i ‖vi − V ‖2, measuring the distance from consensus at the target velocity. We first show

that, given any M > 0, the strategy to decrease Ṽ instantaneously, with the constraint
∑
i αi ≤M ,

consists of distributing the control among the agents with the largest positive projections of velocities

along v̄−V (where v̄ is the mean velocity). In particular, if 〈vi, v̄−V 〉 < 0, the agent i is not controlled

(αi = 0).

We then study the optimal control strategy to minimize Ṽ at a fixed final time and first focus

on the case of two agents, with control bounded by M ∈ [0, 2]. The optimal control strategies

depend on M but, in all cases, we act with larger control on the agent with the largest projected

velocity. Furthermore, if the final time is too short to bring the agents together, then there are

initial conditions for which at first the system must evolve with no control (α ≡ 0). We call this

phenomenon “Inactivation", in line with the “Inactivation Principle" proven in [10] in the context

of arm movements. In this collaborative work with biologists, the authors prove that during fast

arm movements, it is optimal to simultaneously inactivate both agonistic and antagonistic muscles

for a short moment nearing the peak velocity. We next generalize our results to any number of

agents, but with the constraint M ≤ 1. Then the optimal control strategy acts with full strength

on a sub-group of agents to bring them together. Also in this case we observe “Inactivation", which

occurs when the initial average velocity v̄ is very close to the target velocity V . Indeed, driving

the system to V requires both achieving consensus and moving the average velocity towards V . If

the average velocity is already close to V , then we are left with inducing consensus which happens

naturally without control. However, simulations show that Inactivation is rare and its performance

gain is very minor compared to a full-control strategy.

Then we move on to examine integral costs
∫ T

0
Ṽ(t)dt and show that the optimal control strategy

never exhibits Inactivation. More precisely, we must use full control at all time splitting it evenly

among the agents with the biggest projected velocity. Such a strategy is more restrictive than that

with final cost, since the controls are completely determined by initial conditions, while previously

we could use any strategy bringing agents together at final time.

This chapter is organized as follows. In Section 3.1, we define the cost functional and make
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general observations. In Section 3.2, we determine the strategy to decrease it instantaneously in

time. Then, in Section 3.3, we introduce the optimal control problem to minimize the cost function

at a given final time. We solve it for the particular case of two agents (Section 3.4) before generalizing

to any number of agents with a control bounded by 1 (Section 3.5). Lastly we find optimal control

strategies to minimize the integral cost (Section 3.6).

3.1 Cost function and general observations

With no loss of generality, we set the target velocity V to zero. Having simplified the interaction

function a, system (3.2) reduces to:


ẋi = vi

v̇i = −αivi + (1− αi)
1

N

N∑
j=1

(vj − vi)
i ∈ {1, ..., N}. (3.3)

We set a final time T > 0. Then given M > 0, we define the set of controls UM as:

UM =
{
α : [0, T ]→ [0, 1]N

∣∣∣ α measurable, s.t. for all t,
N∑
i=1

αi(t) ≤M
}
. (3.4)

3.1.1 Projection of the Dynamics

Note that the dynamics (3.3) can be written in the more compact way:


ẋi = vi

v̇i = −vi + (1− αi) v̄,
(3.5)

where v̄ represents the mean velocity v̄ = 1
N

∑
i vi. The evolution of v̄ is given by ˙̄v = − 1

N (
∑
i αi)v̄,

so the direction of v̄ is an invariant of the dynamics. We begin by assuming that the initial average

velocity is different from the target one:

Hypothesis 1. v̄(0) 6= 0.

This first assumption is only made in order to render the problem interesting. Indeed, if v̄(0) = 0,

i.e. if the mean velocity is already at the target velocity V , then according to the evolution ˙̄v =

−(
∑
i αi)v̄, it would hold v̄(t) = 0 for all t ≥ 0. Then looking at Equation (3.5), we notice that

the system is not controllable and that each velocity decreases exponentially to zero. We can then
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define the invariant unit vector e = v̄
‖v̄‖ .

Let wi = vi − 〈vi, e〉 e be the projection of vi over (v̄⊥). Then

ẇi = −vi + (1− αi) v̄ − 〈−vi + (1− αi) v̄, e〉 e = −wi. (3.6)

Therefore the projection of vi over (v̄⊥) decreases exponentially, independently of the controls αi. Let

us now define ξi = 〈vi, e〉. Its evolution is given by: ξ̇i = −〈vi, e〉+(1−αi)〈v̄, e〉 = −ξi+(1−αi)‖v̄‖ =

−ξi + (1 − αi)ξ̄. In the following, we will only study the equations governing the evolution of the

projected variables ξi:

For all i ∈ {1, ..., N}, ξ̇i = −ξi + (1− αi)ξ̄, (3.7)

where ξ̄ = 1
N

∑
j ξj . This is a significant result: instead of studying a system evolving in RNd, we

consider a system in RN , thus greatly reducing the complexity of theoretical and numerical analyses.

Hereafter we shall make the following hypothesis:

Hypothesis 2. ξi(0) ≥ ξi+1(0) for every i ∈ {1, ..., N − 1}.

This assumption allows us to order the initial projected velocities without loss of generality.

Proposition 3.1.1.

Having made Hyp. 1 and Hyp. 2, it holds v̄(t) 6= 0 and ξ̄(t) > 0 for all t ∈ [0, T ].

Furthermore, let τ ∈ [0, T ]. If ξi(τ) ≥ 0, then ξi(t) ≥ 0 for all t ∈ [τ, T ]. If ξi(τ) > 0, then ξi(t) > 0

for all t ∈ [τ, T ].

Proof. The proposition is mainly a consequence of Gronwall’s inequality: It holds

ξ̄ =
1

N

∑
j

〈vj ,
v̄

‖v̄‖〉 = 〈v̄, v̄

‖v̄‖〉 = ‖v̄‖ (3.8)

and

˙̄ξ = − 1

N

(∑
i=1

αi

)
ξ̄ ≥ −M

N
ξ̄.

Hence, if v̄(0) 6= 0 and therefore ξ̄(0) > 0, then ξ̄(t) ≥ e−Mt/N ξ̄(0) > 0 and thus v̄(t) 6= 0 for all

t ∈ [0, T ]. Now notice that from (3.7) we can compute for all t ∈ [τ, T ]: ξi(t) = e−(t−τ)(ξi(τ)+
∫ t
τ
(1−

αi)(s)ξ̄(s)e
s−τds), so ξi(t) ≥ e−(t−τ)ξi(τ), which proves the second part of the proposition.



74

3.1.2 Migration functional

We introduce the functional

Ṽ =
1

N

N∑
i=1

‖vi − V ‖2, (3.9)

which measures the distance from consensus at the desired velocity V . Since we set V = 0, Ṽ reduces

to: Ṽ = 1
N

∑
i ‖vi‖2. In the new projected coordinates ξ, the migration functional can be written

as: Ṽ = 1
N

∑
i(‖wi‖2 + ξ2

i ), where only the second term ξ2
i can be controlled. Hence, here onward

we will only consider the controllable part of Ṽ, which we denote V:

V =
1

N

N∑
i=1

ξ2
i . (3.10)

Notice that V can be written as a sum of two terms:

V = ξ̄2 +
1

N

N∑
i=1

(ξi − ξ̄)2, (3.11)

which should be minimized simultaneously (where we remind that ξ̄ = 1
N

∑
i ξi). Minimizing ξ̄2

(or ξ̄, since according to Proposition 3.1.1, ξ̄ > 0) corresponds to steering the system as a whole to

the desired velocity V = 0. On the other hand, minimizing 1
N

∑
i(ξi − ξ̄)2 corresponds to driving

the system to consensus. However, the dynamics (3.7) of ξi show that if ξi < 0, decreasing ξ̄ slows

down the increase of ξi, resulting in a possible increase of (ξi − ξ̄)2. Hence, minimizing V requires

balancing the decrease of the two terms in (3.11).

3.1.3 Minimization problems

In the following sections, we will deal with the minimization of different quantities, in order to design

a strategy for consensus at the migration velocity V = 0. Having fixed the final time T a priori, we

address three problems:

(i) The minimization of dVdt , i.e. the maximization of the instantaneous decrease of V (see Section

3.2).

(ii) The minimization of the final cost V(T ) (see Sections 3.3, 3.4 and 3.5).

(iii) The minimization of the integral cost
∫ T

0
V(t)dt (see Section 3.6).

In order to minimize (ii) V(T ) and (iii)
∫ T

0
V(t)dt, we will design an optimal control strategy

using Pontryagin’s maximum principle. The minimization of V̇, on the other hand, will not provide
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an optimal control.

3.2 Instantaneous Decrease

In this section we look for a control strategy maximizing the instantaneous decrease of V. Strategies

designed in this way are not optimal (in general), but are easier to study and can give a first good

insight on the problem. Indeed, we will later compare the instantaneous decrease strategy to the

optimal control strategies developed in Sections 3.5 and 3.6.

The time derivative of the migration functional V is given by:

V̇ =
2

N

N∑
i=1

ξiξ̇i =
2

N

(
N∑
i=1

−ξ2
i +

N∑
i=1

(1− αi)ξ̄ξi
)

= −2V +
2

N
ξ̄

N∑
i=1

(1− αi)ξi. (3.12)

Since ξ̄ ≥ 0, minimizing V̇ amounts to the following problem:

Find min
N∑
i=1

(1− αi)ξi, (3.13)

which can be done as follows (where bMc and dMe respectively denote the floor and the ceiling of

M , and | · | denotes the cardinality of a set):

Proposition 3.2.1. Suppose that ξ1(t) ≥ ... ≥ ξN (t) (or re-arrange the agents so that this is satis-

fied). Then the following strategy minimizes d
dtV at time t:

Define I+(t) = {i ∈ {1, .., N}, ξi(t) > 0}.

If |I+(t)| ≤M , then set αi(t) = 1 if i ∈ I+ and αi(t) = 0 otherwise.

If |I+(t)| > M and ξdM−1e > ξdMe > ξdM+1e then set αi(t) = 1 if i ≤ bMc, αbMc+1(t) = M − bMc

and αi(t) = 0 otherwise.

If |I+(t)| > M and ξdM−1e = ξdMe or ξdMe = ξdM+1e, let IdMe = {i ∈ {1, ..., N}, ξi(t) = ξdMe(t)}

and I∗dMe = {1, ..., dMe} \ IdMe . Then set αi(t) = 1 if i ∈ I∗dMe, αi(t) =
M−|I∗dMe|
|IdMe|

if i ∈ IdMe and

αi(t) = 0 otherwise.

3.3 Optimal control for final cost

In this section, we focus on problem (ii) (see Section 3.1.3), i.e. minimizing the migration functional

V at final time T using Pontryagin’s maximum principle.
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Let us compute the Hamiltonian H of the scalar system (3.7):

H =

N∑
i=1

λi
(
−ξi + (1− αi)ξ̄

)
= −ξ̄

N∑
i=1

αiλi +

N∑
i=1

λi
(
−ξi + ξ̄

)
. (3.14)

By Pontryagin’s maximum principle,[99] if α ∈ UM , associated with the trajectory ξ, is optimal on

[0, T ], then there exists λ : [0, T ]→ RN such that ξ̇ = ∂H
∂λ and λ̇ = −∂H∂ξ . Furthermore the following

minimization condition holds for almost all t ∈ [0, T ]:

H(t, ξ(t), λ(t), α(t)) = min
β∈UM

H(t, ξ(t), λ(t), β(t)). (3.15)

Since ξ̄ ≥ 0, minimizing H requires to set αi = 1 on the biggest positive λi. The differential equation

for the covectors λi gives:

λ̇i = −∂H
∂ξi

=
1

N

N∑
j=1

αjλj − λ̄+ λi, i ∈ {1, ..., N}. (3.16)

From this we can also compute the evolution of λ̄ = 1
N

∑
i λi:

˙̄λ =
1

N

N∑
j=1

αjλj . (3.17)

Since the final condition for ξ is not fixed, the final condition for λ at time T gives:

λ(T ) = ∇V(ξ(T )) =

(
2

N
ξ1(T ), ...,

2

N
ξN (T )

)
. (3.18)

Proposition 3.3.1. If t̄ > 0, i, j ∈ {1, ..., N} , and λi(t̄) = λj(t̄), then λi(t) = λj(t) for all t. In

this case, for a given control α, any control α̃ satisfying α̃i + α̃j = αi + αj and α̃k = αk for every

k 6= i, j gives the same evolution of λ. If the control α satisfies the Pontryagin Maximum Principle,

then the control α̃ also does.

Proof. Assume that at time t̄, λi(t̄) = λj(t̄). Let us define zij = λi − λj . The evolution of zij is

given by: żij = λ̇i − λ̇j = λi − λj = zij . Hence, zij(t) = zij(t̄)e
t−t̄, and if zij(t̄) = 0, then for all t,

zij(t) = 0, i.e. λi(t) = λj(t). From this it follows that if α minimizes the Hamiltonian H, then any

control α̃ satisfying α̃i + α̃j = αi + αj and α̃k = αk also minimizes H, since one easily sees from

(3.14) that Hα = H α̃ (where we denote by Hα the Hamiltonian obtained with the control function

α).
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Still assuming that the projected velocities are initially ordered (Hypothesis 2), the following

lemma will allow us to further assume that they are ordered at all time.

Lemma 3.3.1.

There exists an optimal strategy satisfying the following: For all t ∈ [0, T ],

If i < j, then ξi(t) ≥ ξj(t). (3.19)

Proof. Consider an optimal control strategy α ∈ UM .

Define τ = sup{t ∈ [0, T ]; ∃β ∈ UM s.t. Vβ(T ) = Vα(T ) and ξβ satisfies (3.19) on [0, t]}, where Vβ

and ξβ denote respectively the migration functional and the dynamics driven by the control β. Let

us prove by contradiction that τ = T . Suppose that τ < T . Then there exist i, j ∈ {1, ..., N} with

i < j such that ξβi (τ) = ξβj (τ) and ξβj (t) > ξβi (t) on ]τ, τ+δ] for some δ > 0. Design a control strategy

β̃ such that on [τ, T ], β̃i = βj , β̃j = βi and for every k ∈ {1, ..., N}\{i, j}, β̃k = βk. Then for all t ∈

[τ, T ], ξβ̃i (t) = ξβj (t), and ξβ̃j (t) = ξβi (t). So for all t ∈ [τ, τ + δ], ξβ̃i (t) ≥ ξβ̃j (t) and Vβ̃(T ) = Vβ(T ).

Proceeding likewise for every pair of indices (m,n) satisfying m < n and ξβm(t) < ξβn(t) on ]τ, τ + δ]

we are able to design a control strategy β̃ satisfying (3.19) on [0, τ + δ] and Vβ̃(T ) = Vα(T ), which

contradicts the definition of τ . In conclusion, τ = T , i.e. for all t ∈ [0, T ], for every i, j ∈ {1, ..., N},

if i < j then ξi(t) ≥ ξj(t).

Hence, from here onward we shall assume that the variables ξi are ordered at all time.

Hypothesis 3. If i < j, then ξi(t) ≥ ξj(t) for all t ∈ [0, T ].

From Hyp.3 and the transversality condition (3.18), we know that the covectors are ordered at final

time, i.e. λ1(T ) ≥ ... ≥ λN (T ). From Prop. 3.3.1, we can generalize this for any time t:

λ1(t) ≥ ... ≥ λN (t) for all t ∈ [0, T ]. (3.20)

The Pontryagin Maximum Principle allows us to state the following:

Proposition 3.3.2. The optimal strategy requires controlling the agents with the biggest positive

covectors. Let α ∈ UM be an optimal strategy and λi, i ∈ {1, ..., N} the corresponding covectors.

Define:

Iλ(t) :=
{
i ∈ {1, ..., N}

∣∣∣ λi(t) ≥ 0
}

and I+
λ (t) :=

{
i ∈ {1, ..., N}

∣∣∣ λi(t) > 0
}
. (3.21)
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If the set Iλ(t) is empty, then there is no control on any agent: αi(t) = 0 for every i.

If the set I+
λ (t) is not empty, then there exists i ∈ I+

λ (t) such that αi(t) > 0. Furthermore,
∑
j αj ≥

min(|I+
λ (t)|,M).

Proof. According to Pontryagin’s maximum principle (3.15), if the control α is optimal, then it

minimizes the Hamiltonian H (3.14) for almost all t ∈ [0, T ]. The only controllable part of H is

H̃ = −ξ̄∑i αiλi. Minimizing H requires controlling the largest positive λi with the maximum

strength allowed, while setting αi = 0 if λi < 0. If λi = 0, Pontryagin’s maximum principle gives no

information on αi.

This leads to a trichotomy of cases.

• The biggest positive λi’s are always controlled with maximum control:
∑
i∈I+λ

αi = min(|I+
λ |,M).

• If for i, j, λi and λj coincide (at a certain time, which implies at all time) then αi and αj are

under-determined. The PMP only requests that αi + αj = c where c is given by the strength

of the control to be used on the two agents.

• The negative λi’s are never controlled: if λi < 0, then αi = 0.

Remark 3.3.1. The existence of an optimal control for the problem described above is ensured by

the convexity of the sets F (t, ξ) = {
(
ξi + (1− αi)ξ̄

)
i=1...N

, α ∈ [0, 1]N ,
∑
i αi ≤M}.[14]

3.4 Final cost with two agents

For a clearer understanding of the mechanisms taking place, we consider the simple case of two

agents in Rd. We consider the sets of controls UM , where 0 < M ≤ 2. Thus, system (3.7) becomes:


ξ̇1 = −ξ1 + (1− α1) ξ̄

ξ̇2 = −ξ2 + (1− α2) ξ̄.

(3.22)

Computing the difference of the two projected variables will also prove useful:

ξ̇1 − ξ̇2 = −(ξ1 − ξ2)− (α1 − α2)ξ̄. (3.23)

Three different situations may arise, depending on the value of the constraint on the control. Indeed,

two constraints are set: α1 + α2 ≤ M , and 0 ≤ αi ≤ 1 for i = 1, 2. We differentiate the cases (a)

0 < M ≤ 1, (b) 1 < M < 2 and (c) M = 2.
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3.4.1 Pontryagin’s Maximum Principal

Notice that the migration functional can be written as:

V =
1

2
(ξ2

1 + ξ2
2) =

1

4

(
(ξ1 + ξ2)2 + (ξ1 − ξ2)2

)
= ξ̄2 +

(
ξ1 − ξ2

2

)2

, (3.24)

once again emphasizing the necessary trade-off between two terms: the mean velocity ξ̄ and the

distance between the agents |ξ1 − ξ2|. Computing the Hamiltonian of the system gives:

H(t, ξ, λ, α) = −ξ̄ (α1λ1 + α2λ2) +
ξ2 − ξ1

2
(λ1 − λ2). (3.25)

In line with Hyp. 2, two cases are possible: ξ1(0) = ξ2(0) or ξ1(0) > ξ2(0). The following

proposition deals with the first case.

Proposition 3.4.1. If ξ1(0) = ξ2(0), then a control strategy α is optimal if and only if it satisfies

α1 + α2 ≡M and ξ1(T ) = ξ2(T ).

Proof. Consider the control given by α̃1 ≡ α̃2 ≡ M
2 . It achieves [ 1

2 (ξ1(T )− ξ2(T ))]2 = 0 and ensures

the maximal decrease of ξ̄2, thus is optimal for the minimization of V(T ) (3.24). Still from (3.24),

a control α is optimal if and only if it achieves [ 1
2 (ξ1(T ) − ξ2(T ))]2 = 0, which is equivalent to

ξ1(T ) = ξ2(T ), and ensures the maximal decrease of ξ̄2, which is equivalent to α1 + α2 ≡M .

Hence, the case ξ1(0) = ξ2(0) is fully understood. In the following, we will deal with more

complex cases by assuming:

Hypothesis 4. ξ1(0) > ξ2(0).

Before studying each case in detail, we give general considerations on the relation between the

control α and λ:

(a) If M ≤ 1, minimizing H (i.e. maximizing 〈λ, α〉) gives (see Fig.3.1a): (α1, α2) = (M, 0) if

0 < λ2 < λ1; (α1, α2) = (M/2,M/2) if 0 < λ2 = λ1; (α1, α2) = (M, 0) if λ2 < 0 < λ1;

(α1, α2) = (0, 0) if λ2 < 0 and λ1 < 0.

(b) If 1 < M < 2, minimizing H gives (see Fig.3.1b): (α1, α2) = (1,M − 1) if 0 < λ2 < λ1;

(α1, α2) = (M/2,M/2) if 0 < λ2 = λ1; (α1, α2) = (1, 0) if λ2 < 0 < λ1; (α1, α2) = (0, 0) if

λ2 < 0 and λ1 < 0.

(c) If M ≥ 2, minimizing H gives (see Fig.3.1c): (α1, α2) = (1, 1) if 0 < λ2 ≤ λ1; (α1, α2) = (1, 0)

if λ2 < 0 < λ1; (α1, α2) = (0, 0) if λ2 < 0 and λ1 < 0.
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Notice that in all three cases, if λ1 = λ2, then the Pontryagin maximum principle does not give

sufficient information since any combination of α1 and α2 such that α1 + α2 = M minimizes the

scalar product −〈λ, α〉 (see Figure 3.1).

(a) Case M ≤ 1 (b) Case 1 < M < 2 (c) Case M ≥ 2

Figure 3.1: Minimizing −〈λ, α〉

The dynamics for λ are given by λ̇ = −∇H =

 1+α1

2 λ1 − 1−α2

2 λ2

1+α2

2 λ2 − 1−α1

2 λ1

, which allows us to compute

the evolution of the difference λ1 − λ2:

d

dt
(λ1 − λ2) = λ1 − λ2. (3.26)

The transversality conditions give: λ(T ) = ∇V(T ) = (ξ1(T ), ξ2(T ))
T . Hence, if the final configura-

tion is such that ξ1(T ) 6= ξ2(T ), i.e. λ1(T ) 6= λ2(T ), the difference λ1 − λ2 increases with time. On

the other hand, if λ1(T ) = λ2(T ), then ∀t ≤ T, λ1(t) = λ2(t). If the dynamics allow us to drive ξ1

and ξ2 together before time T , then λ1(t) = λ2(t) for all t, and the Pontryagin maximum principle

does not give sufficient information, as seen above.

3.4.2 Global Strategy

According to equation (3.24), the functional V can be written as:

V = ξ̄2 +
(ξ1 − ξ2)2

4
. (3.27)

Minimizing V requires minimizing ξ̄ and (ξ1 − ξ2)2 simultaneously. The evolution of ξ̄ is given by:

˙̄ξ = −1

2
(α1 + α2) ξ̄, (3.28)
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while that of (ξ1 − ξ2)2 is:

d

dt

(
(ξ1 − ξ2)2

)
= −2(ξ1 − ξ2)2 − 2(ξ1 − ξ2)ξ̄(α1 − α2). (3.29)

Thus, minimizing ξ̄2 (both instantaneously and globally) requires using full control, i.e. setting

α1 + α2 = M . On the other hand, the strategy to minimize (ξ1 − ξ2)2 is less clear. It would require

both maximizing ξ̄ and maximizing the difference α1 − α2 (assuming that ξ1 − ξ2 ≥ 0), and these

conditions might not be compatible.

3.4.3 Case M = 1

Theorem 3.4.1.

Let T > 0 and let M = 1. Furthermore, let α = (α1, α2) ∈ U1 (see (3.4)) be an optimal control and

ξ be the corresponding trajectory of system (3.22). Define t0 = 2 ln(ξ1(0)/ξ̄(0)). Then

(i) T ≥ t0 if and only if ξ1(T ) = ξ2(T ). In such a case, the control satisfies: α1 + α2 ≡ 1

(so ξ̄(t) = ξ̄(0)e−t/2). For instance, the strategy (α1, α2)(t) = (1, 0) for all t ∈ [0, t0[ and

(α1, α2)(t) = (1/2, 1/2) for all t ∈ [t0, T ] is optimal.

