EVALUATION OF NOSOCOMIAL INFECTION RATES IN DIABETIC PATIENTS UNDERGOING CORONARY ARTERY BYPASS GRAFTING (CABG) SURGERY

By Ali A. Al Zayer

A Dissertation Submitted

In partial fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Biomedical Informatics

Department of Health Informatics

Rutgers, The State University of New Jersey

School of Health Professions

March, 2017

Final Dissertation Defense Approval Form

Evaluation of Nosocomial Infection Rates in Diabetic Patients Undergoing

Coronary Artery Bypass Grafting (CABG) Surgery

BY

Ali A. Al Zayer

Dissertation Committee:

Shankar Srinivasan PhD

Frederick Coffman PhD

Suril Gohel PhD

Approved by the Dissertation Committee:

 Date:
 Date:
 Date:
 Date:
 Date:

ABSTRACT	V
ACKNOWLEDGMENTS	viii
LIST OF TABLES	ix
LIST OF FIGURES	xi
CHAPTER 1: INTRODUCTION	15
1.1 Background of the problem	17
1.2 Statement of the problem	19
1.3 Objectives of the study	22
1.4 Significance of the study	
CHAPTER 2: REVIEW OF LITERATURE	25
2.1 Introduction	
2.2.1 Patients-Scenario and Review Questions	25
2.2.2 Database Search Strategy	
2.2.3 Search Strings Results and Eligibility	
2.2 Review of Included Studies	
2.2.1 Effect of Diabetes on Nosocomial Infections Rate in CABG Surgery	
2.2.2 Effect of Glycemic Control Status in Diabetic Patients in CABG Surger	y 31
2.2.3 Effect of BIMA Grafting Method Choice in Diabetic Patients in CABG	
Surgery	35
2.3 Summary Table of The Best Evidence	
2.4 Conclusion of The Literature Review	50
2.5 Research Questions and Hypotheses	51

TABLE OF CONTENTS

CHAPTER 3: RESEARCH METHOD AND DESIGN	54
3.1 Objectives	54
3.2 Data Source	54
3.3 Research Design	55
3.4 Data Elements	56
3.5 Sample Population	59
3.6 Measurement of Exposure Variables	59
3.7 Measurement of Outcome Variables	60
3.8 Statistical Analysis	61
3.9 Data Handling and Pre-Processing	62
CHAPTER 4 :RESULTS	64
4.1 Sample Characteristics	64
4.2 Overall Rate Of Nosocomial Infection Complications	66
4.3 Overall Rate Of Comorbidity Risk Factors and Score of Severity of Illness	
(cofounders)	68
4.4 Distribution of Important Hosptial Factors in CABG population	
(cofounders)	70
4.5 Significance of The Association Between The Exposures and Outcomes	71
4.5.1 Evaluation Of Hypothesis A (Research Q.1)	72
4.5.2 Evaluation Of Hypothesis A.b (Research Q.2)	73
4.5.3 Evaluation Of Hypothesis B(ResearchQ.3)	74
4.5.4 Evaluation Of Hypothesis C (Research Q.4)	75
4.6 The Exposures Effect and Odd of The Nosocomial Infection	

POPULATION, OUTCOMES, AND EXPOSURES	138
APPENDIX B: ICD-9 CODES DEFINITION OFTHE STUDY SAMPLE	
APPENDIX A: MEDLINE DATABASE SEARCH STRINGS	135
REFERENCES	125
6.3 Future Research	124
6.2 Limitations	123
6.1 Final Statment	123
CHAPTER 6: CONCLUSION	123
5.1 Interpretation of Main Findings	116
CHAPTER 5: DISCUSSION	116
4.6.3 The effect of Uncontrolled Hyperglycemia	102
4.6.2 The effect of Diabetes Mellitus (DM)	89
4.6.1 The effect of Bilateral Internal Mammary Artery (BIMA) Grafting	81
(Multivariate Analyses)	77

ABSTRACT

BACKGROUND: There is a conflict evidence about the association of using bilateral internal mammary artery (BIMA) grafting in diabetics undergoing coronary artery bypass grafting (CABG) surgery and increased risk of contracting surgical site infection. The direct impact of the diabetics glycemic control status and using the optimal grafting method on surgical site infection is still not conclusive in literature. The aim of the study is to evaluate the impact of Bilateral internal mammary artery grafting in diabetic patients, the diagnosis of diabetes mellitus, and its glycemic control status on different kinds of nosocomial infections. The assumption was made that those exposures associated with higher risk of surgical site infection, urinary tract infection, blood stream infection and pneumonia. **METHOD:** A retrospective cohort is conducted by utilizing Nationwide Inpatient Sample (NIS) data from the Agency of Healthcare Research and Quality (AHRQ). All patients who were admitted to coronary artery bypass grafting (CABG) surgery were retrieved from 2007 to 2012 and grouped based on the exposures of the study. **RESULTS:** The total sample of the study was 286,487 patients underwent CABG surgery. There were 122,642 (42.81%) patients diagnosed with Diabetes Mellitus, of whom 18,065 (14.73%) had uncontrolled hyperglycemia, 3,700 (3.01%) received Bilateral (IMA) and 103,577 (84.45%) unilateral or single (IMA) grafting method. The study population was predominantly white (79.78%) and male (72.08%) with an average age of 66 (SD ± 10.89) old. About 215,740 (75.31%) of patients had developed nosocomial pneumonia, 16,667 (5.82%) urinary tract infections (UTIs), 9,442 (3.3%) sepsis or bloodstream infection (BSIs), and 5,302 (1.85%) surgical site infection (SSIs in overall sample population.

V

Among diabetic patients, there was no significant difference in comparing BIMA versus SIMA for surgical site infection (SSI) (p-value=0.2491) and blood stream infections (BSI) (p-value=0.6630). The results have also indicated that UTIs (4.2% vs. 5.5%; p-value=0.0005) was significantly lower with BIMA grafting method. However, results did not meet the hypothesis assumption regarding Pneumonias rate (76.8% vs. 70.5%; p-value < 0.0001) and was significantly higher with BIMA compared to SIMA grafting method. Multivariable analysis showed inconsistent result and confirmed that BIMA grafting predicts higher odd of BSI by 44.6% in diabetic, compared to SIMA grafting (OR: 1.446; 95% CI: 1.22-1.71; p<.0001).

The cross unadjusted baseline results for all nosocomial infections were significantly lower in diabetic patients compared to non-diabetic; Except for UTI was significantly higher by the presence of diabetes in BIMA grafting population (n=10,223) (4.2% vs. 3.39%; p-value= 0.0393). Multivariable analysis has confirmed that Diabetes Miletus increase the risk of UTI by 21.7% in BIMA population (OR: 1.217; 95% CI: 1.21-1.22; p<.0001).

The bivariate analysis results indicated that nosocomial infections were significantly higher in a diabetic with uncontrolled HbA1c compared to those with controlled diabetes. Except for nosocomial pneumonia. Adjusted results showed that uncontrolled hyperglycemia in a diabetic increase risk of UTI by 20% in overall and SIMA population. Uncontrolled hyperglycemia increase risk of SSI by 52% and UTI by 104% in diabetic undergoing BIMA grafting (SSI: OR 1.52; CI 1.50-1.53; p<.0001) (UTI: OR 2.049; CI 1.45-2.89; p<.0001).

vi

CONCLUSION: In patients who underwent CABG surgery, Diabetes Mellitus (DM) was associated with significantly lower nosocomial infections. This may imply a better trend in nosocomial infections complications for diabetics compared to the total population of CABG. However, in diabetic patient's population, those stated with uncontrolled hyperglycemia have significantly higher risk of surgical site infection and urinary tract infection. Continuous insulin infusion protocol and intensive glycemic control monitoring are highly recommended for patients with uncontrolled diabetes during admission for CABG surgery. In diabetic patients who underwent CABG with Bilateral versus Single internal mammary (IMA), grafting, Bilateral IMA grafting was significantly associated with only higher odds of bloodstream infection in the diabetic patients. Expect in the case of uncontrolled hyperglycemia; it should be avoided due to the high risk of both SSI and UTI as it has been emphasized in other studies.

ACKNOWLEDGMENTS

I would like to acknowledge the support and encouragement of Dr. Shankar Srinivasan and Dr. Frederick Coffman for their support, generous access to their valuable time and recourses. I would like to give a special thank to my mentor and advisor Dr. Shankar for his endless help, guidance, and feedback through the course of the dissertation process. I also would like to thank Dr. Coffman, Dr. Shibata, and Dr. Gohel for their valuable input and feedback. Finally, I dedicate this work to my parents, wife and two kids Zainab and Jawad whose support and love kept me going to make this work possible.

LIST OF TABLES

Table 1: Identification of MeSH terms list related to PECODR concepts	27
Table 2: Summary of Best Evidence	38
Table 3: Description of included variables in national inpatient sample (NIS) data	57
Table 4: General Characteristics of Study Cohorts for CABG Surgery	66
Table 5: Comparison of unadjusted rates of nosocomial infections between BIMA	
and SIMA revascularization in overall CABG population from 2007 to 2012.	
[N=286,487]	73
Table 6: Unadjusted rates of nosocomial infections between patients with BIMA and	
SIMA revascularization techniques in diabetic patients undergoing CABG from 2007	
to 2012. [N=122,642]	74
Table 7: The unadjusted rates of nosocomial infections by Diabetes in total CABG	
population from 2007 to 2012. [N=286,487]	75
Table 8: The unadjusted rates of nosocomial infections by Diabetes in CABG-SIMA	
grafting population from 2007 to 2012. [n=233,339]	75
Table 9: The unadjusted rates of nosocomial infections by Diabetes in CABG-BIMA	
grafting population from 2007 to 2012. [n=10,223]	75
Table 10: Unadjusted rates of nosocomial infections by uncontrolled hyperglycemia	
(HbA1c) in diabetic patients in Total CABG population from 2007 to 2012.	
[N=122,642]	76
Table 11: Unadjusted rates of nosocomial infections by uncontrolled hyperglycemia	
(HbA1c) in diabetic patients in CABG-SIMA grafting population from 2007 to 2012.	
[n=103,577]	76

Table 12:. Unadjusted rates of nosocomial infections by uncontrolled hyperglycemia
(HbA1c) in diabetic patients in CABG-BIMA grafting population from 2007 to 2012.
[n=3,649]76
Table 13:. Summary of the indicator variables included in Logistic regression
model
Table 14: Summary of Multivariate logistic regression model for Nosocomial
Infection rates by BIMA vs. SIMA Grafting in total CABG Population
Table 15: Summary of Multivariate logistic regression model for Nosocomial
Infection rates by BIMA vs. SIMA Grafting in Diabetic-CABG cases ONLY 116
Table 16: Summary of Multivariate logistic regression model for Nosocomial
Infection rates by BIMA vs. SIMA Grafting in total CABG Population 119
Table 17: Summary of Multivariate logistic regression model for Nosocomial
Infection rates by BIMA vs. SIMA Grafting in Diabetic-CABG cases ONLY 119
Table 18: Summary of Multivariate logistic regression model for Nosocomial
Infection rates by BIMA vs. SIMA Grafting in Diabetic-CABG cases ONLY 119
Table 19: Summary of Multivariate logistic regression model for Nosocomial
Infection rates By presence of Uncontrolled Hyperglycemia in total CABG
population
Table 20: Summary of Multivariate logistic regression model for Nosocomial
Infection rates By presence of Uncontrolled Hyperglycemia in CABG-SIMA GRAFT
Cases ONLY
Table 21: Summary of Multivariate logistic regression model for Nosocomial
Infection rates By presence of Uncontrolled Hyperglycemia in CABG-BIMA

GRAFT Cases ONLY 12	21
---------------------	----

LIST OF FIGURES

Figure 1: Global Mortality of Non-Commutable Chronic Diseases (NCDs) by cause of	f
death	16
Figure 2: Studies Inclusion flow chart (PRISMA Diagram).	28
Figure 3: Conceptual Framework model of the study.	56
Figure 4: Age distribution in sample population.	64
Figure 5: Race distribution in sample population	65
Figure 6: Sex distribution in sample population.	65
Figure 7: Exposure groups distribution in sample population	65
Figure 8: Prevalence and Distribution of Nosocomial Infections in Overall Sample	67
Figure 9: Years-adjusted Prevalence and distribution of Nosocomial Infections	
(NIS Data from 2007-2012)	68
Figure 10: . Distribution of Co-morbidities in CABG population in NIS data	
(2007-2012)	69
Figure 11: Distribution Score for Severity of Illness and risk of mortality in CABG	
population in (NIS data ; from 2007-2012).	70
Figure 12: CABG Patients Hospital length of study and type of admission.	
(NIS data ; from 2007-2012)	71
Figure 13: Multivariate analysis of BIMA Grafting Effect on Surgical Site Infection	
(SSI) in total CABG population	82

Figure 14: Multivariate analysis of BIMA Grafting Effect on Surgical Site Infection	
(SSI) in Diabetic population	3
Figure 15: Multivariate analysis of BIMA Effect on Urinary Tract Infections (UTI)	
in total CABG population	4
Figure 16: Multivariate analysis of BIMA Effect on Urinary Tract Infections (UTI)	
in Diabetic population	5
Figure 17: Multivariate analysis of BIMA Effect on Blood Stream Infection (BSI)	
in Total CABG Population	5
Figure 18: Multivariate analysis of BIMA Effect on Blood Stream Infection (BSI)	
in Diabetic population	7
Figure 19: Multivariate analysis of BIMA Effect on Pneumonia (PN) in Overall CABG	
population	8
Figure 20: Multivariate analysis of BIMA Effect on Pneumonia (PN) in Diabetic	
population	9
Figure 21: Multivariate analysis of Diabetes Effect on Surgical Site Infection (SSI)	
Overall CABG population	0
Figure 22: Multivariate analysis of Diabetes Effect on Surgical Site Infection (SSI)	
in SIMA grafting population91	1
Figure 23: Multivariate analysis of Diabetes Effect on Surgical Site Infection (SSI)	
in BIMA grafting population92	2
Figure 24: Multivariate analysis of Diabetes Effect on Urinary Tract Infections (UTI)	
in Overall CABG population	3
Figure 25: Multivariate analysis of Diabetes Effect on Urinary Tract Infection (UTI) in	

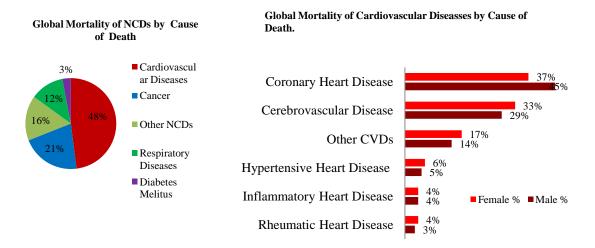

SIMA grafting population
Figure 26: Multivariate analysis of Diabetes Effect on Urinary Tract Infection (UTI) in
BIMA grafting population
Figure 27: Multivariate analysis of Diabetes Effect on Blood Stream Infection (BSI) in
Overall CABG population
Figure 28: Multivariate analysis of Diabetes Effect on Blood Stream Infection (BSI) in
SIMA population
Figure 29: Multivariate analysis of Diabetes Effect on Blood Stream Infection (BSI) in
BIMA population
Figure 30: Multivariate analysis of Diabetes Effect on Pneumonia (PN) in Overall
CABG population
Figure 31: Multivariate analysis of Diabetes Effect on Pneumonia (PN) in SIMA
population 101
Figure 32: Multivariate analysis of Diabetes Effect on Pneumonia (PN) in BIMA
population
Figure 33: Multivariate analysis of Uncontrolled hyperglycemia (HbA1c) Effect on
Surgical Site Infection (SSI) in overall CABG-Diabetic patients
Figure 34: Multivariate analysis of Uncontrolled hyperglycemia (HbA1c) Effect on
Surgical Site Infection (SSI) in Diabetics-SIMA grafting population
Figure 35: Multivariate analysis of Uncontrolled hyperglycemia (HbA1c) Effect on
Surgical Site Infection (SSI) in Diabetics-BIMA grafting population
Figure 36: Multivariate analysis of Uncontrolled Hyperglycemia Effect on Urinary
Tract Infections (UTI) in Overall Diabetic-CABG population

Figure 37: Multivariate analysis of Uncontrolled Hyperglycemia Effect on Urinary
Tract Infections (UTI) in Diabetic-SIMA population
Figure 38: Multivariate analysis of Uncontrolled Hyperglycemia Effect on Urinary
Tract Infections (UTI) in Diabetic-BIMA population
Figure 39: Multivariate analysis of Uncontrolled Hyperglycemia (HbA1c) Effect on
Blood Stream Infection (BSI) in Overall Diabetic-CABG population 110
Figure 40: Multivariate analysis of Uncontrolled Hyperglycemia (HbA1c) Effect on
Blood Stream Infection (BSI) in Diabetic-SIMA population 111
Figure 41: Multivariate analysis of Uncontrolled Hyperglycemia (HbA1c) Effect on
Blood Stream Infection (BSI) in Diabetic-BIMA population
Figure 42: Multivariate analysis of Uncontrolled Hyperglycemia (HBA1c) Effect on
Pneumonia (PN) in Overall Diabetic-CABG population
Figure 43: Multivariate analysis of Uncontrolled Hyperglycemia (HBA1c) Effect on
Pneumonia (PN) in Diabetic-SIMA population
Figure 44: Multivariate analysis of Uncontrolled Hyperglycemia (HBA1c) Effect on
Pneumonia (PN) in Diabetic-BIMA population

CHAPTER 1

INTRODUCTION

Cardiovascular diseases (CVDs) — are number one leading cause of deaths in the world among all non-communicable diseases (NCDs). Each year, 17.5 million people die from CVDs, an estimated 48% of all NCD deaths and 31% of all cause of deaths worldwide (fig.1). Of these deaths, 7.4 million are due to coronary heart disease (CHD), and 6.7 million are due to stroke each year. Which makes Coronary Heart Disease (CHD) number one killer in the world. Governments are targeting to achieve more efforts on evidencebased policies for adoption of healthier lifestyles and access to primary healthcare. Which is to tackle the top leading risk factors for CVDs; hypertension, high cholesterol, obesity, diabetes, and smoking. In recent years, this has led to dramatic reduction in CVD deaths by 25% but, only in high-income developed countries. Middle and low-income courtiers are still having a high epidemic rate of CVD. Global effort on reducing the burden of diabetes mellitus and hypertension has been a very cost-effective and high-impact intervention in the reduction of cardiovascular diseases, especially Coronary Heart Disease. However, as the aging population is projected to increase in next two decades, annual CVD deaths will be projected to rise substantially from 17.5 million to 22.2 million in 2030. This increase will occur despite projected decreases in CVD death rates. There is a global target in which at least 50% of eligible patients around the world to have access to primary healthcare to receive drug therapy for diabetes and hypertension to control and prevent the increased incidence of heart attacks and strokes. [1], [2]

Figure 1: Global Mortality of Non-Commutable Chronic Diseases (NCDs) by cause of death. Source: WHO, 2011; Global Atlas on Cardiovascular Disease Prevention and Control, [2]

Diabetes is a well-recognized cause of death and disability (1.5 million deaths annually) in the United States. Diabetic patients who have no history of CVD are five times at risk of first heart attacks and strokes. Heart attacks can be prevented if high-risk individuals are detected and treated early. **[1,2]**

In the United States, Cardiovascular disease (CVD) account for 31% (786,641 deaths) of all NCDs (\approx 2.5 million deaths). Coronary heart disease (CHD) count nearly 50% of these deaths, killing 370,213 people alone each year. Currently, there are 85.6 million Americans affected by CVD, and 15.5 million of them are diagnosed with Coronary Heart Disease (CHD) at age 20 and above. Coronary artery disease (CHD) occurs more in older age population, and in men (7.6%) more than women (5%). The mortality rate is 50% higher in men compared to women per 100,000 in U.S. population (132.4 vs. 51.6), age-adjusted from 35-75 years old. The annual direct and indirect cost of heart disease is estimated \$204.4 billion, \$10.4 billion is for CHD and \$11.5 billion for myocardial infarctions. [3], [4], [5]

According to last US census report, aging population is expected to increase in the United States from 46 to 74 million between 2014 and 2030. The aging population is projected to grow by 18 million in the next two decades. **[6]** With this expected growth in aging population, prevalence and medical cost of coronary heart disease (CHD) are projected to rise in next two decades from 2010 to 2030, according to AHA recent report statement. CHD incidence is going to increase by an additional 8 million from 15.5 to 23.5 million in 2030. Total direct and indirect costs of CHD will increase from \$108.9 to \$218.7 billion between 2010 and 2030. **[7]**

1.1 Background of the problem:

Coronary (or ischemic) Heart Disease (CHD) — is a cardiac condition that result from narrowed heart's blood vessels called coronary arteries by a pathological process known as *Atherosclerosis*. The atherosclerotic lesion, known as *Plaque*, cumulatively build up inside the coronary arteries and prevent normal blood flow to nourish the myocardium muscle with blood and oxygen. Failure of maintaining supply and demand of the heart muscle leads to *Myocardial Ischemia or Myocardial Infarction* (MI). This pathological process can start at a young age without symptoms for years till certain degree of obstruction that lead to manifest the disease signs and symptoms later in life. It manifests as a stable **chronic** condition, or it appears as **acute** unstable in nature. It depends on certain modifiable and non-modifiable risk factors. Diabetes mellitus is one of the independent modifiable risk factors for CHD. This is because both conditions share common pathological mechanism and leading risk factors, such as elevated lowdensity lipoprotein (LDL) and reduced high-density lipoprotein (HDL). Diabetes Mellitus accelerate atherosclerotic lesion in CHD and its coexistence complicates outcomes of coronary revascularization treatment. Coronary Heart disease (CHD) is treated with drug therapy at first for stable conditions with less than %70 coronary artery occlusion. However, surgical intervention is required when medical therapy is insufficient to manage the complication of coronary heart disease with those who have more than %70 occlusion. Also is a must in emergency cases with plaque rupture or acute coronary syndrome. Surgeons operate on the vessel of the heart by many techniques under broad category called *Myocardial Perfusion or Coronary Revascularization* [8], [9]

Coronary Revascularization —is a set of procedures indicated to treat and retain normal blood flood to the ischemic area of the heart, which is affected by atherosclerosis. They are one of the most common performed surgeries in the United States. They fall into two broad type of categories: coronary artery bypass graft surgery (CABG) and catheter-based percutaneous coronary intervention (PCI). There are nearly 405,000 CABG and 954,000 PCI procedures performed annually in the United States, according to last NHDS report in 2010. **[10]** Coronary revascularization hospital discharges rate per 10,000 in population is 58.7 for PCI procedures and 9.9 for CABG procedures. The mean inflation-adjusted cost per hospitalization is \$19,225 for PCI and \$40,142 for CABG, according to the current NCHS report. The projection rate for coronary revascularizations is in decline from past years. [11]

Coronary Revascularization in Diabetics — There are nearly 1.5 million revascularization procedures, CABG and PCI, are performed annually in the United States. Approximately 25% of them are performed on diabetic patients. The prognosis is poor compared to non-diabetic patients [12]. Diabetes is considering an important

prognostic factor for patients undergoing coronary revascularization. Because diabetic patients are host of unfavorable pathphysiological features of atherosclerosis. Diabetic patients with uncontrolled hyperglycemia show extensive macrovascular damage and contract accelerated the pathological process of atherosclerosis (plaque formation), which makes diabetes a risk factor for poor prognosis after coronary revascularization. Comparative studies of clinical trials showed evidence of CABG superiority over PCI procedure in diabetic patients with longer survival rate and fewer rate of repeated revascularizations. [13] Diabetic patients represent approximately 20% to 30% of patients undergoing CABG. Despite the recommendation of CABG procedure in diabetic patients, the effect of diabetes on a short-term outcome is unclear. One of these outcomes is a postoperative infection and other composites of outcomes are more associated with diabetics undergoing CABG. The adjusted risk for morbidity and mortality is higher in diabetics than non-diabetics by 35%, particularly among insulin-treated diabetics (adjusted risk between 1.5 to 1.61). [14]

1.2 Statement of the Problem:

CABG in Diabetics and Nosocomial Infections — Effectiveness of CABG on life expectancy in diabetics is well-documented. However, efficacy is directly related to the graft choice patency. According to a recent report from the American College of Cardiology Foundation/ American Heart Association (ACCF/AHA guidelines), adopting internal mammary artery in CABG surgery has a beneficial influence on morbidity and mortality. However, bilateral internal mammary artery (BIMA) grafting method was not recommended in diabetic patients compared to single or unilateral internal mammary artery (SIMA) due to the higher risk of postoperative infections especially in diabetic patients when compared to a single internal mammary artery (SIMA) grafting [15]. Studies suggest that BIMA grafting anatomically contributes to low sternum blood flow, which leads to sternal ischemia and dehiscence (or mediastinitis). These complications result in higher risk of wound infection, compared to SIMA grafting [73],[74]. However, according to retrospective studies by Lev-Ran, O. et al. [58] and Dorman, M. J. et al. [60] conclude that no significant difference in risk of deep sternal wound infection by BIMA relative to SIMA grafting. Experimental studies also favor CABG with internal mammary artery graft over other conservative procedures in diabetic patients for long-term survival[16], [17].

In the ACCF/AHA report, they concluded that there is a lack of consistent conclusion on the direct effect of diabetes clinical biomarkers and whether the degree of the glycemic control status (peri-operative uncontrolled hyperglycemia"HbA1c") in diabetic patients is considered as a predictor for short-term postoperative infection. They indicated a meta-analysis study of 409 clinical trials identified diabetes as an independent risk factor for major nosocomial adverse events in cardiac surgeries by 38% higher compared to non-diabetics. Suggesting that perioperative hyperglycemia in patients with diabetes is associated higher infection rates. However, they also indicated a randomized clinical trial from Mayo Clinic of 400 patients showed no difference in short-term outcomes between controlled vs. uncontrolled blood glucose perioperatively in ICU on the short-term outcome composites; death, infections, prolonged ventilation, cardiac

arrhythmia, postoperative stroke, and acute renal failure within 30 days of cardiac surgery The ACCF/AHA protocols have recommended an aggressive glycemic control therapy in diabetic patients with a tight peri-operative glucose treatment or continuous insulin infusion during CABG surgery for better control of infection rates, especially surgical site infections and dehiscence. [15]

Studies indicate that the effect of subpopulation disparity in diabetic patients is unclear on the postoperative outcomes and whether there are beneficial outcomes with respect to the intensive intra-operative glycemic control in diabetics. [20], [21] Some studies showed that intensive glycemic control during CABG was very effective in lowering the incidence rates of postoperative surgical site infection (SSI) and uncontrolled diabetes was an independent risk factor for postoperative infectious complications [22], [23], [24] However, the intra-operative intensive glycemic treatment significantly was linked to a high risk of hypoglycemic coma with no significant effect on the rates of postoperative infection in diabetic patients. [25],[26] Studies indicate that there is still limited evidence on the effect of perioperative uncontrolled hyperglycemia and treatment gap on the optimal therapy guidelines for uncontrolled diabetes in coronary revascularization.[27],[28].

Therefore, we aim to investigate whether BIMA grafting is a significant predictor of nosocomial infections in diabetic patients, compared to SIMA grafting? Also, to identify the short-term effect of diabetes and its glycemic control status on the rate of inhospital nosocomial infections.

1.3 Objectives of the Study:

The increased rate of sternal wound infections has decreased the practice of bilateral internal mammary (or thoracic) (BIMA) grafting in diabetic patients. Despite the favorable benefit of BIMA grafting on the long-term survival of CABG patients and graft patency, compared to unilateral (or single) internal mammary artery (SIMA) grafting. Internal mammary artery (IMA) grafting is a routine practice in CABG surgeries. Therefore, one of the study goals is ;

 To examine the association and compare the effect of the bilateral internal mammary artery (BIMA) versus single internal mammary artery (SIMA) grafting method on nosocomial infections in diabetic patients.

Uncontrolled hyperglycemia has been linked to increased rate of nosocomial surgical site infection and bloodstream infections in hospitalized diabetic patients. It is common that diabetic patient who suffers long-term uncontrolled hyperglycemia are more susceptible to diabetic foot infection as a long-term complication. However, infection as an acute or short-term perioperative outcome is not clear for the diabetic patients undergoing surgery. As the diabetic patient population is increasing in CABG surgeries according to the latest American Heart Association (AHA) report. Protocol of intensive glycemic control by utilizing continuous insulin infusion during CABG surgery has been hypothesized to be effective in minimizing nosocomial infections rate in diabetic patients. Therefore, the study aim to the following;

 To evaluate the impact of diabetes Mellitus (DM) on the rate nosocomial infections in patients undergoing Coronary Artery Bypass Grafting (CABG).

- To examine the association and effect of the uncontrolled hyperglycemia status on the rate of perioperative nosocomial infections in diabetic patients. There is controversy in the literature about the perioperative glucose control status of diabetes during CABG surgery and the rate of nosocomial infections, particularity surgical site infection (sternal wound infection or mediastinitis).

1.4 Significance of the study:

The study will contribute to the bulk of knowledge needed in the pre-operative risk assessment of nosocomial infections in patients undergoing CABG surgery. Because of the rising admission rate of diabetic patients in CABG surgery suggests a need for rigorous research for these patients to inform a better decision on treatment choices, improve the informed-consent process, and control the rate of adverse events. Nosocomial infection is a problematic adverse event especially in immune-compromised patients like those with diabetes. The likelihood of infection after any operation depends mainly on the patients' immune system, and impairment of host immune defense is a major predisposing factor for perioperative infection. Therefore, evaluation of the preoperative risk factors improves identification of modifiable risks that are related to better outcomes after surgery such as patient's demographics, surgeons' skills, procedurechoice-related and hospital-process-related factors. The improvement of the prophylactic guidelines and frameworks during surgery is very crucial measures for prevention of nosocomial infections in immune-compromised patients undergoing CABG surgery. It contributes to a better healthcare delivery in such high-risk patients' population.

The Centers for Disease Control and Prevention (CDC) has developed a National Nosocomial Infections Surveillance (NNIS) risk index for surgical infections. The most common surgical infections according to the NNIS are surgical site infections (SSI), pneumonia, urinary tract infection (UTI), bloodstream infections, and other Iatrogenic infections such as; catheter, graft vessel, or device-implants associated infections. The national rate of nosocomial infections is less common in coronary and cardiothoracic intensive care units than other types of units. However, it has a significant burden on complicating the operation outcomes and increasing the hospital recourses utilization. **[29], 130]** Also, studies have indicated that NNIS risk index performs less well for CABG than other types of surgery. There is a need for further research to better benchmark the risk of nosocomial infections in patients undergoing CABG surgery. **[31], [32]**

CHAPTER 2

REVIEW OF LITERATURE

2.1 Introduction:

The review is designed based on a structural protocol (ICVT) described in Dunning J. et al. paper [33]. The review process was divided into the following guided steps; formulating the review questions and clinical scenario, searching the database for the evidence, selecting the relevant studies, summarizing the best evidence studies, and concluding of the review. The review questions are represented with clinical scenario and formulated based on three elements or factors related to; patient, intervention, and outcomes. There is approach called "PECODR" published by Dawes, M. et al. [34], was incorporated in defining the review question and the searching strategy, to achieve more specific and sensitive search strategy. The PECODR method helps in formulating and searching well-structured review question in literature using MeSH database. Their method is based on well-known approach in evidence-based review (EBR) practice, which is called PICO (patient-intervention-comparison-outcome). It is used for structuring the clinical queries in literature databases. The PECODR method is redefined it into six main elements; Patient/or Population (P), Interventions/or Exposure (I/E), Comparison/or control(C), Outcome (O), Duration (D), and Results (R).

2.2.1 Patients-Scenario and Review Questions:

Population (P) — A patient has a primary diagnosis of advance stage Coronary Heart Disease (CHD) and he is diagnosed with Diabetes Miletus (DM).

Exposure (E) — He is due to Coronary Artery bypass grafting (CABG) surgery. The

revascularization technique is open choice with either coronary artery bypass grafting (CABG-BIMA or CABG-SIMA grafting). His lab report indicated an uncontrolled diabetes or hyperglycemia (or elevated HbA1c level). He has history of diabetes complications or manifestations of acute and/or chronic hyperglycemia.

Outcomes(O) — What is the risk ratio of perioperative infectious complications in case of treating this patients? and (*Control-C*) — What is the difference in risk ratio of outcomes if patient is not risk-exposed? (*Duration-D*) — What is risk ration of outcome events in Short-term timeframe or during hospitalization? (*Results-R*) — Does the literature prove the association to be consistent and significant between exposure and outcome? Does the conclusion consider the exposure as predictor variable of outcomes?

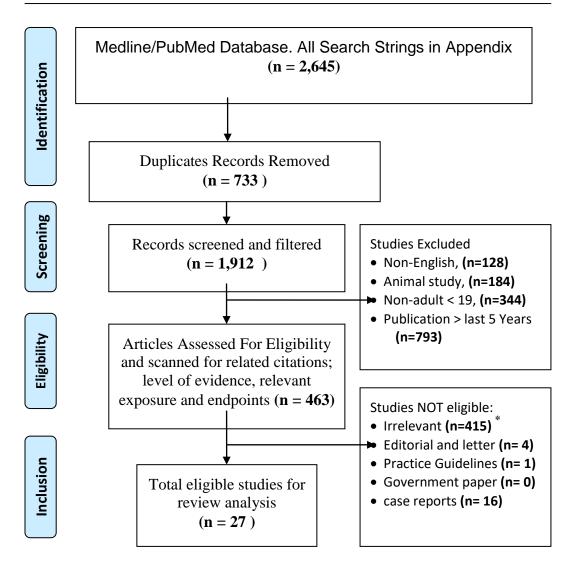
The Three-Parts Question:

Among [Patients with diabetes undergoing Coronary Artery Bypass Grafting (CABG) surgery], Does [Diabetes Millets (DM), Glycemic control status (hyperglycemia-HbA1c) and/or specific choice of revascularization method] predict the risk of [perioperative infections]?

2.2.2 Database Search Strategy:

The Medline/ PubMed was searched by using the Medical Subject Subheadings (MeSH) database search builder. The suitable MeSH terms were identified and organized based on the PECODR elements of the review question (table 1). Terms about the **three-parts question** concepts [Population/Outcomes/Exposure] were added to the PubMed search builder to construct and run the search string. The MeSH terms were eliminated if performed poorly in search result. Different text words were adjusted and combined in

search string combinations to screen all possible related titles/abstracts. MeSH search qualifiers [exp, majr, mh] and LIMIT filters were used also to enhance the search specificity.


Table 1: Identification of MeSH terms list based on PECODR concepts	
PECODR ^a	MeSH Keywords
Population	Coronary Heart Disease (CHD) and Coronary artery bypass grafting or CABG
Exposure	Diabetes Miletus (DM)or Hyperglycemias or
	Hemoglobin A, Glycosylated or Hb A1c or
	diabetes complications[text word] or
	Uncontrolled diabetes[text word].
Control	Case-control, retrospective studies
Outcomes	Cross infections, nosocomial infections, perioperative infections,
Duration	Time factors
Results	Statistics as topic, Meta-Analysis as Topic
^a Dowos M Et al [24]	

^a Dawes, M. Et al. [34]

2.2.3 Search Strings Results and Eligibility:

The search string, which was more systematic and specific to review question, was selected Studies were included and organized based on their level of evidence; systematic review and meta-analysis of randomized controlled trials, prospective and retrospective cohort studies. Studies were excluded if conducted on kids age, with irrelevant title/endpoints/exposure, or with small sample size and weak research design "gray literature" were excluded. (Fig. 2).

Figure 2: PRISMA Diagram

Source: Adopted From Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). *Preferred Reporting Items for Systematic Reviews and Meta-Analyses*: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal. pmed1000097. For more information, visit <u>www.prisma-statement.org</u>. [35] * **Studies with irrelevant title, targeted endpoints, and exposures were excluded.**

2.2 Review of Includded Studies:

2.2.1 Effect of Diabetes on nosocomial infections rate in CABG Surgery:

Zhang, X., et al. [**36**] conducted a meta-analysis of 132 studies to measure number of adverse outcomes in diabetic patients and non-diabetic patients after cardiac bypass surgery. Sternal wound infection was reported high in diabetic (DM) versus non-diabetic (NDM) patients; [2.29% (n=8,790) vs. 1.18% (n=23,261); risk ratio RR= 1.70 (1.14 -2.04); p<0.00001]. Operative mortality at 30 days was also high DM vs. NDM; [3.25% (n=8,790) vs. 2.23% (n=23,261); risk ratio RR= 1.64 (1.39 - 1.93); p<0.00001].

Vranken, N. P., et al. [37] showed Diabetes mellitus is independent risk factor for post-cardiac surgery infections in 7888 patients undergoing cardiac surgery with median sternotomy and cardiopulmonary bypass. He reported 970 (12.3%) postoperative infections of which; surgical site infections (P = 0.001) and sepsis (P = 0.003) occurred more frequently in patients with diabetes mellitus.

Likosky, D. S., et al. **[38]** preformed retrospective review in 365,686 patients underwent isolated CABG. He studied Hospital-Level Infection Rates and the association factors; diabetes, smoking, chronic lung disease, and blood transfusion. Hospital infection events were; surgical site infections, deep sternal wound infection/or mediastinitis, harvesting-graft site infection, pneumonia, and sepsis. Diabetes is more prevalent in hospital with high infection rate with positive correlation; (p<0.001) with overall infections rate 3.97%, Pneumonia 2.98%, and sepsis 0.84%.

Raza, S., et al. [39] preformed retrospective cohort of 55,501 patients underwent

coronary artery bypass grafting surgery for the first time. Sample was grouped into 45,139 non-diabetics and 10,362 diabetics for comparison of outcomes. Groups were adjusted for bias by using Greedy matching or propensity score-matching for the preoperative risk factors. The analysis in diabetic versus non-diabetic showed that that outcomes significantly worse in diabetic patients in the prevalence of; in-hospital mortality (2.0% vs 1.3%) p < 0.001, deep sternal wound infections (2.3% vs. 1.2%); p<0.001 and septicemia (2.3% vs. 1.6%); p=0.004.

Saxena, A., et al. **[40]** reported that female patients with diabetes undergoing CABG surgery had a greater risk of 30-days mortality than men. In a cohort of 21, 534 patients underwent cardiac surgery CABG, female patients were presented more with diabetes mellitus (P < 0.001) and generally older (mean age, 68 vs. 65 years, P < 0.001) than men.

