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THESIS ABSTRACT

Hausdorff Distance and Convexity

by JOSEPH SANTOS

Thesis Director:
Gabor Toth

The goal of this thesis is to discuss the Hausdorff Distance and prove that the metric

space SX , which is the set of compact subsets of X = Rn with the hausdorff distance

is a complete metric space. In the first part, we discuss open r-neighborhoods and

convexity. Proving some properties and providing examples for some definitions that

are defined. This provides us with a background before we begin discussing the

Hausdorff Distance. In the second part, we introduce the Hausdorff Distance and its

properties. In conclusion, we go on to prove that the metric space SX is a complete

metric space using everything that has been discussed previously in the thesis.
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1 Introduction

1.1 r-neighborhoods

Before we define what the Hausdorff distance is, let us first begin by defining what

an r-neighborhood of A is. Let A be a subset of X = Rn then:

Ar =
⋃
A⊂A

Br(A) = {x ∈ X |d(X ,A) < r} = A+Br

To show that these are equivalent let us first look at Ar =
⋃
A⊂A

Br(A) = {x ∈

X |d(X ,A) < r}. Let x ∈
⋃
A⊂A

Br(A). This implies that x ∈ Br(A) for some A in

A. Thus d(x,A) < r, which implies d(x,A) = inf
A∈A

d(x,A) < r. This proves ”⊂”. To

show ”⊃” let x ∈ X and d(x,A) < r. This implies that inf
A∈A

< r. Thus there exists

an A such that d(x,A) < r. Therefore x ∈ Br(A). Before we show the equivalence

involving A + Br(A) we must first discuss the Minkowski sum. Let A and A′ be

subsets of X. Then the Minkovski sum:

A+A′ = {A+ A′|A ∈ A and A′ ∈ A′}
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To help us visualize this let us say we are given two equalateral triangles, ∆ and −∆.

The Minkowski sum of ∆ +−∆ will give us a hexagon. Observe that if we fix a point

in ∆ onto the border of −∆ then translate ∆ along the border we will get a hexagon.

The point we pick in ∆ does not matter and will still yield a hexagon.

Now returning to our equivalence, let us look at A+Br(A). Notice that A+Br(A) =⋃
A∈A

(A+Br) which is the same as
⋃
A∈A

Br(A) since A+Br = A+Br(O) = Br(A).

Therefore for any open r-neighborhood the following are equivalent:

(1)
⋃
A⊂A

Br(A)

(2) {x ∈ X |d(X ,A) < r}

(3) A+Br
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Now that we’ve defined what an r-neighborhood ofA is le t us discuss some properties:

(Ar)r′ = Ar+r′ ; r, r′ > 0 (1)⋂
r>o

Ar = Ā (2)

Let us observe why these properties are true beginning with (1). The first thing

we notice is that (A + Br) + Br′ = A + Br+r′ . So what we need to show is that

Br +Br′ = Br+r′

This is the same as saying
⋃
x∈Br

Br′(x) = Br+r′ . To show this equality, let y ∈⋃
x∈Br

Br′(x). This means y ∈ Br′(x) and x ∈ Br. The distance d(y, x) < r′ so

|x| = d(x,O) < r and |y| = d(y,O) ≤ d(y, x) + d(x,O) < r + r′ thus y ∈ Br+r′ .

Now let us assume y ∈ Br+r′ . So |y| < r+r′. Then y exists in some Br′(x). Therefore

y ∈
⋃
x∈Br

Br′(x). With this shown the first property (1) is proven.
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Now to prove (2). Before we begin the proof, notice:

⋂
r>0

Ar = {x ∈ X |d(x,A) < r for all r > 0}

= {x ∈ X |d(X ,A) = 0}

where d(X ,A) = 0 if and only if x ∈ Ā. This shows ”⊃”. In order to show”⊂”, let

Ā be closed, i.e.:

Ār =
⋃
A∈A

Br(A) = {x ∈ X |d(x,A ≤ r} = A+ B̄r

The proof for ”⊂” follows directly from the second definition for closed r-neighborhood.