(ii) If T < t0, then α(t) = (0, 0) for all t ∈ [0, t∗[ and α(t) = (1, 0) for all t ∈ [t∗, T ], where

t∗ = 2 ln(X̄) and X̄ ∈ [1, eT/2[ is defined as follows:

X̄ = arg min
X∈[1,eT/2]

[
(
ξ1(0) + ξ̄(0)(X2 − 1)

)2
+(

ξ2(0) + ξ̄(0)(X2 − 1) + 2ξ̄(0)X(eT/2 −X)
)2

].

(3.30)

Proof. Let ξ be an optimal trajectory achieved with optimal control α.

To prove (i), we shall show that the three statements (a) T ≥ t0, (b) there exists t ∈ [0, T ] such that

ξ1(t) = ξ2(t) and (c) ξ1(T ) = ξ2(T ) are equivalent.

Suppose (b) there exists τ ∈ [0, T ] such that ξ1(τ) = ξ2(τ). Then necessarily ξ1(T ) = ξ2(T ).

Indeed, suppose that ξ1(T ) 6= ξ2(T ). Then any strategy α̃ such that on [0, τ ], α̃ = α and on

]τ, T ], (α̃1, α̃2) = (α1+α2

2 , α1+α2

2 ) achieves: ¯̃
ξ(T ) = ξ̄(T ) and (ξ̃1 − ξ̃2)2(T ) = 0 < (ξ1 − ξ2)(T )

(where ξ̃, Ṽ denote the trajectory and cost corresponding to α̃), so according to equation (3.27),

Ṽ(T ) < V(T ) and control strategy α cannot be optimal. Hence, ξ1(T ) = ξ2(T ).

Now suppose (c) ξ1(T ) = ξ2(T ). The transversality condition (3.18) gives λ1(T ) = λ2(T ) and

from Proposition 3.3.1 we get: λ1(t) = λ2(t) for all t ∈ [0, T ]. Then, ˙̄λ =
∑
αiλi = (

∑
αi)λ̄.

Since ξ̄(T ) > 0, the transversality condition (3.18) gives: λ̄(T ) > 0, and λ̄(t) = λ1(t) = λ2(t) > 0
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for all t ∈ [0, T ]. Therefore, the set Iλ, see (3.21), is not empty, so according to Proposition

3.3.2, the optimal control strategy requires using maximal control strength: α1 + α2 ≡ 1. Accord-

ing to equation (3.28), this suffices to fully determine ξ̄(t) = ξ̄(0) e−t/2. Then ξ1(t) − ξ2(t) =

e−t
(

(ξ1 − ξ2)(0)− ξ̄(0)
∫ t

0
(α1 − α2)es/2ds

)
, and ξ1(t) − ξ2(t) = 0 if, and only if,

∫ t
0
es/2(α1 −

α2)(s)ds = (ξ1(0) − ξ2(0))/ξ̄(0). Notice that min(α1,α2)∈U1{t | (ξ1 − ξ2)(t) = 0} is obtained when

α1 − α2 is maximal, i.e. for (α1, α2) ≡ (1, 0). With this strategy, min(α1,α2)∈U1{t | (ξ1 − ξ2)(t) =

0} := t0 = 2 ln(ξ1(0)/ξ̄(0)). Hence, we must have: T ≥ t0.

Lastly, suppose (a) T ≥ t0. Design a strategy α̃ so that for all t < t0, (α̃1, α̃2) = (1, 0) and for

all t ≥ t0, (α̃1, α̃2) = (1/2, 1/2). This strategy is optimal since it maximizes the decrease of ¯̃
ξ, see

(3.28), and achieves (ξ̃1 − ξ̃2)(T ) = 0, see (3.29). Hence, our optimal strategy α must also satisfy:

ξ1(T ) = ξ2(T ) and α1 + α2 ≡ 1. This proves (b).

We showed that (a), (b) and (c) are equivalent. We thus proved the first part of the proposition:

T ≥ t0 if and only if ξ1(T ) = ξ2(T ). In this case, it also holds: α1 + α2 ≡ 1.

If on the other hand, (ii) T < t0, then ξ1(t) > ξ2(t) for all t ∈ [0, T ] (since (b) implies (a)). According

to condition (3.18) and to Prop. 3.3.1, λ1(t) > λ2(t) for all t ∈ [0, T ] and λ1(T ) > 0. The evolution

of λ1 is given by: λ̇1 = 1
2 (α1λ1 + α2λ2) + λ1 − λ̄ > 0 since λ1 > λ̄. Hence, two cases must be

distinguished: either λ1 > 0 at all time, so the set I+
λ is non-empty and full control will be used at

all time, or there exists t∗ ∈]0, T [ such that λ1 < 0 on [0, t∗[, λ1(t∗) = 0 and λ1 > 0 on ]t∗, T ], in

which case α = (0, 0) on [0, t∗[ and α = (1, 0) on ]t∗, T ]. Knowing this, it is easy to express ξ1, ξ2

and V as functions of t∗:

∀t ∈ [t∗, T ],


ξ1(t) = e−t(ξ1(0) + ξ̄(0)(et

∗ − 1))

ξ2(t) = e−t(ξ2(0) + ξ̄(0)(et
∗ − 1) + 2ξ̄(0)et

∗/2(et/2 − et∗/2))

V(t) = ξ2
1(t) + ξ2

2(t)

. (3.31)

Denoting X = et
∗/2, V(T ) can be written as a biquadratic polynomial in X:

V(T )(X) = e−2T
[ (
ξ1(0) + ξ̄(0)(X2 − 1)

)2
+(

ξ2(0) + ξ̄(0)(X2 − 1) + 2ξ̄(0)X(eT/2 −X)
)2 ]

.

(3.32)

We look for X̄ minimizing V(T )(X) in the interval [1, eT/2] (so that t∗ ∈ [0, T ]). Notice that the

leading term is 2e−2T ξ̄(0)2 ·X4. Hence, there are at most two local minima in the interval [1, eT/2].

Furthermore, V(T )(1) = e−2T
[
ξ1(0)2 + (ξ2(0) + 2ξ̄(0)(eT/2 − 1))2

]
and V(T )(eT/2) = e−2T [(ξ1(0)+
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ξ̄(0)(eT/2 − 1))2 + (ξ2(0) + ξ̄(0)(eT − 1))2], so V(T )(1) < V(T )(eT/2), which means that X̄ < eT/2.

If X̄ = 1, then t∗ = 0 so it is optimal to act with control (1, 0) on the full interval [0, T ]. If

1 < X̄ < eT/2, then 0 < t∗ < T . The optimal control strategy will require leaving the system to

evolve without control on [0, t∗[, and acting with control α = (1, 0) on [t∗, T ].

Remark 3.4.1. The existence of an initial “Inactivation" period can be proven also with any number

of agents (see Theorem 3.5.3). Numerical simulations with any number of agents (see Section 3.5.2)

show that in some cases it is indeed optimal to let the system evolve without control on an initial

time interval [0, t∗], where t∗ > 0.

3.4.4 Case M < 1

Generalizing to the case of any M < 1, we conduct the same analysis and the optimal control

strategy is similar.

Theorem 3.4.2. Let T>0 and M<1. Let α = (α1, α2) ∈ UM (see (3.4)) be an optimal control and ξ

be the corresponding trajectory of system (3.22). Define t0 = 2
2−M ln

(
2−M
2M (ξ1(0)− ξ2(0))/ξ̄(0) + 1

)
.

Then

(i) T ≥ t0 if and only of ξ1(T ) = ξ2(T ). In this case, the control satisfies: α1 + α2 ≡ M (so

ξ̄(t) = ξ̄(0)e−Mt/2).

(ii) If T < t0, then there exists t∗ ∈ [0, T [ such that α(t) = (0, 0) for all t ∈ [0, t∗[ and α(t) = (1, 0)

for all t ∈ [t∗, T ].

Remark 3.4.2. To compute t∗ ∈ [0, T [ in the case T < t0, one can compute V(T )(et
∗/2) depending

on t∗ ∈ [0, T ] similarly to the case M = 1.

Proof. Let ξ be an optimal trajectory achieved with optimal control α ∈ UM . We argue as in the

case M = 1.

To prove (i), first suppose that there exists τ ∈ [0, T ] such that ξ1(τ) = ξ2(τ). Then, as in the case

M = 1, necessarily it holds ξ1(T ) = ξ2(T ) and any strategy achieving ξ1(T ) = ξ2(T ) while using

maximum control α1 + α2 ≡ M is optimal. Then ξ1(t) − ξ2(t) = 0 ⇔
∫ t

0
e

2−M
2 s(α1 − α2)(s)ds =

(ξ1(0) − ξ2(0))/ξ̄(0). Hence, minα∈UM {t | (ξ1 − ξ2)(t) = 0} is obtained when α1 − α2 is maximal,

i.e. for (α1, α2) ≡ (M, 0). With this strategy, minα∈UM {t | (ξ1 − ξ2)(t) = 0} = t0 as defined above.

Hence, if there exists τ ≤ T such that ξ1(τ) = ξ2(τ), then T ≥ t0. This proves the first implication

of the proposition: if ξ1(T ) = ξ2(T ), then T ≥ t0.
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Conversely, if T ≥ t0, then the strategy (α̃1, α̃2) = (M, 0) on [0, t0[ and (α̃1, α̃2) = (M2 ,
M
2 ) on

[t0, T ] is optimal since it minimizes ¯̃
ξ(T ) and achieves ξ̃1(T ) = ξ̃2(T ). Hence, if α is optimal, it must

also satisfy α1 + α2 ≡M and ξ1(T ) = ξ2(T ), which proves the second implication.

Now assume (ii) T < t0. From (i) we get: ξ1(t) > ξ2(t) for all t ∈ [0, T ]. One can then argue as

in the case M = 1. According to Pontryagin’s Maximum Principle, α2 ≡ 0 and two cases have to

be distinguished: either λ1 > 0 at all time, so the set I+
λ (see (3.21)) is non-empty and full control

will be used at all time, or there exists t∗ ∈]0, T [ such that λ1 < 0 on [0, t∗[, λ1(t∗) = 0 and λ1 > 0

on ]t∗, T ], in which case α = (0, 0) on [0, t∗[ and α = (M, 0) on ]t∗, T ].

Remark 3.4.3. Notice that in the limit caseM → 1 of Theorem 3.4.2, one finds the same expression

for t0 as in Theorem 3.4.1.

3.4.5 Case M = 2

In order to determine the optimal strategy, let us first study the evolution of the covectors λ. From

ξ1(T ) ≥ ξ̄(T ) > 0 (see Prop. 3.1.1 and Hyp. 3) and the transversality condition (3.18), we get

λ1(T ) > 0.

Proposition 3.4.2. Let M = 2 and λ1 and λ2 be the covectors corresponding to an optimal control

strategy for the system (3.22). Then they satisfy the following properties:

(i) If λ2(T ) > 0, then λ1(t) > 0 and λ2(t) > 0 for all t ∈ [0, T ].

(ii) If λ2(T ) = 0, then λ1(t) > 0 and λ2(t) = 0 for all t ∈ [0, T ].

(iii) If λ2(T ) < 0, then λ2(t) < 0 for all t ∈ [0, T ].

Proof.

(i) Let λ2(T ) > 0. Suppose that there exists τ ∈ [0, T [ such that λ2(τ) = 0 and λ2(t) > 0 for

all t ∈]τ, T ]. Then since λ1 ≥ λ2 > 0 on ]τ, T ], according to Pontryagin’s maximum principle (see

Section 3.4.1), (α1, α2) ≡ (1, 1) on ]τ, T ], which gives the following evolutions: λ̇1 = λ1 and λ̇2 = λ2.

Hence, λ2(τ) = λ2(T )eτ−T > 0, which contradicts the definition of τ . Therefore, λ2(t) > 0 for all

t ∈ [0, T ], and by (3.20), λ1(t) > 0 .

(ii) Let λ2(T ) = 0. Let τ := inf [0,T ]{t̄ ∈ [0, T ] s.t. λ2(t) = 0 for all t > t̄} and suppose that τ > 0.

By definition of τ , λ2(τ) = 0. Since λ1(t) > λ2(t) for all t (see Prop. 3.3.1), there exists an interval

[τ − δ, τ [ on which λ1 > 0 and either λ2 > 0 or λ2 < 0. If λ2(t) > 0 for all t ∈ [τ − δ, τ [, then
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according to Pontryagin’s maximum principle (Section 3.4.1), the control satisfies α1(t) = α2(t) = 1,

which gives: λ̇2(t) = λ2(t) > 0. So λ2(τ) > 0, which contradicts the definition of τ . If on the other

hand λ2(t) < 0 for all t ∈ [τ − δ, τ [, then α2(t) = 0 and λ̇2(t) = 1
2λ2(t) < 0, which is impossible since

it implies λ2(τ) < 0. Hence, τ = 0. Furthermore, since λ1(T ) > 0 and λ2 ≡ 0, then λ̇1 = λ1 in a

neighborhood of T , which ensures that λ1(t) > 0 for all t ∈ [0, T ] (by the same reasoning as in (i)).

(iii) Let λ2(T ) < 0. Define τ := inf [0,T ]{t̄ ∈ [0, T ] s.t. λ1(t) > 0 and λ2(t) < 0 for all t > t̄}.

Then on ]τ, T ], as seen in Section 3.4.1, α1 ≡ 1 and α2 ≡ 0, which gives: λ2(t) = λ2(τ)eT−τ .

Since λ2(T ) < 0, it follows that λ2(τ) < 0. Hence, either τ = 0 or λ1(τ) = 0. Notice that since

λ1(t) > λ2(t) for all t, λ1 is strictly increasing (see (3.16)). Then the former case implies that

λ2(t) < 0 for all t ∈ [0, T ]. In the latter case, we get that λ2(t) < 0 for all t ≤ τ .

This information about the covectors allows us to solve the optimization problem based on the

initial conditions and the final time. Recall from Proposition 3.1.1 that ξ1(0) > 0.

Theorem 3.4.3. Let M=2. Let (α1, α2) ∈ U2 be an optimal control strategy and ξ be the corre-

sponding trajectory for system (3.22). Define t0 = 2 ln
(
ξ1(0)/(2ξ̄(0))

)
.

(i) If ξ2(0) > 0, then (α1, α2) ≡ (1, 1).

(ii) If ξ2(0) ≤ 0 and T ≥ t0, then ξ2(T ) = 0 and α1 ≡ 1. For instance the strategy (α1, α2) = (1, 0)

for all t ∈ [0, t0[ and (α1, α2) = (1, 1) for all t ∈ [t0, T ] is optimal. Furthermore, if there exists

t̄ ∈ [0, T [ such that ξ2(t̄) = 0, then ξ2(t) = 0 for all t ∈ [t̄, T ].

(iii) If ξ2(0) ≤ 0 and T < t0, then there exists t∗ ∈ [0, T [ such that α(t) = (0, 0) for all t ∈ [0, t∗[

and α(t) = (1, 0) for all t ∈ [t∗, T ].

Proof. Let (α1, α2) be an optimal control strategy and ξ be the corresponding trajectory.

(i) Let ξ2(0) > 0. According to Prop. 3.1.1, for all t ∈ [0, T ] it holds ξ1(t) > 0 and ξ2(t) > 0.

Then λ1(T ) > 0 and λ2(T ) > 0. From Prop. 3.4.2 it follows that λ1(t) > 0 and λ2(t) > 0 for all

t ∈ [0, T ]. According to the PMP (see Section 3.4.1), maximal control has to be used at all time, i.e.

(α1, α2)(t) = (1, 1) for all t ∈ [0, T ].

For cases (ii) and (iii), let ξ2(0) ≤ 0. By Prop. 3.1.1 it holds ξ1(t) > 0 for all t ∈ [0, T ]. Suppose

that ξ2(T ) > 0. Then from Prop. 3.4.2 we get λ1(t) ≥ λ2(t) > 0 for all t ∈ [0, T ], so (α1, α2) ≡ (1, 1).

But with this strategy ξ̇2 = −ξ2, so ξ2(t) = ξ2(0)e−t ≤ 0 for all t ∈ [0, T ], which contradicts

ξ2(T ) > 0. Hence ξ2(T ) ≤ 0.

(ii) First assume that T ≥ t0. Let us show that ξ2(T ) = 0 and α1 ≡ 1. Such a strategy exists,

since for instance the control (β1, β2)(t) = (1, 0) for t ∈ [0, t0[ and (β1, β2)(t) = (1, 1) for t ∈ [t0, T ]
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achieves ξβ2 (t) = 0 for all t ∈ [t0, T ] (where ξβ denotes the trajectory corresponding to the control

strategy β) – by direct computation of (3.22). Suppose that ξ2(T ) < 0. Then α cannot be optimal

since the control strategy β achieves the minimum of ξβ1 (T )2, see (3.22), and of ξβ2 (T )2 and therefore

the minimum of V(T ) = ξβ1 (T )2 + ξβ2 (T )2. Hence α must satisfy α1 ≡ 1 and ξ2(T ) = 0 in order

to perform as well as β. Obviously, all strategies that achieve ξ2(T ) = 0 with α1 ≡ 1 achieve the

same final positions (see (3.22)) and thus have the same V(T ). Furthermore, if there exists a t̂ < T

such that ξ2(t̂) = 0, then ξ2(t) = 0 for all t ∈ [t̂, T ]: if ξ2(t̄) = 0, then ξ̇2(t̄) = (1 − α2)ξ̄(t̄) ≥ 0

and therefore ξ2 cannot become negative, once it reaches 0. On the other hand, if ξ2(t) > 0, then

ξ2(T ) > 0 by Prop. 3.1.1.

(iii) Assume now that T < t0. Firstly, we show that an optimal strategy (by PMP) always achieves

ξ2(T ) < 0. We argue by contradiction: Assume that ξ2(T ) = 0. Then λ1(T ) > 0 and λ2(T ) = 0

and, according to Proposition 3.4.2, it follows that λ1(t) > λ2(t) = 0 for all t ∈ [0, T ]. According

to the PMP, α1 ≡ 1. Then the growth of ξ2 is maximal if, and only if, α2 ≡ 0 since in this case ξ̄

is maximal. But with this strategy ξ2 cannot reach 0 before t0 – by direct computation of (3.22).

Therefore ξ2(T ) < 0, so λ2(T ) < 0 and λ2(t) < 0 for all t ∈ [0, T ] by Prop. 3.4.2. Hence we are in

the same situation as in the case M = 1 and M < 1. Two cases are possible: either λ1 > 0 at all

time, so the set I+
λ is non-empty and full control on ξ1 is used at all time, or there exists t∗ ∈]0, T [

such that λ1 < 0 on [0, t∗[, λ1(t∗) = 0 and λ1 > 0 on ]t∗, T ], in which case α = (0, 0) on [0, t∗[ and

α = (1, 0) on ]t∗, T ].

Remark 3.4.4. To compute t∗ ∈ [0, T [ in the case ξ1(0) > −ξ2(0) > 0 and T < t0, one can compute

V(T )(X) depending on t∗ ∈ [0, T [ similarly to the case M = 1.

3.4.6 Case 1 < M < 2

As in the case M = 2, we state the following properties concerning the covectors λ.

Proposition 3.4.3. Let M ∈]1, 2[ and λ1 and λ2 be the covectors corresponding to an optimal

control strategy for the system (3.22). They satisfy the following properties:

(i) If λ2(T ) > 0, then λ1(t) > 0 and λ2(t) > 0 for all t ∈ [0, T ].

(ii) If λ2(T ) = 0, then λ1(t) > 0 and λ2(t) = 0 for all t ∈ [0, T ].

(iii) If λ2(T ) < 0, then λ2(t) < 0 for all t ∈ [0, T ].

Proof. The proof is very similar to that of Prop 3.4.2.

(i) Let λ2(T ) > 0. Suppose that there exists τ ∈ [0, T [ such that λ2(τ) = 0 and λ2(t) > 0 for all
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t ∈]τ, T ]. Then if λ1 > λ2 > 0 on ]τ, T ], according to Pontryagin’s maximum principle (see Section

3.4.1), (α1, α2) ≡ (1,M − 1) on ]τ, T ], which gives λ̇2 = M
2 λ2. If λ1 = λ2 > 0 on ]τ, T ], then

α1 + α2 ≡ M (see Figure 3.1b), which also gives λ̇2 = M
2 λ2. Hence, λ2(τ) = λ2(T )e

M
2 (τ−T ) > 0,

which contradicts the definition of τ .

For (ii) and (iii) we reason the same way as in the proof of Proposition 3.4.2.

As in the previous sections, this allows us to solve the optimal control problem by distinguishing

cases based on the initial conditions and the final time. The case ξ2(0) < 0 is illustrated in Figure

3.2.

Theorem 3.4.4.

Let M ∈]1, 2[. Let α ∈ UM be an optimal control strategy and ξ be the corresponding trajectory.

Define t0 ≤ t1 ≤ t2 as: t0 = 2 ln
(
ξ1(0)

2ξ̄(0)

)
, t1 = 2

2−M ln
(
ξ1(0)

2ξ̄(0)

)
and t2 = 2

2−M ln( ξ1(0)

ξ̄(0)
).

If ξ2(0) > 0, two subcases are to be distinguished:

(i) If T < t2, then (α1, α2) ≡ (1,M − 1) and 0 < ξ2(T ) < ξ1(T ).

(ii) If T ≥ t2, ξ1(T ) = ξ2(T ) and α1 + α2 = M .

In the case ξ2(0) < 0, four subcases appear:

(iii) If T < t0, then ξ2(t) < 0 and there exists t∗ ∈ [0, T [ such that (α1, α2)(t) = (0, 0) for all

t ∈ [0, t∗] and (α1, α2)(t) = (1, 0) for all t ∈]t∗, T ].

(iv) If t0 ≤ T ≤ t1, then α1 ≡ 1 and ξ2(T ) = 0.

(v) If t1 < T < t2, then (α1, α2) ≡ (1,M − 1) and 0 < ξ2(T ) < ξ1(T ).

(vi) If t2 ≤ T , then α1 + α2 ≡M and ξ1(T ) = ξ2(T ).

Remark 3.4.5. Notice that if ξ1(0) = ξ2(0), then t2 = 0.

Remark 3.4.6. In the limit case M → 1, the times t0 and t1 are equal, which is in line with

Theorem 3.4.1. In the limit case M → 2, t1 and t2 are undefined, in line with Theorem 3.4.3.
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Figure 3.2: Control strategies in the case ξ2(0) < 0 (controlled agents in red, uncontrolled ones in
blue)



88

Proof. First, let ξ1(0) ≥ ξ2(0) > 0. According to Prop. 3.1.1, ξ1(t) > 0 and ξ2(t) > 0 for all

t ∈ [0, T ]. The transversality condition gives λ1(T ) > 0 and λ2(T ) > 0, and according to Prop.

3.4.3, λ1(t) > 0 and λ2(t) > 0 for all t ≤ T . According to Pontryagin’s maximum principle (see

Section 3.4.1), the global strategy requires setting α1 +α2 ≡M . In this case, ξ̄(t) = ξ̄(0) exp(−M2 t)

does not depend on the choice of α1 and α2. Minimizing V (3.27) therefore amounts to minimizing

(ξ1 − ξ2)2.

(i) If T ≥ t2, we will show that in addition to satisfying α1 + α2 ≡ M , the optimal control

α must achieve ξ1(T ) = ξ2(T ). Such a control strategy exists, since for instance (as one can

see by direct computation of (3.22)) the control (β1, β2)(t) = (1,M − 1) for all t ∈ [0, t2[ and

(β1, β2)(t) = (M/2,M/2) for all t ∈ [t2, T ] achieves ξβ1 (t) = ξβ2 (t) for all t ∈ [t2, T ], where ξβ denotes

the corresponding trajectory. Notice that β minimizes ξ̄(T ) by using the full strength M of the

control at all time (see (3.28)), and minimizes (ξ1 − ξ2)2(T ), so it minimizes V(T ) (see (3.24)).