Lola, I., et al. [41] conducted a prospective study in 172 patients underwent cardiac surgery; of which were (n=59) diabetic. The objective was to study number of pre-, intra- and postoperative risk factors co-morbidities effect on nosocomial infections. Diabetes mellitus was identified as independent risk factor for postoperative infections (OR 5.92, CI 1.56 -22.42, p = 0.009). Out of 59 patients, 30 (17.42%) patients were infected; of which 13 (22%) had diabetes mellitus (DM). Overall endpoints were 8 (4.65%) with superficial wound infection, 5 (2.9%) with central venous catheter infections, 4 (2.32%) with pneumonia, 9 (5.23%) with sepsis, 1 (0.58%) with mediastinitis, 1 (0.58%) with harvest surgical site infection, 1 (0.58%) with urinary tract

infection, 1 (0.58%) with other major infection. Overall sample mortality was 3.48% and infection mortality rate was 25%.

Mannien, J., et al. [42] published a prospective study involving 4066 patients underwent different kind of cardiothoracic surgeries including: coronary artery bypass graft CABG procedures, valve surgery, and a combination of coronary artery bypass graft procedures with concomitant valve surgery. The preoperative effect of patient clinical profile was examined on the incidence of surgical site infections. A Follow up period of 42 postoperative days, 183 surgical site infections were reported; 2.4% for sternal wounds and 3.2% for harvest sites. Diabetes was important significant risk factor with 61% of SSIs.

Ledur, P., et al. **[43]** conducted a retrospective cohort of 717 patients underwent coronary artery bypass grafting surgery to study the effect of diabetes mellitus on the infectious complication after CABG. Diabetes was independent predictor for post-CABG infections (OR 4.18 [2.60-6.74], P<0.001). out of 717 patients; 29.6% had diabetes. 137 (19.1%) postoperative infections were reported of which; 62% respiratory, 25% superficial wound infections, 9.5% urinary tract infections UTI, and 3.6% deep wound infections.

2.2.2 Effect of Glycemic Control Status in Diabetic patients in CABG Surgery:

Tennyson, C., et al. **[44]** preformed systematic review of 11 studies were identified about hyperglycemia association to mortality and morbidity after cardiac surgery CABG, believed to provide best evidence. Out of 11 studies; 3 studies conclude

association of hyperglycemia (HbA1c) with significant increase in postoperative infections. Two identified a significant increase in infectious complications in patients with poorly controlled HbA1c, two of which were irrespective of previous diabetic status [deep sternal wound infection (P = 0.014); superficial sternal wound infection (P = 0.007) and minor infections (P = 0.006) in poorly controlled diabetics only].

Haga, K. K., et al. **[45]** conducted a meta-analysis of 9 Randomized controlled trials RCTs to study the effect of tight versus conventional glycemic control of the hyperglycemia in diabetic during cardiac surgery. In-hospital mortality or 30-days mortality was reported in three RCTs. First study was on 381 all non-diabetic with no significant difference (0% vs. 1.6%), second study was on 970 diabetic patients showed significant difference between tight and conventional glycemic control (37% vs. 16%); p=0.005, and third was on 141 diabetic patients with no significant difference in early mortality (0% vs. 0%). Meta-analysis results favor tight glycemic control to reduce inhospital mortality; [OR 0.52, 95% CI (0.30 - 0.91)]

Subramaniam, B., et al. [46] conducted a prospective, observational cohort study in 1461 patients; 458 (31.3%) patients with HbA1c \geq 6.5% and 1003 (68.7%) patients with HbA1c < 6.5%. The target was to measure the association of preoperative uncontrolled hyperglycemia HbA1c \geq 6.5% and number of adverse events including; deep sternal wound infection and pneumonia. Deep sternal wound infections was significantly higher in group of uncontrolled hyperglycemia; [2.2% (n=458) vs. 0.5% (n=1003); Odd ratio OR= 1.64 (1.39 - 1.93); p=0.008]. There was no significant correlation between uncontrolled hyperglycemia and Pneumonia; p=0.177.

Burekovic, A., et al. [47] preformed retrospective study in 523 hospitalized patients in intensive care unit ICU. There were 450 diabetic patients; of which 204 (45.3%) developed postoperative acute infections. Hyperglycemia (HbA1c) is significantly higher in diabetic patients with postoperative infections, compared to diabetic without postoperative infections [11.9 (\pm 2.5) vs. 10.5 (\pm 2.3); 95% CI (2.08-0.69); p<0.001]. Urinary tract infection was the most prevalent than other infections; UTI (70%), Pneumonia (11.8%), soft tissue infections (10.3%), sepsis (6.9%).

Giakoumidakis, K., et al. **[48]** published a prospective study involving 212 patients underwent cardiac surgery CABG, valve surgery, and aorta aneurysm repair. The therapy group was 105 patients had insulin fusion to control blood glucose in range of 120-160 mg/dl. of which 27 (%25.7) had Diabetes. The control group was 107 patients underwent surgery with blood glucose level range from 161-200 mg/dl. of which 33 (%30.8) had Diabetics. Postoperative infection was not significantly different between control and therapy group; [12 (11.2) vs. 9 (8.6) p=0.519. Whereas, in-hospital mortality was significantly higher in control than therapy group; [7 (6.5) vs. 1(1.0); p=0.033].

Omar, A. S., et al. **[49]** conducted a prospective study in 227 patients underwent CABG and valve cardiac surgeries, comparing 100 diabetics versus 127 non-diabetic patients to examine the correlation of poor glycemic control and number of outcome complications. Of which, nosocomial infection was significantly higher in diabetic with poor in-range glycemic control (target in range TIR <80%), versus those with good in-range glycemic control TIR >80%; [13% (n=54) vs. 4.3% (n=46); p=0.09].

Ng, R. R., et al. **[50]** showed a results about the correlation of glycemic control risk factor in a retrospective cohort of 1442 patients underwent coronary artery bypass grafting. In two group grouped into HbA1c < 8 mmol/L (1019) and >8 mmol/L (423), Poor glucose control > 8 mmol/L was associated with increase surgical site infections (SSIs) [OR 3.131 (95% CI: 1.431 - 6.851), *P* = 0.004].

Greco, G., et al. [51] conducted a prospective cohort of 4,316 cardiac surgery patients. The sample stratified into; non-diabetic NDM (3,344), non-insulin treated diabetics NITDM (553), and insulin treated diabetics ITDM (419). Hyperglycemia (180 to 240 mg/dL) in non-diabetic patients was associated with increased risk of major postoperative infections by 1.6%, 95% CI (0.5 - 2.8); [0.040 (0.030 to 0.051) Vs. 0.019 (0.013 to 0.025)], compared to non-diabetic with no hyperglycemia (\leq 180 mg/dL). In insulin treated diabetics, hyperglycemia was associated with reduction in risk of postoperative infection by 4.1% -0.041 (-0.091 to 0.000) and no significant different in non-insulin dependent diabetic patients between Hyperglycemia and no hyperglycemia group. In-hospital mortality in NDM, NITDM, and ITDM was [29(0.9%), 5(0.9%), and 7 (1.7%)], respectively. ONLY in non-diabetics (NDM), poor glycemic control increases the risk of major postoperative infections after cardiac surgery. Among diabetics, insulin-treated diabetics (ITDM) with good controlled hyperglycemia in had worse rate of infections and mortality.

Rujirojindakul, P., et al. **[52]** published a randomized clinical trial in 200 participants (out of a planned assigned randomly into two groups; either intensive glucose control between 4.4 and 8.3 mmol/l group, (n = 100) or the conventional routine glucose

control more than 13.8 mmol/l group (n = 100). They found no significant difference in the risk of all infections [17% vs. 13%, p=0.43] and in-hospital mortality Intensive [6% vs. 8%, p=0.78] between intensive (4.4-8.3 mmol/L) vs. and control (\geq 13.8 mmol/L) groups.

Knapik, P., et al. **[53]** performed a retrospective cohort of 2665 patients underwent coronary artery bypass grafting surgery patients had diabetes mellitus. Of which were 735 (94.0%) diabetic patients, stratified into; 341 (46.4%) insulin-dependent, 290 (39.5%) oral anti-diabetic medication, and 104 (14.1%) diet controlled diabetes. The sample was matched using propensity score matching into two group based on level of blood glucose HbA1c >7%, n=170 group versus HbA1c \leq 7%., n=170. Results showed that no significant difference between groups in incidence of postoperative outcomes; wound infections [0 vs. 3 (1.8%); 95% CI 1.98%, p=0.24], Sepsis [2 (1.2%) vs. 2(1.2%)], and death [2(1.2%) vs. 2(1.2%)].

Minakata, K., et al. [54] conducted a retrospective cohort of 1522 diabetes mellitus (DM) undergoing coronary artery bypass grafting (CABG). For comparison of outcomes, patients were divided into 849 diabetics and 572 non-diabetic patients. Postoperative infections rate was significantly higher in DM group than non-DM (9.2% vs. 6.1%, p=0.036) and all-cause mortality was higher in DM group also (2.1% vs. 1.1%, p=0.12)

2.2.3 Effect of BIMA Grafting Method Choice in Diabetic Patients in CABG Surgery:

Raza, S., et al. **[55]** conducted a retrospective study of 11,922 diabetic patients underwent coronary artery bypass grafting (CABG) surgery in Cleveland Clinic. The sample was stratified into 2743 insulin-treated and 3766 non-insulin-treated, and 1687 diet -controlled diabetics. One of main objective was to investigate the exposure to different revascularization techniques and their effect on postoperative complications including infections. There were 8466 (71%) patients underwent single internal thoracic artery (SITA) grafting, 938(7.9%) patients underwent bilateral internal thoracic artery (BITA) grafting, 2491(21%) patients had saphenous vein (SVG) grafting, 602 (5%) patients with off-pump versus on-pump CABG. Their results showed that BITA grafting was associated with a higher rate of deep sternal wound infections than SITA grafting; [OR 2.09, 68% CI (1.72-2.56), p =.0003]. Effect of off-pump versus on-pump showed no significant difference in infectious outcomes [OR (1.3 vs 2.2), p=.15].

Raja, S. G., et al. [**56**] preformed retrospective study on 1526 patients underwent coronary artery bypass grafting (CABG); 779 (51%) patients received radial artery (RA) grafting and 747 (49%) received single-right internal mammary (or called thoracic) artery (RIMA). The difference in incidence of deep sternal wound infection was not significant between RA versus RIMA groups [2.50% vs. 2.70%; p=0.8], respectively.

Kieser, T. M., et al. [57] conducted a retrospective analysis of a prospectively collected data on 1001 patients underwent coronary artery bypass grafting surgery; of which 345 (33%) diabetic patients. Out of 16 deep sternal wound infections cases, there were 14 patients underwent CABG with BITA grafts. Of the 14 patients, there were 9 diabetics.

Lev-Ran, O., et al. **[58]** has examined 147 diabetic patients underwent coronary artery bypass grafting (CABG). The main objective was to analyze the outcome of deep sternal wound infection after surgery. There were 83 patients with bilateral internal thoracic artery (BITA) graft and 64 patients with single radial artery (RA) graft. The adjusted analysis showed that BITA vs. RA groups have no significant difference (1.2% vs. 0%) in regards to the rate of deep sternal infection; [OR=2.24, 95% CL: (0.56-8.95), p=0.256]. The revascularization with BITA graft could not be identified as predictor for postoperative sternal wound infection in diabetic patients.

Ben Ahmed, H., et al. [59] retrospectively analyzed 228 patients underwent coronary artery bypass grafting (CABG). Of which, there were 126 diabetics and 102 non-diabetic patients underwent CABG with bilateral internal thoracic artery (BITA) graft. Comparing diabetic versus non-diabetic, in-hospital mortality was significantly higher in diabetic patients [(16% Vs 4.1%), P=0.005] and no significant difference in sternal wound infection in both diabetic and non-diabetic after CABG with BITA grafting.

Dorman, M. J., et al. [60] had retrospectively analyzed 1107 diabetic patients underwent coronary artery bypass grafting (CABG) surgery. Of which, 646 patients underwent CABG with single-internal mammary artery (SIMA) graft and 461 with bilateral-internal mammary artery graft. Sample was adjusted with propensity score matching and analyzed for operative mortality and sternal wound infection. Comparing SIMA [n=414] versus BIMA [n=414] groups; There were no significant difference in operative mortality [10 2.4% vs. 3.1%; P=0.279] and sternal wound infection [1.7% vs. 3.1%; P=0.179].

Deo, S. V., et al. [61] conducted a meta-analysis to compare the outcomes in CABG using either single or bilateral internal thoracic artery (SITA and BITA) in old patients. One of the primary endpoints are deep and superficial wound infections. A 9 studies have been identified that compared different endpoints between SITA and BITA. A pooled sample from 8 studies of 10,745 patients showed that BITA grafting method is associated with higher risk of deep sternal wound infection (DSWI) [Odd ratio 1.86 (1.35 - 2.57), p<0.0001] The funnel plot showed consistency in publication results (p=0.80). A 3 studies showed BITA is also associated with superficial sternal wound infection (SSWI) [OR 1.97 (1.23 - 3.15); p = 0.004].

Kajimoto, K. et al. **[62]** has done a meta-analysis of 13 retrospective studies to evaluate deep sternal wound infection in diabetic patients after CABG. A pooled analysis of 7,264 diabetic patients has showed that BITA grafting in diabetic patients is associated with increased risk of DSWI (relative risk 1.54; 95% CI (1.13-2.11), p=0.0069) with very low heterogeneity and no publication bias. However, overall estimate showed no significant difference between SITA and BITA in deep sternal wound infection with the use of skeletonization ITA harvest (RR 1.01; 95% CI (0.35 -2.97); p =0.98).

2.3 Summary Table of The Best Evidence:

Table 2: Summary of Best Evidence				
Author/Year	Sample	Exposure/ and	Study Results	Conclusion
/level of	/Population (n)	Endpoints		
evidence	-	-		
Diabetes and Pro	evalence of Nosocor	nial infections		
1.	132 identified	Exposure;	diabetic versus	Diabetic patients
	studies with total	diabetes mellitus	non-diabetic	have increased
Zhang, X., et	of 100,217	(DM)	In-hospital	risk
al. (2011).	patient		mortality at 30	of sternal

[36] Systematic review and met-analysis	underwent coronary artery bypass grafting CABG surgery - 28,168 with DM - 72,049 without DM	Outcomes; -Primary outcome: in- hospital mortality and -secondary outcomes: number of adverse events including sternal wound infection	days: pooled effect of 4 studies was [3.25% (n=8,790) vs. 2.23% (n=23,261); risk ratio RR= 1.64 (1.39 - 1.93); p<0.00001]. Sternal infections: pooled effect of 8 studies : [2.29% (n=8,790) vs. 1.18% (n=23,261); risk ratio RR= 1.70 (1.14 - 2.04); p<0.00001].	infection and mortality, compared non- diabetic
2. Vranken, N. P., et al. (2014). [37] Retrospective cohort	7888 patients undergoing cardiac surgery with median sternotomy and cardiopulmonary bypass.	Our interest just patient characteristics or profile development of post-cardiac surgery nosocomial infections.	 970 (12.3%) postoperative infections. surgical site infections (P = 0.001) and sepsis (p=0.003) occur more frequently In patients with diabetes mellitus 	Diabetes mellitus is independent risk factor for post- cardiac surgery infections
3. Likosky, D. S., et al. (2015). [38] Retrospective study	 - 365,686 patients underwent isolated CABG - Hospital-level Infection events and factors association; smoking, diabetes, chronic lung disease, and blood transfusion. 	Exposure: Different perioperative factors composite including; Diabetes Outcomes: - surgical sit infects SSIs (deep sternal wound infection/ mediastinitis and harvesting-graft site infection)	Diabetes is more prevalent in hospital with high infection rate with positive correlation; (p<0.001) -3.97% overall infections rate - 2.98% Pneumonia - 0.84% sepsis	 Infection rates are varied among hospitals, but It increased in which had more patients with major co- morbidities. Pneumonia and sepsis are more common infection

		- Pneumonia - Sepsis		
4. Raza, S., et al. (2015). [39] Retrospective Observational study	 Overall sample was 55,501 underwent first- time CABG grouped into; 10,361 diabetics (DM) patients and 45,139 non- diabetic patients By using propensity score matching (Greedy matching procedure), sample adjusted to; 8926 diabetic patients 8926 non- diabetic patients history of follow up to 12 years 	In-hospital Deaths Deep sternal wound infections	Diabetics vs. non-diabetic - In-hospital mortality (2.0% vs. 1.3%) p < 0.001 - deep sternal wound infections (2.3% vs. 1.2%); p<0.001 - Sepsis or septicemia (2.3% vs. 1.6%); p=0.004	Diabetes Miletus is a high risk factor for in-hospital mortality and postoperative sternal wound infection and septicemia. but, when adjusted with Greedy matching , only deep sternal wound infection was significantly different in diabetic versus non- diabetics (2.2% vs. 1.3%); p<0.001
5.Saxena, A., et al. (2012).[40]Retrospective Cohort study	21, 534 patients underwent cardiac surgery CABG	Exposure; impact of sex outcomes; compare the demographic, operative data and post-operative complications	Male vs. female 22.2% were female. - Female patients were generally older (mean age, 68 vs. 65 years, P < 0.001) and presented more often with diabetes mellitus (P < 0.001)	Female patients with diabetes undergoing isolated CABG surgery have a greater 30-day mortality

			- 30-day	
			mortality (2.2% vs. 1.5%, P <	
6.	172 patients	Exposure;	0.001) diabetes mellitus	Diabetes is a
0.	underwent	Pre-, intra- and	identified as	predisposing
Lola, I., et al.	cardiac surgery;	postoperative risk	independent risk	factor for
(2011). [41]	diabetic (n=59)	factors	factor for	postoperative
			postoperative	infection. main
Prospective		Only diabetes	infections (OR	limitations of
cohort study		mellitus is our	5.92, CI 1.56 -	the study is
		exposure of	22.42, p = 0.009)	small sample
		interest	1 . 6 20	size
		Outcomes;	total of 30 (17.42%)	
		superficial sternal	patients were	
		wound infection at	infected; 13	
		the - central	(22%) with	
		venous catheter	Diabetes mellitus	
		infection-	(DM)	
		pneumonia-	0 (4 570)	
		bacteremia, -	8 (4.65%)	
		mediastinitis -	superficial wound infection	
		harvest surgical site infection-	would infection	
		urinary tract	5 (2.9%) central	
		infection,	venous catheter	
			infection	
			4 (2.32%)	
			pneumonia	
			9 (5.23%)	
			bacteremia	
			1 (0.58%)	
			mediastinitis	
			1 (0.58%)	
			harvest surgical	
			site infection	
			1 (0.58%)	
			urinary tract	
			infection, 1 (0.58%) other	
			major infection.	
			25% infection	
			mortality rate	

7. Mannien, J., et al. (2011). [42] Retrospective cohort study	4066 cardiothoracic surgeries including: coronary artery bypass graft CABG procedures, valve surgery, and a combination of coronary artery bypass graft procedures with concomitant valve surgery Follow up period of 42 postoperative days.	Exposure; Patients' clinical profile Outcome; Surgical site infections SSIs	 3.48% overall mortality 183 surgical site infections 2.4% for sternal wounds and 3.2% for harvest sites 61% of SSIs was reported after discharge 	Diabetes was important significant risk factors,
 8. Ledur, P., et al. (2011). [43] Retrospective cohort study 	717 patients underwent coronary artery bypass grafting surgery	Exposure; demographic, diabetes, prolonged central venous line, and cardiac catheter Outcomes; Postoperative infections	 out of 717 patients; 29.6% had diabetes 137 (19.1%) postoperative infections; 62% respiratory, 25% superficial wound, 9.5% urinary, 3.6% deep wound Diabetes is predictor of postoperative infection (OR 4.18 [2.60-6.74], P<0.001) 	Diabetes was predictor of post-CABG infections

9. Tennyson, C., et al. (2013). [44] Systematic Review study	11 studies were identified about hyperglycemia association to mortality and morbidity after cardiac surgery CABG, believed to provide best evidence.	Exposure; hyperglycemia (HbA1c) in diabetics, non- diabetic, or mixed group Outcomes; all- cause or cause- related mortality and any morbidity. Endpoint of our interest are - postoperative infection All-cause mortality and infection-related mortality.	Out of 11 studies; 3 studies conclude association of hyperglycemia (HbA1c) with significant increase in postoperative infections two identified a significant increase in infectious complications in patients with poorly controlled HbA1c, two of which were irrespective of previous diabetic status [deep sternal wound infection (P = 0.014); superficial sternal wound infections (P = 0.006) in poorly controlled diabetics only].	Only two studies have identified a significant increase in infectious complications in patients with poorly controlled HbA1c, two of which were irrespective of previous diabetic status [deep sternal wound infection (P = 0.014); superficial sternal wound infection (P = 0.007) and minor infections (P = 0.006) in poorly controlled diabetics.
10. Haga, K. K., et al. (2011). [45] Systematic review and meta-analysis	 meta-analysis of 9 Randomized controlled trials RCTs Of which 3 RCTs yelled results on [the endpoint of our interest] early in- hospital mortality or 30- days mortality 	Exposure: tight controlled vs. Uncontrolled of Glycaemia in diabetic patients during and after cardiac surgery Outcome; - In-hospital mortality; cited as "Early" 30-days mortality rate.	 pooled results of the 3 RCTs; Tight control vs. conventional control (normal and uncontrolled) significant negative correlation between tight glycemic control and incidence of early mortality 	The significant of controlling hyperglycemia during, before, and/or after cardiac surgery plays important role in reducing the incidence of early mortality.

	- 1 st study 381 all		[OR 0.52, 95%	
	non-diabetic		[OK 0.32, 93%] CI (0.30 - 0.91)]	
	- 2^{nd} study 970		CI((0.30 - 0.91))	
	-3^{rd} study 141			
11.	1461 patients	Exposure;	HbA1c $\geq 6.5\%$	Preoperative
11.	undergoing	A		Uncontrolled
Subromoniom	00	preoperative elevated	vs. HbA1c < 6.5%	
Subramaniam, B., et al.	coronary artery bypass grafting		HUATC < 0.5%	hyperglycemia is a significant
	bypass granning	hyperglycemia $Ub A 1 a > 6.59$		•
(2014). [46]	459 (21 20/)	HbA1c $\geq 6.5\%$	doop stornol	predictor of
prospective	458 (31.3%) patients with		- deep sternal wound infections	major adverse events after
prospective, single-center,	HbA1c $\geq 6.5\%$	Outcomes;	was significantly	CABG surgery;
observational	$110A1C \ge 0.570$	number of	higher in group	
cohort study	1003 (68.7%)	outcomes	of HbA1c \geq	especially deep sternal wound
conort study	patients with	including the ones	6.5%; [2.2%]	infection
	HbA1c $< 6.5\%$	of our interest;	(n=458) vs.	Infection
	110A1C < 0.5%	of our interest,	(n=4.58) vs. 0.5% (n=1003);	
		- Deep sternal	Odd ratio $OR=$	
		- Deep sternal wound infections	1.64 (1.39 -	
		would infections	1.04(1.39 - 1.93); p=0.008].	
		- Pneumonia	1.93), p=0.008j.	
		- Fileumoma	- No significant	
		- In-hospital	difference in	
		mortality	pneumonia;	
		mortanty	p=0.177 and in-	
			hospital	
			mortality or	
			death; p=0.704	
12.	523 hospitalized	Exposure: HbA1c	204 infected;	Positive
12.	patients in	level of control in	35.3% men; 64.7	correlation
Burekovic, A.,	intensive care	intensive care unit	women; 61% age	between
et al. (2014).	unit ICU; of	(ICU),	(61-80)	HbA1c level in
[47]	which 450 were	(100),	(01-00)	patient with
[+/]	diabetic.	Outcomes:	- HbA1c) is	infection vs.
Retrospective	diabetic.	Prevalence of	significantly	without
cohort		acute infections	higher in	infection.
conort		- Urinary tract	diabetic patients	milection.
		infections (UTIs)	with	-UTI was more
			postoperative	frequent
		- Pneumonia	infections,	- infection is
		i noumoniu	compared to	more in frequent
		- skin and soft	diabetic without	in type 2
		tissues infections	postoperative	diabetes
		Hobies Infections	infections [11.9	
		- sepsis	(± 2.5) vs. 10.5	
		o Poio	(± 2.3) vs. 10.5 (± 2.3) ; 95% CI	
			$(\pm 2.5), 95\%$ C1 (2.08-0.69);	
			p<0.001].	
			L (0.001].	
			- Urinary tract	
	1	1	ormary tract	

13. Giakoumidaki s, K., et al. (2013). [48] Randomized Clinical trial (RCT)	 - 212 patients underwent cardiac surgery CABG, valve surgery, and aorta aneurysm repair - 107 [Control group] patients underwent surgery with blood glucose level range from 161-200 mg/dl. of which 33 (% 30.8) had Diabetics - 105 [Therapy group] patients had insulin fusion to control blood glucose in range of 120-160 mg/dl. of which 27 (% 25.7) had Diabetes 	Good vs. Poor glycemic control Effect on; - In-hospital mortality - Postoperative infections	infection was the most prevalent than other infections; UTI (70%), Pneumonia (11.8%), soft tissue infections (10.3%), sepsis (6.9%). Control (HbA1c 161-200 mg/dl) group vs. Therapy (HbA1c 120-160 mg/dl.) group; - In-hospital mortality; (% 6.5 vs. %1.0), p=0.033 - postoperative infections; (% 11.2 vs. %8.6), p=0.519	No significant difference in postoperative infections between control (HbA1c 161- 200 mg/dl) and therapy group (HbA1c 120- 160 mg/dl.). Only in-hospital mortality was considered statistically significant Glycemic control status was not statistically associated with postoperative infectious complications.
Omar, A. S., et al. (2015). [49] Prospective cohort study	 227 patients CABG with cardiopulmonary bypass (CPB). 100 non- diabetic 127 diabetic; 	Elevated glucose concentration more than 8% Outcomes; - In-hospital mortality	infection was significantly higher in diabetic with poor in-range glycemic control (target in range	poor glycemic control have 3 times higher the risk of sternal wound infection compared to those with

	grouped into HbA1c > 8.1 mmol/L (>8%) and < 8.1 mmol/L (<8%) with time in range (TIR) being elevated HbA1c > 80% of the time of	- incidence of wound infections	TIR <80%), versus those with good in-range glycemic control TIR >80%; [13% (n=54) vs. 4.3% (n=46); p=0.09].	Target in Range TIR <80% blood glucose during CABG surgery.
15. Ng, R. R., et al. (2015). [50] Retrospective cohort study	exposure 1442 diabetes patients only, Asian and undergoing elective CABG -grouped into HbA1c < 8 mmol/L (1019) and >8 mmol/L (423)	-Hyperglycemia > 8 mmol/L - incidence of surgical site infections (SSIs)	 Poor glucose control > 8 mmol/L associated with increase surgical site infection (SSIs) OR 3.131 (95% CI: 1.431 - 6.851), P = 0.004 	Good glycemic control < 8 mmol/L associated with a lower surgical site infection in diabetics undergoing elective CABG. Uncontrolled hyperglycmia increased risk of SSI by 213% in diabetics
 16. Greco, G., et al. (2016). [51] Multicenter prospective cohort study 	4,316 cardiac surgery patients Sample classified into; - 3,344 non- diabetics (NDM) - 553 non- insulin-treated diabetics (NITDM) - 419 insulin- treated diabetics (ITDM)	Exposure; Hyperglycemia (180 to 240 mg/dL) VS. No hyperglycemia ((≤180 mg/dL) Outcomes of our interest; - major postoperative infections - postoperative death.	(NDM); with hyperglycemia was associated with increased infections rate by 1.6%, 95% CI (0.5 -2.8) (ITDM); hyperglycemia associated with lower infection rate of -4.1% (-9.1 to 0.0) and no significant different in (NITDM) In-hospital mortality; NDM, NITDM, and ITDM; [29(0.9%), 5(0.9%), and 7 (1.7%)]	ONLY in non- diabetics (NDM), Poor glycemic control increases the risk of major postoperative infections after cardiac surgery. Among diabetics, good controlled hyperglycemia in insulin- treated diabetics had worse rate of infections and mortality.

17. Rujirojindakul , P., et al. (2014). [52] Prospective study (Randomized- double blinded)	 200 patients underwent cardiac surgery- cardiopulmonary bypass. Had perioperative hyperglycemia irrespective to the diabetic history Intensive glycaemic control (100 patients) to maintain glucose between 4.4-8.3 mmol/L [Intervention group] conventional protocol glycemic control (100 patients) only maintain glucose to be ≥13.8 mmol/L [Control Group] 	Exposure: perioperative treated for hyperglycemia to maintain glucose (4.4 to 8.3 mmol/L) during hospitalization Outcomes; - Postoperative infections rate within 30 days. Include; - Surgical site infection SSI - Pneumonia - Urinary tract infection UTI - Sepsis	Intensive (8.3 mmol/L) vs. Conventional (13.8) control of glycemia Intensive vs. control - all Infections 17% vs. 13%, p=0.43, not significant - Deaths 6% vs. 8%, p=0.78, not significant	Glycemic control status in both diabetic and non-diabetic has no effect on the incidence of postoperative Infections Intensive insulin infuses increase risk of hypoglycemia by (23%) vs. (13%)
	randomized in both group.			
18.Knapik, P., et al. (2011).[53]Retrospective cohort	2665 patients, who underwent coronary revascularization 782 (29.3%) patients had diabetes mellitus of which; 341 (46.4%) insulin- dependent, 290 (39.5%) oral anti-diabetic medication, and 104 (14.1%) diet controlled diabetes.	Exposure; elevated HbA1c among diabetic patients scheduled for coronary surgery Outcomes; number of outcomes of which; -postoperative wound infections - Sepsis - Postoperative deaths	wound infections [0 vs. 3 (1.8%); 95% CI 1.98%, p=0.24], Sepsis [2 (1.2%) vs. 2(1.2%)], and death [2(1.2%) vs. 2(1.2%)].	No significant difference with respect to the control level of HBA1C among diabetics in postoperative wound infections, sepsis and death

19. Mina kata, K., et al. (2012). [54] Retrospective cohort study	Grouped into; - Normal HbA1c (≤7%) - elevated HbA1c (>7%) 1522 diabetes mellitus (DM) undergoing coronary artery bypass grafting (CABG) 849 DM vs. 572 non-DM patients	the impact of diabetes mellitus (DM) Outcomes; Postoperative infections All-cause mortality	DM vs. Non-DM - postoperative infection was significantly higher in DM group than non- DM (9.2% vs. 6.1%, p=0.036) - all-cause	Diabetes Mellitus is statistically significant risk factor for postoperative infection and mortality
	between choice of r	evascularization meth	mortality was higher in DM group also (2.1% vs. 1.1%, p=0.12) od and postoperativ	e infection in
Diabetics	1		1	
20. Raza, S., et al. (2014). [55]	- 11,922 diabetic patients undergoing CABG	BITA vs. SITA grafting method in CABG Off pump vs. on- pump	BITA grafting diabetic has 73% increased risk of DSWIs	BITA increase risk of DSWI by 73% and should be avoided in diabetic female
Retrospective cohort study	- grouped into diabetic patients with bilateral internal thoracic artery grafting	- Deep sternal wound infections (DSWIs)	- 80% for female - 7% for high BMI	with high BMI due to high risk of postoperative infection
	 (BITA), n= 938; 7.9% diabetic patient with single internal thoracic grafting (SITA) off-pump, n=602; 5% 	- infection-related mortality		However, BITA grafting can improve long- term survival with complete revascularizatio n
	- SITA on-pump, n=2109; 18%			

21. Raja, S. G., et al. (2015). [56] Prospective cohort study	 1,526 coronary artery bypass grafting surgeries CABG 747 Patients underwent single- right internal mammary artery (RIMA) 779 patients underwent radial artery RT grafting bypass Randomized from 2001-2013 	Exposure; diabetes with single -RIMA grafting in CABG Outcomes: deep sternal wound infection. - long-term mortality	 among patients, those with diabetes have increased events of deep sternal wound infections (p= 0.8) RT grafting increase risk of late-mortality in diabetics [hazard ratio HR 3.3; 95% CI (1.1-9.7)] and obese [HR 2.1; 95% CI (0.8 - 5.46)] 	Right-SIMA is strongly recommended as first choice in CABG grafting method.
21. Kiser, T. M., et al. (2014). [57] Retrospective cohort study	 1001 patients underwent CABG, 345 (33%) diabetic. Study from 2003-2012 - 689 patients received BIMA or BITA graft, - 59 patients with SITA graft and other different grafting methods divided into two cohorts; - Before institution change in infection control precautions measures - After institution change in infection control 	Exposure; Different precautions measure in two different point in time database. One of them is avoidance of BITA graft in obese diabetic patients Outcome; Deep sternal wound infection DSWI rate after CABG-BITA grafting method	before changing measures point group (532 patients); a 16 (3%) DSWIs in 28 obese diabetic women (BMI > 30) After changing point group; Avoidance of BITA in obese diabetic women	CABG with BITA grafting in obese diabetic patients, especially female gender is associated with increased risk of postoperative deep sternal wound infection

	precautions measures			
23.Lev-Ran, O., et al. (2013).[58]Prospective cohort study	 147 insulin - dependent type- 2-diabetic patients underwent CABG Of which: - 83 patient received bilateral internal thoracic artery BITA graft -64 received Radial artery graft 	 BITA vs. RA grafts Outcomes: Deep sternal wound infection DSWI superficial wound infection mortality 	- BITA vs. RA grafts DSWI could not be identified as independent predictor (OR= 2.24, 95% CI: 0.56–8.95, p=0.256)	BITA grating is not consider be a predictor or risk factor for DSWI. It can be used in diabetic patients with no significant difference in risks ratio to other methods
24. Dorman, M. J., et al. (2012). [60] Retrospective cohort study	1107 consecutive diabetic patients underwent coronary artery bypass grafting IMA (n=646) or BIMA (n=461) grafting with the propensity score was used to create matched SIMA (n=414) and BIMA (n=414)	Exposure bilateral internal mammary artery (BIMA) grafting Vs. single internal mammary artery (SIMA) grafting Outcomes; operative mortality sternal wound infection long-term survival determined by follow-up (6 weeks to 30.1 years; mean, 8.9 years)	SIMA [n=414] Vs. BIMA [n=414] groups; - operative mortality, [10 2.4% vs. 3.1%; P=0.279] sternal wound infection, [1.7% vs. 3.1%; P=0.179] Survival, [9.8 vs. 13.1 years ; P=0.001]	Bilateral internal mammary artery grafting (BIMA) was associated with better long- term survival up to 8.9 years - with no significant difference in the incidence of sternal wound infection and in- hospital mortality.

2.4 Conclusion of The Literature Review:

Nosocomial infections were rarely reported after percutanous coronary intervention (PCI) in diabetic patients. Operative infections were commonly reported in coronary artery bypass grafting (CABG) procedure. Therefore, the study cohort will be on the

invasive revascularization technique CABG. Diabetes and obesity were prominent patient-related predisposing factors for nosocomial infection in patient undergoing cardiac surgery. The sternal wound infection was studied intensively in diabetic patients undergoing CABG surgery. Poor acute hyperglycaemic control was one of the reported predictor factor for nosocomial infection irrespective of the diabetes diagnosis. There were small number of studies have called into the predictive value of the glycemic control status in diabetic patients. The bilateral internal mammary artery (BIMA), which is a type of artery anastomosis conduct method of revascularization used in CABG surgery, was reported a high risk for postoperative wound infection and in-hospital mortality in diabetic patients. Reviews of clinical trials and meta-analysis studies indicated conflicted conclusions in regards to the casual inference of the relationship between the grafting method and the infectious outcomes in diabetic patient population. Therefore, hypotheses of this research will be relevant to these three exposures detected in literature review: diabetes status, poor acute hyperglycemic control status, and method of revascularization surgery.

2.5 Research Questions and Hypotheses:

- A. **HYPOTHEIS** (A.a): Is there a significant difference in rate of nosocomial infections by the choosing the grafting technique; Bilateral Internal Mammary Artery (BIMA) compared to Single Internal Mammary Artery (SIMA) ?
 - Null hypothesis: (H0 = H1): SIMA and BIMA grafting methods have no significant difference in the rate of nosocomial infections in CABG patients.

- Alternative hypothesis (H0 ≠ H1): BIMA grafting has higher rates of nosocomial infections than SIMA grafting.
- B. **SUB-HYPOTHESIS** (A.b): For diabetic patients ONLY, is there a significant difference in rate of nosocomial infections by choosing Bilateral Internal Mammary Artery (BIMA) compared to Single Internal Mammary Artery (SIMA)?
 - Null hypothesis (H0 = H1): SIMA and BIMA grafting methods have no significant difference in the rate of nosocomial infections in Diabetic-CABG patients.
 - Alternative hypothesis (H0 ≠ H1): BIMA grafting has higher rates of nosocomial infection than SIMA grafting in Diabetic-CABG patients.
- C. **HYPOTHESIS (B):** Is there a significant difference in the cumulative incidence rate of nosocomial infections between diabetic and non-diabetic patients undergoing Coronary Artery Bypass Grafting (CABG) surgery?
 - Null hypothesis (H0 = H1): Diabetic and Non-diabetic patients admitted to CABG surgery have no significant difference in rate of nosocomial infections (NIs)
 - Alternative hypothesis (H0 \neq H1): Diabetic patients have significantly higher rate of nosocomial infections than non-diabetic patients. (in total

CABG, BIMA only, SIMA only)

D. **HYPOTHESIS** (C): Is there a significant difference in the cumulative incidence of nosocomial infections (NIs) between diabetics with uncontrolled hyperglycemia and controlled hyperglycemia in CABG surgery?

- Null hypothesis (H0 = H1): Diabetics with uncontrolled and controlled hyperglycemia have no significant difference in rate of nosocomial infections (NIs).
- Alternative hypothesis (H0 ≠ H1): Diabetic patients with poor hyperglycemic control undergoing CABG surgery have higher rate of nosocomial infections than patients with controlled diabetes (in total CABG, BIMA only, SIMA only

CHAPTER 3

METHODOLOGY

3.1 Objectives:

- Analyze the association and predictive value of Bilateral internal mammary artery grafting and the risk of nosocomial infections in diabetic patients undergoing coronary artery bypass grafting (CABG) surgery
- Analyze the association and predictive value of diabetes mellitus diagnosis on risk of nosocomial infections in patients undergoing coronary artery bypass grafting (CABG) surgery
- Analyze the impact of uncontrolled Hyperglycemia or poor hyperglycemic control on the rate of nosocomial infections in diabetic patients undergoing coronary artery bypass grafting (CABG) surgery.