The proofs to show equality for the closed r-neighborhood is very similar to that of

an open r-neighborhood so we will skip these and move on.

1.2 Convexity

Let f : D → R with domain D ⊂ X . We call this function convex if for any

linesegment [x, x0] ⊂ D and λ ∈ [0, 1] we have:

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1).

It should be noted that if we reverse the inequality sign we will define concavity. Now,

if f : D → R is convex on a convex set D ⊂ X , then the level sets {x ∈ D|f(x) < r}

and {x ∈ D|f(x) ≤ r} are convex.
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To show this let f : D → R be a convex functon on a convex set D ⊂ X . If

x0, x1 ∈ {x ∈ D|f(x) ≤ r} with λ ∈ [0, 1], then:

f(λx1 + (1− λ)x0) ≤ λf(x1) + (1− λ)(f(x0)) ≤ λr + (1− λ)r = r

Thus λx1 +(1−λ)x0 ∈ {x ∈ D|f(x) ≤ r}. The proof for {x ∈ D|f(x) ≤ r} is similar.

Now let us observe that for a convex set C ⊂ X , the distance function d(·, C) :

X → R is convex. So let x0, x1 ∈ X . Given ε > 0 we choose c0, c1 ∈ C such that

d(x0, c0) ≤ d(x0, C) + ε and d(x1, c1) ≤ d(x1, C) + ε. So using the definition of convex

functions gives us (1− λ)c0 + λc1 ∈ C, λ ∈ [0, 1] and observe:

d((1− λ)x0 + λx1, C) ≤ d((1− λ)x0 + λx1, (1− λ)c0 + λc1)

= |(1− λ)(x0 − c0) + λ(x1 − c1)|

≤ (1− λ)|x0 − c0|+ λ|x1 − c1|

≤ (1− λ)d(x0, C) + λd(x1, C) + ε

Now letting ε → 0, the claim follows. Also we note that open r-neighborhoods of a

convex set is convex and closed r-neighborhoods of a closed compact convex set is

also a closed compact convex set.
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2 Hausdorff Distance

2.1 Distance between sets

Now that we have discussed r-neighborhoods and convexity, we can now discuss the

distance between convex sets. Let S = SX be the set of all compact subsets of X .

We define the Hausdorff distance function dH : S × S → R by:

dH(C, C ′) = inf{r ≥ |C ⊂ C̄ ′r, C ′ ⊂ C̄r}

= max(sup
x∈C

d(x, C ′), sup
x′∈C′

d(x′, C))

= inf{r ≥ 0|C ⊂ C ′ + B̄r, C ′ ⊂ C + B̄r}, C, C ′ ∈ S

Showing the equivalence is quick. C ⊂ C ′r if and only if sup
x∈C

d(x, C ′) ≤ r, r ≥ 0. It

should also be noted that the Hausdorff distance is sysmetric, i.e.:

dH(C, C ′) = dH(C ′, C)
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We should also note that the Hausdorff distance also satisfies the triangle inequality:

dH(C, C ′′) ≤ dH(C, C ′) + dH(C ′, C ′′), C, C ′, C ′′ ∈ S

Also dH(C, C ′) ≥ 0 for all C, C ′ ∈ S and by compactness of C and C ′ dH(C, C ′) = 0 if

and only if C = C ′.