Hence, in order to be optimal, α must satisfy ξ1(T ) = ξ2(T ) as well as α1 + α2 ≡M .

(ii) If T < t2, we will show that (α1, α2) ≡ (1,M − 1) and that ξ1 and ξ2 cannot be brought

together (i.e. ξ1(T ) > ξ2(T )). Indeed, knowing that α1 + α2 ≡ M , one can use (3.23) to compute:

(ξ1 − ξ2)(t) = e−t
(

(ξ1 − ξ2)(0)−
∫ t

0
(α1 − α2)(s)ξ̄(s)esds

)
. Since ξ̄ is fully determined, tmin :=

minα∈UM ,α1+α2≡M{t ∈ [0, T ] s.t. (ξ1− ξ2)(t) = 0} is achieved by maximizing (α1−α2), which gives:

(α1, α2) ≡ (1,M − 1). As seen previously, by direct computation of (3.22), tmin = t2 as defined

above. Hence, if T < t2, necessarily ξ1(T ) > ξ2(T ). Then λ1(T ) > λ2(T ) and according to Prop.

3.4.3, and to Prop. 3.3.1, λ1(t) > λ2(t) > 0 for all t. According to the PMP (see 3.4.1), the optimal

strategy is (α1, α2) ≡ (1,M − 1).

Now let ξ1(0) > 0, ξ2(0) < 0 and ξ̄(0) > 0. We then distinguish four subcases.

Firstly, let us prove that if ξ2(T ) > 0, then necessarily T > t1. Indeed, if 0 < ξ2(T ) ≤ ξ1(T ),

then 0 < λ2(T ) ≤ λ1(T ), and according to Proposition 3.4.3, 0 < λ2(t) ≤ λ1(t) for all t ∈ [0, T ].

According to the PMP (see Section 3.4.1), α1 + α2 ≡ M . Hence ξ̄(t) = ξ̄(0)e−Mt/2, and ξ2(t) =

e−t(ξ2(0) + ξ̄(0)
∫ t

0
(1 − α2)e

2−M
2 sds). The minimum time tmin needed to achieve ξ2(tmin) > 0 is

achieved for (α1, α2) ≡ (1,M − 1), which, after computation, gives tmin = t1 as defined above.

Hence, if ξ2(T ) ≥ 0, then T > t1.

(iii) Let T ≥ t2. Let us prove that α1 + α2 ≡ M and ξ1(T ) = ξ2(T ). Such a control strategy

exists. Indeed, take for example (β1, β2)(t) = (1,M − 1) on [0, t2] and (β1, β2)(t) = (M/2,M/2) on

]t2, T ]. Then, by direct computation of (3.22), ξβ1 (t) = ξβ2 (t) for all t ∈ [t2, T ] (where ξβ denotes the

trajectory corresponding to the control β). Furthermore, β is optimal since it minimizes ξ̄β by using

full control at all time and achieves (ξβ1 − ξβ2 )2(T ) = 0 (see (3.24)). In order to perform optimally,
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the control α must also satisfy α1 + α2 ≡M and ξ1(T ) = ξ2(T ).

(iv) Let T < t0. Since t0 < t1, then as proved above, ξ2(T ) ≤ 0. Suppose that ξ2(T ) = 0. Then

λ1(T ) > λ2(T ) = 0 and according to Proposition 3.4.3, λ1(t) > λ2(t) = 0 for all time t. Hence,

α1 ≡ 1 (see Section 3.4.1). Then minα2{t ∈ [0, T ] s.t. ξ2(t) = 0} = t0 as defined above (obtained for

α2 ≡ 0). This contradicts the condition on T . Hence, if T < t0, then ξ2(T ) < 0 and according to

Proposition 3.4.3 and Section 3.4.1, λ2 < 0 so α2 ≡ 0. However, there is no information on λ1 other

than λ̇1 = α1/2λ1 + λ̄−λ1 ≥ 0 and λ1(τ) = 0 implies λ̇1(τ) > 0. Hence, as in the previous sections,

there exists t∗ ∈ [0, T [ such that λ1 < 0 on [0, t∗[, λ1(t∗) = 0 and λ1 > 0 on ]t∗, T ]. This implies

that (α1, α2) = (0, 0) on [0, t∗[ and (α1, α2) = (1, 0) on [t∗, T [.

(v) Let t0 ≤ T ≤ t1. We shall prove that ξ2(T ) = 0 and that α1 ≡ 1. As seen previously, if

T ≤ t1, then ξ2(T ) ≤ 0. Suppose that ξ2(T ) < 0. Then λ1(T ) > 0 and λ2(T ) < 0 which according

to Proposition 3.4.3 gives λ2(t) < 0 for all t, and according to the PMP (see Section 3.4.1), α2 ≡ 0.

Then ξ2(t) = e−t(ξ2(0) + ξ̄(0)
∫ T

0
e−

∫ s
0

1
2α1(r)dresds). Thus tsup := supα1

{τ ∈ [0, T ] s.t. ξ2(t) <

0 for all t ∈ [0, τ [} is obtained for α1 ≡ 1 and by direct computation, tsup = t0. Since T ≥ t0, there

exists τ ≤ T such that ξ2(τ) = 0. However, by Proposition 3.1.1, once ξ2 = 0 it cannot become

negative again, which contradicts ξ(T ) < 0. Therefore, ξ2(T ) = 0, and according to Proposition

3.4.3 and the PMP (Section 3.4.1), λ1(t) > 0 for all t ∈ [0, T ] so α1 ≡ 1. Furthermore, if ξ2(τ) = 0,

then ξ̇2(τ) = (1− α2(τ))ξ̄(τ) > 0 since α2 = M − α1 = M − 1 < 1. According to Proposition 3.1.1,

once ξ2 becomes positive it cannot become zero again. Hence we must have ξ2(t) < 0 for all t < T

and ξ2(T ) = 0.

(vi) Let t1 < T < t2. As in the previous case, since T ≥ t0, one must have: ξ2(T ) ≥ 0.

Suppose that ξ2(T ) = 0. Then according to Proposition 3.4.3 and the PMP, α1 ≡ 1 and ξ2(t) =

e−t(ξ2(0) + ξ̄(0)
∫ T

0
(1 − α2)(s)e−

∫ s
0

1
2 (1+α2)(r)dresds). Then the minimum of ξ2(T ) is obtained for

α2 ≡M − 1, so

ξ2(T ) ≥ e−T (ξ2(0) + ξ̄(0)

∫ T

0

(2−M)e−
1
2Msesds)

> e−T (ξ2(0) + ξ̄(0)(e
2−M

2 t1 − 1)) > 0

(3.33)

by definition of t1. This contradicts ξ2(T ) = 0, so necessarily ξ2(T ) > 0. Then λ1(t) > 0 and

λ2(t) > 0 for all t, which implies that α1 + α2 ≡ M . In this case we prove as in case (ii) that

ξ1(T ) > ξ2(T ), which implies (α1, α2) ≡ (1,M − 1).
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3.5 Final cost with any number of agents and control bounded

by M=1

3.5.1 Theroretical Analysis

In this section, we address the optimal control problem of minimizing V(T ) with any number of

agents, setting the upper bound M = 1 on the strength of the control, i.e.
∑N
i=1 αi ≤ 1. We define

the set of such controls:

U =
{
α : [0, T ]→ [0, 1]N

∣∣∣ α measurable, s.t. for all t ∈ [0, T ]

N∑
i=1

αi(t) ≤ 1
}
. (3.34)

We remind the equations governing the evolution of ξi and ξ̄ for i ∈ {1, ..., N}:

ξ̇i = −ξi + (1− αi)ξ̄ and ˙̄ξ = −(
∑
i

αi) ξ̄. (3.35)

As before, we aim to minimize the migration functional V = 1
N

N∑
i=1

ξ2
i over the space U at final time:

Problem 1. Find arg min
α∈U

V(T ).

Let us consider the restricted set of full-strength controls UFS ⊂ U :

UFS =
{
α : [0, T ]→ [0, 1]N

∣∣∣ α measurable, s.t. for all t,
N∑
i=1

αi(t) = 1
}
. (3.36)

We also introduce the set of optimal controls Uopt:

Uopt =
{
α ∈ U s.t. Vα = min

β∈U
Vβ
}
. (3.37)

A question then arises naturally: are there optimal controls among full-strength controls? In other

words, we study the intersection UFS ∩ Uopt. To answer this, we first look for an optimal control

strategy among the restricted set of controls UFS, i.e. we consider the problem:

Problem 2. Find arg min
α∈UFS

V(T ).

Introducing the partial mean ξ̄1,l = 1
l

∑l
i=1 ξi, we design the following optimal control strategy

to solve Problem 2.
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Theorem 3.5.1 (Full-control strategy).

Let T > 0. The strategy designed in Prop 3.2.1 to decrease V̇ instantaneously is an optimal control

strategy for Problem 2. It can be explicitly described as follows:

Define t1 = 0 and for l ∈ {2, ..., N}, tl = N
N−1 ln

(
(l − 1)N−1

N
ξ̄1,l−1(0)−ξl(0)

ξ̄(0)
+ 1
)
.

If there exists l ∈ {1, ..., N − 1} such that T ∈ [tl, tl+1[, then any strategy satisfying: ξi(T ) = ξ̄1,l(T )

for every i ∈ {1, ..., l}, ∑l
i=1 αi ≡ 1 and αi ≡ 0 for every i ∈ {l + 1, ..., N} is optimal.

If T ≥ tN , then any strategy satisfying ξi(T ) = ξ̄(T ) for all i ∈ {1, ..., N} and
∑N
i=1 αi ≡ 1 is

optimal.

For instance, if T ∈ [tl, tl+1[, one optimal strategy would consist in defining the following piecewise

constant control:

∀k ≤ l, ∀t ∈ [tk, tk+1[,


αi(t) = 1

k if i ≤ k

αi(t) = 0 if i > k.

(3.38)

Proof. Let us first show that if T ≥ tl, then the optimal control strategy for Problem 2 must achieve

ξi(T ) = ξ̄1,l(T ) for all i ∈ {1, ..., l}, reasoning by contradiction.

Suppose that there exists k ∈ {1, ..., l} such that ξk(T ) 6= ξ̄1,l(T ). Using Hyp. 3, we can suppose that

there exists m < l such that for every i ∈ {1, ...,m}, ξi(T ) = ξ̄1,m(T ), and for every i ∈ {1, ...,m}

and j ∈ {m+ 1, ..., N}, ξj(T ) < ξi(T ).

Let j ∈ {m+1, ..., l}. The transversality condition (3.18) gives: for every i ∈ {1, ...,m}, λj(T ) <

λi(T ). According to Proposition 3.3.1, for all t ∈ [0, T ], for every i ∈ {1, ...,m}, λj(t) < λi(t).

According to the PMP, as seen in Section 3.3, only the biggest covectors are controlled, and since

α ∈ UFS, with maximum control. So
∑m
i=1 αi ≡ 1 and αj ≡ 0. The evolutions of ξj and ξ̄1,m are

then given by: 
ξ̇j = −ξj + ξ̄

˙̄ξ1,m = −ξ̄1,m + m−1
m ξ̄.

(3.39)

Since
∑N
i=1 αi ≡ 1, the evolution of the mean is given by ˙̄ξ = − 1

N ξ̄, and we can compute ξ̄ =

ξ̄(0)e−t/N , which in turn allows us to solve:

∀t ∈ [0, T ],


ξj(t) = e−t

(
ξj(0) + N

N−1 ξ̄(0)(e
N−1
N t − 1)

)
ξ̄1,m(t) = e−t

(
ξ̄1,m(0) + m−1

m
N
N−1 ξ̄(0)(e

N−1
N t − 1)

)
.

(3.40)

We get:

(ξ̄1,m − ξj)(T ) = e−T
(
ξ̄1,m(0)− ξj(0)− 1

m

N

N − 1
ξ̄(0)(e

N−1
N T − 1)

)
. (3.41)
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We made the hypothesis that T ≥ tl = N
N−1 ln

(
(l − 1)N−1

N
ξ̄1,l−1(0)−ξl(0)

ξ̄(0)
+ 1
)
. Hence,

(ξ̄1,m − ξj)(T ) ≤ e−T
(
ξ̄1,m(0)− ξj(0)− 1

m
(l − 1)(ξ̄1,l−1(0)− ξl(0))

)
=

1

m
e−T

[
mξ̄1,m(0)−mξj(0)− (l − 1)ξ̄1,l−1(0) + (l − 1)ξl(0)

]
(∗)
≤ 1

m
e−T

[
m∑
i=1

ξi(0)−
l−1∑
i=1

ξi(0) + (l − 1−m)ξl(0)

]

=
1

m
e−T

[
−

l−1∑
i=m+1

ξi(0) + (l − 1−m)ξl(0)

]
(∗)
≤ 1

m
e−T [−(l − 1−m)ξl(0) + (l − 1−m)ξl(0)]

= 0,

(3.42)

where inequalities (∗) derive from Hypothesis 2: since j ≤ l, ξj(0) ≥ ξl(0). However, (ξ̄1,m−ξj)(T ) ≤

0 contradicts that ξj(T ) < ξi(T ) for every i ∈ {1, ...,m}. From this we conclude that if T ≥ tl, then

for every i ∈ {1, ..., l}, ξi(T ) = ξ̄1,l(T ) for an optimal control strategy fulfilling Hypothesis 3.

Let us now show that if T < tl+1, then for every k ∈ {l + 1, ..., N}, αi ≡ 0 and ξk(T ) < ξ̄1,l(T ).

ξ̄1,l(T )− ξk(T )
(1)
= e−T

ξ̄1,l(0)− ξk(0)−
∫ T

0

e
N−1
N s(

1

l

l∑
j=1

αj − αk)(s)ξ̄(0)ds


(2)

≥ e−T

(
ξ̄1,l(0)− ξk(0)−

∫ T

0

e
N−1
N s 1

l
ξ̄(0)ds

)

= e−T
(
ξ̄1,l(0)− ξk(0)− N

N − 1

1

l
ξ̄(0)(e

N−1
N T − 1)

)
(3)
> e−T

(
ξ̄1,l(0)− ξk(0)− (ξ̄1,l(0)− ξl+1(0))

)
= e−T (ξl+1(0)− ξk(0))

(4)

≥ 0,

(3.43)

where:

(1) was computed using the evolutions of ξk and ξ̄1,l: ξ̇k = −ξk + (1− αk)ξ̄ and ˙̄ξ1,l = −ξ̄1,l + (1−
1
l

∑l
i=1 αi)ξ̄,

(2) was obtained from inequalities
∑l
j=1 αj(t) ≤ 1 and αk(t) ≥ 0 for all t,

(3) comes from the inequality: T < tl+1 = N
N−1 ln(N−1

N l
ξ̄1,l(0)−ξl+1(0)

ξ̄(0)
+ 1),

(4) derives from Hypothesis 2 since k ≥ l + 1.

Hence, for every k ∈ {l+1, ..., N}, ξk(T ) ≥ ξ̄1,l(T ). Furthermore, the transversality condition (3.18)

and Proposition 3.3.1 imply that for all t ∈ [0, T ] for every i ∈ {1, ..., l}, λk(t) < λi(t) and the
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Pontryagin Maximum Principle as seen in Section 3.3 states that αk ≡ 0. So ξk(T ) ≥ ξ̄1,l(T ).

We proved that if T ∈ [tl, tl+1[, then for every i ∈ {l+1, ..., N}, αi ≡ 0. Since ξ̄ is fully determined

as α ∈ UFS, this means that for all i ∈ {l + 1, ..., N}, ξi(T ) is also fully determined (satisfying the

equation ξ̇i = −ξi + ξ̄ ). On the other hand, we proved that for all i ∈ {1, ..., l}, ξi(T ) = ξ̄1,l(T )

and that
∑l
i=1 αi ≡ 1, so ξ̄1,l is also fully determined (satisfying the equation ˙̄ξ1,l = −ξ̄1,l + l−1

l ξ̄

). Hence, any strategy such that for all i ∈ {1, ..., l}, ξi(T ) = ξ1,l(T ) with
∑l
i=1 αi ≡ 1 and for all

i ∈ {l + 1, ..., N}, αi ≡ 0 is optimal for Problem 2.

Notice that this optimal control strategy is not sparse, as control is split among more and more

agents as time goes. However, it is not unique and one could very well act on one agent at a time

until all reach the known final velocities. Going back to the general Problem 1, we prove that under

certain conditions, the optimal control strategy uses full strength at all time, i.e. αopt ∈ UFS .

Theorem 3.5.2 (Sufficient condition for full control).

Define the time tN = N
N−1 ln

(
(N−1)2

N
ξ̄1,N−1(0)−ξN (0)

ξ̄(0)
+ 1
)
as in Theorem 3.5.1.

If T ≥ tN , then the optimal strategies αopt to Problem 1 belong to UFS and for these controls

ξi(T ) = ξ̄(T ) for every i ∈ {1, ..., N}.

Proof. If T ≥ tN , then the instantaneous decrease strategy designed in Theorem 3.5.1 is optimal.

Indeed, we noticed that the migration functional can be written as the sum of two terms (3.11):

V = ξ̄2 + 1
N

∑
(ξi− ξ̄)2. The strategy designed in Theorem 3.5.1 minimizes ξ̄(T ) by using full control

at all time, hence minimizing ξ̄(T )2 since ξ̄ > 0. Furthermore, it achieves ξi(T ) = ξ̄(T ) for all

i ∈ {1, ..., N}, thus minimizing the second term 1
N

∑
(ξi − ξ̄)2. Hence any optimal control strategy

has to use full control at all time and achieve ξi(T ) = ξ̄(T ) for every i ∈ {1, ..., N} in order to

perform as well.

We finally address the general case stated in Problem 1: minimize V(T ) over the set of controls U ,

for a given final time T . In the following theorem, we show the existence of an initial “Inactivation"

time interval: the optimal strategy can require to let the system evolve freely (i.e. without control)

at initial time, before acting on it with full strength.

Theorem 3.5.3 (Inactivation Principle).

If T < tN , then one of the two holds: any control strategy αopt either belongs to UFS and the strategy

designed in Theorem 3.5.1 is optimal, or there exists some δ < T such that αopt ≡ 0 on [0, δ], and∑
αopti ≡ 1 on [δ, T ].
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Proof. According to Hypothesis 3, we can assume that ξ1(T ) ≥ ξi(T ) for every i ∈ {1, ..., N}. Fur-

thermore, ξ̄(T ) > 0, so ξ1(T ) > 0. From the transversality condition (3.18) we deduce: λ1(T ) ≥

λi(T ) for every i ∈ {1, ..., N} and λ1(T ) > 0. From Prop. 3.3.1, we know that for all t ∈

[0, T ], λ1(t) ≥ λi(t). According to Prop. 3.3.2, full control is used at time t if λ1(t) > 0 and

no control is used if λ1(t) < 0. Let us study the evolution of λ1: λ̇1 = 1
N

∑
αjλj − λ̄+ λ1. By the

Pontryagin maximum principle, we always have
∑
αjλj ≥ 0. Furthermore, λ1− λ̄ ≥ 0. So λ̇1(t) ≥ 0

for all t ∈ [0, T ]. We show that λ1 = 0 at most at one point. Indeed, suppose that λ1(τ) = 0 for

some τ ∈ [0, T ] and that λ̇1(τ) = 0. Then λ̇1(τ) = −λ̄(τ) so λ̄(τ) = λ1(τ) = 0, and since the λi’s are

ordered, λi(τ) = λ̄(τ) for every i ∈ {1, ..., N}. According to Proposition 3.3.1, λi(t) = λ̄(t) for all

time t and every i. Since λ1(T ) > 0, there exists a time interval [τ∗, T ] such that λ1(t) > 0 for all

t ∈ [τ∗, T ]. On this interval, λ̇1 = 1
N λ1

∑
j αj = 1

N λ1, which gives: λ1(T ) = λ1(τ∗)e
1
N (T−τ∗). This

contradicts the existence of a time τ at which λ1(τ) = 0. In conclusion, if λ1(τ) = 0, then λ̇1(τ) > 0

so λ1 = 0 at most at one point.

Hence, there is a dichotomy of cases:

Either λ1(t) ≥ 0 for all time, so I(t) 6= ∅ for all t, which implies that αopt ∈ UFS according to Prop.

3.3.2. In this case, arg maxα∈U V = arg maxα∈UFS V and the control strategy designed in Theorem

3.5.1 for Problem 2 is optimal also for Problem 1.

Or there exists δ ∈ [0, T ] such that λ1(t) < 0 on [0, δ[ and λ1(t) ≥ 0 on [δ, T ], which implies that

α(t) ≡ 0 on [0, δ] and
∑
αi(t) ≡ 1 on ]δ, T ]. Practically, an optimal control strategy would consist

in letting the system evolve without control on [0, δ[. Then the full-control strategy from Theorem

3.5.1 can be applied on [δ, T ] with the new initial positions ξ(δ).

Remark 3.5.1. Although this result may seem counter-intuitive, in certain cases it makes sense to

let the system evolve freely, at least initially. Indeed, without control the system naturally regroups

in order to reach consensus, minimizing
∑N
i=1(ξi − ξ̄) in (3.11), but keeping ξ̄ constant. Actual

examples of such cases are shown in the next section.

Remark 3.5.2. Note that a constraint M < 1 would not change the nature of the results. It would

only mean acting with less strength on the controlled agents, therefore changing the values of the times

tl defined in Theorem 3.5.1, but the optimal control strategy would be unchanged. With a constraint

M > 1, we can expect results similar to those of Section 3.4, with two kinds of Inactivation periods,

consisting either in letting the system evolve freely, or in controlling it with a non-maximal total

strength 0 <
∑
i αi < M (see Theorem 3.4.3 (ii) and (iii)).
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3.5.2 Practical Approach

We proved in the previous section that the optimal strategy can either be to act with full control

as in Theorem 3.5.1, or to let the system evolve without control on some time interval [0, δ], before

acting with full control on ]δ, T ]. In this section, we explore the practicality of Inactivation strategies.

First, we run numerical simulations to find cases in which the optimal strategy involves Inacti-

vation. The migration functional Vδ can be computed explicitly as a function of δ. We then look

for the value of δ that minimizes Vδ(T ). Let us denote by ξδ the solution to system (3.35) when no

control is applied on [0, δ] and full control is used on ]δ, T ]. Equation (3.35) gives:


ξ̇δi = −ξδi + ξ̄δ

˙̄ξδ = 0

on [0, δ], (3.44)

which allows us to solve: ξδi (δ) = e−δ
(
ξδi (0) + ξ̄δ(0)(eδ − 1)

)
. We then apply the strategy designed

in Theorem 3.5.1 with the new initial conditions ξδ(δ) and the new final time T − δ. Define the

times tδ1 = 0 and for l ∈ {2, ..., N}, tδl = N
N−1 ln

(
(l − 1)N−1

N

ξ̄δ1,l−1(δ)−ξδl (δ)

ξ̄δ(δ)
+ 1

)
. Find l ∈ {1, ..., N−

1}, such that T − δ ∈ [tδl , t
δ
l+1[. Then any strategy satisfying ξδi (T ) = ξ̄δ1,l(T ) for every i ∈ {1, ..., l},∑l

i=1 αi(t) = 1 for all t ∈ [δ, T ], and αi ≡ 0 for every i ∈ {l + 1, ..., N} is optimal. From equation

(3.35) we get: 

˙̄ξδ1,l = −ξ̄δ1,l + l−1
l ξ̄

δ

ξ̇δi = −ξδi + ξ̄δ for i ∈ {l + 1, ..., N}

˙̄ξδ = − 1
N ξ̄

δ

on [δ, T ], (3.45)

from which we can solve:
ξδi (T ) = ξ̄δ1,l(T ) = e−(T−δ)

(
ξ̄δ1,l(δ) + l−1

l
N
N−1 ξ̄

δ(0)(e
N−1
N (T−δ) − 1)

)
1 ≤ i ≤ l,

ξδi (T ) = e−(T−δ)
(
ξδi (δ) + N

N−1 ξ̄
δ(0)(e

N−1
N (T−δ) − 1)

)
l + 1 ≤ i ≤ N.