3.2 Data Source:

Data used for this study was the Nationwide Inpatient Sample (NIS). The NIS data was developed by the Agency for Healthcare Research and Quality (AHRQ); It is also a part of larger national database called Healthcare Cost and Utilization Project (HCUP). NIS has an annual inpatient discharges data of approximately 8 million hospital stay records from nearly 1000 hospitals in 37 states. Data is collected from 20% of all HCUP-contracted U.S. hospitals and considered one of the largest all-payer inpatient database in United States. NIS data does not include outpatient care and rehabilitation records. NIS provide access to researchers and policy makers about national estimates of healthcare utilization, charges, outcomes, and quality. The NIS data provides a large

sample size which is important for analyzing rare outcomes or targeting special patient's population. The data has all main variables that were needed for this research project to test and analyze the study hypotheses. Each discharge record contains; the primary procedures and diagnoses, all secondary-related procedures and diagnoses, patient demographics, patient admission-to-discharge status, total discharge charges, payment source, length of stay and hospital characteristics. [63]

3.3 Research Design

The study is a retrospective cohort utilization of Nationwide Inpatient Sample (NIS) data. The data was used to extract the overall sample population, which include all patients who underwent Coronary Artery Bypass Grafting (CABG) surgery between 2007 to 2012. Sub-sampling was defined by its exposure in each hypothesis. The hypotheses studied three exposures (predictor or independent) factors; diagnosis of diabetes Miletus, status of hyperglycemic control, and grafting revascularization method used in CABG. The primary outcome (or end-point) of the study was the presence of "Nosicomial infection" during patient hospitalization period for coronary artery bypass grafting surgery. Explanatory (or confounding) variables in analysis were socio-demographic, clinical and hospital factors. The Conceptual Framework of the study was constructed based on Future Research Needs and Gaps identified by AHRQ-Stanford comparative effectiveness research. **[64]** (see Fig. 3)

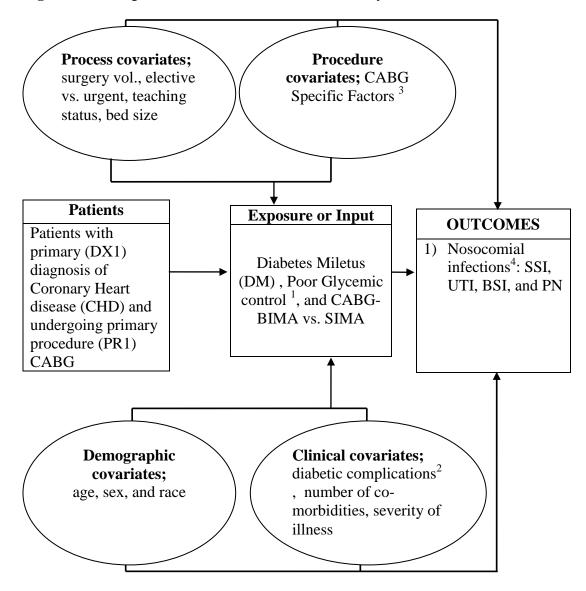


Figure 3: Conceptual Framework Model of the study.

1 Diabetes with Uncontrolled Hyperglycemia irrespective to the type. 2 Diabetes Complications Subgroups is divided into two types: Acute complications with ketoacidosis, hyperosmolarity, coma; and chronic complication with renal manifestations, ophthalmic manifestation, neurological manifestations, and vascular manifestation. 3 CABG specific factor such as grafting method; Bilateral Internal Mammary Artery (BIMA) grafting, or Single Internal Mammary Artery (SIMA) grafting. **[64]**

3.4 Data Elements:

The NIS discharge files are very detailed on data elements designed by AHRQ

software tools that facilitate the use of the ICD-9-CM coded procedures and diagnoses. The International Classification of Disease, 9th edition, clinical modification (ICD-9-CM) coding system was used to extract the study population, targeted exposures, and outcomes. The NIS data contains 15 procedures and up to 25 diagnoses for each discharge record. Data before 2009 has only 15 diagnoses. NIS data also has a schematic categorization codes for ICD-9-CM called Clinical Classification Software (CCS) used to extract set of ICD-9 codes that define a disease or procedure population. Translation of CCS and ICD-9 codes was retrieved from HCUP website. All indicator variables that were included in the study are represented in (table 3).

Table 3: Description of included variables in national inpatient sample (NIS) data.					
HCUP Variables	Description	Coding	Level of		
			measurement		
AGE	Age in years at admission	0-124 years old	Continuous		
FEMALE	Indicator of sex	0=Male, 1=Female	Nominal		
RACE	Race	1=White, 2=Black,	Nominal		
		3=Hispanic, 4=Asian or			
		Pacific Islander,			
		5=Native American,			
		6=Other			
DXn	Diagnoses	ICD-9 codes for	Nominal		
		diagnosis			
DXCCSn	Clinical Classification	259 cluster codes;	Nominal		
	Software (CCS) cluster	[49]= all diabetes			
	codes for diagnoses ICD-9	without complications			
	codes	and [50]= all diabetes			
		with complications			
PRn	Procedures	ICD-9-codes for	Nominal		
		procedure			
PRCCSn	Clinical Classification	231 cluster codes;	Nominal		
	Software (CCS) cluster	[44]= all CABG			
	codes for procedures ICD-	surgeries			
	9 codes				
ATYPE	Admission type	1= Emergency,	Nominal		
		2=Urgent 3= Elective,			
		4= Newborn Other,			
		5=Trauma Center,			

		6=Other		
ELECTIVE	Elective versus non-	0=Non-elective,	Nominal	
	elective admission	1=Elective		
LOS	Length of Stay	0-365	Continuous	
NCHRONIC	number of chronic	0-30	Ordinal	
	conditions			
APRDRG_Risk_m	Risk of Mortality Subclass	0=No specification,	Ordinal	
ortality		1=Minor likelihood of		
		dying , 2=Moderate		
		likelihood of dying,		
		3=Major likelihood of		
		dying , 4=Extreme		
		likelihood of dying		
APRDRG_Severity	Severity of Illness Subclass	0=No specification,	Ordinal	
		1=Minor loss of		
		function, 2=Moderate		
		loss of function,		
		3=Major loss of		
		function , 4=Extreme		
	Dishatas, unas muliastad	loss of function	Nominal	
CM_DM	Diabetes, uncomplicated	0=No, 1=yes		
CM_CMCX	Diabetes with chronic	0=No, 1=yes	Nominal	
CM OBESE	complications Obesity	0=No, 1=yes	Nominal	
CM AIDS	Acquired immune	0=No, 1=yes	Nominal	
CIVI_AIDS	deficiency syndrome	0-110, 1-yes	NOTITIA	
CM ANEMDEF	Deficiency anemias	0=No, 1=yes	Nominal	
CM ARTH	Rheumatoid	0=No, 1=yes	Nominal	
	arthritis/collagen vascular	0-110, 1-903	Norman	
	diseases			
CM BLDLOSS	Chronic blood loss anemia	0=No, 1=yes	Nominal	
 CM_CHF	Congestive heart failure	0=No, 1=yes	Nominal	
CM_CHRNLUNG	Chronic pulmonary disease	0=No, 1=yes	Nominal	
CM_COAG	Coagulopathy	0=No, 1=yes	Nominal	
CM_DEPRESS	Depression	0=No, 1=yes	Nominal	
CM_DRUG	Drug abuse	0=No, 1=yes	Nominal	
CM_HTN_C	Hypertension (combine	0=No, 1=yes	Nominal	
	uncomplicated and			
	complicated)			
CM_HYPOTHY	Hypothyroidism	0=No, 1=yes	Nominal	
CM_LIVER	Liver disease	0=No, 1=yes	Nominal	
CM_LYMP	Lymphoma	0=No, 1=yes	Nominal	
CM_LYTES	Fluid and electrolyte disorders	0=No, 1=yes	Nominal	
CM_METS	Metastatic cancer	0=No, 1=yes	Nominal	
 CM_NEURO	Other neurological disorders	0=No, 1=yes	Nominal	

CM_PARA	Paralysis	0=No, 1=yes	Nominal
CM_PERIVASC	Peripheral vascular	0=No, 1=yes	Nominal
	disorders		
CM_PSYCH	Psychoses	0=No, 1=yes	Nominal
CM_PULMCIRC	Pulmonary circulation	0=No, 1=yes	Nominal
	disorders		
CM_RENLFAIL	Renal failure	0=No, 1=yes	Nominal
CM_TUMOR	Solid tumor without	0=No, 1=yes	Nominal
	metastasis		
CM_ULCER	Peptic ulcer disease	0=No, 1=yes	Nominal
	excluding bleeding		
CM_VALVE	Valvular disease	0=No, 1=yes	Nominal
CM_WGHTLOSS	Weight loss	0=No, 1=yes	Nominal

3.5 Sample population:

The study cohort was extracted from all patients who underwent Coronary Artery Bypass Grafting (CABG) surgery between 2007 and 2012 by selecting the CCS cluster code "44" from all procedures variables (PRCCS1 to PRCCS15). The CCS "44" is a cluster code that contains all CABG-related ICD-9 codes: 3610, 3611, 3612, 3613, 3614, 3615, 3616, 3617, 3618, 3619, 3619, 363, 3631, 3632, 3633, 3634, 3639. After extracting the sample cases, all discharge records with missing age, gender, and race were eliminated to overcome any potential problem in the descriptive and inferential analysis. Because, these auxiliary variables are important covariates in weighting the sample for chi-square and regression analysis.

3.6 Measurement of Exposure Variables:

The cohort of the study was sorted and organized into groups based on the predictor variables to compare and test the hypotheses. The comparison was stratified based on the use of grafting methods ICD-9-codes; Bilateral Internal Mammary Artery (BIMA: ICD9-3616) and Single Internal Mammary Artery (SIMA: ICD9-3615). Other

grafting methods were excluded such as abdominal-coronary bypass (ICD9-3617), aorticcoronary bypass (ICD9: 3610, 3611, 3612, 3613, 3614) and other bypass gratings ICD-3619, 363, 3631, 3632, 3633, 3634, 3639).

The diagnosis of Diabetes Miletus (DM) was identified in NIS data with any ICD-9 codes (249.xx-250.xx) (from DX1 to DX15) which include; type I, II, and secondary diabetes according to the Clinical Classification Software file under category [CCS=49] and [CCS=50], which include diabetes with and without complications (see Figure 4.).

To identify patients with poor hyperglycemic control, the following ICD-9-CM codes were selected: 250.10-250.13, 250.20-25023, 251.0, and 249.10-249.21, according to the definition of the Center for Medicare and Medicaid Services (CMS) Final Rule, fiscal year (FY) 2009. These codes include patients exposed to Diabetes Miletus diagnosis (DXn) and stated as uncontrolled with complications of acute hyperglycemia. Also, the ICD-9 codes of abnormal level of blood glucose HbA1c; 79021 79022 79029 79099 7964 were included as sensitivity codes. **[65]**, **[66]**

3.7 Measurement of Outcomes variables

The endpoints of interest were the nosocomial or healthcare-acquired infections (HAIs) that patients contract during hospitalization. Screening for HAI incidences using National Nosocomial Infection Surveillance System (NNIS) criteria was matched with discharge ICD-9-CM codes. Nosocomail Infections criteria fall into four main infection including: surgical site infection (SSI), pneumonia, urinary tract infection UTI, and sepsis/or blood-stream infections (BSIs). Infectious complications ICD-9-Codes were identified according to pervious publications using NIS data on same endpoints. The

AHRQ-Patient Safety Indicators guidelines, (CMS) Final Rules, fiscal year (FY) 2009, and the relevant studies in literature were reviewed to determine the most sensitive and reliable indicator ICD-9 codes related to nosocomial infections. The following set of ICD-9 codes were used to identify the endpoints: 519.2, 996.60, 996.61, 996.62, 998.31, 998.32, 998.5, 998.51, 998.59, 998.83 — for surgical site infection (SSI); 997.3, 997.31, 997.39, 480.x, 481, 482.xx, 483.x, 484.x, 485, 486, 487.0 — for pneumonia; 038.xx, 785.52, 790.7, 995.9, 995.91, 995.92, 996.60, 996.61, 996.62, 998.0, 999.3, 999.31, 999.39 — for sepsis/or blood stream infection (BSI); 599.0, 996.64 — for urinary tract infection (UTI). **[67]**, **[68]**, **[69]**, **[70]**

3.8 Statistical Analysis:

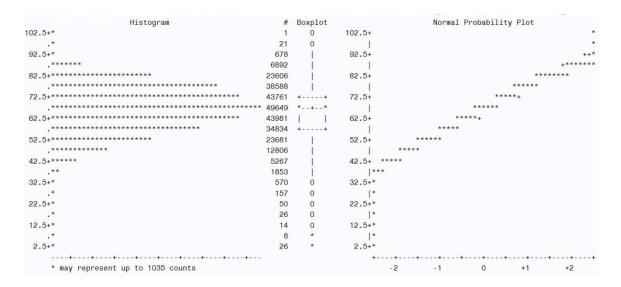
The NIS data was investigated to compare the incidence rate of the nosocomial infectious between the exposure groups. In order to analyze the study assumptions, first the descriptive statistics was performed to report the study cohort characteristics of the main variables including demographics (age, race, and sex), independent, and dependant variables. Categorical variables were described by proportions and percentage. Age was the only continuous variable and was described by mean and standard deviation. The univariate analysis was used to describe the central tendency of the variables and report the cohort's distribution.

Hypotheses on finding the statistical difference about the independent risk variables and their association to outcomes or response variables, were tested by Bivariate test with chi-square goodness of fit to evaluate the differences between the independent risk variables. Chi-square test was used because variables that involved in the hypotheses analysis were binomial categorical variables. The logistic regression model was used for the study exposures variables, to determine the adjusted odd ratios (ORs) in predicting the nosocomial infections in CABG surgery.

The adjusted analysis was controlled for covariate variables including patient's demographics (age, race, and gender) and 29 HCUP prognostic co-morbidities. It is well known co-morbidity index used in literature to adjust for severity of illness and prediction of outcomes in administrative database. The co-morbidities ICD-9 codes were identified from HCUP CM comorbidity software. Statistical tests were performed two-sided at significance level p < 0.05. The descriptive and inferential analyses will be performed using SAS 9.4 software (SAS Institute, Cary, NC).

3.9 Data Handling and Pre-processing:

The study cohorts and the analysis groups were extracted using "ARRAY and DO OVER" loop statement. The diagnoses related to cohort groups were re-coded by "IF and THEN" statement to create binary new variables of the targeted exposure, outcome, and co-morbidities cohorts with (0/1) indictor function in the analysis dataset. These variables correspond to the presence and absence of the matched ICD-9 codes as 1 (yes) and 0 (no). All variables included in the study as indicators were categorical (yes/no) for diabetes group, CABG-BIMA grafting, CABG-SIMA grafting, off-pump CABG, on-pump CABG, targeted types of nosocomial infections outcome that donated as "1" and "0" in the data. "PROC SURVEYMEAN" and "PROC UNIVARIATE" statements were used to describe the variables central tendency and distribution. The PROC SURVEYFREQ statement with "Chisq" option was used for the bivariate analysis and to


determent the Chi-square p-value of the null hypotheses. Sample discharge weight was used to provide national representative estimates using (DISCWT) variable as recommended by HCUP methods of analysis. The STRATA and CLUSTER statements were used to form clustered stratified sample for calculations by using NIS strata variable "NIS_STRA" and cluster identification variable "HOSPID".

CHAPTER 4

RESULTS

4.1 Sample Characteristics:

Between 2007 and 2012, a total of 286,487 patients underwent Coronary Artery Bypass Grafting (CABG) surgery out of 47,133,557 patients discharge records in the NIS data included that period. In the entire study cohort, the average age was in 66 (SD \pm 10.89) years old in all patients and sample percentile range between age 40 and 93 years old. (see fig. 4)

Figure 4. Age distribution in sample population.

Approximately three-quarter of the study population was white (66.61%) and male (72.08%) in patients (Fig. 5 & 6). The results (Fig.7) showed 42.81% (n=122,642) of CABG patients suffered Diabetes Mellitus (DM), of whom 14.73% (n=18,065) had poor hyperglycemic control (HbA1c).

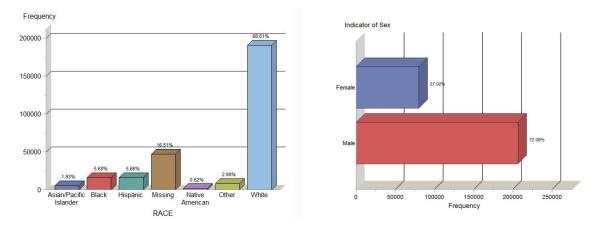
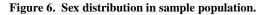



Figure 5. Race distribution in sample population.

Among patients who underwent CABG surgery; there were 10,390 (3.63%) cases received Bilateral Internal Mammary Artery Grafting (BIMA), 233,339 (81.45%) received Single Internal Mammary Artery Grafting (SIMA), 167 (0.06%) patients had both, and 42,591 (14.92%) had other grafting methods.

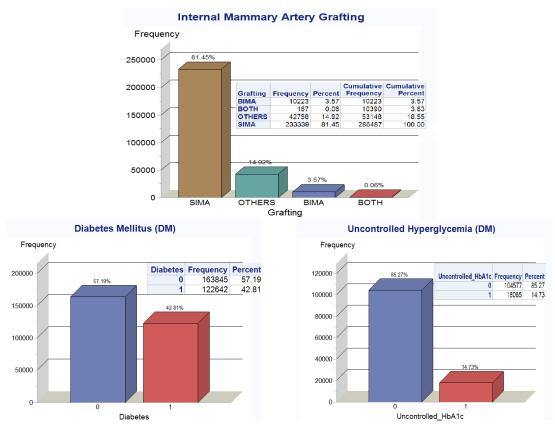


Figure 7. Exposure groups distribution in sample population.

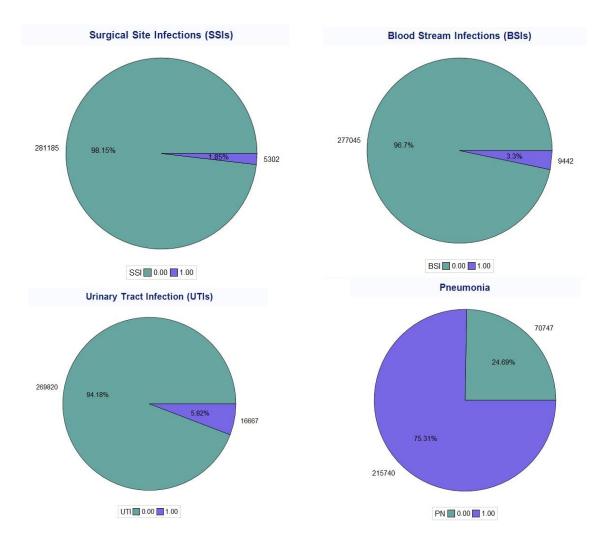
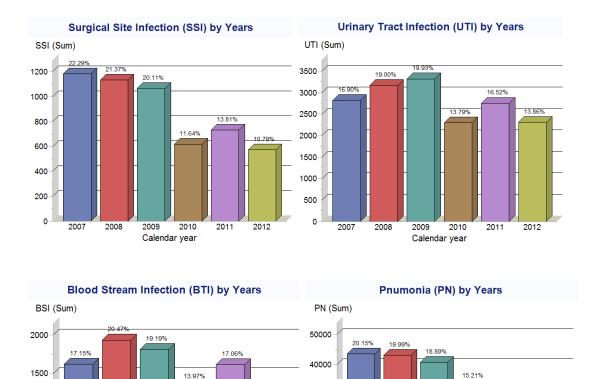

Table 4. shows the variability of demographic characteristic among the exposure cohorts. Demographics proportions were consistent in subgroup cohorts with the overall cohort population. Diabetic patients were predominantly white-male and frequently older than 65 years old. Patients undergoing CABG surgery received Bilateral Internal Mammary Artery less frequently than other revascularization techniques.

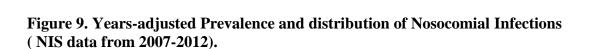
Table 4: General ch	Table 4: General characteristics of study cohorts for patients undergoing Coronary Artery Bypass					
Grafting (CABG) su	Grafting (CABG) surgery from 2007 to 2012.					
Characteristics	Overall Cohort	Diabetes	Uncontrolled (HbA1c)	BIMA Grafting Only	SIMA Grafting Only	
Patients Demograp	hics					
Age (mean, SD)	66.0±10.89	65.2 ±10.36	62.3 ±10.58	60.9±10.83	65.7 ±10.70	
Ages n (%)			•		•	
18-34	791(0.25)	261 (32.9)	80 (10.1)	59 (7.4)	550 (69.5)	
35-44	7,120(2.5)	3,019 (42.4)	781 (10.9)	559 (7.9)	5,695 (79.9)	
45-54	36,487(12.73)	16,180 (44.3)	3,371 (9.2)	2,253 (6.2)	30,364 (83.2)	
55-64	78,815 (27.51)	36,678 (36.5)	6,091 (7.7)	3,692 (4.7)	65,753 (83.4)	
65-74	93,410 (32.6)	41,675 (44.6)	5,294 (5.7)	2,571 (2.8)	76,973 (82.4)	
≥75	69,786 (24.33)	24,818 (35.6)	2,105 (3)	1,251 (1.8)	54,130 (77.6)	
Missing	18 (.006)	9 (50)	0	2 (11.1)	15 (83.3)	
Gender n (%)	Gender n (%)					
Male	206,501 (72)	85,988 (41.7)	11,959 (5.8)	8,575 (4.2)	170,422 (82.6)	
Female	79,970 (28)	36,649 (45.9)	6,106 (7.5)	1,813 (2.3)	63,073 (78.9)	
Missing	16 (.005)	5 (31.3)	0	2 (12.5)	11 (68.75)	
Race n (%)	-	•				
White	190,831 (66.61)	77,992 (40.9)	10,744 (5.6)	6,462 (3.4)	155,437 (81.5)	
Black	16,268(5.68)	8,071(49.6)	1,480 (9.1)	465(2.9)	13,289 (81.7)	
Hispanic	16,228(5.66)	9,265 (57.1)	1,667 (10.3)	429(2.7)	13 <i>,</i> 579 (83.7)	
Asian	5,534(1.93)	3,010 (54.4)	330 (5.9)	162(2.9)	4,650 (84.1)	
Native	1,780(0.62)	870 (48.9)	140 (7.9)	42(2.4)	1,487 (83.6)	
Other	8,545(2.98)	4,184 (48.9)	594 (6.9)	432(5.1)	6,944 (81.3)	
Missing	47,301 (16.51)	19,250 (40.7)	3,110 (6.6)	2,398 (5.1)	38,120 (80.6)	
Total (%)	N=286,487	n=122,642	n=18,065	n=10,223	n=233,339	

4.2 Overall Rates Of Nosocomial Infection Complications:

The rate of nosocomial infectious complications was predominantly counted for nosocomial pneumonia. About (75.31%) of patients in the sample population had


developed pneumonia at some point during admission. Pneumonia proportion predominated over other types of nosocomial infections. Other infections were less frequent compare to pneumonia, which include urinary tract infections (UTIs) n=16,667 (5.82%), sepsis or blood stream infection (BSIs) n=9,442 (3.3%), and surgical site infection (SSIs) n=5,302 (1.85%). (see fig.9).

The prevalence of nosocomial infections decreased significantly from 2007 to 2012. The national trend of nosocomial infections noticeable declined in all infections from 2009 to 2010. The rates stayed lower till 2012 in all infections. From 2009 to 2010


there was 8.47% decrease in surgical site infection (SSI), 6.14% decrease in urinary tract infection (UTI), 5.22% in blood stream infection (BSI), and 3.68% decrease in pneumonia. (fig. 9)

13.869

Calendar year

11.90%

12.16%

13.97%

Calendar year

4.3 Overall Rates Of Comorbidity Risk Factors And Score Of Illness: (Cofounders)

The overall rate of comorbidities and severity of illness scores were calculated as part of our descriptive analysis for the possible cofounder variables. The most common co-morbid diseases in CABG population [N=286,487] are blood hypertension (74.75%)

and diabetes mellitus (38.78%; 32.11% uncomplicated, 6.67% complicated).

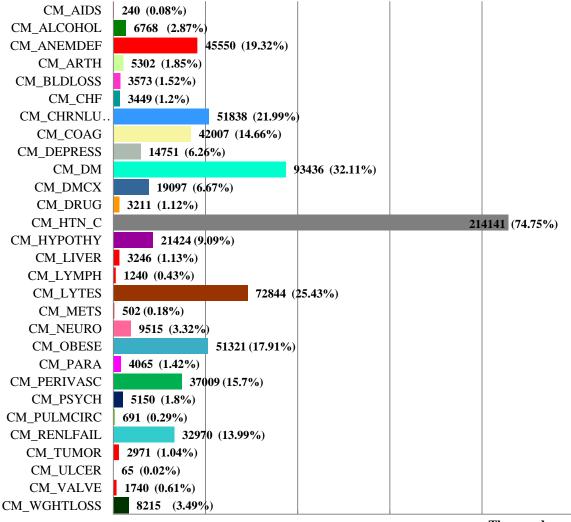


Figure 10. Distribution of Co-morbidities in CABG population in NIS data (2007-2012).

Thousands

CM_AIDS: Acquired immune deficiency syndrome, CM_ALCOHOL: Alcohol abuse, CM_ANEMDEF: Deficiency anemias, CM ARTH: Rheumatoid arthritis/collagen vascular diseases, CM BLDLOSS: Chronic blood loss anemia, CM CHF: Congestive heart failure, CM CHRNLUNG: Chronic pulmonary disease, CM_COAG: Coagulopathy, CM_DEPRESS: Depression, CM_DM: Diabetes, uncomplicated, CM_DMCX: Diabetes with chronic complications, CM_DRUG: Drug abuse, CM_HTN_C: Hypertension (combine uncomplicated and complicated), CM_HYPOTHY: Hypothyroidism, CM_LIVER: Liver disease, CM_LYMPH: Lymphoma, CM_LYTES: Fluid and electrolyte disorders, CM_METS: Metastatic cancer, CM NEURO: Other neurological disorders, CM_OBESE: Obesity, CM_PARA: Paralysis, CM_PERIVASC: Peripheral vascular disorders, CM_PSYCH: Psychosis, CM_PULMCIRC: Pulmonary circulation disease, CM RENLFAIL: Renal Failure, CM TUMOR: Solid tumor without metastasis, CM ULCER: Peptic ulcer disease excluding bleeding, CM VALVE: Valvular disease, CM WGHTLOSS: Wight loss.

The prevalence of other co-morbidies are ranked retrospectively as follow; 25.43% for Fluid And Electrolyte Disorders, 21.99% for Chronic Pulmonary Disease, 19.32% for Deficiency Anemia, 17.91% for Obesity, 15.7% for Peripheral Vascular Disorders, 14.66% for Coagulopathy, 13.99% for Renal Failure, 9.09% for Hypothyroidism, and 6.26% for Depression. (see fig. 10) The score in severity of illness measure the loss of function in the patients. About 75% of CABG population fall between moderate to major loss of function as indicator for severity of illness. Also about 65% of CABG patients are at risk of death. (see fig.11)

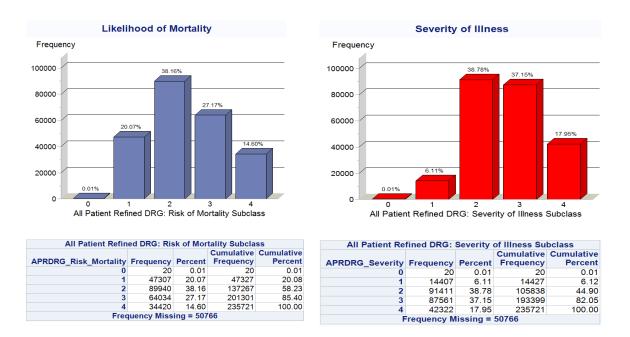


Figure 11. Distribution Score for Severity of Illness and risk of mortality in CABG population in (NIS data ; from 2007-2012).

4.4 Distribution Of Important Hospital Factors In CABG Population: (Cofounders)

Length of stay as cofounder variable plays important role in increasing the patient exposure to the risk of healthcare-related infections. The univariate analysis shows that patients undergoing CABG surgery are usually stayed between 10 - 45 days in hospital. Average LOS is about 10 days. It is based on a combined average length of stay from 2008 to 2012. Another important hospital factor is admission type. It indicates whether admission was emergency (score: 1), urgent (score; 2), or elective (score; 3) for CABG procedure. The descriptive result shows that about half (51%) of CABG population undergo emergency or urgent admission. Urgent or emergency intervention could increase risk of infection. (see fig. 12)

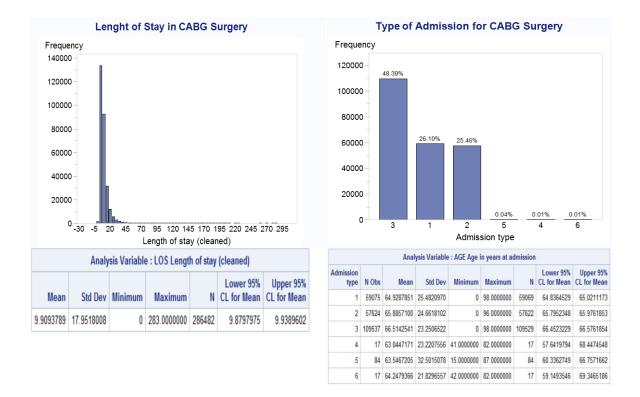


Figure 12. CABG Patients Hospital length of study and type of admission. (NIS data ; from 2007-2012).

4.5 Significance Of The Association Between Exposures And Nosocomial Infections:

Initially, we used the bivariate analysis (X^2 contingency table) to test the hypotheses and show the significance of the association between the targeted exposures

and the outcomes. The cross unadjusted rates of nosocomial infections were tested by Pearson chi-square test in exposed patients compared to those not exposed using "PROC FREQ" SAS procedure. If the Chi-Square probability (p-value) less than (< 0.05), the null hypotheses were rejected to consider the relationship as significant between the exposures (Diabetes Mellitus, Poor glycemic control, Bilateral Internal Mammary Grafting surgery) and nosocomial infections. Accepting the alternative hypotheses indicate the association between the exposure variables and outcomes compared to the control groups. The observation percentages (row Pct.) for the outcomes were reported and whether significantly lower or higher with the presence of the exposures in each hypothesis.

4.5.1 Evaluation Of Hypothesis A (Research Q.1): *Hypothesis A (Assumption) — "BIMA grafting has higher rates of nosocomial infections than SIMA grafting in CABG population."*

In overall CABG patients, the rate of surgical site infections, blood stream infections and urinary tract infections were significantly lower in Bilateral Internal Mammary Artery (BIMA) grafting compared to Single Internal Mammary Artery (SIMA). However, BIMA grafting was associated with higher rate of 2pneumonias. The null hypothesis was rejected in all nosocomial infections comparing BIMA versus SIMA; surgical site infection (SSI) (1.40% vs. 1.69%); p=0.0332, urinary tract infections (UTI) (3.68% VS 5.69%); p<.0001, blood stream infections BSI: (2.39VS 2.84) p= 0.0071, and pneumonia PN: (83.4% VS 75.9%) p<.0001. The null hypothesis was rejected with p-value less than alpha=0.05 in comparing the rate of nosocomial infections. The results have indicated that BIMA grafting method. However, results did not meet the hypothesis

assumption regarding Pneumonias rate (% vs. 68.5%; p-value < 0.0001) and was significantly higher with BIMA than SIMA grafting or anastamosis method (see table 5).

Table 5: Comparison of unadjusted rates of nosocomial infections between BIMA and SIMA revascularization in overall CABG population from 2007 to 2012. [N=286,487]										
	Presence of revascularization techniques n (% obs.									
Outcomes	percentage or row Pct.)									
	%BIMA	%SIMA	Total	<i>p</i> -value						
	n=10,223	n=233,339	N=243,562							
Surgical Site Infections (SSIs)	1.4	1.7	4,049	0.0332						
Urinary Tract Infections (UTIs)	3.7	5.7	13,644	<.0001						
Blood Stream Infections (BSIs)	2.4	2.8	6,863	0.0071						
Pneumonias (PNs)	83.4	75.9	185,847	<.0001						

4.5.2 Evaluation Of Hypothesis A.b (Research Q.2): (Assumption) — "BIMA grafting has higher rates of nosocomial infections rate than SIMA grafting in Diabetic-CABG population"

Among diabetic patients (n=122,642) undergoing CABG surgery, there were n=3,700 diabetics underwent BIMA grafting and n=103,577 underwent SIMA grafting during CABG surgery. There was no significant difference in the rate of surgical site infections and blood stream infections by comparing the two internal mammary grafting methods; Single Internal Mammary Artery (SIMA) and Bilateral Internal Mammary Artery (BIMA). Which means null hypothesis was accepted in comparing BIMA versus SIMA for surgical site infection (SSI) (1.04% vs. 1.26%; p-value=0.2491) and blood stream infections (1.45% vs. 1.54%; p-value=0.6630).

The null hypothesis was rejected with p-value less than alpha=0.05 in comparing the rate of other nosocomial infections. The results indicated urinary tract infection UTIs was significantly (4.2% vs. 5.9%; p-value=0.0008) lower with BIMA grafting method. The result met the hypothesis assumption that Pneumonias rate (76.9% vs. 68.5%; pvalue < 0.0001) was significantly higher with BIMA compared to SIMA grafting or anastamosis method (see table 6). BIMA grafting was associated with higher pneumonias rate compared to SIMA grafting, which was consistent also with previous main hypothesis in total CABG population.

Table 6: Unadjusted rates of nosocomial infections between patients with BIMA and SIMArevascularization techniques in diabetic patients undergoing CABG from 2007 to 2012.[N=122,642]											
	Presence of rev	vascularization te	chniques n (% ol	bs.							
Outcomes	percentage or row Pct.)										
	%BIMA	%SIMA	Total	<i>p</i> -value							
	n=3,700	n=103,577	N=107,226								
Surgical Site Infections (SSIs)	1.04	1.26	1,340	0.2491							
Urinary Tract Infections (UTIs)	4.19	5.52	5,868	0.0005							
Blood Stream Infections (BSIs)	1.45	1.54	1,651	0.6630							
Pneumonias (PNs) 76.82 70.49 75,817 <.0001											

4.5.3 Evaluation Of Hypothesis B (ResearchQ.3): (Assumption) — " Diabetic patients have significantly higher rate of nosocomial infections than non-diabetic patients. (in total CABG, BIMA only, and SIMA only)"

The null hypothesis was rejected at alpha=0.05. The cross unadjusted baseline results for all nosocomial infections rates were significantly lower in diabetic patients compared to non-diabetic. The results did not meet our hypothesized assumption that diabetics have higher rates of all nosocomial infections, expect for urinary tract infections rates (UTIs) in BIMA grafting cases; (4.19% vs. 3.39%; p-value=0.0219). In BIMA grafting, diabetes was associated with higher rate of UTIs. The rows or observations percentages for the outcomes were reported in 2X2 table (diabetes DM vs. no-diabetes NDM) as follow in (Table 7,8&9).

population from 2007 to 2012. [N=286,487]											
	Presence of Di	abetes n (% obs.	percentage or ro	ow Pct.)							
Outcomes	Diabetes	No-Diabetes	Total	<i>p</i> -value							
	n=122,642	n= 163,845	N=286,487								
Surgical Site Infections (SSIs)	1.35	2.23	5,302	<.0001							
Urinary Tract Infections (UTIs)	5.55	6.02	16,667	<.0001							
Blood Stream Infections (BSIs)	1.7	4.49	9,442	<.0001							
Pneumonias (PNs)	69.78	79.44	215,740	<.0001							
Table 8: The unadjusted rates of nosocomial infections by Diabetes in CABG-SIMA grafting population from 2007 to 2012. [n=233,339]											
	Presence of Di	abetes n (% obs.	percentage or ro	ow Pct.)							
Outcomes	Diabetes	No-Diabetes	Total	<i>p</i> -value							
	n=103,577	n= 129,762	N=233,339								
Surgical Site Infections (SSIs)	1.26	2.01	3,906	<.0001							
Urinary Tract Infections (UTIs)	5.52	5.82	13,268	0.0017							
Blood Stream Infections (BSIs)	1.54	3.87	6,619	<.0001							
Pneumonias (PNs)	70.49	80.38	177,319	<.0001							
Table 9: The unadjusted rates of population from 2007 to 2012. [r	n=10,223]										
	-	abetes n (% obs.		ow Pct.)							
Outcomes	Diabetes	No-Diabetes	Total	<i>p</i> -value							
	n=3,649	n= 6,574	N=10,223								
Surgical Site Infections (SSIs)	1.04	1.60	143	0.0219							
Urinary Tract Infections (UTIs)	4.19	3.39	376	0.0393							
Blood Stream Infections (BSIs)	1.45	2.91	244	<.0001							
Pneumonias (PNs)	76.82	87.09	8,528	<.0001							

Table 7: The unadjusted rates of nosocomial infections by Diabetes in total CABG population from 2007 to 2012. [N=286,487]

4.5.4 Evaluation Of Hypothesis C (Research Q.4): (Assumption) — "Diabetic patients with poor hyperglycemic control undergoing CABG surgery have higher rate of nosocomial infections than patients with controlled diabetes (in total CABG, BIMA only, SIMA only)"

This hypothesis is testing whether the effect of uncontrolled hyperglycemia (HbA1c) on nosocomial infections is significant or not in diabetic patients undergoing CABG surgery. The hypothesis was tested at alpha level 0.05. The null hypothesis was rejected in most nosocomial infections. The cross 2x2 table results indicated that nosocomial infections rates were significantly higher in diabetic with uncontrolled HbA1c compared to those with controlled HbA1c in SSI, UTI, and BSIs. Except for

nosocomial pneumonia, did not meet the expectation. It was significantly lower in uncontrolled diabetes group. The rows or observations percentage for the outcomes was as follow (Uncontrolled vs. Controlled) in total CABG population, CABG with SIMA grafting, and BIMA grafting; (see table 10,11.&12).