Let us show that the hausdorff distance is a distance on the set of all compact

subsets of X . Now in order for dH to be a distance on SX it must satisfy the following:

1) Symmetric

2)Triangle inequality

3)dH(C, C ′) ≥ 0 & dH(C, C ′) = 0 ⇐⇒ C = C ′

As for symmetry, this should be fairly obvious so we will skip this and move onto

the triangle inequality. Let dH(C, C ′) ≤ r and dH(C ′, C ′′) ≤ r′. We want to show that

dH(C, C ′′) ≤ r + r′. It should be noted from dH(C, C ′) we get the fact that C ⊂ C ′r

and C ′ ⊂ Cr and from dH(C ′, C ′′) ≤ r′ we get C ′ ⊂ C ′′r and C ′′ ⊂ C ′r. This leads us to

the following results:

C ⊂ (C ′)r ⊂ (C ′′r′)r = C ′′r+r′ (3)

C ′′ ⊂ (C ′)r ⊂ (Cr)r′ = Cr+r′ (4)

Both (3) and (4) tells us that dH(C, C ′′) ≤ r + r′. Therefore the triangle inequality

holds. In order to prove the final condition, let dH(C, C ′) = 0 this means sup
x∈C

d(x, C ′) =

0 and sup
x′∈C′

d(x, C) = 0. If x ∈ C, dH(x, C ′) = 0 then x ∈ C̄ ′ = C ′, thus C ⊂ C ′. The
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same could be said for C ′ ⊂ C. Thus dH satisfies all the conditions and is a metric on

SX .

2.2 Theorem

Now that’s we have defined the hausdorff distance, we can prove that the set of all

compact subsets of X , SX , is a complete metric space with the hausdorff distance.

Before we start this proof there are some things we must first recall. Let M be a

metric space with distance d, then we say a sequence{xn} is Cauchy if for every ε > 0

there exists an N such that; d(xn, xm) < ε for n,m ≥ N . We also say a sequence has

a limit x0 if forall ε >) there exists an N such that d(xn, x0) < ε for n ≥ N . We say

M is complete if every Cauchy sequence converges.

The other thing we are going to need is a result from Kuratovski. Let {Ck}k≥1

then,
∞⋂
k=1

⋃
l≥k

Cl lim sup
k→∞

Ck. The Hausdorff distance works very well with compactness,

however it does not reflect convergence properties of compact sets growing without

bounds. For example, d(Bn, Bm). For compact sets there is no distance, only a

concept of convergence due to Kuratobski.

Now, going back to SX , let {Ck}k≥1 ⊂ S be a decreasing sequence, (i.e. C1 ⊃

C2 ⊃ C3 ⊃...). By contradiction let us assume SX was not a metric space. Then there

exists an ε > 0 such that for all k ≥ 1 we have Ck 6⊂ Cε, because Ck is decreasing. Let

us define Ak = Ck \ Cε, k ≥ 1. So Ak is compact, decreasing and non-empty. Then
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observe:

A =
⋂
k=1

A 6= ∅;A ∩ C = ∅

A =
⋂
k=1

A ⊂
⋂
k≥1

Ck = C

Which is a contradiction. Thus SX is a mtetric space. Then lim
k→∞

Ck = C :=
⋂
k≥1

Ck.By

Kuratovski, let us define Ak =
⋃
l≥k

Cl. Note that Ak is closed and bounded, therefore

compact and decreasing. So the first result is that lim
k→∞
Ak = A :=

⋂
k≥1
Ak. Now we

make the claim that lim
k→∞

Ck = A. First, let ε > 0, then there exists a k0 ≥ 0 such

that Ak is contained in Aε for k ≥ k0. Also l ≥ k, thus Cl ⊂ Ak, thereforeCl ⊂ Aε,

when l ≥ k0. This proves ”⇒”. In order to prove ”⇐”, let ε
2
> 0. Then, there exists

a K0 ≥ k0 such that Cl ⊂ (Cm)ε, whenever l,m ≥ k0, and Ak =
⋃
l≥k

Cl ⊂ (Cm)ε.

Thus, (Cm) ε
2
⊂ (Cm)ε and

⋂
k≥1Ak = A ⊂ (Cm)ε when m ≥ k0. Since A ⊂ (Cm)ε,

then dH(Cl,A) < ε, l ≥ k0. Thus, SX with dH is a metric space.
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