(3.46)

We can now compute Vδ(T ) = 1
N

N∑
i=1

ξδi (T )2 and numerically look for min
δ∈[0,T ]

Vδ(T ) (see Figure 3.3).

Series of simulations were run to look for cases in which δ > 0. Table 3.1 lists the percentage of

such cases found over 1000 simulations, for different values of the number of agents and of the final

time. Initial projected variables ξi(0) were chosen randomly in the interval [−1, 1] and such that the

mean ξ̄ is strictly positive. As expected (and proven in Theorem 3.5.2), for larger values of T , it is

always optimal to act with full control at all time (in other words δ = 0). One also notices that as
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Figure 3.3: V δ(T ) with respect to Inactivation time δ. Here the optimal Inactivation time is δ = 1.94.

the number of agents increases, “Inactivation" cases become less and less frequent.

Number of agents 5 10 20 50
T=3 1.6 % 0.9 % 0 0
T=4 1.8 % 0.7 % 0.3 % 0
T=5 1.0 % 0.2 % 0.2 % 0
T=6 0.2 % 0.1 % 0 0.1 %
T=7 0 0 0 0

Table 3.1: Percentage of cases in which δ > 0 out of 1000 simulations. ξi(0) chosen randomly in
[−1, 1].

Table 3.2 shows the average of the relative difference Vfc−Vδ
Vfc

, where Vδ was obtained by using

optimal control and Vfc by using full control at all time (as designed in Theorem 3.5.1). The gain

in performance when using the optimal strategy is minor (significantly less than 1% in most cases),

and decreases as the number of agents increases.

Number of agents 5 10 20 50
T=3 0.073% 0.001% - -
T=4 0.27% 0.018% 0.001% -
T=5 0.91% 0.056% 0.0069% -
T=6 1.53% 0.2% - 0.00003 %

Table 3.2: Average relative improvement of Vδ w.r.t. Vfc

The occurrence of Inactivation cases can be explained by looking at the two terms in the migration
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functional V = ξ̄2 + 1
N

∑
(ξi − ξ̄)2 (3.11). When ξ̄2 is small, the control strategy should concentrate

on minimizing the second term 1
N

∑
(ξi − ξ̄)2, which does not necessarily require full control since

the system naturally evolves to minimize this term. To confirm this reasoning, we look at the ratio

R := ( 1
N

∑
(ξi − ξ̄)2)/ξ̄2 in one set of simulations (N = 5, T = 3) and find that the Inactivation

cases correspond exactly to the largest values of R. Furthermore, the larger the ratio, the longer the

Inactivation interval (see Figure 3.4).
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Figure 3.4: Ratio R := ( 1
N

∑
(ξi − ξ̄)2)/ξ̄2 as a function of the length of the Inactivation interval δ,

for 20 simulations involving Inactivation with N = 5 and T = 3. The Inactivation δ increases as ξ̄2

tends to zero.

Hence, Uopt ∩ UFS = ∅ occurs in very few cases, namely those in which ξ̄2 � 1
N

∑
(ξi − ξ̄)2.

Furthermore, when Inactivation exists, the gain in performance compared to the full control strategy

is very minor. For reasons of computational speed and complexity, it is very reasonable to neglect

those cases and to apply the full control strategy at all time.

Figure 3.5 shows the evolution of the projected velocities ξi, i ∈ {1, ..., 10} with respect to time,

in a case where the optimal strategy requires full control at all time, with T > t10. The control

function is the one designed in Theorem 3.5.1 and acts first on ξ1, then on ξ1 and ξ2, and so on until

all have reached consensus (in terms of the projected velocities ξi), at which point it acts with equal

strength on all agents to drive ξ̄ down to 0.

3.6 Optimal control for integral cost

In this section we focus on minimizing the integral of the migration functional, with the constraint

on the controls M = 1. As done in Section 3.5, we define two problems (where U (3.34) and UFS
(3.36) are defined as before).
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Figure 3.5: Evolution of the projected velocities ξi with the full strength optimal control for a system
of 10 agents. In this example ξ̄(0) = 0.25 so full control at all time is needed to drive ξ̄ to the desired
velocity V = 0 (i.e. δ = 0). At final time T = 4.5 the system has reached consensus, but not yet at
the desired velocity.

Problem 3. Find arg min
α∈U

∫ T
0
V(t)dt.

Problem 4. Find arg min
α∈UFS

∫ T
0
V(t)dt.

3.6.1 Pontryagin’s Maximum Principle

We first prove general results, with the aim of solving Problem 3. In order to use Pontryagin’s

maximum principle, we introduce the new HamiltonianH = 〈λ, f〉+λ0V and the equations governing

the covectors’ evolution λ̇i = −∂H∂ξi . Considering normal trajectories, we set λ0 = 1 and obtain:


H =

N∑
i=1

(−λiξi) + ξ̄
N∑
i=1

(1− αi)λi +
N∑
i=1

ξ2
i

λ̇i = λi − 1
N

∑
j(1− αj)λj − 2ξi.

(3.47)

Since the final condition is not fixed, we have the following transversality condition for the covectors:

λ(T ) = 0. (3.48)

As in the minimization of the migration functional at final time (Section 3.3), we define Iλ and I+
λ

(see (3.21)). Then minimizing H =
∑N
i=1−αiλi + H̃ (where H̃ contains only uncontrolled terms)
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requires the following : if k 6∈ Iλ, αk = 0; furthermore, if I+
λ 6= ∅, then

∑
i∈I+λ

αi = 1.

As in Section 3.5, we make Hypothesis 2. Given the initial order on the agents’ projected

velocities ξi, we prove the following:

Lemma 3.6.1. There exists an optimal control strategy satisfying:

∀t ∈ [0, T ], ∀i, j ∈ {1, ..., N}, i < j ⇒ ξi(t) ≥ ξj(t). (3.49)

Proof. The proof is very similar to that of Lemma 3.3.1. Consider an optimal control strategy α ∈ U .

Define τ = sup{t | ∃β ∈ U s.t.
∫ T

0
Vβ(s)ds =

∫ T
0
Vα(s)ds and ξβ satisfies (3.49) on [0, t]}. Let us

prove by contradiction that τ = T . Suppose that τ < T . Then there exist i, j ∈ {1, ..., N} with i < j

such that ξβi (τ) = ξβj (τ) and ξβj (t) > ξβi (t) on ]τ, τ + δ] for some δ > 0. Design a control strategy

β̃ such that on [τ, T ], β̃i = βj , β̃j = βi and for every k ∈ {1, ..., N} \ {i, j}, β̃k = βk. Then for all

t ∈ [τ, T ], ξβ̃i (t) = ξβj (t), and ξβ̃j (t) = ξβi (t). So for all t ∈ [τ, τ + δ], ξβ̃i (t) ≥ ξβ̃j (t) and for all t ∈

[0, T ], Vβ̃(t) = Vβ(t). Proceeding likewise for every pair of indices (m,n) satisfying m < n and

ξβn(t) > ξβn(t) on ]τ, τ + δ] we are able to design a control strategy β̃ satisfying (3.49) on [0, τ + δ]

and
∫ T

0
Vβ(t)dt =

∫ T
0
Vα(t)dt, which contradicts the definition of τ . In conclusion, τ = T , i.e. for

all t ∈ [0, T ], for every i, j ∈ {1, ..., N}, i < j ⇒ ξi(t) ≥ ξj(t).

Hence, as in Section 3.5, we can assume Hypothesis 3: for all t ∈ [0, T ], if i < j, then ξi(t) ≥ ξj(t).

By the following proposition, we shall prove that the same order is observed among the covectors

λi.

Proposition 3.6.1.

∀t ∈ [0, T ], i < j ⇒ λi(t) ≥ λj(t). (3.50)

Proof. Let us reason by contradiction. Suppose that there exists τ ∈ [0, T ] such that for some i<j,

(λi − λj)(τ) < 0. From the evolution of the covectors (3.47) we derive for all t ≥ τ : (λi − λj)(t) =

et−τ
(

(λi − λj)(τ)− 2
∫ t
τ
e−(s−τ)(ξi − ξj)(s)ds

)
. Since (λi − λj)(τ) < 0 and for all s ∈ [0, T ], (ξi −

ξj)(s) ≥ 0, we deduce that for all t ∈ [τ, T ], (λi − λj)(t) < 0, which contradicts the final condition

(3.48).

Proposition 3.6.2. Let τ ∈ [0, T ] and i, j ∈ {1, ..., N}, such that (λi − λj)(τ) = 0. Then for all

t ≥ τ , (λi − λj)(t) = 0 and (ξi − ξj)(t) = 0.
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Proof. Let τ ∈ [0, T ] and i, j ∈ {1, ..., N}, such that (λi − λj)(τ) = 0. Then for all t ≥ τ ,

(λi − λj)(t) = −2et−τ
∫ t

τ

e−(s−τ)(ξi − ξj)(s)ds. (3.51)

Suppose for instance that i < j. According to Proposition 3.6.1, for all t ∈ [0, T ], (λi − λj)(t) ≥ 0.

Since we made Hypothesis 3, the right-hand side of equation (3.51) is nonpositive. This is only

possible if both sides are equally zero. Hence, for all t ≥ τ , (λi−λj)(t) = 0 and (ξi− ξj)(t) = 0.

The following proposition states that if at a certain point in time, two agents have the same

projected velocities, then these should stay identical until final time.

Proposition 3.6.3. Suppose that there exists τ ∈ [0, T ] and i, j ∈ {1, ..., N} such that ξi(τ) = ξj(τ).

Then

for all t ≥ τ, ξi(t) = ξj(t). (3.52)

As a consequence, for almost all t ≥ τ , αi(t) = αj(t).

Proof. Let τ ∈ [0, T ] and i, j ∈ {1, ..., N}. Define τ̃ = sup{t ≥ τ | ξi(t) = ξj(t) for all t ∈ [τ, τ̃ ]}.

Notice from (3.35) that this implies that αi(t) = αj(t) for almost every t ∈ [τ, τ̃ ]. Let us prove that

τ̃ = T .

Suppose that τ̃ < T . Then there exists δ > 0 such that for all t ∈]τ̃ , τ̃ + δ], ξi(t) 6= ξj(t). Define β

such that β = α on [0, τ̃ ] and


βi = βj = 1

2 (αi + αj)

βk = αk for k 6= i, k 6= j

on ]τ̃ , T ], (3.53)

and denote by ξβ the corresponding trajectory. Notice that
∑
k αk ≡

∑
k βk, so according to (3.35),

ξ̄ ≡ ξ̄β . This implies that ξk = ξβk for all k 6= i, j. Moreover, αi + αj ≡ βi + βj so for all t ∈ [τ̃ , T ],

(ξi + ξj)(t) = (ξβi + ξβj )(t). Furthermore, ξβi and ξβj satisfy the same differential equation on [τ̃ , T ]

and ξβi (τ) = ξβj (τ), so for all t ∈ [τ̃ , T ], ξβi (t) = ξβj (t) = 1
2 (ξi + ξj)(t). Define Vα and Vβ as the cost

functions associated respectively with the controls α and β. Then Vβ = Vα on [0, τ̃ ]. On ]τ̃ , T ],

Vα − Vβ =
∑
k

(ξk)2 −
∑
k

(ξβk )2 = (ξi)
2 + (ξj)

2 − (ξβi )2 − (ξβj )2

= (ξi)
2 + (ξj)

2 − 2(
1

2
(ξi + ξj))

2 = (ξi − ξj)2.

(3.54)

Hence, for all t ∈]τ̃ , τ̃ + δ], Vα(t) > Vβ(t), and for all t ∈ [τ̃ + δ, T ], Vα(t) ≥ Vβ(t). We get
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∫ T
0
Vβ <

∫ T
0
Vα, which contradicts that α is an optimal control. In conclusion, τ = T , which proves

the proposition.

3.6.2 Optimal full-strength control

We design an optimal control strategy for Problem 4:

Theorem 3.6.1. Let J(t) = {i ∈ {1, ..., N} | ξi(t) = maxj ξj(t)}. The following control α is optimal

for Problem 4: 
∀i ∈ J(t), αi(t) = 1

|J(t)|

∀i 6∈ J(t), αi(t) = 0.

(3.55)

Proof. According to Pontryagin’s maximum principle and the expression of the Hamiltonian (3.47),

the optimal control strategy solving Problem 4 requires to set
∑
i∈I(t) αi(t) = 1 and αk(t) = 0 for

k 6∈ I(t), where I(t) := {i | λi(t) = maxj λj(t)}. Furthermore, according to Proposition 3.6.2, if

λi(t̄) = λj(t̄), then ξi(t) = ξj(t) for all t ≥ t̄, and according to Proposition 3.6.3, αi(t) = αj(t) for

almost every t ≥ t̄. Hence, the optimal strategy in fact requires to set, for almost every t ∈ [0, T ],


∀i ∈ I(t), αi(t) = 1

|I(t)|

∀i 6∈ I(t), αi(t) = 0,

(3.56)

where | · | denotes the cardinality of a set. Let us prove that I(t) = J(t) for almost every t. Assume

that i ∈ I(t) and (3.56) holds true. According to Proposition 3.6.1, the covectors are ordered, so

λ1(t) = · · · = λi(t). From Proposition 3.6.2 and Hypothesis 3, this implies ξ1(t) = · · · = ξi(t), so

i ∈ J(t). Conversely, assume that i ∈ J(t). Then from Hypothesis 3, ξ1(t) = · · · = ξi(t). According

to Proposition 3.6.3, α1(t) = · · · = αi(t). Since α(t) verifies (3.56), we deduce that i ∈ I(t). Hence

I(t) = J(t) for almost every t ∈ [0, T ] and the optimal strategies (3.56) and (3.55) are equivalent.

Notice that the control strategy in the case of integral cost minimization with full control (Prob-

lem 4) is equivalent to the Instantaneous decrease strategy of Prop. 3.2.1 (taking M = 1). It is

more restrictive than the optimal strategy minimizing the final value of the migration functional

with full control (Problem 2) seen in Section 3.5. Indeed, this control strategy cannot be sparse. In

order to minimize
∫ T

0
V(t)dt, one has to split the control among more and more agents. However,

any optimal control solving Problem 4 is also optimal for Problem 2.
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3.6.3 Optimal control in the general case

After designing the optimal strategy for Problem 4, we show that Problems 3 and 4 are actually

equivalent, i.e. that the optimal control solving Problem 3 belongs to UFS.

Theorem 3.6.2. The optimal control strategy for Problem 3 requires using full-strength control, i.e.

α ∈ UFS.

Proof. According to the Pontryagin Maximum Principle (see Section 3.6.1), if λ1(t) > 0 for all t,

then full control must be used at all time. Combining the final condition (3.48) and the evolution

(3.47), we get λ1(T ) = 0 and λ̇1(T ) = −2ξ1(T ) < 0. Hence there exists an interval ]t, T [ on which

λ1 > 0. Let τ = inf{t ∈ [0, T ] s.t. λ1(s) > 0 for all s ∈]t, T [}. Suppose that τ > 0. Then λ1(τ) = 0.

Furthermore, λ̇1(τ) = (λ1 − λ̄)(τ) − 2ξ1(τ). We compute: λ̇1 − ˙̄λ = λ1 − λ̄ − 2(ξ1 − ξ̄). Denoting

Λ = λ1 − λ̄, we get the following evolution backwards in time: Λ̇ = −Λ + 2(ξ1 − ξ̄). Recall that

backwards in time, we also have: ξ̇1 = ξ1−(1−α1)ξ̄. If Λ = ξ1, then Λ̇ = ξ1−2ξ̄ = ξ̇1+(1−α1)ξ̄−2ξ̄ =

ξ̇1 − (1 + α1)ξ̄ < ξ̇1. Since Λ(T ) = 0 < ξ1(T ), this implies that Λ(t) < ξ1(t) for all t ∈ [τ, T ]. Hence,

λ̇1(τ) = Λ(τ)− 2ξ1(τ) < 0, which contradicts the definition of τ . We conclude that λ1(t) > 0 for all

t ∈]0, T [, and that
∑
i αi ≡ 1.

Hence, the control strategy designed in Theorem 3.6.1 is an optimal strategy for the minimization

of integral cost (Prob. 3). Unlike in the minimization of the final cost (Prob. 1), there is no initial

Inactivation period.

Figure 3.6 illustrates the control strategy designed in Theorem 3.6.1. In this example, 5 agents

are to be controlled optimally to reach consensus at the target velocity V = (1, 0). Initially (Figure

3.6a), only one agent is controlled, the agent with the biggest projected velocity over v̄ − V . The

set J(t) = arg maxi∈{1,...,N}〈vi, v̄−V
‖v̄−V ‖ 〉 contains more and more agents as time goes (3.6b, 3.6c) and

eventually, control is split evenly among all agents (see Figure 3.6d).
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Figure 3.6: Control of 5 agents to reach the target velocity V = (1, 0). Agents are represented in
the velocity space, controlled ones in red, uncontrolled ones in blue, and the mean velocity in black.
Initial positions are marked by stars.



103

Chapter 4

Avoiding consensus: Black holes and

declusterization

Introduction

The term “black swan” was first used by Nassim Nicholas Taleb in 2007 in his book The Black

Swan: The Impact of the Highly Improbable [123], in which he focuses on the extreme impact of

rare and unpredictable events. The “black swan theory” was since then developed to describe events

that are extremely rare, have a massive impact, and are retrospectively predictable. One of the

groundbreaking ideas of this recent theory is the fact that human behavior remains unpredictable.

By focusing on what is known and probable, scientists tend to be surprised by major unexpected

events. Taleb’s philosophy requires one to accept the fact that there will always remain unknown

factors - hence, one cannot make future predictions based only on the assumption of a population’s

rational behavior.

Bellomo et al. [7] have built upon this new theory, applying it to the context of social competition

that can lead to extreme conflicts. Among an initially well distributed population, local social

interactions can lead to unwanted clustering (of wealth, opinions, etc.). As pointed out in [130],

individual behavior is often irrational: instead of making strategic decisions, individuals tend to

imitate social neighbors. This behavior leads to clustering of opinions, or even consensus. Many

models reproduce this phenomenon. In [130], this is modeled in a game-theoretic set-up, where agents

play coordination games to improve their individual payoff. In the Voter model, agents imitate the

action of a randomly selected counterpart [56]. In the Hegselmann-Krause (HK) bounded-confidence

model, agents imitate others’ behavior only if they are within a certain “confidence” radius [55]. In

a competing approach, based on the so-called “topological” distance, agents imitate a given number

of closest neighbors [6]. Another variation of the HK model consists of noticing that heterophilious

dynamics enhance consensus [82]. Second-order models, such as the well-studied Cucker-Smale one
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[31], may lead to alignment (i.e. agreement in the second variable) under suitable conditions on the

interaction function [17, 49].

Self-organization has thus been extensively studied, especially focusing on the emergence of

consensus or alignment that are an inherent property of certain dynamics. When consensus is not

reached by the system, it is natural to ask whether it can be achieved by controlling the system, see

for example [17, 18, 73]. Chapter 3 of this thesis also follows this line of work, by designing optimal

control strategies to achieve consensus to a pre-determined state.

Here, we choose to study the opposite problem: given dynamics naturally leading to consensus

under given conditions, we aim to control the system to avoid consensus, i.e. to keep the agents as

far from one another as possible. In other words, we want to avoid a “black swan” phenomenon.

Possible motivations include keeping a market from collapsing, or a crowd from converging to a

localized dense conformation.

We study a first-order opinion model with a positive interaction function, and control the system

via an additive feedback. We show that depending on the behavior of the interaction function a(·),

several situations may arise. If lims→0 sa(s) = +∞, there exists a “black hole” region, in which no

control can keep the system from converging. On the other hand, if lims→0 sa(s) = 0, collapse to

consensus can always be avoided. Far from the consensus manifold, we also observe two scenarios.

If lim
s→+∞

sa(s) = 0, there exists a “safety zone” in which the control can always keep the system far

from consensus. This safety zone does not exist if lim
s→+∞

sa(s) = +∞.

We summarize these results in Table 4.1, giving criteria depending on α := lims→s̄ sa(s). The

limit of sa(s) when s→ 0 determines the existence of a black hole near the consensus manifold, that

is a subset of RdN , containing the consensus manifold, that no control allows to escape from. On

the other hand, the limit at infinity determines the existence of a safety zone far from the consensus

manifold.

s̄ = 0 s̄ =∞

α = 0 There exists a control strategy prevent-

ing consensus

There exists a safety zone far from

consensus

α =∞ There exists a black hole (no strategy

can avoid consensus for certain initial

configurations)

There exists a basin of attraction

(no safety zone far from consensus)

Table 4.1: Four different configurations determined by α = lims→s̄ sa(s)
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4.1 Preliminaries

Consider the general class of first-order control systems:

v̇i = fi(v) + ui, i = 1, . . . , N, vi(t) ∈ Rd, (4.1)

where the dynamics fi can be arbitrary.

The dynamics can be chosen to depend solely on the distance vi − vj , like in the well known

Hegselman-Krause model of opinion dynamics:

v̇i =
1

N

N∑
j=1

a(‖vi − vj‖)(vj − vi) + ui. (4.2)

Definition 4.1.1. The state characterized by v1 = ... = vN is referred to as consensus. We denote

byMc the consensus manifold defined by:

Mc := {(vi)i∈{1,...,N} | ∀(j, k) ∈ {1, . . . , N}2, vj = vk}. (4.3)

Remark 4.1.1. The consensus state is an equilibrium for the Hegselman-Krause opinion dynamics

without control (i.e. u ≡ 0). For this reason, system (4.2) is sometimes referred to as consensus

dynamics.

Without control and with a positive interaction potential a(·), the system converges to consensus.

The aim of this work is to study under what conditions convergence to consensus can be avoided.

Notice that if at least two agents have different states, for instance if vi 6= vj for some i, j ∈

{1, . . . , N}, then the system is not in consensus.

Definition 4.1.2. The system is said to avoid consensus if there exist i, j ∈ {1, . . . , N} such that

vi 6= vj.

However, avoiding consensus might still leave the system in a “dangerous” state, unwanted in

some real-life situations. For instance, if each vi represents an investor’s decision, consensus might

lead to a market crash. Whether or not the system is exactly in consensus state has little impact on

the outcome: if one investor thinks differently than the mass (e.g. vj 6= v1 = . . . = vj−1 = vj+1 =

. . . = vN ), it might not be enough to prevent a market collapse. With such applications in mind,

we define a state of the system that is truly far from consensus, as the following:
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Definition 4.1.3. We say that the system is dispersed, or in dispersion state, if there exists

ε > 0 such that for all i, j ∈ {1, . . . , N}, ‖vi − vj‖ ≥ ε.

Notice that the condition “avoiding consensus” is weaker than the condition of dispersion. The

system is said to avoid consensus if it is not in a neighborhood of the consensus manifold. More con-

straining, the condition of dispersion is satisfied if and only if the system is outside of a neighborhood

of a larger manifold, that we refer to as the clustering manifold.