Table 10: Unadjusted rates of no (HbA1c) in diabetic patients in To		•								
	Presence of un	controlled (HbA1	c) n (% obs. per	centage						
Outcomes	or row Pct.)	, , , , , , , , , , , , , , , , , , ,	, (0						
	Uncontrolled	Controlled	Total	<i>p</i> -value						
	HbA1c	HbA1c	N=122,642							
	n=18,065	n=104,577								
Surgical Site Infections (SSIs)	1.98	1.24	1,651	<.0001						
Urinary Tract Infections (UTIs)	7.77	5.17	6,808	<.0001						
Blood Stream Infections (BSIs)	2.50	1.56	2,081	<.0001						
Pneumonias (PNs)	59.71	71.52	85,577	<.0001						
(HbA1c) in diabetic patients in CA [n=103,577]										
		Presence of uncontrolled (HbA1c) n (% obs. percentage								
Outcomes	or row Pct.)									
	Uncontrolled	Controlled	Total	<i>p</i> -value						
	HbA1c	HbA1c	N=103,577							
	n=15,645	n=87,932	4 202	1.0001						
Surgical Site Infections (SSIs)	1.81	1.16	1,302	<.0001						
Urinary Tract Infections (UTIs)	7.71	5.13	5,715	<.0001						
Blood Stream Infections (BSIs)	2.23	1.42	1,598	<.0001						
Pneumonias (PNs)	60.48	61.36	73,014	<.0001						
Table 12: Unadjusted rates of no (HbA1c) in diabetic patients in CA	ABG-BIMA grafting	g population from	m 2007 to 2012.	[n=3,649]						
		controlled (HbA1	c) n (% obs. per	centage						
Outcomes	or row Pct.)									
	Uncontrolled	Controlled	Total	<i>p</i> -value						
	HbA1c	HbA1c	N=3,649							
	n=453	n=3,196	20	0.0000						
Surgical Site Infections (SSIs)	2.21	0.88	38	0.0090						
Urinary Tract Infections (UTIs)	6.40	3.88	153	0.0122						
Blood Stream Infections (BSIs)	2.43	1.31	53	0.0636						
Pneumonias (PNs)	65.34	78.44	2,803 <.0001							

Table 10: Unadjusted rates of necessarial infections by unce بر المرالي

4.6 The Exposures Effect and Odd of The Nosocomial Infections (Multivariate Analyses):

In this section, we utilize "PROC LOGISTIC" using the Multiple Logistic regression, to describes the causative relationship between the nosocomial Infections (SSI, UTI, PN, and BSI) and three predictors (diabetes, uncontrolled HbA1c, and BIMA revascularization). The model was adjusted for the following relevant cofounder variables including; age, gender, race, HCUP CM_ comorbidities variables, length of stay, number of procedure in record, type of admission, and type of procedure to be elective or non-elective. All these indicators were included in model and summarized in (table 13).

Table 13: Sumr	na	ry of th	e indicator	variat	les inc	luded in	Logistic regres	ssion model.			
		Mean	Std Dev	Min	Max	Ν	Lower 95% CL for Mean	Upper 95% CL for Mean			
AGE		66.01	24.21	0	100	286469	65.97	66.05			
FEMALE	0	65.35	23.84		98	206501	65.30	65.39			
FEMALE	1	67.73	24.79	0	100	79970	67.65	67.80			
Reference: Male= '0'											
	1	66.64	23.94	0	100	190831	66.59	66.69			
	2	62.30	24.35	0	98	16268	62.13	62.47			
RACE	3	64.12	24.56	0	92	16228	63.95	64.29			
NACE	4	64.46	24.10	1	94	5534	64.17	64.75			
	5	64.58	24.39	10	89	1780	64.08	65.09			
	6	64.83	24.57	0	94	8545	64.60	65.06			
			Re	ferenc	e: Whit	e= '1'					
ELECTIVE	0	65.42	25.06	0	100	147779	65.36	65.48			
ELECTIVE	1	66.65	23.18	0	99	138034	66.59	66.70			
			Ref	erence	e: electi	ve= '1'					
LOS: Length o)f	9.90	17.95	0	283	286482	9.87	9.93			
Stay											
NCHRONIC: Number of	5	6.93	6.14	0	26	235721	6.92	6.95			

Table 15: Sullin	mai	y of th		varia	JICS IIIC	iuucu iii	Logistic legies	ssion model.
		Mean	Std Dev	Min	Max	Ν	Lower 95% CL for Mean	Upper 95% CL for Mean
chronic								
conditions								
	1	64.92	25.48	0	98	59075	64.83	65.02
ATYPE:	2	65.88	24.66	0	96	57624	65.79	65.97
ATTPE: Admission	3	66.51	23.25	0	98	109537	66.45	66.57
Type	4	63.04	23.22	41	82	17	57.64	68.44
Туре	5	63.54	32.50	15	87	84	60.33	66.75
	6	64.24	21.82	42	82	17	59.14	69.34
			Ref	erence	e: Electi	ve= '3'		
	0	68.24	4.73	66	70	20	63.01	73.46
	1	62.98	23.52	5	93	14407	62.80	63.15
APRDRG_	2	64.70	23.41	0	95	9141	l 64.64	64.77
Severity	3	66.70	24.22	0	100	87561	l 66.62	66.77
	4	68.32	24.53	0	95	42322	2 68.22	68.43
		Refe	rence: low	vest sco	ore seve	erity of il	lness= '0'	
	0	68.24	4.73	66	70	20	63.01	73.46
	1	61.46	20.59	0	91	47307	61.37	61.54
APRDRG_ Dick Montality	2	65.99	24.15	0	95	89940) 65.92	66.06
Risk_Mortality	3	67.17	24.38	0	100	64034	4 67.09	67.26
	4	70.02	23.52	0	95	34420) 69.91	70.13
		Ref	erence: lov	west sc	ore risl	c of mort	ality= '0'	
Dishataa	(0 66.6	51 24.9	6	0 10	0 16384	66.5	5 66.66
Diabetes	1	1 65.2	21 23.0)4 (0 9	5 12264	65.1	6 65.27
			Reference	: Abse	ence of	Diabetes	= '0'	
Uncontrl_HbA	1	0 66.2	26 24.1	5	0 10	0 26842	2 66.2	2 66.30
с	1	1 62.3	36 23.5	7 2	2 9	5 1806	65 62.20	0 62.51
Ref	ere	ence: C	ontrolled I	Diabete	es or hy	perglyce	mia (HBA1c)=	: '0'
		0 65.7					65.7	
BIMA	1	1 60.8	39 23.9	8	0 9	3 1022	60.6	8 61.10
		F	Reference:	SIMA	revasc	ularizatio	on= '0'	
SIMA	(0 60.8	39 23.9	8	0 9	3 1022	60.6	8 61.10
SINA	-	1 65.7	78 23.8	0	0 10	0 23333	65.7	3 65.82
		R	leference:	BIMA	revasc	ularizatio	on= '0'	
CM_AIDS		0 66.0)2 24.2	0	0 10	0 28624	65.9	8 66.06
	1	1 55.8	32 21.1	5 2'	7 7	9 24	10 54.6	1 57.03
			Reference	e: WI	THOU	Γ AIDS=	- '0'	
CM_ALCOHO	L	0 66.1	4 24.1	5	0 10	0 22895	53 66.0	9 66.18
	1	1 60.7	78 21.7	6 2	0 9	2 676	60.5	5 61.02
			Reference	e: UNA	ALCOH	IOLICH	= '0'	
CM_ANEMDE	F (0 65.7	78 24.1	5	0 10	0 19017	/1 65.7	3 65.83
					-			

Table 13: Summary of the indicator variables included in Logistic regression model.

Table 13. Summe	iry or th						Logistic regression model.			
	Mean	Std Dev	Min	Max	Ν		er 95% or Mean	Upper 95% CL for Mean		
	1 66.	86 24.1	2	0 9	9 455	50	66.7	6 66.96		
	Referen	nce: WITH	OUT	DEFEC	IANY A	ANEM	IA= '0'			
CM_ARTH	0 65.	98 24.2	22	0 10	0 2811	85	65.9	4 66.02		
	1 67.4	49 23.2	21 1	69	8 53	02	67.2	1 67.77		
Re	ference	: WITHOU	JT RH	EUMA	TOID A	RTH	RITIS= '0	'		
CM_BLDLOSS	0 65.	9724.15		0 10	0 2321	48	65.9	3 66.02		
	1 66.'	7924.71	2	89	2 35	73	66.4	2 67.16		
	Re	ference: W	/ITHC	UT BL	OODL	OSS=	'0'			
CM_CHF	0 65.	97 24.1	8	0 10	0 2830	38	65.9	3 66.01		
	1 69.4	48 25.4	0	0 9	5 34	49	69.1	0 69.86		
	Referen	nce: WITH	OUT (Congest	ive Hea	rt Failı	ure= '0'			
CM_CHRNLUN	0 66.00	24.55		0 10	0 1838	83	65.9	5 66.05		
G	1 65.94	22.75		0 9	6 518	38	65.8	5 66.03		
R	eferenc	e: WITHC	UT C	hronic j	oulmona	ry dise	ease = '0'			
CM_COAG	0 65.				0 2444		65.4	6 65.55		
	1 68.9	95 23.4	1	0 9	5 420	07	68.8	5 69.05		
	Re	eference: V	VITHO	OUT Co	agulopa	thy = '	0'			
CM_DEPRESS	0 66.	13 24.1	5	0 10	0 2209	70	66.0	9 66.18		
	1 63.'	78 23.8	35 I-	4 9	4 147	51	63.6	1 63.96		
]	Reference:	WITH	IOUT I	Depressi	on= '0'				
CM_DM	0 66.2	25 24.8	33	0 10	0 1930	51	66.2	0 66.30		
	1 65.	52 22.8	33 1	89	5 934	36	65.4	5 65.58		
		Reference	: WIT	HOUT	Diabete	s= '0'				
CM_DMCX	0 66.	14 24.2	25	0 10	0 2673	90	66.1	0 66.19		
	1 64.			0 9			63.9			
Refere	ence: W	TTHOUT 1	Diabet	es with	chronic	comp	lications =	= '0'		
CM_DRUG	0 66.	15 24.0)6	0 10	0 2832	76	66.1	1 66.19		
	1 53.	55 20.7	7 2	3 8	7 32	11	53.2	2 53.87		
	Refere	ence: WIT	HOUT	history	of Drug	g abuse	e = '0'			
CM_HTN_C	0 65.	50 25.6	66	0 9	9 723	46	65.4	1 65.58		
	1 66.	18 23.6	58	0 10	0 2141	41	66.1	4 66.23		
		Referen	ce: No	Hyper	tension=	= '0'				
CM_HYPOTHY	0 65.	69 24.1	3	0 10	0 2142	97	65.6	4 65.73		
	1 68.9	98 23.4	9 2	7 9	5 214	24	68.8	4 69.13		
	Ret	ference: W	ITHO	UT Hy	oothyroi	dism=	'0'			
CM_LIVER	0 66.	06 24.2	21	0 10	0 2832	41	66.0	2 66.10		
	1 61.4	49 21.4	17 3	1 9	4 32	46	61.1	6 61.82		
		Referen	ce: No	b Liver	disease=	= '0'				
CM_LYMPH	0 66.	01 24.2	20	0 10	0 2852	47	65.9	7 66.05		
	1 66.	63 25.8	33 2	0 9	0 12	40	65.9	9 67.28		
		Refere	nce: N	o Lymp	homa=	'0'				
				- 1						

Table 13: Summary of the indicator variables included in Logistic regression model.

Table 15: Summa	ii y O	i the	mulcator	varia	oles me	iut	acu III	Logist	ie iegies	sion mouch.
	Mea	an S	td Dev	Min	Max		Ν		r 95% r Mean	Upper 95% CL for Mean
CM_LYTES	0 6	65.65	24.0	9	0 10	0	21364	3	65.6	1 65.70
	1 (57.06	24.4	0	0 9	9	7284	4	66.98	67.14
Re	ferer	nce: V	VITHOU	T Flu	id and l	Ele	ctrolyt	e disor	ders= '0	1
CM_METS	0 6	55.95	24.1	9	0 10	0	27697	2	65.9	1 65.99
	1 (57.74	24.4	1	0 9	8	951	5	67.52	2 67.96
		R	eference	: No N	Aetasta	tic	cancer	= '0'		
CM_NEURO	0 6	56.72	24.2	9	0 10	0	23516	6	66.6	7 66.76
	1 (52.77	22.4	7	0 9	3	5132	1	62.68	62.86
		Refe	rence: N	o Neu	rologic	al	Disord	ers = '0	'	
CM_OBESE	0 6	56.72	24.2	9	0 10	0	23516	6	66.6	66.76
	1 (52.77	22.4	7	0 9	3	5132	1	62.68	62.86
			Refer	ence:	No Ob	esit	ty= '0'			
CM_PARA		55.99	24.2	2	0 10	0	28242	2	65.95	5 66.03
	1 (57.80	22.7	6	1 9	5	406	5	67.48	68.11
			Refere	ence: l	No para	lys	sis = '0	1		
CM_PSYCH	0 6	56.05	24.1	5	0 10	0	28133	7	66.0	1 66.09
	1 (53.77	26.4	4	79	8	515	0	63.44	4 64.09
			Refere	ence: N	No Psyc	cho	sis= '0	1		
CM_PULMCIRC	0 6	55.98	24.1	6	0 10	0	23503	0	65.93	3 66.02
	1 (59.35	24.3	3 3	2 9	1	69	1	68.53	3 70.17
Re	feren	ice: V	VITHOU	T Pul	monary	v ci	rculati	on diso	order= '0	1
CM_RENLFAIL	0 6	55.50	24.0	9	0 10	0	20275	1	65.45	5 65.55
	1 (58.99	23.5	4	2 9	6	3297	0	68.88	69.11
			Referen	ce: No	Renal	Fa	ilure=	'0'		
CM_TUMOR	0 6	55.95	24.2	2	0 10	0	28351	6	65.9	1 65.99
	1 7	71.44	19.5	6 3	1 9	5	297	1	71.12	2 71.75
		Ref	erence: V	WITH	OUT S	oli	d Tum	or= '0'		
CM_ULCER	0 6	56.01	24.2	1	0 10	0	28642	2	65.97	7 66.05
	1 (57.80	22.6	6 4	0 8	7	6	5	65.27	7 70.32
			Referen	ice: N	o peptic	c U	lcer= '	0'		
CM_VALVE	0 6	55.99					28474		65.95	5 66.03
	1 7	70.22	25.2	1	1 9	3	174	0	69.69	9 70.76
		R	eference	: No V	Valvula	r D	Disease	= '0'		
CM_WGHTLOSS	50 6	55.86	24.1	2	0 10	0	22750	6	65.82	2 65.90
	1 (59.49	24.0	5 2	7 9	5	821	5	69.25	5 69.72
			Referen	nce: N	o Weig	ht	loss= ')'		
CCT	0 6	55.98	24.1	9	0 10	0	28118	5	65.94	4 66.02
SSI	1 (57.42	24.6	5	0 9	3	530	2	67.13	67.72
		F	Probabilit	y moo	leled is	"S	SI=1/y	ves"		
ττττ	0 6	55.75	24.1	3	0 10	0	26982	0	65.7	1 65.79
UTI	1 7	70.23	23.4	8	0 9	5	1666	7	70.07	7 70.39

Table 13: Summary of the indicator variables included in Logistic regression model.

able for Summary of the material valuetes metaded in Logistic regression model												
	Mean	Std Dev	Min	Max	N	Lower 95% CL for Mean	Upper 95% CL for Mean					
Probability modeled is "UTI=1/yes"												
BSI	0 65.9	94 24.1	6	0 10	0 27704	5 65.9	0 65.98					
D31	1 68.0	05 25.1	6	0 9	5 944	2 67.8	2 68.28					
		Probabili	ty mod	leled is	"BSI=1/y	yes"						
PN	0 67. ²	77 23.8	86	0 9	8 7074	7 67.6	9 67.85					
FN	1 65.4	43 24.1	8	0 10	0 21574	0 65.3	9 65.48					
Probability modeled is "PN=1/yes"												

Table 13: Summary of the indicator variables included in Logistic regression model.

The overall sample was weighted with nationwide discharge weight (DISWT) before executing the multivariate analysis and the results were as following;

4.6.1 The effect of Bilateral Internal Mammary Artery (BIMA) Grafting:

Hypothesis A (Assumption) — " BIMA grafting Predict higher rates of nosocomial infections than SIMA grafting in CABG population." Hypothesis A.b (Assumption) — "BIMA grafting Predict higher rates of nosocomial infections rate than SIMA grafting in CABG-Diabetic population"

The Odds of having Surgical Site Infections (SSIs) :

In Total CABG Population — Hypothesis A assume that BIMA grafting predict higher rate of nosocomial infections in total CABG population. The bi-variate analysis reveal that BIMA grafting was associated with lower rate of surgical site infection in total CABG population. The p-value was less than alpha=0.05 and confidence interval included zero with odd ratio less than one. Therefore, we fail to accept the null hypothesis. However, the adjusted analysis on testing the hypothesis A assumption confirm that BIMA grafting has lower predictive effect, compared to SIMA grafting in the odds of getting surgical site infection in total CABG population (OR 0.958; 95% CI 0.95-0.95; p<.0001) (see Fig. 13).

Figure 13: Multivariate analysis of BIMA Grafting Effect on Surgical Site Infection (SSI) in total CABG population.

	Th	e LOC	SISTIC Procedu	ire				Analys	is o	f Max	imum Like	elihood Est	imates	
			el Information				Parameter			DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
Data Set	SASUS	ER.C	ABG_BIMA_AN	D_SIMA_ONL	(ntercept			1	-6.1917	0.000233	704332489	<.000
Response Variable	SSI						AGE			1	-0.00062	3.429E-6	33114.9592	<.000
Number of Response Le	vels 2													
Weight Variable	DISCW	/т			NIS discharge weight		BIMA		1	1	-0.0213	0.000233	8308.9350	<.000
Model	binary I					1	FEMALE		1	1	-0.0311	0.000233	17814.7717	<.000
Optimization Technique	Fisher's	3 scori	ing			E F	RACE		2	1	-0.0375	0.000250	22426.1837	<.000
	Number of	Obse	ervations Read	243562		I	RACE		3	1	0.1361	0.000252	292600.550	<.000
	Number of	Obse	ervations Used	127421			RACE		4	1	-0.1614	0.000260	385285.114	<.000
	Sum of We	-		1203313					-	-				
	Sum of We	aights	Used	630118.2			RACE		5	1	0.0313	0.000261	14381.1159	<.000
		Res	ponse Profile				RACE		6	1	0.0193	0.000256	5697.6613	<.000
	Ordered		Total	Total		I	ELECTIVE		0	1	-1.4003	0.000233	36022639.7	<.000
		SSI 1	Frequency 2061	Weight 10205.44		1	ATYPE		1	1	0.6905	0.000405	2911221.90	<.000
		0	125360 6			1	ATYPE		2	1	0.8138	0.000439	3434351.78	<.000
	Deeb	abilit.	umodolod in C	PI=4		1	ATYPE		3	1	-1.9245	0.000376	26201694.0	<.000
	Prob	ability	/ modeled is S	51=1.			ATYPE		4	1	0.0124	0.0530	0.0546	0.815
							ATYPE		5	0	0			
							os			1	0.0455	9.854E-6	21343408.2	<.000
			Ef	Od fect	ds Ratio Estimates		ald Confide	ence Intervals 95% Confide		Limi	s			
			A		1									
				JL .		.0000	0.999	0.999		0.99	9			
			BI	MA 1 vs 0		.0000 .0000	0.999	0.999 0.957		0.99	-			
					1						i9			
			FE	MA 1 vs 0	1 0 1	.0000	0.958	0.957		0.95	i9 0			
			FE R/	MA 1 vs 0 EMALE 1 vs	1 0 1 1	.0000	0.958 0.940	0.957 0.939		0.95 0.94	i9 i0 i3			
			FE RJ RJ	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1	1 0 1 1 1	.0000 .0000 .0000	0.958 0.940 0.952	0.957 0.939 0.950		0.95 0.94 0.95	i9 i0 i3 i4			
			FE RJ RJ	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1 ACE 3 vs 1	1 0 1 1 1 1 1	.0000 .0000 .0000 .0000	0.958 0.940 0.952 1.132	0.957 0.939 0.950 1.130		0.95 0.94 0.95 1.13	9 0 3 4 2			
			FE RJ RJ RJ RJ RJ	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1 ACE 3 vs 1 ACE 4 vs 1 ACE 5 vs 1 ACE 6 vs 1	1 0 1 1 1 1 1 1 1 1 1	.0000 .0000 .0000 .0000 .0000 .0000	0.958 0.940 0.952 1.132 0.841 1.019 1.007	0.957 0.939 0.950 1.130 0.839 1.018 1.006		0.95 0.94 0.95 1.13 0.84 1.02 1.00	i9 i0 i3 i4 i2 i1			
			FE RJ RJ RJ EI	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1 ACE 3 vs 1 ACE 4 vs 1 ACE 5 vs 1 ACE 6 vs 1 LECTIVE 0	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0000 .0000 .0000 .0000 .0000 .0000 .0000	0.958 0.940 0.952 1.132 0.841 1.019 1.007 0.061	0.957 0.939 0.950 1.130 0.839 1.018 1.006 0.061		0.95 0.94 0.95 1.13 0.84 1.02 1.00	i9 i0 i3 i4 i4 i1 i1			
			FE RJ RJ RJ EL A	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1 ACE 3 vs 1 ACE 4 vs 1 ACE 5 vs 1 ACE 6 vs 1 ACE 6 vs 1 LECTIVE 0 FYPE 1 vs 0	1 0 1 1 1 1 1 1 1 1 5 1 1	.0000 .0000 .0000 .0000 .0000 .0000 .0000	0.958 0.940 0.952 1.132 0.841 1.019 1.007 0.061 1.327	0.957 0.939 0.950 1.130 0.839 1.018 1.006 0.061 1.196		0.95 0.94 0.95 1.13 0.84 1.02 1.00 0.06 1.47	i9 0 3 3 4 4 2 11 9 9 11 2			
			FE RJ RJ RJ EL A1 A1	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1 ACE 3 vs 1 ACE 4 vs 1 ACE 5 vs 1 ACE 6 vs 1 LECTIVE 0 FYPE 1 vs (FYPE 2 vs (1 0 1 1 1 1 1 1 1 1 5 1 1 5 1 1 1 1 1 1 1 1	.0000 .0000 .0000 .0000 .0000 .0000 .0000	0.958 0.940 0.952 1.132 0.841 1.019 1.007 0.061 1.327 1.501	0.957 0.939 0.950 1.130 0.839 1.018 1.006 0.061 1.196 1.353		0.98 0.94 1.13 0.84 1.02 1.00 0.06 1.47 1.66	9 0 3 3 4 4 2 2 11 9 9 11 2 2 5			
			FE RJ RJ RJ RJ RJ A A A	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1 ACE 3 vs 1 ACE 4 vs 1 ACE 5 vs 1 ACE 6 vs 1 ACE 6 vs 1 ACE 6 vs 1 CYPE 1 vs 0 CYPE 2 vs 0 CYPE 3 vs 0	1 0 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1	.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0.958 0.940 0.952 1.132 0.841 1.019 1.007 0.061 1.327 1.501 0.097	0.957 0.939 0.950 1.130 0.839 1.018 1.006 0.061 1.196 1.353 0.087		0.95 0.94 0.95 1.13 0.84 1.02 1.02 0.06 1.47 1.66 0.10	9 0 3 3 4 4 2 2 11 9 9 11 2 2 55 88			
			FE RJ RJ RJ RJ RJ RJ RJ RJ RJ RJ RJ RJ RJ	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1 ACE 3 vs 1 ACE 3 vs 1 ACE 4 vs 1 ACE 5 vs 1 ACE 6 vs 1 ECTIVE 0 FYPE 1 vs (FYPE 2 vs (FYPE 3 vs (FYPE 4 vs (1 0 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1	.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0.958 0.940 0.952 1.132 0.841 1.019 1.007 0.061 1.327 1.501 0.097 0.673	0.957 0.939 0.950 1.130 0.839 1.018 1.006 0.061 1.196 1.353 0.087 0.547		0.99 0.94 0.95 1.13 0.84 1.02 1.00 0.06 1.47 1.66 0.10 0.82	99 0 33 44 22 11 99 11 22 55 88 99			
			FI Ri Ri Ri Ri Ri Ri Ri Ri Ri Ri Ri Ri Ri	MA 1 vs 0 EMALE 1 vs ACE 2 vs 1 ACE 3 vs 1 ACE 4 vs 1 ACE 5 vs 1 ACE 6 vs 1 ACE 6 vs 1 ACE 6 vs 1 CYPE 1 vs 0 CYPE 2 vs 0 CYPE 3 vs 0	1 0 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1	.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	0.958 0.940 0.952 1.132 0.841 1.019 1.007 0.061 1.327 1.501 0.097	0.957 0.939 0.950 1.130 0.839 1.018 1.006 0.061 1.196 1.353 0.087		0.95 0.94 0.95 1.13 0.84 1.02 1.02 0.06 1.47 1.66 0.10	99 00 33 44 22 11 199 11 22 55 88 99 77			

In Diabetic-CABG Population — In this hypothesis, we assume that using BIMA graft in diabetic patients increase the risk of nosocomial infections especially surgical site infection. The bi-variable analysis reveals that difference was non-significant in rate of surgical site infection (SSI) (1.04% vs. 1.26%; p=0.2491), comparing BIMA to SIMA grafting respectively. In Multivariable logistic regression analysis, the likelihood of getting SSI with BIMA grafting compared to SIMA grafting was significantly lower by 23.9%. BIMA graft had less predictive effect on surgical site infection (SSI) in

diabetic patients undergoing CABG surgery (OR: 0.761; 95% CI: 0.59-0.97; p=0.0296).

(see Fig. 14).

	Surgical				betic-CABG Cases C		Analysis of Maximum Likelihood Estimates							
		The LOGIST Model In	fic Procedu	re			Parameter			DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
Data Set		SASUSER.D	M_SIMA_BI	MA_ONLY			Intercept			1	-14.5653	40.4657	0.1296	0.718
Response Variab	le	SSI					AGE			1	-0.00574	0.00192	8.9345	0.002
Number of Respo	onse Levels													
Weight Variable		DISCWT			NIS discharge weight		BIMA		1	1	-0.1366	0.0628	4.7325	0.029
Model Optimization Tec	bolous	binary logit Fisher's scor	ina				FEMALE		1	1	-0.0124	0.0204	0.3657	0.545
opumzation rec			-				RACE		2	1	-0.0747	0.0672	1.2364	0.266
		er of Observa er of Observa		107226 55571			RACE		3	1	0.1734	0.0666	6.7755	0.009
		f Weights Rea		529636.6			RACE		4	1	-0.4976	0.1441	11.9240	0.000
	Sum of	f Weights Use	ed	274303.1			RACE		5	1	0.4917	0.1324	13.8020	0.000
		Respon	se Profile				RACE		6	1	-0.1343	0.0883	2.3121	0.128
	Orde Va	red lue SSI Fre	Total	Total Weight			ELECTIVE		0	1	-8.3377	76.8183	0.0118	0.913
		1 1		3275.22			ATYPE		1	1	5.2931	38.2945	0.0110	0.890
		2 0	54912 27	1027.84										
	P	Probability mo	odeled is SS	il=1.			ATYPE		2	1	5.7146	38.2945	0.0223	0.881
				0	dds Ratio Estin	nates and W	ald Confid	ence Interva	als					
			Effect			Unit	Estimate	95% Confid	den	ce L	imits			
			AGE			1.0000	0.994	0.991			0.998			
			BIMA	1 vs 0		1.0000	0.761	0.595			0.973			
			FEMA	LE 1 v	s 0	1.0000	0.976	0.900			1.057			
			RACE	2 vs 1		1.0000	0.890	0.781			1.015			
							0.000							
			RACE	3 vs 1		1.0000	1.141	1.003			1.299			
				3 vs 1 4 vs 1		1.0000 1.0000		1.003 0.418			1.299 0.814			
			RACE				1.141							
			RACE RACE	4 vs 1		1.0000	1.141 0.583	0.418			0.814			
			RACE RACE RACE	4 vs 1 5 vs 1		1.0000 1.0000	1.141 0.583 1.569	0.418 1.159		:	0.814 2.124			
			RACE RACE RACE	4 vs 1 5 vs 1 6 vs 1 TIVE 0	vs 1	1.0000 1.0000 1.0000	1.141 0.583 1.569 0.839	0.418 1.159 0.694		>99	0.814 2.124 1.015			
			RACE RACE RACE ELEC ATYPE	4 vs 1 5 vs 1 6 vs 1 TIVE 0	vs 1 5	1.0000 1.0000 1.0000 1.0000	1.141 0.583 1.569 0.839 <0.001	0.418 1.159 0.694 <0.001		>99	0.814 2.124 1.015 9.999			
			RACE RACE ELEC ATYPI	4 vs 1 5 vs 1 6 vs 1 TIVE 0 E 1 vs	vs 1 5 5	1.0000 1.0000 1.0000 1.0000 1.0000	1.141 0.583 1.569 0.839 <0.001 227.808	0.418 1.159 0.694 <0.001 <0.001		>99 >99 >99	0.814 2.124 1.015 9.999 9.999			

Figure 14: Multivariate analysis of BIMA Grafting Effect on Surgical Site Infection (SSI) in Diabetic population.

The Odds of having Urinary Tract Infections (UTIs):

In Total CABG Population — The alternative hypothesis assume that BIMA grafting predicts higher rate of UTI in overall sample. The adjusted analysis showed that BIMA grafting has border effect on the rate of the Urinary Tract infection (UTI) and increase the risk significantly by 6.9%, compared to SIMA grafting. Adjusted analysis was inconsistent with bivariate analysis. BIMA graft is significant predictor of UTI (OR

1.069; 95% CI 1.06-1.07; p<.0001). Therefore, we fail to accept the null hypothesis in

multi-variate analysis that (see Fig.15)

gic Regression for Urina	ary Tract Infection Rates by BIMA in	Total CABG Po	Analysis of Maximum Likelinood Estimates							
	The LOGISTIC Procedure Model Information		Param	neter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Data Set	SASUSER.CABG_BIMA_AND_SIMA_ON	Y	Interc	ent		1	-10 2025	0.000137	5534472417	<.0001
Response Variable	UTI			ept						
Number of Response Level	ls 2		AGE			1	0.0260	1.967E-6	174968329	<.0001
Weight Variable	DISCWT	NIS discharge w	BIMA		1	1	0.0335	0.000137	59842.3254	<.0001
Model	binary logit		FEMA	LE	1	1	0.5908	0.000137	18557590.1	<.0001
Optimization Technique	Fisher's scoring		RACE		2	1	0.0717	0.000147	239300.897	<.0001
	Number of Observations Read 243562 Number of Observations Used 127421		RACE		3	1	0.0744	0.000149	249391.982	<.0001
	Sum of Weights Read 1203313		RACE			1	-0.1684	0.000154	1200866.29	<.0001
٤	Sum of Weights Used 630118.2		RACE		5	1	0.00195	0.000154	160.5968	<.0001
	Response Profile		RACE		6	1	0.0533	0.000151	123825.352	<.0001
	Ordered UTI Frequency Weight		ELEC	TIVE	0	1	-0.6284	0.000137	20994922.3	<.0001
	1 1 7349 36285.30 2 0 120072 593832.94		ATYP	E	1	1	0.1893	0.000228	688535.695	<.0001
			ATYP		2	1	0.0796	0.000257	95557.6420	<.0001
	Probability modeled is UTI=1.		ATYP		3	1	-1.4270	0.000231	38310080.2	<.0001
			ATYP		4	1	2.1625	0.0138	24383.6529	<.0001
			ATYP LOS	E	5	1	0.8867	0.00479 7.845E-6	34313.8263 10218384.1	<.0001 <.0001
	Effect			ald Confid Estimate	1			Limits		
	AGE		1.0000	1.026		1.02	6	1.026		
	BIMA 1 vs 0		1.0000	1.069		1.06	9	1.070		
	FEMALE 1 vs 0		1.0000	3.259	:	3.25	8	3.261		
	RACE 2 vs 1		1.0000	1.110		1.10	9	1.111		
	RACE 3 vs 1		1.0000	1.113		1.11	2	1.114		
	RACE 4 vs 1		1.0000	0.873		0.87	3	0.874		
	RACE 5 vs 1		1.0000	1.036		1.03	-	1.036		
	RACE 6 vs 1		1.0000	1.090		1.08	-	1.091		
	ELECTIVE 0 vs 1		1.0000	0.285		0.28		0.285		
	ATYPE 1 vs 6		1.0000	8.008		7.78		8.241		
	ATYPE 2 vs 6		1.0000	7.175		6.97		7.385		
	ATYPE 3 vs 6		1.0000	1.591		1.54	-	1.637		
	ATYPE 4 vs 6		1.0000	57.600	5	4.51	3	60.863		

Figure 15: Multivariate analysis of BIMA Effect on Urinary Tract Infections (UTI) in total CABG population.

In Diabetic-CABG Population — The alternative hypothesis here assume that BIMA grafting in diabetic patient predicts higher rate of UTI. The unadjusted analysis reveal that in diabetic patients undergoing BIMA grafting, prevalence of urinary tract infection was significantly lower compared to diabetic patients with SIMA grafting (4.19% vs. 5.52%; p=0.0005). After adjustment for cofounders, multivariate analysis showed no significance difference (OR 1.066; 95% CI: 0.95-1.18; p=0.2486) in comparing the effect of BIMA to SIMA grafting in diabetic patients. Therefore, we choice to accept the null hypothesis. (see Fig. 16).

Figure 16: Multivariate analysis of BIMA Effect on Urinary Tract Infections (UTI) in Diabetic population.

				Diabetic-CABG Case			Analysis	of Ma	ximum Lik	elihood Est	imates	
		LOGISTIC Procedu	re			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiS
Data Set		SUSER.DM_SIMA_B	IMA_ONLY			Intercept		1	-8.2379	6938.5	0.0000	0.999
Response Variable	UTI					AGE		1	0.0233	0.000928	629.8423	<.000
Number of Response	e Levels 2											
Weight Variable	DIS	CWT		NIS discharge weight		BIMA	1	1	0.0321	0.0279	1.3309	0.248
Model	2000	ary logit				FEMALE	1	1	0.6620	0.00913	5253.0563	<.000
Optimization Technic	que Fist	her's scoring				RACE	2	1	0.0612	0.0312	3.8466	0.049
	Number of	Observations Read	107226			RACE	3	1	0.1194	0.0329	13.1583	0.000
		Observations Used	55571			RACE	4	1	-0.1236	0.0594	4.3320	0.03
	Sum of Wei		529636.6			RACE	5	1	-0.1677	0.0835	4.0372	0.044
	Sum of Wei	ights Used	274303.1			RACE	6	1	0.0918	0.0406	5.1039	0.023
		Response Profile				ELECTIVE	0	1	-1.5834	3.9584	0.1600	0.689
	Ordered Value	UTI Frequency	Total Weight			ATYPE	1	1	0.8258	1.9771	0.1744	0.676
	1	and new restored	15345.99			ATYPE	2	1	0.6928	1.9771	0.1228	0.72
	2	0 52458 2	58957.07			ATYPE	3	1	-2.7025	5.9426	0.2068	0.64
			Odds I	Ratio Estimate	s and W	ald Confid	ence Interval	S				
		Effect			Unit	Estimate	95% Confid	ence	Limits			
		AGE			1.0000	1.024	1.022		1.025			
		BIMA 1 vs	0		1.0000	1.066	0.956		1.189			
		FEMALE 1							1.103			
		FEMALE	vs 0		1.0000	3.758	3.626		3.895			
		RACE 2 v			1.0000 1.0000		3.626 0.986					
			s 1			3.758			3.895			
		RACE 2 vs	s 1 s 1		1.0000	3.758 1.043	0.986		3.895 1.104			
		RACE 2 vs	s 1 s 1 s 1		1.0000 1.0000	3.758 1.043 1.106	0.986		3.895 1.104 1.177			
		RACE 2 vs RACE 3 vs RACE 4 vs	s 1 s 1 s 1 s 1 s 1 s 1		1.0000 1.0000 1.0000	3.758 1.043 1.106 0.867	0.986 1.039 0.758		3.895 1.104 1.177 0.992			
		RACE 2 vs RACE 3 vs RACE 4 vs RACE 5 vs	s 1 s 1 s 1 s 1 s 1 s 1 s 1		1.0000 1.0000 1.0000 1.0000	3.758 1.043 1.106 0.867 0.830	0.986 1.039 0.758 0.683	>{	3.895 1.104 1.177 0.992 1.008			
		RACE 2 vs RACE 3 vs RACE 4 vs RACE 5 vs RACE 6 vs	s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 0 vs 1		1.0000 1.0000 1.0000 1.0000 1.0000	3.758 1.043 1.106 0.867 0.830 1.076	0.986 1.039 0.758 0.683 0.988	>{	3.895 1.104 1.177 0.992 1.008 1.170			
		RACE 2 va RACE 3 va RACE 4 va RACE 5 va RACE 5 va RACE 6 va ELECTIVE	s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 0 vs 1 vs 5		1.0000 1.0000 1.0000 1.0000 1.0000	3.758 1.043 1.106 0.867 0.830 1.076 0.042	0.986 1.039 0.758 0.683 0.988 <0.001	>(3.895 1.104 1.177 0.992 1.008 1.170 999.999			
		RACE 2 vs RACE 3 vs RACE 4 vs RACE 5 vs RACE 5 vs RACE 6 vs ELECTIVE	s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 0 vs 1 vs 5 vs 5		1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	3.758 1.043 1.106 0.867 0.830 1.076 0.042 0.699	0.986 1.039 0.758 0.683 0.988 <0.001 0.338		3.895 1.104 1.177 0.992 1.008 1.170 999.999 1.444			
		RACE 2 vs RACE 3 vs RACE 4 vs RACE 5 vs RACE 5 vs ELECTIVE ATYPE 1 vs ATYPE 2 vs	s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 0 vs 1 vs 5 vs 5		1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	3.758 1.043 1.106 0.867 0.830 1.076 0.042 0.699 0.612	0.986 1.039 0.758 0.683 0.988 <0.001 0.338 0.296		3.895 1.104 1.177 0.992 1.008 1.170 999.999 1.444 1.264			

Odds of having Blood Stream Infections (BSIs) :

In Total CABG Population — The adjusted results showed that BIMA was a strong predictor of BSI, compared to SIMA grafting method in overall CABG population. Bloodstream infection or sepsis was significantly higher by 46.7% with BIMA grafting compared to SIMA grafting. The risk ratio was (OR 1.467; 95% CI 1.34-1.60; p<.0001) (see Fig. 17). The null hypothesis was rejected. This result was not consistent with the preliminary result in the bivariate analysis that BIMA increases the risk of BSI in the alternative hypothesis (2.39% vs. 2.84%; p=0.0071).