Definition 4.1.4. The system is said to have clusters if there exist (i, j) ∈ {1, . . . , N}2 such that

vi = vj. We denote byMcl the clustering manifold, defined by:

Mcl := {(vi)i∈{1,...,N} | ∃(j, k) ∈ {1, . . . , N}2 s.t. vj = vk}. (4.4)

The consensus manifoldMc is thus contained in the clustering manifoldMcl. More specifically,

Mc is a d−dimensional manifold embedded in (Rd)N , while Mcl is a stratified set in the sense of

Whitney (see Figure 4.1). We recall the definition of a stratified set:

Definition 4.1.5. A set E ⊂ Rn is called stratified in the sense of Whitney if there exists a

countable (locally finite) collection of pairwise disjoint manifolds (Mi)i∈N such that:

1. Mi is an embedded manifold of dimension di

2. IfMi ∩ ∂Mj 6= ∅, thenMi ⊂ ∂Mj and di < dj.

Moreover, we say that E has separate strata if for every i 6= j, we haveMi ∩ ∂Mj = ∅.

Mc

Mcl

Figure 4.1: Schematic representation of the consensus manifold Mc (black vertical line) contained
in the stratified clustering manifoldMcl (blue).

To characterize these different states, we introduce several functionals:
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• the variance V (t) = 1
2N2

∑
i,j

‖vi(t)− vj(t)‖2

• the entropy functional W (t) = 1
N2

∑
i,j

ln ‖vi(t)− vj(t)‖

• the generalized entropy functional Wg(t) = 1
2N2

∑
i,j

g(‖vi(t)− vj(t)‖2) (with certain conditions

on g).

Each of these functionals measures the distance of the system from either the consensus manifold or

the clustering manifold. For example, the well-known variance characterizes the state of consensus:

Proposition 4.1.1. Let (vi)i∈{1,...,N} ∈ (Rd)N , and let V (t) = 1
2N2

∑
i,j

‖vi(t)− vj(t)‖2. The system

(vi(t))i∈{1,...,N} is in the state of consensus if and only if V (t) = 0.

4.1.1 A generalized entropy

Here we propose a general approach, which consists of designing feedback controls for the general

class of first-order control systems (4.1).

To this aim, we define a generalized entropy functional Wg. In order to be able to characterize

the dispersion of the system, we require specific properties for the function g.

Definition 4.1.6. Let g : R+∗ → R+ be a continuous, increasing function such that lim
s→0

g(s) = −∞

and lim
s→+∞

g(s) <∞. We define a generalized entropy functional Wg for system (4.9) as:

Wg(t) =
1

2N2

∑
i,j

g(‖vi(t)− vj(t)‖2).

Remark 4.1.2. The advantage of defining such an entropy functional is that we are able to char-

acterize completely the dispersion of the system via the following condition:

Wg > η if and only if ∃ε(η) s.t. ∀i, j, ‖vi − vj‖ > ε (4.5)

Notice that the classical entropy functional W defined using g(·) := ln(·) does not allow such a

characterization due to the fact that ln(s) grow without bounds when s tends to infinity.

Theorem 4.1.1. Let Wg = 1
2N2

∑
i,j

g(‖vi(t) − vj(t)‖2) be an entropy functional as defined in Defi-

nition 4.1.6. The following two statements are equivalent:

1. There exists η > 0 such that for all t > 0, Wg(t) > η

2. There exists ε > 0 such that for all t > 0, for all i, j ∈ {1, ..., N}, ‖vi(t)− vj(t)‖ > ε
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If the conditions above are satisfied, the system is dispersed at all time.

Proof. Let Wg(t) > η for all t > 0. Suppose that for all ε > 0, there exist t > 0 and i, j ∈ {1, .., N}

such that ‖vi(t) − vj(t)‖ ≤ ε. Let C := supx>0 g(x). Let A > (N2 − 1)C − 2N2η. There exist

t > 0 and i, j ∈ {1, .., N} such that g(‖vi(t)− vj(t)‖2) < −A. Then Wg(t) ≤ (N2−1)C−A
2N2 < η, which

contradicts Wg(t) > η. The converse is trivial.

4.1.2 Control strategy

We aim to design a feedback control strategy to keep the system in a dispersed state. From Theorem

4.1.1, maximizing Wg will ensure that the system is dispersed, hence that it is far from the state of

consensus.

Given M > 0, we define the set of controls as

UM :=
{
u : [0,∞)→ (Rd)N

∣∣ u measurable,
N∑
i=1

‖ui‖ ≤M
}
. (4.6)

The condition
∑N
i=1 ‖ui‖ ≤M is known as the `N1 − `d2-norm constraint. It is known to promote the

sparse behavior of the control (see [17]).

Let us start by computing Ẇg(t). Define zij := vi − vj and note that zij = −zji. Since

żij = fi(v)− fj(v) + ui − uj , we get:

Ẇg =
1

N2

∑
1≤i<j≤N

g′(‖zij‖2)〈zij , fi(x)− fj(x) + ui − uj〉

=
1

N2

∑
1≤i<j≤N

g′(‖zij‖2)〈zij , fi(x) + ui〉 −
1

N2

∑
1≤i<j≤N

g′(‖zij‖2)〈zij , fj(x) + uj〉

=
2

N2

∑
1≤i<j≤N

g′(‖zij‖2)〈zij , fi(x) + ui〉

=
2

N

N∑
i=1

〈 1

N

N∑
j=1

g′(‖zij‖2)zij , fi(x) + ui〉

(4.7)

Let Si := 1
N

∑N
j=1 g

′(‖zij‖2)zij . Let i0 := arg maxi ‖Si‖, representing a weighted mean of influences

of all agents on agent i. Then the control strategy maximizing Ẇg at all time t is sparse in the

following sense:

ui =


M Si
‖Si‖ for i = i0

0 for all i 6= i0.

(4.8)
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In particular this sparse control strategy applies to the Krause system (4.2) where

f(x) =
1

N

N∑
i=1

a(‖xi − xj‖)(xj − xi).

4.2 Main results

We now choose to focus our study on the first order consensus model with positive coefficients that

are defined as functions of the state. Let a ∈ C0(R+,R+) and M > 0. We define the controlled

evolution of the system as follows:

v̇i =
1

N

N∑
j=1

a(‖vi − vj‖)(vj − vi) + ui, (4.9)

where u ∈ UM (see equation (4.6)).

4.2.1 The Black Hole

In Section 4.1.2, we designed a control strategy in the general case of system (4.1). We now study the

more specific first-order consensus model (4.9). In this section, we prove that for certain potential

functions a(·), there exists a “Black Hole zone”, i.e. given a certain bound M on the control (with∑N
i=1 ‖ui‖ ≤ M), for certain initial conditions, it is impossible to avoid convergence to consensus

(the “Black Swan” phenomenon).

Theorem 4.2.1. Let a be an attraction potential such that lims→0 sa(s) = +∞. Then for all

M > 0, there exists ε > 0 such that if for all (i, j), ‖vi(0)− vj(0)‖ < ε, then the system converges to

consensus in finite time regardless of the control strategy.

Proof. We study the evolution of the variance V (t) = 1
2N2

∑
i,j

‖vi(t)− vj(t)‖2.

V̇ =
1

2N2

∑
i,j

2〈vi − vj , v̇i − v̇j〉

=
1

N2

∑
i,j

〈vi − vj ,
1

N

∑
k

a(‖vi − vk‖)(vk − vi)−
1

N

∑
k

a(‖vj − vk‖)(vk − vj) + ui − uj〉
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The uncontrolled part of V̇ writes:

1

N2

∑
i,j

〈vi − vj ,
1

N

∑
k

a(‖vi − vk‖)(vk − vi)−
1

N2

∑
i,j

〈vi − vj ,
1

N

∑
k

a(‖vj − vk‖)(vk − vj)

=
1

N3

∑
i,j,k

(〈vi − vk, a(‖vi − vk‖)(vk − vi)〉+ 〈vk − vj , a(‖vi − vk‖)(vk − vi)〉)

− 1

N3

∑
i,j,k

(〈vi − vk, a(‖vj − vk‖)(vk − vj)〉+ 〈vk − vj , a(‖vj − vk‖)(vk − vj)〉)

=
2

N3

∑
i,j,k

〈vi − vk, a(‖vi − vk‖)(vk − vi)〉 =
2

N2

∑
i,k

〈vi − vk, a(‖vi − vk‖)(vk − vi)〉

=− 2

N2

∑
i,k

a(‖vi − vk‖)‖vk − vi‖2.

Let M > 0. Since lims→0 sa(s) = +∞, for all A > 0, there exists ε > 0 such that for all s <

ε, a(s) ≥ A
s . Near consensus, that is when for all i and j, ‖vi(t)− vj(t)‖ ≤ ε :

V̇ = − 2

N2

∑
i,j

a(‖vi − vj‖)‖vi − vj‖2 +
1

N2

∑
i,j

〈vi − vj , ui − uj〉

≤ − 2

N2
A
∑
i,j

‖vi − vj‖+
1

N2
2M

∑
i,j

‖vi − vj‖

In particular, for A = 2M , in the corresponding region near consensus,

V̇ ≤ −2M

N2

∑
i,j

‖vi − vj‖ ≤ −β
√
V

by equivalence of the norms with β > 0. Hence V tends to 0 in finite time.

Remark 4.2.1. The condition lims→0 sa(s) = +∞ does not generalize to the integral condition on

a:
∫ s0

0
a(s)ds = +∞. Take for instance a(s) = 1

s . Then
∫ s0

0
a(s)ds = +∞, but lims→0 sa(s) = 1.

Indeed, going back to the proof above, the derivative of the variance satisfies:

V̇ =
1

N2

∑
i,j

‖vi − vj‖+
1

N2

∑
i,j

〈vi − vj , ui − uj〉 ≤
1− 2M

N2

∑
i,j

‖vi − vj‖

If M < 1/2, then consensus is unavoidable, but for bigger values of M the possibility of acting on

the system to prevent consensus remains.

Theorem 4.2.1 shows that if the interaction between agents is very strong when they are close

to each other (characterized by the condition lims→0 sa(s) = +∞), then for every bound M on the

control, there exists a zone close to the consensus manifold such that no control with bound M can
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prevent consensus. We call this phenomenon the Black Hole. This is a local phenomenon. We now

look at the behavior of the system far from the consensus manifold, that is when each pair of agents

is sufficiently separated. We show in Sections 4.2.2 and 4.2.3 that depending on the strength of the

decrease of a near infinity, there may or may not exist a safety zone far from the consensus manifold,

that is a stable zone (given appropriate control).

4.2.2 Safety Zone

Here we give sufficient conditions on the potential for the existence of a safety zone. Given a bound

M on the control, there exist initial conditions such that the control can always keep the system

away far from consensus.

Theorem 4.2.2. Let a be an attraction potential such that lim
s→+∞

sa(s) = 0. Construct Wg as in

Definition 4.1.6. Then for all bound M > 0 on the control, there exists a safety zone in which

Ẇg > 0.

Remark 4.2.2. According to Theorem 4.1.1, the condition Ẇg > 0 is enough to ensure that the

system remains far from the consensus manifold at all time.

Proof. From (4.7), we have:

max
u

Ẇg =
1

N

N∑
i=1

〈Si,
1

N

N∑
k=1

a(‖vi − vk‖)(vi − vk)〉+
M

N
‖Si0‖ (4.10)

Since lim
s→+∞

sa(s) = 0, for all ε > 0, there exists µ1(ε) > 0 such that if for all i, j, ‖vi − vj‖ ≥ µ1(ε),

then 1
N

∑N
k=1 a(‖vi − vk‖)‖vi − vk‖ ≤ ε. Furthermore, due to the monotony of the chosen function

g, for all W̄ , there exists µ2(W̄ ) > 0 such that if Wg ≥ W̄ , then for all i, j, ‖vi − vj‖ ≥ µ2(W̄ ).

Let ε < M
N . Suppose that at t = 0 the agents are spread out enough that for all i, j, ‖vi(0) −

vj(0)‖ ≥ µ2(Wg(0)) ≥ µ1(ε). Then maxu Ẇg ≥ ‖Si0‖(MN − ε) ≥ 0. If we choose a control strategy

maximizing Ẇg at all time, we ensure that for all t > 0, Wg(t) ≥ Wg(0), so that for all i, j,

‖vi(t)− vj(t)‖ ≥ µ2(Wg(0)).

This first theorem covers a wide range of interaction potentials. Given that the interaction

potential a(·) decreases enough at infinity, we ensure the existence of a safety zone far from the

consensus manifold. This for instance applies to potentials a(·) with compact support. However,

notice that the interaction potential a(s) = 1
s does not meet the required conditions of Theorem

4.2.2. Here we state a new theorem dealing with functions that decrease at the speed of 1/s.
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Theorem 4.2.3. Let g meet the required conditions for Wg to be a generalized entropy functional

for system (4.9), and let the interaction potential a(·) satisfy the following conditions

(i) g′(s)a(
√
s)s ≤ −g(s);

(ii) g′(s)
√
s and a(

√
s)
√
s have the same monotony.

Then there exists a control for system (4.9) such that if Wg(0) ≥ 0, then Wg(t) ≥ 0 for all t ≥ 0. In

other words, there exists a safety zone far from consensus.

Proof. Let us study the time-evolution of the generalized entropy functional Wg. From (4.7), we

have:

Ẇg =
2

N

N∑
i=1

〈Si, fi〉+
2

N

N∑
i=1

〈Si, ui〉 (4.11)

where Si := 1
N

∑N
k=1 g

′(‖vi − vk‖2)(vi − vk) and fi := 1
N

∑N
k=1 a(‖vi − vk‖)(vk − vi). According to

Chebychev’s inequality, ( 1
N

∑N
i=1 ai)(

1
N

∑N
i=1 bi) ≤ ( 1

N

∑N
i=1 aibi) provided that the sequences (ai)

and (bi) are ordered in the same way, i.e. for all i < j, ai ≤ aj and bi ≤ bj . Assumption (ii) allows

us to use Chebychev’s inequality, so that we can write:

|〈Si, fi〉| ≤ ‖Si‖ ‖fi‖

≤ 1

N

N∑
j=1

g′(‖vi − vj‖2)‖vi − vj‖
1

N

N∑
j=1

a(‖vi − vj‖)‖vj − vi‖

≤ 1

N

N∑
j=1

g′(‖vi − vj‖2)a(‖vi − vj‖)‖vi − vj‖2

≤ − 1

N

N∑
j=1

g(‖vi − vj‖2)

where we used assumption (i) for the last inequality. Summing over i, we get:

| 1

N

N∑
i=1

〈Si, fi〉| ≤ −
1

N2

N∑
j=1

N∑
i=1

g(‖vi − vj‖2) = −2Wg.

This allows us to bound the first term of (4.7) from below:

2

N

N∑
i=1

〈Si, fi〉 ≥ −2 | 1

N

N∑
i=1

〈Si, fi〉| ≥ 4Wg.

If we design a control strategy that satisfies
∑N
i=1〈Si, ui〉 ≥ 0, we can bound Ẇg from below: for all

t ≥ 0, Ẇg(t) ≥ 4Wg(t). This implies that Wg(t) ≥Wg(0) for all t ≥ 0.
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Remark 4.2.3. From the proof above, it is obvious that Conditions (i) and (ii) only need to be

satisfied for s big enough.

Remark 4.2.4. The improvement of Theorem 4.2.3 over Theorem 4.2.2 lies in the limit case a :

s 7→ 1
s . For instance, Theorem 4.2.3 can be applied to interaction potentials of the type:

a(s) =


1 for 0 ≤ s ≤ 1

1
s for s > 1

Indeed, taking g : s 7→ − 1
s , we have

(i) g′(s)a(
√
s)s ≤ 1

s = −g(s)

(ii) for s big enough, s 7→ g′(s)
√
s = s−3/2 and s 7→ a(

√
s)
√
s = s−1/2 are both decreasing.

According to Theorem 4.2.3, there exists a safety zone far from the consensus region, even if a

does not meet the hypotheses of Theorem 4.2.2.

Theorem 4.2.4. Let a be an attraction potential such that

• −2 ≤ (sa(s))′ ≤ 0

• lim
s→0

∫ s0
s

1
a(
√
τ)τ

dτ = +∞ for s0 > 0.

Then there exists an explicit safety zone.

Proof. Let us prove that we can find an entropy functional Wg such that a satisfies the conditions

stated in Theorem 4.2.3. Let s0 > 0 and a satisfying −2 ≤ (sa(s))′ ≤ 0 and lim
s→0

∫ s0
s

1
a(
√
τ)τ

dτ = +∞

for s0 > 0. Let g be defined by:

g(s) = −C exp(−
∫ s

s0

1

a(
√
τ)τ

dτ)

for some positive constant C. This implies that

• g is increasing

• lim
s→0

g(s) = lim
s→0

(−C exp(
∫ s0
s

1
a(
√
τ)τ

dτ)) = −∞

• lim
s→0

g(s) <∞ because a(·) > 0

Thus Wg is a generalized entropy functional as defined in Definition 4.1.6. We now prove that

s 7→ g′(s)
√
s and s 7→ a(

√
s)
√
s are both decreasing.

(g′(s2)s)′ = −2s
g′(s2)

a(s)s
+ g(s2)

(a(s)s)′

(a(s)s)2
=

g(s2)

(sa(s))2
(2 + (sa(s))′) ≤ 0
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Both conditions of Theorem 4.2.3 apply, hence there exists a security zone far from the consensus

region.

In sections 4.2.1 and 4.2.2, we showed the existence of a black hole zone near the consensus

manifold if lims→0 sa(s) = +∞ and the existence of a safety zone far from the consensus manifold

if lim
s→+∞

sa(s) = 0 (or −2 ≤ (sa(s))′ ≤ 0 and lim
s→0

∫ s0
s

1
a(
√
τ)τ

dτ = +∞). This suggests the existence

of a “horizon” between safety and attraction to the black hole for interaction potentials that meet

both conditions. The question remains of clarifying this horizon.

If the attraction potential does not satisfy the hypotheses of Theorems 4.2.2 or 4.2.3, we cannot

ensure the existence of a safety zone. In fact, we show that in certain cases the safety zone does not

exist and the whole space is a black hole, i.e. the black hole horizon is infinite.

Lemma 4.2.1. If a(s) = 1 + 1
s2 , there exists M > 0 such that the black hole horizon is infinite.

Proof. Let M ≤ α√
2
for some α < 1.

First assume that initially
√
V (0) ≤

√
2M (i.e. some agents are already close to each other). We

study the evolution of the variance V = 1
2N2

∑N
i=1

∑N
j=1 ‖vi − vj‖2:

dV

dt
= − 1

N2

N∑
i=1

N∑
j=1

a(‖vi − vj‖)‖vi − vj‖2 +
1

N2

N∑
i=1

N∑
j=1

〈vi − vj , ui − uj〉. (4.12)

The second term is related to V by equivalence of the norms:

1

N2

N∑
i=1

N∑
j=1

〈vi − vj , ui − uj〉 ≤M
1

N2

N∑
i=1

N∑
j=1

‖vi − vj‖ ≤M
1

N2
N

√√√√ N∑
i=1

N∑
j=1

‖vi − vj‖2 = M
√

2V

Since a(s) ≥ 1
s2 , while

√
V ≤

√
2M we have

dV

dt
≤ −1 +M

√
2V ≤ −1 + 2M2 ≤ α− 1, (4.13)

so V converges to 0 in finite time.

Let us now suppose that
√
V (0) >

√
2M , so the initial conformation is far from the consensus

manifold. While this condition is satisfied, since a(s) ≥ 1, we write:

dV

dt
≤ −2V +M

√
2V =

√
V (−2

√
V +

√
2M) ≤ −

√
V (
√

2M). (4.14)

So V decreases until
√
V =

√
2M . When that happens, we are brought back to the first case.
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4.2.3 Basin of attraction

In Theorems 4.2.2 and 4.2.3, we saw that if a(·) decreases fast enough to 0 at infinity, then there

exists a “safety” zone near infinity (i.e. when the agents are far from each other). Here we show that

this safety zone does not always exist.

Theorem 4.2.5. If lim
s→+∞

sa(s) = +∞, then there is no “safety” zone far from consensus. In other

words, there exist two sets B1 and B2 with B1 ⊂ B2, such that for all v(0) ∈ RdN \B1, for all control

u ∈ UM , there exists T > 0 such that for all t ≥ T , vu(t) ∈ B2.

Proof. Let A > M . There exists s0 > 0 such that if s > s0, then sa(s) > A. Let B1 :=

{(vi)i∈{1,...,N} ∈ RdN |∃i, j ∈ {1, ..., N}, ‖vi − vj‖ ≤ s0}. Then while v ∈ Bc1 = {(vi)i∈{1,...,N} ∈

RdN |∀i, j ∈ {1, ..., N}, ‖vi − vj‖ > s0}, the variance V decreases as a quadratic function of time:

V̇ = − 1

N2

∑
i,j

a(‖vi − vj‖)‖vi − vj‖2 +
1

N2

∑
i,j

〈vi − vj , ui − uj〉 ≤
M −A
N2

∑
i,j

‖vi − vj‖

Since A > M , by equivalence of the norms, there exists γ > 0 such that V̇ ≤ −γ
√
V . Hence V

decreases until v(T ) ∈ B1 for some T > 0. When v ∈ B1, it might become possible to act on the

system again. If the control allows to obtain again v ∈ Bc1, again V becomes strictly decreasing until

v ∈ B1. Hence for all t > T , V (t) ≤ s0
2 . This implies that for all t > T , 1

2N2 maxi,j ‖vi−vj‖ ≤ s0
2 . So

for all t > T , v(t) ∈ B2, where B2 := {(vi)i∈{1,...,N} ∈ RdN |∀i, j ∈ {1, ..., N}, ‖vi−vj‖ ≤ N2s0}.

Remark 4.2.5. In the case d = 1, N = 2, the consensus manifold is the line v1 = v2. The sets B1

and B2 are defined as: B1 = {(v1, v2) ∈ R2 | ‖v1 − v2‖ ≤ s0} and B2 = {(v1, v2) ∈ R2 | ‖v1 − v2‖ ≤

4s0}.

v1

v2

s0 4s0

B1

B2

Figure 4.2: Consensus manifold (dashed line) and basin of attraction in the case d = 1, N = 2.
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4.2.4 Collapse prevention

We saw in Section 4.2.1 that if lims→0 sa(s) = +∞, there exists a Black Hole zone in which no

control allows to avoid consensus.

On the other hand, we will show that if lims→0 sa(s) = 0, then consensus can always be avoided,

in particular with the sparse control strategy defined in Section 4.1.2.

Theorem 4.2.6. Suppose that lims→0 sa(s) = 0. Then the sparse control strategy defined in Section

4.1.2 prevents consensus. More specifically, there exists W̄ and T > 0 such that for all t > T ,

Wg > W̄ .

Proof. With the sparse control strategy, we have

Ẇg =
1

N

N∑
i=1

〈Si,
1

N

N∑
k=1

a(‖vi − vk‖)(vi − vk)〉+
M

N
‖Si0‖ ≥ ‖Si0‖(

M

N
−max

i,j
a(‖vj − vi‖)‖vj − vi‖).

Let ε > 0, with ε < M
N . Since lims→0 sa(s) = 0, there exists η > 0 such that for all i, j ∈ {1, ..., N},

‖vi− vj‖ ≤ η =⇒ a(‖vi− vj‖)‖vi− vj‖ ≤ ε. Suppose that the system is already close to consensus,

so that for all i, j ∈ {1, ..., N}, ‖vi−vj‖ ≤ η. Then Ẇg ≥ (MN −ε)‖Si0‖ > 0. Wg increases until there

exists i, j ∈ {1, ..., N}, such that ‖vi − vj‖ > η. Denote by T the instant when that happens. While

there exists i, j ∈ {1, ..., N} such that ‖vi − vj‖ > η, Wg ≥ 1
2N2 maxi,j g(‖vi − vj‖2) ≥ 1

2N2 g(η2) due

to the monotonicity of g. Hence for all t > T , Wg(t) ≥ 1
2N2 g(η2), which ensures boundedness away

from consensus.

4.3 Numerical simulations

Numerical simulations illustrate the basin of attraction in the case d = 1, N = 2, see Figure 4.3. The

interaction potential was chosen to be a : s 7→ s−1/2, so that lims→0 sa(s) = 0 and lims→∞ sa(s) =

+∞. Referring to the summarizing Table 4.1, we expect to exhibit the existence of a basin of

attraction B2, as well as to show that the control defined in Section 4.1.2 prevents convergence to

consensus. We set the control bound M = 1. Choosing A = M (the limit value in Theorem 4.2.5),

we have s0 = 1 and B1 := {(v1, v2) ∈ R2 | |v1 − v2| ≤ 1} and B2 := {(v1, v2) ∈ R2 | |v1 − v2| ≤ 4}.

Figure 4.4 shows the evolution of the entropy functional Wg for a choice of function g : s 7→ 1− 1
s .
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Figure 4.3: Evolution of (v1, v2) ∈ R2 in the case a : s 7→ s−1/2 with control (red) and without
control (blue). Left: Initial configuration (v1, v2) 6∈ B2. Right: Initial configuration (v1, v2) ∈ B1.
In both cases, without control the system tends to consensus (i.e.(v1, v2) tends to the consensus
manifold M = {(v1, v2) ∈ R2 | v1 = v2}. With control, when the initial configuration is close
to the consensus manifold M , the control is able to bring it away to a safer zone (right). When
(v1(0), v2(0)) is initially far from consensus, despite the control, the system converges to a basin of
attraction (left).
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Figure 4.4: Evolution of Wg(t) in the case a : s 7→ s−1/2 with control (red) and without control
(blue). Left: Initial configuration (v1, v2) 6∈ B2. Right: Initial configuration (v1, v2) ∈ B1.
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Chapter 5

Social dynamics models on general Rie-

mannian manifolds

Introduction

The emergence of a group’s global behavior from local interactions among individual agents is a

fascinating feature of opinion dynamics. When local rules imply global patterns in a population, we

are observing a phenomenon called self-organization. Traditionally, interest focuses on understand-

ing the complex rules of interacting opinions which lead to certain global configurations, such as

classic consensus, alignment, clustering, or the less studied dancing equilibrium [19]. For instance,

in bounded-confidence models such as the one proposed by Hegselmann and Krause, the radius of

interaction determines the clustering of the system [55]. Motsch and Tadmor studied the influence

of the shape of the interaction potential on the convergence to consensus of the Hegselmann-Krause

system [82]. Ha, Ha and Kim looked at the Cucker-Smale second-order alignment model and pro-

vided a condition on the interaction potential ensuring convergence of the system to alignment [49].

Cristiani, Frasca and Piccoli studied the effect of anisotropic interactions on the behavior of the

group [28].

The dynamics of an opinion formation system greatly depend on the state-space [3]. Models on

the Euclidean space in one dimension (for opinion dynamics) or in two or three dimensions (with

applications to groups of animals or robots) have been extensively studied and are well understood.

However, such models are locally linear, which may be a limitation when one strives to capture more

complex phenomena and better represent reality [116]. In this line of thought, the Kuramoto model

on the sphere S1 addresses the problem of synchronizing a large number of oscillators [68, 119]. There

exist numerous applications to this model [36, 108, 111, 112]. Similarly, applications to satellite or

ground vehicle coordination have motivated the development of models on special orthogonal groups

[106, 107]: satellites evolve on SO(3) while ground vehicles evolve on SE(2) or SE(3). A nonlinear
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model of opinion formation on the sphere was also developed in [19].

The present work defines a general model of opinion dynamics on a Riemannian manifold. We

investigate how the manifold on which the model is defined affects the global configurations resulting

from opinion dynamics. These are the first steps to build a robust theory of opinion dynamics on

general Riemannian manifolds.

There is an inherent difficulty in defining opinion dynamics on a general Riemannian manifold.

Using the Riemannian distance, an agent will move towards a point by following the manifold’s

geodesics, which are well defined only locally. On a larger scale, there might not exist a unique

geodesic. Another challenge is the extreme complexity of computing geodesics, even on a relatively

simple manifold such as the torus [46]. One way around this issue is to consider the embedding

of the manifold into a Euclidean space. Each agent’s velocity is defined by projection of the other

agents’ influence onto the tangent space at that point. This is the choice made in [19].

Other than the mentioned practical aspect, there is an intrinsic rationale for choosing one ap-

proach over the other. When evolving along the geodesics of the manifold, one assumes that each

agent has a global understanding of the manifold’s geometry and is able to choose the shortest path

among all possible ones. On the other hand, the approach based on the projection of the desired

destination onto the tangent space implies that each agent only holds local information about the

space in which it evolves. It chooses to move in the direction which locally seems to bring it closer

to the target.

We explore these two specific approaches for our generalized model. The first method, “Approach

A”, uses projections in the Euclidean space in which the manifold is embedded. The second method,

“Approach B”, uses only geodesics defined on the manifold to define strength and direction of in-

teraction. We exhibit properties of the interaction matrix that lead to specific kinds of equilibria.

Simulations and examples compare the two methods. “Dancing equilibria” for approach B is shown

(dancing equilibria was studied for approach A in [19].

We use the sphere and torus as example manifolds to evaluate these approaches. Specifically, we

simulate dynamics on the following manifolds: S1,S2 and T2. These examples allow us to directly

compare the two approaches, and see if one is more appropriate for a given manifold. We show the

influence of the manifold’s geometry on the dynamics by examining the dynamics resulting from the

same interaction matrix in S2 and T2 and R2.

Opinion dynamics trajectories can resemble n−body choreography, that is, solutions to the well

known n−body problem. These dynamics drive agents along orbits which may be shared by mul-

tiple agents. We refer to opinion dynamics trajectories along such orbits as “Social Choreography”
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and investigate initial conditions and properties of the interaction matrix which give rise to Social

Choreography, specifically in R2.

5.1 Choice of model

This work will primarily discuss two approaches to define opinion dynamics on a Riemannian man-

ifold. Let M be a Riemannian manifold. Let N ∈ N represent the number of agents with opinions

evolving on M . We denote by x := (xi)i∈{1,...,N} ∈MN the set of opinions. For each i ∈ {1, ..., N},

ẋi ∈ TxiM . The opinions xi evolve according to the following general dynamics:

ẋi =

N∑
j=1

aijΨ(d(xi, xj))νij (5.1)

where

• aij ∈ R is the interaction coefficient of the pair of agents i and j,

• Ψ : R→ R is the interaction potential,

• d(·, ·) : M ×M → R+ represents the difference between opinions,

• νij ∈ TxiM is a unit vector giving the direction of the influence of j over i.

Each of these terms is further specified in the following.

5.1.1 Approaches

The evolution of each agent’s opinion depends on the opinions of all other agents, with influences

weighted by the interaction coefficients aij . More specifically, an agent xj ’s influence on xi is

determined by two elements: the direction of influence νij ∈ TxiM and the magnitude of influence

Ψ(d(xi, xj)) ∈ R+. We propose and study two different approaches for the choices of d and νij .

Approach A uses the embedding of M in Rn to define d(xi, xj), whereas Approach B is intrinsic to

M , with distance and direction of influence based on geodesics.

Approach A. Assume thatM of dimension m is embedded in a Euclidean space Rn, with n ≥ m.

Agent xj acts on agent xi via a projection onto TxiM ⊂ Rm. Now considering points (xi, xj) ∈M2

as points of Rn, the difference xj−xi is a vector of Rn. Given a vector subspace Y of Rn, we denote
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by ΠY y the projection of y ∈ Rn onto Y ⊂ Rn and define dP (·, ·) as follows:

dP (xi, xj) = ‖ΠTxiM
(xj − xi)‖ (5.2)

where ‖ · ‖ denotes the Euclidean norm on Rn. The same projection also defines the direction of

influence of xj on xi:

νij =


ΠTxiM

(xj−xi)
‖ΠTxiM (xj−xi)‖ if ΠTxiM

(xj − xi) 6= 0

0 otherwise.
(5.3)

With the specific choice Ψ ≡ Id, system (5.1)-(5.2)-(5.3) becomes:

ẋi =

N∑
j=1

aijΠTxiM
(xj − xi). (5.4)

This is the approach used in [19], applied to the sphere S2.

Notice that the magnitude of influence, dP (xi, xj), is symmetric for the sphere in the sense that

dP (xi, xj) = dP (xj , xi), but not symmetric for a general Riemannian manifold (see Figure 5.1).

However, it is a continuous function defined for all pairs of points (xi, xj) ∈ M2. The originality

of this approach is that the influence of xj on xi is not related to a notion of distance between the

points. The use of the projection of xj − xi onto TxiM reflects the concept of “local visibility.” For

the situation of two agents evolving on a one dimensional manifold, if xj − xi ⊥ TxiM , then a local

displacement of xi does not affect the distance between the points ‖xi − xj‖. Indeed, a first order

Taylor expansion gives: xi(ε) = xi(0) + εẋi(0) + o(ε).

Supposing that xj is fixed, we have:

‖xi(ε)− xj‖2 = 〈xi(ε)− xj , xi(ε)− xj〉 = 〈xi(0)− xj , xi(0)− xj〉+ 2ε〈ẋi(0), xi(0)− xj〉+ o(ε)

so if xj − xi(0) ⊥ Txi(0)M , then ‖xi(ε) − xj‖2 = ‖xi(0) − xj‖2 + o(ε). Hence if xi only has local

visibility, all directions of displacement seem equivalent (at first order), which justifies the influence

of xj over xi to be zero if their difference is orthogonal to the tangent space of M at xi. This is

illustrated in Figure 5.1.

Approach B. This second approach defines d and νij using the manifold M itself, and does not

require any reference to the space in which M is immersed. This would make approach B a natural
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xj − xixj xi

Figure 5.1: An example of a manifold M such that dp(xi, xj) 6= dp(xj , xi), Using system (5.4), an
agent is subject to “local visibility”, and movement of xi along TxiM (dashed line through xi) will
not bring xi closer to xj in this local sense.

way to define system dynamics, however the complete knowledge of the geodesics between any two

points on the manifold may be unrealistic. Furthermore, the geometry of the manifold may introduce

difficulties to the uniqueness of νij , particularly at the cut-locus of a point.

Definition 5.1.1. The cut locus of a point q ∈M is the set of points CL(q) ⊂M for which there

are multiple geodesics between q and p ∈ CL(q) (see also [21]).

Let γij : [0, 1]→M denote a geodesic connecting xi to xj , γij(0) = xi and γij(1) = xj . We then

define the distance between xj and xi as the length of a geodesic, i.e. denoting by gy : TyM×TyM →

R+ the Riemannian metric at point y ∈M ,

dG(xi, xj) =

∫ 1

0

√
gγij(s)(γ̇ij(s), γ̇ij(s))ds. (5.5)

The direction of influence is determined by the same geodesic:

νij =


0 if xj = xi or if xj ∈ CL(xi)

γ̇ij(0)√
gxi (γ̇ij(0),γ̇ij(0))

otherwise.
(5.6)

Unlike in Approach A, the magnitude of influence is a symmetric function: dG(xi, xj) = dG(xj , xi).

Furthermore, this approach ensures that the magnitude of influence of one agent on another is a

function of the exact Riemannian distance between the agents.

Interaction networks. In finite-dimensional systems such as system (5.1), the set of interacting

agents can be described by vertices of a graph. A directed edge exists from a vertex i to a vertex j if

and only if aij 6= 0. The system depends on the interaction network, and likewise, if the coefficients

aij are chosen to be functions of the state, the interaction network may change as a result of the

dynamics. Two main types of interaction networks have been proposed in the literature: metric

interactions and topological interactions. If interactions between agents occur only locally, only the
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neighbors of agent i influence agent i. Metric interactions define the set of neighbors of agent i,

given a radius r > 0, as

Sri (x) = {j ∈ {1, . . . , N}, d(xi, xj) ≤ r}, (5.7)

where d(·, ·) can represent either the projection or the geodesic distance, as specified in each of the

two approaches described above (see equations (5.2) and (5.5)). The other main type of interactions

specifies that an agent is influenced by only its k closest neighbors. We call these topological

interactions [3]. We define the relative separation between two agents as αij = card{k : d(xi, xk) ≤

d(xi, xj)}, The set of neighbors of agent i is then defined as the set of its k closest neighbors, i.e.

for a given k ∈ N,

Ski (x) = {j ∈ {1, . . . , N}, αij ≤ k}. (5.8)

Figures 5.2 and 5.3 illustrate differences between the metric and topological networks for the specific

example of S1, with each of the approaches A and B.

Tx1S

x3

x4

x1

x2x5
x6

(a)
Approach A
metric, r = π

4

Tx1S

x3

x4

x1

x2
x5
x6

(b)
Approach A
topological, k = 2

x3

x4

x1

x2x5
x6

π
4

(c)
Approach B
metric, r = π

4

x3

x4

x1

x2x5
x6

π
4

(d)
Approach B
topological, k = 2

Figure 5.2: The set of agents that influence x1 depends on how the interaction network is defined.
In (a) and (b) the dashed lines show the projection of agents onto the tangent space of xi, (TxiS1).
The agents depicted in red with larger dots influence x1. With the same configuration on S1, four
combinations are possible (approach {A,B} type {Metric, Topological}). Each combination implies
x1 interacts with a different set of agents.
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Figure 5.3: The agent x1 is influenced by different agents depending on how the interaction network
is defined. These networks may change as the dynamics move the agents on S1. Each agent xj , j ∈
{1, . . . , 6} will have a network describing which other agents influence xj . The interaction networks
corresponding to systems from Figure 5.2.

Resolution of discontinuities. The definitions of νij for approaches A and B (given by equations

(5.3) and (5.6)) allow discontinuities of νij at certain points. Thus, one must impose conditions on the

interaction potential Ψ ∈ C0(R+,R+), in order to ensure the continuity of the right-hand side of the

system (5.1), and hence the existence and uniqueness of a solution. Table 5.1 lists the discontinuities

of νij and gives necessary conditions on Ψ to ensure the continuity of Ψ(d(xi, xj))νij .

Firstly, notice that in both approaches, νij is discontinuous at the point xi = xj . Indeed,

if xi = xj , νij = 0, whereas almost everywhere else, ‖νij‖ = 1. To ensure the continuity of

Ψ(d(xi, xj))νij at this point, we impose the following condition:

Ψ(0) = 0. (5.9)

In approach A, we created a discontinuity of νij at the points xj ∈ N (xi), where we denote

by N (q) the set N (q) := {q ∈ M | ΠTpM (q − p) = 0}. For convenience of notation, we will use

interchangeably the notations N (xi) and Ni. More specifically, we have limxj→Ni ‖νij‖ = 1 but

‖νij‖ = 0 if xj ∈ Ni (see also Table 5.1). However, from the definition of dP (see equation (5.2)),

we have limxj→Ni dP (xi, xj) = 0 and d(xi, xj) = 0 for xj ∈ Ni. Hence a sufficient condition for

Ψ(d(xi, xj))νij to be continuous is again:

Ψ(0) = 0. (5.10)

In approach B, there is a discontinuity for xj ∈ CL(xi). Denoting by Bgeo(p, ρ) the geodesic ball

of center p and radius ρ, we require the following condition on the influence function Ψ:

Ψ(d) = 0 for all d ≥ ε (5.11)
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where ε := inf{ρ > 0 | ∀p ∈ M,Bgeo(p, ρ) ∩ CL(p) = ∅}. This distance ε, also known as injectivity

radius, is known to exist and be greater than 0 for any compact Riemannian manifold (see [21]).

Approach A B A and B

Critical points xj ∈ Ni xj ∈ CL(xi) xj = xi

Discontinuities limxj→Ni ‖νij‖ = 1 limxj→CL(xi) ‖νij‖ = 1 limxj→xi ‖νij‖ = 1

‖νij‖ = 0 for xj ∈ Ni ‖νij‖ = 0 for xj ∈ CL(xi) ‖νii‖ = 0

Condition on Ψ Ψ(0) = 0 Ψ(d) = 0 for all d ≥ ε Ψ(0) = 0

Table 5.1: Possible discontinuities of the right-hand side of (5.1). The bottom row of the table show
conditions for Ψ so that the system is continuous.

Notice that in the case of the geodesics approach (B), the condition Ψ(d) = 0 for all d ≥ ε is

incompatible with the use of the topological network (5.8). Indeed, if agent j is among the k closest

neighbors of agent i, the topological network would require: aij 6= 0. However, the interaction

between i and j would be canceled if dG(xi, xj) > ε. On the other hand, the metric interaction

network as defined by (5.7) is compatible with approach A, and with approach B if the interaction

radius is smaller than the injectivity radius: r ≤ ε. For simplicity purposes, in the rest of this

chapter, we will consider that the interaction coefficients aij are constant, thus not requiring the

need to differentiate between metric and topological networks.

5.1.2 Definitions and general results

Definition 5.1.2. The configuration x1 = ... = xN is called consensus. On the sphere, Sn, A

configuration such that, for every j ∈ {2, . . . , N}, either xj = x1 or xj = −x1, which is not a

concensus is called antipodal equilibrium.

Proposition 5.1.1. The consensus configuration is an equilibrium for system (5.1).

Proof. In both approaches A and B, if xi = xj , then νij = 0. Hence if x1 = ... = xN , then for all

i ∈ {1, . . . , N}, ẋi = 0.

Proposition 5.1.2. Let N > d+ 1. Then for every x̄ = (x̄1, . . . , x̄N ) ∈ MN , there exists a square

matrix A = (aij)i,j∈{1,...,N} such that x̄ is an equilibrium for system (5.1).

Proof. The configuration x̄ = (x̄1, . . . , x̄N ) is an equilibrium if and only if

d

dt
x̄i =

N∑
j=1

aijΨ(d(x̄i, x̄j))νij = 0.
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This is a system of at most Nd equations in the N2 − N unknowns aij , i 6= j, notice that

Ψ(d(xi, xi)νii = 0, and diagonal values of A do not change the system. So if N > d + 1 there

exists a nontrivial choice of the interaction coefficients for which x̄ is an equilibrium.

Definition 5.1.3. The kinetic energy of System (5.1)-(5.2)-(5.3) is the quantity

E(t) :=
1

2

N∑
i=1

‖ẋi(t)‖2. (5.12)

The kinetic energy of System (5.1)-(5.5)-(5.6) is the quantity

E(t) :=
1

2

N∑
i=1

gxi(ẋi(t), ẋi(t)). (5.13)

Proposition 5.1.3. Let M be a general Riemannian bounded manifold. Consider the dynamics

given by projection onto the tangent space (Approach A) given by (5.4). If the interaction matrix

A = (aij)i,j∈{1,...,N}2 is symmetric, then

lim
t→∞

E(t) = 0. (5.14)

Proof. Let F (t) = 1
2

∑N
i=1

∑N
j=1 aij‖xi − xj‖2. Using the symmetry of A, we prove that

d

dt
F (t) = 4E(t). (5.15)

Indeed, notice that

∇xi(
N∑
j=1

aij‖xi − xj‖2) = 2ΠTxiM

N∑
j=1

aij(xj − xi) = 2ẋi.
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Then we compute

d

dt
F (t) =

N∑
k=1

〈∇xk
1

2

N∑
i,j=1

aij(‖xi − xj‖2), ẋk〉

=

N∑
k=1

〈∇xk

1

2

N∑
i=1

aik(‖xi − xk‖2) +
1

2

N∑
j=1

akj(‖xk − xj‖2)

 , ẋk〉
=

N∑
k=1

〈2∇xk
1

2

N∑
i=1

aik(‖xi − xk‖2), ẋk〉 =

N∑
k=1

〈2ΠTxkM

N∑
j=1

akj(xj − xk), ẋk〉

= 2

N∑
k=1

‖ẋk‖2 = 4E(t).

(5.16)

where the third equality uses the property: aij = aji for all i, j.

Since E(t) ≥ 0, F (t) is a non-decreasing function. Moreover F (t) and d2

dtF (t) are bounded, since

M is a bounded manifold. Hence d
dtF (t)→ 0 when t→∞, which implies that limt→∞E(t) = 0.

Remark 5.1.1. Propositions 5.1.2 and 5.1.3 are generalizations of results proven for the case M =

S2 in [19].

Definition 5.1.4. Let x solve the differential equation (5.1). A dancing equilibrium is a configura-

tion in which for all pairs of agents (i, j), the distance ‖xi − xj‖ (in approach A) or dG(xi, xj) (in

approach B) is constant.

Remark 5.1.2. This definition is a generalization of the concept of dancing equilibrium described

in [19].

Remark 5.1.3. It follows immediately from definition 5.1.4 that the kinetic energy of a system in

dancing equilibrium is constant.

5.2 Analysis and simulations on S1

5.2.1 Models

We study both approaches A and B in the caseM = S1, i.e. for the one-dimensional sphere embedded

in R2. Let (θi)i∈{1,...,N} ∈ [0, 2π]N such that for all i ∈ {1, ..., N}, xi = (cos θi, sin θi)
T .
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Approach A. The projection onto an agent’s tangent space can be rewritten as:

ΠTxi

N∑
j=1

aij(xj − xi) =

N∑
j=1

aij〈

cos θj

sin θj

−
cos θi

sin θi

 ,

− sin θi

cos θi

〉
− sin θi

cos θi


=

N∑
j=1

aij(− sin θi cos θj + sin θj cos θi)

− sin θi

cos θi


=

N∑
j=1

aij sin(θj − θi)

− sin θi

cos θi

 .

(5.17)

So System (5.1)-(5.2)-(5.3) becomes:

for all i ∈ {1, . . . , N}, θ̇i

− sin θi

cos θi

 =

N∑
j=1

aijΨ(| sin(θj − θi)|) sgn(sin(θj − θi))

− sin θi

cos θi

 (5.18)

where sgn(·) is the sign function defined by:

for all x ∈ R, sgn(x) =


1 if x > 0

−1 if x < 0

0 if x = 0.

(5.19)

We can then specify:

for all (i, j) ∈ {1, . . . , N}2, dP (xi, xj) = | sin(θj − θi)|, νPij = sgn(sin(θj − θi)). (5.20)

This gives the system of scalar equations:

for all i ∈ {1, . . . , N}, θ̇i =

N∑
j=1

aijΨ(| sin(θj − θi)|) sgn(sin(θj − θi)). (5.21)

In particular, in the case Ψ ≡ Id, the system becomes the Kuramoto model [68].

for all i ∈ {1, . . . , N}, θ̇i =

N∑
j=1

aij sin(θj − θi). (5.22)
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Approach B. For M = S1, the geodesics distance dG and the vector νGij are given by:

dG(xi, xj) = arccos(cos(θj − θi)) , νGij = sgn(sin(θj − θi)). (5.23)

System (5.1)-(5.5)-(5.6) is written:

for all i ∈ {1, . . . , N}, θ̇i =

N∑
j=1

aijΨ(arccos(cos(θj − θi))) sgn(sin(θj − θi)). (5.24)

In order for the system to be well defined, the interaction function Ψ must satisfy the conditions

given in Table 5.1. Notice that the injectivity radius is constant over S1, with ε = π. Possible choices

involve choosing Ψ from a family of function defined as follows:

Ψa(d) =


1
ad for d ≤ a

d−π
a−π for d > a

(5.25)

where a ∈ (0, π).

Another possible choice is: Ψ : x 7→ sin(x). Notice that for the specific choices Ψ = Id for

approach A and Ψ : x 7→ sin(x) for approach B, the two approaches A and B are equivalent.

5.2.2 Analysis

We first examine the different equilibria for both approaches.