Figure 17: Multivariate analysis of BIMA Effect on Blood Stream Infection (BSI) in Total CABG Population

	The	LOG	ISTIC Procedu	Ire				Analysis	OT Ma	iximum Lik	ennooa Es	umates	
			Information				Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Data Set		ER.C/	ABG_BIMA_AN	ID_SIMA_ONLY			Intercept		1	94004.2	147.9	403804.629	<.0001
Response Variable	BSI						AGE		1	-0.00864	0.000831	108.0064	<.0001
Number of Response Lev Weight Variable	els 2 DISCW	т			NIS discharge weight				-		0.0220		
Model	binary l				Nis discharge weight		BIMA	1	1			75.8718	<.0001
Optimization Technique	Fisher's		ng				FEMALE	1	1	-0.0679	0.00951	50.9804	<.0001
		-		0.0000			RACE	2	1	0.1147	0.0315	13.2555	0.0003
			rvations Read	1000000000000			RACE	3	1	-0.00913	0.0342	0.0711	0.7897
	Sum of We			1203313			RACE	4	1	0.0470	0.0532	0.7819	0.3766
	Sum of We	-		630118.2			RACE	5	1		0.0853	10.3022	0.0013
		Resp	onse Profile				RACE	6	1	0.1946	0.0383	25.8036	<.0001
	Ordered Value	BSI	Total Frequency	Total Weight			ELECTIVE	0	1	4.8671	37.6708	0.0167	0.8972
	1			18686.21			ATYPE	1	1	0.3926	0.3919	1.0034	0.3165
	2	U	123630 6	11432.04			ATYPE	2	1	0.4705	0.3920	1.4407	0.2300
	Prob	ability	modeled is B	SI=1.			ATYPE	3	1	10.1716	75.3324	0.0182	0.8926
			Effect			Unit	Estimate	95% Co	nfid	ence Li	mits		
			AGE			1.0000	0.991	0.99	0	0	.993		
			BIMA 1	vs 0		1.0000	1.467	1.34	6	1	.600		
			FEMAL	E 1 vs 0		1.0000	0.873	0.84	1	0	.906		
			RACE 2	vs 1		1.0000	1.207	1.13	8	1	.279		
			RACE 3	vs 1		1.0000	1.066	0.99	7	1	.140		
			RACE 4	vs 1		1.0000	1.128	1.00	2	1	.269		
			RACE 5	vs 1		1.0000	0.818	0.67	0	0	.998		
			RACE 6	vs 1		1.0000	1.307	1.20	9	1	.414		
			ELECTI	VE 0 vs 1		1.0000	>999.999	<0.00	1	>999	.999		
			ATYPE	1 vs 6		1.0000	347.080	<0.00	1	>999	.999		
			ATYPE	2 vs 6		1.0000	375.201	<0.00	1	>999	.999		
			ATYPE	3 vs 6		1.0000	>999.999	<0.00	1	>999	.999		
						1 0000	0.886	<0.00	1	>999	.999		
			ATYPE	4 vs 6		1.0000	0.000						
			ATYPE -	4 vs 6		1.0000	1.037	1.03	6	1	.039		

In Diabetic-CABG Population — Here the alternative hypothesis assume that BIMA grafting predict higher rate of bloodstream infection (BSI) in diabetic population. The adjusted analysis showed that BIMA grafting had increased the risk of BSI by 44.6% in diabetic patients. BIMA is strong predictor of BSI in diabetics (OR: 1.446 95% CI: 1.22-1.71; p<.0001) and therefore we choice to reject the null hypothesis. (see Fig. 18).

Figure 18: Multivariate analysis of BIMA Effect on Blood Stream Infection (I	BSI) in
Diabetic population.	

		The LOGISTIC Procedu		Diabetic-CABG Case			Analysis	of	Max	kimum Lik	elihood E	Estimates	
		Model Information				Parameter			DF	Estimate	Standar Erro	rd Wald or Chi-Square	Pr > ChiSc
Data Set Response Variable		SASUSER.DM_SIMA_E BSI	SIMA_ONLY			Intercept		-	1	-8.0622	59.257	78 0.0185	0.8918
Number of Response								+					
Weight Variable		DISCWT		NIS discharge weight		AGE		_	1	-0.0131	0.0016	66.6211	<.000
Model		binary logit				BIMA	1		1	0.1845	0.042	18.5457	<.000
Optimization Techniq	lue	Fisher's scoring				FEMALE	1		1	-0.0763	0.017	78 18.2927	<.000
		of Observations Read				RACE	2		1	0.1435	0.055	6.7574	0.009
		Weights Read	529636.6			RACE	3		1	0.0676	0.058	1.3509	0.245
	Sum of	Weights Used	274303.1			RACE	4		1	-0.0883	0.096	0.8378	0.360
	Order	Response Profile	Total			RACE	5	+	1	-0.3461	0.157		0.027
	Val	1 1 912	Weight 4496.27			RACE	6		1	0.3053	0.064	22.6746	<.000
		1	69806.79			ELECTIVE	0		1	-7.3320	36.489	0.0404	0.840
	Pr	obability modeled is B	SI=1.			ATYPE	1		1	5.0439	17.932	0.0791	0.778
						ATYPE	2		1	5.1061	17.932	0.0811	0.775
						ATYPE	3		1	-9.7355	55.450	0.0308	0.860
		O	dds R	atio Estimate	es and W Unit		ence Inte 95% Co				nits		
	ŀ	AGE			1.0000	0.987	0.98	4		0.	990		
	-	BIMA 1 vs 0			1.0000	1.446	1.22	3		1.	711		
		FEMALE 1	/s 0		1.0000	0.858	0.80	0		0.	921		
		RACE 2 vs	1		1.0000	1.253	1.13	2		1.	386		
		RACE 3 vs ²	1		1.0000	1.161	1.03	9		1.	297		
		RACE 4 vs '	1		1.0000	0.994	0.80	1		1.	233		
		RACE 5 vs '	1		1.0000	0.768	0.53	1		1.	110		
		RACE 6 vs	1		1.0000	1.473	1.29	6		1.	674		
		ELECTIVE 0) vs 1		1.0000	<0.001	<0.00	1		>999.	999		
		ATYPE 1 vs	5		1.0000	234.731	<0.00	1		>999.	999		
		ATYPE 2 vs	5		1.0000	249.807	<0.00	1		>999.	999		
		ATYPE 3 vs	5		1.0000	<0.001	<0.00	1		>999.	999		
		LOS			1.0000	1.054	1.05	0		1.	058		
		NCHRONIC	1 vs 2	1	1.0000	0.964	<0.00	1		>999.	999		

The Odds of having Pneumonia (PN):

In Total CABG Population — The odds of pneumonia were slightly higher with BIMA grafting in overall CABG population, compared to SIMA grafting (OR: 1.061; 95% CI: 1.01-1.11; p=0.0114). BIMA grafting increase risk of pneumonia by 6.1% compared to SIMA in overall CABG population (see Fig. 19). The adjusted and unadjusted analysis were consistent and met our expectation in the alternative hypothesis.

Figure 19: Multivariate analysis of BIMA Effect on Pneumonia	(PN) in Overall
CABG population.	

Logic Regression for	Pneumor	nia Rates by Bl	MA in Total C	ABG Population			Analysi	s of Ma	aximum Lik	elihood Es	timates	
		LOGISTIC Proced	ure			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSa
		Iodel Information				Intercept		1		34,4862	0.0491	0.8247
Data Set Response Variable	SASUSE	R.CABG_BIMA_A	ND_SIMA_ONLY			· · · ·		_				
Number of Response Levels						AGE		1			35.5357	<.0001
Weight Variable	DISCWT			NIS discharge weight		BIMA		1 1		0.0117	6.4076	0.0114
Model	binary log	ait				FEMALE		1 1	0.00851	0.00447	3.6252	0.0569
Optimization Technique	Fisher's s					RACE		2 1	-0.2106	0.0157	179.1508	<.0001
N	umber of C	bservations Read	243562			RACE		3 1	0.0365	0.0172	4.4893	0.0341
		bservations Used				RACE		4 1	0.0683	0.0292	5.4664	0.0194
s	um of Weig	hts Read	1203313			RACE		5 1	0.1279	0.0369	12.0004	0.0005
S	um of Weig	hts Used	630118.2			RACE		6 1	0.0896	0.0206	18.8375	<.0001
		Response Profile				ELECTIVE		0 1	-0.8447	0.6521	1.6777	0.1952
	Ordered	Total PN Frequency	Total Weight			ATYPE		1 1	0.7421	0.1876	15.6512	<.0001
	1		-			ATYPE		2 1	0.7153	0.1876	14.5364	0.0001
	2	30998 1	52500.49			ATYPE		3 1	-1.1621	1.1768	0.9751	0.3234
	Probal	bility modeled is F	N=1.			ATYPE		4 1	-0 2774	0 6607	0 1763	0 6746
		Effect			Unit	Estimate	95% Co	nfide	nce Lim	its		
		AGE			1.0000	0.998	0.99		0.9			
		BIMA 1	vs 0		1.0000	1.061	1.01	_	1.1			
		FEMALE	1 vs 0		1.0000	1.017	0.99	9	1.0	35		
		RACE 2	vs 1		1.0000	0.906	0.87	9	0.9	33		
		RACE 3	vs 1		1.0000	1.160	1.12	1	1.2	00		
		RACE 4	vs 1		1.0000	1.197	1.12	1	1.2	79		
		RACE 5	vs 1		1.0000	1.271	1.16	7	1.3	84		
		RACE 6	vs 1		1.0000	1.223	1.17	1	1.2	77		
		ELECTI	/E 0 vs 1		1.0000	0.185	0.01	4	2.3	80		
		ATYPE 1	l vs 6		1.0000	2.138	0.59	9	7.6	32		
		ATYPE 2			1.0000	2.081	0.58	-	7.4			
		ATYPE 3			1.0000	0.318	0.01		9.3			
		ATYPE 4	1 vs 6		1.0000	0.771	0.13	-	4.5			
		LOS			1 0000	0.998	0.99	6	0.9	99		

In Diabetic-CABG Population — The adjusted analysis showed that BIMA grafting was not a predictor of pneumonia in diabetic population undergoing CABG

surgery (OR: 0.978; 95% CI: 0.91-1.04; p=0.5238). The null hypothesis was accepted that is no difference between the effect of BIMA compared to SIMA grafting on the rate of pneumonia in diabetic patients. (see Fig. 20).

					etic-CABG Cases (Analysis	of Ma	ximum Lik	elihood Est	timates	
	The	Model Info		re			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiS
Data Set		SASUSER.					Intercept		1	1.0016	38.4181	0.0007	0.979
Response Variable		PN					AGE		1	0.000305	0.000548	0.3094	0.578
Number of Respons	se Levels	2					BIMA	1	1	-0.0110	0.0173	0.4065	0.523
Weight Variable		DISCWT			NIS discharge weight		FEMALE	1	1	0.00578	0.00582	0.9849	0.321
Model		binary logit					RACE	2	_		0.0197	141.0763	<.000
Optimization Techni	ique	Fisher's sco	ring				RACE	3	_		0.0209	6.2094	0.012
	Number of	Observatio	ns Read	12264	2		RACE	4	_		0.0361	8.6433	0.003
1	Number of	Observatio	ns Used	6353			RACE	5			0.0457	1.8152	0.000
		ights Read		605630.									
1	Sum of We	ights Used		313522.	4		RACE	6	_		0.0256	15.5063	<.000
		Response	Profile				ELECTIVE	0	-		1.3048	0.9116	0.339
	Ordered	PN Frequ	Total	Total Weight			ATYPE	1	-		0.6483	2.2729	0.131
			14122 21				ATYPE	2	_		0.6483	2.0520	0.152
	2	0 1	19410	5337.49			ATYPE	3	1	-1.7494	1.9669	0.7911	0.373
		Effect				Unit	Estimate	95% Co	nfid	ence Lin	nits		
	1	Effect				Unit	Estimate	95% Co	nfid	ence Lin	nits		
		AGE											
						1.0000	1.000	0.99	9	1.(001		
	1	BIMA 1	vs 0			1.0000 1.0000	1.000 0.978	0.99 0.91	-		001 047		
	-			s 0					4	1.(
	I	BIMA 1	E 1 v	s 0		1.0000	0.978	0.91	4 9	1.(1.(047		
	1	BIMA 1 FEMAL	.E 1 v: 2 vs 1	s 0		1.0000 1.0000	0.978	0.91 0.98	4 9 2	1.0 1.0 0.8	047 035		
	1	BIMA 1 FEMAL RACE 2	E 1 v 2 vs 1 3 vs 1	s 0		1.0000 1.0000 1.0000	0.978 1.012 0.864	0.91 0.98 0.83	4 9 2 3	1.0 1.0 0.8	047 035 397		
		BIMA 1 FEMAL RACE 2 RACE 3	E 1 v 2 vs 1 3 vs 1 4 vs 1	s 0		1.0000 1.0000 1.0000 1.0000	0.978 1.012 0.864 1.149	0.91 0.98 0.83 1.10	4 9 2 3 8	1.0 1.0 0.8 1.1	047 035 897 198		
		BIMA 1 FEMAL RACE 2 RACE 3 RACE 4	E 1 v 2 vs 1 3 vs 1 4 vs 1 5 vs 1	s 0		1.0000 1.0000 1.0000 1.0000 1.0000	0.978 1.012 0.864 1.149 1.213	0.91 0.98 0.83 1.10 1.11	4 9 2 3 8 4	1.0 1.0 0.8 1.1 1.3	047 035 897 198 317		
		BIMA 1 FEMAL RACE 2 RACE 3 RACE 4 RACE 4	E 1 vs 2 vs 1 3 vs 1 4 vs 1 5 vs 1 5 vs 1			1.0000 1.0000 1.0000 1.0000 1.0000	0.978 1.012 0.864 1.149 1.213 1.160	0.91 0.98 0.83 1.10 1.11 1.04	4 9 2 3 8 4 3	1.0 1.0 0.8 1.1 1.3	047 035 897 198 317 290 274		
		BIMA 1 FEMAL RACE 2 RACE 3 RACE 4 RACE 5 RACE 6	E 1 v 2 vs 1 3 vs 1 4 vs 1 5 vs 1 6 vs 1 1VE 0	vs 1		1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.978 1.012 0.864 1.149 1.213 1.160 1.207	0.91 0.98 0.83 1.10 1.11 1.04 1.14	4 9 2 3 8 4 3 1	1.0 1.0 0.8 1.1 1.1 1.1 1.1 1.1 1.1	047 035 897 198 317 290 274		
		BIMA 1 FEMAL RACE 2 RACE 2 RACE 4 RACE 5 RACE 6 ELECT	E 1 vs 2 vs 1 3 vs 1 4 vs 1 5 vs 1 6 vs 1 1 VE 0 1 vs	vs 1 5		1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.978 1.012 0.864 1.149 1.213 1.160 1.207 0.083	0.91 0.98 0.83 1.10 1.11 1.04 1.14 <0.00	4 9 2 3 8 4 3 1 4	1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 5.0	047 035 897 198 317 290 274		
		BIMA 1 FEMAL RACE 2 RACE 2 RACE 2 RACE 2 RACE 2 ELECTI	E 1 vs 2 vs 1 3 vs 1 4 vs 1 5 vs 1 6 vs 1 1VE 0 1 vs 2 vs	vs 1 5 5		1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.978 1.012 0.864 1.149 1.213 1.160 1.207 0.083 3.108	0.91 0.98 0.83 1.10 1.11 1.04 1.14 <0.00 1.74	4 9 2 3 3 8 4 3 3 1 4 1	1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 5.0	047 035 897 198 317 290 274 778 541 277		

Figure 20: Multivariate analysis of BIMA Effect on Pneumonia (PN) in Diabetic population.

4.6.2 The effect of Diabetes Mellitus (DM):

Hypothesis B (Assumption) — " Diabetic patients have significantly higher rate of nosocomial infections than non-diabetic patients. (in total CABG, with SIMA only, and with BIMA only)"

Odds of having Surgical Site Infections (SSIs):

In Total CABG Population — The hypothesis assumes that patients with diabetes diagnosis have higher odds of SSI, compared to non-diabetic patients. After adjustment for covariates variable in the multiple logistic regression, the null hypothesis was rejected. However, result did not meet the expectation. Diabetic patients were less likely to get surgical site infection (SSIs) as compared to overall cohort (non-diabetic patients). The likelihood of SSIs was significantly lower in diabetic patients by 55.1% with confidence interval less than one (OR 0.449; 95% CI: 0.41-0.48; p<.0001). The result was consistent in both bi-variate and Multivariate logistic regression analyses, which confirms that diabetes has lower predictive effect on surgical site infection (SSI) in CABG as compared to those without diabetes. (see Fig. 21).

Figure 21: Multivariate analysis of Diabetes Effect on Surgical Site Infection (SSI)
Overall CABG population.

	Th	e LOG	GISTIC Proce	dure		Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiS
		Mode	el Informatio	n					4 1750	400.0		
ata Set	SASUSER	CAB	G_2007_201	2_CORE_SEVER	TY	Intercept		1	-1.4758	169.8	0.0001	0.993
esponse Variable	SSI					AGE		1	-0.00284	0.000901	9.9446	0.001
mber of Response Level						Diabetes	1	1	-0.4008	0.0171	547,2814	<.000
ht Variable	DISCWT				NIS discharge weight			- '				
del	binary log					FEMALE	1	1	-0.0397	0.0103	14.8827	0.000
timization Technique	Fisher's s	oring				RACE	2	1	-0.0214	0.0373	0.3287	0.566
			ervations Rea			RACE	3	1	0.2497	0.0382	42.6252	<.000
			ervations Use									
	Sum of We			1414776		RACE	4	1	-0.3322	0.0752	19.4935	<.000
	Sum of We	ights	Used	740125.7		RACE	5	1	-0.0469	0.0918	0.2618	0.608
		Resp	ponse Profile	e		RACE	6	1	0.0634	0.0466	1.8527	0.173
	Ordered Value	SSI	Total Frequency	Total Weight		ELECTIVE	0	1	-14,1272	169.2	0.0070	0.933
	1	1	2700	13354.30			-					
	2	0	147015	726771.41		ATYPE	1	1	6.9194	8.7345	0.6276	0.428
	Death		v modeled is	001-4		ATYPE	2	1	7.0259	8.7345	0.6470	0.421

Odds Ratio Estimat	es and W	ald Confid	ence Interva	als
Effect	Unit Estimate 95% Confidence Limits			
AGE	1.0000	0.997	0.995	0.999
Diabetes 1 vs 0	1.0000	0.449	0.419	0.480
FEMALE 1 vs 0	1.0000	0.924	0.887	0.962
RACE 2 vs 1	1.0000	0.897	0.837	0.961
RACE 3 vs 1	1.0000	1.176	1.095	1.263
RACE 4 vs 1	1.0000	0.657	0.554	0.780
RACE 5 vs 1	1.0000	0.874	0.707	1.081
RACE 6 vs 1	1.0000	0.976	0.887	1.074
ELECTIVE 0 vs 1	1.0000	<0.001	<0.001	>999.999
ATYPE 1 vs 6	1.0000	>999.999	<0.001	>999.999
ATYPE 2 vs 6	1.0000	>999.999	<0.001	>999.999
ATYPE 3 vs 6	1.0000	<0.001	<0.001	>999.999

In CABG-SIMA Graft Only — The same hypothesis was examined in patients with SIMA grafting only. The adjusted analysis showed same effect that diabetes had lower predictive effect on the rate of surgical site infection in SIMA population. Diabetes diagnosis has significantly decreased the likelihood of SSI by 33.7% in SIMA grafting sub-population (OR:0.663; 95% CI:0.66-0.66 ; p<.0001). (see Fig. 22).

Figure 22: Multivariate analysis of Diabetes Effect on Surgical Site Infection (SSI) in SIMA grafting population.

	The	LOGISTIC Proc	edure			Analysis	n Wa	ximum Lik	ennood ES	umates	
		Model Informatio			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
Data Set		SASUSER.SIM	A_ONLY		Intercept		1	-6.0838	0.000237	660085389	<.000
Response Var	riable	SSI			· · · · · · · · · · · · · · · · · · ·						
Number of Re	sponse Levels	2			AGE		1	-0.00075	3.473E-6	46209.9151	<.000
Weight Variab	le	DISCWT		NIS discharge weight	Diabetes	1	1	-0.2058	0.000237	755519.511	<.000
Model		binary logit			FEMALE	1	1	-0.0301	0.000237	16146.9402	<.000
Optimization	Technique	Fisher's scoring			RACE	2	1	-0.0385	0.000254	23009.9335	<.000
		Observations Re		3339	RACE	3	1	0.1171	0.000255	210861.108	<.000
	Number of C	Observations Us		2673 3117	RACE	4	1	-0.1534	0.000263	339555.724	<.000
	Sum of Wei		6065	548.1	RACE	5	1	0.0479			<.000
		Response Profi	e		RACE	6	1	0.00297			<.000
	Ordered Value	Total SSI Frequency	To		ELECTIVE	0	1	-0.9459	0.000237	15958277.5	<.000
	1	1 1996	9890	.85	ATYPE	1	1	0.5105	0.000412	1537854.87	<.000
	2	0 120677	596657	.22	ATYPE	2	1	0.6351		2019395.37	<.000
	Proba	bility modeled is	SSI=1.			-					
					ATYPE	3	1	-1.1803	0.000380	9643310.37	<.000

Effect	Unit	Estimate	95% Confiden	co Limite
AGE	1.0000	0.999	0.999	0.999
Diabetes 1 vs 0	1.0000	0.663	0.662	0.663
FEMALE 1 vs 0	1.0000	0.942	0.941	0.942
RACE 2 vs 1	1.0000	0.940	0.938	0.941
RACE 3 vs 1	1.0000	1.098	1.096	1.099
RACE 4 vs 1	1.0000	0.838	0.836	0.839
RACE 5 vs 1	1.0000	1.024	1.023	1.026
RACE 6 vs 1	1.0000	0.979	0.978	0.981
ELECTIVE 0 vs 1	1.0000	0.151	0.151	0.151
ATYPE 1 vs 6	1.0000	0.902	0.815	0.999
ATYPE 2 vs 6	1.0000	1.022	0.924	1.131
ATYPE 3 vs 6	1.0000	0.166	0.150	0.184
ATYPE 4 vs 6	1.0000	0.498	0.409	0.605

In CABG-BIMA Graft Only — Here the alternative hypothesis assume that diabetic patients have higher odds of SSI if underwent CABG with BIMA grafting . Adjusted analysis revealed that the presence of diabetes diagnosis in BIMA grafting sub-population has 55.3% lower predictive effect. The null hypothesis was reject but, did not meet the expectation (OR:0.447; 95% CI:0.25-0.78; p=0.0047). (see Fig. 23).

Figure 23: Multivariate analysis of Diabetes Effect on Surgical Site Infection (SSI)
in BIMA grafting population.

aalon for ourgi			ig Cases O		Diabetes Miletus (DM)		Analysis of	of Ma	ximum Lik	elihood Est	imates	
			GISTIC Proce			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	
		Mod	el Informatio	n		Intercept		1	-12.4915	65723.7	0.0000	0.9998
ta Set		SA	SUSER.BIM	A_ONLY		AGE		1	0.00747	0.00625	1.4283	0.2320
oonse Varia	ble	SS	51			Diabetes	1	1	-0.4025	0.1425	7.9819	0.0047
r of Resp	oonse Level					FEMALE		1	-0.1407	0.0903	2.4272	0.1192
ht Variable			SCWT		NIS discharge weight			· ·				
lel		-	nary logit			RACE	2	1	1.0527	0.8592	1.5011	0.2205
imization Te	chnique	Fis	sher's scoring			RACE	3	1	2.3687	0.8528	7.7144	0.0055
	Number of	Obse	ervations Rea	ad 10	223	RACE	4	1	-3.8250	2.1095	3.2878	0.0698
	Number of	Obs	ervations Use	ed 4	748	RACE	5	1	-2.0464	3.7055	0.3050	0.5808
	Sum of We	ights	Read	50196	.37	RACE	6	1	1.6270	0.8546	3.6247	0.0569
	Sum of We	ights	Used	23570	.16	ELECTIVE	0	1	-0.3804	3.1741	0.0144	0.9046
		Res	ponse Profile	0		ATYPE	1	1	1.1433	6.3470	0.0324	0.8570
	Ordered Value	SSI	Total Frequency	Tot Weig		ATYPE	2	1	1.3087	6.3471	0.0425	0.8366
	1	1	65	314.5	14	· ·						
	2	0	4683	23255.5	10							

Odds Ratio Es	timates and W	ald Confid	ence Interva	als
Effect	Unit	Estimate	95% Confi	dence Limits
AGE	1.0000	1.007	0.995	1.020
Diabetes 1 vs 0	1.0000	0.447	0.256	0.782
FEMALE 1 vs 0	1.0000	0.755	0.530	1.075
RACE 2 vs 1	1.0000	1.258	0.776	2.039
RACE 3 vs 1	1.0000	4.691	3.150	6.988
RACE 4 vs 1	1.0000	0.010	<0.001	1.001
RACE 5 vs 1	1.0000	0.057	<0.001	328.991
RACE 6 vs 1	1.0000	2.234	1.425	3.504
ELECTIVE 0 vs 1	1.0000	0.467	<0.001	>999.999
ATYPE 1 vs 5	1.0000	36.428	<0.001	>999.999
ATYPE 2 vs 5	1.0000	42.978	<0.001	>999.999
LOS	1.0000	1.043	1.031	1.054

The Odds of having Urinary Tract Infections (UTIs):

In Total CABG Population — In overall sample of CABG, urinary tract infection (UTI) was 31.3% lower for diabetic patient compared to non-diabetics. The null hypothesis was rejected. Result did not meet the alterative hypothesis assumption. For CABG patients with diabetes, the odds of contracting UTI was significantly lower (OR 0.687; 95% CI: 0.68-0.68; p<.0001), compared to non-diabetics. (see Fig.24).

Figure 24: Multivariate analysis of Diabetes Effect on Urinary Tract Infections (UTI) in Overall CABG population.

	ract Infection Rates by Presence of Diab CABG Population			Analysis o	f Ma	ximum Lik	elihood Est	timates	
	The LOGISTIC Procedure		Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiS
	Model Information								
Data Set	SASUSER.CABG_2007_2012_CORE_SEVERITY		Intercept		1	-8.6515	0.000124	4869734697	<.000
nse Variable	UTI		AGE		1	0.0266	1.764E-6	227544910	<.000
of Response Levels			Diabetes	1	1	-0.1878	0.000124	2294203.09	<.000
/ariable	DISCWT	NIS discharge weight							
	binary logit		FEMALE	1	1	0.5704	0.000124	21169276.9	<.000
mization Technique	Fisher's scoring		RACE	2	1	0.0596	0.000132	202707.564	<.000
	Number of Observations Read 286487		RACE	3	1	0.0813	0.000135	365643.484	<.000
	Number of Observations Used 149715 Sum of Weights Read 1414776		RACE	4	1	-0.1874	0.000139	1825595.61	<.000
	Sum of Weights Used 740125.7		RACE	5	1	-0.0140	0.000139	10092.2894	<.000
	Response Profile		RACE	6	1	0.0990	0.000137	525728.476	<.000
	Ordered Total Total Value UTI Frequency Weight		ELECTIVE	0	1	1.4894	0.000124	144322908	<.000
	1 1 9024 44565.10 2 0 140691 695560.62		ATYPE	1	1	-0.4324	0.000207	4365365.49	<.000
	2 0 140691 695560.62		ATYPE	2		-0.5632	0.000235	5746690.08	<.000

Odds Ratio Estimat	es and W	ald Confid	ence Interva	ls
Effect	Unit	Estimate	95% Confid	lence Limits
AGE	1.0000	1.027	1.027	1.027
Diabetes 1 vs 0	1.0000	0.687	0.687	0.687
FEMALE 1 vs 0	1.0000	3.129	3.128	3.131
RACE 2 vs 1	1.0000	1.103	1.102	1.104
RACE 3 vs 1	1.0000	1.127	1.127	1.128
RACE 4 vs 1	1.0000	0.862	0.861	0.862
RACE 5 vs 1	1.0000	1.025	1.024	1.026
RACE 6 vs 1	1.0000	1.148	1.147	1.148
ELECTIVE 0 vs 1	1.0000	19.663	19.654	19.673
ATYPE 1 vs 6	1.0000	7.957	7.763	8.155
ATYPE 2 vs 6	1.0000	6.981	6.811	7.156
ATYPE 3 vs 6	1.0000	106.029	103.445	108.678
ATYPE 4 vs 6	1.0000	47.045	44.781	49.423
LOS	1.0000	1.023	1.023	1.023
NCHRONIC 0 vs 26	1 0000	<0.001	<0.001	>000 000<

In CABG-SIMA Graft Only — For diabetic patients, the risk of UTI was 31% significantly lower compared to non-diabetics. The odds of contracting UTI was (OR: 0.690; 95% CI: 0.69-0.69; p<.0001) (see fig.25). The null hypothesis was rejected. However, The adjusted analysis results did not meet our expectation in the alternative hypothesis. It was also consistent with preliminary bivariate analysis that diabetics had lower rate of UTI compared to non-diabetic (5.52% vs. 5.82%; p=0.0017).

Figure 25: Multivariate analysis of Diabetes Effect on Urinary Tract Infection (UTI)
in SIMA grafting population.

	The	LOGISTIC Procedu	re		A	Analysis	ot Ma		elihood Es	timates	
		Nodel Information			Parameter		DF	Estimate	Standard Error		
Data Se	t	SASUSER.SIMA_C	ONLY		Turumeter		-				
Respon	se Variable	UTI			Intercept		1	-11.5386	0.000140	6828106513	<.000
Number	of Response Levels	2			AGE		1	0.0263	1.999E-6	173348153	<.000
Weight	Variable	DISCWT	1	NIS discharge weight							
Model		binary logit			Diabetes	1	1	-0.1856	0.000140	1766914.63	<.0001
Optimiz	ation Technique	Fisher's scoring			FEMALE	1	1	0.5958	0.000140	18205916.2	<.0001
		Observations Read			RACE	2	1	0.0513	0.000149	118265.393	<.0001
	Sum of Wei	Observations Used ghts Read	1226 1153		RACE	3	1	0.0682	0.000152	202574.971	<.0001
	Sum of Wei	ghts Used	60654	8.1	RACE	4	1	-0.1585	0.000156	1027443.42	<.0001
		Response Profile			RACE	5	1	0.00940	0.000157	3592.7052	<.0001
	Ordered Value		Tota Weigh	nt	RACE	6	1	0.0606	0.000154	154613.565	<.0001
	1					-					
	2	0 115529 57	71275.1	5	ELECTIVE	0	1	1.7127	0.000140	150437614	<.0001
	Proba	bility modeled is UT	TI=1.		ATYPE	1	1	-0.5682	0.000232	6003654.44	<.0001
					ΔΤΥΡΕ	2	1	-0.6777	0.000262	6678142 50	< 0001

Odds Ratio Est	imates and W	ald Confid	ence Intervals	5
Effect	Unit	Estimate	95% Confide	nce Limits
AGE	1.0000	1.027	1.027	1.027
Diabetes 1 vs 0	1.0000	0.690	0.690	0.690
FEMALE 1 vs 0	1.0000	3.292	3.291	3.294
RACE 2 vs 1	1.0000	1.086	1.085	1.087
RACE 3 vs 1	1.0000	1.104	1.103	1.105
RACE 4 vs 1	1.0000	0.880	0.880	0.881
RACE 5 vs 1	1.0000	1.041	1.040	1.042
RACE 6 vs 1	1.0000	1.096	1.095	1.097
ELECTIVE 0 vs 1	1.0000	30.735	30.718	30.752
ATYPE 1 vs 6	1.0000	9.195	8.953	9.443
ATYPE 2 vs 6	1.0000	8.241	8.025	8.464
ATYPE 3 vs 6	1.0000	197.721	192.527	203.055
ATYPE 4 vs 6	1.0000	75.147	71.254	79.253

In CABG-BIMA Graft Only — The alternative hypothesis assume that diabetes predicts higher rate of UTI in BIMA grafting sub-population. The unadjusted analysis showed higher trend in the rate of UTI for diabetic patients compared to non-diabetics (6.40% vs. 3.88%; p=0.0122), respectively. After adjustment, the multivariable logistic regression results had confirmed that diabetes was a strong predictor of UTI in BIMA grafting sub-population (OR: 1.217; 95% CI: 1.21-1.22; p<.0001) (see Fig.26). Presence of diabetes diagnosis has increased odds of UTI by 21.7% in BIMA grafting sub-population.

Figure 26: Multivariate analysis of Diabetes Effect on Urinary Tract Infection (UTI) in BIMA grafting population.

	Fract Infecti Graf	on Rates by Preser fting Cases ONLY	ice of Diabetes Mileti	is (DM) in BIMA		Analysis o	of Ma	ximum Lik	elihood Est	imates	
		LOGISTIC Procedure			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
	N	Nodel Information			Intercept		1	-3.5974	0.000805	19968735.5	<.0001
Data Set Response Varia		SASUSER.BIMA_ONL	Y		· · ·						
Number of Res					AGE		1	0.0135	0.000012	1170287.79	<.0001
Weight Variable		DISCWT	NIS discharge weight		Diabetes	1	1	0.0982	0.000805	14870.7783	<.0001
Model		binary logit			FEMALE	1	1	0.7652	0.000805	903554.230	<.0001
Optimization Te	chnique	Fisher's scoring			RACE	2	1	0.5183	0.000862	361890.900	<.0001
	Number of C	bservations Read	10223		RACE	3	1	0.1842	0.000898	42135.0367	<.0001
		Observations Used	4748		RACE	4	1	-0.2452	0.000922	70777.7875	<.0001
	Sum of Weig Sum of Weig	and second	196.37 570.16		RACE	5	1	-0.3843		172179.227	<.0001
	Ordered	Response Profile Total	otal		RACE	6	1	0.0319		1278.2834	<.0001
	Value U	JTI Frequency We	light		ELECTIVE	0	1	0.8695	0.000805	1166700.43	<.0001
	1 1				ATYPE	1	1	-1.4572	0.00141	1064835.20	<.0001
		bility modeled is UTI=1.			ATYPE	2	1	-1.4425	0.00144	1006214.47	<.0001
		Odds	Ratio Esti	nates and \	Wald Confid	ence In	ter	vals			
	Effect	+		Uni	t Estimate	95% C	on	fidence	e l imits	_	
	AGE	•		1.000			014		1.014	_	
										_	
	Diabe	etes 1 vs 0		1.000	0 1.217	1.2	213		1.221	_	
	FEMA	ALE 1 vs 0		1.000	4.620	4.6	606	i	4.635	5	
	RACE	2 vs 1		1.000	0 1.865	1.8	856	i	1.874	•	
	RACE	3 vs 1		1.000	0 1.335	1.3	329		1.342	2	
	RACE	E 4 vs 1		1.000	0 0.869	0.8	365		0.874	•	
	RACE	5 vs 1		1.000	0 0.756	0.7	752		0.760)	
	RACE	E 6 vs 1		1.0000	0 1.147	1.1	141		1.152	2	
	ELEC	TIVE 0 vs	1	1.000	5.692	5.6	674		5.710	1	
	ΑΤΥΡ	E 1 vs 5		1.000	0 0.013	0.0	013		0.013	5	
	ΑΤΥΡ	E 2 vs 5		1.000	0 0.013	0.0	013		0.013	5	

The Odds of having Blood Stream Infections (BSIs):

In Total CABG Population — The alternative hypothesis assume that diabetes predicts higher rate of bloodstream infection in overall CABG population. Adjusted analysis showed that the effect of diabetes on Blood Stream infection (BSI) had similar observed result as in previous type of infections, which indicates diabetic patients had lower odds of getting BSI by 58.8% than overall sample. The odds of BSI were significantly lower in diabetics (OR 0.412; 95% CI 0.39-0.43; p<.0001). The results did not meet our assumption in the alternative hypothesis. Diabetics had lower predictive

effect on the rate of BSI than others in overall CABG population. The preliminary unadjusted bi-variate analysis was consistent also with diabetes vs. non-diabetes in overall sample (1.35% vs. 2.1%; p<.0001) (see Fig. 27)

Figure 27: Multivariate analysis of Diabetes Effect on Blood Stream Infection (BSI) in Overall CABG population.

Regression for blood-off		ABG Population		etes Miletus (DM)	in Total		Analy	sis c	of Ma	ximum Lik	elihood Est	imates	
	The	LOGISTIC Procedu	ire			Parame	ter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
		Model Information				Intercep	ot		1	-6.5324	63.5718	0.0106	0.918
Data Set		CABG_2007_2012_0	CORE_SEVERITY	,		AGE			1	-0.0107	0.000695	238.1557	<.000
Response Variable Number of Response Levels	BSI					Diabete	s	1	1	-0.4430	0.0131	1150.5098	<.000
Weight Variable	DISCWT			NIS discharge weigt	t	FEMALE		1	1	-0.0576	0.00801	51.5985	<.000
Model	binary logit					RACE		2	1	0.0641	0.0275	5.4429	0.0196
Optimization Technique	Fisher's sco	oring				RACE		3	1	0.0474	0.0299	2.5058	0.1134
	Number of (Observations Read	286487			RACE		4	1	0.0678	0.0472	2.0658	0.1506
	Number of (Observations Used	149715			RACE		5	1	-0.3604	0.0472	22.1393	<.000
	Sum of Wei	-	1414776			RACE		6	1	0.2502	0.0334	56.2229	<.000
	Sum of Wei	ghts Used	740125.7			ELECTI	(F	0	1				
		Response Profile					VE	-		1.3875	59.1246	0.0006	0.9813
	Ordered Value	Total BSI Frequency	Total Weight			ATYPE		1	1	0.5180	0.3370	2.3622	0.124
	1	1 5173 2	25495.83			ATYPE		2	1	0.4997	0.3371	2.1978	0.138
	2	0 144542 71	14629.88			ATYPE		3	1	3.2418	118.2	0.0008	0.978
			Odds Ratio	o Estimates									
		Effect	Odds Ratio		Unit	Estimate	95% Confi						
			Odds Ratio							- imits 0.991			
		Effect			Unit	Estimate	95% Confi						
		Effect AGE	vs 0		Unit .0000	Estimate 0.989	95% Confi 0.988			0.991			
		Effect AGE Diabetes 1	vs 0 vs 0	· · · · · · · · · · · · · · · · · · ·	Unit .0000 .0000	Estimate 0.989 0.412	95% Confi 0.988 0.392			0.991 0.434			
		Effect AGE Diabetes 1 FEMALE 1	vs 0 vs 0 s 1	· · · · · · · · · · · · · · · · · · ·	Unit .0000 .0000 .0000	Estimate 0.989 0.412 0.891	95% Confid 0.988 0.392 0.864			0.991 0.434 0.920			
		Effect AGE Diabetes 1 FEMALE 1 RACE 2 vs	vs 0 vs 0 ; 1 ; 1	•	Unit .0000 .0000 .0000 .0000	Estimate 0.989 0.412 0.891 1.142	95% Confid 0.988 0.392 0.864 1.087			0.991 0.434 0.920 1.201			
		Effect AGE Diabetes 1 FEMALE 1 RACE 2 vs RACE 3 vs	vs 0 vs 0 ; 1 ; 1 ; 1	· · ·	Unit .0000 .0000 .0000 .0000	Estimate 0.989 0.412 0.891 1.142 1.124	95% Confi 0.988 0.392 0.864 1.087 1.061			0.991 0.434 0.920 1.201 1.190			
		Effect AGE Diabetes 1 FEMALE 1 RACE 2 vs RACE 3 vs RACE 4 vs	vs 0 vs 0 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1	• • • •	Unit .0000 .0000 .0000 .0000 .0000	Estimate 0.989 0.412 0.891 1.142 1.124 1.124	95% Confi 0.988 0.392 0.864 1.087 1.061 1.033			0.991 0.434 0.920 1.201 1.190 1.273			
		Effect AGE Diabetes 1 FEMALE 1 RACE 2 vs RACE 3 vs RACE 4 vs RACE 5 vs	vs 0 vs 0 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1	· · · ·	Unit .0000 .0000 .0000 .0000 .0000	Estimate 0.989 0.412 0.891 1.142 1.124 1.124 1.147 0.747	95% Confi 0.988 0.392 0.864 1.087 1.061 1.033 0.625	den		0.991 0.434 0.920 1.201 1.190 1.273 0.893			
		Effect AGE Diabetes 1 FEMALE 1 RACE 2 vs RACE 3 vs RACE 4 vs RACE 5 vs RACE 6 vs	vs 0 vs 0 s 1 s 1 s 1 s 1 s 1 s 1 o vs 1		Unit .0000 .0000 .0000 .0000 .0000 .0000	Estimate 0.989 0.412 0.891 1.142 1.124 1.124 1.147 0.747 1.376	95% Confi 0.988 0.392 0.864 1.087 1.061 1.033 0.625 1.286	den	>99	0.991 0.434 0.920 1.201 1.190 1.273 0.893 1.472			
		Effect AGE Diabetes 1 FEMALE 1 RACE 2 vs RACE 3 vs RACE 4 vs RACE 5 vs RACE 6 vs ELECTIVE	vs 0 vs 0 5 1 5 1 5 1 5 1 5 1 6 vs 1 7 s 6		Unit .0000 .0000 .0000 .0000 .0000 .0000	Estimate 0.989 0.412 0.891 1.142 1.124 1.124 1.147 0.747 1.376 16.038	95% Confi 0.988 0.392 0.864 1.087 1.061 1.033 0.625 1.286 <0.001	den	>99	0.991 0.434 0.920 1.201 1.190 1.273 0.893 1.472 9.999			

In CABG-SIMA Graft Only — In SIMA sub-population, diabetes diagnosis had a lower predictive effect on the rate of blood stream infection (BSI) (OR: 0.476; 95% CI: 0.44 - 0.50; p<.0001 (see Fig. 28). Presences of diabetes diagnosis has decreased rate of BSI by 52.4% in SIMA sub-population, compared to those without diabetes. The result was consistent with bivariate analysis result which showed that the trend of BSI was

lower in diabetic patients compared to non-diabetic (1.54 VS. 3.87; p<.0001), respectively. The null hypothesis was rejected, but diabetes diagnosis effect was protective and against the expectation.