Theorem 5.2.1. Consider approach A, System (5.21). Let N ∈ N be even. Suppose that for

all i ∈ {1, . . . , N} for all j ∈ {1, . . . N2 }, aij = ai(j+N
2 ). Then any configuration that is centrally

symmetric, i.e.

for all j ∈ {1, . . . , N
2
}, θj+N

2
= θj + π

is an equilibrium.
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Proof. Using the hypotheses from Theorem 5.2.1, we can easily compute:

θ̇i =

N∑
j=1

aijΨ(‖ sin(θj − θi)‖) sgn(sin(θj − θi))

=

N/2∑
j=1

[aijΨ(‖ sin(θj − θi)‖) sgn(sin(θj − θi)) + ai(j+N
2 )Ψ(‖ sin(θj+N

2
− θi)‖) sgn(sin(θj+N

2
− θi))]

=

N/2∑
j=1

[aijΨ(‖ sin(θj − θi)‖) sgn(sin(θj − θi)) + aijΨ(‖ sin(θj + π − θi)‖) sgn(sin(θj + π − θi))]

= 0.

Interestingly, Theorem 5.2.1 is not applicable to approach B. We illustrate the different behav-

iors of the two systems by studying the specific example of four agents initially in a rectangular

configuration. According to Theorem 5.2.1, this configuration is an equilibrium for approach A,

independently of the choice of interaction function Ψ. However, one can easily prove that in the

geodesics-based approach B, with N = 4 and the choice Ψ := Ψa with a = 3π
4 , the only equilibrium

for which all agents have pairwise distinct positions is obtained by a regular polygon, i.e. all agents

are evenly spaced out on the circle. This is illustrated by numerical simulations shown in Figure 5.4.

This highlights the fundamentally different behaviors of the systems (5.1)-(5.2)-(5.3) and (5.1)-

(5.5)-(5.6) in the case M = S1.

Figure 5.4: Initial (empty circles) and final positions (filled circles) of 4 agents initially on the vertices
of a rectangle with approach B (left) and approach A (right), with A = 1, Ψ ≡ Id (approach A)
and Ψ = Ψ3π/4(approach B) (see equation (5.25)). Notice that with approach A, initial and final
positions are identical since any rectangle configuration is an equilibrium. However, with approach
B, the system reaches a square configuration, the only possible equilibrium with pairwise distinct
positions.

In both approaches A and B, conditions on the interaction matrix A can be found such that the
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system forms a dancing equilibrium (see Definiton 5.1.4).

Theorem 5.2.2. Consider the dynamics on S1 given by:

for all i ∈ {1, . . . , N}, θ̇i =

N∑
j=1

aijΨ(d(xi, xj))νij (5.26)

where d(·, ·) and ν are given either by Approach A (5.20) or Approach B (5.23). Let C ∈ R and

suppose that for all i ∈ {1, . . . , N},

aij =


C

Ψ(d(xi(0),xj(0)))νij if Ψ(d(xi(0), xj(0))) 6= 0

0 otherwise.
(5.27)

Then the system is in a dancing equilibrium.

Proof. If the interaction matrix satisfies (5.27), then at t = 0,

for all i ∈ {1, . . . , N}, θ̇i(0) =

N∑
j=1

C = CN

so for all (i, j) ∈ {1, . . . , N}2, θ̇i(0)− θ̇j(0) = 0. Then d(xi, xj) does not change in time, and (5.27)

holds for all time.

Numerical simulations show the evolution of the system (5.26) with condition (5.27) for the

projection or the geodesic distance, see Figures 5.5 and 5.6.
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Figure 5.5: Evolution of the system (5.26) with Approach A (left) Approach B (center) when the
interaction matrix satisfies condition (5.27) for the projection distance. Right: Kinetic energy.
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Figure 5.6: Evolution of the system (5.26) with Approach A (left) Approach B (center) when the
interaction matrix satisfies condition (5.27) for the geodesic distance. Right: Kinetic energy.

5.3 Analysis and simulations on S2

5.3.1 Models

We study both approaches A and B for M = S2, i.e. for a two dimensional sphere embedded in R3.

We use spherical coordinates: let (θi)i∈{1,...,N} ∈ [0, 2π]N , and (φi)i∈{1,...,N} ∈ [0, π]N such that for

all i ∈ {1, ..., N}, xi = (cos θ sinφ, sin θ sinφ, cosφ)T .

Choice of influence function We choose an influence function Ψ(d) between two agents xi and

xj so that the right-hand side of the system is continuous, the discontinuities are shown in Table

5.1. For approach B, the only point in CL(xi) for a given xi is the antipodal point (this is an end

point of a diameter for which xi is the other end point.) As in the case of S1, for approach B, we

choose a function Ψ from a family of functions of the form Ψa , see equation (5.25).

Approach A. On S2, the derivative for system (5.1)-(5.2)-(5.3) with Ψ ≡ Id reduces to the sum

of all projections onto the tangent space of agent xi, weighted by the corresponding interaction term

aij . This is rewritten as:

ΠTxi

N∑
j=1

aij(xj − xi) = ΠTxi

N∑
j=1

aij(xj) =

N∑
j=1

aij(xj − 〈xj , xi〉xi)

=

N∑
j=1

aij


cos θj sinφj

sin θj sinφj

cosφj

−
〈

cos θj sinφj

sin θj sinφj

cosφj

 ,


cos θi sinφi

sin θi sinφi

cosφi


〉

cos θi sinφi

sin θi sinφi

cosφi

 .

Approach B. The geodesic distance dG(xi, xj) from (5.5) between two points xi, and xj on S2 is

given by:

dG(xi, xj) = 2 arcsin

(‖xi − xj‖
2

)
,
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and the direction toward xj from xi is

νij =
xj − 〈xj , xi〉xi
‖xj − 〈xj , xi〉xi‖

,

where ‖ · ‖ is the standard norm in R3.

5.3.2 Example

Example 5.3.1. To assess the influence of the curvature of S2 on the dynamics, observe a simple

case involving 3 agents evolving according to the interaction matrix:

A =


0 1 −1

−1 0 1

1 −1 0

 (5.28)

In Section 5.5.2, we prove that those dynamics in R2 lead to periodic trajectories on a single orbit

shared by all three agents, the orbit’s parameters being fully determined by the initial conditions (see

Theorem 5.5.2). However, the same dynamics on the sphere do not give rise to periodic trajectories.

In sections 5.4.3, we also discuss the dynamics with this interactions matrix on T2, to assess the

effect of curvature of the manifold.

Figure 5.7: Dynamics with approach A on S2, using the interactions matrix 5.28. If the agents’
initial positions are close enough to each other, the agents with will form trajectories that remain
in a neighborhood of their initial position.



134

5.4 Analysis and simulations on T2

We now study how the general dynamics given by equation (5.1) apply to the specific case of the

torus T2 ⊂ R3. Let (ex, ey, ez) denote the Euclidean basis of R3. Let (R, r) ∈ (R+)2, with R > r.

We define the manifold T2 as the torus obtained by rotating the circle (x−R)2 +z2 = r2 around the

z-axis. Hence T2 is defined by the equation (R −
√
x2 + y2)2 + z2 = r2. The parametric equations

for such a torus are: 
x = (R+ r cos θ) cosφ

y = (R+ r cos θ) sinφ

z = r sin θ

for (φ, θ) ∈ [0, 2π)2.

The angles φ and θ are respectively referred to as the toroidal and poloidal angles. A set of points

with the same toroidal angle is called a meridian.

5.4.1 Model

We first investigate the behavior of system (5.1) with approach B (using the geodesic distance) in

the case of T2. Unlike in the cases of S1 and S2 presented in the sections 5.2 and 5.3, there exists no

simple expression for the geodesic distance between two points on the torus. In 1903, Bliss studied

and classified the different kinds of geodesic lines on the standard torus [11], using elliptic functions.

Gravesen et al. determined the structure of the cut loci of a torus of revolution [46].

Several challenges arise when defining approach B on T2. Firstly, computing the Riemannian

distance between two points is highly non-trivial. One could consider approximating it numerically,

but in the numerical discretization of equations (5.1)-(5.5)-(5.6), N(N − 1)/2 geodesics would have

to be computed per time-step. That would require tremendous computing power.

Secondly, assuming that one is able to efficiently compute the geodesics on T2, one must take

into account the cut-loci of each point to ensure that the dynamics (5.1)-(5.5)-(5.6) are well-defined.

A method to guarantee well-defined dynamics would be to use a bounded confidence model [55],

where the neighborhood of influence for an agent xi at point p is of smaller radius than the closest

element in the cut locus of p. See section 5.1.2 for conditions on Ψ to make the right hand side of

equation (5.1) continuous.

For simplicity, we thus focus on Approach A, where the dynamics are a function of the projection

of each vector xj−xi onto the tangent space at xi. We will show that some restrictions still apply to

the interaction function Ψ, but they are less restrictive and more easily determined than in Approach
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B.

Equations (5.1)-(5.2) reads:

ẋi =

N∑
j=1

aijΨ(‖ΠTxiT2(xj − xi)‖)νij , i ∈ {1, . . . , N}. (5.29)

The vector νij depends on the influence that xj has over xi. It is zero if ΠTxiT2(xj − xi) = 0, and it

is a unit vector otherwise. Let Ni be the set of points that have no influence on xi (see Table 5.1).

Then, given i, j ∈ {1, . . . , N}, νij has the following expression:

νij =


ΠTxiT

2 (xj−xi)
‖ΠTxiM (xj−xi)‖ if xj /∈ Ni

0 if xj ∈ Ni.
(5.30)

Let xi ∈ T2. We start by determining the set Ni. For all i, we define the vectors uφi = cosφiex +

sinφiey and uθi = cos θiuφi + sin θiez, so that each agent’s position vector reads: xi = Ruφi + ruθi .

With these notations, uθi is the normal to the tangent space at the point xi. A basis for the

tangent space at a point xi(φi, θi) is given by the two tangent vectors tφi = (− sinφi, cosφi, 0) and

tθi = (− sin θi cosφi,− sin θi sinφi, cos θi). Notice that 〈xi, tφi〉 = 0. Hence the condition ΠTxiT2(xj−

xi) = 0 reads: 
〈xj , tφi〉 = 0

〈xj − xi, tθi〉 = 0.

After computations, we get:

〈xj , tφi〉 = 0 ⇐⇒ sin(φj − φi) = 0 ⇐⇒ φj = φi + kπ, k ∈ Z.

If φj = φi, the second condition becomes:

〈xj − xi, tθi〉 = 0 ⇐⇒ sin(θj − θi) = 0 ⇐⇒ θj = θi + kπ, k ∈ Z.

If φj = φi ± π, the second condition becomes:

sin(θi + θj) = −2R

r
sin θi.

Notice that this last equation only has a solution if | sin θi| ≤ r
2R . The set of positions that have no

influence on xi thus comprises up to four points on the torus, depending on the values of r, R and
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sin θi. We then have: Ni = {(φi, θi), (φi,−θi), (−φi,−θi − sgn(sin θi) arcsin(| 2Rr sin θi|), (−φi, π −

θi+sgn(sin θi) arcsin(| 2Rr sin θi|))}. To ensure the continuity of the right-hand side of equation (5.29),

one must impose the conditions of table 5.1.

We now go back to equation (5.29). We study the specific case where Ψ ≡ Id, which indeed

satisfies (5.1). Then the system becomes:

ẋi = ΠTxiT2

 N∑
j=1

aij(xj − xi)

 . (5.31)

Hence the velocity reads:

ẋi =

N∑
j=1

aij(xj − xi)− 〈
N∑
j=1

aij(xj − xi), uθi〉uθi = αi − 〈αi, uθi〉uθi −

 N∑
j=1

aij

 〈xi, tθi〉tθi
where αi :=

∑N
j=1 aijxj is the sum of the influences of all agents on agent i. Notice that with the

same notation, the system does not reduce to the simple form ẋi = αi − 〈αi, xi〉xi for the same

dynamics on the sphere (see [19]). This is due to the fact that on the torus, the position vector xi

does not define the normal to the tangent space at xi, unlike in the cases of S1 and S2.

The velocity of each agent is given by:

ẋi =


−φ̇i sinφi(R+ r cos θi)− rθ̇i sin θi cosφi

φ̇i cosφi(R+ r cos θi)− rθ̇i sin θi sinφi

rθ̇i cos θi

 = φ̇i(R+ r cos θi)tφi + rθ̇itθi . (5.32)

From (5.31) and (5.32) we get the angular velocities:


φ̇i = 1

(R+r cos θi)
〈∑N

j=1 aij(xj − xi), tφi〉

θ̇i = 1
r 〈
∑N
j=1 aij(xj − xi), tθi〉.

(5.33)

Notice that unlike in the case of S2, here the derivatives φ̇i and θ̇i are not singular.

5.4.2 Properties

We now analyze the dynamics (5.1)-(5.2)-(5.3) on T2. We identify families of initial conditions that

trivialize the dynamics.

Proposition 5.4.1. Consider the dynamics (5.1)-(5.2)-(5.3) on M = T2. Let Pz := {(x, y, z) ∈
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R3 | z = 0}. Let xi(t) be the position of the ithe agent at time t. If for all i ∈ {1, . . . , N},

xi(0) ∈ T2 ∩ Pz, then for all t ≥ 0, for all i ∈ {1, . . . , N}, xi(t) ∈ T2 ∩ Pz.

Proof. Suppose that for all i ∈ {1, . . . , N}, xi(0) ∈ T2 ∩ Pz. Then for all i ∈ {1, . . . , N}, θi(0) = 0

or θi(0) = π. Hence, for all i, j ∈ {1, . . . , N},

tθi(0) =


0

0

±π

 and xj(0)− xi(0) =


(R+ r cos θj) cosφj − (R+ r cos θi) cosφi

(R+ r cos θj) sinφj − (R+ r cos θi) sinφi

0


From equation (5.33) we get: for all i ∈ {1, . . . , N}, θ̇i = 0. By uniqueness of solution, for all

i ∈ {1, . . . , N}, θi(t) = θi(0). All the initial velocities belong to the plane Pz. Hence all agents

remain on Pz at all time.

Remark 5.4.1. As a consequence of Proposition 5.4.1, if all agents are initially in T2 ∩ Pz, all

agents initially on the bigger circle θ = 0 remain on the major circle at all time and all agents on

the minor circle θ = π remain on the minor circle at all time. In particular, if all agents are initially

all on the same circle (i.e. for all i ∈ {1, . . . , N}, θi = 0 or for all i ∈ {1, . . . , N}, θi = π), then the

torus dynamics simplify to the dynamics on S1 given by (5.21) or (5.22).

Proposition 5.4.2. Consider the dynamics (5.1)-(5.2)-(5.3) on M = T2. Let φ̃ ∈ [0, 2π] and let

Pφ̃ := {(x, y, z) ∈ R3 | y = tan(φ̃)x}. If for all i ∈ {1, . . . , N}, xi(0) ∈ T2 ∩ Pφ̃, then for all t ≥ 0,

for all i ∈ {1, . . . , N}, xi(t) ∈ T2 ∩ Pφ̃.

Proof. Suppose without loss of generality that φ̄ = 0. Similarly to the proof for Proposition 5.4.1,

we can show that for all i ∈ {1, . . . , N}, φ̇i(0) = 0. By uniqueness of solution, for all i ∈ {1, . . . , N},

φi(t) = φi(0). Hence all agents remain in Pφ̃ at all time.

Remark 5.4.2. As a consequence of Proposition 5.4.2, if all agents are initially in T2 ∩ Pφ̄, all

agents initially on the circle φ = φ̄ remain on that circle at all time and all agents on the circle

φ = −φ̄ remain on that circle at all time. In particular, if all agents are initially all on the same

circle (i.e. for all i ∈ {1, . . . , N}, φi = φ̄ or for all i ∈ {1, . . . , N}, φi = −φ̄), then the torus

dynamics simplify to the dynamics on S1 given by (5.21) or (5.22).

5.4.3 Simulations

To assess the influence of the curvature of the manifold on the dynamics, we compare a simple case

involving 3 agents evolving according to the interaction matrix given in equation (5.28). As in the
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case of S2, the dynamics on the torus do not give rise to periodic trajectories (as opposed to the

dynamics in R2, see Theorem 5.5.2). Instead, since T2 can locally be identified with R2, if the

initial mutual distances are small enough, the dynamics resemble those in R2. More specifically, the

trajectories are quasi-periodic with a gradual shift of the center of mass (see Figure 5.8). However,

if the initial distances between agents are large, the geometry and curvature of the torus changes

radically the behavior of the system.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time = 2.0

1

2

3

Figure 5.8: Trajectories of three agents interacting according to the matrix A given in (5.28). Left:
Dynamics in R2, with periodic trajectories on a unique orbit. Center: Dynamics on M = T2 with
small initial mutual distances. Right: Dynamics on M = T2 with large initial distances.
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Figure 5.9: Evolutions of the coordinates of the three agents evolving on T2 with interaction matrix
A from equation (5.28), with small initial mutual distances. Left: Evolution of φ. Center: Evolution
of θ. Right: Evolution of the kinetic energy.

5.5 Social choreographies

As seen in Sections 5.2 and 5.4.3, when the interaction matrix A satisfies certain properties, for

instance given by (5.27) on S1 or by (5.28) in R2, then the trajectories exhibit special properties of

symmetry or periodicity. In [19], configurations on S2 in which all mutual distances between agents

remain constant were named dancing equilibrium.

In this section, we investigate systems with similar properties of periodicity or symmetry. We

use the term social choreography, drawing a parallel with the well-known “n-body choreographies”

discovered by Moore [80, 81] in the context of point masses subject to gravitational forces. In the

n-body problem, the interaction potentials between masses are predetermined, as they depend exclu-
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sively on the masses and distances between agents. Hence the conditions for a n-body choreography

to occur only depend on the initial state of the system. In the case of social choreography, there are

more degrees of freedom, as we design the interaction matrix as well as to set the initial conditions.

We study sufficient conditions on the interaction matrices for the trajectories of the system to be

periodic or symmetric, focusing on the Euclidean space R2 with the specific choice of interaction

potential Ψ ≡ Id. In this setting, both approaches A and B are equivalent and the system simply

reads as:

for all i ∈ {1, . . . , N}, ẋi =

N∑
j=1

aij(xj − xi). (5.34)

A simple case of social choreography is that of a system with periodic trajectories, which we

define as follows:

Definition 5.5.1. Let (xi)i=1...N be a solution of (5.34). We refer to the system as having periodic

trajectories if there exists τ > 0 such that

for all i ∈ {1, ..., N}, for all t > 0, xi(t+ τ) = xi(t).

We will examine possible periodic behaviors of the system in sections 5.5.2, 5.5.3 and 5.5.4.

5.5.1 Rotationally invariant system

We now give sufficient conditions on the interaction matrix and on the initial conditions for the

system to be invariant by rotation.

Theorem 5.5.1. Let k ∈ N such that k divides N . Let Pk =

 0 IN−k

Ik 0

 be the matrix of change

of basis from (e1, . . . , eN ) to (ek, . . . , eN , e1, . . . , ek−1). Let R(θ) denote the rotation matrix in R2

for the angle θ ∈ [0, 2π). Suppose that initially, the system is invariant by rotation of angle 2kπ
N ,

that is:

for all i ∈ {1, . . . , N}, R(
2kπ

N
)xi(0) =

 xi+k(0) if i+ k ≤ N

xi+k−N (0) if i+ k > N
.

Suppose that the interaction matrix A is invariant by change of basis, i.e. P−1
k APk = A. Then the

system remains invariant by rotation of angle 2kπ
N at all time:

for all t > 0, for all i ∈ {1, . . . , N}, R(
2kπ

N
)xi(t) =

 xi+k(t) if i+ k ≤ N

xi+k−N (t) if i+ k > N
.
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Proof. Let A ∈ MN (R) be the interaction matrix, i.e. A = (aij)i,j=1,...N , and define D =

diag(
∑
j aij). Let x = (x1, . . . , xN ) denote the set of all xi’s. It is a vector of length N with

entries in R2. Let X ∈ MN×2(R) denote the corresponding matrix of RN×2 such that for all

i ∈ {1, . . . , N}, for all j ∈ {1, 2}, Xij is the j-th coordinate of xi. With these notations, Ẋ = ÃX,

where Ã = A − D. We denote by (e1, . . . , eN ) the canonical orthonormal basis of (R)N such that

X =
∑N
i=1 eix

T
i .

From the definition of the matrix X, the condition

for all i ∈ {1, . . . , N}, R(
2kπ

N
)xi(0) =

 xi+k(0) if i+ k ≤ N

xi+k−N (0) if i+ k > N

can be rewritten as: PkX(0) = (R( 2kπ
N )X(0)T )T . Let Y := PkX and Z := (R( 2kπ

N )XT )T . From the

theorem’s hypotheses, Y (0) = Z(0). Let us show that Y and Z have the same evolution. One can

easily prove that P−1
k ÃPk if and only if P−1

k APk. Then notice that

Ẋ = ÃX = P−1
k ÃPkX.

From that we compute:

Ẏ = PkẊ = Pk(P−1
k ÃPkX) = ÃPkX = ÃY.

Similarly,

Ż = (R(
2kπ

N
)ẊT )T = (R(

2kπ

N
)(ÃX)T )T = (R(

2kπ

N
)XT ÃT )T = ÃZ.

Since Y and Z satisfy the same differential equation and Y (0) = Z(0), then Y (t) = Z(t) for all

t ≥ 0. This implies that at all time,

for all i ∈ {1, . . . , N}, R(
2kπ

N
)xi(t) =

 xi+k(t) if i+ k ≤ N

xi+k−N (t) if i+ k > N
.
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Figure 5.10: Left: Evolution of 12 agents with the conditions of Theorem 5.5.1, with k = 3, resulting
in diverging trajectories. Dark to light color scale indicates earlier to later time. Right: correspond-
ing exploding kinetic energy. The interaction matrix A and the initial positions were generated
according to a random algorithm, with the conditions of Theorem 5.5.1.
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Figure 5.11: Left: Evolution of 12 agents with the conditions of Theorem 5.5.1, with k = 3, resulting
in convergence to consensus. Dark to light color scale indicates earlier to later time. Right: corre-
sponding kinetic energy converging to zero. The interaction matrix A and the initial positions were
generated according to a random algorithm, with the conditions of Theorem 5.5.1.

5.5.2 Unique orbit

Another example of social choreography is that of a system in which all agents share one unique

orbit. Such choreographies have been discovered in the context of the n-body problem, for instance

the “figure 8” orbit for three equal masses [80].

Definition 5.5.2. Let (xi)i=1...N be a solution of (5.34). We say that the system has a unique

orbit if the orbits of all points are identical, i.e.

for all i, j ∈ {1, ..., N}, {z ∈M |∃t > 0, xi(t) = z} = {z ∈M |∃t > 0, xj(t) = z}.
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To illustrate Theorem 5.5.1, we study the evolution of N agents initially positioned at regular

intervals on a circle, with an interaction matrix and initial conditions given by:

A =



0 1 0 . . . 0 −1

−1 0
. . . . . . . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . . . . . . . 1

1 0 . . . 0 −1 0


and for all i ∈ {1, . . . , N}, xi(0) =

cos( 2iπ
N )

sin( 2iπ
N )

 .

(5.35)

Notice that Ã = A, and the system satisfies the conditions of Theorem 5.5.1 with k = 1. Hence

for all i ∈ {1, . . . , N − 1}, R( 2π
N )xi(t) = xi+1(t) and R( 2π

N )xN (t) = x1(t). The 2N -dimensional

system then reduces to a 2-dimensional one for the two coordinates x11 and x12 of x1, and all the

other variables can be recovered by rotation of x1:

ẋ1 = x2 − xN = R(
2π

N
)x1 −R(−2π

N
)x1.

This can be written as: ẋ11

ẋ12

 =

 0 −2 sin( 2π
N )

2 sin( 2π
N ) 0


x11

x12

 .