Logic Regression for Bl	ood-Stream Infection Rates b		etes Miletus (DM)	in SIMA Grafting Case	s ONLY	Analysis o	f Ma	ximum Lik	elihood Est	timates	
		LOGISTIC Procedure			Paran	neter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSa
	Data Set	SASUSER.SIMA_ONL	Y		Interc	ent	1	76229.3	145.1	-	<.0001
	Response Variable	BSI				,opr					
	Number of Response Levels Weight Variable	2 DISCWT	NIS discharge weig		AGE		1	-0.00862	0.000854	101.8297	<.0001
	Model	binary logit	NIS discharge weig	nt	Diabe	tes 1	1	-0.3711	0.0152	592.7476	<.0001
	Optimization Technique	Fisher's scoring			FEMA	LE 1	1	-0.0688	0.00970	50.2598	<.0001
	Number of C	bservations Read 2	33339		RACE	2	1	0.1207	0.0325	13.8285	0.0002
			22673		RACE	3	1	0.000446	0.0352	0.0002	0.9899
	Sum of Weig Sum of Weig		53117 5548.1		RACE	4	1	0.0197	0.0552	0.1275	0.7211
	oum or weig	ints Used 60	5040.1								
		Response Profile			RACE	-	1	-0.3010	0.0877	11.7780	0.0006
	Ordered Value		fotal sight		RACE	6	1	0.2157	0.0400	29.1199	<.0001
	1 1 2 0				ELEC	TIVE 0	1	4.9538	37.3755	0.0176	0.8946
			0.06		ATYP	E 1	1	0.3350	0.3895	0.7399	0.3897
	Probat	oility modeled is BSI=1			ATYP	E 2	1	0.4256	0.3896	1.1935	0.2746
					ATYP	E 3	1	10.2926	74.7419	0.0190	0.8905
					ATYP	E 4	1	-5.5190	35.9965	0.0235	0.8781
ACE			1 0000	0.001	0.000	0.007	,				
AGE			1.0000	0.991	0.990	0.993	,				
							_				
Diabetes	1 vs 0		1.0000	0.476	0.448	0.505	5				
FEMALE 1	1 vs 0		1.0000	0.871	0.839	0.905	5				
RACE 2 v	s 1		1.0000	1.193	1.123	1.266	5				
RACE 3 v	s 1		1.0000	1.058	0.988	1.133	3				
RACE 4 v	s 1		1.0000	1.078	0.954	1.219)				
RACE 5 v	s 1		1.0000	0.782	0.638	0.960)				
RACE 6 v	s 1		1.0000	1.312	1.208	1.424	ł				
ELECTIVE	E 0 vs 1		1.0000	>999.999	<0.001	>999.999)				
ATYPE 1	vs 6		1.0000	354.034	<0.001	>999.999)				
ATYPE 2	vs 6		1.0000	387.588	<0.001	>999.999)				
ATYPE 3	vs 6		1.0000	>999.999	<0.001	>999.999)				

Figure 28: Multivariate analysis of Diabetes Effect on Blood Stream Infection (BSI) in SIMA population.

In CABG-BIMA GRAFT ONLY — The purpose of this sub-hypothesis is to examine the effect of diabetes diagnosis in BIMA grafting sub-population. After adjustment, multivariable logistic regression showed that diabetes predict lower risk of BSI by 73.7% compared to those without diabetes. The odds of BSI was significantly lower (OR: 0.263; 95% CI: 0.18 - 0.37; p<.0001) by diabetes diagnosis (see Fig. 29).

Same as other infections examined before, unadjusted analysis showed lower trend of

BSI by diabetes versus non-diabetes (1.45% vs. 2.91%; p<.0001).

regression for Bree		afting Cases ON		of Diabetes Mile			Analysis	of Ma	ximum Lik	elihood Es	timates	
	The	LOGISTIC Procedu	ure			Parameter	r	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
		Model Information				Intercept		1	-12.5676	65.4656	0.0369	0.8478
Data Set		SASUSER.BIMA_	ONLY			AGE		1	-0.00672	0.00394	2.9050	0.0883
Response		BSI 2				Diabetes	1	1	-0.6684	0.0930	51.6626	<.0001
Weight Va	Response Levels	DISCWT	1 3	IS discharge weight		FEMALE	1	1	-0.0976	0.0550	3.1413	0.0763
Model		binary logit		no alconargo noigin		RACE	2	1	0.0279	0.1498	0.0346	0.8524
Optimizati	on Technique	Fisher's scoring				RACE	3	1	-0.1047	0.1756	0.3556	0.5509
	Number of	Observations Read	102	23		RACE	4	1	0.3628	0.2430	2.2295	0.1354
	Number of	Observations Used	4	48		RACE	5	1	-0.0681	0.4143	0.0270	0.8695
	Sum of We		50196			RACE	6	1	0.2389	0.1522	2.4625	0.1166
	Sum of We	ights Used	23570	16		ELECTIVE	. 0	1	-1.4228	37.5058	0.0014	0.9697
		Response Profile				ATYPE	1	1	2.8244	75.0116	0.0014	0.9700
	Ordered Value	Total BSI Frequency	Tota Weigh			ATYPE	2	1	2.6198	75.0116	0.0012	0.9721
	1		758.79									
	2	0 4592 2	2811.37	1								
	Proba	ability modeled is B	SI=1.									
		Odds F	Ratio	Estimate	s and W	ald Confid	ence Interv	als				
		• • • • •					1					
	Effect				Unit	Estimate	95% Conf	ide	nce Lir	nits		
	AGE				1.0000	0.993	0.986		1.	.001		
	Diabete	s 1 vs 0			1.0000	0.263	0.182		0.	.378		
	FEMAL	E 1 vs 0			1.0000	0.823	0.663		1.	.021		
	RACE 2	vs 1			1.0000	1.624	1.221		2	158		
	RACE 3	vs 1			1.0000	1.422	0.993		2	.037		
	RACE 4	vs 1			1.0000	2.270	1.324		3.	.889		
	RACE 5	vs 1			1.0000	1.475	0.561		3.	.876		
	RACE 6	vs 1			1.0000	2.005	1.492		2	.694		
	ELECT	VE 0 vs 1			1.0000	0.058	<0.001	-	>999	.999		
	ATYPE	1 vs 5			1.0000	>999.999	<0.001	-	>999	.999		
	ATYPE	2 vs 5			1.0000	>999.999	<0.001		>999	.999		
								-				
	LOS				1.0000	1.036	1.027		1.	.045		

Figure 29: Multivariate analysis of Diabetes Effect on Blood Stream Infection (BSI) in BIMA population.

The Odds of having Pneumonia (PN):

In Total CABG Population — Similar to the previous infections results, the odds of pneumonia was significantly lower in diabetic patients compared to non-diabetics by 55.1%. Diabetic patients were less likely to get pneumonia (OR 0.449; 95% CI 0.43 -

0.46; p<.0001) (see Fig. 30). The results did not meet our expectation in the alternative hypothesis that diabetes had higher predictive effect on pneumonia rates in overall CABG population.

Figure 30: Multivariate analysis of Diabetes Effect on Pneumonia	(PN) in Overall
CABG population.	

is regression for Frieun	ionia ridtes	Population	n biabetes Mi	letus (DM) in Total C			Analysis	of Ma	aximum Lik	elihood Est	timates	
	The	LOGISTIC Proced	ure			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiS
		Model Information				Intercept		1	6.0829	34.6815	0.0308	0.860
Data Set		CABG_2007_2012	_CORE_SEVERI	TY		AGE		1	-0.00260	0.000364	50.8795	<.000
Response Variable	PN					Diabetes 1					3760.0289	<.000
Number of Response Levels Weight Variable	DISCWT			NIS discharge weight		FEMALE	1	_				
Model	binary logit			Nio uscharge weight				_			2.4467	0.117
Optimization Technique	Fisher's sci					RACE	2	_	-0.1817	0.0144	159.9785	<.000
		-				RACE	3	1	0.0361	0.0158	5.2324	0.022
		Observations Read				RACE	4	1	0.0503	0.0269	3.5025	0.06
	Sum of Wei		1414776			RACE	5	1	0.1408	0.0340	17.1590	<.00
	Sum of Wei		740125.7			RACE	6	1	0.0587	0.0188	9.7641	0.00
		Response Profile				ELECTIVE	0	1	-1.2924	0.6044	4.5716	0.03
	Ordered	Total	Total			ATYPE	1	1	0.9159	0.1695	29.2004	<.00
	Value 1	PN Frequency	Weight			ATYPE	2	1	0.9215	0.1695	29.5450	<.00
	2		186076.40			ATVDE	3	1	1 8000	1 0060	2 7109	0.00
	Proba	bility modeled is I		Ratio Estimates	and W	ald Confid	ence Interval	s				
		Effect			Unit	Estimate	95% Confid	ence	Limits			
		AGE			0000.1	0.997	0.997		0.998			
		Diabete	s 1 vs 0		0000.1	0.449	0.438		0.461			
		FEMAL	E 1 vs 0		0000.1	1.013	0.997		1.029			
		RACE 2	2 vs 1		.0000	0.925	0.901		0.951			
		RACE 3	8 vs 1		.0000	1.151	1.115		1.187			
		RACE 4	vs 1		.0000	1.167	1.098		1.240			
		RACE 5	i vs 1		.0000	1.278	1.181		1.382			
		RACE	övs 1		0000.1	1.177	1.131		1.225			
		ELECT	VE 0 vs 1		.0000	0.075	0.007		0.806			
		ATYPE	1 vs 6		.0000	1.942	0.539		6.999			
		ATYPE	2 vs 6		.0000	1.953	0.542		7.038			
		ATYPE	3 vs 6		.0000	0.127	0.005		3.274			
		ATYPE				0.587	0.108		3.183			

In CABG-SIMA GRAFT ONLY — In patient undergoing CABG with SIMA grafting, effect of diabetes diagnosis significantly predicted lower odds of pneumonia (PN) (OR: 0.457; 95% CI: 0.44 - 0.47; p<.0001). Diabetes has lower the risk of PN by 54.3% in SIMA grafting sub-population. Unadjusted analysis showed consistent result in

the testing this sub-hypothesis DM vs. non-DM (70.49% vs. 80.38% $p{<}.0001).$ (see

fig.31)

	The	LOGISTIC Procedure				Analysis			elihood Est		
		Model Information			Param	eter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Data Set		SASUSER.SIMA_ON	ILY		Interce	pt	1	7.9123	34.3622	0.0530	0.8179
Response V	/ariable	PN			AGE		1	-0.00253	0.000414	37.2422	<.0001
Number of	Response Levels	2			Diabet	es 1	1	-0.3919	0.00734	2854.9200	<.0001
Weight Vari	able	DISCWT	NIS discharge weight		FEMAL		1	0.00703	0.00454	2.3996	0.1214
Model	n Technique	binary logit Fisher's scoring			RACE	2	1	-0.2188	0.0160	186.9768	<.0001
Opumizauo	n rechnique	Fisher's sconing			RACE	3	1	0.0343	0.0175	3.8497	0.0498
		Observations Read	233339		RACE	4	1	0.0040	0.0297	6.8032	0.0091
	Number of Sum of We	Observations Used	122673 1153117		RACE	5	1	0.1237	0.0237	10.9136	0.0091
	Sum of We		606548.1		RACE	6	1	0.0986	0.0212	21.7304	<.00010
							-				
	Ordered	Response Profile Total	Total		ELECT		1	-1.1775	0.6643	3.1417	0.0763
	Value	PN Frequency V	Veight		ATYPE		1	0.8677	0.1938	20.0442	<.0001
	1				ATYPE	2	1	0.8398	0.1938	18.7718	<.0001
	2	0 30205 148	599.29								
	Prob	ability modeled is PN=	-1.								
		Odds R	atio Estimat	es and W	ald Config	lence Interv	als				
_		00001					uio				
E	Effect			Unit	Estimate	95% Conf	ide	nce Li	mits		
1	AGE			1.0000	0.997	0.997		0	.998		
ſ	Diabete	s 1 vs 0		1.0000	0.457	0.444		0	.470		
F	FEMALE	E 1 vs 0		1.0000	1.014	0.996		1	.032		
F	RACE 2	vs 1		1.0000	0.902	0.875		0	.929		
F	RACE 3	vs 1		1.0000	1.161	1.122		1	.202		
F	RACE 4	vs 1		1.0000	1.212	1.134		1	.297		
F	RACE 5	vs 1		1.0000	1.270	1.164		1	.385		
F	RACE 6	vs 1		1.0000	1.238	1.184		1	.295		
E	ELECTI	VE 0 vs 1		1.0000	0.095	0.007		1	.283		
		1 vs 6		1.0000	2.109	0.590		7	.539		
	ATYPE	2 vs 6		1.0000	2.051	0.574		7	.332		
	ATYPE	3 vs 6		1.0000	0.161	0.005		4	.880		
		4 vs 6		1.0000	0.784	0.132		4	.663		
-	LOS			1.0000	0.995		-	-	.997		
	_03			1.0000	0.995	0.994		0	.991		

Figure 31: Multivariate analysis of Diabetes Effect on Pneumonia (PN) in SIMA population.

In CABG-BIMA Graft Only — the odds of pneumonia was 66.1% significantly lower by presence of diabetes diagnosis patients. Diabetes decrease likelihood of pneumonia (OR: 0.339; 95% CI: 0.28 - 0.40; p<.0001) (see Fig. 32). After adjustment also, results did not meet our expectation in the alternative hypothesis that diabetes had higher predictive effect on pneumonia rates in BIMA grafting sub-population. The adjusted analysis revealed same conclusion about the rate of PN in BIMA sub-population comparing DM vs. NON-DM (76.82% vs. 87.09%; p<.0001).

Figure 32: Multivariate analysis of Diabetes Effect on Pneumonia (PN) in BIMA population.

greasion for theun	ionia nates t	Cases ONLY	auei	tes Miletus (DM) in	Shink Granning			Analysis o	of Ma	iximum Lik	elihood Es	timates	
	The	LOGISTIC Procedu	re			Paramet	er		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
	N	Nodel Information				Intercep	t		1	2.0084	51.8541	0.0015	0.9691
Data Set		SASUSER.BIMA_C	ONLY			AGE			1	-0.00060	0.00232	0.0677	0.7948
Response Var	iable sponse Levels	PN 2	_			Diabetes	Diabetes		1	-0.5402	0.0428	158.9074	<.0001
Weight Variab		DISCWT		NIS discharge weight		FEMALE		1	1	0.00617	0.0298	0.0427	0.8362
Model		binary logit				RACE		2	1	-0.2041	0.0961	4.5107	0.0337
Optimization 1	echnique	Fisher's scoring				RACE		3	1	-0.0113	0.1062	0.0114	0.9151
	Number of O	bservations Read	10	223		RACE		4	1	-0.0677	0.1764	0.1473	0.7011
		bservations Used		748		RACE		5	1	-0.0859	0.2424	0.1256	0.7231
	Sum of Weig Sum of Weig		50196 23570			RACE		6	1	0.2910	0.1060	7.5394	0.0060
		Response Profile				ELECTIV	/E	0	1	-1.9982	44.5039	0.0020	0.9642
	Ordered	Total	Tota	al		ATYPE		1	1	4.0463	89.0078	0.0021	0.9637
		PN Frequency	Weigh 668.96	nt		ATYPE		2	1	4.0859	89.0078	0.0021	0.9634
	2 (901.20										
	Brohal	bility modeled is Pf											
[Probat							• •					
		Odds	Rat	tio Estimate	es and W	ald Con	fid	ence Inter	rva	IS			
	Effect				Unit	Estima	te	95% Confidence Limits					
	AGE				1.0000	0.99	99	0.995	5		1.004		
	Diabete	es 1 vs 0			1.0000	0.33	39	0.287			0.402		
-	FEMAL	.E 1 vs 0			1.0000	1.01	12	0.90	1		1.138		
-	RACE	2 vs 1			1.0000	0.75	54	0.632	2		0.901		
	RACE	3 vs 1			1.0000	0.9	15	0.740	D		1.130		
-	RACE	4 vs 1			1.0000	0.86	64	0.58	1		1.287		
	RACE	5 vs 1			1.0000	0.84	19	0.484	4		1.490		
	RACE	6 vs 1			1.0000	1.23	37	1.002	2		1.528		
-	ELECT	IVE 0 vs 1	1		1.0000	0.0	18	< 0.00	1	>99	9.999		
	ATYPE	1 vs 5			1.0000	>9999.99	99	< 0.00	1	>99	9.999		
-	ATYPE	2 vs 5			1.0000	>9999.99	99	< 0.00	1	>99	9.999		
-					1				-				

4.6.3 The effect of Uncontrolled Hyperglycemia:

Hypothesis C (Assumption) — "Diabetic Patients with Uncontrolled Hyperglycemia (HbA1C) have significantly higher rate of nosocomial infections than diabetic patients with controlled hyperglycemia. (in total CABG, with SIMA only, and with BIMA only)"

The Odds of having Surgical Site Infections (SSIs):

In Total CABG Population — Among diabetic patients those who had uncontrolled hyperglycemia (HbA1c) or uncontrolled diabetes were at higher risk of having surgical site infection compared to their counterpart the diabetic with controlled hyperglycemia (OR 1.038; 95% CI 1.03-1.04; p<.0001). The confidence interval does not include zero and difference in log-odd was increased by 3.8% with the presence of uncontrolled hyperglycemia diabetic population. There was slight increase but, this indicate that uncontrolled hyperglycemia is independent risk factor for surgical site infection in diabetic patients undergoing CABG surgery (see Fig. 33).

Figure 33: Multivariate analysis of Uncontrolled hyperglycemia (HbA1c) Effect on
Surgical Site Infection (SSI) in overall CABG-Diabetic patients.

ression for Surgical Site In		rgoing CABG surger		in brabelics		Analysi	s of	Ma	ximum Like	elihood Est	imates		
	Th	e LOGISTIC Procedure		6	Parameter			DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Data Set		SASUSER.DM_CABG_ON	LY		Intercept		-	1	-4.3458	0.000340	163760196	<.0001	
Response Variable		SSI			· · ·		-	-					
Number of Respon					AGE			1	-0.00012	5.072E-6	575.2124	<.0001	
Weight Variable Model		DISCWT binary logit	NIS discharge weight		Uncontrolle	d_HbA1c	1	1	0.0188	0.000340	3056.5320	<.0001	
Optimization Tech		Fisher's scoring			FEMALE		1	1	0.0153	0.000340	2018.6261	<.0001	
	Number of	Observations Read 12	2642		RACE		2	1	0.00846	0.000369	526.4594	<.0001	
	Number of	Observations Used 6	3532										
		- AND C 1997-04	530.9		RACE		3	1	0.00989	0.000373	703.2665	<.0001	
	Sum of We	lights Used 313	522.4		RACE		4	1	-0.00116	0.000387	8.9897	0.0027	
	Ordered	Response Profile Total T	otal		RACE		5	1	0.00725	0.000389	346.3814	<.0001	
	Value	SSI Frequency Wei	ght		RACE		6	1	-0.00282	0.000381	54.8757	<.0001	
		1 812 4034 0 62720 309488			ELECTIVE		0	1	-0.00108	0.000340	10.1760	0.0014	
	Brok	ability modeled is SSI=1.			ATYPE		1	1	-0.0550	0.000596	8525.0494	<.0001	
	Frob	asing modeled is 35I=1.					•		-0.0000	0.000030	3020.0434	5.0001	
		0	Odds Ratio E	stimates and	Nald Confid	ence Interv	als						
		Effect		Uni	t Estimate	95% Conf	ideı	nce	Limits				
		AGE		1.000	1.000	1.00	5		1.000				
		Uncontrolle	ed HbA1c 1 v	/s 0 1.000	1.038	1.03	7		1.040				
		FEMALE 1	-	1.000		1.03	+		1.032				
		RACE 2 vs		1.000		1.02	-		1.032				
			-	1.000		1.02			1.033				
		RACE 3 vs					-						
		RACE 4 vs		1.000		1.01	-		1.023				
		RACE 5 vs	1	1.000	1.029	1.02	7		1.031				
		RACE 6 vs	1	1.000	1.019	1.01	7		1.021				
		ELECTIVE	0 vs 1	1.000	0.998	0.99	7		0.999				
		ATYPE 1 vs	s 5	1.000	0.935	0.93	2		0.937				
		ATYPE 2 vs	s 5	1.000	1.035	1.03	1		1.038				
		ATYPE 3 vs	s 5	1.000	0.983	0.98	1		0.986				
		LOS		1.000	1.039	1.03	<u>,</u>		1.039				

In CABG-SIMA GRAFT ONLY — However, uncontrolled HbA1c in diabetic undergoing SIMA grafting was not a significant predictor of surgical site infection (SSI) (OR: 0.937; 95% CI: 0.84-1.03; p=0.2020) (see Fig. 34).The p >0.05 and the null hypothesis was accepted. This was inconsistent with the unadjusted result that showed diabetics with uncontrolled hyperglycemia in SIMA grafting sub-population had 1.5 fold increase in the rate of SSI, compared to their counterpart group with controlled hyperglycemia (1.81 vs. 1.16; p<.0001).

Figure 34: Multivariate analysis of Uncontrolled hyperglycemia (HbA1c) Effect on Surgical Site Infection (SSI) in Diabetics-SIMA grafting population.

Logic Regression for Surgical Si	te Infection by with SI	Presence of Unc	ontrolled	Hyperglycemia	(HbA1c) in Diabetics			Analys	sis d	of Ma	ximum Like	lihood Es	timates	
		e LOGISTIC Procedur					Parameter			DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
		Model Information					Intercept			1	-16.5267	146.2	0.0128	0.9100
Data Set		SASUSER.DM_SIMA	ONLY						-					
Response V		SSI					AGE			1	-0.00637	0.00196	10.5212	0.0012
	esponse Levels						Uncontrol	led_HbA1c	1	1	-0.0323	0.0253	1.6280	0.2020
Weight Varia Model	ble	DISCWT	NIS	6 discharge weight			FEMALE		1	1	-0.0145	0.0207	0.4915	0.4833
Optimization	Technique	binary logit Fisher's scoring					RACE			1	-0.0606	0.0679	0.7974	0.3719
	Number of	f Observations Read	103577				RACE		3	1	0.1660	0.0676	6.0331	0.0140
	Number of	f Observations Used	53866				RACE		4	1	-0.4447	0.1443	9.4974	0.0021
	Sum of We	eights Read	511701				-		-		-			
	Sum of We	eights Used	265861.4				RACE		5	1	0.5072	0.1327	14.6090	0.0001
		Response Profile					RACE		6	1	-0.2114	0.0924	5.2336	0.0222
	Ordered	Total	Total Weight				ELECTIVE		0	1	-9.7984	126.3	0.0060	0.9382
			3197.36				ATYPE		1	1	6.2473	62.9820	0.0098	0.9210
	2	0 53223 26	2664.08				ATYPE		2	1	6.7106	62.9820	0.0114	0.9151
	Prob	ability modeled is SS	i=1.				ATYPE		3	1	-12.7944	189.9	0.0045	0.9463
		Od	lds Ra	atio Estim	nates and W	ald	Confid	ence Inter	va	ls				
	Eff	ect			Unit	Es	stimate	95% Cor	95% Confidence Limits					
	AG	E			1.0000		0.994	0.990	990		0.99	7		
	Un	controlled	_HbA	1c 1 vs 0	1.0000		0.937	0.849	9		1.03	5		
	FE	MALE 1 vs	s 0		1.0000		0.971	0.896	3		1.05	4		
	RA	CE 2 vs 1			1.0000		0.901	0.790)		1.02	9		
	RA	CE 3 vs 1			1.0000		1.130	0.99	I		1.28	9		
	RA	CE 4 vs 1			1.0000		0.614	0.440)		0.85	7		
	RA	CE 5 vs 1			1.0000		1.590	1.174	1		2.15	4		
	RA	CE 6 vs 1			1.0000		0.775	0.634	1		0.94	7		
	EL	ECTIVE 0	vs 1		1.0000		<0.001	<0.00	1		>999.99	9		
	AT	YPE 1 vs 5	5		1.0000	6	08.423	<0.00	1		>999.99	9		
	AT	YPE 2 vs 5	5		1.0000	9	66.916	<0.00	1		>999.99	9		
	AT	YPE 3 vs 5	5		1.0000		<0.001	<0.00	1		>999.99	9		
	LO	s			1.0000		1.123	1.117	7		1.12	8		

In CABG-BIMA Graft Only — Diabetes with uncontrolled hyperglycemia was a strong predictor of surgical site infection (SSI) (OR: 1.520; 95% CI: 1.50-1.53; p<.0001). Uncontrolled hyperglycemia had significantly increased the odds of SSI by 52% in BIMA grafting subpopulation. The adjusted results met our expectation in the alternative hypothesis (see Fig. 35).The unadjusted result was also consistent with SSI incidence, which was significantly higher in diabetics with uncontrolled hyperglycemia by 2.5 folds higher with presence of uncontrolled hyperglycemia (2.21 vs. 0.88; p=0.0090).

Figure 35: Multivariate analysis of Uncontrolled hyperglycemia (HbA1c) Effect on Surgical Site Infection (SSI) in Diabetics-BIMA grafting population.

	Th	e LOC	GISTIC Proce	dure		Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
		Mod	el Informatio	n		rarameter				-		
Data Set		SASI	JSER.DM_BI	MA_ONLY		Intercept		1	-0.0976	0.00228	1841.5563	<.000
esponse Varia	ble	SSI				AGE		1	0.00150	0.000037	1693.7888	<.000
umber of Resp	onse Levels	2				Uncontrolled HbA1c	1	1	0.2094	0.00228	8469.0038	<.000
eight Variable		DISC	WT		NIS discharge weight	Oncontrolled_HDATC	-	- 1	0.2094	0.00220	0409.0030	<.000
lodel			y logit			FEMALE	1	1	0.0247	0.00228	118.2496	<.000
Optimization Te	chnique	Fishe	er's scoring			RACE	2	1	-0.3365	0.00262	16547.8370	<.000
			ervations Rea		-	RACE	3	1	0.2531	0.00264	9165.3041	<.000
	Number of Sum of We		ervations Use	ed 170		RACE	4	1	-0.4670	0.00277		
	Sum of We	-		8441.6	·	RACE	5	1	-0.1225	0.00280		
		Res	ponse Profile	•		RACE	6	1	1,1169	0.00253	194612.689	<.000
	Ordered Value		Total Frequency	Total Weight		ELECTIVE	0	1	0.1149	0.00228	2549.6056	<.000
	1	1	16	77.8563		ATYPE	1	1	0.7298	0.00361	40938.1742	<.000
	2	0	1689	8363.7638		ATYPE	2	1	0.0954	0.00469	413.9595	<.000
	Prob	abilit	y modeled is	SSI=1.			-		0.0001	0.00100	110.0000	
	FIOD	aonit	y moueled is	001-1.								

Odds Ratio Estimat	es and W	ald Confid	ence Interv	als
Effect	Unit	Estimate	95% Confi	dence Limits
AGE	1.0000	1.002	1.001	1.002
Uncontrolled_HbA1c 1 vs 0	1.0000	1.520	1.507	1.534
FEMALE 1 vs 0	1.0000	1.051	1.041	1.060
RACE 2 vs 1	1.0000	1.114	1.097	1.130
RACE 3 vs 1	1.0000	2.008	1.979	2.038
RACE 4 vs 1	1.0000	0.977	0.963	0.992
RACE 5 vs 1	1.0000	1.379	1.359	1.400
RACE 6 vs 1	1.0000	4.764	4.695	4.833
ELECTIVE 0 vs 1	1.0000	1.258	1.247	1.270
ATYPE 1 vs 5	1.0000	4.736	4.656	4.816
ATYPE 2 vs 5	1.0000	2.511	2.462	2.561
LOS	1.0000	1.025	1.024	1.025

The Odds of having Urinary Tract Infections (UTIs):

In Total CABG Population — Among Diabetic patients with uncontrolled hyperglycemia, the likelihood of having urinary tract infection was significantly higher. The likelihood estimate showed a positive regression coefficient with increase in log-odds by 0.72 unit. Which means that uncontrolled hyperglycemia had increased the odds of UTI by 20.8% in overall CABG population. The uncontrolled diabetes had higher odds of UTI (OR 1.208; 95% CI: 1.15-1.26; p<.0001) (see Fig. 36). This was also consistent with the unadjusted result that showed diabetics with uncontrolled hyperglycemia had 1.5 higher risk of UTI (7.77 vs. 5.17; p<.0001), compared to those with controlled hyperglycemia.

Figure 36: Multivariate analysis of Uncontrolled Hyperglycemia Effect on Urinary Tract Infections (UTI) in Overall Diabetic-CABG population.

		Rates by Presence Undergoing CABC			lycemia (HbA10	c) in		Analy	sis c	f Ma	ximum Like	elihood Es	timates	
	т	he LOGISTIC Procedur	re				Paramete	er		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
		Model Information					Intercept			1	-8.0747	10579.1	0.0000	0.9994
Data Set		SASUSER.DM_CABG	ONLY				AGE		-	1	0.0239	0.000868	760.4076	<.000
Response Va	riable sponse Levels	UTI												
Weight Varia		DISCWT	N	IS discharge weight			Uncontro	olled_HbA1c	1	1	0.0945	0.0108	77.0701	<.000
Model		binary logit		io disentinge weight			FEMALE		1	1	0.6425	0.00850	5719.1136	<.000
Optimization	Technique	Fisher's scoring					RACE		2	1	0.0559	0.0297	3.5422	0.059
	Number	of Observations Read	122642				RACE		3	1	0.1592	0.0310	26.3012	<.000
		of Observations Used	63532				RACE		4	1	-0.1599	0.0572	7.8302	0.005
	Sum of W	eights Read	605630.9				RACE		5	1	-0.2246	0.0810	7.6847	0.005
	Sum of W	leights Used	313522.4				RACE		6	1	0.1273	0.0384	10.9684	0.000
		Response Profile					ELECTIV	E	0	1	-1.1581	3.5366	0.1072	0.743
	Ordered	UTI Frequency	Total Weight				ATYPE	-	-			1.7667	0.1029	0.748
		and the second sec	7796.36						1	1	0.5667			
		2 0 59921 29	5726.06				ATYPE		2	1	0.4313	1.7667	0.0596	0.807
	Pro	bability modeled is UT	1=1.											
		<u> </u>	-											
		Odds	Ratio	Estimate	s and w	ald	Confid	ence Inte	rva	IS				
	Effect				Unit	Es	timate	95% Cor	nfic	len	ce Lim	its		
	AGE				1.0000		1.024	1.0	22		1.0	26		
	Uncor	ntrolled_Ht	oA1c	1 vs 0	1.0000		1.208	1.1	58		1.2	60		
	FEMA	LE 1 vs 0			1.0000		3.615	3.4	96		3.7	37		
	RACE	2 vs 1			1.0000		1.014	0.9	61		1.0	70		
	RACE	3 vs 1			1.0000		1.124	1.0	61		1.1	91		
									40	1	0.9	30		
	RACE	4 vs 1			1.0000		0.817	0.7	18					
		4 vs 1 5 vs 1			1.0000 1.0000		0.817	0.7		+	0.9	25		
	RACE								34		0.9 1.1			
	RACE	5 vs 1			1.0000		0.766	0.6	34 06			79		
	RACE RACE ELEC	5 vs 1 6 vs 1	 		1.0000 1.0000		0.766 1.089	0.6	34 06 01		1.1	79 99		
	RACE RACE ELEC ATYP	5 vs 1 6 vs 1 TIVE 0 vs 1			1.0000 1.0000 1.0000		0.766 1.089 0.099	0.6 1.0 <0.0	34 006 001		1.1 >9999.9	79 99 65		
	RACE RACE ELEC ATYP	5 vs 1 6 vs 1 TIVE 0 vs 1 E 1 vs 5	 		1.0000 1.0000 1.0000 1.0000		0.766 1.089 0.099 0.583	0.6 1.0 <0.0 0.3	34 006 01 19 79		1.1 >9999.9 1.0	79 99 65 30		

In CABG-SIMA GRAFT ONLY — adjusted result showed that presence of Uncontrolled hyperglycemia in diabetics with SIMA grafting sub-population had significantly higher odds of UTI by 20.9%, compared to diabetic with controlled hyperglycemia (OR: 1.209; 95% CI: 1.15-1.26; p<.0001). the adjusted result met the expectation in the alternative hypothesis. Also the unadjusted result was consistent with this conclusion in comparing the rate of UTI between uncontrolled and controlled hyperglycemia in diabetic patient underwent CABG with SIMA grafting. The rate of UTI

was 1.5 times higher in diabetic with uncontrolled hyperglycemia relative to those with controlled. (see Fig. 37).

Figure 37: Multivariate analysis of Uncontrolled Hyperglycemia Effect on Urinary Tract Infections (UTI) in Diabetic-SIMA population.

on for offic		th SIMA Grafting C	e of Uncontrolled Hype ases ONLY	. a.y centra (ribA		Anal	ysis d	of Ma	ximum Lik	elihood Est	1	
	т	ne LOGISTIC Procedure	e		Para	meter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiS
		Model Information			Inter	cept		1	-4.1129	86.5352	0.0023	0.962
Data S	iet	SASUSER.DM_SIMA_	ONLY		AGE			1	0.0259	0.000953	736.7416	<.000
	ense Variable	UTI			Unc	ontrolled_HbA1c	1	1	0.0948	0.0116	67.1511	<.000
	er of Response Levels				FEM	ALE	1	1	0.6660	0.00928	5155.1663	<.00
Model	t Variable	DISCWT binary logit	NIS discharge weigh	t	RAC	E	2	1	0.0472	0.0317	2.2108	0.13
	ization Technique	Fisher's scoring		-	RAC	E	3	1	0.1153	0.0334	11.9448	0.00
-					RAC	E	4	1	-0.1130	0.0604	3.4952	0.06
		f Observations Read	103577		RAC	E	5	1	-0.1701	0.0841	4.0870	0.04
		f Observations Used	53866 511701		RAC	E	6	1	0.0935	0.0414	5.0931	0.024
			265861.4		ELE	CTIVE	0	1	-8.7801	1.2171	52.0368	<.000
					ATY	PE	1	1	3.1680	0.5956	28.2918	<.000
		Response Profile	T -4-1		ATY	PE	2	1	3.0412	0.5955	26.0800	<.000
	Ordered	UTI Frequency	Total Weight		ATY	PE	3	1	-14.7397	1.8562	63.0587	<.000
	2	1 3036 14 0 50830 250										
	FIO		atio Estimate	s and W	ald Confi	idence Int	er	/al	s			
	Effect			Unit	Estimat	e 95% C	on	fid	ence	Limits	•	
	AGE			1.0000	1.02	6 1.0	24			1.028	5	
	Uncontr	olled_HbA	1c 1 vs 0	1.0000	1.20	9 1.1	55			1.265	5	
	FEMALE	1 vs 0		1.0000	3.78	8 3.6	53			3.929)	
	RACE 2	vs 1		1.0000	1.02	0 0.9	63			1.081		
	RACE 3	vs 1		1.0000	1.09	2 1.0	25			1.164	•	
	RACE 4	vs 1		1.0000	0.86	9 0.7	58			0.996	;	
	RACE 5	vs 1		1.0000	0.82	1 0.6	75			0.998	3	
	RACE 6	vs 1		1.0000	1.06	9 0.9	80			1.165	5	
	ELECTIV	/E 0 vs 1		1.0000	<0.00	1 <0.0	01		•	<0.001		
	ATYPE 1	vs 5		1.0000	0.00	5 0.0	02			0.013	5	
	ATYPE 2	2 vs 5		1.0000	0.00	4 0.0	02			0.011		
	ATYPE 3	vs 5		1.0000	<0.00	1 <0.0	01			<0.001		
	ATTEL							_			_	

In CABG-BIMA GRAFT ONLY — after adjustment, result showed that uncontrolled hyperglycemia had increased the risk of UTI by 104.9% in diabetics underwent CABG with BIMA grafting. The adjusted result met the expectation in the alternative hypothesis and the unadjusted analysis was consistent (uncontrolled: 6.40%

vs. controlled: 3.88% ;p=0.0122). (see Fig. 38).

Figure 38: Multivariate analysis of Uncontrolled Hyperglycemia Effect on Urinary Tract Infections (UTI) in Diabetic-BIMA population.

				resence of Uncontrolle afting Cases ONLY			Analy	ysis d	of Ma	ximum Lik	elihood Est	timates	
	Th	Model Information	re		Pa	ram	neter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSc
Data Set		SASUSER.DM_BIMA	ONLY		Int	erce	ept		1	-25.0558	331776	0.0000	0.9999
Response Vari	iable	UTI			AG			-	1	0.0117	0.00629	3.4705	0.062
lumber of Res	sponse Levels	2											
Weight Variabl	le	DISCWT		NIS discharge weight	Un	icon	ntrolled_HbA1c	1	1	0.3587	0.0878	16.6946	<.000
lodel		binary logit			FE	MA	LE	1	1	0.5696	0.0637	80.0723	<.000
Optimization T	echnique	Fisher's scoring			RA	CE		2	1	1.7836	3.4449	0.2681	0.604
		f Observations Read	364		RA	CE		3	1	1.5458	3.4468	0.2011	0.653
		f Observations Used	170 17935.6			CE		4	1	0.4466	3.4637	0.0166	0.897
		eights Read eights Used	8441.6										
		-	011110	-	RA	CE		5	1	-5.9036	17.2046	0.1177	0.731
	Order	Response Profile			RA	CE		6	1	1.3537	3.4471	0.1542	0.694
	Ordered Value	UTI Frequency	Total Weight		EL	ECT	TIVE	0	1	-6.3809	0.0812	6182.5150	<.000
			78.1905		AT	YPE	E	1	1	13.4295	0.1539	7611.9688	<.000
	2	0 1628 80	63.4295						-				
	Prot	bability modeled is U	1=1.										
		Od	ds F	Ratio Estimat	es and	Wa	ald Confide	nce	Int	ervals			
	Effe	ect			Uni	it	Estimate	95%	6 C (onfiden	ce Limi	its	
	AG	E			1.000	0	1.012		0	.999	1.0	24	
	Unc	ontrolled	Hb	A1c 1 vs 0	1.000	0	2.049		1	.453	2.8	91	
	FEN	ALE 1 vs	0		1.000	0	3.124		2	.434	4.0	10	
	RAG	CE 2 vs 1			1.000	0	2.745		1	.933	3.8	98	
	RAG	CE 3 vs 1			1.000	0	2.164		1	.368	3.4	23	
	RAC	CE 4 vs 1			1.000	-	0.721			283	1.8	34	
	RAC	CE 5 vs 1			1.000	-	0.001		<0	.001	>9999.9		
		CE 6 vs 1			1.000	-	1.786			.121	2.8		
					1.000	-	<0.001			.001	<0.0		
		PE 1 vs 5	-			-		~					
		FE I VS 5			1.000		>999.999	2	999	.999	>999.9	99	
	LOS				1.000	~	1.051			.029	1.0	70	

The Odds of having Blood Stream Infections (BSIs):

In Total CABG Population — In diabetic patients population, the odds of BSIs were significantly lower in those with uncontrolled diabetes or hyperglycemia (HbA1c). Odds of having blood stream infection were 12.1% lower, when diabetic patient in uncontrolled hyperglycemic state (OR: 0.879; 95% CI: 081-0.94; p=0.0008) (see Fig.

20). The expectation was not met in the alternative hypothesis and adjusted result showed that uncontrolled hyperglycemia had lower predictive effect on BSI among diabetic in CABG population. (see Fig. 39).

Figure 39: Multivariate analysis of Uncontrolled Hyperglycemia (HbA1c) Effect on Blood Stream Infection (BSI) in Overall Diabetic-CABG population.

	Diabetics	Undergoing CAB	G surgery	1	lycemia (HbA1c) in		Analysi	5 OT N	iaximum Li	kelihood Es		
	т	he LOGISTIC Procedu	ure			Parameter		D	F Estimate	Standard Error	Wald Chi-Square	Pr > ChiSe
		Model Information				Intercept			1 -4.7856	91,7432	0.0027	0.958
Data Set Response	Variable	SASUSER.DM_CAB	G_ONLY			AGE		-	1 -0.0139		92,4364	<.000
	Response Levels	17.73						_				
Weight Var	iable	DISCWT	N	IS discharge weight		Uncontrolled	-	_	1 -0.0646		11.3338	0.000
Model		binary logit				FEMALE		1	1 -0.0453	3 0.0157	8.3317	0.003
Optimizatio	on Technique	Fisher's scoring				RACE		2	1 0.1982	2 0.0500	15.7440	<.000
	Number o	of Observations Read	122642			RACE		3	1 0.1469	0.0523	7.8770	0.005
		of Observations Used				RACE		1	1 -0.2146	0.0916	5.4905	0.019
		/eights Read /eights Used	605630.9 313522.4			RACE		5	1 -0.3480	0.1462	5.6634	0.017
			OTO CLET			RACE		-	1 0.2888		23.6265	<.000
	Ordered	Response Profile	Total			ELECTIVE		-	1 -7.5062		0.0400	0.841
		BSI Frequency	Weight 5656.85			ATYPE			1 3.8519		0.0400	
		1 1 1145 2 0 62387 3										0.8374
						ATYPE		_	1 3.8856		0.0429	0.836
	Pro	bability modeled is B	SI=1.			ATYPE		3	1 -11.3007	56.2984	0.0403	0.840
		Odds	s Rat	io Estima	ates and W	ald Confid	ence In	erv	als			
	Effect				Unit	Estimate	95% C	onf	idence	Limits		
	AGE				1.0000	0.986	0.9	83		0.989		
	Uncor	ntrolled_H	HbA1	c 1 vs 0	1.0000	0.879	0.8	15		0.947		
	FEMA	LE 1 vs 0)		1.0000	0.913	0.8	59		0.971		
	RACE	2 vs 1			1.0000	1.309	1.1	97		1.432		
	RACE	3 vs 1			1.0000	1.244	1.1	29		1.371		
	RACE	4 vs 1			1.0000	0.867	0.7	06		1.064		
	RACE	5 vs 1			1.0000	0.758	0.5	39		1.067		
	RACE	6 vs 1			1.0000	1.434	1.2	74		1.613		
	ELEC	TIVE 0 vs	1		1.0000	<0.001	<0.0	01	>9	99.999		
	ΑΤΥΡΙ	E 1 vs 5			1.0000	1.335	0.5	16		3.454		
	ΑΤΥΡΙ	E 2 vs 5			1.0000	1.380	0.5	33		3.573		
	ΑΤΥΡΙ	E 3 vs 5			1.0000	< 0.001	<0.0	01	>9	99.999		
							-					

In CABG-SIMA GRAFT ONLY — Uncontrolled hyperglycemia had lower predictive effect on the rate of blood stream infection (BSI) in diabetic patients underwent CABG with SIMA grafting (OR: 0.959; 95% CI: 0.95-0.96; p<.0001). The

odds of BSI was 4.5% lower by presence of uncontrolled hyperglycemia in diabetic with SIMA grafting. The null hypothesis was rejected, however, the expectation was not met by the adjusted result that uncontrolled hyperglycemia predicts higher rate of BSI in SIMA graft subpopulation. (see Fig. 40).

Figure 40: Multivariate analysis of Uncontrolled Hyperglycemia (HbA1c) Effect on Blood Stream Infection (BSI) in Diabetic-SIMA population.

Diabetics	with SIMA Grafting Cas	f Uncontrolled Hyperg es ONLY	hycemia (HDA1C) il		Analysis	of Ma	ximum Like	elihood Es	timates	
	The LOGISTIC Procedure Model Information			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Data Set	SASUSER.DM_SIMA_ON	LY		Intercept		1	-6.8787	0.000345	398325232	<.0001
Response Variable Number of Response Leve	BSI als 2			AGE		1	-0.00638	5.137E-6	1542771.26	<.0001
Weight Variable	DISCWT	NIS discharge weight		Uncontrolled	HbA1c 1	1	-0.0210	0.000345		<.0001
Model Optimization Technique	binary logit Fisher's scoring			FEMALE	1	1	-0.0427	0.000345		<.0001
		3577								
		53866		RACE	2	1	0.1165	0.000380		<.0001
		11701 861.4		RACE	3	1	0.0421		11963.4383	<.0001
Sumo		001.4		RACE	4	1	-0.0428	0.000403	11281.6565	<.0001
Orde	Response Profile red Total T	otal		RACE	5	1	-0.2061	0.000406	257205.498	<.0001
Va	Iue BSI Frequency We 1 1 875 431			RACE	6	1	0.1647	0.000393	175342.861	<.0001
	2 0 52991 26154			ELECTIVE	0	1	-0.3138	0.000345	828892.643	<.0001
P	robability modeled is BSI=1.			ATYPE	1	1	0.3065	0.000554	305642.273	<.0001
				ATYPE	2	1	0.3267	0.000641	259534.656	<.0001
				ATYPE	3	1	-0.4568	0.000604	571183.811	<.0001
				ATYPE	4	1	0.3834	0.0189	410.5894	<.0001
				LOS		1	0.0380	0.000019	3819150.14	<.0001
	ffect			Estimate						
	GE		1.0000	0.994	0.994	-		994		
	ncontrolled_H			0.959	0.958	-		960		
	EMALE 1 vs 0 ACE 2 vs 1		1.0000	0.918	0.917	-		919 213		
	ACE 3 vs 1		1.0000	1.124	1.121	-		126		
	ACE 4 vs 1		1.0000	1.032	1.030	-		034		
R	ACE 5 vs 1		1.0000	0.877	0.875	;	3.0	379		
R	ACE 6 vs 1		1.0000	1.270	1.267	·	1.2	273		
E	LECTIVE 0 vs	1	1.0000	0.534	0.533	5	0.8	535		
A	TYPE 1 vs 5		1.0000	2.378	2.291		2.4	468		
A	TYPE 2 vs 5		1.0000	2.427	2.338		2.5	519		
A	TYPE 3 vs 5		1.0000	1.109	1.068		1.1	151		
A	TYPE 4 vs 5		1.0000	2.568	2.385	;	2.7	766		
	DS		1.0000	1.039	1.039		1 (039		

In CABG-BIMA Graft Only — The effect of uncontrolled hyperglycemia in diabetic with BIMA grafting was not significant. The alternative hypothesis was rejected

which expect that uncontrolled hyperglycemia predicts higher rate of BSI in diabetics with BIMA grafting (OR: 1.345; 95% CI: 0.71-2.51; p=0.3537). (see Fig. 41).

Logic Regression for Blood-Stream Infection Rates by Presence of Uncont Hyperglycemia (HbA1c) in Diabetics with BIMA Grafting Cases ONLY Analysis of Maximum Likelihood Estimates Standard Wald The LOGISTIC Procedure Parameter DF Estimate Chi-Square Pr > ChiSq Error Model Information 1 -22.5885 8604.7 0.9979 Intercept 0.0000 Data Set SASUSER.DM BIMA ONLY Response Variable AGE -0.0511 0.0106 23,4817 <.0001 BSI 1 Number of Response Levels 2 1 **Uncontrolled HbA1c** 1 0.1484 0 1600 0 8600 0.3537 Weight Variable DISCWT NIS discharge weigh FEMALE 1 1 -0.0906 0.1273 0.5061 0.4769 Model binary logit RACE 2 1 -1.8754 0.4316 18.8862 <.0001 **Optimization Technique** Fisher's scoring 3 RACE 1 -0.5180 0.3769 1.8886 0.1694 Number of Observations Read 3649 Number of Observations Used 1705 RACE 4 1 0.8501 0.3769 5.0878 0.0241 Sum of Weights Read 17935.61 RACE 5 1 1.7268 0.5262 10.7694 0.0010 8441.62 Sum of Weights Used RACE 6 1 0.2382 0.3136 0.5771 0.4475 **Response Profile ELECTIVE** 0 1 -0 8400 12 1494 0 0048 0 9449 Ordered Total Value BSI Frequency Total Weight ATYPE 1 1 1.7833 24.2978 0.0054 0.9415 37 176.6601 2 0.9401 ATYPE 1 1.8259 24.2982 0.0056 2 0 1668 8264.9600 Probability modeled is E **Odds Ratio Estimates and Wald Confidence Intervals** Unit Estimate 95% Confidence Limits Effect AGE 1.0000 0.950 0.931 0.970 Uncontrolled_HbA1c 1 vs 0 1.0000 1.345 0.719 2.519 FEMALE 1 vs 0 1.0000 0.834 0.506 1.374 RACE 2 vs 1 0.234 0.610 1.0000 0.089 RACE 3 vs 1 1.0000 0.908 0.389 2.122 RACE 4 vs 1 1.0000 3.567 1.513 8.410 RACE 5 vs 1 1.0000 8.571 28.799 2.551 RACE 6 vs 1 1.0000 1.935 0.958 3.907 **ELECTIVE 0 vs 1** 0.186 < 0.001 1.0000 >999.999 ATYPE 1 vs 5 1.0000 219.751 < 0.001 >999.999 ATYPE 2 vs 5 229.299 < 0.001 1.0000 >999.999 LOS 1.0000 1.081 1.043 1.122

Figure 41: Multivariate analysis of Uncontrolled Hyperglycemia (HbA1c) Effect on Blood Stream Infection (BSI) in Diabetic-BIMA population.

The Odds of having Pneumonia (PN):

In Total CABG Population — In diabetics with uncontrolled hyperglycemia (HbA1c), the odds of pneumonia was 27.7% significantly lower by the presence of uncontrolled HbA1c relative to those with controlled hyperglycemia. The adjusted odd

ratio for pneumonia in uncontrolled versus controlled diabetes was (OR: 0.723 95% CI: 0.70-0.74; p<.0001) (see Fig. 42). This means that uncontrolled HbA1c in diabetic has less protective effect on pneumonia. Both unadjusted and adjusted result did not meet the expectation in the alternative hypothesis.

Figure 42: Multivariate analysis of Uncontrolled Hyperglycemia (HBA1c) Effect on Pneumonia (PN) in Overall Diabetic-CABG population.

Regression for Pneumoni		Presence of Uncontrollee ergoing CABG surgery	d Hyperglycemia (H	IbA1c) in Dial	petics		Analys	sis c	of Ma	ximum Like	lihood Est	timates	
		he LOGISTIC Procedure				Param	eter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
		Model Information				Interce	pt		1	1.0177	38.2500	0.0007	0.9788
Data Set		SASUSER.DM_CABG_ONLY				AGE			1	-0.00104	0.000552	3.5722	0.0588
Response Varia		PN 2				-	trolled HbA1c	1	1	-0.1622	0.00740	479.9006	<.0001
Number of Res Weight Variable		2 DISCWT	NIS discharge weight			FEMAL	-	1	1	0.00812	0.00583	1.9404	0.1636
Model	, 	binary logit	Nio discharge weight										
Optimization To	chnique	Fisher's scoring				RACE		2	1	-0.2364	0.0197	144.0151	<.0001
						RACE		3	1	0.0581	0.0210	7.6807	0.0056
		of Observations Read 1226 of Observations Used 635				RACE		4	1	0.1040	0.0361	8.2841	0.0040
		leights Read 605630				RACE		5	1	0.0621	0.0457	1.8470	0.1741
	Sum of W	leights Used 313522	2.4			RACE		6	1	0.1007	0.0257	15.4017	<.0001
		Response Profile				ELECT	IVE	0	1	-1.3378	1.3014	1.0566	0.3040
	Ordered	d Total Total	-			ATYPE		1	1	1.0265	0.6467	2.5199	0.1124
	Value	e PN Frequency Weight 1 1 44122 218184.94				ATYPE		2	1	0.9740	0.6467	2.2688	0.1320
	-	2 0 19410 95337.49				ΔΤΥΡΕ		3	1	-1 8060	1 Q618	0 0340	U 3338
		Odds Rati	o Estimate	s and W	ald C	Confid	ence Interv	als	S				
	Effect	:		Unit	Est	imate	95% Conf	ide	enc	e Limit	s		
	AGE			1.0000		0.999	0.998			1.00	0		
	Uncor	ntrolled_HbA1	c 1 vs 0	1.0000		0.723	0.702			0.74	4		
	FEMA	LE 1 vs 0		1.0000		1.016	0.993			1.04	0		
	RACE	2 vs 1		1.0000		0.863	0.831			0.89	6		
	RACE	3 vs 1		1.0000		1.158	1.111			1.20	7		
	RACE	4 vs 1		1.0000		1.212	1.117			1.31	6		
	RACE	5 vs 1		1.0000		1.163	1.046			1.29	2		
	RACE	6 vs 1		1.0000		1.208	1.144			1.27	6		
	ELEC	TIVE 0 vs 1		1.0000		0.069	<0.001			11.31	4		
	ATYP	E 1 vs 5		1.0000		3.099	1.742			5.51	2		
	ΑΤΥΡ	E 2 vs 5		1.0000		2.940	1.653			5.23	0		
	ΑΤΥΡ	E 3 vs 5		1.0000		0.167	<0.001			30.15	8		
	LOS			1.0000		0.996	0.994	1		0.99			

In CABG-SIMA GRAFT ONLY — The adjusted result showed that the effect of uncontrolled hyperglycemia was protective in diabetic with SIMA grafting (OR: 0.725; 95% CI: 0.70-0.74; p<.0001). The odds of PN was 27.5% significantly lower by presence of uncontrolled hyperglycemia in diabetics underwent SIMA grafting. The null hypothesis was rejected, however, both unadjusted and adjusted results were inconsistent with expectation in alternative hypothesis. (see Fig. 43).

Figure 43: Multivariate analysis of Uncontrolled Hyperglycemia (HBA1c) Effect on Pneumonia (PN) in Diabetic-SIMA population.

Si Friedmonia Rates Dy	Presence of Uncontrolled I SIMA Grafting Cases ONLY	Hyperglycemia (HbA	1c) in Diabetics with		Analysis	of Ma	ximum Lik	elihood Est	imates	
	The LOGISTIC Procedure			Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiS
Data Set	SASUSER.DM_SIMA_ONLY	e[Intercept		1	2.7276	44.8099	0.0037	0.951
Response Variable	PN			AGE		1	-		1.3918	0.238
Number of Response Le Weight Variable	DISCWT	NIS discharge weight				-				<.000
Model	binary logit			Uncontrolled_I		1		0.00797	407.3288	
Optimization Technique	Fisher's scoring			FEMALE	1	1		0.00642	2.7608	0.096
	ber of Observations Read 1035			RACE	2	1	-0.2640	0.0214	151.6210	<.000
	of Weights Read 5117			RACE	3	1	0.0450	0.0228	3.8985	0.048
	of Weights Used 26586			RACE	4	1	0.1048	0.0394	7.0609	0.007
	Response Profile			RACE	5	1	0.0593	0.0491	1.4576	0.227
Ore	dered Total Tota Value PN Frequency Weigh	ll t		RACE	6	1	0.1490	0.0281	28.0258	<.000
	1 1 37747 186673.5			ELECTIVE	0	1	-1.3208	1.3079	1.0199	0.312
	2 0 16119 79187.9	2		ATYPE	1	1	0.8679	0.6475	1.7965	0.180
	Probability modeled is PN=1.			ATYPE	2	1	0.8053	0.6475	1.5466	0.213
				ATYPE	3	1	-2.0674	1.9769	1.0937	0.295
Effec	ot		Unit	Estimate	95% C	onf	idence	Limits		
AGE			1.0000	0.999	0.9	98		1.000		
Unco	ontrolled_Hb/	A1c 1 vs 0	1.0000	0.725	0.7	03		0.748		
	ALE 1 vs 0		1.0000	1.022	0.9	96		1.048		
RAC	E 2 vs 1		1.0000	0.844	0.8			0.879		
RAC	E 3 vs 1		1.0000	1.149	1.0			1.202	-	
	E 4 vs 1		1.0000	1.220	1.1	-		1.334	-	
	E 5 vs 1		1.0000	1.166	1.0			1.306	-	
	E 6 vs 1		1.0000	1.275	1.2			1.354	-	
	CTIVE 0 vs 1		1.0000	0.071	<0.0			12.003	-	
	PE 1 vs 5		1.0000	1.606	0.0			3.310	-	
	PE 2 vs 5		1.0000	1.508	0.7			3.109	-	
	PE 2 vs 5		1.0000	0.085	<0.0	-		16.700	-	
	FE 3 VS 3							0.993	-	
LOS			1.0000	0.991	0.9	0.4		0 993		

In CABG-BIMA GRAFT ONLY — The likelihood of pneumonia in diabetics with BIMA grafting subpopulation by presence of uncontrolled hyperglycemia was 31.4% lower relative to those with controlled hyperglycemia (OR: 0.686; 95% CI: 0.540.86; p=0.0015) . Adjusted and unadjusted result showed the similar association between uncontrolled hyperglycemia and rate of pneumonia (PN) in diabetic patients with BIMA grafting. (see Fig. 44).

Figure 44: Multivariate analysis of Uncontrolled Hyperglycemia (HBA1c) Effect on Pneumonia (PN) in Diabetic-BIMA population.

(HbA1c)		ics with BIMA Graf		ontrolled Hyperglycer ses ONLY		A	nalysis o	of Ma	ximum Lik	elihood Est	imates	
	Th	Model Information	re		Para	ameter		DF	Estimate	Standard Error	Wald Chi-Square	
Data Set		SASUSER.DM_BIMA	ONILY		Inte	rcept		1	7.0848	199.1	0.0013	0.9716
Response Variab	la	PN	_UNLY									
Number of Respo		2			AGE			1	-0.00533	0.00388	1.8885	0.1694
Weight Variable		DISCWT	N	IS discharge weight	Unc	ontrolled_HbA1	c 1	1	-0.1882	0.0593	10.0575	0.001
Model		binary logit			FEN	ALE	1	1	0.0600	0.0460	1.6971	0.192
Optimization Tec	hnique	Fisher's scoring			RAC	۲ <u>–</u>	2	1	0.2445	0.1423	2.9500	0.085
	Number	f Observations Read	3649			-						
		f Observations Used	1705		RAC	E	3	1	0.3317	0.1519	4.7675	0.0290
		eights Read	17935.61		RAC	E	4	1	-0.3920	0.2141	3.3522	0.067
	Sum of W	eights Used	8441.62		RAC	E	5	1	-0.5241	0.3172	2.7305	0.0984
		Response Profile			RAC	E	6	1	0.2015	0.1450	1.9311	0.1646
	Ordered	Total	Total			CTIVE	0	1	-2.0905	40.1394	0.0027	0.9585
		PN Frequency 1 1313 65	Weight									
		0 392 193			ATY	PE	1	1	4.1691	80.2788	0.0027	0.9586
		bability modeled is PN			ATY	PE	2	1	3.9788	80.2788	0.0025	0.9605
	ACE				1 0000						-	
	Effec	ot			Unit	Estimate	95%	Co	onfidenc	ce Limit	S	
	AGE				1.0000	0.995	(0.98	37	1.00	2	
	Unco	ontrolled_l	HbA1	lc 1 vs 0	1.0000	0.686		0.54	14	0.86	6	
	FEM	ALE 1 vs 0)		1.0000	1.127	(0.94	11	1.35	0	
	RAC	E 2 vs 1			1.0000	1.112	(0.83	37	1.47	7	
	RAC	E 3 vs 1			1.0000	1.213	(38.0	32	1.66	8	
	RAC	E 4 vs 1			1.0000	0.588	(0.36	65	0.94	9	
	RAC	E 5 vs 1			1.0000	0.516	(0.24	17	1.07	7	
	RAC	E 6 vs 1			1.0000	1.065	(0.79	90	1.43	5	
	ELE	CTIVE 0 vs	s 1		1.0000	0.015	<	0.00)1 :	>999.99	9	
	ATY	PE 1 vs 5			1.0000	>999.999	<	0.00)1 :	>999.99	9	
	ATY	PE 2 vs 5			1.0000	>999.999	<	0.00)1 :	>999.99	9	
					1.0000	1.008		0.99			_	

CHAPTER 5

DISCUSSION

5.1 Interpretation of Main Findings:

The first hypothesis discusses whether diabetic patients who received bilateral internal mammary artery (BIMA) get significantly higher rate and odds of nosocomial infections compared to those who receive unilateral or signal internal mammary artery (SIMA) after GABG.. Our findings demonstrate that the use of BIMA grafting in overall CABG population had 4.2% lower predictive effect on the rate of surgical site infection (SSI) and significantly increased the risk of BSI by 46.7%, compared to SIMA graft in CABG population. The odds are slightly higher in predicting UTI by 6.9%, and PN by 6.1% with BIMA grafting in overall CABG population. In CABG diabetic population, The likelihood of SSI was significantly 23.9% lower by BIMA grafting, compared to SIMA grafting in diabetic patients. BIMA grafting has significantly increased the risk of BSI by 44.6% with no significant difference in the risk of UTI (p=0.2486), and PN (p=0.5238) in diabetic patients.

Table 1			U			0	0					
Infectio	on rate	es by I	BIMA	vs. SIN	AA Gr	afting i	n total	I CAB	G Popu	lation	•	
Risk		SSI			UTI			BSI			PN	
Facto												
rs	OR	CI	P	OR	CI	P	OR	CI	P	OR	CI	Р
BIMA	0.9 58	0.95 - 0.95	<.00 01	1.06 9	1.06 - 1.07	<.000 1	1.4 67	1.34 - 1.60	<.000 1	1.0 61	1.01 - 1.11	0.01 14
Table 1	5: Su	mmar	y of M	lultiva	riate lo	gistic re	egress	ion mo	odel for	Noso	comial	
Infectio	on rate	es by I	BIMA	vs. SIN	/IA Gr	afting i	n Diał	oetic-C	CABG c	ases C	ONLY.	
Risk Facto	SSI				UTI			BSI			PN	
rs	OR	CI	P	OR	CI	P	OR	CI	Р	OR	CI	P

BIMA	0.7 61	0.59 -	0.02 96	1.06 6	0.95 -	0.248 6	1.4 46	1.22	<.000 1	0.9 78	0.91 -	0.52 38
		0.97			1.18			1.71			1.04	

Many clinical studies has documented that surgeons avoid BIMA grafting in diabetic patients due to the high risk of surgical site infection (sternal wound infection). Our finding show that BIMA grafting is less likely associated with higher risk of surgical site infection (SSI), and replicates the results of Lev-Ran, O. et al [58] that BIMA grafting had no significant difference in risk of deep sternal wound infection compared to SIMA grafting. They conducted a multivariate analysis and concluded that BIMA grafting has no correlation with the risk of sternal wound infection, suggesting that BIMA conduit can be used with acceptable risk in insulin-treated diabetic patients. Dorman, M. J. et al. [60] has drawn same conclusion that BIMA grafting has no effect on the risk of sternal wound infection, compared to SIMA in diabetic patients using propensity score-matched analysis.

In a systematic meta-analysis, Deo, S.V. et al. [71] suggested that BIMA grafting can be used in the diabetic patient if skeletonization harvesting technique is adopted in BIMA grafting method. It is in-situ harvesting method that skeletonized the internal thoracic artery from its connective tissue. Sajja, L. R., et al. [72], in a retrospective study, replicate the same conclusion that risk of sternal surgical site infection is attributable to the method of IMA harvesting method. They believe that even with the standard method of harvesting (Pedicle) BIMA grafting if modified by the surgeon to preserve the commutation of the internal thoracic artery to the chest wall, it reduce the risk of sternal SSI significantly in diabetic patients compared to SIMA grafting. These studies have indicated that internal thoracic artery grafting slightly reduce the blood flow in the chest wall, a finding that is well-documented in anatomic cardiac studies. It contributes to low sternum blood flow, which leads to sternal ischemia and dehiscence (or mediastinitis). These complications are increased by the bilateral IMA grafting, and eventually linked to a higher risk of sternal wound infection, compared to SIMA grafting [71],[72].

The objective in second hypothesis (B) is to determine the effect of diabetes Mellitus on the risk of nosocomial infections in patients undergoing coronary artery bypass grafting (CABG) surgery. The bivariate analysis shows that diabetic patients have significantly lower rate of nosocomial infections than non-diabetic patients. After adjustment in multivariable analysis, our findings also confirm that Diabetes mellitus (DM) diagnosis has a significantly less predictive effect on all nosocomial infections (SSI, UTI, BSI, and PN), compared to the overall CABG population (non-diabetics). Except for UTI in BIMA graft population, diabetes was associated with higher risk of urinary tract infection (UTI). Only in patients underwent BIMA grafting [n=3,649], diabetics had 1.2 times higher risk of UTI (4.19 vs. 3.39; p=0.0393). The incidence of other infections (SSI, BSI, and PN) was significantly lower in diabetic patients. After adjustment for the possible cofounder variables, the results were consistent with bivariate analysis. The odds of UTI was significantly increased by 21.7% by presence of diabetes diagnosis in patient underwent CABG with BIMA grafting. (see table:18)

In contrary to others, our findings indicate that diabetes diagnosis was protective on almost all cases, except for UTI in BIMA graft population, in which diabetes was a strong predictor. [see Table 18]. The result was unexpected comparing to other studies included in literature review especially for SSI. [36]- [43]. For example, Zhang, X. [36] has done a meta-analysis of 132 prospective cohort studies included more than 100,000 patients conclude that diabetic patients have 1.5-1.7 times greater risk of postoperative infections than non-diabetic patients after CABG surgery.

The unexpected results in this hypothesis could imply a better trend toward the initiatives and improvements of the diabetic protocol in reducing nosocomial infections. Lemaigene A, et al. [75], reported similar result that diabetes showed a protective effect on SSI for insulin dependent diabetes (IDDM) (OR: 0.42; 95% CI: 0.21-0.86; p= 0.02) and non-insulin dependent diabetes (NIDDM) (OR: 0.43; 95% CI: 0.22-0.82; p= 0.01). [75]

In other studies, Kieser, T. M., et al. [57] and Lee, Y.P. et al. [76] concluded no significant difference in surgical site infection between diabetic and non-diabetics in CABG surgery. Kieser, T. M., et al. has reported that diabetes has no significant effect on the overall rate of surgical site infection (P=0.696 deep sternal wound infection). Lee, Y.P. et al. demonstrated the same result in bivariate analysis (P=0.336). [57], [76]

Table 1	6: Su	mmar	y of M	ultivar	riate lo	gistic re	egress	ion mo	odel for	Noso	comial	
Infectio						-	-					
Risk Facto		SSI			UTI			BSI			PN	
rs	OR	CI	P	OR	CI	Р	OR	CI	Р	OR	CI	Р
DM	0.4 49	0.41 - 0.48	<.00 1	0.68 7	0.68 - 0.68	<.000 1	0.4 12	0.39 - 0.43	<.000 1	0.4 49	0.43 - 0.46	<.00 01
Table 1 Infectio			•			0	0					
Risk Facto		SSI			UTI			BSI			PN	
rs	OR	CI	P	OR	CI	Р	OR	CI	P	OR	CI	P
DM	0.6 63	0.66 -	<.00 01	0.69 0	0.69 -	<.000 1	0.4 76	0.44 - 0.50	<.000 1	0.4 57	0.44 - 0.47	<.00 01
		0.66			0.69							
Table 1 Infectio			•			gistic re afting ii	0					

Risk		SSI			UTI			BSI			PN	
Facto rs	OR	CI	P	OR	CI	P	OR	CI	P	OR	CI	P
DM	0.4 47	0.25	0.00 47	1.21 7	1.21	<.000 1	0.2 63	0.18	<.000 1	0.3 39	0.28	<.00 01
		0.78			1.22			0.37			0.40	

The third hypothesis (C) is sub-hypothesis that the aim to test the effect of glucose control status in diabetic patients on the risk of nosocomial infections. The results in indicate that in-hospital infectious complications usually occur in diabetic patients with uncontrolled hyperglycemia (HbA1c) compared to those with controlled hyperglycemia or diabetes. Surgical site infection (SSI) and urinary tract infection (UTI) were significantly associated with uncontrolled HbA1c. Except for blood-stream infection (BSI) and pneumonia (PN), uncontrolled diabetes was not predictive factor.

The association between uncontrolled hyperglycemia and nosocomial infections: SSI and UTI was seen in overall diabetic-CABG population and Diabetic-BIMA grafting population. Diabetes with uncontrolled hyperglycemia increase the odds of SSI by 3.8% in overall CABG and 52% in BIMA graft subpopulation. Uncontrolled hyperglycemia was also a strong predictor of higher rate of urinary tract infection UTI by 20.8% in overall Diabetic-CABG sample, 20.9% in Diabetic-SIMA, and 104.9% in Diabetic-BIMA subpopulation. Uncontrolled hyperglycemia had protective effect on the rate of BSI and PN in overall CABG sample, SIMA, and BIMA subpopulation.

Infectio	Table 19: Summary of Multivariate logistic regression model for NosocomialInfection rates By presence of Uncontrolled Hyperglycemia in total CABGpopulation.												
Risk	SSI UTI BSI PN												
Facto			-			-		-					
rs	OR	CI	P	OR	CI	P	OR	CI	Р	OR	CI	P	

Unctrl HbA1c	1.0 38	1.03 - 1.04	<.00 01	1.20 8	1.15 - 1.26	<.00 01	0.879	0.81 - 0.94	0.00 08	0.723	0.70 - 0.74	<. 00 01
	Table 20: Summary of Multivariate logistic regression model for Nosocomial											
Infection rates By presence of Uncontrolled Hyperglycemia in CABG-SIMA GRAFT Cases ONLY.												
Risk		SSI			UTI			BSI			PN	
Facto rs	OR	CI	Р	OR	CI	Р	OR	CI	Р	OR	CI	P
Unctrl HbA1c	0.9 37	0.84 - 1.03	0.20 20	1.20 9	1.15 – 1.26	<.00 01	0.959	0.95 - 0.96	<.00 01	0.725	0.70 - 0.74	<. 00 01
Table 21: Summary of Multivariate logistic regression model for Nosocomial Infection rates By presence of Uncontrolled Hyperglycemia in CABG-BIMA GRAFT Cases ONLY.												
Risk Facto		SSI			UTI			BSI			PN	
rs	OR	CI	Р	OR	CI	Р	OR	CI	P	OR	CI	P
Unctrl HbA1c	1.5 20	1.50 - 1.53	<.00 01	2.04 9	1.45 – 2.89	<.00 01	1.345	0.71 - 2.51	0.35 37	0.686	0.54 - 0.86	0. 00 15

The results met our expectation in the hypothesis (C) and were consistent Subramaniam, B., et al. [46], and Ng, R. R., et al. [50]. Subarmaniam B., et al. showed that preoperative uncontrolled hyperglycemia significantly increases risk of deep sternal wound infection by 64% (OR: 1.64) with no significant difference in pneumonia (p=0.704). Ng. R. R. et al. [50] study concluded that diabetic with blood glucose > 8 mmol/L have a 213% increase risk of surgical site infection (OR 3.131 (95% CI: 1.431 -6.851), P = 0.004). A target glucose less than <8 mmol/L is highly recommend for diabetic patients to be range between 7.4 to 7.7 mmol/L. [50]

The coexistence of diabetes and uncontrolled hyperglycemia are important risk factors for operative infection. It is well document in clinical and laboratory studies that the long-term complication of diabetes cause poor blood profusion due to the pathological changes in microvascular permeability, which debilitates injury healing process and immunity to infections. At molecular level also, long term complication of hyperglycemia in diabetes has been associated with impairment of the polymorphonuclear neutrophils' chemotactic and phagocytic functionality. **[73]**, **[74]**. It has been emphasized by American heart association and the society of thoracic surgeons guidelines for surgeons that target glucose have to be less than 6 mmol/L for diabetic patients undergoing CABG surgery. **[50]**, **[77]**

CHAPTER 6

CONCLUSION

6.1 Final Statement:

Diabetic patients showed a lower trend in all noscomial infection rate, except for UTI in BIMA graft population. The findings suggest a positive trend in nosomical infection for diabetic patients, however, measures to protect patients at risk like those with diabetes is very important. New applied protocols toward the national effort in safer clinical practice could contribute to an unexpected trend change in certain outcomes. This could indicate a better trend in diabetic protocols as well.

The BIMA grafting should be encouraged in diabetic patients. Expect in the case of uncontrolled hyperglycemia due to the high risk of both SSI and UTI as it has been emphasized in literature and was consistent with our findings. It is based on the surgeon preference in the choice of BIMA grafting in the diabetic patients with uncontrolled hyperglycemia, However, we highly recommend the aggressive hyperglycemia control protocol by continuous insulin infusion based on our findings.

6.2 Limitations:

A major limitation of our study is that the ICD-9-CM codes in HCUP data are intended for administrative and billing purposes. The sensitivity of ICD-9 codes representation to define a clinical adverse events rate might not be fully accurate. Some studies might have a different set of ICD9 codes to retrieve clinical scenarios with nosocomial infections. This variability could be a source of pitfall. A standardized method is needed on how to increase the sensitivity and representation of ICD-9 code to detect the nosocomial infectious complications in administrative data. Until now, there is no worldwide standard method on detecting health-care associated infections in administrative data.

Secondly, HCUP data was not designed to track adverse event over time. The time of events incidence was not clear to be identified whether to be after (post-operative) or before (pre-operative) CABG surgery. Therefore, we captured all targeted infections happened during hospitalization in CABG population.

Other limitations are associated with the type of research design. Retrospective research is subject to selection bias. Some adjustment in the statistical analysis can be used to improve the results with selection bias. For example, propensity score analysis can be used to reduce the selection bias that results from selection of the variables used for comparing the exposure groups baseline characteristics.

6.3 Future Research:

In the future work, a study is needed to conduct a pathogens profiling analysis of nosocoimal infections in Diabetic patients undergoing CABG Surgery. It is important to analyze the risk factors associated with antibiotic-resistant pathogens in SSI, UTI, BSI, and PN in CABG surgery. The study also could measure the effect of Nosocomial Infection on the hospital resources in cost and length of stay.