Solving this linear system yields:

x11(t) = x11(0) cos(2 sin( 2π
N )t)− x12(0) sin(2 sin( 2π

N )t) = cos(2 sin( 2π
N )t)

x12(t) = x11(0) sin(2 sin( 2π
N )t) + x12(0) cos(2 sin( 2π

N )t) = sin(2 sin( 2π
N )t)

.

This proves that all agents share one common circular orbit, and their trajectories are periodic of

period 2π(2 sin( 2π
N ))−1. Figure 5.12 provides a numerical illustration of this behavior, with 10 agents

initially positioned at regular intervals on the unit circle.

Another interesting example is that of 3 agents interacting according to the interaction matrix
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Figure 5.12: Periodic trajectories of 10 agents sharing one circular orbit

given previously, which, reduced to N = 3, gives:

A =


0 1 −1

−1 0 1

1 −1 0

 . (5.36)

Theorem 5.5.2. Let N = 3. Consider the system (5.34) with interaction matrix given by (5.36).

Then there exists a unique orbit shared by all agents, and all three trajectories are periodic.

Proof. The x and y-coordinates of the systems are decoupled, so that the 6-dimensional system can

be reduced to two 3-dimensional ones. Notice that Ã = A. Then for each coordinate j ∈ {1, 2}, the

system reads: 
x1j

x2j

x3j

 (t) = exp(tA)


x0

1j

x0
2j

x0
3j


with

etA =
1

3


1 + 2 cos(

√
3t) 1− cos(

√
3t) +

√
3 sin(

√
3t) 1− cos(

√
3t)−

√
3 sin(

√
3t)

1− cos(
√

3t) +
√

3 sin(
√

3t) 1− cos(
√

3t)−
√

3 sin(
√

3t) 1 + 2 cos(
√

3t)

1− cos(
√

3t)−
√

3 sin(
√

3t) 1 + 2 cos(
√

3t) 1− cos(
√

3t) +
√

3 sin(
√

3t)

 .
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Due to the special structure of etA, this can be rewritten as:


x1j

x2j

x3j

 (t) =
1

3


x0

1j x0
2j x0

3j

x0
2j x0

3j x0
1j

x0
3j x0

1j x0
2j




1 + 2 cos(
√

3t)

1− cos(
√

3t) +
√

3 sin(
√

3t)

1− cos(
√

3t)−
√

3 sin(
√

3t)

 .

This shows that all three trajectories are periodic, or period 2π√
3
. One can compute the positions of

each agent after a third of a period and notice that:


x1j

x2j

x3j

 (t+
2π

3
√

3
) =

1

3


x0

1j x0
2j x0

3j

x0
2j x0

3j x0
1j

x0
3j x0

1j x0
2j




1− cos(
√

3t)−
√

3 sin(
√

3t)

1 + 2 cos(
√

3t)

1− cos(
√

3t) +
√

3 sin(
√

3t)

 =


x2j

x3j

x1j

 (t).

This shows that there is one unique shared orbit.

5.5.3 Coupled periodic trajectories

Other conditions on the interaction matrix A give rise to different kinds of periodic behaviors. Here

we provide sufficient conditions for the system to exhibit periodic trajectories, such that each orbit

is shared by two agents.

Theorem 5.5.3 (Coupled periodic trajectories). Let N be even. Suppose that initially, the system

is invariant by rotation of angle 4π
N , that is:

for all i ∈ {1, . . . , N}, R(
4π

N
)xi(0) =

 xi+2(0) if i+ 2 ≤ N

xi+2−N (0) if i+ 2 > N
.

Let a, b > 0 and let

A =



0 a 0 . . . 0 −b

−a 0 b
. . . . . . 0

0 −b . . . a
. . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . . . . . . . a

b 0 . . . 0 −a 0


. (5.37)

Then the system is periodic of period τ = π√
ab sin(2π/N)

. Furthermore, if N is divisible by 4, opposite
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agents share orbits two by two, i.e.:

for all t > 0, for all i ∈ {1, . . . , N
2
}, xi(t+ τ) = xi+N

2
(t),

and the kinetic energy is periodic with period τ/2.

Proof. First remark that the system satisfies the hypotheses of Theorem 5.5.1, so

for all t > 0, for all i ∈ {1, . . . , N}, R(
4π

N
)xi(t) =

 xi+2(t) if i+ 2 ≤ N

xi+2−N (t) if i+ 2 > N
.

Hence the system is entirely known from the positions of the first two agents, since all others can

be obtained by simple rotations. We show that this 2N -dimensional problem can be rewritten as a

4-dimensional one. Indeed, using the fact that xN = R(−4π/N)x2 and x3 = R(4π/N)x1, the system


ẋ1 = a(x2 − x1)− b(xN − x1)

ẋ2 = b(x3 − x2)− a(x1 − x2)

becomes:

ẋ1 =

ẋ11

ẋ12

 = a


x21

x22

−
x11

x12


− b


 cos( 4π

N ) sin( 4π
N )

− sin( 4π
N ) cos( 4π

N )


x21

x22

−
x11

x12




ẋ2 =

ẋ21

ẋ22

 = b


cos( 4π

N ) − sin( 4π
N )

sin( 4π
N ) cos( 4π

N )


x11

x12

−
x21

x22


− a


x11

x12

−
x21

x22




.

This can be rewritten in matrix form as:



ẋ11

ẋ12

ẋ21

ẋ22


= A4



x11

x12

x21

x22


(5.38)
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where

A4 :=



−a+ b 0 a− b cos( 4π
N ) −b sin( 4π

N )

0 −a+ b b sin( 4π
N ) a− b cos( 4π

N )

−a+ b cos( 4π
N ) −b sin( 4π

N ) a− b 0

b sin( 4π
N ) −a+ b cos( 4π

N ) 0 a− b





x11

x12

x21

x22


.

One can easily show that this reduced interaction matrix A4 has two purely imaginary conjugate

eigenvalues, iλ and −iλ, each of multiplicity 2, where λ = 2
√
ab sin( 2π

N ). Hence the solution of the

system (5.38) can be written as a weighted sum of the functions t 7→ cos(λt) and t 7→ sin(λt). This

implies that the system is periodic, of period

τ =
2π

λ
=

π√
ab sin( 2π

N )
.

Furthermore, if N is divisible by 4, according to Theorem 5.5.1, xN
2 +1 = −x1 and xN

2 +2 = −x2.

This implies that for all t > 0, x1(t+ τ) = −x1(t) = xN
2 +1(t) and x2(t+ τ) = −x2(t) = xN

2 +2(t), so

the agents x1 and xN
2 +1 share an orbit, as well as all pairs of agents xi and xN

2 +i for i ∈ {1, . . . , N2 }.

As a consequence, the kinetic energy is periodic, of period τ = π/(2
√
ab sin( 2π

N )). If N is divisible

by 4, every half period, the system is rotated by an angle π, so the kinetic energy is periodic with

period τ/2.

Remark 5.5.1. Notice that the agents sharing orbits do not interact with one another, as shown in

Figure 5.13.

An example of such a choreography is given in Figure 5.14.

Remark 5.5.2. As a slight generalization, we provide numerical simulations illustrating a similar

behavior, but with slightly different conditions: the periodic evolution of 9 agents on three distinct

orbits shared three by three, see figures 5.15 and 5.16.

5.5.4 Helical trajectories

In sections 5.5.2 and 5.5.3, we provided conditions for the trajectories of the system to be periodic.

Here, we explore further the notion of periodicity by studying systems with drift, displaying helical

trajectories but periodic kinetic energy.
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Figure 5.13: Left: Directed graph corresponding to the matrix A given in (5.35). Full arrows
represent positive coefficients (aij > 0) while dashed ones represent negative coefficients (aij < 0).
Right: Weighted directed graph corresponding to the matrix A given in (5.37). Thin arrows represent
the weighted edges |aij | = a while bold ones represent the weight |aij | = b. Nodes with the same
color and symbol share orbits but are not directly connected in the graph.

Definition 5.5.3. Let (xi)i=1...N be a solution of (5.34). We call the corresponding trajectories

helical trajectories if there exists v ∈ R2 and τ ∈ R∗ such that

for all i ∈ {1, ..., N}, for all t > 0, xi(t+ τ) = xi(t) + τv.

Notice that this definition generalizes the notion of periodic trajectories recalled in Definition

5.5.1, which corresponds to the case v = 0. When v 6= 0, the system has a drift term, meaning that

the relative positions between agents remain periodic but their absolute positions evolve in space.

Theorem 5.5.4. Sufficient conditions for helical trajectories. Let N = 4. Let (a, b, c, d) ∈ (R+)4

such that the interaction matrix reads

A =



0 a 0 −d

−a 0 b 0

0 −b 0 c

d 0 −c 0


. (5.39)

Then the system exhibits pseudo-periodic trajectories with drift.

Proof. First notice that the first and second components xi1 and xi2 of the i-th agent’s position are
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Figure 5.14: Left: Periodic trajectories of 8 agents sharing orbits two by two, in the situation of
Theorem 5.5.3. Matrix A from (5.37) was constructed with (a, b) = (1, 3). The initial positions
x1(0) and x2(0) were randomly generated and the other 6 were obtained by rotation. The period is
τ = 2π/

√
6. Right: Corresponding kinetic energy, of period τ/2.
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Figure 5.15: Left: evolution of 9 agents with periodic trajectories, each orbit shared by 3 agents.
Right: periodic kinetic energy.

decoupled, so that the system in matrix form reads

ẋj =



ẋ1j

ẋ2j

ẋ3j

ẋ4j


=



d− a a 0 −d

−a a− b b 0

0 −b b− c c

d 0 −c c− d





x1j

x2j

x3j

x4j


:= Ã



x1j

x2j

x3j

x4j


, for j ∈ {1, 2}. (5.40)

Hence the projections of x on the first and second axes solve the same differential equation. The

matrix Ã has three distinct eigenvalues:

λ1 = 0, iλ2 = i
√

(a+ c)(b+ d) and iλ3 = −i
√

(a+ c)(b+ d).
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Figure 5.16: Isolated orbits of the evolution shown in Figure 5.15. Left: trajectories of agents 3, 6,
9. Middle: trajectories of agents 1, 4, 7. Right: trajectories of agents 2, 5, 8).

There is one eigenvector associated with λ1: v1 := (1, 1, 1, 1)T . One can show that the vectors x(t) =

v1 and x(t) = v1t+ν are both solutions of System (5.40), where, denoting ∆ := bcd−abc+abd−acd,

ν :=
1

∆
(ab+ bc+ ∆, ab− cd+ ∆, ab+ ad+ ∆,∆)T .

Let v2 denote the eigenvector associated with λ2 and let vR2 and vI2 denote respectively its real and

imaginary components, i.e. v2 := vR2 + ivI2 . Then the solution of System (5.40) can be written as:

xj(t) = Cj1v1 + Cj2(v1t+ ν) + Cj3
[
vR2 cos(λ2t)− vI2 sin(λ2t)

]
+ Cj4

[
vR2 sin(λ2t) + vI2 cos(λ2t)

]
where (C1, C2, C3, C4) ∈ R4 are constants depending on the initial conditions. Let τ = 2π

λ2
. Then for

all t > 0, for all i ∈ {1, . . . , 4}, for all j ∈ {1, 2}, xij(t+ τ) = xij(t) +Cj2τ . This can be rewritten as:

for all i ∈ {1, . . . , 4}, for all t > 0, xi(t+ τ) = xi(t) +

C1
2

C2
2

 τ.

Theorem 5.5.5. A system with pseudo-periodic trajectories with drift has periodic kinetic energy.

Proof. Supose that (xi)i=1...N has pseudo-periodic trajectories with drift, i.e. there exists τ ∈ R,

v ∈ R2 such that for all i ∈ {1, . . . , N}, for all t ≥ 0, xi(t+ τ) = xi(t) + τv. Then ẋi(t+ τ) = ẋi(t)

and so E(t+ τ) = E(t).
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Figure 5.17: Left: Trajectories of 4 agents with helical trajectories. Parameters for matrix A (5.39)
chosen to be (a, b, c, d) = (1, 2, 3, 4). Dark to light color indicates earlier to later time. Right:
Corresponding kinetic energy. The period is τ = 2π((a + c)(b + d))−1/2 = π/

√
6 (see proof of

Theorem 5.5.4).
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Figure 5.18: Evolution of the first and second coordinates of 4 agents with helical trajectories.

5.6 Influence of the Interaction Network

In this section we study the influence of the interaction network in bounded-confidence models. We

review known properties of such models, propose open problems concerning the equilibrium sets,

and provide numerical simulations illustrating the known and conjectured properties. These results

were published in [3].

The Hegselmann-Krause model (HK) is a classical example of a first-order nonlinear opinion

formation model [55]. It was designed in the context of opinion dynamics, and captures well-known

phenomena such as formation of consensus and emergence of clustering. Agents modify their own

opinion to average neighboring opinions as follows:
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ẋi =
1

card(Si)
∑
j∈Si

(xj − xi) for all i ∈ {1, ..., N}, xi ∈ Rd, (5.41)

where Si = {j : ‖xi − xj‖ ≤ r}, r > 0, is the set of agents interacting with agent i. The radius

r can be interpreted as the level of confidence. This model captures the fact that an individual

tends to trust only opinions that do not differ from its own by more than r. Since the interaction

region is bounded, the HK model is also called bounded confidence model. Depending on the size of

the interaction regions and the density of agents in the domain, different phenomena are observed.

If the interaction is strong enough (i.e. r is big enough), the agents can be brought to consensus,

i.e. convergence to a single opinion. If the interaction regions are too restricted, one observes

clustering around different opinions. A wide variety of models have been developed by varying

the confidence region Si. Hegselmann and Krause have for instance looked at (one-dimensional)

asymmetric confidence: Si = {j : −rl ≤ xi − xj ≤ rr}, rl > 0, rr > 0 [55]. Recently, Motsch

and Tadmor have analyzed models with interaction strength increasing with the distance between

agents, showing that this so-called heterophilious dynamics enhances consensus [82].

The system can be viewed as a network represented by a (possibly time-varying) directed weighted

graph G = (V, E). We define the set of vertices V = (νi)i∈{1,...,N} corresponding to the set of agents,

and the set of edges E ⊆ V × V, so that an edge exists between two vertices i and j if and only if

aij 6= 0. The edges are weighted by the interaction coefficients aij .

Properties of bounded-confidence models

The rationale for bounded confidence models is that it is unlikely for one agent to be influenced by

another one whose opinion is too far from its own. This kind of interaction gives rise to clusters

of opinions (see for instance [12]). We also mention the bounded confidence model by Deffuant,

see [34] in which the opinions belong to real intervals too but the pairs of interacting agents are

chosen randomly.

Two main types of interaction networks have been proposed in the literature. In metric interaction

networks, agents interact depending on their distance in the state space [53]: given a confidence

radius r > 0, we can define the interaction neighborhood Sri for the i-th agent (5.7) , see Fig. 5.19a.

In topological interaction networks, agents interact depending on their relative separation. Given

k ∈ N, we can define the interaction neighborhood Ski (5.8), see Fig. 5.19b .

Both topological and metric interactions are local interactions. Adding long-distance connections

to local ones greatly reduces the network’s diameter and facilitates the spread of information [67].
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This is justified by the ubiquitous idea that social networks are of small diameter, a property also

known as the six degrees of separation or small-world effect [131]. In particular, Kleinberg (see

[63, 67]) showed that single long-distance random connections in locally organized networks lead to

efficient routing procedures for spreading information. The small world phenomenon is characterized

by short paths (relative to the size of the network) connecting any two nodes in the network, as

illustrated in Fig. 5.19c. The model as presented in [63] describes nodes on a square lattice which

interact with the four adjacent nodes in the lattice, as well as one long range interaction that

randomly forms an edge between a node and another non-neighboring node with a probability

proportional to ρ−a, where ρ is the Manhattan distance between the two nodes.

(a) Metric (b) Topological (c) Long-distance

Figure 5.19: Representation of interacting neighbors for one agent according to the different interaction
networks. In (c), the long-distance connection is added to metric local interactions.

Equilibrium sets. To understand the mechanisms behind cluster formation, we studied equilibria

for the HK dynamics, both with metric and topological interactions.

Let us start with metric interaction, with 2 or 3 agents in R:

• For N = 2, the equilibrium set E consists of 3 subsets: The line x1 = x2; the half-plane

x1 − x2 > r; the half-plane x2 − x1 > r (see Figure 5.20a).

• In the case N = 3, 13 equilibrium subsets can be enumerated: the line x1 = x2 = x3; the

3 half-planes {xi = xj , xk > xi + r}; the 3 half-planes {xi = xj , xk < xi − r} ; the 6 3D

manifolds {xi + r < xj < xk − r} (with i, j, k pairwise distinct in {1, 2, 3}).

Notice that in both cases, the equilibrium set is composed of pairwise disjoint manifolds with no

common boundaries. We propose a general property for the equilibrium set:

Conjecture 1. For the HK dynamics (5.41) with metric interaction, for all d ∈ N and N ∈ N, the

set of equilibria is a stratified manifold with separate strata.

The definition of a Whitney stratified set is recalled in Def. 4.1.5. In the topological case, the

number and nature of equilibrium sets depend on k.
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If k = 1 (i.e. there is no interaction between agents), the equilibrium set is RN itself. If k = 2 (each

agent interacts with one other), we have to distinguish cases:

• for N = 2 or N = 3, the equilibrium sets are respectively the lines x1 = x2 and x1 = x2 = x3.

• for N ≥ 4, the equilibrium sets are more complex as they are composed of several manifolds.

For instance, in the case N = 5, the equilibrium set consists of the line x1 = x2 = x3 = x4 = x5

and the
(

5
2

)
= 10 half planes {xi = xj ; xk = xl = xm} with i, j, k, l,m pairwise distinct in

{1, ..., 5} (Fig. 5.20b, 5.20c). Notice that the line is in the boundary of all half planes.

Hence we propose the following:

Conjecture 2. For the HK dynamics (5.41) with topological interaction, for any d ≥ 2 and N ≥ 4,

the set of equilibria is a stratified manifold with non-separate strata.

(a) Metric, N=2 (b) Top., k=2, N=5 (c) Top., k=2, N=5

Figure 5.20: Equilibria for the HK system with metric and topological interactions for d = 1. Figure
(a) shows the equilibrium set in the metric case (N = 2), with separate strata. Figure (b) shows the
possible configurations for the agents’ positions at equilibrium for the topological interaction (k = 2,
N = 5), indicating the number of agents in each cluster and the dimension of the manifold. Figure
(c) shows some of the non-separate strata of this equilibrium set.

Numerical results

To compare the different interaction networks, we ran simulations for the well-established one-

dimensional HK model, see Figure 5.21. Recent results [6] proposed the idea that topological inter-

actions (with the 5-7 closest neighbors) is an effective way for birds to ensure group cohesion and to

escape predators. Figures 5.21a and 5.21b show the average number of clusters of the asymptotic

solution of the HK-model (5.41) respectively with metric interaction (5.7) and with topological in-

teraction (5.8), for a group of 100 agents. Notice that consensus is not reached for small radius of

interaction (r ≤ 0.2) or a small number of neighbors (k < 10), but instead the group tends to cluster

in several subgroups. As expected, the number of clusters decreases as the network connectivity
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increases. Figure 5.21c shows that with the same initial number of connections, both interaction

networks perform similarly.

(a) Metric (b) Topological (c) Metric/topological

Figure 5.21: Average number of clusters of the asymptotic solution: (a) for different radii r in the metric
configuration, and (b) for different numbers of connections k in the topological configuration. Each average
was obtained over 100 simulations, in which 100 agents are initially distributed uniformly in the interval
[0, 1]. Figure (c) provides a comparison of the two networks, plotting side by side metric and topological
configurations with the same initial average number of connections per agent.

In order to illustrate the differently stable equilibrium conformations, we ran simulations with

the one-dimensional HK system, plotting the distribution of the asymptotic clusters’ sizes (see

Figure 5.22). We observed that some conformations are statistically more frequent than others. For

instance, in 1000 simulations of the HK dynamics of a group of 100 agents with metric interaction and

an interaction radius r = 0.2, clusters of 38, 46, 54 and 62 agents are the most frequently obtained

(Fig.5.22b). Notice that if r = 0.2 and the agents are distributed in the interval [0, 1], there can be

at most 4 clusters. We show that in the conditions of the simulations of Fig. 5.22b, in most cases

the agents are asymptotically distributed in 2 clusters. Figure 5.23 shows the size distribution of

the two biggest clusters (C1, C2) over 2000 simulations. The peaks are mostly distributed along the

line C1 + C2 = 100, which means that in most simulations an equilibrium of 2 clusters is reached.

Observe that it is less likely to reach an exactly equal distribution of agents between those two

clusters than it is to have a slightly unbalanced distribution. The probability of having a very

unbalanced distribution decreases with the imbalance.

Long-range connection We verified the effectiveness of long-distance connections in enhancing con-

sensus for social dynamics. For each agent, a distant connection selected uniformly among the other

agents was added to each agent’s local interactions (see Figure 5.19c). Added to metric interactions,

the distant connection almost always lead to consensus. Figure 5.24 shows the improved convergence

to consensus when adding an additional distant connection in the HK model. Figure 5.24a shows

the evolution of positions with and without an added distant connection. Figure 5.24b shows the

evolution of the total number of edges of the network. When distant connections are added, the

system asymptotically reaches consensus, and the graph becomes fully connected, i.e. E = V ×V so
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(a) r = 0.1 (b) r = 0.2

Figure 5.22: Distribution of the asymptotic clusters’ sizes in 1000 simulations of the one-dimensional
HK model with 100 agents and metric interaction. Initially the agents are distributed uniformly in
the interval [0, 1]. Figure (a) was obtained with an interaction radius r = 0.1 and Figure (b) with
r = 0.2. In the case r = 0.2, consensus was reached in 28 simulations. Furthermore, the shape of
the distribution suggests that some cluster sizes are more frequent than others.

Figure 5.23: Distribution of the two biggest asymptotic clusters’ sizes in 2000 simulations of the one-
dimensional HK model with 100 agents and metric interaction (r = 0.2). Initially the agents are distributed
uniformly in the interval [0, 1]. The conformation (C1, C2) = (50, 50) is obtained in 60 cases, whereas the
conformation (C1, C2) = (51, 49) is obtained in 100 cases. The most likely conformation is (C1, C2) =
(53, 47), obtained in 113 cases. There is a low likelihood of having C1 − C2 > 20.

that card(E) = N2.

We then studied the effect of the probability with which the distant connection is chosen among

all the graph edges. More specifically, we penalize the increase in distance between agents by choosing

the distant connection with a probability proportional to ρ−a, where a ∈ (0, 1) and ρ is the distance

between agents. With local metric interaction, adding such a distant connection almost always leads

to consensus. With topological interaction, consensus is not always reached but the number of final

clusters is significantly reduced. The more biased the choice of distant connection is towards distant

neighbors (i.e. the smaller the parameter a), the faster consensus is achieved in the metric case (Fig.

5.25a) or the fewer clusters are obtained in the topological case (Fig. 5.25b).
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Figure 5.24: Effect of distant connections in convergence to consensus in the HK model with r = 0.1.
Figure (a) shows the evolution of positions in the metric case with only local interactions or with
one added distant connection chosen uniformly (i.e. a = 0), resulting respectively in clustering or
consensus. Figure (b) shows the evolution of the number of edges.

(a) Time to consensus (metric) (b) Clustering (topological)

Figure 5.25: Effect of distant connections in convergence to consensus in the HK model. Figure (a)
shows the decrease of the time necessary to reach consensus by adding a distant connection (metric
case). Since consensus is reached only asymptotically, time to consensus was defined as the time
necessary for all agents to be within a sphere of given radius ε. Figure (b) shows the decrease of the
final number of clusters by adding a distant connection (topological case).
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