REFERENCES

- 1. World Health Organization (WHO) . Global Status Report on Noncommunicable Diseases 2014: World Health Organization; 2015.
- Mendis S, Puska P, Norrving B, Organization WH, Federation WH, Organization WS. Global Atlas on Cardiovascular Disease Prevention and Control: World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization; 2011.
- Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015 ;131(4):e29-322. Epub 2014/12/19. doi: 10.1161/cir.00000000000152. PubMed PMID: 25520374.
- 4. Blackwell DL, Lucas JW, Clarke TC. Summary health statistics for U.S. adults: national health interview survey, 2012. Vital Health Stat 10. 2014(260):1-161. Epub 2014/05/14. PubMed PMID: 24819891.
- National Center for Health Statistics. Mortality Multiple Cause Micro-data Files, 2013. Public-use data file and documentation. NHLBI tabulations. <u>http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm#Mortality_Multiple</u>. Accessed October 28, 2015
- Colby SL, Ortman JM. Projections of the size and composition of the US population: 2014 to 2060. Current Population Reports. 2015 (P25-1143). *Retrived from:* https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf.
- Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933-44. Epub 2011/01/26. doi: 10.1161/CIR.0b013e31820a55f5. PubMed PMID: 21262990.
- Cinquegrani, M. P. Coronary Heart Disease. <u>Andreoli and Carpenter's Cecil</u> <u>Essentials of Medicine</u>. I. Benjamin, R. C. Griggs, E. J. Wing and J. G. Fitz, Elsevier Health Sciences. 2015: Ch. 8, p.87-109.
- Hansson G, Hamsten A, Goldman L, Schafer A. Atherosclerosis, thrombosis, and vascular biology. Goldman's Cecil Medicine 25th ed Philadelphia, PA: Elsevier Saunders. 2016. <u>Chapter 70, p. 417-419</u>.

- Hall, M. J., DeFrances, C. J., Williams, S. N., Golosinskiy, A., & Schwartzman, A. National hospital discharge survey: 2007 summary. 2010 *Natl Health Stat Report*, 29(29), 1-20. Accessed from <u>http://www.cdc.gov/nchs/products/nhsr.htm</u>
- National Center for Health Statistics (US. Health, United States, 2014: With special feature on adults aged 55–64. 2015. Accessed from <u>http://www.cdc.gov/nchs/hus.htm</u>
- Flaherty JD, Davidson CJ. Diabetes and coronary revascularization. Jama. 2005;293(12):1501-8. Epub 2005/03/24. doi: 10.1001/jama.293.12.1501. PubMed PMID: 15784875.
- Berry C, Tardif JC, Bourassa MG. Coronary heart disease in patients with diabetes: part II: recent advances in coronary revascularization. J Am Coll Cardiol. 2007;49(6):643-56. Epub 2007/02/13. doi: 10.1016/j.jacc.2006.09.045. PubMed PMID: 17291929.
- Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol. 2002;40(3):418-23. Epub 2002/07/27. PubMed PMID: 12142105.
- 15. Hillis, L. D., Smith, P. K., Anderson, J. L., Bittl, J. A., Bridges, C. R., Byrne, J. G., ... & Winniford, M. D. (2011). 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the American Association for Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons
- Mavromatis K, Samady H, King SB, 3rd. Revascularization in patients with diabetes: PCI or CABG or none at all. Curr Cardiol Rep. 2015;17(3):565. Epub 2015/02/14. doi: 10.1007/s11886-015-0565-0. PubMed PMID: 25676827.
- Kurlansky P, Herbert M, Prince S, Mack MJ. Improved long-term survival for diabetic patients with surgical versus interventional revascularization. The Annals of thoracic surgery. 2015;99(4):1298-305. Epub 2015/02/18. doi: 10.1016/j.athoracsur.2014.11.035. PubMed PMID: 25686668.
- Ekezue BF, Laditka SB, Laditka JN, Studnicki J, Blanchette CM. Diabetes complications and adverse health outcomes after coronary revascularization. Diabetes research and clinical practice. 2014;103(3):530-7. Epub 2014/01/21. doi: 10.1016/j.diabres.2013.09.019. PubMed PMID: 24440091.
- 19. Vamos EP, Millett C, Parsons C, Aylin P, Majeed A, Bottle A. Nationwide study on trends in hospital admissions for major cardiovascular events and procedures among people with and without diabetes in England, 2004-2009. Diabetes care.

2012;35(2):265-72. Epub 2012/01/03. doi: 10.2337/dc11-1682. PubMed PMID: 22210568; PubMed Central PMCID: PMCPmc3263914.

- Kuhl J, Sartipy U, Eliasson B, Nystrom T, Holzmann MJ. Relationship between preoperative hemoglobin A1c levels and long-term mortality after coronary artery bypass grafting in patients with type 2 diabetes mellitus. Int J Cardiol. 2015;202:291-6. Epub 2015/09/29. doi: 10.1016/j.ijcard.2015.09.008. PubMed PMID: 26411993.
- 21. Rujirojindakul P, Liabsuetrakul T, McNeil E, Chanchayanon T, Wasinwong W, Oofuvong M, et al. Safety and efficacy of intensive intraoperative glycaemic control in cardiopulmonary bypass surgery: a randomised trial. Acta Anaesthesiol Scand. 2014;58(5):588-96. Epub 2014/03/19. doi: 10.1111/aas.12305. PubMed PMID: 24628042.
- 22. Ogawa S, Okawa Y, Sawada K, Goto Y, Yamamoto M, Koyama Y, et al. Continuous postoperative insulin infusion reduces deep sternal wound infection in patients with diabetes undergoing coronary artery bypass grafting using bilateral internal mammary artery grafts: a propensity-matched analysis. Eur J Cardiothorac Surg. 2015. Epub 2015/04/01. doi: 10.1093/ejcts/ezv106. PubMed PMID: 25825261.
- 23. Ng RR, Myat Oo A, Liu W, Tan TE, Ti LK, Chew ST. Changing glucose control target and risk of surgical site infection in a Southeast Asian population. The Journal of thoracic and cardiovascular surgery. 2015;149(1):323-8. Epub 2014/12/03. doi: 10.1016/j.jtcvs.2014.08.076. PubMed PMID: 25439770.
- King JT, Jr., Goulet JL, Perkal MF, Rosenthal RA. Glycemic control and infections in patients with diabetes undergoing noncardiac surgery. Ann Surg. 2011;253(1):158-65. Epub 2010/12/08. doi: 10.1097/SLA.0b013e3181f9bb3a. PubMed PMID: 21135698.
- 25. Rujirojindakul P, Liabsuetrakul T, McNeil E, Chanchayanon T, Wasinwong W, Oofuvong M, et al. Safety and efficacy of intensive intraoperative glycaemic control in cardiopulmonary bypass surgery: a randomised trial. Acta Anaesthesiol Scand. 2014;58(5):588-96. Epub 2014/03/19. doi: 10.1111/aas.12305. PubMed PMID: 24628042.
- McQuillan BM, Thompson PL. Management of acute coronary syndrome in special subgroups: female, older, diabetic and Indigenous patients. Med J Aust. 2014;201(10):S91-6. Epub 2014/11/13. PubMed PMID: 25390500.
- 27. Lazar HL, McDonnell MM, Chipkin S, Fitzgerald C, Bliss C, Cabral H. Effects of aggressive versus moderate glycemic control on clinical outcomes in diabetic coronary artery bypass graft patients. Ann Surg. 2011;254(3):458-63; discussion

63-4. Epub 2011/08/26. doi: 10.1097/SLA.0b013e31822c5d78. PubMed PMID: 21865944.

- 28. Ito H. Optimal treatment for coronary artery disease in patients with diabetes: percutaneous coronary intervention, coronary artery bypass graft, and medications. Gen Thorac Cardiovasc Surg. 2011;59(1):6-13. Epub 2011/01/13. doi: 10.1007/s11748-010-0648-1. PubMed PMID: 21225393.
- 29. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. American journal of infection control. 2004;32(8):470-85. Epub 2004/12/02. doi: 10.1016/s0196655304005425. PubMed PMID: 15573054.
- Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in coronary care units in the United States. National Nosocomial Infections Surveillance System. Am J Cardiol. 1998;82(6):789-93. Epub 1998/10/07. PubMed PMID: 9761092.
- Friedman ND, Bull AL, Russo PL, Gurrin L, Richards M. Performance of the national nosocomial infections surveillance risk index in predicting surgical site infection in australia. Infection control and hospital epidemiology. 2007;28(1):55-9. Epub 2007/01/19. doi: 10.1086/509848. PubMed PMID: 17230388.
- Sodano L, Agodi A, Barchitta M, Musumeci F, Menichetti A, Bellocchi P, et al. Nosocomial infections in heart surgery patients: active surveillance in two Italian hospitals. Annali di igiene: medicina preventiva e di comunita. 2003;16(6):735-43.
- Dunning J, Prendergast B, Mackway-Jones K. Towards evidence-based medicine in cardiothoracic surgery: best BETS. Interact Cardiovasc Thorac Surg. 2003;2(4):405-9. Epub 2007/08/03. doi: 10.1016/s1569-9293(03)00191-9. PubMed PMID: 17670084.
- 34. Dawes M, Pluye P, Shea L, Grad R, Greenberg A, Nie JY. The identification of clinically important elements within medical journal abstracts: Patient-Population-Problem, Exposure-Intervention, Comparison, Outcome, Duration and Results (PECODR). Inform Prim Care. 2007;15(1):9-16. Epub 2007/07/07. PubMed PMID: 17612476.
- 35. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS med. 2009;6(7):e1000097. www.prisma-statement.org.
- 36. Zhang X, Wu Z, Peng X, Wu A, Yue Y, Martin J, et al. Prognosis of diabetic patients undergoing coronary artery bypass surgery compared with nondiabetics: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth.

2011;25(2):288-98. Epub 2010/12/15. doi: 10.1053/j.jvca.2010.09.021. PubMed PMID: 21147538.

- 37. Vranken NP, Weerwind PW, Barenbrug PJ, Teerenstra S, Ganushchak YM, Maessen JG. The role of patient's profile and allogeneic blood transfusion in development of post-cardiac surgery infections: a retrospective study. Interact Cardiovasc Thorac Surg. 2014;19(2):232-8. Epub 2014/04/15. doi: 10.1093/icvts/ivu096. PubMed PMID: 24729199.
- 38. Likosky DS, Wallace AS, Prager RL, Jacobs JP, Zhang M, Harrington SD, et al. Sources of Variation in Hospital-Level Infection Rates After Coronary Artery Bypass Grafting: An Analysis of The Society of Thoracic Surgeons Adult Heart Surgery Database. The Annals of thoracic surgery. 2015;100(5):1570-5; discussion 5-6. Epub 2015/09/01. doi: 10.1016/j.athoracsur.2015.05.015. PubMed PMID: 26321440.
- Raza S, Sabik JF, 3rd, Ainkaran P, Blackstone EH. Coronary artery bypass grafting in diabetics: A growing health care cost crisis. The Journal of thoracic and cardiovascular surgery. 2015;150(2):304-2.e2. Epub 2015/06/02. doi: 10.1016/j.jtcvs.2015.03.041. PubMed PMID: 26027913.
- 40. Saxena A, Dinh D, Smith JA, Shardey G, Reid CM, Newcomb AE. Sex differences in outcomes following isolated coronary artery bypass graft surgery in Australian patients: analysis of the Australasian Society of Cardiac and Thoracic Surgeons cardiac surgery database. Eur J Cardiothorac Surg. 2012;41(4):755-62. Epub 2012/03/17. doi: 10.1093/ejcts/ezr039. PubMed PMID: 22423056.
- 41. Lola I, Levidiotou S, Petrou A, Arnaoutoglou H, Apostolakis E, Papadopoulos GS. Are there independent predisposing factors for postoperative infections following open heart surgery? Journal of Cardiothoracic Surgery. 2011;6:151-. doi: 10.1186/1749-8090-6-151. PubMed PMID: PMC3223138.
- Mannien J, Wille JC, Kloek JJ, van Benthem BH. Surveillance and epidemiology of surgical site infections after cardiothoracic surgery in The Netherlands, 2002-2007. The Journal of thoracic and cardiovascular surgery. 2011;141(4):899-904. Epub 2010/11/26. doi: 10.1016/j.jtcvs.2010.09.047. PubMed PMID: 21094499.
- Ledur P, Almeida L, Pellanda LC, Schaan BD. Predictors of infection in postcoronary artery bypass graft surgery. Rev Bras Cir Cardiovasc. 2011;26(2):190-6. Epub 2011/09/07. PubMed PMID: 21894408.
- 44. Tennyson C, Lee R, Attia R. Is there a role for HbA1c in predicting mortality and morbidity outcomes after coronary artery bypass graft surgery? Interact Cardiovasc Thorac Surg. 2013;17(6):1000-8. Epub 2013/09/12. doi: 10.1093/icvts/ivt351. PubMed PMID: 24021615; PubMed Central PMCID: PMCPmc3829487.

- 45. Haga KK, McClymont KL, Clarke S, Grounds RS, Ng KY, Glyde DW, et al. The effect of tight glycaemic control, during and after cardiac surgery, on patient mortality and morbidity: A systematic review and meta-analysis. J Cardiothorac Surg. 2011;6:3. Epub 2011/01/12. doi: 10.1186/1749-8090-6-3. PubMed PMID: 21219624; PubMed Central PMCID: PMCPmc3023693.
- 46. Subramaniam B, Lerner A, Novack V, Khabbaz K, Paryente-Wiesmann M, Hess P, et al. Increased glycemic variability in patients with elevated preoperative HbA1C predicts adverse outcomes following coronary artery bypass grafting surgery. Anesth Analg. 2014;118(2):277-87. Epub 2014/01/22. doi: 10.1213/ane.00000000000100. PubMed PMID: 24445629.
- Burekovic A, Dizdarevic-Bostandzic A, Godinjak A. Poorly regulated blood glucose in diabetic patients--predictor of acute infections. Med Arh. 2014;68(3):163-6. Epub 2014/09/10. PubMed PMID: 25195343.
- 48. Giakoumidakis K, Eltheni R, Patelarou E, Theologou S, Patris V, Michopanou N, et al. Effects of intensive glycemic control on outcomes of cardiac surgery. Heart Lung. 2013;42(2):146-51. Epub 2013/03/05. doi: 10.1016/j.hrtlng.2012.12.007. PubMed PMID: 23453011.
- Omar AS, Salama A, Allam M, Elgohary Y, Mohammed S, Tuli AK, et al. Association of time in blood glucose range with outcomes following cardiac surgery. BMC Anesthesiol. 2015;15:14. Epub 2015/02/12. doi: 10.1186/1471-2253-15-14. PubMed PMID: 25670921; PubMed Central PMCID: PMCPmc4323258.
- 50. Ng RR, Myat Oo A, Liu W, Tan TE, Ti LK, Chew ST. Changing glucose control target and risk of surgical site infection in a Southeast Asian population. Journal of Thoracic & Cardiovascular Surgery. 2015;149(1):323-8. PubMed PMID: 25439770.
- 51. Greco G, Ferket BS, D'Alessandro DA, Shi W, Horvath KA, Rosen A, et al. Diabetes and the Association of Postoperative Hyperglycemia With Clinical and Economic Outcomes in Cardiac Surgery. Diabetes care. 2016;39(3):408-17. Epub 2016/01/21. doi: 10.2337/dc15-1817. PubMed PMID: 26786574; PubMed Central PMCID: PMCPmc4764032.
- 52. Rujirojindakul P, Liabsuetrakul T, McNeil E, Chanchayanon T, Wasinwong W, Oofuvong M, et al. Safety and efficacy of intensive intraoperative glycaemic control in cardiopulmonary bypass surgery: a randomised trial. Acta Anaesthesiol Scand. 2014;58(5):588-96. Epub 2014/03/19. doi: 10.1111/aas.12305. PubMed PMID: 24628042.

- Knapik P, Ciesla D, Filipiak K, Knapik M, Zembala M. Prevalence and clinical significance of elevated preoperative glycosylated hemoglobin in diabetic patients scheduled for coronary artery surgery. Eur J Cardiothorac Surg. 2011;39(4):484-9. Epub 2010/11/23. doi: 10.1016/j.ejcts.2010.07.037. PubMed PMID: 21087870.
- 54. Minakata K, Bando K, Takanashi S, Konishi H, Miyamoto Y, Ueshima K, et al. Impact of diabetes mellitus on outcomes in Japanese patients undergoing coronary artery bypass grafting. J Cardiol. 2012;59(3):275-84. Epub 2012/03/31. doi: 10.1016/j.jjcc.2011.12.009. PubMed PMID: 22459591.
- 55. Raza S, Sabik JF, 3rd, Masabni K, Ainkaran P, Lytle BW, Blackstone EH. Surgical revascularization techniques that minimize surgical risk and maximize late survival after coronary artery bypass grafting in patients with diabetes mellitus. The Journal of thoracic and cardiovascular surgery. 2014;148(4):1257-64; discussion 64-6. Epub 2014/09/28. doi: 10.1016/j.jtcvs.2014.06.058. PubMed PMID: 25260269.
- 56. Raja SG, Benedetto U, Jothidasan A, Jujjavarapu RK, Ukwu UF, De Robertis F, et al. Right internal mammary artery versus radial artery as second arterial conduit in coronary artery bypass grafting: a case-control study of 1526 patients. International journal of surgery (London, England). 2015;16(Pt B):183-9. Epub 2014/08/26. doi: 10.1016/j.ijsu.2014.08.342. PubMed PMID: 25153938.
- 57. Kieser TM, Rose MS, Aluthman U, Montgomery M, Louie T, Belenkie I. Toward zero: deep sternal wound infection after 1001 consecutive coronary artery bypass procedures using arterial grafts: implications for diabetic patients. The Journal of thoracic and cardiovascular surgery. 2014;148(5):1887-95. Epub 2014/03/13. doi: 10.1016/j.jtcvs.2014.02.022. PubMed PMID: 24613159.
- Lev-Ran O, Matsa M, Ishay Y, Abod MA, Vodonos A, Sahar G. Bilateral internal thoracic artery grafting in insulin-treated diabetes. Asian Cardiovasc Thorac Ann. 2013;21(6):661-8. Epub 2014/02/27. doi: 10.1177/0218492312466251. PubMed PMID: 24569323.
- 59. Ben Ahmed H, Chelli M, Selmi K, Bouzouita K, Hamdi I, Mokaddem A, et al. [Coronary artery bypass grafting in diabetic patients: early and mid-term outcomes]. Tunis Med. 2012;90(11):798-802. Epub 2012/12/01. PubMed PMID: 23197058
- Dorman MJ, Kurlansky PA, Traad EA, Galbut DL, Zucker M, Ebra G. Bilateral internal mammary artery grafting enhances survival in diabetic patients: a 30-year follow-up of propensity score-matched cohorts. Circulation. 2012;126(25):2935-42. Epub 2012/11/21. doi: 10.1161/circulationaha.112.117606. PubMed PMID: 23166212.

- 61. Deo SV, Altarabsheh SE, Shah IK, Cho YH, McGraw M, Sarayyepoglu B, et al. Are two really always better than one? Results, concerns and controversies in the use of bilateral internal thoracic arteries for coronary artery bypass grafting in the elderly: a systematic review and meta-analysis. International journal of surgery (London, England). 2015;16(Pt B):163-70. Epub 2015/01/20. doi: 10.1016/j.ijsu.2015.01.008. PubMed PMID: 25598216.
- 62. Kajimoto K, Yamamoto T, Amano A. Coronary artery bypass revascularization using bilateral internal thoracic arteries in diabetic patients: a systematic review and meta-analysis. The Annals of thoracic surgery. 2015;99(3):1097-104. Epub 2015/01/27. doi: 10.1016/j.athoracsur.2014.09.045. PubMed PMID: 25620592.
- 63. HCUP Databases. Healthcare Cost and Utilization Project (HCUP). Agency for Healthcare Research and Quality, Rockville, MD. Overview of the Nationwide Inpatient Sample (NIS). May,2016. Accessed May 26, 2016. <u>http://www.hcup-us.ahrq.gov/nisoverview.jsp</u>.
- 64. Trikalinos TA, Dahabreh IJ, Wong J, Rao M. AHRQ Future Research Needs Papers. Future Research Needs for the Comparison of Percutaneous Coronary Interventions with Bypass Graft Surgery in Nonacute Coronary Artery Disease: Identification of Future Research Needs from Comparative Effectiveness Review No 9. Rockville (MD): Agency for Healthcare Research and Quality (US); 2010.
- 65. Huseman, Sommer, RN, <u>Diabetes Mellitus Coding Guidlines</u> <u>https://www.capstoneperformancesystems.com/articles/diabetes-mellitus-coding-guidlines/</u>
- 66. Medicare program: changes to the hospital inpatient prospective payment systems and fiscal year 2009 rates; payments for graduate medical education in certain emergency situations; changes to disclosure of physician ownership in hospitals and physician self-referral rules; updates to the long-term care prospective payment system; updates to certain IPPS-excluded hospitals; and collection of information regarding financial relationships between hospitals. Final rules. Federal register. 2008;73(161):48433-9084. Epub 2008/10/30. PubMed PMID: 18956499. http://www.ncbi.nlm.nih.gov/pubmed/18956499/
- 67. Agency for Healthcare Research and Quality (AHRQ). Patient Safety Indicators: Technical Specifications. Ver. 3.2, Mar 2008. <u>http://www.qualityindicators.ahrq.gov/Downloads/Modules/PSI/V32/psi_technica_l_specs_v32.pdf</u> Accessed Mar 15, 2008.
- Vogel TR, Dombrovskiy VY, Carson JL, Haser PB, Lowry SF, Graham AM. Infectious complications after elective vascular surgical procedures. Journal of vascular surgery. 2010;51(1):122-9; discussion 9-30. Epub 2009/12/04. doi: 10.1016/j.jvs.2009.08.006. PubMed PMID: 19954920.

- 69. de Wit M, Goldberg S, Hussein E, Neifeld JP. Health care-associated infections in surgical patients undergoing elective surgery: are alcohol use disorders a risk factor? Journal of the American College of Surgeons. 2012;215(2):229-36. Epub 2012/06/26. doi: 10.1016/j.jamcollsurg.2012.04.015. PubMed PMID: 22727411.
- Vogel TR, Dombrovskiy VY, Lowry SF. In-hospital delay of elective surgery for high volume procedures: the impact on infectious complications. Journal of the American College of Surgeons. 2010;211(6):784-90. Epub 2010/10/29. doi: 10.1016/j.jamcollsurg.2010.08.009. PubMed PMID: 20980170; PubMed Central PMCID: PMCPmc2992590.
- 71. Deo SV, Shah IK, Dunlay SM, Erwin PJ, Locker C, Altarabsheh SE, et al. Bilateral internal thoracic artery harvest and deep sternal wound infection in diabetic patients. The Annals of thoracic surgery. 2013;95(3):862-9. Epub 2013/01/29. doi: 10.1016/j.athoracsur.2012.11.068. PubMed PMID: 23352296.
- Sajja LR, Mannam G, Dandu SB, Sompalli S. Reduction of sternal wound infections in diabetic patients undergoing off-pump coronary artery bypass surgery and using modified pedicle bilateral internal thoracic artery harvest technique. The Journal of thoracic and cardiovascular surgery. 2012;144(2):480-5. Epub 2012/04/14. doi: 10.1016/j.jtcvs.2012.03.024. PubMed PMID: 22498089.
- 73. Yuan SY, Breslin JW, Perrin R, Gaudreault N, Guo M, Kargozaran H, et al. Microvascular permeability in diabetes and insulin resistance. Microcirculation (New York, NY : 1994). 2007;14(4-5):363-73. Epub 2007/07/07. doi: 10.1080/10739680701283091. PubMed PMID: 17613808.
- 74. Sima AA, O'Neill SJ, Naimark D, Yagihashi S, Klass D. Bacterial phagocytosis and intracellular killing by alveolar macrophages in BB rats. Diabetes. 1988;37(5):544-9. Epub 1988/05/01. PubMed PMID: 3360215.
- 75. Lemaignen A, Birgand G, Ghodhbane W, Alkhoder S, Lolom I, Belorgey S, et al. Sternal wound infection after cardiac surgery: incidence and risk factors according to clinical presentation. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2015;21(7):674.e11-8. Epub 2015/04/18. doi: 10.1016/j.cmi.2015.03.025. PubMed PMID: 25882356.
- 76. Lee YP, Feng MC, Wu LC, Chen SH, Chen YH, Chiu CC, et al. Outcome and risk factors associated with surgical site infections after cardiac surgery in a Taiwan medical center. J Microbiol Immunol Infect. 2010;43(5):378-85. Epub 2010/11/16. doi: 10.1016/s1684-1182(10)60060-6. PubMed PMID: 21075704.

77. Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman RM, Sadhu AR, et al. The Society of Thoracic Surgeons practice guideline series: Blood glucose management during adult cardiac surgery. The Annals of thoracic surgery. 2009;87(2):663-9. Epub 2009/01/24. doi: 10.1016/j.athoracsur.2008.11.011. PubMed PMID: 19161815.

APPENDIX A

Medline Database Search Strings

No.	PubMed String	Records Number
1	CABG[tw] OR PCI[tw] OR PTCA[tw] AND hba1c[tw]	83
2	"cross infection"[MeSH Major Topic] OR (("infection"[MeSH Terms] OR "infection"[All Fields] OR "infections"[All Fields]) AND "control groups"[MeSH Terms]) AND "cardiovascular surgical procedures"[MeSH Major Topic] AND diabetes[tw]	21
3	"Cardiovascular Surgical Procedures"[Majr] AND (Hb A1a+b or Hb A1c or HbA1 or Glycosylated Hemoglobin A or Hb A1 or Glycohemoglobin A or Hemoglobin A(1) or Hemoglobin, Glycosylated A1b or A1b Hemoglobin, Glycosylated or Glycosylated A1b Hemoglobin or Hb A1b or Hemoglobin, Glycosylated A1a-1 or A1a-1 Hemoglobin, Glycosylated or Glycosylated A1a-1 Hemoglobin or Hemoglobin, Glycosylated A1a 1 or Hb A1a-1 or Hb A1a-2 or Hemoglobin, Glycosylated or Glycosylated Hemoglobin or Glycated Hemoglobins or Hemoglobins, Glycated)	148
4	("Cardiovascular Surgical Procedures"[Majr] AND "Glucose Metabolism Disorders"[Mesh]) AND "Infection"[Mesh]	116
5	("myocardial revascularization"[MeSH Terms] OR ("myocardial"[All Fields] AND "revascularization"[All Fields]) OR "myocardial revascularization"[All Fields] OR ("myocardial revascularizations"[All Fields]) AND (("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "hb a1a b"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "hb a1a b"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1c"[All Fields]) OR "hb a1c"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "hba1"[All Fields]) OR ("glycosylated haemoglobin a"[All Fields] OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "hba1"[All Fields]) OR ("glycosylated haemoglobin a"[All Fields] OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hba1"[All Fields] OR ("hemoglobin a, glycosylated "[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("hemoglobin a"[All Fields]) OR "hemoglobin a"[All Fields] OR "hemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, gly	151

	"glycosylated a1b hemoglobin"[All Fields]) OR ("hemoglobin a,	
	glycosylated"[MeSH Terms] OR "glycosylated hemoglobin	
	a"[All Fields] OR ("hb"[All Fields] AND "a1b"[All Fields]) OR "hb	
	a1b"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH	
	Terms] OR "glycosylated hemoglobin a"[All Fields]) OR	
	("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated	
	hemoglobin a"[All Fields]) OR ("hemoglobin a,	
	glycosylated"[MeSH Terms] OR "glycosylated hemoglobin	
	a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms]	
	OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin	
	a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin	
	a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms]	
	OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin	
	a, glycosylated "[MeSH Terms] OR "glycosylated hemoglobin	
	a"[All Fields] OR ("hemoglobin"[All Fields] AND	
	"glycosylated"[All Fields]) OR "hemoglobin, glycosylated"[All	
	Fields]) OR ("glycosylated haemoglobin"[All Fields] OR	
	"hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated	
	hemoglobin a"[All Fields] OR ("glycosylated"[All Fields] AND	
	"hemoglobin"[All Fields]) OR "glycosylated hemoglobin"[All	
	Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR	
	"glycosylated hemoglobin a"[All Fields] OR ("glycated"[All	
	Fields] AND "hemoglobins"[All Fields]) OR "glycated	
	hemoglobins"[All Fields]) OR ("hemoglobin a,	
	glycosylated"[MeSH Terms] OR "glycosylated hemoglobin	
	a"[All Fields] OR ("hemoglobins"[All Fields] AND "glycated"[All	
	Fields])))	
6	"Cardiovascular Surgical Procedures"[Majr] AND (("hemoglobin	148
	a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin	
	a"[All Fields] OR "hb a1a b"[All Fields]) OR ("hemoglobin a,	
	glycosylated"[MeSH Terms] OR "glycosylated hemoglobin	
	a"[All Fields] OR ("hb"[All Fields] AND "a1c"[All Fields]) OR "hb	
	a1c"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH	
	Terms] OR "glycosylated hemoglobin a"[All Fields] OR	
	"hba1"[All Fields]) OR ("glycosylated haemoglobin a"[All Fields]	
1	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a,	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a,	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms]	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a,	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin "[All Fields]) OR ("hemoglobin a"[All Fields]) OR ("hemoglobin "] a"[All Fields] OR ("hemoglobin"] or "glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"] or "glycosylated"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("a1b"[All Fields] AND	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("a1b"[All Fields] AND "hemoglobin"[All Fields] AND "glycosylated"[All Fields]])) OR	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] AND "glycosylated"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] AND "glycosylated"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] AND "glycosylated"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] AND "glycosylated"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] AND "glycosylated"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] AND "glycosylated"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("a1b"[All Fields] AND "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("glycosylated"[All Fields]])) OR	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("a1b"[All Fields] AND "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("a1b"[All Fields] AND "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("glycosylated"[All Fields])) OR ("hemoglobin a"[All Fields] OR ("glycosylated"[All Fields]] AND "a1b"[All Fields] AND "hemoglobin"[All Fields]) OR "glycosylated a1b hemoglobin"[All Fields]) OR ("hemoglobin a,	
	OR "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hb"[All Fields] AND "a1"[All Fields]) OR "hb a1"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR "glycohemoglobin a"[All Fields]) OR ("haemoglobin a"[All Fields] OR "hemoglobin a"[MeSH Terms] OR "hemoglobin a"[All Fields]) AND 1[All Fields] OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields] AND "a1b"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] AND "glycosylated"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] AND "glycosylated"[All Fields]])) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("a1b"[All Fields] AND "hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("glycosylated"[All Fields]])) OR	

	a1b"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated "[MeSH Terms] OR "glycosylated hemoglobin a, glycosylated memoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated hemoglobin a, glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated hemoglobin a"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields]) OR ("hemoglobin a"[All Fields] OR ("hemoglobin"[All Fields] AND "glycosylated"[All Fields]) OR "hemoglobin, glycosylated"[All Fields]) OR ("glycosylated haemoglobin"[All Fields] OR		
	"hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("glycosylated"[All Fields] AND "hemoglobin"[All Fields]) OR "glycosylated hemoglobin"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("glycated"[All Fields] AND "hemoglobins"[All Fields]) OR "glycated hemoglobins"[All Fields]) OR ("hemoglobin a, glycosylated"[MeSH Terms] OR "glycosylated hemoglobin a"[All Fields] OR ("hemoglobins"[All Fields] AND "glycated"[All Fields] OR ("hemoglobins"[All Fields]) OR "glycated hemoglobin a"[All Fields] OR ("hemoglobins"[All Fields] AND "glycated"[All Fields])))		
8	("hyperglycaemia"[All Fields] OR "hyperglycemia"[MeSH Terms] OR "hyperglycemia"[All Fields]) AND (predict\$[All Fields] OR clinical\$[All Fields] OR outcome\$[All Fields] OR ("risk"[MeSH Terms] OR "risk"[All Fields])) AND ("coronary artery bypass"[MeSH Terms] OR ("coronary"[All Fields] AND "artery"[All Fields] AND "bypass"[All Fields]) OR "coronary artery bypass"[All Fields])	145	
10	myocardial revascularization[majr] and Glycosylated haemoglobin[mesh]		81
11	percutaneous coronary intervention AND GLYCEMIC CONTROL	68	
12	CORONARY ARTERY BYPASS and glycemic control	113	
13	(Therapy/Broad[filter]) AND ((cross infection or nosocomial infection or hospital acquired infection) and myocardial revascularization and diabetes)	26	
14	LINKED Citation FROM PubMed paper " <u>Is there a role for</u> <u>HbA1c in predicting mortality and morbidity outcomes</u> <u>after coronary artery bypass graft surgery?</u>	349	
	(("diabetes mellitus"[MeSH Terms] OR ("diabetes"[All Fields] AND "mellitus"[All Fields]) OR "diabetes mellitus"[All Fields]) AND ("blood glucose"[MeSH Terms] OR ("blood"[All Fields] AND "glucose"[All Fields]) OR "blood glucose"[All Fields]) AND ("infection"[MeSH Terms] OR "infection"[All Fields])) AND ("myocardial revascularisation"[All Fields] OR "myocardial revascularization"[MeSH Terms] OR ("myocardial"[All Fields] AND "revascularization"[All Fields]) OR "myocardial revascularization"[All Fields]) OR "myocardial	36	
	"internal mammary-coronary artery anastomosis"[MeSH Terms] AND "diabetes complications"[MeSH Terms]	47	

((myocardial revascularization[MeSH Terms]) AND infection[Text Word]) AND diabetes mellitus[MeSH]	170
(Therapy/Broad[filter]) AND (drug-eluting stents and infection)	54
(etiology/Broad[filter]) AND (percutaneous coronary intervention and coronary artery bypass grafting surgery and diabetes)	889

APPENDIX B

ICD-9-CM codes Definition of The Study Sample Population, Outcomes, and Exposures

A: Definition of Population undergoing CABG Procedures by ICD-9 codes				
Primary Procedure (PR1)	ICD-9-CM			
CABG [CSS1=44]	<u>3610, 3611, 3612, 3613, 3614, 3615,</u>			
	<u>3616, 3617, 3618, 3619, 3619, 363, 3631,</u>			
	<u>3632, 3633, 3634,3639</u>			
Cardiopulmonary bypass (on-pump)	3961			
Aortic coronary bypass grafting	3610, 3611, 3612, 3613, 3614			
Single Internal Mammary grafting	3615			
anastomosis or grafting (SIMA)				
Bilateral (Double) internal mammary	3616			
anastomosis or grafting (BIMA)				
Abdominal bypass grafting	3617			
Other bypass anastomosis or grafting	3619, 363, 3631, 3632, 3633,			
	3634,3639			
Primary Diagnosis* (Dx1) only	ICD-9-CM			
* It is auto generated by filtering the	41000, 41001, 41010, 41011, 41012,			
primary procedure (Pr1) for CABG	41012, 41012, 41020, 41021, 41022,			
surgery.	41030, 41031, 41032, 41040, 41041,			
	41042, 41050, 41051, 41052, 41060,			
Coronary Heart Disease (CHD), Coronary	41061, 41062, 41070, 41071, 41072, 41080, 41081, 41082, 41090, 41091,			
atherosclerosis, Acute myocaridal	41090, 41081, 41082, 41090, 41091, 41092, 4110, 4111, 41181, 4130, 4131,			
infarction, Acute coronary syndrome, or	4139, 4140, 41400, 41401, 41402, 41403,			
Angina pectoris, or chronic heart disease.	41404, 41405, 41406, 41407, 4141, 41410,			
[CCS=100, CCS=101]	41411, 41412, 41419, 4142, 4143, 4148,			
	4149.			
ICD-9-CM : International Classification of Diseases, 9t	-			
http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs				
ketoacidosis ^a , hyperosmolarity ^b , coma ^c , nephropathy ^d , ophthalmopathy ^e , neuropathy ^f , vascular				
manifestation ^g , unspecified, and other complications				

Secondary Diagnosis (DXs) with	ICD-9-CM
nplications of surgical Procedures (CCS	
)	
Surgical site infection (SSIs) or post-	
operative infections or Infection of	996.60, 996.61, 996.62
internal prosthetic device; implant;	998.31, 998.32,
and grafts	998.5, 998.51, 998.59,
	998.83
Sepsis / blood stream infections	0380 0381 03810 03811 03812 038
(BSIs)	0384203840 03841 03843 03844 0384
	038.0–038.4, 038–038.9,
	785.52, 790.7,
	995.9, 995.91, 995.92,
	996.60, 996.61, 996.62,
	998.0,
	999.3, 999.31, 999.39
Pneumonia [122]	997.3, 997.31, 997.39
	480, 480.0, 480.1, 480.2, 480.3, 480.8,
	480.9,
	481,
	482, 482.0, 482.1, 482.2, 482.3, 482.30
	482.31, 482.32, 482.39, 482.40, 482.41
	482.42, 482.49, 482.8, 482.81, 482, 82,
	482.83, 482.84, 482.89, 482.9
	402 402 1 402 0
	483, 483.1, 483.8,
	484, 484.1, 484.3, 484.5, 484.6, 484.7,
	484.8,
	485,
	486
	487.0
Urinary Tract infections (UTIs)	500.0.006.64
9-CM : International Classification of Disease	599.0, 996.64

C: Definition of Exposure					
Any Secondary Diagnosis (Dx2-Dx15)	ICD-9-CM				
Diabetes w/o complication [CSS=49] and	25000, 25001, 25002, 25003, 24900, 24901				
Diabetes w/ complications [CSS=50] *	$\begin{array}{c} 25010\text{-}25013\ ^{a}\text{, } 25020\text{-}25023\ ^{b}\text{, } 25030\text{-}\\ 25033^{c}\text{, } 25040\text{-}25043\ ^{d}\text{, } 25050\text{-}25053^{e}\\ \text{, } 2560\text{-}2563^{f}\text{, } 25070\text{-}2573^{g}\text{, } 25080\text{-}2583^{h}\\ \text{, } 25090\text{-}2593^{i}\text{, } 24910\text{-}24911\text{, } 249.20\text{-}\\ 24921\text{, } 24930\text{-} 24931\text{, } 24940\text{-} 24941\text{, } 24950\text{-}\\ 24951\text{, } 24960\text{-} 24961\text{, } 24970\text{-} 24971\text{, } 24980\text{-}\\ 24981\text{, } 24991\text{-} 249.90\text{.} \end{array}$				
Any Secondary Diagnosis (Dx2-Dx15) with	ICD-9-CM				
Diabetes with Uncontrolled Hyperglycemia	25002, 25003, 24901,25012, 25022, 25042, 25052, 25062, 25072, 25082, 25092, 25013, 25023, 25033, 25043, 25053, 25063, 25073, 25083, 25093, 24911, 24921, 24931, 24941, 24951, 24961, 24971, 24981, 24991.				
Abnormal glucose level	7902				
Elevated or Impaired fasting glucose	79021				
Impaired glucose tolerance test	79022				
Unspecific hyperglycemia	79029				
Any Procedure (PRx) with					
Single Internal Mammary grafting anastomosis or grafting (SIMA)	3615				
Bilateral (Double) internal mammary anastomosis or grafting (BIMA)	3616				
ICD-9-CM : International Classification of Diseases, 9th Revision, Clinical Modification. CCS: Clinical Classification Software for ICD-9-CM codes. CABG= Coronary artery bypass graft; PCI= Percutaneous coronary intervention					